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Abstract This chapter presents an overview of recent contributions that show how
fluid mechanics is drastically changing cancer research. The review will mainly
focus on the computational modelling of fluid-mediated processes related to can-
cer dynamics, spanning different representation scales from cells to organs. Fluid
mechanics seems to act as a fundamental organizing principle in many aspects of
cancer, including its growth, progression, metastasis, and therapy. On the other hand,
it is clear that fluid-dynamics modelling can make a huge contribution to many areas
of experimental cancer investigation since there is now a wealth of data that requires
systematic analysis. The relevance of microfluidics in the isolation, detection, mole-
cular characterization, and migration of tumour cells is also discussed. In the last
part of the chapter, future challenges and perspectives are briefly outlined.

1 Introduction

Cancer cannot be defined as just one disease, but rather as a broad group of more
than 200 diseases. From the biological point of view, it is a complex phenomenon
that can be characterized by a small set of hallmarks that point to a cascade of events
from the molecular to the organismal level (Hanahan and Weinberg 2011). At the
molecular level, cancer arises through a series of genetic mutations, which allow
cells to grow and divide uncontrollably. An alteration of the DNA molecule can
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disrupt the genes and produce faulty proteins, causing the cells to become abnormal
(or malignant) and lose their restraints on growth.

In healthy individuals, the immune system can recognize abnormal cells and
destroy them before they get a chance to divide. However, some mutant cells may
escape detection and survive to form a tumour (or neoplasm), which looks like a small
ball of cells and feeds on oxygen and nutrients that diffuse to its surface. As cells
in the core of the tumour become starved of oxygen (hypoxic cells), they release
substances (growth factors) that stimulate the growth of new blood vessels; a process
called angiogenesis (Dvorak et al. 1988). These angiogenic growth factors activate
receptors present on endothelial cells in pre-existing blood vessels. The activated
endothelial cells begin to release enzymes (proteases) that allow them to escape
from the parent vessel walls. These then proliferate into the surrounding matrix
and form solid sprouts connecting neighbouring vessels, which extend towards the
tumour, supplying it with blood (Leung et al. 1989; Hanahan and Folkman 1996). For
a while, the tumour grows as a cohesive ball of cells with smooth edges. However,
eventually some rogue cells break away from the growing tumour and invade the
adjacent tissue. This is a key process in the growth ofmost cancers and an escape route
for metastasis—the formation of secondary tumours owing to spreading of cancer
cells to more distant parts of the body through the lymphatic system or bloodstream.
Metastasis is the main cause of deaths due to cancer (Sporn 1996). For example, as
a cause of mortality in the United States, metastatic cancer is second only to heart
disease, with one out of four deaths being from cancer.

Cancer invasion occurs through several important steps, involving the interplay
between the cells themselves and their microenvironment (Liotta and Kohn 2001):
reduction in or loss of cell-cell adhesion, cell adhesion to the extracellular matrix
(the surrounding connective tissue), secretion of enzymes that digest the extracellular
matrix, and movement (migration) of the cancer cells coupled with their prolifera-
tion. Cancer cells experience both self-adhesion (cell-cell adhesion) and cell-matrix
adhesion, while cell movement through the surrounding tissue may occur through
diffusion with no preferred direction and by directed motion due to the breakdown of
the extracellular matrix components (Hanahan and Weinberg 2000; Friedl and Wolf
2003; Weinberg 2007).

Notwithstanding decades of research in cancer biology and medicine, our present
ability to predict and treat metastatic cancer is still very limited. The main difficulty
to reliably forecast the risk of cancer metastasis for individual patients stems from the
fact that cancer itself is the result of a complex interplay between a large number of
factors. While biological data continue to pile up at an enhanced rate, a major obsta-
cle to progress lies precisely on how to handle this overwhelming flow of data. As a
result of this difficulty, cancer research has commenced to undergo radical changes
towards a more quantitative approach, where mathematical models are slowly mak-
ing their way out as predictive tools using the parameters and information from
state-of-the-art experiments. Integrating mathematics, physics, and mechanics with
genomic investigations of cancer and its therapy opens a window towards a novel
multidisciplinary approach, which encompasses biomathematics and computation,
cancer biology, bioengineering, and imaging (Suresh 2007; Michor et al. 2011).
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Through the use of mathematical modelling and simulation software, this new
approach to cancer research has the potential to predict prognosis, optimize sur-
gical and pharmacological treatments for various cancers, and ultimately guide the
design of novel therapeutics (Quaranta et al. 2005). For an extensive review on the
novel mathematical tools applied to the modelling of cancer onset, evolution, and
growth the reader is referred to Bellomo et al. (2008).

A branch of physics and engineeringwhich is transforming the fight against cancer
is fluid mechanics. As advocated by Koumoutsakos et al. (2013) in a recent review
on the subject: after a century of rapid advances in theory, numerical methods, hard-
ware, and software, the fluid mechanics community has developed a powerful arsenal
of multiscale imaging, analysis, and simulation tools that are highly suitable for the
investigation of transport processes in cancer. Fluid mechanics has been recognized
to play an important role in most aspects of cancer, including tumour inception,
growth, metastasis, and therapy. In this chapter, we review the most important con-
tributions that project fluid mechanics as an essential organizing principle for cancer,
spanning spatial scales from the gene to the organ and timescales of microseconds,
as in gene mutations, to decades, as is pertinent to metastasis. We shall primarily
focus on progress achieved in numerical simulation models of aspects of cancer that
interface with fluid mechanics and discuss how significant future progress in the area
is promising to change dramatically both the way experimental oncology is going on
and our understanding of the processes involved from cancer initiation to metastasis
and from the molecular to the patient level.

2 The Microscopic Level

The starting point of cancer is the generation of a neoplastic cell through phenotypic
alterations, resulting from genetic mutations. However, this concept has not yet been
well addressed through mathematical modelling, which so far has mainly focused on
angiogenesis and invasion. After the onset of neoplasia, the characterization of the
system suggests the identification of three natural scales, which are also connected
to different stages of the disease, i.e., processes on the cellular scale (microscopic
level) are triggered by signals stemming from the sub-cellular level and these have
an impact on the macroscopic scale (organism), when tumours grow and spread.

On the microscopic (cellular) level, fluid-dynamic models have been proposed
to simulate the effects of cell-cell interactions. These interactions are fundamental
at all stages of tumour formation, whether they are among abnormal cells and host
cells, or among abnormal cells themselves. If tumour cells skip recognition and
suppression by the action of the immune system, the tumour may evade apoptosis
or co-opt host cells, allowing progressive growth. During invasion and metastasis,
alterations in cell-cell adhesion between individual tumour cells are key to driving
the process. Existing experimental data suggests that tumour cell-adhesion to the
endothelium under hydrodynamic shear rate—the change in flow velocity within the
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micro-capillaries—is a critical step that results in circulation-mediated metastasis
(Liang et al. 2008, 2010; Fu et al. 2012).

The mechanism of cell-cell adhesion—a non-local interaction between two cells
through transmembrane receptor binding—has naturally suggested the use of dis-
crete cell approaches, which retain the finite cell size and permit incorporation of
molecular interactions and/or forces that act between cells. A drawback of these
approaches is the significant computational time required to simulate large popu-
lations. Therefore, it is desirable to augment such methodologies with continuous
models that capture the dynamics of population-level behaviour. The past decade
has witnessed the development of a wide variety of discrete models of increas-
ing sophistication that incorporate cell adhesion, which can be classified into two
major classes: lattice-based and lattice-free approaches. Examples of the former
class include many cellular automata models (Deutsch and Dormann 2005; Moreira
and Deutsch 2005) and discrete-continuum techniques (Anderson 2005; Anderson
et al. 2006), where the discrete cells are allowed to interact with each other and sur-
rounding continuous fields representing the extracellular matrix densities and growth
factor concentrations. In particular, this latter approach has primarily been applied
to models of tumour cell invasion, where some models have incorporated the effects
of cell-adhesion, cell-migration, and phenotypic mutations (Anderson et al. 2006).
These have suggested that invasive fingering is essentially driven by environmental
heterogeneity. A spatially extended approach of the lattice-based class is the Cellular
Potts Model, which has been adapted and applied to cell populations (Graner and
Glazier 1992; Glazier and Graner 1993) and to simulation models of solid tumour
growth (Turner and Sherratt 2002) and angiogenesis (Bauer et al. 2007).

In contrast to the above grid-imposedmodels, lattice-free models allow individual
cells to move freely through continuous space. In a number of models of this type,
cells are given variable, yet predefined, shapes such as deformable ellipsoids of
fixed volume (Dallon and Othmer 2004; Palsson 2008). In more refined models,
cells are allowed to shift between spheroidal and polyhedral shapes (Schaller and
Meyer-Hermann 2005), or adopt continuously deforming shapes according to their
interactions with neighbours and the environment (Newman 2005). Models have
also been proposed in which individual cells are described as fluid-elastic structures
in which their membrane is represented by a deformable boundary immersed in a
fluid (Rejniak 2007; Dillon et al. 2008). In these models, adhesive forces are again
represented by force balances that describe the movement and deformation of cells,
while channels at their membranes permit the influx of fluid into them required for
growth.

Hybrid models aimed at studying the adhesive rolling of leukocytes over a
P-selectin coated surface in parabolic shear flow in microchannels, where the
immersed boundary method is used for cell deformation coupled with a Monte
Carlo simulation for receptor/ligand interaction, have reproduced the characteris-
tic “stop-and-go” motion of rolling leukocytes and the “tear-drop” shape of adherent
leukocytes as observed in experiments (Pappu et al. 2008). A software environment
capable of simulating blood flows on cellular scale inside microfluidic devices have
been recently proposed, where the blood is modelled as a suspension of liquid blood
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plasma, immersed blood cells, and magnetic beads (Gusenbauer et al. 2011). The
blood flow is represented on a fixed grid by solving the lattice-Boltzmann equa-
tions, while the boundary of each suspended object is represented by a set of discrete
Lagrangian immersed boundary points that do not need to lie on the fluid grid. A
direct application of this model in biomedicine is the use of self-organized magnetic
bead chains to isolate circulating tumour cells employing lab-on-a-chip technologies
(see Sect. 5 below).

3 Continuous Macroscopic Level

The body of literature devoted to models which link the cellular scale to the macro-
scopic tissue scale has increased at a high rate during the last few years. We foresee
that this trend will continue as cancer research in the immediate near future will
focus on refining and improving the existing models, allowing us not only to under-
stand but also diagnose and treat cancer beyond our present technical abilities. While
discrete models permit the straightforward incorporation of many intra-, extra-, and
inter-cellular processes, they can require a formidable number of cells to describe the
transition from the cellular to the tissue level, making the problem computationally
intractable. On the other hand, discrete models often resist a thourough analytical
investigation that can shed light on generic properties of the system under study. Both
of these difficulties can be relaxed by considering continuum-scale models based on
fluid-dynamic simulations with genetic and molecular elements, where cells are rep-
resented through their density at the tissue level and where relevant aspects of cancer
such as tumour inception, growth, metastasis, and therapy that have direct relevance
to flow-mediated processes can be thouroughly analyzed. In most of these models,
events at the cellular scale are accounted for by the particular choice of terms and
parameter functions that enter the governing evolution equations.

3.1 Tumour Onset, Growth, and Invasion

A cell becomes cancerous when a set of mutations is accumulated in its genome.
These mutations are linked to oncogenes—genes that have the potential to cause
cancer—and to tumour suppressor genes, which in contrast prevent a cell from
becoming cancerous. The combination of thousands of mutant genes across different
cell lines enables uncontrolled tumour growth. As the cancerous cells accumulate
genetic mutations, the rate of mutations increases as the molecular mechanisms of
genome maintenance are lost (Negrini et al. 2010). One outcome of this series
of mutations is an increase in the proliferation rate and a decrease in the death rate
of the cells, giving rise to a tumoral mass consisting of distinct cell types intertwined
with the extracellular matrix (Egeblad et al. 2010). However, even a fast growing
clump of tumour cells cannot grow beyond a certain size, since there is a balance
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between cells inside the tumour consuming nutrients and nutrient diffusion into the
tumour.

Once cells have formed a tumour mass, its sustained metabolic activity requires
oxygen and nutrients, which in the avascular stage (i.e., tumours without blood ves-
sels), are provided by diffusion through the surrounding perfused tissue. At this stage,
the tumour has a volume that usually never exceeds 1 mm3 and consists of an inner
zone of necrotic cells surrounded by an intermediate zone of quiescent (or dormant)
cells, owing to the lack of oxygen and nutrients, and an outer zone of proliferative
cells (Koumoutsakos et al. 2013). Tumour substances (angiogenic growth factors),
generated by the hypoxic zone near the necrotic one, induce blood vessel growth.
During this step, one sees at a macroscopic scale capillary sprouts from existing
vasculature moving towards the tumour to feed it and allow its further growth. In
particular, sprouting and intussusceptive angiogenesis entail flow-related processes.
In the former case, new blood vessels sprout from the existing vasculature and grow
to form a new vascular network, characterized by intermittent and low-shear-stress
conditions inside the vessel (Song and Munn 2011). The initiation of blood flow
leads to active vessel remodelling, maturation, and differentiation into venules and
arterioles. In contrast, intussusceptive angiogenesis is the process of transcapillary
pillar formation inside existing vessels that result in the formation of new vessels
(Styp-Rekowska et al. 2011). It involves three different steps: microvascular growth,
arborization, and branching remodelling (Djonov et al. 2003). Its initiation possibly
involves the imbalance of forces experienced by endothelial cells due to blood flow,
cell-cell adhesion, and the extracellular matrix (Davies 2005).

Tumour vasculature shows increased vascular density and branching patterns,
distorted and enlarged vessels, and highly convoluted segments (Goel et al. 2011;
Narang and Varia 2011). The presence of large inter-cellular spaces renders the ves-
sels leaky, allowing for enhanced macromolecule transport between the lumen and
the extracellular space, offersways for tumour cells to enter the vasculature, and leads
to an increase of the interstitial vasculature (Narang and Varia 2011). The vascular
shear rate has been found to influence vascular lumen formation as well as prolifera-
tion and migration of endothelial cells (Yamane et al. 2010), while pulsatile flow has
been shown to stimulate angiogenesis in an in vitro environment (Cullen et al. 2002).
In tumour-associated vasculature, the highly tortuous vessels increase the resistance
to blood flow. The leakage of blood plasma leads to an increase in the interstitial
pressure, causing vessel occlusion and acute hypoxia, which in turn leads to the
persisting release of vascular endothelial growth factor. In response, angiogenesis
continues, the network structures changes, and maturation is prevented, promot-
ing vascular leakage. Once the tumour has acquired its own blood supply (vascular
stage), peripheral tumour cells can escape via the circulatory system (migration) and
set up secondary tumours elsewhere in the body (metastasis). After angiogenesis and
metastasis, the patient is left with multiple tumours in different parts of his/her body
that are very difficult to detect and even more difficult to treat. From a clinical point
of view angiogenesis and vascular tumour growth together with metastasis is what
cause the patient to die, and modelling and understanding these different stages is
crucial for cancer therapy. However, a recent clinical study has reported a high degree
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of regression of a nonmelanoma skin tumour, particularly a basal cell carcinomawith
a high microvessel density, after photodynamic therapy (Cabrera et al. 2012). While
the tumour destruction was induced by the diffusion of cytotoxic agents from the
irradiated zone to the neighbourhood of the tumour zone, this may represent a case
where the process of angiogenesis may play a beneficial role in the regression of
contiguous untreated tumours.

3.2 Fluid-Dynamic Models

In general, computational models at the macroscopic scale are formulated in terms of
mass balance equations for the cellular components, coupled to a system of reaction-
diffusion equations for the concentration of extracellular chemicals, which can be
written in the form (Bellomo et al. 2008):

∂(ρiφi )

∂t
+ ∇ · (ρiφi vi ) = Γi , i = 1, 2, . . . , n, (1)

∂ck

∂t
+ ∇ · (ckvl) = ∇ · (Qk∇ck) + �k, k = 1, 2, . . . , m, (2)

where ρi and φi denote, respectively, the density and concentration of the i th cellular
component (i.e., cells, extra-cellular matrix, or extra-cellular fluid), vi is the mass
velocity vector of the i th population, ck are the concentrations of the chemicals
and nutrients, and vl is the velocity of the liquid (blood). The term Γi in Eq. (1) is a
source/sink term for each component, including production (cell birth) or destruction
(cell death) terms. Tumours constantly produce waste products, mainly water, and a
multitude of chemical factors. In particular, when a cell dies, its membrane ruptures
releasing its content, which is mostly re-usable organic material. In Eq. (2), Qk is
the diffusion coefficient of the kth chemical factor and �k is a source term for the
particular nutrient or chemical. In the language of fluid mechanics φi is just the
volume fraction of the i th constituent so that the tumour is modelled as a multiphase
material. The sum of the volume fractions over all constituents must therefore equal
one.

In order to close the above system of equations, an equation for the velocity com-
ponents (vi )must be specified.Dependingon the choice of this equation,macroscopic
models can be defined as phenomenological or mechanical models. Phenomenolog-
ical models are based on a diffusion equation for cell movement, i.e.,

vi = −Di∇φi , (3)

where Di is the diffusion coefficient. If this quantity is a positive constant, cell
movement will be described by linear diffusion. However, in several models,
the motion of cells is described by non-linear diffusion, where Di = Di (φ, c)
(Thompson and Byrne 1999; Sherratt and Chaplain 2001). While these models are
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suitable for describing some interplay between cells such as contact inhibition, they
cannot really account for the influence of an elastic membrane. However, they have
been successfully used for evaluating the efficacy of therapy or resection in the case
of brain tumours (gliomas) (Swanson and Alvord 2002), or the influence of acid-
ity (Gatenby and Gillies 2004). Alternatively, phenomenological models can specify
biasedmovement such as chemotaxis (Chaplain 1996)—the characteristicmovement
or orientation of a microorganism or cell in response to a chemical concentration
gradient either towards or away the chemical stimulus—or haptotaxis (Anderson
2005)—the directional motility or outgrowth of cells towards or along a gradient of
chemoattractants or adhesion sites in the extracellular matrix. An extension of the
model combining diffusion and haptotactic movement predicted that heterogeneity
of the extracellular matrix affects cancer invasion (Perumpanani and Byrne 1999).

As tumour cells proliferate, they push into the surrounding tissue and cause pres-
sure to build. This pressure, along with other mechanical interactions, have very
important implications on tumour growth and progression. Incorporation of the phys-
ical forces that influence cell motion requires complementing Eqs. (1) and (2) with
the momentum balance equations (Bellomo et al. 2008):

ρiφi

(
∂vi

∂t
+ vi · ∇vi

)
= ∇ · Ti + φi fi + Fi , i = 1, 2, ..., n, (4)

for each constituent. Here Ti is the stress-tensor, fi is the body force acting on the
i th constituent, and Fi is the interaction force with the other constituents. In order to
close this system of equations we need to specify constitutive equations that relate
the forces to the level of stress and compression. For instance, as a cell undergoes
mitosis and divides into two cells, these will generate a pressure on neighbouring
cells, causing an increase in tumour size. If cells are assumed to behave as a fluid,
the simplest constitutive equation for the stress can be written as

Ti = −σi I, (5)

where σi is the response of the cells to compression and I is the unit tensor. Here the
implicit assumption is made that cells behave as elastic liquids.

In many instances the filtration of organic liquids through tumours has been simu-
lated by modelling the tumour as a growing and deformable porous medium. If cells
move as an elastic fluid within a rigid extracellular matrix, Eqs. (1) and (2) can be
closed using Darcy’s law

vi = −K∇σi , (6)

where K is the permeability of the matrix. Modifications of this equation for a
deformable porous medium and for mass exchange between the constituents are
given in De Angelis and Preziosi (2000) and Chaplain et al. (2003). Darcy models
have been considered by several authors in simulations of tumour growth (Cristini et
al. 2003), of fluid flow in solid tumours (Soltani and Chen 2011), and more recently
for describing cancer-therapeutic transport in the lung (Erbertseder et al. 2012). The
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former models have predicted interstitial velocities in very good agreement with
experimental results, while the latter has described the flow, transport, and reaction
processes of a therapeutic agent in the pulmonary circulation in healthy and cancerous
pulmonary tissue. In this case, the phasemoving within the tissue continuum consists
of two components, namely the interstitial fluid and the therapeutic agent. While it
is assumed that the fluid phase is incompressible, the movement of the dissolved
drug molecules in the interstitial tissue of the lung is modelled using a single-phase,
two-component approach in a rigid, porous medium.With the additional assumption
that the flow within the tissue is creeping, the flow velocity of the interstitial fluid
can be very well described by Darcy’s law (Baxter and Jain 1989; Baish et al. 1997;
Erbertseder et al. 2012).

Alternatively, the cell-matrix medium can be viewed as a viscous fluid (Stokes
flow), where the stress depends on the viscosity (Friedman and Hu 2007), or as a
viscoelastic fluid (Holmes and Sleeman 2000). Other models treat the tumour tissue
as a mixture of cells living in a porous medium made of extracellular matrix and
filled with extracellular liquid (Graziano and Preziosi 2007). Darcy’s law can be
used to model both fluid flow and cell motion, where the latter is treated as a granular
material flowing in the porous extracellular matrix scaffold. For example, the case of
amulticell spheroid can bemodelled as a growing poro-elasticmediumusing Eqs. (1)
and (2) coupled to a variant of Eq. (4) for the interstitial pressure p, where the inertial
terms are neglected and the stress-tensor of the mixture (i = tc, tumour cells; i = l,
extracellular fluid with chemicals and nutrients) is given by Tm = −[p + σtc]I,
and a composite velocity equation (Bellomo et al. 2008). This scheme has been
used together with experimental data to show the cell-size reduction by solid stress
inside tumour spheroids (Ambrosi andMollica 2002; Roose et al. 2003). Combining
Darcy’s law with Stokes flow gives a further constitutive relation, known as the
Brinkman equation. Models based on Darcy-Stokes flow have been used to study
tumour morphology and stability (Zheng et al. 2005; Pham et al. 2011). However,
models based solely on Stokes flow has been found to be more consistent with
experimental data from in vitro three-dimensional multicellular tumour spheroids
(Pham et al. 2011).

A number of illustrative mechanical models describing the growth of avascular
tumours are reviewed in Roose et al. (2007), and details of some of the existing mod-
els can be found in the references therein.Multiscalemechanicalmodels designed for
simulating the growth of both avascular and vascular tumours, including environ-
mental conditions, distribution of oxygen, elastic membrane response, membrane
degradation, and the dynamics of the motion of the tumour have also started to
appear in the literature (Mantzaris et al. 2004; Plank et al. 2004; Macklin et al. 2009;
Bresch et al. 2010). While some of these models can be applied to investigate the
therapeutic benefits of anti-invasive agents, they provide the basis of a numerical
platform for more refined tumour growth simulations. On the other hand, the process
of invasion of adjacent tissue by cancer cells has been recently modelled by assum-
ing that cells migrate through a combination of diffusion and haptotaxis as well as
undergoing proliferation and by incorporating the effects of cell-cell and cell-matrix
adhesion (Chaplain et al. 2011). Multiscale models describing the growth of in vitro
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multicellular tumour spheroids and in vivo avascular tumour nodules that incor-
porate heterogeneous population of cells, drug diffusion, drug pharmacokinetics,
cell-cycle-phase transitions, and the diffusion of multiple nutrients are being used to
formulate effective therapeutic strategies by understanding the interactions between
drugs and the heterogeous microenvironments in growing tumours (Venkatasubra-
manian et al. 2008).

Although macroscopic models based on a fluid-dynamic approach are deeply
influencing modern cancer research in that they exhibit the general behaviour of
tumour growth, angiogenesis, and invasion, they fail to examine details of the phe-
nomena occurring at the single cell level. In particular, this makes detailed mod-
elling of processes such as angiogenesis difficult because calculating average cell
density fails to include the spatial structure of the vascular network. Moreover, it
is not completely clear if invasion and metastasis are driven by average population
behaviour, or instead by cells which deviate from the mean. For example, it is quite
possible that individual rogue cells drive the macroscopic processes of invasion or
metastasis. However, their individual behaviour is certainly not captured by a contin-
uum approach. Although the development of multiscale approaches is very recent,
future practical models must be based on some modular approach where at a certain
scale the processes have to be consistent with the lower and higher scales. In this
framework, the overall system can be regarded as a network of several interacting
subsystems, each developed at a specific scale, while interactions between contigu-
ous systems need to deal with compatibility (and possibly boundary) conditions at
each specific scale. A brief outline of these issues is given in Sect. 6. The interested
reader is referred to Bellomo et al. (2008), where perspectives of such a complexity
multiscale theory is amply discussed.

4 Models of Vascular Transport and Angiogenesis

The blood flow in microvessels, whose diameters are ∼100µm or less, is called the
microcirculation (Sugihara-Seki and Fu 2005). Microvessels have irregular inter-
connections that form a network in tissues and are responsible for the exchange of
materials between blood and surrounding tissues. Research on the flow through the
neoplastic vacuslature of solid tumours has been largely motivated by the desire to
understand the role of fluid convection in the treatment of cancer by therapeutic
monoclonal antibodies. A key problem in this kind of treatment is the low transport
rates into the main body of the tumour across the vasculature, which leads to low
and ineffective concentrations of the therapeutic macromolecules. It is a common
observation that interstitial fluid pressure is higher in both human and experimen-
tal solid tumours than in normal tissue (Heldin et al. 2004). Enhanced interstitial
pressure is the result of a richly developed and highly permeable vascular network,
combinedwith facilitated transendothelial fluid transfer (Boucher and Jain 1992; Lee
et al. 1994). Clinically, a high interstitial pressure is marked by a reduced delivery
and uptake of anticancer drugs (or macromolecules) and, hence, lack of therapeutic
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effects. Therefore, the analysis of blood flow and transport processes in the growing
networks requires accurate modelling of blood flow inmicrovessels, solute transport,
and angiogenesis.

Physically, blood is a suspension of red blood cells, white blood cells (leukocytes),
and platelets in plasma. It is an incompressible Newtonian fluid with viscosity of
about 1.2 cP at 37◦ C. Red blood cells are the most abundant, with a volume fraction
of 40–45%, and therefore they strongly influence the rheology of blood. Because of
their flexible viscoelastic membranes, they can easily pass through capillaries with
diameters less than their major diameters at rest (∼8µm). In fact, the minimum
diameter of a cylindrical tube that will allow a normal red cell to pass through intact
is as narrow as ∼2.8µm (Halpern and Secomb 1989). Leukocytes are generally
spherical with a mean diameter of ∼6–8µm and are much less deformable than red
cells.Despite their relatively small numbers, leukocites can contribute significantly to
blood flow resistance (Schmid-Schönbein et al. 1981). The rheological properties of
blood flowing in microvessels have been extensively studied by in vitro experiments,
using a suspension of red cells flowing through capillary tubes (Sugihara-Seki and
Fu 2005).

Accurate numerical simulations of blood flow in microvessels must certainly
include detailed models of blood cells as well as the glycocalyx layer attached to the
the endothelial surface. The dimensional irregularities of vessel diameters is another
important factor. The Reynolds number of the blood flow in microvessels is �1, so
that in general non-linear convective acceleration terms (v · ∇v) in the momentum-
balance equations describing the plasma flow and the cell motion can be neglected
(Sugihara-Seki and Fu 2005). Since the plasma is known to be an incompressible
Newtonian fluid, its motion is governed by the Navier-Stokes equations

ρ
∂v
∂t

= −∇ p + μ∇2v, (7)

along with the continuity equation

∇ · v = 0, (8)

where v is the velocity vector, p is the pressure, ρ is the density, andμ is the dynamic
viscosity of the plasma. Early simulations aimed at modelling the flow of red cells
in narrow tubes under axisymmetry, the flow fields around cells and shear stress on
the cell membrane, and flow resistance due to irregularities of vessel lumen as well
as the effects of glycocalyx and leukocytes are reviewed in Sugihara-Seki and Fu
(2005), and described in full detail in the references therein. More recent simulations
using continuum-based models have shown that coupling of solid components and
fluid flow in these models poses a number of challenging problems (Pozrikidis 2005;
Noguchi and Gompper 2005; Liu and Liu 2006; Skotheim and Secomb 2007; Wu
and Aidun 2010; Fedosov et al. 2012). For example, computational complexity can
be reduced by coupling discrete models of red cells with mesoscopic methods for
flow discretization such as the lattice Boltzmann method, multiparticle collisional
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dynamics, and dissipative particle dynamics (Dupin et al. 2008). Numerical simu-
lations have indicated that the effect of leukocyte adhesion to the vessel walls on
flow depends strongly on the number of adherent leukocytes and the vessel diameter
(Pappu et al. 2008). Owing to many similarities in the process of leukocyte and cir-
culating tumour cell adhesion, models developed for leukocytes can also be applied
to circulating tumour cells during the metastasis process.

Microvessel walls consist mainly of endothelial cells. Vascular endothelium is the
principle barrier to, and regulator of,material exchangebetween circulatingblood and
the body tissues. The ultrastructural pathways and mechanisms whereby endothelial
cells and the cleft between the cells modulate microvessel permeability to water and
solutes have been a classical question in microvessel transport since the early 1950s.
If capillary walls act like semi-permeable membranes, fluid motion across them
depends on the net imbalance between the osmotic absorption pressure of the plasma
proteins and the capillary hydraulic pressure generated by the heart beating (Levick
and Michel 2010). Most existing models of transport through the inter-endothelial
clefts are based on continuum approaches. However, it was suggested that more
suitable analyses should be based on the molecular nature of the fluid because of the
sizes of the mean intermolecular distances (∼0.3 nm) and the cleft width (∼18 nm)
(Sugihara-Seki et al. 2008). The development of multiscale computational models
(Praprotnik and Delle Site 2008), coupling, for example, the molecular structure
of the glycocalyx with a continuum description of the flow, is highly suitable in
this context. Moreover, solute transport from the vasculature to the cells has been
largely modelled as passively transported elements with a flux proportional to the
drug concentration. Solute transport inside the tumour was recently analyzed using
computational models of diffusion based on high-resolution images (Baish et al.
2011).

On the other hand, tumour-induced angiogenesis has been modelled using both
continuum and discrete models (Qutub and Mac Gabhann 2009). In a more recent
continuum approach, the extracellular population is modelled by a density function
that resolves the vascular branching patterns (Bergdorf et al. 2010). Cell-based and
lattice-baseddiscretemodels are described inBauer et al. (2009) andChaplain (2000),
respectively, while a hybrid modelling where a discrete tip-cell representation is
coupled to a continuum description of the blood vessels is given inMilde et al. (2008)
and Travasso and Corvera Poiré (2011). A model for sprouting angiogenesis based
on Poiseuille flow inside a network of connected pipes can be found in McDougall
et al. (2002), which was successively extended to account for the variability in blood
viscosity and evolving capillary vessels that can dilate and constrict to study the
transport of therapeutic agents inside the growing vasculature (Stephanou et al. 2006)
and combined with a continuum model of tumour growth (Macklin et al. 2009). An
in-depth report on recent simulation models of vascularized tumours is given in
Lowengrub et al. (2010), and references therein.
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5 Microfluidics in Cancer

Microfluidics typically deals with the manipulation of fluids that are geometrically
constrained to a submillimeter scale. Such small scales offer a number of advantages
including cost effectiveness, low consumption of reagents, cellular separations and
detections with high resolution and sensitivity, and other less obvious features of
fluids in microchannels, such as laminar flow (Whitesides 2006). The early devel-
opment of microfluidics in life science applications has been mainly focused on the
analysis of biomolecules from small volumes of fluids (typically nanolitres or less).
However, the use of microfluidics in manipulating and analyzing individual cells has
notably increased in recent years. Its application to biological systems is compelling
because it allows manipulation at the single or even subcellular level. Recently, there
has been a push towards applying microfluidic tools to specific biological research
areas so that development of these engineering approaches can be better guided.

Microfluidic devices allow for a lab-on-a-chip array to simplify single cell analy-
sis by providing a microenvironment that is of micrometer dimension and contain-
ing nanomoles of reagent/media. They also allow for controlled placement of cells
and precise delivery factors (Chao and Ros 2008). One conventional system that is
commonly used as a model to study cell migration is the transwell Boyden cham-
ber, in which a porous membrane with pore size of ∼5–10µm is placed between
cells and chemoattractant so that cells are attracted to move across the membrane
(Karnoub et al. 2007). Rapid advances in microtechnology have made microfluidic
devices easy to design and construct. For instance, polydimethylsiloxane (PDMS)
membrane stamps are typically molded off through soft lithography and other rapid
prototyping techniques (Xia and Whitesides 1998). Refinements in the fabrication
process, such as e-beam lithography, makes it possible to construct channels on the
submicron or even nanoscale, which in theory would be able to constrain a fluid
volume down to a femtolitre (billionth of microlitre) range (Qin et al. 2010). Recent
microfluidic approaches in studying cellular migration are reviewed in Huang et al.
(2011).

Another application of microfluidic-based devices is in the isolation, detection,
and molecular characterization of circulating tumour cells. Efficient methods for
the isolation and characterization of circulating tumour cells can also contribute to
a much better understanding of the metastatic process. The development of passive
microfluidic cell separation biochips, which can isolate circulating tumour cells from
whole blood without the use of antibodies or magnetic beads, is revolutionizing dis-
ease detection, diagnosis, and prognosis as cancer cells can be obtained from blood
(termed liquid biopsy) rather than via the needle aspiration tumour biopsy, which is
invasive, painful, and cannot be performed on a regular basis (Lim 2012). Recent
overviews of various methods for circulating tumour cell isolation, detection, and
molecular characterization can be found in Hou et al. (2011), Lianidou and Markou
(2011), and Yu et al. (2011). Isolation of cells with differential deformabilities
remains a great challenge (Wirzt et al. 2011; Gossett et al. 2012). Microfabrication-
assisted technology, using microscale arrays of round or rectangular posts, channels,



134 D. C. Belisario and L. Di G. Sigalotti

or other simple patterns, has the potential to solve this problem. For instance, a
mechanical separation chip, which employs artificial microbarriers in combination
with hydrodynamic forces to separate deformable from stiff cells, has been used to
demonstrate the separation of: (i) an artificial mixture of two breast cancer cell types
(MDA-MB-436 and MCF-7) with distinct deformabilities and matastatic potentials,
and (ii) a heterogeneous breast cancer cell line (SUM149), into enriched flexible and
stiff sub-populations (Zhang et al. 2012). The flexible phenotype is associated with
overexpression of multiple genes involved in cancer cell motility and metastasis.

Microfluidic devices have also been used for studying metastatic cancer cell inva-
sion. Much of the initial work in applying microfluidics to metastasis has focused
on studying how cancer cells respond to concentration gradients of chemicals sus-
pected to drive cell motion. For example, with the aid of a PDMS-based device it has
been possible to monitor 3D migration of the invasive MDA-MB-231 (mammary
carcinoma) cells across extracellular matrix-coated microgaps with real-time light
microscopy and map out their migration paths (Chaw et al. 2007). This not only per-
mits to quantify the percentage of migrated cells, but also to obtain information on
migration of individual cells. Microdevices for cell isolation and enumeration from
blood have also been presented by several other authors (Cheng et al. 2007; Vicker-
man et al. 2008; Tan et al. 2009). Today, most of these devices has the potential to be
used for routine monitoring of cancer development and cancer therapy in a clinical
setting. Recently, a microfluidic optical stretcher have been used to studymechanical
properties of cells from the inside (Lautenschläger et al. 2009). This helps investigate
how the cytoskeleton, cell mechanics, and cell motility may be related, so that we
may better understand how to develop therapies that hinder movement of metastatic
cells.

6 Future Challenges and Perspectives

In this chapter we have reviewed recent modelling aspects of cancer fluid mechanics
at different representation scales. In particular, model simulations of how cellular
changes affect macroscopic distributions are especially important when examining
sustained angiogenesis, tissue invasion, and metastasis. Although these models have
been successful in describing macroscopic evolution properties of cancer, it is well
known that they occur through genetic mutations and evolutionary selection; a link
that has not yet been fullymodelled. On the other hand, while all macroscopicmodels
either assume that cells move through a diffusion-like process or act as an elastic
fluid, only discrete models have the ability to track the behaviour of single cells.
Therefore, macroscopic continuum models should be derived from the underlying
cellular models by suitable asymptotic methods linking inter-cellular distances to
those typical of the tissue level. This necessity has recently given rise to multiscale
modelling constructs, where the dynamics at the cellular scale is coupled with the
continuum mechanics of solid tumours. However, as is the case with very complex
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systems, all of the components cannot be usually included if we wish to develop
practical models.

One possible solution to the above difficulty that has been envisaged is to make
use of the so-called theory of modules proposed by Hartwell et al. (1999), where the
whole system is decomposed into subsystems (ormodules) such that the identification
of each module is related to the expression of specific biological functions. However,
this modular approach must overcome a number of challenges before becoming a
workable and practical multiscale modelling framework. For instance, the analy-
sis of large interacting systems as occurs if the numerous signalling pathways or
interacting cytokines are incorporated, which will unavoidably lead to a significant
increase in system size and complexity. Other difficult features involve the processes
of angiogenesis and metastasis, where a detailed modelling of branching, anastomo-
sis, vascular normalization aswell as active cell migration to blood vessels, intravasa-
tion, extravasation, and distant site colonization in metastatic spread are completely
ignored by present models. In addition, factors as cell geometry, diffusion terms,
chemotaxis and haptotaxis, and cell invasion as an active and coordinated process
represent future challenges that must be accurately modelled if we want to reproduce
cancer in the computer and convert such complexity multiscale models into powerful
tools for the diagnosis, prediction, and therapy of cancer.
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