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Abstract The fluid flow through saturated and non-saturated homogeneous porous
media is studied numerically using amodified version of a Smoothed Particle Hydro-
dynamics (SPH) code. The modifications implemented in the original SPH code to
model the incompressible flow at low Reynolds numbers through a porous medium
are described. The performance of the model is demonstrated for three-dimensional
flow through idealized porous media consisting of regular square and hexagonal
arrays of solid spheres. For each of these configurations we consider a set of flow
calculations through saturated and non-saturated porous matrices differing in the
magnitude of the z-component of the hydraulic gradient. For the saturated case, the
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Darcy’s law is recovered and the hydraulic conductivity is calculated for both geome-
tries. The numerical results are consistentwith previous two-dimensional simulations
in that the square case has a lower hydraulic conductivity than the hexagonal case.
Finally, for the non-saturated case the relaxation time is calculated for different body
forces. In this case, the system never reaches steady-state conditions.

1 Introduction

The flow of complex fluids and the dispersion of solids in multiphase fluids through
porous media play a fundamental role in the current environment: in oil industry
applications, in the pollution of soils and aquifers by industrial products, in the
designing of remediation techniques for sites with mixed contamination, etc. In par-
ticular, fluids contaminated with hazardous particles and their mobility through a
porous medium (soil) have important environmental implications due to the risk of
ground water contamination. Specifically, radioactive contamination of the environ-
ment, including soils and water, is a relevant problem that has occurred in many parts
of the world as a by-product of nuclear activities such as defense-related operations,
power production, research, medical and industrial applications, among others. In
order to evaluate and elaborate adequate strategies for controlling and remediating
sites with this kind of contamination, the transport of solid and dissolved particles
in multiphase fluids and their flow through porous media need be understood. With
this aim, more realistic and accurate numerical models must be developed.

In order to reproduce real situations, these numericalmodelsmust not only include
information concerning the geological structure as, for example, the complex struc-
ture of the solid matrix, consisting of different stratus with different geometries, the
presence of fractures, and mobile or unstable boundaries originated due to dynam-
ical changes caused by geochemical and biochemical processes, but also physico-
chemical information (i.e., chemical reactions, adsorption–desorption processes, and
changes in the thermodynamic characteristics of the medium).

In general, flow through saturated media has been modelled using Darcy’s law
given by v = −ki, where v is the velocity of the fluid, k is the hydraulic conductivity,
and i is the hydraulic gradient, which is related to the body force F and the grav-
itational acceleration g by i = F/g (Zhu et al. 1999). However, this macroscopic
approach does not consider the characteristics of the medium at the pore scale. In
typical numerical models, the structure of the porous medium is mimicked by a
distribution of solid particles and to reproduce the fundamental physics the models
must involve changes in the flow and transport processes. Although Darcy’s law is
statistically equivalent to the Navier-Stokes equations, it does not include this kind
of information. For this reason, it is demanding to propose a more detailed approxi-
mation to model the flow through porous media.

As a first step to model the flow at the pore scale, we need to represent in detail
the geometry of the solid matrix. Recent efforts to study pore-scale flow phenomena
in porous media have been made using the method of Smoothed Particle Hydrody-
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namics (SPH) (Tartakovsky and Meakin 2006; Tartakovsky et al. 2007; Tartakovsky
2010), where at these scales the flow is assumed to be incompressible and at low
Reynolds numbers.One advantageofSPH is that it is amesh-free,Lagrangianmethod
for solving the equations of fluid dynamics in which additional physics and irregular
and/or mobile solid boundaries can easily be included. High spatial resolution seems
to be an unavoidable requirement for any numerical method trying to solve the flow
at the scale of the smallest pores. For example, the use of the new computational tech-
nologies available today, such as the GPU processors, allow for much higher spatial
resolution at a much lower computational cost, making SPH to be a promising tool
for simulating flow through porous media with sufficient detail. The method does
not only allow for calculation of the fluid velocity and pressure distribution, but also
for fluid particle path lines and discharge velocities (Gesteira et al. 2010), the former
being related to a well-known and still unresolved problem called hydrodynamic
dispersion in heterogeneous porous media (Allen 1985).

2 The SPH Method

As was outlined above, SPH is a gridless, Lagrangian method for solving the equa-
tions governing the motion of fluids. It essentially consists of two approximations:
the integral and the particle approximation (Monaghan 1982, 1992, 2005; Benz 1990;
Liu and Liu 2003).

In integral form any function A : R3 → R can bewritten as A(x) = ∫
A(x′)δ(x−

x′)d3x′, where δ(x−x′) is theDirac delta function. In SPH,we approximate this exact
integral to second-order by replacing the Dirac delta function by a kernel function
W so that

A(x) =
∫

V
A(x′)W (x − x′)d3x′ + O(h2), (1)

where W is an interpolating function of compact support, defined inside a sphere of
radius h, obeying the normalization condition:

∫
V (h)

W d3x′ = 1, where V (h) is the
spherical volume of influence of the kernel.

The particle approximation consists of replacing the continuous fluid by a set of
particles, each having its own volume of influenceΔV . In this way, the above integral
can be approximated by a sum over all neighbouring particles so that

A(x) ≈
∫

V
A(x′)W (x − x′)d3x′ ≈

N∑

j=1

A(x j )W (x − x j )ΔVj , (2)

where the subscript j identifies all N particles inside the volume V centred at the
field position x.

For numerical work, the summation on the right-hand side of Eq. (2) can be rewrit-
ten as
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A(x) =
∑

j

m j

ρ j
A j W (|x − x j |, h), (3)

wherem j and ρ j are, respectively, themass and density of particle j and A j = A(x j )

is the field value of A evaluated at the position of particle j . Here ΔVj → m j/ρ j ,
i.e., the inverse of the number density of particle j is assumed to be equal to the
volume of fluid associated with it. In the following, we will write for simplicity
Wi j = W (|xi − x j |, h), where the subscript i now refers to the position of particle
i , where the field must be evaluated.

Thekernel function is amonotonically decreasing functionof the distancebetween
pairs of particles and behaves as a delta function as the smoothing length, h, tends to
zero. We refer the interested reader to Benz (1990), Monaghan (1992) and Liu and
Liu (2003) for a detailed discussion on the kernel functions. Most existing numerical
codes consider four possible kernel functions (Gesteira et al. 2010): the Gaussian
kernel (Monaghan 1992), the cubic spline kernel, and the higher-order quartic and
quintic spline kernels (Gesteira et al. 2010). In this work, we use the cubic spline
kernel given by

W (r, h) = αD

⎧
⎨

⎩

1 − 3
2q2 + 3

4q3 ; 0 ≤ q < 1
1
4 (2 − q)3 ; 1 ≤ q < 2

0 ; q ≥ 2,
(4)

where αD = 10/(7πh2) in two-dimensions (2D) and αD = 1/(πh3) in three-
dimensions (3D). We note that the tensile correction is automatically activated when
using kernel functions with first derivatives that tend to zero with decreasing inter-
particle spacing (Monaghan 2000).

Using Eq. (3), the density field at the position of particle i can be written in SPH
notation as

ρi =
∑

j

m j Wi j , (5)

where, as we mentioned above, the sum includes only the nearest neighbours to
particle i . SPH expansions for the gradient and divergence of the fluid velocity
vector, v(x), are also required for the discretization of the Navier-Stokes equations.
In particular, we adopt the commonly used expressions

∇v(x) =
∑

j

m j

ρ j
v j∇W (|x − x j |, h), (6)

for the gradient and

∇ · v(x) =
∑

j

m j

ρ j
v j · ∇W (|x − x j |, h). (7)
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for the divergence of v(x).
In the present formulation, we evolve the continuity equation rather than using

the standard summation (5) for the density, which in discretized SPH form reads
(Monaghan 1992):

dρi

dt
=

∑

j

m j vi j · ∇i Wi j , (8)

where d/dt is the total derivative and vi j = vi −v j , with vi and v j being the velocity
vectors of particles i and j , respectively. This form is better suited when dealing with
fluids in the presence of solid boundaries. Moreover, instead of using Darcy’s law,
we solve the momentum conservation equation

dv
dt

= − 1

ρ
∇ P + g + Θ, (9)

where P is the pressure, g is the Earth gravitational acceleration, i.e., g = (0, 0, −9.81)
m/s2, and Θ accounts for the diffusion terms. Three different options for diffusion
can be used: (1) an artificial viscosity, (2) a laminar viscosity, or (3) the full viscosity,
i.e., laminar viscosity plus sub-particle scale turbulence. Here we use the artificial
viscosity proposed byMonaghan (1992) and refer the reader to Gesteira et al. (2010)
for a more detailed account on the choice of the diffusion term. In SPH notation,
Eq. (9) can be written as

dvi

dt
= −

∑

j

m j

(
Pj

ρ2
j

+ Pi

ρ2
i

+ Πi j

)

∇i Wi j + g, (10)

where the fluid acceleration due to the pressure gradients has been approximated
using the standard symmetrized SPH representation

(

− 1

ρ
∇ P

)

i
= −

∑

j

m j

(
Pj

ρ2
j

+ Pi

ρ2
i

)

∇i Wi j , (11)

which leads to exact conservation of linear and angular momentum. The artificial
viscous term, Πi j , in Eq. (10) is given by Monaghan (1992)

Πi j =
{

−αci j μi j
ρi j

; vi j · xi j < 0,

0 ; vi j · xi j > 0,
(12)

where μi j = hvi j · xi j/(x2i j + η2), xi j = xi − x j , ci j = (ci + c j )/2 is the average
sound speed between particles i and j , ρi j = (ρi + ρ j )/2, and α is a free parameter
typically of order unity. The parameter η2 ≈ 0.01 is added in the denominator of the
definition of μi j to prevent numerical singularities. Implicit in the form of Eq. (12)
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is that the viscosity is zero for particles moving away from each other and positive
for particles approaching each other. This form of the artificial viscosity is Galilean
invariant and so it allows SPH to performwell for slowlymoving shocks. In addition,
it vanishes under solid-body rotation, conserves total linear and angular momentum,
and guarantees that the entropy change due to dissipation is positive definite.

The time rate of change of the specific internal energy, e, is determined by the
thermal energy equation, which is derived from the first law of thermodynamics:
de = −Pd(1/ρ) + T ds, where T is the temperature and ds is the change of spe-
cific entropy, which includes all non-adiabatic effects. The symmetrized standard
representation (Monaghan 1994)

dei

dt
= 1

2

∑

j

m j

(
Pj

ρ2
j

+ Pi

ρ2
i

+ Πi j

)

vi j · ∇i Wi j , (13)

is employed to evolve the thermal energy of particle i . This form is consistent with
Eq. (10). Moreover, the position of particle i is determined by means of the equation
(Monaghan 1989):

dri

dt
= vi + ε

∑

j

m j

ρi j
vi j Wi j , (14)

where ε = 0.5. This expression guarantees that each SPH particle moves with a
velocity that is close to the average fluid velocity in its neighborhood. Finally, the
above SPH equations are solved by specifying an equation of state for the pressure.
Here we treat the fluid as weakly compressible and adjust the compressibility to slow
down the speed of sound and maintain reasonable values of the time step, which is
here determined using the Courant condition. The compressibility is limited by the
fact that the sound speed should be about ten times faster than the maximum fluid
velocity in order to keep variations of the density to within less than one percent.
In order to do so we use the following equation of state (Monaghan and Kos 1999;
Batchelor 2000):

P = B

[(
ρ

ρ0

)γ

− 1

]

, (15)

where γ = 7 and B = c20ρ0/γ , with ρ0 = 1,000kg/m3 being the reference density
and c0 = c(ρ0)

√
(∂ P/∂ρ)|ρ0 the sound speed at the reference density. A more

detailed account of the SPH method and its numerical implementation can be found
in Liu and Liu (2003) and Gesteira et al. (2010).
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Fig. 1 Initial configuration for the saturated and non-saturated square (first two panels) and hexag-
onal arrays (last two panels) of particles. The fluid is shown in yellow

3 Simulation Models

Westudy the flowof a fluid through saturated and non-saturated homogeneous porous
media. To do so we first consider a column of fluid with density ρ0, which is intro-
duced at the top of a regular 3D monolayer consisting of either a square or an
hexagonal lattice of solid spherical particles as shown in Fig. 1. The solid spherical
particles are assumed to remain static during the simulation. This configuration is
then employed to represent the structure of our porous media.

For all simulations the porosity is given by θ = Vv/VT = 0.8, where Vv =
VT − ns4πr30/3 is the void volume and VT = lx lylz is the total volume of the lattice
representing the porous medium. This relationship fixes the radius r0 of the spheres
as a function of the lx , ly , and lz lattice dimensions and the number of spheres ns .
For the square lattice we take ns = 70, lx = 8.08, ly = 1, and lz = 11.6, while for
the hexagonal array we take ns = 78, lx = 8.08, ly = 1, and lz = 12.3. In order
to facilitate comparisons with other simulations we employ dimensionless units by
means of the following transformations: ρ0 = {ρ0}kg/m3 = 1, r0 = {r0} m = 1,
and c0 = {c0}m/s = 1, where ρ0 is the fluid density, r0 is the radius of the spheres,
and c0 is the speed of sound. Here {A} represents the numerical value of quantity
A. Thus, the physical units of mass, length, and time are recovered by making kg
= 1/{r0}3{ρ0}, m = 1/{r0}, and s = {c0}/{r0}.

We analyze two different cases. In the first case, we consider a saturated medium
in which the fluid particles are distributed uniformly between the solid particles in
the lattice, while in the second case a non-saturated medium is defined where no
fluid particles are placed between the spherical particles (see Fig. 1).

For the saturated models we use n f = 1,019,013 fluid particles for the square
lattice and n f = 919,217 for the hexagonal lattice, with a total number of n p =
1,447,675 and n p = 1,354,295 particles, respectively, while in the non-saturated
models n f = 663,520 fluid particles are used for the square array and n f = 563,295
for the hexagonal lattice, with a total number of n p = 1,092,182 and n p = 998,758,
respectively. In each case, the system is confined by four lateral solid walls: two



488 E. Mayoral et al.

Fig. 2 Amplified views of the saturated square system at three different times: t = 0 (left) and
during the evolution (middle and right). The fluid is shown in yellow and the spherical solid particles
are shown in red

coinciding with the xz-plane and two with the yz-plane. At the bottom of the porous
medium (coinciding with the xy-plane), the liquid is allowed to flow freely (outlet
boundary conditions). Fluid motion is started by applying a body force F = gi in
the z-direction, where i is the hydraulic gradient and g = 9.8m/s2 is the gravita-
tional acceleration. This force ismaintained constant during a simulation. Amodified
version of theDual-SPHysics code (Gesteira et al. 2010) was employed and the simu-
lations were carried out on GPU processors. Details of the evolution for the saturated
model in a square lattice is shown in the amplified images of Fig. 2. Initially (left
panel), the fluid particles are uniformly distributed in a regular grid and as the system
evolves they become disordered (middle and right panels).

4 Results

4.1 Saturated Case

A set of calculation models were carried out for a saturated medium for both the
square and hexagonal lattices by varying the magnitude of the body force F in the z-
direction. This was accomplished by varying the magnitude of the hydraulic gradient
i in the z-direction, with iz = 0.01, 0.006, 0.005, 0.0025, and 0.00125 for the square
lattice and iz = 0.04, 0.02, 0.01, 0.005, and 0.0025 for the hexagonal array. For
each run we calculate the discharge velocity vz in an arbitrary point close to the
centre of the porous medium. The discharge velocity field at three different times
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Fig. 3 Discharge velocity field at different times during the evolution of a saturated medium with
a square array of solid spheres: t = 500 (left), t = 2,000 (middle), and t = 3,400 (right). Times
and velocities are given in dimensionless units

Fig. 4 Discharge velocity field at different times during the evolution of a saturated medium with
an hexagonal array of solid spheres: t = 500 (left), t = 2,000 (middle), and t = 3,400 (right).
Times and velocities are given in dimensionless units

during the evolution is shown in Figs. 3 and 4 for the square and hexagonal systems,
respectively.

The evolution of the discharge velocities vz at an arbitrary point in the porous
matrix is plotted in Fig. 5 for all saturated models. We see that an approximate steady
state is reached at different times depending on the magnitude of i. For both types
of arrays, as the magnitude of iz is decreased, the system takes longer to achieve
a steady-state regime. In addition, Fig. 6 depicts the x- and z-components of the
discharge velocity as a function of time for a saturated matrix composed of a square
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(a)

(b)

Fig. 5 Dimensionless discharge velocity as a function of time at an arbitrary point inside the porous
matrix for varying magnitude of iz . Top: square array; bottom: hexagonal array. The straight lines
mark the mean steady-state velocities for each run

lattice of solid spheres for iz = 0.005. The mean steady-state values of the velocity
components are shown by the horizontal dashed lines. We see that both components
reach a steady-state regime approximately at the same time as shown by the inset
boxes in the first and third plots. The mean value of the steady-state velocity in the
z-direction is larger than the corresponding value in the x-direction. This is expected
because the main flow occurs along the z-axis where it is induced by gravity.

The mean steady-state velocity component in the z-direction, vpz , increases lin-
early with the hydraulic z-gradient, iz , as shown in Fig. 7. While this is true for both
arrays of solid particles, the linear behaviour implies that the Darcy’s law is well
reproduced by the calculations. From the slopes of the linear variation, we may then
calculate the hydraulic conductivity kz . We find that kz = 0.13621 for the square
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Fig. 6 Discharge velocity in the x- and z-direction for a saturated porous matrix represented by
a square lattice of spherical solid particles when iz = 0.005. The inset boxes in the first and third
plots enclose the temporal region where the velocity components become steady state. The second
and fourth plots are amplifications of the inset boxes in the first and third plots, respectively. In all
boxes the straight lines mark the mean steady-state velocity components vpx and vpz . All quantities
are dimensionless
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Fig. 7 Linear dependence of the z-component of the mean discharge velocity in steady state on
the hydraulic z-gradient showing Darcy’s law. The hydraulic conductivity obtained for the square
array is kz = 0.13621 and for the hexagonal array is kz = 0.16539 in dimensionless units

array, while kz = 0.16539 for the hexagonal case. As expected, the value of the
hydraulic conductivity for the square geometry is smaller than for the hexagonal
array. These values can be compared to previous 2D SPH simulations reported by
Zhu et al. (1999). In order to do so we must convert our dimensionless results to
dimensional form. Since for our models {ρ0} = 1,000, {r0} = 0.399, and {c0} = 10,
we have that kz = 0.01362 m/s for the square case and kz = 0.016539 m/s for the
hexagonal case, which are comparable to the values reported by Zhu et al. (1999).

4.2 Non-Saturated Case

Similar calculationmodelswere also carried out for the non-saturated case by varying
the magnitude of iz . The discharge velocity field at three different times during the
evolution is shown in Figs. 8 and 9 for the square and hexagonal arrays, respectively.
In contrast to the saturated case, no steady-state regime is observed for the flow
velocity in the non-saturated media. As opposed to the square array, the hexagonal
geometry produces more obstruction to the flow of fluid at similar conditions.

The discharge velocity vz in the centre of the porous matrix is plotted in Fig. 10
as a function of time for the hexagonal array and varying magnitude of the hydraulic
gradient. As the magnitude of iz is increased higher values of vz are achieved at the
beginning of the simulation.Owing to the obstructing effects of the porousmatrix, the
flow velocity decreases with time and relaxes to a value close to zero. The relaxation
time for the transient is shown in Fig. 11 for all model calculations, where the natural
logarithm of vz is plotted as a function of time.We see that ln vz varies almost linearly
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Fig. 8 Discharge velocity field at t = 1,000 (left), t = 1,500 (middle), and t = 2,000 (right) for
the non-saturated square array. Times and velocities are given in dimensionless units

Fig. 9 Discharge velocity field at t = 1,000 (left), t = 1,500 (middle), and t = 2,000 (right) for
the non-saturated hexagonal array. Times and velocities are given in dimensionless units

with time during relaxation. The relaxation time, τ , can then be obtained from the
slope of this linear behaviour. As shown in Fig. 11, the magnitude of the relaxation
time achieves a minimum for iz = 0.01 and increases for higher and lower values of
the hydraulic gradient.
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Fig. 10 Discharge velocity as a function of time for a non-saturated hexagonal array and varying
values of the hydraulic gradient iz

Fig. 11 Natural logarithm of vzp as a function of time t for a non-saturated hexagonal array. The
plots depict the approximate temporal interval when the system is relaxing for each value of iz .
The relaxation times are given in dimensionless units as calculated from the slopes of the linear
dependences

5 Conclusions

In this chapter, we have presented exploratory three-dimensional (3D) simulations of
fluid flow through saturated and non-saturated homogeneous porous media, using an
improved Smoothed Particle Hydrodynamics (SPH) algorithm that has been imple-
mented in the Dual-SPHysics code (Gesteira et al. 2010). The simulations were
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carried out on GPU processors at high resolution, allowing for a large number of
SPH particles (∼106) at a low computational cost.

Two different initial configurations were tested, where the structure of the porous
media was simulated using a regular 3D monolayer of solid spheres arranged in
either a square or an hexagonal lattice. We find that for both geometries the fluid flow
through a saturated homogeneous porousmedium shows discharge velocities that are
proportional to the hydraulic gradient, reproducing the Darcy’s law under small body
forces. Results for the derived hydraulic conductivity were shown to compare well
with previous two-dimensional (2D) simulations of flow through periodic porous
media (Zhu et al. 1999). In all saturated models, an approximate steady-state regime
is achieved by the flow. In general, the system takes longer to achieve a steady-state
flow when the magnitude of the hydraulic gradient is decreased. In contrast, the flow
in non-saturated porous media never achieves a steady-state regime. In this case, the
flow is more efficiently obstructed in an hexagonal array than in a square lattice.
For an hexagonal lattice, the flow relaxes to values of the velocity close to zero with
relaxation times τ ∼ 10−4 in dimensionless units.More detailed simulations of these
complex systems are under way for two-phase flows with different lattice arrays and
geometries in order to reproduce the flow dynamics in more realistic porous media.
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