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Abstract A mechanistic model for the prediction of pressure drop in horizontal
pipelines is presented for annular flow. A new empirical correlation for the liquid/wall
interfacial friction is proposed, where the effects of the annular flow eccentricity,
due to the difference between the fluid density and viscosity, are accounted for. The
model is compared to three different correlation models and five mechanistic models
in current use. Its accuracy has been validated against experimental data for annular
gas-liquid flow in horizontal pipelines, taken from different sources. A number of
240 experiments were carried out with superficial liquid velocities between 0.003 and
5.96 m/s, superficial gas velocities between 9 and 69.6 m/s, liquid viscosities between
1 and 1200 cP, and pipeline diameters between 0.0261 and 0.0953 m. We find that
the mechanistic model proposed here reduces the absolute error of the pressure drop
prediction by approximately 20 % compared to other mechanistic models.

1 Introduction

The drop of pressure in gas-liquid segregated flow patterns is perhaps the most
difficult parameter to predict, while annular flow is one of the most common two-
phase flow patterns that arise in practice. The most widely used mechanistic models
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for predicting pressure drops in pipelines are those reported by Xiao et al. (1990),
Ouyang et al. (1998), Gómez et al. (1999), and Holden (2002). However, the accuracy
of these predictive models against the experimental data is over 45 %.

In annular flow patterns, the relevant parameters for the prediction of the pressure
drop are the film distribution, the droplet entrainment in which small drops of one
phase remain trapped in the other phase, and the fluid-wall friction factor. Therefore,
the aim of this study is to develop a mechanistic model that takes into account all
these parameters and reduces the uncertainty in the pressure gradient prediction.

The improved accuracy of the model has been validated against gas-liquid annular
flow data from Beggs (1972), Mukherjee (1979), and Andritsos (1986), as well as
from experimental data provided by different companies related to the database of
the Stanford University and from Petróleos de Venezuela S. A. (PDVSA) for the case
of air and heavy oil.

2 Annular Flow Models in Pipelines

In horizontal pipelines, where the film distribution is around the pipe wall and the
gas is characterized by its continuity along the core of the pipe, the annular flow
tends to be eccentric. The level of eccentricity depends on the density and viscosity
of the fluid, as well as on the flow rates of liquid and gas. The liquid film is thinner
in the upper than in the lower part of the pipe and the liquid phase moves in a wavy
manner close to the gas-liquid interface so that droplets are entrained in the gas core.

In models of gas-liquid eccentric annular flow, a Newtonian two-fluid approach
is usually employed, where the liquid film is the liquid phase and the gas-droplet
mixture is considered to be the gas phase. We assume that the flow is stationary,
incompressible, isothermal, and one-directional. Moreover, we consider the simple
case in which there is no mass transfer between the phases and assume that the
pressure gradients in the gas and liquid film are the same.

If we start from the continuity equation:

∂ρ f

∂t
+ ∇ · (

ρ f �v
) = 0, (1)

where ρ f is the mass density and v is the fluid velocity vector, the continuity equation
for steady-state flow written in a generalized orthogonal coordinate system reduces
to

1

h1h2h3

[
∂

∂z
(h1h2vz)

]
= 0, (2)

where h1, h2, and h3 are the components of the metric tensor of the orthogonal
coordinate system defined as
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where (x, y, z) are the three Cartesian-coordinate axes, and ρ = ρ(x, y), φ =
φ(x, y) are some orthogonal coordinates to be specified later below. In Eq. (2), vz is
the velocity component in the axial (z-axis) direction. In addition, for one-directional
flow along the z-axis, the momentum equation becomes

0 = −
(

∂ P

∂z

)
+ ρ f g + 1

h1h2h3

[
∂

∂ρ

(
h2h3τρz

)]
, (4)

where P is the pressure, g is the acceleration of gravity, and τρz is the shear stress
in the axial direction. We write the momentum equation in dimensionless form by
introducing the following dimensionless parameters:

ρ̃ = 2

D
ρ̄ ; P̃ = D

2voμ
P ; Ṽ = vi

vo
; τ̃ρz = D

2voμ
τρz ; z̃ = 2

D
z (5)

whereρ̄ is the inner radius derived from the hydraulic diameter of the gas phase, vi is
the velocity at the gas-liquid interface, vo is the characteristic velocity of the system,
μ is the viscosity, and D is the pipe diameter. In the momentum equation for the
liquid phase, the parameters vo and μ are the superficial velocity and the viscosity
of the liquid, while in the momentum equation for the gas phase they correspond to
the superficial velocity and viscosity of the gas.

For the liquid phase, we use an orthogonal coordinate system, i.e., (ρ̃(x, y),
φ(x, y)), based on the coordinate system proposed by González (1998). This coor-
dinate system arises from a bilinear transformation in non-dimensional form, where
the fluid domain is the space confined between the inner diameter (formed by the
gas phase), which is less than one, and the outer diameter, which is equal to one.

The eccentric annular flow is mainly affected by the floatation effect of the gas
phase and the viscosity of the liquid. In order to represent mathematically this effect
it is necessary to use the modified bilinear transformation (see Fig. 1):

w = z∗ − ai

az∗ − i
, (6)

where a is the transformation pole. Following the procedure given by González
(1998), we rotate the bilinear coordinate system and transform to rectangular Carte-
sian coordinates (x,y) such that (x(ρ̃, φ), y(ρ̃, φ)), where
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Fig. 1 Orthogonal coordinate system

x = ρ̃ sin φ
(
1−a2

)

a2ρ̃2−2aρ̃ cos φ+1
,

y = a
(
ρ̃2+1

)−ρ̃ cos φ
(
1+a2

)

a2ρ̃2−2aρ̃ cos φ+1
.

(7)

Hereρ̃ is the dimensionless hydraulic inner radius of the gas phase and φ is the angle
formed by the radial lines from the centre of the circumference (0 < ϕ < 2π ; see
Fig. 1).

For the proposed coordinate system the scale factors h1,h2, and h3 for the liquid
phase are given by

h1 =
(
1 − a2

)

(
a2ρ̃2 − 2aρ̃ cos φ + 1

) ; h2 = ρ̃
(
1 − a2

)

(
a2ρ̃2 − 2aρ̃ cos φ + 1

) ; h3 = 1. (8)

Substituting the scale factors (8) into the dimensionless form of Eq. (4), we obtain
for the momentum equation of the liquid phase

0 = −
(

∂ P̃

∂ z̃

)

L

− ReSL

4FrSL
sin α +

(
a2ρ̃2 − 2aρ̃ cos(φ) + 1

)2

(
1 − a2

)2
ρ̃

[
∂

∂ρ̃

( (
1 − a2

)
ρ̃

(
a2ρ̃2 − 2aρ̃ cos(φ) + 1

) τ̃ρz

)]

, (9)

where ReSL is the Reynolds number of the liquid phase, FrSL is the liquid Froude
number, and τ̃ρz is the dimensionless shear stress in the axial direction, ie.,

ReSL = ρLvSL D

μL
; FrSL = v2

SL

gD
; τ̃ρz = D

2vSLμL
τρz . (10)
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Here vSL is the velocity of the liquid phase, while ρL and μL are the density and
viscosity of the liquid. In order to determine the pressure gradient in the pipe, we
integrate Eq. (9) to obtain:

(
R2

i − 1
) (

1 − a4 R2
i

)

(a Ri − 1)2 (a Ri + 1)2

(
∂ P̃

∂ z̃
+ ReSL

4FrSL
sin α

)

L

=
[

2τzw − 2Ri
(
1 − R2

i

)

(
1 − a2 R2

i

) τ̃i L

]

,

(11)
where Ri , τ̃zw, and τ̃i L , are, respectively, the dimensionless hydraulic radius of the
gas phase in the annular core, the shear stress at the pipe wall for the liquid, and the
interfacial shear stress given by

Ri = (e − R1) − a

a (e − R1) − 1
; τ̃zw = D

2vSLμL
τzw; τ̃i L = D

2vSLμL
τi . (12)

For the gas phase, we write the momentum equation in cylindrical coordinates and
assume that the gas phase is flowing in a perfect cylinder, where its diameter is
given by the hydraulic diameter of the gas core in the annular flow pattern. After
substitution of the scale factors h1 = 1, h2 = ρ, and h3 = 1 into Eq. (4), it is possible
to obtain the momentum equation for the gas phase in dimensionless form

(
∂ P̃

∂ z̃
+ ReSG

4FrSG
sin α

)

G

= − 2

Ri
τ̃iG , (13)

where ReSG , FrSG , and τ̃iG are, respectively, the Reynolds and Froude numbers of
the gas phase and the dimensionless interfacial shear stress, defined as

ReSG = ρC vSG D

μG
; FrSG = v2

SG

gD
; τ̃iG = D

2vSGμG
τi , (14)

where now vSG is the velocity of the gas phase and ρG and μG refer to the density
and viscosity of the gas. The gas core density in the annular flow, ρc, is a no-slip
density because the core is considered a homogeneous mixture of gas and entrained
liquid droplets flowing at the same velocity (Ansari et al. 1994), that is

ρc = ρL HLc + ρG(1 − HLc). (15)

The no-slip holdup in the gas core, HLc, is given by

HLc = vSL Fe

vSG + vSL Fe
, (16)

where Fe is the fraction of the total liquid entrained in the gas core and given by
(Oliemans et al. 1986)
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Fe

1 − Fe
= 10β0ρ

β1
L ρ

β2
G μ

β3
L μ

β4
G σβ5 Dβ6 V β7

L S V β8
GSgβ9 . (17)

In this relation, the exponents β are numbers corresponding to fitted parameters.
On eliminating the pressure gradient from Eqs. (11) and (13), it is possible to

obtain the combined momentum equation

τi
SL

A

(
1

Ri
+ Ri

(
1 − a2

)

(
1 − a2 R2

i

)λ

)

− τwL
SL

A
λ + g sin α (ρG − ρL) = 0, (18)

where A is the cross-sectional area of the pipe, SL is its perimeter, and λ is a geometric
factor that takes into account the effects of the annular flow eccentricity

λ = (a Ri − 1)2 (a Ri + 1)2

(
1 − R2

i

) (
1 − a4 R2

i

) . (19)

Moreover, the shear stress at the pipe wall for the liquid, τwL , is defined by

τwL = 1

2
fwLρLv2

L , (20)

where fwL is the wall-liquid friction factor, which obeys the experimentally obtained
correlation for annular flow

fwL = 0.0063 + 53.4662Re−1
M . (21)

In the above relation, ReM is the Reynolds number proposed by García et al. (2003):

ReM = ρLvM D

μL
. (22)

Furthermore, the interfacial shear stress, τi , is given by

τi = 1

2
fiρc (vG − vL)2 , (23)

where the gas-liquid interfacial friction factor, fi , is given by Whalley and Hewitt
(1978) correlation. They determine the interfacial friction factor by considering an
interface roughness (k = C ± �h f ), using Colebrook (1939) equation

1√
fi

= −4 log

[
k/D

3.7
+ 1.255

ReSG
√

fi

]
, (24)

where �h f is the apparent roughness or wave height and the factor C is the density
ratio C ∼= 0.3 (ρL/ρG)0.33.
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Table 1 PDVSA-Intevep experimental data

Source Points Fluids μL (cP) vSL (m/s) vSG (m/s) D (m) ε/D

Exp-A (2001) 5 Air-kerosene 1 0.11-1.6 28.2-45.7 0.0508 0
Exp-B (2000) 14 Air-oil 500 0.01-0.3 10.1-38.2 0.0508 0
Exp-C (2001) 7 Air-oil 1200 0.85-0.9 7.2-24.4 0.0508 0

Table 2 Stanford University data

Source Points Fluids μL (cP) vSL (m/s) vSG (m/s) D (m) ε/D

Govier and Omer (1962) 5 Air-water 1 0.01-0.1 6.3-16.6 0.0261 0
Ansari et al. (1994) 3 Air-oil 80 0.02-0.3 6.1-13.2 0.0266 1.7E-3
Companiesa 36 Air-oil 15 0.04-0.5 18.7-69.6 0.0502 3.0E-5

17 Air-HL 1-25 0.02-2.2 8.0-24.1 0.0381 1.2E-3
12 3-22 0.03-0.6 23.1-59.5 0.0909 1.7E-5
4 19 0.11-0.6 40.5-63.4 0.0232 6.5E-5
8 19 0.10-1.0 34.9-57.1 0.0237 6.5E-5
73 Air-water 1 0.01-0.5 16.9-61.3 0.0455 0

a Data sets are identified as: SU24, SU25, SU28, SU29, SU184, SU187, SU199

Table 3 Tulsa University data

Source Points μL (cP) vSL (m/s) vSG (m/s) D (m) ε/D

Andritsos (1986) 36 1-70 0.001-0.56 12.15-30.09 0.0252 0
3 80 0.004-0.02 14.04-24.65 0.0953 0

Beggs (1972) 5 1 0.02-0.56 15.96-24.97 0.0254 0
3 1 0.02-0.11 14.85-15.12 0.0381 0

Mukherjee (1979) 9 1 0.03-0.56 11.40-24.06 0.0381 0

3 Experimental Data

The experimental data for the gas-liquid annular flow is made of 240 experimental
points of a database containing information from the Stanford Multiphase Flow
Database (SMFD), the Tulsa University Fluid Flow Project (TUFFP), and PDVSA-
Intevep experiments. The range of operation conditions and fluid properties of each
database are summarized in Tables 1, 2, and 3.

In each table, the last colum lists the absolute roughness, ε, in terms of the pipe
diameter. The statistical parameters employed in this study are listed in Table 4.
They are given by: the average percentage error (E1) and the average error (E5),
which are related to the agreement between predicted and measured data; the average
absolute percent error (E2) and average absolute error (E6), which are two of the
most important statistical parameters because the negative and positive values do
not cancel out; the standard percent deviation (E3) and standard deviation (E7),
which are related to the scatter of the errors with respect to the average error of
the experimental data; and the mean root square percent error (E4) and the root



438 A. Brito et al.

Table 4 Statistical parameters

Statistical parameter Definition Unit

E1
1
N

N∑

I=1

(
�Pcal −�Pm

�Pm

)
∗ 100 %

E2
1
N

N∑

I=1

∣∣
∣
(

�Pcal −�Pm
�Pm

)∣∣
∣ ∗ 100 %

E3

√
1

N−1

N∑

I=1

((
�Pcal −�Pm

�Pm

)
− E1

)2 ∗ 100 %

E4

√
1

N−1

N∑

I=1

((
�Pcal −�Pm

�Pm

))2 ∗ 100 %

E5
1
N

N∑

I=1
(�Pcal − �Pm) Pa/m

E6
1
N

N∑

I=1
|(�Pcal − �Pm)| Pa/m

E7

√
1

N−1

N∑

I=1
((�Pcal − �Pm) − E5)

2 Pa/m

E8

√
1

N−1

N∑

I=1
((�Pcal − �Pm))2 Pa/m

mean square error (E8), which indicate how close the model prediction is to the
experimental data.

4 Results and Discussion

In order to develop a model that takes into account the eccentricity of the annular
flow in pipelines, we have carried out a series of experiments in PDVSA-Intevep
with an air-oil flow of 400 cP in horizontal pipes. We found that for a constant liquid
rate, when the gas rate increases, the eccentricity of the annular flow decreases and
eventually tends to zero, as shown in Fig. 2, where the eccentricity is plotted as a
function of the gas superficial velocity.

We observe that the eccentricity has no relevant effects on the pressure gradient
because when we force the model to predict the pressure gradient with an eccentricity
equal to zero, the difference obtained is about ±1 %. Figure 3 compares the predicted
values of the pressure gradient for annular flow with the experimental data listed in
Tables 1, 2 and 3 for a gas-liquid system. The average absolute error is 30.5% with
an estimated standard deviation of 28.9 %. As we may see, the average absolute error
of 60 %, corresponding to the experimental database (147 points), has a deviation
less than 30 % over a wide range of fluid properties and pipe diameters.

We also compare the performance of the our model with that of other mechanistic
models (MM) as proposed by Xiao et al. (1990), Ouyang et al. (1998), Gómez et al.
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Fig. 3 Comparison of the predicted pressure gradients with existing experimental data

(1999), and Holden (2002) and the correlation models (CM) of Dukler et al. (1964),
Beggs and Brill (1973), and García et al. (2003) for the same experimental data of
Tables 1, 2 and 3.

The accuracy of the different mechanistic and correlation models is listed in
Table 5 and is expressed in terms of the statistical parameters displayed in Table 4.
All these models were compared against the experimental data of Tables 1, 2 and 3.
We may see that for most existing models in current use the absolute error E2 is more
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Table 5 Comparison of the accuracy of pressure gradient prediction against the experimental data
for different mechanistic and correlation models

E1 E2 E3 E4 E5 E6 E7 E8

(%) (%) (%) (%) (Pa/m) (Pa/m) (Pa/m) (Pa/m)

Garcia CM −11,8 29,4 31,7 33,8 −127,3 690,6 1444,4 1450,0
Brito MM −10,3 30,5 40,8 42,1 −354,2 862,0 1780,9 1815,9
Dukler CM −27,6 31,8 26,6 38,4 −803,3 878,2 1527,8 1726,8
Holden MM 28,4 47,9 118,0 121,4 667,9 1048 5883,6 5921,5
Ouyang MM −52,8 53,9 25,8 58,7 −1007 1120 1788,9 2053,8
Xiao MM 62,0 92,6 183,7 193,9 33,7 1137 1960,1 1960,4
Beggs and Brill CM 128,9 141,1 554,9 569,8 9578 10108 73313 73939
Gomez MM 164,8 178,9 2023 2030 416,7 1076 4458 4478

than 50 % in the prediction of the pressure gradients for annular flow in pipelines.
In contrast, the overall performance of our mechanistic model (Brito MM) yields an
absolute error of 30.5 % and so it has a superior accuracy compared to all quoted
mechanistic models. We note, however, that the correlation models of Dukler et al.
(1964) and García et al. (2003) also produced deviations of about 30 %, similar to
our model.

5 Conclusions

A new mechanistic model for the prediction of gas-liquid annular flow in horizon-
tal pipelines has been presented. The accuracy of the model has been assessed by
comparing its performance with that of seven different models for a set of 240 exper-
imental points. The main conclusions can be summarized as follows:

• The eccentricity has no important effects on the prediction of the pressure gradients
in annular flow patterns, with a difference less than 1 % when concentric and
eccentric patterns are considered.

• The limiting case of the model proposed is when the eccentricity is equal to zero
(concentric flow).

The present model reduces the absolute error in the prediction of pressure gra-
dients in pipelines by 17 % compared to Holden (2002) mechanistic model, which
is considered to be the mechanistic model with better performance. The overall per-
formance of the model is around a 30 % absolute error, similar to the performance
obtained with correlation models by Dukler et al. (1964) and García et al. (2003).
These results clearly indicate that more studies are indeed required to improve the
accuracy of prediction of the physical parameters relevant to annular flow in pipelines.
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