
Engineering Branch-and-Cut Algorithms
for the Equicut Problem

Miguel F. Anjos, Frauke Liers, Gregor Pardella, and Andreas Schmutzer

Abstract A minimum equicut of an edge-weighted graph is a partition of the nodes
of the graph into two sets of equal size such that the sum of the weights of edges
joining nodes in different partitions is minimum. We compare basic linear and
semidefinite relaxations for the equicut problem, and find that linear bounds are
competitive with the corresponding semidefinite ones but can be computed much
faster. Motivated by an application of equicut in theoretical physics, we revisit
an approach by Brunetta et al. and present an enhanced branch-and-cut algorithm.
Our computational results suggest that the proposed branch-and-cut algorithm has a
better performance than the algorithm of Brunetta et al. Further, it is able to solve to
optimality in reasonable time several instances with more than 200 nodes from the
physics application.

Key words Equicut • Maximum-Cut • Bisection • Graph partitioning • Linear
programming • Semidefinite programming • Branch-and-cut

Subject Classifications: 90C57, 90C22, 90C05, 90C27

M.F. Anjos (�)
Canada Research Chair in Discrete Nonlinear Optimization in Engineering, GERAD &
École Polytechnique de Montréal, CP 6079, succ. Centre-ville, Montreal, QC H3C 3A7, Canada
e-mail: anjos@stanfordalumni.org

F. Liers
Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Cauerstraße 11, 91058 Erlangen, Germany
e-mail: frauke.liers@math.uni-erlangen.de

G. Pardella • A. Schmutzer
Institut für Informatik, Universität zu Köln, Weyertal 121, 50931 Köln, Germany
e-mail: pardella@informatik.uni-koeln.de; schmutzer@informatik.uni-koeln.de

K. Bezdek et al. (eds.), Discrete Geometry and Optimization, Fields Institute
Communications 69, DOI 10.1007/978-3-319-00200-2 2,
© Springer International Publishing Switzerland 2013

17

mailto:anjos@stanfordalumni.org
mailto:frauke.liers@math.uni-erlangen.de
mailto:pardella@informatik.uni-koeln.de
mailto:schmutzer@informatik.uni-koeln.de


18 M.F. Anjos et al.

1 Introduction

The maximum cut problem on an edge-weighted graph G D .V; E/ is to find a
partition of the set of nodes V into two shores (node sets) such that the weight
of the cut (the sum of the weights of edges with endpoints in different shores) is
maximum. It is a prominent NP-hard combinatorial optimization problem that has
been studied intensively in the literature.

We consider the equicut problem which is the max-cut problem with the
additional restriction that the sizes (number of nodes) of the shores must be equal.
This work is motivated by an application in theoretical physics: equicuts can be
used for the calculation of minimum-energy states, or ground states, for so-called
Coulomb glasses. In a Coulomb glass, charges may be placed on the sites of a lattice.
The number of charges is exactly half the number of sites. Randomly chosen local
fields act on the charges. Since a quadratic function is used to represent the energy
of a state as a graph G, the task is to determine an equicut in G.

Polyhedral investigations of the equicut polytope have been presented in
[10, 11, 14]. Building upon this theoretical knowledge, an integer programming-
based branch-and-cut approach was implemented in [8]. The bisection problem is
the more general task of determining a cut in which the shore sizes are constrained
(but not necessarily equal). Formulations using integer programming, semidefinite
programming (SDP), a polyhedral study and computational results are presented
in [2, 3, 29]. Another branch-and-bound algorithm using SDP formulations of the
bisection problem that specifically accounts for the special case of equicut is given
in [25]. A quadratic convex reformulation of the bisection problem is given in [6].
Further generalizations of the bisection problem with additional node capacities are
studied in [17,18,22]. The maximum cut problem as well as other related problems
have been investigated in great depth [15]. SDP-models for related graph partition
problems have been introduced in [19, 24] and in the recent preprints [27, 32].

In this work, we first summarize important facts about the cut and the equicut
polytopes and their relationships. The main part of this paper presents an algorithm
engineering approach for an exact branch-and-cut algorithm for computing equicuts.
Experimentally, we find that the bounds obtained from the SDP relaxation of [19]
with several additional linear constraints are usually not stronger than those from
solving the same linear relaxation without the SDP model. Furthermore, the
computation of the SDP bounds often needed considerably more time. We then
focus on the usage of integer linear programming (ILP) methods. We take the most
important ingredients from the method of [8] and enrich it by target cuts, a variant of
local cuts [9]. It turns out that within this separation routine, orthogonal projections
on node-induced subgraphs together with zero-lifting of the separated inequalities
works well in practice. For complete graphs, the projection and lifting approach
is equivalent to the graph shrinking procedure from [23]. As target cut separation
yields very strong bounds but can be time-consuming, we then design fast heuristics
to separate those inequalities found by target cut separation. We finally show that
our approach yields an effective method for determining optimal equicuts in graphs,



Engineering Branch-and-Cut Algorithms for the Equicut Problem 19

i.e., the computation times needed are about two orders of magnitude less than those
reported in [8] on average. Furthermore we could reduce the average number of
branching nodes by a factor of approximately 4; for some of the largest instances
the computation time was three orders of magnitude faster than those reported in [8];
and instances that required more than 50 branching nodes are now solved at the root
node. Hence we could solve some large instances that were not reported in [8] as
well as instances of Coulomb glasses to optimality. We also solved instances with
more than 200 nodes, doubling the size of the instances reported in [8].

2 The Equicut Problem

Let a graph G D .V; E/ with node set V , edge set E, and edge weights c W E ! R

be given. We denote by n and m the cardinalities of V and E, respectively. The
complete graph on n nodes is denoted by Kn. For S � V a cut ı.S/ � E is
the set of edges with exactly one node in S . Its weight is the sum of the weights
of edges in ı.S/. We call S and V n S shores of ı.S/. A cut ı.S/ is an equicut
if

�
n
2

˘ � jS j � ˙
n
2

�
. We associate with every cut ı.S/ its characteristic vector

x.ı.S// D .x1; : : : ; xm/ 2 f0; 1gm where xe D 1 if e 2 ı.S/ and xe D 0 otherwise.
The cut polytope C .G/ and the equicut polytope Q.G/ of a graph G are the convex
hulls of the characteristic vectors of all cuts and of all equicuts of G, respectively.
The equicut problem consists in finding an equicut in G with minimum weight.

2.1 The Cut and the Equicut Polytope

In this section, we review known results about the equicut polytope [10, 11].
For a complete graph K2p , the edge set induced by an equicut contains exactly p2

many edges. Furthermore, every equicut in K2pC1 contains p.p C 1/ many edges.
Thus, an equicut on a complete graph Kn has exactly

�
n
2

˘ ˙
n
2

�
edges in the cut.

For complete graphs, the equicut polytope Q.Kn/ can be defined as

Q.Kn/ D conv

(

x 2 C .Kn/ j
X

e

xe D
jn

2

k ln

2

m)

: (1)

Given a relaxation of the cut polytope we can use (1) to obtain a relaxation of the
equicut problem as all inequalities remain valid.

We use the following classes of valid inequalities, some of which are well-known
from the cut polytope [15]. For a more in-depth discussion see [10, 11] and [14].

Definition 1. Let Kp D .V 0; E 0/ be a complete subgraph (clique) of G D .V; E/.
The clique inequality is given by

X

e2E0

xe �
jp

2

k lp

2

m
: (2)



20 M.F. Anjos et al.

For each cut ı.S/ in Kp the switched clique inequality reads
X

e2E0nı.S/

xe �
X

e2ı.S/

xe �
jp

2

k lp

2

m
� jı.S/j: (3)

For the special case p D 3 the clique inequalities reduce to the triangle inequalities.
For any triplet i; j; k such that .i; j /; .i; k/; .j; k/ 2 E, they take the following
forms:

xij C xik C xjk � 2 (4)

xij � xik � xjk � 0: (5)

Barahona et al. [4] proved that the clique inequalities (2) are facets of the cut
polytope C .Kp/ iff p is odd. Hence the equicut polytope Q.Kn/ is a face of the cut
polytope and it is a facet iff n is odd [10].

As the number of cut edges in a cycle is even, for every cycle C with jC j D pC1

and n D 2p the cycle inequalities (6) are valid for Q.Kn/:
X

e2C

xe � 2: (6)

For a formal proof and facet inducing properties of these inequalities we refer to
Conforti et al. [11].

If an edge e D st is fixed to be in the cut, the resulting polytope is known as
s-t -(equi-)cut polytope. Given a path P D .s D v0; v1; : : : ; vk D t / we consider
the following s-t path inequalities that make sure that at least one edge on that path
is cut:

X

e2P

xe � 1: (7)

It is easy to see that inequalities (7) are valid for the respective s-t -cut polytopes and
they can be separated efficiently by shortest path computations. For further reasons
to use these inequalities we refer to Conforti et al. [11].

For complete graphs K2p , any equicut is also a p-regular subgraph of K2p [8], i.e.
each node has degree jı.v/j D p. Therefore, Q.K2p/ is contained in PF .K2p/,
which is the convex hull of all p-regular subgraphs of K2p . Edmonds et al. [16] give
the following complete description of PF .K2p/:

X

e2ı.v/

xe D p (8)

X

e2W �W

xe C
X

e2T

xe � pjW j C jT j � 1

2
; (9)

where v 2 V , W � V , T � ı.W / and pjW jCjT j is odd. Inequalities (9) are called
blossom inequalities.

We will work with complete graphs K2p in the following as the inequalities (8)
may be invalid for non-complete graphs.



Engineering Branch-and-Cut Algorithms for the Equicut Problem 21

2.2 Inequalities Outside the Template Paradigm

The classes of inequalities introduced earlier follow the template paradigm, i.e.
inequalities within a class share a similar structure. A general procedure to generate
valid inequalities for some polytope is given by separation of local cuts [1] or their
variant called target cuts [9]. For the separation, the polytope in question and the
point to be separated are projected into a low-dimensional space. A cutting plane
separating the projected point from the projected polytope is generated by solving a
small linear program. The size of the linear program is basically determined by
the number of vertices of the projected polytope. Inequalities are then lifted to
inequalities valid for the original problem.

2.3 Non-polyhedral Model

Given a weight matrix C D fcij g for the edges e D ij of a complete graph Kn

the following SDP relaxation for the equicut problem was introduced by Frieze and
Jerrum [19]:

min

�
1

4
trace.C.Jn � X// j diag.X/ D e; Xe D 0; X � 0

�
: (10)

The notation trace.A/ refers to the sum of all elements of the main diagonal
of a matrix A and the matrix Jn is the n � n matrix of all ones. In the positive
semidefinite relaxation of the cut polytope [15], we restrict ourselves to positive-
semidefinite matrices X (X � 0) where all elements of the main diagonal are equal
to one (diag.X/ D e). This SDP relaxation is also referred to as the elliptope En.
A relaxation of the equicut problem is obtained by adding the constraint Xe D 0 as
in [19] or in the form eT Xe D 0 as in [25].

The variables x
lp
ij 2 f0; 1g from the LP formulation are in one-to-one correspon-

dence with the elements x
sdp
ij 2 X of the positive-semidefinite matrix X via the

transformation x
sdp
ij D 1 � 2x

lp
ij .

Our basic LP relaxation includes degree and triangle inequalities:

min

(
X

e

cexe j 8i; j; k 2 V W .4/ � .5/; 8v 2 V W .8/

)

: (11)

As we will see, the relaxation obtained by separating (switched) clique (3), cycle
(6) and blossom (9) inequalities is already very good in practice. In fact we can solve
most instances of the benchmark from Brunetta et al. [8] at the root node without
branching. In some cases a better performance of our method can be obtained by
forcing the algorithm to branch when there is too little improvement in the objective
value (cf. tailing-off, Sect. 3.1). Target cut separation may improve the performance
when applied before branching.



22 M.F. Anjos et al.

Table 1 LP and SDP bounds of root relaxations

Triangles All but cliques

Instance jV j Opt All LP SDP LP SDP

reti/2 � 11 22 11 11 10:24 10:34 10:24 10:34

tori/15 � 2 30 11 11 9:42 9:46 9:42 9:46

reti/16 � 2 32 10 9:44 6:27 6:27 6:27 6:27

tori/16 � 2 32 11 11 9:31 9:31 9:31 9:31

tori/18 � 2 36 13 13 9:58 9:58 9:58 9:58

misti/2 � 19 m 38 388 386:61 383:88 383:88 383:88 383:88

reti/19 � 2 38 10 8:94 6:77 6:78 6:77 6:78

reti/2 � 19 38 6 4:83 2:89 2:9 2:89 2:9

rand/q0.20 40 1,238 1,238 1,152 1,237.73 1,152 1,237.73
rand/q0.60 40 530 530 489:55 528:32 489:55 528:32

reti/20 � 2 40 10 9:78 5:87 5:87 5:87 5:87

In order to evaluate the respective bounds based on SDP and LP relaxations we
first applied our branch-and-cut algorithm to the benchmark from Brunetta et al. [8].
For each instance we studied the relaxation that was obtained in the root, i.e. without
branching.

In order to get reasonable computation times and memory usage we chose
all instances with less than 105 inequalities in the final LP. There were 11 such
instances. Since they were already solved at the root node, the respective SDP
bounds are not significantly better than the LP bounds. In order to evaluate their
strengths in practice nevertheless, we compare the LP bounds with those of the SDP
when adding only a fraction of the inequalities separated by branch-and-cut. All
SDP relaxations were computed using CSDP 6.1.1. [7]. The LPs were solved using
version 12.1 of the CPLEX callable library [12]. We show in Table 1 the bounds
that are obtained by solving the LP as well as the SDP when adding all separated
inequalities (All), when adding only all triangle inequalities (Triangles) and when
adding all inequalities but leaving out the (switched) clique inequalities (All but
cliques). The generated inequalities are very strong in practice. It turns out that the
triangle inequalities are important in practice as the corresponding bound is quite
close to that given by all inequalities. This is known to hold for maximum cut as
well, see e.g. [31].

Furthermore, the switched clique inequalities are most significant for improving
the relaxation over the triangle bound as the remaining inequalities do not improve
the bound any further. Similar results are obtained for most instances. Hence we
conclude that using SDP relaxations does not significantly improve the root bounds
compared to those obtained from the LP approach. Furthermore, the LP relaxations
were obtained within minutes whereas some of the SDP relaxations needed several
days of CPU time. We also tried to use a general maximum cut solver (BiqMac [31])
by dualizing the equicut constraint in the form eT Xe D 0. Therefore we introduced
sufficiently large penalties for solutions that would use less than n2

4
cut edges. More

precisely we added the sum of the absolute values of edge weights to each edge



Engineering Branch-and-Cut Algorithms for the Equicut Problem 23

in the maximization problem. Hence optimal maximum cuts had to be equicuts
and its values could be obtained by substracting a large constant. The solver
sometimes was about two orders of magnitudes faster than our implementation.
Unfortunately we observed that the precision of the solution values was limited
to three digits. While this did not adversely affect the results for instances from [8],
the solutions obtained by this approach for instances with fractional edge weights
may be incorrect. Specifically for instances coming from the physics application,
we could not obtain useful solutions even for the smallest instances. We thus chose
to use the LP relaxation for our purposes.

Armbruster et al. [3] present relaxations using LP and SDP methods to solve a
generalization of the equicut problem, i.e. the minimum bisection problem, where
the number of nodes in each shore has to be larger than some parameter F � b n

2
c.

Their computational results on sparse instances suggest that SDP relaxations are
superior to the corresponding LP relaxations. As equicut is a special case of the
minimum bisection problem this appears to contradict the above observations.
However, in contrast to the relaxations used in [3], our model is defined on complete
graphs and includes constraints that are not valid for the minimum bisection
polytope in general. Hence it is likely that our LP relaxation for the equicut problem
is stronger than more general relaxations for the minimum bisection problem, and
that it is especially well suited for dense instances such as those coming from the
physics application.

3 Enhanced Branch-and-Cut Algorithm

Branch-and-cut is a framework often used for solving NP-hard combinatorial
optimization problems exactly. Upper and lower bounds on the objective value are
iteratively improved until optimality of a known solution can be proven. The size
of the branching tree is kept small by using strong relaxations for the lower bounds
and primal heuristics for the upper bounds. In this section, we describe cutting-plane
separation and primal heuristics for our proposed branch-and-cut algorithm.

3.1 Cutting-Plane Separation

Given a (possibly fractional) vector x� 2 R
m; 0 � x� � 1, the separation problem

asks for either an inequality violated by x� or a proof that all inequalities valid
for the polytope in question are satisfied. An algorithm that solves the separation
problem for any fractional solution is called exact. In contrast heuristic separation
algorithms find violated inequalities but if none is found, they cannot prove that
there are no violated inequalities for the polytope. Separation algorithms are often
defined for classes of inequalities such as those introduced in Sect. 2.



24 M.F. Anjos et al.

In general some classes of inequalities are more important than others or may
become more important after several iterations. Brunetta et al. [8] use the relative
change in the objective value from the previous iteration to decide which class
of inequalities should be separated. Therefore they introduce certain threshold
values for each class of inequalities. Hence they separate triangle inequalities if
the relative change is above a certain value, then clique separation is applied if the
relative change is above another value and then blossom inequalities and .p C 1/-
cycle inequalities are separated if the relative change is above their respective
thresholds. If the relative change is below any thresholds branching is applied.
Because the thresholds are very sensitive to small changes in the separation routines,
we decided to use just a single threshold to decide whether any separation is applied
or we branch. We found that a factor ˛ D 10�4 for the relative change of the
objective value was a reasonable choice. Further in each iteration we stop separation
whenever we found a certain number of violated inequalities. We found that 500

violated inequalities are a reasonable choice for most instances.
The degree inequalities (8) are all added from the beginning. In contrast to the

heuristics for separating blossom inequalities in [8], we separate them exactly by
the efficient algorithm [28].

Finally, target cut separation is applied whenever the other routines do not find
any violated inequality. Target cuts were introduced in [9]. The key observation for
target cuts is the following. For k � m, let � be some projection R

m ! R
k . Then

the projection P D �.P / � R
k of some polytope P in R

m is the convex hull of
all points in R

k that can be extended to a point in P . Thus, P is the convex hull
of all points �.x1/; : : : ; �.xr/ 2 R

k such that x1; : : : ; xr are the vertices of P . For
k � m, many of the �.xi / are equal so that for small k, P can be dealt with
efficiently. For details, we refer the reader to [9].

For the equicut polytope, we use orthogonal projections to (node-induced) sub-
graphs. More specifically, edges incident on nodes which are not in the considered
subgraph are neglected. The projected polytope is then again a cut polytope. Given
an inequality valid for P , the corresponding inequality with coefficients set to zero
for the neglected edges is then valid for P (‘zero-lifting’).

For the maximum cut problem, another projection is given through shrinking
nodes to supernodes as introduced by Jünger et al. [23]. This projection is especially
tailored for sparse graphs. For an edge .s; t/ 2 E nodes s; t are replaced by a
supernode v. Loops and multiple edges are deleted. Given a valid inequality ax � b

for P with complete graphs the corresponding lifted inequality a0x � b0 w.l.o.g. is
defined as a0

st D 0, a0
sn D avn and a0

tn D 0 for all nodes that are neighbours of s, t

and v.
It is easy to see that for complete graphs the shrinking procedure is equivalent to

the orthogonal projection that we use. Indeed, in the notation introduced above, a
supernode v may be replaced by either s or t . Thus, when lifting an inequality the
coefficients of variables xst and xtn are zero-lifted.

For the equicut problem, we can solve the target cut linear programs for
subgraphs with up to 20 nodes within reasonable time. Therefore if we solve graphs
with more than n D 40 nodes the subgraph induced by our projection always has



Engineering Branch-and-Cut Algorithms for the Equicut Problem 25

less than d n
2
e nodes. Thus, for instances of interesting sizes the projection of the

equicut polytope is again a cut polytope without any restrictions on the size of the
shores.

Next, we describe how we choose the nodes of the subgraphs used for projection.
In order to separate a valid inequality the projected fractional solution needs to be
infeasible. It is well known, that the cut polytope is a very symmetric object, i.e.
the structure of inequalities valid with equality is the same at each vertex of the
polytope. Furthermore the barycenter of the (equi)cut polytope is the vector m D
.0:5; 0:5; : : : ; 0:5/ and the closer a fractional solution Qx is to m, the less likely it
is to be violated. Therefore given the fractional value Qxe of an edge e we assume
that the value be D j0:5 � Qxej correlates to the probability that the variable xe

contributes to a violated inequality, and we assume that these probabilities can be
cumulated as bu D P

e2ı.u/ be at node u. Unfortunately choosing the first k nodes
with the largest values of bu may as well result in a subgraph where the fractional
solution Qx is integral, hence given an integer feasible solution there is no violated
inequality. Consequently the more fractional the solution Qx is, the more likely it will
yield a violated inequality. Further results on the projection we used as well as on
the performance of target cut separation are described in Sect. 4.

3.2 Primal Heuristic

Given a fractional optimum solution x� 2 R
m of the current LP-relaxation, primal

heuristics round x� to a feasible solution that is hopefully better than the best
one known to date. For the maximum cut problem, a primal heuristic works as
follows [5]. A cut is given by a spanning tree where each edge is either a cut or
a non-cut edge according to the corresponding value of the solution. The ‘most
decided’ edges are used if the spanning tree in G is minimum with respect to the
weights we D min.x�

e ; 1 � x�
e / on the edges e 2 E. The LP-values on the tree

are then rounded appropriately, and the corresponding cut is returned. A minimum
spanning tree may be computed by Prim’s algorithm in O.jEj C jV j log jV j/ [30].

For the equicut problem, a cut has to additionally satisfy the cardinality constraint
on the shore size. We thus adapt the above greedy approach using Prim’s algorithm.
In each step, several trees are combined to larger trees until a spanning tree arises.
Each of these trees induces a cut in the subgraph induced by its nodes, which we
will call partial cuts.

Furthermore we have to make sure that in each iteration it is possible to combine
these partial cuts to an equicut. We will call such a set of partial cuts compatible,
and incompatible otherwise. Let ai and bi denote the size of the shores induced
by the partial cut ıi .S/ and di D jai � bi j the absolute difference of the shore
sizes. The subset-sum problem asks whether a subset D0 � fdi g exists such
that

P
di 2D0 di D k. Choosing k D

P
di

2
, the partial cuts are compatible if the

answer to the subset-sum problem is positive, and incompatible otherwise. In



26 M.F. Anjos et al.

general the subset-sum problem is NP -complete. Nevertheless, we use the well-
known pseudo-polynomial algorithm due to Ibarra and Kim [21] for the knapsack
problem which can be used to solve the subset-sum problem as well. As in our
case the number of items and their weights are bounded above by jV j, the pseudo-
polynomial algorithm yields an O.jV j2/ algorithm.

Within Prim’s algorithm, we make sure that whenever an edge is added to the
spanning tree the partial cuts are compatible. This can be achieved by either skipping
critical edges which lead to incompatible partial cuts or by repairing the partial cuts
in such a way that the partial cuts become compatible. In either case we must never
add edges that lead to a cycle. We also avoid using edges with weights we larger
than a certain value r by temporarily removing them from G. From our experiments,
r D 0:25 is a good choice.

Then according to Prim’s algorithm all edges are iterated in order of increasing
values we and edges which lead to cycles are skipped. Our method then uses three
phases where edges are added and components of the graph are joined until a
spanning tree is found. In the first phase we avoid repairing the partial cuts by
skipping critical edges. In the second phase edges which lead to incompatible partial
cuts are added. After adding an edge the partial cuts are then repaired greedily with
respect to a minimum increase of the total edge weights we of the tree and such that
no partial cut induces a shore of size greater than jV j

2
. In the third phase we iteratively

join the two largest components, which may occur from removing all edges with
weights we > r . Again if a shore size exceeds jV j

2
nodes we have to repair that shore

as in the second phase. Finally, we apply the Kernighan-Lin heuristic [26] to the
solution to further improve the objective value.

We applied the above heuristic in our branch-and-cut algorithm. For all instances
that were computed, whenever the root relaxation was strong enough to avoid
branching, the optimal solution had been found by our primal heuristic.

4 Computational Results

In this section we evaluate our proposed branch-and-cut algorithm which is based
upon a reimplementation of the algorithm presented in [8] using state-of-the-art
tools. We used C++ and version 12.1 of CPLEX callable library as the branch-and-
cut framework. For our experiments we used machines with Intel Xeon CPUs E5410
at 2.33 GHz. We use instances from [8] and instances from the physics application
to evaluate the performance of our algorithm. The data for the instances we used
and complete tables of computational results are available at [20].

In the determination of ground states in Coulomb glasses, we need to compute
the minimum of the energy function:

H.q/ D
X

i<j

pij qi qj C
X

i

ci qi : (12)



Engineering Branch-and-Cut Algorithms for the Equicut Problem 27

The values qi 2 f�1; 1g represent the positive or negative charges of sites i and
are to be optimized. We are interested in charge-neutral systems, i.e.

P
i qi D 0.

Those sites are located on a lattice and the values pij represent the pairwise inter-
action of sites i and j . We can use the same variable transformation as in Sect. 2.3
to obtain a quadratic unconstrained binary optimization (QUBO) problem. It was
proved by de Simone [13] that QUBO is equivalent to the maximum cut problem.
For this transformation the quadratic terms in the objective function are represented
by edges in a graph. The linear terms are represented by edges connected to
an artificial node s that is added to the graph. The Coulomb glass instances are
generally defined on an even number of sites, hence the above transformation
would yield a graph with an odd number of nodes. A complete graph K2n is
then obtained by adding another artificial node t . Further the constant term from
the transformation to QUBO is represented by the weight of the edge st . Since
we restrict to charge-neutral systems we have to find a minimum s-t equicut
(cf. Sect. 2.1).

In order to improve the quality of the LP relaxation we used target cut separation.
We found that a significant number of violated inequalities found by target cut
separation were switched clique inequalities (3).

We use a greedy heuristic to separate switched clique inequalities that extends the
algorithm described in [8] in a straight forward way. We start with the most violated
triangle inequality which is also a switched clique inequality. Given a switched
clique inequality for a clique Kp D .V 0; E 0/ and a cut ı.S/ with jS j � j NS j, we
iteratively compute switched clique inequalities for a clique KpC1 unless p C 1

exceeds a certain node limit k. Considering the switching operation we further
improve the violation of the inequality in each iteration by iteratively switching
pairs of nodes i and j if the violation of the switched clique inequality is increased.

In Table 2 we give the results for instances reported in [8] with our branch-
and-cut algorithm including switched clique and target cut separation with different
projections to subgraphs with 15 nodes. Further we give the number of subproblems
reported in [8] as a reference.

The results suggest that target cut separation improves the LP relaxation for all
projections and no choice of projection dominates the others in terms of the number
of subproblems. Considering CPU times for most instances the overhead of target
cut separation is moderate for the given size of projections but helps to reduce the
number of subproblems. Comparing our results with those reported in [8] is very
difficult since their reported computation times are for experiments carried out in the
mid-1990s. Nevertheless we point out that our computation times are two orders of
magnitude smaller on average, and more importantly, we need fewer subproblems.
We conclude that our computation times outperform previous approaches based on
LP relaxations. With respect to using SDP, the computation times reported in [25]
for the branch-and-bound algorithm based on SDP relaxations seem to be better
while our method needs fewer subproblems. In general LP relaxations can be solved
much faster than SDP relaxations. Consequently the method described in [25] needs
to solve fewer relaxations. Using equivalent SDP and LP relaxations we further



28 M.F. Anjos et al.

Table 2 Root bounds, number of subproblems and CPU time to solve instances reported in [8]
without target cut separation (N), with random (R) and with greedy (G) projections. Number of
branching nodes reported in [8] are given in columns (B). Results for instances with less than 40
nodes and instances that are not reported in [8] are omitted. Bounds are given as “*” if optimum
was found in the root node

Root bound No. of subs Time (s)

Instance jV j Opt N R G N R G B N R G

rand/q0.90 40 63 * * * 1 1 1 1 4 5 5
rand/q0.80 40 199 * * * 1 1 1 1 73 86 93
rand/q0.30 40 1,056 1,052.01 * * 9 1 1 5 161 226 256
rand/q0.20 40 1,238 1,235.16 * * 7 1 1 3 131 174 205
rand/q0.20 40 1,238 1,235.16 * * 7 1 1 3 131 174 205
rand/q0.10 40 1,425 1,420.38 * * 9 1 1 7 99 173 169
rand/q0.00 40 1,606 * * * 1 1 1 1 44 48 54
rand/c0.90 50 122 * * * 1 1 1 7 6 7 7
rand/c0.80 50 368 359.71 * * 5 1 1 11 478 1,150 1,212
rand/c0.70 50 603 585.54 * * 3 1 1 1 1,203 2,864 3,159
rand/c0.30 50 1,658 1,510.82 * * 3 1 1 9 815 1,611 1,554
rand/c0.10 50 2,226 2,090.9 * * 3 1 1 7 674 986 870
rand/c0.00 50 2,520 2,510.78 * * 7 1 1 5 420 552 549
rand/c2.90 52 123 * * * 1 1 1 7 8 10 10
rand/c4.90 54 160 * * * 1 1 1 17 32 36 40
rand/c6.90 56 177 * * * 1 1 1 17 35 38 45
rand/c8.90 58 226 216.04 216.55 216.54 3 2 2 n.a. 6,698 12,446 8,956
rand/s0.90 60 238 235.97 * * 3 1 1 7 240 341 451
reti/5 � 8 40 18 * * * 1 1 1 7 2 2 3
reti/3 � 14 42 10 * * * 1 1 1 5 12 23 30
reti/5 � 10 50 22 * * * 1 1 1 3 10 23 34
reti/6 � 10 60 28 * * * 1 1 1 31 101 142 151
reti/7 � 10 70 23 * * * 1 1 1 n.a. 140 145 171
tori/21 � 2 42 9 * * * 1 1 1 3 3 18 24
tori/23 � 2 46 9 * * * 1 1 1 3 60 63 69
tori/4 � 12 48 24 * * * 1 1 1 5 4 18 24
tori/5 � 10 50 33 * * * 1 1 1 13 12 28 37
tori/10 � 6 60 42 41.81 * * 3 1 1 3 97 123 100
tori/7 � 10 70 45 * * * 1 1 1 33 17 19 23
misti/10 � 4 m 40 436 * * * 1 1 1 1 3 13 28
misti/5 � 10 m 50 670 * * * 1 1 1 5 6 8 7
misti/13 � 4 m 52 721 * * * 1 1 1 5 21 25 26
misti/4 � 13 m 52 721 * * * 1 1 1 7 27 28 35
misti/9 � 6 m 54 792 * * * 1 1 1 n.a. 16 18 22
misti/10 � 6 m 60 954 * * * 1 1 1 9 22 38 46
misti/10 � 7 m 70 1,288 * * * 1 1 1 13 60 84 110
negative/q0.n.70 40 �298 * * * 1 1 1 1 29 29 35
negative/q0.n.50 40 �389 * * * 1 1 1 1 59 64 77
negative/q0.n.40 40 �450 * * * 1 1 1 1 9 10 11
negative/q0.n.00 40 �471 �474.02 * * 3 1 1 1 192 254 298

(continued)



Engineering Branch-and-Cut Algorithms for the Equicut Problem 29

Table 2 (continued)

negative/c0.n.00 50 �829 �1,069.94 �954.81 * 3 2 1 5 2,591 4,717 4,027
negative/s0.n.80 60 �465 * * * 1 1 1 1 45 52 53
negative/o0.n.80 80 �690 �725.88 * * n.a. 1 1 n.a. n.a. 40,287 37,562
real/ma.i 54 2 * * * 1 1 1 29 6 7 8
real/me.i 60 3 * * * 1 1 1 37 7 7 9
real/m6.i 70 7 * * * 1 1 1 55 215 251 242
real/mb.i 74 4 * * * 1 1 1 33 889 1,119 1,153
real/mc.i 74 6 * * * 1 1 1 53 92 129 149
real/md.i 80 4 * * * 1 1 1 57 762 781 884
real/mf.i 90 4 3.58 * 3.58 2 1 4 47 470 803 687
real/m1.i 100 4 * * * 1 1 1 101 153 171 196
real/m8.i 148 7 * * * 1 1 1 n.a. 543 632 713

observed that the bounds are very similar (cf. Sect. 2.3). Therefore we suspect
that better computation times can be explained by stronger inequalities that were
separated due to the different fractional points given by the interior-point method.

In Table 3 we give the bounds at the root node, the number of subproblems and
the CPU time needed by our branch-and-cut algorithm with and without switched
clique separation for instances from [8], including some instances that were not
reported in [8]. Further we did not apply target cut separation. The results suggest
that switched clique separation improves the bounds significantly.

Furthermore, as switched clique inequalities and target cut separation signifi-
cantly improve the LP relaxations, we were able to solve larger instances than
those reported in [8]. We illustrate this by presenting our results on Coulomb glass
instances with up to 258 nodes. Table 4 gives the number of subproblems and CPU
time required. For some instances that could not be solved, we report the gaps after
3 days of computation.

5 Conclusions

Our experimental results support the conclusion that the proposed branch-and-cut
algorithm based on a linear relaxation with additional switched clique inequalities
and target cut separation is able to efficiently solve medium-sized instances of equi-
cut and larger instances of Coulomb glasses. This new algorithm thus contributes to
the practical solution of equicut problems.

Most inequalities separated by target cut separation are hypermetric inequalities
which is a very general class of inequalities [15]. It would be interesting to find
heuristics to separate more specific hypermetric inequalities. Therefore target cut
separation could be used to classify important inequalities. Further improving the
performance of target cut separation would allow the use of larger subgraphs for the
projection. It would also be interesting to improve the projections to find violated
inequalities more efficiently.



30 M.F. Anjos et al.

Table 3 Root bounds, number of subproblems and CPU time to solve instances from [8] with and
without switched clique (SC) separation. Results for instances with less than 52 nodes are omitted.
Bounds are given as “*” if optimum was found in the root node. No target cut separation was
applied

Root bound No. of subs Time (s)

Instance jV j Opt No SC SC No SC SC No SC SC

rand/c2.90 52 123 * * 1 1 9 8

rand/c4.90 54 160 156.68 * 3 1 30 33

rand/c6.90 56 177 176.33 * 2 1 28 30

rand/c8.90 58 226 205.1 215.05 108 3 234 3; 200

rand/s0.90 60 238 229.45 * 8 1 72 276

reti/13 � 4 52 20 15.7 * 7 1 29 45

reti/6 � 10 60 28 26.43 * 6 1 80 101

reti/10 � 6 60 19 * * 1 1 20 19

reti/7 � 10 70 23 21.58 * 15 1 252 198

tori/13 � 4 52 20 15.7 * 7 1 32 45

tori/6 � 10 60 35 * * 1 1 7 7

tori/10 � 6 60 42 41.81 41.81 3 3 107 97

tori/7 � 10 70 45 * * 1 1 18 17

tori/10 � 8t 80 43 42.99 42.99 2 2 450 429

misti/4 � 13 m 52 721 * * 1 1 28 26

misti/13 � 4 m 52 721 * * 1 1 25 21

misti/9 � 6 m 54 792 * * 1 1 17 16

misti/10 � 6 m 60 954 * * 1 1 22 23

misti/10 � 7 m 70 1; 288 * * 1 1 63 58

negative/s0.n.80 60 -465 * * 1 1 53 45

negative/tt0.n.80 70 -550 �579.08 �579.08 56 3 1; 534 22; 170

negative/o0.n.80 80 -690 �725.88 �725.88 86 3 5; 232 31; 124

real/ma.i 54 2 * * 1 1 6 6

real/me.i 60 3 * * 1 1 8 7

real/m6.i 70 7 * * 1 1 216 198

real/mc.i 74 6 5.87 * 3 1 116 89

real/mb.i 74 4 3.26 * 6 1 243 752

real/md.i 80 4 3.46 3.71 3 2 347 508

real/mf.i 90 4 3.58 3.58 4 2 470 423

real/m1.i 100 4 * * 1 1 163 140

real/m8.i 148 7 * * 1 1 551 604

Acknowledgements Financial support from the German Science Foundation is acknowledged
under contract Li 1675/1. The first author acknowledges financial support from the Alexander von
Humboldt Foundation and from the Natural Science and Engineering Research Council of Canada.
We thank Helmut G. Katzgraber, Creighton Thomas and Juan Carlos Andersen for providing us
with instances for the physics application.



Engineering Branch-and-Cut Algorithms for the Equicut Problem 31

Table 4 Mean values for the relative gap at the root node, number
of subproblems and computation times for large instances from the
Coulomb glass model with two- and three-dimensional grid graphs.
Each class of instances is characterized by the length of the grids L

and its dimension. For each class of instances we present results
averaged over five randomly generated instances with different
random seeds to compute the values ci of the local field. Due to
our transformation the number of nodes is given as jV j D Size C 2

jV j Size Root gap (%) No. of subs Time (h)

66 82 0 1 0.01
66 43 0.02 1.4 0.01
102 102 0 1 0.12
146 122 0.14 1 1.7
198 142 0.01 1 24.81
218 63 0.9 14.6 58.86
258 162 4.06 n.a. >72

References

1. Applegate, D., Bixby, R.E., Chvátal, V., Cook, W.J. et al.: TSP cuts which do not conform to
the template paradigm. Comput. Comb. Optim. 2241, 261–303 (2001)

2. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: A comparative study of linear
and semidefinite branch-and-cut methods for solving the minimum graph bisection problem.
In: Integer Programming and Combinatorial Optimization, IPCO’08, Bertinoro, pp. 112–124
(2008)

3. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: LP and SDP branch-and-cut
algorithms for the minimum graph bisection problem: a computational comparison. Math.
Program. Comput. 4, 275–306 (2012)

4. Barahona, F., Grötschel, M., Mahjoub, A.R.: Facets of the bipartite subgraph polytope. Math.
Oper. Res. 10(2), 340–358 (1985)

5. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimiza-
tion to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)

6. Billionnet, A., Elloumi, S., Plateau, M.C.: Quadratic convex reformulation: a computational
study of the graph bisection problem. Technical report, Laboratoire CEDRIC (2005)

7. Borchers, B.: CSDP, A C library for semidefinite programming. Optim. Methods Softw.
11(1–4), 613–623 (1999). Special Issue: Interior Point Methods

8. Brunetta, L., Conforti, M., Rinaldi, G.: A branch-and-cut algorithm for the equicut problem.
Math. Program. B 78(2), 243–263 (1997)

9. Buchheim, C., Liers, F., Oswald, M.: Local cuts revisited. Oper. Res. Lett. 36(4), 430–433
(2008)

10. Conforti, M., Rao, M.R., Sassano, A.: The equipartition polytope. I: formulations, dimension
and basic facets. Math. Program. A 49, 49–70 (1990)

11. Conforti, M., Rao, M.R., Sassano, A.: The equipartition polytope. II: valid inequalities and
facets. Math. Program. A 49, 71–90 (1990)

12. CPLEX R� Callable Library version 12.1 – C API Reference Manual. ftp://ftp.software.ibm.
com/software/websphere/ilog/docs/optimization/cplex/refcallablelibrary.pdf (2009)

13. de Simone, C.: The cut polytope and the boolean quadric polytope. Discret. Math. 79(1), 71–75
(1990)

14. de Souza, C.C., Laurent, M.: Some new classes of facets for the equicut polytope. Discret.
Appl. Math. 62(1–3), 167–191 (1995)

ftp://ftp.software.ibm.com/software/websphere/ilog/docs/optimization/cplex/refcallablelibrary.pdf
ftp://ftp.software.ibm.com/software/websphere/ilog/docs/optimization/cplex/refcallablelibrary.pdf


32 M.F. Anjos et al.

15. Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics, 1st edn. Springer, New York (1997)
16. Edmonds, J., Johnson, E.L.: Matching: a well-solved class of integer linear programs. In: Guy,

R. (ed.) Combinatorial Structures and Their Applications, pp. 89–92. Gordon and Breach, New
York (1970)

17. Ferreira, C., Martin, A., de Souza, C., Weismantel, R., Wolsey, L.: Formulations and valid
inequalities for the node capacitated graph partitioning problem. Math. Program. 74, 247–266
(1996)

18. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: The node capacitated
graph partitioning problem: a computational study. Math. Program. 81, 229–256 (1998)

19. Frieze, A.M., Jerrum, M.: Improved approximation algorithms for max k-cut and max
bisection. In: Proceedings of the 4th International IPCO Conference on Integer Programming
and Combinatorial Optimization, Copenhagen, pp. 1–13. Springer, London (1995)

20. Anjos, M.F., Liers, F., Pardella, G., and Schmutzer, A.: Instances and computational results.
(2012) http://cophy.informatik.uni-koeln.de/eng eq ref.html

21. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset
problems. J. ACM 22, 463–468 (1975)

22. Johnson, E.L., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Math. Program. 62,
133–151 (1993)

23. Jünger, M., Reinelt, G., Rinaldi, G.: Lifting and separation procedures for the cut polytope.
Technical report, IASI-CNR, R. 11–14 (2011)

24. Karisch, S.E., Rendl, F.: Semidefinite programming and graph equipartition. In: Pardalos, P.M.,
Wolkowicz, H. (eds.) Topics in Semidefinite and Interior-Point Methods, pp. 77–95. AMS,
Providence (1998)

25. Karisch, S.E., Rendl, F., Clausen, J.: Solving graph bisection problems with semidefinite
programming. INFORMS J. Comput. 12(3), 177–191 (2000)

26. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech.
J. 49, 291–307 (1970)

27. Klerk, E., Pasechnik, D., Sotirov, R., Dobre, C.: On semidefinite programming relaxations of
maximum k-section. Math. Program. 136(2):1–26 (2012)

28. Letchford, A.N., Reinelt, G., Theis, D.O.: A faster exact separation algorithm for blossom
inequalities. In: IPCO’04, New York, pp. 196–205 (2004)

29. Mehrotra, A.: Cardinality constrained boolean quadratic polytope. Discret. Appl. Math.
79(1–3), 137–154 (1997)

30. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36,
1389–1401 (1957)

31. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite
and polyhedral relaxations. Math. Program. 121(2), 307–355 (2010)

32. Sotirov, R.: An Efficient Semidefinite Programming Relaxation for the Graph Partition
Problem. INFORMS J. Comput. (to appear)

http://cophy.informatik.uni-koeln.de/eng_eq_ref.html

	Engineering Branch-and-Cut Algorithms for the Equicut Problem
	1 Introduction
	2 The Equicut Problem
	2.1 The Cut and the Equicut Polytope
	2.2 Inequalities Outside the Template Paradigm
	2.3 Non-polyhedral Model

	3 Enhanced Branch-and-Cut Algorithm
	3.1 Cutting-Plane Separation
	3.2 Primal Heuristic

	4 Computational Results
	5 Conclusions
	References


