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Abstract We consider numerical simulations of drops sliding on an inclined solid
surface. The simulations are performed using our in house research code JADIM
based on the Volume of Fluid formulation of the mass and momentum equations.
Special algorithms have been developed for the simulation of the hysteresis of the
contact line aswell as for the description ofmoving contact lines. The onset ofmotion
is analyzed and the effect of the contact line hysteresis is studied. The critical angle
of inclination, as well as the corresponding drop shape, are discussed and compared
with previous experiments. The sliding velocity for a constant angle of inclination
is also considered and compared with experiments. The different shapes observed in
experiments (rounded, corner, cusp, or pearling drop) are recovered depending on
both the fluid properties and the angle of inclination. The drop sliding velocity is
then considered for larger values of the hysteresis.

1 Introduction

Motion of drops on surfaces is a phenomenon observed in everyday life as well
as in many environmental or industrial applications: coating processes, combus-
tion processes, pesticide and insecticide pulverization on cultivations, lab-on-a-chip
devices, etc. In particular, small droplets have the capability to stick on non-horizontal
surfaces. Despite its apparent simplicity, the behaviour of a drop on an inclined solid
surface is far to be completely understood. It involves static, hysteresis, and dynamic
contact line behaviours. Depending on the fluid properties, the hysteresis and thewall
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inclination, different drop shapes (rounded, corner, or pearling drop) can be observed
(Le Grand et al. 2005). In addition, its numerical modelling is still a great challenge.
For example, up to now the different sliding regimes observed in the experiments
have not been reproduced by numerical simulations.

From the numerical point of view, the description of a moving contact line cannot
be performed by direct discretization of the equations. Indeed, the solution of the
Navier-Stokes equations gives an infinite viscous dissipation at the moving contact
line when a no-slip condition is applied on the wall (Huh and Scriven 1971). As a
consequence, refining a grid induces a divergence of the viscous stress at the contact
line (Afkhami et al. 2009).

In order to be predictive (i.e., with no adjustable parameters), numerical simula-
tions of moving contact lines at the macroscopic scale must describe correctly the
contact angle and the contact line speed. A full numerical simulation would consist
in resolving all scales involved in the problem, i.e., from the macro scale L to the
nano-metric scale associated with the effective slip length λ. For example, let us
consider a millimeter-size droplet as studied in this work with an equivalent radius
a = (3V/4π)1/3 ≈ 1 mm, where V is the drop volume. The full resolution of all
scales involved in this problem would require N2D ≈ (R/λ)2 ≈ 1012 nodes for
a 2D simulation and N3D ≈ (R/λ)3 ≈ 1018 nodes for a 3D simulation. Such a
grid size is obviously not compatible with the present computer’s resources and/or
requires an extremely long CPU time even on parallel computers. Consequently, it
is clear that the simulation of the contact line hydrodynamics can not be performed
up to the nano-scale level for a millimeter size drop. For L = O(1)mm, the grid
size Δ is limited to some microns. In contrast, Molecular Dynamics simulations are
able to describe the nano-scale effects (Blake 2006), but due to the limited computer
resources, the size of the macro scale is limited and simulations are only possible for
nano-drops (Winkels et al. 2012).

Different approaches can be used to overcome the singularity at the contact line
(Bonn et al. 2009). The hydrodynamicmodels are based on analytical solutions of the
interface shape, while the contact line velocityUcl is obtained by matching methods.
Typically, an inner region, whose characteristic length is imposed by the slip length
λ, is matched to an outer region (the apparent region) of characteristic size L where
no-slip occurs. Assuming Stokes flow at both scales, the apparent or dynamic contact
angle θd is found to be a function of the wall contact angle θW (considered to be
constant), the capillary number Ca = μdUcl/σ , the logarithm of the scale ratio
ln (L/λ), and the viscosity ratio q (Voinov 1976; Dussan 1976; Cox 1986). We have
developed a sub-grid model of moving contact lines based on this matching relation
between the molecular wetting at the nano-scale (not solved) and the macro-scale
that is solved.

The paper is decomposed as follows. The problem considered in this paper is
presented in Sect. 2. The numerical code JADIM as well as the numerical modelling
developed for the static, hysteresis, and dynamic contact angle, are described in
Sect. 3. Section4 reports experimental tests concerning the onset of motion of a drop
deposited on a inclined wall. Section5 presents the simulation concerning the sliding
regime and Sect. 6 contains the conclusions.
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Fig. 1 Definition of parameters for a drop on an inclined surface

2 Statement of the Problem

We consider a drop of volume V = 4πa3/3 (where a is the equivalent radius used as
the characteristic length scale) located on a inclined surface (see Fig. 1). We denote
by ρL , μL , and σ the drop density, the drop viscosity, and the surface tension of
the interface between the drop and the air, respectively. Here ρG and μG denote
the density and viscosity of the air. The surface wettability is characterized by the
advancing θA and receding θR contact angles. The inclination is characterized by
the angle α made by the surface and the horizontal. With the density and viscosity
ratios, ρG/ρL andμG/μL , being much smaller than unity, the problem is completely
characterized by the introduction of two additional dimensionless numbers, namely
the Eötvös number Eo = ρga2/σ and the Morton number Mo = μ4

L g/ρLσ 3. The
values of the Ohnesorge number Oh = μL/

√
ρLσa are also specified.

Two series of numerical experiments are presented. In Sect. 4, we first focus on
the angle and the drop shape at the onset of motion. At time t = 0, the drop is a
hemispherical cap (the initial contact angle is θi = 90◦) and the wall is horizontal
(α = 0). Once the drop shape is stabilized, the wall is inclined at t = t0, following a
linear time evolution given by α(t) = π(t − t0)/T . The characteristic time T of the
inclination is chosen to be much larger than the physical times of the problem, i.e. the
visco-capillary time tμ ≈ μLa/σ and the inertia-capillary time ti ≈ √

ρLa3/σ . In
practice, T is chosen such that T > 10 max(tμ, ti ). The angle at the onset of motion
is denoted by αc and corresponds to the angle when the advancing and receding
points of the drop are both moving in the direction of sliding.

In Sect. 5, we consider the sliding velocity of a drop on a surface with a fixed
angle of inclination α. The drop is initially a hemispherical cap making a contact
angle θi = 50◦ with the wall. We record the time evolution of the drop velocity and
determine the sliding velocity corresponding to the steady state once gravity balances
capillary and viscous forces.
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Fig. 2 Domain definition and initial layout of the simulations

For each simulation, a capof initial radius R0 = a
[
2 / (2 − 3 cos θi + cos3 θi )

]1/3

is deposited on the surface. We define x as the direction of sliding along the plane,
y as the normal direction of the plane, and z as the lateral direction. Since the plane
(x, y) is a symmetry plane for the problem, the computational domain shown in Fig. 2
is reduced to half the space as defined by z ≥ 0. The dimensions of the computational
domain are Lx = 6.5 a and L y = Lz = 2.25 a, where Lx , L y , and Lz are the domain
sizes along the x-, y-, and z-directions, respectively. A symmetry condition is thus
imposed on the plane (x, y) and periodicity is enforced on both sides of the box in
the sliding direction, allowing for long-term simulations in a reduced domain. For
pearling drops, as described in Sect. 5, the length Lx of the domain was doubled, i.e.
Lx = 13 a.

3 Numerical Code

3.1 Volume of Fluid (VoF) Solver

The numerical simulations reported in this workwere performed using the Volume of
Fluid (VoF) solver developed in the JADIM code (Bonometti and Magnaudet 2007;
Dupont and Legendre 2010). The one-fluid exact system of equations is obtained by
introducing the distributionC , which is used to localize one of the two phases. In this
study, we define C as C = 1 within the liquid drop, and C = 0 for the external fluid.
The one-fluid function C makes possible the definition of the one-fluid variables
U = CUL + (1 − C)UG for the velocity, P = C PL + (1 − C)PG for the pressure,
ρ = CρL + (1−C)ρG for the density, and μ = CμL + (1−C)μG for the viscosity.
The position of the interface is then given by the transport equation:
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∂C

∂t
+ U · ∇C = 0. (1)

The two fluids are assumed to be Newtonian and incompressible, with no phase
change. Under isothermal conditions and in the absence of any surfactant, the surface
tension is constant and uniform at the interface between the two fluids. Under these
conditions, the velocity field U and the pressure P satisfy the classical one-fluid
formulation of the Navier-Stokes equations:

∇ · U = 0, (2)

ρ

(
∂U

∂t
+ U · ∇U

)
= −∇ P + ∇ · 
 + ρg + Fσ , (3)

where 
 is the viscous stress tensor, g is the gravity, and Fσ is the capillary force
contribution given by

Fσ = σ (∇ · n) nδI , (4)

where σ is the surface tension, n denotes the outward unit vector normal to the drop
surface, and δI is the Dirac distribution associated to the interface position.

The system of Eqs. (1)–(3) is discretized using the finite volume method and
time is advanced through a third-order Runge-Kutta scheme for the viscous stresses.
Incompressibility is satisfied at the end of each time step through a projectionmethod.
The overall algorithm is second-order accurate in both time and space. The volume
fractionC and the pressure P are volume-centred, while the velocity components are
face-centred. Due to the discretization of C , the interface is numerically represented
by a surface of finite thickness and cells cut by the interface correspond to regions
with 0 < C < 1. One important aspect of our approach compared to the classical VoF
or Level Set methods (Sussman et al. 1998; Scardovelli and Zaleski 1999; Sethian
1999) concerns the technique used to control the stiffness of the interface. In our
approach no interface reconstruction or redistancing techniques are employed. The
interface location and stiffness are both controlled by an accurate transport algorithm
based on an FCT (Flux-Corrected-Transport) scheme (Zalesak 1979). This method
leads to an interface thickness of about three grid cells by the implementation of a
specific procedure to calculate the velocity used to transport C in flow regions of
strong strain and shear (Bonometti and Magnaudet 2007).

The numerical description of the surface tension is one crucial point when we
consider systems where capillary effects control the interface shape. This interfacial
force is solved using the classical CSF (Continuum Surface Force) model (Brackbill
et al. 1992):

Fσ = σ∇ ·
( ∇C

‖∇C‖
)

∇C. (5)

A classical problem connected to this formulation is the generation of spurious cur-
rents (Lafaurie et al. 1994; Popinet and Zaleski 1999). In order to decrease the inten-
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sity of spurious currents, a classical solution, introduced by Brackbill et al. (1992),
is employed which consists in calculating the surface curvature from a smoothed
density gradient, while the discretization of the delta function uses an non-smoothed
density. The spurious currents have been characterized by Dupont and Legendre
(2010). Their maximum magnitude is shown to evolve as 0.004σ/μ, in agreement
with other codes that use the Brackbill’s formulation.

3.2 Numerical Modelling of the Contact Angle

The aim of the numerical method is to handle static (either with or without hysteresis)
and dynamic contact lines. The method has been developed to simulate the transition
from a static contact line in the hysteresis range to a moving contact line and vice
versa. The numerical scheme used in this study has been initiated by Dupont and
Legendre (2010) for 2D and axisymmetric geometries. It has also been used to study
droplet spreading in axisymmetry (Legendre and Maglio 2013). In this paper, the
method is extended to 3D geometries.

The calculation of the capillary term requires the knowledge of the contact angle
made by the interface at the wall. Indeed, the capillary contribution (5) in themomen-
tum equation requires the knowledge of ∇C . Since ∇C/‖∇C‖ is the unit vector
normal to the interface, the boundary condition for ∇C is thus given directly by the
value of the contact angle θW , as shown by the following relation:

∇C

‖∇C‖ = n = sin θW n‖ + cos θW n⊥, (6)

where n‖ and n⊥ are the unit vector components of the normal vector parallel and
perpendicular to the wall.

The general method is divided into two steps. We first determine the value of the
contact angle to be applied at the wall. This value is then imposed as a boundary
condition using relation (6) for the calculation of the capillary contribution (5) in the
momentum balance equation (3).

Static contact angle
The static equilibrium of a drop on an horizontal wall is characterized by the static

contact angle θS between the interface and the wall. A simple force balance at the
interface gives the Young-Dupré relation:

σ cos θS = −σSG − σSL , (7)

where σSL , σSG , and σ are, respectively, the values of surface tension for the
solid/liquid, solid/gas, and gas/liquid interfaces. The value of the static contact angle
θS is a parameter of the simulation, characterizing the fluid-fluid-wall wettability.
Simulations can also be performed by imposing a constant contact angle. This is the
simplest situation in which relation (6) is used by imposing θW = θS . In Dupont
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and Legendre (2010), some simulations have been performed by imposing a static
contact angle θS in order to compare with the dynamic models.

Dynamic contact line
As was outlined in the introduction, direct numerical simulations that resolve all

scales involved in the problem are not possible. In particular, simulations of contact
line hydrodynamics cannot be performedup to the nano-scale.A sub-grid description,
as introduced byDupont andLegendre (2010),must be implemented formacroscopic
simulations of problems controlled by moving contact lines. This description, which
is implemented in JADIM, aims to correctly reproduce the physics at the contact
line. The model is based on considerations at the macroscopic scale based on the
analytical derivation by Cox (1986) that connect the macroscopic region (imposed
by the grid resolution Δ) to the inner region (imposed by the slip length λ). Thus,
at the macroscopic scale, the wall condition seen by the fluid is a no-slip boundary
condition:

UW = 0. (8)

This consists in imposing a zero numerical slip length λN = 0. At the macroscopic
level, the interface shape characterized by the dynamic apparent contact angle θd is
connected to the microscopic contact angle θS by means of the relation (Cox 1986):

g(θd) − g(θS) = Ca ln(
L

λ
), (9)

for two fluids of arbitrary viscosity, where g(θ) is a function that simplifies to:

g(θ) =
∫ θ

0

x − sin x cos x

2 sin x
dx, (10)

when the surrounding fluid is of much smaller viscosity (for example, the air). In
practice, the functions g(x) and g(x)−1 can be approximated with good accuracy
by means of a fitting polynomial (Dupont and Legendre 2010). When the condition
θd < 3π/4 is satisfied, Eq. (9) reduces to the well-known Cox-Voinov relation:
θ3d = θ3S + Ca ln (L/λ) (Voinov 1976; Cox 1986). In relation (9), L is imposed by
the grid spacing and λ is the physical slip length. Due to the use of a staggered
grid, where the VoF function C is located at the centre of the volume, while the
velocities are face-centred, the interface is transported by the velocity a distance
Δ/2 and therefore one has L = Δ/2. Several experiments have demonstrated that
the apparent region is characterized by L ≈ 10µm and that the characteristic slip
length is λ ≈ 1−10nm (Marsh et al. 1983; Ngan and Dussan 1989; Dussan et al.
1991; Shen and Ruth 1998). More recently, Rio (2005) and Le Grand et al. (2005)
have shown that Eq. (9), in its simplified form θ3d = θ3S + 9Ca ln(L/λ), provides a
good description of their experiments. The length L is taken as the distance at which
the measurement is taken and λ is used as an adjustable parameter. Thus, Rio (2005)
showed that for two different measurement techniques the macroscopic length was
L ≈ 30µm, using the Laser measurement, and L ≈ 200µm, using the optic circle
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technique. From these results, the microscopic length λ was found to be between
λ = 7nm and λ = 15nm, depending on the characteristics of the measurement and
themodel employed to fit the data. The slip length should be intended as themolecular
slip, which is of the order of somemolecules. Considering the value usually found for
water-like liquids on solid substrates (Lauga et al. 2007), we have chosen λ = 10−9

m in Eq. (9) for the simulations reported in this work.
Several authors have dealt with the “stress singularity” paradox by introducing

the Navier slip condition, that gives a relation between the fluid velocity at the wall
UW and a numerical slip length λN :

UW = λN

(
∂U

∂y

)

W
. (11)

For example, this has been implemented by Renardy et al. (2001) in the case of a
VoF scheme and by Spelt (2005) in a Level-Set code. Both of these methods impose
a static contact angle θS at the wall, assuming that the microscopic contact angle is
θW = θS . The dynamic contact angle is then obtained solving the full hydrodynamic
problem up to amicroscopic neighborhood. Unfortunately, due to the grid refinement
limitation, these simulations use unrealistically large slip length values and, therefore,
the slip length λN becomes in practice an adjustable parameter for the simulation (see
Bonn et al. (2009) for a similar comment). The grid convergence of the simulations
is then reached but an unphysical slip condition is required for this.

Hysteresis of contact angle
A number of numerical calculations has considered the modelling of the dynamic

contact angle, while only few studies have implemented models for the hysteresis
of the contact line of sessile drops. Some examples can be found in the literature
(Dimitrakopoulos and Higdon 1999; Spelt 2005; Fang et al. 2008; Yokoi et al. 2009).
All these methods consist in implementing the following conditions for the normal
velocity Ucl of the contact line:

Ucl < 0 if θd < θR, (12)

Ucl = 0 if θR ≤ θd ≤ θA, (13)

Ucl > 0 if θA < θd . (14)

The method implemented here makes possible the transition from a static (resp.
moving) to a moving (resp. static) contact line. The procedure is divided into two
steps:

Step 1: For every cell containing the interface (0 ≤ C ≤ 1), the angle θ∗ that
cancels the local momentum balance Eq. (3) is determined by an iterative procedure
using a simple Newton-Raphson scheme. The iteration is stopped when θn+1−θn <

εθ with a convergence limit of εθ = 10−4.
Step 2. The value of θ∗ is compared to the hysteresis range and two possible

situations can be found:
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(i) the contact angle is inside the hysteresis: θR ≤ θ∗ ≤ θA. The contact line is
static and the contact angle is imposed as θ∗ so that the momentum balance locally
cancels. Thus, if the interface was immobile at the beginning of the time step, it
remains immobile for the next time step; if the interface was previously in motion,
the interface is stopped.

(ii) the contact angle is outside the hysteresis: θ∗ < θR or θ∗ > θA. As a con-
sequence, the contact line cannot be static. The value of the contact angle is then
calculated using the dynamic model described above. The static contact angle is the
advancing (resp. receding) angle when θ∗ > θA (resp. θ∗ < θR).

3.3 Numerical Validation and Grid Convergence

The validation as well as the time and grid convergence of the numerical method
used for the simulation of the dynamic contact angle have been extensively discussed
in Dupont and Legendre (2010), Maglio (2012), and Legendre and Maglio (2013).
Static, hysteresis, and dynamic situations have been considered for spreading drops,
drops on inclined surfaces, and drops in a surrounding shear flow. In particular, a
very satisfactory agreement has been found with experiments of spreading drops
for both water drops and viscous drops. The inertia-capillary regime of spreading
characterized by a contact line expansion varying as t1/2 and the Tanner’s evolution
going as t1/10 have been recovered. Comparisons of our model with other variants,
i.e. static contact angle versus dynamic contact angle and no-slip condition versus
slip condition,were also reported byMaglio (2012). These comparisons clearly stress
the importance of considering a dynamic model for the simulation of moving contact
lines. For the study reported in this paper, additional tests have been performed to
ensure grid and time convergence for the onset of motion, as well as for the sliding
drop velocity. They are discussed in the sections below.

4 The Onset of Motion

The angle of inclination αc of the surface at the onset of motion can be obtained by
considering the force balance acting on the drop. The volume V of the largest drop
that can stick on the surface is given by the balance between the weight of the drop
and the interfacial force acting along the contact line cl:

ρgL V sin αc + σ

∫

cl
cos θ sin βdl = 0, (15)

where θ is the local contact angle and β is the angle between the unit normal point-
ing outwards the drop and the direction perpendicular to the sliding direction. By
definition β = 90◦ at the front of the drop and β = −90◦ at the rear. Thus, the above
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relation reduces to
ρL V g sin αc = κcσ(cos θR − cos θA), (16)

where κc is the characteristic length κ at the onset of motion, where κ is given by

κ = − 1

cos θR − cos θA

∫

cl
cos θ sin βdl. (17)

Furmidge (1962) found that relation (16) is in excellent agreement with the experi-
ments, if κ is assumed to be the drop width w. As shown by relation (17), κ is not
necessarily the drop width because it depends on the contact line shape. Neverthe-
less, for some particular drop shapes it is possible to demonstrate that κ = w. This
is the case of a spherical cap drop with a small hysteresis range (θA ≈ θR) and of a
parallel sided drop with circular advancing and receding contact lines.

Using the equivalent radius a as the characteristic length, we can rewrite relation
(16) in terms of the Eötvös number Eo = ρga2/σ :

sin αc = κ

a

3

4π
(cos θR − cos θA)Eo−1 (18)

so that the critical contact angle varies as (cos θR − cos θA)Eo−1 and depends on the
contact line shape.

Much work, mostly experimental, has focused on the characterization of the onset
of motion (Bikerman 1950; Rotemberg et al. 1984; Dussan 1985; Milinazzo and
Shinbrot 1988; Extrand 1995; Dimitrakopoulos and Higdon 1999; Podgorski 2000;
Le Grand et al. 2005). Considering a spherical cap drop with a small value of the
contact angle hysteresis (i.e. θA ≈ θR), Dussan (1985) showed that the onset of
motion is described by

sin αc = 3

π 21/3
(1 + cos θA)1/2

(2 + cos θA)1/3 (1 − cos θA)1/6
(cos θR − cos θA)Eo−1. (19)

This analytical solution is thus only valid for small values of the hysteresis, with
θA − θR being typically less than 10◦. Relation (19) indicates that the characteristic
length is κc = 25/3(1+cos θA)1/2 (2+cos θA)−1/3 (1−cos θA)−1/6 a. A plot of this
relation as a function of θA reveals that the variation ismoderate for 30◦ ≤ θA ≤ 145◦
so that in a first approximation κc can be expressed using θA = 90◦:

κc ≈ 24/3 a. (20)

Among the existing experimental studies, here we consider those by Podgorski
(2000) and Le Grand et al. (2005), who reported well documented experiments of
silicon oil drops deposed on different inclined surfaces. The corresponding experi-
mental conditions are displayed in Fig. 3.We see that these experiments have focused
on small hysteresis ranges. The purpose of our study is to compare our simulations
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Fig. 3 Phase diagram (θA − θR)–Eo for the cases considered. Experiments: � Le Grand et al.
(2005), � Podgorski (2000). Numerical simulations: � Eo = 0.32 (FL1), � Eo = 0.63 (FL2), •
Eo = 1.26 (FL3), � Eo = 0.57 (47V100), � Eo = 0.57 (47V100), and � Eo = 0.58 (47V10)

with the experimental results for this small range of the contact angle hysteresis and
then to extend the study to a larger hysteresis range. For the sake of direct comparison,
we have considered two situations reported by Le Grand et al. (2005), corresponding
to fluids 47V10 and 47V100, with Eötvös numbers of 0.58 and 0.57, and hysteresis
ranges of (42.7◦, 52.9◦) and (45.5◦, 50.5◦), respectively. We have further extended
the experimental studies by considering three larger contact angle hysteresis, i.e.,
(θA, θR) = (80◦, 100◦), (60◦, 120◦), and (40◦, 140◦), for Eo = 0.32, 0.63, and
1.26. The drop properties used in these simulations are listed in Table 1.

The grid and time convergence is here discussed for fluid FL1 in Table1. Two
regular grids M1 andM2 are considered. They are, respectively, made of 150×50×
50 and 300 × 100 × 100 nodes in the x-, y-, and z-directions. The drop radius a
corresponds to 22.5 and45nodes, respectively.ThegridM1 isfirst used for discussing
the effect of the time step. The simulations produced αc = 31.5◦, αc = 34.0◦, and
αc = 34.7◦ for time steps Δt = 2 × 10−5 s, 10−5 s, and 5 × 10−6 s, respectively.

Table 1 Onset of motion: parameters used for the simulations

Fluid a ρ μ σ Eo Oh Mo
(mm) kg/m3 Pa.s N/m (-) (-) (-)

FL1 0.595 655 0.01 7.2 0.32 0.19 4.0 × 10−4

FL2 0.595 655 0.0168 3.6 0.63 0.45 3.2 × 10−2

FL3 0.595 655 0.01 1.8 1.26 0.38 2.6 × 10−2

47V100 1.127 964 0.103 20.9 0.57 0.68 1.3 × 10−1

47V10 1.127 936 0.01 20.1 0.58 0.69 1.3 × 10−5
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A simulation performed using grid M2 and Δt = 5 × 10−6 s yielded αc = 36.0◦,
which differs only by ∼3% from the corresponding value obtained using the grid
M1. Therefore, in order to minimize the computational time, the results reported in
this section were obtained usingΔt = 1×10−5 s and the mesh M1 (150×50×50).

4.1 Drop Shape During Surface Inclination

We first consider the case when Eo = 0.63 and (θA, θR)=(100◦, 80◦) (see Table1)
in order to describe the evolution of the shape and the contact angle during the
inclination of the surface. Figure4 shows the shape of the drop from the beginning
of the simulation until the onset of motion for different inclinations of the surface.
During the tilting of the surface, the drop re-arranges its shape while remaining
pinned to the inclined surface. Figure4h corresponds to the onset of motion and Fig.
4i shows when the drop is sliding.

Figure5 represents the corresponding evolution of the contact angle at the front
and rear points of the drop. As explained in Sect. 2, the surface was inclined after
the drop stabilization. This corresponds to the vertical line at α = 0◦. Then, we can
notice that the advancing angle at the front of the drop reaches first the limit value of
hysteresis (θA = 100◦). The onset of motion is observed once the rear contact angle
reaches the inferior limit given by the receding angle, here θR = 80◦. For this case,
the sliding happens at 18◦. This is confirmed by Fig. 6 (top), where the velocities for
the front, rear, and centre of mass of the drop are displayed. We can see that the front
contact line and the centre of mass start to move first. The rear stagnation point starts
moving at a larger angle, which corresponds to the onset of motion. Figure6 (bottom)
shows the evolution of the contact angle along the contact line as a function of the
local angle β between the normal of the contact line and the z-direction, for different
inclinations of the surface. Due to the initial condition (the drop is initialized as a
spherical cap), the contact angle is everywhere 90◦. Then, the contact angle evolves
progressively until it reaches the distribution corresponding to the beginning of the
sliding, where the advancing and receding limits are clearly observed at the front and
the rear of the drop, respectively.

4.2 Angle of Inclination at the Onset of Motion

The shapes of the drops at the onset of motion for all the cases considered are shown
in Fig. 7. For each case, the shape is compared with the spherical one at the beginning
of the simulation in order to outline the deformation. The value of the critical angle
αc is also shown in the figure. For the smallest Eötvös number Eo = 0.31, with the
hysteresis of θA − θR = 120◦ − 60◦ and θA − θR = 140◦ − 40◦, the drop is found
to remain pinned to the wall for the vertical inclination. When the Eötvös number
increases, the critical angle αc decreases, because the drop is more deformed by
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Eo = 0.63 and θA − θR = 100◦ − 80◦. Shapes of the drop during the tilting of the surface.
a beginning of the simulation; b α = 0◦ (end of stabilization); c α = 2◦; d α = 6◦; e α = 9◦; f
α = 12◦; g α = 15◦; h α = 18◦ (onset of motion); and i α = 39◦

gravity and reaches faster the shape of motion. As expected, we observe also that the
hysteresis range increases the retention force of the drop on the surface.

The angle of inclination αc at the onset of motion is shown in Fig. 8. Considering
the equilibrium force balance (18), the figure shows sin αc as a function of (cos θR −
cos θA)Eo−1. The experimental values ofLeGrand et al. (2005) andPodgorski (2000)
are also shown for comparison. Surprisingly, all the results seem to collapse on the
same evolution whatever are the value of the contact angle hysteresis and the Eötvös
numbers considered. For (cos θR − cos θA)Eo−1 ≤ 1, the critical angle is correctly
described by relation (18), where the characteristic length κc = 24/3 a is deduced
from the analytical relation (19) obtained by Dussan (1985). For larger values of
(cos θR − cos θA)Eo−1, the numerical results are always under the line representing
relation (18) with κc = 24/3 a. They correspond to lower values of κc, which can be
explained by a more elongated shape of the drops. According to Fig. 8, a drop cannot
slide on a wall regardless of its inclination if (cos θR − cos θA)Eo−1 � 2.



60 M. Maglio and D. Legendre

0 0.05 0.1 0.15 0.2 0.25

80

85

90

95

100
0o 15o 30o

t [s]

θ

Fig. 5 Eo = 0.63 and θA − θR = 100◦ − 80◦. Evolution of the advancing (�) and receding (�)
angles. The corresponding inclination of the surface is shown on the top of the graph. The angle at
the onset of motion αc = 18◦ is shown using a larger dash line

5 Sliding Velocity

In this section, we consider the terminal velocity UT of a drop sliding on a wall with
a fixed inclination α. We first compare our simulations with the experiments of Le
Grand et al. (2005). Then, we discuss the effect of the contact angle hysteresis on
the sliding velocity. The parameters used for the simulations correspond to fluids
47V100 and 47V10, while the drop size is taken from the experiments of Le Grand
et al. (2005), (see Table 1). The corresponding contact angle hysteresis ranges (θA,
θR) are (52.9◦, 42.7◦) and (50.5◦, 45.5◦), respectively. A spherical cap of volume
V = 6 mm3 with a contact angle θS = 50◦ is assumed as an initial condition (at
t = 0). The numerical layout of the simulation is identical to the one presented in
the previous section. The wall inclination α is fixed during the entire simulation. We
have performed simulations for α in the range from αc to 90◦, where αc is the angle at
the onset of motion. We have checked for some cases (typically for the two fluids at
α = 50◦) that the terminal velocity is similar when increasing progressively the wall
inclination from 0◦ to α following the procedure described in the previous section.

In the simulations described here we have used Δt = 1 × 10−5 s and mesh M1
(150 × 50 × 50). The time and grid convergence has also been checked by varying
the grid spacing and the time step on the drop velocity. For example, with mesh M1
the terminal velocity of a 47V100 drop is UT = 0.00204 m s−1, UT = 0.00188
m s−1, and UT = 0.00179 m s−1 for Δt = 1 × 10−5 s, Δt = 0.5 × 10−5 s, and
Δt = 0.2×10−5 s, respectively. For a finer grid, say M3, with 225×75×75 nodes
and Δt = 0.2 × 10−5 s, the simulation gives UT = 0.00199 m s−1, which implies
about a 1% difference with the value obtained using grid M1.
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Fig. 6 Eo = 0.63 and θA − θR = 100◦ − 80◦. (Top) Contact line velocities at the front (�), at
the rear (�) and at the centre of mass (�). The corresponding inclination of the surface is shown
on the top of the graph. The angle at the onset of motion αc = 18◦ is shown using a larger dash
line. (Bottom) Distribution of the contact angle along the contact line for different inclinations of
the surface. �: α = 0◦; +: α = 9◦; �: α = 19◦ (close to the starting point). Contact angle θ along
the contact line orientation β

The drop shapes are depicted in Figs. 9, 10 for fluids 47V100 and 47V10, respec-
tively. For both fluids the angles α = 15◦, α = 50◦, and α = 90◦ are shown.
In accordance with the experiments of Le Grand et al. (2005), different shapes are
observed. When increasing the drop velocity (by increasing α and decreasing the
viscosity), the shape varies significantly and so we observe rounded, corner, cusp,
and pearling drops. For all cases considered, the front contact line remains circu-
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Fig. 7 Drop shapes at the onset of motion compared with the shape at the beginning of the
inclination, for different Eötvös numbers and hysteresis ranges. For θA = 100◦: θR = 80◦ and
Mo = 0.000421; for θA = 120◦: θR = 60◦ and Mo = 0.00321; and for θA = 140◦: θR = 40◦ and
Mo = 0.02568

lar, the difference being mainly noticed at the rear contact line. For the smallest
velocities (α = 15◦ and α = 50◦ for 47V100 and α = 15◦ for 47V10), the
shape of both the advancing and the receding contact lines is circular. For inter-
mediate velocities, the rear contact line is progressively deformed to form a corner
(α = 50◦ for 47V10) and then a cusp (α = 90◦ for 47V100). For the largest velocity
(α = 90◦ for 47V10), the pearling regime is observed. The pearling regime is char-
acterized by the emission of droplets from the tip of the cusp. As was reported by
Le Grand et al. (2005) (see their Fig. 6), the size of the first droplet is larger than
the second one. The transition between the cusp regime and the pearling regime is
observed between α = 60◦ and α = 70◦ for fluid 47V10. The corresponding capil-
lary number is close to Ca = μUT /σ ∼ 0.01, in agreement with the experiments of
Le Grand et al. (2005).

The time evolution of the drop velocity U for some particular inclinations is
shown in Fig. 11 for fluids 47V100 (left) and 47V10 (right), respectively. For both
fluids, U increases at the beginning of the simulation, reaches a maximum around
t ∼ 0.01 s, and then decreases and stabilizes to a constant value corresponding
to the drop terminal velocity UT . As expected, the terminal velocity is found to
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. . drop sticked on a vertical surface

increase with α. Figure 11 (right) shows that the velocity is not perfectly stabilized
for the less viscous fluid 47V10 with the largest angles α = 70◦ and α = 90◦.
This is due to the pearling observed at the rear of the drop. The inspection of the
first part of the evolution reveals that the evolution of the centre of mass follows
V ∼ g sin(α) t . It corresponds to the volume acceleration inside the drop due to
gravity. The drop deforms and the front and rear contact angles evolve from the initial
value θS = 50◦ to the advancing and receding contact angle θA and θR , respectively.
Thus, during this first phase of the evolution, the advanced and receding contact
lines remain immobile and the drop sticks on the surface. Once the drop deformation
has induced values for both the front and rear contact angle outside the hysteresis
range (see previous section), the drop starts to slide until it reaches the terminal
velocity UT . The drop Reynolds number Re = ρUT a/μ, based on the terminal
velocity, as obtained for α = 90◦, is Re = 0.035 and 2.8 for fluids 47V100 and
47V10, respectively, evidencing a viscous dominated situation. As a consequence,
the contact line Reynolds number Recl = ρUcl L/μ ∼ ρUT Δ/μ is much smaller
than unity, in agreement with the range of validity of the Cox’s hydrodynamic model
for the apparent contact angle [relation (9)].

The terminal velocity UT results from the following force balance:

ρgV sin α − κσ(cos θR − cos θA) + FD = 0, (21)

where FD is the drag force experienced by the drop. In FD we can identify two
different viscous contributions. The first corresponds to the bulk contribution Fbulk

D ,
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Fig. 9 Drop shape when the
terminal velocity is achieved
for fluid 47V100 at different
inclinations. First column:
view normal to the wall.
Second column: side view.
Top α = 15◦, middle α = 50◦,
bottom α = 90◦

resulting from the viscous effects at the macro scale L . This effect comes from
the internal motion and the viscous stress in the air. The second is the contact line
contribution Fcl

D , which results from the viscous dissipation at the contact line. The
drop terminal velocity can be simply derived from the force balance (21) when
considering the two following assumptions. The dissipation at the contact line is
negligible compared to the bulk dissipation, i.e. Fbulk  Fcl and the drop motion
is controlled by viscous effects, i.e. Re< 1. Under such conditions, the drag force
experienced by the drop can be written as:

FD ≈ Fvi ≈ −CμπaUT , (22)

whereC is a coefficient depending a priori on the drop shape. Note that for a spherical
drop of radius a settling in air, the Stokes drag gives C = 6. Assuming that the drop
shape during the sliding is similar to its shape at the onset of motion (i.e. κ ≈ κC ),
we can write

κσ(cos θR − cos θA) ≈ ρgV sin αC
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Fig. 10 Drop shape when the
terminal velocity is achieved
for fluid 47V10 at different
inclinations. First column
View normal to the wall.
Second column Side view. Top
α = 15◦, middle α = 50◦,
bottom α = 90◦

so that the force balance gives the following relation between the capillary and the
Eötvös number:

Ca ≈ 4

3C
Eo(sin α − sin αC ). (23)

The capillary number is plotted as a function of the Eötvös number in Fig. 12.
For both fluids, the linear dependence shows that relation (23) makes possible the
description of the sliding velocity. The experimental results of Le Grand et al. (2005)
are also depicted for comparison. The figure confirms the good agreement with the
predicted value of αc corresponding to the onset of motion. Figure 12 shows very
good agreement with the experiments for the more viscous fluid, 47V100 (left),
while a significant deviation is found for fluid 47V10 (right). For fluid 47V100,
the evolution is split up into two linear regimes. The first regime agrees with the
experiments of Le Grand et al. (2005). Relation (23) fits both the simulation and
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Fig. 11 The time evolution of the drop velocity V for different values of α. From bottom to top
α = 15, 35, 50, 70 and 90◦. (left) fluid V100, (right) fluid V10

the experiments with C ∼ 83. On the other hand, the second regime corresponds
to C ∼ 50. This lower value is due to the change of the drop shape. The receding
contact line shape generates a lower resistance in the force balance. These values
of C show that the drag force experienced by a viscous drop sliding on an inclined
wall is one order of magnitude bigger than the one experienced by a settling drop
(C = 6). For fluid 47V10, relation (23) is also seen to fit the numerical simulation for
C ∼ 83, while the experiments are better described using C ∼ 131. Our numerical
results for fluids 47V100 and 47V10 follow a similar evolution (C ∼ 80−83), while
a significant difference is observed with the experiments made with the two fluids.
One possible explanation of this discrepancy could be the contact line contribution

47V10
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Fig. 12 Evolution of the drop capillary number as a function of the Eötvös number Eoα . (◦)
experiments of Le Grand et al. (2005), � Numerical simulations. (left) fluid 47V100: . . . . Ca =
0.009Eo sin α, - - - Ca = 0.015Eo sin α. (right) fluid 47V10: . . . . Ca = 0.0095Eo sin α,
—Ca = 0.0057Eo sin α
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Fcl
D to the drag force. In our simulations, only the large scale dissipation is considered

since we do not solve the hydrodynamics at the contact line. While Eq. (9) relates
the value of the apparent contact angle to the velocity of the contact line, no sub-grid
dissipation was introduced in our models. For the more viscous fluid, the agreement
is very satisfactory, suggesting that the main dissipation occurs in the bulk, since Fcl

D
is small compared to Fbulk . For the less viscous fluid, the contribution of Fcl

D is more
important and could be of the same order of Fbulk , resulting in an underestimated drag
force in our simulations since the models do not take into account the contribution
of Fcl

D .
We finally consider the effect of the contact angle hysteresis on the drop sliding

velocity. The simulations were performed for fluid 47V100 since the agreement with
the experiments was very good. A surface inclination of α = 50◦ and contact angle
hysteresis of (θA, θR)=(50.5◦, 45.5◦), (58◦, 38◦), (63◦, 33◦), and (68◦, 28◦) were
considered. As expected, the simulations indicate that the sliding velocity decreases
when increasing the hysteresis range. Figure13 depicts the drop capillary number as
a function of cos θR − cos θA. This plot shows that the decrease is linear and reveals
that (cos θR − cos θA) is again the pertinent parameter for taking into account the
hysteresis.

6 Conclusions

Wehave reported numerical simulations of drops on a inclined solid surface. Both the
onset of motion and the sliding regime have been considered. The simulations have
compared satisfactorily with the experiments of Le Grand et al. (2005). In addition,
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Fig. 13 Effect of the hysteresis on the drop velocity for fluid 47V100 and α = 50◦. Ca is plotted
as a function of cos θR − cos θA. � simulations, . . . . y = 0.0128 − 0.013x
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we have extended the analysis of the effects of the contact angle hysteresis to values
of the hysteresis range beyond those usually considered in current experiments. The
critical angle of inclination, corresponding to the onset of motion, depends on the
Eötvös number, the hysteresis, and the shape of the contact line.When the drop starts
to slide, an almost rounded shape is observed in all cases, which contrasts with the
very different shapes observed when the drop is sliding. All the experimental and
numerical results are found to collapse on the same evolution as shown when sin αc

is plotted as a function of (cos θR − cos θA)Eo−1. Regarding the sliding regime,
the characteristic shapes observed in the experiments have been recovered by the
simulations. Rounded, corner, cusp, and pearling drops have all been observed. The
sliding velocity has been found to be in very good agreement with the experiments
for the more viscous fluid, while a significant discrepancy has been seen for the
less viscous fluid. One possible explanation for this discrepancy are the effects of
dissipation at the contact line, which were not included in the present models. A
proper inclusion of the effects of dissipation at the contact line is therefore needed to
validate this hypothesis. Our study has also stressed the effect of the hysteresis on the
sliding velocity. When increasing the hysteresis range, the sliding velocity is found
to decrease as cos θR − cos θA, which appears to be the pertinent parameter for the
description of the effects of hysteresis in the sliding motion. Future work will focus
on considering the effects of the hysteresis on the different sliding regimes and, in
particular, on the pearling regime.
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