
Fields Institute Communications 69

The Fields Institute for Research in Mathematical Sciences

Discrete Geometry 
and Optimization

Károly Bezdek
Antoine Deza
Yinyu Ye 
Editors



Fields Institute Communications

VOLUME 69

The Fields Institute for Research in Mathematical Sciences

Fields Institute Editorial Board:

Carl R. Riehm, Managing Editor

Edward Bierstone, Director of the Institute

Matheus Grasselli, Deputy Director of the Institute

James G. Arthur, University of Toronto

Kenneth R. Davidson, University of Waterloo

Lisa Jeffrey, University of Toronto

Barbara Lee Keyfitz, Ohio State University

Thomas S. Salisbury, York University

Noriko Yui, Queen’s University

The Fields Institute is a centre for research in the mathematical sciences, located in
Toronto, Canada. The Institutes mission is to advance global mathematical activity
in the areas of research, education and innovation. The Fields Institute is supported
by the Ontario Ministry of Training, Colleges and Universities, the Natural Sciences
and Engineering Research Council of Canada, and seven Principal Sponsoring
Universities in Ontario (Carleton, McMaster, Ottawa, Toronto, Waterloo, Western
and York), as well as by a growing list of Affiliate Universities in Canada, the U.S.
and Europe, and several commercial and industrial partners.

For further volumes:
http://www.springer.com/series/10503

http://www.springer.com/series/10503
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Todd, Kurt Anstreicher, Nicolas Gillis, Gabor Pataki, Miguel Anjos, Lorenz Klaus,

Vincent Pilaud, Kim-Chuan Toh, István Szalkai, Javier Peña
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Preface

Optimization has long been a source of both inspiration and applications for geome-
ters, and conversely, discrete and convex geometry have provided the foundations
for many optimization techniques, leading to a rich interplay between these subjects.
The purpose of the Workshop on Discrete Geometry, the Conference on Discrete
Geometry and Optimization, and the Workshop on Optimization, held in September
2011 at the Fields Institute, Toronto, was to further stimulate the interaction between
geometers and optimizers. This volume reflects the fruitful interplay between these
areas.

We would like to thank the contributors for their high-quality papers, as well
as the referees for their thorough reviews. We are grateful to the Fields Institute
and the National Science Foundation for the generous funding provided for the
Thematic Program on Discrete Geometry and Applications. We wish to thank
Jesús De Loera and Joseph Mitchell for co-organizing the events related to discrete
geometry and optimization. It is a pleasure to acknowledge the excellent support
provided by the Fields Institute; in particular, we would like to offer special thanks
to Edward Bierstone, Alison Conway, Claire Dunlop, Matheus Grasselli, Debbie
Iscoe, Matthias Neufang, and Carl Riehm.
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Discrete Geometry in Minkowski Spaces

Javier Alonso, Horst Martini, and Margarita Spirova

Abstract In this expository article we reflect some recent results from the geometry
of real Banach (or normed) spaces in the spirit of Discrete Geometry. It is our goal
to demonstrate that still today surprisingly elementary questions (at least from the
Euclidean point of view) present parts of the research front in this field. We will
discuss incidence theorems, some covering and location problems, group-theoretical
aspects, and regularity of figures in normed planes. In addition, some single research
problems are presented, partially even referring to gauges.

Key words Birkhoff orthogonality • Circumcenters • Covering discs • Group
theory • James orthogonality • Minimal enclosing ball • Minsum hyperplanes
• Minsum hyperspheres • Orthocentricity • Regularity of figures • Universal
covers

Subject Classifications: 46B20, 52A10, 52A21, 52B12, 52C15, 52C17, 52C20,
90B85

1 Introduction

The geometry of finite-dimensional real Banach spaces goes back to H. Minkowski
(see [40]), who was motivated by non-isotropic situations (in the sense of direction
dependence) in Physics and by the Geometry of Numbers to extend questions from
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2 J. Alonso et al.

Euclidean Geometry to linear spaces with convex distance functions or norms.
An even earlier contribution was given by B. Riemann who, in [43] (see also [23]
for the history) already mentioned the l4-norm, as norm of tangent spaces in the
sense of Finsler geometry. Today this field is usually called Minkowski Geometry
(but should not be mixed up with Lorentz Geometry, also called Minkowskian
Space-Time Geometry). Over the twentieth century, this field was permanently
enriched by many contributions, also from neighbouring disciplines, such as
general Banach Space Theory, Finsler Geometry, Geometric Convexity, Differential
Geometry, and some other areas. But it remained independent of abstract Banach
Space Theory. It is very interesting to see that, in contrast to the latter, also
questions which (from the Euclidean point of view) are very elementary yield
themes for the research front in Minkowski Geometry. Thus, simple notions like
bisectors of segments, circumcenters, circumballs, minimal enclosing balls, angular
bisectors, etc. are still interesting subjects of research on the geometry of normed
spaces. It is our aim to demonstrate this phenomenon by various recent results.
The analytical part of Minkowski Geometry was excellently summarized in the
monograph [46] by A. C. Thompson. More recently, also researchers from Discrete
and Computational Geometry, Optimization (in particular, from Location Science),
Approximation Theory and further (more applied) disciplines contributed, but there
is no monograph on this part of the field, although there is some need for a
fundamental geometric theory (e.g., for continuing purely geometric investigations
algorithmically, in the spirit of Computational Geometry). In the present article
we will collect some recent (and mainly planar) results in this direction, basically
referring to incidence theorems, covering problems, location problems, group-
theoretical aspects, and norm-regularity of figures. The paper contains also various
inspiring research problems. For background material we refer to [46] and the
surveys [38] and [35].

We denote by X an n-dimensional normed space, i.e., an n-dimensional real
Banach space with norm k � k, whose unit ball B WD fx 2 X W kxk � 1g is a convex
body (i.e., a compact, convex set with non-empty interior) centered at the origin o.
By conv, bd and int we denote convex hull, boundary and interior, respectively; bdB
is called the unit sphere (for n D 2 unit circle) ofX . A homothetical copy xC�bdB
of bdB is said to be a hypersphere with center x and radius �, denoted by S.x; �/.
In the case n D 2 it is called a circle denoted C.x; �/. We say that X is strictly
convex if bdB does not contain a non-trivial segment. Further on, X is smooth if B
has precisely one supporting hyperplane at each x 2 bdB , and X is polyhedral if
B is the convex hull of a finite subset of X . A vector x 2 X is said to be Birkhoff
orthogonal to y 2 X , denoted by x ?B y, if kx C ˛yk � kxk for any ˛ 2 R,
and x is James orthogonal to y if kx C yk D kx � yk. We refer to [3] for many
properties of these orthogonality types. Clearly, Birkhoff orthogonality is in general
not symmetric; but if it is, then, for n D 2, bdB is called a Radon curve and X a
Radon plane. If X is an inner product space, then it is the Euclidean space.
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2 Some Incidence Theorems

In this part we will demonstrate in which way generality might be lost when leaving
the Euclidean plane to general normed planes. For example, various theorems which
are true in the Euclidean case for circles of arbitrary radii, hold in sufficiently large
classes of normed planes only for circles of equal radii.

We start with the basic “three-circles theorem”, which is fundamental for
many topics from Elementary Geometry (orthocentric point systems, inversive
geometry and complex numbers, Feuerbach circles, etc.), Discrete Geometry (circle
coverings), Descriptive Geometry (Theorem of Pohlke), Convexity (equilateral
zonogons as cube shadows), configurations (Clifford’s chain of theorems), and
further topics; see the introduction of [29] for many references. It was extended
in [5] to all strictly convex, smooth normed planes, and the following form of it
(see [29]) can be proved without the smoothness assumption.

Theorem 1. Let p1; p2; p3 be distinct points of a strictly convex circle C.x; �/,
and let C.xi ; �/; i D 1; 2; 3; be three circles different from C.x; �/ each of which
contains two of the three points pi . Then the intersection of the three circlesC.xi ; �/
is non-empty and consists of exactly one point p, called the C -orthocenter of the
triangle p1p2p3; see Fig. 1 (left side).

We note that we need this theorem also below in our section on group-theoretical
results. In the Euclidean subcase, p is the classical orthocenter, i.e., the intersection
of the altitudes of the triangle formed by p1; p2; p3 (each pi playing the same
role with respect to the remaining three points in this quadruple, therefore yielding
an orthocentric system). Thus it makes sense to ask which type of orthogonality
justifies, for strictly convex normed planes, the name “C -orthocenter” for p above.
It turns out that James orthogonality yields the right answer, i.e., for any triangle
formed by a triple from fp; p1; p2; p3g in Theorem 1, every vertex connects with
the fourth point in a line which is James orthogonal to the opposite triangle side.
In addition, we get for the configuration of Theorem 1 that the Feuerbach or nine-
point circle from Euclidean geometry has, in general, only a six-point analogue

Fig. 1 The three-circles theorem (left) and the six-point circle (right)
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Fig. 2 Miquel’s theorem (left) and Clifford’s chain (right)

C WD C.1
2
.x C p/; 1

2
�/ passing through the three side midpoints and the three

points 1
2
.p C pi /. Also, C is a homothetical copy of the triangle’s circumcircle,

with center p and ratio 1
2
; see Fig. 1 (right side). More related results can be found

in [5] and [29].
The famous Theorem of Miquel refers to .83; 64/-configurations of circles of

possibly different sizes, meaning that they are formed by eight points and six circles
such that each point lies on three circles and every circle passes through four points
(see [8, p. 131]). Its appropriate extension (see [45] for this and further results)
holds only for circles of equal radii.

Theorem 2. LetC.o; 1/ be the unit circle of a strictly convex, smooth normed plane
containing the four points x1; x2; x3; x4 in this order, and let Ci denote the four
translates of C.o; 1/ (different to C.o; 1/, in each case) passing through pairs of
neighbouring points from that quadruple. Then either there exists a proper translate
of C.o; 1/ passing through the four points yi , where yi D Ci \CiC1; C5 D C1, and
yi … C , or yi D xi for i D 1; 2; 3; 4; see Fig. 2 (left side).

It is well known that Clifford’s chain of theorems can be transformed via
inversive geometry to the following form for Euclidean circles (of possibly different
radii; see [13, p. 262]): Let C1; C2; C3 be coplanar circles all passing through p,
and let Ci ; Cj meet again in pij . Then p12; p13; p23 lie on a circle C123; circles
C123; C124; C134; C234 meet in p1234; points p1234; : : : ; p2345 lie on a circle C12345,
and so on ad infinitum. Again, in normed planes it holds only for circles of equal
radii; see [30].

Theorem 3. Let Ci D xi C �C.o; 1/; i D 1; 2; 3; 4; be four circles in a
strictly convex normed plane passing through a point p. Let pij be the second
intersection point of Ci and Cj . Then each triangle pij pjkpki with i; j; k pairwise
different and from f1; 2; 3; 4g has a circumcircle Cijk . Furthermore, the four circles
C123; C234; C341; C241 all pass through a point p1234. Let C5 D x5 C �C.o; 1/ be
a fifth unit circle through p. Then the five points p1234; : : : ; p2345 lie on the circle
C12345, and so on ad infinitum; see Fig. 2 (right side).

In contrast to the last two theorems, there are also Minkowskian analogues of
classical theorems still referring to circles of arbitrary radii. An example is the
Apollonius problem on circles touching three given ones in strictly convex, smooth
normed planes; cf. [44].
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We finish this section with a general observation on the overlap between
Minkowski Geometry and fields like Foundations of Geometry (see again [6]
and [8]) and Elementary Geometry (cf. [4] and [19]), since the Euclidean versions
of the incidence theorems above belong to these fields. Checking the existing
literature in Minkowski Geometry (see mainly [38, 46], and [35]), one will clearly
observe that until now no “Minkowskian analogues” of many (in this sense certainly
extendable) theorems from Euclidean Geometry are known. For example, there is
no properly developed theory of triangles and simplices, of (metrically defined)
classes of n-gons and polytopes, of circle and ball configurations, and of incidence
and closure theorems referring to simply defined geometric figures in Minkowski
spaces; see also the final remark of Sect. 5 below. The authors believe that fruitful
research is possible in these directions.

3 Some Covering (and Related) Problems

In 1914, H. Lebesgue posed his famous universal cover problem for the Euclidean
plane, namely to find a set of smallest possible area (called universal cover) having a
congruent copy of any planar set of unit diameter as subset; see D15 and D16 in [14],
� 11.4 in [11], and Chaps. V and VIII of [9] for many partial results, extensions, and
applications. There are many variants of Lebesgue’s (still unsettled) problem, e.g.,
by solving it using only restricted families of convex sets, like regular hexagons,
balls and so on, as covers. But also in this restricted form, universal covers in
normed planes and spaces were almost not investigated. For reasons described in the
section group-theoretical aspects below, in general normed planes “congruent copy”
above should be replaced by “translate”, in the Euclidean case yielding the notion
of strong universal covers instead. The paper [34] seems to be the only publication
dealing explicitly with this problem in normed planes, although the Borsuk problem,
considered in normed planes by several authors, has strong relations to universal
covers there; see [16] and Chap. V in [9]. It is well-known that for a general norm
k � k the relation x ?B y does not imply y ?B x. But according to H. Busemann
[12], for any given norm k � k there is a norm k � ka with unit ball Ba (unique up to
a factor) for which y ?Ba x follows, for any pair with x ?B y. The norm k � ka is
called the antinorm of k�k. (We note that bdBa is nothing else than the isoperimetrix
with respect to the original norm.) We say that a convex hexagon is anti-regular if
it is affine regular and norm-equilateral with respect to k � ka. Moreover, since one
can construct a Minkowskian angular measure regarding which a norm-equilateral
triangle is also equiangular in the norm, we can define regular and also anti-regular
triangles. The following theorems were proved in [34], and they refer to strong
universal covers having triangular, hexagonal and 4-gonal shapes.

Theorem 4. In any normed plane X , an anti-regular hexagon circumscribed about
a norm-circle of diameter 1 is a strong universal cover. Analogously, an anti-regular
triangle circumscribed about a norm-circle of diameter 1 has the same property.
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It makes sense to call a parallelogram, which is norm-equilateral and has two
neighbouring sides which are Birkhoff orthogonal, a square in this norm.

Theorem 5. In any normed plane X , there is a square of side-length 1 being a
strong universal cover, and X is Radon if and only if every such square is a strong
universal cover.

Further research in this direction should refer to universal covers belonging to
larger classes of convex figures, and to higher dimensions. For this purpose, the
related problems still open in the Euclidean subcase (see � 11.4 in [11] and Chaps. V
and VIII in [9]) might be inspiring and should be suitably extended to normed planes
and space.

At the end of this section we refer to the problem of finding all possible locations
of circumcircles, circumcenters and minimal enclosing discs of arbitrary triangles
in general normed planes. It is surprising that these (at first glance simple) location
problems were completely solved only in the very recent papers [1] and [2].
The theorems derived there are too long and complicated to be presented here.
We only mention that they are based on the complete classification of all possible
intersection shapes that two homothetical norm circles can create (see [7, 16] and,
for a refined presentation, [1]), and on some new notions, like norm-acuteness and
norm-obtuseness of triangles. Besides many other surprising results in [1] and [2]
it turns out that there are triangles having infinitely many minimal enclosing discs
but a unique circumcircle, and that the completely described locus of all possible
circumcenters is bounded also by parts of strangely occuring conics. It would
be natural to extend the notions of circumcircles and minimal enclosing discs to
more general given point sets and higher dimensions, also in the computational
sense. This would yield deeper insights regarding unit distance graphs, Voronoi
diagrams, and coresets in normed spaces (see, e.g., [31] for these notions and first
steps in this direction).

4 Some Location Problems

Let X be an n-dimensional normed space .n � 2/, and let Y WD fy1; : : : ; ymg � X
be a finite set of points with corresponding weights w1; : : : ;wm 2 R

C. The
famous Fermat-Torricelli problem (see [10], Chap. II) asks for the unique point in
n-dimensional Euclidean space having the minimal sum of m weighted distances to
the set Y . In an n-dimensional normed space X , the solution set F T .Y / � X of
this problem need not be (depending on the shape of the unit ball B) a singleton.
Results on the geometric description of F T .Y / are summarized in [39]. Among
the many modifications and generalizations of this problem, the minsum hyperplane
problem is particularly interesting: Find the hyperplanes H � X such that, among
all hyperplanes of X , the weighted distance sum

mX

iD1
wi d.xi ;H/; d.xi ;H/ WD minfj�j W .x C �B/ \H 6D ;g;



Discrete Geometry in Minkowski Spaces 7

Fig. 3 Minsum lines (left) and a minsum circle (right)

is minimal. Such an optimal hyperplane is called a minsum hyperplane with respect
to the weighted point set Y � X . Furthermore, a hyperplaneH is said to be pseudo-
halving with respect to Y if

X

xi2HC

wi � W

2
and

X

xi2H�

wi � W

2
;

where HC;H� are the two open halfspaces separated by H , and
mP
iD1

wi D W . In

[26] and [25] the following theorem was proved, for which we exclude the trivial
cases that Y is contained in a hyperplane of X .

Theorem 6. For any weighted point set Y in an n-dimensional normed space
X; n � 2, the following statements hold:

1. There exists a minsum hyperplane with respect to Y which is spanned by n
affinely independent points from Y , and each minsum hyperplane is pseudo-
halving with respect to Y .

2. The unit ball of X is smooth if and only if any minsum hyperplane with respect
to Y is the affine hull of n affinely independent points from Y .

In Fig. 3 (left side) we see that in the Manhattan norm also minsum hyperplanes
exist which contain even no given point (the coordinate axes). Based on this theo-
rem, the application of topological hyperplane sweep techniques for homogeneous
hyperplane arrangements in .n C 1/-space yields O.mn/ time (and O.m/ space)
complexity to find all minsum hyperplanes spanned by n affinely independent
given points. In certain cases (like for n D 2 and n D 3), this time complexity
can be reduced a bit, using combinatorial results on halving lines and planes, and
for polyhedral unit balls (with 2k vertices) even the time complexity O.mk/ is
sufficient; see again [26], Chap. II of [10], and the references given there.

Considering hyperplanes like also points as “degenerate cases” of hyperspheres,
one gets a natural extension of the minsum hyperplane (and the Fermat-Torricelli)
problem. By G we denote the set of all non-degenerate hyperspheres of X .
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For a 2 X we call d.S; a/ WD inffky�ak W y 2 Sg the point-hypersphere distance,
and for Y like above we get the minsum hypersphere problem: Find

min
S2G f .S/ WD

mX

iD1
wi � d.S; yi /

and the correspondingly optimal hyperspheres. This problem was already studied
in Euclidean space (see [42] and the references there), and at first glance one might
think that an incidence criterion analogous to Theorem 6 (1.) might hold; see Fig. 3
(right). As we shall see below, this is far from being true. For the following results
we refer to [22]. Using the notion of d -segments (see [9, � 9]), one can prove that
d.S.x; r/; a/ D jkx�ak�r j, and thus d.S.x; r/; a/ is convex and piecewise linear
in r . One can easily show that, for any normed space X , no degenerate hypersphere
with r D 0 can be optimal, and there always exists a set Y and a hyperplane H
such that the objective value of H is superior to any f .S/; S 2 G . If X is smooth,
but not strictly convex, then there exists a finite set Y and a hyperplane such that the
objective value of H is equal to that of a minsum hypersphere, and the same is true
for polyhedral norms. Nevertheless, for polyhedral norms the set G always contains
a minsum hypersphere. Besides these existence criteria, the following position and
incidence criteria can be fixed.

Theorem 7. If G contains a minsum hypersphere for an arbitrary finite set Y � X ,
then there exists a least one minsum hyperpshere containing at least one point from
Y . The intersection of any minsum hypersphere S and conv Y is non-empty, and we
have jS \ convY j � 2 if the given set Y is inside or on S . If jS \ convY j is finite,
then S \ convY � Y .

Defining the sets J˙.S/ WD fyi 2 Y W kyi � xk><rg and J0.S/ WD fyi 2 Y W
kyi � xk D 0g for S D S.x; r/, we get also

Proposition 1. If G contains a minsum hypersphere S D S.x; r/, then
ˇ̌
ˇ̌
ˇ̌
X

yi2J�.S/

wi �
X

yi2JC.S/

wi

ˇ̌
ˇ̌
ˇ̌ �

X

yi2J0.S/
wi :

As a next step, one should look for algorithmical approaches to minsum
hyperspheres, and they also could be replaced by other approximating figures (like,
e.g., by different types of minsum cylinders).

5 Group-Theoretical Results in Strictly Convex
Normed Planes

The group of isometries of a (strictly convex) non-Euclidean normed plane consists
of the semi-direct product of the translation group with a finite group of Euclidean
rotations, or it is the dihedral group generated by two Euclidean line reflections.
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This poorness motivated the authors of [32] to introduce and study left reflections
for normed planes. In general, these are not isometries, but they are closely related
to Birkhoff orthogonality: if every such reflection preserves Birkhoff orthogonality,
then the respective plane is Radon! In general, these left reflections generate the
group of affine transformations of determinant 1, but imposing additional properties
for them and their products, or for the group generated by them, we get new
characterizations of Radon planes or of the Euclidean plane (see, as continuation
of [32], the paper [37]).

Definition 1. Given a line l in a strictly convex normed plane X , we define a
transform ˚i D .p ! p0 W X ! X/ to be a left reflection in the line l if

(i) p0 D p holds only for all p 2 l ,
(ii) p0 6D p and afffp; p0g ?B l hold for all points not from l , and

(iii) the midpoint of the segment Œp; p0� lies on l for all points p of X .

Thus left reflections are involutory, affine and have the property that all their
fixed lines are Birkhoff orthogonal to the fixed-point line l , called their axis.
Furthermore, the product of two of them in parallel lines is a translation, and all
results presented in this section for this type of reflection analogously hold for the
corresponding concept of “right reflections in lines for smooth normed planes”; see
again [32]. Note that in smooth and strictly convex normed planes any left reflection
is also a right reflection if and only if the plane is Radon, and if every left reflection
preserves Birkhoff orthogonality, then the plane is again Radon. For the following
results we refer to [37].

Theorem 8. Let l1; l2; l3 be three lines with common point p in a strictly convex,
smooth normed plane. This plane is Euclidean if and only if there is a fourth line l4
through p such that ˚l3 ı ˚l2 ı ˚l1 D ˚l4 .

In this theorem the smoothness assumption can be replaced by the property that
the strictly convex plane is Radon. This theorem also implies

Theorem 9. A strictly convex normed plane, in addition being smooth or Radon,
is Euclidean if and only if for any two lines l1; l2 intersecting in p and an arbitrary
third line l 01 through p there exists a fourth line l 02 through p such that ˚l 02 ı ˚l 01 D
˚l2 ı ˚l1 .

With the description of all isometries in normed planes at the beginning of this
section we obtain also

Theorem 10. In a strictly convex normed plane, every product of two left reflections
is an isometry if and only if the plane is Euclidean.

For the symmetry  p with respect to an arbitrary point p of a strictly convex
normed plane there exist two mutually Birkhoff orthogonal lines l1; l2 such that
˚l2 ı ˚l1 D  p . For R as family of all left reflections in a strictly convex normed
plane we introduce the sets R2 WD f˚2 ı ˚1 W ˚1;˚2 2 R; ˚1 6D ˚2g and R3 WD
f˚3 ı ˚2 ı ˚1 W ˚1;˚2; ˚3 2 Rg.
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Theorem 11. In a strictly convex normed plane the set R� D R2[R3 is a group if
and only if the plane is Euclidean. From this it follows that a strictly convex normed
plane is Euclidean if and only if its left reflections generate a proper closed subgroup
of the equi-affine group, and if and only if the image of any circle with respect to
any left reflection is also a circle.

Analogously we can prove that a strictly convex normed plane is Euclidean if
and only if every left reflection preserves James orthogonality. For such a plane, we
denote by Pp the pencil of all lines through a point p. The locus of all points that
are images of some point x 6D p with respect to the left reflections in lines from Pp
is called the cycle of x with respect to Pp and denoted by CY.p; x/. For example,
one can easily show that the cycle CY.p; x/ contains a line segment iff the unit
circle has a corner point (belonging to more than one supporting line of B). The
natural notion of cycle yields several interesting characterizations of large classes of
normed planes.

Theorem 12. Every two cyclesCY.p; x/ andCY.q; x/ in a strictly convex normed
plane, where p; q; x are collinear, have the unique point x in common if and only if
the plane is smooth.

And with respect to Radon planes we obtain

Theorem 13. Any cycle CY.p; x/ in a strictly convex normed plane is symmetric
with respect to p if and only if the plane is Radon. And for any non-degenerate
line segment Œx; y� with midpoint p in a strictly convex normed plane, the cycles
CY.p; x/ and CY.p; y/ coincide if and only if the plane is Radon.

On the other hand, for the Euclidean subcase we get

Theorem 14. Let CY.p; x/ be an arbitrary cycle in a smooth and strictly convex
normed plane. Then, for any y 2 CY.p; x/, the cycles CY.p; x/; CY.p; y/
are identical if and only if the plane is Euclidean. And without the smoothness
assumption, any cycle CY.p; x/ is a circle with center p if and only if the plane
is Euclidean.

We finish this section with some ideas on the concept of regularity of figures in
normed planes. It is clear from above that notions like rotation and angle create
difficulties in general normed planes, and that the notion of symmetry group of
a figure is based on them. To our best knowledge, no theory of regular figures
in normed planes is developed until now. In the monograph [46] we only find
the known construction of convex norm-regular hexagons uniquely inscribed to
a given norm circle (and with norm-regular meaning the combination of affine
regularity and norm-equilaterality of these hexagons; see � 4.1 in [46]). Simple
norm examples show that already for triangles norm-equilaterality is not a satisfying
notion for regularity. We present now one way to introduce such a notion for strictly
convex normed planes; see [33]. The point p in Theorem 1 above was called
the C-orthocenter of the triangle p1p2p3 (with respect to James orthogonality)
and satisfies p D p1 C p2 C p3 � 2x; if the C-orthocenter p coincides with
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the circumcenter x of the triangle (if this uniquely exists; see � 7.1 in [38]), we
call p1p2p3 AG-regular (due to the authors of [5]), and this is equivalent to
p1 C p2 C p3 D 3x or to the property that the centroid, the circumcenter and the
C -orthocenter of p1p2p3 coincide. It is interesting to investigate how the notions
of AG-regularity and norm-equilaterality behave to each other, and to characterize
those strictly convex normed planes in which the incenter of any AG-regular
triangle coincides with its circumcenter. Moreover, one even should clarify whether
there exist AG-regular triangles; see [33].

Theorem 15. Let X be a strictly convex normed plane with unit circle C . If p1 lies
on C , then there is exactly one triangle with vertex p1 and circumcircle C which is
AG-regular.

It turns out that the construction of this (for given C and p1 unique) AG-
regular triangle is closely related to the classical construction of norm-regular
hexagons mentioned above. Namely, every second vertex of such a hexagon, with
starting vertex p1, yields this unique AG-regular triangle (of course, its reflection
at the center of C is of the same type, but does not contain p1). This connection
yields a new approach to affine regular, norm-equilateral hexagons and allows to
define the trigonal symmetry group (containing the only symmetry operations)
of an AG-regular triangle p1p2p3 in a strictly convex normed plane, consisting
of �; �2; �3 D �; here � D ı2, where ı maps the vertex set of the respective
norm-regular hexagon cyclically onto itself, see again [33]. From this we obtain
many useful applications of AG-regular figures. For example, AG-regular triangles
allow constructions of Dirichlet regions of lattices and of norm-regular f3; 6g- and
f6; 3g-tessellations, for arbitrary strictly convex normed planes; see again [33], but
also [31].
AG-regularity presents only one possible type of regularity in Minkowski planes;

there are various other ways to define regularity of polygons and polytopes in
normed planes and spaces. To our best knowledge, almost nothing was systemat-
ically done in this direction.

6 Outlook: Jordan Curves and Gauges

We finish this paper by mentioning some single results showing again that the study
of various natural geometric research problems in normed planes seems to be, in
some sense, at the beginning only. For example, the inscribed square problem asks
whether for every Jordan curve in the Euclidean plane there exists at least one
inscribed square. We refer to Sect. 11 of [21] and to [20] for detailed discussions
of this unsolved problem. Special cases have been positively answered, like that of
convex Jordan curves or sufficiently smooth ones. A related result (see [41]) says
that any Jordan curve contains the four vertices of some rhombus with two sides
parallel to any given line in the Euclidean plane. It seems that there are (except for
[36]) no extensions of such results to normed planes. We say that a parallelogram



12 J. Alonso et al.

uvst , embedded in a normed plane X , is a rhombus if ku� vk D kv� tk (note that,
unlike the Euclidean subcase, quadrilaterals with four equal side-lengths need not
be rhombi). Moreover, a rhombus is said to be a square if also ku � sk D kv � tk
(cf. the different definition of square in our discussion on universal covers above).
With these notions, the following was proved in [36].

Theorem 16. For any convex Jordan curve in an arbitrary normed plane there
exists at least one inscribed square.

Further on, in a strictly convex normed plane no two different rhombi with the
same prescribed direction of one diagonal can be inscribed in the same strictly
convex Jordan curve (see again [36]). These results (and their proofs) might give
a good starting point for solving other interesting subcases (analogous to existing
Euclidean results; see again [14, Sect. 11]) of the inscribed square problem! Here
the large variety of possible definitions of different types of 4-gons in normed planes
seems to yield a rich field of geometrically interesting problems.

Another type of results refers to the more general gauges or convex distance
functions, a concept which was introduced by H. Minkowski before that of norms!
The unit circles of planes with convex distances functions are defined as those for
normed planes, only central symmetry is not demanded (but the origin o is still
an interior point). Convex distance functions have increasing importance, e.g. in
Computational Geometry. As for normed planes (see [35]), it is natural to study
quantities like the self-circumference of the unit ball for convex distance functions,
called normalizing figure B . Since this self-circumference depends on the orien-
tation of bdB , we use L�o .B/ and LCo .B/ for both these quantities, emphasizing
also their dependence on the position of o 2 intB . The following is known about
the polygonal cases. B. Grünbaum [18] proved that mino2intB L

�
o .B/ � 9, and that

equality holds for B a triangle. The global lower bound is given by L�.B/ � 6,
with both cases of equality iffB is an affine regular hexagon (as for norms; see [17]).
V. V. Makeev [24] observed that the self-perimeter is a strictly convex function with
respect to the position of o 2 intB; thus for affine regular k-gons Pk the lower
bound is attained when o is their barycenter (and equals 9 when k D 3; see above).
By continuity arguments, this yields inffPkgL�.Pk/ D 6, for all convex k-gons with
k � 6. The remaining two cases k D 4 and k D 5 were settled in [27] and [28],
respectively.

Theorem 17. If P4 is the normalizing quadrangle of a convex distance function in
the plane, then the sharp lower bound

L�.P4/ � 3 � .x0 C 1/C x�10 D 7; 7290 : : :
holds, where x0 denotes the real root of the equation x3 � x � 1 D 0. On the other
hand, if P5 is the normalizing pentagon of a convex distance function in the plane,
then the sharp lower bound

L�.P5/ � 3 � .1C x�10 /C 2x�20 D 6; 7996 : : :
holds, where x0 is the positive root of the equation x4 � x � 1 D 0.
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There are different ways to extend the notion of self-perimeter of polygonal unit
circles to higher dimensions. For example, one can replace “perimeter” by “surface
area”, thus coming to isoperimetric problems in normed spaces (see Chap. 5 of [46]).
On the other hand, “perimeter of polygons” can be replaced by “total edge-length
of polytopes”, measured in the norm induced by them. The following conjecture is
due to K. J. Swanepoel (oral communication).

Conjecture. Let P , centred at the origin o, be the polyhedral unit ball of a normed
3-space. Then P has the minimum total edge-length 90�30p5 � 22; 92, measured
in the norm induced by itself, if and only if P is an affine image of a Platonic
dodecahedron.

For partial results we refer to [15], where this minimum is found for the following
classes of convex polyhedra: Platonic, Archimedean, and Catalan solids, further
semiregular polyhedra and their duals, zonohedra and their duals. For the class of
zonohedra the sharp lower bound is 24, and the equality cases are characterized.
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18. Grünbaum, B.: The perimeter of Minkowski unit discs. Colloq. Math. 15, 135–139 (1966)
19. Johnson, R.A.: Advanced Euclidean Geometry. Dover, New York (1960)
20. Klee, V.: Some unsolved problems in plane geometry. Math. Mag. 52, 131–145 (1979)
21. Klee, V., Wagon, S.: Unsolved Problems in Plane Geometry and Number Theory. MAA

Dolciani Mathematical Expositions, No. 11. The Mathematical Association of America,
Washington, DC (1991)
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l’espace. Nouvelles Annales de Mathematiques, 3e Série 15 (1896); also in: Ges. Abh. 1, Band
XII, pp. 271–277

41. Nielsen, M.J.: Rhombi inscribed in simple closed curves. Geom. Dedicata 54, 245–254 (1995)
42. Nievergelt, Y.: Median spheres: theory, algorithms, applications. Numer. Math. 114, 573–606

(2010)



Discrete Geometry in Minkowski Spaces 15
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Abstract A minimum equicut of an edge-weighted graph is a partition of the nodes
of the graph into two sets of equal size such that the sum of the weights of edges
joining nodes in different partitions is minimum. We compare basic linear and
semidefinite relaxations for the equicut problem, and find that linear bounds are
competitive with the corresponding semidefinite ones but can be computed much
faster. Motivated by an application of equicut in theoretical physics, we revisit
an approach by Brunetta et al. and present an enhanced branch-and-cut algorithm.
Our computational results suggest that the proposed branch-and-cut algorithm has a
better performance than the algorithm of Brunetta et al. Further, it is able to solve to
optimality in reasonable time several instances with more than 200 nodes from the
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1 Introduction

The maximum cut problem on an edge-weighted graph G D .V;E/ is to find a
partition of the set of nodes V into two shores (node sets) such that the weight
of the cut (the sum of the weights of edges with endpoints in different shores) is
maximum. It is a prominent NP-hard combinatorial optimization problem that has
been studied intensively in the literature.

We consider the equicut problem which is the max-cut problem with the
additional restriction that the sizes (number of nodes) of the shores must be equal.
This work is motivated by an application in theoretical physics: equicuts can be
used for the calculation of minimum-energy states, or ground states, for so-called
Coulomb glasses. In a Coulomb glass, charges may be placed on the sites of a lattice.
The number of charges is exactly half the number of sites. Randomly chosen local
fields act on the charges. Since a quadratic function is used to represent the energy
of a state as a graph G, the task is to determine an equicut in G.

Polyhedral investigations of the equicut polytope have been presented in
[10, 11, 14]. Building upon this theoretical knowledge, an integer programming-
based branch-and-cut approach was implemented in [8]. The bisection problem is
the more general task of determining a cut in which the shore sizes are constrained
(but not necessarily equal). Formulations using integer programming, semidefinite
programming (SDP), a polyhedral study and computational results are presented
in [2, 3, 29]. Another branch-and-bound algorithm using SDP formulations of the
bisection problem that specifically accounts for the special case of equicut is given
in [25]. A quadratic convex reformulation of the bisection problem is given in [6].
Further generalizations of the bisection problem with additional node capacities are
studied in [17,18,22]. The maximum cut problem as well as other related problems
have been investigated in great depth [15]. SDP-models for related graph partition
problems have been introduced in [19, 24] and in the recent preprints [27, 32].

In this work, we first summarize important facts about the cut and the equicut
polytopes and their relationships. The main part of this paper presents an algorithm
engineering approach for an exact branch-and-cut algorithm for computing equicuts.
Experimentally, we find that the bounds obtained from the SDP relaxation of [19]
with several additional linear constraints are usually not stronger than those from
solving the same linear relaxation without the SDP model. Furthermore, the
computation of the SDP bounds often needed considerably more time. We then
focus on the usage of integer linear programming (ILP) methods. We take the most
important ingredients from the method of [8] and enrich it by target cuts, a variant of
local cuts [9]. It turns out that within this separation routine, orthogonal projections
on node-induced subgraphs together with zero-lifting of the separated inequalities
works well in practice. For complete graphs, the projection and lifting approach
is equivalent to the graph shrinking procedure from [23]. As target cut separation
yields very strong bounds but can be time-consuming, we then design fast heuristics
to separate those inequalities found by target cut separation. We finally show that
our approach yields an effective method for determining optimal equicuts in graphs,
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i.e., the computation times needed are about two orders of magnitude less than those
reported in [8] on average. Furthermore we could reduce the average number of
branching nodes by a factor of approximately 4; for some of the largest instances
the computation time was three orders of magnitude faster than those reported in [8];
and instances that required more than 50 branching nodes are now solved at the root
node. Hence we could solve some large instances that were not reported in [8] as
well as instances of Coulomb glasses to optimality. We also solved instances with
more than 200 nodes, doubling the size of the instances reported in [8].

2 The Equicut Problem

Let a graph G D .V;E/ with node set V , edge set E, and edge weights c W E ! R

be given. We denote by n and m the cardinalities of V and E, respectively. The
complete graph on n nodes is denoted by Kn. For S � V a cut ı.S/ � E is
the set of edges with exactly one node in S . Its weight is the sum of the weights
of edges in ı.S/. We call S and V n S shores of ı.S/. A cut ı.S/ is an equicut
if
�
n
2

˘ � jS j � ˙
n
2

�
. We associate with every cut ı.S/ its characteristic vector

x.ı.S// D .x1; : : : ; xm/ 2 f0; 1gm where xe D 1 if e 2 ı.S/ and xe D 0 otherwise.
The cut polytope C .G/ and the equicut polytope Q.G/ of a graphG are the convex
hulls of the characteristic vectors of all cuts and of all equicuts of G, respectively.
The equicut problem consists in finding an equicut in G with minimum weight.

2.1 The Cut and the Equicut Polytope

In this section, we review known results about the equicut polytope [10, 11].
For a complete graphK2p , the edge set induced by an equicut contains exactly p2

many edges. Furthermore, every equicut in K2pC1 contains p.p C 1/ many edges.
Thus, an equicut on a complete graph Kn has exactly

�
n
2

˘ ˙
n
2

�
edges in the cut.

For complete graphs, the equicut polytope Q.Kn/ can be defined as

Q.Kn/ D conv

(
x 2 C .Kn/ j

X

e

xe D
jn
2

kln
2

m)
: (1)

Given a relaxation of the cut polytope we can use (1) to obtain a relaxation of the
equicut problem as all inequalities remain valid.

We use the following classes of valid inequalities, some of which are well-known
from the cut polytope [15]. For a more in-depth discussion see [10, 11] and [14].

Definition 1. Let Kp D .V 0; E 0/ be a complete subgraph (clique) of G D .V;E/.
The clique inequality is given by

X

e2E0

xe �
jp
2

klp
2

m
: (2)
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For each cut ı.S/ in Kp the switched clique inequality reads
X

e2E0nı.S/
xe �

X

e2ı.S/
xe �

jp
2

klp
2

m
� jı.S/j: (3)

For the special case p D 3 the clique inequalities reduce to the triangle inequalities.
For any triplet i; j; k such that .i; j /; .i; k/; .j; k/ 2 E, they take the following
forms:

xij C xik C xjk � 2 (4)

xij � xik � xjk � 0: (5)

Barahona et al. [4] proved that the clique inequalities (2) are facets of the cut
polytope C .Kp/ iff p is odd. Hence the equicut polytope Q.Kn/ is a face of the cut
polytope and it is a facet iff n is odd [10].

As the number of cut edges in a cycle is even, for every cycle C with jC j D pC1
and n D 2p the cycle inequalities (6) are valid for Q.Kn/:

X

e2C
xe � 2: (6)

For a formal proof and facet inducing properties of these inequalities we refer to
Conforti et al. [11].

If an edge e D st is fixed to be in the cut, the resulting polytope is known as
s-t -(equi-)cut polytope. Given a path P D .s D v0; v1; : : : ; vk D t / we consider
the following s-t path inequalities that make sure that at least one edge on that path
is cut:

X

e2P
xe � 1: (7)

It is easy to see that inequalities (7) are valid for the respective s-t -cut polytopes and
they can be separated efficiently by shortest path computations. For further reasons
to use these inequalities we refer to Conforti et al. [11].

For complete graphsK2p , any equicut is also a p-regular subgraph ofK2p [8], i.e.
each node has degree jı.v/j D p. Therefore, Q.K2p/ is contained in PF .K2p/,
which is the convex hull of all p-regular subgraphs ofK2p . Edmonds et al. [16] give
the following complete description of PF .K2p/:

X

e2ı.v/
xe D p (8)

X

e2W�W
xe C

X

e2T
xe � pjW j C jT j � 1

2
; (9)

where v 2 V ,W � V , T � ı.W / and pjW jCjT j is odd. Inequalities (9) are called
blossom inequalities.

We will work with complete graphs K2p in the following as the inequalities (8)
may be invalid for non-complete graphs.
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2.2 Inequalities Outside the Template Paradigm

The classes of inequalities introduced earlier follow the template paradigm, i.e.
inequalities within a class share a similar structure. A general procedure to generate
valid inequalities for some polytope is given by separation of local cuts [1] or their
variant called target cuts [9]. For the separation, the polytope in question and the
point to be separated are projected into a low-dimensional space. A cutting plane
separating the projected point from the projected polytope is generated by solving a
small linear program. The size of the linear program is basically determined by
the number of vertices of the projected polytope. Inequalities are then lifted to
inequalities valid for the original problem.

2.3 Non-polyhedral Model

Given a weight matrix C D fcij g for the edges e D ij of a complete graph Kn

the following SDP relaxation for the equicut problem was introduced by Frieze and
Jerrum [19]:

min

�
1

4
trace.C.Jn �X// j diag.X/ D e;Xe D 0;X 	 0

�
: (10)

The notation trace.A/ refers to the sum of all elements of the main diagonal
of a matrix A and the matrix Jn is the n 
 n matrix of all ones. In the positive
semidefinite relaxation of the cut polytope [15], we restrict ourselves to positive-
semidefinite matrices X (X 	 0) where all elements of the main diagonal are equal
to one (diag.X/ D e). This SDP relaxation is also referred to as the elliptope En.
A relaxation of the equicut problem is obtained by adding the constraint Xe D 0 as
in [19] or in the form eT Xe D 0 as in [25].

The variables xlpij 2 f0; 1g from the LP formulation are in one-to-one correspon-

dence with the elements xsdpij 2 X of the positive-semidefinite matrix X via the

transformation xsdpij D 1 � 2xlpij .
Our basic LP relaxation includes degree and triangle inequalities:

min

(
X

e

cexe j 8i; j; k 2 V W .4/ � .5/;8v 2 V W .8/
)
: (11)

As we will see, the relaxation obtained by separating (switched) clique (3), cycle
(6) and blossom (9) inequalities is already very good in practice. In fact we can solve
most instances of the benchmark from Brunetta et al. [8] at the root node without
branching. In some cases a better performance of our method can be obtained by
forcing the algorithm to branch when there is too little improvement in the objective
value (cf. tailing-off, Sect. 3.1). Target cut separation may improve the performance
when applied before branching.



22 M.F. Anjos et al.

Table 1 LP and SDP bounds of root relaxations

Triangles All but cliques

Instance jV j Opt All LP SDP LP SDP

reti/2� 11 22 11 11 10:24 10:34 10:24 10:34

tori/15� 2 30 11 11 9:42 9:46 9:42 9:46

reti/16� 2 32 10 9:44 6:27 6:27 6:27 6:27

tori/16� 2 32 11 11 9:31 9:31 9:31 9:31

tori/18� 2 36 13 13 9:58 9:58 9:58 9:58

misti/2� 19m 38 388 386:61 383:88 383:88 383:88 383:88

reti/19� 2 38 10 8:94 6:77 6:78 6:77 6:78

reti/2� 19 38 6 4:83 2:89 2:9 2:89 2:9

rand/q0.20 40 1,238 1,238 1,152 1,237.73 1,152 1,237.73
rand/q0.60 40 530 530 489:55 528:32 489:55 528:32

reti/20� 2 40 10 9:78 5:87 5:87 5:87 5:87

In order to evaluate the respective bounds based on SDP and LP relaxations we
first applied our branch-and-cut algorithm to the benchmark from Brunetta et al. [8].
For each instance we studied the relaxation that was obtained in the root, i.e. without
branching.

In order to get reasonable computation times and memory usage we chose
all instances with less than 105 inequalities in the final LP. There were 11 such
instances. Since they were already solved at the root node, the respective SDP
bounds are not significantly better than the LP bounds. In order to evaluate their
strengths in practice nevertheless, we compare the LP bounds with those of the SDP
when adding only a fraction of the inequalities separated by branch-and-cut. All
SDP relaxations were computed using CSDP 6.1.1. [7]. The LPs were solved using
version 12.1 of the CPLEX callable library [12]. We show in Table 1 the bounds
that are obtained by solving the LP as well as the SDP when adding all separated
inequalities (All), when adding only all triangle inequalities (Triangles) and when
adding all inequalities but leaving out the (switched) clique inequalities (All but
cliques). The generated inequalities are very strong in practice. It turns out that the
triangle inequalities are important in practice as the corresponding bound is quite
close to that given by all inequalities. This is known to hold for maximum cut as
well, see e.g. [31].

Furthermore, the switched clique inequalities are most significant for improving
the relaxation over the triangle bound as the remaining inequalities do not improve
the bound any further. Similar results are obtained for most instances. Hence we
conclude that using SDP relaxations does not significantly improve the root bounds
compared to those obtained from the LP approach. Furthermore, the LP relaxations
were obtained within minutes whereas some of the SDP relaxations needed several
days of CPU time. We also tried to use a general maximum cut solver (BiqMac [31])
by dualizing the equicut constraint in the form eT Xe D 0. Therefore we introduced
sufficiently large penalties for solutions that would use less than n2

4
cut edges. More

precisely we added the sum of the absolute values of edge weights to each edge
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in the maximization problem. Hence optimal maximum cuts had to be equicuts
and its values could be obtained by substracting a large constant. The solver
sometimes was about two orders of magnitudes faster than our implementation.
Unfortunately we observed that the precision of the solution values was limited
to three digits. While this did not adversely affect the results for instances from [8],
the solutions obtained by this approach for instances with fractional edge weights
may be incorrect. Specifically for instances coming from the physics application,
we could not obtain useful solutions even for the smallest instances. We thus chose
to use the LP relaxation for our purposes.

Armbruster et al. [3] present relaxations using LP and SDP methods to solve a
generalization of the equicut problem, i.e. the minimum bisection problem, where
the number of nodes in each shore has to be larger than some parameter F � b n

2
c.

Their computational results on sparse instances suggest that SDP relaxations are
superior to the corresponding LP relaxations. As equicut is a special case of the
minimum bisection problem this appears to contradict the above observations.
However, in contrast to the relaxations used in [3], our model is defined on complete
graphs and includes constraints that are not valid for the minimum bisection
polytope in general. Hence it is likely that our LP relaxation for the equicut problem
is stronger than more general relaxations for the minimum bisection problem, and
that it is especially well suited for dense instances such as those coming from the
physics application.

3 Enhanced Branch-and-Cut Algorithm

Branch-and-cut is a framework often used for solving NP-hard combinatorial
optimization problems exactly. Upper and lower bounds on the objective value are
iteratively improved until optimality of a known solution can be proven. The size
of the branching tree is kept small by using strong relaxations for the lower bounds
and primal heuristics for the upper bounds. In this section, we describe cutting-plane
separation and primal heuristics for our proposed branch-and-cut algorithm.

3.1 Cutting-Plane Separation

Given a (possibly fractional) vector x� 2 R
m; 0 � x� � 1, the separation problem

asks for either an inequality violated by x� or a proof that all inequalities valid
for the polytope in question are satisfied. An algorithm that solves the separation
problem for any fractional solution is called exact. In contrast heuristic separation
algorithms find violated inequalities but if none is found, they cannot prove that
there are no violated inequalities for the polytope. Separation algorithms are often
defined for classes of inequalities such as those introduced in Sect. 2.
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In general some classes of inequalities are more important than others or may
become more important after several iterations. Brunetta et al. [8] use the relative
change in the objective value from the previous iteration to decide which class
of inequalities should be separated. Therefore they introduce certain threshold
values for each class of inequalities. Hence they separate triangle inequalities if
the relative change is above a certain value, then clique separation is applied if the
relative change is above another value and then blossom inequalities and .p C 1/-
cycle inequalities are separated if the relative change is above their respective
thresholds. If the relative change is below any thresholds branching is applied.
Because the thresholds are very sensitive to small changes in the separation routines,
we decided to use just a single threshold to decide whether any separation is applied
or we branch. We found that a factor ˛ D 10�4 for the relative change of the
objective value was a reasonable choice. Further in each iteration we stop separation
whenever we found a certain number of violated inequalities. We found that 500
violated inequalities are a reasonable choice for most instances.

The degree inequalities (8) are all added from the beginning. In contrast to the
heuristics for separating blossom inequalities in [8], we separate them exactly by
the efficient algorithm [28].

Finally, target cut separation is applied whenever the other routines do not find
any violated inequality. Target cuts were introduced in [9]. The key observation for
target cuts is the following. For k � m, let � be some projection R

m ! R
k . Then

the projection P D �.P / � R
k of some polytope P in R

m is the convex hull of
all points in R

k that can be extended to a point in P . Thus, P is the convex hull
of all points �.x1/; : : : ; �.xr/ 2 R

k such that x1; : : : ; xr are the vertices of P . For
k � m, many of the �.xi / are equal so that for small k, P can be dealt with
efficiently. For details, we refer the reader to [9].

For the equicut polytope, we use orthogonal projections to (node-induced) sub-
graphs. More specifically, edges incident on nodes which are not in the considered
subgraph are neglected. The projected polytope is then again a cut polytope. Given
an inequality valid for P , the corresponding inequality with coefficients set to zero
for the neglected edges is then valid for P (‘zero-lifting’).

For the maximum cut problem, another projection is given through shrinking
nodes to supernodes as introduced by Jünger et al. [23]. This projection is especially
tailored for sparse graphs. For an edge .s; t/ 2 E nodes s; t are replaced by a
supernode v. Loops and multiple edges are deleted. Given a valid inequality ax � b
for P with complete graphs the corresponding lifted inequality a0x � b0 w.l.o.g. is
defined as a0st D 0, a0sn D avn and a0tn D 0 for all nodes that are neighbours of s, t
and v.

It is easy to see that for complete graphs the shrinking procedure is equivalent to
the orthogonal projection that we use. Indeed, in the notation introduced above, a
supernode v may be replaced by either s or t . Thus, when lifting an inequality the
coefficients of variables xst and xtn are zero-lifted.

For the equicut problem, we can solve the target cut linear programs for
subgraphs with up to 20 nodes within reasonable time. Therefore if we solve graphs
with more than n D 40 nodes the subgraph induced by our projection always has
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less than d n
2
e nodes. Thus, for instances of interesting sizes the projection of the

equicut polytope is again a cut polytope without any restrictions on the size of the
shores.

Next, we describe how we choose the nodes of the subgraphs used for projection.
In order to separate a valid inequality the projected fractional solution needs to be
infeasible. It is well known, that the cut polytope is a very symmetric object, i.e.
the structure of inequalities valid with equality is the same at each vertex of the
polytope. Furthermore the barycenter of the (equi)cut polytope is the vector m D
.0:5; 0:5; : : : ; 0:5/ and the closer a fractional solution Qx is to m, the less likely it
is to be violated. Therefore given the fractional value Qxe of an edge e we assume
that the value be D j0:5 � Qxej correlates to the probability that the variable xe
contributes to a violated inequality, and we assume that these probabilities can be
cumulated as bu D P

e2ı.u/ be at node u. Unfortunately choosing the first k nodes
with the largest values of bu may as well result in a subgraph where the fractional
solution Qx is integral, hence given an integer feasible solution there is no violated
inequality. Consequently the more fractional the solution Qx is, the more likely it will
yield a violated inequality. Further results on the projection we used as well as on
the performance of target cut separation are described in Sect. 4.

3.2 Primal Heuristic

Given a fractional optimum solution x� 2 R
m of the current LP-relaxation, primal

heuristics round x� to a feasible solution that is hopefully better than the best
one known to date. For the maximum cut problem, a primal heuristic works as
follows [5]. A cut is given by a spanning tree where each edge is either a cut or
a non-cut edge according to the corresponding value of the solution. The ‘most
decided’ edges are used if the spanning tree in G is minimum with respect to the
weights we D min.x�e ; 1 � x�e / on the edges e 2 E. The LP-values on the tree
are then rounded appropriately, and the corresponding cut is returned. A minimum
spanning tree may be computed by Prim’s algorithm in O.jEj C jV j log jV j/ [30].

For the equicut problem, a cut has to additionally satisfy the cardinality constraint
on the shore size. We thus adapt the above greedy approach using Prim’s algorithm.
In each step, several trees are combined to larger trees until a spanning tree arises.
Each of these trees induces a cut in the subgraph induced by its nodes, which we
will call partial cuts.

Furthermore we have to make sure that in each iteration it is possible to combine
these partial cuts to an equicut. We will call such a set of partial cuts compatible,
and incompatible otherwise. Let ai and bi denote the size of the shores induced
by the partial cut ıi .S/ and di D jai � bi j the absolute difference of the shore
sizes. The subset-sum problem asks whether a subset D0 � fdig exists such
that

P
di2D0 di D k. Choosing k D

P
di
2

, the partial cuts are compatible if the
answer to the subset-sum problem is positive, and incompatible otherwise. In



26 M.F. Anjos et al.

general the subset-sum problem is NP -complete. Nevertheless, we use the well-
known pseudo-polynomial algorithm due to Ibarra and Kim [21] for the knapsack
problem which can be used to solve the subset-sum problem as well. As in our
case the number of items and their weights are bounded above by jV j, the pseudo-
polynomial algorithm yields an O.jV j2/ algorithm.

Within Prim’s algorithm, we make sure that whenever an edge is added to the
spanning tree the partial cuts are compatible. This can be achieved by either skipping
critical edges which lead to incompatible partial cuts or by repairing the partial cuts
in such a way that the partial cuts become compatible. In either case we must never
add edges that lead to a cycle. We also avoid using edges with weights we larger
than a certain value r by temporarily removing them fromG. From our experiments,
r D 0:25 is a good choice.

Then according to Prim’s algorithm all edges are iterated in order of increasing
values we and edges which lead to cycles are skipped. Our method then uses three
phases where edges are added and components of the graph are joined until a
spanning tree is found. In the first phase we avoid repairing the partial cuts by
skipping critical edges. In the second phase edges which lead to incompatible partial
cuts are added. After adding an edge the partial cuts are then repaired greedily with
respect to a minimum increase of the total edge weights we of the tree and such that
no partial cut induces a shore of size greater than jV j

2
. In the third phase we iteratively

join the two largest components, which may occur from removing all edges with
weights we > r . Again if a shore size exceeds jV j

2
nodes we have to repair that shore

as in the second phase. Finally, we apply the Kernighan-Lin heuristic [26] to the
solution to further improve the objective value.

We applied the above heuristic in our branch-and-cut algorithm. For all instances
that were computed, whenever the root relaxation was strong enough to avoid
branching, the optimal solution had been found by our primal heuristic.

4 Computational Results

In this section we evaluate our proposed branch-and-cut algorithm which is based
upon a reimplementation of the algorithm presented in [8] using state-of-the-art
tools. We used C++ and version 12.1 of CPLEX callable library as the branch-and-
cut framework. For our experiments we used machines with Intel Xeon CPUs E5410
at 2.33 GHz. We use instances from [8] and instances from the physics application
to evaluate the performance of our algorithm. The data for the instances we used
and complete tables of computational results are available at [20].

In the determination of ground states in Coulomb glasses, we need to compute
the minimum of the energy function:

H.q/ D
X

i<j

pij qiqj C
X

i

ci qi : (12)
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The values qi 2 f�1; 1g represent the positive or negative charges of sites i and
are to be optimized. We are interested in charge-neutral systems, i.e.

P
i qi D 0.

Those sites are located on a lattice and the values pij represent the pairwise inter-
action of sites i and j . We can use the same variable transformation as in Sect. 2.3
to obtain a quadratic unconstrained binary optimization (QUBO) problem. It was
proved by de Simone [13] that QUBO is equivalent to the maximum cut problem.
For this transformation the quadratic terms in the objective function are represented
by edges in a graph. The linear terms are represented by edges connected to
an artificial node s that is added to the graph. The Coulomb glass instances are
generally defined on an even number of sites, hence the above transformation
would yield a graph with an odd number of nodes. A complete graph K2n is
then obtained by adding another artificial node t . Further the constant term from
the transformation to QUBO is represented by the weight of the edge st . Since
we restrict to charge-neutral systems we have to find a minimum s-t equicut
(cf. Sect. 2.1).

In order to improve the quality of the LP relaxation we used target cut separation.
We found that a significant number of violated inequalities found by target cut
separation were switched clique inequalities (3).

We use a greedy heuristic to separate switched clique inequalities that extends the
algorithm described in [8] in a straight forward way. We start with the most violated
triangle inequality which is also a switched clique inequality. Given a switched
clique inequality for a clique Kp D .V 0; E 0/ and a cut ı.S/ with jS j � j NS j, we
iteratively compute switched clique inequalities for a clique KpC1 unless p C 1

exceeds a certain node limit k. Considering the switching operation we further
improve the violation of the inequality in each iteration by iteratively switching
pairs of nodes i and j if the violation of the switched clique inequality is increased.

In Table 2 we give the results for instances reported in [8] with our branch-
and-cut algorithm including switched clique and target cut separation with different
projections to subgraphs with 15 nodes. Further we give the number of subproblems
reported in [8] as a reference.

The results suggest that target cut separation improves the LP relaxation for all
projections and no choice of projection dominates the others in terms of the number
of subproblems. Considering CPU times for most instances the overhead of target
cut separation is moderate for the given size of projections but helps to reduce the
number of subproblems. Comparing our results with those reported in [8] is very
difficult since their reported computation times are for experiments carried out in the
mid-1990s. Nevertheless we point out that our computation times are two orders of
magnitude smaller on average, and more importantly, we need fewer subproblems.
We conclude that our computation times outperform previous approaches based on
LP relaxations. With respect to using SDP, the computation times reported in [25]
for the branch-and-bound algorithm based on SDP relaxations seem to be better
while our method needs fewer subproblems. In general LP relaxations can be solved
much faster than SDP relaxations. Consequently the method described in [25] needs
to solve fewer relaxations. Using equivalent SDP and LP relaxations we further
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Table 2 Root bounds, number of subproblems and CPU time to solve instances reported in [8]
without target cut separation (N), with random (R) and with greedy (G) projections. Number of
branching nodes reported in [8] are given in columns (B). Results for instances with less than 40
nodes and instances that are not reported in [8] are omitted. Bounds are given as “*” if optimum
was found in the root node

Root bound No. of subs Time (s)

Instance jV j Opt N R G N R G B N R G

rand/q0.90 40 63 * * * 1 1 1 1 4 5 5
rand/q0.80 40 199 * * * 1 1 1 1 73 86 93
rand/q0.30 40 1,056 1,052.01 * * 9 1 1 5 161 226 256
rand/q0.20 40 1,238 1,235.16 * * 7 1 1 3 131 174 205
rand/q0.20 40 1,238 1,235.16 * * 7 1 1 3 131 174 205
rand/q0.10 40 1,425 1,420.38 * * 9 1 1 7 99 173 169
rand/q0.00 40 1,606 * * * 1 1 1 1 44 48 54
rand/c0.90 50 122 * * * 1 1 1 7 6 7 7
rand/c0.80 50 368 359.71 * * 5 1 1 11 478 1,150 1,212
rand/c0.70 50 603 585.54 * * 3 1 1 1 1,203 2,864 3,159
rand/c0.30 50 1,658 1,510.82 * * 3 1 1 9 815 1,611 1,554
rand/c0.10 50 2,226 2,090.9 * * 3 1 1 7 674 986 870
rand/c0.00 50 2,520 2,510.78 * * 7 1 1 5 420 552 549
rand/c2.90 52 123 * * * 1 1 1 7 8 10 10
rand/c4.90 54 160 * * * 1 1 1 17 32 36 40
rand/c6.90 56 177 * * * 1 1 1 17 35 38 45
rand/c8.90 58 226 216.04 216.55 216.54 3 2 2 n.a. 6,698 12,446 8,956
rand/s0.90 60 238 235.97 * * 3 1 1 7 240 341 451
reti/5� 8 40 18 * * * 1 1 1 7 2 2 3
reti/3� 14 42 10 * * * 1 1 1 5 12 23 30
reti/5� 10 50 22 * * * 1 1 1 3 10 23 34
reti/6� 10 60 28 * * * 1 1 1 31 101 142 151
reti/7� 10 70 23 * * * 1 1 1 n.a. 140 145 171
tori/21� 2 42 9 * * * 1 1 1 3 3 18 24
tori/23� 2 46 9 * * * 1 1 1 3 60 63 69
tori/4� 12 48 24 * * * 1 1 1 5 4 18 24
tori/5� 10 50 33 * * * 1 1 1 13 12 28 37
tori/10� 6 60 42 41.81 * * 3 1 1 3 97 123 100
tori/7� 10 70 45 * * * 1 1 1 33 17 19 23
misti/10� 4m 40 436 * * * 1 1 1 1 3 13 28
misti/5� 10m 50 670 * * * 1 1 1 5 6 8 7
misti/13� 4m 52 721 * * * 1 1 1 5 21 25 26
misti/4� 13m 52 721 * * * 1 1 1 7 27 28 35
misti/9� 6m 54 792 * * * 1 1 1 n.a. 16 18 22
misti/10� 6m 60 954 * * * 1 1 1 9 22 38 46
misti/10� 7m 70 1,288 * * * 1 1 1 13 60 84 110
negative/q0.n.70 40 �298 * * * 1 1 1 1 29 29 35
negative/q0.n.50 40 �389 * * * 1 1 1 1 59 64 77
negative/q0.n.40 40 �450 * * * 1 1 1 1 9 10 11
negative/q0.n.00 40 �471 �474.02 * * 3 1 1 1 192 254 298

(continued)
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Table 2 (continued)

negative/c0.n.00 50 �829 �1,069.94 �954.81 * 3 2 1 5 2,591 4,717 4,027
negative/s0.n.80 60 �465 * * * 1 1 1 1 45 52 53
negative/o0.n.80 80 �690 �725.88 * * n.a. 1 1 n.a. n.a. 40,287 37,562
real/ma.i 54 2 * * * 1 1 1 29 6 7 8
real/me.i 60 3 * * * 1 1 1 37 7 7 9
real/m6.i 70 7 * * * 1 1 1 55 215 251 242
real/mb.i 74 4 * * * 1 1 1 33 889 1,119 1,153
real/mc.i 74 6 * * * 1 1 1 53 92 129 149
real/md.i 80 4 * * * 1 1 1 57 762 781 884
real/mf.i 90 4 3.58 * 3.58 2 1 4 47 470 803 687
real/m1.i 100 4 * * * 1 1 1 101 153 171 196
real/m8.i 148 7 * * * 1 1 1 n.a. 543 632 713

observed that the bounds are very similar (cf. Sect. 2.3). Therefore we suspect
that better computation times can be explained by stronger inequalities that were
separated due to the different fractional points given by the interior-point method.

In Table 3 we give the bounds at the root node, the number of subproblems and
the CPU time needed by our branch-and-cut algorithm with and without switched
clique separation for instances from [8], including some instances that were not
reported in [8]. Further we did not apply target cut separation. The results suggest
that switched clique separation improves the bounds significantly.

Furthermore, as switched clique inequalities and target cut separation signifi-
cantly improve the LP relaxations, we were able to solve larger instances than
those reported in [8]. We illustrate this by presenting our results on Coulomb glass
instances with up to 258 nodes. Table 4 gives the number of subproblems and CPU
time required. For some instances that could not be solved, we report the gaps after
3 days of computation.

5 Conclusions

Our experimental results support the conclusion that the proposed branch-and-cut
algorithm based on a linear relaxation with additional switched clique inequalities
and target cut separation is able to efficiently solve medium-sized instances of equi-
cut and larger instances of Coulomb glasses. This new algorithm thus contributes to
the practical solution of equicut problems.

Most inequalities separated by target cut separation are hypermetric inequalities
which is a very general class of inequalities [15]. It would be interesting to find
heuristics to separate more specific hypermetric inequalities. Therefore target cut
separation could be used to classify important inequalities. Further improving the
performance of target cut separation would allow the use of larger subgraphs for the
projection. It would also be interesting to improve the projections to find violated
inequalities more efficiently.
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Table 3 Root bounds, number of subproblems and CPU time to solve instances from [8] with and
without switched clique (SC) separation. Results for instances with less than 52 nodes are omitted.
Bounds are given as “*” if optimum was found in the root node. No target cut separation was
applied

Root bound No. of subs Time (s)

Instance jV j Opt No SC SC No SC SC No SC SC

rand/c2.90 52 123 * * 1 1 9 8

rand/c4.90 54 160 156.68 * 3 1 30 33

rand/c6.90 56 177 176.33 * 2 1 28 30

rand/c8.90 58 226 205.1 215.05 108 3 234 3; 200

rand/s0.90 60 238 229.45 * 8 1 72 276

reti/13� 4 52 20 15.7 * 7 1 29 45

reti/6� 10 60 28 26.43 * 6 1 80 101

reti/10� 6 60 19 * * 1 1 20 19

reti/7� 10 70 23 21.58 * 15 1 252 198

tori/13� 4 52 20 15.7 * 7 1 32 45

tori/6� 10 60 35 * * 1 1 7 7

tori/10� 6 60 42 41.81 41.81 3 3 107 97

tori/7� 10 70 45 * * 1 1 18 17

tori/10� 8t 80 43 42.99 42.99 2 2 450 429

misti/4� 13m 52 721 * * 1 1 28 26

misti/13� 4m 52 721 * * 1 1 25 21

misti/9� 6m 54 792 * * 1 1 17 16

misti/10� 6m 60 954 * * 1 1 22 23

misti/10� 7m 70 1; 288 * * 1 1 63 58

negative/s0.n.80 60 -465 * * 1 1 53 45

negative/tt0.n.80 70 -550 �579.08 �579.08 56 3 1; 534 22; 170

negative/o0.n.80 80 -690 �725.88 �725.88 86 3 5; 232 31; 124

real/ma.i 54 2 * * 1 1 6 6

real/me.i 60 3 * * 1 1 8 7

real/m6.i 70 7 * * 1 1 216 198

real/mc.i 74 6 5.87 * 3 1 116 89

real/mb.i 74 4 3.26 * 6 1 243 752

real/md.i 80 4 3.46 3.71 3 2 347 508

real/mf.i 90 4 3.58 3.58 4 2 470 423

real/m1.i 100 4 * * 1 1 163 140

real/m8.i 148 7 * * 1 1 551 604
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Table 4 Mean values for the relative gap at the root node, number
of subproblems and computation times for large instances from the
Coulomb glass model with two- and three-dimensional grid graphs.
Each class of instances is characterized by the length of the grids L
and its dimension. For each class of instances we present results
averaged over five randomly generated instances with different
random seeds to compute the values ci of the local field. Due to
our transformation the number of nodes is given as jV j D SizeC 2
jV j Size Root gap (%) No. of subs Time (h)

66 82 0 1 0.01
66 43 0.02 1.4 0.01
102 102 0 1 0.12
146 122 0.14 1 1.7
198 142 0.01 1 24.81
218 63 0.9 14.6 58.86
258 162 4.06 n.a. >72
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An Approach to the Dodecahedral Conjecture
Based on Bounds for Spherical Codes

Kurt M. Anstreicher

Abstract The dodecahedral conjecture states that in a packing of unit spheres
in <3, the Voronoi cell of minimum possible volume is a regular dodecahedron
with inradius one. The conjecture was first stated by L. Fejes Tóth in 1943, and
was finally proved by Hales and McLaughlin over 50 years later using techniques
developed by Hales for his proof of the Kepler conjecture. In 1964, Fejes Tóth
described an approach that would lead to a complete proof of the dodecahedral
conjecture if a key inequality were established. We describe a connection between
the key inequality required to complete Fejes Tóth’s proof and bounds for spherical
codes and show how recently developed strengthened bounds for spherical codes
may make it possible to complete Fejes Tóth’s proof.

Key words Dodecahedral conjecture • Kepler conjecture • Spherical codes
• Delsarte bound • Semidefinite programming

Subject Classifications: 52C17, 90C22, 90C26

1 Introduction

The dodecahedral conjecture states that in a packing of unit spheres in < 3, the
Voronoi (or Dirichlet) cell of minimum possible volume is a regular dodecahedron
with inradius one. More precisely, let Nxi , i D 1; : : : ; m be points in <3 with k Nxik �
1 for each i , and k Nxi � Nxj k � 1 for all i ¤ j . Then the points 2 Nxi can be taken to be
the centers of m non-overlapping spheres of radius one which also do not overlap a
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sphere of radius one centered at x0 D 0. The Voronoi cell associated with x0 is then

V. Nx1; : : : ; Nxm/ D fx W NxTi x � k Nxik2; i D 1; : : : ; mg:
Let D � <3 denote a regular dodecahedron of inradius one, and Vol.�/ denote
volume in <3.
The Dodecahedral Conjecture [5, 6] Let Nxi 2 <3, i D 1; : : : ; m with k Nxik � 1
for each i , and k Nxi � Nxj k � 1 for all i ¤ j . Then Vol.V . Nx1; : : : ; Nxm// � Vol.D/.

The dodecahedral conjecture was stated by L. Fejes Tóth in 1943 [5]. Fejes
Tóth’s interest in the conjecture was to obtain a good upper bound on the maximal
density of a sphere packing in<3. In particular, the dodecahedral conjecture implies
an upper bound of approximately 0.7545, compared to the maximal density of
approximately 0.7405 asserted by the Kepler conjecture. Hales and McLaughlin [9]
describe a complete proof of the dodecahedral conjecture based on techniques
developed by Hales for his proof of the Kepler conjecture. The proof of [9] is
believed to be correct, but is difficult to verify due to the many cases and extensive
computations required.

Let RD D
p
3 tan 36ı � 1:2584 be the radius of a sphere that circumscribes

D, and let SD D fx 2 <3 W kxk � RDg. Fejes Tóth’s 1943 paper contains a
proof of the dodecahedral conjecture under the assumption that there are at most
12 i such that Nxi 2 SD . In [6, pp. 296–298] Fejes Tóth restates the dodecahedral
conjecture and describes an approach that would lead to a complete proof if a key
inequality were established. The details of this approach are described in the next
section. In Sect. 3 we describe a connection between the key inequality required
to complete Fejes Tóth’s proof and bounds for spherical codes. Using constraints
from the well-known Delsarte bound for spherical codes, we are able to prove the
key inequality for some but not all of the required possible cases. We then consider
applying additional constraints from recently described semidefinite programming
(SDP) bounds for spherical codes [2]. The use of the SDP constraints improves our
bounds, but is not sufficient to eliminate more cases than were already eliminated
using the linear programming constraints associated with the Delsarte bound.

In recent work, Hales [7] announced a proof of the “strong” dodecahedral con-
jecture, which is the original dodecahedral conjecture with surface area replacing
volume throughout. The proof methodology of [7] also utilizes Fejes Tóth’s key
inequality, which is apparently the basis for a new computational proof of the
Kepler conjecture in [8]. These recent developments suggest that continued efforts
to provide a direct proof of the key inequality remain a very interesting topic for
further research.

2 Fejes Tóth’s Proof

In this section we describe the proof of the dodecahedral conjecture suggested in
[6]. The first ingredient is a strengthened version of the result proved in [5].
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Theorem 1 ([6, p. 265]). Let Oxi , i D 1; : : : ; m be points in <3 with k Oxik � 1 for
each i . If m � 12, then Vol.V . Ox1; : : : ; Oxm/ \SD/ � Vol.D/.

Note that in Theorem 1 it is not assumed that the points satisfy k Oxi � Oxj k � 1,
i ¤ j . Also, the assumption that k Oxik < RD for each i could be added, since if
k Oxik � RD the constraint OxTi x � k Oxik2 in the definition of V. Ox1; : : : ; Oxm/ does not
eliminate any points in SD .

The second important component of the argument suggested in [6] is a
“point adjustment procedure” that facilitates the use of Theorem 1 when
m > 12. For the Voronoi cell V. Ox1; : : : ; Oxm/, let Fi. Ox1; : : : ; Oxm/ be the face of
V. Ox1; : : : ; Oxm/ \SD corresponding to the points with OxTi x D k Oxik2 (it is possible
that Fi. Ox1; : : : ; Oxm/ D ;).

Point Adjustment Procedure

Step 0. Input Nxi , 1 � k Nxik � RD , i D 1; : : : ; m with m > 12 and k Nxi � Nxj k � 1,
i ¤ j . Let Oxi D Nxi , i D 1; : : : ; m.

Step 1. If jfi W 1 < k Oxik < RDgj < 2 then go to Step 3. Otherwise choose j ¤ k
such that 1 < k Oxj k < RD , 1 < k Oxkk < RD , and the surface area of
Fj . Ox1; : : : ; Oxm/ is less than or equal to that of Fk. Ox1; : : : ; Oxm/.

Step 2. Let ı D minfRD � k Oxj k; k Oxkk � 1g, and

Oxj  .k Oxj k C ı/ Oxjk Oxj k ; Oxk  .k Oxkk � ı/ Oxkk Oxkk :

Go to Step 1.
Step 3. Output Oxi , i D 1; : : : ; m.

As pointed out in [6], RD <
p
2 implies that the area of Fi.�1x1; : : : ; �mxm/

is monotone decreasing in �i . It follows that the adjustment in Step 2 leavesPm
iD1 k Oxik unchanged, while Vol.V . Ox1; : : : ; Oxm/ \ SD/ is nonincreasing.1 Note

that the adjustment in Step 2 is executed at mostm� 1 times, since each adjustment
decreases j fi W 1 < k Oxik < RDgj by at least 1. Then Theorem 1 can be applied if the
Oxi output by the procedure have at most 12 i with k Oxik < RD . (Note that the output
points Oxi will generally not satisfy k Oxi � Oxj k � 1, i ¤ j , but this assumption is not
required in Theorem 1.) This will be the case if the input points Nxi satisfy

mX

iD1
k Nxik � 12C .m � 12/RD: (1)

To see this, note that there is at most one Oxj with 1 < k Oxj k < RD , so if
ji W k Oxik D 1j � 11 there is nothing to show. Assume on the other hand that
k Oxik D 1, i D 1; : : : ; 12. Then (1) and the fact that k Oxik � RD for each i together
imply

1Fejes Tóth does not explicitly consider the possibility that the two faces Fj . Ox1; : : : ; Oxm/ and
Fk. Ox1; : : : ; Oxm/ intersect. However in this case it is easy to see that the increase in volume that
results from increasing Oxj is even less than if the faces do not intersect.
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mX

iD1
k Oxik D

mX

iD1
k Nxik � 12C .m � 12/RD

12C
mX

iD13
k Oxik � 12C .m � 12/RD

.m � 12/RD �
mX

iD13
k Oxik � .m � 12/RD;

implying that k Oxik D RD for i D 13; : : : ; m.
A complete proof of the dodecahedral conjecture thus requires only a proof that

(1) holds for any Nxi , i D 1; : : : ; m with 1 � k Nxik � RD for each i , and kxi �xj k �
1 for all i ¤ j . Unfortunately Fejes Tóth was unable to prove (1), even though all
evidence suggests that (1) actually holds with RD replaced by the larger constant
7=
p
27 � 1:347 [6].2 Remarkably, the key inequality also appears in Hales’ [7]

recent paper that describes a proof of the strong dodecahedral conjecture. In [7]
the key inequality is labeled as the inequality L12, and is written with the value of
RD � 1:2584 rounded up to h0 WD 1:26. (It is also assumed that the initial points
satisfy 1 � k Nxik � h0.) A computational proof of the inequality L12 is apparently
the basis for a new proof of the Kepler conjecture in [8].

3 Applying Bounds for Spherical Codes

We now describe an approach to proving the key inequality (1) based on bounds for
spherical codes. A set C D fxigmiD1 � <3 is called a spherical z-code if kxik D 1

for each i , and xTi xj � z for all i ¤ j . For example, a packing of unit spheres
that all touch (or “kiss”) a unit sphere centered at the origin generates a spherical
1=2-code.

To begin we establish that if R is sufficiently small and f NxigmiD1 are points with
1 � k Nxik � R for each i and k Nxi � Nxj k � 1 for all i ¤ j , then the normalized
points xi D Nx=k Nxik form a z-code for a suitable value of z.

Lemma 1. Suppose that 1 � k Nxik � R, i D 1; : : : ; m, where 1 � R � 1Cp5
2

and
k Nxi � Nxj k � 1 for all i ¤ j . Let xi D Nxi=k Nxik, i D 1; : : : ; m. Then xTi xj � 1� 1

2R2

for all i ¤ j .

Proof. The case R D 1 is trivial. For R > 1 and i ¤ j , consider the problem

2 Note that (1) implies that for m D 13, if k Nxik D 1 for i D 1; : : : ; 12, then k Nx13k � RD . It has
been incorrectly stated that the latter implication is the “missing ingredient” in Fejes Tóth’s proof.
In fact the stronger statement (1) is exactly what is required.
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max k�ixi � �j xj k2
s:t: 1 � �i � R; 1 � �j � R: (2)

The objective in (2) is convex, so the solution lies at an extreme point of the
feasible region. Letting s WD xTi xj , the value of the objective at the extreme points
is:

�2i C �2j � 2s�i�j D

8
ˆ̂<

ˆ̂:

2.1 � s/ if �i D �j D 1;
1CR2 � 2Rs if �i D 1; �j D R or �i D R; �j D 1;
2R2.1 � s/ if �i D �j D R:

Obviously the maximum cannot occur at �i D �j D 1. Note that the solution
value in (2) is at least one, from the assumption that k Nxi � Nxj k � 1. It follows that
if the max occurs at �i D 1; �j D R (or equivalently �i D R; �j D 1) then
1 C R2 � 2Rs � 1, which is equivalent to s � R

2
. Similarly, if the max occurs at

�i D �j D R, then 2R2.1 � s/ � 1, which is equivalent to s � 1 � 1
2R2

. Finally it

is easy to verify that R
2
� 1 � 1

2R2
for 1 � R � 1Cp5

2
. �

Next, for xi ¤ xj with kxik D kxj k D 1, consider the problem

min �i C �j
s:t: k�ixi � �j xj k � 1 (3)

1 � �i � R; 1 � �j � R:

Note that by Lemma 1 and its proof, if R � 1Cp5
2

then (3) is feasible if and only
if xTi xj � 1� 1

2R2
. The next result gives a complete characterization of the solution

value in (3).

Theorem 2. Let 1 � R � 1Cp5
2

, kxik D kxj k D 1 and s D xTi xj � 1 � 1
2R2

.
Then the solution value in problem (3) is ��i C ��j D f .s; R/, where

f .s; R/ D

8
ˆ̂<

ˆ̂:

2 if s � 1
2
;

1C 2s if 1
2
� s � R

2
;

R.1C s/Cp1 �R2.1 � s2/ if R
2
� s � 1 � 1

2R2
:

Proof. The case of s � 0:5 is trivial, so assume that s > 0:5 and the objective
in (3) attains a value �i C �j D c, where 2 < c � 2R. Since the constraint
k�ixi � �j xj k � 1 is equivalent to .�i C �j /2 � 1C 2�i�j .1C s/, this implies
that we must have

c2 � 1C 2.1C s/�i�j :
To find the minimum possible value of c we are thus led to consider the problem
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min �i�j

s:t: �i C �j D c; (4)

1 � �i � R; 1 � �i � R:
The objective in (4) can be written in the form �i .c � �i /, which is a concave

function, so the solution of (4) must occur at an extreme point of the feasible region.
There are two possibilities for the form of such an extreme point, depending on the
value of c.

Case 1: c � 1 C R. In this case the extreme points of (4) have .�i ; �j / equal to
.1; c � 1/ and .c � 1; 1/, both of which have �i�j D c � 1. To find the
minimum possible value of c D �i C�j in (3), we must find the minimum
c � 2 such that

c2 � 1C 2.1C s/.c � 1/;
which is easily determined to be c D 1 C 2s. Since by assumption c �
1CR, this solution applies whenever 1C 2s � 1CR, or s � R

2
.

Case 2: c � 1 C R. In this case the extreme points of (4) have .�i ; �j / equal to
.R; c � R/ and .c � R;R/, both of which have �i�j D R.c � R/. To
find the minimum possible value of c D �i C �j in (3), we must find the
minimum c � 2 such that

c2 � 1C 2.1C s/R.c �R/;
which is easily determined to be c D R.1C s/Cp1 �R2.1 � s2/. Since
by assumption c � 1 C R, this solution applies whenever R.1 C s/ Cp
1 �R2.1 � s2/ � 1CR, which is equivalent to s � R

2
. �

In Fig. 1 we plot f .s; RD/ for 1
2
� s � 1 � 1

2R2D
. It is evident from the figure,

and is easy to prove, that f .s; RD/ is concave in the interval RD
2
� s � 1 � 1

2R2D
.

Now assume that m > 12, 1 � k Nxik � RD , i D 1; : : : m, and k Nxi � Nxj k � 1 for
all i ¤ j . Let �i D k Nxik and xi D .1=�i / Nxi , i D 1; : : : ; m. Our goal is to prove
(1), which can be written as

mX

iD1
�i � 12C .m � 12/RD: (5)

Define Ni D j fj ¤ i W xTi xj � 0:5gj to be the number of “close neighbors” of xi ,
i D 1; : : : ; m and N D f.i; j /; i ¤ j W xTi xj � 0:5g. Note that .i; j / 2 N ”
.j; i/ 2 N , and jN j DPm

iD1 Ni . Moreover we have

X

.i;j /2N
.�i C �j � 2/ D

X

.i;j /2N
.�i � 1/C .�j � 1/ D 2

mX

iD1
Ni .�i � 1/:
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Fig. 1 Function f .s; RD/ from Theorem 2

Applying Theorem 2, it follows that

2

mX

iD1
Ni .�i � 1/ �

X

.i;j /2N
Œf .xTi xj ; RD/ � 2�

mX

iD1
.�i � 1/ � 1

2Nmax

X

.i;j /2N
Œf .xTi xj ; RD/ � 2�;

where Nmax WD maxfNigmiD1. Thus to prove (5) it suffices to show that

1

2Nmax

X

.i;j /2N
Œf .xTi xj ; RD/�2� � 12C.m�12/RD�m D .m�12/.RD�1/: (6)

To bound Nmax we utilize the following result, which is a slight generalization of
[1, Lemma 5].

Proposition 1. Suppose that a spherical triangle with sides a,b,c has cos c � zc ,
0 � za � cos a � cos b � zb < 1, zc � zazb . Let � be the spherical angle between
the sides a and b. Then

cos � � max

8
<̂

:̂
zc � z2a
1 � z2a

;
zc � zazbq

.1 � z2a/.1 � z2b/

9
>=

>;
:
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Lemma 2. Nmax � 6. Moreover, for m D 13, if Nmax D 6 then (5) holds.

Proof. Applying Proposition 1 with za D 0:5, zb D zc D 1 � 1=.2R2D/ � 0:6843,
we obtain cos � � 0:5791, or � � 54:6ı. It follows immediately that Nmax � 6,
since 7.54:6ı/ > 360ı. For m D 13, Theorem 2 implies that (5) immediately holds
if xTi xj � RD=2 for any i ¤ j . Assume alternatively that xTi xj � RD=2 for all i ¤
j . Applying Proposition 1 with za D 0:5, zb D zc D RD=2 � 0:6292, we obtain
cos � � 0:5056, or � � 59:6288ı. Hence Nmax D 6 is still possible, so assume that
Ni D 6 for some i . Reindexing the points fxj g13jD1, we can assume that i D 7 and
the points fxj g6jD1, have xTj x.j MOD 6/C1 � RD=2, j D 1; : : : ; 6. However, the fact
that � � 59:6288ı in each spherical triangle with vertices x7; xj ; x.j MOD 6/C1 also
implies that � � 360ı�5.59:6288ı/ D 61:856ı. Since Proposition 1 with za D 0:5,
zb D RD=2, zc D 0:6 obtains � � 62:18ı, we can conclude that xTj x.j MOD 6/C1 �
0:6, j D 1; : : : ; 6. Applying Theorem 2, we conclude that �jC�jC1 � 1C2.0:6/ D
2:2 for j D 1; 3; 5. It follows that

13X

iD1
�i � 7C 3.2:2/ D 13:6;

which implies (5). �

With an upper bound for Nmax determined, a lower bound for the left-hand side
of (6) can be obtained using the Delsarte bound for spherical codes. Specifically,
C D fxigmiD1 is a spherical z-code in<3, with z D 1�1=.2R2D/ � 0:6843. We define
the usual distance distribution of the code to be the function ˛.�/ W Œ�1; 1� ! <C
defined as

˛.s/ D jf.i; j / W x
T
i xj D sgj
m

: (7)

It is then easy to see that ˛.�/ � 0, and

X

�1�s�z

˛.s/ D m � 1: (8)

Let ˚k.�/, k D 0; 1; : : : denote the Gegenbauer, or ultraspherical, polynomials
˚k.t/ D P

.0;0/

k .t/ where P .s;s/

k is a Jacobi polynomial. It can be shown [4], [3,
Chaps. 9, 13] that

1C
X

�1�s�z

˛.s/˚k.s/ � 0; k D 1; 2; : : : : (9)

From (8) and (9), using k D 1; : : : ; d , a bound on the left-hand side of (6) can
be obtained via the semi-infinite linear programming problem
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Fig. 2 LP bounds for inequality (6)

LP.m/ W min
X

0:5�s�z

mŒf .s; RD/ � 2�˛.s/

s:t:
X

s2Z
˛.s/˚k.s/ � �1; k D 1; : : : ; d;

X

s2Z
˛.s/ D m � 1; ˛.s/ � 0; s 2 Z;

where Z WD Œ�1; z�. For z D 1 � 1=.2R2D/ the constraints of LP are feasible up to
m D 21. (In other words, 21 is the Delsarte bound for the size of this spherical z-
code. The maximum cardinality of a z-code for this value of z actually appears to be
20 [10].) Let v�LP.m/ denote the solution value in LP(m). We obtain an approximate
value of v�LP.m/ for m D 13; : : : ; 21 by numerically solving a discretized version
of LP(m) using d D 16, and values of s 2 Z incremented by 0.002.3 In Fig. 2 we
plot the lower bound v�LP.m/=.2Nmax/ for the left-hand side of (6) (using Nmax D 6,
except Nmax D 5 for m D 13) and the required value .m � 1/.RD � 1/ from the
right-hand side of (6). The lower bound based on v�LP.m/ is sufficient to prove that
(5) holds for m � 17.4 The value v�LP.13/ D 0 is a consequence of the well-known
fact that the Delsarte bound for a 1=2-code in <3 is 13, despite the fact that the

3A rigorous lower bound for each v�
LP.m/ can be obtained by solving the dual of the discretized

problem and adjusting the dual solution to account for the discretization of s [3]. Alternatively a
sum-of-squares formulation for the dual of LP.m/ could be used to solve the dual problem exactly.
4A referee has indicated that geometric arguments due to Marchal should also be able to establish
that (5) holds for these cases, and possibly m D 16.
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actual maximal size of such a code is 12. Indeed, this observation means that the
approach based on LP(m) has no chance of establishing (5) for m D 13.

To prove (5) for 13 � m � 16 requires stronger restrictions on the distance
distribution than the constraints (9). The most attractive possibility appears to
be the strengthened semidefinite programming constraints from [2]. In particular
the constraints in [2] are sufficient to prove that the maximum cardinality of a 1=2-
code in <3 is 12, which is essential if one is to have any chance of proving (6) for
m D 13. Applying the methodology of [2] results in a problem SDP(m) of the form

SDP.m/ W min
X

0:5�s�z

mŒf .s; RD/ � 2�˛.s/

s:t: 3
X

s2Z
˛.s/Sk.s; s; 1/C

X

s;t;u2Z
˛0.s; t; u/Sk.s; t; u/ 	 �Sk.1; 1; 1/;

X

s2Z
˛.s/˚k.s/ � �1; k D 1; : : : ; d

X

s2Z
˛.s/ D m � 1; ˛.s/ � 0; s 2 Z

X

s;t;u2Z
˛0.s; t; u/ D .m � 1/.m � 2/; ˛0.s; t; u/ � 0; s; t; u 2 Z:

In SDP(m), ˛0.�; �; �/ is the three-point distance distribution

˛0.s; t; u/ D jf.i; j; k/ W x
T
i xj D s; xTi xk D t; xTj xk D ugj

m
;

and Sk.s; t; u/ is a .d C 1 � k/ 
 .d C 1 � k/ symmetric matrix whose entries
are symmetric polynomials of degree k in the variables .s; t; u/; see [2] for details.
(The notation X 	 Y means that X �Y is positive semidefinite.) In Fig. 3 we show
the bounds v�SDP.m/=.2Nmax/ for the left-hand side of (6), as well as the required
value .m � 1/.RD � 1/ from the right-hand side of (6), for 13 � m � 16.5 For
comparison we also give the previously described bounds based on v�LP.m/. As can
be seen from the figure, the use of SDP.m/ gives a substantial improvement over
LP.m/ for m D 13, but the magnitude of the difference appears to diminish as m
increases, and the improved bound is unable to eliminate any more cases than were
eliminated using LP.m/.6

Although the use of SDP.m/ is not sufficient to prove the key inequality (1) for all
requiredm, there are several possible ways in which the approach based on SDP.m/

5The values of v�
SDP.m/ are approximate, based on solving a discretization of SDP.m/. It is possible

to obtain rigorous bounds by applying a sum-of-squares formulation to the dual of SDP.m/; see [2].
6As noted by a referee, it is possible that (6) is false even though (1) is true. We have not attempted
to find a counter-example to (6) for the unresolved cases 13 � m � 16.
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Fig. 3 LP and SDP bounds for inequality (6)

might be strengthened. In particular, since SDP.m/ uses the three-point distance
distribution, it should be possible to utilize a more elaborate version of Theorem 2
to give lower bounds on terms of the form �i C �j C �k . In addition, since the
elements of the three-point distance distribution include the triangles in a Delaunay
triangulation of the surface of the sphere, it might be possible to add valid constraints
that can be derived for the Delaunay triangulation, as in [1]. The possibility that
further strengthening of SDP.m/ might suffice to establish (1) remains a very
interesting topic for ongoing research, especially given the connection between (1)
and the recent work of Hales [7, 8] on the Kepler conjecture and related problems.

Acknowledgements I would like to thank Tibor Csendes for providing an English translation of
[5], and Frank Vallentin for independently verifying the computations based on SDP.m/. I am also
grateful to two anonymous referees for their careful readings of the paper and valuable suggestions
to improve it.
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On Minimal Tilings with Convex Cells Each
Containing a Unit Ball

Károly Bezdek

Abstract We investigate the following problem that one can regard as a very
close relative of the densest sphere packing problem. If the Euclidean 3-space is
partitioned into convex cells each containing a unit ball, how should the shapes
of the cells be designed to minimize the average edge curvature of the cells?
In particular, we prove that the average edge curvature in question is always at
least 13:8564 : : :.

Key words Tiling • Convex cell • Unit sphere packing • Average edge
curvature • Foam problem

Subject Classifications: 05B40, 05B45, 52B60, 52C17, 52C22

1 Introduction

We start with the following question: if the Euclidean 3-space is partitioned into
convex cells each containing a unit ball, how should the shapes of the cells be
designed to minimize the average surface area of the cells? In order to state the
above question in more precise terms we proceed as follows. Let T be a tiling of
the three-dimensional Euclidean space E

3 into convex polyhedra Pi ; i D 1; 2; : : :

each containing a unit ball say, Pi containing the closed three-dimensional ball Bi
having radius 1 for i D 1; 2; : : : . Also, we assume that there is a finite upper bound
for the diameters of the convex cells in T , i.e., supfdiam.Pi /ji D 1; 2; : : : g < 1,
where diam.�/ denotes the diameter of the corresponding set. In short, we say
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that T is a normal tiling of E3 with the underlying packing P of the unit balls
Bi ; i D 1; 2; : : : . Then we define the (lower) average surface area s.T / of the cells
in T as follows:

s.T / WD lim inf
L!1

P
fi jBi�CLg sarea.Pi \ CL/

cardfi jBi � CLg ;

where CL denotes the cube centered at the origin o with edges parallel to the
coordinate axes of E3 and having edge length L. Furthermore, sarea.�/ and card.�/
denote the surface area and cardinality of the corresponding sets. (We note that it
is rather straightforward to show that s.T / is independent from the choice of the
coordinate system of E3.)

There is a very natural way to generate a large family of normal tilings. Namely,
let PR be an arbitrary packing of unit balls in E

3 with the property that each closed
ball of radius R in E

3 contains the center of at least one unit ball in PR. Recall
that the Voronoi cell of a unit ball in PR is the set of points that are not farther
away from the center of the given ball than from any other ball’s center. It is well
known that the Voronoi cells in question form a tiling of E3 (for more details see
[17]). Furthermore, the Voronoi tiling obtained in this way is going to be a normal
one because each Voronoi cell is contained in the closed ball of radius R concentric
to the unit ball of the given Voronoi cell and therefore the diameter of each Voronoi
cell is at most 2R. Also, we recall here the strong dodecahedral conjecture of [3]:
the surface area of every (bounded) Voronoi cell in a packing of unit balls is at
least that of a regular dodecahedron of inradius 1, i.e., it is at least 16:6508 : : : .
After a sequence of partial results obtained in [3, 6], and [1] (proving the lower
bounds 16:1433 : : : , 16:1445 : : : , and 16:1977 : : : ), just very recently, Hales [14]
has announced a computer-assisted proof of the strong dodecahedral conjecture.

By adjusting Kertész’s volume estimation technique [15] to the problem of
estimating surface area and making the necessary modifications, we give a proof
of the following inequality.

Theorem 1. Let T be an arbitrary normal tiling of E3. Then the average surface
area of the cells in T is always at least 24p

3
, i.e.,

s.T / � 24p
3
D 13:8564 : : : :

Most likely the lower bound in Theorem 1 can be improved further; however, any
such improvement would require additional new ideas. In particular, recall that in
the face-centered cubic lattice packing of unit balls in E

3, when each ball is touched
by 12 others, the Voronoi cells of the unit balls are regular rhombic dodecahedra of
inradius 1 and of surface area 12

p
2 (for more details on the geometry involved see

[8]). Thus, it is immediate to raise the following question: prove or disprove that if
T is an arbitrary normal tiling of E3, then

s.T / � 12p2 D 16:9705 : : : : (1)
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Let us mention that an affirmative answer to (1) (resp., a partially affirmative
answer to (1) when only Voronoi tilings of unit ball packings are considered) would
imply the Kepler conjecture. As is well known, the Kepler conjecture has been
proved by Hales in a sequence of celebrated papers [9–13] concluding that the
density of any unit ball packing in E

3 is at most �p
18

. Now, if s.T / � 12p2 were

true for arbitrary normal tiling T of E
3 with the unit balls of the cells forming

the packing P in E
3 (resp., if the inequality s.T / � 12p2 were true for Voronoi

tilings T of unit ball packings P in E
3), then based on the obvious inequalities

X

fi jBi�CLg
vol.Pi \ CL/ � vol.CL/ and

1

3
sarea.Pi \ CL/ � vol.Pi \ CL/;

(where vol.�/ denotes the volume of the corresponding set) we would get that the

(upper) density ı.P/ WD lim supL!1
4�
3

cardfi jBi � CLg
vol.CL/

of the packing P must

satisfy the inequality

ı.P/ � lim sup
L!1

4�
3

cardfi jBi � CLgP
fi jBi�CLg vol.Pi \ CL/

� lim sup
L!1

4�cardfi jBi � CLgP
fi jBi�CLg sarea.Pi \ CL/

D 4�

s.T /

� �p
18

Thus, one could regard the affirmative version of (1), stated for Voronoi tilings of
unit ball packings, as a strong version of the Kepler conjecture.

As an additional observation we mention that an affirmative answer to (1) would
imply also the rhombic dodecahedral conjecture of [4]. According to that conjecture
the surface area of any three-dimensional parallelohedron of inradius at least 1 (i.e.,
the surface area of any convex polyhedron containing a unit ball and having a family
of translates tiling E

3) is at least as large as 12
p
2 D 16:9705 : : :.

By taking a closer look of the proof of Theorem 1 we derive the following
stronger version. In order to state it in a proper form we need to introduce some
additional terminology. Let P be a convex polyhedron in E

3 and let E.P/ denote
the family of the edges of P. Then ecurv.P/ WD P

e2E.P/ L.e/ tan ˛e
2

is called the
edge curvature of P, where L.e/ stands for the length of the edge e 2 E.P/ and ˛e
denotes the angle between the outer normal vectors of the two faces of P meeting
along the edge e. (For more insight on edge curvature we refer the interested reader
to p. 287 in [8].) Now, if T is an arbitrary normal tiling of E3 with the underlying
packing P of the unit balls Bi ; i D 1; 2; : : : , then we define the (lower) average
edge curvature ec.T / of the cells in T as follows:

ec.T / WD lim inf
L!1

P
fi jBi�CLg ecurv.Pi \ CL/

cardfi jBi � CLg :

Based on this we can state the following stronger version of Theorem 1.
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Theorem 2. Let T be an arbitrary normal tiling of E3. Then

s.T / � ec.T / � 24p
3
D 13:8564 : : : :

Moreover, if T is a Voronoi tiling of a unit ball packing in E
3, then

ec.T / � 2�2

6
p
6 arcsin

�
1p
3

�
� �p6

D 14:6176 : : : :

Thus, we have the following stronger version of our original problem: if the
Euclidean 3-space is partitioned into convex cells each containing a unit ball, how
should the shapes of the cells be designed to minimize the average edge curvature
of the cells?

Last but not least, it is very tempting to further relax the conditions in our
original problem by replacing convex cells with cells that are measurable and
have measurable boundaries and ask the following more general question: if the
Euclidean 3-space is partitioned into cells each containing a unit ball, how should
the shapes of the cells be designed to minimize the average surface area of the
cells? One can regard this question as a foam problem, in particular, as a relative
of Kelvin’s foam problem (on partitioning E

3 into unit volume cells with minimum
average surface area) since foams are simply tilings of space that (under proper
conditions) minimize surface area. Although foams are well studied (see the relevant
sections of the highly elegant book [16] of Morgan), it is far not clear what would
be a good candidate for the proper minimizer in the foam question just raised. As
a last note we mention that Brakke (November, 2011, personal communication), by
properly modifying the Williams foam, has just obtained a partition of the Euclidean
3-space into congruent cells each containing a unit ball and having surface area
16:95753 < 12

p
2 D 16:9705 : : : :

2 Proof of Theorem 1

First, we prove the following “compact” version of Theorem 1 (also because it might
be of independent interest).

Theorem 3. If the cube C is partitioned into the convex cells Q1;Q2; : : : ; Qn each
containing a unit ball in E

3, then the sum of the surface areas of the n convex cells
is at least 24p

3
n, i.e.,

nX

iD1
sarea.Qi / � 24p

3
n :

Proof. It is well known that the Brunn–Minkowski inequality implies the following
inequality:

sarea2.Qi / � 3vol.Qi /ecurv.Qi / ; (2)
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where 1 � i � n. (For a proof we refer the interested reader to p. 287 in [8].) In
what follows it is more proper to use the inner dihedral angles ˇe WD � �˛e and the
relevant formula for the edge curvature:

ecurv.Qi / D
X

e2E.Qi /

L.e/ cot
ˇe

2
: (3)

As, by assumption, Qi contains a unit ball therefore

vol.Qi / � 1

3
sarea.Qi /: (4)

Hence, (2), (3), and (4) imply in a straightforward way that

sarea.Qi / �
X

e2E.Qi /

L.e/ cot
ˇe

2
(5)

holds for all 1 � i � n.
Now, let s � C be a closed line segment along which exactly k members of the

family fQ1;Q2; : : : ; Qng meet having inner dihedral angles ˇ1; ˇ2; : : : ; ˇk . There
are the following three possibilities:

(a) s is on an edge of the cube C.
(b) s is in the relative interior either of a face of C or of a face of a convex cell in

the family fQ1;Q2; : : : , Qng.
(c) s is in the interior of C and not in the relative interior of any face of any convex

cell in the family fQ1;Q2; : : : ; Qng.
In each of the above cases we can make the following easy observations:

(a) ˇ1 C ˇ2 C � � � C ˇk D �
2

with k � 1.
(b) ˇ1 C ˇ2 C � � � C ˇk D � with k � 2.
(c) ˇ1 C ˇ2 C � � � C ˇk D 2� with k � 3.

As y D cot x is convex and decreasing over the interval 0 < x � �
2

therefore the
following inequalities must hold:

(a) cot ˇ1
2
C cot ˇ2

2
C � � � C cot ˇk

2
� k cot �

4k
� k.

(b) cot ˇ1
2
C cot ˇ2

2
C � � � C cot ˇk

2
� k cot �

2k
� k.

(c) cot ˇ1
2
C cot ˇ2

2
C � � � C cot ˇk

2
� k cot �

k
� 1p

3
k.

In short, the following inequality holds in all three cases:

cot
ˇ1

2
C cot

ˇ2

2
C � � � C cot

ˇk

2
� 1p

3
k: (6)

Thus, by adding together the inequalities (5) for all 1 � i � n and using (6)
we get that

nX

iD1
sarea.Qi / � 1p

3

nX

iD1

X

e2E.Qi /

L.e/ : (7)
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Finally, recall the elegant theorem of Besicovitch and Eggleston [2] claiming that
the total edge length of any convex polyhedron containing a unit ball in E

3 is always
at least as large as the total edge length of a cube circumscribing a unit ball. This
implies that

X

e2E.Qi /

L.e/ � 24 (8)

holds for all 1 � i � n. Hence, (7) and (8) finish the proof of Theorem 3. �

Second, we take a closer look at the given normal tiling T and, using the above
proof of Theorem 3, we give a proof of Theorem 1. The details are as follows.

By assumption D WD supfdiam.Pi /ji D 1; 2; : : : g < 1. Thus, clearly each
closed ball of radius D in E

3 contains at least one of the convex polyhedra Pi ; i D
1; 2; : : : (forming the tiling T of E3). Now, let CLN ;N D 1; 2; : : : be an arbitrary
sequence of cubes centered at the origin o with edges parallel to the coordinate
axes of E

3 and having edge length LN ;N D 1; 2; : : : with limN!1LN D 1.
It follows that

0 < lim inf
N!1

4�
3

cardfi jBi � CLN g
vol.CLN /

� lim sup
N!1

4�
3

cardfi jBi � CLN g
vol.CLN /

< 1: (9)

Note that clearly

cardfi jPi \ bdCLN ¤ ;g
cardfi jBi � CLN g

�
�
vol.CLNC2D/ � vol.CLN�2D/

	
vol.CLN /

vol.CLN /
4�
3

cardfi jBi � CLN g
: (10)

Moreover,

lim
N!1

vol.CLNC2D/ � vol.CLN�2D/
vol.CLN /

D 0: (11)

Thus, (9), (10), and (11) imply in a straightforward way that

lim
N!1

cardfi jPi \ bdCLN ¤ ;g
cardfi jBi � CLN g

D 0: (12)

Moreover, (5) yields that

sarea.Pi / � ecurv.Pi / D
X

e2E.Pi /
L.e/ cot

ˇe

2
(13)

holds for all i D 1; 2; : : : . As a next step, using

sarea.Pi / D sarea .bd.Pi \ CL/ n bdCL/C ıi (14)

and

ecurv.Pi / �
X

e2E.bd.Pi\CL/nbdCL/

L.e/ cot
ˇe

2
(15)
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(with bd.�/ denoting the boundary of the corresponding set) we obtain the following
from (13):

sarea .bd.Pi \ CL/ n bdCL/C ıi �
X

e2E.bd.Pi\CL/nbdCL/

L.e/ cot
ˇe

2
; (16)

where clearly 0 � ıi � sarea.Pi /. Hence, (16) combined with (6) yields

Corollary 1.

f .L/ WD
X

fi jintPi\CL¤;g
sarea

�
bd.Pi \ CL/ n bdCL

	C
X

fi jPi\bdCL¤;g
ıi

� g.L/ WD 1p
3

X

fi jintPi\CL¤;g


 X

e2E.bd.Pi\CL/nbdCL/

L.e/

�

Now, it is easy to see that

f .L/ D 	.L/C
X

fi jBi�CLg
sarea.Pi \ CL/; (17)

where 0 � 	.L/ � 2Pfi jPi\bdCL¤;g sarea.Pi /.
Moreover, (8) implies that

g.L/ � �	.L/C
X

fi jBi�CLg

24p
3
; (18)

where 0 � 	.L/ �Pfi jPi\bdCL¤;g
P

e2E.Pi / L.e/.

Lemma 1.

A WD supfsarea.Pi /ji D 1; 2; : : : g <1

and

E WD sup

8
<

:
X

e2E.Pi /
L.e/ji D 1; 2; : : :

9
=

; <1:

Proof. Recall that D D supfdiam.Pi /ji D 1; 2; : : : g < 1. Hence, according to

Jung’s theorem [7] each Pi is contained in a closed ball of radius
q

3
8
D in E

3. Thus,

A � 3
2
�D2 <1.

For a proof of the other claim recall that Pi contains the unit ball Bi centered at
oi . If the number of faces of Pi is fi , then Pi must have at least fi neighbors (i.e.,
cells of T that have at least one point in common with Pi ) and as each neighbor is
contained in the closed 3-dimensional ball of radius 2D centered at oi therefore the



52 K. Bezdek

number of neighbors of Pi is at most .2D/3 � 1 and so, fi � 8D3 � 1. (Here, we
have used the fact that each neighbor contains a unit ball and therefore its volume is
larger than 4�

3
.) Finally, Euler’s formula implies that the number of edges of Pi is at

most 3fi � 6 � 24D3 � 9. Thus, E � 24D4 � 9D <1 (because the length of any
edge of Pi is at most D). �

Thus, Corollary 1, (17), (18), and Lemma 1 imply the following inequality in a
straightforward way.

Corollary 2.

2Acardfi jPi \ bdCL ¤ ;g CPfi jBi�CLg sarea.Pi \ CL/

cardfi jBi � CLg

�
�Ecardfi jPi \ bdCL ¤ ;g CPfi jBi�CLg

24p
3

cardfi jBi � CLg :

Finally, Corollary 2 and (12) yield that

lim inf
N!1

P
fi jBi�CLN g sarea.Pi \ CLN /

cardfi jBi � CLN g
� 24p

3
;

finishing the proof of Theorem 1.

3 Proof of Theorem 2

If T is an arbitrary normal tiling of E3 with the underlying packing P of the unit
balls Bi ; i D 1; 2; : : : , then (5) implies

sarea.Pi \ CL/ � ecurv.Pi \ CL/

and therefore s.T / � ec.T / follows in a straightforward way. So, we are left to
show that ec.T / � 24p

3
. In order to achieve that, we take a closer look of the given

normal tiling T and using some of the properly modified estimates of the proof of
Theorem 1 we derive the inequality ec.T / � 24p

3
. The details are as follows.

We start with the following immediate analogue of (16):

ecurv.Pi / D ı�i C
X

e2E.bd.Pi\CL/nbdCL/

L.e/ cot
ˇe

2
; (19)

where 0 � ı�i � ecurv.Pi / � sarea.Pi /. If
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ecurv
�
bd.Pi \ CL/ n bdCL

	 WD
X

e2E.bd.Pi\CL/nbdCL/

L.e/ cot
ˇe

2
;

then (19) combined with (6) yields

Corollary 3.

f �.L/ WD
X

fi jintPi\CL¤;g
ecurv

�
bd.Pi \ CL/ n bdCL

	C
X

fi jPi\bdCL¤;g
ı�i

� g.L/ D 1p
3

X

fi jintPi\CL¤;g


 X

e2E.bd.Pi\CL/nbdCL/

L.e/

�

Now, it is easy to see that

f �.L/ D 	�.L/C
X

fi jBi�CLg
ecurv.Pi \ CL/; (20)

where 0 � 	�.L/ � 2
P
fi jPi\bdCL¤;g ecurv.Pi /. Moreover, g.L/ must satisfy

(18). Thus, Corollary 3, (20), (18), and Lemma 1 imply the following inequality in
a straightforward way.

Corollary 4.

2Acardfi jPi \ bdCL ¤ ;g CPfi jBi�CLg ecurv.Pi \ CL/

cardfi jBi � CLg

�
�Ecardfi jPi \ bdCL ¤ ;g CPfi jBi�CLg

24p
3

cardfi jBi � CLg :

Hence, Corollary 4 and (12) yield that

lim inf
N!1

P
fi jBi�CLN g ecurv.Pi \ CLN /

cardfi jBi � CLN g
� 24p

3
;

finishing the proof of the inequality ec.T / � 24p
3
.

Finally, let T be the Voronoi tiling of a unit ball packing in E
3 consisting of

the Voronoi cells Pi ; i D 1; 2; : : : (each containing a unit ball). First, recall the
inequality

ecurv.Pi / > 2� mwidth.Pi /; (21)

where i D 1; 2; : : : and mwidth.�/ denotes the mean width of the corresponding
set. (For more details on this inequality see p. 287 in [8] as well as the relevant
discussion on p. 392 in [5].) Second, recall that according to a recent result of the
author [5] the inequality
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mwidth.Pi / � �

6
p
6 arcsin

�
1p
3

�
� �p6

D 2:3264 : : : (22)

holds for all i D 1; 2; : : : . Thus, (21) and (22) yield

ecurv.Pi / >
2�2

6
p
6 arcsin

�
1p
3

�
� �p6

D 14:6176 : : :

from which it follows in a straightforward way that ec.T / � 14:6176 : : : , finishing
the proof of Theorem 2.
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On Volumes of Permutation Polytopes

Katherine Burggraf, Jesús De Loera, and Mohamed Omar

Abstract This paper focuses on determining the volumes of permutation polytopes
associated to cyclic groups, dihedral groups, groups of automorphisms of tree
graphs, and Frobenius groups. We do this through the use of triangulations and the
calculation of Ehrhart polynomials. We also briefly discuss the theta body hierarchy
of various permutation polytopes.

Key words Permutation polytopes • Birkhoff’s polytope • Volumes • Ehrhart
polynomials • Gale duality • Triangulations • Theta bodies

Subject Classifications: 52A38, 52B20, 52B35

1 Introduction

Volumes are fundamental geometric invariants of convex bodies that often carry
algebraic and combinatorial data. The computation of volumes appears in many
areas of mathematical literature, including in the context of order polytopes [32],
the Chan-Robbins-Yuen polytope [11, 39], the convex hull of the positive root
configuration A.C/n [20], and polytopes arising from algebraic geometry [5, 34, 35].
A key example of such a convex body is the Birkhoff polytope Bn. It is defined as
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the convex hull of all n 
 n permutation matrices, or equivalently, as the convex
hull of the natural permutation representation of the symmetric group Sn; see
[4, 6, 7, 9, 10, 15, 18, 30, 34] and references therein for a summary of its known
properties. Subpolytopes of Bn have been shown to have remarkably beautiful
properties; see [1,6,8,10,11,19,29,31,39] and references therein. This is particularly
true for permutation polytopes, those polytopes that arise by taking convex hulls
of permutation representations of special subgroups of Sn with concrete sets of
generators. Their geometry reflects their group-theoretic structure. Our focus in
this paper is on determining the volumes, or normalized volumes, of permutation
polytopes associated to cyclic groups, dihedral groups, groups of automorphisms of
tree graphs, and Frobenius groups. We take two essential approaches: triangulating
a polytope by simplices of equal volume, or obtaining the volume through the
Ehrhart polynomial of the polytope. The Ehrhart polynomial of a polytope P , which
we denote by i.P; t/, is the function that counts the number of integer points in
the t th dilation of P , and it turns out, whose leading coefficient is the volume
of the polytope. For more on these approaches, see Sect. 2. For known results
on permutation polytopes, see [3, 8, 12, 14, 22, 24, 33] and references therein. For
definitions pertaining to permutation polytopes, see [3, 22].

Before stating our results, we will clarify some terminology. The normalized
volume of a d -dimensional polytope P � R

n with respect to an affine lattice L �
R
n is the volume form that assigns a volume of one to the smallest d -dimensional

simplices in R
n whose vertices are in L. The volume of P is its normalized volume

in the lattice aff.P / \ Z
n. We say P is unimodular with respect to L if it has a

triangulation whose simplices are all unimodular; that is, the vertices of any simplex
in the triangulation span the lattice L. For more on triangulations with respect to
particular lattices used in this paper, see Sect. 2. In what follows, we identify the
symmetric group Sn on f1; 2; : : : ; ng through its representation by n
n permutation
matrices; that is, for any g 2 Sn, we identify g with the n 
 n matrix whose .i; j /-
entry is one if g.i/ D j and 0 otherwise. We denote the identity by e throughout.
We denote a subgroup G of Sn by G � Sn. Such a subgroup is called a permutation
group. For any permutation group G � Sn, we refer to the polytope P.G/ WD
convfg j g 2 Gg as the permutation polytope associated to G.

Example 1. Let G � S4 be the group consisting of the four permutations
fe; .1 2/; .3 4/; .1 2/.3 4/g. Then P.G/ is the convex hull of the matrices

0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCA ;

0

BB@

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1

CCA ;

0

BB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

CCA ;

0

BB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1

CCA :

This polytope is geometrically a square. Now let H � S4 be the group consisting
of the four permutations fe; .1 2/.3 4/; .1 3/.2 4/; .1 4/.2 3/g. Then P.H/ is the
convex hull of the matrices
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0

BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCA ;

0

BB@

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1

CCA ;

0

BB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1

CCA ;

0

BB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1

CCA :

This polytope is geometrically a tetrahedron.

Note that Example 1 shows that the geometric structure of a permutation polytope
depends on the presentation of the group that defines it (i.e., on the choice of
generators). Both of the examples above are groups isomorphic to .Z=2Z/2, but their
permutation polytopes are not even combinatorially isomorphic. We now provide an
example of computing the Ehrhart polynomial of a permutation polytope to kick off
our investigation.

Example 2. The cyclic group Cn � Sn is the group generated by the permutation
.1 2 � � � n/. We claim that the volume of P.Cn/ is 1

.n�1/Š and its Ehrhart polynomial

of P.Cn/ is
�
tCn�1
n�1

	
. Indeed, since the matrices associated to the elements of Cn

have disjoint support, there is a lattice isomorphism between P.Cn/ and 	n, the
standard .n � 1/-simplex convfei j 1 � i � ng � R

n. It is easy to see that the
number of integer points in 	n is the number of nonnegative integer solutions to
the diophantine equation x1 C x2 C � � � C xn D t , which is

�
tCn�1
n�1

	
. The volume

follows.

We now introduce our first class of permutation polytopes to investigate. The
dihedral group Dn � Sn is the group generated by the permutations r D
.1 2 � � � n/ and f D .1 n/.2 n � 1/ � � � .b nC1

2
c d nC1

2
e/. In Sect. 3, we determine

particular unimodular triangulations ofP.Cn/ andP.Dn/with respect to the lattices
aff.P.Cn// \ Z

n�n and aff.P.Dn// \ Z
n�n respectively. This allows us to recover

their volumes via their Ehrhart polynomials.

Theorem 1. Let n be an integer, n � 2.

1. If n is odd, the volume of P.Dn/ is n
.2n�2/Š . The Ehrhart polynomial of P.Dn/ is

n�2X

kD0

 
2n

k C 1

! 
t � 1
k

!
C

2n�2X

k�1

  
2n

k C 1

!
�
 

n

k � nC 1

!! 
t � 1
k

!
:

2. If n is even, n D 2m, the volume of P.Dn/ is n2

4	.2n�3/Š . The Ehrhart polynomial
of P.Dn/ is

m�2X

kD0

 
2n

k C 1

! 
t � 1
k

!
�

2m�2X

kDm�1

  
2n

k C 1

!
� 2

 
2n �m
k C 1 �m

!! 
t � 1
k

!

C
4m�3X

kD2m�1

  
2n

k C 1

!
� 2

 
2n �m
k C 1 �m

!
C
 
2n � 2m
k C 1 � 2m

!! 
t � 1
k

!
:
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In Sect. 4, we study Frobenius polytopes as introduced by Collins and Perkinson
in [12]. These are permutation polytopes P.G/ where G is a Frobenius group.
A group G � Sn is Frobenius if it has a proper subgroup H such that for all
x 2 GnH ,H\.xHx�1/ D feg. The special subgroupH is known as the Frobenius
complement ofG and is unique up to conjugation. Moreover, every Frobenius group
G � Sn has a special proper subgroupN of size n called the Frobenius kernel which
consists of the identity and all elements of G that have no fixed points; see Chap. 16
of [2]. The Frobenius kernel and Frobenius complement have trivial intersection,
and G D NH . The class of Frobenius groups includes semi-direct products of
cyclic groups, some matrix groups over finite fields, the alternating group A4, and
many others. See [38] for more on Frobenius groups. We determine triangulations
of Frobenius polytopes and a formula for their normalized volumes, in particular
showing that the normalized volumes are completely characterized by the size of
the Frobenius complement and the size of the Frobenius kernel.

Theorem 2. Let G � Sn be a Frobenius group with Frobenius complement H
and Frobenius kernel N . The normalized volume of P.G/ in the sublattice of Zn�n
spanned by its vertices is

1

.jH jjN j � jH j/Š
b jH j.jN j�1/�1

jN j
cX

`D0

 
.jH j � `/jN j

.jH j � `/jN j � jH j C 1

! 
jH j � 1
`

!
.�1/`:

In order to better understand these polytopes, we can approximate them with a
sequence of special convex bodies. In the 1980s, L. Lovász approximated the stable
set polyhedra from graph theory using a convex body called the theta body; see [26].
In [21], Gouveia et al. generalize Lovász’s theta body for 0=1 polytopes (that is,
polytopes whose vertices have coordinates of zero and one) to generate a sequence
of semidefinite programming relaxations of the convex hull of the common zeroes
of a set of real polynomials; see [26, 27] and Sect. 2 for more on this topic. We
briefly study the theta body hierarchy of our permutation polytopes. For instance,
we prove that convergence of the first iterate always occurs for Frobenius groups.
This implies many structural results, such as the existence of reverse lexicographic
unimodular triangulations. See [36] for more on this. The conditions of being two-
level and TH1 exact are equivalent for 0=1-varieties, as shown in Sect. 2. Our main
result regarding TH1-exactness for Frobenius groups is the following.

Proposition 1. If G � Sn is a Frobenius group, then P.G/ is two-level and hence
G is TH1-exact.

In Sect. 5, we study miscellaneous permutation polytopes. We begin by devel-
oping a method for computing the Ehrhart polynomial of P.G/ when G is the
automorphism group of a rooted binary tree on n vertices. This method relates
the Ehrhart polynomials of permutation polytopes associated to direct products and
wreath products of groups to the Ehrhart polynomials of the individual permutation
polytopes themselves. A key theorem in this regard is the following. This method
relates the Ehrhart polynomial i.P.G/; t/ of P.G/ (in the variable t ) to that of
Ehrhart polynomials at smaller evaluations.
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Theorem 3. LetG � Sn, andG oS2 be the wreath product ofG with the symmetric
group S2. Then

i.P.G o S2/; t/ D
tX

kD0
i2.P.G/; k/ � i 2.P.G/; t � k/

for any integer t � 2.

We continue our study of miscellaneous permutation polytopes by studying
P.An/, where An � Sn, the alternating group on f1; 2; : : : ; ng, consists of
permutations with even signature. One of the main focuses in the literature is on
determining the facets of P.An/. Cunningham and Wang [14], and independently
Hood and Perkinson [24], proved that P.An/ has exponentially many facets in n,
resolving a problem of Brualdi and Liu [8]. However, a full facet description is still
not known. Moreover, no polynomial time algorithm in n is known for membership
in P.An/. The difficulty of attaining a description of all facets of these polytopes is
demonstrated by the following proposition, which shows that the first iterate of the
theta body hierarchy for the polytopes P.An/ is almost never equal to P.An/ itself.

Proposition 2. The polytope P.An/ is two-level, and henceAn is TH1-exact, if and
only if n � 4. Moreover, for n � 8, P.An/ is at least .b n

4
c C 1/-level.

We conclude the paper with computations of volumes and Ehrhart polynomials
of permutation polytopes for many subgroups of S3; S4, and S5.

2 Preliminaries

Given a convex d -dimensional polytope P � R
n, its Ehrhart polynomial i.P; t/ is

the function that counts the number of points in Z
n \ tP , where tP D ftX j X 2

P g is the t th dilation of P . It is well known that the normalized volume of P is
the leading coefficient of the polynomial i.P; t/ (this number is a multiple of the
usual Euclidean volume of P when P is full-dimensional). In order to determine
the Ehrhart polynomial or the normalized volume of a lattice polytope P , it is often
useful to know something about the triangulations and subdivisions of P (see [17]):
Let V D fv1; v2; : : : ; vrg denote the vertices of P in R

n. A subdivision of P is a
collection T of subsets of V , called cells, whose convex hulls form a polyhedral
complex with support P . If each cell in T is a simplex, then T is a triangulation
of P . We are interested on a special kind of triangulation. Let L be an affine lattice
L � R

n. A simplex with vertices v1; v2; : : : ; vm 2 L is said to be unimodular in the
lattice L if fvm � v1; vm�1 � v1; : : : ; v2 � v1g is a basis for the lattice L. A polytope
whose vertices lie in L is said to have a unimodular triangulation in L if it has
a triangulation in which all maximal dimensional simplices are unimodular in L.
We will be interested in unimodularity with respect to two kinds of lattices. We say
that a polytope P is P -unimodular if it has a unimodular triangulation in the lattice
spanned by the vertices of P , and we will say that P is Z-unimodular if it has a
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unimodular triangulation in the lattice aff.P / \ Z
n. The following lemma shows

that if a polytope has a Z-unimodular triangulation and the number of faces of each
dimension in the triangulation is known, then its Ehrhart polynomial, and hence its
volume, can be determined immediately.

Lemma 1 (See Theorem 9.3.25 in [17]). Let P � R
n be a lattice polytope.

Assume that P has a Z-unimodular triangulation with fk faces of dimension k.
Then the Ehrhart polynomial of P is

i.P; t/ D
nX

kD0

 
t � 1
k

!
fk:

In order to compute triangulations of our polytopes, we make repeated use of
Gale duality. In what follows, let P � R

n be a d -dimensional polytope with r
vertices V D fv1; v2; : : : ; vrg. Let V 2 R

n�r be the matrix given by

�
v1 v2 � � � vr

	
: (1)

Let G 2 R
.r�d�1/�r be a matrix whose rows form a basis for the space of linear

dependences of the columns of (1). The Gale dual of P is the vector configuration
fv1; v2; : : : ; vrg consisting of the columns of G (for those familiar with Gale duals,
we do not affinize here because the vectors lie on a common subspace). Note that G
is unique up to linear coordinate transformations. When constructing triangulations
one can rely on using regular triangulations. We will compute them using Gale
duality and chambers, but for completeness let us include here a different (more
common) definition. Every vector w D .w1; : : : ;wr / in R

n induces a subdivision
of P as follows. Again let V D fv1; v2; : : : ; vrg be the vertices of P . Consider
the polytope Qw D conv.f.v1;w1/; : : : ; .vr ;wr /g/. Generally Qw is a polytope of
dimension dim.Q/C 1. The lower envelope of Qw is the collection of faces of the
form fx 2 Qwjcx D c0g with Qw contained in the halfspace cx � c0 and the last
coordinate cdC1 is negative. The lower envelope of Qw is a polyhedral complex of
dimension dim.Q/. We define Tw to be the subdivision of P whose cells are the
projection of the cells of the lower envelope ofQw. In other words, fvi1 ; vi2 ; : : : ; vik g
is a cell of Tw if f.vi1 ;wi1 /; .vi2 ;wi2 /; : : : ; .vik ;wik /g are the vertices of a face in the
lower envelope of Qw. We observe that for a generic choice of the vector w the
subdivision Tw is in fact a triangulation of V . A subdivision of P is regular if it is
of the form Tw for some vector w. An important example for our purposes are the
reverse lexicographic triangulations which are obtained by taking the weight vector
to be w D .1; 1; 1; : : : ; 1/ and when these heights do not give a triangulation one
perturbs further with .1; 1; : : : ; 1; 1; 0/, .1; 1; : : : ; 1; 0; 0/, etc. (see [34] and Chap. 9
in [17] for more on weight vectors). We remark that given a regular subdivision Tw,
we can find an explicit vector w of lifting heights inducing Tw by solving a linear
programming problem. We will use the strong connection of regular triangulations
to Gale duality soon.
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The relationship between triangulations of a polytope and the structure of its
Gale dual hinges on the chamber complex of G . Denote by ˙G the set of cones
generated by all bases of G , that is, all subsets of fv1; v2; : : : ; vrg that form bases
for the column space of G . If 
 2 ˙G , let @
 denote its boundary, and let @˙G be
the union of the boundaries of all cones 
 2 ˙G . The complement of @˙G inside
the cone generated by fv1; v2; : : : ; vrg consists of open convex cones. The closure of
such an open convex cone is called a chamber, and the chamber complex of G is the
collection of all these chambers. The chamber complex of G and its relationship to
triangulations of P is encapsulated in the following lemma.

Lemma 2 (See Theorems 5.4.5, 5.4.7, and 5.4.9 in [17]). Let P � R
n be

a d -dimensional polytope with vertex set V D fv1; v2; : : : ; vrg and Gale dual
fv1; v2; : : : ; vrg. Let � be a chamber of the chamber complex of G . Then

	 D
[

conv.V nfvj1 ; vj2 ; : : : ; vjr�d�1
g/;

taken over all fvj1 ; vj2 ; : : : ; vjr�d�1
g such that � � conefvj1 ; vj2 ; : : : ; vjr�d�1

g (the
cone generated by fvj1 ; vj2 ; : : : ; vjr�d�1

g) is a full-dimensional cone in the Gale
dual, is a regular triangulation of P . Moreover, all regular triangulations of P
arise in this way from some chamber � .

Unfortunately, the aforementioned triangulations given by the Gale dual may
not be Z- nor P -unimodular, so we still need methods to determine if a given
polytope P has a Z-unimodular or P -unimodular triangulation. One way to do this
is through the use of Gröbner bases of toric ideals. Though this can be addressed in
a more general setting, we will restrict ourselves to permutation polytopes arising
from subgroups of a particular Sn. Let G D fg1; g2; : : : ; gkg be elements of such a
subgroup, and as usual consider gi as an n 
 n permutation matrix for each i . Let
CŒx� D CŒxg1 ; xg2 ; : : : ; xgk � be the polynomial ring in k indeterminates indexed
by the elements of G and let CŒt� WD CŒt`m W 1 � `;m � n�. The algebra
homomorphism induced by the map

O�G W CŒx�! CŒt�; O�G.xgi / D
Y

1�`;m�n
t
.gi /`m
`m ; 1 � i � k

has as its kernel the ideal IG . Given a monomial order � on CŒx�, the ideal IG can
determine a P.G/-unimodular triangulation of P.G/. Moreover, this triangulation
is always regular. See [17, 34] for more on regular triangulations.

Lemma 3 (See Corollary 8.9 in [34] and Theorem 9.4.5 in [17]). Let in
.IG/
be the initial ideal of IG with respect to the term order �. The support vectors
of the generators of the radical of in
.IG/ are the minimal non-faces of a
regular triangulation of P.G/. Moreover, in
.IG/ is square-free if and only if the
corresponding triangulation 	
 of P.G/ is P.G/-unimodular.

By Lemma 3 and the theory of Gröbner bases, P.G/ will have a P.G/-unimodular
triangulation if there is a term order � on CŒx� such that the Gröbner basis of IG is
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generated by polynomials whose initial terms are square-free. This will be exploited
in Sect. 4. For more on the relationship between toric ideals, Gröbner bases, and
triangulations, see [34] and Chap. 9 in [17].

Recently, Gouveia, Parrilo, and Thomas [21] constructed a hierarchy of convex
bodies, each given as the projection of the feasible region of a semidefinite program,
approximating the convex hull of an arbitrary real variety. In Sect. 4, given a
permutation polytope P.G/ � R

n�n, we discuss the convergence of this hierarchy
of relaxations TH1.I / 
 TH2.I / 
 � � � 
 P.G/, which are known as theta bodies.
Here, I is an ideal in RŒxij W 1 � i; j � n� whose real variety is the vertex set of
P.G/. This hierarchy of relaxations has the property that if THk.I / D P.G/ for
some fixed k, linear optimization over P.G/ can be performed in polynomial time
in n provided a certain algebraic oracle. Of particular interest then are polytopes
for which TH1.I / D P.G/, in which case we say G is TH1-exact. The concept of
TH1-exactness was defined in [21] for general ideals I , but we focus on ideals
whose zero-sets are vertices of permutation polytopes. TH1-exact varieties are
characterized polyhedrally in [21], and we again restrict this characterization to
permutation polytopes.

Lemma 4 (See Theorem 4.2 in [21]). The group G is TH1-exact if and only if for
every facet defining inequality c � x � ˛ � 0 of P.G/, there is a plane c � x � ˇ D 0
parallel to c � x � ˛ D 0 such that all vertices of P.G/ lie in fx j c � x � ˛ D 0g
[fx j c � x � ˇ D 0g.

A polytope satisfying the facet property in Lemma 4 is called compressed or
two-level. Using Lemma 4, we can use Gale duality to characterize groups whose
permutation polytopes are TH1-exact. We do so in the following lemma, which
was proved independently by Gouveia, Parrilo, and Thomas, but we provide a self-
contained proof.

Lemma 5. Let P.G/ � R
n�n be a permutation polytope with vertex set

fv1; v2; : : : ; vrg and Gale dual fv1; v2; : : : ; vrg. Then G is TH1-exact if and only
if for every J � f1; 2; : : : ; rg such that convfvj j j 2 J g is a facet of P.G/,P

j…J vj D 0.

Proof. Throughout this proof, we use the equivalence of TH1-exactness with the
property of P.G/ being two-level, which was proved in Lemma 4. Let J �
f1; 2; : : : ; rg such that convfvj j j 2 J g is a facet of P.G/ with the defining
inequality c � x � ˛ � 0 valid on P.G/. Then

0 D .c;�˛/



v1 v2 � � � vr
1 1 � � � 1

�
0

BBB@

v1
v2
:::

vr

1

CCCA D .c � v1 � ˛; c � v2 � ˛; � � � ; c � vr � ˛/

0

BBB@

v1
v2
:::

vr

1

CCCA :

Since G is exact, c � vj � ˛ can take at most two values. By construction, one of
these values is zero. If the other value is ˇ, then c � vj �˛ D ˇ if and only if j … J .
Thus

P
j…J ˇvj D 0, which implies that

P
j…J vj D 0 since ˇ ¤ 0.
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For the converse, suppose that
P

j…J vj D 0 for every J such that convfvj j j 2
J g is a facet. Fix such a J and assume that the facet inequality of P.G/ defining it
is c � x � ˛ � 0. Then, as we have done above,

0 D
X

j…J
.c � vj � ˛/vj D

X

j…J
.c � vj /vj � ˛

X

j…J
vj D

X

j…J
.c � vj /vj :

Suppose that there are at least two distinct values among fc � vj j j … J g and that �
is the least value. Then

0 D
X

j…J
.c � vj � �/vj

yields a positive dependence relation on fvj j j … J g that does not use all the
elements in the set. This contradicts the assumption that J induces a facet of P.G/.
Thus fc � vj j j … J g has only one element, and hence G is exact. �

From Lemma 5 we see that if P.G/ is TH1-exact, then for any facet F of P.G/,
the vertices not on F lie on a common hyperplane. As a consequence, if P.G/ is
TH1-exact, then it contains a P.G/-unimodular triangulation. Moreover, as we will
see, all simplices in this triangulation have the same volume.

3 Dihedral Groups

We dedicate this section to the proof of Theorem 1. The dimension of permutation
polytopes arising from dihedral groups was computed in [33]. We omit the proof
here, because it follows immediately from the proof of Lemma 7 where we compute
the set of linear relations among the elements of Dn.

Lemma 6 (See Theorem 4.1 of [33]). The dimension of the polytope P.Dn/ is
2n � 2 if n is odd and 2n � 3 if n is even.

Lemma 6 indicates that Gale duality is very useful for determining the Ehrhart
polynomial of P.Dn/, since the Gale dual lies in a space of dimension jDnj �
dim.P.Dn// � 1, which is one if n is odd and two if n is even.

Lemma 7. If n is odd, the Gale dual of P.Dn/ is a vector configuration in R

consisting of n copies of each of the vectors ˙1. If n is even, n D 2m, the Gale
dual of P.Dn/ is the vector configuration in R

2 consisting of m copies of each of
the four vectors Œ˙1; 0�T ; Œ0;˙1�T .

Proof. Throughout this proof, let G be the matrix whose columns form the Gale
dual of P.Dn/ with its columns indexed by

fe; r; r2; : : : ; rn�1; f; f r; f r2; : : : ; f rn�1g
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in that order. The following linear relation holds for Dn:

e C r C r2 C : : :C rn�1 D f C f r C f r2 C : : :C f rn�1 D Jn�n; (2)

where Jn�n is the n 
 n matrix whose entries are all one. When n is odd, Lemma 6
implies that P.Dn/ is 2n � 2 dimensional, so the Gale dual of P.Dn/ is one
dimensional. Thus, Equation (2) implies that

G D �1 1 � � � 1 � 1 � 1 � � � � 1	 ;
with n copies of 1 and n copies of �1. When n is even, n D 2m, Lemma 6 implies
that P.Dn/ is 2n � 3 dimensional, so the Gale dual of P.Dn/ is two dimensional.
We observe that the relation

m�1X

jD0
r2jC1 D

m�1X

jD0
f r2j (3)

holds for Dn when n is even. The linear relations (2) and (3) are linearly
independent, so we deduce that

G D


1 0 : : : 0 0 �1 : : : �1
0 1 : : : 1 �1 0 : : : 0

�
:

We conclude that the Gale dual is the vector configuration in R
2 consisting of n

copies of each of the four vectors Œ˙1; 0�T ; Œ0;˙1�T . �

We now compute the Ehrhart polynomial ofP.Dn/ and proceed as follows. First,
we show in Proposition 3 that P.Dn/ has a P.Dn/-unimodular regular triangulation
	, and then show that this triangulation must be a Z-unimodular triangulation (see
Proposition 4). Now, the structure of the Gale dual of P.Dn/ shows us that, by
Lemma 2, the number of faces in any dimension in any two regular triangulations of
P.Dn/ is the same. Thus, we shall find the number of faces of every dimension in
an arbitrary regular triangulation of P.Dn/, and hence the number of faces of every
dimension in 	, and then apply Lemma 1 to recover the Ehrhart polynomial.

Proposition 3. The polytope P.Dn/ has a P.Dn/-unimodular regular
triangulation.

Proof. Let G be the graph with vertices f1; 2; : : : ; ng and edges i; i C 1 for each
i 2 f1; 2; : : : ; n � 1g along with an edge from n to 1. Let AG be the adjacency
matrix of G. Consider the polytope

PG D
8
<

:X 2 Œ0; 1�
n�n W AGX D XAG;

nX

jD1
Xij D 1 8i;

nX

iD1
Xij D 1 8j

9
=

; :
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The integer points ofPG are permutations commuting withAG , so they are precisely
the automorphisms of G. Since the automorphism group of G is Dn and PG is
integral (see Theorem 2 of [37]), this implies thatPG D P.Dn/. But by Theorem 4.4
of [16], the vertex set of PG is exact (i.e., it is the zero set of a TH1-exact ideal),
which by Theorem 2.4 of [36] and Theorem 4.2 of [21] implies that every reverse
lexicographic triangulation of P.Dn/ is P.Dn/-unimodular. Since every point set
has a reverse lexicographic triangulation, and it is known to be regular (see [34] and
Chap. 9 in [17]), the result follows. �

In order to establish that P.Dn/ is Z-unimodular, we prove that the index of the
lattice generated by its vertices in the lattice aff.P.Dn// \ Z

n�n is one.

Proposition 4. The lattice generated by the vertices of P.Dn/ has index one in the
lattice aff.Dn/ \ Z

n�n.

Proof. First, consider when n is odd. For simplicity, let Dn consist of the matrices
v1; v2; : : : ; v2n, where v2iC1 D ri and v2iC2 is the unique flip in Dn fixing i C 1,
0 � i � n�1. It suffices to prove that ifX 2 Z

n�n andX is an R-linear combination
of the matrices fv2n � v1; v2n�1 � v1; : : : ; v2 � v1g, then X is a Z-linear combination

of these matrices. Assume then that X D P2n
jD2 ˛j .v1 � vj / D

�P2n
jD2 ˛j

�
v1 �

P2n
jD2 ˛j vj , with ˛j 2 R. Let ˛ 2 Œ0; 1/ such that

P2n
jD2 ˛j C ˛ 2 Z. Since e and

v2iC2 are the only elements of Dn with the .i C 1; i C 1/-entry in their support, and
since X has integer entries, we conclude that ˛2iC2 � ˛ 2 Z for all 0 � i � n � 1.
Moreover, for any i , there is a unique flip with the .1; i C 1/-entry in its support.
Since ri is the only rotation with the .1; iC1/-entry in its support, and again sinceX
has integer entries, we deduce that ˛2iC1C ˛ 2 Z for all 0 � i � n� 1. Now recall
from Equation (2) in the proof of Lemma 7 that

Pn�1
iD0 v2iC1 �Pn�1

iD0 v2iC2 D 0, so
we have that

X D
0

@
2nX

jD2
˛j

1

A v1 �
2nX

jD2
˛j vj � ˛

 
n�1X

iD0
v2iC1 �

n�1X

iD0
v2iC2

!

D
n�1X

iD1
.˛2iC1 C ˛/.v1 � v2iC1/C

n�1X

iD0
.˛2iC2 � ˛/.v1 � v2iC2/;

and hence X is a Z-linear combination of fv2n � v1; v2n�1 � v1; : : : ; v2 � v1g. A
similar analysis can be done in the case n is even, and we leave this as an exercise
to the reader. �

We now determine the number of faces of each dimension in a particular
triangulation of P.Dn/. This together with Lemma 1 and Propositions 3 and 4
proves parts (2) and (3) of Theorem 1.

Proof (Theorem 1). First consider when n is odd. By Lemma 7, the Gale dual of
P.Dn/ consists of the vectors fe.1/1 ; e.2/1 ; : : : ; e.n/1 ;�e.1/1 ;�e.2/1 ; : : : ;�e.n/1 gwhere the

e
.i/
1 ;�e.i/1 are copies of the vectors e1;�e1 in R respectively, 1 � i � n. The set
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consisting of the vector e1 is the only extreme ray in one chamber in the Gale dual,
so by Lemma 2, P.Dn/ has a triangulation 	 with maximal dimensional simplices˚
convfGnfri ggj 1 � i � n�. The number of .kC 1/-element subsets of G is

�
2n
kC1

	
.

By Lemma 2, of these subsets, the ones that are not simplices in 	 are those that
contain all of fe; r; r2; : : : ; rn�1g. There are precisely

�
2n�n
kC1�n

	
such subsets, so we

conclude that the number of k-dimensional faces fk in 	 is

fk D
 
2n

k C 1

!
�
 

n

k C 1 � n

!
:

By the symmetry in the Gale dual, this is also the number of k-dimensional faces
in a reverse lexicographic triangulation of P.Dn/, which is P.Dn/-unimodular by
Proposition 3 and hence Z-unimodular by Proposition 4. The Ehrhart polynomial
follows from Lemma 1. Moreover, we see that f2n�2 D

�
2n
2n�1

	 � � n
n�1
	 D n, so the

volume of P.Dn/ is n
.2n�2/Š .

Now consider P.Dn/ when n is even, n D 2m. By Lemma 7, the Gale
dual of P.Dn/ consists of the copies fe.i/1 ; e.i/2 ;�e.i/1 ;�e.i/2 j 1 � i � mg
of e1; e2;�e1;�e2 respectively in R

2. Consider the chamber of the Gale dual
whose extreme rays are the vectors fe1; e2g. By Lemma 2, this chamber gives
the regular triangulation 	 of P.Dn/ whose maximal dimensional simplices are˚
convfGnfr2i�1; r2j ggj 1 � i; j � n�. By a similar counting argument as in the odd

case, we conclude that

fk D
 
2n

k C 1

!
�
 
2

1

! 
2n �m
k C 1 �m

!
C
 
2n � 2m
k C 1 � 2m

!
:

Again, since Lemma 1 implies that P.Dn/ has a P.Dn/-unimodular triangulation
and hence by Proposition 3 a Z-unimodular triangulation with the same face
numbers, the Ehrhart polynomial follows by Lemma 1. Lastly, we see that the
volume of P.Dn/ when n is even is f2n�3, which is

1

.2n � 3/Š

  
2n

2n � 2

!
� 2

 
2n �m

2n �m � 2

!
C
 

2n �m
2n � 2m � 2

!!
D n2

4 � .2n � 3/Š :
�

4 Frobenius Groups

In this section, we discuss triangulations and normalized volumes of Frobenius
polytopes, leading to a proof of Theorem 2. We also establish that all Frobenius
groups are exact, hence proving Proposition 1. For the remainder of this section,
we assume that G � Sn is a Frobenius group. We let N D fu1; u2; : : : ; ung
be its Frobenius kernel (n D jN j), and we let H D fv1; v2; : : : ; vhg be its
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Frobenius complement (h D jH j). We assume throughout that H is the set of coset
representatives for N in G. We let G denote the matrix whose columns form the
Gale dual of P.G/. Recall that G D NH and H \ N D feg, and so G consists of
the nh matrices

u1v1; u2v1; : : : ; unv1; u1v2; u2v2; : : : ; unv2; : : : ; u1vh; u2vh; : : : ; unvh

and we index the columns of G byG in this order. The following lemmas are proven
in [12].

Lemma 8 (See Proposition 4.2 in [12]). If G � Sn is Frobenius, thenPn
iD1 uivj D Jn�n for all j , 1 � j � h, where Jn�n is the n 
 n matrix of

all 1s.

Lemma 9 (See Corollary 4.5 in [12]). If G � Sn is Frobenius, the dimension of
P.G/ is jGj � jH j.

Lemma 8 gives us the jH j � 1 linearly independent relations
Pn

iD1 uiv1 DPn
iD1 uivj , 2 � j � h. The dimension formula in Lemma 9 tells us that the jH j�1

relations in Lemma 8 actually form a basis for the space of linear dependences of
G. As a consequence, we get the Gale dual of P.G/.

Proposition 5. The Gale dual of P.G/ is the vector configuration consisting of n
copies f1.1/; 1.2/; : : : ; 1.n/g of the all-ones vector 1 in R

h�1, together with n copies
f�e.1/i ;�e.2/i ; : : : ;�e.n/i g in R

h�1 of �ei for 1 � i � h � 1, where ei is the i th
standard basis vector. In particular, the uivj column of the matrix G is the vector 1
if j D 1 and �ej�1 otherwise.

Proof. This follows directly from Lemmas 8 and 9. �

Now consider the chamber in the Gale dual whose extreme rays are
f�e1;�e2; : : : ;�eh�1g. From Lemma 2, P.G/ has a corresponding regular
triangulation 	 whose maximal dimensional simplices are

	 D ˚conv fGnfui1v2; ui2v3; : : : ; uih�1
vhgg j 1 � ij � n

�
: (4)

Furthermore, from the structure of the Gale dual as given by Proposition 5, all
regular triangulations of P.G/ (and hence all triangulations, since the Gale dual
tells us all of them are regular) have the same number of k-dimensional faces for
any k. Thus, if we can determine a P.G/-unimodular triangulation of P.G/ and
count the number of faces of dimension k for each k in the triangulation 	, we
can prove Theorem 2. We proceed by showing that P.G/ has a P.G/-unimodular
triangulation and then by determining the number of faces of given dimensions in 	.

Proposition 6. If G is Frobenius, then G has a P.G/-unimodular triangulation.

Proof. Our proof appeals to toric algebra. Let A 2 R
n2�jGj be the matrix whose

columns are the elements ofG written as n2-dimensional column vectors by reading
rows left to right and top to bottom. We index the columns of A by the elements of
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G as in G . The toric ideal IG � CŒx� D CŒxur vs W 1 � r � n; 1 � s � h� is the
kernel of the homomorphism

O� W CŒx�! CŒt�; O�.xur vs / D
Y

1�`;m�n
t
.ur vs /`m
`m ;

and by Lemma 4.1 of [34], IG D hxu � xv j A.u � v/ D 0; u; v 2 Z
jGji. By

Lemmas 8 and 9, ker.A/ has the basis fb1; b2; : : : ; bkg where bi D eu1C eu2 C� � �C
eun � eu1vi � eu2vi � � � � � eunvi for each i . Now if u � v 2 ker.A/ is integral, then
u � v D Ph

iD1 �ibi , where �i 2 Q for each i . In fact, �i 2 Z for each i since
the u`vi component of u � v is ˙�i . We conclude by Corollary 4.4 of [34] that
IG D hxH1 � xH` W 2 � ` � hi where xH` D

Qn
iD1 xui v` for each `.

In fact, fxH1 � xH` W 2 � ` � hg is a Gröbner basis for IG with respect to the
reverse lexicographic order �; here, ur1vs1 comes lexicographically before ur2vs2 if
and only if r1 � r2; s1 � s2. To see this, we use Buchberger’s criterion. For an
introduction to this criterion, Buchberger’s algorithm and details of terms to follow,
particularly S -pairs, see [13]. The essential idea is that, to check whether a set of
polynomials F is a Gröbner basis for the ideal they generate with respect to a term
order, all that one needs to check is whether some very special binomials (the S -
pairs), defined from the possible pairs of elements of F , reduce to zero modulo the
division algorithm by F .

Consider any pair of polynomials fr D xH1 � xHr ; fs D xH1 � xHs in our
generating set for IG . With respect to �, we compute the S -pair S.fr ; fs/ and
see that

S.fr ; fs/ D xHr xHs
�xHr

.xH1 � xHr / �
xHr xHs
�xHs

.xH1 � xHs / D xH1xHr � xH1xHs :

Now since xH1xHr � xH1xHs D xH1.xH1 � xHs / � xH1.xH1 � xHr /, we see that

S.fr ; fs/
frfs D 0 (this denotes the residue of the S -pair modulo the ideal [13]).

Since r; s were arbitrary, Buchberger’s algorithm concludes that fxH1 � xH` W 2 �
` � hg is a Gröbner basis for IG . By Lemma 3, we conclude that P.G/ has a
P.G/-unimodular triangulation. �

We now proceed to prove Theorem 2.

Proof (Theorem 2). By Proposition 6, P.G/ has a P.G/-unimodular triangulation,
and by Proposition 5 and Lemma 2, all triangulations of P.G/ have the same face
numbers. Thus it suffices to determine the number of top dimensional faces in the
triangulation	 in (4) and apply Lemma 1. We more generally determine the number
of k-dimensional faces fk for each k. Any k-simplex in	must be a subset of some
maximal dimensional simplex of 	, and by Lemma 2, all maximal dimensional
simplices in 	 do not contain fu1vi ; u2vi ; : : : ; unvig as a subset for any i � 2.
Conversely, if a .kC 1/-element subset of G does not contain fu1vi ; u2vi ; : : : ; unvig
as a subset for any i � 2, then there exists mi for each i � 2 such that umi vi is not
in the given subset, and this .k C 1/-element subset is therefore a k-simplex that is
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a face of the maximal dimensional simplex convfGnfum1v2; um2v3; : : : ; umh�1
vhgg:

We conclude that a .kC 1/-element subset of G is a k-simplex in	 if and only if it
does not contain fu1vi ; u2vi ; : : : ; unvig as a subset for any i � 2. Thus, to determine
fk , we need to count the number of .kC1/-element subsets ofG that do not contain
fu1vi ; u2vi ; : : : ; unvig as a subset for any i � 2.

Let us call a subset of the form fu1vi ; u2vi ; : : : ; unvig a complete copy. There are�
.hC1/n
kC1

	
.k C 1/-element subsets of G, and the number of such subsets that contain

` complete copies as subsets is
�
hn�`n
kC1�`n

	�
h�1
`

	
. Thus by inclusion-exclusion

fk D
X

`�0

 
.h � `/n
k C 1 � `n

! 
h � 1
`

!
.�1/`:

Since each maximal dimensional simplex in 	 has volume 1
dim.P.G//Š , the result

follows. �

We now establish that Frobenius groups are two-level. This relies on an important
lemma in [12].

Lemma 10 (See Corollary 4.5 in [12]). The complement of any set of jH j elements
of G, one chosen from each of the cosets of N , forms the set of vertices of a facet of
P.G/. All facets of P.G/ arise this way.

Proof (Theorem 1). Let J � G be the set of vertices of a facet of G.
Choose H to be the set of coset representatives of N . By Lemma 10, J D
Gnfui ; uiv1; uiv2; : : : ; uivhg for some fixed i . Now let 1 be the all ones vector
in R

h�1 and let ei be the standard basis vectors. Then we have

X

j…J
j D ui C uiv1 C uiv2 C � � � C uivh D 1 � e1 � e2 � � � � � ek D 0:

Since J was arbitrary, we conclude by Lemma 5 that P.G/ is two-level and thus
TH1-exact. �

5 Miscellaneous Permutation Polytopes

In this section, we study a potpourri of permutation polytopes. We begin by
presenting a method for computing the Ehrhart polynomials of groups that arise
as automorphism groups of finite rooted binary trees. Recall that a finite rooted
binary tree is a simple finite graph with no cycles, all of whose vertices have degree
at most 3, with a distinguished vertex called the root that has degree at most 2
(see Fig. 1 for an example). The crux of this method lies in Theorem 3. We first
introduce some necessary group theoretic preliminaries. For any groups G � Sm,
H � Sn, the direct product G 
 H � Sm 
 Sm � SmCn consists of elements
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f.g; h/ W g 2 G; h 2 H g with product .g1; h1/ � .g2; h2/ D .g1g2; h1h2/. By
construction, the vertices of the permutation polytope of G 
H are block matrices
of the form fg ˚ h W g 2 G; h 2 H g. The wreath product of G by Sn, denoted
G o Sn, is the group f.g; h/ W g 2 Gn; h 2 Sng under the operation defined by

.g0; h0/ � .g; h/ D ..g01; g02; : : : ; g0n/; h0/ � ..g1; g2; : : : ; gn/; h/
WD ..g0h0.1/g1; g

0
h0.2/g2; : : : ; g

0
h0.n/gn/; h

0h/:

Remark 1. The vertices of the permutation polytope P.G o Sn/ are the mn 
 mn
matrices fg ˝ h W g 2 G; h 2 Sng. Moreover, it is shown in [25] and [28]
that P.G o Sn/ is affinely isomorphic to free join of jSnj copies of G, however
this equivalence is not necessarily a lattice equivalence, and hence the Ehrhart
polynomial of P.G o Sn/ can not necessarily be computed by known methods such
as convolution (see [23]).

We now prove that automorphism groups of rooted binary trees are always
composed of direct products and wreath products of groups.

Lemma 11. Let G be the automorphism group of a rooted binary tree T . Then G
can be written as a sequence of direct products of groups and wreath products by
symmetric groups of order at most two.

Proof. Label the vertices of T by the positive integers f1; 2; : : : ; ng such that the
root vertex is labeled 1. First assume the root of T has one child and without loss
of generality assume its label is 2. Letting T2 be the subtree of T rooted at 2, we
have Aut.T / D S1 
 Aut.T2/. Now assume instead that the root has two children
that are labeled 2 and 3 without loss of generality. Let T2 be the subtree of T rooted
at 2 and T3 be the subtree of T rooted at 3. If T2 and T3 are not isomorphic, then
Aut.T / D S1 
 .Aut.T2/ 
 Aut.T3//. If T2 and T3 are isomorphic, then Aut.T / D
S1 
 .Aut.T2/ o S2/. The result then follows inductively. �

The proof of Lemma 11 indicates that computing the Ehrhart polynomial of
groups arising as automorphism groups of rooted binary trees requires repeated
computation of Ehrhart polynomials of direct products and wreath products by
symmetric groups of order two. Theorem 3 indicates how Ehrhart polynomials
behave under wreath products by symmetric groups of order two, and we prove
this theorem now.

Proof (Theorem 3). The vertices of the polytopeP.GoS2/ are precisely the matrices
�

X1 0

0 X2

�
;



0 X1
X2 0

��
; (5)

where theXi are vertices of P.G/. Thus, P.G oS2/ is lattice isomorphic to .P.G/

P.G//˝ .P.G/
P.G//, the free join of P.G/
P.G/ with itself. The result then
follows by Lemma 1.3 in [23]. �
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Fig. 1 A rooted binary tree
with root 1

Theorem 3 gives us a method for computing Ehrhart polynomials and hence
volumes of permutation polytopes from groups arising as automorphism groups
of rooted binary trees. First, given a rooted binary tree T , we compute the
automorphism group Aut(T ) as a sequence of direct products and wreath products.
Then we read the group Aut(T ) from left to right. If we encounter a direct product,
we compute the Ehrhart polynomials of the corresponding groups and take the
product of the polynomials. If we encounter a wreath product, we apply Theorem 3.
This produces the Ehrhart polynomial of the permutation polytope associated to the
tree T .

Example 3. Consider the tree T shown in Fig. 1. Let T2 and T3 be the subtrees
rooted at 2 and 3 respectively. Notice that Aut.T2/ D Aut.T3/ because T is in
fact unlabeled (we only place labels to illustrate how to compute the automorphism
group). The automorphism group of T is therefore S1 
 Œ.Aut.T2// o S2� : Thus, by
Theorem 3, its Ehrhart polynomial is

i.P.Aut .T //; t/

D i.P.S1/; t/ �
 

tX

kD0
i2.P.Aut.T2//; k/ � i 2.P.Aut.T2//; t � k/

!

D 1 �
 

tX

kD0
.k C 1/2 � .t � k C 1/2

!

D
tX

kD0
.k C 1/2 � .t � k C 1/2

D
tX

kD0
k4 C .�2t/

tX

kD0
k3 C .t2 � 2t � 2/

tX

kD0
k2 C .t2 � 1/

tX

kD0
k C .t C 1/2

D 1

30
.t C 1/.t C 2/.t2 C 4t C 5/:
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By Theorem 1, this is precisely the Ehrhart polynomial of D4, which we should
expect, since Aut.T / is S1 
 D4 up to a relabeling of the generating set of D4.
Moreover, we conclude that the volume of P.Aut .T // is 1

30
.

We can further prove that for any rooted T , P.Aut.T // has a P.Aut.T //-
unimodular regular triangulation.

Proposition 7. If T is a rooted tree, thenP.Aut .T // has aP.Aut .T //-unimodular
regular triangulation.

Proof. Let T be any rooted tree, and let AT be its adjacency matrix. Consider the
polytope

PT D
8
<

:X 2 Œ0; 1�
n�n W ATX D XAT ;

nX

jD1
Xij D 1 8i;

nX

iD1
Xij D 1 8j

9
=

; :

The integer points of PT are permutations commuting withAT , so they are precisely
the automorphisms in Aut.T /. Since PT is integral (see Theorem 2 of [37]), this
implies that PT D P.Aut.T //. But by Theorem 4.4 of [16], PT is exact, which by
Theorem 2.4 of [36] and Theorem 4.2 of [21] implies that any reverse lexicographic
triangulation of P.Aut.T // is P.Aut.T //-unimodular. Since reverse lexicographic
triangulations are regular, the result follows. �

We continue our study of miscellaneous permutation polytopes by looking at the
alternating group, in particular proving Proposition 2. The following proposition
shows the difficulty of dealing with general permutation polytopes.

Proof (Proposition 2). Since P.A2/ and P.A3/ have one and three vertices respec-
tively, they are trivially two-level. Since A4 is a Frobenius group, Proposition 1
implies that P.A4/ is two-level. For n � 5, by choosing .
; t; h/ D .e; 1; 2/

as in Theorem 3 of [14], we deduce that P.An/ has the facet defining inequality
`.x/ � n�2, where `.x/ DPn

jD3 xj;jC
Pn

jD3 xj;1C
Pn

jD3 x1;j :Now `.e/ D n�2,
`..1 2/.4 5// D n � 4, and `..3 4 5// D n � 5, and hence P.An/ is not two-level
for n � 5. To show that P.An/ is at least .b n

4
c C 1/-level for n � 8, we evaluate `

on 
i , where 
0 D e and 
k D .1 2/.3 4/ � � � .4k � 1 4k/ for 1 � k � b n
4
c. �

To conclude the paper, the following table lists the subgroups of S3, S4, and S5
and some of their Ehrhart polynomials. Two groups stand out as incomplete, the
alternating group A5 and the general affine group of degree one over the field of
five elements. The latter group is generated by taking the semidirect product of the
additive and multiplicative groups of the field of five elements and is denoted by
GA.1; 5/.
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Monotone Paths in Planar Convex Subdivisions
and Polytopes�

Adrian Dumitrescu, Günter Rote, and Csaba D. Tóth

Abstract Consider a connected subdivision of the plane into n convex faces where
every vertex is incident to at most 	 edges. Then, starting from every vertex there
is a path with at least ˝.log	 n/ edges that is monotone in some direction. This
bound is the best possible. Consider now a connected subdivision of the plane into
n convex faces where exactly k faces are unbounded. Then, there is a path with
at least ˝.log.n=k/= log log.n=k// edges that is monotone in some direction. This
bound is also the best possible. Our methods are constructive and lead to efficient
algorithms for computing monotone paths of lengths specified above. In 3-space,
we show that for every n � 4, there exists a polytope P with n vertices, bounded
vertex degrees, and triangular faces such that every monotone path on the 1-skeleton
of P has at most O.log2 n/ edges. We also construct a polytope Q with n vertices,
and triangular faces, (with unbounded degree however), such that every monotone
path on the 1-skeleton of Q has at most O.logn/ edges.
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1 Introduction

A geometric graph G D .V;E/ in Euclidean d -space is a set V of distinct
points (vertices) in Euclidean d -space R

d , and a set E of line segments (edges)
between vertices such that no vertex lies in the relative interior of any edge. For our
investigation, it is convenient to define an extended geometric graph G D .V;E/,
where E may also contain rays, each emitted by a vertex, and lines (disjoint from
vertices). A directed path p in an extended geometric graph G is monotone (resp.,
weakly monotone) if there exists a unit vector u such that the inner product e � u
is positive (non-negative) for every directed edge e of p. In R

2, in particular, the
direction of a unit vector u D .cos �; sin �/ is determined by the angle � 2 .��; ��.
A directed path p is x-monotone (resp., y-monotone) if it is monotone in direction
0 (resp., �

2
). The size (or length) of a path is the number of edges in the path, or

equivalently, one plus the number of vertices on the path. Notice that any path
(monotone or not) in an extended geometric graph contains at most two rays.

We study monotone paths in the 1-skeletons of polytopes and convex subdi-
visions. The 1-skeleton G.P / of a bounded polytope P in R

d is the geometric
graph formed by the vertices and edges of P . Similarly, the 1-skeleton G.P / of
an unbounded polytope P is the extended geometric graph formed by the vertices
and edges of P .

A convex subdivision (for short, subdivision) of R
d is a set ˘ of (bounded

or unbounded) convex polytopes (called faces) that tile R
d . The 1-skeleton of

a subdivision ˘ of the plane R
2 is the extended geometric graph G.˘/ whose

vertices are the points incident to three or more edges, and whose edges are
the line segments, rays, and lines lying on the common boundary of two faces.
To exclude some trivial cases, we always consider convex subdivisions whose
1-skeleton is connected, referred to as connected subdivisions for short. We are
looking for long monotone paths in the 1-skeletons of polytopes and convex
subdivisions of the plane. Our results are the following.

Theorem 1. Let ˘ be a connected subdivision of the plane into n convex cells in
which every vertex is incident to at most 	 edges. Then, for every vertex v, there is
a weakly monotone path with at least c log	 n edges starting from v, where c > 0 is
an absolute constant. Apart from the constant c, this bound is the best possible.

Theorem 2. Let˘ be a connected subdivision of the plane into n convex cells, k of
which are unbounded with n > k � 3. Then G.˘/ contains a monotone path with
at least c log n

k
= log log n

k
edges, where c > 0 is an absolute constant. Apart from

the constant c, this bound is the best possible.
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We also consider long monotone paths in the 1-skeleton of a convex polytope in
3-space. We present two constructions, one with bounded vertex degrees and one
with arbitrary degrees.

Theorem 3. For every n � 4, there is a polytope P in R
3 with n vertices, bounded

vertex degrees, and triangular faces such that every monotone path in G.P / has at
most O.log2 n/ edges.

Theorem 4. For every n � 4, there is a polytope Q in R
3 with n vertices and

triangular faces such that every monotone path inG.Q/ has at mostO.logn/ edges.

We do not know whether the bounds in Theorems 3 and 4 are asymptotically
tight. The diameter of a bounded degree graph on n vertices is ˝.logn/. It follows
that every monotone path connecting a diametral pair of vertices of a polytope with
n vertices of bounded degree has ˝.logn/ edges. If the maximum vertex degree
of the polytope is not bounded, then a lower bound of ˝.logn= log logn/ follows
from the result of Chazelle et al. [4] (see below), applied to the dual graph of a plane
projection, using reciprocal diagrams and the Maxwell-Cremona correspondence.

Related work. It is well known that the classical simplex algorithm in linear
programming produces a monotone path on the 1-skeleton of a d -dimensional
polytope of feasible solutions; it is called a parametric simplex path. According
to the old monotone Hirsch conjecture [17], for any vector u, the 1-skeleton of
every d -dimensional polytope with n facets contains a u-monotone path of at most
n � d edges from any vertex to a u-maximal vertex. For the weakly monotone
version, counterexamples have already been found by Todd [15] in the 1980s.
Recent counterexamples for this conjecture found by Santos [14] show that the
monotone variant is also false. It is not known whether the Hirsch conjecture can
be relaxed so that it holds when the length n � d is replaced by some appropriate
polynomial in d and n.

The monotone upper bound problem posed by Klee [8] asks for the maximum
number of edges M.d; n/ of a monotone path on the 1-skeleton of a polytope
with n � d C 1 facets in R

d . An obvious upper bound for M.d; n/ (within 1)
is the maximum number of vertices such a polytope can have, as given by the
Upper Bound Theorem [9]. Pfeifle [10] and Pfeifle and Ziegler [11] have shown
that M.d; n/ always attains this bound for 1 � d � 4, but it does not always reach
it for d D 6.

Balogh et al. [3] showed that there is a convex subdivision ˘n generated by n
lines in the plane with O.n2/ faces such that G.˘n/ contains a monotone path of
length˝.n2=c

p
n/ for some constant c > 1. In such a monotone path, many consec-

utive edges are collinear. Dumitrescu [5] proved that every simple arrangement of n
lines admits a monotone path of length at least n in the convex subdivision generated
by n lines. On the other hand, for every n � 2, there exists a line arrangement
in which no monotone path is longer than 3n=2 C O.logn/. Again, consecutive
collinear edges are allowed in such a path. If these are disallowed, the lower bound is
unchanged but the upper bound drops to 4n=3CO.logn/. As regarding algorithms
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for monotone paths, Arkin et al. [1] devised a polynomial-time algorithm that
computes an x-monotone path between two given points in the plane in the presence
of polygonal obstacles, or reports that none exists.

A monotone face sequence in a convex subdivision ˘ is a sequence of faces
such that there is a direction u such that any two consecutive faces, f1 and f2, are
adjacent and a vector of direction u crosses their common boundary from f1 to f2.
Chazelle et al. [4] showed that in a subdivision of the plane into n convex faces
in which every face is adjacent to at most d other faces, there is a monotone face
sequence of length

˝.logd nC logn= log logn/; (1)

and this bound is tight. Moreover, a monotone face sequence of this length can
even be achieved by faces stabbed by a line. The latter result was generalized to
d -dimensions by Tóth [16]: for every subdivision of Rd into n convex faces, there
is a line that stabs˝..logn= log logn/

1
d�1 / faces, and this bound is the best possible.

Motivation. We were led to the above result of Chazelle et al. [4] by the complexity
analysis of an algorithm for partial matching between two finite planar point
sets under translations [12]. There, one could show that a certain subdivision Q
contained no monotone face sequence longer than some polynomial in the given
parameters. If the lower bound ˝.logd nC logn= log logn/ could be strengthened
to a polynomial bound of the form ˝.n˛/ for some ˛ > 0, this would have implied
a polynomial bound on the number of faces of Q.

If P is the vertical projection of a piecewise linear convex terrain OP in R
3, one

can apply a polarity transform to this terrain with respect to the paraboloid z D
x2 C y2, yielding another piecewise linear convex terrain OP �. The projection P �
of this terrain is a reciprocal diagram of P (cf. [2]): its graph is dual to the graph
of P , in the sense that vertices of P � correspond to faces of P and vice-versa.
Each edge in P � has a corresponding edge in P , and moreover, these two edges are
perpendicular. (This last property distinguishes a reciprocal diagram from a general
drawing of the dual graph of P .) A monotone path in P becomes a monotone face
sequence in P �.

Thus, for subdivisions P that are projections of convex terrains, the question
about long monotone paths is completely answered by applying the tight bound
of (1) forQ D P �. However, for general subdivisions, the problems are not directly
related, and in fact, the answers are different: We will see in Sect. 2 that one cannot
add any other term that grows to infinity (such as the term˝.logn= log logn/ in (1))
to the lower bound in Theorem 1.

Outline. We start with the proof of Theorem 1 in Sect. 2. We study convex subdi-
visions of simple polygons in Sect. 3.1. The tools developed there are instrumental
in the proof of Theorem 2 in Sect. 3.2. The proofs of Theorems 3 and 4 regarding
monotone paths on polytopes appear in Sects. 4 and 5, respectively. We conclude
with some open problems in Sect. 6.
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2 Proof of Theorem 1

Lower bound. The lower bound in Theorem 1 follows from the following lemma
in a straightforward way (by counting, or inductively).

Lemma 1. Let v be a vertex in a connected convex planar subdivision ˘ . Then
G.˘/ contains a spanning tree rooted at v such that all paths starting at v are
weakly monotone.

Proof. For a generic direction u, we define the rightmost path R.u/ starting at v as
follows; see Fig. 1(left): start at v and always follow the rightmost outgoing edge
that is weakly monotone in direction u until we arrive at an unbounded ray.

Now we start rotating u clockwise. At some direction u0, R.u0/ will be different
from R.u/. At that point, R.u/ is still weakly monotone in direction u0. Now, any
vertex w (and any edge) in the region between R.u/ and R.u0/ can be reached
by a weakly monotone path in direction u0. Indeed, simply start at w and go
monotonically in the direction �u0 until reachingR.u/ orR.u0/. From there, follow
R.u/ or R.u0/ to v. In this way, we can form a spanning tree of all vertices between
R.u/ and R.u0/ with the desired properties.

Continuing the rotation in this way, we eventually reach all vertices and all
infinite rays.

The subdivision in Fig. 2 shows that the lemma does not hold with (strictly)
monotone paths. However, if there are no angles of 180ı, the statement extends
to strictly monotone paths.

Let v be a vertex in a connected convex planar subdivision ˘ . By Lemma 1,
G.˘/ contains a spanning tree rooted a v such that all paths starting at v are weakly
monotone. The maximum degree in G.˘/ is at most 	. Hence the spanning tree
contains a path of size ˝.log	 n/ from v to some vertex of G.˘/.

R(u)

R(u )

R(u )

u

u
u

v

Fig. 1 Left: The rightmost pathR.u/ starting from vertex v in direction u. Right: An balanced tree
of maximum degree 4, which is the extended graph G.˘/ of a convex subdivision ˘
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v0

Fig. 2 A convex subdivision
where only the five vertices
marked with empty dots can
be reached from v0 along
(strictly) monotone paths

Upper bound. If the maximum degree 	 is �.n/, Theorem 1 gives only a trivial
statement. Dividing the plane into n convex sectors, by n rays starting from the
origin shows that, indeed, there is no non-constant lower bound on the length of
monotone paths in this case.

This construction generalizes for any 	 2 N, and n � 3. We construct a convex
subdivision˘ such thatG D G.˘/ is a tree with maximum degree	 and diameter
O.log	 n/. See Fig. 1(right). We first construct the tree G, and then obtain a convex
subdivision˘ by attaching two rays to each leaf of G. Arrange the vertices of G on
concentric circles of radii 0; 1; 2; : : : ; dlog	 ne. Place the root vertex v0 at the center,
and arrange 	 children of v0 on the circle of radius 1 such that v0 lies in the convex
hull of its children. For j D 1; 2; : : : ; blog	 nc, to each vertex on a circle of radius j ,
attach 	 � 1 children and place them on the circle or radius j C 1. Inductively, we
can ensure that the cyclic order of the vertices on circle j corresponds to the cyclic
order of the direction vectors of the edges that connect them to the previous circle
j � 1. Note that the leaves of G are located on the largest circle, and we obtain a
convex subdivision˘ withG D G.˘/ by adding two infinite rays to each leaf ofG.

3 Proof of Theorem 2

3.1 Monotone Paths in Simple Polygons

Monotone polygons. We start by introducing some notation for simple polygons
in R

2. A polygonal domain (for short, polygon) P is a closed set in the plane
bounded by a piecewise linear simple closed curve. A polygon P is monotone if
its boundary is the union of two paths, which are both monotone with respect to a
vector u. In particular, P is y-monotone if it is bounded by two y-monotone paths.
A convex subdivision of a polygon P is a set ˘ D ˘.P / of pairwise disjoint
open convex sets (called faces) such that the union of their closures is P . The
faces in ˘ together with the complement NP D R

2 n P (the outer face) form a
(nonconvex) subdivision of the plane ˘ [ f NP g. We also define a geometric graph
G.˘/ D G.˘.P //, where the vertices are the union of all vertices of P and the
set of points incident to three or more faces in ˘ [ f NP g; and the edges are the line
segments lying on the common boundaries of two faces in ˘ [ f NP g.
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A simple but crucial observation is that for every vertex v of G.˘/ lying in
the interior of P and every direction u, there is an edge vw such that u � �!vw � 0,
otherwise the face incident to v in direction u would not be convex. This implies the
following.

Observation 1. Let P be a simple polygon with a convex subdivision ˘ D ˘.P /,
let v be a vertex of G.˘/ lying in the interior of P , and u be a unit vector. Then

(i) There is a weakly u-monotone directed path in G.˘/ from v to some vertex on
the boundary of P ;

(ii) If u is not orthogonal to any edge of G.˘/, then this path is u-monotone.

Proof. We can construct a required path as follows. Start with a single-vertex path
p D v, and successively append to p new edges whose inner product with u is non-
negative. If G.˘/ has no edges orthogonal to u, then any weakly u-monotone path
is necessarily (strictly) u-monotone. �

Recall that a y-monotone polygon is bounded from the left and from the right
by two y-monotone directed paths. The common start (resp., end) point of the two
boundary paths is called the bottom (resp., top) vertex of P .

Observation 2. Let ˘ D ˘.P / be a convex subdivision of a y-monotone polygon
P with no horizontal edges. For every vertex v ofG.˘/, there is a y-monotone path
from the bottom vertex of P to the top vertex of P which is incident to v.

Proof. The claim is immediate if v is on the boundary of P . Assume that v is in
the interior of P . By Observation 1, G.˘/ contains monotone paths from v to the
boundary of P in the two opposite directions �=2 and ��=2. The combination of
these paths (together with parts of the boundary of P , if needed) gives the required
y-monotone path through v from the bottom to the top vertex of P . �

Criterion for y-monotone polygons. To prove the lower bound in Theorem 2, we
constructively build a monotone path of the required length for any given convex
partition. In our recursive construction, we successively subdivide a y-monotone
polygon P into smaller polygons along certain y-monotone paths in G.˘.P //.
Lemma 2 below provides a criterion for producing y-monotone pieces. A vertex
v in a geometric graph G is called y-maximal (resp., y-minimal) if all edges of G
incident to v lie in a closed halfplane below (resp., above) the horizontal line passing
through v. A vertex v is y-extremal if it is y-maximal or y-minimal. It is clear that
the boundary of a y-monotone polygon has exactly two y-extremal vertices, namely
its top vertex and its bottom vertex.

Lemma 2. Let P be a simple polygon with a convex subdivision ˘ such that no
edge in G D G.˘/ is horizontal. Let H be a subgraph of G that contains all edges
and vertices of P . Then all bounded faces of H are y-monotone polygons if and
only if all y-extremal vertices of H are convex vertices of P .

Proof. Assume that all bounded faces of H are y-monotone polygons. Suppose
that H has a y-extremal vertex v. We may assume without loss of generality that
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H ⊂ G(Π)

v1
v2

P

Fig. 3 The graph G.˘/ of a convex partition ˘ of a simple polygon P . A subgraph H in bold
contains all edges of P . The y-maximal (resp., y-minimal) vertices of H are marked with empty
squares (resp., empty circles). Vertices v1 and v2 are y-extremal in H , but not convex vertices of
P (here they are not even vertices of P )

all edges of H incident to v are in the halfplane above v. Let fv be the face of H
incident to v that lies directly below v. Face fv has a reflex interior angle at v, and
v is neither the top nor the bottom vertex of fv. Hence fv is not y-monotone, and
so it has to be an unbounded face of H . Since H contains all boundary edges of P ,
the face fv is the unbounded face of G, as well. It follows that v is a convex vertex
of P .

Assume that all y-extremal vertices of H are convex vertices of P . Consider a
bounded face f ofH . Let p1 and p2 be edge-disjoint directed paths on the boundary
of f from a bottom (lowest) vertex of f to a top (highest) vertex of f (ties are
broken arbitrarily), such that f lies on the right side of p1 and on the left side of p2.
Suppose for contradiction that f is not y-monotone. We may assume without loss of
generality that p2 is not y-monotone, as in Fig. 3 (where f is the shaded face). The
first (resp., last) edge of p2 has a positive inner product with .0; 1/ by construction.
There are two consecutive edges e1 and e2 in p2 such that e1 � .0; 1/ > 0 > e2 � .0; 1/,
since otherwise p2 would be y-monotone. Let v be the common vertex of these two
edges. Since f is on the left side of both e1 and e2, these two edges are consecutive
in the counterclockwise rotation order of the edges ofH incident to v. Hence,H has
no edge incident to v in the halfplane above v, and so v is y-extremal (y-maximal)
in H . However, v is a reflex vertex of face f , hence it cannot be a convex vertex of
P (specifically, v it is either interior to P , or a reflex vertex of P ). This contradicts
our initial assumption and completes the proof. �

Subdividing a polygon into y-monotone pieces. Our upper bound relies on the
following two lemmas. In Lemma 3, we partition the bounded faces of a convex
subdivision of the plane into monotone polygons. In Lemma 4, we subdivide a y-
monotone polygon P into smaller y-monotone polygons which are not incident to
both the top and the bottom vertex of P .

Lemma 3. Let˘ be a subdivision of the plane into n convex faces, k � 3 of which
are unbounded. Then there is a subset ˘ 0 � ˘ of at least .n � k/=.k � 2/ faces
such that ˘ 0 is the convex subdivision of a monotone polygon.
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Proof. Let H denote the graph of vertices and bounded edges of G D G.˘/,
without rays and lines. We proceed by induction on the number of 2-connected
components, i.e., blocks of H . In the base case, H is 2-connected. Then the union
of the closures of all bounded faces in ˘ forms a simple polygon P . Suppose
that no edge of G is horizontal or vertical. Let V0 be the set of y-extremal reflex
vertices of P . If V0 is empty, then P is a y-monotone polygon, and the n � k
bounded faces form a convex subdivision of P . If V0 is nonempty, then we construct
a y-monotone path �.v/ for each v 2 V0, in an arbitrary order, as follows. If v 2 V0
is y-maximal (resp., y-minimal), then construct �.v/ starting from v by successively
appending edges in direction �=2 (resp.,��=2) until the path reaches another vertex
on the boundary of P or a previously constructed path �.v0/, v0 2 V0. The paths
�.v/ subdivide P into jV0j C 1 simple polygons, each of which is y-monotone by
Lemma 2.

It remains to show that jV0j � k � 3 after an appropriate rigid motion. Notice
that every y-extremal reflex vertex of P is a y-extremal vertex of some unbounded
face. An unbounded face cannot have both a top and a bottom vertex. Two of the
unbounded faces, namely those containing rays in directions .1; 0/ and .�1; 0/, have
neither a top nor a bottom vertex. This already implies jV0j � k � 2. Let �!e0 be a
ray edge of G emitted by an extremal vertex of the convex hull of P . Assume, by
applying a reflection if necessary, that the unbounded face on the left of �!e0 is not
a halfplane. Rotate the subdivision such that no edge in G is horizontal and edge�!e0 has the smallest positive slope. Now the unbounded face above �!e0 has a bottom
vertex on the convex hull of P , which is not a reflex vertex of P . Therefore, we
have jV0j � k � 3.

Assume now that H has several 2-connected components. We distinguish two
cases. Case 1: H is disconnected. Then G is also disconnected, and it is the disjoint
union of G1 and G2, which are incident to k1 and k2 unbounded faces, respectively.
Then there is at most one face (a parallel strip) incident to both G1 and G2. Hence
k1 C k2 � k C 1, and so .k1 � 2/ C .k2 � 2/ < k � 2. Induction completes the
proof as follows: Let G1 and G2 have Nn1 and Nn2 bounded faces, with Nn1 C Nn2 D
Nn D n � k. Then we have max. Nn1

k1�2 ;
Nn2

k2�2 / � Nn
k�2 , and hence it is sufficient to

find the required subdivision in G1 or G2. Case 2: H is connected but has a cut
vertex v. Then G decomposes into subgraphs G1; : : : ; G`, for some ` � 2, whose
only common vertex is v. Gi can have a reflex angle incident to v; thus we augment
it to a convex subdivision OGi by adding a ray incident to v. Denote by ki the number
of unbounded faces in OGi for i D 1; : : : ; `. G has ` unbounded faces between
consecutive subgraphs around v, which are not faces in some OGi . On the other hand,
each OGi has two unbounded faces that are not faces of G. Hence

P`
iD1.ki � 2/ D

k � ` � k � 2. Induction completes the proof as above. �

Lemma 4. Let P be a y-monotone polygon with bottom vertex s, top vertex t , and
a convex subdivision ˘ . Let m be the maximum size of a monotone path in G D
G.˘/. Then at most two faces in˘ are incident to both s and t ; the remaining faces
can be partitioned into at most mC 1 sets, each of which is the convex subdivision
of a y-monotone polygon whose top or bottom vertex is not in fs; tg.
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Fig. 4 A y-monotone polygon P with a bottom vertex s, a top vertex t , and a convex subdivision.
Left: faces f1 and f2 are the same, but neither is incident to t . Middle: faces f1 and f2 are not
incident to t . Right: faces f1 and f2 are both incident to t

Proof. If a face f 2 ˘ is incident to both s and t , then by convexity the closure of
f contains the line segment st . Thus, at most two faces in ˘ are incident to both s
and t . We first partition the remaining faces into two subsets, lying on opposite sides
of a monotone path ˛ such that the faces in each subset are incident to at most one
of s and t . Then we further partition each of the two subsets to form y-monotone
polygons. Let H�st and HCst denote the closed halfplanes on the left and right of st ,
respectively. We distinguish two cases.

Case 1: no face in ˘ is incident to both s and t. We define two points, v1 and v2,
in the relative interior of the segment st . Let f1 2 ˘ be a face incident to s whose
closure contains an initial portion of st , and let the segment sv1 be the intersection of
the closure of f1 with st . Refer to Fig. 4(left, middle). We may assume, by applying
a reflection with respect to the y-axis if necessary, that the interior of f1 intersects
H�st . Since f1 is not incident to t , there is an edge in G that contains v1 and enters
the interior ofH�st . If there is some edge inG that contains v1 and enters the interior
of HCst or if v1 is on the boundary of polygon P , then let v2 D v1. Otherwise, all
edges of G incident to v1 lie in H�st , hence two consecutive edges are contained in
st . Then v1 is incident to a unique face f2 2 ˘ on the right of st . Since f2 is not
incident to both s and t , it has a vertex along st which is different from both s and t ;
let v2 be an arbitrary such vertex. In summary: the segment v1v2 � st is covered by
edges of G; an edge of G contains v1 and enters the interior of H�st ; and v2 is either
on the boundary of P or an edge of G contains v2 and enters the interior of HCst .

Let u be a unit vector orthogonal to st . Slightly rotate u, if necessary, such that
u is not parallel or orthogonal to any edge of G and u � ��!v1v2 > 0 if v1 ¤ v2. By
Observation 1, there is a .�u/-monotone path from v1 to the boundary of P , and
a u-monotone path from v2 to the boundary of P . The union of these two paths
and the segment v1v2 forms a u-monotone path, denoted ˛, between two boundary
points of P and passing through v1 and v2. Direct ˛ such that its starting point is in
H�st . Since the endpoints of ˛ are on the boundary of P , every face in ˘ is either
on left or on right side of ˛. By construction, every face incident to s is on the right
of ˛, and every face incident to t is on the left of ˛.
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By our assumption, ˛ has at most m edges. Construct a path �.v/ for every
y-extremal interior vertex v of ˛, in an arbitrary order, as follows. If v is a y-
maximal (resp., y-minimal) vertex in ˛, then construct y-monotone path �.v/
starting from v by successively appending edges in direction �=2 (resp., ��=2)
until the path reaches a vertex on ˛, the boundary of P or a previously constructed
path �.v0/, v0 ¤ v. These paths �.v/ together with ˛ subdivide P into at most
.m� 1/C 2 D mC 1 simple polygons, each of which is y-monotone by Lemma 2.

Case 2: some face in ˘ is incident to both s and t. Let f1 2 ˘ be a face incident
to both s and t . Refer to Fig. 4(right). We may assume, by applying a reflection with
respect to the y-axis if necessary, that the interior of f1 intersects H�st . Let u be a
unit vector orthogonal to st . Slightly rotate u, if necessary, such that u is not parallel
or orthogonal to any edge of G and u � �!st > 0. Let v1 be the u-minimal vertex of f1.
We need to be more careful when defining v2. If there is a face f2 (possibly f2 D f1)
incident to both s and t whose interior intersects HCst , then let v2 be the u-maximal
vertex of f2. Otherwise, if st is an edge of the face f1 and G has vertices in the
relative interior of st , then let v2 be an arbitrary such vertex. Otherwise, st is an
edge on the boundary of P , and then let v2 D s.

Similarly to Case 1, construct a .�u/-monotone path from v1 to the boundary
of P , and a u-monotone path from v2 to the boundary of P . A u-monotone path ˛
is formed by the union of these two paths, a path from v1 to s along the boundary
of f1, and a path from s to v2 along the boundary of f1 or f2. Direct ˛ such that its
starting point is in H�st . Since the endpoints of ˛ are on the boundary of P , every
face in ˘ is either on the left or on the right side of ˛. By construction, every face
incident to s other than f1 and f2 (if it exists) is on the right of ˛, and every face
incident to t is on the left of ˛.

By our assumption, ˛ has at most m edges. Construct a path �.v/ for every y-
extremal interior vertex of ˛ that precedes v1 or follows v2 as in Case 1. If v1 is
an interior vertex of ˛, then let �.v1/ be the y-monotone path from v1 to t along
the boundary of f1. Similarly, if v2 is an interior vertex of ˛, then let �.v2/ be the
y-monotone path from v2 to t along the boundary of f1 or f2. Note that some of the
interior vertices of ˛ between v1 and v2 may be on the boundary of P . If exactly k
interior vertices of ˛ are on the boundary of P , then ˛ subdivides P into at most
k C 2 simple polygons. The paths � (which are not defined for vertices on the
boundary of P ) further subdivide these polygons into at most .m� 1/C 2 D mC 1
simple polygons, each of which is y-monotone by Lemma 2.

By construction, one of these polygons is formed by the faces in ˘ incident to
both s and t . Thus, the faces not incident to both s and t are partitioned into at most
m sets, each of which is the convex subdivision of a y-monotone polygon whose
top or bottom vertex is not in fs; tg. �

In Lemma 4, we have partitioned almost all faces of ˘ into subsets that each
form a y-monotone polygon. In the proof of the lower bound in Theorem 2, we will
recurse on only one of these polygons.
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Corollary 1. Let P be a y-monotone polygon with bottom vertex s and top vertex
t . Let ˘ be a subdivision of P into n convex faces. Let m be the maximum size
of a monotone path in G D G.˘/. If n � 3, then there is a subset ˘ 0 � ˘ of
at least n=.m C 3/ faces such that ˘ 0 is the convex subdivision of a y-monotone
sub-polygon of P whose top or bottom vertex is not in fs; tg.

3.2 Proof of Theorem 2

Lower bound proof. Let 3 � k � n and ˘ be a subdivision of the plane into
n convex faces, where k faces are unbounded. By Lemma 3 there exists a subset
˘0 � ˘ of n0 � .n�k/=.k�2/ faces that form a convex subdivision of a monotone
polygon P0. We may assume, by applying a rotation if necessary, that no edge of
G.˘/ is horizontal and P0 is y-monotone. We can assume that n0 � 4. It is enough
to show that G.˘0/ contains a monotone path of size at least c0 logn0= log logn0,
where c0 > 0 is an absolute constant.

Let m denote the maximum size of a monotone path in G.˘0/. We use
Corollary 1 to construct a nested sequence ˘0 � ˘1 � � � � � ˘t such that
j˘i j D ni � n0=.mC 3/i and˘i is a convex subdivision of a y-monotone polygon
Pi for i D 1; 2; : : : ; t . Moreover, the bottom or top vertex of Pi is different from
that of Pi�1 for i D 1; 2 : : : ; t . If j˘i j > 2, then ˘iC1 can be constructed from ˘i

by Corollary 1. We may therefore assume that nt 2 f1; 2g.
Let ˇt be an arbitrary y-monotone path in G.˘t/ between the top and bottom

vertex of Pt . For i D t; t � 1; : : : ; 1, the path ˇi can be extended to a y-monotone
path ˇi�1 between the top and bottom vertex of G.˘i�1/ by Observation 1. Note
that ˇi�1 is strictly longer than ˇi , since at least one of two endpoints of ˇi is not
the top or bottom vertex of Pi�1. Therefore, ˇ0 is a y-monotone path with at least
t C 1 edges, and t � m � 1 by the definition of m. We have

2 � nt � n0

.mC 3/t �
n0

.mC 3/m�1 :

hence n0�2.mC3/m�1D21C.m�1/ log.mC3/. This impliesm�c0 logn0= log logn0, for
some absolute constant c0 > 0, as required.

Upper bound construction. For every pair of integers k; n 2 N, where 3 � k < n,
we subdivide the plane into a set ˘ of ˝.n/ convex cells, exactly k of which are
unbounded, such that every monotone path in G.˘/ has O.log n

k
= log log n

k
/ edges.

We first construct the unbounded faces. If k D 3, then let Q1 be a triangle, and
subdivide the exterior of Q1 into 3 convex faces by 3 rays emitted from the vertices
of Q1. If k � 4, then subdivide the plane into k unbounded faces by a star graph
with bk=2c leaves, q1; : : : ; qbk=2c, and 2 or 3 rays emitted from each leaf (similarly
to the subdivision in Fig. 1(right)). Then replace each vertex qi , 1 � i � bk=2c
by a small triangle Qi . Now it is enough to subdivide each triangle Qi into at least
n0 D 5n=k bounded faces such that every monotone path restricted to Qi has
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Fig. 5 Left: The subgraph R with m D 4. The vertices in Z are marked with empty circles. In
one phase of our construction, the vertices in Z are replaced by long and skinny triangles. Right:
A vertex v 2 Z is replaced by a skinny triangle that contains an affine copy of R, and the space
between the triangle and R is triangulated

O.logn0= log logn0/ edges. Since a monotone path can visit at most two triangles
Qi , it has O.logn0= log logn0/ edges.

Let m D 2 � dlogn0= log logn0e. The basic building block of our construction is
a plane geometric graph R shown in Fig. 5(left). The outer face of R is a rhombus
symmetric with respect to both the x- and the y-axes. Two opposite corners of
the rhombus are connected by an x-monotone zig-zag path 
 of 2m edges. The
edges of 
 have alternately negative and positive slopes, and so the 2m � 1 interior
vertices are alternately y-minimal and y-maximal. Denote by Z the y-minimal
interior vertices of 
 , so jZj D m. The y-minimal interior vertices of 
 are joined
to the bottom vertex s of the rhombus, and the y-maximal ones to the top vertex t .
The vertices s and t are sufficiently far below and respectively far above 
 such
that all bounded faces of R are convex. The graph R contains a monotone path
of size 2m in directions close to horizontal, but every monotone path has at most
three edges in directions close to vertical. After an appropriate affine transformation,
every monotone path has at most three edges in all directions except for those in a
prescribed interval of length �

2m
in Œ0; 2�/.

We construct a subdivision ˘ of Q in m phases. For i D 1; : : : ; m, we maintain
a convex subdivision ˘i , a set Zi of special vertices in G.˘i/, and a special edge
incident to each vertex in Zi . For constructing ˘1, consider a small affine copy of
R, such that any monotone path has at most three edges except for directions in the
interval . �

2m
; 2�
2m
/. Place this copy ofR in the interior ofQ, and triangulate the space

between R and Q arbitrarily to obtain the convex subdivision ˘1 of Q. For each
v 2 Z1 D Z, let the special edge of v be vs, the edge joining v to the bottom vertex
of R.

In phase i D 2; : : : ; m, we construct ˘i from ˘i�1 as follows. Replace each
vertex v 2 Zi�1 by a long skinny triangle tv along the special edge incident to v as
in Fig. 5(right). In the interior of tv, place a small affine copy of R near the midpoint
of tv, such that any monotone path has at most three edges inR except for directions

in the interval
�
.2i�1/�
2m

; 2i�
2m

�
. Denote by rv the outer boundary of this copy of R.

Triangulate the space between rv and tv arbitrarily by usingO.1/ edges; the edges of
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the triangulation are almost parallel to the special edge sv if tv is sufficiently skinny
and rv is sufficiently small. Now, any monotone path � can enter the interior of at
most two of the m skinny triangles tv: to see this, note that the direction � in which
� is monotone is close to perpendicular to at most one skinny triangle, say tv0 . For
any other tv ¤ tv0 , � must either enter or leave through the vertex s if it visits the
interior. This means that at most two of these triangles can be visited. Moreover, if
two of them are visited, then tv0 cannot be entered.

Let Zi be the union of the vertex sets Z from all affine copies of R created in
phase i , and let the special edge of each vertex in Zi be the edge connecting that
vertex to the vertex s of the corresponding copy of R.

We show that ˘ D ˘m has ˝.n0/ faces, and the longest monotone path in G D
G.˘/ has size O.m/ D O.logn0= log logn0/. Initially, we have jZ1j D m special
vertices. Since jZi j D mjZi�1j for i D 2; : : : ; m, it follows that jZmj D mm.
Note that for each special vertex in Zm, there is an incident quadrilateral face in a
copy of R which is not incident to any other vertex in Zm. Hence ˘ has at least
jZmj D mm D ˝.n0/ faces.

For any v 2 Zi , i D 1; 2 : : : ; m, our recursive construction did not modify the
edges of the triangle tv and the rhombus rv (only the interior edges of a copy of
R inside rv are modified in subsequent phases). Let Ti and Ri denote the set of
triangles tv and rhombi rv, respectively, for all v 2 Zi . Note that a monotone path
enters and exits the interior of a triangle or a rhombus in G at most once. Let � be a

path in G.˘/ that is monotone in some direction � . Assume that � 2
h
.j�1/�
m

;
j�

m

�
,

for some j 2 f1; 2; : : : ; mg. For i < j , the path � enters at most one triangle of Ti .
For j D i , it can visit m triangles of Ti , that all lie in a common triangle t 2 Ti�1.
However, as we have discussed above, � can reach the rhombus rv � tv in at most
two triangles tv 2 Ti . For i > j , the path � enters at most two triangles of Ti , at
most one inside each rhombus in Ri�1.

It follows that � traverses O.m/ edges in at most one zig-zag path cre-
ated in phase j , and it traverses O.1/ edges created in any of the other m�1
phases. Consequently, every monotone path in G.˘/ has at most O.m/ edges, as
required. �

We note that the construction uses only O.m2/ distinct slopes of edges: at each
level i , the copies of R are rotated into a fixed direction; this gives O.m/ slopes for
the edges of R. R is embedded insidem distinctly oriented triangles tv of the higher
level; thus we need only m versions of the O.1/ edges filling the space between
rv and tv, for another O.m/ slopes. This gives O.m/ slopes per level, and O.m2/

slopes in total.

4 Proof of Theorem 3

We construct a polytope P with n vertices with no monotone path longer than
O.log2 n/. The polytope will be built as a hierarchical system of cells 	. The basic
building block 	 is the polytope shown in Fig. 6. It is symmetric with respect to the
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Fig. 6 The basic building block 	. The upper part shows two spatial views, and the lower part
shows the vertical projection

Table 1 The vertex
coordinates of the basic
polytope 	

Point (x, y, z)

A .0; 0; 0/

B;B 0 .�1; 1:5; 0/

C ( 0, 1.4, 1)
U;U 0 .�0:1; 0:8; 0:55/

V; V 0 .�0:25; 0:6; 0:25/

W;W 0 .�0:25; 0:8; 0:39/

yz-plane. The coordinates of its 10 vertices are given in Table 1. Its base is the outer
triangle ABB 0 and it has two inner triangles UVW and U 0V 0W 0 on which smaller
(and transformed) copies of the cell 	 will be recursively placed, as sketched in
Fig. 7.

The characteristic region �.	/ of 	 is the set of directions c D .u; v; 1/ for
which there exists a monotone path that starts at a boundary vertex (A, B , or
B 0), visits at least two vertices of each triangle UVW and U 0V 0W 0, and ends at
the boundary. The characteristic region for the standard cell is shown in Fig. 8. It
has been generated with the help of a computer by enumerating all simple paths
from the boundary via UVW and U 0V 0W 0 (in either order) back to the boundary
according to the definition, and by generating the set of directions for which the
path is monotone. This is a (possibly empty) polyhedral set. There are 106 such
paths in total; and among these, 38 paths with a nonempty region of directions.
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Fig. 7 A schematic drawing of two nested levels of cells (not to scale) and the corresponding
binary tree

U V W

u

v

1

1

UVW

UVA

UWB

U V A

U W B
V W BVWB

ABB

Fig. 8 The characteristic region �.	/. It is symmetric and consists of two unbounded wedge-like
regions and two triangles. For orientation, the normal vectors of the triangles ABB 0, UVW , and
some other triangles are indicated. What is important is that UVW and U 0V 0W 0 are outside �.	/

In Fig. 8, all these regions are drawn on top of each other, and their union yields
the characteristic region. Our restriction to directions c D .u; v;w/ with w D 1

excludes the horizontal directions (w D 0). These directions appear as infinite rays
in the wedges of the figure.

As announced we will recursively place smaller copies of 	 on the inner
triangles UVW and U 0V 0W 0. Before placing them there, we subject them to
geometric transformations to make them fit together as a convex polytope, and
to ensure certain properties of the characteristic regions. The structure of this
construction will be a balanced binary tree of depth k, with kC1 levels and 2kC2�1
nodes. Each vertex of P will belong to only one copy of 	. Thus, there will be
10.2kC2 � 1/ vertices in total. Each copy of 	 (each node of the tree) will have its
characteristic region.
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|v| ≤ 2|u| + 1/2

R = 2.5

Fig. 9 The recursive construction in terms of characteristic regions

The root is the cell 	 in its original form. We describe how to place two
transformed copies of a construction with k levels on 	. Inductively, we maintain
the following properties.

(i) No three characteristic regions intersect.
(ii) Two characteristic regions can only intersect in a disk of radius R D 3 around

the origin.
(iii) The characteristic regions lie inside the region jvj � 2juj C 1=2.

For the basic building block itself (the induction basis k D 0), (i) and (ii) are
vacuous, and (iii) can be checked by inspection, see Fig. 9.

Geometric Transformations. Table 2 lists some simple affine transformations that
can be applied to some polytopeP , and the effect that they have on the characteristic
region � of some cell 	 that belongs to P . Here, " > 0 is a small constant, a; b; ˛
are arbitrary constants.

Suppose we have a polytope P with k � 1 levels that fulfills the properties
(i)–(iii). We first squeeze it to make the wedge jvj � 2juj C 1=2 narrow enough (see
Fig. 10). Then we turn it, in order to be able to fit it between the two components
of the characteristic region, as shown in Fig. 9. We also have to tilt it, to make the
base parallel to the triangle UVW . In terms of uv-coordinates, this corresponds to
translating the origin to the normal vector of UVW that is shown in Fig. 9. We
want to place the tilted base slightly above the triangle UVW . Thus, before tilting
it, we scale it to make it small enough to fit inside UVW , and we squash it in the
z-direction. Squashing achieves two purposes.

(a) The polytope P is made very flat (almost parallel to its base). Thus, when P
is translated close enough over UVW so that it does not see any face beyond
UVW , the triangle UVW in turn does not see any vertex of P except the
base. Thus the convex hull of the union will have the combined set faces of 	
and P , except UW V and the base of P , plus a collar or ring of six triangle
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Table 2 The affine transformations to which the cells are subjected

Operation Coordinate transformation Effect on �.	/

Squash
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faces between UVW and the base of P . (The ring is shown with dotted edges
in Fig. 7. The faces are guaranteed to be triangles except when the turning
operation has created parallel edges between the base and UVW .)

(b) The second effect of squashing, in terms of characteristic regions, is to scale
the uv-coordinates down. This brings any intersections between characteristic
regions of P (which were initially within a radius of R D 2:5) as close as we
want to the point representing the normal of UVW . We ensure that they are
within distance 1=2 of UVW .

A symmetric procedure is applied to another copy P 0 of P which is placed
on U 0V 0W 0.

Property (iii) can be checked visually from Fig. 9. Any intersections between
two critical regions of P lie within distance 1=2 of UVW the point, and thus within
radius R D 2:5 of the origin. By construction there are no intersections between
critical regions of P (they are confined in the squeezed wedge) and �.	/. There can
be intersections between critical regions of P and critical regions of P 0. As Fig. 9
shows, these new intersections are confined to the intersections between the two
corresponding squeezed wedges, which is a small quadrilateral area symmetric to
the v-axis, close to the origin. So these new intersections are certainly within radius
R D 2:5 about the origin, establishing property (ii). Finally, there cannot by any
triple intersections, since the regions of P are disjoint when they are more than 0:5
away from UVW , and similarly for P 0.

It is clear that the desired effects can be obtained by choosing the constants " in
the different steps small enough. One could work out particular values of " (and ˛, a,
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Fig. 10 Schematic drawing of the sequence of transformations on 	 and their effects on �.	/

and b) and get an explicit affine transformation for placing P on top of UVW and
U 0V 0W 0.

Let us now prove that there is no long monotone path in P . We say that a cell
	 is visited if the path contains at least two vertices of the cell. These might be just
two boundary vertices likeA and B , or also vertices inside	. From the definition of
characteristic regions, we can conclude the following. Let 	 be a cell with children
	1 and 	2. Then a path P that is monotone in direction c can visit both 	1 and 	2

only if

(a) P starts or ends inside 	, or
(b) c lies in the characteristic region of 	.
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We now analyze the set S of nodes that correspond to the visited cells. By definition,
if a cell is visited, its parent is also visited. Thus, S is a subtree of T containing the
root.

A node 	 in S can have both its children in S only if conditions (a) and (b) are
fulfilled. Therefore, there can be at most 2k C 1 nodes with two children: 2k � 1
because of condition (a), plus 2 because of condition (b), since by property (i) there
cannot be more than two cells whose characteristic set c lies in.

It follows that the tree S is the union of at most 2k C 2 paths, each of length at
most kC 1. So at most 2.kC 2/2 nodes are visited. The monotone path can have at
most 12 vertices per visited node: 10 for the corresponding cell 	, and at most one
vertex from each child node. In total, the length is at most 24.k C 2/2.

The polytope P we have constructed has n D .2kC1 � 1/ � 10 D 2k � 20 � 10
vertices and 2n � 4 D 2k � 40 � 24 triangular faces. To get an example P 0 with
any given number of vertices, one can add (flat) pyramids on a subset of the faces.
Between any two new vertices of P 0, a path must visit at least one “old” vertex of P .
Hence the length of monotone paths can at most double. �

We can also analyze the size of the coordinates or the spread (ratio between
the diameter and the smallest distance between two points) of this construction.
The sequence of geometric transformations which are applied to place a small
copy of the level-k construction on UVW can be composed into one fixed affine
transformation (and its “mirror image”, forU 0V 0W 0). This transformation is iterated
k times. It follows that the size of coordinates, or the spread, grows like ck for some
constant c > 1; in terms of n, this is a polynomial.

Remark. We note that P is even a stacked polytope: such a polytope can be
generated from an initial tetrahedron by successively gluing tetrahedra on triangular
faces. (Equivalently, the graphG.P / can be generated by successively inserting new
degree-3 vertices into triangular faces.) It is easy to check that the basic building
block 	 is a stacked polytope. The only place where one has to be careful are the
connecting edges between successive levels of P (the dashed edges of Fig. 7). This
connecting polytope is the convex hull of two triangles that lie in parallel planes. It
is not hard to see that this such a polytope a stacked polytope if and only if the edge
directions of the two triangles, UVW and the small copy of ABB 0, do not alternate
when going around the triangles. (Otherwise it has the combinatorial structure of
an octahedron.) One can check that in our construction, this alternation does not
happen: the main reason for this is that (contrary to the appearance in Fig. 7), the
triangle ABB 0 is squeezed so much that the sides AB and AB 0 are almost parallel.

5 Proof of Theorem 4

The problem with the construction of the previous section is that it has to make
the pieces very “flat” as the recursion proceeds. Therefore we could not control
the entrance into sibling subtrees for the nodes in which the monotone path starts
or ends.
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Fig. 11 2k C 1 D 9 initial directions, and the characteristic lines of their normals (for k D 3)

In this section, we construct another polytope Q with a recursive structure.
The “principal directions” of the parts will be chosen in advance, and they are not
subject to transformations. We have to pay for this advantage by having a universal
vertex A that is connected to all other vertices. In terms of a degree bound, our
example is therefore as bad as it can be.

We start by picking 2k C 1 equally spaced initial directions on the cone K with
the y-axis as the cone-axis and opening angle 45ı, all pointing upwards such that all
angles made by these directions with the xy-plane are bounded by 45ı, see Fig. 11.

As in the previous section, we visualize directions by the .u; v/-component of
the direction vectors .u; v; 1/. For an initial direction `, the directions that are
perpendicular to ` form a line in uv-space, called the characteristic line �` of `.
The characteristic lines of the initial directions form an arrangement of lines in uv-
space, as shown in the right part of Fig. 11. The perpendicular planes of the cone of
initial directions are tangent to the polar cone K� of K, which is in this case also a
cone with opening angle 45ı. The intersections of these planes with the plane z D 1,
which are the characteristic lines that we see in Fig. 11, are therefore tangent to the
hyperbola which is the intersection of K� with the plane z D 1. Since these lines
are tangent to a common hyperbola, there are no triple intersections.

Every edge of our polytope Q (with one exception, the edge BB 0) will have
a direction very close to one of the initial directions. It will therefore be difficult
to traverse two such edges that are “almost parallel” in opposite directions. The
following lemma quantifies this intuition.

Lemma 5. Consider a line ` that makes an angle at most �=4 with the xy-plane,
and two directed edges c1 and c2 which make an angle at most ˛ � 1=10 with ` but
point in opposite directions. If a monotone path passes through both edges, then any
direction .u; v; 1/ in which it is monotone lies inside the double-wedge of opening
angle 2˛ and width 8˛, centered about the characteristic line �` of `, as shown in
Fig. 12.

We call this region the sharp-turn region of `.

Proof. This is an elementary calculation. We assume w.l.o.g. that ` has unit
direction vector .0; b; c/. Since the angle with the horizontal plane is at most 45ı,
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u
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8α 2αc1

c2

χ

2α

Fig. 12 The sharp-turn
region of two almost opposite
directions

we have c � b, and since b2 C c2 D 1, we also get b � 1=p2, and

b � ˛ � 1=p2 � 1=10 � 1=2: (2)

The characteristic line �` is then given by the solution of 0 � uC b � vC c � 1 D 0,
that is, v D �c=b. (In Fig. 12 this would correspond to a rotated coordinate system
where �` becomes horizontal.)

We write the unit direction vector of c1 as .0; b; c/C .	x;	y;	z/, where

p
	x2 C	y2 C	z2 � 2 sin

˛

2
� ˛:

The normal plane to c1 appears in the uv-plane as given by the equation

	x � uC .b C	y/ � vC .c C	z/ � 1 D 0;

which yields

v D � c C	z

b C	y �
	x

b C	y � u:

We claim that (i) the slope �	x
bC	y of this line is bounded by tan.2˛/ in absolute value

and (ii) the intercept � cC	z
bC	y deviates from �c=b by at most 4˛. This means that the

line lies within the claimed sharp-turn region.
The normal plane to c2 appears in the uv-plane as another line within this wedge,

and the directions which are monotone in c1 and c2 must lie above one line and
below the other, i.e., they are confined to some wedge within the sharp-turn region.

To finish the proof of the lemma, we verify the claims (i) and (ii).

(i) The absolute slope is bounded by
ˇ̌ �	x
bC	y

ˇ̌ � j	xj
b�j	yj � ˛

b�˛ � ˛
1=2
D 2˛ �

tan.2˛/, by (2).
(ii) Similarly, the difference of intercepts is
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Fig. 13 Schematic drawing of the polytope Q with k D 4 inner layers
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b � ˛ �
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By choosing ˛ small enough, we can therefore ensure that sharp-turn regions
of all initial directions remain so close to their characteristic lines that no triple
intersections of sharp-turn regions appear. This implies that a monotone path can
make at most two such “sharp turns” as specified in Lemma 5.

The polytope Q has an outer triangle ABB 0 and k interior layers 1; 2; : : : ; k.
Layer i has 2i�1 vertices, and thus there are 2k C 2 vertices in total. A schematic
drawing of the polytope with k D 4 inner layers is given in Fig. 13. From vertex
A, there is an edge to each other vertex, and these edges have the chosen initial
directions. We construct the polytope layer by layer. We start with an isosceles
triangle ABB 0, and the vertices B and B 0 form layer 0. The vertices of layer i
are drawn interspersed (in angular order) with the vertices of the previous layers.
When a vertex is first generated, it has two edges to previous layers and an edge
to A. Later it collects two edges to each successive layer.

So far we have described the combinatorial structure of Q. The geometry is
already constrained insofar as each vertex lies on one of the initial direction rays
through A. It remains to specify the distances from A. All vertices of a level i have
the same distance di from A. When constructing layer i , we choose the distance di
so much smaller than all previous distances that the new points appear extremely
close to A. More precisely, we want that an edge UV between a vertex U on
layer j < i and a vertex V on layer i has an angle at most ˛ with the edge UA.
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By a continuity argument, such a value di always exists. For instance, it suffices to
choose di � ˛di�1. In addition, we have to ensure that the polytope has the right
combinatorial structure, i.e., the convex hull edges are the edges shown in Fig. 13.
By construction, all edges emanating from A lie on the convex hull. We need to
make sure that the insertion of a layer does not destroy any previously inserted edge;
the new layer will just add small triangular pyramids on top of some triangular faces.
This can again be achieved by choosing di small enough, by a continuity argument.
More explicitly, one can argue that is sufficient to set di � 2d2i�1=d0: this ensures
that the new vertex cannot even see any other vertex from previous layers in the
plane projection (Fig. 13), without crossing edges incident to A. (In fact, it would
not matter if edges were flipped; the only property we actually need is that no edge
crosses between vertices of the same level.)

Now, consider a monotone path in the 1-skeleton of Q. If it goes through A, B
orB 0, we cut it at these vertices, into at most four pieces. To show that any monotone
path on the boundary of Q has length O.k/ D O.logn/, it is therefore sufficient
to consider monotone paths that do not pass through A, B or B 0. Each edge in the
remaining graph connects vertices from different levels. An edge on the monotone
path can either ascend (into a smaller level) or descend (into a larger level). When
the path changes at a vertex U from ascending to descending, it must traverse two
edges that are almost parallel to UA, in opposite orientations. As we have observed,
this can only happen at most twice. �

Remark. By the way in which it is constructed,Q, just as P in the previous section,
is a stacked polytope. As for the size of coordinates and the spread, we need to
fulfill the conditions di � ˛di�1 and di � 2d2i�1=d0. Setting d0 D 1, and di D
˛2

i�1
for i � 1 would work. The angle ˛ can be chosen as a rational function

involving a polynomial in n. But the whole construction leads then to coordinates
that are exponential in n (but require only polynomially many bits, in a suitable
fixed-precision approximation). As we have mentioned, if we do not insist on Q
having the given combinatorial structure, we can ignore the second condition, and
setting di D ˛i for i � 0 leads to coordinates that are polynomial in n. But then we
can no longer guarantee that Q is a stacked polytope.

6 Conclusion

Open problems. The proofs of Lemmas 1–3 crucially depend on the planarity
of the subdivisions. Extending Theorems 1 and 2 for convex subdivisions of Rd ,
d � 3, remain as open problems.

It also left for future research to close the gaps between: (i) the upper bound
O.log2 n/ in Theorem 3 and the trivial lower bound˝.logn/ for n-vertex polytopes
with bounded vertex degrees; (ii) the upper bound O.logn/ in Theorem 4 and
the lower bound ˝.logn= log logn/ for n-vertex polytopes with arbitrary vertex
degrees.
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We have shown (Theorem 2) that in any connected subdivision with n

faces, k � 3 of which are unbounded, there exists a monotone path of length
˝.log n

k
= log log n

k
/. Figure 2 shows that this lower bound does not hold for (strictly)

monotone paths starting from an arbitrary vertex. Deciding whether there exists a
weakly monotone path of length ˝.log n

k
= log log n

k
/ starting from every vertex in a

convex subdivision with k unbounded faces remains an open problem.
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7. Dumitrescu, A., Rote, G., Tóth, Cs.D.: Monotone paths in planar convex subdivisions. In:
Gudmundsson, J., Mestre, J., Viglas, T. (eds.) Computing and Combinatorics. Proceedings of
the 18th Annual International Computing and Combinatorics Conference (COCOON 2012),
Sydney. Lecture Notes in Computer Science, vol. 7434, pp. 240–251. Springer (2012)

8. Klee, V.: Heights of convex polytopes. J. Math. Anal. Appl. 11, 176–190 (1965)
9. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17 179–184

(1971)
10. Pfeifle, J.: Long monotone paths on simple 4-polytopes. Isr. J. Math. 150(1), 333–355 (2005)
11. Pfeifle, J., Ziegler, G.M.: On the monotone upper bound problem. Exp. Math. 13, 1–11 (2004)
12. Rote, G.: Partial least-squares point matching under translations. In: Abstracts of the 26th

European Workshop on Computational Geometry, Dortmund, pp. 249–251 (2010)
13. Rote, G.: Long monotone paths in convex subdivisions. In: Abstracts of the 27th European

Workshop on Computational Geometry, Morschach, pp. 183–184 (2011)
14. Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. (2) 176, 383–412 (2012).

arXiv:1006.2814



104 A. Dumitrescu et al.

15. Todd, M.J.: The monotonic bounded Hirsch conjecture is false for dimension at least 4. Math.
Oper. Res. 5(4), 599–601 (1980)
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Complexity of the Positive Semidefinite Matrix
Completion Problem with a Rank Constraint

Marianna E.-Nagy, Monique Laurent, and Antonios Varvitsiotis

Abstract We consider the decision problem asking whether a partial rational
symmetric matrix with an all-ones diagonal can be completed to a full positive
semidefinite matrix of rank at most k. We show that this problem is N P-hard
for any fixed integer k � 2. In other words, for k � 2, it is N P-hard to test
membership in the rank constrained elliptope Ek.G/, defined by the set of all partial
matrices with an all-ones diagonal and off-diagonal entries specified at the edges
of G, that can be completed to a positive semidefinite matrix of rank at most k.
Additionally, we show that deciding membership in the convex hull of Ek.G/ is
also N P-hard for any fixed integer k � 2.

Key words Elliptope • Correlation matrix • psd matrix completion

Subject Classifications: 90C22, 68Q17, 05C62

1 Introduction

Geometric representations of graphs are widely studied within a broad range
of mathematical areas, ranging from combinatorial matrix theory, linear algebra,
discrete geometry, and combinatorial optimization. They arise typically when
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labeling the nodes by vectors assumed to satisfy certain properties. For instance, one
may require that the vectors labeling adjacent nodes are at distance 1, leading to unit
distance graphs. Or one may require that the vectors labeling adjacent nodes are or-
thogonal, leading to orthogonal representations of graphs. One may furthermore ask,
e.g., that nonadjacent nodes receive vector labels that are not orthogonal. Many other
geometric properties of orthogonal labelings and other types of representations re-
lated, e.g., to Colin de Verdière type graph parameters, are of interest and have been
investigated (see [8]). A basic question is to determine the smallest possible dimen-
sion of such vector representations. There is a vast literature, we refer in particular
to the surveys [10, 11, 20] and further references therein for additional information.

In this note we revisit orthogonal representations of graphs, in the wider context
of Gram representations of weighted graphs. We show some complexity results for
the following notion of Gram dimension, which has been considered in [18, 19].

Definition 1. Given a graphG D .V D Œn�; E/ and x 2 R
E , a Gram representation

of x in R
k consists of a set of unit vectors v1; � � � ; vn 2 R

k such that

vT
i vj D xij 8fi; j g 2 E:

The Gram dimension of x, denoted as gd.G; x/, is the smallest integer k for which x
has such a Gram representation in R

k (assuming it has one in some space).

As we restrict our attention to Gram representations of x 2 R
E by unit vectors,

all coordinates of x should lie in the interval Œ�1; 1�, so that we can parametrize x as

x D cos.�a/; where a 2 Œ0; 1�E:
In other words, the inequality gd.G; x/ � k means that .G; a/ can be isometrically
embedded into the spherical metric space .Sk�1; dS/, where Sk�1 is the unit sphere
in the Euclidean space R

k and dS is the spherical distance:

dS.u; v/ D arccos.uTv/=� 8u; v 2 Sk�1:

Moreover, there are also tight connections with graph realizations in the Euclidean
space (cf. [5,6]); see Sect. 2.3 for a brief discussion and Sect. 3.2 for further results.

Determining the Gram dimension can also be reformulated in terms of finding
low rank positive semidefinite matrix completions of partial matrices, as we now
see. We use the following notation: S n denotes the set of symmetric n
nmatrices
and S nC is the cone of positive semidefinite (psd) matrices in S n. The subset

En D fX 2 S nC W Xii D 1 8i 2 Œn�g;
consisting of all positive semidefinite matrices with an all-ones diagonal (aka the
correlations matrices), is known as the elliptope. Given a graph G D .Œn�; E/, �E
denotes the projection from S n onto the subspace R

E indexed by the edges of G.
Then, the projection E .G/ D �E.En/ is known as the elliptope of the graph G.
Given an integer k � 1, define the rank constrained elliptope

En;k D fX 2 En W rank.X/ � kg;
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and, for any graph G, its projection Ek.G/ D �E.En;k/. Then the points x in the
elliptope E .G/ correspond precisely to those vectors x 2 R

E that admit a Gram
representation by unit vectors. Moreover, x 2 Ek.G/ precisely when it has a Gram
representation by unit vectors in R

k ; that is:

x 2 Ek.G/” gd.G; x/ � k:

The elements of E .G/ can be seen as the G-partial symmetric matrices,
i.e., the partial matrices whose entries are specified at the off-diagonal positions
corresponding to edges of G and whose diagonal entries are all equal to 1, that
can be completed to a positive semidefinite matrix. Hence the problem of deciding
membership in E .G/ can be reformulated as the problem of testing whether a given
G-partial matrix can be completed to a correlation matrix. Moreover, for fixed
k � 1, the membership problem in Ek.G/ is the problem of deciding whether a
given G-partial matrix has a psd completion of rank at most k. Using the notion of
Gram dimension this can be equivalently formalized as:

Given a graph G D .V;E/ and x 2 Q
E; decide whether gd.G; x/ � k:

A first main result of this paper is to prove that this problem is N P-hard for
any fixed k � 2 (cf. Theorems 3 and 4). Additionally, we consider the problem of
testing membership in the convex hull of the rank constrained elliptope:

Given a graph G D .V;E/ and x 2 Q
E; decide whether x 2 convEk.G/:

The study of this problem is motivated by the relevance of the convex set
convEk.G/ to the maximum cut problem and to the rank constrained Grothendieck
problem. Indeed, for k D 1, convE1.G/ coincides with the cut polytope of G and
it is well known that linear optimization over the cut polytope is N P-hard [12].
For any k � 2, the worst case ratio of optimizing a linear function over the elliptope
E .G/ versus the rank constrained elliptope Ek.G/ (equivalently, versus the convex
hull convEk.G/) is known as the rank k Grothendieck constant of the graph G (see
[7] for results and further references). It is believed that linear optimization over
convEk.G/ is also hard for any fixed k (cf., e.g., the quote of Lovász [20, p. 61]).
We show that the strong membership problem in convEk.G/ is N P-hard, thus
providing some evidence of hardness of optimization (cf. Theorem 6).

Contents. In Sect. 2 we present some background geometrical facts about cut and
metric polytopes, about elliptopes, and about Euclidean graph realizations. In Sect. 3
we show N P-hardness of the membership problem in Ek.G/ for any fixed k � 2;
we use two different reductions depending whether k D 2 or k � 3. In Sect. 4 we
show N P-hardness of the membership problem in the convex hull of Ek.G/ for
any fixed k � 2. In Sect. 2.3 we discuss links to complexity results for Euclidean
graph realizations, and in Sect. 5 we conclude with some open questions.
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Notation. Throughout Kn D .Œn�; En/ is the complete graph on n nodes; Cn
denotes the circuit of length n, with node set Œn� and with edges the pairs fi; i C 1g
for i 2 Œn� (indices taken modulo n), and its set of edges is again denoted as Cn for
simplicity. Given a graph G D .V;E/, its suspension graph rG is the new graph
obtained from G by adding a new node, called the apex node and often denoted as
0, which is adjacent to all the nodes of G. A minor of G is any graph which can be
obtained from G by iteratively deleting edges or nodes and contracting edges. For a
vector a 2 R

n and S � Œn� we set a.S/ D P
i2S
ai .

2 Preliminaries

We recall here some basic geometric facts about metric and cut polyhedra, about
elliptopes, and about Euclidean graph realizations.

2.1 Metric and Cut Polytopes

First we give the definition of the metric polytope MET.G/ of a graph G D .V;E/.
As a motivation recall the following basic 3D geometric result: Given a matrix
X 2 S3 with an all ones-diagonal parametrized as before by xij D cos.�aij /where
aij 2 Œ0; 1�, then X 	 0 if and only if the aij ’s satisfy the following triangle
inequalities:

aij � aik C ajk; aij C aik C ajk � 2 (1)

for distinct i; j; k 2 f1; 2; 3g. (See e.g. [4]). The elliptope E3 (or rather, its bijective
image E .K3/) is illustrated in Fig. 1.

The metric polytope of the complete graph Kn D .Œn�; En/ is the polyhedron in
R
En defined by the above 4

�
n
3

	
triangle inequalities (1). More generally, the metric

polytope of a graph G D .Œn�; E/ is the polyhedron MET.G/ in R
E , which is

defined by the following linear inequalities (in the variable a 2 R
E):

0 � ae � 1 8e 2 E; (2)

a.F / � a.C n F / � jF j � 1 (3)

for all circuits C of G and for all odd cardinality subsets F � C .
As is well known, the inequality (2) defines a facet of MET.G/ if and only if

the edge e does not belong to a triangle of G, while (3) defines a facet of MET.G/
if and only if the circuit C has no chord (i.e., two non-consecutive nodes on C
are not adjacent in G). In particular, for G D Kn, MET.Kn/ is defined by the
triangle inequalities (1), obtained by considering only the inequalities (3) whereC is
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a circuit of length 3. Moreover, MET.G/ coincides with the projection of MET.Kn/

onto the subspace R
E indexed by the edge set of G. (See [9] for details.)

A main motivation for studying the metric polytope is that it gives a tractable
linear relaxation of the cut polytope. Recall that the rank 1 matrices in the
elliptope En are of the form uuT for all u 2 f˙1gn. They are sometimes called
the cut matrices since they correspond to the cuts of the complete graphKn. The cut
polytope CUT.G/ is defined as the projection onto R

E of the convex hull of the cut
matrices:

CUT.G/ D �E.conv.En;1//: (4)

It is always true that CUT.G/ � MET.G/, and equality holds if and only if G has
no K5 minor [3]. Linear optimization over the cut polytope models the maximum
cut problem, well known to be N P-hard [12], and testing membership in the
cut polytope CUT.Kn/ or, equivalently, in the convex hull of the rank constrained
elliptope En;1, is an N P-complete problem [2].

2.2 Elliptopes

From the above discussion about the elliptope E3 and the metric polytope, we can
derive the following necessary condition for membership in the elliptope E .G/ of a
graph G, which turns out to be sufficient when G has no K4 minor.

Proposition 1 ([16]). For any graph G D .V;E/,

E .G/ �
�
x 2 Œ�1; 1�E W 1

�
arccos x 2 MET.G/

�
:

Moreover, equality holds if and only if G has no K4 minor.

This result permits, in particular, to characterize membership in the elliptope
E .Cn/ of a circuit.

Corollary 1 ([4]). Consider a vector x D cos.�a/ 2 R
Cn with a 2 Œ0; 1�Cn . Then,

x 2 E .Cn/ if and only if a satisfies the linear inequalities

a.F / � a.Cn n F / � jF j � 1 8F � Cn with jF j odd: (5)

We also recall the following result of [18] which characterizes membership in
the rank constrained elliptope Ek.Cn/ of a circuit in the case k D 2; see Lemma 4
for an extension to arbitrary graphs.

Lemma 1 ([18]). For x 2 Œ�1; 1�Cn , x 2 E2.Cn/ if and only if there exists � 2
f˙1gCn such that �T arccos x 2 2�Z.
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Fig. 1 The elliptope E .C3/

We conclude with some observations about the elliptope E .Cn/ of a circuit.
Figure 1 shows the elliptope E .C3/. Points x on the boundary of E .C3/ have
gd.C3; x/ D 2 except gd.C3; x/ D 1 at the four corners (corresponding to the
four cuts of K3), while points in the interior of E .C3/ have gd.C3; x/ D 3.

Now let n � 4. Let x D cos.�a/ 2 E .Cn/, thus a 2 Œ0; 1�Cn satisfies the
inequalities (5). It is known that gd.Cn; x/ � 3 (see [18], or derive it directly by
triangulating Cn and applying Lemma 5 below). Moreover, x lies in the interior of
E .Cn/ if and only if x has a positive definite completion or, equivalently, a lies in
the interior of the metric polytope MET.Cn/.

If x lies on the boundary of E .Cn/ then, either (i) ae 2 f0; 1g for some edge
e of Cn, or (ii) a satisfies an inequality (5) at equality. In case (i), gd.Cn; x/ can
be equal to 1 (x is a cut), 2, or 3. In case (ii), by Lemma 1, gd.Cn; x/ � 2 since
a.F /�a.Cn nF / D jF j�1 2 2Z for some F � Cn. If x is in the interior of E .Cn/
then gd.Cn; x/ 2 f2; 3g.

As an illustration, for n D 4, consider the vectors x1 D .0; 0; 0; 1/T, x2 D
.0;
p
3=2;
p
3=2;
p
3=2/T, x3 D .0; 0; 0; 0/T and x4 D .0; 0; 0; 1=2/T 2 R

C4 .
Then both x1 and x2 lie on the boundary of E .C4/ with gd.C4; x1/ D 3 and
gd.C4; x2/ D 2, and both x3 and x4 lie in the interior of E .C4/ with gd.C4; x3/ D 2
and gd.C4; x4/ D 3.

2.3 Euclidean Graph Realizations

In this section we recall some basic facts about Euclidean graph realizations.
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Definition 2. Given a graph G D .Œn�; E/ and d 2 R
EC, a Euclidean (distance)

representation of d in R
k consists of a set of vectors p1; : : : ; pn 2 R

k such that

kpi � pj k2 D dij 8fi; j g 2 E:

Then, ed.G; d/ denotes the smallest integer k � 1 for which d has a Euclidean
representation in R

k (assuming d has a Euclidean representation in some space).

Then the problem of interest is to decide whether a given vector d 2 Q
EC admits a

Euclidean representation in R
k . Formally, for fixed k � 1, we consider the following

problem:

Given a graph G D .V;E/ and d 2 Q
EC; decide whether ed.G; d/ � k:

This problem has been extensively studied (e.g. in [5, 6]) and its complexity is
well understood. In particular, using a reduction from the 3SAT problem, Saxe [25]
shows the following complexity result.

Theorem 1 ([25]). For any fixed k � 1, deciding whether ed.G; d/ � k is N P-
hard, already when restricted to weights d 2 f1; 2gE .

We now recall a well known connection between Euclidean and Gram real-
izations. Given a graph G D .V;E/ and its suspension graph rG, consider the
one-to-one map � W RV[E 7! R

E.rG/, which maps x 2 R
V[E to '.x/ D d 2

R
E.rG/ defined by

d0i D xii .i 2 Œn�/; dij D xii C xjj � 2xij .fi; j g 2 E/: (6)

Then the vectors u1; : : : ; un 2 R
k form a Gram representation of x if and only if the

vectors u0 D 0; u1; : : : ; un form a Euclidean representation of d D '.x/ in R
k . This

implies the following:

Lemma 2. Let G D .V;E/ be a graph and x 2 E .G/. Then,

gd.G; x/ D ed.rG; '.x//:

As we will see in the next section, this connection will enable us to recover the
above result of Saxe for the case k � 3 from results about the Gram dimension (cf.
Corollary 2).

3 Testing Membership in Ek.G/

In this section we discuss the complexity of testing membership in the rank
constrained elliptope Ek.G/. Specifically, for fixed k � 1 we consider the
following problem:

Given a graph G D .V;E/ and x 2 Q
E; decide whether gd.G; x/ � k:
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Fig. 2 The gadget graph Hij

In the language of matrix completions this corresponds to deciding whether a
rational G-partial matrix has a psd completion of rank at most k.

For k D 1, x 2 E1.G/ if and only if x 2 f˙1gE corresponds to a cut of G, and
it is an easy exercise that this can be decided in polynomial time. In this section we
show that the problem is N P-hard for any k � 2. It turns out that we have to use
different reductions for the cases k � 3 and k D 2.

3.1 The Case k � 3

First we consider the problem of testing membership in Ek.G/ when k � 3.
We show that this is an N P-hard problem, already when G D rk�3H is the
suspension of a planar graph H and x D 0, the vector with zero entries at all edges.

The key idea is to relate the parameter gd.G; 0/ to the chromatic number �.G/
(the minimum number of colors needed to color the nodes of G in such a way that
adjacent nodes receive distinct colors). It is easy to check that

gd.G; 0/ � �.G/; (7)

with equality if �.G/ � 2 (i.e., ifG is a bipartite graph). For k � 3 the inequality (7)
can be strict. This is the case, e.g., for orthogonality graphs of Kochen-Specker sets
(see [15]).

However, Peeters [22, Theorem 3.1] gives a polynomial time reduction of the
problem of deciding 3-colorability of a graph to that of deciding gd.G; 0/ � 3.
Namely, given a graphG, he constructs (in polynomial time) a new graphG0 having
the property that

�.G/ � 3” �.G0/ � 3” gd.G0; 0/ � 3: (8)

The graph G0 is obtained from G by adding for each pair of distinct nodes i; j 2 V
the gadget graphHij shown in Fig. 2. Moreover, using a more involved construction,
Peeters [21] constructs (in polynomial time) from any graph G a new planar graph
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G0 satisfying (8). As the problem of deciding whether a given planar graph is
3-colorable is N P-complete (see [26]) we have the following result.

Theorem 2 ([21]). It is N P-hard to decide whether gd.G; 0/ � 3, already for
the class of planar graphs.

This hardness result can be extended to any fixed k � 3 using the suspension
operation on graphs. The suspension graph rpG is obtained from G by adding p
new nodes that are pairwise adjacent and that are adjacent to all the nodes of G. It is
an easy observation that

gd.rpG; 0/ D gd.G; 0/C p: (9)

Theorem 2 combined with equation (9) implies:

Theorem 3. Fix k � 3. It is N P-hard to decide whether gd.G; 0/ � k, already
for graphs of the form G D rk�3H where H is a planar graph.

As an application we can recover the complexity result of Saxe from Theorem 1
for the case k � 3.

Corollary 2. For fixed k � 3, it is an N P–hard problem to decide whether
ed.G; d/ � k, already when G D rk�2H with H planar and d is f1; 2g-valued
(more precisely, all edges adjacent to a given apex node have weight 1 and all other
edges have weight 2).

Proof. This follows directly from Lemma 2 combined with Theorem 3: By
Lemma 2, gd.rk�3H; 0/ D ed.rk�2H; '.0// and observe that the image d D '.0/
of the zero vector under the map ' from (6) satisfies: d0i D 1 and dij D 2 for all
nodes i; j of rk�3H . �

3.2 The Case k D 2

In this section we show N P-hardness of testing membership in E2.G/. Our
strategy to show this result is as follows: Given a graph G D .V;E/ with edge
weights d 2 R

EC, define the new edge weights x D cos.d/ 2 R
E . We show a

close relationship between the two problems of testing whether ed.G; d/ � 1, and
whether gd.G; x/ � 2 (or, equivalently, x 2 E2.G/). More precisely, we show
that each of these two properties can be characterized in terms of the existence of a
˙1-signing of the edges ofG satisfying a suitable ‘flow conservation’ type property;
moreover, both are equivalent when the edge weights d are small enough.

As a motivation, let us consider first the case when G D Cn is a circuit of
length n. Say, weight di (resp., xi D cos di ) is assigned to the edge .i; i C 1/

for i 2 Œn� (where indices are taken modulo n). Then the following property holds:

ed.Cn; d/ � 1”9� 2 f˙1gn such that �Td D 0: (10)
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This is the key fact used by Saxe [25] for showing N P-hardness of the problem of
testing ed.Cn; d/ � 1 by reducing the Partition problem for d D .d1; � � � ; dn/ 2 Z

nC
to it. Lemma 1 shows the analogous result for the Gram dimension:

gd.Cn; cos d/ � 2”9� 2 f˙1gn such that �Td 2 2�Z: (11)

We now observe that these two characterizations extend for an arbitrary graph G.
To formulate the result we need to fix an (arbitrary) orientation QG of G. Let P D
.u0; u1; � � � ; uk�1; uk/ be a walk in G, i.e., fui ; uiC1g 2 E for all 0 � i � k � 1.
Recall that in a walk repetition of vertices is allowed; the walk P is said to be closed
when u0 D uk . For � 2 f˙1gE , we define the following weighted sum along the
edges of P :

�d;�.P / D
k�1X

iD0
dui ;uiC1

�ui uiC1
�i ; (12)

setting �i D 1 if the edge fui ; uiC1g is oriented in QG from ui to uiC1 and �i D �1
otherwise.

Lemma 3. Consider a graph G D .V;E/ with edge weights d 2 R
EC and fix an

orientation QG of G. The following assertions are equivalent.

(i) ed.G; d/ � 1:
(ii) There exists an edge-signing � 2 f˙1gE for which the function �d;� from (12)

satisfies: �d;�.C / D 0 for all closed walks C of G (equivalently, for all circuits
of G).

Proof. Assume that (i) holds. Let f W V ! R satisfying jf .u/ � f .v/j D duv for
all fu; vg 2 E. If the edge fu; vg is oriented from u to v in QG, let �uv 2 f˙1g such
that f .v/� f .u/ D duv�uv: This defines an edge-signing � 2 f˙1gE ; we claim that
(ii) holds for this edge-signing. For this, pick a circuit CD.u0; u1; � � �; ukDu0/ in G.
By construction of the edge-signing, the term �ui uiC1

dui uiC1
�i is equal to f .uiC1/�

f .ui / for all 0 � i � k � 1, where indices are taken modulo k. This implies that
�d;�.C / D Pk�1

iD0 f .uiC1/ � f .ui / D 0 and thus (ii) holds. Conversely, assume
(ii) holds. We may assume that G is connected (else apply the following to each
connected component). Fix an arbitrary node u0 2 V . We define the function f W
V ! R by setting f .u0/ D 0 and, for u 2 V n fu0g, f .u/ D �d;�.P / where
P is any walk from u0 to u. It is easy to verify that since (ii) holds this definition
does not depend on the choice of P . We claim that f is a Euclidean embedding of
.G; d/ into R. For this, pick an edge fu; vg 2 E; say, it is oriented from u to v in
QG. Pick a walk P from u0 to u, so that Q D .P; v/ is a walk from u0 to v. Then,
f .u/ D �d;�.P /, f .v/ D �d;�.Q/ D �d;�.P / C duv�uv D f .u/ C duv�uv, which
implies that jf .v/ � f .u/j D duv. �

Next we prove the analogous result for the spherical setting.
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Lemma 4. Consider a graph G D .V;E/ with edge weights d 2 R
EC and fix an

orientation QG of G. The following assertions are equivalent.

(i) gd.G; cos d/ � 2:
(ii) There exists an edge-signing � 2 f˙1gE for which the function �d;� from (12)

satisfies: �d;�.C / 2 2�Z for all closed walks C of G (equivalently, for all
circuits of G).

Proof. Assume (i) holds. Then, there exists a labeling of the nodes u 2 V by unit
vectors g.u/ D .cos f .u/; sin f .u// where f .u/ 2 Œ0; 2�� such that for any edge
fu; vg 2 E, we have cos duv D g.u/Tg.v/ D cos.f .u/ � f .v//. If fu; vg is oriented
from u to v, define �uv 2 f˙1g such that f .v/ � f .u/ � �uvduv 2 2�Z. This defines
an edge-signing � 2 f˙1gE which satisfies (ii) (same argument as in the proof of
Lemma 3).

Conversely, assume (ii) holds. Analogously to the proof of Lemma 3, fix a node
u0 2 V and consider the unit vectors g.u0/ D .1; 0/ and g.u/ D .cos.�d;�.Pu//;

sin.�d;�.Pu///, where Pu is a walk from u0 2 V to u 2 V n fu0g; one can verify that
these vectors form a Gram realization of .G; cos d/. �

Corollary 3. Consider a graph G D .V;E/ with edge weights d 2 R
EC satisfying

d.E/ < 2� . Then, ed.G; d/ � 1 if and only if gd.G; cos d/ � 2.

Proof. Note that if C is a circuit of G, then �d;�.C / 2 2�Z implies �d;�.C / D 0,
since j�d;�.C /j � d.E/ < 2� . The result now follows directly by applying
Lemmas 3 and 4. �

We can now show N P-hardness of testing membership in the rank constrained
elliptope E2.G/. For this we use the result of Theorem 1 for the case k D 1: Given
edge weights d 2 f1; 2gE , it is N P-hard to decide whether ed.G; d/ � 1.

Theorem 4. Given a graph G D .V;E/ and rational edge weights x 2 Q
E , it is

N P-hard to decide whether x 2 E2.G/ or, equivalently, gd.G; x/ � 2.

Proof. Fix edge weights d 2 f1; 2gE . We reduce the problem of testing whether
ed.G; d/ � 1 to the problem of testing whether gd.G; cos.˛d// � 2, for some
appropriately chosen parameter ˛ > 0.

For this, define the angle ˛ > 0 by

cos˛ D 16d.E/2 � 1
16d.E/2 C 1 2 Q; sin˛ D 8d.E/

16d.E/2 C 1 2 Q:

As de 2 f1; 2g it follows that cos.˛de/ 2 fcos˛; cos.2˛/ D 2 cos2 ˛�1g is rational
valued for all edges e 2 E. Moreover, the size of cos.˛de/ is polynomial in the
size of the instance .G; d/ and thus the reduction can be carried out in polynomial
time. Additionally, since sin˛ < 1=.2d.E// � 1=2 � sin 1, it follows that ˛ < 1

and thus ˛ < 2 sin˛. In turn, this implies that ˛ < 1=d.E/ and thus ˛d.E/ < 2� .
Lastly, applying Corollary 3 we have that gd.G; cos.˛d// � 2 is equivalent to
ed.G; ˛d/ � 1 and thus to ed.G; d/ � 1. �
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We conclude with a remark about the complexity of the Gram dimension of
weighted circuits.

Remark 1. Consider the case when G D Cn is a circuit and the edge weights d 2
Z
CnC are integer valued. Relation (10) shows that ed.Cn; d/ � 1 if and only if the

sequence d D .d1; � � � ; dn/ can be partitioned, thus showing N P-hardness of the
problem of testing ed.Cn; d/ � 1.

As in the proof of Theorem 4 let us choose ˛ such that cos˛; sin˛ 2 Q and
˛ < 1=.

Pn
iD1 di /; then cos.t˛/ 2 Q for all t 2 Z. The analogous relation (11)

holds, which shows that gd.Cn; cos.˛d// � 2 if and only if the sequence d D
.d1; � � � ; dn/ can be partitioned. However, it is not clear how to use this fact in
order to show N P-hardness of the problem of testing gd.Cn; x/ � 2. Indeed,
although all cos.˛di / are rational valued, the difficulty is that it is not clear how to
compute cos.˛di / in time polynomial in the bit size of di (while it can be shown to
be polynomial in di ).

Finally we point out the following link to the construction of Aspnes et al.
[1, �IV]. Consider the edge weights x D cos.˛d/ 2 R

Cn for the circuit Cn and
y D '.x/ for its suspension rCn, which is the wheel graph WnC1. Thus y0i D 1

and yi;iC1 D 2 � 2 cos.˛di / D 4 sin2.˛di=2/ for all i 2 Œn�. Taking square roots
we find the edge weights used in [1] to claim N P-hardness of realizing weighted
wheels (that have the property of admitting unique (up to congruence) realizations
in the plane). As explained in the proof of Theorem 4, if we suitably choose ˛ we
can make sure that all sin.˛di=2/ be rational valued, while [1] uses real numbers.
However, it is not clear how to control their bit sizes, and thus how to deduce N P-
hardness.

4 Testing Membership in convEk.G/

In the previous section we showed that testing membership in the rank constrained
elliptope Ek.G/ is an N P-hard problem for any fixed k � 2. A related question
is to determine the complexity of optimizing a linear objective function over Ek.G/
or, equivalently, over its convex hull convEk.G/. This question has been raised, in
particular, by Lovász [20, p. 61] and more recently in [7], and we will come back
to it in Sect. 5. In turn, this is related to the problem of testing membership in the
convex hull convEk.G/ which we address in this section. Specifically, for any fixed
k � 1 we consider the following problem:

Given a graph G D .V;E/ and x 2 Q
E; decide whether x 2 conv Ek.G/:

For k D 1, convE1.G/ coincides with the cut polytope of G, for which the
membership problem is N P-complete [2]. In this section we will show that this
problem is N P-hard for any fixed k � 2. The key fact to prove hardness is to
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consider the membership problem in convEk.G/ for extreme points of the elliptope
E .G/.

For a convex set K recall that a point x 2 K is an extreme point of K if x D
�y C .1 � �/z where 0 < � < 1 and y; z 2 K implies that x D y D z. The set of
extreme points of K is denoted by extK. Clearly, for x 2 extE .G/,

x 2 convEk.G/” x 2 Ek.G/: (13)

Our strategy for showing hardness of membership in convEk.G/ is as follows:
Given a graph G D .V;E/ and a rational vector x 2 E .G/, we construct (in
polynomial time) a new graph OG D . OV ; OE/ (containing G as a subgraph) and a
new rational vector Ox 2 Q

OE (extending x) satisfying the following properties:

Ox 2 extE . OG/; (14)

x 2 Ek.G/” Ox 2 Ek. OG/: (15)

Combining these two conditions with (13), we deduce:

x 2 Ek.G/” Ox 2 Ek. OG/” Ox 2 convEk. OG/: (16)

Given G D .V;E/, the construction of the new graph OG D . OV ; OE/ is as follows:
For each edge fi; j g ofG, we add a new node vij , adjacent to the two nodes i and j .
Let Cij denote the clique on fi; j; vij g and set OV D V [ fvij W fi; j g 2 Eg. Then
OG has node set OV and its edge set is the union of all the cliques Cij for fi; j g 2 E.

As an illustration Fig. 3 shows the graph cC5.
Given x 2 Q

E , the construction of the new vector Ox 2 Q
OE is as follows: For

each edge fi; j g 2 E,

Oxij D xij ; (17)

Oxi;vij D 4=5; Oxj;vij D 3=5 if xij D 0; (18)

Oxi;vij D xij ; Oxj;vij D 2x2ij � 1 if xij ¤ 0: (19)

We will use the following result characterizing the extreme points of the
elliptope E3.
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Theorem 5 ([13]). A matrix X D .xij / 2 E3 is an extreme point of E3 if either
rank.X/ D 1, or rank.X/ D 2 and jxij j < 1 for all i 6D j 2 f1; 2; 3g.

We also need the following well known (and easy to check) result permitting to
construct points in the elliptope of clique sums of graphs.

Lemma 5. Given two graphs Gl D .Vl ; El / (l D 1; 2), where V1 \ V2 is a clique
in both G1, G2, the graph G D .V1[V2;E1[E2/ is called their clique sum. Given
xl 2 R

El (l D 1; 2) such that .x1/ij D .x2/ij for i; j 2 V1\V2, let x D .xij / 2 R
E

be their common extension, defined as xij D .xl /ij if i; j 2 Vl . Then, for any integer
k � 1,

x 2 Ek.G/” x1 2 Ek.G1/ and x2 2 Ek.G2/:

We can now show that our construction for Ox satisfies the two properties (14)
and (15).

Lemma 6. Given a graph G D .V;E/ and x 2 Q
E , let OG D . OV ; OE/ be defined

as above and let Ox 2 Q
OE be defined by (17)–(19). For fixed k � 2 we have that

x 2 Ek.G/ if and only if Ox 2 Ek. OG/ and Ox 2 extE . OG/.
Proof. Sufficiency is clear so it remains to prove necessity. Applying Theorem 5,
we find that the two matrices

0

@
1 0 3=5

0 1 4=5

3=5 4=5 1

1

A ;

0

B@
1 xij xij
xij 1 2x2ij � 1
xij 2x

2
ij � 1 1

1

CA where xij 2 Œ�1; 1� n f0g; (20)

are extreme points of E3. Therefore, for each edge fi; j g 2 E, the restriction OxCij of

Ox to the clique Cij is an extreme point of E .Cij /. By construction, OG is obtained as
the clique sum ofG with the cliques Cij . As both matrices in (20) have rank at most
2 and as k � 2, Lemma 5 implies that Ox 2 Ek. OG/.

Finally, we show that Ox is an extreme point of E . OG/. Assume that
Ox D Pm

kD1 �k Oxk where �k > 0,
Pm

kD1 �k D 1 and Oxk 2 E . OG/. For any fi; j g 2 E,
taking the projection onto the clique Cij and using the fact that OxCij 2 extE .Cij /
we deduce that . Oxk/Cij D OxCij for all k 2 Œm�. As the cliques fCij W fi; j g 2 Eg
cover the graph OG it follows that Ox D Oxk for all k 2 Œm�. �

Combining these results we arrive at the main result of this section.

Theorem 6. For any fixed k � 2, given a graph G D .V;E/ and rational edge
weights x 2 Q

E , it is N P-hard to decide whether x 2 convEk.G/.

Proof. We show that the problem is hard already when the input is restricted to
extreme points of E .G/. By relation (13), for such points, testing membership in
convEk.G/ is equivalent to testing membership in Ek.G/.

In Theorems 3 and 4 we established that for any fixed k � 2 testing membership
in Ek.G/ is N P-hard. Using Lemma 6, testing membership in Ek.G/ reduces to



Complexity of Rank Constrained Positive Semidefinite Matrix Completion 119

testing membership in convEk. OG/ for extreme points of Ek. OG/. As the reduction
described in Lemma 6 can be carried out in polynomial time, the latter problem is
N P-hard. �

5 Concluding Remarks

In this note we have shown N P-hardness of the membership problem in the rank
constrained elliptope Ek.G/ and in its convex hull convEk.G/, for any fixed k � 2.
As mentioned earlier, it would be interesting to settle the complexity status of linear
optimization over convEk.G/. The case k D 1 is settled: Then convE1.G/ is the cut
polytope and both the membership problem and the linear optimization problem are
N P-complete. For k � 2, the convex set convEk.G/ is in general non-polyhedral.
Hence the right question to ask is about the complexity of the weak optimization
problem. It follows from general results about the ellipsoid method (see, e.g., [14]
for details) that the weak optimization problem and the weak membership problems
for convEk.G/ have the same complexity status. Although we could prove that the
(strong) membership problem in convEk.G/ is N P-hard, we do not know whether
this is also the case for the weak membership problem.

A second question of interest is whether the problems belong to N P . Indeed it
is not clear how to find succinct certificates for membership in E .G/ or in Ek.G/.
For one thing, even if the given partial matrix x is rational valued and is completable
to a psd matrix, it is not known whether it admits a rational completion. (A positive
result has been shown in [17] in the case of chordal graphs, and for graphs with
minimum fill-in 1). In a more general setting, it is not known whether the problem
of testing feasibility of a semidefinite program belongs to N P . On the positive
side it is known that this problem belongs to N P if and only if it belongs to co-
N P [24] and that it can be solved in polynomial time when fixing the dimension
or the number of constraints [23].

Acknowledgements We thank A. Schrijver for useful discussions and a referee for drawing our
attention to the paper by Aspnes et al. [1].
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The Strong Dodecahedral Conjecture and Fejes
Tóth’s Conjecture on Sphere Packings
with Kissing Number Twelve

Thomas C. Hales

Abstract This article sketches the proofs of two theorems about sphere packings
in Euclidean 3-space. The first is K. Bezdek’s strong dodecahedral conjecture: the
surface area of every bounded Voronoi cell in a packing of balls of radius 1 is at
least that of a regular dodecahedron of inradius 1. The second theorem is L. Fejes
Tóth’s conjecture on sphere packings with kissing number twelve, which asserts
that in 3-space, any packing of congruent balls such that each ball is touched by 12
others consists of hexagonal layers. Both proofs are computer assisted. Complete
proofs of these theorems appear in Hales TC (Dense sphere packings: a blueprint for
formal proofs. London mathematical society lecture note series, vol 400. Cambridge
University Press, Cambridge/New York, 2012; A proof of Fejes Tóth’s conjecture
on sphere packings with kissing number twelve. arXiv:1209.6043, 2012).

Key words Sphere packings • Discrete geometry • Voronoi cell

Subject Classifications: 52C17

1 The Strong Hexagonal Conjecture

To describe methods, we begin with a proof of the following elementary computer-
assisted theorem in R

2.

Theorem 1. The perimeter of any bounded Voronoi cell of a packing of congruent
balls of radius 1 in R

2 is at least 4
p
3, the perimeter of a regular hexagon with

inradius 1.
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a b cFig. 1 The truncated
boundary of the Voronoi cell
(shaded) is partitioned into
three types of pieces,
indicated with a thick curve
marked `

If we adopt the convention that the perimeter of an unbounded Voronoi cell is
infinite, then the boundedness hypothesis can be dropped from the theorem.

Proof. Fix a bounded Voronoi cell in a packing of congruent balls of radius 1 and fix
a coordinate system with the center of the Voronoi cell at the origin. The intersection
of the Voronoi cell with a disk of radius

p
2 at the origin is a convex disk whose

boundary C consists of circular arcs and straight line segments. The length of C is
no greater than the original perimeter of the Voronoi cell. It suffices to show that the
length of C is at least 4

p
3.

The boundary C is determined by the set of centers V of balls at distance less
than
p
8 from the origin, excluding the ball centered at the origin.

The following piecewise linear function arises in the proof of the strong
dodecahedral conjecture in three-dimensions. We make repeated use of it.

L.h/ D
(
.h0 � h/=.h0 � 1/; if h � h0;
0; otherwise;

(1)

where h0 D 1:26.
Let u1;u2 2 V be distinct points such that T D f0;u1;u2g has circumradius

less than
p
2. Let `.u1;u2/ be the length of the part of C contained in the convex

hull of T , and let � be the angle at 0 between u1 and u2 (see Fig. 1a).The following
inequality has been verified by computer using interval arithmetic.

`.u1;u2/ � b�.u1;u2/ � cL.ku1k=2/ � cL.ku2k=2/ � 0; (2)

where b D 4=3 and c D p3=3 � 2�=9 � �0:12. Equality holds when T is an
equilateral triangle with side 2.

Remark 1. Let u1.t/ and u2.t/ be points such that

ku1.t/k D ku2.t/k D 2; ku1.t/ � u2.t/k D t;

that is a triangle at the origin with sides 2; 2; t . Along this curve with parameter t ,
the constants b and c are the unique choice of constants that give the left-hand side
of (2) a local minimum with value 0 at t D 2.

The entire boundary C can be partitioned into finitely many (a) pieces lying in
convex hulls of triangles T , (b) arcs of circles of radius

p
2, and (c) linear segments

from u=2, where u 2 V , to a point on the circle of radius
p
2 centered at the origin

(Fig. 1).
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We extend the inequality (2) to boundary arcs of type (b) in the form

` � b� � 0 (3)

where ` is the length of the circular arc and � is the subtended angle. This inequality
is obvious, because ` D p2 � , and

p
2 > b D 4=3. We extend the inequality (2) to

segments of type (c) in the form

`.v/ � b�.v/ � cL.h/ � 0; (4)

where h D kvk=2, � is the subtended angle at the origin, and ` D p2 � h2
is the length of the segment. When h � h0, inequality (4) is a consequence of
inequality (2), because the segment can be reflected through a mirror to form the
two segments in (2). When h � h0, the termL.h/ is zero. In this case, basic calculus
gives the inequality.

Let `C be the length of C . We sum the inequalities over the boundary pieces of
C of types (a), (b), and (c), using inequalities (2), (3), and (4):

`C � b.2�/ � 2c
X

v2V
L.kvk=2/ � 0: (5)

The functionL is zero on fh j h � h0g. We drop such terms from the sum. Lemma 1
and Inequality (5) give

`C � 2�b C 12c D 4
p
3:

This proves the theorem. �

The following lemma is used in the proof

Lemma 1. Let V be a set of points contained in a closed annulus at the origin of
inner radius 2 and outer radius 2h0. Assume that the mutual separation of points in
V is at least 2. Then X

v2V
L.kvk=2/ � 6:

Equality is obtained uniquely when V is the set of extreme points of a regular
hexagon of circumradius 2.

Proof. In case card.V / � 6, by the inequality L.kvk=2/ � 1, it is clear that
the sum is at most 6, with equality uniquely obtained for the regular hexagon
of circumradius 2. An easy estimate shows that the angles at the origin between
u; v 2 V is greater than �=4, so that card.V / � 7. We may therefore assume
without loss of generality that card.V / D 7.

We index the seven points vi by i 2 Z=7Z in their natural cyclic order around
the annulus. Let �i be the angle subtended at the origin between vi and viC1. Let

˛i D arccos.kvk=4/ � �=6:
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We have the following inequality

�i � ˛i C ˛iC1; i 2 Z=7Z; (6)

which is proved by basic calculus: it follows from the intermediate value the-
orem and from an explicit analytic formula for the terms in the inequality [8,
Lemma 6.107]. Further, we have

˛i � 0:16L.kvik=2/ � 0:32 � 0 (7)

which is also proved by basic calculus: by a second derivative test the left-hand
side is concave as a function of kvik so that the inequality holds if it holds at the
endpoints kvik D 2; 2:52, which is easily checked.

Summing �i over i we get

2� D
X

i

�i � 2
X

i

˛i � 2.0:16/
X

i

L.kvik=2/C 14.0:32/:

Computing constants, we get

6 >
X

i

L.kvik=2/: �

Remark 2. The proof can be organized in a way that carries over directly from two
dimensions to three. In the first step (Lemma 1),

P
L.�/ is shown to be at most the

kissing number (which is 6 in dimension 2 and 12 in dimension 3). In the second
step, the estimate of the boundary of the truncated Voronoi cell is transformed into
an estimate of

P
L.�/. The second step can be broken into two smaller steps: (a)

use a simplex whose circumradius is less than
p
2 to design an inequality with a

local minimum at the desired solution of to the Voronoi cell problem; (b) extend the
inequality from part (a) so that it holds on a full geometric partition of the boundary
of the truncated Voronoi cell. In a final short step, sum all the inequalities to obtain
the desired result.

2 Marchal Cells

In this section, we give details of the partition of the boundary C of the truncated
Voronoi cell. The partition is based on the partition of Euclidean space into Marchal
cells [12].

Figure 2 shows a packing V of cardinality five. We use the constant
p
2 to

partition the plane into levels 0; : : : ; 3. Every point has level � 0. For every v 2 V ,
we form a closed disk of radius

p
2. A point at level � 1 is a point that lies inside

some such disk. We form a closed rhombus of side
p
2 for every pair of distinct



The Strong Dodecahedral Conjecture and Fejes Tóth’s Conjecture 125

level≥1 level≥2 level≥3

Voronoi cells Rogers simplices k! composites Marchal k-cells

Fig. 2 Partitions of the plane (Image source [8])

card(S) XS conv(S∪XS)

1 sphere ball
2 circle bi-cone
3 pair of points bi-pyramid
4 ∅ simplex

Fig. 3 Convex hulls used to
construct level sets in three
dimensions

points in V whose separation is less than
p
8. By construction, the two points in V

are opposite vertices of the rhombus. A point of level � 2 is a point that lies some
rhombus. We form a closed triangle for every triple of distinct points in V whose
circumradius is less than

p
2. A point of level 3 is a point that lies inside some such

triangle. No point has level � 4. A point of level k is a point of level � k that does
not have level � k C 1.

The points of a given level can be further partitioned using the Rogers partition of
the plane into simplices [15]. For each k D 0; : : : ; 3, Rogers simplices that meet the
set of level k can be naturally grouped into collections of kŠ simplices. If P is the
union of the kŠ simplices, then the set of points of level k in P is called a Marchal
k-cell Pk .

The construction can be generalized to three or more dimensions, again using the
parameter

p
2. In n dimensions, the levels extend from 0 to nC 1 in an analogous

manner. Let S � V be a set of cardinality k C 1 whose circumradius is less thanp
2. The shapes used to define level sets are the convex hulls of

S [XS
where XS is the set of points at equidistance

p
2 from every point of S . The set XS

is sphere of dimension n � card.S/. When n D 3, the shapes are balls of radiusp
2, bicones, bipyramids, and tetrahedra (Fig. 3). Again in higher dimensions, the

Rogers simplices can be grouped into collections of kŠ simplices, giving Marchal
k-cells Pk , at each level k.
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Remark 3. Marchal introduced cells to show that the Kepler conjecture in three-
dimensions can be reduced to an inequality of the form

X

v2V
M.kvk/ � 12;

where M is a certain quartic polynomial, and V is a finite packing contained in a
closed annulus of inner radius 2 and outer radius

p
8.

Remark 4. The book [8] strengthens Marchal’s argument to reduce the Kepler
conjecture to the inequality

X

v2V
L.kvk=2/ � 12; (L12)

whereL is the function defined above, and V is a packing in the closed annulus with
inner radius 2 and outer radius 2h0. (In adapting this inequality from dimension
two to dimension three, the two-dimensional kissing number 6 is replaced with
the three-dimensional kissing number 12.) The book also gives a computer-assisted
proof of the inequality (L12), to obtain a new proof of the Kepler conjecture. This
article shows how to deduce the strong dodecahedral conjecture and Fejes Tóth’s
conjecture on packings with kissing number twelve from (L12).

Remark 5. An old conjecture by L. Fejes Tóth [5, p. 178] asserts that the
minimum of X

v2V
kvk; (8)

is 24C 14=p27 � 26:69 as V runs over packings of cardinality 13 contained in a
closed annulus with inner radius 2 and outer radius

p
8. The inequality (L12) gives

the best known result:
X

v2V
kvk � 24C 2h0 D 26:52: (9)

The inequality (L12) also gives upper bounds for the Tammes problem when
card.V / D 13; 14; 15, but these upper bounds are weaker than those known by
semi-definite programming [1].

3 Strong Dodecahedral Conjecture

This section sketches a proof of the strong dodecahedral conjecture [2]:

Theorem 2. The surface area of every bounded Voronoi cell in a packing of balls
of radius 1 is at least the surface area of a regular dodecahedron of inradius 1.
Equality is obtained exactly when the bounded Voronoi cell is itself a regular
dodecahedron.
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Remark 6. Fejes Tóth’s classical dodecahedral conjecture [3] is the same statement,
replacing surface area with volume. The classical dodecahedral conjecture was
proved by McLaughlin [11]. To deduce the volume statement from the surface area
statement, it is enough to use the volume formula Bh=3 for a tetrahedron, where B
is its base area (the face of a Voronoi cell), and h � 1 is its height.

Proof. We pick coordinates so that the center of a chosen bounded Voronoi cell is at
the origin. As in the two-dimensional case, we may intersect the Voronoi cell with a
closed ball of radius

p
2. The boundary C after truncation is no greater than before.

Let V be the set of centers of the packing in the annulus with inner radius 2 and
outer radius

p
8.

There is a partition C \ Pk of C associated with the set of Marchal k-cells Pk
associated with Rogers simplices at the origin. Write

area.C / D
X

Pk

area.C \ Pk/;

for the areas of the various contributions. Write sol.Pk/ for the solid angle of the
Marchal cell at the origin, and write dih.Pk; v/ for the dihedral angle of a Marchal
cell Pk along the edge through the line through f0; vg.

As a reference cell, we let PD;4 be a Marchal 4-cell of the packing giving the
regular dodecahedron of inradius 1. There exist constants aD and bD > 0 such that

area.C \ Pk/C 3aD sol.Pk/C 3bD
X

v2Pk\V
L.kvk=2/ dih.Pk; v/ � 0; (10)

for all k-cells Pk and for all V . The constants aD � �0:581 and bD � 0:0232

are uniquely determined if we insist that equality is attained when Pk D PD;4. This
inequality has been proved by computer by interval arithmetic.

In more detail, the constants aD and bD are determined by a 1-dimensional
family P4.t/ of tetrahedra with sides 2; 2; 2; t; t; t , for t 2 R where the three edges
of length 2meet at the origin. When t D tD � 2:1029 (the separation of balls in the
arrangement giving the regular dodecahedron), P4.tD/ is congruent to PD;4. Forcing
the equality to be exact and the derivative to vanish when t D tD , we obtain two
linear equations in two unknowns that determine aD and bD .

If we sum (10) over all cells, the solid angles sum to 4� , dihedral angles sum
to 2� , and L sums to at most 12 by Inequality (L12), giving

area.C / D
X

Pk

area.C \ Pk/ � �3aD4� � 3bD.2�/.12/:

By the choice of aD and bD , equality is obtained for the boundary CD of the regular
dodecahedron,

area.CD/ D �3aD4� � 3bD.2�/.12/:
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Hence area.C / � area.CD/. This is the desired conclusion. (The circumradius of
the regular dodecahedron is less than

p
2 so that CD is both the truncated and

untruncated boundary.) Tracing through the case of equality, inequality (10) is an
equality exactly when the cell has measure zero or is congruent to PD;4.

4 Fejes Tóth’s Conjecture on Packings with Kissing
Number Twelve

L. Fejes Tóth conjectured the following result in 1969 [4, 6].

Theorem 3. In 3-space any packing of equal ball such that each ball is touched by
12 others consists of hexagonal layers.

The proof of this theorem is much longer than the proof of the strong dodeca-
hedral conjecture. This section describes the proof strategy. The details are found
in [9].

It is enough to prove that the contact pattern of every ball is the hexagonal-close
packing (HCP) or face-centered cubic (FCC) kissing arrangement, because these
can only be extended in hexagonal layers. In fact, the HCP piece has a preferred
plane of symmetry. Once a single HCP piece occurs, the preferred plane must be
filled with HCP pieces. A plane forces another hexagonal layer above it and another
hexagonal layer below it, leading to a packing of hexagonal layers. If no HCP
piece occurs, the packing is the face-centered cubic packing, which also consists
of hexagonal layers.

Lemma 2. Let V be a packing in which every ball touches 12 others. Then for all
distinct u; v 2 V , either ku � vk D 2 or ku � vk � 2h0.
Proof. Let u1; : : : ;u12 be the 12 kissing points around u. Assume that v ¤ ui ;u.
By Inequality (L12),

L.h.u; v//C 12 D L.h.u; v//C
12X

iD1
L.h.u;ui // � 12:

This implies that L.h.u; v// � 0, so ku � vk � 2h0. �

4.1 Graph Classification Problems

Definition 1. Let S2 be the sphere of radius 2, centered at 0. Let V be the set of
packings V � R

3 such that

1. card.V / D 12,
2. V � S2,
3. ku � vk 2 f0; 2g [ Œ2:52; 4� for all u; v 2 V .
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For each V 2 V , let Ectc be the contact graph on vertex set V ; that is, the set of
fu; vg � V such that ku � vk D 2.

Fejes Tóth’s conjecture follows from the Inequality (L12), together with a proof
that the classification of graphs .V;Ectc/ with V 2 V up to isomorphism contains
exactly two graphs: the FCC contact graph and the HCP contact graph.

We formulate Inequality (L12) as a graph classification problem as well. The
inequality holds trivially for a finite packing of cardinality at most 12. For a
contradiction, we may assume that V belongs to the set of finite packings of
cardinality at least 13, contained in a closed annulus of radii Œ2; 2h0� and that violate
the inequality:

X

v2V
L.kvk=2/ > 12:

Let Estd be the set of edges fu; vg � V such that 2 � ku � vk � 2h0. The graph
classification problem equivalent to (L12) is that the set of graphs .V;Estd /, with V
from this set of counterexamples, is empty.

In summary, the proof of Fejes Tóth’s conjecture consists of two graph clas-
sification problems: one for the contact graphs .V;Ectc/ involving vertex sets of
cardinality 12 and one for the graphs .V;Estd / involving vertex sets of cardinality at
least 13 for the Inequality (L12). The proofs of these two classification results differ
in detail, but the high-level structure is the same in both cases. The graphs are first
represented combinatorially as hypermaps. (A hypermap is a finite set D together
with three permutations e; n; f of D that satisfy enfDI , the trivial permutation.)
A computer program classifies the hypermaps satisfying given combinatorial prop-
erties obtained from the constraints imposed on the graphs .V;E/. Linear programs
eliminate the extraneous cases; namely, those hypermaps that exist combinatorially
but that do not admit a geometric realization. Finally, the inequalities used in the
linear programs are proved by computer.

4.2 Hypermap Classification by Computer

The computer program that classifies hypermaps has been the subject of a exhaustive
computer code formal verification project by G. Bauer and T. Nipkow [13]. The
original scope of the project was the set of graphs from the 1998 proof of the Kepler
conjecture [10], but in 2010, Nipkow extended this work to include the classification
of hypermaps needed for the L12 inequality.1

1There are about 25,000 graphs that arise in theL12 classification and only 8 graphs that arise in the
contact graph. Because of the vast difference in complexity of these two classification problems,
our discussion will focus on the L12 classification.
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4.3 Linear Programs

As mentioned above, linear programs eliminate the extraneous cases. The technol-
ogy related to the linear programming has been significantly improved in the years
following the proof of the Kepler conjecture. The thesis of S. Obua implemented
the formal verification of linear programming proof certificates and used this to
eliminate about 92% of the graphs that appear in the original proof of the Kepler
conjecture [14]. More recent work by Solvyev has optimized the formal verification
of linear programs to such a degree that the speed of the formal verification of a
linear program rivals the speed of the unverified execution of a linear program [16].
Work in progress by Solovyev intends to make a full formal verification of all linear
programs needed to prove Inequality (L12).

The linear programs are generated in GLPK from an AMPL model that is
independent of the hypermap. An OCaml program generates a separate AMPL
data file for each linear program. When a single linear program fails to eliminate
a hypermap, branch and bound methods are used to iteratively subdivide the
domain into smaller pieces until linear programs are obtained that eliminate the
hypermap. The process that was used to obtain a system of linear programming
inequalities that works uniformly on all hypermaps was fully automated [7]. In
brief synopsis, when a linear program fails to eliminate a hypermap, two models
of corresponding metric graph are compared, one based purely on the linear
programming estimates of lengths and angles, and a second nonlinear model based
on nonlinear relations between lengths and angles. A comparison of models is used
to determine inadequacies in the linearization. This data is fed to a Mathematica
program based on various heuristics to construct a candidate nonlinear inequality.
The inequality is then shipped to the nonlinear optimization package CFSQP for
extensive nonrigorous testing. From there, a formal specification of the inequality is
generated in the proof assistant HOL Light. The formal specification is exported
to program that uses interval arithmetic to verify inequalities by computer; and
finally, the AMPL model is automatically updated with the new inequality. This
process works remarkably well in practice to develop a small set of inequalities2

that uniformly eliminate all undesired hypermaps.

4.4 The Classification of Contact Graphs

As mentioned in an earlier footnote, there are about 25,000 graphs that arise in the
L12 classification and only 8 graphs that arise in the contact graph classification.
For the eight graphs, it was not necessary to follow the lengthy linear programming
procedure described in the previous subsection. This final subsection sketches
a much simpler procedure to eliminate the unwanted cases. (Two of the eight
possibilities are the HCP and FCC, and the other six cases are unwanted.)

2About 500 inequalities occur.
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Fig. 4 This planar graph is
not a contact graph

Five of the six are eliminated with linear programming inequalities. The linear
programs are based on the following simple inequalities:

1. The angles around each node sum to 2� .
2. The angle of each triangle in the contact graph equals arccos.1=3/ � 1:23096.
3. The opposite angles of each rhombus are equal.
4. Each angle of every rhombus is between 1:6292 and 2:16672.

The final case is the graph shown in Fig. 4. It is eliminated with the following
observations. The perimeter of a spherical hexagon with sides �=3 is 2� . However,
the hexagons in the graph are spherically convex, and 2� is a strict upper bound
on the perimeter of a spherically convex hexagon. Thus, this case does not admit a
geometric realization as a contact graph. Fejes Tóth’s conjecture on sphere packings
with kissing number twelve ensues. �

Acknowledgements Research supported by NSF grant 0804189 and the Benter Foundation.
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1 Introduction

Let <p�q be the space of all p 
 q matrices equipped with the standard trace inner
product hX; Y i D Tr.XT Y / and its induced Frobenius norm k � k. Without loss of
generality, we assume p � q throughout this paper. For a given X 2 <p�q , its
nuclear norm kXk� is defined as the sum of all its singular values and its operator
norm kXk2 is the largest singular value. Let S n be the space of all n
n symmetric
matrices and S nC be the cone of symmetric positive semidefinite matrices. We use
the notation X 	 0 to denote that X is a symmetric positive semidefinite matrix.

In this paper, we consider the following nuclear norm regularized matrix least
squares problem with linear equality constraints:

min
X2<p�q

n1
2
kA .X/ � bk2 C �kXk� C hC;Xi W B.X/ D d

o
; (1)

where A W <p�q ! <m and B W <p�q ! <s are given linear maps,
C 2 <p�q; b 2 <m; d 2 <s , and � is a given positive parameter. Note that the
nuclear norm has been a very popular regularizer which favors a low rank solution
of (1) [4, 9, 10, 25]. The problem (1) arises in many applications when one needs to
find a low rank approximation of a given matrix while preserving certain desired
structures. In many data analysis problems, the collected empirical data, which
are usually messy and incomplete, typically do not have the specified structure or the
desired low rank. It is important to find the nearest low rank approximation of the
given matrix while maintaining the underlying structure of the original system. For
example, in statistics, the regression matrix for the multiple regression model with
a constant term has a column of all ones, and this column should not be perturbed
during the low rank approximation.

When C D 0 and either A or B is absent in (1), the problem (1) includes the
well studied matrix completion problem if either B or A is the projection onto
the set of observed matrix entries. We should mention that many specialized first-
order algorithms have been designed for various variants of the matrix completion
problem; see for example [3, 20, 23, 29]. But as far as we are aware of, no
papers have specifically discussed the nuclear norm regularized matrix least squares
problem with additional structural constraints. The problem can of course be solved
by several general first-order methods such as [6–8,11,14]. However, our numerical
experiments show that these first-order methods may not achieve a satisfactory level
of accuracy within a reasonable time.

In this paper, we design a partial proximal point algorithm (PPA) proposed by
Ha [17] for solving (1), in which only some of the variables appear in the quadratic
proximal term. Given a sequence of parameters 
k such that

0 < 
k " 
1 � C1; (2)

and an initial point X0 2 <p�q , the partial PPA for solving (1) generates a sequence
f.uk; Xk/g � <m 
 <p�q via the following scheme:
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.ukC1; XkC1/ � arg min
n
f�.u; X/C 1

2
k
kX �Xkk2 W A .X/C u D b; B.X/ D d

o
;

(3)

where f�.u; X/ WD 1

2
kuk2C�kXk�ChC;Xi. A key issue in the partial PPA which

we must address is how to solve the partially regularized problem (3) efficiently. In
our algorithm, we solve (3) via its dual, which is an unconstrained concave max-
imization problem whose objective function is continuously differentiable but not
twice continuously differentiable. Because of the latter property, standard Newton’s
method cannot be used to solve the inner subproblem. However, we can show that
the objective function is strongly semismooth due to the strong semismoothness of
the soft thresholding operator [19, Theorem 2.1]. Thus we can apply the semismooth
Newton method of Qi and Sun [24] to solve the inner subproblem. Based on
the classical augmented Lagrangian framework of Rockafellar [27, 28], recently
Zhao, Sun and Toh [32] proposed a Newton-CG augmented Lagrangian (SDPNAL)
method for solving SDP problems, in which the inner subproblems are solved by
using an inexact semismooth Newton-CG method. Their numerical results on a
variety of large scale SDP problems demonstrated that the SDPNAL method is very
efficient. This strongly motivated us to use a semismooth Newton-CG (SSNCG)
method to solve the inner subproblems for achieving fast convergence. For our case,
the global and fast local convergence of the SSNCG method is established under
a constraint nondegeneracy condition, together with the strong semismoothness
property of the soft thresholding operator.

The partial PPA which we will develop for solving (1) can easily be modified to
solve the following semidefinite matrix least squares problem:

min
X2S n

n1
2
kA .X/ � bk2 C hC;Xi W B.X/ D d; X 	 0

o
; (4)

where A W S n ! <m and B W S n ! <s are given linear maps, b 2 <m; d 2 <s ,
and C 2 S n. Thus in this paper, we also design a partial PPA to solve (4).

For the partial PPA (with SSNCG method for solving the inner subproblems)
we have designed and implemented numerical experiments on large scale matrix
least squares problems arising from low rank matrix approximation, as well as
regularized kernel estimation and Euclidean distance matrix completion problems
in molecular conformation, show that our algorithm is efficient and robust.

The remaining parts of this paper are organized as follows. In Sect. 2, we
present some preliminaries about semismooth functions. In Sect. 3, we describe
how to use the partial PPA to solve (1) and introduce a SSNCG method for
solving the inner subproblems. The convergence analysis of our proposed algorithm
is also established. In Sect. 4, we briefly explain how the SSNCG partial PPA
for solving (1) can be modified to solve (4). In Sect. 5, we report the numerical
performance of our algorithm for solving the various classes of problems mentioned
in the last paragraph. We conclude the paper in Sect. 6.
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2 Preliminaries

In this section, we give a brief introduction on some basic concepts such as
the B-subdifferential and Clarke’s generalized Jacobian of the soft-thresholding
operator. These concepts and properties will be critical for us to develop a SSNCG
method for solving the inner subproblems in our partial PPA.

Let F W <m �! <l be a locally Lipschitz function. By Rademacher’s theorem,
F is Fréchet differentiable almost everywhere. Let DF denote the set of points
where F is differentiable. The B-subdifferential of F at x 2 <m is defined by

@BF.x/ WD fV W V D lim
k!1F

0.xk/; xk �! x; xk 2 DF g;

where F 0.x/ denotes the Jacobian of F at x 2 DF . Then Clarke’s [5] generalized
Jacobian of F at x 2 <m is defined as the convex hull of @BF.x/, i.e., @F.x/ D
convf@BF.x/g:

Let Y 2 <p�q admit the following singular value decomposition (SVD):

Y D U Œ˙ 0�V T ; (5)

where U 2 <p�p and V 2 <q�q are orthogonal matrices,˙ D Diag.
1; � � � ; 
p/ is
the diagonal matrix of singular values of Y , with 
1 � 
2 � � � � � 
p � 0. Define
g� W < ! < by

g�.t/ WD .t � �/C � .�t � �/C: (6)

For each parameter � > 0, the soft-thresholding operator D� W <p�q ! <p�q is
defined by

D�.Y / D U Œ˙� 0�V
T ; (7)

where˙� D Diag.g�.
1/; : : : ; g�.
p//. From [19, Thorem 2.1], we know thatD�.�/
is strongly semismooth everywhere in <p�q . Decompose V 2 <q�q into the form
V D ŒV1 V2�, where V1 2 Rq�p and V2 2 <q�.q�p/. Let the orthogonal matrix
Q 2 <.pCq/�.pCq/ be defined by

Q W D 1p
2



U U 0

V1 �V1
p
2V2

�
; (8)

and � W <p�q ! S pCq be defined by

�.Y / W D


0 Y

Y T 0

�
; Y 2 <p�q: (9)

Then, by Golub and van Loan [15, Sect. 8.6], we know that the symmetric matrix
�.Y / has the following spectral decomposition:
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�.Y / D Q

2

4
˙ 0 0

0 �˙ 0

0 0 0

3

5QT ; (10)

i.e., the eigenvalues of �.Y / are ˙
i ; i D 1; : : : ; p; and 0 of multiplicity q � p:
For any W D PDiag.�1; � � � ; �pCq/P T 2 S pCq , define G� W S pCq ! S pCq by

G�.W / WD PDiag.g�.�1/; � � � ; g�.�pCq//P T D .W � �I /C � .�W � �I /C;

where .�/C denotes the projection onto the cone of positive semidefinite matrices.
By direct calculations, we have

�.Y / WD G�.�.Y // D Q

2

4
˙� 0 0

0 �˙� 0

0 0 0

3

5QT D



0 D�.Y /

D�.Y /
T 0

�
: (11)

Note that (11) provides an easy way for us to calculate the derivative (if it exists)
of D� at Y , as we shall see in Proposition 1. For later discussion, we define the
following three index sets:

˛ WD f1; : : : ; pg; � WD fp C 1; : : : ; 2pg; ˇ WD f2p C 1; : : : ; p C qg: (12)

For any � D .�1; : : : ; �pCq/T 2 <pCq and �i ¤ ˙�; i D 1; : : : ; p C q, we denote
by ˝ the .p C q/ 
 .p C q/ first divided difference symmetric matrix of g�.�/ at �
[2] whose .i; j /th entry is given by

˝ij D
8
<

:

g�.�i / � g�.�j /
�i � �j if �i ¤ �j ;

g0�.�i / if �i D �j :

Proposition 1. Let Y 2 <p�q admit the SVD in (5). If 
i ¤ �; i D 1; : : : ; p, then
D�.�/ is differentiable at Y , and for any H 2 <p�q , we have

D0
�.Y /H D U

h

˝˛˛ ı

�H1 CHT
1

2

�
C˝˛� ı

�H1 �HT
1

2

��
V T
1 C

�
˝˛ˇ ıH2

	
V T
2

i
;

(13)

where H1 D UTHV1 and H2 D UTHV2.

Proof. For any � D .�1; : : : ; �pCq/T 2 <pCq , let �i D 
i for i 2 ˛, �i D �
i�p
for i 2 � , and �i D 0 for i 2 ˇ. Since 
i ¤ �; i D 1; : : : ; p, from (10) and (11) we
can obtain the first divided difference matrix for g�.�/ at �:

˝ D

0

B@
˝˛˛ ˝˛� ˝˛ˇ

˝T
˛� ˝�� ˝�ˇ

˝T
˛ˇ ˝

T
�ˇ ˝ˇˇ

1

CA : (14)
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Since g�.�/ is an odd function, we have the following results:

˝�� D ˝˛˛; ˝˛� D ˝T
˛� ; ˝�ˇ D ˝˛ˇ; ˝ˇˇ D 0:

Now, by a result of Löwner [21], we have from (11) that for any H 2 <p�q ,

� 0.Y /H D G0�.�.Y //�.H/ D Q
�
˝ ı .QT�.H/Q/

�
QT :

Since

QT�.H/Q D 1

2

2

4
H1 CHT

1 HT
1 �H1

p
2H2

H1 �HT
1 �.H1 CHT

1 /
p
2H2p

2HT
2

p
2HT

2 0

3

5 ; (15)

by simple algebraic calculations, we have that

� 0.Y /H D Q�˝ ı .QT�.H/Q/
�
QT D



0 M12

MT
12 0

�
; (16)

where M12 D U
h �
˝˛˛ ı

�
H1CHT

1

2

�
C˝˛� ı

�
H1�HT

1

2

��
V T
1 C

�
˝˛ˇ ıH2

	
V T
2

i
:

Since

� 0.Y /H D
"

0 D0�.Y /H
.D0�.Y /H/T 0

#
;

we have from (16) that D0�.Y /H DM12

Next, we give a characterization of the generalized Jacobian of D�.�/,
which was presented in [31, Lemma 2.3.6 and Proposition 2.3.7]. For any
� D .�1; : : : ; �pCq/T 2 <pCq , let �i D 
i for i 2 ˛, �i D �
i�p for i 2 � ,
and �i D 0 for i 2 ˇ. For each threshold parameter � > 0, we decompose the index
set ˛ into the following three subindex sets:

˛1 WD fi j 
i .Y / > �g; ˛2 WD fi j 
i .Y / D �g; ˛3 WD fi j 
i .Y / < �g: (17)

Let � denote the following .p C q/ 
 .p C q/ symmetric matrix

� D

0

B@
�˛˛ �˛� �˛ˇ

� T
˛� ��� ��ˇ

� T
˛ˇ �

T
�ˇ �ˇˇ

1

CA ; (18)

whose .i; j /th entry is given by
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�ij D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

g�.�i / � g�.�j /
�i � �j if �i ¤ �j ;

1 if�i D �j and j�i j > �;
2 @g�.�i / D Œ0; 1� if �i D �j and j�i j D �;
0 if �i D �j and j�i j < �:

(19)

Proposition 2. Let Y 2 <p�q admit the SVD in (5). Then, for any V 2 @B�.Y /
and any H 2 <p�q , we have

V .H/ D Q.� ı .QT�.H/Q//QT : (20)

Moreover, for any W 2 @BD�.Y /, we have

W .H/ D U
h

�˛˛ ı

�H1 CHT
1

2

�
C �˛� ı

�H1 �HT
1

2

��
V T
1 C

�
�˛ˇ ıH2

	
V T
2

i
;

(21)

where H1 D UTHV1, H2 D UTHV2, and

�˛˛ D

0

B@
�˛1˛1 �˛1˛2 �˛1˛3

�T˛1˛2 �˛2˛2 0

�T˛1˛3 0 0

1

CA ;

�ij D 1; for i 2 ˛1; j 2 ˛1 [ ˛2;
�ij D 
i � �


i � 
j ; for i 2 ˛1; j 2 ˛3;
�ij D �ji 2 Œ0; 1�; for i; j 2 ˛2;

(22)

�˛� D

0

B@
!˛1˛1 !˛1˛2 !˛1˛3

!T˛1˛2 0 0

!T˛1˛3 0 0

1

CA ; !ij WD .
i � �/C C .
j � �/C

i C 
j ; for i 2 ˛1; j 2 ˛;

(23)

�˛ˇ D
 
�˛1 Ň
0

!
; Ň D ˇ�2p D f1; : : : ; q � pg; �ij D 
i � �


i
; for i 2 ˛1; j 2 Ň:

(24)

Proof. See [31, Lemma 2.3.6 and Proposition 2.3.7].

Let the operator W 0 W <p�q ! <p�q be defined by

W 0.H/ D U
h

� 0
˛˛ ı

�H1 CHT
1

2

�
C �˛� ı

�H1 �HT
1

2

��
V T
1 C

�
�˛ˇ ıH2

	
V T
2

i
;

(25)

where � 0
˛˛ is of the form (22) with .� 0

˛˛/˛2˛2 D 0. Then we have that W 0 is an
element in @BD�.Y /.
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3 A Partial Proximal Point Algorithm for Matrix Least
Squares Problems

In this section, we will show how to use the partial proximal point algorithm (PPA)
to solve the problem (1).

It is easy to see that (1) can be rewritten as follows:

min
u2<m;X2<p�q

n
f�.u; X/ WD 1

2
kuk2 C �kXk� C hC;Xi W A .X/C u D b;B.X/ D d

o
:

(26)

Note that the objective function f�.u; X/ is strongly convex in u for all X 2 <p�q .
Let l.u; X I �; 
/ W <m 
<p�q 
<m 
<s ! < be the Lagrangian function for (26):

l.u; X I �; 
/ WD f�.u; X/C h�; b �A .X/ � ui C h
; d �B.X/i: (27)

Then the essential objective function in (26) is

f .u; X/ WD sup
�2<m; 
2<s

l.u; X I �; 
/ D
�
f�.u; X/ if .u; X/ 2 FP ;

C1 if .u; X/ … FP ;
(28)

where FP D f.u; X/ 2 <m 
 <p�q j A .X/C u D b;B.X/ D dg is the feasible
set of (26). The dual problem of (26) is given by:

max
n
g�.�; 
/ W A �.�/CB�.
/CZ D C; kZk2 � �; � 2 <m; 
 2 <s ; Z 2 <p�q

o
;

(29)

where g�.�; 
/ WD � 12k�k2 C hb; �i C hd; 
i. Since f .u; X/ is strongly convex in
u for all X 2 <p�q , we apply the partial PPA proposed by Ha [17] to the maximal
monotone operator Tf D @f , in which only the variable X appears in the quadratic
proximal term. Let ˘ W <m 
 <p�q ! <m 
 <p�q be the orthogonal projector of
<m
<p�q onto f0g
<p�q , i.e.,˘.u; X/ D .0;X/ and P
 WD .˘C
Tf /

�1˘ for
a given positive parameter 
 . From [19, Proposition 3.1], we know that the operator
P
 is single-valued. Given a starting point .u0; X0/ 2 <m 
 <p�q , the partial PPA
for solving problem (26) can be expressed as follows:

.ukC1; XkC1/ � P
k .u
k; Xk/ WD argmin

u2<m;X2<p�q

�
f .u; X/C 1

2
k
kX �Xkk2

�
;

(30)

where the sequence f
kg satisfies (2). Note that for the standard PPA, the map ˘ in
P
 is replaced by the identity map.
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Next we compute the partial quadratic regularization of f in (30), which plays
a key role in the study of the partial PPA for solving (26). For a given parameter

 > 0, the partial quadratic regularization of f in (28) associated with 
 is given by

F
.X/ D min
u2<m;Y2<p�q

n
f .u; Y /C 1

2

kY �Xk2

o
: (31)

From [19, Sect. 3], we have that

F
.X/ D sup
�2<m; 
2<s

�
 .�; 
IX/;

where

�
 .�; 
IX/ WD �1
2
k�k2Chb; �iChd; 
iC 1

2

kXk2� 1

2

kD�
.W.�; 
IX//k2 (32)

and W.�; 
IX/ D X � 
.C � A �� � B�
/. By the saddle point theorem [26,
Theorem 28.3], we have that for any

.�.X/; 
.X// 2 argsup
�2<m; 
2<s

�
 .�; 
IX/;

the point .�.X/;D�
.W.�.X/; 
.X/IX/// is the unique solution to (31).
Now we formally present the partial PPA for solving (26).

Algorithm 1
Given a tolerance " > 0, .u0; X0/ 2 <m �<p�q , 
0 > 0. Set k D 0. Iterate:

Step 1. Compute an approximate maximizer

.�kC1; 
kC1/ � argsup
�2<m; 
2<s

�
k .�; 
IXk/; (33)

where �
k .�; 
IXk/ is defined in (32).
Step 2. Compute W kC1 WD W.�kC1; 
kC1IXk/. Set

ukC1 D �kC1; XkC1 D D�
k .W
kC1/; ZkC1 D 1


k
.D�
k .W

kC1/�W kC1/:

Step 3. If k.Xk �XkC1/=
kk � "; stop; else; update 
k ; end.
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Suppose that . N�.Xk/; N
.Xk// is an optimal solution of the inner subproblem (33)
for each Xk . In order to terminate (33) in the above partial PPA, we introduce the
following stopping criteria:

sup �k.�; 
/ � �k.�kC1; 
kC1/ � "2k
4
k

; (34a)

k�kC1 � N�.Xk/k2 � 1

2
"2k; "k > 0;

1X

kD0
"k <1; (34b)

sup �k.�; 
/ � �k.�kC1; 
kC1/ � ı2k
2
k
kXkC1 �Xkk2; (34c)

k�kC1 � N�.Xk/k2 � ı2kk�kC1 � �kk2; ık > 0;

1X

kD0
ık <1; (34d)

kr�k.�kC1; 
kC1/k � ı
0

k


k
kXkC1 �Xkk; 0 � ı0

k ! 0: (34e)

In [19], it has been shown that under mild assumptions, the sequence f.uk; Xk/g
generated by the partial PPA under criterion (34a) and (34b) converges to an
optimal solution .Nu; X/ of (26), and f.�k; 
k/g is asymptotically maximizing for
problem (29). If, in addition, (34c) and (34d) are also satisfied and T �1f is Lipschitz

continuous at the origin, then f.uk; Xk/g locally converges to the unique optimal
solution .Nu; X/ of (26) at least at a linear rate which tends to zero as 
k ! C1.
For details on the convergence analysis, we refer the reader to [19, Theorems 3.1
and 3.2].

3.1 A Semismooth Newton-CG Method for Solving
Unconstrained Inner Subproblems

In this subsection, we introduce a semismooth Newton-CG (SSNCG) method for
solving the unconstrained inner subproblem (33), which is the most expensive step
in each PPA iteration. For later convenience, we let

OA D
 

A

B

!
; Ob D .bI d/ 2 <mCs ; T D

"
Im 0

0 0

#
2 <.mCs/�.mCs/; y D .�I 
/ 2 <mCs :

(35)

For the convergence analysis, we assume that the following Slater condition holds:

�
B W <p�q ! <s is onto;
9X0 2 <p�q such that B.X0/ D d:

(36)
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In our proposed partial PPA, for some fixed X 2 <p�q and 
 > 0, we need to solve
an inner subproblem of the following form:

min
y2<mCs

n
'.y/ WD 1

2
hy; Tyi C 1

2

kD�
.W.yIX//k2 � h Ob; yi

o
; (37)

where W.yIX/ D X � 
.C � OA �y/ and OA � D .A �; B�/ is the adjoint of OA .
The optimality condition for (37) is given by

r'.y/ D Ty C OAD�
.W.yIX// � Ob D 0: (38)

Since the soft-thresholding operator D�
.�/ is Lipschitz continuous with modulus 1
[19, 20], the mapping r'.y/ is Lipschitz continuous on <mCs . Thus for any y 2
<mCs , the generalized Hessian of '.y/ is well defined and it is given by

@2'.y/ WD @.r'/.y/; (39)

where @.r'/.y/ is the Clarke’s generalized Jacobian of r' at y [5]. However, it is
hard to express @2'.y/ exactly, so we define the following alternative for @2'.y/,

O@2'.y/ WD T C 
 OA @D�
.W.yIX// OA �: (40)

From [5, p. 75], we have for any h 2 <mCs ,
@2'.y/h � O@2'.y/h; (41)

which implies that if all elements in O@2'.y/ are positive definite, so are those in
@2'.y/.

Since the soft-thresholding operatorD�
.�/ is strongly semismooth, r'.�/ is also
strongly semismooth. We can solve the nonlinear equation (38) by using a SSNCG
method for which the direction r at an iterate y is computed from the following
linear system of equations:

.T C 
 OA W OA �/„ ƒ‚ …
V

r D �r'.y/; (42)

where W is any element in @D�
.W.yIX//. Note that if s D 0, i.e., the constraint
BX D d is absent, then V is always positive definite due to the fact that all the
elements in @D�
.�/ are positive semidefinite [19, Proposition 2.1] and T D Im.

Define the operator W 0
y W <p�q ! <p�q as in (25). To implement the above

SSNCG method, we need to choose an explicit element W in @D�
.W.yIX//,
which we take to be W 0

y . With this specific choice, then the coefficient matrix in (42)
is given by

V 0
y D T C 
 OA W 0

y
OA � 2 O@2'.y/: (43)
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Next, we shall study a certain constraint nondegeneracy condition and its
connection to the positive definiteness of Vy 2 O@2'.y/. Suppose that the Slater
condition (36) holds and y D .�I 
/ 2 <mCs is the optimal solution to problem (37).
Let W.yIX/ D X � 
.C � OA �y/ and X D D�
.W.yIX//. Let W.yIX/ admit
the SVD as in (5). For the given threshold value �
 , we decompose the index set
˛ D f1; : : : ; pg into the following three subindex sets:

˛1 WD fi j 
i .W / > �
g; ˛2 WD fi j 
i .W / D �
g; ˛3 WD fi j 
i .W / < �
g:

The constraint nondegeneracy condition is said to hold at X [19] if

B.T .X// D <s; (44)

where the subspace T .X/ of <p�q is defined as

T .X/ WD
n
H 2 <p�q j ŒU˛2 U˛3 �THŒV˛2 V˛3 V2� D 0

o
; (45)

and its orthogonal complement is given by

T ?.X/ D
n
H 2 <p�q j UT

˛1
H D 0; HV˛1 D 0

o
: (46)

The following lemma will be needed to analyze the connection between the
constraint nondegeneracy condition at X and the positive definiteness of the
elements of O@2'.y/.
Lemma 1. Let W.yIX/ admit the SVD as in (5). For any W 2 @D�
.W.yIX//
and H 2 <p�q such that W H D 0, it holds that

H 2 T ?.X/: (47)

Proof. Let W 2 @D�
.W.yIX// and H 2 <p�q be such that W H D 0. Then
we have

0 D hH;W H i D 1

2
h�.H/;�.W H/i D 1

2
h�.H/;Q.� ı .QT�.H/Q//QT i

D 1

2
hQT�.H/Q;� ı .QT�.H/Q/i D 1

2
h QH;� ı QH i;

where � 2 S pCq is defined as in (18) and QH D QT�.H/Q. Let H1 D
UTHV1;H2 D UTHV2;H

s
1 D .H1CHT

1 /=2 andHa
1 D .H1�HT

1 /=2. From (15)
and (21), we have

0 D 1

2
h QH;� ı QH i D

X

i2˛

X

j2˛
�ij .H

s
1 /
2
ij C

X

i2˛

X

j2�
�ij .H

a
1 /
2
ij C

X

i2˛

X

j2ˇ
�ij .H2/

2
ij :
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Since �ij 2 Œ0; 1� for all i; j D 1; : : : ; p C q, it follows that

X

i2˛

X

j2˛
�ij .H

s
1 /
2
ij D 0;

X

i2˛

X

j2�
�ij .H

a
1 /
2
ij D 0;

X

i2˛

X

j2ˇ
�ij .H2/

2
ij D 0:

Then from (22), (23) and (24), we have that

.Hs
1 /˛1˛ D 0; .Hs

1 /˛˛1 D 0; .Ha
1 /˛1˛ D 0; .Ha

1 /˛˛1 D 0; .H2/˛1 Ň D 0;

where Ň D f1; : : : ; q � pg. Since H1 D Hs
1 C Ha

1 , we have that .H1/˛1˛ D 0
and .H1/˛˛1 D 0. From H1 D ŒU˛1 U˛2 U˛3 �

THŒV˛1 V˛2 V˛3 � and H2 D
ŒU˛1 U˛2 U˛3 �

THV2, we obtain that

UT
˛1
HV1 D 0; U T

˛1
HV2 D 0; U THV˛1 D 0:

Since both U and V D ŒV1 V2� are orthogonal matrices, we have UT
˛1
H D

0;HV˛1 D 0, which means that H 2 T ?.X/.

Proposition 3. Suppose that the Slater condition (36) is satisfied. Let y be the
optimal solution to problem (37), W.yIX/ D X � 
.C � OA �y/ admit the SVD as
in (5), and X D D�
.W.yIX//. Then the following conditions are equivalent:

(a) The constraint nondegeneracy condition (44) holds at X .
(b) Every Vy 2 O@2'.y/ is symmetric and positive definite.

(c) V 0
y 2 O@2'.y/ is symmetric and positive definite.

Proof. “(a)) (b)”. Let Vy be an arbitrary element in O@2'.y/. Then there exists an
element Wy 2 @D�
.W.yIX// such that

Vy D T C 
 OA Wy
OA � D T C 




A WyA � A WyB�
BWyA � BWyB�

�
: (48)

Since Wy is self-adjoint and positive semidefinite [19, Proposition 2.1], we have that
Vy is self-adjoint and positive semidefinite. From (48) we obtain that Vy is positive
definite if only if BWyB� is positive definite. Hence, it enough to show the positive
definiteness of BWyB�. Let h 2 <s be such that BWyB�h D 0. Then we have

0 D hh;B Wy B�hi D hB�h;Wy B�hi � hWy B�h;Wy B�hi;

where the last inequality follows from [19, Proposition 2.1], which implies that
Wy .B�h/ D 0. From Lemma 1, we have B�h 2 T .X/?. Since the constraint
nondegeneracy condition holds at X , there exists a Y 2 T .X/ such that BY D h.
Then, we have

hh; hi D hh;BY i D hB�h; Y i D 0:
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Thus h D 0, which implies that BWyB� is positive definite. Hence, Vy is positive
definite.

“(b)) (c)”. This is obviously true since V 0
y 2 O@2'.y/.

“(c)) (a)”. Suppose that the constraint nondegeneracy condition (44) does not
hold at X . Then there exists a non-zero h 2 ŒBT .X/�?. And we have

0 D hh;BY i D hH;Y i 8 Y 2 T .X/;

whereH D B�h, which implies thatH 2 T .X/?. From (46), we have UT
˛1
H D 0

and HV˛1 D 0. Then it follows that

UT
˛1
HV D UT

˛1
HŒV1 V2� D 0 and UTHV˛1 D 0: (49)

Let H1 D UTHV1 and H2 D UTHV2. We have from (49) that

.H1/˛1˛ D 0; .H1/˛˛1 D 0; and .H2/˛1 Ň D 0;

where Ň D f1; : : : ; q � pg, from which we can further have that

.Hs
1 /˛1˛ D 0; .Hs

1 /˛˛1 D 0; .Ha
1 /˛1˛ D 0; and .Ha

1 /˛˛1 D 0;
where Hs

1 D .H1 CHT
1 /=2 and Ha

1 D .H1 �HT
1 /=2. Then we have

� 0
˛˛ ı .Hs

1 / D 0; �˛� ı .Ha
1 / D 0; and �˛ˇ ıH2 D 0:

From the definition of W 0
y in (25), it follows that W 0

y .H/ D 0, and hence

hh;BW 0
y B�hi D hH;W 0

y .H/i D 0: (50)

Since V 0
y is positive definite, it follows from (48) that BW 0

y B� is also positive
definite. Then (50) implies that h D 0, which contradicts the assumption that h ¤ 0.
Hence, we have that (a) holds.

Now we present the steps of the SSNCG algorithm for solving (37).
In Algorithm 2, since Vt is always positive semidefinite, the matrix Vt C "t I is

positive definite as long as r'.yt / ¤ 0. From [32, Lemma 3.1], we know that the
generated search direction rt is always a descent direction.

To analyze the global convergence of Algorithm 2, we assume that r'.yt / ¤ 0

for any t � 0. The global convergence and the rate of local convergence of
Algorithm 2 can be derived similarly as in [32].

Theorem 1. Suppose that the Slater condition (36) holds. Then Algorithm 2 is
well defined and any accumulation point y of fytg generated by Algorithm 2 is an
optimal solution to the inner subproblem (37).

Proof. See [32, Theorem 3.4].
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Algorithm 2 A semismooth Newton-CG method
Given y0 2 <mCs , � 2 .0; 1/, � 2 .0; 1�, �1; �2 2 .0; 1/, and c 2 .0; 1=2/, ı 2 .0; 1/. Set t D 0.
Iterate:

Step 1. Compute �t WD minf�; kr'.yt /k1C�g. Apply the CG method to find an approximation
solution rt to

.Vt C "t I / r D �r'.yt /; (51)

where Vt 2 O@2'.yt / is defined in (43) and "t D minf�2; �1kr'.yt /kg, so that rt satisfies the
following condition:

k.Vt C "t I /r t Cr'.yt /k � �t : (52)

Step 2. Set ˛t D ımt , where mt is the first nonnegative integer m for which

'.yt C ımrt / � '.yt /C cımhrt ;r'.yt /i:
Step 3. Set ytC1 D yt C ˛t r t :

Theorem 2. Suppose that the Slater condition (36) holds. Let y be an accumulation
point of the infinite sequence fytg generated by Algorithm 2 for solving the inner
subproblem (37). Suppose also that at each step t � 0, the inexact direction rt

satisfies the accuracy condition in (52). Assume that the constraint nondegeneracy
condition (44) holds at X WD D�
.W.yIX//. Then the whole sequence fytg
converges to y and

kytC1 � yk D O.kyt � yk1C� /: (53)

Proof. See [32, Theorem 3.5].

4 Semidefinite Matrix Least Squares Problems

In this section, we show that the partial PPA developed for solving (26) can easily
be adapted for solving the semidefinite matrix least squares problem (4). It is easy
to see that (4) can be rewritten as follows:

min
u2<m;X2S n

n1
2
kuk2 C hC;Xi W A .X/C u D b; B.X/ D d; X 	 0

o
: (54)

The dual problem of (54) is given by:

max
�2<m;
2<s ;Z2S n

n
� 1
2
k�k2 C hb; �i C hd; 
i W A �.�/CB�.
/CZ D C; Z 	 0

o
:

(55)
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For some fixed X 2 S n and 
 > 0, the partial quadratic regularization of
problem (54) is given by:

min
u2<m;Y2S n

n1
2
kuk2 C hC; Y i C 1

2

kY �Xk2 W A .Y /C u D b; B.Y / D d; Y 	 0

o
;

(56)

and the Lagrangian dual problem of (56) is given by

max
�2<m;
2<s �
 .�; 
IX/ WD inf

u2<m;Y�0 L
.u; Y I �; 
; X/; (57)

where

L
.u; Y I �; 
; X/

D 1

2
kuk2 C hC; Y i C 1

2

kY �Xk2 C h�; b �A .Y / � ui C h
; d �B.Y /i

D 1

2
kuk2 � h�; ui C hb; �i C hd; 
i C 1

2

kY �W.�; 
IX/k2

C 1

2

.kXk2 � kW.�; 
IX/k2/;

where W.�; 
IX/ D X � 
.C � A �� �B�
/. By minimizing L
.u; Y I �; 
; X/
over Y 	 0, we have

�
 .�; 
IX/ D �1
2
k�k2 C hb; �i C hd; 
i C 1

2

kXk2 � 1

2

k˘S n

C
.W.�; 
IX//k2;

(58)

where ˘S n
C
.�/ is the metric projector of S n onto S nC. The problem (57) is an

unconstrained continuously differentiable convex optimization problem, and it can
be efficiently solved by the SSNCG method developed in [32]. The SSNCG method
for solving (57) is analogous to Algorithm 2 where for some fixed X 2 S n and

 > 0, the function ' is now given by

'.y/ D 1

2
hy; Tyi C 1

2

k˘S n

C
.W.yIX//k2 � h Ob; yi

and the operator Vt in (51) is replaced by

Vt D T C 
 OA˘ 0S n
C
.W.yt IX// OA �; (59)

where ˘ 0S n
C

.W.yt IX// denotes an element of @˘S n
C
.W.yt IX//.

The fast local convergence of the SSNCG method for solving (57) can be
established in a similar fashion as Theorem 2 where the positive definiteness of
the element Vy defined in (59) at the optimal solution y is again equivalent to a
constraint nondegeneracy condition similar to (44) at X WD ˘S n

C
.W.yIX//.
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5 Numerical Results

In this section, we report some numerical results to demonstrate the efficiency of our
SSNCG partial PPA. We implemented our algorithm in MATLAB 2012a (version
7.14), and the numerical experiments are run in MATLAB under a Windows 7 64-bit
system on an Intel Xeon 4 Cores 3.20 GHz CPU with 12 GB memory.

In our numerical implementation, we use the alternating direction method of
multipliers (ADMM) [8] to generate a reasonably good starting point for our
SSNCG partial PPA. The augmented Lagrangian function for (29) corresponding
to the linear equality constraints is defined as:

L
.y;ZIX/ D �1
2
hy; TyiC h Ob; yiC hX;C � OA �y �Zi � 


2
kC � OA �y �Zk2;

where X 2 <p�q and 
 > 0. Given a starting point (X0; y0; Z0), the ADMM
generates new iterates by the following procedure:

ykC1 WD argmaxy2<mCs L
.y;Z
k IXk/; (60)

ZkC1 WD argmaxkZk2�� L
.y
kC1; ZIXk/ D 1



.D�
.W

kC1/ �W kC1/; (61)

XkC1 WD D�
.W
kC1/; (62)

where W kC1 D Xk � 
.C � OA �ykC1/. Note that the iterate ykC1 in (60) can be
computed by solving the following linear system of equations:

.T C 
 OA OA �/y D Ob � OA .Xk/C 
 OA .C �Zk/:

We measure the infeasibilities and optimality for the primal problem (26) and the
dual problem (29) as follows:

RP D k
Ob � .�I 0/ � OA .X/k

1C k Obk ;

RD D kC �
OA �y �Zk

1C k OA �k ;

relgap D f�.�; X/ � g�.�; 
/
1C jf�.�; X/j C jg�.�; 
/j ;

where y D .�I 
/; Z D .D�
.W / � W /=
 with W D X � 
.C � OA �y/, and
f�.�; X/ and g�.�; 
/ are the objective functions of the primal and dual problems,
respectively. The infeasibility of the condition kZk2 � � is not checked since
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it is satisfied up to machine precision throughout the algorithm. In our numerical
experiments, we stop the partial PPA when

maxfRP ;RDg � Tol; (63)

where Tol is a pre-specified accuracy tolerance. We choose the initial 
0 D 1 and
update it as 
kC1 D min.2
k; 108/ if RkC1D =RkD > 0:5; otherwise 
kC1 D 
k .
Unless otherwise specified, we set the parameter � in (1) to be � D 10�3kA �bk2
and Tol D 10�6 as the default.

In solving the subproblem (37), the SSNCG algorithm is stopped when RP D
kr'.y/k=.1C k Obk/ � 0:2RD or the number of Newton iterations exceeds 50. We
cap the number of CG steps for solving each Newton system of linear equations at
600 and stop the CG solver when k.V C"I /rCr'.y/k � min.0:05; 0:1kr'.y/k/.

The reason we used the ADMM instead of other first order methods to generate
a starting point is based on our belief and experience that the ADMM is perhaps the
most efficient first order method for solving the problems which we are interested in.
Since this belief may be challenged without strong numerical evidence to support it,
as suggested by one of the referees, we also tested the primal-dual splitting method
by Condat [7] for solving (1). To apply Condat’s method in [7], we rewrite (1) in the
following form:

min
X

F.X/CG.X/CH.B.X//; (64)

where F.X/ D 1
2
kA .X/ � bk2 C hC;Xi with rF.X/ D A �.A .X/ � b/C C ,

G.X/ D �kXk�, andH.�/ is the indicator function over the singleton set fdg. Note
that the optimality condition for (64) is given by:

find .X; y/ such that



0

0

�
2

rF.X/C @G.X/CB�y

�B.X/C @H�.y/
�

(65)

where H� is the conjugate function of H with H�.y/ D hd; yi. Let LF be a
Lipschitz constant for rF , which in our case can be set to LF D �max.A �A /.
Given parameters � > 0; ˇ > 0 such that ��1 � LF =2Cˇ�max.BB�/, a sequence
of positive numbers f�kg, and a starting point .X0; y0/ 2 <p�q 
 <s , Condat’s
primal-dual splitting method generates new iterates as follows:

QXkC1 D prox�G.X
k � �rF.Xk/ � �B�.yk// D D��.W

k/; (66)

QykC1 D proxˇH�.yk C ˇB.2 QXkC1 �Xk// D yk C ˇ.B.2 QXkC1 �Xk/ � d/;
(67)

.XkC1; ykC1/ D �k. QXkC1; QykC1/C .1 � �k/.Xk; yk/; (68)

where W k D Xk � �rF.Xk/ � �B�.yk/ and prox�G denotes the proximal point
mapping associated with �G defined by prox�G.X/ D argminY2<p�q�G.Y / C
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1
2
kY �Xk2. We can estimate how close the iterate . QXkC1; QykC1/ is to optimality by

noting that dist.0;�B. QXkC1/C @H�. QykC1// D kd �B. QXkC1/k, and

dist.0;rF. QXkC1/C@G. QXkC1/CB� QykC1/ � k 1
�
.W k� QXkC1/CB� QykC1CrF. QXkC1/k;

based on the fact that W k � QXkC1 2 @.�G/. QXkC1/. By letting ZkC1 D 1
�
. QXkC1 �

W k/; ukC1 D �kC1 D b �A . QXkC1/ and 
kC1 D � QykC1, then

kŒA QXkC1 C ukC1 � bI d �B. QXkC1/�k D kd �B. QXkC1/k

k 1
�
.W k � QXkC1/CB� QykC1 CrF. QXkC1/k D kC � .A ��kC1 CB�
kC1 CZkC1/k;

which correspond to the residuals of the primal and dual equality constraints in (26)
and (29), respectively. Therefore, we can stop the primal-dual splitting method
when (63) is satisfied. In our numerical experiments, we also stop the method when
the number of iterations exceeds 2,000.

5.1 Example 1

We consider the low rank matrix approximation problem in which certain specified
entries of the matrix are fixed. In [16], Golub, Hoffman and Stewart derived an
explicit formula for finding the nearest lower-rank approximation of the target
matrix while certain specified columns of the matrix are fixed. In our numerical
experiments, we assume that only partial information of the original matrix is
available and the specified fixed entries can be in any random position of the original
matrix. For each triplet .p; q; r/, we first generate a random matrix M 2 <p�q by
setting M D M1M

T
2 where M1 2 <p�r , M2 2 <q�r have i.i.d. Gaussian entries.

Then we sample a subset E of m entries of M uniformly at random, and generate a
random matrix NE 2 <p�q with sparsity pattern E and i.i.d Gaussian entries. Then
we assume that the observed data is given by QME D ME C �NE kME k=kNE k,
where � is the noise factor. The minimization problem which we solve can be stated
as follows:

min
X2<p�q

n1
2
kXE � QME k2F C �kXk� W Xit ;jt DMit ;jt ; 1 � t � k

o
; (69)

where .i1; j1/; : : : ; .ik; jk/ are distinct pairs. In our numerical experiments, we set
k D d10�3pqe, which is the number of prescribed entries selected uniformly at
random, and the noise level � D 0; 0:1.

For each triplet .p; q; r/;m and � , we generate five random instances. In Table 1,
we report the average number of the following quantities: number of sampled entries
(m); number of outer iterations (it); total number of inner iterations (itsub); number
of CG steps taken to solve each linear system in (51) (cg); infeasibilities (Rp;RD);
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relative duality gap (relgap); relative mean square error MSE WD kX �Mk=kMk;
numerical rank of X (#sv); and the CPU time taken. Here we report the numerical
rank of X defined as follows:

#sv.X/ WD maxfk W 
k.X/ � maxf10�8; �g
1.X/g: (70)

In this example, we compare the performance of the SSNCG partial PPA with the
ADMM method [8] which is applied to the dual problem (29) and the primal-
dual splitting method [7]. We use the same stopping criterion (63) for ADMM.
Table 2 reports the average results of ADMM for each instance of five runs. We may
observe from the tables that our algorithm is overall more efficient than ADMM for
solving (69). For the problem where p is moderate but q is large, e.g., p D 100,
q D 100;000 and � D 0, it takes the partial PPA less than half of the time needed by
ADMM to achieve the tolerance of 10�6 while the MSE is reasonably small. Table 3
reports the average results of the primal-dual splitting method for each instance of
five runs. We set the parameters � D 1:5 and ˇ D 1=6 after some tuning for good
performance. The parameter �k is set to be 1 for all k as this choice gives the best
performance. We can observe from the tables that the primal-dual splitting method is
much slower than ADMM for solving (69). For p D q D 1;500; � D 0 and r D 10,
the primal-dual splitting method cannot achieve the tolerance of 10�6 within 1 h and
the obtained solution is of very high rank with relatively large MSE.

5.2 Example 2

In the Euclidean metric embedding problem, we are given an incomplete, possibly
noisy, dissimilarity matrixB 2 S n with Diag.B/ D 0 and sparsity pattern specified
by the set of indices E D f.i; j / j Bij 6D 0; 1 � i < j � ng. The goal is to find an
Euclidean distance matrix (EDM) [1] that is nearest to B . If the measure of nearness
is in the Frobenius norm, then the mathematical formulation of the problem is as
follows:

min
n1
2

X

.i;j /2E
Wij .Dij � Bij /2 C �

2n
hE;Di W D is an EDM

o
; (71)

where Wij > 0; .i; j / 2 E , are given weights, E 2 S n is the matrix of all ones and
� > 0 is a regularization parameter. Here we add the term �

2n
hE;Di to encourage

a sparse solution. Recall that a standard characterization [1] of an EDM D is that
D D Diag.X/eT C eDiag.X/T � 2X for some X 	 0 with Xe D 0, where e 2 <n
is the vector of all ones. Thus the problem (71) can be rewritten as:

min
n1
2

X

.i;j /2E
Wij .hAij ; Xi � Bij /2 C �hI;Xi W hE;Xi D 0; X 	 0

o
; (72)
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where Aij D .ei � ej /.ei � ej /T and ei is the i -th standard unit vector in <n.
Note that under the condition X 	 0, the constraint Xe D 0 is equivalent to
hE;Xi D 0. It is interesting to note that desiring sparsity in the EDM D leads
to the regularization term �hI;Xi, which is a proxy for desiring a low-rank X .

Let m D jE j. The linear maps A W S n ! <m and B W S n ! < for the
problem (72) are given as follows:

.A .X//.i;j / D h
p
WijAij ; Xi; 8 .i; j / 2 E ; B.X/ D hE;Xi:

Note that the components of a vector in <m are enumerated based on the elements
in E . And the operator Vt in (59) is given as follows:

Vt D 

� 1


T C



A

B

�
˘ 0S n

C
.W.yt IX// �A � B�

� �
: (73)

For the EDM problem (72), the condition number of Vt can be quite large and
it is important to find a good preconditioner for Vt so that the CG method can
have a reasonable convergence speed when solving the linear system of equations
associated with Vt . Let A;B and S be the matrix representations of A ;B and
˘ 0S n

C

.W.yt IX// with respect to the standard basis of S n and <m, respectively.

Let h 2 <n.nC1/=2 and � D f.i; j / j 1 � i � j � ng. Suppose Diag.h/ is a positive
definite diagonal approximation of S. (In our implementation, we choose h to be the
approximate diagonal of ˘ 0S n

C

.W.yt IX// considered in [13].) Let H 2 S n be the

matrix such that Hij D Hji D h.i;j / for all .i; j / 2 � . We consider the following
approximation of 1



Vt :

M D


M q

qT ˛

�
; (74)

where q D A .H/ 2 <m, ˛ D hE;H i, and

M D 1



Im C ADiag.h/AT 2 <m�m: (75)

Note that the rows and columns of M are enumerated based on the elements of E .
We have that

M.i;j /;.s;t/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

0 if i 6D s, j 6D t ,
p
WijWst Hss if i D s, j 6D t ,

p
WijWst Htt if i 6D s, j D t ,

1=
 CpWijWst .Hss CHtt C 2Hst / if i D s, j D t .

Let Nh.i;j / D WijHij for all .i; j / 2 E . Then we know that M has the following
structure
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M D DC JJ T ; (76)

where D D 1


Im C 2Diag. Nh/, and J 2 <m�n is the weighted arc-node incidence

matrix for which the entry at the .s; t/-th row and k-th column is given by

J.s;t/;k D

8
<̂

:̂

p
WstHss if k D s,p
WstHtt if k D t ,

0 otherwise.

To use M as a preconditioner for Vt , we need the inverse of M , which is given in
the following expression:

M�1 D
"

S�1 �˛�1S�1q
�˛�1qT S�1 ˛�1 C ˛�2qT S�1q

#
; (77)

where

S DM � ˛�1qqT D DC ŒJ; q�„ƒ‚…
OJ



In 0

0 �˛�1
� 

J T

qT

�
:

By using the Sherman-Morrison-Woodbury formula [15], we have that

S�1 D D�1 � D�1 OJ .�C OJ TD�1 OJ /�1 OJ TD�1; (78)

where � D ŒIn; 0I 0;�˛�. Here we assume that � C OJ TD�1 OJ is nonsingular;
otherwise we may consider the following block diagonal approximation of 1



Vt :

M d D


M 0

0 ˛

�
; (79)

where the inverse ofM can also be computed via the Sherman-Morrison-Woodbury
formula.

The Euclidean metric problem arises in many applications. For the regularized
kernel estimation (RKE) problem in statistics [22], we are given a set of n objects
and dissimilarity measures dij for certain object pairs .i; j / 2 E . The goal is to
estimate a positive semidefinite kernel matrix X 2 S nC such that the fitted squared
distances induced by X between the objects satisfy the following condition:

Xii CXjj � 2Xij D hAij ; Xi � d2ij 8 .i; j / 2 E :

Formally, one version of the RKE problem proposed in [22] is the SDP prob-
lem (72).

In our numerical experiments, the data dij are normalized to be in the interval
Œ0; 1�, and E D f.i; j / W 1 � i < j � 630g. We set Wij D 1 for all .i; j / 2 E .
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Fig. 1 A 3D representation
of the sequence space for 630
proteins

Table 4 Numerical results on the RKE problem arising from protein clustering

problem n mC s � it.jitsubjcg Rp j RD j relgap #sv Time

RKE630-M 630 198,136 5.07e� 1 6 j 36j 10.3 2.67e� 7 j 2.26e� 8
j �1.54e� 6

388 36

PDB25-M 1,898 1,646,031 1.84e + 0 23 j 68 j 22.3 1.89e� 7 j 6.28e� 7
j �1.31e� 6

1,371 23:43

PDB25 1,898 1,646,031 1.84e + 0 23 j 80 j 76.7 9.60e� 7 j 6.32e� 7
j �1.21e� 6

1,371 59:56

In [22], due to the prohibitive computational load encountered by the standard
interior-point solver (such as SDPT3 or SeDuMi) used to solve (72), a subset of 280
globin proteins were selected from the entire set of 630 proteins for the numerical
results reported in [22]. For each of the selected proteins, 55 dissimilarities were
randomly selected out of the total of 279. Here we are able to consider the entire set
of 630 proteins and the dissimilarities among all the pairs of proteins.

As mentioned in [22], the RKE methodology can provide an efficient way to
represent each protein sequence by a feature vector in an appropriate coordinate
system using the pairwise dissimilarity between protein sequences. Specifically,
we project the computed solution X onto a 3D space corresponding to the largest
three eigenvalues. Figure 1 displays a 3D representation of the sequence space
for 630 proteins. There are at least 4 classes visually identifiable in the data set
of 630 proteins, which is consistent with the observations in [22]. The numerical
results for solving (72) are reported in Table 4, where #sv is the number of positive
eigenvalues of X . For the computed solution X , we have hX;Ei D 4:46 
 10�13
and hX; I i D 1:85 
 102.

We also conducted numerical experiments on a much larger protein data set to
evaluate the performance of our algorithm. We used the PDB SELECT 25 data
set [18], a representative subset of the Protein Data Bank database, which contains
1,898 protein chains. The numerical results for the PDB SELECT 25 data set are
reported in Table 4. For the computed solutionX , we have hX;Ei D �1:94
10�14
and hX; I i D 8:76 
 102. To appreciate the usefulness of the preconditioner
M , we also report the numerical results for the PDB25 problem without using
the preconditioner M in the last row of Table 4. We can observe that the CG
solver without using the preconditioner M requires substantially more CG steps
for computing the inexact Newton direction from the linear system (51).
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5.3 Example 3: Molecular Conformation Problems

The molecular conformation problem for a molecule with n atoms is the problem
of determining the positions x1; : : : ; xn of the atoms, given estimated inter-atomic
distances dij between some pairs of atoms. The estimated distances could be
information derived from covalent bond lengths or measured from nuclear magnetic
resonance (NMR) experiments. Let E be the set of pairs of indices .i; j / (i < j )
for which estimates on the distances kxi � xj k are available. The molecular
conformation problem can mathematically be formulated as follows:

min
n1
2

X

.i;j /2E
Wij .kxi � xj k2 � d2ij /2 �

�

2n

nX

i;jD1
kxi � xj k2 j

nX

iD1
xi D 0

o
; (80)

where W 2 S n is a weight matrix with positive entries. The second term in the
objective function is added to maximize the pairwise separations between the atoms.
The equality constraint in (80) is included to set the center of mass of the molecule at
the origin. The inclusion of weights is useful for differentiating data that are derived
from different sources, and hence of different reliability. For example, distance data
which are derived from covalent bond lengths are usually much more accurate than
data which are derived from the NMR experiments.

Let X D Œx1; : : : ; xn� 2 <3�n and Aij D eij e
T
ij , where eij D ei � ej . Then

we have xi � xj D Xeij and hence kxi � xj k2 D hXTX;Aij i. Let Y D XTX .
The constraint

Pn
iD1 xi D 0 can equivalently be replaced by hE; Y i D 0. Note

that under the latter constraint, it is easy to see that
Pn

i;jD1 kxi � xj k2 D 2nhI; Y i.
By relaxing the non-convex constraint Y D XTX to Y 	 0 in (80), we get the
following SDP problem:

min
n1
2

X

.i;j /2E
Wij .hAij ; Y i � d2ij /2 � �hI; Y i j hE; Y i D 0; Y 	 0

o
: (81)

Observe that under the constraints hE; Y i D 0 and Y 	 0, we have hI; Y i D
1
2n
hE;Di, whereD D Diag.Y /eT CeDiag.Y /T �2Y and e 2 <n is a vector of all

ones. Thus (81) seeks an Euclidean distance matrix D which is encouraged to have
as many nonzero entries as possible. Note that in the maximum variance unfolding
problem [30], one also consider a problem that has exactly the same form as (81).

In this example, we focus on molecular conformation problems with noisy and
sparse distance data. In our numerical experiments, we set Wij D 1=d2ij for all
.i; j / 2 E and � D 8 
 10�4kA �bk2. For each molecule, we generated the partial
inter-atomic distance matrix as follows. If the distance between two atoms is less
than 6 VA (1 VA D 10�8 cm), which is nearly the maximal distance that the NMR
experiment can measure between two atoms, the distance is chosen; otherwise no

distance information about the pair is known. Since not all the distances below 6 VA
are known from NMR experiments, we randomly choose 30% of all the distance
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Table 5 Numerical results on molecular conformation problems with 30% distances�6 VA, which
are corrupted by 20% normal noise

Molecule nImC s it.j itsub j cg Rp j RD j relgap RMSD Time

1GM2 166; 1,119 23 j 81 j 58.3 3.02e� 7 j 7.46e� 7 j �4.92e� 4 1.15 7
1PBM 388; 3,145 29 j 113 j 89.5 6.25e� 7 j 5.93e� 7 j �2.55e� 4 1.20 52
1PTQ 402; 2,182 28 j 108 j 155.8 1.04e� 7 j 3.42e� 7 j �1.84e� 4 1.51 1:24
1CTF 487; 2,630 28 j 135 j 182.8 3.11e� 7 j 3.65e� 7 j �2.88e� 4 1.99 2:49
1AU6 506; 4,767 24 j 105 j 168.7 2.88e� 7 j 6.88e� 7 j �1.02e� 3 0.96 2:24
1HOE 558; 3,083 26 j 125 j 176.5 9.73e� 7 j 6.70e� 7 j �4.01e� 4 1.20 3:34
1PHT 814; 5,239 31 j 169 j 204.8 2.90e� 7 j 9.36e� 7 j �5.21e� 4 2.65 13:05
1POA 914; 5,045 31 j 192 j 224.4 3.29e� 7 j 4.08e� 7 j �4.41e� 4 2.57 20:40
1AX8 1,003; 5,563 30 j 184 j 207.3 2.67e� 7 j 7.67e� 7 j �6.70e� 4 2.05 22:49

Table 6 Numerical results on molecular conformation problems with 30% distances�6 VA, which
are corrupted by 20% uniform noise

Molecule nImC s it.j itsub j cg Rp j RD j relgap RMSD Time

1GM2 166; 1,119 24 j 88 j 63.3 2.14e� 7 j 5.19e� 7 j �1.51e� 4 0.91 8
1PBM 388; 3,145 24 j 105 j 106.6 1.33e� 7 j 8.78e� 7 j �3.13e� 4 1.02 57
1PTQ 402; 2,182 26 j 112 j 145.1 1.03e� 7 j 8.20e� 7 j �4.32e� 4 1.31 1:22
1CTF 487; 2,630 28 j 131 j 179.2 3.37e� 7 j 3.18e� 7 j �2.38e� 4 1.73 2:43
1AU6 506; 4,767 24 j 131 j 162.7 3.32e� 7 j 5.27e� 7 j �5.14e� 4 0.79 2:54
1HOE 558; 3,083 26 j 124 j 184.6 9.59e� 8 j 6.92e� 7 j �3.94e� 4 1.15 3:43
1PHT 814; 5,239 31 j 180 j 205.8 6.22e� 7 j 5.13e� 7 j �2.37e� 4 2.47 13:57
1POA 914; 5,045 30 j 185 j 209.5 6.80e� 7 j 8.48e� 7 j �8.18e� 4 2.25 18:43
1AX8 1,003; 5,563 30 j 175 j 214.4 6.99e� 7 j 6.65e� 7 j �5.07e� 4 1.84 22:13

below 6 VA in our experiment. For realistic molecular conformation problems, in
which the exact distances are not known and only the lower bounds d ij and upper

bounds Ndij on distances are provided, we use the mean dij D . Ndij C d ij /=2 as the
estimated distances. After selecting 30% of inter-atomic distances, we add certain
amount of normal noise or uniform noise to the distances to generate the lower and
upper bounds. Suppose that Odij is the exact distance between atom i and atom j ,
we set

d ij D max.1; .1 � j"ij j/ Odij /; Ndij D .1C jN"ij j/ Odij :
Let � be a given noise level. In the normal noise model, "ij ; N"ij � N .0; ��2=2/

are independent normal random variables. In the uniform noise model, "ij ; N"ij are
independent uniform random variables in the interval Œ0; 2��. We said that the
distances are corrupted by 20% noise if � D 0:2.

In Tables 5 and 6, we report the numerical results on molecular conformation
problems under the normal noise model and uniform noise model, respectively,
where the root mean square deviation (RMSD) is used to measure the accuracy
of the estimated positions. The RMSD is defined by the following formula:
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RMSD WD 1p
n

� nX

iD1
kxi � Oxik2

�1=2
; (82)

where xi is the estimated position and Oxi is the actual position. We can observe from
the tables that the estimated atomic positions via a simple projection of Y onto the

3-dimensional space are fairly accurate with RMSD � 2 VA.

6 Conclusion

In this paper, we introduced a partial PPA for solving nuclear norm regularized and
semidefinite matrix least squares problems with linear equality constraints. The in-
ner subproblems are solved inexactly by a semismooth Newton-CG method, whose
convergence analysis is established under a constraint nondegeneracy condition,
together with the strong semi-smoothness property of the soft-thresholding operator
and the metric projector ˘S n

C
. Numerical experiments conducted on nuclear norm

regularized matrix least squares problems, regularized kernel estimation problems
and molecular conformation problems demonstrated that our algorithm is efficient
and robust. In [12], the graph visualization problem with applications in social net-
work data analysis can be modeled as an optimization problem which is analogous
to (80). It will be very interesting to investigate how to adapt our SSNCG partial
PPA algorithm to solve large scale social network graph visualization problems.
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Techniques for Submodular Maximization

Jon Lee

Abstract Maximization of a submodular function is a central problem in the
algorithmic theory of combinatorial optimization. On the one hand, it has the feel
of a clean and stylized problem, amenable to mathematical analysis, while on the
other hand, it comfortably contains several rather different problems which are
independently of interest from both theoretical and applied points of view. There
have been successful analyses from the point of view of theoretical computer
science, specifically approximation algorithms, and from an operations research
viewpoint, specifically novel branch-and-bound methods have proven to be effective
on broad subclasses of problems. To some extent, both of these points of view have
validated what some practitioners have known all along: Local-search methods are
very effective for many of these problems.

Key words Combinatorial optimization • Local search • Maximum entropy
sampling • Max cut

Subject Classifications: 90C27, 65K05, 94A17, 62K05

1 Introduction

Submodular functions have been a central subject in the development of discrete
optimization algorithms for over 40 years. Just as convex functions have a central
place in continuous optimization, submodular functions, as the discrete analog
of convex functions, play an extremely important role in the development and
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progress of techniques for discrete optimization. Examples of submodular functions
and their optimization abound, with direct applications in very practical areas
like electrical engineering, statics, environmental (and other spatial) monitoring,
machine learning, and biodiversity conservation, but also in very useful and
generally applicable integer-programming model classes like set covering and
matching (with applications in, for example, airline crew scheduling, clustering and
routing), as well as more mathematical areas like game theory and combinatorics
(see, for example, [12, 13, 24, 31, 39, 44, 48]).

A real-valued function f defined on subsets of a finite ground set E is
submodular if

f .X [ Y /C f .X \ Y / � f .X/C f .Y /; 8X; Y � E:

With this definition, we can readily see how such functions appear to be a kind of
discrete analog of convex continuous functions. Equivalently, f is submodular if

f .Y [ feg/ � f .Y / � f .X [ feg/ � f .X/; 8X � Y � E:

From this point of view, such functions are those that model non-increasing
marginal value. As these two concepts are of central importance for optimization
associated with continuous functions, it seems clear that submodularity has the
potential to be a key concept for optimization in the discrete setting. Indeed,
submodularity has proven to be a unifying concept for distinguishing between
tractable and intractable discrete-optimization problem classes, and for pointing the
way toward useful solution methodologies (see, for example, [13, 17, 31]). Still, the
concept is not a panacea—we do not yet have practical, general-purpose algorithms
and software for submodular function optimization.

In recent years, there has been an enormous amount of research on algorithms
for optimizing submodular functions. First, there was the seminal work establishing
the polynomial-time complexity of minimizing a submodular function (see [16],
recognized for a Fulkerson Prize in 1982), capitalizing on the polynomial-time
solvability of linear programming via the ellipsoid method. Next, theoretically-
efficient, combinatorial algorithms were discovered (see [20, 47], recognized for
a Fulkerson Prize in 2003).

The problem of maximizing a submodular function is very different. First
of all, it has long been know that this problem is NP-Hard. So, practically
speaking, the available approaches are heuristics (aimed at large-scale instances),
approximations algorithms (aimed at gaining a theoretical understanding of what
heuristics can hope to achieve in the worst case), and practical exact methods
(aimed at exact optimal solution of moderate-sized instances). On the side of
heuristics, there are of course available greedy and local-search methods. Indeed,
practitioners have long known these methods to be useful for particular subclasses
of submodular maximization problems. More recently, these heuristics have gained
some theoretical credence, as approximation guarantees based on these simple
search methods have been established (see, for example, [33–36, 50]). Still, the
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search neighborhoods, while of constant size for a given level of performance, grows
much too quickly to have practical value. Then there are general-purpose integer-
programming methods available for maximizing a submodular function (see, for
example, [41]), but these methods are largely untested and do not appear to be very
powerful. Finally, there are specific submodular maximization problems that have
been successfully attacked—meaning, we are able to solve moderate-to-large-sized
instances to provable optimality. These include: (i) max-cut problem (see [45, 46]),
and (ii) maximum-entropy sampling problems (see, for example, [30]).

In the remainder of Sect. 1, we describe several examples of broad classes of
submodular functions relevant to discrete optimization. In Sect. 2, we give a very
brief overview of the most important results concerning minimization of submodular
functions. In Sect. 3, we briefly survey some results on approximation algorithms
for constrained submodular maximization. In Sect. 4, we describe the known
mathematical-optimization techniques for maximization of submodular functions.
We touch on techniques for general submodular functions and also cut functions,
and then we give a more detailed overview of such methods for the less-known
entropy function. Finally, in Sect. 5, we make some brief concluding remarks.

1.1 Cuts

A key example of a submodular function comes from graphs. They can be
undirected graphs, directed graphs and even hypergraphs; but in the interest of
familiarity, yet still broad applicability, we will assume that G is a directed graph
with vertex set E and edge set E , non-negative capacities c.e/, for all edges e 2 E .
We assume that G has a distinguished source vertex s and sink vertex t . For a
subset S of vertices containing the source s but not containing the sink t , we let
ıC.S/ denote the set of edges of G that leave S (i.e., those with tail in S and head
not in S ). Then we define

f .S/ WD
X

e2ıC.S/
c.e/; 8S such that s 2 S � E n ftg:

That is, f .S/ is the sum of the edge capacities of the directed s � t cut from S

to E n S . By the celebrated Max-Flow/Min-Cut Theorem, the minimum value of
f .S/ is exactly equal to the value of a maximum s � t flow in G. Algorithmically,
this classical and important problem is well solved via linear programming or
specialized and very efficient network-flow techniques.

On the other hand, if we instead seek to maximize f , this is a very difficult
and classical NP-Hard problem with many applications. Usually, in the case of
maximization, the graph is undirected and there is no distinguished source and sink.
Then the function that we seek to maximize is simply

f .S/ WD
X

e2ı.S/
c.e/; 8S such that ; 6D S ¤ E;
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where ı.S/ denotes the (undirected) edges with one end in S and the other end
not in S . Some of the key works in this deeply-studied area include: see [5, 15,
25, 43, 45, 46]. In particular, a mathematical-programming based approach using
a combination of semidefinite-programming and polyhedral relaxation methods
seems to be the best method currently available (see [45, 46]).

1.2 Matroids

Matroids are fundamental objects in combinatorial optimization. Briefly, a matroid
is defined on a nonempty finite ground set via its non-empty set I of independent
sets satisfying:

(I1) Y � X 2 I H) Y 2 I ;
(I2) X; Y 2 I , jY j > jX j H) 9e 2 Y nX such that X [ feg 2 I .

The rank function r of M , defined by

r.X/ WD max fjY j W Y � X; Y 2 I g ;
is a submodular function.

With respect to the matroid M , we can define the matroid polytope

P W conv fx.S/ W S 2 I g ;
where x.S/ 2 f0; 1gE denotes the incidence vector of S . The matroid polytope P
is precisely the solution set of

(i) x.e/ � 0, e 2 E ;
(ii)

P
e2T x.e/ � r.T /.

For any Ox satisfying (i), the separtation problem of finding a set T for which
(ii) is violated by Ox can easily be recast as a problem of minimizing a submodular
function. In this way, via the ellipsoid method, we have a rather exotic algorithm to
find a maximum-weight independent set in a matroid.

For i D 1; 2, let Mi , be a matroid on the common ground set E, having
independent set Ii and rank function ri . Then we have Edmonds’ Matroid
Intersection Duality Theorem:

max fjS j W S 2 I1 \I1g D min
S�E fr1.S/C r2.E n S/g ;

so the problem of finding the size of a maximum-cardinality set that is independent
for a pair of matroids on a common ground set can be recast as that of minimizing a
submodular function.

Coming back to polytopes, the intersection of the polytopes of two matroids on a
common ground set has all of its extreme points f0; 1g-valued. So, by remarks above
concerning a single matroid polytope, using submodular function minimization for
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separating rank inequalities, we have we have a rather exotic algorithm to find
a maximum-weight set that is independent in a pair of matroids on a common
ground set.

1.3 Matchings

Another important submodular function, defined with respect to the edge set E of
an undirected graph G D .V;E/ is as follows. Let

f .S/ WD �jS j C jfv 2 V W e 2 ı.v/ for some e 2 Sgj ; 8S � E:
That is, f .S/ is the number of vertices touched by edges of S minus the number of
edges in S . It can be shown that if S maximizes f .S/, then f .S/ is the maximum
number of edges in a matching of G. As maximum-cardinality matching is a well-
solved problem (see, for example, [41]), we see that there are interesting and
non-trivial well-solved examples of maximizing a submodular function.

1.4 Coverage

To define a coverage function, we assume that we have some finite universal set U .
The ground set of a coverage function is a set E of labels of subsets of the universal
set U . That is, every e in our ground setE is the label of a subset Ue of the universal
set U . Then, the coverage f .S/ of a subset S of our ground set E is simply the
number of elements of the universal set “covered” by the sets labeled from S .
That is,

f .S/ WD j[e2SUej ; 8S � E:
It is very easy to check that coverage functions are submodular. A typical goal in ap-
plications of maximizing such an f is to maximize the number of elements covered,
subject to a constraint on the cost of the sets used to do the covering—that is, there
is usually a cardinality constraint jS j D k or a budget constraint

P
e2S c.e/ � ˇ.

Indeed, many complicated and useful discrete optimization can often be thought
of as coverage models with side constraints. So methods that can attack coverage
models successfully can be imbedded in algorithms (e.g., via Dantzig-Wolfe
decomposition or Lagrangian relaxation) to solve still broader problems.

1.5 Welfare

The Submodular Welfare Problem: Given m items and n players with monotone,
non-negative, submodular utility functions wi , we seek a partition of the items into
disjoint sets S1; S2; : : : ; Sn so as to maximize the total welfare

Pn
iD1 wi .Si /.
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In fact, Lehmann et al. [37] demonstrated that the Submodular Welfare Problem,
first studied implicitly by Fisher et al. [11], is a special case of maximizing a
submodular function subject to a special side constraint (of “matroid type”). This
latter problem and extensions to multiple side constraints have recently been the
subject of intense study from the point of view of approximation algorithms (see,
for example, [7, 33–36, 50]).

1.6 Entropy

The goal of maximum entropy sampling is to choose a most informative subset of
s random variables from a set of n random variables, subject to side constraints.
A typical side constraint might be a budget restriction, where we have a cost for
observing each random variable. Other possibilities include logical constraints (e.g.,
multiple choice or precedence constraints). In many situations, we can assume that
the random variables are Gaussian, or that they can be suitably transformed.

We assume that we have n Gaussian random variables

Yj ; j 2 E WD f1; 2; : : : ; ng:
Our goal is to choose the ‘most informative’ subset S from E, having s elements,
possibly subject to additional constraints

X

j2S
aij � bi ; i 2M WD f1; 2; : : : ; mg:

We let YS denote the set of random variables indexed by S , and we let �S denote
the joint density function of YS . Our measure of information, which we seek to
maximize, is the Boltzmann-Shannon entropy

h.S/ WD �E.ln�S.YS//:

We assume that the random variables have a joint Gaussian distribution, and we let
C denote the covariance matrix for YE . Then, letting C ŒS; T � denote the submatrix
of C with rows indexed by S and columns indexed by T , we have that C ŒS; S� is
the covariance matrix of YS . It turns out that in the Gaussian case, the entropy h.S/
is just an increasing linear function of

H.S/ WD ln det C ŒS; S�;

where det denotes determinant. So, in what follows, we refer toH.S/ as the entropy
associated with YS , and it is this quantity that we seek to maximize, referring to
the maximum value as H�. It has long been know that the entropy function is
submodular (see, for example, [21]), and this submodular maximization problem
is know to be NP-Hard (see [22]).
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The term entropy was coined by R. Clausius. Boltzmann developed the concept
mathematically when he built the foundations of statistical mechanics. Shannon
popularized entropy in the field of information theory. Shewry and Wynn introduced
the maximum-entropy sampling problem (without side constraints), in the context
of the optimal design of spatial sampling networks (see [8, 9, 18, 49, 51]).

The maximum entropy sampling problem takes on considerable importance
in experimental situations in which we seek to gain information concerning
potential observations at a large number of locations while observing only a
few. One such situation involves configuring or reconfiguring a network of spa-
tially disbursed environmental monitoring stations. For example, the US National
Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a
nationwide network of precipitation monitoring stations (see [38]). Currently there
are approximately 240 active stations, mostly in the continental US, with data
from some of these dating back to 1978. Data is collected on the chemistry of
precipitation for monitoring geographical and temporal trends. Precipitation at
each station is collected weekly and analyzed for pH, hydrogen, sulfate, nitrate,
ammonium, chloride, calcium, magnesium, potassium, and sodium. As a means
of evaluating existing networks and assessing their configuration and possible
reconfiguration, we can ask which set of stations, having some pre-specified number,
provides the most information. We can formalize this by focusing on a single
chemical and deriving a covariance matrix. The covariance matrix is estimated in
part from historical observations, and in part by interpolation using available data
with an appropriate model (see [18], for example). Aggregating weekly data over
months and applying a logarithmic transformation has been found to be valuable
toward meeting the assumption that the underlying random variables have a joint
Gaussian distribution. Wu and Zidek [51] carried out a detailed analysis of part of
the NADP/NTN using the maximum-entropy framework.

In this setting, budget constraints are quite natural, and we can also incorporate
other types of logical constraints to meet potential historical or political concerns.

The (constrained) maximum-entropy sampling problem has been the subject of
intense investigation from the computational side (see [1–4, 6, 19, 22, 27–30, 32]).
Now, moderate-sized instances can routinely be solved to exact optimality.

1.7 Other

There are many other application areas for optimizing submodular functions. Some
of the more developed ones that have significant current activity are: Machine
Learning [24], Biodiversity Conservation [48], and Statics [44]. In particular, there
are many applications for submodular-function optimization in machine learning
(e.g., active learning, clustering, influence maximization, informative path planning,
ranking, sparse experimental design, and structure learning), which in turn has many
concrete applications, so the potential for significant impact is quite large.
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2 Minimization

General submodular-function minimization, where the function is given by a black
box, is a celebrated problem in discrete optimization. The problem of minimizing
a submodular function f on the 0/1 vertices of a unit cube (the 0/1 vertices pick
out subsets of the ground set) can be modeled as one of minimizing the so-called
“Lovász extension” Of on the entire unit cube. The Lovász extension is a piecewise-
linear convex function whose optimum is attained at a vertex of the unit cube.

Specifically, for any non-negative Ox in the unit cube Œ0; 1�n, we can easily and
uniquely write

Ox D
mX

iD1
�iv

i ;

where the �i are positive, and the vi are 0/1-vectors satisfying v1 � v2 � � � � � vm.
Then we simply define

Of .x/ WD
mX

iD1
�if .v

i /:

Properties of Of including its convexity enable us to apply the ellipsoid method
to minimize it on the unit cube. This approach yielded the first polynomial-time
algorithm for the minimization of general submodular functions. Details can be
found in [17,41]. However, due to the reliance on the ellipsoid method, the resulting
algorithm is woefully impractical.

Still, the fact that, via the ellipsoid method, submodular-function minimization
was proved to be of polynomial-time complexity, gave hope for discovering
practical algorithms. Eventually this hope led to ground-breaking, polynomial-time,
combinatorial algorithms for submodular-function minimization (see [20,47]). But,
from a practical viewpoint, the situation has not greatly improved (see [14, 23] for
some progress). To this date, there is no known, practical and reliable algorithm for
minimizing a black-box submodular function. Still, the existence of very-efficient
algorithms for special cases (e.g., minimum cuts in directed graphs with non-
negative capacities) suggests that there is the possibility for practical success on
much more general classes of submodular functions.

3 Approximation Algorithms for Maximization

Besides general integer-programming techniques for submodular-function maxi-
mization, in the final section of their book, Nemhauser and Wolsey champion
approximation algorithms for submodular-function maximization (see [10, 41],
pp. 711–712). Indeed, their early work with Fisher on approximation algorithms for
submodular-function maximization was possibly the earliest work on approximation
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algorithms (see [11, 40]). Recently, there has been a flurry of activity on approx-
imation algorithms for constrained submodular-function maximization (see, for
example, [33–36, 50]). A constant number of side constraints either of knapsack
or matroid type can be handled. On the positive side, it has been shown that
in polynomial time, we can achieve very strong approximation guarantees for
submodular-function maximization, even in the presence of side constraints, using
very simple local-search mechanisms. This is great theory, but the approximation
guarantees are not good enough for the algorithms to be viewed as truly practical.
Still, these simple local-search methods can serve as the springboard to more
powerful, practical methods (e.g., compare this with the relationship between simple
k-opt edge swapping and the more practically powerful Lin-Kernighan heuristic for
the TSP).

4 Mathematical Optimization for Maximization

4.1 General Techniques

We have already pointed out how the maximum-cardinality matching problem is
an important special case of submodular-function maximization (see Sect. 1.3). On
the other side of the spectrum, we have a general-purpose integer-programming
approach to submodular-function maximization (see [41], pp. 710–711).

Specifically, we can assume that f .;/ D 0, by subtracting the constant
f .;/ from f .S/, 8S . Let E WD f1; 2; : : : ; ng. We can let f �.S/ WD f .S/ �Pn

jD1Œf .E n fj g/ � f .E/�, 8S . Again, we have just shifted f to get f �, but in
this way the equivalent submodular function f � is non-decreasing. The submodular
maximization problem can then be recast as the following mixed-integer linear
program:

max �

� �
X

j2EnS

�
f �.S [ fj g/ � f �.S/� xj

C
nX

jD1
Œf .E n fj g/ � f .E/� xj � f �.S/; 8S � E I

� 2 R; xj 2 f0; 1gn; j D 1; 2; : : : ; n:

To our knowledge, an algorithm based on such a formulation has never been
implemented. Indeed, such an algorithm may not be practical at all due to the
reliance on an exponential number of (what appear to be weak) inequalities with
no obvious efficient technique for separating them.
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4.2 Max-Cut

The Max-Cut problem (see Sect. 1.1) is one of the shining examples of success
for integer-programming methods for submodular-function maximization. (see
[5, 15, 25, 43, 45, 46]). Some of the useful methodology uses classical linear integer-
programming techniques, but some of the exciting and newer work models the
Max-Cut problem as an integer program with quadratic functions in 0/1 variables.
The natural analysis leads to an important role for semidefinite-programming
relaxations and spectral methods. Interestingly, some of the most useful bound-
ing techniques for maximum-entropy sampling, another important success story
for submodular-function maximization, also makes use of spectral methods (see
Sect. 4.3).

4.3 Max-Entropy Sampling

The (constrained) maximum-entropy sampling problem is a beautiful example of
a broadly-applicable, NP-Hard, submodular maximization problem (see Sect. 1.6)
that does not have any obvious linear or quadratic formulation as an integer
program. This is in sharp contrast to many integer programming problems defined
on graphs, where edge variables can be related in a quadratic relationship with
vertex variables (e.g., cut, packing, assignment and routing problems). Still, there
has been enormous progress on this problem over the last 20 years, and a wide
variety of optimization techniques have been fruitfully employed, and often in a non-
straightforward manner: e.g., branch-and-bound, Lagrangian relaxation, convex
relaxation, dynamic programming, integer-linear programming, spectral methods,
etc. (see [1–4, 6, 19, 22, 27–30, 32]). In particular, branching, in the context of
branch-and-bound, is done is a subtle manner: Excluding a random variable from
observation is easy, as we just strike out the corresponding row and column
of the covariance matrix, but for forcing a random variable to be observed, we
compute a conditional covariance matrix. There are many different upper-bounding
techniques, which can be utilized within branch-and-bound.

A technique that can improve any upper-bound method is to exploit the matrix
identity

ln det C ŒS; S� D ln det C C ln det C�1ŒE n S;E n S�:
This identity says that the entropy of any set S of random variables to be observed
can be thought of as the sum of the entropy of the entire set (of random variables
under consideration) and the “inverse entropy” of the set of random variables that
we do not observe. Then bounding techniques applied to choosing n � s variables
with respect to the “inverse entropy” translate to new bounds for choosing s random
variables with respect to the ordinary entropy.
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Some of the best upper-bounding methodologies for entropy are based on eigen-
values of matrices derived from the covariance matrix (see [6, 19, 22, 27–30, 32]).
A mask is a (symmetric)X 	 0 having diag.X/ D e (i.e., a point in the “elliptope”).
Anstreicher and Lee established

Theorem 1 ([1]).

H� � 
C;s.X/ WDPs
lD1 ln .�l .C ıX// :

The proof is based on “Oppenheim’s Inequality” (see [42]). Combinatorial (see [19])
and continuous (see [1, 6]) local-optimization techniques have been developed to
attempt to find good masks for this masked spectral bound.

For constrained problems, it is vital that upper-bounding methods exploit the
constraints, otherwise computed bounds will be too weak to be effective. For ease
of exposition, we will demonstrate how to exploit side constraints to improve the
spectral bound above, when the mask X is fixed as the all-ones matrix,

Theorem 2 ([28]).

H� � min
�2Rm

C

v.�/

where

v.�/ WD
(

sX

lD1
ln�l .D

� C D�/C
X

i2M
�ibi

)
;

and D� is the diagonal matrix having

D�
jj WD exp

(
�1
2

X

i2M
�iaij

)

Moreover, v� is convex (in �), and v� is analytic when

�s .D
� C D�/ > �sC1 .D� C D�/ :

Next, let xl be the eigenvector (of unit Euclidean norm) associated with �l .

Define the continuous solution Qx 2 R
E by Qxj WD Ps

lD1
�
xlj

�2
, for j 2 E. Define

� 2 R
M by �i WD bi �Pj2N aij Qxj .

Theorem 3 ([28]). If �s > �sC1, then � is the gradient of f at � .

These theorems give all of the ingredients for an effective method for quickly
finding a good � 2 R

mC.
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Other useful bounding approaches use continuous relaxation (see [2, 3]). It is
straightforward to check that the following formulation is a continuous relaxation
of the constrained maximum entropy sampling problem.

max f .x/ WD ln det



Diag.x

pj
j / C Diag.x

pj
j /C Diag.d

xj
j � dj xpjj /

�

subject to
X

j2E
aij xj � bi ;8i I

X

j2E
xj D sI

0 � xj � 1;8j;

where the constants dj > 0 and pj � 1 satisfy dj � exp.pj � ppj /, and
Diag.dj / � C ŒE;E� 	 0.

Moreover, the relaxation is tractable, due to the following result.

Theorem 4 ([3]). Assume that D 	 C , pj � 1, 0 < dj � exp.pj �ppj /. Then
f is concave for 0 < x � e.

There are a few other techniques that have been exploited for upper bounding;
for example, dynamic programming, matching and integer-linear programming (see
[32]).

Although the state-of-the-art is that moderate-sized instances of maximum-
entropy sampling can be routinely solved to optimality, there is considerable room
for greater success on large-scale instances.

5 Conclusion

We have seen remarkable progress in the state-of-the-art for submodular function
optimization in the last couple of decades. In particular, on the NP-Hard maxi-
mization side, we have new approximation algorithms, with provable performance
guarantees, based mostly on local search. On the mathematical–programming side,
we now have good algorithms, for special cases like max-cut and maximum entropy
sampling, capable of handling ever larger instances. In many cases where we can
calculate exact optima, we find that these same solutions are found by simple
heuristics. For example, in the case of entropy, Le and Zidek have said:

“Therefore, the finding of [22] is encouraging in that the greedy/swap algorithm described
above often produced the exact optimum, where the latter is computable.” (see [26, p. 201]).

Therefore, our conclusion is that when possible, branch-and-bound methods should
be used to calculate exact optima for submodular maximization problems. When not
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possible, one can use greedy and local-search algorithms with a reasonable degree
of comfort. As Bob Marley crooned:

“Don’t worry about a thing, oh no! ’Cause every little thing gonna be all right!” (Bob Marley
& The Wailers, “Three little birds”, 1977).

Acknowledgements Partially supported by NSF Grant CMMI–1160915.
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A Further Generalization of the Colourful
Carathéodory Theorem

Frédéric Meunier and Antoine Deza

Abstract Given dC1 sets, or colours, S1;S2; : : : ;SdC1 of points in R
d , a colourful

set is a set S � S
i Si such that jS \ Si j � 1 for i D 1; : : : ; d C 1. The

convex hull of a colourful set S is called a colourful simplex. Bárány’s colourful
Carathéodory theorem asserts that if the origin 0 is contained in the convex hull
of Si for i D 1; : : : ; d C 1, then there exists a colourful simplex containing 0.
The sufficient condition for the existence of a colourful simplex containing 0 was
generalized to 0 being contained in the convex hull of Si[Sj for 1 � i < j � dC1
by Arocha et al. and by Holmsen et al. We further generalize the sufficient condition
and obtain new colourful Carathéodory theorems. We also give an algorithm to find
a colourful simplex containing 0 under the generalized condition. In the plane an
alternative, and more general, proof using graphs is given. In addition, we observe
that any condition implying the existence of a colourful simplex containing 0
actually implies the existence of mini jSi j such simplices.
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1 Colourful Carathéodory Theorems

Given d C 1 sets, or colours, S1;S2; : : : ;SdC1 of points in R
d , we call a set of

points drawn from the Si ’s colourful if it contains at most one point from each Si .
A colourful simplex is the convex hull of a colourful set S , and a colourful set of
d points which misses Si is called an Oi -transversal. The colourful Carathéodory
Theorem 1 by Bárány provides a sufficient condition for the existence of a colourful
simplex containing the origin 0.

Theorem 1 ([2]). Let S1;S2; : : : ;SdC1 be finite sets of points in R
d such that 0 2

conv.Si / for i D 1 : : : dC1. Then there exists a set S �Si Si such that jS\Si j D 1
for i D 1; : : : ; d C 1 and 0 2 conv.S/.

Theorem 1 was generalized by Arocha et al. [1] and by Holmsen et al. [11]
providing a more general sufficient condition for the existence of a colourful simplex
containing the origin 0.

Theorem 2 ([1, 11]). Let S1;S2; : : : ;SdC1 be finite sets of points in R
d such that

0 2 conv.Si [ Sj / for 1 � i < j � d C 1. Then there exists a set S � Si Si such
that jS \ Si j D 1 for i D 1; : : : ; d C 1 and 0 2 conv.S/.

We further generalize the sufficient condition for the existence of a colourful
simplex containing the origin. Moreover, the proof, given in Sect. 2.1, provides an

alternative and geometric proof for Theorem 2. Let
��!
xk0 denote the ray originating

from xk towards 0.

Theorem 3. Let S1;S2; : : : ;SdC1 be finite sets of points in R
d . Assume that, for

each 1 � i < j � d C 1, there exists k … fi; j g such that, for all xk 2 Sk , the

convex hull of Si [ Sj intersects the ray
��!
xk0 in a point distinct from xk . Then there

exists a set S �Si Si such that jS\Si j D 1 for i D 1; : : : ; dC1 and 0 2 conv.S/.

Under the general position assumption, Theorem 3 can be derived from the slightly
stronger Theorem 4 where HC.Ti / denotes, for any Oi -transversal Ti , the open half-
space defined by aff.Ti / and containing 0.

Theorem 4. Let S1;S2; : : : ;SdC1 be finite sets of points in R
d such that the points

in
S
i Si [ f0g are distinct and in general position. Assume that, for any i ¤ j ,

.Si[Sj /\HC.Tj / ¤ ; for any Oj -transversal Tj . Then there exists a set S �Si Si
such that jS \ Si j D 1 for i D 1; : : : ; d C 1 and 0 2 conv.S/.

Note that, as the conditions of Theorems 1 and 2, but unlike the one of Theorem 4,
the condition of Theorem 3 is computationally easy to check. Indeed, testing
whether a ray intersects the convex hull of a finite number of points amounts to
solve a linear optimization feasibility problem which is polynomial-time solvable.
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0

Fig. 1 A set in dimension 2
satisfying the condition of
Theorem 3 but not the one of
Theorem 2

In the plane and assuming general position, Theorem 3 can be generalized to
Theorem 5. The proofs of Theorems 3, 4, and 5 are given in Sect. 2.

Theorem 5. Let S1;S2;S3 be finite sets of points in R
2 such that the points in S1 [

S2[S3[f0g are distinct and in general position. Assume that, for pairwise distinct
i; j; k 2 f1; 2; 3g, the convex hull of Si [ Sj intersects the line aff.xk; 0/ for all
xk 2 Sk . Then there exists a set S � S1 [ S2 [ S3 such that jS \ Si j D 1 for
i D 1; 2; 3 and 0 2 conv.S/.

Figures 1 and 2 illustrate sets satisfying the condition of Theorem 3 but not the
ones of Theorems 1 and 2. Let S4d denote the d -dimensional configuration where
the points in Si are clustered around the i th vertex of a simplex containing 0, see
Fig. 1 for an illustration of S42 . While all the .d C 1/dC1 colourful simplices of
this configuration contain 0, S4d�3 does not satisfy the conditions of Theorems 1, 2,
or 3, but satisfies the one of Theorem 4. While the set given in Fig. 3 satisfies the
condition of Theorem 4, it does not satisfy the condition of Theorem 3 for i D
and j D . Figure 4 illustrates a set satisfying the condition of Theorem 5 but not
the one of Theorem 4.

One can check that Theorem 4 is still valid if the general position assumption is
replaced by: there is at least one transversal T such that 0 … aff.T / and such that
the points of T are affinely independent. However, we are not aware of an obvious
way to handle, via Theorem 4, configurations where all points and the origin lie
in the same hyperplane. Note that Theorem 3 can be applied to such degenerate
configurations. See Sect. 2.2 for a proof of Theorem 3 and a configuration which
illustrates the gap between Theorem 3 and its general position version, and justifies
the specific treatment for the degenerate cases.
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0

Fig. 2 A degenerate set in
dimension 3 satisfying the
condition of Theorem 3 but
not the one of Theorem 2

0

Fig. 3 A degenerate set in
dimension 3 satisfying, up to
a slight perturbation, the
condition of Theorem 4 but
not the one of Theorem 3
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0

Fig. 4 A set in dimension 2
satisfying the condition of
Theorem 5 but not the one of
Theorem 4

2 Proofs

2.1 Proof of Theorem 4

We recall that a k-simplex 
 is the convex hull of .kC1/ affinely independent points.
An abstract simplicial complex is a family F of subsets of a finite ground set such
that whenever F 2 F and G � F , then G 2 F . These subsets are called abstract
simplices. The dimension of an abstract simplex is its cardinality minus one. The
dimension of a simplicial complex is the dimension of largest simplices. A pure
abstract simplicial complex is a simplicial complex whose maximal simplices have
all the same dimension. A combinatorial d -pseudomanifold M is a pure abstract d -
dimensional simplicial complex such that any abstract .d � 1/-simplex is contained
in exactly two abstract d -simplices.

Consider a ray r originating from 0 and intersecting at least one colourful .d�1/-
simplex. Under the general position assumption for points in

S
i Si [ f0g, one can

choose r such that it intersects the interior of the colourful .d � 1/-simplex, and
that no two colourful simplices have the same intersection with r. Let 
 be the first
colourful .d �1/-simplex intersected by r. Note that, given r, 
 is uniquely defined.
Without loss of generality, we can assume that the vertices of 
 form the 1d C 1-
transversal fv1; : : : ; vd g.

Setting j D d C 1, and TdC1 D fv1; : : : ; vd g in Theorem 4 gives .Si [
SdC1/ \ HC.TdC1/ ¤ ;. In other words, there is, for each i , a point either in
SdC1 \ HC.TdC1/ or in .Si n fvig/ \ HC.TdC1/. Assume first that for one i
the corresponding point belongs to SdC1, and name it v0dC1. Then r intersects the
boundary of conv.v1; : : : ; vd ; v0dC1/ in only one point as otherwise r would intersect
another colourful .d�1/-simplex before intersecting 
 . Indeed, r leavesHC.TdC1/
after intersecting 
 . Thus, r intersects conv.v1; : : : ; vd ; v0dC1/ in exactly one point;
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that is, 0 2 conv.v1; : : : ; vd ; v0dC1/. Therefore, we can assume that for each i there

is a point v0i ¤ vi in Si \ HC.TdC1/, and consider the 1d C 1-transversal T 0 D
fv01; : : : ; v0d g and the associated colourful .d � 1/-simplex 
 0 D conv.v01; : : : ; v0d /.
Let M be the abstract simplicial complex defined by

M D fF [ F 0 W F � V.
/; F 0 � V.
 0/ and c.F / \ c.F 0/ D ;g

where V.
/ denotes the vertex set of 
 and c.x/ D i for x 2 Si . The simplicial
complex M is a combinatorial .d � 1/-pseudomanifold. Note that V.
/ and V.
 0/
are abstract simplices of M . Let M be the collection of the convex hulls of the
abstract simplices of M . Note that the vertices of all maximal simplices of M
form 1d C 1-transversals and that M is not necessarily a simplicial complex in
the geometric meaning as some pairs of geometric .d � 1/-simplices might have
intersecting interiors.

We recall that for any generic ray originating from 0, the parity of the number of
times its intersects M is the same. We remark that this number can not be even as,
otherwise, we would have a colourful .d � 1/-simplex closer to 0 than 
 on r since,
M being contained in the closure of HC.TdC1/, when r intersects 
 , it is the last
intersection. Thus, the number of times r intersects M is odd, and actually equal to
1. Take now any point v 2 SdC1 and consider the ray originating from 0 towards the
direction opposite to v. This ray intersects M in a colourful .d � 1/-simplex � ; that
is, 0 2 conv.� [ fvg/. �

One can check that the proof of Theorem 4 still works if there is at least one
transversal T such that 0 … aff.T / and such that the points of T are affinely
independent. Indeed, in that case, we can always choose a ray r such that, for any
pair .T; T 0/ of transversals, r\aff.T / D r\aff.T 0/ if and only if aff.T / D aff.T 0/.

Remark 1. The topological argument that the parity of the number of times a ray
originating from 0 intersects M depends only on the respective positions of 0 and
M can be replaced by Proposition 1 as used in the description of the algorithm given
in Sect. 3.3. In other words, we get a geometric proof of Theorem 4.

Assuming
S
i Si lies on the sphere Sd�1, the Oi-transversals generate full dimensional

colourful cones pointed at 0. We say that a transversal covers a point if the point is
contained in the associated cone. Colourful simplices containing 0 are generated
whenever the antipode of a point of colour i is covered by an Oi -transversal. In
particular, one can consider combinatorial octahedra generated by pairs of disjoint
Oi -transversals, and rely on the fact that every octahedron ˝ either covers all of
S
d�1 with colourful cones, or every point x 2 S

d�1 that is covered by colourful
cones from ˝ is covered by at least two distinct such cones, see for example the
Octahedron Lemma of [3]. One of the key argument in the proof of Theorem 4 can
be reformulated as: either the pair of 1d C 1-transversals .T; T 0/ forms a octahedron
covering S

d�1, or 0 belongs to a colourful simplex having conv.T / as a facet.
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2.2 Proof of Theorem 3

Consider a configuration satisfying the conditions of Theorem 3 and with
S
i Si[f0g

distinct and in general position. Consider i ¤ j and a Oj -transversal Tj , then there

is xk 2 Sk \ Tj such that the
��!
xk0 intersect the convex hull of Si [ Sj in a point in

HC.Tj /, and therefore at least one point of Si [ Sj belongs to HC.Tj /.
Let consider degenerate configurations and let a denote the maximum cardinality

of an affinely independent colourful set whose affine hull does not contain 0.
If a D d , there is at least one transversal T such that 0 … aff.T / and such that

the points of T are affinely independent. Therefore we can use the stronger version
of Theorem 4 relying on the existence of such a transversal T .

Assume that a < d . We can choose a ray r such that the non-empty intersections
with aff.A/ for all colourful setsA of cardinality a are distinct. LetA0 be an affinely
independent colourful set of cardinality a such that aff.A0/ is the first intersected
by r. Without loss of generality, let A0 D fv1; : : : ; vag with vs 2 Ss . Note that
SaC1 [ : : : [ SdC1 � aff.A0 [ f0g/ as otherwise 0 … aff.A0 [ fvj g/ for vj 2 Sj
with j > a which contradicts the maximality of a. If there is a colourful simplex
containing 0, we are done. Therefore, we can assume that, in aff.A0[f0g/, we have
an open half-space defined by aff.A0/ containing 0 but not SaC1 [ : : : [ SdC1, and
will derive a contradiction.

Let B0 D faC1; : : : ; dC1g. We remark that, for all i; j 2 B0 with i ¤ j , the k,

such that conv.Si [ Sj / intersects
��!
xk0 in a point distinct from xk , satisfies k 2 B0

since Si [ Sj are separated from 0 by aff.A0/ in aff.A0 [ f0g/; and therefore we
have jB0j � 3. We can define the following set map:

F .B/ D
(
fk W 9.i; j / 2 B � B; i ¤ j;8xk 2 �k; conv.�i [ �j /\�!xk0 n fxkg ¤ ;g if jBj � 2
; otherwise.

We have F .B/ � F .B 0/ if B � B 0. Let B` D F .B`�1/ for ` D 1; 2; : : : As
remarked above B1 � B0 and, by induction, B` � B`�1 for ` � 1. Thus, the
sequence .B`/ converges towards a set B� satisfying F .B�/ D B�. Finally, note
that, by induction, jB`j � 3: The base case holds as jB0j � 3, and a pair i; j 2 B`
with i ¤ j yields a k 2 B`C1, then i; k yields an additional k0 in B`C1, which in
turn, with k, yields a third element in B`C1; and thus jB�j � 3.

For any v 2 Sk2B� Sk , the ray
�!
v0 intersects the convex hull of

S
k2B� Sk in

a point distinct from v since F .B�/ D B�. It contradicts the fact that aff.A0/
separates 0 from SaC1[: : :[SdC1 in aff.A0[f0g/ by the following argument. There
exists at least one facet of conv.

S
k2B� Sk/ whose supporting hyperplane separates

0 from conv.
S
k2B� Sk/ and, for a vertex v of this facet, we have conv.

S
k2B� Sk/\�!

v0 D fvg, which is impossible. �
The gap between Theorem 3 and its general position version is illustrated by the

following example in R
3 where

S
i Si [ f0g lie in the same plane. Let S1;S2;S3;S4

be finite sets of points in R
2. Assume that, for each 1 � i < j � d C 1, there
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exists k … fi; j g such that, for all xk 2 Sk , the convex hull of Si [ Sj intersects

the ray
��!
xk0 in a point distinct from xk . Then there exists a set S � Si Si such that

jS \ Si j D 1 for i D 1; : : : ; d C 1 and 0 2 conv.S/. This property cannot be
obtained by simply applying Theorem 3 with d D 2 since its conditions might not
be satisfied by S1;S2;S3. Indeed, k may be equal to 4 for some i ¤ j . This property
can neither be obtained by a compactness argument since it would require to find
sequences .Sji /jD1;:::;1 of generic point sets converging to Si while satisfying the
condition of Theorem 3. The case when each Si is reduced to one point si shows
that such a sequence may fail to exist as the condition implies that sj1 , sj2 , sj3 , sj4 and
0 lie in a common plane. This might explain why we could not avoid a Tarsky-type
fixed point argument.

2.3 Proof of Theorem 5

We present a proof of Theorem 5 for the planar case providing an alternative and
possibly more combinatorial proof of Theorem 4 in the plane. Consider the graph
G D .V;E/with V D S1[S2[S3 and where a pair of nodes are adjacent if and only
if they have different colours. We get a directed graph D D .V; A/ by orienting the
edges of G such that 0 is always on the right side of any arc, i.e. on the right side of
the line extending it, with the induced orientation. Since conv.Si[Sj /\aff.xk; 0/ ¤
; with i; j; k pairwise distinct and xk 2 Sk , we have degC.v/ � 1 and deg�.v/ � 1
for all v 2 V . It implies that there exists at least one circuit in D, and we consider
the shortest circuit C . We first show that the length of C is at most 4 since any
circuit of length 5 or more has necessarily a chord. Indeed, take a vertex v, there is
a vertex u on the circuit at distance 2 or 3 having a colour distinct from the colour
of v, and thus the arc .u; v/ or .v; u/ exists in D. Therefore, the length of C must
be 3 or 4. If the length is 3, we are done as the 3 vertices of C form a colourful
triangle containing 0. If the length is 4, the circuit C is 2-coloured as otherwise we
could again find a chord. Consider such a 2-coloured circuit C of length 4 and take
any generic ray originating from 0. We recall that given an oriented closed curve C
in the plane, with kC, respectively k�, denoting the number of times a generic ray
intersects C while entering by the right, respectively left, side, the quantity kC�k�
does not depend on the ray. Considering the realization of C as a curve C , we have
k� D 0 by definition of the orientation of the arcs. Since we can choose a ray
intersecting C at least once, kC remains constant and non-zero. Take now a vertex
w of the missing colour, and take the ray originating from 0 in the opposite direction.
This ray intersects an arc of C since kC ¤ 0, and the endpoints of the arc together
with w form a colourful triangle containing 0. �

Remark 2. The fact that a directed graph missing a source or a sink has always a
circuit is a key argument, and it is not clear to us how the planar proof could be
extended or adapted to dimension 3 or more.
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3 Related Results and an Algorithm

3.1 Given One, Find Another One

Bárány and Onn [4] raised the following algorithmic question: Given sets Si
containing 0 in their convex hulls, finding a colourful simplex containing 0 in its
convex hull. This question, called colourful feasibility problem, belongs to the Total
Function Nondeterministic Polynomial (TFNP) class, i.e. problems whose decision
version has always a yes answer. The geometric algorithms introduced by Bárány [2]
and Bárány and Onn [4] and other methods to tackle the colourful feasibility
problem, such as multi-update modifications, are studied and benchmarked in [7].
The complexity of this challenging problem, i.e. whether it is polynomial-time
solvable or not, is still an open question. However, there are strong indications that
no TFNP-complete problem exists, see [12]. The following Proposition 1, which
is similar in flavour to Theorem 1, may indicate an inherent hardness result for
this relative of the colourful feasibility problem. Indeed, the algorithmic problem
associated to Proposition 1 belongs to the Polynomial Parity Argument (PPA) class
defined by Papadimitriou [12] for which complete problems are known to exist. In
addition, the proof of Proposition 1 is a key ingredient of the algorithm finding a
colourful simplex under the condition of Theorem 4.

Proposition 1. Given d C 1 sets, or colours, S�1 ;S�2 ; : : : ;S�dC1 of points in R
d with

jS�i j D 2 for i D 1; : : : ; d C 1, if there is a colourful simplex containing 0, then
there is another colourful simplex containing 0.

Proof. Without loss of generality we assume that the points in
S
i S�i [ f0g are

distinct and in general position. Consider the graph G whose nodes consist of some
subsets

S
i S�i partitioned into three types: (i) N1 made of subsets �1 of cardinality

d C 2 with 0 2 conv.�1/, j�1 \ S�i j D 1 for i D 1; : : : ; d , and j�1 \ S�dC1j D 2;
(ii) N2 made of subsets �2 of cardinality d C 1 with 0 2 conv.�2/, j�2 \ S�i j D 1

for i D 1; : : : ; d except for exactly one i , and j�2 \ S�dC1j D 2; and (iii) N3 made
of subsets �3 of cardinality d C 1 with 0 2 conv.�3/ and j�3 \ S�i j D 1 for i D
1; : : : ; d C 1. The adjacency between the nodes of G is defined as follows. There is
no edge between nodes of type �2 and �3. The nodes �1 and �2, respectively �1 and
�3, are adjacent if and only if �2 � �1, respectively �3 � �1.

We show that G is a collection of node-disjoint paths and cycles by checking the
degree of N1;N2, and N3 nodes. First consider a N1 node �1. We recall that, under
the general position assumption, there are exactly two d C 1-subsets � and �0 of �1
containing 0 in their convex hull. This fact can be expressed as, using the simplex
method terminology, there is a unique leaving variable in a pivot step of the simplex
method assuming non-degeneracy. Both � and �0 intersect S�i for i D 1; : : : ; d in at
least one point except maybe for one i . Thus, � and �0 are N2 or N3 nodes, hence
the degree of a N1 node is 2. Consider now a N2 node �2, there is a i0 ¤ d C 1
such that j�2 \ S�i0 j D 0. The node �2 is contained in exactly two N1 nodes, each
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of them obtained by adding one of the points in S�i0 . Hence the degree of a N2 node
is 2. Finally, consider a N3 node, it is contained in exactly one N1 node obtained by
adding the missing point of S�dC1. Hence, the degree of a N3 node is 1. The graph
G is thus a collection of node disjoint paths and cycles.

Therefore, the existence of a colourful simplex containing 0 provides a N3 node,
and following the path in G until reaching the other endpoint provides another node
of degree 1, i.e. a N3 node corresponding to a distinct colourful simplex containing
the origin 0. �

Proposition 1 raises the following problem, which we call Second covering colourful
simplex: Given dC1 sets, or colours, S1;S2; : : : ;SdC1 of points in R

d with jSi j � 2
for i D 1; : : : ; d C 1, and a colourful set S �Si Si containing 0 in its convex hull,
find another such set. The key property used in the proof of Proposition 1 is the
fact that the existence of one odd degree node in a graph implies the existence of
another one. In other words, the proof of Proposition 1 shows that Second covering
colourful simplex belongs to the PPA class, which forms precisely the problems
in TFNP for which the existence is proven through this parity argument. Other
examples of PPA problems include Brouwer, Borsuk-Ulam, Second Hamiltonian
circuit, Nash, or Room partitioning [9]. The PPA class has a nonempty subclass
of PPA-complete problems for which the existence of a polynomial algorithm
would imply the existence of a polynomial algorithm for any problem in PPA, see
Grigni [10]. We do not know whether Second covering colourful simplex is PPA-
complete, but it is certainly a challenging question related to the complexity of
colourful feasibility problem.

Note that Proposition 1 can also be proven by a degree argument on the map
embedding the join of the S�i in R

d , or using the Octahedron Lemma [3].

3.2 Minimum Number of Colourful Simplices Containing 0

As a corollary of Proposition 1, any condition implying the existence of a colourful
simplex containing 0 actually implies the existence of mini jSi j such simplices.

Corollary 1. Given d C 1 sets, or colours, S1;S2; : : : ;SdC1 of points in R
d , if

there is a colourful simplex containing 0, then there are at least mini jSi j colourful
simplices containing the origin 0.

Proof. Let I D mini jSi j and Si D fv1i ; v2i ; : : : g, and assume without loss of
generality that the given colourful simplex containing 0 in its convex hull is
conv.v11; v

1
2; : : : ; v

1
dC1/. Applying Proposition 1 .I �1/ times with S�i D fv1i ; vki g we

obtain an additional distinct colourful simplex containing 0 for each kD2; : : : ; I .�

We recall that a covering octahedron ˝ is a pair of disjoint Oi -transversals such that
˝ covers all of Sd�1 with colourful cones.
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Corollary 2. Given d C 1 sets, or colours, S1;S2; : : : ;SdC1 of points in R
d , if

there is a covering octahedron, then there are at least mini¤j jSi [Sj j�2 colourful
simplices containing the origin 0.

Proof. Denote Si D fv1i ; v2i ; : : : g and I D mini jSi j. Without loss of generality,
we can assume that the octahedron covering S

d�1 is formed by a pair .T1; T2/ of
1d C 1-transversals such that T1 D fv11; v12; : : : ; v1d g covers a point in SdC1. Applying
Proposition 1 .I �2/ times with S�i D fv1i ; vki g we obtain, for each k D 3; : : : ; I , an
additional distinct colourful simplex containing 0 distinct from the jSdC1j colourful
simplices containing 0 given by the assumption that .T1; T2/ covers Sd�1. �

The minimum number �.d/ of colourful simplices containing 0 for sets satisfying
the condition of Theorem 1, the general position assumption, and jSi j � d C 1 for
all i was investigated in [3,6,8,13]. While it is conjectured that �.d/ D d2 C 1 for

all d � 1, the best current upper and lower bounds are d2C 1 � �.d/ �
l
.dC1/2
2

m
.

In addition, we have �.3/ D 10 and �.d/ even for odd d . For sets satisfying
jSi j � dC1 for all i , one can consider the analogous quantities �˘.d/, respectively
�ı.d/, defined as the minimum number of colourful simplices containing 0 for
sets satisfying the condition of Theorem 2 and the general position assumption,
respectively Theorem 4. Since �ı.d/ � �˘.d/ and, as noted in [5],�˘.d/ D dC1,
Theorem 4 and Corollary 1 imply that �ı.d/ D d C 1 for d � 2. As the conditionT
i conv.Si / ¤ ; implies the existence of at least one octahedron covering S

d�1,
Corollary 2 generalizes the inequality �.d/ � 2d showed in [6].

3.3 Algorithm to Find a Colourful Simplex

We present an algorithm based on the proof of Proposition 1 finding a colourful
simplex containing 0 for sets satisfying the conditions of Theorem 4, and, therefore,
for sets satisfying the condition of Theorem 3 and the general position assumption.
Note that the algorithm also finds a colourful simplex under the condition of
Theorem 2.

Algorithm

Take any colourful .d � 1/-simplex 
 whose vertices form, without loss of
generality, a 1d C 1-transversal T D fv1; : : : ; vd g, and a ray r intersecting 
 in its
interior. Let HC.T / be the open half-space delimited by aff.T / and containing 0.
Check if there is a colourful d -simplex having 
 as a facet and either containing
0 or having a facet � intersecting r before 
 . If there is none, we obtain d new
vertices forming a 1d C 1-transversal T 0 D fv01; : : : ; v0d g in HC.T /, see Sect. 2.1.
Take a point x … Si Si in aff.r/ such that 0 2 conv.v1; : : : ; vd ; x/, and choose
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any point v0dC1 2 SdC1. We can use Proposition 1 and its constructive proof with
S�i D fvi ; v0i g for i D 1; : : : ; d and S�dC1 D fx; v0dC1g to obtain a new colourful
simplex containing 0 with at least one vertex in T 0. If v0dC1 is a vertex of the new
simplex, we do have a colourful simplex containing 0. Otherwise, the facet of the
simplex not containing x is a colourful .d � 1/-simplex � intersecting r before 

since aff.T / forms the boundary of HC.T /.

Given a colourful .d � 1/-simplex 
 intersecting r, the proposed algorithm finds
either a colourful simplex containing 0, or a colourful .d�1/-simplex � intersecting
r before 
 . Since there is a finite number of colourful .d � 1/-simplices, the
algorithm eventually finds a colourful simplex containing 0. While non-proven to be
polynomial, pivot-based algorithms, such as the Bárány-Onn ones or our algorithm,
are typically efficient in practice.
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Expected Crossing Numbers

Bojan Mohar and Tamon Stephen

Abstract The expected value for the weighted crossing number of a randomly
weighted graph is studied. We focus on the case where G D Kn and the edge-
weights are independent random variables that are uniformly distributed on Œ0; 1�.
The first non-trivial case is K5. We compute this via an unexpectedly involved
calculation, and consider bounds for larger values of n. A variation of the Crossing
Lemma for expectations is proved.

Key words Graph • Crossing number • Weighted crossing number • Crossing
lemma

Subject Classifications: 05C10, 60C05

1 Introduction

The crossing number of a graph is the minimum number of internal intersections
of edges in a drawing of the graph on the plane. Computing the crossing number,
even for complete graphs, is a surprisingly challenging problem and an active area
of research [13, 14, 16].
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The notion of the weighted crossing number, when the edges have weights
and each crossing counts as the product of the corresponding weights, has been
used in various situations, since it mimics the possibility of having many edges
in parallel. In this paper, we study the expected value of the weighted crossing
number of the complete graph Kn on n vertices, where the weights of edges are
independent random variables. We consider first the situation where the weights
are i.i.d. variables with the uniform distribution on Œ0; 1�. The first non-trivial
case is K5; we show through an involved calculation that the expected value is
35;921
1;108;800

� 0:032396.
We then use a discrete distribution to show that the first two moments of the

distribution on the edges are not sufficient to determine the expectation. If the
weights are binary (Bernoulli) random variables, we get the problem of crossing
numbers of random graphs. In [15], these are shown to have the �.n4/ asymptotics
of the usual crossing number cr.Kn/ of complete graphs. We give three proofs that
this also true for the uniform distribution and compare the bounds obtained from
each. The first proof is by comparison with the binary case, the second by using a
similar recurrence as used for the usual crossing number of complete graphs and the
third by proving and applying a variation of the Crossing Lemma for expectations.

2 Preliminaries

Given a graph G D .V;E/, we denote its crossing number by cr.G/. This is
the minimum over all drawings of G in the Euclidean plane R

2 of the number
of crossings of edges in the drawing. All drawings are assumed to have simple
polygonal arcs representing the edges of the graph, and it is assumed that each pair
of edges involves at most one intersection of their representing arcs. Here and in the
remainder of the paper, we consider only internal intersections of edges. Formally,
a crossing in a drawing D is an unordered pair fe; f g of edges whose arcs in D
intersect each other internally. We let X.D/ denote the set of all crossings and set
cr.D/ D jX.D/j.

Given non-negative weights w W E ! RC on the edges of G, we define the
crossing weight of a drawing D of G as:

cr.D ;w/ D
X

fe;f g2X.D/
w.e/w.f /:

We define the weighted crossing number of a weighted graph G as:

cr.G;w/ D min
D

cr.D ;w/: (1)

For a fixed graph, the function cr.G; �/ is also called the crossing function forG. We
take the domain of cr.G; �/ to be REC. We remark that cr.G; 0/ D 0 and cr.G;w/ � 0.
We also note that cr.G; �/ � 0 if and only if cr.G/ D 0. The function cr.G; �/
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is piecewise quadratic in w, and the chambers defined by these pieces correspond
to (groups of) optimal drawings for the contained weightings; the forms in the
chambers are neither convex nor concave. If 1 2 R

EC is the constant all-1 function,
then cr.G/ D cr.G; 1/.

The crossing function of any n-vertex graph is just a specialization of the crossing
function cr.Kn;w/ of the complete graph Kn, where we put weight 0 for the non-
edges in the graph. In this sense the crossing functions of complete graphs contain
information about crossing numbers of all graphs. This universality property was
the main goal to introduce this notion in [7, 8] and to propose its study.

Note that we allow the edges to be represented by any (polygonal) line, they need
not be straight lines. As in the unweighted case, minimal drawings can be obtained
without using double crossings (pairs of edges that cross more than once). The
related questions of the rectilinear crossing number, the pairwise crossing number
and the odd crossing number are also interesting and well-studied, see for example
[10]. For the rectilinear crossing number, the edges are required to be straight lines.
The pairwise crossing number counts the number of pairs of crossing edges, so
a pair of edges that intersects several times counts only once. The odd crossing
number counts the number of pairs of edges crossing an odd number of times. We
can consider weighted versions of all four types of crossing numbers.

Clearly the odd crossing number is at most the pairwise crossing number. Also,
the pairwise crossing number is at most the crossing number (with equality in all
known cases), and the crossing number is at most the rectilinear crossing number
(with strict inequality in some cases [4]). These relations remain for the weighted
versions. For the computations performed in Sect. 3, these four numbers will be
the same.

3 Computation of the Uniform Expected Crossing
Number for K5

We begin by considering the expected crossing number of the complete graph Kn

for some small values of n. We take the weights on the edges to be independently
identically distributed random variables, with uniform distributions on the interval
Œ0; 1�. Let us denote the expected value of cr.Kn;w/ under this distribution as Eu.n/.

For n � 4, the graph can be drawn without crossings, so Eu.n/ D 0 D cr.Kn/.
For n � 5, we have 0 < Eu.n/ < cr.Kn/. In this section, we compute Eu.5/
directly from the definition of expectation. Our somewhat cumbersome case analysis
can also be viewed as determination of the piecewise quadratic chambers for the
crossing function of K5. We conclude that:

Theorem 1. We have Eu.5/ D 35;921
1;108;800

.

Proof. We will label the edges ofK5 as in Fig. 1. We will denote the random weight
assigned to the i th edge by Xi , i D 1; : : : ; 10. We note that cr.K5/ D 1 and by
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10

9
8

7

6

5

4

32

1Fig. 1 Edge labelling of K5

symmetry, for any two non-adjacent edges,K5 can be drawn so that those two edges
are the single pair of crossing edges. Hence:

Eu.5/ D EŒmin.X1X8;X1X9;X1X10;X2X5;X2X6;X2X9;X3X5;X3X7;

X3X8;X4X6;X4X8;X4X10;X5X10;X6X8;X7X9/�

We abbreviate the quantity inside the expectation as m.X/.
This is a problem in order statistics, see for instance [3]. The direct way to obtain

Eu.5/ is to evaluate:

Z 1

0

Z 1

0

: : :

Z 1

0

m.x/dx1 : : : dx9dx10 (2)

where m.x/ is the function of x 2 R
10 corresponding to the random variables of

m.X/. To do this we break (2) into 10Š terms based on the increasing order of the
variables, i.e. we compute (2) via the sum:

X


2S10

Z 1

0

Z x
.10/

0

Z x
.9/

0

: : :

Z x
.2/

0

m.x/dx
.1/ : : : dx
.9/dx
.10/ (3)

Here the permutations 
 2 S10 index the possible orderings of the random variables
X. This sum has 10Š terms, but they can be grouped into a manageable number of
cases. To begin, we note that by reordering the vertices, we can assume that X1 takes
the smallest value, and, using the labelling of Fig. 1, X2 � X3;X4;X5;X6;X7 and
X3 � X4. This corresponds to a labelling ofK5 based on X, breaking ties arbitrarily.
Actually, we may assume that the weights Xi , 1 � i � 10, are pairwise different,
since the set on which an equality occurs is of measure zero. Thus, each case with
the above assumptions corresponds to 120 terms in (3).
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With these assumptions, the minimum of the 15 pairs of random variables in
m.X/ must be attained at one of X1X8;X1X9;X1X10;X2X5;X2X6;X3X7 since
X1X9 � X2X9;X7X9; X2X5 � X3X5I etc. We note that these six terms are
symmetric in the variables X8;X9;X10, and also in X5;X6. Thus we will also
take X8 D min.X8;X9;X10/ and X5 D min.X5;X6/, and treat the remaining cases
by symmetry. Combined with our assumptions on X1;X2 and X3 we break the 10Š
terms of (3) into groups of 720 terms based on symmetry; this leaves us with 5,040
terms up to these symmetries. It also allows us to simplify our integrand further to
min.X1X8;X2X5;X3X7/.

We now divide into cases based on the relative orderings of some of the
remaining variables. We remark that, depending on the order of the variables, the
integrand may simplify further – for instance if the two smallest variables are X1 and
X8, the minimum of the three terms will always be X1X8. We organize the cases by
how the integrand simplifies.

Case 1: Orderings which ensure X1X8 D min.X1X8;X2X5;X3X7/.

In these cases, the computation is relatively simple: the integral depends only on
which position X8 occupies in the order of the Xi ’s. It can be anywhere from the
second to fifth smallest. Suppose it is the second smallest, i.e. that the order of the
variables is:

X1 � X8 � Xi3 � Xi4 � Xi5 � Xi6 � Xi7 � Xi8 � Xi9 � Xi10 :

Then we compute:

Z 1

0

Z xi10

0

Z xi9

0

: : :

Z xi4

0

Z xi3

0

Z x8

0

x1x8dx1dx8dxi3 : : : dxi8dxi9dxi10

D
Z 1

0

Z xi10

0

Z xi9

0

: : :

Z xi4

0

Z xi3

0

x38
2

dx8dxi3 : : : dxi8dxi9dxi10

D
Z 1

0

Z xi10

0

Z xi9

0

: : :

Z xi4

0

x4i3
2 � 4dxi3 : : : dxi8dxi9dxi10

: : :

D
Z 1

0

x11i10
2 � 4 � 5 � 6 � 7 � 8 � 9 � 10 � 11dxi10 D

3

12Š
:

A similar calculation shows that if X8 is i th smallest variable, the integral for a
fixed ordering of the remaining variables will be iC1

12Š
.

Now observe that there are 8Š
24
D 1;680 ways of ordering the variables with X1 as

the smallest variable, X8 as the second smallest; X2 � X3;X4;X5;X6;X7; X3 � X4;
and X5 � X6. We remark that our symmetry assumptions guarantee that either X2

or X8 is the second smallest variable, so in the remainder of the analysis X2 will
always be the second smallest variable.
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Thus if X8 is the third smallest variable, we have fixed the order of the first
three variables, and the remaining variables can be ordered in 7Š=4 D 1;260 ways,
accounting for the facts that X3 � X4 and X5 � X6.

If X8 is the fourth smallest variable, we have two possible choices for the third
smallest: X3 and X7. In the former case we have 6Š=2 D 360 possible orderings of
the remaining variables (accounting for X5 � X6), while for the latter case we have
6Š=4 D 180 possible orderings.

Finally, under the assumptions of Case 1, X8 can be the fifth smallest variable
only if the third and fourth variables are X3 and X4, respectively. There are 5Š=2
orderings of the remaining variables compatible with this. We remark that in this
case, we can never have X5 � X8, or X3;X7 � X8 since then it may be the case that
X1X8 is not minimal, depending on the values chosen.

This already covers the majority of the cases, 3,540 of the 5,040. Thus the
terms in (3) corresponding to these orderings of the variables have total weight per
symmetry class of:

1;680 � 3
12Š
C 1;260 � 4

12Š
C 540 � 5

12Š
C 60 � 6

12Š
D 13; 140

12Š
:

The remaining cases are similar and are included in the Appendix.

As noted in Sect. 4.3, the computed value of Eu.5/ is used in a lower bound for
Eu.n/ for n � 5.

It is straightforward to verify the first few digits of this number by simulating the
ten uniform random variables. A short MATLAB program sampled the ten variables
1012 times and computed the minimum; the computed number agreed with our
calculation to the seventh decimal place. While this number arises in a relatively
simple way, we do not know of it arising in other places.

Unfortunately, it would be much harder to use such a simulation to get approx-
imate values of Eu.6/ or Eu.7/. The proof method used above for K5 does not
generalize to K6 or K7 either. To simulate Eu.6/ we would need to catalogue the
minimal ways of drawing K6, i.e. drawings D for which X.D/ is inclusion-wise
minimal.

Remark 1. We can get a simple lower bound by observing that each edge has weight
at least 1�p with probability at least p; thus the expectation is at least p10.1�p/2 for
any p 2 Œ0; 1�. This expression is maximized at p D 5

6
, giving the bound Eu.5/ �

510

612
� 0:0045, which is weak, but can be generalized.

Remark 2. Gelasio Salazar notes that the same approach can be used to compute the
expected crossing number ofK3;3 with uniform Œ0; 1� random variables on the edges.
This turns out to be less involved than the K5 case due to the symmetries between
the edges; using the same method we arrived at Eu.K3;3/ D 23

1;155
� 0:019913.
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4 Moments and Bounds for Eu.n/

In this section, we consider the expected crossing number under some discrete
distributions. By doing this in the case where the random variable takes one of two
values, we show that the first two moments of the distribution do not determine the
expected crossing number, see Sect. 4.1.

When the two values are 0 and 1, the random variables define a random graph.
We note that the expected crossing number for the uniform distribution cannot be
much less than the expected crossing number of the random graph (Sect. 4.2). This
fact gives us an asymptotic lower bound for Eu.n/. In fact, such a bound can be
obtained more directly via a recurrence as used for the usual crossing number of
complete graphs (Sect. 4.3), or by proving and applying a variation of the Crossing
Lemma for expectations (Sect. 4.4).

Finally, we discuss upper bounds briefly in Sect. 4.6.

4.1 Moments

Consider for 0 � t < u, the discrete distribution where edges have weight t or u
with probability 1

2
. Let Edisc.n; t; u/ be the expected weighted crossing number of

Kn with the distribution for given t; u; if the parameter u is omitted we will assume
it is 1 � t . Then it is easy to see that

cr.K5;w/ D
8
<

:

t 2 if there is a pair of non-adjacent edges of weight t
u2 if all edges have weight u
tu otherwise:

All 210 possible assignments of t ’s and u’s to the edges are equally likely. There
is only one way for all edges to have weight u. Otherwise, if we do not have two
non-adjacent edges of weight t , we must either have all edges of weight t incident
with a single vertex, or three edges forming a triangle. In the former situation, we
may have one edge (10 assignments), two edges (30 assignments), three edges (20
assignments) or four edges (5 assignments). For the triangles, we have ten more
assignments. The remaining 948 assignments of t ’s and u’s to the edges have a
pair of non-adjacent edges of weight t . Therefore, Edisc.5; t; u/ D 1

1;024
.948t2C

75tuCu2/, which simplifies to Edisc.5; t/ D 1
1;024

.874t2C73tC1/when u D 1�t .
The mean and variance of the considered discrete distribution are uCt

2
and .u�t/2

4
,

respectively. If we take u D 1 � t , then the mean is 1
2
, matching the mean of the

uniform distribution, while the variance is .1�2t/2
4

. Since the variance of the uniform

case is 1
12

, by choosing t D 3�p3
6

, we get a distribution that matches the uniform
distribution in its first two moments. However the above calculation shows that
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Edisc

 
5;
3 �p3
6

!
D 1;973 � 947p3

6;144
� 0:05416 > Eu.5/:

Thus the first two moments of the input distribution on the edges are not sufficient
to determine the expected crossing number. We believe that a constant number of
higher moments is not sufficient either. Perhaps, up to

�
n
2

	
moments are required.

4.2 Random Graphs

If we take t D 0 and u D 1 above we have a random graph on n vertices where the
edges are chosen randomly and independently with probability p D 1

2
. We can also

consider more general p > 0, and denote the random graph on n vertices with edge
probability p as G.n; p/.

The expected crossing number of G.n; p/ is studied in [15], focusing its
behaviour as n increases, with p perhaps a function of n. They find several
interesting results, which are unexpectedly different for pairwise crossing numbers,
crossing numbers and rectilinear crossing numbers. The differences may be the
availability of proof techniques rather than in the numbers themselves.

We note that given a lower bound � for EŒcr.G.n; 1
2
//� we get a lower bound of

�

4
for Eu.n/ by rounding down the uniform Œ0; 1� variables to 0 or 1

2
respectively.

In particular, it is shown in [15] that EŒcr.G.n; 1
2
//� D �.n4/, so the same holds

true of Eu.n/. (Since cr.Kn/ is O.n4/ and an upper bound for Eu.n/, we need
only show the lower bound.) In the following section we give two direct proofs
of this fact by adapting standard arguments used for crossing numbers to work for
the expectations.

4.3 Lower Bounds via a Recurrence

We recall that we denote the crossing weight of a given drawing D of a graph
weighted by w as cr.D ;w/, and the weighted crossing number of G weighted by
w (i.e. the minimum over all drawings) by cr.G;w/.

Given a drawing D ofKn with weights w, we can consider the induced drawings
of copies of Kn � v � Kn�1 obtained by removing each vertex v 2 V D V.Kn/

from Kn in turn. Then

X

v2V
cr.D jKn�v;wjKn�v/ D .n � 4/ cr.D ;w/ (4)

since each pair of disjoint edges ij; i 0j 0 of Kn appear in all but four of the terms on
the left side of (4).
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Now consider Kn for n > 4 with a fixed weighting w. There is some optimal
drawing D� of Kn such that cr.Kn;w/ D cr.D�;w/. Now:

cr.Kn;w/ D cr.D�;w/ D 1

n � 4
X

v2V
cr.D�jKn�v;wjKn�v/

� 1

n � 4
X

v2V
min
D

cr.D jKn�v;wjKn�v/ D 1

n � 4
X

v2V
cr.Kn � v;wjKn�v/:

If the weights in w are i.i.d. random variables, we can take expectations on both
sides to get Eu.n/ � n

n�4 Eu.n � 1/. Applying this inequality recursively, we find
for n � 6 that Eu.n/ � 1

5

�
n
4

	
Eu.5/.

4.4 Lower Bounds via the Crossing Lemma

The following result, known as the Crossing Lemma, was proved independently by
Ajtai et al. [2] and Leighton [5]. The version given below (with the specific constant
1; 024=31; 827 > 0:032) is due to Pach et al. [11].

Theorem 2 (Crossing Lemma). LetG be a graph of order nwithm � 103
16
n edges.

Then

cr.G/ � 1;024

31;827

m3

n2
:

Let � be a probability distribution with expectation E.�/ D �. We define the
complementary probability distribution �� by setting ��.� C x/ D �.� � x/.
For the purpose of the following argument, let us assume that our probability
distribution is symmetric, i.e., � D ��. Then, given a random weight function
w, the complementary weight function w�, defined as w�.e/ D 2� � w.e/, has the
same distribution as w. Let us define w0 to be either w or w�, so that w0.e/ � � holds
for at least half of the edges e 2 E.G/. Finally, let w1 be defined as w1.e/ D 0 if
w0.e/ < �, and w1.e/ D 1 if w0.e/ � �. Since cr.G;w/C cr.G;w�/ � cr.G;w0/ �
�2 cr.G;w1/, the following holds:

E.cr.G;w// D 1

2
E.cr.G;w/C cr.G;w�// � 1

2
E.cr.G;w0//

� �2

2
E.cr.G;w1// � �2

2
� 1;024
31;827

.m=2/3

n2
D 64�2

31;827

m3

n2
:

This gives a version of the crossing lemma for expectations. With a little more care
we can improve the above bound and also get rid of the symmetry condition. In
order to do this, we replace the mean by the median, i.e. the largest number � such
that ProbŒw.e/ � �� � 1

2
.
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Theorem 3 (Crossing Lemma for Expectations). Let G be a graph of order n
with m � 103

16.1�4�1=3/
n edges. Suppose that each edge e 2 E.G/ gets a random

weight w.e/, where the weights of distinct edges are independent non-negative
random variables (not necessarily i.d.) whose median is at least � > 0. Then

E.cr.G;w// � 128�2

31;827
� m

3

n2
:

Proof. Given w, we introduce related weights w00 and w2 in a similar (but not
identical) way as above: we let w00.e/ D 0 if w.e/ < �, and w00.e/ D � if w.e/ � �;
we let w2.e/ D w00.e/=� be the corresponding weight with values 0 and 1. Note that
ProbŒw00.e/ D �� � 1

2
and P robŒw2.e/ D 1� � 1

2
. Similarly as before, we have

cr.G;w/ � cr.G;w00/ D �2 cr.G;w2/.
Note that w determines a spanning subgraph Fw � G, whose edges are those

edges of G for which w2.e/ D 1. The graph Fw is a random subgraph of G, and for
each spanning subgraph F of G we let P rob.F / be the probability that F D Fw.
We will need a lower bound for the sum

P
cr.F /P rob.F / taken over all (spanning)

F � G. To do this, let us defineF 0 � F as the spanning subgraph ofG such that e 2
E.F 0/ if w.e/ � �e � �, where �e is the median of the random variable w.e/. The
threshold case when w.e/ D �e is to be considered so that P robŒe 2 E.F 0/� D 1

2
.

Then F 0 is also a random spanning subgraph of G and P rob.F 0/ D 2�m. Since the
event that an edge e is in F 0 is contained in the event that e 2 E.F /, we have for
each F

P rob.F / D
X

F 0
F
˛.F; F 0/P rob.F 0/;

where ˛.F; F 0/ � 0 is the probability that we have Fw D F under the condition
that F 0 is given. Clearly,

P
F�F 0 ˛.F; F 0/ D 1 for every fixed F 0. Since cr.F 0/ is

an increasing function, we have:

X

F
G
cr.F /P rob.F / D

X

F
G
cr.F /

X

F 0
F
˛.F; F 0/P rob.F 0/

�
X

F 0
G
cr.F 0/P rob.F 0/

X

F�F 0

˛.F; F 0/

D
X

F 0
G
cr.F 0/P rob.F 0/ D

X

F 0
G
2�m cr.F 0/:

We will employ another notion:

�.k; n/ D minfcr.F / W jV.F /j D n; jE.F /j D kg:
By the Crossing Lemma, �.k; n/ � 1;024

31;827
k3

n2
if k � 103

16
n. Using the introduced

quantities, we obtain the following estimate:
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EŒcr.G;w/� D
Z

RE

cr.G;w/dw.x/ �
Z

RE

cr.G;w0/dw.x/ D �2
Z

RE

cr.G;w1/dw.x/

� �2
X

F
G
cr.F /P rob.F / � �2

X

F 0
G
2�m cr.F 0/

� �2
mX

kD0

X

F
G;jE.F /jDk
2�m cr.F /

� �2 2�m
mX

kD0

 
m

k

!
�.k; n/

� 1;024�2

31;827 � 2mn2
mX

kDd103n=16e

 
m

k

!
k3:

The integrals in the first row are with respect to the random weight function w. Note
that we have k3 C .m � k/3 � 1

4
m3 for 0 � k � m, and that for k < 103n=16, we

have .m � k/3 � .m � 103n=16/3 � .m � .1 � 4�1=3/m/3 D 1
4
m3. Thus,

mX

kDd103n=16e

 
m

k

!
k3 � 1

2

mX

kD0

 
m

k

!
1

4
m3 D 1

8
2mm3:

The above inequalities imply:

EŒcr.G;w/� � 1;024�2

31;827 � 2mn2
1

8
2mm3 D 128�2 �m3

31;827 � n2

which we were to prove. For uniform random variables on Kn this works out to

Eu.n/ � 4n.n�1/3
31;827

.

4.5 Comparison of Lower Bounds

The lower bounds of Sects. 4.2, 4.3, and 4.4 all have the form cn4 C O.n3/.
Computing the values of c obtained from the three proofs, we see that the Crossing
Lemma for Expectations gives ccl D 4

31;827
� 0:000126 while the recurrence gives

crec D Eu.5/
120
� 0:000270, and is tight for n D 5. The Crossing Lemma bound has

the advantage of being applicable as long as there are sufficiently many edges and
only requiring the distributions on the edges to be independent, non-negative and
have mean �.

The constant crg found in [15] from the random graph approach is asymptotically
1

1;920
� 0:000521; for fixed n it is 1

1;920L2
where L >

log n
logn�log 2 . In fact, it requires
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some effort to produce an explicit lower bound from this technique for a given n as
several lower order terms will need to be calculated; for small n the bound it yields
will not be as strong as the others. The proof relies on counting induced copies ofK5

in the random graph, and works even for the pairwise crossing number. The constant
1

1;920
may not be optimal.

For the rectilinear crossing number the constant can be further improved to
crg0 D �

64
where � is the limit of the rectilinear crossing number of Kn divided

by
�
n
2

	2
. At present � is not known exactly, but [6] shows that � > 1C�

16
for a small

� � 0:00003. This yields crg0 > 0:000976, but again may not produce effective
bounds for particular small n.

4.6 Upper Bounds

The best known upper bound for the regular crossing number of Kn is cr.Kn/ �
g.n/ WD 1

4
b n
2
cb n�1

2
cb n�2

2
cb n�3

2
c. There is a drawing that meets this bounds but it

is not known to be tight for n > 12 and is an ongoing research challenge, see for
instance [1, 12]. (For the rectilinear crossing number the best known drawing has
slightly more crossings.) By using this drawing we get that Eu.n/ � g.n/.

In fact, we can improve this to Eu.n/ � g.n/

4
since the expectation on given

crossing pair of edges e1 and e2 from the drawing is simply the expectation of the
product of a pair of independent uniform Œ0; 1� variables, i.e.

R 1
0

R 1
0
xydxdy D 1

4
.

This is far from tight even for n D 5, where the bound is 1
4
, about 7.7 times the

actual value of Eu.5/. On the other hand, comparison with the lower bounds show
that this ratio will not get much worse as n increases.
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Appendix

Here we compute the remaining cases from Sect. 3.

Case 2: Orderings which ensure min.X1X8;X2X5;X3X7/ can be attained at both
X1X8 and X2X5, but not X3X7.

In these cases, X2 and X5 are between X1 and X8. However, X3 and X7 are not
both between X2 and X5. The integrand will bem.X/ D min.X1X8;X2X5/, and the
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two smallest variables are X1 and X2. We break into subcases based on the positions
of X5 and X8. Only the simplest case is described in detail.

Subcase 2i: The four smallest variables are X1;X2;X5 and X8. Then we need to
evaluate:
Z 1

0

Z xi10

0

: : :

Z xi6

0

Z xi5

0

Z x8

0

Z x5

0

Z x2

0

min.x1x8; x2x5/dx1dx2dx5dx8dxi5 : : : dxi9dxi10

D
Z 1

0

Z xi10

0

: : :

Z xi6

0

Z xi5

0

Z x8

0

Z x5

0

Z x2x5
x8

0

x1x8dx1dx2dx5dx8dxi5 : : : dxi9dxi10

C
Z 1

0

Z xi10

0

: : :

Z xi6

0

Z xi5

0

Z x8

0

Z x5

0

Z x2

x2x5
x8

x2x5dx1dx2dx5dx8dxi5 : : : dxi9dxi10

D
Z 1

0

Z xi10

0
: : :

Z xi6

0

Z xi5

0

Z x8

0

Z x5

0

 
x22x

2
5

2x8
C x22x5 �

x22x
2
5

x8

!
dx2dx5dx8dxi5 : : :dxi9dxi10

D
Z 1

0

Z xi10

0

: : :

Z xi6

0

Z xi5

0

Z x8

0



x45
3
� x55
6x8

�
dx5dx8dxi5 : : : dxi9dxi10

D
Z 1

0

Z xi10

0

: : :

Z xi6

0

Z xi5

0



x58
15
� x

5
8

36

�
dx8dxi5 : : : dxi9dxi10

D
Z 1

0

Z xi10

0

: : :

Z xi6

0

7x6i5
180

dxi5 : : : dxi9dxi10 D
Z 1

0

7 � 5Š x11i10
180 � 11Šdxi10 D

14

3 � 12Š :

The number of orderings of the variables in Subcase 2i up to symmetries is 6Š
2
D

360, since we require X3 � X4.
The integrals in the remaining cases are essentially similar, so we will simply list

the initial sequence of integrands and then compute the number of orderings of the
variables corresponding to each case.
Subcase 2ii: The five smallest variables are X1;X2;X5;Xj and X8. This produces
the following integrands:

min.x1x8; x2x5/I x22x5�
x22x

2
5

2x8
I x

4
5

3
� x

5
5

6x8
I x

5
j

15
� x6j

36x8
I x

6
8

140
I x7i6
140 � 7 I : : :

6Šxi10
140 � 11Š I

36

7 � 12Š :

There are three possibilities for j : 3, 6 and 7. When j D 3 we have 5Š cases, and
when j D 6 or j D 7 we have 5Š

2
cases as we need to account for the fact that

X3 � X4 in the remaining variables. This is the total of 240 orderings.

Subcase 2iii: The six smallest variables are X1;X2;X5;Xj ;Xk and X8. The

integrands remain as in the previous case up to
x5j
15
� x6j

36x8
. The next integrands will

be
x6k
90
� x7k

36	7x8 and 11x78
7	1;440 , the remaining simple integrations give 11

2	12Š .
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There are seven possibilities for .j; k/ in this case: .3; 4/; .3; 6/; .3; 7/; .6; 3/;
.7; 3/; .6; 7/ and .7; 6/. The first five of these are each associated to 4Š order-
ings of the remaining variables, while the last two are each associated to 4Š

2
.

This is a total of 144 orderings. Subcase 2iv: The seven smallest variables are

X1; X2; X5; Xj ; Xk; Xl and X8. We proceed from the integrand
x6k
90
� x7k

36	7x8
to

x7l
7	90 �

x8l
7	8	36x8 , and then to 13x88

7	8	9	180 . Continuing to the end, the integral is 52
9	12Š .

There are 12 possibilities for .j; k; l/ arising from choosing three of 3; 4; 6; 7 and

requiring 4 to be preceded by 3. Each of these has 3Š orderings of the remaining
three variables, for a total of 72 orderings.

Subcase 2v: The eight smallest variables are X1;X2;X5;Xj ;Xk;Xl ;Xm and X8. We

proceed from the integrand
x7l
7	90 �

x8l
7	8	36x8 to x8m

7	8	90 � x9m
7	8	9	36x8 and then to x98

7	8	9	120 .

Continuing to the end, the integral is 6
12Š

.

Again there are 12 possibilities, as .j; k; l; m/ are chosen from 3; 4; 6; 7 with 3
preceding 4. There are two ways of arranging the remaining two variables, for a
total of 24 orderings.
Subcase 2vi: The five smallest variables are X1;X2;Xj ;X5 and X8. The sequence
of integrands that we see is then:

min.x1x8; x2x5/ I x22x5 �
x22x

2
5

2x8
I x

3
j x5

3
� x

3
j x5

6x8
I x

5
5

12
� x65
24x8

I x
6
8

126
I x7i6
126 � 7 I

: : :
6Šxi10
126 � 11Š I

40

7 � 12Š :

In this case, j must be either 3 or 7. If it is 3, there are 5Š ways of ordering
the remaining variables, and if it is 7 there are 5Š

2
ways of ordering the remaining

variables, for a total of 180 orderings.

Subcase 2vii: The six smallest variables are X1;X2;Xj ;X5;Xk and X8. We then see

the same integrands through x55
12
� x65
24x8

followed by
x6k
72
� x7k
7	24x8 , x78

7	72� x78
7	8	24 . Following

the remaining routine integrations, we get 25
4	12Š .

The possibilities for .j; k/ are similar to those of Subcase 2iii, but 6 cannot
be used in the first position. This leaves .3; 4/; .3; 6/; .3; 7/; .7; 3/ and .7; 6/. The
first four cases correspond to 4Š orderings of the remaining variables, while .7; 6/
corresponds to 4Š

2
as 3 must precede 4. This gives a total of 108 orderings.

Subcase 2viii: The seven smallest variables are X1;X2;Xj ;X5;Xk;Xl and X8. We

proceed as in the previous subcase through
x6k
72
� x7k

7	24x8 , then to
x7l
7	72 �

x8l
7	8	24x8 , and

x88
7	8	72 � x88

7	8	9	24 . The remaining integrations bring us to 20
3	12Š .

In this subcase, we have .j; k; l/ chosen from 3; 4; 6; 7 with the conditions that
4 must be preceded by 3, and 6 may not appear in the first position. This second
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condition removes 3 of the 12 orderings as compared to Subcase 2iv, leaving us
with 9. There are always 3Š orderings of the remaining variables, giving a total of
54 orderings for this case.

Subcase 2ix: The eight smallest variables are X1;X2;Xj ;X5;Xk;Xl ;Xm and X8.

We proceed as in the previous subcase through
x7l
7	72 �

x8l
7	8	24x8 . The next integrand is

x8m
7	8	72 � x9m

7	8	9	24x8 , followed by 7x98
24	30	7	8	9 , and eventually 7

12Š
.

There are nine possible choices for .j; k; l; m/ since we have the same conditions
as in the previous subcase, with the remaining number assigned tom. There are two
orders for the remaining two variables, giving a total of 18 orderings.

Subcase 2x: The six smallest variables are X1;X2;Xj ;Xk;X5 and X8. We proceed

as in the previous subcase through the integrand
x3j x5

3
� x3j x

2
5

6x8
. Continuing, we see

integrands
x4kx5

12
� x4kx

2
5

24x8
, x

6
5

60
� x75

120x8
, and x78

7	60 � x78
16	60 on our way to 27

4	12Š .

In fact, this case requires j D 3 and k D 4, since we can’t have either X6 or
both of X3 and X7 precede X5. There are 4Š D 24 ways of ordering the remaining
variables.

Subcase 2xi: The seven smallest variables are X1;X2;X3;X4;X5;Xl and X8. This

matches the previous subcase through x65
60
� x75

120x8
; the next two integrands are

x7l
7	60 �

x8l
8	120x8 and x88

7	8	60 � x88
8	9	120 . Continuing we arrive at 22

3	12Š .

We must have l D 6 or l D 7. There are 3Š ways of ordering the remaining
variables for a total of 12 orderings.

Subcase 2xii: The eight smallest variables are X1;X2;X3;X4;X5;Xl ;Xm and X8.

This matches the previous subcase through
x7l
7	60 �

x8l
8	120x8 . Next we have x8m

7	8	60 �
x9m

8	9	120x8 . and x98
7	8	9	60 � x98

8	9	10	120 . Continuing we arrive at 39
5	12Š .

We must have .l;m/ equal to .6; 7/ or .7; 6/, and there are two ways of ordering
the remaining two variables, for a total of four orderings.

This completes Case 2, which contains 1,240 possible orderings up to the
symmetries. The terms in (3) corresponding to these orderings of the variables have
total weight per symmetry class of: 360 � 14

3	12Š C : : :C 4 � 39
5	12Š D 235;797

35	12Š .

Case 3: Orderings which ensure min.X1X8;X2X5;X3X7/ is attained at both X1X8

and X3X7, but not X2X5.

Since X2 is the second smallest variable, these will occur only when X3;

X7 � X8, but X8 � X5. Only the simplest case is described in detail.

Subcase 3i: The five smallest variables are X1;X2;X3;X7 and X8 or X1;X2;X7;X3

and X8.
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We proceed to evaluate:

Z 1

0

Z xi10

0

: : :

Z xi6

0

Z x8

0

Z x7

0

Z x3

0

Z x2

0

min.x1x8; x3x7/dx1dx2dx3dx7dx8 : : : dxi9dxi10

The inner integral is piecewise linear in x1, with a single break point at x1 D
x3x7
x8

, however x3x7
x8

may or may not be greater than x2. We decompose the inner
integral as:

Z min.x2;
x3x7
x8

/

0

x1x8dx1 C
Z x2

min.x2;
x3x7
x8

/

x3x7dx1

Evaluating this integral leaves us with the new inner integral:
Z x3

0



1

2
min.x2;

x3x7

x8
/2x8 C x2x3x7 �min.x2;

x3x7

x8
/x3x7

�
dx2

This again needs to be split, this time with breakpoint at x2 D x3x7
x8

:

Z x3x7
x8

0



x22x8

2
C x2x3x7 � x2x3x7

�
dx2 C

Z x3

x3x7
x8



x23x

2
7

2x8
C x2x3x7 � x

2
3x

2
7

x8

�
dx2

Happily, we see some cancellation of terms, both before evaluating the integral and
after. This yields:

Z x7

0



x33x

3
7

6x28
C x33x7

2
� x

3
3x

2
7

2x8

�
dx3

We proceed through the following integrands:

x77
24x28

C x57
8
� x67
8x8
I 11x

6
8

1; 344
I : : : I 165

28 � 12Š

Accounting for the fact that X5 � X6, there are 5Š
2

orderings of the remaining
variables. With the two orderings of X3 and X7 (which do not affect the computation
of the integral), we have the total of 120 orderings corresponding to this subcase.

Subcase 3ii: The six smallest variables are X1;X2;X3;X7;X4 and X8, with X3 and
X7 possibly switched.

The integrands then remain identical through x77
24x28
C x57

8
� x67
8x8

. These are followed

by x84
8	24x28 C

x64
6	8 � x74

7	8x8 and x78
756

. Subsequent integrations yield 20
3	12Š . There are 4Š

2

orderings of the remaining variables, and X3 and X7 can be switched, giving a total
of 24 orderings.

Subcase 3iii: The six smallest variables are X1;X2;X3;X4;X7 and X8.
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The integrands are identical to Subcase 3i until x
3
3x

3
7

6x28
C x33x7

2
� x33x

2
7

2x8
. We proceed to:

x44x
3
7

24x28
C x44x7

8
� x

4
4x

2
7

8x8
I x87

120x28
C x67
40
� x77
40x8
I 83x78

60; 480
I : : :

83

12 � 12Š

There are 4Š
2
D 12 orderings of the remaining variables.

This completes Case 3, which comprises 156 orderings of the variables. The
terms in (3) corresponding to these orderings of the variables have total weight per
symmetry class of 6;651

7	12Š .

Case 4: Orderings in which min.X1X8;X2X5;X3X7/ is attained at all three terms.

This comprises a small number of orderings that feature a messy inner integral.
We note that in all these cases the two smallest variables are X1 and X2, while the
third smallest variable is either X3 or X7. Our integrand is symmetric in X3 and X7,
so we will do the computation only with X3 as the smaller of the two variables. We
will proceed to evaluate the three innermost integrals before breaking into subcases,
assuming that the fourth smallest variable is Xj :

Z xj

0

Z x3

0

Z x2

0

min.x1x8; x2x5; x3x7/dx1dx2dx3

D
Z xj

0

Z x3

0

Z min.x2x5;x3x7/
x8

0

x1x8dx1 C
Z x2

min.x2x5;x3x7/
x8

min.x2x5; x3x7/dx1dx2dx3

D
Z xj

0

Z x3

0



min.x2x5; x3x7/2

2x8
C x2 min.x2x5; x3x7/ � min.x2x5; x3x7/2

x8

�
dx2dx3

D
Z xj

0

Z x3

0



x2 min.x2x5; x3x7/ � min.x2x5; x3x7/2

2x8

�
dx2dx3

D
Z xj

0

Z x3x7
x5

0



x22x5 �

x22x
2
5

2x8

�
dx2dx3 C

Z x3

x3x7
x5



x2x3x7 � x

2
3x

2
7

2x8

�
dx2dx3

D
Z xj

0



x33x

3
7x5

3x35
� x

3
3x

3
7x

2
5

6x8x
3
5

C x33x7

2
� x

3
3x

2
7

2x8
� x

3
3x

3
7

2x25
C x33x

3
7

2x8x5

�
dx3

D
Z xj

0

x33



x7

2
� x27
2x8
� x37
6x25
C x37
3x8x5

�
dx3 D

x4j

4



x7

2
� x27
2x8
� x37
6x25
C x37
3x8x5

�
:

We now proceed to the subcases which are based on the ordering of the remaining
variables.
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Subcase 4i: The six smallest variables are X1;X2;X3;X7;X5 and X8. Then
Xj D X7 and we need to evaluate:
Z 1

0

Z xi10

0

Z xi9

0

Z xi8

0

Z xi7

0

Z x8

0

Z x5

0



x57
8
� x67
8x8
� x77
24x25

C x77
12x8x5

�


 dx7dx5dx8dxi7dxi8dxi9dxi10

D 1

32

Z 1

0

Z xi10

0

Z xi9

0

Z xi8

0

Z xi7

0

Z x8

0



x65
2
� 5x75
21x8

�
dx5dx8dxi7dxi8dxi9dxi10

D 1

768

Z 1

0

Z xi10

0

Z xi9

0

Z xi8

0

Z xi7

0

x78dx8dxi7dxi8dxi9dxi10 D
7Š

768 � 12Š D
105

16 � 12Š :

As noted previously, there is a second ordering corresponding to this subcase, in
which X3 and X7 are reversed, and there are 4Š orderings of the remaining variables,
giving us 48 orderings in this case.

Subcase 4ii: The seven smallest variables are X1;X2;X3;X7;X5, Xk and X8.

This calculation is quite similar to the previous one until it reaches the integral

with integrand 1
32
Œ
x65
2
� 5x75

21x8
�. Subsequent integrands are:

1

32



x7k
14
� 5x8k
168x8

�
I 1
32



x88
112
� 5x98
1;512x8

�
I and

1

1;792



17x88
54

�
:

The remaining integrations bring us to 85
12	12Š .

There are 3Š orderings of the remaining variables, k may be either 4 or 6, and X3

and X7 can again be reversed, giving us a total of 24 orderings in this subcase.

Subcase 4iii: The seven smallest variables are X1;X2;X3;X7;X4, X5 and X8.

The first integration is similar to the first integration in Subcase 4i, and we proceed
from there, via the following integrands:

1

4



x64
12
� x74
14x8

� x84
48x25

C x84
24x8x5

�
I 1

12;096



29x75 �

13x85
x8

�
I 157x

8
8

870;912
:

The remaining integrations bring us to 785
108	12Š .

There are 3Š orderings of the remaining variables, and X3 and X7 can be again be
switched, giving 12 orderings in this subcase.

Subcase 4iv: The seven smallest variables are X1;X2;X3;X4;X7, X5 and X8.
Unlike the previous cases, we have Xj D X4, so we restart with just the inner three
integrals evaluated at the top of the section:
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Z 1

0

Z xi10

0

Z xi9

0

Z xi8

0

Z x8

0

Z x5

0

Z x7

0

x44
4



x7

2
� x27
2x8
� x37
6x25
C x37
3x8x5

�


 dx4dx7dx5dx8dxi8dxi9dxi10

D 1

20

Z 1

0

Z xi10

0

Z xi9

0

Z xi8

0

Z x8

0

Z x5

0



x67
2
� x77
2x8
� x87
6x25
C x87
3x8x5

�


 dx7dx5dx8dxi8dxi9dxi10

D 1

540

Z 1

0

Z xi10

0

Z xi9

0

Z xi8

0

Z x8

0



10x75
7
� 11x

8
5

16x8

�
dx5dx8dxi8dxi9dxi10

D 1

540

Z 1

0

Z xi10

0

Z xi9

0

Z xi8

0

103x88
1;008

dx8dxi8dxi9dxi10 D
103 � 8Š

544;320 � 12Š D
206

27 � 12Š :

There are 3Š orderings of the remaining variables, and X3 cannot be interchanged
with X7 due to the interceding X4.

Subcase 4v: The eight smallest variables are X1;X2;X3;X7;X5, Xk , Xl and X8.

This follows Subcase 4ii until we arrive at integrand 1
32

h
x7k
14
� 5x8k

168x8

i
. We continue

through integrands

1

32



x8l
112
� 5x9l
1;512x8

�
and

x98
96;768

and eventually to 4
15	12Š .

There are two orderings of the remaining variables, .k; l/ can be .4; 6/ or .6; 4/
and X3 and X7 may be reversed, giving a total of eight orderings in this subcase.

Subcase 4vi: The eight smallest variables are X1;X2;X3;X7;X4, X5, X6 and X8.

This follows Subcase 4iii until we arrive at the integrand 1
12;096

h
29x75 � 13x85

x8

i
.

Two more integrations bring integrands:

1

12;096



29x86
8
� 13x

9
6

9x8

�
and

1

12;096



31x98
120

�
:

Continuing we get 31
4	9Š .

There are two orderings of the remaining variables, and X3 and X7 can be
reversed, giving a total of four orderings in this subcase.

Subcase 4vii: The eight smallest variables are X1;X2;X3;X4;X7, X5, X6 and X8.
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This follows Subcase 4iv until we arrive at the integrand 1
540

h
10x75
7
� 11x85

16x8

i
. Contin-

uing, we see:

1

540



10x86
56
� 11x96
144x8

�
and

1

540



123x98
10;080

�

on our way to 41
5	12Š . In this subcase, X3 and X7 cannot be interchanged, and there are

two orderings of the remaining two variables.
This completes Case 4, which contains the remaining 104 possible orderings of

the variables, and the terms in (3) corresponding to these orderings of the variables
have total weight per symmetry class of 3;627

5	12Š .
Summing over the four cases, the contributions of 13;140

12Š
, 235;797

35	12Š , 6;651
7	12Š and

3;627
5	12Š respectively, give a total of 107;763

5	12Š summed over the 5,040 symmetry class
representatives in (3). Multiplying by the 720 symmetries of the variables, we find
that Eu.5/ D 35;921

1;108;800
D 0:032396284271.
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14. Shahrokhi, F., Székely, L., Vrt’o, I.: Crossing numbers of graphs, lower bound techniques
and algorithms: a survey. In: Tamassia, R., Tollis, I. (eds.) Graph Drawing. Lecture Notes in
Computer Science, vol. 894, pp. 131–142. Springer, Berlin/New York (1995). http://dx.doi.org/
10.1007/3-540-58950-3 364
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EL-Labelings and Canonical Spanning Trees
for Subword Complexes
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Abstract We describe edge labelings of the increasing flip graph of a subword
complex on a finite Coxeter group, and study applications thereof. On the one hand,
we show that they provide canonical spanning trees of the facet-ridge graph of the
subword complex, describe inductively these trees, and present their close relations
to greedy facets. Searching these trees yields an efficient algorithm to generate all
facets of the subword complex, which extends the greedy flip algorithm for pointed
pseudotriangulations. On the other hand, when the increasing flip graph is a Hasse
diagram, we show that the edge labeling is indeed an EL-labeling and derive further
combinatorial properties of paths in the increasing flip graph. These results apply
in particular to Cambrian lattices, in which case a similar EL-labeling was recently
studied by M. Kallipoliti and H. Mühle.
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1 Introduction

Subword complexes on Coxeter groups were defined and studied by A. Knutson
and E. Miller in the context of Gröbner geometry of Schubert varieties [7, 8].
Type A spherical subword complexes can be visually interpreted using pseudoline
arrangements on primitive sorting networks. These were studied by V. Pilaud and
M. Pocchiola [10] as combinatorial models for pointed pseudotriangulations of
planar point sets [18] and for multitriangulations of convex polygons [11]. These
two families of geometric graphs extend in two different ways the family of
triangulations of a convex polygon.

The greedy flip algorithm was initially designed to generate all pointed pseudo-
triangulations of a given set of points or convex bodies in general position in the
plane [3, 13]. It was then extended in [10] to generate all pseudoline arrangements
supported by a given primitive sorting network. The key step in this algorithm is to
construct a spanning tree of the flip graph on the combinatorial objects, which has to
be sufficiently canonical to be visited in polynomial time per node and polynomial
working space.

In the present paper, we study natural edge lexicographic labelings of the
increasing flip graph of a subword complex on any finite Coxeter group. As a
first line of applications of these EL-labelings, we obtain canonical spanning trees
of the flip graph of any subword complex. We provide alternative descriptions of
these trees based on their close relations to greedy facets, which are defined and
studied in this paper. Moreover, searching these trees provides an efficient algorithm
to generate all facets of the subword complex. For type A spherical subword
complexes, the resulting algorithm is that of [10], although the presentation is quite
different.

The second line of applications of the EL-labelings concerns combinatorial
properties ensuing from EL-shellability [1,2]. Indeed, when the increasing flip graph
is the Hasse diagram of the increasing flip poset, this poset is EL-shellable, and we
can compute its Möbius function. These results extend recent work of M. Kallipoliti
and H. Mühle [6] on EL-shellability of N. Reading’s Cambrian lattices [14–17],
which are, for finite Coxeter groups, increasing flip posets of specific subword
complexes studied by C. Ceballos, J.-P. Labbé and C. Stump [4] and by the authors
in [12].

2 Edge Labelings of Graphs and Posets

In [1], A. Björner introduced EL-labelings of partially ordered sets to study
topological properties of their order complexes. These labelings are edge labelings
of the Hasse diagrams of the posets with certain combinatorial properties. In this
paper, we consider edge labelings of finite, acyclic, directed graphs which might
differ from the Hasse diagrams of their transitive closures.
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2.1 ER-Labelings of Graphs and Associated Spanning Trees

Let G WD .V;E/ be a finite, acyclic, directed graph. For u; v 2 V , we
write u v if there is an edge from u to v in G, and u v if there is a path
u D x1 x2 � � � x`C1 D v from u to v in G (this path has length `). The
interval Œu; v� in G is the set of vertices w 2 V such that u w v.

An edge labeling of G is a map � W E ! N. It induces a labeling �.p/ of any
path p W x1 x2 � � � x` x`C1 given by �.p/ WD�.x1 x2/ � � ��.x` x`C1/.
The path p is �-rising (resp. �-falling) if �.p/ is strictly increasing (resp. weakly
decreasing). The labeling � is an edge rising labeling ofG (or ER-labeling for short)
if there is a unique �-rising path p between any vertices u; v 2 V with u v.

Remark 1 (Spanning trees). Let u; v 2 V , and � W E ! N be an ER-labeling of G.
Then the union of all �-rising paths from u to any other vertex of the interval Œu; v�
forms a spanning tree of Œu; v�, rooted at and directed away from u. We call it the
�-source tree of Œu; v� and denote it by T�.Œu; v�/. Similarly, the union of all �-
rising paths from any vertex of the interval Œu; v� to v forms a spanning tree of Œu; v�,
rooted at and directed towards v. We call it the �-sink tree of Œu; v� and denote it
by T��.Œu; v�/. In particular, ifG has a unique source and a unique sink, this provides
two canonical spanning trees T�.G/ and T��.G/ for the graph G itself.

Example 1 (Cube). Consider the 1-skeleton �d of the d -dimensional cube Œ0; 1�d ,
directed from 0 WD .0; : : : ; 0/ to 1 WD .1; : : : ; 1/. Its vertices are the elements
of f0; 1gd and its edges are the pairs of vertices which differ in a unique position.
Note that " WD ."1; : : : ; "d / "0 WD ."01; : : : ; "0d / if and only if "k � "0k for all k 2 Œd �.

For any edge " "0 of �d , let �." "0/ denote the unique position in Œd � where "
and "0 differ. Then the map � is an ER-labeling of �d . If " 2 f0; 1gd X 0, then the
father of " in T�.�d / is obtained from " by changing its last 1 into a 0. Similarly,
if " 2 f0; 1gd X 1, then the father of " in T��.�d / is obtained from " by changing its
first 0 into a 1. See Fig. 1.
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�-sink tree T�
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2.2 EL-Labelings of Graphs and Posets

Although ER-labelings of graphs are sufficient to produce canonical spanning trees,
we need the following extension for further properties. The labeling � W E ! N

is an edge lexicographic labeling of G (or EL-labeling for short) if for any vertices
u; v 2 V with u v,

(i) There is a unique �-rising path p from u to v, and
(ii) Its labeling �.p/ is lexicographically first among the labelings �.p0/ of all

paths p0 from u to v.

For example, the ER-labeling of the 1-skeleton of the cube presented in Example 1
is in fact an EL-labeling.

Remember now that one can associate a finite poset to a finite acyclic directed
graph and vice versa. Namely,

(i) The transitive closure of a finite acyclic directed graph G D .V;E/ is the finite
poset .V; /;

(ii) The Hasse diagram of a finite poset P is the finite acyclic directed graph whose
vertices are the elements of P and whose edges are the cover relations in P ,
i.e. u v if u <P v and there is no w 2 P such that u <P w <P v.

The transitive closure of the Hasse diagram of P always coincides with P , but the
Hasse diagram of the transitive closure of G might also be only a subgraph of G.
An EL-labeling of the poset P is an EL-labeling of the Hasse diagram of P . If such
a labeling exists, then the poset is called EL-shellable.

As already mentioned, A. Björner [1] originally introduced EL-labelings of finite
posets to study topological properties of their order complex. In particular, they
provide a tool to compute the Möbius function of the poset. Recall that the Möbius
function of the poset P is the map � W P 
 P ! Z defined recursively by

�.u; v/ WD

8
ˆ̂<

ˆ̂:

1 if u D v;

�Pu�Pw<P v �.u;w/ if u <P v;

0 otherwise.

When the poset is EL-shellable, this function can be computed as follows.

Proposition 1 ([2, Proposition 5.7]). Let � be an EL-labeling of the poset P . For
every u; v 2 P with u �P v, we have

�.u; v/ D even�.u; v/ � odd�.u; v/;

where even�.u; v/ (resp. odd�.u; v/) denotes the number of even (resp. odd) length
�-falling paths from u to v in the Hasse diagram of P .

Example 2 (Cube). The directed 1-skeleton �d of the d -dimensional cube Œ0; 1�d is
the Hasse diagram of the boolean poset. The edge labeling � of �d of Example 1 is
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thus an EL-labeling of the boolean poset. Moreover, for any two vertices " "0
of �d , there is a unique �-falling path between " and "0, whose length is the
Hamming distance ı."; "0/ WDj ˚k 2 Œd � ˇ̌ "k ¤ "0k

� j. The Möbius function is thus
given by �."; "0/ D .�1/ı.";"0/. In particular, �.0; 1/ D .�1/d .

3 Subword Complexes on Coxeter Groups

3.1 Coxeter Systems

We recall some basic notions on Coxeter systems needed in this paper. More
background material can be found in [5].

Let V be an n-dimensional Euclidean vector space. For v 2 V X 0, we denote
by sv the reflection interchanging v and �v while fixing pointwise the orthogonal
hyperplane. We consider a finite Coxeter group W acting on V , i.e. a finite group
generated by reflections. We assume without loss of generality that the intersection
of all reflecting hyperplanes of W is reduced to 0.

A root system for W is a set ˚ of vectors stable under the action of W and
containing precisely two opposite vectors orthogonal to each reflection hyperplane
of W . Fix a linear functional f W V ! R such that f .ˇ/ ¤ 0 for all ˇ 2 ˚ . It
splits the root system ˚ into the set of positive roots ˚C WD fˇ 2 ˚ j f .ˇ/ > 0g
and the set of negative roots ˚� WD � ˚C. The simple roots are the roots which lie
on the extremal rays of the cone generated by˚C. They form a basis	 of the vector
space V . The simple reflections S WD fs˛ j ˛ 2 	g generate the Coxeter group W .
The pair .W; S/ is a finite Coxeter system. For s 2 S , we let ˛s 2 	 be the simple
root orthogonal to the reflecting hyperplane of s.

The length of an element w 2 W is the length `.w/ of the smallest expression
of w as a product of the generators in S . An expression w D s1 � � � sp , with
s1; : : : ; sp 2 S , is reduced if p D `.w/. The length of w is also known to
be the cardinality of the inversion set of w, defined as the set inv.w/ WD˚C \
w.˚�/ of positive roots sent to negative roots by w�1. Indeed, inv.w/ D
f˛s1 ; s1.˛s2/; : : : ; s1 � � � s`�1.˛s`/g for any reduced expression w D s1 � � � s` of w.
The (right) weak order is the partial order on W defined by u � w if there
exists v 2 W with uv D w and `.u/ C `.v/ D `.w/. In other words, u � v if and
only if inv.u/ � inv.v/.

Example 3 (Type A—Symmetric groups). The symmetric group SnC1, acting on
the linear hyperplane 1? WD ˚

x 2 R
nC1 ˇ̌ h1jxi D 0� by permutation of the coor-

dinates, is the reflection group of type An. It is the group of isometries of the
standard n-dimensional regular simplex convfe1; : : : ; enC1g. Its reflections are the
transpositions of SnC1 and the set

˚
ei � ej

ˇ̌
i ¤ j � is a root system forAn. We can

choose the linear functional f such that the simple reflections are the adjacent
transpositions �i WD .i i C 1/, and the simple roots are the vectors eiC1 � ei .
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3.2 Subword Complexes

We consider a finite Coxeter system .W; S/, a word Q WD q1q2 � � � qm on the
generators of S , and an element � 2 W . A. Knutson and E. Miller [7] define the
subword complex SC.Q; �/ to be the simplicial complex of those subwords of Q
whose complements contain a reduced expression for � as a subword. A vertex
of SC.Q; �/ is a position of a letter in Q. We denote by Œm� WDf1; 2; : : : ; mg the
set of positions in Q. A facet of SC.Q; �/ is the complement of a set of positions
which forms a reduced expression for � in Q. We denote by F.Q; �/ the set of
facets of SC.Q; �/. We write � � Q when Q contains a reduced expression of �,
i.e. when SC.Q; �/ is non-empty.

Example 4. Consider the type A Coxeter group S4 generated by f�1; �2; �3g. Let
Qex WD �2�3�1�3�2�1�2�3�1 and �ex WD Œ4; 1; 3; 2�. The reduced expressions of �ex

are �2�3�2�1, �3�2�3�1, and �3�2�1�3. Thus, the facets of the subword complex
SC.Qex; �ex/ are given by f1; 2; 3; 5; 6g, f1; 2; 3; 6; 7g, f1; 2; 3; 7; 9g, f1; 3; 4; 5; 6g,
f1; 3; 4; 6; 7g, f1; 3; 4; 7; 9g, f2; 3; 5; 6; 8g, f2; 3; 6; 7; 8g, f2; 3; 7; 8; 9g, f3; 4; 5; 6; 8g,
f3; 4; 6; 7; 8g, and f3; 4; 7; 8; 9g. Let I ex WDf1; 3; 4; 7; 9g and J ex WDf3; 4; 7; 8; 9g
denote two facets of SC.Qex; �ex/. We will use this example throughout this paper
to illustrate further notions.

Example 5 (Type A—Primitive networks and pseudoline arrangements). For
type A Coxeter systems, subword complexes can be visually interpreted using
primitive networks. A network N is a collection of n C 1 horizontal lines (called
levels, and labeled from bottom to top), together with m vertical segments (called
commutators, and labeled from left to right) joining two different levels and such
that no two of them have a common endpoint. We only consider primitive networks,
where any commutator joins two consecutive levels. See Fig. 2 (left).

A pseudoline supported by the network N is an abscissa monotone path on N.
A commutator of N is a crossing between two pseudolines if it is traversed by both
pseudolines, and a contact if its endpoints are contained one in each pseudoline.
A pseudoline arrangement � is a set of nC 1 pseudolines on N, any two of which
have at most one crossing, possibly some contacts, and no other intersection. We
label the pseudolines of � from bottom to top on the left of the network, and we
define �.�/ 2 SnC1 to be the permutation given by the order of these pseudolines
on the right of the network. Note that the crossings of� correspond to the inversions
of �.�/. See Fig. 2 (right).
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Fig. 2 The network NQex (left) and the pseudoline arrangement �I ex for the facet I ex D
f1; 3; 4; 7; 9g of SC.Qex; �ex/ (right)
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Consider the type A Coxeter group SnC1 generated by S D f�i j i 2 Œn�g,
where �i is the adjacent transposition .i i C 1/. To a word Q WD q1q2 � � � qm
with m letters on S , we associate a primitive network NQ with nC 1 levels and m
commutators. If qj D �p , the j th commutator of NQ is located between the pth
and .p C 1/th levels of NQ. See Fig. 2 (left). For � 2 SnC1, a facet I of SC.Q; �/
corresponds to a pseudoline arrangement�I supported by NQ and with �.�I / D �.
The positions of the contacts (resp. crossings) of�I correspond to the positions of I
(resp. of the complement of I ). See Fig. 2 (right).

Example 6 (Combinatorial models for geometric graphs). As pointed out in [10],
pseudoline arrangements on primitive networks give combinatorial models for the
following families of geometric graphs (see Fig. 3):

(i) Triangulations of convex polygons;
(ii) Multitriangulations of convex polygons [11];

(iii) Pointed pseudotriangulations of points in general position in the plane [18];
(iv) Pseudotriangulations of disjoint convex bodies in the plane [13].

For example, consider a triangulation T of a convex .n C 3/-gon. Define the
direction of a line of the plane to be the angle � 2 Œ0; �/ of this line with
the horizontal axis. Define also a bisector of a triangle 4 to be a line passing
through a vertex of4 and separating the other two vertices of4. For any direction
� 2 Œ0; �/, each triangle of T has precisely one bisector in direction � . We can
thus order the n C 1 triangles of T according to the order �� of their bisectors
in direction � . The pseudoline arrangement associated to T is then given by the
evolution of the order �� when the direction � describes the interval Œ0; �/. A
similar duality holds for the other three families of graphs, replacing triangles by the
natural cells decomposing the geometric graph (stars for multitriangulations [11],
or pseudotriangles for pseudotriangulations [18]), see Fig. 3. Details can be found
in [10].

Fig. 3 Primitive sorting networks are combinatorial models for triangulations, multitriangulations,
and pseudotriangulations of points or disjoint convex bodies
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Remark 2. There is a natural reversal operation on subword complexes. Namely,

SC.qm � � � q1; ��1/ D ffmC 1 � i j i 2 I g j I 2 SC.q1 � � � qm; �/g :
We will use this operation to relate positive and negative labelings, facets and trees.

3.3 Inductive Structure

We denote by Q` WD q2 � � � qm and Qa WD q1 � � � qm�1 the words on S obtained from
Q WD q1 � � � qm by deleting its first and last letters, respectively. We denote by X!
the right shift fx C 1 j x 2 Xg of a subset X of Z. For a collection X of subsets
of Z, we write X! for the set fX! j X 2 Xg. Moreover, we denote by X ? z (or by
z?X) the join fX [ z j X 2 Xg of X with some z 2 Z. Remember that `.�/ denotes
the length of � and that we write � � Q when Q contains a reduced expression of �.

We can decompose inductively the facets of the subword complex SC.Q; �/
depending on whether or not they contain the last letter of Q. Denoting by " the
empty word and by e the identity of W , we have F."; e/ D f¿g and F."; �/ D ¿
if � ¤ e. Moreover, for a non-empty word Q on S , the set F.Q; �/ is given by

(i) F.Qa; �qm/ if m appears in none of the facets of SC.Q; �/ (i.e. if � 6� Qa);
(ii) F.Qa; �/ ?m ifm appears in all the facets of SC.Q; �/ (i.e. if `.�qm/ > `.�/);

(iii) F.Qa; �qm/ t
�
F.Qa; �/ ? m

	
otherwise.

By reversal (see Remark 2), there is also a similar inductive decomposition of the
facets of the subword complex SC.Q; �/ depending on whether or not they contain
the first letter of Q. Namely, for a non-empty word Q, the set F.Q; �/ is given by

(i) F.Q`; q1�/! if 1 appears in none of the facets of SC.Q; �/ (i.e. if � 6� Q`);
(ii) 1?F.Q`; �/! if 1 appears in all the facets of SC.Q; �/ (i.e. if `.q1�/ > `.�/);

(iii) F.Q`; q1�/! t
�
1 ? F.Q`; �/!

	
otherwise.

Although we will only use these decompositions for the facets F.Q; �/, they extend
to the whole subword complex SC.Q; �/ and are used to obtain the following result.

Theorem 1 ([7, Corollary 3.8]). The subword complex SC.Q; �/ is either a sim-
plicial sphere or a simplicial ball.

3.4 Flips and Roots

Let I be a facet of SC.Q; �/ and i be a position in I . If there exists a facet J of
SC.Q; �/ and a position j 2 J such that I X i D J X j , we say that I and J are
adjacent facets, that i is flippable in I , and that J is obtained from I by flipping i .
Note that, if they exist, J and j are unique by Theorem 1. We say that the flip from
I to J flips out i and flips in j .



EL-Labelings and Canonical Spanning Trees for Subword Complexes 221

12356 23568

2367812367

2378912379

3478913479

3467813467

3456813456

Fig. 4 The increasing flip graph G.Qex; �ex/

We denote by G.Q; �/ the graph of flips, whose vertices are the facets
of SC.Q; �/ and whose edges are pairs of adjacent facets. That is, G.Q; �/ is the
ridge graph of the simplicial complex SC.Q; �/. This graph is connected according
to Theorem 1.

This graph can be naturally oriented by the direction of the flips as follows. Let I
and J be two adjacent facets of SC.Q; �/ with I X i D J X j . We say that the flip
from I to J is increasing if i < j . We consider the flip graph G.Q; �/ oriented by
increasing flips.

Example 7. Figure 4 represents the increasing flip graph G.Qex; �ex/ for the
subword complex SC.Qex; �ex/ of Example 4. The facets of SC.Qex; �ex/ appear in
lexicographic order from left to right. Thus, all flips are increasing from left to right.

Remark 3. The increasing flip graph of SC.Q; �/ was already considered by A.
Knutson and E. Miller [7, Remark 4.5]. It carries various combinatorial informations
about the subword complex SC.Q; �/. In particular, since the lexicographic ordering
of the facets of SC.Q; �/ is a shelling order for SC.Q; �/, the h-vector of
the subword complex SC.Q; �/ is the in-degree sequence of the increasing flip
graph G.Q; �/.

Throughout the paper, we consider flips as elementary operations on subword
complexes. In practice, the necessary information to perform flips in a facet I
of SC.Q; �/ is encoded in its root function r.I; �/ W Œm�! ˚ defined by

r.I; k/ WD˘QŒk�1�XI .˛qk /;

where ˘QX denotes the product of the reflections qx 2 Q for x 2 X . The root
configuration of the facet I is the multiset R.I / WD ffr.I; i/ j i flippable in I gg.
The root function was introduced by C. Ceballos, J.-P. Labbé and C. Stump [4],
and we extensively studied root configurations in [12] in the construction of brick
polytopes for spherical subword complexes. The main properties of the root function
are summarized in the following proposition, whose proof is similar to that of [4,
Lemmas 3.3 and 3.6] or [12, Lemma 3.3].
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Fig. 5 The increasing flip from facet I ex D f1; 3; 4; 7; 9g to facet J ex D f3; 4; 7; 8; 9g of the
subword complex SC.Qex; �ex/, illustrated on the network NQex

Proposition 2. Let I be any facet of the subword complex SC.Q; �/.

1. The map r.I; �/ W i 7! r.I; i/ is a bijection from the complement of I to the
inversion set of �.

2. The map r.I; �/ sends the flippable positions in I to f˙ˇ j ˇ 2 inv.�/g and the
unflippable ones to ˚C X inv.�/.

3. If I and J are two adjacent facets of SC.Q; �/ with I X i D J X j , the position
j is the unique position in the complement of I for which r.I; j / 2 f˙r.I; i/g.

4. In the situation of (3), we have r.I; i/ D r.I; j / 2 ˚C if i < j (increasing flip),
while r.I; i/ D �r.I; j / 2 ˚� if i > j (decreasing flip).

5. In the situation of (3), the map r.J; �/ is obtained from the map r.I; �/ by:

r.J; k/ D
(
sr.I;i/.r.I; k// if min.i; j / < k � max.i; j /;

r.I; k/ otherwise.

We call r.I; i/ D �r.J; j / the direction of the flip from the facet I to the facet J .

Example 8. In type A, roots and flips can easily be described using the primitive
network interpretation presented in Example 5. Consider a word Q on the simple
reflections f�i j i 2 Œn�g, an element � 2 SnC1, and a facet I of SC.Q; �/. For
any k 2 Œm�, the root r.I; k/ is the difference et � eb where t and b are the indices
of the pseudolines of �I which arrive respectively on the top and bottom endpoints
of the kth commutator of NQ. A flip exchanges a contact between two pseudolines t
and b of �I with the unique crossing between t and b in �I (when it exists). Such
a flip is increasing if the contact lies before the crossing, i.e. if t > b. Figure 5
illustrates the properties of Proposition 2 on the subword complex SC.Qex; �ex/ of
Example 4.

3.5 Restriction of Subword Complexes to Parabolic Subgroups

In the proof of our main result, we will need to restrict subword complexes
to dihedral parabolic subsystems. The following statement can essentially be
found in [12, Proposition 3.7], we provide a proof here as well for the sake of
completeness.
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Proposition 3 ([12, Proposition 3.7]). Let SC.Q; �/ be a subword complex for a
Coxeter system .W; S/ acting on V , and let V 0 � V be a subspace of V . The
simplicial complex given by all facets J of SC.Q; �/ reachable from a particular
facet I by flips whose directions are contained in V 0 is isomorphic to a subword
complex SC.Q0; �0/ for the restriction of .W; S/ to V 0. The order of the letters
is preserved by this isomorphism. In particular, the restriction of the increasing
flip graph G.Q; �/ to these reachable facets is isomorphic to the increasing flip
graph G.Q0; �0/.

Proof. To prove this proposition, we explicitly construct the word Q0 on S 0 and the
element �0 2 W 0 where .W 0; S 0/ is the restriction of .W; S/ to the subspace V 0.

First, the element �0 only depends on � and on V 0: it is given by the projection
of � onto W 0. This is to say that �0 is the unique element in W 0 whose inversion set
is inv.�0/ D inv.�/\V 0. To see that inv.�/\V 0 is again an inversion set, remember
that a subset I of ˚C is an inversion set for an element in W if and only if for all
˛; ˇ; � 2 ˚C such that � D a˛ C bˇ for some a; b 2 R�0,

˛; ˇ 2 I H) � 2 I H) �
˛ 2 I or ˇ 2 I

	
;

see e.g. [9]. Moreover, this property is preserved under intersection with linear
subspaces.

We now construct the word Q0 and the facet I 0 of SC.Q0; �0/ corresponding
to the particular facet I of SC.Q; �/. For this, let X WDfx1; : : : ; xpg be the set of
positions k 2 Œm� such that r.I; k/ 2 V 0. The word Q0 has p letters corresponding
to the positions in X , and the facet I 0 contains precisely the positions k 2 Œp�

such that the position xk is in I . To construct the word Q0, we scan Q from left to
right as follows. We initialize Q0 to the empty word, and for each 1 � k � p,
we add a letter q0k 2 S 0 to Q0 in such a way that r.I 0; k/ D r.I; xk/. To see
that such a letter exists, we distinguish two cases. Assume first that r.I; xk/ is
a positive root. Let I be the inversion set of w WD˘QŒxk�1�XI and I0 D I \ V 0
be the inversion set of w0 WD˘Q0Œk�1�XI 0 . Then the set I0 [ fr.I; xk/g is again an
inversion set (as the intersection of V 0 with the inversion set I[ fr.I; xk/g of wqxk )
which contains the inversion set I 0 of w0 together with a unique additional root.
Therefore, the corresponding element ofW 0 can be written as w0q0k for some simple
reflection q0k 2 S 0. Assume now that r.I; xk/ is a negative root. Then xk 2 I , so that
we can flip it with a position xk0 < xk , and we can then argue on the resulting facet.

By the procedure described above, we eventually obtain the subword complex
SC.Q0; �0/ and its facet I 0 corresponding to the facet I . Finally observe that
sequences of flips in SC.Q; �/ starting at the facet I , and whose directions are
contained in V 0, correspond bijectively to sequences of flips in SC.Q0; �0/ starting
at the facet I 0. In particular, let J and J 0 be two facets reached from I and from I 0,
respectively, by such a sequence. We then have that the root configuration of J 0 is
exactly the root configuration of J intersected with V 0, and that the order in which
the roots appear in the root configurations is preserved. This completes the proof.
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Fig. 6 Restricting subword complexes

Example 9. To illustrate different possible situations happening in this restriction,
we consider the subword complex SC.Q; �/ on the Coxeter group A5 D S6

generated by S D f�1; : : : ; �5g, the word Q WD �1�2�4�2�5�3�1�3�4�2�5�3�1�2�4�4�3
and the element � WD Œ3; 2; 6; 4; 5; 1� D �1�2�3�4�5�1�4�3. The sorting network
corresponding to the subword complex SC.Q; �/ and the pseudoline arrangement
corresponding to the facet I WDf2; 3; 5; 7; 8; 10; 12; 14; 15g of SC.Q; �/ are shown
in Fig. 6 (top). Let V 0 be the subspace of V spanned by the roots e3 � e1, e4 � e3
and e6 � e5. Let X D fx1; : : : ; x8g D f2; 4; 5; 6; 8; 10; 15; 16g denote the set of
positions k 2 Œ17� for which r.I; k/ 2 V 0. These positions are circled in Fig. 6 (top).

We can now directly read off the subword complex SC.Q0; �0/ corresponding to
the restriction of SC.Q; �/ to all facets reachable from I by flips with directions
in V 0. Namely, the restriction of .W; S/ to V 0 is the Coxeter system .W 0; S 0/
where W 0 is generated by S 0 D f� 01; � 02; � 03g D f.1 3/; .3 4/; .5 6/g, and thus of
type A2
A1. Moreover, we have Q0 D � 01� 01� 03� 02� 02� 01� 03� 03, corresponding to the roots
at positions inX , and �0 D � 01� 02� 03, with inversion set given by the positive roots cor-
responding to the roots at positions inXXI . Finally, the facet I 0 corresponding to I
is given by I 0 D f1; 3; 5; 6; 7g. The sorting network corresponding to the restricted
subword complex SC.Q0; �0/ and the pseudoline arrangement corresponding to the
facet I 0 of SC.Q0; �0/ are shown in Fig. 6 (bottom).

As stated in Proposition 3, the map which sends a facet J of SC.Q0; �0/ to
the facet

˚
xj
ˇ̌
j 2 J � [ .I X X/ of SC.Q; �/ defines an isomorphism between

the increasing flip graph G.Q0; �0/ and the restriction of the increasing flip graph
G.Q; �/ to all facets reachable from I by flips with directions in V 0.



EL-Labelings and Canonical Spanning Trees for Subword Complexes 225

4 EL-Labelings and Spanning Trees for the Subword
Complex

4.1 EL-Labelings of the Increasing Flip Graph

We now define two natural edge labelings of the increasing flip graph G.Q; �/.
Let I and J be two adjacent facets of SC.Q; �/, with I X i D J X j and i < j .

We label the edge I J of G.Q; �/ with the positive edge label p.I J / WD i and
with the negative edge label n.I J / WD j . In other words, p labels the position
flipped out while n labels the position flipped in during the flip I J . We call
p W E.G.Q; �//! Œm� the positive edge labeling and n W E.G.Q; �// ! Œm� the
negative edge labeling of the increasing flip graph G.Q; �/. The terms “positive”
and “negative” emphasize the fact that the roots r.I;p.I J // and r.J;n.I J //

are always positive and negative roots respectively.
The positive and negative edge labelings are reverse to one another (see

Remark 2). Namely, I J is an edge in the increasing flip graph G.qm � � � q1; ��1/ if
and only if J 0 WD fmC 1 � j j j 2 J g I 0 WD fmC 1 � i j i 2 I g is an edge in the
increasing flip graph G.q1 � � � qm; �/, and in this case n.I J / D mC1�p.J 0 I 0/.
However, we will work in parallel with both labelings, since we believe that certain
results are simpler to present on the positive side while others are simpler on the
negative side. We always provide proofs on the easier side and leave it to the reader
to translate to the opposite side.

Example 10. Consider the subword complex SC.Qex; �ex/ of Example 4. We have
represented on Fig. 7 the positive and negative edge labelings p and n. Since we
have represented the graph G.Qex; �ex/ such that the flips are increasing from left to
right, each edge has its positive label on the left and its negative label on the right.

The central result of this paper concerns the positive and negative edge labelings
of the increasing flip graph.

Theorem 2. The positive edge labeling p and the negative edge labeling n are both
EL-labelings of the increasing flip graph.
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Fig. 7 The positive and negative edge labelings p and n of G.Qex; �ex/. Each edge has its positive
label on the left (orange) and its negative label on the right (blue)
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For Cambrian lattices, whose Hasse diagrams were shown to be particular cases
of increasing flip graphs in [12, Sect. 6], a similar result was recently obtained by
M. Kallipoliti and H. Mühle in [6]. See Sect. 5.2.1 for details.

In Sects. 4.2–4.4, we present applications of Theorem 2 to the construction of
canonical spanning trees and to the generation of the facets of the subword complex.
Further combinatorial applications of this theorem are also discussed in Sect. 5. We
prove Theorem 2 only for the positive edge labeling p, and leave it to the reader to
translate the proof to the negative edge labeling n (through the reversal operation of
Remark 2). Let I and J be two facets of SC.Q; �/ such that I J . To show that p
is indeed an EL-labeling, we have to show that (i) there is a p-rising path from I

to J in G.Q; �/ which is (ii) unique and (iii) lexicographically first among all paths
from I to J in G.Q; �/. We start with (ii) and (iii), which are direct consequences
of the following proposition.

Proposition 4. Let I1 � � � I`C1 be a path of increasing flips, and define the
labels pk WDp.Ik IkC1/ and nk WDn.Ik IkC1/. Then, for all k 2 Œ`�, we have

minfpk; : : : ;p`g D min.Ik X I`C1/ and maxfn1; : : : ;nkg D max.IkC1 X I1/:

Moreover, the path is p-rising if and only if pk D min.Ik X I`C1/ for all k 2 Œ`�,
while the path is n-rising if and only if nk D max.IkC1 X I1/ for all k 2 Œ`�.
Proof. The position minfpk; : : : ;p`g is in Ik X I`C1 since it is flipped out and never
flipped in along the path from Ik to I`C1 (because all flips are increasing). Moreover,
minfpk; : : : ;p`g has to coincide with min.Ik X I`C1/ otherwise this position would
never be flipped out along the path.

This property immediately yields the characterization of p-rising paths. Indeed,
if the path is p-rising, then we have pk D min.pk; : : : ;p`/ D min.Ik X I`C1/ for
all k 2 Œ`�. Reciprocally, if pk D min.Ik X I`C1/ for all k 2 Œ`�, then we have
pk D min.Ik X I`C1/ < min.IkC1 X I`C1/ D pkC1 so that the path is p-rising.

The proof is similar for the negative edge labeling n.

We now need to prove the existence of a p-rising path from I to J . Before
proving it in full generality, we prove its crucial part in the particular case of dihedral
subword complexes.

Lemma 1. Let SC.Q; �/ be a subword complex for a dihedral reflection group
W D I2.m/. Let I and K be two of its facets such that there is a path I J K

from I toK in G.Q; �/ with p.I J / > p.J K/. Then there is as well a p-rising
path from I to K in G.Q; �/.

Proof. First, we remark that we construct a path only using letters in Q at positions
not used in I (those positions corresponding to the reduced expression for �),
together with the two positions i WDp.I J / and j WDp.J K/. Observe here
that both i and j are already contained in I .

We distinguish two cases: the roots r.I; i/ and r.I; j / generate either a 1- or
a 2-dimensional space. In the first case, we have r.I; i/ D r.I; j / and we can
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directly flip position j in the facet I to obtain the facet K. In the second case, it
is straightforward to check that we can perform a p-rising path from I toK, starting
with position j , followed by position i , and finishing by a possibly empty p-rising
sequence of flips.

We are now ready to prove Theorem 2. Restricting subword complexes to
dihedral parabolic subgroups as presented in Sect. 3.5, we will reduce the general
case to several applications of the dihedral situation treated in Lemma 1.

Proof (Proof of Theorem 2). Let I and J be two facets of SC.Q; �/ related
by a path I D I1 � � � I`C1 D J of increasing flips. Let pk WDp.Ik IkC1/.
Assume that this path is not p-rising, and let k be the smallest index such that
pk ¤ minfpk; : : : ;p`g, and let k0 > k such that pk0 D minfpk; : : : ;p`g. We now
prove that we can flip pk0 instead of pk0�1 in Ik0�1, and still obtain a path from I

to J where pk0 is still smaller than all positive edge labels appearing after it. In
Example 11, we illustrate this procedure on an explicit example.

Clearly pk0�1 > pk0 , and we have a p-falling sequence of two flips given by
Ik0�1 Ik0 Ik0C1. Using Proposition 3, we can now see these two flips as well
in a subword complex for the dihedral parabolic subsystem. For this, restrict .W; S/
to the subspace V 0 spanned by the two roots r.Ik0�1;pk0�1/ and r.Ik0�1;pk0/ D
r.Ik0 ;pk0/. This restricted subword complex corresponds to all facets of SC.Q; �/
reachable from the particular facet Ik0�1 by flips whose directions are contained in
V 0. Applying Lemma 1, we can thus replace the subpath Ik0�1 Ik0 Ik0C1 by a p-
rising path from Ik0�1 to Ik0C1 flipping first position pk0 and then a (possibly empty)
sequence of positions larger than or equal to pk0�1.

Repeating this operation, we construct a path from I to J such that pk D
minfpk; : : : ;p`g. By this procedure, we obtain eventually a p-rising path from I

to J . This path is unique and lexicographically first among all paths from I to J
in G.Q; �/ according to the characterization given in Proposition 4. This concludes
the proof that p is an EL-labeling of G.Q; �/.

The proof is similar for the negative edge labeling n (by the reversal operation
in Remark 2).

Example 11. Consider the subword complex SC.Qex; �ex/ of Example 4, whose
labeled increasing flip graph is shown in Fig. 7, and the path

12356 5 12367 6 12379 2 13479 1 34789

in G.Q; �/, where the numbers on the arrows are the positive edge labels. In
the language of the proof of Theorem 2, we have k D 1, k0 D 4, and
therefore we replace the subpath 12379 2 13479 1 34789 by the subpath
12379 1 23789 2 34789, thus obtaining the path

12356 5 12367 6 12379 1 23789 2 34789:

Applying this operation again and again produces the sequence of paths given by
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12356 5 12367 1 23678 6 23789 2 34789;

12356 1 23568 5 23678 6 23789 2 34789;

12356 1 23568 5 23678 2 34678 6 34789;

12356 1 23568 2 34568 5 34678 6 34789:

The resulting path is p-rising. In this example, all paths happen to have the same
length. This does not hold in general, compare Fig. 15 on page 245, where the path

123 2 137 3 178 1 678 7 689

is, for example, replaced by the path

123 2 137 1 357 3 567 5 678 7 689:

In contrast to the rising paths, we can have none, one, or more than one p-falling
and n-falling paths between two facets I and J of SC.Q; �/. Even if we will not
need it in the remainder of the paper, we observe in the next proposition that there
are always as many p-falling paths as n-falling paths from I to J .

Remember that we say that a path I1 I2 � � � I`C1 flips out the multiset
P WD ffp.Ik IkC1/ j k2Œ`�gg and flips in the multiset N WD ffn.Ik IkC1/j k2Œ`�gg.
Observe that a p-falling (resp. n-falling) path is determined by the multiset P
(resp. N) of positions that it flips out (resp. in).

Proposition 5. Let I and J be two facets of SC.Q; �/. Then there are as many p-
falling paths as n-falling paths from I to J . More precisely, for any multisubsets P
and N of Œm�, there exists a p-falling path from I to J which flips out P and flips
in N, if and only if there exists an n-falling path with the same property.

Proof. Consider a p-falling path I D I1 � � � I`C1 D J . Define pk WDp.Ik IkC1/
and nk WDn.Ik IkC1/. We want to prove that there is as well an n-falling path
which flips out P WD ffpk j k 2 Œ`�gg and flips in N WD ffnk j k 2 Œ`�gg.

If the path I D I1 � � � I`C1 D J happens to be n-falling, we are done.
Otherwise, consider the first position k such that nk�1 < nk . Since the path
is p-falling, we thus have pk < pk�1 < nk�1 < nk . By Proposition 2(3), we
know that r.Ik�1;pk�1/ D r.Ik�1;nk�1/ and r.Ik;pk/ D r.Ik;nk/. According to
Proposition 2(5) and to the previous inequalities, we therefore obtain

r.Ik�1;pk/ D r.Ik;pk/ D r.Ik;nk/ D r.Ik�1;nk/:

Thus, in the facet Ik�1, flipping out pk flips in nk . We denote by I 0k the facet
of SC.Q; �/ obtained by this flip. Using again Proposition 2(5) and the previous
inequalities, we obtain that

r.I 0k;pk�1/ D sr.Ik�1;pk/.r.Ik�1;pk�1// D sr.Ik�1;pk/.r.Ik�1;nk�1// D r.I 0k;nk�1/:
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Therefore, in the facet I 0k , flipping out pk�1 flips in nk�1. After these two flips,
we thus obtain IkC1 (since we flipped out pk and pk�1, while we flipped in nk
and nk�1). In other words, we can replace the subpath Ik�1 Ik IkC1 by the
path Ik�1 I 0k IkC1 where we flip first pk to nk and then pk�1 to nk�1. The new
path still flips out P and flips in N, and the first k positions it flips in are in decreasing
order. Repeating this transformation finally yields an n-falling path from I to J
which still flips out P and flips in N. Observe that this path does not necessarily
coincide with the p-falling path we started from.

Since a p-falling (resp. n-falling) path is determined by the set of positions it
flips out (resp. in), we obtain a bijection between p-falling paths and n-falling paths
from I to J . They are thus equinumerous.

Remark 4. Observe that Proposition 5 can be deduced from the following observa-
tions in the situation of double root free subword complexes studied in Sect. 5. In this
situation, the flip graph is the Hasse diagram of its transitive closure and the p- and
n-labelings are both EL-labelings thereof. By Theorem 3, all p- and n-falling paths
have the same length. Therefore, Proposition 1 implies that they are equinumerous.
A similar topological construction in the situation of subword complexes having
double roots is yet to be found.1

4.2 Greedy Facets

We now characterize the unique source and sink of the increasing flip graph G.Q; �/.

Proposition 6. The lexicographically smallest (resp. largest) facet of SC.Q; �/ is
the unique source (resp. sink) of G.Q; �/.

Proof. The lexicographically smallest facet is a source of G.Q; �/ since none of
its flips can be decreasing. We prove that this source is unique by induction on
the word Q. Denote by P.Qa; �/ (resp. P.Qa; �qm/) the lexicographically smallest
facet of SC.Qa; �/ (resp. SC.Qa; �qm/) and assume that it is the unique source of
the flip graph G.Qa; �/ (resp. G.Qa; �qm/). Consider a source P of G.Q; �/. We
distinguish two cases:

• If `.�qm/ > `.�/, then qm cannot be the last reflection of a reduced expression
for �. Thus SC.Q; �/ D SC.Qa; �/ ? m and P D P.Qa; �/ [m.

• Otherwise, `.�qm/ < `.�/. If m is in P, then

r.P; m/ D �.˛qm/ 2 ˚� \ �.˚C/:

Since˚�\�.˚C/ D �inv.�/, we obtain thatm is flippable (by Proposition 2(3))
and its flip is decreasing (by Proposition 2(4)). This would contradict the
assumption that P is a source of G.Q; �/. Consequently, m … P. Since the facets

1We thank an anonymous referee for raising this question.
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Fig. 8 The positive and negative greedy facets of SC.Qex; �ex/

of SC.Q; �/ which do not contain m coincide with the facets of SC.Qa; �qm/,
we obtain that P D P.Qa; �qm/.

In both cases, we obtain that the source P is the lexicographically smallest facet
of SC.Q; �/. The proof is similar for the sink.

We call positive (resp. negative) greedy facet and denote by P.Q; �/ (resp.
by N.Q; �/) the unique source (resp. sink) of the graph G.Q; �/ of increasing flips.
The term “positive” (resp. “negative”) emphasizes that P.Q; �/ (resp. N.Q; �/)
is the unique facet of SC.Q; �/ whose root configuration is a subset of positive
(resp. negative) roots, while the term “greedy” refers to the greedy properties of
these facets underlined in Lemmas 2 and 3.

These greedy facets are reverse to one another (see Remark 2). Namely,

N.qm � � � q1; ��1/ D fmC 1 � p j p 2 P.q1 � � � qm; �/g :

We still work with both in parallel to simplify the presentation in the next section.

Example 12. Consider the subword complex SC.Qex; �ex/ presented in Example 4.
Its positive and negative greedy facets are given by P.Qex; �ex/ D f1; 2; 3; 5; 6g and
N.Qex; �ex/ D f3; 4; 7; 8; 9g, respectively, see Fig. 8. They appear respectively as the
leftmost and rightmost facets in Fig. 4.

The following two lemmas provide two (somehow inverse) greedy inductive
procedures to construct the greedy facets P.Q; �/ and N.Q; �/. These lemmas
are direct consequences of the definition of the greedy facets and of the
induction formulas for the facets F.Q; �/ presented in Sect. 3.3. Remember
that we denote by Q` WD q2 � � � qm and Qa WD q1 � � � qm�1 the words on S

obtained from QWD q1 � � � qm by deleting its first and last letters respectively, and
by X! WD fx C 1 j x 2 Xg the right shift of a subset X � Z.

Lemma 2. The greedy facets P.Q; �/ and N.Q; �/ can be constructed inductively
from P."; e/ D N."; e/ D ¿ using the following formulas:

P.Q; �/ D
(

P.Qa; �/ [m if m appears in all facets of SC.Q; �/;

P.Qa; �qm/ otherwise.

N.Q; �/ D
(
1 [ N.Q`; �/! if 1 appears in all facets of SC.Q; �/;

N.Q`; q1�/! otherwise.
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Lemma 3. The greedy facets P.Q; �/ and N.Q; �/ can be constructed inductively
from P."; e/ D N."; e/ D ¿ using the following formulas:

P.Q; �/ D
(

P.Q`; q1�/! if 1 appears in none of the facets of SC.Q; �/;

1 [ P.Q`; �/! otherwise.

N.Q; �/ D
(

N.Qa; �qm/ if m appears in none of the facets of SC.Q; �/;

N.Qa; �/ [m otherwise.

Lemmas 2 and 3 can be reformulated to obtain greedy sweep procedures on
the word Q itself, avoiding the use of induction. Namely, the positive greedy
facet P.Q; �/ is obtained:

1. Either sweeping Q from right to left placing inversions as soon as possible,
2. Or sweeping Q from left to right placing non-inversions as long as possible.

The negative greedy facet is obtained similarly, reversing the directions of the
sweeps.

We have seen in Theorem 2 that for any two facets I; J 2 F.Q; �/ such that
I J , there is a p-rising (resp. n-rising) path from I to J . In particular, there is
always a p-rising (resp. n-rising) path from P.Q; �/ to N.Q; �/. We will now show
that there is also at least one p-falling (resp. n-falling) path from P.Q; �/ to N.Q; �/
if the subword complex SC.Q; �/ is spherical.

Proposition 7. For any spherical subword complex SC.Q; �/, there is always a p-
falling and an n-falling path from P.Q; �/ to N.Q; �/.

Proof. Since the subword complex SC.Q; �/ is spherical, recall that any position in
any facet of SC.Q; �/ is flippable. We will prove that starting from the positive
greedy facet P.Q; �/ and successively flipping all its positions in decreasing
order yields the negative greedy facet N.Q; �/, thus providing a p-falling path
from P.Q; �/ to N.Q; �/.

Let ` WDjQj � `.�/ denote the size of each facet of SC.Q; �/. Let p1 > � � � > p`
denote the positions of the positive greedy facet P.Q; �/ in decreasing
order. We consider the p-falling path P.Q; �/ D I1 � � � I`C1 defined by
p.Ik IkC1/ D pk . We also set nk WDn.Ik IkC1/. By definition, we have
Ik D fn1; : : : ;nk�1;pk; : : : ;p`g. We will prove that the root r.Ik;nj / is negative
for any j < k 2 Œ`C 1�. This implies in particular that I`C1 is the negative greedy
facet N.Q; �/.

To see this, fix j 2 Œ`�. For any k 2 Œj C 1; ` C 1�, denote by xk the
position in the complement of Ik such that r.Ik; xk/ D ˙r.Ik;nj /. We prove
by induction on k that pk < xk < nj , and thus (by Proposition 2(4)) that
the root r.Ik;nj / D �r.Ik; xk/ is negative for any j < k � ` C 1. First, this is
immediate for k D j C 1 since xjC1 D pj (because we just flipped out pj to flip
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in nj in Ij ) and pjC1 < pj < nj . Assume now that we proved that pk < xk < nj
for a certain k. We distinguish two cases:

(i) If nk < nj , then r.IkC1;nj / D r.Ik;nj / by Proposition 2(5). Since this root is
negative, Proposition 2(4) ensures that xkC1 < nj . Moreover, if xkC1 � pkC1,
then we would have xkC1 < pk , and thus Proposition 2(5) would give

r.Ik; xkC1/ D r.IkC1; xkC1/ D �r.IkC1;nj / D �r.Ik;nj /:

By definition, this would imply that xk D xkC1 < pk , contradicting the
induction hypothesis.

(ii) If nk > nj , then we have pk < xk < nj < nk . Therefore, Proposition 2(5)
ensures that

r.IkC1; xk/ D sr.Ik ;pk/.r.Ik; xk// D �sr.Ik ;pk/.r.Ik;nj // D �r.IkC1;nj /:

By definition, this implies that xkC1 D xk .

In both cases, we obtained that pkC1 < xkC1 < nj , thus concluding our inductive
argument.

The proof for the n-falling path is similar.

Note that this proposition fails if we drop the condition that SC.Q; �/ is spherical,
as illustrated in the subword complex SC.Qex; �ex/ of Example 4. A smaller example
is given by the subword complex SC.�1�2�1�2; �1�2/.

4.3 Spanning Trees

As discussed in Remark 1, the edge labelings p and n automatically produce
canonical spanning trees of any interval of the increasing flip graph G.Q; �/.
Since G.Q; �/ has a unique source P.Q; �/ and a unique sink N.Q; �/, we obtain
in particular four spanning trees of the graph G.Q; �/ itself. The goal of this section
is to give alternative descriptions of these four spanning trees.

We call respectively positive source tree, positive sink tree, negative source
tree, and negative sink tree, and denote respectively by P.Q; �/, P�.Q; �/, N.Q; �/,
and N�.Q; �/, the p-source, p-sink, n-source, and n-sink trees of G.Q; �/. The
tree P.Q; �/ (resp. N.Q; �/) is formed by all p-rising (resp. n-rising) paths from
the positive greedy facet P.Q; �/ to all the facets of SC.Q; �/. Both P.Q; �/
and N.Q; �/ are rooted at and directed away from the positive greedy facet P.Q; �/.
The tree P�.Q; �/ (resp. N�.Q; �/) is formed by all p-rising (resp. n-rising) paths
from all the facets of SC.Q; �/ to the negative greedy facet N.Q; �/. Both P�.Q; �/
and N�.Q; �/ are rooted at and directed towards the negative greedy facet N.Q; �/.
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The positive source and negative sink trees (resp. the positive sink and the
negative source trees) are reverse to one another (see Remark 2). Namely, as we
already observed, I J is an edge in the increasing flip graph G.qm � � � q1; ��1/ if
and only if J 0 WD fmC 1 � j j j 2 J g I 0 WD fmC 1 � i j i 2 I g is an edge in the
increasing flip graph G.q1 � � � qm; �/. Moreover, I J belongs to P.qm � � � q1; ��1/
if and only if J 0 I 0 belongs to N�.q1 � � � qm; �/. Similarly, I J belongs
to P�.qm � � � q1; ��1/ if and only if J 0 I 0 belongs to N.q1 � � � qm; �/.
Example 13. Consider the subword complex SC.Qex; �ex/ from Example 4.
Figures 9–12 represent respectively the trees P.Qex; �ex/, P�.Qex; �ex/, N.Qex; �ex/,
and N�.Qex; �ex/. Observe that these four canonical spanning trees of G.Q; �/ are
all different in general.

We now give a direct description of the father of a facet I in P�.Q; �/ and N.Q; �/
in terms of I X N.Q; �/ and I X P.Q; �/.

Proposition 8. Let I be a facet of SC.Q; �/. If I ¤ N.Q; �/, then the father of I
in P�.Q; �/ is obtained from I by flipping the smallest position in I X N.Q; �/.
Similarly, if I ¤ P.Q; �/, then the father of I in N.Q; �/ is obtained from I by
flipping the largest position in I X P.Q; �/.

Proof. Since the father of I in P�.Q; �/ (resp. in N.Q; �/) is the facet next to I on
the unique p-rising path towards N.Q; �/ (resp. the facet previous to I on the unique
n-rising path from P.Q; �/), this is a direct consequence of Proposition 4.

We now focus on the positive source tree P.Q; �/ and on the negative sink tree
N�.Q; �/, and provide two different descriptions of them. The first is an inductive
description of P.Q; �/ and N�.Q; �/ (see Propositions 10 and 11). The second is
a direct description of the father of a facet I in P.Q; �/ and N�.Q; �/ in terms of
greedy prefixes and suffixes of I (see Propositions 12 and 13). These descriptions
mainly rely on the following property of the greedy facets.

Proposition 9. Ifm is a flippable position of N.Q; �/, then N.Qa; �qm/ is obtained
from N.Q; �/ by flipping m. Similarly, if 1 is a flippable position of P.Q; �/,
then P.Q`; q1�/ is obtained from P.Q; �/ by flipping 1 and shifting to the left.

Proof. Although the formulation is simpler for the negative greedy facets, the proof
is simpler for the positive ones (due to the direction chosen in the definition of
the root function). Assume that 1 is a flippable position of P.Q; �/. Let J 2 F.Q; �/
and j 2 J be such that P.Q; �/X1 D J Xj . Consider the facet J of SC.Q`; q1�/
obtained shifting J to the left. Proposition 2(5) enables us to compute the root
function r.J; �/ for J , which in turn gives us the root function for J :

r.J ; k/ D
(

r.P.Q; �/; k C 1/ if 1 � k � j � 1;
q1.r.P.Q; �/; k C 1// otherwise.
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Since all positions i 2 P.Q; �/ such that r.P.Q; �/; i/ D ˛q1 are located before j ,
and since ˛q1 is the only positive root sent to a negative root by the simple
reflection q1, all roots r.J ; k/, for k 2 J , are positive. Consequently, J D
P.Q`; q1�/.

We obtain the result for negative facets using the reversal operation of Remark 2.

Example 14. Consider the subword complex SC.Qex; �ex/ of Example 4. Since
position 9 is flippable in N.Qex; �ex/ D f3; 4; 7; 8; 9g, we have N.Qex

a ; �
ex�1/ D

f3; 4; 6; 7; 8g. Moreover, since position 1 is flippable in P.Qex; �ex/ D f1; 2; 3; 5; 6g,
we have P.Qex

` ; �2�
ex/ D f2; 3; 5; 6; 8g D f1; 2; 4; 5; 7g.

Using Proposition 9, we can describe inductively the two trees P.Q; �/ and
N�.Q; �/. The induction follows the induction formulas for the facets F.Q; �/
presented in Sect. 3.3. For a tree T whose vertices are subsets of Z and for an
element z 2 Z, we denote by T ? z D z ? T the tree with a vertex X [ z for each
vertex X of T and an edge X [ z Y [ z for each edge X Y of T. Similarly, we
will denote by T! the tree with a vertexX! WD fx C 1 j x 2 Xg for each vertexX
of T and an edge X! Y! for each edge X Y of T.

We start with the inductive description of the negative sink tree N�.Q; �/, which
is based on the right induction formula. For the empty word ", the tree N�."; e/ is
formed by the unique facet ¿ of SC."; e/, and the tree N�."; �/ is empty if � ¤ e.
Otherwise, N�.Q; �/ is obtained as follows.

Proposition 10. For a non-empty word Q, the tree N�.Q; �/ equals

1. N�.Qa; �qm/ if m appears in none of the facets of SC.Q; �/;
2. N�.Qa; �/ ? m if m appears in all the facets of SC.Q; �/;
3. The disjoint union of N�.Qa; �qm/ and N�.Qa; �/ ?m, with an additional edge

from N.Qa; �qm/ to N.Q; �/ D N.Qa; �/ [m, otherwise.

Proof. Assume that m is contained in at least one and not all facets of SC.Q; �/. In
other words,m is a flippable position of N.Q; �/. Let I D I1 � � � I`C1 D N.Q; �/
be any n-rising path from an arbitrary facet I 2 F.Q; �/ to N.Q; �/. If the label m
appears in this path, then it should clearly appear last. By Proposition 9, we have
therefore I` D N.Qa; �qm/, and I D I1 � � � I` D N.Qa; �qm/ is also an n-rising
path from I to N.Qa; �qm/ in the increasing flip graph G.Qa; �qm/. Otherwise, if
the labelm does not appear in the path, thenm is contained in all facets of this path,
and .IXm/ D .I1Xm/ � � � .I`C1Xm/ D N.Qa; �/ is an n-rising path from IXm
to N.Qa; �/ in the increasing flip graph G.Qa; �/. This corresponds precisely to the
description of (3). The proofs of (1) and (2) are similar and left to the reader.

We now give the inductive description of the positive source tree P.Q; �/, which
is based on the left induction formula. For the empty word ", the tree P."; e/ is
formed by the unique facet ¿ of SC."; e/, and the tree P."; �/ is empty if � ¤ e.
Otherwise, P.Q; �/ is obtained as follows.

Proposition 11. For a non-empty word Q, the tree P.Q; �/ equals

(i) P.Q`; q1�/! if 1 appears in none of the facets of SC.Q; �/;
(ii) 1 ? P.Q`; �/! if 1 appears in all the facets of SC.Q; �/;
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(iii) The disjoint union of P.Q`; q1�/! and 1?P.Q`; �/!, with an additional edge
from P.Q; �/ D 1 [ P.Q`; �/! to P.Q`; q1�/!, otherwise.

Proof. We can either translate the proof of Proposition 10, or directly apply to
Proposition 10 the reversal operation of Remark 2.

Note that we do not have a similar inductive description for the positive sink and
negative source trees P�.Q; �/ and N.Q; �/. Let Imax denote the neighbor of N.Q; �/
in G.Q; �/ which maximizes pmax WDp.Imax N.Q; �//. We can use position pmax

to decompose the positive sink tree P�.Q; �/ as the union of a spanning tree of the
graph of increasing flips on its link fI 2 SC.Q; �/ j pmax 2 I g with a spanning tree
of the graph of increasing flips on its deletion fI 2 SC.Q; �/ j pmax … I g, together
with the edge Imax N.Q; �/. However, contrarily to the link of pmax, the deletion
of pmax is not a subword complex in general. This is a serious limit to an inductive
decomposition of the positive sink tree P�.Q; �/. The same observation holds for
the negative source tree N.Q; �/.

We now give a direct characterization of the father of a facet I of SC.Q; �/ in
the negative sink tree N.Q; �/. This description can be understood in terms of the
longest greedy prefix of I .

Proposition 12. Let I ¤ N.Q; �/ be a facet of SC.Q; �/. Define y D y.I / to be
the smallest position in Œm� such that

I \ Œy� ¤ N.q1 � � � qy;˘QŒy�XI /;

and x D x.I / to be the smallest position in I such that r.I; x/ D r.I; y/. Then the
father of the facet I in the negative sink tree N�.Q; �/ is obtained from I by flipping
position x.

Proof. Let x.I / and y.I / be the positions defined in the statement of the proposi-
tion. Denote by J the father of I in the negative sink tree N�.Q; �/, and let Nx.I /
and Ny.I / be such that I X Nx.I / D J X Ny.I /. We want to prove that x.I / D Nx.I /
and y.I / D Ny.I / for any facet I ¤ N.Q; �/ of SC.Q; �/.

We first prove that y.I / D Ny.I / for any facet I of SC.Q; �/ by induction on
the negative sink tree. For this, set y.N.Q; �// D Ny.N.Q; �// D m C 1. Consider
an arbitrary facet I ¤ N.Q; �/ and its father J in N�.Q; �/. In particular, we have
I X Nx.I / D J X Ny.I / with Nx.I / < Ny.I / < Ny.J /. The first inequality holds
since the flip I J is increasing, and the second holds since the unique path
from I to N.Q; �/ in N�.Q; �/ is n-rising. We want to prove that y.I / D Ny.I /,
assuming by induction that y.J / D Ny.J /. First, since Ny.I / < Ny.J / D y.J /

and ˘QŒ Ny.I /�XJ D ˘QŒ Ny.I /�XI , we observe that

Ny.I / 2 J \ Œ Ny.I /� D N.q1 � � � q Ny.I /; ˘QŒ Ny.I /�XJ / D N.q1 � � � q Ny.I /; ˘QŒ Ny.I /�XI /:

Since Ny.I / … I\Œ Ny.I /�, this implies that y.I / � Ny.I /. Second, the negative greedy
flip property of Proposition 9 ensures that

I \ Œ Ny.I / � 1� D N.q1 � � � q Ny.I /�1;˘QŒ Ny.I /�1�XI /
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since it is obtained from J \ Œ Ny.I /� D N.q1 � � � q Ny.I /; ˘QŒ Ny.I /�XJ / by flipping Ny.I /.
Thus, we obtain that y.I / > Ny.I /� 1. This concludes the proof that y.I / D Ny.I /.

Finally, since I X Nx.I / D J X Ny.I / D J X y.I /, we know that r.I; Nx.I // D
r.I; y.J // by Proposition 2(3). Moreover, it has to be the smallest position in I with
this property since otherwise y.J / would be smaller than y.I /.

Finally, we give a similar direct characterization of the father of a facet I
of SC.Q; �/ in the positive source tree P.Q; �/. This description can be understood
in terms of the longest greedy suffix of I .

Proposition 13. Let I ¤ P.Q; �/ be a facet of SC.Q; �/. Define y D y.I / to be
the largest position in Œm� such that

fi � y j i 2 I X Œy�g ¤ P.qyC1 � � � qm;˘QŒyC1;m�XI /;

and x D x.I / to be the largest position in I such that r.I; x/ D �r.I; y/. Then the
father of the facet I in the positive sink tree P�.Q; �/ is obtained from I by flipping
position x.

Proof. We can either translate the proof of Proposition 12, or directly apply to
Proposition 12 the reversal operation of Remark 2.

4.4 Greedy Flip Algorithm

The initial motivation of this paper was to find efficient algorithms for the exhaustive
generation of the set F.Q; �/ of facets of the subword complex SC.Q; �/. For the
evaluation of the time and space complexity of the different enumeration algorithms,
we consider as parameters the rank n of the Coxeter group W and the size m of the
word Q. Neither of these two parameters can be considered to be constant a priori.
For example, if we want to generate all triangulations of a convex .nC 3/-gon (see
Example 6), we consider a subword complex with a group W of rank n and with a
word Q of size n.nC 3/=2.

The properties of the subword complex described in Sects. 3.3 and 3.4 already
provide two immediate enumeration algorithms. First, the inductive structure
of F.Q; �/ yields an inductive algorithm whose running time per facet is polynomial.
More precisely, since all subword complexes which appear in the different cases of
the right induction formula of Sect. 3.3 are non-empty, and since the tests � 6� Qa
and `.�qm/ > `.�/ can be performed in O.mn/ time, the running time per facet of
this inductive algorithm is in O.m2n/.

The second option is an exploration of the flip graph G.Q; �/. This flip graph
is connected by Theorem 1, and it has degree bounded by m � `.�/. We can
thus generate F.Q; �/ exploring the flip graph, and we need O.m � `.�// flips per
facet for this exploration. By Proposition 2, we can perform flips in the subword
complex SC.Q; �/ in O.mn/ time if we store and update the facets of F.Q; �/
together with their root functions (note that this storage requires O.mn/ space).
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We thus obtain again a running time of O.m2n/ per facet. The problem of a naive
exploration of the flip graph is that we need to store all facets of F.Q; �/ during
the algorithm, which may require an exponential working space. This happens for
example if we want to generate the 1

nC2
�
2nC2
nC1

	
triangulations of a convex .nC3/-gon

(see Example 6).
Using the canonical spanning trees constructed in this paper, we can bypass

this difficulty: we avoid to store all visited facets while preserving the same
running time. The greedy flip algorithm generates all facets of the subword
complex SC.Q; �/ by a depth first search procedure on one2 of the four canonical
spanning trees described in Sect. 4.3. The preorder traversal of the tree also provides
an iterator on the facets of SC.Q; �/. Given a facet I 2 F.Q; �/, we can indeed
compute its next element in the preorder traversal of the spanning tree, provided we
know its root function (plus the path from I to the root in the tree if we work with
either P.Q; �/ or N�.Q; �/). These data can be updated at each step of the algorithm,
using Proposition 2 for the root function.

We now bound the time and space complexity of the greedy flip algorithm. First,
its working space is inO.mn/ since we only need to remember during the algorithm
the current facet, together with its root function (plus its path to the root in the tree
if we work with either P.Q; �/ or N�.Q; �/). Concerning running time, each facet
needs at most m flips to generate all its children in the spanning tree. Since a flip
can be performed in O.mn/ time (by Proposition 2), the running time per facet of
the greedy flip algorithm is still in O.m2n/.

We have implemented the greedy flip algorithm using the mathematical software
Sage [19] as part of a project3 on implementing subword complexes. We have seen
that these two algorithms for generating facets have the same theoretical complexity,
namely O.m2n/ per facet. To compare their experimental running time, we have
constructed the k-cluster complex of type An for increasing values of k and n. Its
facets correspond to the k-triangulations of the .n C 2k C 1/-gon (see Example 6
and [4] for the definition of multicluster complexes in any finite type). The rank
of the group is n, while the length of the word is knC �n

2

	
. Figure 13 presents the

running time per facet for both enumeration algorithms in two situations: on the left,
k is fixed at 1 while n increases; on the right, n is fixed at 3 while k increases. The
greedy flip algorithm is better than the inductive algorithm in the first situation, and
worse in the second. We observe a similar behavior for the computation of k-cluster
complexes of typesBn andDn. In general, the inductive algorithm is experimentally
faster when the Coxeter group is fixed, but slower when the size of the Coxeter group
increases.

Remark 5. Our algorithm is similar to that of [3] for pointed triangulations and that
of [10] for primitive sorting networks. More precisely, the algorithms of [3] and [10]

2As observed by M. Pocchiola, searching on the positive sink tree or on the negative source
tree improves the working space of the algorithm. This issue is relevant for the enumeration of
pseudotriangulations and will be discussed in a forthcoming paper of his.
3The ongoing work on this patch can be found at http://trac.sagemath.org/sage trac/ticket/11010.

http://trac.sagemath.org/sage_trac/ticket/11010
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Fig. 13 Comparison of the running times of the inductive algorithm and the greedy flip algorithm
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are both depth first search procedures on the positive source tree of particular
subword complexes: subword complexes modeling pointed pseudotriangulations
for [3] (see Example 6), and type A spherical subword complexes for [10].

5 Further Combinatorial Properties of the EL-Labelings

In this section, we discuss some implications of the EL-labelings of the increasing
flip graph presented in Sect. 4.1. These results concern combinatorial properties of
the increasing flip poset � .Q; �/, defined as the transitive closure of the increasing
flip graph G.Q; �/. The key requirement for the validity of these results is that the
increasing flip graph G.Q; �/ coincides with the Hasse diagram of the increasing flip
poset � .Q; �/ (see the discussion in the beginning of Sect. 2.2). We first characterize
and study the subword complexes which fulfill this property.

5.1 Double Root Free Subword Complexes

We say that the subword complex SC.Q; �/ has a double root if there is a facet I
in SC.Q; �/ and two distinct positions i ¤ j 2 Œm� both flippable in I such that
r.I; i/ D r.I; j /. Otherwise, we say that the subword complex SC.Q; �/ is double
root free. In this section, we focus on double root free subword complexes due to
the following characterization.

Proposition 14. The subword complex SC.Q; �/ is double root free if and only if
its increasing flip graph G.Q; �/ coincides with the Hasse diagram of its increasing
flip poset � .Q; �/.
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Proof. Assume that SC.Q; �/ has a double root. Let i ¤ j 2 Œm� be both flippable
in I , and let k 2 Œm� X I be such that r.I; i/ D r.I; j / D ˙r.I; k/ so that both i
and j flip to k. Then the flip graph G.Q; �/ contains a triangle formed by the
facets I , I4fi; kg, and I4fj; kg (where A4B WD .A [ B/ X .A \ B/ denotes the
symmetric difference of two sets A and B). Since a Hasse diagram cannot contain
a triangle, the Hasse diagram of the increasing flip poset � .Q; �/ is only a strict
subgraph of the increasing flip graph G.Q; �/.

Assume reciprocally that the Hasse diagram of the increasing flip poset � .Q; �/
is a strict subgraph of the increasing flip graph G.Q; �/. Let I J be an oriented
edge in G.Q; �/ which is not an edge in the Hasse diagram of � .Q; �/. Let i 2 I
and j 2 J be such that I X i D J X j (thus i < j ), and consider a path
I D I1 � � � I`C1 D J of increasing flips which prevents the edge I J to be
in the Hasse diagram of � .Q; �/ (in particular, ` > 1). Let p1 > : : : > p` be the
decreasing reordering of the set

˚
p.I1 I2/; : : : ;p.I` I`C1/

�
of positive edge

labels along this path, and let n1; : : : ;n` be the corresponding negative edge labels.
That is to say, when we flip pk out of a certain facet in this path, we obtain nk in the
next facet of the path. Since I and J differ only in positions i and j with i < j , and
all flips are increasing, no position smaller than i can be flipped. Thus, we obtain
that p` D i , and by a similar argument that n1 D j . Applying the same argument
to the other positions that are flipped along the path, in increasing or in decreasing
order, moreover gives

i D p` < n` D p`�1 < � � � < n2 D p1 < n1 D j:

Proposition 2 thus ensures that all roots r.I;p1/; : : : ; r.I;p`/ coincide and are equal
to r.I;n1/, and that we moreover have pk D p.Ik IkC1/ and nk D n.Ik IkC1/.
Since ` > 1, this completes the proof.

The intervals in the increasing flip graph of a double root free subword complex
have the following property. We will see in Remark 6 that this property, as well as
its corollaries below, does not hold for subword complexes with double roots.

Proposition 15. Let I and J be two facets of a double root free subword com-
plex SC.Q; �/. Then the intersection I \ J is contained in all facets of the
interval ŒI; J � in the increasing flip graph G.Q; �/.

We extract the crucial part of the proof of this proposition in the following lemma.

Lemma 4. Let I0 I1 � � � I`C1 be a path in the increasing flip graph G.Q; �/
with pk WDp.Ik IkC1/ and such that p0 D maxfp0; : : : ;p`g. Then, starting from I0,
it is possible to skip the first flip at position p0, and directly successively flip
positions p1;p2; : : : ;p`. If I0 D I 01 I 02 � � � I 0̀C1 is the corresponding path for
which p.I 0k; I 0kC1/ D pk for all k 2 Œ`�, we moreover have that r.I 0k; p/ D r.Ik; p/
for any position p � p0 and any k 2 Œ`C 1�.
Proof. The proof is based on the observation that flips are described using the root
function, and that flipping out i and flipping in j only affects the roots located
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between positions i and j , see Proposition 2. Remember that a position p in a facet
I is increasingly flippable if and only if the root r.I; p/ is contained in the inversion
set of �, compare Proposition 2(2) and (4).

We prove the statement by induction on k. Namely, we prove that

1. r.I 01; p/ D r.I1; p/ for all positions p � p0, and that
2. For any k 2 Œ`�, if r.I 0k; p/ D r.Ik; p/ for all positions p � p0, then the

position pk is increasingly flippable in I 0k and r.I 0kC1; p/ D r.IkC1; p/ for all
positions p � p0.

To prove (1), observe that the flip I0 I1 does not affect roots located to the left
of position p0, so we have r.I 01; p/ D r.I0; p/ D r.I1; p/ for any position p � p0.

To prove (2), we assume that r.I 0k; p/ D r.Ik; p/ for all positions p � p0.
In particular, r.I 0k;pk/ D r.Ik;pk/ because pk � p0. Since pk is increasingly
flippable in Ik , this root is in the inversion set of �, and therefore, pk is also
increasingly flippable in I 0k . Here, we used twice Proposition 2(2) and (4). Define
now nk WDn.Ik IkC1/ and n0k WDn.I 0k I 0kC1/. If nk � p0, then

r.I 0k;pk/ D r.Ik;pk/ D r.Ik;nk/ D r.I 0k;nk/;

and thus nk D n0k . Here, we used twice Proposition 2(3). Similarly, if n0k � p0,
then nk D n0k . We therefore obtain that either both nk and n0k are located to the
right of p0, or nk D n0k . In both cases, we know that pk < p � nk if and only
if pk < p � n0k for any position p � p0. Since r.I 0k; p/ D r.Ik; p/, we thus obtain
that r.I 0kC1; p/ D r.IkC1; p/ by Proposition 2(5).

Proof (Proof of Proposition 15). Let I D I0 I1 � � � I` I`C1 D J be a
path from I to J in the increasing flip graph G.Q; �/. For 0 � k � `, define
pk WDp.Ik IkC1/ and nk WDn.Ik IkC1/. In other words, pk 2 Ik , nk 2 IkC1
and Ik X pk D IkC1 X nk .

We assume by means of contradiction that there is a position in I \J flipped out
during the flip path which is flipped back later in the path. Up to shortening the path,
we can assume without loss of generality that this position is flipped out during the
first flip I0 I1 and flipped back in during the last flip I` I`C1, i.e. p0 D n`.
We moreover assume that our path is a minimal length path which flips back in a
position already flipped out.

Under these assumptions, we prove that

1. p0 D maxfp0; : : : ;p`g,
2. Starting from facet I , we can successively flip positions p1;p2; : : : ;p`�1 (just

skipping the first and the last flips at positions p0 and p`), and
3. The facet J 0 obtained after these flips has a double root at positions p0 and p`.

To prove (1), assume that the index m 2 Œ0; `� such that pm D maxfp0; : : : ;p`g
is different from 0. Note that 0 < m < ` since p` < n` D p0. Consider the path of
flips

I D I0 � � � Im D I 0m I 0mC1 � � � I 0̀
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defined by p.Ik; IkC1/ D pk for k < m and p.I 0k; I 0kC1/ D pkC1 for k � m. In other
words, starting from I , we flip positions p0; : : : ;pm�1;pmC1; : : : ;p`, skipping the
flip at position pm. According to Lemma 4, all flips in the path I 0m I 0mC1 � � � I 0̀
are admissible since pk � pm for all k � m, and we have

r.I 0̀�1;p`/ D r.I`;p`/ D r.I`;p0/ D r.I 0̀�1;p0/:

Therefore, we flip back position p0 in facet I 0̀, thus contradicting the length
minimality of the path I D I0 I1 � � � I` I`C1 D J .

We now prove (2) and (3). By (1), the path I D I0 I1 � � � I` I`C1 D J

satisfies the hypothesis of Lemma 4. We therefore obtain directly (2). Let J 0 denote
the facet of F.Q; �/ obtained after flipping successively p1;p2; : : : ;p`�1 starting
from I . We moreover obtain

r.J 0;p`/ D r.I`;p`/ D r.I`;p0/ D r.J 0;p0/;

where the first and last equalities are ensured by Lemma 4, while the middle one
holds by Proposition 2(3) since we flip position p` to position n` D p0 in facet I`.
Since the facet J 0 contains both p0 and p`, it has a double root, thus proving (3).

The following theorem is now a direct consequence of Proposition 15.

Theorem 3. There is at most one p-falling (resp. n-falling) path between any two
facets I and J of a double root free subword complex SC.Q; �/. If it exists, its length
is given by jI X J j D jJ X I j.
Proof. Let I D I1 � � � I`C1 D J be a p-falling path from I to J in the
increasing flip graph G.Q; �/, and define pk WDp.Ik IkC1/ and nk WDn.Ik IkC1/.
For k < k0, we then have nk ¤ pk0 (because the flips are increasing and the path
is p-falling) and pk ¤ nk0 (otherwise, the position pk D nk0 would be flipped out
and flipped back in during the path, thus contradicting Proposition 15). This implies
that pk 2 I X J and nk 2 J X I for all k 2 Œ`�. Therefore pk is the kth largest
position of I XJ and ` D jI XJ j D jJ XI j. This uniquely determines the p-falling
path from I to J . The proof is similar for the n-falling path (see also Proposition 5).

Corollary 1. Let I and J be two facets of a double root free subword complex
such that I J . The unique p-rising (resp. n-rising) path from I to J has maximal
length among all path from I to J . Moreover, if there is a p-falling (resp. n-falling)
path from I to J , it has minimal length.

Proof. Consider a maximal length path from I to J . According to the proof of
Theorem 2, we can modify this path to obtain the unique p-rising path from I to J .
In the situation of a double root free subword complex, this procedure does not
decrease the length of the path, since the first distinguished case in the proof of
Lemma 1 cannot occur. This proves the result for the p-rising path. For the p-falling
path, this follows directly from Theorem 3. The proof is similar for the negative
edge labeling n.
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Remark 6. Note that the conclusions of Proposition 15, Theorem 3, and Corollary 1
do indeed not hold if SC.Q; �/ has double roots. Whenever one has a double root,
one can reduce the situation to type A1 with generator s for the word Q D sss and
the element � D s, using Proposition 3 (one might actually get that the word Q
contains more than three letters, but the argument stays the same). In this case, the
increasing flip graph G.Q; �/ consists of the two paths

f1; 2g 2 f1; 3g 1 f2; 3g and f1; 2g 1 f2; 3g;

where the numbers on the edges are their positive edge labels. First, f1; 3g lies
in the interval Œf1; 2g; f2; 3g� of the increasing flip graph G.Q; �/, but does not
contain f1; 2g \ f2; 3g D f2g, thus contradicting Proposition 15. Second, both paths
are p-falling, contradicting the conclusions of Theorem 3. Third, the second path
is p-rising and shorter than the first p-falling path, contradicting the conclusions of
Corollary 1.

Corollary 2. The Möbius function on the increasing flip poset � .Q; �/ of a double
root free subword complex SC.Q; �/ is given by

�.I; J / D
(
.�1/jJXI j if there is a p-falling (resp. n-falling) path from I to J ,

0 otherwise.

Proof. This is a direct consequence of Propositions 1 and 5 and Theorem 3.

By this corollary, we can compute the Möbius function of an interval ŒI; J � of
the increasing flip poset as soon as we can decide whether or not there is a p-
falling path from I to J . According to Proposition 7, there is always a p-falling path
from the positive greedy facet to the negative greedy facet of a spherical subword
complex. We therefore obtain the value of the Möbius function on the increasing
flip poset � .Q; �/ of a spherical double root free subword complex.

Corollary 3. In a spherical double root free subword complex SC.Q; �/, we have

�
�
P.Q; �/;N.Q; �/

	 D .�1/jQj�`.�/:

Observe again that this result fails if we drop the condition that SC.Q; �/
is spherical. The subword complex SC.Qex; �ex/ of Example 4 and the subword
complex SC.�1�2�1�2; �1�2/ provide counter-examples.

5.2 Two Relevant Examples

We finish this section by two relevant families of examples of double root free
subword complexes, to which the above results can be applied.
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5.2.1 Cambrian Lattices

We start with recalling background on sortable elements in Coxeter groups and
Cambrian lattices. Those were introduced by N. Reading in [14–17], originally
to connect finite type cluster complexes to noncrossing partitions. Fix a Coxeter
element c of W , and a reduced expression c of c. That is to say, c is a word
on S where each simple reflection appears precisely once. For w 2 W , we denote
by w.c/ the c-sorting word of w, i.e. the lexicographically first (as a sequence
of positions) reduced subword of c1 for w. Moreover, this word can be written
as w.c/ D cK1cK2 � � � cKp , where cK denotes the subword of c only taking the
simple reflections in K � S into account. The element w is then called c-sortable
if K1 
 K2 
 � � � 
 Kp . Observe that the property of being c-sortable does not
depend on the particular reduced expression c of the Coxeter element c. We denote
by SORTc.W / the set of c-sortable elements in W . The order induced by the weak
order on W turns SORTc.W / into a lattice, the Cambrian lattice for the Coxeter
element c [17].

It was observed in [16, Remark 2.1] that Cambrian lattices are naturally equipped
with a search-tree structure. The c-sorting tree T.c/ has an edge between two c-
sortable elements w and w0 if the c-sorting word for w is obtained from the one
for w0 by deleting the last letter. See Example 15 and Fig. 14. Observe that the c-
sorting tree really depends on the particular choice for the reduced expression c, and
not only on the Coxeter element c.

In their recent work [6], M. Kallipoliti and H. Mühle define an EL-labeling of
the Cambrian lattice SORTc.W / as follows. They label a cover relation w w0
of SORTc.W / by the first position within c1 which is used in the c-sorting word
for w0 but not in the c-sorting word for w. They observed in [6, Remark 3.5] that the
spanning tree formed by all rising paths from the source e to any other c-sortable
element coincides with the c-sorting tree mentioned above. See Example 15 and
Fig. 14. They moreover use this EL-labeling to derive results on Möbius functions
of Cambrian lattices [6, Theorems 4.1–4.3].

Example 15. Let W D S4 and c D �1�2�3. The c-sortable elements, the Hasse
diagram of the Cambrian lattice, the EL-labeling of [6], and the c-sorting tree are
represented in Fig. 14. We write 12.1 instead of �1�2:�1 to simplify the picture (the
dots mark the separation between the blocks cKi ).

We now recall that Cambrian lattices can be seen as increasing flip posets.
This interpretation was presented in [12, Sects. 6.3.2 and 6.4], based on previous
connections between c-sortable elements and c-clusters [17], and between c-clusters
and facets of the subword complex [4].

Let wı.c/ denote the c-sorting word for the longest element wı 2 W . To simplify
notations, we write SC.c/ for the subword complex SC.cwı.c/;wı/. Similarly, we
denote by F.c/ its facets, by G.c/ its increasing flip graph, by � .c/ its increasing
flip poset, and by P.c/ its positive source tree. Following [12, Sect. 5.1], we define a
map # W W ! F.c/ by sending an element w 2 W to the unique facet #.w/ whose
root configuration R.#.w// is contained in w.˚C/. For the subword complex SC.c/,
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Fig. 15 The positive edge labeling p of G.�1�2�3/, and the positive source tree P.�1�2�3/

it turns out that the fibers of this map are intervals, and that their minimal elements
are precisely the c-sortable elements. This gives the following proposition.

Proposition 16 ([12, Corollary 6.31]). The map associating to a facet I the unique
(weak order) minimal element in #�1.I /, is a poset isomorphism between the
increasing flip poset and the Cambrian lattice.

Through this isomorphism, we can transfer the results discussed in this paper to
Cambrian lattices. We thus also obtain natural EL-labelings and spanning trees for
Cambrian lattices.

Example 16. LetW D S4 and c D �1�2�3. The facets of SC.c/, the Hasse diagram
of � .c/, the positive edge labeling p of G.c/, and the positive source tree P.c/ are
represented in Fig. 15. Compare to Fig. 14.

To finish, we want to observe that the positive edge labeling differs from the
EL-labeling of [6] and that the positive source tree P.c/ differs4 from the c-sorting
tree T.c/. This is illustrated in the following (minimal) example.

4The contrary was stated in a previous version of this paper. We thank an anonymous referee for
pointing out this mistake.
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F4 = {1,11,13,14}
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Fig. 16 The positive source tree T.c/ differs from the c-sorting tree

Example 17 (Positive source tree ¤ Coxeter-sorting tree). Consider the Coxeter
group W D S5 and the Coxeter element c D �4�2�3�1. In this situation, the four
facets of SC.c/ given by

F1 D f1; 8; 9; 11g; F2 D f1; 9; 11; 14g; F3 D f1; 8; 11; 13g; F4 D f1; 11; 13; 14g;

are respectively sent by the isomorphism of Proposition 16 to the c-sortable
elements

w1 D �2�3�1:�2; w2 D �2�3�1:�2�1; w3 D �2�3�1:�2�3; w4 D �2�3�1:�2�3�1:

The facets F1; F2; F3; F4 (resp. the c-sortable elements w1;w2;w3;w4) form a
square within the increasing flip poset (resp. within the Cambrian lattice). Figure 16
represents the two EL-labelings and their corresponding spanning trees restricted
to these squares. The positive source tree P.c/ contains all edges of this square
except F3 F4, while the c-sorting tree T.c/ contains all edges of this square
except w2 w4.

5.2.2 Duplicated Words

Let � WD �1 � � � �� be a reduced expression of an element � of W . For k 2 Œ��,
we define a root ˛k WD �1 � � � �k�1.˛�k /. Note that the roots ˛1; : : : ; ˛� are pairwise
distinct and positive. They are the roots of the inversion set of �.

Let X be an arbitrary subset of � WDjX j positions of Œ��. We denote
by Qdup the word on S with � C � letters which is obtained by dupli-
cating the letters of � WD �1 � � � �� at positions in X . To be more precise,
define k� WD k C jX \ Œk � 1�j for k 2 Œ��. Observe that Œ� C �� D fk� j k 2 Œ��g t
fx� C 1 j x 2 Xg. Then, we set Qdup WD q1 � � � q�C�, where qk� WD �k for k 2 Œ�� and
qx�C1 WD �x for x 2 X . For k 2 Œ��, the position k� is the new position in Qdup of
the kth letter of �, and for x 2 X , the position x�C 1 is the new position in Qdup of
the duplicated xth letter of �.

For any x 2 X , the pair fx�; x� C 1g of duplicated positions intersects any facet
of SC.Qdup; �/, otherwise the expression would not be reduced. It follows that any
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facet of SC.Qdup; �/ contains precisely one element of each pair fx�; x� C 1g of
duplicated positions and no other position. Therefore, the facets of SC.Qdup; �/ are
precisely the sets I" WD fx� C "x j x 2 Xgwhere " WD ."1; : : : ; "�/ 2 f0; 1gX . More-
over, the roots of the facet I" of SC.Qdup; �/ are given by r.I"; k�/ D ˛k for k 2 Œ��
and r.I"; x� C 1/ D .�1/"x˛x for x 2 X . Thus, the subword complex SC.Qdup; �/

is double root free, since the roots ˛1; : : : ; ˛� are pairwise distinct.
The subword complex SC.Qdup; �/ is the boundary complex of the �-dimen-

sional cross polytope. In particular, the graph of increasing flips G.Qdup; �/ is
the directed 1-skeleton �� of a �-dimensional cube, and the increasing flip poset
� .Qdup; �/ is a boolean poset.

The positive greedy facet P.Qdup; �/ is the facet I0, while the negative greedy
facet N.Qdup; �/ is the facet I1. The positive and negative edge labelings p and n
of SC.Qdup; �/ are essentially the same as the edge labeling � of �� presented in
Example 1. More precisely, for any edge " "0 of ��, we have

 ı �." "0/ D p.I" I"0/ D n.I" I"0/ � 1;

where  W Œ�� ! fx� j x 2 Xg is such that  .1/ <  .2/ < � � � <  .�/. Since
p.�/ D n.�/ � 1, the positive and negative source trees P.Qdup; �/ and N.Qdup; �/

coincide. Similarly the positive and negative sink trees P�.Qdup; �/ and N�.Qdup; �/

coincide as well. Moreover, the map " 7! I" defines a graph isomorphism from
the �-source tree of �� to the source trees P.Qdup; �/ D N�.Qdup; �/, and from the
�-sink tree of �� to the sink trees P�.Qdup; �/ D N�.Qdup; �/. See Example 1 and
Fig. 1.

Finally, the Möbius function on the increasing flip poset � .Qdup; �/ is given by

�.I"; I"0/ D
(
.�1/ı.";"0/ if " "0;
0 otherwise,

where ı denotes the Hamming distance on the vertices of the cube. See Example 2.
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Abstract A fundamental problem in numerical linear algebra consists in rearrang-
ing the rows and columns of a matrix in such a way that either the nonzero entries
appear within a band of small width along the main diagonal, or such that the matrix
has some block structure which is joined by only a few rows and columns. Such
problems can be approached using graph partition techniques. From a practical
point of view it is important that also large-scale instances can be dealt with. This
rules out a direct application of the strong machinery for graph partition given
by semidefinite optimization. We propose to use the weaker relaxations based on
the Hoffman-Wielandt theorem, which lead to closed form bounds in terms of the
Laplacian eigenvalues. We then try to improve these eigenvalue bounds by weight
redistribution. This leads to nicely structured eigenvalue optimization problems. A
similar approach has been used by Boyd, Diaconis and Xiao to increase the mixing
rate of Markov chains. We use it to improve bounds on the bandwidth and the size of
vertex separators in graphs. Moreover, the bounds can also be used to heuristically
find good reorderings.
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Key words Vertex separator • Bandwidth • Semidefinite programming
• Eigenvalue optimization

Subject Classifications: 05C85, 05C78

1 Introduction

The investigation of structural properties of the nonzero pattern of matrices has
important applications in many applied sciences. In numerical linear algebra for
instance, the solution of a linear system may be speeded up in case that a reordering
of the rows and columns of the system matrix is known such that all nonzeros after
reordering are close to the main diagonal.

Alternatively a system matrix with block structure and only a few rows and
columns linking the individual blocks leads to computational simplifications based
on the Schur complement formula.

In this paper we investigate problems of this type. The zero pattern of a
symmetric n 
 n matrix M D .mij / can be represented through a graph G having
vertex set N WD f1; : : : ; ng and edges Œi; j � whenever mij 6D 0 for i 6D j . Thus
E.G/ WD fŒi; j � W mij 6D 0; i < j g. Since M is symmetric we take G as an
undirected graph. We also ignore the entries on the main diagonal ofM , hence G is
also loopless.

If we relabel the vertices ofG according to the permutation �, then the bandwidth
of G with respect to � is defined to be

bw.�;G/ WD maxfj�.i/ � �.j /j W Œi; j � 2 E.G/g:

The bandwidth of G is the minimum of bw.�;G/ over all permutations � of N ,

bw.G/ WD minfbw.�;G/ W � 2 ˘ng:

The set of permutations of N is denoted by ˘n.
Determining bw.G/ is NP-hard, and it remains so even if G is restricted to the

class of trees with maximal vertex degree equal three. In [6] several lower bounds
for bw.G/ are investigated, based on the Laplacian spectrum of G. As an example,
consider the matrix A from Table 1. Its bandwidth with respect to the given ordering
is 10, attained at edge Œ1; 11�. After reordering according to the permutation p given
in the second part of the table, the bandwidth is 4.

Another computational simplification for a linear system is possible in case that
the system matrix has a vertex separator of small size. In graph theoretic terms a set
T � N is a vertex separator ofG, ifG nT decomposes into components of roughly
equal size. Thus we are also interested in the question whether for a given number
k � 3 there exists a subset T � N such that the removal of T from G disconnects
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Table 1 MatrixA and after reordering the rows and columns with respect
to the permutation p D .3 1 4 2 11 5 12 6 8 10 7 9/. The zero entries are
represented as dots

A D

0

BBBBBBBBBBBBBBBBBBBB@

: 1 1 : : : : : : : 1 :

1 : 1 1 : : : : : : : :

1 1 : : : : : : : : 1 :

: 1 : : 1 : : : : : : 1

: : : 1 : : : : : : : 1

: : : : : : 1 : 1 : : 1

: : : : : 1 : 1 1 1 : :

: : : : : : 1 : 1 1 1 :

: : : : : 1 1 1 : 1 : :

: : : : : : 1 1 1 : : :

1 : 1 : : : : 1 : : : :

: : : 1 1 1 : : : : : :

1

CCCCCCCCCCCCCCCCCCCCA

Ap D

0

BBBBBBBBBBBBBBBBBBB@

: 1 : 1 1 : : : : : : :

1 : : 1 1 : : : : : : :

: : : 1 : 1 1 : : : : :

1 1 1 : : : : : : : : :

1 1 : : : : : : 1 : : :

: : 1 : : : 1 : : : : :

: : 1 : : 1 : 1 : : : :

: : : : : : 1 : : : 1 1

: : : : 1 : : : : 1 1 1

: : : : : : : : 1 : 1 1

: : : : : : : 1 1 1 : 1

: : : : : : : 1 1 1 1 :

1

CCCCCCCCCCCCCCCCCCCA

Table 2 The graph
representing the nonzero
entries of matrix A from
Table 1

10 9

8 7 6

1 2 4 12

5

11

3

G n T into k � 1 components of roughly equal size. The graph in Table 2 has a
vertex separator T D f11; 12g, disconnecting the graph into two components of five
vertices.

Lipton and Tarjan [9] provide a polynomial time algorithm which determines a
vertex separator T in a planar graph such that jT j � p6pn. In general, the vertex
separator problem is NP-hard. A branch and bound based approach to solve the
problem is described in [4]. In [6] the Laplacian spectrum of G is used again to get
lower bounds on the size of the vertex separator.

It is the purpose of the present paper to explore extensions of the approach
from [6] which are feasible for large scale problems. In Sect. 2 we provide a
mathematical description of both the bandwidth and the separator problem. We
use vertex partitions to approach both problems. These lead to relaxations over
orthogonal vectors described in Sect. 3. A remarkable feature lies in the fact
that these orthogonal relaxations have a closed form optimal solution, as already
observed in [6]. We recall the relevant ideas in Sect. 4. It turns out that the orthogonal
relaxation can also be formulated as a semidefinite program. Our goal here is
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to avoid solving semidefinite programs to improve the relaxations as recently
suggested in [10] or in [3]. The main new idea consists in applying the weight
redistribution idea to the eigenvalue bounds derived in [6] to improve the resulting
lower bounds, see Sect. 5. This idea was also exploited by Boyd, Diaconis and Zhao
[2] in connection with the mixing rate of Markov chains. We close with Sect. 6
indicating some computational considerations.

Notation: The following notation will be used throughout. If G is a graph, we
denote its vertex set by V.G/ which we assume to be N D f1; : : : ; n/. Its edge
set is denoted by E.G/. We consider only undirected graphs. An edge e 2 E.G/
connecting vertices i and j is denoted by Œi; j �. For two disjoint subsets S; T of N ,

ı.S; T / WD fŒu; v� W Œu; v� 2 E.G/; u 2 S; v 2 T g

denotes the set of edges of G joining vertices in S and T . Let S D .S1; : : : ; Sk/ be
a partition of N , meaning that the sets Si are pairwise disjoint and their union is N .
The set of edges with endpoints in distinct partition blocks S1; : : : ; Sk�1 is therefore
given by [i<j<kı.Si ; Sj /. In a slight abuse of notation, we denote this edge set by

ı.S/ WD [i<j<kı.Si ; Sj /:

Note that edges joining vertices in Sk are ignored.
The set of permutations ofN is denoted by˘n. IfM is a square matrix, diag.M/

denotes the vector containing the diagonal elements mii of M . Conversely, if m is
a vector, then Diag.m/ is the diagonal matrix having the entries of m on the main
diagonal.

The columns of the identity matrix Ik are denoted e1; : : : ; ek . We set Eij WD
ei e

T
j C ej eTi . The all-ones vector is denoted by e. The all-ones matrix is denoted by

J D eeT or Jk to indicate its size.

2 Separators and Bandwidth Based on Vertex
Partitions of Graphs

Let m D .m1; : : : ; mk/
T be a vector of nonnegative integers such that

P
i mi D n.

We denote by Pm the set of all partitions of N into k subsets Si of cardinalities
jSi j D mi ,

Pm WD f.S1; : : : ; Sk/ W Si \ Sj D ; for i 6D j; [i Si D N; jSi j D mig: (1)

We encode this partitioning using the n 
 k partition matrix X D .xij / where
column j of X represents the incidence vector of Sj . Hence, xij D 1 if i 2 Sj
and xij D 0 otherwise. Since each vertex appears in exactly one of the sets, we have
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Xe D e. Recall that e denotes the all-ones vector of appropriate size. The cardinality
constraints become XT e D m. We collect these matrices in the set Mm,

Mm WD fX W X is n 
 k; xij 2 f0; 1g; Xe D e; XT e D mg (2)

which is clearly in bijective correspondence with Pm. Partition matrices can be
characterized as follows.

Proposition 1. Let m D .m1; : : : ; mk/
T be a vector of nonnegative integers withP

i mi D n. The matrix X 2Mm if and only if

Xe D e; XT e D m; XTX D Diag.m/; X � 0: (3)

Proof. It is clear that any X 2 Mm satisfies the conditions (3). Conversely, let X
satisfy (3). Then 0 � xij � 1, hence x2ij � xij . We have tr.XTX/ D P

ij x
2
ij DP

i mi D n and eT Xe DPij xij D n. Therefore n DPij x
2
ij �

P
ij xij D n, and

we get equality throughout, thus x2ij D xij , so xij 2 f0; 1g. �

Let us consider a partition S D .S1; : : : ; Sk/ 2 Pm. In case that Sk is a vertex
separator which disconnects G into the components S1; : : : ; Sk�1, then there are no
edges between Si and Sj for any i < j < k. The set of edges with endpoints in
distinct partition blocks S1; : : : ; Sk�1 is given by

ı.S/ D [i<j<kı.Si ; Sj /:
Let us consider the minimum of jı.S/j over all S 2 Pm, which we denote by
cut .m/,

cut .m/ WD minfjı.S/j W S 2 Pmg:
In case that for a given partition vectorm, the graph G has a vertex separator of size
mk , separating G into k � 1 components of sizes m1; : : : ; mk�1, then there exists
some S 2 Pm such that ı.S/ D ;, thus cut .m/ D 0. On the other hand, if no such
separator exists then cut .m/ > 0.

Example 1. As an example, consider the graph from Table 2. It is clear that
cut ..m1;m2; 1// > 0, as the removal of a single vertex leaves the graph connected.
On the other hand cut ..5; 5; 2// D cut ..6; 4; 2// D 0. Take S3 D f11; 12g in the
first, and S3 D f8; 12g in the second case.

The optimal value cut .m/ can also be used to get information on the bandwidth
bw.G/, see [6]. Let m D .m1;m2;m3/

T . If cut .m/ > 0 then bw.G/ � m3 C
1. To see this, let � be an ordering of N such that bw.G/ D bw.�;G/. Taking
S1 D f��1.1/; : : : ; ��1.m1/g and S2 D f��1.m1Cm3C 1/; : : : ; ��1.n/g, we have
jSi j D mi . Since cut .m/ > 0, there exists an edge joining u 2 S1 and v 2 S2. But
�.u/ 2 f1; : : : ; m1g and �.v/ 2 fm1 Cm3 C 1; : : : ng, hence

bw.G/ � j�.u/ � �.v/j � .m1 Cm3 C 1/ �m1 D m3 C 1:
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This idea was exploited by Juvan and Mohar [8] to get bounds on various labeling
problems in graphs.

We are therefore interested to recognize whether for some given m we have
cut .m/ D 0 implying that Sk is a vertex separator. Alternatively, in the case k D 3
we conclude from cut .m/ > 0 that the bandwidth is at least m3 C 1.

3 Orthogonal Relaxation

We are now going to express jı.S/j for S 2 Pm as a quadratic function in 0-1
variables using the partition matrices X 2Mm. We define

B D
X

0<i<j<k

Eij D


Jk�1 � Ik�1 0

0 0

�

of order k. LetG be a graph with adjacency matrixA. We denote byL the Laplacian
matrix associated to A. It is defined as

L D Diag.Ae/ � A D
X

Œi;j �2E.G/
.ei � ej /.ei � ej /T :

Proposition 2. For S 2 Pm let X 2Mm be the associated partition matrix. Then

jı.S/j D 1

2
trAXBXT D 1

2
tr.�L/XBXT : (4)

Proof. Let X be the partition matrix of S 2 Pm. We use the column representation
X D .x1; : : : ; xk/ of X and get XBXT D P

0<i<j<k xix
T
j C xj xTi : Hence Y D

XBXT is the adjacency matrix of the complete .k � 1/-partite graph with partition
S1; : : : ; Sk . In particular, yij D 1 if and only if i; j are in distinct sets S1; : : : ; Sk�1.
Hence yij aij D 1 exactly if Œi; j � 2 ı.S/. Therefore trA.XBXT / D P

ij aij yij D
2jı.S/j, as each edge appears in the lower and the upper triangle of A. Note that
outside the main diagonal we have A D �L. Since diag.XBXT / D 0, we can
replace A by �L. �

Thus we get the following integer optimization problem to find cut .m/.

2cut .m/ D minftr.�L/XBXT W X 2Mmg:

This problem is NP-hard, so we are interested in tractable relaxations. We consider
the following set Fm, which contains all partition matrices X 2Mm, see (3),

Fm WD fX W Xe D e; XT e D m; XTX D Diag.m/g: (5)
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Note in particular that any X 2 Fm with X � 0 will be a 0-1 matrix in view of
Proposition 1.

It was pointed out in [13] that the set Fm can be parametrized using orthogonal
unit vectors. We recall the details. Let V be a matrix with V T e D 0; V T V D
In�1. The columns of V therefore form an orthonormal basis to the orthogonal
complement of the all-ones vector e 2 IRn.

Given m as before, we define Qm WD .pm1; : : : ;
p
mk/

T and let W be any matrix
satisfying

W T Qm D 0; W TW D Ik�1:
In other words, the columns of W represent the orthogonal complement to Qm in the
form of an orthonormal basis. This implies in particular that

WW T D Ik � 1
n
Qm QmT : (6)

In a similar way we have V V T D I � 1
n
eeT . Here is now the parametrization of

Fm in terms of orthogonal vectors. We use QM D Diag. Qm/.
Lemma 1 ([13]). In the notation above we have

Fm D f1
n
emT C VZW T QM W ZTZ D Ik�1g:

We substitute this parametrization for X 2 Fm into the objective function (4)
and get the following.

Proposition 3. For X 2 Fm we have

tr.LXBXT / D tr.V T LV /Z.W T QMB QMW /ZT ; (7)

where X D 1
n
emT C VZW T QM and ZTZ D Ik�1.

Proof. This follows upon substitution and using the fact that Le D 0. �

We summarize all this in the following main result of this section, which provides
the lower bound f for cut .m/.

Theorem 1. In the notation above we have f � cut .m/ where

2f WD minftr.�L/XBXT W X 2 Fmg
D minftr.�V TLV /Z.W T QMB QMW /ZT W ZTZ D Ik�1g: (8)

The key insight behind this theorem lies in the fact that optimizing a quadratic
function over the set Fm, which is described by the linear equations Xe D
e; XT e D m and by the orthogonality conditionXTX D Diag.m/ can equivalently
be done by eliminating the equations, and optimizing over orthonormal vectors
collected in Z.
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The case k D 3 was already investigated in [6], leading to a closed form
expression for f in terms of the eigenvalues of the two matrices involved. We will
see in the next section that the general case k > 3 leads in a similar way to a closed
form solution.

4 Eigenvalue Bounds Based on the
Hoffman-Wielandt Theorem

The optimal value in (8) has a closed form solution, which can be derived from a
theorem of John von Neumann [14], see also Hoffman and Wielandt [7]. We state
this result in the following form.

Theorem 2. LetA and B be symmetric matrices of order n and k with k � n. Then

minftr.AXBXT / W XTX D Ikg

D minf
kX

iD1
�i .B/��.i/.A/ W � W N 7! f1; : : : ; kg injectiong:

The minimum is attained for X D .p�.1/; : : : p�.k//QT , where p�.i/ is a normalized
eigenvector to ��.i/.A/ andQ D .q1; : : : ; qk/ contains the normalized eigenvectors
qi of �i .B/.

The result follows from the original papers [7, 14] by embedding the matrix B into
an n 
 n matrix by adding zero rows and columns. See also [12] for an elementary
proof and some historical notes. We therefore need to study the spectrum of V TLV

and of

QB WD W T QMB QMW:

We denote the eigenvalues of the Laplacian L by �1 D 0 � �2.L/ � : : : � �n.L/
with eigenvectors v1 D e; v2; : : : ; vn where vi ? e for i > 1.

Lemma 2. The eigenvalues of V TLV are �2.L/; : : : ; �n.L/ with eigenvectors
V T vi for i � 2.

Proof. Since V V T D I � 1
n
eeT we have V TLV.V T vi / D V TL.I � 1

n
eeT /vi D

�iV
T vi : �

To get a feeling for the spectrum of QB it is instructive to consider first the
following special case, where the cardinalities of S1 up to Sk�1 are all equal to one
another. Thus let b WD m1 D : : : D mk�1 > 0 and a WD mk D n � .k � 1/b > 0.

Lemma 3. Let k � 3. For b D m1 D : : : D mk�1 > 0 and a D mk D n � .k � 1/
b > 0, the eigenvalues of QB are �b (with multiplicity k � 2) and k�2

n
ab > 0.
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Proof. The eigenvalues of B D


Jk�1 � Ik�1 0

0 0

�
are k�2 and 0 with multiplicity

1 and �1 with multiplicity k � 2. With a D n � .k � 1/b and m D .b; : : : ; b; a/T

we get QMB QM D bB , therefore QB D bW TBW . Therefore the eigenvalues of QB
interlace those of bB . QB therefore has �b with multiplicity k � 3 and x and y as
eigenvalues. We can determine x and y from the equations

x C y � .k � 3/b D tr QB D �b
2

n
.k � 1/.k � 2/;

x2Cy2C.k�3/b2Dtr QB2Db2.k�1/.k�2/


1�2b

n
.k�2/Cb

2

n2
.k�1/.k�2/

�
:

A somewhat tedious calculation shows that x D �b; y D k�2
n
ab solve the

equations. �

In the general case, the eigenvalues of QB are not available in closed form as
before, but it can be shown that k � 2 eigenvalues are negative and exactly one is
positive.

Lemma 4. Let m D .m1; : : : ; mk/
T be given with k � 3 and mi > 0 andP

mi D n. Then QB has k � 2 negative eigenvalues and one positive eigenvalue.

Proof. Let us introduce QMB QM D


B0 0

0 0

�
: By Sylvester’s inertia theorem, the

eigenvalues of Jk�1 � Ik�1 and B0 have the same sign. Thus B0 has k � 2 negative
and one positive eigenvalue. Next we note that

QW D

0

BBBB@

p
m2

�pm1

: : :

: : :
p
mk

�pmk�1

1

CCCCA

spans the orthogonal complement of Qm, hence the QR decomposition of QW can be

assumed to satisfy QW D WR. Let us write W in the form W D


W0

w0

�
, where w0

denotes the last row of W . Then QB D W T . QMB QM/W D W T
0 B0W0. The first k � 1

rows of QW are linearly independent and equal to W0R, showing that W0 must be
invertible. This shows that QB and B0 also have the same inertia. �

Thus we have the following situation. The spectrum of �V TLV is given by

0 � ��2.L/ � : : : � ��n.L/:
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Let us denote the eigenvalues of QB by

ˇ1 � ˇ2 : : : � ˇk�2 < 0 < ˇk�1
in view of the previous lemma. This gives the following ‘closed form’ solution for
f from (8) which we collect in the following theorem as the main conclusion from
this section.

Theorem 3. In the notation from above we have

2f D minftr.�L/XBXT W X 2 Fmg D ��2.L/ˇ1� : : :��k�1.L/ˇk�2��n.L/ˇk�1:

The value is attained for X D 1
n
emT C .v2; : : : ; vk�1; vn/QTW T QM in view of

Theorem 2.

Proof. The correctness of the bound is a consequence of Theorem 2 in combination
with Lemmas 2 and 4. To see attainment, we recall from Proposition 3 that
X D 1

n
emT C V TZW T QM . Moreover, again using Lemmas 2 and 4 we

have Z D V.v2; : : : ; vk�1; vn/QT with QT QBQ D Diag.ˇ1; : : : ; ˇk�1/. Now
V V T .v2; : : : ; vk�1; vn/
D .v2; : : : ; vk�1; vn/ and the representation for X follows. �

In the special case where m1 D : : : D mk�1 D b and mk D a, m D .b; : : : ; b; a/,
we get a further simplification.

Corollary 1. Let b D m1 D : : : D mk�1 and a D mk . Then

2f D min
X2Fm

tr.�LXBXT / D b
k�1X

iD2
�i .L/ � k � 2

n
ab�n.L/; (9)

This result is used in [6] with k D 3 to get the following lower bound on bw.G/,

bw.G/ � n�2.L/
�n.L/

:

Unfortunately, this bound is in general rather weak.

Example 2. We consider again the graph from Table 2. Setting m D .5; 5; 2/, we
know from before that cut .m/ D 0. The lower bound from the previous corollary is

5�2.L/ � 5
6
�12.L/ D �2:4597:

The relevant Laplacian eigenvalues are �2.L/ D 0:4543 and �12.L/ D 5:6772

respectively. Since the lower bound is less than zero, one can not draw any
conclusion from it. Finally,
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n
�2.L/

�n.L/
� 0:96;

and we only get the trivial lower bound bw.G/ � 1.

Remark 1. In the case a D 0, i.e. partitioning into k � 1 blocks of equal size b, this
result has already been investigated in [13]. The case k D 3 with arbitrary m1 and
m2 is studied in [6]. The present theorem is in fact a straightforward generalization
of the techniques from [6] to the case with k > 3.

We recall that f is most useful in case that f > 0, because this implies cut .m/ �
f > 0: In the case f � 0 we can not draw any conclusions about cut .m/ being
positive or not. We note that f can be written in the form f D f1 C f2 where

2f1 WD ��2.L/ˇ1 � : : : � �k�1.L/ˇk�2 > 0 (10)

and
2f2 WD ��n.L/ˇk�1 < 0; (11)

hence there is no immediate conclusion about the sign of f .

5 Weight Redistribution

We are now going to take a more general viewpoint. Instead of just looking at the
graph G, where all its edges have weight aij D 1 8Œi; j � 2 E.G/ we now allow
these values to vary, but under the condition that they remain nonnegative and their
total sum equals jE.G/j. Thus let

S WD fx 2 IRE W x � 0;
X

Œi;j �2E.G/
xŒi;j � D jE.G/jg

denote the fundamental simplex on E.G/. We now consider the following family of
Laplacian matrices

L WD fL.x/ W L.x/ D
X

Œi;j �2E
xŒi;j �.ei � ej /.ei � ej /T W x 2 Sg:

The lower bound f is now a function of x given as

f .x/ D ��2.L.x//ˇ1� : : :��k�1.L.x//ˇk�2��n.L.x//ˇk�1 D f1.x/Cf2.x/;

using (10) and (11) and L.x/ 2 L .
The idea of weight redistribution has been used for instance by Boyd, Diaconis

and Xiao [2] to optimize the mixing rate of Markov chains. Göhring, Helmberg and
Reiss [5] investigate geometric properties of the eigenvector to the largest Laplacian
eigenvalue in a similar setting.
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In our context, we use f .x/ in the following way. In case that the initial bound
f D f .e/ > 0, we can draw conclusions about bw.G/. Otherwise, if f .e/ � 0, we
try to maximize f .x/ over x 2 S . In case that we find x 2 S such that f .x/ > 0 we
can still conclude that for L.x/ we have cut .m/ > 0, and therefore this also holds
for the original Laplacian L D L.e/.

Thus we need to investigate

f � WD maxff .x/ W x 2 S g:
We first note that the ordering of the eigenvalues ˇi shows that f1.x/ is a
concave function. Similarly, the largest eigenvalue is convex, hence f2.x/ is also
concave. We will in fact see that f � is the optimal value of a linear semidefinite
optimization problem. To see this, we need the following theorem of Anstreicher
and Wolkowicz [1].

Theorem 4 ([1]). Let A and B by symmetric matrices of order n. Then

minfhA;XBXT i W XTX D I g D maxftrSC trT W B˝A�S˝ I � I ˝T 	 0g:

Remark 2. The matrices S and T are of order n and represent the Lagrange
multipliers for the constraints XTX � I D 0;XXT � I D 0.

In our situation, the order k of B is much smaller than n so we need to adopt the
statement of the theorem accordingly. For a proof we refer to Povh and Rendl [11],
see also [12].

Theorem 5. Let A and B by symmetric matrices of order n and k respectively and
k � n. Then

minfhA;XBXT iWXTXDIkgDmaxftrSCtrT WB˝A�S˝I�I˝T 	 0;�T 	 0g:

Remark 3. The multiplier S of order k corresponds to the equation XTX D Ik ,
and T of order n to the (redundant) constraint I �XXT 	 0, therefore T also needs
to be semidefinite.

Combining all these results we are now in a position to express f � as the optimal
value of a semidefinite program. This also constitutes the main insight of this
section.

Theorem 6. In the notation above we have

2f � D maxff .x/ W x 2 S g
D maxftrS C trT W QB ˝ .�V TL.x/V / � S ˝ I � I ˝ T 	 0;
�T 	 0; x 2 S g:

The final problem is a semidefinite program in the matrix variable S of order k � 1,
the semidefinite matrix variable T of order n�1, the nonnegative variables x and and
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an additional semidefiniteness constraint on a matrix of order .n� 1/
 .k � 1/. We
are not suggesting to actually determine f � by solving this semidefinite program.
In fact, our goal is a bit more modest. We are happy to show that given f .e/ � 0,
we can exhibit some x 2 S such that f .x/ > 0.

Example 3. We consider again the graph from Table 2 and set m D .6; 5; 1/.
The initial lower bound from Theorem 3 is f .e/ D �0:121 and does not allow
us to draw any conclusions. After weight redistribution we get the improved bound
f � D 0:566, hence cut .m/ > 0. The respective optimizers X0 and X1 are

X0 D

0

BBBBBBBBBBBBBBBBBBB@

0:9368 �0:1322 0:1954

1:1261 �0:0732 �0:0529
0:9368 �0:1322 0:1954

0:8773 0:0265 0:0962

0:8827 �0:0656 0:1829

�0:0815 0:6538 0:4276

0:0808 1:1943 �0:2750
�0:2651 0:5855 0:6796

0:0808 1:1943 �0:2750
�0:1854 1:0391 0:1463

0:8620 0:3667 �0:2287
0:7486 0:3431 �0:0917

1

CCCCCCCCCCCCCCCCCCCA

; X1 D

0

BBBBBBBBBBBBBBBBBBB@

0:0718 0:9827 �0:0545
�0:1905 0:9344 0:2561

0:0718 0:9827 �0:0545
0:1644 0:8078 0:0278

0:1594 0:9825 �0:1419
1:0591 0:2521 �0:3112
1:0767 �0:2715 0:1948

1:0748 0:2879 �0:3627
1:0771 �0:2816 0:2044

1:1184 �0:2944 0:1760

0:1165 0:3308 0:5527

0:2005 0:2867 0:5128

1

CCCCCCCCCCCCCCCCCCCA

:

There is no separator of size 1, separating the graph into two pieces of roughly
equal size. Ideally, the optimizers X0 and X1 should be close to 0-1 matrices, which
they clearly are not. Note however, that rounding X1 yields the partitions S1 D
f6; 7; 8; 9; 10g; S2 D f1; 2; 3; 4; 5g with separator S3 D f11; 12g, while rounding
X0 does not even produce a partition.

In practical applications the graph G may be quite large. In this case it may
be sufficient to work with the function f .x/ directly by exploiting the fact that
f .x/ as an eigenvalue function can be evaluated, provided we are able to compute
the largest eigenvalue �n.L.x// and a few of the smallest eigenvalues of L.x/.
The associated eigenvectors provide a subgradient to f .x/. Thus a more modest
strategy, also suitable for very large scale problems, consists in using techniques
from subgradient maximization of concave functions to achieve this goal.

6 Some Practical Considerations

We have just seen that the optimal weight redistribution could be determined by
solving a single semidefinite optimization problem. For large problems however,
say n � 500, this is far beyond the capabilities of ordinary desktop computers.

On the other hand it is possible to work directly with f .x/. First we com-
pute the eigenvalue decomposition QT QBQ D Diag.ˇ1; : : : ; ˇk�1/. These data
will not change while maximizing f .x/. For x 2 S we need to calculate
the eigenvalues �2.L.x//; : : : ; �k�2.L.x//; �n.L.x// together with the associated
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eigenvectors v2; : : : ; vk�1; vn. This can be done by iterative methods which only
use subroutines calculating matrix times vector products, without actually needing
the matrix explicitly. This gives the function value f .x/ and also the minimizer
X D 1

n
emT C .v2; : : : ; vk�1; vn/QTW T QM 2 Fm of

2f .x/ D minftr.�L.x//XBXT W X 2 Fmg:

The matrix X contains nontrivial information which can be used for rounding it to
a partition matrix. Moreover, the eigenvectors can be used to compute a subgradient
g of f at x. Hence a search direction based on g and perhaps some previous
subgradients in the style of the bundle method will lead to a new trial point xC
and one iterates. Finally, also the weight redistribution vector x contains interesting
information. Which edges in the graph get high weight? What does this say about
good partitions?

All these questions will be further investigated in a companion paper, where the
theoretical results form the basis of several heuristic methods to get good partition
matrices for finding reorderings of small bandwidth or for identifying small vertex
separators.

Acknowledgements We thank an anonymous referee for several constructive suggestions to
improve the presentation.
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Exploiting Symmetries in Polyhedral
Computations

Achill Schürmann

Abstract In this note we give a short overview on symmetry exploiting techniques
in three different branches of polyhedral computations: The representation conver-
sion problem, integer linear programming and lattice point counting. We describe
some of the future challenges and sketch some directions of potential developments.

Key words Polyhedral computations • Symmetry • Representation conversion
• Integer linear programming • Ehrhart theory • Volume computations

Subject Classifications: 52Bxx, 90C10, 11P21

1 Introduction

Symmetric polyhedra such as the Platonic and Archimedean solids have not only
fascinated mathematicians since time immemorial. They occur frequently in diverse
contexts of art and science. Less known to a general audience, but of great
importance to modern mathematics and its applications, are higher dimensional
analogues of these familiar objects. One standard description is as a set of solutions
to a system of linear inequalities

P D fx 2 R
n W Ax � bg;

where A is a real m 
 n matrix and b 2 R
m. A prominent example is the n-cube

obtained by 2n inequalities ˙xi � 1. It has 2n vertices (extreme points) with
coordinates ˙1 and its group of symmetries is the hyperoctahedral group of order
2nnŠ.
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Linear models, and therefore polyhedra, are used in a wide range of mathematical
problems and in applications such as transportation logistics, machine scheduling,
time tabling, air traffic flow management and portfolio planning. They are central
objects in Mathematical Optimization (Mathematical Programming) and are for
instance heavily used in Combinatorial Optimization. Frequently studied symmetric
polyhedra have names like “Travelling Salesman”, “Assignment”, “Matching” and
“Cut”. For these and further examples we refer to [60] and the numerous references
therein. Over the years a rich combinatorial and geometric theory of polyhedra
has been developed (see [33, 69]). Symmetry itself is clearly a central topic in
mathematics, and through the spread of computer algebra systems like [GAP]
and [MAGMA], sophisticated tools from Computational Group Theory are widely
used today (see [37]). Nevertheless, although many polyhedral problems are
modeled with a high degree of symmetry, standard computational techniques for
their solution do not take advantage of them. Even worse, often the used methods
are known to work notoriously poorly on symmetric problems.

In this short survey we describe three main areas of polyhedral computations, in
which the rich geometric structure of symmetric polyhedra can potentially be used
for improved algorithms:

I: Polyhedral representation conversion using symmetry
II: Symmetric integer linear programming

III: Counting lattice points and exact volumes of symmetric polyhedra

There are multiple strong dependencies among the three topics and each one
has its theoretical and algorithmic challenges as well as important applications.
Before we take a closeup view on the three topics we give a brief introduction to
the different types of polyhedral symmetries and how these can be determined and
worked with.

What Are Polyhedral Symmetries?

The symmetries of a polyhedron can be of a purely combinatorial nature or they
can also have a geometric manifestation as affine symmetries, that is, as affine maps
of Rn preserving the polyhedron. Among these symmetries are the “more visually
accessible” isometries which are composed of translations, rotations and reflections.
All of the symmetries of the n-cube for example are part of its isometry group. There
exists a representation as a linear group in GLn.R/ and as a finite orthogonal group
of isometries. However, if we perturb the defining inequalities a bit, all of these
affine symmetries may be lost, while the new polyhedron is still combinatorially
equivalent to a cube, sharing all of its combinatorial symmetries. These are defined
as automorphisms of the polyhedral face lattice which encodes the combinatorial
structure of a polyhedron. We refer to our survey [10] for further reading on these
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different types of polyhedral symmetry groups. The study of combinatorial lattices
and their automorphisms is itself an active research area (see [53]). The same is
true for the study of possible isometry groups, respectively of finite orthogonal
groups in On.R/. Their classification becomes in a way impractical for n � 5

(see [MO37136]), despite the classification of finite simple groups (see [18]). Even
less is known about symmetry groups of polyhedra (see [57]). Here, an “implication
phenomenon” occurs, which has not much been studied so far. For instance, if a
4-gon has an element of order 4 among its affine symmetries, the 4-gon has to be
the affine image of a square (2-cube), with an affine symmetry group of order 8.
These kind of implications clearly can potentially be exploited algorithmically, for
example when detecting polyhedral symmetries.

It is important to note that the same abstract group can have different affine
representations. We think that a key ingredient for future algorithmic improvements
will be the use of geometric information coming with the affine representations
of polyhedral symmetry groups. By a basic result in representation theory there
is an invariant affine subspace I coming with each affine symmetry group. The
polyhedron splits nicely into an invariant partP\I and symmetric slices orthogonal
to it. These lie in fibers (pre-images) of the orthogonal projection onto I. In a way,
all of the symmetry is within these fibers.

Given a polyhedron with a group of symmetries, we say two vertices (or
inequalities) are equivalent, if there exists a group element that maps one to the
other. The set of vertices (and the set of facets/defining inequalities) splits into a
number of orbits (disjoint sets of equivalent elements). For example, the n-cube has
only one orbit of vertices and one orbit of facets. The same is true for all Platonic
polyhedra and their higher dimensional analogues. In contrast, the Archimedean
polyhedra like the soccer ball (truncated icosahedron) have more than one orbit of
facets, but only one orbit of vertices. In all of these examples, their combinatorial
symmetry group is equal to the group of affine symmetries. Its invariant affine
subspace is a single point, the barycenter of the vertices.

In general, for a polyhedron P with a group of affine symmetries, the vertices of
the polyhedron split into orbits O1; : : : ; Ol and the invariant part P \ I is equal to
the convex hull convfb1; : : : ; blg, with bi D .

P
x2Oi x/=jOi j being the barycenter

of orbit Oi . This is due to two facts: The barycenter map, taking a point to the
barycenter of its orbit, is an affine map. And second, the affine image of a convex
hull of given points is equal to the convex hull of their affine images.

Thus working with the lower dimensional polyhedron P\I and its vertices gives
us access to vertices of P . Orbits of integral points in P have barycenters at specific
locations in P \I. For instance, if the group acts transitive on the coordinates of Rn

then orbits have barycenters at integral multiples of
�
1
n
; : : : ; 1

n

	
. For more general

coordinate permutations the barycenters form a scaled copy of a standard lattice
(see [36]).
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How to Determine and Work with Symmetries?

If the symmetries of the polyhedron are not known, the first difficulty is their
determination and how to represent them. In general we like to work with as many
symmetries as possible. However, the combinatorial symmetries can usually not
be found without having full knowledge about the vertex-facet incidences of the
polyhedron (see [39]). In contrast, the group of affine symmetries can be determined
from the vertices or defining inequalities alone, by finding the automorphism group
of an edge colored graph. If P is given as the convex hull of its vertices x1; : : : ; xk ,
for instance, then the affine symmetry group can be obtained from the automorphism
group of the complete graph with k vertices and edge labels xtiQ

�1xj , where
Q D Pk

iD1 xixti . For details and a proof we refer to [11]. For further methods
to compute polyhedral symmetry groups we refer to [10]. Automorphism groups
of graphs can be computed with software like [bliss] or [nauty]. Given a
polyhedral description, the affine symmetries can conveniently be obtained directly
with our software [SymPol], which by now can also be used through [polymake].
For instance, given a polyhedron with its description contained in input-file,
simply call:

sympol --automorphisms-only input-file

If the symmetry group of a polyhedron (or parts of it) are given as a permutation
group, we can use sophisticated tools from Computational Group Theory. Each
element of the group is then viewed as a permutation of the index set f1; : : : ; mg
of the input, for instance of m defining inequalities. In practice, it is necessary
to work with a small set of group generators if the group is large, and there are
advanced heuristics to obtain such sets. Each face (and in particular each vertex) of a
polyhedron is determined by a number of inequalities that are satisfied with equality;
it can therefore be represented by a subset of f1; : : : ; mg. Given generators of a large
permutation group and two subsets that represent faces, a typical computational
bottleneck is to decide if both are in the same orbit. The fundamental data structures
used for this in practice are bases and strong generating sets (BSGS, see [37, 64]).
Based on them, backtrack searches can be used to perform essential tasks, such as
deciding on (non-)equivalence, obtaining stabilizers or fusing and splitting orbits.
An elaborate version is the partition backtrack introduced by Leon [47]. These
backtracking methods work quite well in practice, although from a complexity point
of view the mentioned problems are thought to be difficult (see [49]). Although
computer algebra systems like [GAP] and [MAGMA] provide functions to work
with permutation groups, for performance reasons it is often desirable to use
problem specific code (see for example [41]). Nevertheless, all of these approaches,
including [GAP] and [MAGMA], rely on efficient implementations of some partition
backtrack. Therefore we have created a flexible C++-implementation [PermLib] of
Leon’s partition backtrack (see [55]) that can serve as a basis for the development of
algorithms which combine tools from Computational Group Theory and Polyhedral
Combinatorics. By now, [PermLib] has successfully been integrated into current
versions of [SymPol,polymake] and [SCIP].
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I. Representation Conversion

By a fundamental theorem in polyhedral combinatorics, the Farkas-Minkowski-
Weyl theorem, every polyhedron has a second representation as the convex hull
of finitely many vertices (extreme points) and, in the unbounded case, some rays
(see [69]). Converting representations from inequalities to vertices (and rays),
or vice versa, is a frequent task known as representation conversion problem
(or convex hull problem). The importance of these conversions is due to the fact that
some problems, like the maximization of a nonlinear convex function, are easy to
solve in one presentation, but not in the other. Often, vertices represent objects that
one would like to classify. These objects can be quite diverse, for instance perfect
quadratic forms (see [25]) or the elementary flux modes in biochemical reaction
systems (see [63]). Representation conversions are also often used to analyze
polyhedra in Combinatorial Optimization (see [60]). So far there exists no efficient
algorithm for finding all the vertices of a polyhedron. In fact, the existence of such an
algorithm appears to be unlikely, as it is NP-complete for polyhedra that are possibly
unbounded (see [42]). Nevertheless, several algorithms and implementations are
widely used in practice (see for example [cdd] and [lrs] which are also available
through [polymake]).

Quite often one is only interested in one representative for each orbit of vertices
(or inequalities) in a representation conversion. For example, when maximizing a
nonlinear convex function on a polyhedron, or when vertices and inequalities in
one orbit correspond to equivalent objects of some sort. Representation conversion
up to symmetries has been considered in different contexts, and depending on the
problem, different techniques have been successful. The most successful approaches
currently known are the Incidence Decomposition Method and the Adjacency
Decomposition Method (see for instance [15, 20, 21, 25–27]). Both methods de-
compose the problem into a number of lower dimensional subproblems. They can
be used recursively and can be parallelized (see [16, 22]). Loosely speaking, the
Incidence Decomposition Method fixes an orbit of the input, whereas the Adjacency
Decomposition Method fixes an orbit of the output and then lists all “neighboring”
orbits. For details we refer to our survey [11]. We note that it is a priori not clear
which method works best. We think best results can be achieved by a combination
of different algorithms. All methods known so far do not use geometric insights and
still rely on subproblem conversions that do not exploit available symmetry.

Our software [SymPol] and the experimental [GAP] package [Polyhedral]
provide implementations of decomposition methods. These preliminary tools have
already successfully been used in our own work [3, 24–27], but also by others:
For instance, Kumar [44] obtains a classification of elliptic fibrations that was
previously impossible. Jacques Martinet writes in [52] about the result in [25]:
“It seems plainly impossible to classify 8-dimensional perfect lattices.” [SymPol]
can also be used to verify cumbersome calculations in proofs, like the edge-graph
diameter analysis of the recently discovered, celebrated counterexamples to the
Hirsch conjecture (see [56, 58]). For example, with the call
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sympol --idm-adm-level 0 1 --adjacencies input-file

where input-file contains the 48 vertices of the 5-dimensional Santos pris-
matoid (see Table 1 in [58]), SymPol returns a text file with a description of
the adjacency graph of facets up to symmetry. Using a visualization tool like
[Graphviz], the produced textfile, say adjacencies.dot, can then easily be
turned into an image with a command like

neato -Tpng -o adjacencies.png adjacencies.dot

From the obtained image (see figure) it is easily verified that the shortest path from
facets 1–12 is of length 6, which is the key calculation in the proof of [58].

Let us make a remark on the increasing importance of mathematical software
in general: As sophisticated computational tools become an increasingly impor-
tant basis for high-level mathematical research, their creation also becomes an
increasingly important service to the mathematical community. More and more
mathematicians use computers in the creative process and to verify standard parts
of difficult larger proofs (see e.g. [17, 34, 35]). Timothy Gowers [32] even guesses
that at the end of the twenty-first century, computers will be better than humans in
proving theorems. Although we would not go as far as Gowers, we are convinced
that in the future, parts of proofs will routinely be performed by computers. With
a symbiosis of human and computer reasoning we will see substantial advances
in mathematical problems. In this way reliable mathematical software becomes an
increasingly important part of mathematics itself.
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Challenges

One of the most challenging polyhedral conversion problems arises in conjunction
with lattice sphere packing problem, a classical problem in the Geometry of
Numbers. Since its solution up to dimension 8 almost 80 years ago, it is still
open in dimension n � 9, with the exception of dimension 24 (see [17, 52]). One
way to approach this problem is via finding the vertices of a locally polyhedral
object known as Ryshkov polyhedron (see [61] for details). The currently open 9-
dimensional case leads to a challenging representation conversion problem of a
45-dimensional Ryshkov polyhedron. Main difficulties here come from faces that
carry the symmetries of the exceptional Weyl group E8. We think that this problem
is a particular nice test case, as all finite rational matrix groups appear as stabilizers
of faces in the Ryshkov polyhedron. So in a way, this challenging representation
conversion problem gives a universal test case for any future algorithmic advances.

II. Integer Linear Programming

Linear programming is the task of maximizing (or minimizing) a linear function on
a polyhedron given by linear inequalities. It serves as a fundamental basis for theory
and computations in Mathematical Optimization (see [66]).

In Integer linear programming vectors to be optimized are restricted to integers
(number of goods, etc.) or even to 0=1 entries (encoding a simple yes-no-decision).
Integer linear programming is widely used in practical applications. In fact, “the
vast majority of applications found in operations research and industrial engineering
involve the use of discrete variables in problem formulation” (from a book review of
[68]). In many of these problems the involved polyhedra have symmetries (see [60]).
From a complexity point of view, integer programming is NP-complete (see [40]),
whereas linear programming can be solved in polynomial time. For fixed dimension,
polynomial time algorithms are known for integer linear programming (see [46]).

A linear programming problem max ctx with x 2 P is invariant with respect to
a linear symmetry group � � GLn.R/, if the polyhedron P and the utility vector
c 2 R

n are preserved by it, that is, if �P D P and � c D c. Any solution to the
linear program, its orbit and the barycenter of its orbit lie in the same hyperplane
orthogonal to the utility vector and therefore have the same utility value. Due to the
convexity of polyhedra, the barycenter is also a feasible solution. As it lies in the
invariant linear subspace I of � , the linear programming problem always has a
solution attained within I. Thus it is possible to solve the lower-dimensional linear
program max ctx with x 2 P \ I. Such symmetry reductions are often referred
to as “dimension reduction” or “variable reduction”. The symmetries of an integer
linear program are more restrictive, as also Z

n has to be left invariant by the group � .
Exploiting symmetries in integer programming is much more difficult than

in linear programming. In fact, symmetries are rather problematic, as standard
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methods like branch-and-bound or branch-and-cut (see [59]) have to solve many
equivalent sub-problems in such cases. In contrast to linear programming, it is not
possible to simply consider the intersection with the invariant affine subspace, as
integral solutions can lie outside. Nevertheless, in recent years it has been shown
that it is possible to exploit symmetries in integer programming; see for example
[14,30,38,48,50,54]. These specific methods fall into two main classes: They either
modify the standard branching approach, using isomorphism tests or isomorphism
free generation to avoid solving equivalent subproblems; or they use techniques to
cut down the original symmetric problem to a less symmetric one, which contains
at least one element of each orbit of solutions. For further reading we refer to the
excellent survey [51].

As many real world applications can be modeled as (mixed) integer programming
problems, a variety of professional software packages are available. Two of the
leading ones, [CPLEX] and [Gurobi], have by now included some techniques to
avoid or use symmetry. Unfortunately it is publicly not known what exactly is done.

None of the known methods uses the rich geometric properties of the involved
symmetric polyhedra. Using the fact that solutions are “near” the linear invariant
subspace, it is possible to do better. For the special case of a one dimensional
invariant subspace, with the full symmetric group Sn acting transitively on the
coordinates in R

n, this is shown in [9]. We have highly promising results with
a generalization to arbitrary symmetries in [36]: In particular for direct products
of symmetric groups, we not only beat state-of-the-art professional solvers, but
even solve a challenging, previously unsolved benchmark problem from [MIPLIB]
(instance toll-like).

The main ingredient is the observation that any feasible integer linear program-
ming problem with a non-trivial affine symmetry group contains certain core-sets
of integral vectors that can be used as a kind of test-set, that is, if non of the points
from the core-set is contained in the feasible region, no integral point is. Assume
� � GLn.R/ is a linear representation of a given symmetry group and I denotes
its invariant linear subspace containing the utility vector c. Then we say an integral
point z in a fiber (pre-image) of the orthogonal projection onto I is in the core-set of
the fiber if the convex hull of its orbit � z does not contain any integral points aside
those of the orbit itself. Then, by definition, representatives of each orbit � z in the
core-set can be used as a test-set for feasibility of a fiber.

Using the Flatness Theorem (from the Geometry of Numbers), it can be shown
that core-sets are finite for irreducible groups. For direct products of symmetric
groups acting on some of the coordinates, the test-set containing only representa-
tives of orbits even reduces to a single point. Besides that not much is known so far
about core-sets. Nevertheless, we think that they will serve as a powerful tool in the
design of new algorithms for symmetric integer linear programs.
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Challenges

Challenging examples of symmetric integer linear programs can be found in bench-
mark libraries like [MIPLIB]. These problems come from diverse contexts and have
not been chosen to be particular symmetric. Nevertheless many symmetries can
be found and exploiting them algorithmically, beating state-of-the-art commercial
solvers, remains a challenging test case for future advances.

Some particular symmetric integer linear programming problems coming from
difficult combinatorial problems in mathematics have been collected (and worked
on) by Francois Margot at [symlp] (see for instance also [50] and [14]). As these
problems have been intensively worked on, improving on the currently known
results is certainly a hard problem. So this gives a very good benchmark for future
improvements as well.

III. Lattice Point Counting and Exact Volumes

Often it is desirable to know how many integral solutions there are to a system of
linear inequalities. Such problems occur frequently in Combinatorics (see [65]) but
also in disciplines such as representation theory (Kostka and Littlewood-Richardson
coefficients, see [8] and [43]), in statistics (contingency tables, see [23]), in voting
theory (see [67] and [31]), and even in compiler optimization (see [Graphite]).
We refer to [19] for an overview. Counting lattice points is moreover intimately
related to integer linear programming (see [45]).

By a breakthrough result of Barvinok [4] in the 1990s, counting lattice points
inside a rational polyhedron can be done in polynomial time for fixed dimension.
His ideas are based on evaluating “short rational generating functions” and on
constructing unimodular triangulations. His algorithm has been implemented in
[LattE] and [barvinok]. The same applies to a slightly more general setting,
in which one considers a one-parameter family of dilations �P , with P a rational
polyhedron and � an integer. By a theory initiated by Ehrhart in the 1960s (see
[7, 29]), it is possible to obtain the number of integral points in the dilate �P by
a quasi-polynomial in �, with its degree equal to the dimension of P . A quasi-
polynomial p is determined by a finite number of polynomials pi , i D 0; : : : ; k,
via the setting p.�/ D pi .�/ for all � congruent to i mod k. In case of P being
integral, the Ehrhart quasi-polynomial simply is a polynomial in �. In general, the
quasi-polynomial can also be computed in polynomial time by Barvinok methods
(see [5]). Often, the main interest is only in the leading coefficient of the Ehrhart
quasi-polynomial, which is the volume of P . Computing the volume itself is already
a #P -hard problem (see [12, 28]).

Despite the fact that many counting problems have plenty of symmetries, they
have not been exploited systematically so far. In other words, exploiting symmetry
in lattice point counting, or more generally in Ehrhart theory, is a vastly open
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subject. For volume computations the situation seems a bit better. For very special
volume computations symmetry can be exploited (see [26]). However, there is still a
huge potential for improved methods. Many of the difficulties originate from the fact
that the “Barvinok methods” used to solve them rely on unimodular triangulations
of polyhedral cones that usually do not inherit the symmetry of the polyhedron. New
roads will have to be taken here.

In [62] it is shown that it is possible to exploit symmetries by using a
decomposition into symmetric slices, together with a weighted Ehrhart theory.
The theoretical background and first implementations for such a theory have just
recently been developed (see [2, 13]). The polyhedral decomposition used in [62]
is rather special: There is a linear invariant part and symmetric slices orthogonal to
it, which are cross-products of regular simplices (simplotopes). A generalization to
other decompositions is easily obtained, whenever there is a decomposition into an
invariant part and slices orthogonal to it for which the Ehrhart quasi-polynomial is
known. Note that the decomposition can easily be obtained in a automated way, as
the invariant part is the intersection of the given polyhedron with the affine space
fixed by its symmetry group.

For exploiting symmetry in corresponding volume computations, the integration
of polynomials over a polyhedron is used. Using Brion-Lawrence-Varchenko theory,
this can efficiently be done by integrating sums of powers of linear forms (see [1]).
The new decomposition approach of [62] also allows to obtain exact volumes
that have not been computable before. This is demonstrated on three well studied
examples from Social Choice theory, which give the exact likelihood of certain
election outcomes with four candidates that were previously known for three
candidate elections only (see [31]).

Challenges

In Social Choice theory we face a large amount of challenging problems related to
probability calculations of voting situations with four and more candidates. The only
known results in the context of the “polyhedral model” (IAC hypothesis) appear to
be those in [62], which are obtained by exploiting polyhedral symmetry as described
above.

A challenging benchmark volume computation that several researchers previ-
ously have looked at is the volume of the Birkhoff polytope Bn (also known as
perfect matching polytope of the complete bipartite graphKn;n). The current known
record is the volume of B10 due to Beck and Pixton [6], using a complex-analytic
way to compute the Ehrhart polynomial. The computation of the volume of B11
would certainly be quite a computational achievement.
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Conclusions

We expect that symmetry exploiting techniques for polyhedral computations can be
vastly improved by using geometric properties that come with affine symmetries of
polyhedra. Concentrating on improvements in polyhedral computations with affine
symmetries is practically no restriction: If a polyhedron is given, either by linear
inequalities or vertices and rays, the affine symmetries of the (potentially larger)
combinatorial symmetry group are practically the only ones we can compute.

For polyhedral representation conversions we see potential in enhancing de-
composition methods through the use of geometric information like fundamental
domains, classical invariant theory and symmetric polyhedral decompositions. For
integer linear programming we expect that a new class of algorithms based on
the concept of core points will help to exploit symmetry on difficult symmetric
integer linear programming problems. For exact volume computations and counting
of lattice points, there is still a lot of potential for new ideas using symmetry. Overall,
we think symmetry should be exploitable whenever it is available. For this goal to
be reached there seem still quite some efforts necessary though.
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11. Bremner, D., Dutour Sikirić, M., Schürmann, A.: Polyhedral representation conversion up
to symmetries. In: CRM Proceedings & Lecture Notes, Montreal, vol. 48, pp. 45–71. AMS,
(2009)

12. Brightwell, G., Winkler, P.: Counting linear extensions. Order 8, 225–242 (1991)

http://arxiv.org/abs/1011.1602
http://dx.doi.org/10.4171/052
http://dx.doi.org/10.4171/052
http://arxiv.org/abs/math/0305332
http://arxiv.org/abs/math/0305332
http://dx.doi.org/10.1007/s10107-011-0487-6
http://dx.doi.org/10.1007/s10107-011-0487-6
http://arxiv.org/abs/1210.0206


276 A. Schürmann
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Conditions for Correct Sensor Network
Localization Using SDP Relaxation

Davood Shamsi, Nicole Taheri, Zhisu Zhu, and Yinyu Ye

Abstract A Semidefinite Programming (SDP) relaxation is an effective
computational method to solve a Sensor Network Localization problem, which
attempts to determine the locations of a group of sensors given the distances between
some of them. In this paper, we analyze and determine new sufficient conditions
and formulations that guarantee that the SDP relaxation is exact, i.e., gives the
correct solution. These conditions can be useful for designing sensor networks
and managing connectivities in practice. Our main contribution is threefold:
First, we present the first non-asymptotic bound on the connectivity (or radio)
range requirement of randomly distributed sensors in order to ensure the network
is uniquely localizable with high probability. Determining this range is a key
component in the design of sensor networks, and we provide a result that leads to a
correct localization of each sensor, for any number of sensors. Second, we introduce
a new class of graphs that can always be correctly localized by an SDP relaxation.
Specifically, we show that adding a simple objective function to the SDP relaxation
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model will ensure that the solution is correct when applied to a triangulation graph.
Since triangulation graphs are very sparse, this is informationally efficient, requiring
an almost minimal amount of distance information. Finally, we analyze a number
of objective functions for the SDP relaxation to solve the localization problem for a
general graph.

Key words Sensor network localization • Graph realization • Semidefinite
programming

Subject Classifications: 90C22, 90C46, 90C90, 90B18

1 Introduction

Graph Realization is a commonly studied topic which attempts to map the nodes in
a graph G.V;E/ to point locations in Euclidean space based on the non-negative
weights of the edges in E; that is, the weight of each edge corresponds to the
Euclidean distance between the incident points. There are a number of applications
of the graph realization problem [9, 13, 16, 21, 25]. In this paper, we focus on the
application to Sensor Network Localization (SNL).

A sensor network consists of a collection of sensors whose locations are
unknown, and anchors whose locations are known. A common property of a sensor
network is that each sensor detects others within a given connectivity (or radio)
range and determines the distance from itself to these nearby sensors. Given this set
of known distances, the goal is to determine the exact location of each sensor. The
problem becomes a graph realization problem by forming the weighted undirected
graph G.V;E/, where the node set V represents the sensors and each non-negative
weighted edge in E represents a known distance between two sensors. A number of
approaches have been proposed to solve this problem [17, 27–29].

The SNL problem has received a lot of attention recently because of the formu-
lation of its relaxation as a Semidefinite Program (SDP) [2, 10, 11, 24, 30, 32, 33].
This formulation can find the exact locations of the sensors, given that the graph
possesses certain properties.

Definition 1. A correct localization, or a correct solution, provides a set of points
that is exactly equal to the sensor locations. That is, the solution not only solves
a given formulation, but it provides the correct sensor locations in the desired
dimension.

In this paper, we present a number of additional sufficient conditions that
guarantee unique localizability (and hence a correct localization) of the SDP
relaxation of the SNL problem. These conditions can be useful for designing sensor
networks and managing connectivities in practice.



Conditions for Correct Sensor Network Localization Using SDP Relaxation 281

1.1 Background

We are given a graph G.V;E [ NE/ in a fixed dimension d , where the nodes, or
points, of V are partitioned into two sets: the set Va D fa1; : : : ; amg of m anchors
(where m � d C 1) whose locations are known and the set Vx D fx1; : : : ; xng of
n sensors, whose locations are unknown. The edge set also consists of two distinct
sets: the set E D f.i; j / W i; j 2 Vxg of edges between sensors, and the set NE D
f.k; j / W k 2 Va; j 2 Vxg of edges between an anchor and a sensor. Moreover,
for each .i; j / 2 E (or .k; j / 2 NE) the Euclidean distance between sensor i and
sensor j (respectively, anchor k and sensor j ) is known as dij (respectively Ndkj ).
The problem of finding the locations of the sensors can be formulated as finding
points x1; x2; : : : ; xn 2 R

d that satisfy a set of quadratic equations:

�� xi � xj
��2 D d2ij ; 8 .i; j / 2 E

�� ak � xj
��2 D Nd2kj ; 8 .k; j / 2 NE: (SNL-norm)

From this, a number of fundamental questions naturally arise: Is there a localization
or realization of xj ’s that solves this system? If there is a solution, is it unique?
And is there a way to certify that a solution is unique? Is the network instance
partially localizable, i.e., is the localization solution for a subset of the sensors
unique? These questions were extensively studied in the graph rigidity and discrete
geometry communities from a more combinatorial and theoretical prospective
(see [15, 19, 20, 22] and references therein). However, the question of whether there
is an efficient algorithm to numerically answer some of these questions remains
open.

The SDP relaxation model (SNL-SDP) and corresponding method aim to answer
these questions computationally (see [4, 6, 11, 18, 30, 34]). Let ei 2 R

n represent
the i th column of the identity matrix in R

n�n, and define the symmetric matrices
Aij WD .0I ei � ej /.0I ei � ej /T and NAkj WD .ak I �ej /.ak I �ej /T , where 0 2 R

d is
the vector of all zeros. The SDP relaxation can be represented as:

maximize 0
subject to Z.1Wd;1Wd/ D Id

Aij �Z D d2ij ; 8.i; j / 2 ENAkj �Z D Nd2kj ; 8.k; j / 2 NE
Z 	 0:

(SNL-SDP)

Here, Z.1Wd;1Wd/ represents the upper-left d -dimensional principle submatrix of Z,
the matrix dot-product refers to the sum of element-wise products A � B DP

ij AijBij , and Z 	 0 means that the symmetric variable matrix Z is positive
semidefinite. Note that problem (SNL-SDP) is a convex semidefinite program and
can be approximately solved in polynomial time by interior-point algorithms.
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One can see that the solution matrixZ 2 R
.dCn/�.dCn/ of (SNL-SDP) is a matrix

that can be decomposed into submatrices,

Z D


I X

XT Y

�
:

The constraint Z 	 0 holds if and only if Y 	 XTX . If Y D XTX , then
the above formulation finds a matrix Z such that the columns of its submatrix
X D �x1 x2 � � � xn

�
satisfy all quadratic equations in (SNL-norm).

Definition 2. A sensor network is uniquely localizable if there is a unique X 2
R
d�n whose columns satisfy (SNL-norm), and there is no NX 2 R

h�n, for h > d ,
whose columns satisfy (SNL-norm) and NX ¤ .X I 0/. In other words, there is
no nontrivial extension of X 2 R

d�n into higher dimension h > d that also
satisfies (SNL-norm) [30].

Note that the notion of unique localizability is stronger than the notion of global
rigidity. A sensor network is globally rigid only if there is a unique X 2 R

d�n that
satisfies (SNL-norm), but it may also have a solution in a higher dimension space,
that is a nontrivial extension of X 2 R

d�n, which satisfies (SNL-norm) [1, 30].
The following theorem was proved in [30]:

Theorem 1. An SNL problem instance is uniquely localizable if and only if
the maximum rank solution of its SDP relaxation (SNL-SDP) has rank d , or
equivalently, every solution matrixZ of (SNL-SDP) satisfies Y D XTX . Moreover,
such a max-rank solution matrix can be computed approximately in polynomial
time.

The theorem asserts that the certification of a uniquely localizable network instance
can be achieved by solving a convex optimization problem; the proof is constructive
and produces a unique realization or localization solution for the original prob-
lem (SNL-norm).

The dual of the SDP relaxation (SNL-SDP)

minimize Id � V C
X

.i;j /2E
yij d

2
ij C

X

.k;j /2 NE
wkj Nd2kj

subject to



V 0

0 0

�
C

X

.i;j /2E
yijAij C

X

.k;j /2 NE
wkj NAkj 	 0 (SDP-dual)

is also useful, in that the solution to the dual tells us key properties about the primal.
We define the dual slack matrix U 2 R

.dCn/�.dCn/ as

U D


V 0

0 0

�
C

X

.i;j /2E
yijAij C

X

.k;j /2 NE
wkj NAkj ;
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for V 2 R
d�d . The dual slack matrix U is optimal if and only if it is feasible

and meets the complementarity condition, ZU D 0. If complementarity holds,
then rank.Z/C rank.U / � .d C n/, and since rank.Z/ � d , this means that
rank.U / � n. Thus, if an optimal dual slack matrix has rank n, then every solution
to (SNL-SDP) has rank d [30]. In fact, we have a stronger notion on localizability:

Definition 3. A sensor network is strongly localizable if there exists an optimal
dual slack matrix with rank n.

Again, such a max-rank dual solution matrix can be computed approximately in
polynomial time using SDP interior-point algorithms.

1.2 Our Contributions

In this paper, we present new conditions that guarantee unique localizability of the
SDP relaxation of the problem, i.e., conditions that ensure the SDP will give the
correct solution so that the sensor network can be localized in polynomial time.
We also enhance the relaxation such that the new SDP relaxation will produce a
correct solution in dimension d to satisfy (SNL-norm), even when the standard SDP
relaxation (SNL-SDP) may not. More precisely, our result is twofold:

1. A very popular graph in the context of sensor network localization is the unit-disk
graph, where any two sensor points (or a sensor point and an anchor point) are
connected if and only if their Euclidean distance is less than a given connectivity
radius r . It has been observed that when the radius (or radio range) increases,
more sensors in the network can be correctly localized. There is an asymptotic
analysis to explain this phenomenon when the sensor points are uniformly
distributed in a unit-square [3]. In this paper, we present a non-asymptotic
bound on the radius requirement of the points in order to ensure the network
is uniquely localizable with high probability. Specifically, we decompose the
area into sub-regions, which allows us to analyze whether the locations of
points in each sub-region can be determined, as opposed to analyzing each point
individually. We then determine the probability that the locations of all sensors
can be determined, given a specified concentration of the sensors in a given area.
This may have practical impact by providing guidance on communication power
ranges that ensure the network is uniquely localizable.

2. The basic SDP localization model (SNL-SDP) is an SDP feasibility problem.
An open question has been to determine whether adding a certain objective
function to the basic model improves localizability of the problem; that is, if the
SDP feasible region contains high-rank solutions, is the SDP optimal solution
guaranteed to be unique and low-rank with a certain objective? We give an
affirmative answer for a generic class of graphs, by identifying an objective
function that will always result in a correct localization for this class of graphs.
Our result may also have an influence on Compressed Sensing, which uses an
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objective function to produce the sparsest solution. Based on this idea, we present
numerical results by comparing several SDP objective functions to illustrate their
effectiveness.

Moreover, although our theoretical analyses are based on exact distance mea-
surements, similar extensions of our model (established in earlier SDP work) would
be applicable to noisy distance data.

1.3 Paper Organization

The organization of this paper is as follows. First, Sect. 2 derives a lower bound for
the connectivity radius in a sensor network that guarantees unique localizability with
high probability. In Sect. 3, we prove that given a triangulation (i.e., a planar, chordal
and convex) graph, if the sum of the distances between nodes that do not have an
edge between them is maximized, then the graph will be strongly localizable. We
use this idea, and test a number of heuristic objective functions on a large number of
random sensor networks to determine how well each works in practice. Our results
for these heuristics are presented in Sect. 4.

2 Bounding the Connectivity Radius

In this section, we consider the unit-disk graph model [7, 8, 14] for sensor
networks, where the Euclidean distance between any two sensor points (or a sensor
point and an anchor point) is known (i.e., the two points are connected) if and only
if the distance between them is less than a given connectivity radius r . Assuming
that the sensor points are randomly distributed in a region, we then establish a lower
bound on radius r that guarantees unique localizability, with high probability, of the
sensor network formed based on radius r . We do this by establishing a lower bound
on radius r to ensure that the unit-disk graph is a .d C 1/-lateration graph, which is
a sufficient condition for unique localizability.

Definition 4. For some d; n � 1, the graph G.V;E/ is a (d+1)-lateration graph if
there exists a permutation of the points, f�.1/; �.2/; : : : ; �.n/g, such that the edges
of the sub-graph �.1/; : : : ; �.d C 1/ form a complete graph, and each successive
point �.j / for j � dC2 is connected to dC1 points in the set f�.1/; : : : ; �.j�1/g.
This permutation of the points, � , is called a .d C 1/-lateration ordering.

It is shown in [35] that if a sensor network graph contains a spanning .d C 1/-
lateration graph and the points are in general position, then it is uniquely localizable.
Zhu et al. [35] provide a rigorous proof, which is based on the intuitive concept that
given d C 1 points in general position forming a complete graph, the locations of
the points can be always be uniquely determined, and the location of any point
connected to d C 1 points with known locations can also be determined.
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Define r.p/ to be the smallest connectivity radius of the randomly distributed
sensor points that ensures the network is uniquely localizable with probability at
least p. To find a lower bound on r.p/, we can find a connectivity radius for which
the unit-disk graph G.V;E/ will contain a spanning .d C 1/-lateration graph with
at least probability p.

We approach the problem by considering a unit hypercube H D Œ0; 1�d , which
contains all the sensor points. We then split the region H into a grid ofM equal sub-
hypercubes in dimension d , say h1; h2; : : : ; hM � H, where each sub-hypercube hi
will have a volume of 1=M , and the length of each of its edges will be ` WD 1= d

p
M .

Without loss of generality, we can assumeM D bd , where b is a positive integer and
b � 3. Similarly, if the region considered is a hyper-rectangle in dimension d , we
can assume M D b1 � b2 � � � bd , where bi � 3 for i D 1; : : : ; d are positive integers.
This partition will allow us to analyze the probability that the locations of sensors
in a given region can be determined, as opposed to analyzing each individual point.

2.1 Ensuring a Clique in the Graph

Since a .d C 1/-lateration ordering on the points must begin with a .d C 1/-clique,
we first find a lower bound on the radius r to ensure there exists at least one clique
of d C 1 points in the graph.

Proposition 1. Let H contain n points, and r � `pd D
p
d

d
p
M

and M � n�1
d

(or

equivalently r � d
p
d
p
d

d
p
n�1 ). Then, there exists at least one clique of d C 1 points in

the unit-disk graph G.V;E/.

Proof. Note that
p
d

d
p
M

is the length of the diagonal of each sub-hypercube hi . Thus,

if r is lower-bounded by the given value, then every point in a sub-hypercube will be
connected to any other point in the same sub-hypercube. Furthermore, since there
are at most n�1

d
sub-hypercubes, by the pigeon-hole principle, at least one of them

contains at least .d C 1/ points and they must form a clique of d C 1 points in the
unit-disk graph with given radius r .

In what follows, we fix n D d � M C 1 D d � bd C 1. We will initialize the
spanning .dC1/-lateration graph construction by choosing r according to this lower
bound, and let the points in the .d C 1/-clique be the first d C 1 points in the
lateration ordering. Since these points are randomly distributed, they must be in
general position with probability one. Thus, we may assume that these d C 1 points
are anchors for the sensor network. This assumption is without loss of generality,
because our bound on the radius r established in the following sections will be much
greater than the bound specified in Proposition 1, simply because we need to ensure
that not only does there exist a clique of d C 1 points, but also all sensor points in
H form a spanning .d C 1/-lateration graph with a high probability.
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2.2 Binomial Distribution Model

One way to let the sensor points be randomly distributed throughout the area of
H is to let the points be binomially distributed throughout each sub-hypercube of
H. More specifically, the number of points, Yi , placed in each sub-hypercube hi ,
for i D 1; : : : ;M , will be independently and binomially generated according to
Yi � B

�
n; 1

M

	
with n D d �M C1 D d �bd C1. Once Yi is generated, we let these

Yi sensor points be arbitrarily placed in general position within sub-hypercube hi .
Using this binomial distribution model, let Sn D PM

iD1 Yi denote the total
number of points in the hypercube H. Since the Yi values are independently and
identically distributed and all sub-hypercubes are equally sized, the total number
of points will be more or less evenly distributed in the entire hypercube H.
Furthermore, by properties of the binomial distribution,

E ŒSn� DM � E ŒY1� DM
� n
M

�
D n

Var .Sn/ DM � Var .Y1/ DM �


n

M



1 � 1

M

��
D n



1 � 1

M

�
:

Thus, Sn
n
! 1 almost surely and the assumption of binomially distributed sensor

points throughout each sub-hypercube is statistically equivalent to assuming a
uniform distribution of n points throughout the whole region H when M is
sufficiently large.

2.3 Connectivity Bound

We now form further conditions on the connectivity radius r to ensure that the unit-
disk graphG contains a spanning .dC1/-lateration graph. We have assumed that the
points are binomially distributed in each sub-hypercube, parametrized as B

�
n; 1

M

	
.

First, r must satisfy Proposition 1, since it ensures a (d C 1)-clique in G. These
points in the clique will represent the first d C 1 points in the lateration ordering �
of a spanning .d C 1/-lateration graph (Definition 4).

We construct an improved bound on the probability of localizability through an
ordering of the hypercubes, hi 2 H, and hence an ordering on the points. For
simplicity, we prove the following lemmas for the case of d D 2, and we refer to the
sub-hypercubes as sub-squares. We also refer to .d C 1/-lateration when d D 2 as
trilateration. However, we note that the same analysis can be applied to hypercubes
in higher dimensions, and our bound r � 2`p2 in Lemmas 1–3 is analogous to the
bound r � 2`pd in dimension d .

Lemma 1. Assume that each sub-square in H 2 R
2 has at least one point, and

r � 2`p2. If the points of three sub-squares in the same row in three consecutive
columns are in the trilateration ordering, then the points in all sub-squares in those
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h11 h12 h13

h21 h22 h23

h31 h32 h33

h11 h12 h13

h21 h22 h23

h31 h32 h33

Fig. 1 Conditions as
described in Lemma 2 to
ensure trilateration

three columns are also in the ordering. Similarly, if the points in three consecutive
sub-squares in the same column are in the trilateration ordering, then the points in
all sub-squares in those three rows are also in the ordering.

Proof. First, note that the lower bound r � 2`p2 ensures that all points in a given
sub-square are connected to all points in a neighboring sub-square, which share
either an edge or a point within the given sub-square.

For ease of explanation, let .i; j / represent the sub-square in the i -th row and
j -th column, and consider the case that all points in the first three sub-squares in
the first row of the grid are already in the trilateration. Since all points in sub-square
.2; 2/ are within the connectivity range of all three points in the first row, these points
are in the trilateration. Then, all points in sub-square .2; 1/ (or .2; 3/) are within
the connectivity range of at least three points in sub-square .1; 2/; .2; 2/; .1; 1/ (or
.1; 2/; .2; 2/; .1; 3/), these points are also in the trilateration. Therefore, all points in
the first three sub-squares of the second row are in the trilateration.

Similarly, all points in the third row of the grid in the first three columns are also
in the trilateration. This pattern continues, until all points in the first three columns
of the grid are in the trilateration.

A generalization of this shows that if there are three sub-squares in the same
row and in consecutive columns with points in the trilateration, and each sub-square
has at least one point, then all points in the corresponding columns are also in the
trilateration.

An analogous result holds for three sub-squares in the same column and in
consecutive rows.

Lemma 1 states that if there are three consecutive sub-squares in a row with
points in the trilateration, then the trilateration ordering extends to all squares in the
corresponding columns. This concept is used below in Lemma 2, which analyzes
the cases depicted in Fig. 1.

Lemma 2. Assume there is at least one point in each sub-square and r � 2`p2.
Then the associated unit-disk graph contains a spanning trilateration graph if
either:

(a) There is a 3-clique in a non-corner sub-square
(b) There is a 3-clique in a corner sub-square and one of its neighbor squares has

at least two points
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Proof. Again, note that r � 2`
p
2 ensures all points in a given sub-square are

connected to all points in neighboring sub-squares. We show that if either of the
conditions of Lemma 2 are satisfied, then there exists a trilateration ordering on the
points in the graph.

(a) Consider the example in the left grid of Fig. 1, where there is a 3-clique in
the non-corner sub-square h22. Let the points in this clique be the initial 3
points in the trilateration ordering. All points in the sub-squares fh11; h12; h13;
h21; h23; h31; h32; h33g are connected to this clique; let the points in these squares
be next in the trilateration ordering.

By Lemma 1, all points in the sub-squares in rows 1–3 are in the trilateration
ordering. Since there are at least three columns in H, the same argument applies
for the columns, and inductively, there is a trilateration ordering on the points
that spreads throughout the entire hyperspace H.

(b) Now consider the right grid of Fig. 1, where there is a 3-clique in the corner
sub-square h11, and there are at least two points in a neighboring sub-square.
Let the points in h11 be the first three points in the trilateration ordering. All
points in the three sub-squares h12; h21; h22 are connected to the points in the
clique and hence in the trilateration ordering. Next, let the points in sub-squares
h31; h32; h33; h23; h13 be the succeeding points in the ordering. With a similar
argument as before using Lemma 1, we can construct a trilateration on the points
in the graph, and all points are in the trilateration.

Therefore, if the conditions of Lemma 2 hold, the associated unit-disk graph
contains a spanning trilateration graph.

The above lemma provides sufficient, but not necessary, conditions on a network
for trilateration to exist, which implies unique localizability. Moreover, these are
strict conditions for a sensor network, since the distribution of sensors in a network
may not always ensure that there is one sensor in each sub-square. Thus, we extend
these conditions to a more general case, and allow for the possibility of empty
sub-squares. Clearly, too many empty sub-squares will result in a graph that is
not uniquely localizable; also, if empty sub-squares exist, there must be restricting
conditions to ensure the graph is not too sparse to ensure localizability. Thus, we
establish additional properties of the graph that ensure a trilateration but allow for
empty sub-squares.

Definition 5. Two neighboring sub-squares are called adjacent neighbors if they do
not share any edges, but share a point; neighbors that share an edge are called simple
neighbors. A sub-square is called densely surrounded if all its simple neighbors have
at least two points and one of its simple neighbors has at least three points.

Lemma 3. Assume every empty sub-square is densely surrounded and r � 2`p2.
Then the associated unit-disk graph contains a spanning trilateration graph if there
is a 3-clique in a non-corner sub-square.
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h11 h12 h13

h21 h22 h23

h31 h32 h33

h11 h12 h13

h21 h22 h23

h31 h32 h33

a b

Fig. 2 Example grids for Lemma 3. (a) Example of grid that does not satisfy conditions of
Lemma 3. (b) Example of grid that satisfies conditions of Lemma 3

Proof. Consider the grids in Fig. 2, which shows an example and counter example
of the conditions in Lemma 3.

(a) First, consider the left grid of Fig. 2, which does not satisfy the condition of
Lemma 3 because there is a clique in a corner sub-square. Notice that if a
trilateration ordering starts with the points in sub-square h11, it can continue
to the points in sub-squares h12 and h21, but will not spread to points in other
sub-squares. That is, there is no trilateration ordering that starts with the points
in h11 and extends to the points in the sub-squares fh13; h23; h31; h32; h33g,
because none of these sub-squares neighbor a subset of sub-squares, in the
corresponding trilateration ordering, that contain at least three points combined.
Thus, empty sub-squares must be densely surrounded to ensure a trilateration
ordering on the points exists.

(b) Now, consider the right grid of Fig. 2, with a non-corner 3-clique, and a densely
surrounded empty sub-square. This example shows the worst-case example of
the condition in Lemma 3. The shaded sub-square h22 is empty and densely
surrounded, and the 3-clique is along the edge of the area H. We prove that
a trilateration ordering exists on the points in this sample grid with a densely
surrounded sub-square. This proves Lemma 3 holds in the worst-case; the proof
that Lemma 3 holds in every case is a generalized extension of this.

Define the permutation on the points in Fig. 2 via the ordering on their sub-
squares:

˘ WD fh12; h11; h13; h21; h23; h32; h31; h33g: (1)
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This permutation is a trilateration ordering on the points in the sample grid.
Note that ˘ is a trilateration ordering only because the sub-squares fh21; h23g
contain at least three points combined; that is, a permutation containing the
points in the sub-squares fh32; h31; h33g can only be a trilateration if fh21; h23g
together contain at least three points.

By Lemmas 1 and 2, if there are no other empty sub-squares in H, then
there is trilateration ordering on all the points in H. However, if there are other
densely surrounded empty sub-squares in H, then by a similar construction
as (1), there is still a trilateration ordering on all points in H.

Therefore, if the condition of Lemma 3 holds, the associated graph contains a
spanning trilateration graph, and hence is uniquely localizable in dimension 2.

We now use the fact that a sensor network containing a spanning trilateration is
uniquely localizable [35] to establish a lower bound on the probability that the unit
disk sensor network with radius r � 2`p2 is localizable. Define the two events:

C WD fThere are only 3-cliques in corner sub-squaresg;
OC WD fThere is a 3-clique in a non-corner sub-squareg:

Then, the probability that a graph with such randomly distributed points is uniquely
localizable will be

P funiquely localizableg D P
n
uniquely localizablej OC

o
P
n OC
o
C

P funiquely localizablejC gP fC g
� P

n
uniquely localizablej OC

o
P
n OC
o
:

Given that the total number of sub-squares is M D b2 (for some integer
b � 3), we introduce a parameter ˛ WD p

n
M

(or ˛ WD d
p

n
M

for general d ) such
that ` D ˛=

p
n is the edge-length of each sub-square and we can use the same

connectivity radius lower bound as before, now in terms of ˛, r.˛/ � .2˛p2/=pn.
The distribution of point number in each sub-square is binomialB

�
n; 1

M

	
, and there

are a total of .M � 4/ non-corner sub-squares in H. Thus, the probability that there
is a 3-clique in a non-corner sub-square is

P
n OC
o
D 1 �

 
2X

iD0

 
n

i

!

1

M

�i 

1 � 1

M

�n�i!M�4
:

Let k be the number of empty sub-squares. By Lemma 2,

P
n
uniquely localizablejk D 0; OC

o
D 1;
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and if p0 D .1 � 1
M
/n is the probability that one specific sub-square is empty, we

have

P fk D ig D
 
M

i

!
pi0 .1 � p0/M�i :

Moreover, for any i < M � 4, we have

P
n OC jk D i

o
� 1 �

0

@
2X

jD0

 
n

j

!

1

M

�j 

1 � 1

M

�n�j
1

A
M�4�i

WD p OC ;i :

From Lemma 3, we know

P
n
uniquely localizablejk D i; OC

o
�

P
n
empty sub-squares are densely surroundedjk D i; OC

o
:

The conditions of Lemma 3 require that empty sub-squares do not have empty
simple neighbors; thus, we first find the probability that a sub-square does not have
empty simple neighbors. Assume there are k empty sub-squares, say s1; s2; : : : ; sk .
Because of the independence assumption, these empty sub-squares are uniformly
distributed.

Given the empty sub-square s1, the probability that s2 is not a simple neighbor
of s1 is at least

�
1 � 4

M�1
	
; the probability that s3 is not a simple neighbor of s1 or

s2 is at least .1 � 2 � 4
M�2 /; and so on, so that the probability that no two empty

sub-squares are neighbors is at least
Qk�1
jD1.1 � 4j

M�j /. Moreover, the probability
that an empty sub-square is densely surrounded, i.e., that all simple neighbors of an
empty sub-square have at least two points and at least one of them has more than
two points, is:

Op D P fAll simple neighbors have at least two pointsg�
P fAll simple neighbors have exactly two pointsg

D
h
1 �P1

jD0
�
n
j

	 �
1
M

	j �
1 � 1

M

	n�j i4�
h�
n
2

	 �
1
M

	2 �
1 � 1

M

	n�2i4
:

Thus, the probability that all empty sub-squares are densely surrounded is

P
n
empty sub-squares are densely surroundedj k D i; OC

o
� Opi �

i�1Y

jD1
.1 � 4j

M � j /:

Note that the right hand side of the above equation is positive if i < M=5. Thus,
we only consider grids with less than u WD bM=5c � 1 empty squares. Finally, we
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Fig. 3 Bound on the Connectivity Radius. (a) ˛ vs. number of nodes. (b) r vs. number of nodes,
compared to Angluin et al. bound

have the lower bound given by the following expression:

P funiquely localizableg
� P

n
uniquely localizablej OC

o
P
n OC
o

DPu
iD0 Pfuniquely localizablejk D i; OC gPf OC jk D igP fk D ig

�Pu
iD0 Pfuniquely localizablejk D i; OC gP fk D igp OC;i

� p OC ;0 P fk D 0g CPu
iD1 p OC;i P fk D ig


P
n
empty sub-squares are densely surroundedjk D i; OC

o

� p OC ;0 P fk D 0g CPu
iD1 Opi � p OC ;i P fk D ig
Qi�1

jD1.1 � 4j

M�j /: (2)

For different values of n (to be taken as the total number of sensor points), we
can find values ofM , and thus ˛ (where ˛2 can be viewed as the average number of
sensor points in each sub-square), such that the right hand side of Equation (2) is at
least 0:99. Figures 3a, b show ˛ and r versus the number of points n such that the
right hand side of Equation 2 is at least 0:99.

We also compare our connectivity bound against the bound of Angluin et al. [3]
in Fig. 3. One can see that our bound and Angluin’s are almost identical for any value

of n. Thus, our result shows that the bound of Angluin et al. in (of r > 2
p
2
p

log np
n

for d D 2) is true even when n is small, although it was initially proved to be an
asymptotic bound when n is sufficiently large. Note that our bound, while not in an
analytical form, is proved for any value of n.
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We recently learned of another asymptotic bound that was independently
developed by Javanmard and Montanari [23]. However, this bound is much weaker
than ours and Angluin’s.

Our connectivity result was proved for H D Œ0; 1�2, i.e., the unit square in
dimension 2. The result can be extended to dimension d > 2. In summary, we
have the following Theorem 2.

Theorem 2. Let H 2 Œ0; 1�d be the unit hypercube in dimension d and be
partitioned into a grid of M D bd equal sub-hypercubes, say h1; h2; : : : ; hM � H,
where ` D 1=b is the edge length of each sub-hypercube. Let the number of sensor
points in each sub-hypercube be independently and binomially generated according
to B

�
n; 1

M

	
where n D d �M C 1, and let one of the sub-hypercubes contain d C 1

anchors. Then, if the connectivity radius satisfies r � 2`
p
d , the probability that

the sensor network is uniquely localizable is given by expression (2).

Again, the parameter n of the binomial distribution can be viewed as the total
number of sensor points in the region. We can also extend our result to another
region H in dimension d into a grid of M equal sub-hypercubes in dimension d ,
say h1; h2; : : : ; hM � H, where each sub-hypercube hi will have a volume of 1=M ,
and the length of each of its edges will be ` WD 1= d

p
M . For example, we can assume

M D b1 � b2 � � � bd , where bi � 3 for i D 1; : : : ; d are positive integers.

3 Unique Localization of Triangulation Graph

The basic SDP localization model (SNL-SDP) is an SDP feasibility problem. When
the network is not uniquely localizable, the max-rank of SDP feasible solutions is
strictly greater than d . In practice, one may still be interested in finding a feasible
SDP solution with rank d , representing one possible localization of points in R

d . In
this section, we show that adding an objective function that maximizes the sum of
certain distances in a triangulation graph (in R

2) will produce a rank-2 SDP solution.
The result should be applicable to d > 2.

Definition 6. Consider a set of points P D fp1; p2 : : : png 2 R
2. A triangulation,

TP , of the points in P is a subdivision of the convex hull of P into simplices
(triangles) fpi ; pj ; pkg, for some i; j; k 2 f1; : : : ; ng, such that the edges of two
simplices do not intersect or share a common face.

Definition 7. For a triangulation TP , we define a triangulation graph
GTP .V;E/ such that V D P and .pi ; pj / 2 E if and only if .pi ; pj / is an
edge of a simplex in TP . Note that triangles in a triangulation graph do not overlap,
and triangles do not exist strictly inside other triangles.

Triangulation graphs and their properties have been studied in the literature [5,
12, 26]. Bruck et al. [12] showed that embedding a unit disk graph with local
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Fig. 4 Construction of triangulation graph

angle information (angles between points) is NP-hard, while the same problem on
a triangulation graph is not. Araújo and Rodrigues [5] introduced an algorithm
to construct a triangulation graph from a unit disk graph with O .n logn/ bit
communications between points.

We formally decompose a triangulation TP into an initial clique K3 and a set
of actions A D fa1; a2 : : : amg, where an action ai consists of adding a point and
connecting it to either two adjacent points or two connected external points, where
a point is called external if it is not strictly inside the convex hull of a cycle in the
graph. This leads us to the following lemma, whose proof is omitted.

Lemma 4. A triangulation can be constructed recursively by either adding an
external point that connects to two adjacent points of a simplex (triangle) already
in TP such that the new edges do not cross any existing edges (see Fig. 4, 1–4),
or simply connecting two external points already in TP to form a triangle (see
Fig. 4, 5).

Proof. By induction on an external point; see Fig. 4.

Step 8 of Fig. 4 shows the set of virtual edges in the sample triangulation graph.
These virtual edges will be used to construct an appropriate objective function of
the SDP relaxation for triangulation graphs.

Definition 8. In a triangulation graph, adjacent triangles are two triangles which
share a common edge. A virtual edge exists between two points i and j when i
and j belong to adjacent triangles, but .i; j / 62 E. The set of virtual edges between
sensors is denoted Ev, and between sensors and anchors is denoted NEv.

Consider adding an objective function to the SDP model (SNL-SDP) that
maximizes the sum of the lengths of all virtual edges in a generic triangulation
graph. The primal SDP relaxation, for d D 2, becomes:
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maximize
X

.k;j /2 NEv

NAkj �Z C
X

.i;j /2Ev

Aij �Z

subject to Z.1Wd;1Wd/ D Id
Aij �Z D d2ij ;8.i; j / 2 E (3)

NAkj �Z D Nd2kj ;8.k; j / 2 NE
Z 	 0

and the dual of (3) is:

minimize Id � V C
X

.i;j /2E
yij d

2
ij C

X

.k;j /2 NE
wkj Nd2kj

subject to U D


V 0

0 0

�
C

X

.i;j /2E
yijAij C

X

.k;j /2 NE
wkj NAkj

�
X

.k;j /2 NEv

NAkj �
X

.i;j /2Ev

Aij (4)

U 	 0:

For a triangulation graph with at least three anchors, we can show that (4) is
strictly feasible, i.e., there exists a feasible U with U 	 0 (see Proposition 4.1.
in [31]). The primal SDP (3) also has a feasible point. As a result, the strong duality
and complementarity condition hold for (3) and (4).

We derive the following exact-localization theorem.

Theorem 3. Consider applying the SDP relaxation (3) to a generic triangulation
graph with at least three anchors. Then, the rank of an optimal dual slack matrix
of (4) is n and the rank of the optimal SDP solution of (3) is d D 2, so that the pair
is strictly complementary and the SDP relaxation produces the correct localization.

Proof. We use induction to show that the ranks of the optimal dual slack matrix U
and primal SDP solutionZ are n and d D 2, respectively. This implies that the strict
complementarity conditions holds and (3) produces the correct localization, that is,
the original true positions of the sensor points of the generic triangulation graph.

Assume the result is true for any triangulation graph with n points. It remains to
be shown that this also holds for graphs with n C 1 points. It is clearly true for a
single simplex when n D 3.
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Let Xn 2 R
d�n be the correct locations of points, where the superindex n

represents the number of points. By the induction assumption, the solution to (3) is

Zn WD



Id Xn

.Xn/T .Xn/T Xn

�
. Moreover, the optimal dual slack matrix Un satisfies

Un � Zn D 0 and has rank n; we can write the optimal dual slack matrix in terms

of its submatrices Un D


Un
11 U

n
12

U n
21 U

n
22

�
, where Un

11 2 R
d�d and Un

22 2 R
n�n. Note that

Un
22 � 0, which follows from the fact that rank.U n

22/ D n and Un 	 0.
The complementarity conditionUn�Zn D 0means the elements ofUn represent

a stress on each edge such that the total force at all non-anchor points is zero
(assuming, without loss of generality, a stress of �1 on all virtual edges).

Definition 9. Given a set of sensor locations X D Œx1; x2; : : : ; xn� 2 R
d�n, let

G.V;E [ NE/ be the corresponding graph. A matrix U 2 R
n�n is a stress matrix of

the sensor network if it satisfies the constraints of (4) and U � .XTX/ D 0. That is,
each element of U represents a stress on the associated edge in E [ NE such that the
total force on each non-anchor point is zero.

We decompose the triangulation graph into an initial simplex K3, and actions
A D fa1; a2 : : : amg. Without loss of generality, we assume the points in the first
triangle are anchor points and let the last points added to the graph be xnC1. For
example, consider Fig. 4; let U 7 be the dual slack matrix on points 1–7 and assume
the subgraph induced on the first seven points is uniquely localizable. When point
8 is added along with its incident edges, points .2; 4; 6; 8/ form a clique (when
including the virtual edge between 4 and 8, which is unique when its length is
maximized). Consider an SDP relaxation problem in dimension 4 that maximizes
the length of the virtual edge between 4 and 8; this problem will have a unique
optimal solution with rank 2 that determines the exact location of points .2; 4; 6; 8/,
and an optimal dual slack matrix that forms a stress matrix for these four points.

Now consider the general case, where xnC1 is the last point added to the graph.
A new triangle is created by adding xnC1, its adjacent triangle and the virtual edge,
which forms a 4-clique. Let ˝0 be the corresponding positive-semidefinite stress
matrix on the graph formed by xnC1, the two points adjacent to xnC1 (say, g and
h) and the point with which xnC1 has a virtual edge (say, k). We examine the case
where g and h are sensors, however the case where at least one of them is an anchor
is an easy extension. As before, the locations xg; xh; xk , and xnC1 can be uniquely
determined by solving an SDP relaxation, and ˝0 is the optimal dual slack matrix
that solves its dual problem:

minimize ygkd
2
gk C yhkd2hk C yghd2gh C yg;nC1d 2g;nC1 C yh;nC1d 2h;nC1 (5)

subject to U 4 	 0;
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where

U4

D

0

BBB@

�1C ygk C yhk �ygk �yhk 1

�ygk ygk C ygh C yg;nC1 �ygh �yg;nC1
�yhk �ygh yhk C ygh C yh;nC1 �yh;nC1
1 �yg;nC1 �yh;nC1 �1C yg;nC1 C yh;nC1

1

CCCA :

Assume .ygk; yhk; ygh; yg;nC1; yh;nC1/ is the optimal solution of this SDP, then

˝0 D U 4:

It’s easy to see that strong duality and complementarity condition hold for this SDP,
and therefore X

i;j2fg;h;k;nC1g
Œ˝0�ij .x

T
i xj / D 0:

Note that 0 < .�1C yg;nC1 C yh;nC1/ because ˝0 	 0, and consider the
updated stress matrix

UnC1
22 WD



Un
22 0n�1

01�n 0

�
C˝;

where ˝ 2 R
.nC1/�.nC1/ is the stress matrix of the new edges, that is,

˝.Œg;h;k;nC1�;Œg;h;k;nC1�/ D ˝0.
The new matrix UnC1 will be feasible for the dual, since˝0 is the solution of (5),

and ˝ 	 0, Un 	 0 implies that UnC1 	 0.
Define

ZnC1 WD
0

@ Zn



xnC1

.Xn/T xnC1

�

�
xTnC1 xTnC1Xn

	
xTnC1xnC1

1

A

as the correct locations of the updated points. (Note that given this definition of
ZnC1, it does not immediately follow that rank.ZnC1/ D d , since the added last
row ofZnC1 can be linearly independent from the first n rows.) The sum of element-
wise products of UnC1 and ZnC1 is

UnC1 �ZnC1 D Un �Zn C
X

.i;j /

Œ˝0�ij .x
T
i xj / D 0:

Moreover, we can show that UnC1
22 � 0. Assume this is not true, i.e., assume that

there is a vector z 2 R
nC1 such that

zT U nC1
22 z D zT



Un
22 0

0 0

�
zC zT˝z D 0;
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which holds if and only if zT


Un
22 0

0 0

�
z D 0 and zT˝z D 0. Since Un

22 � 0, this

means that the first n elements of z are zero, i.e., z.1Wn/ D 0. Thus,

zT˝z D z2nC1˝nC1 D z2nC1.�1C yg;nC1 C yh;nC1/ D 0

which implies znC1 D 0. Thus, zT U nC1
22 z D 0 if and only if z D 0, implying

UnC1
22 � 0 and rank.U nC1/ D n C 1. Therefore, the rank of .ZnC1/ is d , and

consequently from [30], ZnC1 is the unique solution to (3), so that the localization
is correct and exact.

Theorem 3 implies that the strict complementarity condition holds when localiz-
ing a generic triangulation graph with the selected objective function. This result is
interesting because, in general, it is difficult to prove strict complementarity for
SDPs. How to compute a stress matrix (or optimal dual matrix) and determine
whether the stress matrix has rank n are also important questions in rigidity theory
for graph realization. Clearly, Theorem 3 is applicable to any graph that contains a
generic triangulation graph as a spanning subgraph. In practice, the objective of the
SDP relaxation may include all non-edges that are not specified in the given graph
(rather than just virtual edges), which we experiment in the next section.

4 Heuristic Objective Function

Section 3 proves that adding a given objective function to (SNL-SDP) results in a
correct localization for a certain class of graphs, whereas the formulation without
an objective function may not.

Based on these findings, we tested a number of different SDP relaxation methods
with different objective functions. For each method (i.e., each objective function),
we ran the relaxation on a large number of random sensor networks and determined
the success rate of each method. The following objective functions were tested to
heuristically determine the best method.

1. (ZERO) Solve the formulation (SNL-SDP) (with no objective function). This can
be viewed as a control simulation against which to compare other methods.

2. (MAX) Maximize the sum of all the ‘non-edge’ lengths by solving the
formulation:

maximize
P

.i;j /62E dij C
P

.k;j /62 NE Ndkj
subject to Z.1Wd;1Wd/ D Id

Aij �Z D d2ij ; 8.i; j / 2 E
NAkj �Z D Nd2kj ; 8.k; j / 2 NE
Z 	 0:

(SDP-MAX)
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Table 1 Percent of networks correctly localized

Method

ZERO MAX MIN MAX-PT

0.15 0 0 0 0

Radio Range
0.2 41 75 39 0
0.25 87 95 88 0
0.3 98 100 100 4
0.35 100 100 100 7
0.4 100 100 100 13

3. (MIN) Minimize the sum of all the ‘non-edge’ lengths by solving the
formulation:

minimize
P

.i;j /62E dij C
P

.k;j /62 NE Ndkj
subject to Z.1Wd;1Wd/ D Id

Aij �Z D d2ij ; 8.i; j / 2 E
NAkj �Z D Nd2kj ; 8.k; j / 2 NE
Z 	 0:

(SDP-MIN)

4. (MAX-PT) Maximize the sum of the distances from each sensor location xi 2
R
d to a distant point, where xi is set to the corresponding elements of the decision

matrix Z. For example, for 1 2 R
d the vector of all ones, we took the point

p WD 1;000 � 1 and solved the formulation:

maximize
Pn

iD1 kp � xi k2
subject to Z.1Wd;1Wd/ D Id

Aij �Z D d2ij ; 8.i; j / 2 E
NAkj �Z D Nd2kj ; 8.k; j / 2 NE
Z 	 0:

We constructed 200 uniformly distributed sensor networks and tested each
method on the networks for a number of different radio ranges. Each randomly
distributed sensor network has 100 points in a unit square (in dimension d D 2),
and the distance between two points is known when they are within the given radio
range. Table 1 shows the percent of sensor networks that were correctly localized
using each method, for each radio range.

As can be seen from Table 1, maximizing the sum of the unknown distances
out-performs the other three methods tested, and maximizing the sum of distances
from a distant point does not produce good results. Moreover, the methods (ZERO),
(MAX) and (MIN) all seemed to work very well when the radio range was at least
0.35. This radio range is much smaller than the lower bound given by (2), but has
not been theoretically proved as a radio range that will lead to a correct localization.



300 D. Shamsi et al.

References

1. Alfakih, A.Y.: On the universal rigidity of generic bar frameworks. Contrib. Discrete Math.
5(3), 7–17 (2010)

2. Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving euclidean distance matrix completion
problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)

3. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable
properties of network graphs. In: Prasanna, V.K., Iyengar, S., Spirakis, P., Welsh, M. (eds.)
Proceedings of the First IEEE International Conference Distributed Computing in Sensor
Systems, DCOSS 2005, Marina del Rey, CA, USE, June/July, 2005. Lecture Notes in Computer
Science, vol. 3560, pp. 63–74. Springer (2005)

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta R.: Computation in networks of
passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)
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A Primal–Dual Smooth Perceptron–von
Neumann Algorithm
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Abstract We propose an elementary algorithm for solving a system of linear
inequalities ATy > 0 or its alternative Ax D 0; x � 0; x ¤ 0. Our algorithm
is a smooth version of the perceptron and von Neumann algorithms. Our algorithm
retains the simplicity of these algorithms but has a significantly improved conver-
gence rate. Our approach also extends to more general conic systems provided a
suitable smoothing oracle is available.

Key words Perceptron algorithm • von Neumann algorithm • Condition
number • Smoothing technique

Subject Classifications: 90C05, 90C25, 90C52

1 Introduction

We propose an elementary algorithm to solve the polyhedral feasibility problem

ATy > 0; (1)

or its alternative

Ax D 0; x � 0; x ¤ 0; (2)
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a bFig. 1 Geometric
interpretation of �.A/. (a)
System (1) is feasible. (b)
System (2) is feasible

where A is a matrix in R
m�n. We refer to the systems (1) and (2) as dual and primal

feasibility problems, respectively. Feasibility problems like these are fundamental
in optimization, since every linear programming problem can be recast in the form
(1)–(2) via homogenization.

Our algorithm is based on a smooth version of both the perceptron and von
Neumann algorithms. The perceptron algorithm was introduced by Rosenblatt [17]
in 1958 for solving classification problems in machine learning. It is a simple greedy
algorithm that finds a solution to (1) when this system is feasible. Von Neumann
algorithm was privately communicated by von Neumann to Dantzig in the late
1940s, and later studied by Dantzig [6]. It is also a simple greedy algorithm that finds
an approximate solution to (2) when this system is feasible. Although the perceptron
and von Neumann algorithms have slow rate of convergence, the simplicity of their
iterations makes them attractive. As discussed in [18], these algorithms can be seen
as first-order methods to solve (1) and (2). The algorithm proposed herein is an
accelerated version of them, in the same spirit as the currently popular accelerated
first-order algorithms for convex optimization [11–13, 19].

The convergence rate of both the perceptron and von Neumann algorithms is
determined by the following parameter �.A/. Assume A D �a1 � � � an

� 2 R
m�n and

let k � k denote the Euclidean norm in R
m. Let

�.A/ WD
ˇ̌
ˇ̌max
kykD1

min
jD1;:::;n

aj
Ty

kaj k
ˇ̌
ˇ̌ : (3)

When (1) is feasible, �.A/ is precisely the width of the feasibility cone fy W ATy �
0g, as defined by Freund and Vera [10]. Furthermore, if the columns of A have all
Euclidean norm equal to one, then �.A/ is the Euclidean distance from the origin
to the boundary of the convex hull of fa1; : : : ; ang. This geometric interpretation is
illustrated in Fig. 1 where the arrows depict the column vectors of A.

The parameter �.A/ is also a certain radius of well-posedness of the matrix A
(see [5, Theorem 1]). Cheung and Cucker [5] define 1=�.A/ as a condition number
of the matrix A in relation to the problems (1) and (2). The quantity 1=�.A/ can also
be seen as a special case of Renegar’s condition number [15] for the systems (1) and
(2). (See [4, 5, 15, 16] for further details.)

Block [2] and Novikoff [14] showed that when (1) is feasible the perceptron
algorithm finds a solution to (1) after at most 1=�.A/2 iterations.

Given � > 0, we say that x is an �-solution to (2) if x � 0; kxk1 D 1 and
kAxk � �: Under the assumption that the columns of A have Euclidean norm
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one, Dantzig [6] showed that von Neumann algorithm finds an �-solution to (2)
in at most 1

�2
iterations when (2) is feasible. Epelman and Freund [9] showed that

von Neumann algorithm either computes an �-solution to (2) in O
�

1
�.A/2

log
�
1
�

	�

iterations when (2) is feasible, or finds a solution to the alternative system (1) in

O
�

1
�.A/2

�
iterations if (1) is feasible.

The perceptron and von Neumann algorithms are not polynomial in the bit model
of computation because the quantity �.A/ can be exponentially small in the bit
length description of an input matrix A with rational entries. On the other hand,
the quantity �.A/ makes sense for any A with real entries. The condition number
1=�.A/, defined by Cheung and Cucker [5], is a natural parameter for studying the
problems (1) and (2) in the real number model of computation introduced by Blum,
Shub, and Smale [3].

There has been some recent research interest in the perceptron algorithm.
Notably, Dunagan and Vempala [7, 8] proposed a randomized re-scaled version of

the perceptron algorithm that with high probability terminates in O
�
m log

�
1

�.A/

��

re-scaling iterations, where each re-scaling iteration requires no more than .32m/2

iterations of the perceptron algorithm. For an input matrix A with rational entries
this algorithm is polynomial in the bit length description of A with high probability.
More recently, Soheili and Peña [18] introduced a deterministic smooth perceptron

algorithm that solves (1) in at most O
�p

logn
�.A/

�
elementary iterations when (1) is

feasible.
The main contribution in this paper is an Iterated Smooth Perceptron–von Neu-

mann Algorithm (Algorithm ISPVN) that solves the pair of feasibility problems (1)
and (2). Algorithm ISPVN relies on Nesterov’s smoothing techniques [12, 13], and
extends the smooth perceptron algorithm in [18]. For a given A 2 R

m�n with

�.A/ > 0, Algorithm ISPVN either finds an �-solution to (2) in O
� p

n

�.A/
log

�
1
�

	�

elementary iterations, or finds a solution to the alternative system (1) in at most

O
� p

n

�.A/
log

�
1

�.A/

��
elementary iterations (see Theorem 1). Like the perceptron

and von Neumann algorithms, the iterations in Algorithm ISPVN are elementary
in the sense that they only involve simple computational steps. The iteration
complexity of Algorithm ISPVN substantially improves the dependence on �.A/

of the iteration complexity O
�

1
�.A/2

�
of the perceptron algorithm [2, 14], and the

iteration complexity O
�

1
�.A/2

log
�
1
�

	�
of von Neumann algorithm [9]. However, the

new iteration bound incurs an extra factor of
p
n whereas the former bounds depend

solely on �.A/. In contrast to Soheili and Peña’s smooth perceptron algorithm [18]
that only applies to (1), our algorithm simultaneously handles both (1) and its
alternative system (2). This comes at the expense of a weaker complexity bound
in the case when (1) is feasible.

An extended version of Algorithm ISPVN applies to more general conic systems.
More precisely, assume K � R

n is a convex regular cone and A 2 R
m�n: Then

Algorithm ISPVN and its convergence properties extend in a natural fashion to the
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conic system ATy 2 int.K�/; and its alternative Ax D 0; x 2 K; x ¤ 0 provided
that a suitable smooth separation oracle for the cone K is available (see Theorem 2).
An oracle of this kind is readily available for the main cones of interest in convex
optimization, namely the non-negative orthant, the semidefinite cone, the second-
order cone, and direct products of these types cones.

The paper is organized as follows. In Sect. 2 we briefly review the perceptron
and von Neumann algorithms. In Sect. 3 we present our main contribution, namely
a smooth perceptron–von Neumann algorithm. Section 4 presents a general version
of smooth perceptron–von Neumann algorithm for conic systems. Section 5 presents
the proof of a general version of our main theorem. Section 6 concludes the paper
with some comments on potential directions for future work.

2 The Perceptron and von Neumann Algorithms

We next recall the perceptron and von Neumann algorithms, and observe that they
can be seen as special cases of a general primal-dual template to solve the problems
(1) and (2).

To solve (1) the perceptron algorithm starts with a trial point (usually zero). At
each iteration, it updates the current trial point using the direction normal to one of
the violated constraints (if any). This procedure is repeated until a solution to (1) is
found.

For ease of notation we make the following assumption on the input matrix A
throughout this section and Sect. 3.

Assumption 1. A D �a1 � � � an
� 2 R

m�n where kaj k D 1 for j D 1; : : : ; n.

Here and throughout the entire paper k � k denotes the Euclidean norm.
Assumption 1 can be made without loss of generality since it only involves

re-scaling the columns of A.

Perceptron Algorithm
begin
y0 WD 0I
for k D 0; 1; 2; : : :
j WD argmin

iD1;:::;n
ai

Tyk I
�k WD 1

kC1 I
ykC1 WD .1 � �k/yk C �kaj I
if ATykC1 > 0 then Halt // ykC1 is a solution to (1) fi

end
end
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We note that the above version of the perceptron algorithm includes a normalization
of the iterates yk and hence is slightly different from the description usually found
in the literature, where the iteration is written ykC1 D yk C aj .

In contrast to the perceptron algorithm, von Neumann algorithm finds an
approximate solution to the alternative system (2) and can be seen as a dual of the
perceptron algorithm. Von Neumann algorithm starts with an initial point x0 � 0

such that kx0k1 D 1, and iteratively generates a sequence x1; x2; : : : such that
xk � 0; kxkk1 D 1 and kAxkk ! 0, provided (2) is feasible. The point xkC1 is
constructed as follows. First, identify the column aj ofA that forms the largest angle
withAxk . Next, define xkC1 so thatAxkC1 is the point with smallest Euclidean norm
along the segment joining Axk and aj .

Let e 2 R
n denote the n-dimensional vector of all ones and ei 2 R

n denote the
unitary vector whose i -th entry is equal to one and all others are equal to zero.

Assume � > 0 is a given input.

Von Neumann Algorithm.�/
begin
x0 WD e

n
Iy0 WD Ax0I

for k D 0; 1; 2; : : :
j WD argmin

iD1;:::;n
ai

Tyk I
�k WD argmin

�2Œ0;1�
fk.1 � �/yk C �aj kgI

xkC1 WD .1 � �k/xk C �kej I
ykC1 WD AxkC1 D .1 � �k/yk C �kaj I
if ATykC1 > 0 then Halt // ykC1 is a solution to (1) fi
if kAxkC1k < � then Halt // xkC1 is an �-solution to (2) fi

end
end

The iterations in the above perceptron and von Neumann algorithms are similar.
Each of these algorithms can be seen as a special case of the Perceptron–von
Neumann Template below.

Let 	n denote the standard simplex in R
n, that is, 	n WD fx 2 R

n W
x�0; kxk1 D 1g: For y 2 R

m, let x.y/ denote any arbitrary point in the set
argminx2	n

˝
ATy; x

˛
. Observe that for a given y 2 R

m, we have aj Ty D mini aiTy
if and only if aj D Ax.y/ for x.y/ D ej .

Assume � > 0 is a given input.

Perceptron–von Neumann Template.�/
begin

x0 D e

n
Iy0 WD Ax0I

for k D 0; 1; 2; : : :
xkC1 WD .1 � �k/xk C �kx.yk/I
ykC1 WD .1 � �k/yk C �kAx.yk/I
if ATykC1 > 0 then Halt // ykC1 is a solution to (1) fi
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if kAxkC1k < � then Halt //xkC1 is an �-solution to (2) fiI
end

end

Observe that the above perceptron–von Neumann template recovers the
perceptron algorithm for �k WD 1

kC1 , and von Neumann algorithm for
�k WD argmin�2Œ0;1� k.1��/ yk C �Ax.yk/k provided x.y/ is always chosen as
one of the extreme points of the set argminx2	n

˝
ATy; x

˛
:

3 Smooth Perceptron–von Neumann Algorithm

This section presents our main contribution, namely an iterated smooth perceptron–
von Neuman algorithm (ISPVN) for solving both (1) and (2). Algorithm ISPVN
relies on Nesterov’s smoothing techniques [12, 13].

We start by considering the following smooth version of the map y 7! x.y/

defined above. Given Nx 2 	n and � > 0 let x� W Rm ! 	n be defined as

x�.y/ WD argmin
x2	n

n˝
ATy; x

˛C �

2
kx � Nxk2

o
:

The minimizer x�.y/ can be easily found by sorting the entries of Nx � 1
�
ATy.

The following algorithm SPVN (Smooth Perceptron–von Neumann) is a smooth
version of the Perceptron–von Neumann template. Assume Nx 2 	n and ı > 0 are
given inputs.

Algorithm SPVN( Nx; ı)
begin
y0 WD A NxI �0 WD 2nI x0 WD x�0.y0/I
for k D 0; 1; 2; : : :
�k WD 2

kC3 I
ykC1 WD .1 � �k/.yk C �kAxk/C �2kAx�k .yk/I
�kC1 WD .1 � �k/�k I
xkC1 WD .1 � �k/xk C �kx�kC1

.ykC1/I
if ATykC1 > 0 then Halt // ykC1 is a solution to (1) fi
if kAxkC1k � ı then Return xkC1 fiI

end
end

Algorithm SPVN is a slight modification of the smooth perceptron algorithm
given in [18]. The main difference is that algorithm SPVN uses the Euclidean
prox-function to smooth the map x.y/ instead of the entropy prox-function used
in [18]. As Proposition 1 in Sect. 5 shows, Algorithm SPVN finds a solution to (1)

in at most 2
p
2n

�.A/
� 1 iterations provided (1) is feasible and ı < �.A/. On the other

hand, when (2) is feasible, it can be shown that Algorithm SPVN halts after at most
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O
�

1p
ı

�
iterations with a ı-solution to (2). The following iterated version ISPVN

of algorithm SPVN achieves a substantially better complexity when (2) is feasible.
Assume � > 1 is a fixed constant and � > 0 is a given input.

Algorithm ISPVN(�; �)
begin

Qx0 D e

n
I

for i D 0; 1; 2; : : :
ıi WD kAQxik� I
QxiC1 WD SPVN. Qxi ; ıi /I
if ıi < � then Halt fi

end
end

We are now ready to state our main result.

Theorem 1. Assume A 2 R
m�n is such that �.A/ > 0.

(i) If the system (2) is feasible then each call to SPVN in Algorithm ISPVN halts
in at most

2
p
2n�

�.A/
� 1

iterations.
For any given � > 0 Algorithm ISPVN finds an �-solution to (2) in at most

log.1=�/

log.�/

outer iterations, that is, in at most
�
2
p
2n�

�.A/
� 1

�
�
�

log.1=�/
log.�/

�
D O

� p
n

�.A/
log

�
1
�

	�

elementary iterations.
(ii) If (1) is feasible, then each call to SPVN in Algorithm ISPVN halts in at most

2
p
2n

�.A/
� 1

iterations.
Algorithm ISPVN finds either an �-solution to (2) or a solution to (1) in

at most

log.1=�.A//

log.�/

outer iterations, that is, in at most
�
2
p
2n

�.A/
�1
�
�
�

log.1=�.A//
log.�/

�
DO

� p
n

�.A/
log

�
1

�.A/

��

elementary iterations.

Theorem 1 is a special case of the more general Theorem 2 presented in the next
section.
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4 Smooth Perceptron–von Neuman Algorithm for Conic
Systems

Assume K � R
n is a fixed regular convex cone, that is, K is closed, pointed and

has non-empty interior. We next generalize Algorithms SPVN and ISPVN to the
homogeneous conic system

ATy 2 int.K�/; (4)

and its alternative
Ax D 0; x 2 K; x ¤ 0; (5)

for a given matrix A 2 R
m�n. We note that in contrast to Sects. 2 and 3, we do not

assume that the columns of A are normalized.
We proceed by defining general versions of 	n; x�; and �.A/. Let 1 2 int.K�/

be fixed. Define the set 	.K/ as

	.K/ WD fx 2 R
n W x 2 K; h1; xi D 1g :

Given � > 0, we say that x 2 	.K/ is an �-solution to (5) if kAxk � �:
Observe that for K D R

nC and 1 D e D �
1 � � � 1� T; the set 	.K/ is precisely

the standard simplex 	n. For the cone K D S
nC of symmetric positive semidefinite

matrices in the space S
n of n 
 n symmetric matrices and 1 D In, the set 	.K/

is fX 2 S
nC W trace.X/ D 1g which is sometimes called the spectraplex. For the

second-order cone Ln D
�

x0
Nx
�
2 R

n W k Nxk � x0
�

and 1 D


1

0

�
, the set 	.K/ is

the lifted ball

�

1

Nx
�
2 R

n W k Nxk � 1
�
:

Our extension of Algorithms SPVN and ISPVN to the conic systems (4) and (5)
relies on the following key assumption.

Assumption 2. There is an available oracle that computes

argmin
x2	.K/

�
1

2
kxk2 � hg; xi

�
(6)

for any given g 2 R
n:

Assumption 2 readily holds when K D R
nC and 1 D e D �

1 � � � 1� T: In this case
	.K/ D 	n and the solution to (6) is x D .g � �e/C where � 2 R is such that
k.g � �e/Ck1 D 1: This � can be obtained by sorting the values of g. Likewise,
Assumption 2 holds when K D S

nC and 1 D In. In this case the solution to (6) for
g 2 S

n is x D UDiag..�.g/��e/C/U T where g D UDiag.�.g//U T is the spectral
decomposition of g and � 2 R is such that k.�.g/ � �e/Ck1 D 1: This time the
value of � can be obtained by sorting the values of the vector of eigenvalues �.g/.
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Similarly, Assumption 2 also holds when K D Ln and 1 D


1

0

�
. In this case the

solution to (6) for gD


g0
Ng
�
2Rn is xD.�1.g/��/C

"
1
Ng
k Ngk

#
C.�2.g/��/C

"
1

� Ng
k Ngk

#

where g D 1
2
�1.g/

"
1
Ng
k Ngk

#
C 1

2
�2.g/

"
1

� Ng
k Ngk

#
is the Jordan algebra spectral

decomposition of g (see [1]), that is, �1.g/ D g0 C k Ngk; �2.g/ D g0 � k Ngk;
and � 2 R is such that .�1.g/� �/CC .�2.g/� �/C D 1: This value of � is readily

computable: � D
�
�1.g/ � 1 if �1.g/ � �2.g/C 1
�1.g/C�2.g/�1

2
otherwise.

Proceeding in a similar fashion to the three cases above, it is easy to see that
Assumption 2 also holds when K is a direct product of non-negative orthants,
semidefinite cones, and second-order cones.

Given Nx 2 	.K/ and � > 0 let x� W Rm ! 	.K/ be defined as

x�.y/ WD argmin
x2	.K/

n˝
ATy; x

˛C �

2
kx � Nxk2

o
:

Observe that the mapping x�.�/ is computable by Assumption 2.
AssumeM is a known upper bound on kAk. We are now ready to give the general

versions of Algorithms SPVN and ISPVN.
Assume Nx 2 	.K/ and ı > 0 are given inputs.

Algorithm SPVNC( Nx; ı)
begin
y0 WD A NxI �0 WD 2M2I x0 WD x�0.y0/I
for k D 0; 1; 2; : : :
�k WD 2

kC3 I
ykC1 WD .1 � �k/.yk C �kAxk/C �2kAx�k .yk/I
�kC1 WD .1 � �k/�k I
xkC1 WD .1 � �k/xk C �kx�kC1

.ykC1/I
if ATykC1 > 0 then Halt // ykC1 is a solution to (4) fi
if kAxkC1k � ı then Return xkC1 fiI

end
end

Assume � > 1 is a fixed constant and � > 0 is a given input.

Algorithm ISPVNC(�; �)
begin

pick Qx0 2 	.K/I
for i D 0; 1; 2; : : :
ıi WD kA Qxik

�
I

QxiC1 WD SPVN. Qxi ; ıi /I
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if ıi < � then Halt fi
end

end

Let D denote the diameter of the set 	.K/, that is

D WD max
u;v2	.K/ ku � vk: (7)

Notice that D is well-defined and finite since the set 	.K/ is compact.
For a given A 2 R

m�n let

�.A/ WD
ˇ̌
ˇ̌max
kykD1

min
x2	.K/

˝
ATy; x

˛ˇ̌ˇ̌ :

We have the following general version of Theorem 1.

Theorem 2. Assume A 2 R
m�n is such that �.A/ > 0.

(i) If the system (5) is feasible then each call to SPVNC in Algorithm ISPVNC
halts in at most

2MD�

�.A/
� 1 (8)

iterations.
For any given � > 0 Algorithm ISPVNC finds an �-solution to (5) in at most

log.kA Qx0k=�/
log.�/

(9)

outer iterations, that is, in at most
�
2MD�

�.A/
� 1

�
�
�

log.kAQx0k=�/
log.�/

�
D

O
�
MD
�.A/

log
� kAQx0k

�

��
elementary iterations.

(ii) If (4) is feasible, then each call to SPVNC in Algorithm ISPVNC halts in at
most

2MD

�.A/
� 1 (10)

iterations.
Algorithm ISPVNC finds either an �-solution to (5) or a solution to (4) in at

most

log.kA Qx0k=�.A//
log.�/

(11)

outer iterations, that is, in at most
�
2MD
�.A/
� 1

�
�
�

log.kAQx0k=�.A//
log.�/

�
D

O
�
MD
�.A/

log
� kAQx0k
�.A/

��
elementary iterations.
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We conclude this section by showing that Theorem 1 follows from Theorem 2.

Proof (Proof of Theorem 1). Since the columns of A are normalized we have
kAk � pn. Hence Algorithms SPVN and ISPVN are recovered as special cases of
Algorithms SPVNC and ISPVNC respectively for K D R

nC and	.K/ D 	n. Next,
observe that the diameter of 	n is

p
2. Furthermore, for the initial point Qx0 D e

n

we have kA Qx0k � 1 because k Qx0k1 D 1 and the columns of A are normalized.
Therefore for K D R

nC; 	.K/ D 	n; Qx0 D e
n
; and A with normalized columns,

we haveD D p2;M D pn; and kA Qx0k � 1: Consequently, in this case Theorem 2
reduces to Theorem 1. �

5 Proof of Theorem 2

Proposition 1 and Proposition 3 below are the crux of the proof of Theorem 2.
These propositions show that each call to SPVNC in Algorithm ISPVNC halts in

O
�
MD
�.A/

�
iterations. The proofs of these propositions use ideas introduced by Soheili

and Peña in [18]. Let ' W Rm ! R be defined as

'.y/ WD �1
2
kyk2 C min

x2	.K/
˝
ATy; x

˛
:

Observe that if y 2 R
m is such that '.y/ > 0, then ATy 2 int .K�/.

Given Nx 2 	.K/ and � > 0, consider the smooth approximation '� of ' defined
as follows:

'�.y/ D �1
2
kyk2 C min

x2	.K/

n˝
ATy; x

˛C �

2
kx � Nxk2

o

D �1
2
kyk2 C ˝ATy; x�.y/

˛C �

2
kx�.y/ � Nxk2:

(12)

We will rely on the following properties of the functions '; '�. Recall thatD stands
for the diameter of 	.K/ as defined in (7).

Lemma 1. Assume A 2 R
m�n is given.

(i) For all � > 0

0 � '�.y/ � '.y/ � 1

2
�D2:

(ii) The iterates xk 2 	.K/, yk 2 R
m, �k 2 R, k D 0; 1; : : : generated by

Algorithm SPVNC satisfy

1

2
kAxkk2 � '�k .yk/: (13)

(iii) If �.A/ > 0 and the system (4) is feasible then for all y 2 R
m and x 2 	.K/,

'.y/ � 1

2
�.A/2 � 1

2
kAxk2:
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Lemma 1 is a straightforward extension of the ideas and proof techniques in [18].
To make our exposition self-contained we present a proof of it in Appendix 6.

Proposition 1. Assume A 2 R
m�n is given and �.A/ > 0. If the system (4) is

feasible, Algorithm SPVNC halts in at most

2MD

�.A/
� 1

iterations.

Proof. It suffices to bound the number of iterations when ı < �.A/ since otherwise
the algorithm can only halt sooner. If indeed ı < �.A/, Lemma 1(iii) implies that
Algorithm SPVNC can only halt when a solution to (4) is found. In the algorithm
�0 D 2M2 and �kC1 D kC1

kC3�k , so

�k D 4M2

.k C 1/.k C 2/ <
4M2

.k C 1/2 :

By Lemma 1(iii,ii,i) it follows that

1

2
�.A/2 � 1

2
kAxkk2 � '�k .yk/ � '.yk/C

1

2
�kD

2 < '.yk/C 2M2D2

.k C 1/2 :

Thus '.yk/ > 0, and consequently yk is a solution to (4), if k � 2MD
�.A/
� 1. �

We will rely on the characterization (14) below of �.A/ when (5) is feasible.
Figure 1(b) illustrates this characterization in the special case when K is the non-
negative orthant. We note that this property is closely related to a characterization
of Renegar’s distance to ill-posedness, see [16, Theorem 3.5]. Related properties of
�.A/ are also discussed in [5] and [4, Chap. 6].

Proposition 2. Assume �.A/ > 0 and the problem (5) is feasible. Then

�.A/ D supfı W y 2 R
m; kyk � ı) y 2 A.	.K//g: (14)

Proof. We first show the inequality “�” in (14). To that end, suppose ı > 0 is such
that Qy 2 A.	.K// for any Qy 2 R

m with k Qyk � ı. Given an arbitrary y 2 R
m with

kyk D 1, put Qy WD �ıy. By our assumption on ı, there exists Qx 2 	.K/ such that
A Qx D Qy. In addition, hA Qx; yi D h Qy; yi D �ı. So min

x2	.K/ hAx; yi � �ı. Since this

holds for any arbitrary y 2 R
m with kyk D 1, we have max

kykD1
min

x2	.K/ hAx; yi � �ı.
Therefore, �.A/ � ı.

Next we show the inequality “�” in (14). To do so, it suffices to show that if
y … A.	.K// then �.A/ < kyk: Observe that A.	.K// is closed and convex
because 	.K/ is compact and convex. Therefore, if y … A.	.K// then there exists
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a hyperplane that separates y and A.	.K//. More precisely, there exists z 2 R
m

with kzk D 1 such that

hz; yi < min
x2	.K/ hz; Axi � max

kykD1
min

x2	.K/ hy;Axi D ��.A/:

Hence by Schwarz inequality,

�.A/ < jhz; yij � kzkkyk D kyk: �

Throughout the rest of this section let S WD fx 2 	.K/ W Ax D 0g, and for
v 2 R

n let dist.v; S/ WD minfkv � xk W x 2 Sg.
Lemma 2. Assume (5) is feasible and �.A/ > 0. Then for all v 2 	.K/

dist.v; S/ � kAvkD
�.A/

: (15)

Proof. Given an arbitrary v 2 	.K/, the inequality (15) is clearly true if v 2 S .
Assume v 2 	.K/ n S . Consider y WD � Av

kAvk�.A/. By Proposition 2 there exists

u 2 	.K/ such that Au D y D � Av
kAvk�.A/. Let x D �u C .1 � �/v for � D

kAvk
kAvkC�.A/ . Then x 2 S and

kv � xk D �ku � vk � �D D kAvkD
kAvk C �.A/ �

kAvkD
�.A/

: �

Proposition 3. Assume (5) is feasible and �.A/ > 0. If Nx 2 	.K/ and ı D kA Nxk
�

for some � > 1, then Algorithm SPVNC with input . Nx; ı/ terminates in at most

2MD�

�.A/
� 1 (16)

iterations.

Proof. By Lemma 1(ii), at iteration k of Algorithm SPVN we have

1

2
kAxkk2 � '�k .yk/

� �kykk
2

2
Cmin

x2S

n˝
ATyk; x

˛C �k

2
kx � Nxk2

o

� �k

2
min
x2S kx � Nxk

2

D �k

2
dist. Nx; S/2:

(17)

Thus by Lemma 2

kAxkk � p�k � dist. Nx; S/ � p�k � DkA Nxk
�.A/

� 2MDkA Nxk
.k C 1/�.A/ :
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So when k � 2MDkA Nxk
�.A/ı

�1 D 2MD�

�.A/
�1we have kAxkk � ı and Algorithm SPVNC

halts. �

Proof (Proof of Theorem 2).

(i) The bound (8) readily follows from Proposition 3. For (9), observe that after N
outer iterations algorithm ISPVNC yields QxN 2 	.K/ with

kA QxN k � ıN�1 � kA Qx0k
�N

:

Thus, kA QxN k � ıN�1 < �, and so algorithm ISPVNC halts, in at most N D
log.kAQx0k=�/

log.�/ outer iterations.

(ii) Proposition 1 readily yields the bound (10). Furthermore, the proof of Propo-
sition 1 shows that algorithm ISPVNC halts with a solution to (4) when
ıN�1 < �.A/: By part (i) we know that ıN�1 � kAQx0k�N

: Thus ıN�1 < �.A/, and

so algorithm ISPVNC halts with a solution to (4), in at mostN D log.kAQx0k=�.A//
log.�/

outer iterations. Note that Algorithm ISPVNC may halt with an �-solution to
(5) in fewer outer iterations if � > �.A/. �

6 Conclusions and Future Work

We have proposed an iterated smooth perceptron-von Neumann algorithm (Al-
gorithm ISPVN) for the alternative systems (1) and (2). Our algorithm retains
the simplicity of the classical perceptron and von Neumann algorithms while
improving their iteration complexity roughly from O.1=�.A/2/ to O.

p
n=�.A//.

A key ingredient of our approach is the smoothing of the mapping x.y/ D
argminx2	n

˝
ATy; x

˛
to x�.y/ D argminx2	nf

˝
ATy; x

˛C �

2
kx � Nxk2g.

It is natural to ask whether our main results hold if a different prox-
function is used to smooth the mapping x.�/. In particular, the entropy functionPn

iD1 xi log xi C logn can be used in Algorithm SPVN in place of the Euclidean
distance function 1

2
kx� Nxk2. In this case, a non-iterated version of Algorithm SPVN

solves (1) in O.
p

logn=�.A// iterations provided it is feasible, as shown by Soheili
and Peña [18, Theorem 2.1]. We conjecture that the main factor O.

p
n=�.A// in

Theorem 1 can be improved to O.
p

logn=�.A// if the entropy function is suitably
used. It is tempting to look for a proof of this conjecture by modifying Algorithm
ISPVN and the proof of Theorem 1 in obvious ways. However, this attempt runs
into a roadblock because it needs a bound as that in Lemma 2 but with the entropy-
induced Bregman distance in place of the Euclidean distance. Such an analog of
Lemma 2 does not hold.

It is also natural to ask whether Algorithm SPVN could be combined with
the re-scaling phase proposed by Dunagan and Vempala [7, 8] to obtain a faster
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probabilistic re-scaled perceptron algorithm. In particular, the bulk of the work of
each outer iteration of Dunagan and Vempala’s algorithm consists of up to .32m/2

iterations in a perceptron phase, and up to .32m/2 logm iterations in a perceptron
improvement phase. We conjecture that the smoothing techniques used herein may
reduce the number of iterations in both of these phases to something like O.m

p
m/

or O.m
p
m logm/.

Appendix

Proof of Lemma 1

(i) From the construction of ' and '� it follows that

'�.y/ D �1
2
kyk2 C ˝ATy; x�.y/

˛C �

2
kx�.y/ � Nxk2

� �1
2
kyk2 C ˝ATy; x�.y/

˛

� �1
2
kyk2 C min

x2	.K/
˝
ATy; x

˛

D '.y/:

In addition,

'�.y/ D �1
2
kyk2 C min

x2	.K/
˚˝
ATy; x

˛C �

2
kx � Nxk2�

� �1
2
kyk2 C ˝ATy; x.y/

˛C �

2
kx.y/ � Nxk2

� '.y/C 1
2
�D2:

(ii) We proceed by induction. For k D 0 we have:

1

2
kAx0k2 D 1

2
kA Nxk2 C hA Nx;A .x0 � Nx/i C 1

2
kA.x0 � Nx/k2

� �1
2
kA Nxk2 C ˝ATA Nx; x0

˛C 1

2
kAk2kx0 � Nxk2

� �1
2
ky0k2 C

˝
ATy0; x�0.y0/

˛C 1

2
�0kx�0.y0/ � Nxk2

D '�0.y0/:

Now we will show that if (13) holds for k then it also holds for k C 1. To
ease notation, drop the index k and write yC, xC, �C for ykC1, xkC1, �kC1
respectively. Also, let Ox D .1� �/xC �x�.y/ so that yC D .1� �/y C �A Ox:
We have
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'�C
.yC/ D �kyCk

2

2
C ˝ATyC; x�C

.yC/
˛C �C

2
kx�C

.yC/ � Nxk2

D �k.1 � �/y C �A Oxk
2

2

C .1 � �/� ˝ATy; x�C
.yC/

˛C �

2
kx�C

.yC/ � Nxk2
�

C � ˝ATA Ox; x�C
.yC/

˛

� .1 � �/


�kyk

2

2
C ˝ATy; x�C

.yC/
˛C �

2
kx�C

.yC/ � Nxk2
�

1

C �


�kA Oxk

2

2
C ˝ATA Ox; x�C

.yC/
˛�

2

: (18)

The last inequality follows from the concavity of the function y 7! � kyk2
2

.
Using (12), we can estimate the expression in the first bracket in (18) as
follows:

�
:
�
1
D '�.y/C

˝
ATy; x�C

.yC/ � x�.y/
˛

C�
2

�kx�C
.yC/ � Nxk2 � kx�.y/ � Nxk2

	

D '�.y/C
˝
ATy C �.x�.y/ � Nx/; x�C

.yC/ � x�.y/
˛

C�
2
kx�C

.yC/ � x�.y/k2

� '�.y/C �

2
kx�C

.yC/ � x�.y/k2

� 1

2
kAxk2 C �

2
kx�C

.yC/ � x�.y/k2

� 1

2
kA Oxk2 C ˝ATA Ox; x � Ox˛C �

2
kx�C

.yC/ � x�.y/k2: (19)

The third step above follows from the optimality conditions for (12) at x�.y/.
The fourth step follows from the induction hypothesis (13).

The expression in the second bracket in (18) can be written as

�
:
�
2
D 1

2
kA Oxk2 C ˝ATA Ox; x�C

.yC/ � Ox
˛
: (20)
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Observe also that

xC � Ox D .1 � �/x C �x�C
.yC/ � .1 � �/x � �x�.y/

D �.x�C
.yC/ � x�.y//: (21)

Plugging (19) and (20) into (18) we get

'�C
.yC/ � .1 � �/

�
1
2
kA Oxk2 C ˝ATA Ox; x � Ox˛C �

2
kx�C

.yC/ � x�.y/k2
�

C � � 1
2
kA Oxk2 C ˝ATA Ox; x�C

.yC/ � Ox
˛�

D 1
2
kA Oxk2 C � ˝ATA Ox; x�C

.yC/ � x�.y/
˛

C .1��/�
2
kx�C

.yC/ � x�.y/k2
� 1

2
kA Oxk2 C � ˝ATA Ox; x�C

.yC/ � x�.y/
˛

C 1
2
�2kAk2kx�C

.yC/ � x�.y/k2
� 1

2
kA Oxk2 C ˝ATA Ox; xC � Ox

˛C 1
2
kA.xC � Ox/k2

D 1
2
kAxCk2:

The second step above follows because Ox D .1��/xC�x�.y/. The third step

follows because at iteration k we have �2kAk2
1�� D 4kAk2

.kC1/.kC3/ � 4M2

.kC1/.kC2/ D �.
The fourth step follows from (21).

(iii) Since the mapping v 7! min
x2	.K/

˝
ATv; x

˛
is positively homogeneous and (4) is

feasible, it follows that

'.y/ � max
v2Rmnf0g

'.v/

D max
v2Rmnf0g

�
� 1
2
kvk2 C kvk min

x2	.K/

D
AT v
kvk ; x

E�

D max
t>0

˚� 1
2
t2 C t�.A/�

D 1
2
�.A/2:

In addition, �.A/ D min
u2	.K/ max

kykD1
˝
ATy; u

˛ � max
kykD1

˝
ATy; x

˛ D kAxk for any

x 2 	.K/ . �
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1 Short Questions

1.1 Question by Imre Bárány, Endre Makai, Jr., Horst Martini,
and Valeriu Soltan

The problem posed below can also be found in the article [27] (p. 469) written by
the second and third of its posers.

Let X � R
d . Following Klee, one calls x0; x00 2 X (where x0 ¤ x00) antipodal

if there are different parallel supporting hyperplanes H 0, H 00 of convX such that
x0 2 H 0 and x00 2 H 00 (cf. [26], p. 420). Moreover, X � R

d is antipodal if for
all x0; x00 2 X with x0 ¤ x00 we have that x0 and x00 are antipodal. Answering a
problem of Erdős and Klee, Danzer and Grünbaum [25] proved that for X � R

d , if
X is antipodal, then jX j � 2d . This is sharp for the vertices of a parallelotope.

We pose a generalization of this theorem:

Question 1. Suppose S is a set of segments in R
d such that for every s0; s00 2 S

with s0 ¤ s00 there are different parallel supporting hyperplanes H 0, H 00 of the
convex hull conv.

Sfs W s 2 Sg/, such that s0 � H 0 and s00 � H 00. Then is it true
that jS j � 2d�1?
Comments. If true, this would be sharp: an example would be the set of all edges
of a parallelotope, parallel to a given edge.

Of course, more generally, we may consider a set Sk of k-simplices in R
d , which

satisfy the word-for-word analogue of the above property. Is it true, that then jSkj �
2d�k? If true, this would be sharp: an example would be simplices on all k-faces of
a parallelotope, parallel to a given k-face. Here 1 � k � d � 2. (Observe that for
k D d � 1 the statement is evidently true.)

I. Talata, (Oral Communication, unpublished), proved the case d D 3 and k D 1.

1.2 Question by Károly Bezdek

A plank is a closed region of the d -dimensional Euclidean space E
d bounded by

a pair of parallel hyperplanes. The width of a plank is the distance between its
boundary hyperplanes.

Question 2. Given a family of planks whose sum of widths is smaller than 2, what
is the maximum volume of the part of the unit ball in E

d that can be covered by the
planks?

Comments. One might expect that the maximum volume in question is reached
when the planks do not overlap and their union forms one plank concentric with the
unit ball. Indeed, this is so in E

3. For a somewhat stronger statement in E
3 and its

proof see Theorem 4.5.2 in [28]. The above question and the expected answer in two
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dimensions are motivated by the well-known solution (attributed to A. Tarski, 1932)
of a problem on covering the unit circle by a family of planks. (For more details we
refer the interested reader to Chap. 4 of [28].)

Recall that Sd stands for the d -dimensional unit sphere in .d C 1/-dimensional
Euclidean space E

dC1; d � 2. A spherically convex body is a closed, spherically
convex subset K of Sd with interior points and lying in some closed hemisphere,
thus, the intersection of Sd with a .d C 1/-dimensional closed convex cone of EdC1
different from E

dC1. The inradius r.K/ of K is the spherical radius of the largest
spherical ball contained in K.

Question 3. Let the spherically convex bodies K1; : : : ;Kn cover the spherical ball
B of radius r.B/ < �

2
in S

d ; d � 2. Then prove or disprove that
Pn

iD1 r.Ki /�r.B/.
Comments. R. Schneider and the author [29] have proved the following related
result: If the spherically convex bodies K1; : : : ;Kn cover the spherical ball B of
radius r.B/ � �

2
in S

d ; d � 2, then
Pn

iD1 r.Ki / � r.B/. Furthermore, we note
that the Euclidean analogue of the latter result has been proved by V. Kadets in [30]
using an approach completely different from the one of [29].

1.3 Question by Peter Brass

Question 4. Is it true that for each set of points in general position that results
from an

p
n 
 pn grid in three-dimensional space by a small perturbation, every

triangulation of the set consists of at most O
�
n3=2

	
simplices?

Comments. Any set of n points in three-dimensional space that is in general
position allows many different triangulations, and unlike in the two-dimensional
situation, different numbers of simplices are possible. Any set of n points has a
triangulation with O.n/ simplices, but it can have much larger triangulations, up to
O
�
n2
	
. But some point sets do not allow that large triangulations. I believe that for

the perturbed-grid-square O
�
n3=2

	
is the maximum. For the perturbed-grid-cube I

have a bound ofO
�
n5=3

	
, which is not sharp; the bound ofO

�
n3=2

	
would be sharp

for the perturbed-grid-squares.

1.4 Question by Antoine Deza

An arrangement A d;n of n hyperplanes in dimension d is simple if any d

hyperplanes intersect at a distinct point. The d -dimensional polyhedra defined by
the hyperplanes of an arrangement A d;n are called the cells of A d;n. The bounded
facets of an unbounded cell are called external. Let ˚A .d; n/ be the minimum
number of external facets for any simple arrangement defined by n hyperplanes
in dimension d .
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Question 5. We hypothesize that ˚A .d; nC 1/ � ˚A .d; n/C ˚A .d � 1; n/ for
n > d � 3, and that the inequality is satisfied with equality for d D 3 and n � 6,
i.e., ˚A .3; n/ D n2 � 3nC 4 for n � 6.

Comments. The hypothesized inequality holds for nDdC1 since ˚A .d; dC1/ D
dC1 and ˚A .d; d C 2/ D d.d C 1/. For d D 2, we have ˚A .2; n/ D 2.n � 1/
for n � 4 and, thus, ˚A .2; n C 1/ D ˚A .2; n/ C ˚A .1; n/ for n � 4 since
˚A .1; n/ D 2. The hypothesized inequality holds for all know values of ˚A .d; n/

and is satisfied with equality for .d; n/ D .3; 6/ and .3; 7/, see [31]. A strengthening
of the lower bound of ˚A .3; n/ � n.n� 2/=3C 2 would improve the upper bound
for the average diameter of a bounded cell of a simple arrangement of n hyperplanes
in dimension 3. We refer to [32] for more details about the relation of the average
diameter of a bounded cell of a simple arrangement of n hyperplanes in dimension
d to ˚A .d; n/, and to the Hirsch conjecture recently disproved by Santos [33].

1.5 Question by Gábor Fejes Tóth

The maximum volume of the intersection of a fixed ball in E
d and a variable simplex

of given volume V is attained when the simplex is regular and concentric with the
ball. This statement easily follows by Steiner symmetrization.

Question 6. Show that the above statement holds true in spherical and hyperbolic
space as well.

Comments. Apart of the two-dimensional case the problem is open. If true,
the statement has some important consequences. It implies that the simplex of
maximum volume inscribed in a ball in Sd or Hd is regular, results proved by
Böröczky [34] and Peyerimhoff [35], respectively. It also implies the conjecture
that the simplex of minimum volume circumscribed a ball in Sd or Hd is regular.
For the spherical case the statement implies the following: The volume of the part
of Sd covered by d C 2 congruent balls attains its maximum if the centers of the
balls lie in the vertices of a regular simplex.

1.6 Question by Włodzimierz Kuperberg

Question 7. What is the minimum number q.n/ of cubes in R
n of edge length

smaller than 1 whose union contains a unit cube?

Comments. The smaller cubes in question are not assumed to be parallel (homoth-
etic) to the covered unit cube, for in that case the corresponding minimum number
would be exactly 2n, since on one hand, a smaller homothetic cube contains at most
one vertex of the unit cube, and on the other hand, 2n smaller homothetic cubes
suffice to cover the unit cube.
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It is not difficult to prove that q.2/ D 3 and that q.n/ � nC 1 for every n, but
the exact value of q.n/ has not yet been established for any n � 3.

1.7 Question by Jon Lee

Question 8. For n � 2, the Boolean Quadric Polytope Pn is the convex hull in
dimension d D n.n C 1/=2 of the 0=1 solutions to xixj D yij for all i < j in
N WD f1; 2; : : : ; ng. Give a formula or good bounds for the d -dimensional volume
of Pn.

Comments. The polytope Pn is contained in Qn, the solution set of the linear
inequalities: yij � xi , yij � xj , xi C xj � 1C yij , for all i < j in N . In [36], we
demonstrated that the d -dimensional volume of Qn is 22n�dnŠ=.2n/Š. So this is an
upper bound on the d -dimensional volume of Pn. We would like to see a significant
improvement in this upper bound and/or a non-trivial lower bound. There is quite a
lot known about further linear inequalities satisfied by Pn, so there are avenues to
explore for trying to get a significant improvement in the upper bound.

1.8 Question by Horst Martini

Question 9. Characterize geometrically those n-simplices in E
n, n � 3, for which

the incenter lies on the Euler line.

Comments. It is well known that for any triangle T in E
2 the circumcenter C , the

centroid S , the orthocenter O , and the center F of the nine-point circle lie on one
line—the Euler line e of T . It is also known that the incenter I of T lies on e if and
only if T is isosceles, with e as axis of symmetry. No analogous characterization is
known for n-simplices in E

n .n � 3/whose incenter I lies on their Euler line, which
still is the affine hull of C and S ; see the problem posed above. Only the following is
known (see [37]): Let T be an n-dimensional orthocentric simplex (n � 3), i.e., the
nC 1 altitudes of T still have a common point. Then C , S , and I of T are collinear
if and only if T is biregular, which means: The vertex set of T can be partitioned
into two disjoint subsets V1, V2 such that convV1, convV2 form regular simplices and
all segments Œx; y�, x 2 V1, y 2 V2, are of equal length. This directly generalizes the
planar result and supports somewhat the “philosophy” that orthocentric n-simplices
(n � 3) are the “true” higher dimensional analogues of triangles.
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1.9 Question by Benjamin Matschke

Conjecture 1. (A Multicolored Carathéodory Conjecture). Let r � 2 and N � 1
be integers. N can be assumed to be very large, that is, N � N0.r/ for some N0.r/.
Suppose we are given r.N C 1/ points Pij in R

N that are indexed by 1 � i � r

and 1 � j � N C 1. Assume that 0 2 convfP1j ; : : : ; Prj g for all 1 � j � N C 1.
Assume further that the index set f1; 2; : : : ; N C 1g is partitioned as C1 ] : : :] Cm
such that all color classes are small: jCkj � r � 1 for all 1 � k � m. Then there
exist k1; : : : ; kNC1 2 f1; : : : ; rg such that 0 2 convfPk1;1; : : : ; PkNC1;NC1g and for
any two distinct a; b in the same color class Ck we have ka ¤ kb .
Comments. This is an—admittedly technical—multicolored version of Bárány’s
colored Carathéodory theorem (1982). If true this conjecture implies the new
colored Tverberg theorem by Blagojević, Ziegler and me (2009), also for non-
primes r . Hence, the conjecture is particularly interesting when r is not a prime
and r � 1 divides N . The first interesting case is r D 4 and N D 9, which, if true,
would imply the new colored Tverberg theorem in the smallest open non-prime case
r D 4 and d D 2.

1.10 Question by Valeriu Soltan

Conjecture 2. If K � R
n is a compact convex set and n1; : : : ; ns are positive

integers with n1 C � � � C ns D n C 1, then, for every point z 2 K, non-empty
faces F1; : : : ; Fs of K exist such that

z 2 conv .F1 [ � � � [ Fs/

and
dimFi � ni � 1 for all i D 1; : : : ; s:

Comments. For convex polytopes K the conjecture holds true.

2 Comprehensive Research Problems

2.1 The Contact Number Problem of Unit Sphere Packings
by Károly Bezdek

Let B be a ball in the d -dimensional Euclidean space Ed . Then the contact graph of
an arbitrary finite packing by non-overlapping translates of B in E

d is the (simple)
graph whose vertices correspond to the packing elements and whose two vertices are
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connected by an edge if and only if the corresponding two packing elements touch
each other. One of the most basic questions on contact graphs is to find the maximum
number of edges that a contact graph of n non-overlapping translates of the given
Euclidean ball B can have in E

d . Harborth [44] proved the following remarkable
result on the contact graphs of congruent circular disk packings in E

2. The maximum
number of touching pairs in a packing of n congruent circular disks in E

2 is precisely
b3n �p12n � 3c. The analogue question in the hyperbolic plane has been studied
by Bowen in [42]. We prefer to quote his result in the following geometric way:
Consider circle packings in the hyperbolic plane, by finitely many congruent circles,
which maximize the number of touching pairs for the given number of congruent
circles. Then such a packing must have all of its centers located on the vertices of
a triangulation of the hyperbolic plane by congruent equilateral triangles, provided
the diameter D of the circles is such that an equilateral triangle in the hyperbolic
plane of side length D has each of its angles equal to 2�

N
for some N > 6.

Now, we are ready to phrase the Contact Number Problem of finite congruent
sphere packings in E

3. For a given positive integer n � 2 find the largest number
C.n/ of touching pairs in a packing of n congruent balls in E

3. One can regard this
problem as a combinatorial relative of the long-standing Kepler conjecture on the
densest unit sphere packings in E

3, which has been recently proved by Hales [43].
It is natural to continue with the following question.

Problem 1. Find those positive integers n for which C.n/ can be achieved in a
packing of n unit balls in E

3 consisting of parallel layers of unit balls each being a
subset of the densest infinite hexagonal layer of unit balls.

Harborth’s result [44] implies in a straightforward way that if the maximum
number of touching pairs in packings of n congruent circular disks in E

2 is denoted
by c.n/, then

lim
n!C1

3n � c.n/p
n

D p12 D 3:464 : : : :

The author [39] has proved the following estimates in higher dimensions. The
number of touching pairs in an arbitrary packing of n > 1 unit balls in E

d , d � 3 is
less than

1

2
�d n � 1

2d
ı
� d�1

d

d n
d�1
d ;

where �d stands for the kissing number of a unit ball in E
d (i.e., it denotes the

maximum number of non-overlapping unit balls of Ed that can touch a given unit
ball in E

d ) and ıd denotes the largest possible density for (infinite) packings of unit
balls in E

d . Now, recall that on the one hand, according to the well-known theorem
of Kabatiansky and Levenshtein [47] �d � 20:401d.1Co.1// and ıd � 2�0:599d.1Co.1//

as d ! C1 on the other hand, �3 D 12 (for the first complete proof see [48])
moreover, according to the recent breakthrough result of Hales [43] ı3 D �p

18
.

Thus, by combining the above results together we get that the number of touching
pairs in an arbitrary packing of n > 1 unit balls in E

d is less than
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1

2
20:401d.1Co.1// n � 1

2
2�0:401.d�1/.1�o.1// n

d�1
d

as d !C1 and in particular, it is less than

6n � 1
8



�p
18

�� 23
n
2
3 D 6n � 0:152 : : : n 2

3

for d D 3. Next we report on a recent improvement on the latter estimate. In
order, to state that theorem in a proper form we need to introduce a bit of additional
terminology. If P is a packing of n unit balls in E

3, then let C.P/ stand for the
number of touching pairs in P , that is, let C.P/ denote the number of edges of
the contact graph of P and call it the contact number of P . Moreover, let C.n/ be
the largest C.P/ for packings P of n unit balls in E

3. Finally, let us imagine that
we generate packings of n unit balls in E

3 in such a special way that each and every
center of the n unit balls chosen, is a lattice point of the face-centered cubic lattice
�fcc with shortest non-zero lattice vector of length 2. Then let Cfcc.n/ denote the
largest possible contact number of all packings of n unit balls obtained in this way.
Before stating our main theorem we make the following comments. First, recall that
according to [43] the lattice unit sphere packing generated by�fcc gives the largest
possible density for unit ball packings in E

3, namely �p
18

with each ball touched by
12 others such that their centers form the vertices of a cuboctahedron. Second, it is
easy to see that Cfcc.2/ D C.2/ D 1; Cfcc.3/ D C.3/ D 3; Cfcc.4/ D C.4/ D 6.
Third, it is natural to conjecture that Cfcc.9/ D C.9/ D 21. Based on the trivial
inequalities C.nC1/ � C.n/C3; Cfcc.nC1/ � Cfcc.n/C3 valid for all n � 2, it
would follow that Cfcc.5/ D C.5/ D 9; Cfcc.6/ D C.6/ D 12; Cfcc.7/ D C.7/ D
15, and Cfcc.8/ D C.8/ D 18. In general, clearly C.n/ � Cfcc.n/ � 3n � 6.
Furthermore, we note that C.10/ � 25; C.11/ � 29, and C.12/ � 33. In order,
to see that one should take the union U of two regular octahedra of edge length 2
in E

3 such that they share a regular triangle face T in common and lie on opposite
sides of it. If we take the unit balls centered at the nine vertices of U, then there
are exactly 21 touching pairs among them. Also, we note that along each side of
T the dihedral angle of U is concave and in fact, it can be completed to 2� by
adding twice the dihedral angle of a regular tetrahedron in E

3. This means that
along each side of T two triangular faces of U meet such that for their four vertices
there exists precisely one point in E

3 lying outside U and at distance 2 from each
of the four vertices. Finally, if we take the 12 vertices of a cuboctahedron of edge
length 2 in E

3 along with its center of symmetry, then the 13 unit balls centered
about them have 36 contacts implying that C.13/ � 36. Whether in any of the
inequalities C.10/ � 25; C.11/ � 29; C.12/ � 33, and C.13/ � 36 we have
equality seems to be an open question. In connection with this problem we call
the reader’s attention to the very recent and highly elegant article of Hayes [45]. It
gives an overview of the computational methods presented in the papers [38] and
[46] that are based on exhaustive enumeration and elementary geometry. The main
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results are: C.9/ D 21; C.10/ D 25 [38] and C.11/ D 29 [46]. However, the
status of the mathematical rigour of the approaches of [38] as well as [46] remains
to be seen. For C.n/ in general, when n is an arbitrary positive integer, we have the
following estimates proved in [40] and [41].

Theorem 1.

(i) C.n/ < 6n � 0:926n 2
3 for all n � 2.

(ii) Cfcc.n/ < 6n � 3
3
p
18�
�

n
2
3 D 6n � 3:665 : : : n 2

3 for all n � 2.

(iii) 6n � 3
p
486n

2
3 < Cfcc.n/ � C.n/ for all n D k.2k2C1/

3
with k � 2.

As an immediate result we get

Corollary 1.

0:926 <
6n � C.n/

n
2
3

<
3
p
486 D 7:862 : : :

for all n D k.2k2C1/
3

with k � 2.

The latter claim leads us to the following rather basic question.

Problem 2. Does the limit limn!C1 6n�C.n/
n
2
3

exist?

The following was noted in [39]. Due to the Minkowski difference body method
the family PK WD ft1CK; t2CK; : : : ; tnCKg of n translates of the convex body K
in E

d is a packing if and only if the family PKo WD ft1CKo; t2CKo; : : : ; tnCKog
of n translates of the symmetric difference body Ko WD 1

2
.K C .�K// of K is a

packing in E
d . Moreover, the number of touching pairs in the packing PK is equal

to the number of touching pairs in the packing PKo . Thus, for this reason and for
the reason that if K is a convex body of constant width in E

d , then Ko is a ball of
E
d , Theorem 1 extends in a straightforward way to translative packings of convex

bodies of constant width in E
3.

2.2 On Gram and Euclidean Graph Realizations by Monique
Laurent and Antonios Varvitsiotis

We present two open problems about the graph parameters ed.G/, gd.G/ and
�D.G/, which deal with some geometric realizations of graphs.

Problem 3. Determine the validity of the inequality:

ed.rG/ � ed.G/C 1; (1)

relating the Euclidean dimension of a graph G and of its suspension rG.

Comments: Given a graph G D .Œn�; E/, its Euclidean dimension is the graph
parameter ed.G/ which is defined as the smallest integer k � 1 such that, for every
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family of vectors p1; : : : ; pn, there exists another family of vectors q1; : : : ; qn 2 R
k

satisfying

kpi � pj k2 D kqi � qj k2; 8fi; j g 2 E:
The suspension graphrG is obtained fromG by adding to it a new node and making
it adjacent to all the nodes of G.

The parameter ed.G/ was studied in [49] where it is shown that for any fixed
k � 1, the class of graphs satisfying ed.G/ � k is closed under the operation of
taking minors. That is, the Euclidean dimension does not increase if one deletes or
contracts an edge e in G: ed.G n e/; ed.G=e/ � ed.G/. Then, the Graph Minor
Theorem of Robertson and Seymour implies that, for any fixed k � 1, there exists
a finite family of graphs G1; : : : Gtk having the property that ed.G/ � k if and only
if G does not have any minor isomorphic to any of G1; : : : ; Gtk . In other words, the
graph property ed.G/ � k can be characterized by finitely many minimal forbidden
minors. In [49, 50] the full list of minimal forbidden minors is identified for k 2
f1; 2; 3g. Specifically, KkC2 is the only minimal forbidden minor when k 2 f1; 2g
and, for ed.G/ � 3, there are two minimal forbidden minors:K5 and the octahedral
graph K2;2;2.

The following inequality is shown in [54], relating the Euclidean dimension of a
graph and of its suspension:

ed.rG/ � ed.G/C 1: (2)

Thus our first problem asks whether the converse inequality holds or, equivalently,
whether it is true that

ed.rG/ D ed.G/C 1: (3)

By combining results from [49] and [54] it follows that the answer is positive when
ed.G/ � 3, i.e., when G is K5 and K2;2;2-minor free.

In a similar manner, the Gram dimension gd.G/ is defined as the smallest integer
k � 1 such that, for every family of vectors p1; : : : ; pn, there exists another family
of vectors q1; : : : ; qn 2 R

k satisfying

kpik2 D kqik2; 8i 2 Œn�; and pT
i pj D qT

i qj ; 8fi; j g 2 E:

This parameter was introduced in [53, 54] and its study is motivated by its
connection with the low rank positive semidefinite matrix completion problem.

In [53, 54] it is shown that, for any fixed k � 1, the class of graphs satisfying
gd.G/ � k is closed under taking minors. Moreover, it is shown that KkC1 is the
only minimal forbidden minor for k 2 f1; 2; 3g and that K5 and K2;2;2 are the only
minimal forbidden minors for the graph property gd.G/ � 4. We also show the
following equality, which relates the Gram dimension of a graph to the Euclidean
dimension of its suspension:

gd.G/ D ed.rG/: (4)
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Combining with (2), we obtain that gd.G/ � ed.G/C1 for any graphG. Therefore,
Problem 1 is equivalent to the validity of the following equality:

gd.G/ D ed.G/C 1: (5)

Problem 4. Determine the validity of the inequality

gd.G/ � �D.G/; (6)

relating the Gram dimension gd.G/ and the van der Holst parameter �D.G/.

Comments: Let S nC denote the cone of n
n positive semidefinite matrices. Given
a graph G D .Œn�; E/ consider the cone

C .G/ D fM 2 S nC WMij D 0 for fi; j g 62 E and i 6D j g:

The parameter �D.G/ is defined as the maximum corank of a matrix M 2 C .G/
satisfying the following nondegeneracy property:

8X 2 S n MX D 0; Xii D 0 8i 2 V; Xij D 0 8fi; j g 2 E H) X D 0;

known as the Strong Arnold Property. This graph parameter was introduced in [52]
and its study is motivated by its relation to the celebrated graph invariant �.G/ of
Colin de Verdière [51].

In [52] is shown that, for any fixed k � 1, the class of graphs with �D.G/ � k is
closed under taking minors. Additionally, the full list of minimal forbidden minors
was determined for k 2 f1; 2; 3; 4g. Surprisingly, it turns out that the forbidden
minors for the property �D.G/ � k coincide with the forbidden minors for the
property gd.G/ � k, for each k 2 f1; 2; 3; 4g.

This observation prompted the investigation of possible links between these two
parameters. A first result in this direction was established in [53, 54] where it was
shown that, for any graph G,

gd.G/ � �D.G/: (7)

Our second problem asks for the validity of the converse inequality. In other words,
is it true that the two graph parameters gd.�/ and �D.�/ coincide? We know that
the answer is positive, e.g., for the graphs with Gram dimension at most 4, and for
chordal graphs.
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2.3 Non-convex Optimization Approaches to Network
Localization by Anthony Man-Cho So and Yinyu Ye

Determining the positions of a set of n points in Euclidean space based on
knowledge of a subset of the

�
n
2

	
pairwise distances is a fundamental geometric prob-

lem with numerous applications. For instance, in location-aware networks—which
support a host of services such as emergency response [14], mobile advertising [18],
and target tracking [23]—wireless nodes that are deployed in an area of interest
must be able to localize themselves using distance measurements obtained from
direct communications with their neighbors. Another example can be found in
biochemistry, where the positions of atoms in a molecule—which provide important
information about the properties and functions of the molecule—are typically
determined from a set of geometric constraints that include a subset of the inter-
atomic distances [6]. As the above examples suggest, in many applications of the
localization problem, it is only meaningful to localize the points in an Euclidean
space of given dimension, say in R

2 or R3. Unfortunately, such a fixed-dimensional
localization problem is intractable in general [17]. In fact, as shown in Biswas
and Ye [5], the d -dimensional localization problem can be formulated as a rank-
constrained semidefinite program (SDP), namely,

find Z 2 R
n�n

such that E .Z/ D u;
Z 	 0; rank.Z/ � d:

(8)

Here, the linear operator Z 7! E .Z/ D .tr.E1Z/; : : : ; tr.EmZ// 2 R
m and vector

u 2 R
m are determined by the available distance measurements, d � 1 is the target

dimension in which the input instance should be localized, andZ 	 0 means thatZ
is a symmetric positive semidefinite matrix. On the other hand, by dropping the non-
convex constraint rank.Z/ � d , one immediately obtains an SDP relaxation of the
fixed-dimensional localization problem. Such a relaxation and its variants have been
extensively studied in recent years (see, e.g., [3,4,7,9,10,12,16,19,21,22,24]) and
are very natural as far as polynomial-time solvability is concerned. Moreover, they
have the added advantage that in many cases, localization accuracy guarantees can
be established; see, e.g., [10,20–22,24]. However, standard interior-point algorithms
for solving SDPs will always return the solution with the highest rank [21], which
means that they are unlikely to deliver a feasible solution to the rank-constrained
problem (8) in general. Thus, it is interesting to ask whether there are other efficient
approaches for finding low-rank solutions to the SDP relaxation of (8).

In a recent work, Ji et al. [11] depart from the convex relaxation paradigm and
develop a non-convex optimization approach for tackling Problem (8). Such an
approach is motivated by ideas from low-rank matrix recovery—a topic that has
received significant interest recently; see, e.g., the website [15] and the references
therein. Specifically, for a given p 2 .0; 1�, consider the following regularized
version of Problem (8):
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� � D minimize fp.Z/ D
nX

iD1

i .Z/

p

subject to E .Z/ D u;
Z 	 0:

(9)

Here, 
i .Z/ is the i -th singular value of Z. The value .fp.Z//1=p is known as
the Schatten p-quasi-norm of Z, and it is easy to verify that f1.Z/ D tr.Z/ and
fp.Z/ ! rank.Z/ as p & 0 for all Z 	 0. This suggests that the Schatten quasi-
norms can be effective in finding a low-rank solution to Problem (9), especially
when p is small. However, a fundamental challenge associated with Problem (9) is
that the function Z 7! fp.Z/ is non-convex when p 2 .0; 1/. Indeed, the problem
of minimizing the Schatten p-quasi-norm over a system of linear matrix inequalities
is NP-hard for any fixed p 2 .0; 1/; cf. [8]. To circumvent this difficulty, Ji et
al. [11] design a potential reduction algorithm and show that it can approximate a
first-order critical point of Problem (9) to any given accuracy in polynomial time. In
other words, given an accuracy level � > 0, the algorithm will return a solution
NZ in polynomial time that is feasible for (9) and satisfies one of the following

conditions:

(a) NZ is an �-optimal solution, i.e., fp. NZ/ � �.
(b) NZ is an �-first-order critical point, i.e., there exists a multiplier Ny 2 R

m such that

p�p�1 �
mX

iD1
Nyi
�
UTEiU

	 	 0

and

0 � tr
�
p NZp �Pm

iD1 NyiEi NZ
	

fp. NZ/
� �;

where NZ D U�UT is the spectral decomposition of NZ with U 2 R
n�r ,

� D Diag.�1; : : : ; �r / 2 R
r�r and r D rank. NZ/, and NZp D U�pU T D

U Diag.�p1 ; : : : ; �
p
r / U

T .

Moreover, it is shown in [11] that if the input instance is universally rigid,1 then the
potential reduction algorithm can localize it in the required dimension, even though
the algorithm may only return a first-order critical point. This indicates that the
localizability guarantee of the potential reduction algorithm is at least as strong as
that of the SDP relaxations in [4,5]. Computationally, it is observed that the potential
reduction algorithm can localize some of the globally rigid2 but not universally rigid

1A localization instance is said to be universally rigid if it has a unique (up to congruences)
localization in any Euclidean space.
2A localization instance is said to be globally rigid in R

d if it has a unique (up to congruences)
localization in R

d .
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input instances in the required dimension [11]. It is worth noting that by an earlier
result of So and Ye [21], the SDP relaxation of Biswas and Ye [5] will necessarily
fail to localize such instances in the required dimension. This phenomenon strongly
motivates a deeper investigation of the approach proposed in [11].

Problem 5. In view of the above developments, it is clear that there are many
directions for further investigation. One of the most immediate questions is to
understand the power of the non-convex Schatten quasi-norm regularization in the
context of localization. Specifically, can we characterize the class of input instances
that can be localized in the required dimension by the potential reduction algorithm
of Ji et al.? From the results in [11], it is clear that this class will be larger than
that of universally rigid instances. However, it will certainly be smaller than that of
globally rigid instances, since the problem of localizing an arbitrary globally rigid
instance in the required dimension is intractable [2]. This also suggests that some
new rigidity-theoretic notions may be waiting to be discovered.

Along the same direction, it will be interesting to study the rigidity-theoretic
implications of Schatten quasi-norm regularization. A starting point could be to
understand the rigidity-theoretic interpretations of the dual vector Ny in the definition
of the first-order critical point. This is motivated by an earlier result of So and
Ye [20], which states that each dual variable in the SDP relaxation of Biswas and
Ye [5] corresponds to a stress on an edge of the input graph, and the optimality
conditions of the SDP correspond to a certain equilibrium condition on the input
graph. The work [20] has since motivated or been used to develop other rigidity-
theoretic results (see, e.g., [1, 13]), and a natural question would be whether these
results have counterparts in the Schatten quasi-norm regularization setting.
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26. Grünbaum, B.: Convex Polytopes. Wiley-Interscience, London (1967)
27. Makai, E., Jr., H.Martini, On the number of antipodal or strictly antipodal pairs of points in

finite subsets of R
d . In: Gritzmann, P., Sturmfels B. (eds.) Appled Geometry and Discrete

Mathematics, The V. Klee Festschrift. DIMACS Series in Discrete Mathematics and Theo-
retical Computer Sci., Vol. 4, American Mathematical Society, Providence, RI, pp. 457–470
(1991)

28. Bezdek, K.: Classical Topics in Discrete Geometry. CMS Books in Mathematics, Springer,
New York (2010)

http://perception.csl.illinois.edu/matrix-rank/references.html
http://perception.csl.illinois.edu/matrix-rank/references.html


336 K. Bezdek et al.

29. Bezdek, K., Schneider, R.: Covering large balls with convex sets in spherical space. Beiträge
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