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Abstract We introduce a mathematical formalism towards the construction of a
continuum-field theory for particulate fluids and solids. We briefly outline a research
program aimed at unifying the fundamentals of the coarse-graining theory and the
numerical method of Smoothed Particle Hydrodynamics (SPH). We show that the
coarse-graining functions must satisfy well defined mathematical properties that
comply with those of the SPH kernel integral representation of continuous fields.
Given the appropriate dynamics for the macroscopic response, the present formalism
is able to describe both the solid and fluid-like behaviour of granular materials.
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1 Introduction

Continuum mechanics in its simplest form has been the paragon of field theory to
describe the response of solid bodies and fluids. Themathematical robustness of con-
tinuum theories rests on the field of partial differential equations (PDEs), which is
one of themain andmature cores of mathematical physics. Thesemathematical mod-
els rationalize, explain, and predict very well the macroscopic behaviour of isotropic
and homogeneous solid bodies. However, there is still no general continuum model
for the description of discrete microscopic, mesoscopic, and nanoscale systems. For
example, granular materials are composed of large collections of small grains and
exhibit many interesting collective phenomena emerging from the many-body clas-
sical dynamics of their constituents (Jaeger et al. 1996). This kind of materials can
exhibit solid-like as well as fluid-like behaviours. Nevertheless, a complete theoret-
ical description of granular materials as well as particulate amorphous and hetero-
geneous solids is still missing (Jaeger et al. 1996; Kadanoff 1999; de Gennes 1999;
Goldhirsch 2003). An analytical framework is required to bridge the gap between the
experimental and theoretical studies in this area, and develop numerical algorithms
for new and more efficient simulation techniques.

The studyof continuumconcepts andfieldvalues related to local (scale-dependent)
space-time averages began in 1946 with the celebrated statistical mechanical theory
of transport processes by Kirkwood (1946) and Irving and Kirkwood (1950). They
assumed that any ensemble average of space-time averages could be equated with
a space-time average of an ensemble average computed at given scales of length
and time. This approach represents an alternative to the Gibbs measure (Murdoch
and Bedeaux 1994; Babic 1997) (associated with the Boltzmann distribution and the
notion of canonical ensemble in equilibrium statistical thermodynamics, connecting
measurable macroscopic properties of materials to the properties of their constituent
particles and the interactions between them).1 Another interesting development was
reported by Glasser and Goldhirsch (2001), who based on the ideas worked out in
Kirkwood (1946); Irving and Kirkwood (1950) and Murdoch and Bedeaux (1994),
constructed a field theory for granular fluids.

The purpose of this paper is to present a further step towards the construction
of a macroscopic continuous-field mathematical description of granular materials
that fulfils the condition of reproducing microscopic properties in a macroscopic
representation of physical quantities. We address the problem of the estimation of
coarse-graining functions and show that theymust satisfy well-definedmathematical
conditions for the requirement of compact support of the smoothing function.

1 For granular systems this approach seems doomed from the outset: because energy is lost through
internal friction, and gained by a non-thermal source such as tapping or shearing, the dynamical
equations do not leave the canonical or any other known ensemble invariant.
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2 Starting Definitions and Postulates of the Theory

2.1 Domains and Observables

Consider a physical system whose properties may vary in time and space. Denoting
by R3 the three-dimensional coordinate space (and by r its elements), we shall then
simply denote by R

4 the four-dimensional space-time vector field whose elements
R have three spatial coordinates and a time-coordinate t :

R = (r, t) ∈ R
4. (1)

This space is the stage on which our theory is developed, so herein we will refer to
such a space as the physical domain:

Definition 1 (Physical domain). The physical domain Ω of any problem is the set
of all points in R

4.

In a discrete solid, for instance, the physical domain consists of all points occupied
by the grains of the solid as well as the empty spaces (pores) inside the material.

Following Murdoch and Bedeaux (1994), we introduce the next definition:

Definition 2 (Material system). A material system M ⊆ Ω is an instant-by-instant
identifiable set of fundamental discrete entities.

In other words, a material system is a set of fundamental disjoint sets in space
that belongs to the geometrical locus of the material to be described (atoms, ions,
molecules, pores, etc). In our problem of granular materials, such discrete entities are
modelled as interacting particles (grains), indexed by {i}. Since a granular material
is a large system of grains with macroscopic sizes (> 1μm), we have for such
materials that M ⊂ Ω . In the case of a continuous solid or fluid, there will be a
unique identifiable discrete entity, for which we have M = Ω .

Definition 3 (Observable). An observable is any real square-integrable function
defined over the entire physical domain or a subset of it:2

f : D ⊆ Ω → R,

f ∈ L2[D]. (2)

Definition 4 (Microscopic field). Any function ψ is a microscopic field if it is an
observable defined only in the material system, i. e.:

2 Remark 1 In general, an n-rank tensor function G : D → R
4 ⊗[n]

R
4 (where ⊗[n] denotes

the n-rank tensor product) is not an observable. Nevertheless, each component of the tensor is an
observable. Typical examples are the components of the stress tensor (σαβ , where Greek indices
denote Cartesian coordinates), or the components of the velocity field (vα).
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ψ : M → R,

ψ ∈ L2[M ]. (M⊆Ω) (3)

Definition 5 (Macroscopic field). Any function ψ̃ is a macroscopic field if it is an
observable defined over the entire physical domain, i. e.:

ψ̃ : Ω → R,

ψ ∈ L2[Ω]. (4)

We may characterize a granular material with the set of fundamental microscopic
fields:

{
mi ; ρi ; rαi (t)

}
, which denote themass, the density, and the α-component of

the centre-of-mass position of the i th grain at time t , respectively. Obviously, in such
a fundamental set, there are as many components of the centre-of-mass positions as
spatial dimensions of the physical domain (which, for the sake of generality, we have
taken as three-dimensional).

2.2 Principles

Consider the problem of building a macroscopic field ψ̃ : Ω → R from a micro-
scopic one ψ(ri , t) (with i = 1, 2, . . . , N ; where N is the total number of grains).
This has to be done in such a way that the microscopic information of the material
is accurately represented in the macroscopic field. This problem can be formally
stated as:

L ψ̃(r, t) = ψ(r, t), (5)

where L : L2[Ω] → L2[M ] is some operator that when applied to a macroscopic
field, returns the microscopic field. Thus, the sources of the macroscopic field ψ̃(R)

are the values of the microscopic field ψ(R) evaluated in each grain.

Postulate 1 (Linearity) The problem (5) satisfies the superposition principle.

The above postulate allows us to write the output of Eq. (5) (the macroscopic field)
as a linear functional of the input (the microscopic field), i. e.:

ψ̃(R) =
∫

M

�(R, R′)ψ(R′)dR′, (6)

where � must belong to L2[Ω].
Postulate 2 (Space-time translation invariance) The problem (5) is space-time
translation invariant.

So, if the input (the microscopic field) is shifted along some displacement vector
D = (Δr,Δt) in M , the output (macroscopic field) is also shifted in the same
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manner: if ψ̃(R) corresponds to ψ(R), then ψ̃(R + D) corresponds to ψ(R + D).
This can only be possible if the functionΦ in Eq. (6) depends on the differenceR−R′
of its arguments: Φ(R, R′) = Φ(R − R′). Then, Eq. (6) turns into the convolution
product:

ψ̃(R) =
∫

M

Φ(R − R′)ψ(R′)dR′ = (Φ × ψ)(R). (7)

Setting Φ(R) = Φ(r, t) ≡ φ(r)F(t), where F(t) and φ(r) are the temporal and
spatial parts of Φ, respectively, Eq. (7) becomes:

ψ̃(r, t) =
∫

T

dt ′F(t − t ′)
∫

Ms

dr′φ(r − r′)ψ(r′, t), (8)

where T ⊂ Ω is the time subspace of M and Ms ⊆ R
3 is the spatial subspace of

M :
Ms = {r ∈ R

3 : (r, t) ∈ M },

T = {t ∈ R : (r, t) ∈ M }.
(Ms ⊗ T = M ) (9)

We see that the solution of problem (5) is given by Eq. (8), where φ : V → R and
F : T → R are the spatial and temporal parts of the Green’s function Φ associated
to the operator L , respectively, with V and T being the spaces of all possible
displacements in the Euclidean spaces R3 and R, respectively. We see that φ has
dimensions of the inverse of volume and F of the inverse of time. For a granular
material, Ms is a disconnected subset of R3, and so the integral over Ms in Eq. (8)
is, in fact, a discrete sum. Since the infinitesimal volume elements of size dr′ in
Eq. (8) lies in Ms , such a sum must be taken over the small volumes ΔVi of each
disconnected set (i.e. over the volume of each particle). SettingΔVi = mi/ρi , Eq. (8)
can be written as:

ψ̃(r, t) =
∫

T

dt ′F(t − t ′)
N∑

i=1

mi

ρi
ψ(ri , t)φ(r − ri ). (10)

For static granular systems (granular packings in which the grains remain static
but the fields could still vary in time), we have that F(t − t ′) = δ(t − t ′) and Eq. (10)
becomes the weighted average sum:

ψ̃(r, t) =
N∑

i=1

mi

ρi
ψ(ri , t)φ(r − ri ). (11)

Postulates 1 and 2 has led us to a formulation via weighted-average sums of the
same kind as those introduced heuristically by Irving andKirkwood (1950);Murdoch
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and Bedeaux (1994); Babic (1997) and Glasser and Goldhirsch (2001), referring to
the Green’s functionΦ either as the coarse-graining function, the probability density
function, or simply as the weighting function. The continuous representation of fields
like the density, velocity, and stress tensor field components obtained using Eq. (11)
are, indeed, identical to those obtained by Murdoch and Kowalski (1992); Babic
(1997) and Glasser and Goldhirsch (2001). For instance, for the mass density we
have from Eq. (10) that:

ρ̃(r, t) =
∫

T

dt ′F(t − t ′)
N∑

i=1

miφ(r − ri ), (12)

which is the well-known coarse-grained mass density formula (Babic 1997; Glasser
and Goldhirsch 2001).

3 Properties of the Spatial Green’s Function

The solution of problem (5) is then given by Eq. (8). The next step is to find the
Green’s function. Since we do not know in advance the exact form of the operator
L , we require an alternativemethod to the conventional one using delta-type sources
for calculating the Green’s function. This is exactly the same kind of mathematical
problem that was solved by Lucy (1977) and Gingold and Monaghan (1977) when
they developed the method of Smoothed Particle Hydrodynamics (SPH) for the dis-
cretization of PDEs. Here, we postulate that one can use the method employed for
constructing SPH smoothing functions to calculate the spatial Green’s function.

A kernel interpolant, as in Eq. (8), with F(t − t ′) = δ(t − t ′) is also used in SPH
(called smoothed or integral representation) and the domain of the PDE is discretized
using a particle generator, leading to a sum over particles of masses mi and densities
ρi identical to Eq. (11). This defines a Lagrangian mesh-free, semi-discrete version
of the PDE (Monaghan 1992; Liu and Liu 2003, 2010; Li and Liu 2007). For the
integralmacroscopic representation ψ̃ in Eq. (8) to be consistentwith themicroscopic
field ψ , the kernel φ must satisfy some well established mathematical conditions.
In establishing such properties, one needs to consider some additional information
about the macroscopic behaviour of the system (this is due to the lack of information
about the exact form of the operatorL ). For granular flows, we require the system to
satisfy macroscopically the equations of granular hydrodynamics derived in Glasser
and Goldhirsch (2001). Assuming that the macroscopic behaviour of the system is
described by a second-order PDE (as is the case for granular hydrodynamics), Liu
et al. (2003) demonstrated that the integral representation will have a consistency of
order n if the kernel φ fulfils the following conditions:
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⎧
⎨

⎩

φ(r − r′)
∣
∣
∂S(r) = 0,

φ′(r − r′)
∣
∣
∂S(r) = 0,

Mi = δi0 i = 0, 1, 2, . . . , n ,

(13)

where:

Mi ≡
∫

S(r)

(
r − r′)i

φ
(
r − r′) dr′, (14)

is the i thmomentumof the kernel, andS(r) is a support domain of the point r, a subset
ofMs outside of which the kernel’s value is zero. The first and second of Eqs. (13) are
referred to as the compactness condition for the kernel and its first derivative.Without
such conditions, much more conditions would be needed over φ to guarantee consis-
tency between the discrete and the continuous description, as was shown explicitly
in Liu et al. (2003) and Liu and Liu (2006). The domain of the spatial Green’s func-
tion is no longer the space of all possible displacements in Euclidean space (as was
stated in Sect. 2.2), but rather the space of those displacements such that the argument
of φ lies within the support domain S(r). When this support domain is spherically
symmetric, its radius is called the smoothing length or spatial resolution in the SPH
literature. We note that by considering this compactness property of the Green’s
function in the sum (11), only those particles that are within the support domain of
the point r makes a contribution to the value of the macroscopic field. We also note
that the kernel’s momentum equation for i = 0 imposes a normalization condition
over φ, while for i = 1 it establishes a parity condition. Note that all these proper-
ties were imposed heuristically over the spatial coarse-graining function by Glasser
and Goldhirsch (2001), while here we have given a formal justification of them.

4 Conclusions

In this paper, we have given, by means of physical and mathematical arguments, a
formal justification of the description of discrete complex systems using weighted
average sums. This leads to a unification of the various formulations that have been
separately treated so far, namely the weighted average sums introduced by Irving
and Kirkwood (1950), the coarse-graining representation by Glasser and Goldhirsch
(2001), and the SPH integral representation by Lucy (1977) and Gingold and Mon-
aghan (1977). With this formulation we can guarantee that the macroscopic fields
are consistent with the microscopic properties of the material, satisfying the equa-
tions of granular hydrodynamics in its macroscopic description up to a certain order
n in its Taylor’s series expansion around any point in the material system M . The
method developed by Liu et al. (2003) and Liu and Liu (2006) becomes one for the
estimation of the spatial Green’s function of the unknown operator L . Using this
method for the calculation of such kernels, we can assure that (8) interpolates the
microscopic (discrete) field ψ . We propose that, given the appropriate macroscopic
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dynamics, this representation can be used to successfully model both the liquid and
the solid phase of a granular material. This is tightly connected to the fact that the
SPH method is able to model the dynamics of fluids and elastic solids the same way
(Gray et al. 2001).
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