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Abstract We study the scaling of adsorption isotherms of polyacrylic dispersants on
generic surfaces of metallic oxides XnOm as a function of the number of monomeric
units, using Electrostatic Dissipative Particle Dynamics simulations. The simulations
show how the scaling properties in these systems emerge and how the isotherms re-
scale to a universal curve, reproducing reported experimental results. The critical
exponent for these systems is also obtained, in perfect agreement with the scaling
theory of de Gennes. Some important applications are mentioned.

1 Introduction

Polyelectrolyte solutions have properties quite different from those observed in so-
lutions of uncharged polymers, and their behaviour is less well known (de Gennes
1976; Odijk 1979; Dobrynin et al. 1995). In particular, the scaling of some quanti-
ties could present a different behaviour and so atypical scaling exponents could be
found. In most cases, the statistical properties of these interesting systems cannot be
obtained analytically because of the long-range Coulombic repulsion produced by
the presence of small mobile counterions in the bulk, which interact both with the
charge in the polymer and with one another. The use of simulation methodologies
have shown, however, to be a promising tool in the study of very complex systems
(Fermeglia and Pricl 2007).
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In our case of study, the presence of big charged molecules (such as polymers)
and small ones (like counterions and solvents) involving different length and time
scales, makes an electrostatic mesoscopic approach a good alternative. One of these
mesoscopic approaches isDissipative Particle Dynamics (DPD),which is a Langevin
dynamics approximationwhere the fluid is represented by virtual interacting particles
through three forces: conservative, random, and dissipative. The conservative force
includes repulsive and electrostatic interactions, and determines the equilibrium state
of the system,whereas the dissipative and random forces act as a thermostat and allow
transport properties, preserving the thermodynamic equilibrium. The electrostatic
interactions in DPD simulations were first incorporated by Groot (2003), who solved
the electrostatic field locally on a lattice. An alternative way to solve the electrostatic
problem inDPDwas developed later on byGonzález-Melchor et al. (2006),where the
calculation of the electrostatic interactions employs the standard Ewald sum method
and, in order to prevent the artificial ionic pair formation, charge distributions are
included on the DPD particles.

In thiswork,we studyusing electrostaticmesoscopic dissipative particle dynamics
simulations, the adsorption of dispersants onto pigments and show the resulting
density profiles, the adsorption isotherms, and their scaling properties.

2 Mesoscopic Approach

One of the main problems in many industrial and academic areas is that the systems
of interest are often constituted by many particles of different length scales, inter-
acting in different time scales. In order to simplify the study of these systems, in
the early 1990s Hoogerbrugge and Koelman (1992) introduced a mesoscopic sim-
ulation technique. This is known as Dissipative Particle Dynamics (DPD) and is
a coarse-graining approach, which consists of representing complex molecules as
soft spherical beads interacting through a simple pair-wise potential, and thermally
equilibrated through hydrodynamics (Groot and Warren 1997). In this formalism,
the beads obey Newton’s equations of motion

dri

dt
= vi,

dvi

dt
= f i, (1)

where ri and vi are the position and the velocity of the ith particle, respectively, and
the force f i is given by three components:

f i =
∑

j

(
f C

ij + f D
ij + f R

ij

)
, (2)

corresponding to the conservative, dissipative, and random contributions, respec-
tively. The sum runs over all neighbouring particles within a certain distance Rc.
The conservative force f C derives from a soft interaction potential and there is no
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hard-core divergence as in the case of a Lennard-Jones potential, thus providing a
more efficient scheme of integration; it has the form

f C
ij = aij ω

C(rij)
rij

|rij| . (3)

When we need to introduce a more complex molecule, such as a polymer, we use
beads joined by springs, so we also have an extra spring force given by f S

ij = k rij if
i is connected to j. The dissipative f D and random f R standard DPD forces are given
by

f D
ij = −γ ωD(rij)

(rij · vij) rij

|rij|2 , (4)

and

f R
ij = −σ ωR(rij)

θij

δ
1/2
t

rij

|rij| . (5)

Here, δt is the time step, vij = vi − vj is the relative particle velocity, θij is a random
Gaussian number with zero mean and unit variance, γ and σ are the dissipation and
noise strengths, respectively, while ωC(rij), ωD(rij), and ωR(rij) are dimensionless
weight functions. Not all these quantities are independent: some of them are related
through the fluctuation-dissipation theorem (Español and Warren 1995) by γ =
σ2/2κBT and ωD(rij) = [ωR(rij)]1/2, with κB being the Boltzmann constant and T
the temperature.

The methodology used in our mesoscopic simulations and, specifically, the elec-
trostatic DPD methodology, is briefly described in the following subsection.

2.1 Mesoscopic Simulation: Electrostatic Dissipative Particle
Dynamics

We consider in our study an ionic polymeric dispersant, for example polyacrylic acid
(PAA) or a salt derived from it, in water and in the presence of substrate particles
which we assume to be metallic oxides, such as TiO2, Al2O3, CeO2, etc. We map
the polymer chain into beads which we call DPD beads as shown by the label A—in
Fig. 1. Each DPD bead has a volume vDPD = 90 Å3 and radius rDPD = 2.78 Å,
which correspond to the volume of three water molecules. We can represent a PAA
chain by NDPD beads of carboxylate monomeric units joined by springs with some
spring constant k. In this case NDPD = vmonN/vDPD, where vmon is the volume of a
carboxylate monomeric unit and N is the number of monomeric units in the chain.

As was mentioned in the Introduction, here we replace the point charge at the
centre of the DPD particle by a charge distribution throughout the particle. This is
in order to avoid the formation of artificial clusters from oppositely charged ions.
Groot (2003) solved the problem by calculating the electrostatic field on a grid.
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Fig. 1 Mesoscopic
identification for a
polyelectrolyte such as the
sodium salt of PAA

The algorithm is known as the particle-particle-particle mesh (PPPM) algorithm. In
González-Melchor et al. (2006), we solved this problem by combining the standard
method with charge distributions on particles, adapting the standard Ewald method
to DPD particles. In the present work, we use the latter method because the Ewald
sum technique is the most employed route to calculate electrostatic interactions in
microscopic molecular simulations. We take, as in González-Melchor et al. (2006)

ωC(r) = ωR(r) = ωD(r)1/2 = ω(r), (6)

with

ω(r) =
{
1 − r/Rc : r ≤ Rc,

0 : r > Rc,
(7)

where Rc is the cut-off distance, here assumed to be 6.46 Å (the simulation char-
acteristic length). We also take σ = 3kgms−3/2. We represent the PAAN− with N
DPD beads, each one having vmon = 90 Å3 and bonded by a spring with k = 100.
The Na+ ions were simulated by one DPD bead each with charge 1+, and three
water molecules per neutral DPD particle. These values reproduce the isothermic
compressibility of water in standard conditions. All other quantities, including k, are
dimensionless quantities given in reduced units. This is accomplished as follows:
since we keep T = const in our simulations, we may take κBT = 1 as the unit
of energy; the distance r is measured in units of Rc, i.e., r∗ = r/Rc; the force has
therefore no units as [E]/[r∗] = [1], and neither does k; the density is given as the
number of molecules per unit volume and has no units, and the mass does not ever
enter into the model. Since the force is dimensionless so is the time. The integration
time step is taken to beΔt∗ = 0.02 and the total average density is ρ∗ = 3 (i.e., three
water molecules per DPD particle; one may also see that it has the unit of mass as
being defined by the mass of a DPD particle with three water molecules).
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Fig. 2 Density profiles for [PAA] = 32 (left) and 8 (right)

3 Results and Discussion

3.1 Results for Adsorption Isotherms

The DPD electrostatic simulations were performed using our mesoscopic model
as described in the last section, in order to obtain the adsorption isotherms for
[PAAN−][Na+]N on generic surfaces of metallic oxides XnOm at a basic pH. The
length of the PAA-DPDmolecule was varied as N = 2, 4, 8, 16, and 32 DPD particle
units. The repulsive constants aij in the DPD model were set to aW−PAA− = 100,
aW−Na+ = 100, aW−H2O = 100, aH2O−PAA− = 82, aH2O−Na+ = 25, and
aPAA−−Na+ = 25. These values can be obtained from solubility parameters, and
a more refined calculation can be made by using activity coefficients (cf. Mayoral
and Nahmad-Achar 2012).

The resulting density profiles ρ(z), describing the spatial organization of the
molecules as a function of one of the spatial coordinates, are shown in Fig. 2
for two different concentrations of the polyelectrolyte, namely [PAA] = 32 and
[PAA] = 8. They show that larger molecules tend to adsorb at the edges of the box
(which represent the metallic substrate), and remain less in the aqueous medium (in
between the box walls), where smaller molecules can be found.

To obtain the adsorption isotherms we calculate the amount of polyelectrolyte Γ

carried by the particle, by integrating the density profile according to

Γ =
∫ Lz

0
[ρ(z) − ρbulk] dz, (8)

where Lz is the width of the first adsorbed layer and ρbulk the bulk density. Figure3
shows the number Γmol of PAA-molecules adsorbed on a TiO2 surface vs. the number
Γ b

mol of non-adsorbedmolecules, by considering a single adsorbed layer.As expected,
the saturation on the surface is reached earlier for larger molecules.

However, we may easily renormalize these curves by plotting the number of
independently adsorbed DPD beads ΓDPD vs. non-adsorbed DPD beads Γ b

DPD, using
N Γmol = ΓDPD. The behaviour will then be that of a universal isotherm conformed
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Fig. 3 Adsorption isotherms for PAA on a TiO2 surface for different N

Fig. 4 Universal adsorption isotherm for PAA on a TiO2 surface, renormalized

by the contribution of all sizes, as shown in Fig. 4. Assuming that only one layer
is adsorbed on the surface (the self similar region) and that all adsorption positions
are equivalent, we can extract the maximum concentration at equilibrium and the
adsorption-desorption constant for each isotherm, which is given by the Langmuir
isotherm. The dynamic equilibrium is given by A+N ⇔ AN with velocity constants
Ka for the adsorption and Kd for the desorption. The expression for this kind of
adsorption model, in the case of neutral species, is given by the Langmuir isotherm
expressed by

1

Γ
= 1

ΓM
+ 1

ΓM K C
, (9)

where K = Ka/Kd and C is the concentration in the bulk (Γ b). Γ is the adsorbed
quantity and ΓM is the maximum adsorbed quantity. The linear fit for this isotherm
is shown in Fig. 5, and is given by 1/ΓM = 0.0094 and 1/(ΓM K) = 0.5432, from
which ΓM = 106.38PAADPD and K = 0.0173.
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Fig. 5 Langmuir fit for the adsorption isotherms of PAA on TiO2

Table 1 Scaling for Γmax as
a function of N

ln N lnΓmax

0.6931 3.3077
1.3863 2.8134
2.0794 2.4581
2.7726 1.5626
3.4657 1.1907

3.2 Scaling for Γmax

In the light of these results, it is interesting to study the behaviour of Γmax with N .
We can do this, once more, via DPD electrostatic simulations. Γmax is obtained by
fitting each isotherm in Fig. 3 with the Langmuir model, which we have shown to
be adequate (vide supra). Table1 shows the results for the fit in each case. When we
plot Γmax versus N we obtain the behaviour shown in Fig. 6 and the scaling function
is Γmax ∝ N−0.79 � N−4/5. This result is in perfect agreement with de Gennes et al.
(1976).

The scaling theory in the weak adsorption regime indicates that in the flat plateau,
i.e., at maximum saturation

γp ∼ N1/5, (10)

where γp is the number of monomers adsorbed in the flat plateau, γp = Γmax N .
Equation (10) then implies Γmax ∼ N−4/5 = N−0.8, which agrees very well with our
result. It is interesting that the renormalized behaviour adjusts itself to the scaling
model in the weak adsorption regime, even though we are dealing here with charged
molecules.



450 E. Mayoral and E. Nahmad-Achar

Fig. 6 Scaling of Γmax with N

4 A Simple Application to Colloid Stability

Since PAA and its salt derivatives tend to be very hydrophilic, the adsorbed segments
will see the substrate as a flat surface when in a good solvent. If R is the effec-
tive radius of the substrate particle and Rg = af Nν is the radius of gyration of the
polymer chain, with af

3 proportional to the Flory volume, the flat surface regime is
given, according to the loops and tails model, by R > af N3/5 (Aubouy et al. 1993;
Aubouy and Raphaël 1998). Lately, and in order to improve the performance proper-
ties of coatings, CeO2 and Al2O3 nanoparticles have been used in their formulations
(Mayoral et al. 2012). For these we have RCeO2 � 10nm and RAl2O3 � 20nm which
would give, for PAA and its salt derivatives, N < 400 (Mw < 40,000gr/mol) for
CeO2 and N < 1,250 (Mw < 125,000gr/mol) for Al2O3. This accommodates even
the higher molecular weight dispersants, so that a flat substrate approximation is
appropriate in our mesoscopic approach.

Let us consider a small particle of diameter d1 = 2r1 and area a1, and a larger
particle with diameter d2 = 2r2 > d1 and area a2 > a1, to be stabilized in an aqueous
medium.We know from the previous section that the number of monomers adsorbed
in the flat plateau is γp = Γmax N , with these quantities scaling as γp ∼ N1/5 and
Γmax ∼ N−4/5.

Γmax is the number of chains of size N per unit area needed in order to cover
satisfactorily some amount, say 1mol, of material. If we want to cover a surface of
area a1, then c = a1Γmax,1 chains are needed. Now suppose that the weight of one
monomeric unit is 1unit of mass, then a1Γmax,1[chains] = a1Γmax,1N1 = a1γp,1 and
for the same amount of material but with area a2, we will require a2Γmax,2[chains] =
a2γp,2. If κ is the amount of mass needed to cover the surface of particles of diameter
2r1 divided by the mass of dispersant necessary to cover the surface of particles of
diameter 2r2, then
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κ = a1γp,1/a2γp,2 = (a1N1/5
1 )/(a2N1/5

2 ), (11)

or
κ = (r2/r1) (N1/N2)

1/5. (12)

We can make use of this expression to analyze two interesting cases:
Case 1. If we want to use the same amount of dispersant, taking dispersants

with different lengths N1 and N2 and having the same chemistry, κ = 1 and 1 =
(r1/r2) (N1/N2)

1/5, that is N1 = (r1/r2)5N2.Wewould then need a dispersant with a
very small degree of polymerization compared with N2 for r1 << r2. In this case the
smallest and the best dispersantwill beN1 = 1 (monomeric dispersant), in agreement
with the results of Goicochea et al. (2009). If, on the other hand, (r1/r2)5 << 1, a
change in the chemistry of the dispersant would be a better option.

Case 2. In the limit of a flat approximation, we can consider N = (R/af )
5/3 and

have κ = (r2/r1) [(r1/r2)5/3]1/5 = (r2/r1)2/3. ForAl2O3 nanoparticles as compared
to ordinary TiO2 particles used in coatings, for example, we have RTiO2 � 125nm
and RAl2O3 � 20nm, and so κ = (125/20)2/3 = 3.3993. Comparing this result to an
estimation based on purely geometric arguments (Mayoral et al. 2012), where 6.25
times the dispersant amount was needed for Al2O3-nanoparticles, we observe that
by choosing a dispersant with an adequate length N we would need a much smaller
quantity.

5 Conclusions

Langmuir isotherms were calculated for polyacrylate dispersants adsorbed on metal-
lic oxides, while their scaling properties as a function of the number of monomeric
dispersant units were obtained via DPD-simulations. The critical exponent for the
renormalized isotherms was obtained, and this agrees perfectly well with the scaling
theory of de Gennes et al. (1976), even though polyelectrolytes are being considered.

The results presented here suggest a methodology for estimating the amount of
dispersant necessary in different scenarios and for a better choice of the appropriate
dispersants. The particular case of the stabilization of metallic nanoparticles is inter-
esting, as their inclusion in many formulations to improve performance properties
is presently a major area of research. Problems arise because the dimensions of the
nanoparticles and polymeric dispersants are similar, and because of the large total
surface area to be covered. However, excessive amounts of any surfactant will cause
the property degradation of the material, and new especially designed surfactants cir-
cumvent the need for large quantities. Here it was shown that our simulation results
improve upon the experimental values obtained by Mayoral et al. (2012).
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