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Abstract The dodecahedral conjecture states that in a packing of unit spheres
in <3, the Voronoi cell of minimum possible volume is a regular dodecahedron
with inradius one. The conjecture was first stated by L. Fejes Tóth in 1943, and
was finally proved by Hales and McLaughlin over 50 years later using techniques
developed by Hales for his proof of the Kepler conjecture. In 1964, Fejes Tóth
described an approach that would lead to a complete proof of the dodecahedral
conjecture if a key inequality were established. We describe a connection between
the key inequality required to complete Fejes Tóth’s proof and bounds for spherical
codes and show how recently developed strengthened bounds for spherical codes
may make it possible to complete Fejes Tóth’s proof.
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1 Introduction

The dodecahedral conjecture states that in a packing of unit spheres in < 3, the
Voronoi (or Dirichlet) cell of minimum possible volume is a regular dodecahedron
with inradius one. More precisely, let Nxi , i D 1; : : : ; m be points in <3 with k Nxik �
1 for each i , and k Nxi � Nxj k � 1 for all i ¤ j . Then the points 2 Nxi can be taken to be
the centers of m non-overlapping spheres of radius one which also do not overlap a
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sphere of radius one centered at x0 D 0. The Voronoi cell associated with x0 is then

V. Nx1; : : : ; Nxm/ D fx W NxT
i x � k Nxik2; i D 1; : : : ; mg:

Let D � <3 denote a regular dodecahedron of inradius one, and Vol.�/ denote
volume in <3.

The Dodecahedral Conjecture [5, 6] Let Nxi 2 <3, i D 1; : : : ; m with k Nxik � 1

for each i , and k Nxi � Nxj k � 1 for all i ¤ j . Then Vol.V . Nx1; : : : ; Nxm// � Vol.D/.
The dodecahedral conjecture was stated by L. Fejes Tóth in 1943 [5]. Fejes

Tóth’s interest in the conjecture was to obtain a good upper bound on the maximal
density of a sphere packing in<3. In particular, the dodecahedral conjecture implies
an upper bound of approximately 0.7545, compared to the maximal density of
approximately 0.7405 asserted by the Kepler conjecture. Hales and McLaughlin [9]
describe a complete proof of the dodecahedral conjecture based on techniques
developed by Hales for his proof of the Kepler conjecture. The proof of [9] is
believed to be correct, but is difficult to verify due to the many cases and extensive
computations required.

Let RD D
p

3 tan 36ı � 1:2584 be the radius of a sphere that circumscribes
D, and let SD D fx 2 <3 W kxk � RDg. Fejes Tóth’s 1943 paper contains a
proof of the dodecahedral conjecture under the assumption that there are at most
12 i such that Nxi 2 SD . In [6, pp. 296–298] Fejes Tóth restates the dodecahedral
conjecture and describes an approach that would lead to a complete proof if a key
inequality were established. The details of this approach are described in the next
section. In Sect. 3 we describe a connection between the key inequality required
to complete Fejes Tóth’s proof and bounds for spherical codes. Using constraints
from the well-known Delsarte bound for spherical codes, we are able to prove the
key inequality for some but not all of the required possible cases. We then consider
applying additional constraints from recently described semidefinite programming
(SDP) bounds for spherical codes [2]. The use of the SDP constraints improves our
bounds, but is not sufficient to eliminate more cases than were already eliminated
using the linear programming constraints associated with the Delsarte bound.

In recent work, Hales [7] announced a proof of the “strong” dodecahedral con-
jecture, which is the original dodecahedral conjecture with surface area replacing
volume throughout. The proof methodology of [7] also utilizes Fejes Tóth’s key
inequality, which is apparently the basis for a new computational proof of the
Kepler conjecture in [8]. These recent developments suggest that continued efforts
to provide a direct proof of the key inequality remain a very interesting topic for
further research.

2 Fejes Tóth’s Proof

In this section we describe the proof of the dodecahedral conjecture suggested in
[6]. The first ingredient is a strengthened version of the result proved in [5].
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Theorem 1 ([6, p. 265]). Let Oxi , i D 1; : : : ; m be points in <3 with k Oxik � 1 for
each i . If m � 12, then Vol.V . Ox1; : : : ; Oxm/ \SD/ � Vol.D/.

Note that in Theorem 1 it is not assumed that the points satisfy k Oxi � Oxj k � 1,
i ¤ j . Also, the assumption that k Oxik < RD for each i could be added, since if
k Oxik � RD the constraint OxT

i x � k Oxik2 in the definition of V. Ox1; : : : ; Oxm/ does not
eliminate any points in SD .

The second important component of the argument suggested in [6] is a
“point adjustment procedure” that facilitates the use of Theorem 1 when
m > 12. For the Voronoi cell V. Ox1; : : : ; Oxm/, let Fi . Ox1; : : : ; Oxm/ be the face of
V. Ox1; : : : ; Oxm/ \SD corresponding to the points with OxT

i x D k Oxik2 (it is possible
that Fi . Ox1; : : : ; Oxm/ D ;).

Point Adjustment Procedure

Step 0. Input Nxi , 1 � k Nxik � RD , i D 1; : : : ; m with m > 12 and k Nxi � Nxj k � 1,
i ¤ j . Let Oxi D Nxi , i D 1; : : : ; m.

Step 1. If jfi W 1 < k Oxik < RDgj < 2 then go to Step 3. Otherwise choose j ¤ k

such that 1 < k Oxj k < RD , 1 < k Oxkk < RD , and the surface area of
Fj . Ox1; : : : ; Oxm/ is less than or equal to that of Fk. Ox1; : : : ; Oxm/.

Step 2. Let ı D minfRD � k Oxj k; k Oxkk � 1g, and

Oxj  .k Oxj k C ı/
Oxj

k Oxj k ; Oxk  .k Oxkk � ı/
Oxk

k Oxkk :

Go to Step 1.
Step 3. Output Oxi , i D 1; : : : ; m.

As pointed out in [6], RD <
p

2 implies that the area of Fi .�1x1; : : : ; �mxm/

is monotone decreasing in �i . It follows that the adjustment in Step 2 leavesPm
iD1 k Oxik unchanged, while Vol.V . Ox1; : : : ; Oxm/ \ SD/ is nonincreasing.1 Note

that the adjustment in Step 2 is executed at most m� 1 times, since each adjustment
decreases j fi W 1 < k Oxik < RDgj by at least 1. Then Theorem 1 can be applied if the
Oxi output by the procedure have at most 12 i with k Oxik < RD . (Note that the output
points Oxi will generally not satisfy k Oxi � Oxj k � 1, i ¤ j , but this assumption is not
required in Theorem 1.) This will be the case if the input points Nxi satisfy

mX

iD1

k Nxik � 12C .m � 12/RD: (1)

To see this, note that there is at most one Oxj with 1 < k Oxj k < RD , so if
ji W k Oxik D 1j � 11 there is nothing to show. Assume on the other hand that
k Oxik D 1, i D 1; : : : ; 12. Then (1) and the fact that k Oxik � RD for each i together
imply

1Fejes Tóth does not explicitly consider the possibility that the two faces Fj . Ox1; : : : ; Oxm/ and
Fk. Ox1; : : : ; Oxm/ intersect. However in this case it is easy to see that the increase in volume that
results from increasing Oxj is even less than if the faces do not intersect.
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mX

iD1

k Oxik D
mX

iD1

k Nxik � 12C .m � 12/RD

12C
mX

iD13

k Oxik � 12C .m � 12/RD

.m � 12/RD �
mX

iD13

k Oxik � .m � 12/RD;

implying that k Oxik D RD for i D 13; : : : ; m.
A complete proof of the dodecahedral conjecture thus requires only a proof that

(1) holds for any Nxi , i D 1; : : : ; m with 1 � k Nxik � RD for each i , and kxi �xj k �
1 for all i ¤ j . Unfortunately Fejes Tóth was unable to prove (1), even though all
evidence suggests that (1) actually holds with RD replaced by the larger constant
7=
p

27 � 1:347 [6].2 Remarkably, the key inequality also appears in Hales’ [7]
recent paper that describes a proof of the strong dodecahedral conjecture. In [7]
the key inequality is labeled as the inequality L12, and is written with the value of
RD � 1:2584 rounded up to h0 WD 1:26. (It is also assumed that the initial points
satisfy 1 � k Nxik � h0.) A computational proof of the inequality L12 is apparently
the basis for a new proof of the Kepler conjecture in [8].

3 Applying Bounds for Spherical Codes

We now describe an approach to proving the key inequality (1) based on bounds for
spherical codes. A set C D fxigmiD1 � <3 is called a spherical z-code if kxik D 1

for each i , and xT
i xj � z for all i ¤ j . For example, a packing of unit spheres

that all touch (or “kiss”) a unit sphere centered at the origin generates a spherical
1=2-code.

To begin we establish that if R is sufficiently small and f NxigmiD1 are points with
1 � k Nxik � R for each i and k Nxi � Nxj k � 1 for all i ¤ j , then the normalized
points xi D Nx=k Nxik form a z-code for a suitable value of z.

Lemma 1. Suppose that 1 � k Nxik � R, i D 1; : : : ; m, where 1 � R � 1Cp
5

2
and

k Nxi � Nxj k � 1 for all i ¤ j . Let xi D Nxi =k Nxik, i D 1; : : : ; m. Then xT
i xj � 1� 1

2R2

for all i ¤ j .

Proof. The case R D 1 is trivial. For R > 1 and i ¤ j , consider the problem

2 Note that (1) implies that for m D 13, if k Nxi k D 1 for i D 1; : : : ; 12, then k Nx13k � RD . It has
been incorrectly stated that the latter implication is the “missing ingredient” in Fejes Tóth’s proof.
In fact the stronger statement (1) is exactly what is required.
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max k�i xi � �j xj k2
s:t: 1 � �i � R; 1 � �j � R: (2)

The objective in (2) is convex, so the solution lies at an extreme point of the
feasible region. Letting s WD xT

i xj , the value of the objective at the extreme points
is:

�2
i C �2

j � 2s�i �j D

8
ˆ̂
<

ˆ̂
:

2.1 � s/ if �i D �j D 1;

1CR2 � 2Rs if �i D 1; �j D R or �i D R; �j D 1;

2R2.1 � s/ if �i D �j D R:

Obviously the maximum cannot occur at �i D �j D 1. Note that the solution
value in (2) is at least one, from the assumption that k Nxi � Nxj k � 1. It follows that
if the max occurs at �i D 1; �j D R (or equivalently �i D R; �j D 1) then
1 C R2 � 2Rs � 1, which is equivalent to s � R

2
. Similarly, if the max occurs at

�i D �j D R, then 2R2.1 � s/ � 1, which is equivalent to s � 1 � 1
2R2 . Finally it

is easy to verify that R
2
� 1 � 1

2R2 for 1 � R � 1Cp
5

2
. �

Next, for xi ¤ xj with kxik D kxj k D 1, consider the problem

min �i C �j

s:t: k�i xi � �j xj k � 1 (3)

1 � �i � R; 1 � �j � R:

Note that by Lemma 1 and its proof, if R � 1Cp
5

2
then (3) is feasible if and only

if xT
i xj � 1� 1

2R2 . The next result gives a complete characterization of the solution
value in (3).

Theorem 2. Let 1 � R � 1Cp
5

2
, kxik D kxj k D 1 and s D xT

i xj � 1 � 1
2R2 .

Then the solution value in problem (3) is ��
i C ��

j D f .s; R/, where

f .s; R/ D

8
ˆ̂
<

ˆ̂
:

2 if s � 1
2
;

1C 2s if 1
2
� s � R

2
;

R.1C s/Cp
1 �R2.1 � s2/ if R

2
� s � 1 � 1

2R2 :

Proof. The case of s � 0:5 is trivial, so assume that s > 0:5 and the objective
in (3) attains a value �i C �j D c, where 2 < c � 2R. Since the constraint
k�i xi � �j xj k � 1 is equivalent to .�i C �j /2 � 1C 2�i �j .1C s/, this implies
that we must have

c2 � 1C 2.1C s/�i �j :

To find the minimum possible value of c we are thus led to consider the problem
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min �i �j

s:t: �i C �j D c; (4)

1 � �i � R; 1 � �i � R:

The objective in (4) can be written in the form �i .c � �i /, which is a concave
function, so the solution of (4) must occur at an extreme point of the feasible region.
There are two possibilities for the form of such an extreme point, depending on the
value of c.

Case 1: c � 1 C R. In this case the extreme points of (4) have .�i ; �j / equal to
.1; c � 1/ and .c � 1; 1/, both of which have �i �j D c � 1. To find the
minimum possible value of c D �i C�j in (3), we must find the minimum
c � 2 such that

c2 � 1C 2.1C s/.c � 1/;

which is easily determined to be c D 1 C 2s. Since by assumption c �
1CR, this solution applies whenever 1C 2s � 1CR, or s � R

2
.

Case 2: c � 1 C R. In this case the extreme points of (4) have .�i ; �j / equal to
.R; c � R/ and .c � R; R/, both of which have �i �j D R.c � R/. To
find the minimum possible value of c D �i C �j in (3), we must find the
minimum c � 2 such that

c2 � 1C 2.1C s/R.c �R/;

which is easily determined to be c D R.1C s/Cp
1 �R2.1 � s2/. Since

by assumption c � 1 C R, this solution applies whenever R.1 C s/ Cp
1 �R2.1 � s2/ � 1CR, which is equivalent to s � R

2
. �

In Fig. 1 we plot f .s; RD/ for 1
2
� s � 1 � 1

2R2
D

. It is evident from the figure,

and is easy to prove, that f .s; RD/ is concave in the interval RD

2
� s � 1 � 1

2R2
D

.

Now assume that m > 12, 1 � k Nxik � RD , i D 1; : : : m, and k Nxi � Nxj k � 1 for
all i ¤ j . Let �i D k Nxik and xi D .1=�i / Nxi , i D 1; : : : ; m. Our goal is to prove
(1), which can be written as

mX

iD1

�i � 12C .m � 12/RD: (5)

Define Ni D j fj ¤ i W xT
i xj � 0:5gj to be the number of “close neighbors” of xi ,

i D 1; : : : ; m and N D f.i; j /; i ¤ j W xT
i xj � 0:5g. Note that .i; j / 2 N ”

.j; i/ 2 N , and jN j DPm
iD1 Ni . Moreover we have

X

.i;j /2N

.�i C �j � 2/ D
X

.i;j /2N

.�i � 1/C .�j � 1/ D 2

mX

iD1

Ni .�i � 1/:
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Fig. 1 Function f .s; RD/ from Theorem 2

Applying Theorem 2, it follows that

2

mX

iD1

Ni .�i � 1/ �
X

.i;j /2N

Œf .xT
i xj ; RD/ � 2�

mX

iD1

.�i � 1/ � 1

2Nmax

X

.i;j /2N

Œf .xT
i xj ; RD/ � 2�;

where Nmax WD maxfNigmiD1. Thus to prove (5) it suffices to show that

1

2Nmax

X

.i;j /2N

Œf .xT
i xj ; RD/�2� � 12C.m�12/RD�m D .m�12/.RD�1/: (6)

To bound Nmax we utilize the following result, which is a slight generalization of
[1, Lemma 5].

Proposition 1. Suppose that a spherical triangle with sides a,b,c has cos c � zc ,
0 � za � cos a � cos b � zb < 1, zc � zazb . Let � be the spherical angle between
the sides a and b. Then

cos � � max

8
<̂

:̂

zc � z2
a

1 � z2
a

;
zc � zazb

q
.1 � z2

a/.1 � z2
b/

9
>=

>;
:
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Lemma 2. Nmax � 6. Moreover, for m D 13, if Nmax D 6 then (5) holds.

Proof. Applying Proposition 1 with za D 0:5, zb D zc D 1 � 1=.2R2
D/ � 0:6843,

we obtain cos � � 0:5791, or � � 54:6ı. It follows immediately that Nmax � 6,
since 7.54:6ı/ > 360ı. For m D 13, Theorem 2 implies that (5) immediately holds
if xT

i xj � RD=2 for any i ¤ j . Assume alternatively that xT
i xj � RD=2 for all i ¤

j . Applying Proposition 1 with za D 0:5, zb D zc D RD=2 � 0:6292, we obtain
cos � � 0:5056, or � � 59:6288ı. Hence Nmax D 6 is still possible, so assume that
Ni D 6 for some i . Reindexing the points fxj g13

j D1, we can assume that i D 7 and
the points fxj g6j D1, have xT

j x.j MOD 6/C1 � RD=2, j D 1; : : : ; 6. However, the fact
that � � 59:6288ı in each spherical triangle with vertices x7; xj ; x.j MOD 6/C1 also
implies that � � 360ı�5.59:6288ı/ D 61:856ı. Since Proposition 1 with za D 0:5,
zb D RD=2, zc D 0:6 obtains � � 62:18ı, we can conclude that xT

j x.j MOD 6/C1 �
0:6, j D 1; : : : ; 6. Applying Theorem 2, we conclude that �jC�j C1 � 1C2.0:6/ D
2:2 for j D 1; 3; 5. It follows that

13X

iD1

�i � 7C 3.2:2/ D 13:6;

which implies (5). �

With an upper bound for Nmax determined, a lower bound for the left-hand side
of (6) can be obtained using the Delsarte bound for spherical codes. Specifically,
C D fxigmiD1 is a spherical z-code in<3, with z D 1�1=.2R2

D/ � 0:6843. We define
the usual distance distribution of the code to be the function ˛.�/ W Œ�1; 1� ! <C
defined as

˛.s/ D jf.i; j / W xT
i xj D sgj

m
: (7)

It is then easy to see that ˛.�/ � 0, and

X

�1�s�z

˛.s/ D m � 1: (8)

Let ˚k.�/, k D 0; 1; : : : denote the Gegenbauer, or ultraspherical, polynomials
˚k.t/ D P

.0;0/

k .t/ where P
.s;s/

k is a Jacobi polynomial. It can be shown [4], [3,
Chaps. 9, 13] that

1C
X

�1�s�z

˛.s/˚k.s/ � 0; k D 1; 2; : : : : (9)

From (8) and (9), using k D 1; : : : ; d , a bound on the left-hand side of (6) can
be obtained via the semi-infinite linear programming problem
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Fig. 2 LP bounds for inequality (6)

LP.m/ W min
X

0:5�s�z

mŒf .s; RD/ � 2�˛.s/

s:t:
X

s2Z

˛.s/˚k.s/ � �1; k D 1; : : : ; d;

X

s2Z

˛.s/ D m � 1; ˛.s/ � 0; s 2 Z;

where Z WD Œ�1; z�. For z D 1 � 1=.2R2
D/ the constraints of LP are feasible up to

m D 21. (In other words, 21 is the Delsarte bound for the size of this spherical z-
code. The maximum cardinality of a z-code for this value of z actually appears to be
20 [10].) Let v�

LP.m/ denote the solution value in LP(m). We obtain an approximate
value of v�

LP.m/ for m D 13; : : : ; 21 by numerically solving a discretized version
of LP(m) using d D 16, and values of s 2 Z incremented by 0.002.3 In Fig. 2 we
plot the lower bound v�

LP.m/=.2Nmax/ for the left-hand side of (6) (using Nmax D 6,
except Nmax D 5 for m D 13) and the required value .m � 1/.RD � 1/ from the
right-hand side of (6). The lower bound based on v�

LP.m/ is sufficient to prove that
(5) holds for m � 17.4 The value v�

LP.13/ D 0 is a consequence of the well-known
fact that the Delsarte bound for a 1=2-code in <3 is 13, despite the fact that the

3A rigorous lower bound for each v�

LP.m/ can be obtained by solving the dual of the discretized
problem and adjusting the dual solution to account for the discretization of s [3]. Alternatively a
sum-of-squares formulation for the dual of LP.m/ could be used to solve the dual problem exactly.
4A referee has indicated that geometric arguments due to Marchal should also be able to establish
that (5) holds for these cases, and possibly m D 16.
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actual maximal size of such a code is 12. Indeed, this observation means that the
approach based on LP(m) has no chance of establishing (5) for m D 13.

To prove (5) for 13 � m � 16 requires stronger restrictions on the distance
distribution than the constraints (9). The most attractive possibility appears to
be the strengthened semidefinite programming constraints from [2]. In particular
the constraints in [2] are sufficient to prove that the maximum cardinality of a 1=2-
code in <3 is 12, which is essential if one is to have any chance of proving (6) for
m D 13. Applying the methodology of [2] results in a problem SDP(m) of the form

SDP.m/ W min
X

0:5�s�z

mŒf .s; RD/ � 2�˛.s/

s:t: 3
X

s2Z

˛.s/Sk.s; s; 1/C
X

s;t;u2Z

˛0.s; t; u/Sk.s; t; u/ � �Sk.1; 1; 1/;

X

s2Z

˛.s/˚k.s/ � �1; k D 1; : : : ; d

X

s2Z

˛.s/ D m � 1; ˛.s/ � 0; s 2 Z

X

s;t;u2Z

˛0.s; t; u/ D .m � 1/.m � 2/; ˛0.s; t; u/ � 0; s; t; u 2 Z:

In SDP(m), ˛0.�; �; �/ is the three-point distance distribution

˛0.s; t; u/ D jf.i; j; k/ W xT
i xj D s; xT

i xk D t; xT
j xk D ugj

m
;

and Sk.s; t; u/ is a .d C 1 � k/ 	 .d C 1 � k/ symmetric matrix whose entries
are symmetric polynomials of degree k in the variables .s; t; u/; see [2] for details.
(The notation X � Y means that X �Y is positive semidefinite.) In Fig. 3 we show
the bounds v�

SDP.m/=.2Nmax/ for the left-hand side of (6), as well as the required
value .m � 1/.RD � 1/ from the right-hand side of (6), for 13 � m � 16.5 For
comparison we also give the previously described bounds based on v�

LP.m/. As can
be seen from the figure, the use of SDP.m/ gives a substantial improvement over
LP.m/ for m D 13, but the magnitude of the difference appears to diminish as m

increases, and the improved bound is unable to eliminate any more cases than were
eliminated using LP.m/.6

Although the use of SDP.m/ is not sufficient to prove the key inequality (1) for all
required m, there are several possible ways in which the approach based on SDP.m/

5The values of v�

SDP.m/ are approximate, based on solving a discretization of SDP.m/. It is possible
to obtain rigorous bounds by applying a sum-of-squares formulation to the dual of SDP.m/; see [2].
6As noted by a referee, it is possible that (6) is false even though (1) is true. We have not attempted
to find a counter-example to (6) for the unresolved cases 13 � m � 16.
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Fig. 3 LP and SDP bounds for inequality (6)

might be strengthened. In particular, since SDP.m/ uses the three-point distance
distribution, it should be possible to utilize a more elaborate version of Theorem 2
to give lower bounds on terms of the form �i C �j C �k . In addition, since the
elements of the three-point distance distribution include the triangles in a Delaunay
triangulation of the surface of the sphere, it might be possible to add valid constraints
that can be derived for the Delaunay triangulation, as in [1]. The possibility that
further strengthening of SDP.m/ might suffice to establish (1) remains a very
interesting topic for ongoing research, especially given the connection between (1)
and the recent work of Hales [7, 8] on the Kepler conjecture and related problems.
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