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Abstract We present experimental observations of the Faraday instability when an
air/water interface is split over a network of small triangular cells for exciting fre-
quencies in the range 10 ≤ f ≤ 30Hz. Just above the threshold for instability, waves
appear on the water surfaces within all individual cells. After a transient state, adja-
cent cells progressively synchronize and self-organize to produce a regular pattern
covering the whole grid. Collective cell behaviour is seen to lead to four different
patterns depending on the forcing frequency range. Beyond ≈28Hz, adjacent cells
no longer interact as the vibration wavelength becomes smaller than half the altitudes
of the triangular cells and so the waves remain constrained within individual cells in
the form of localized harmonic oscillons.

1 Introduction

When a close receptacle containing liquid is submitted to vertical vibrations, a pattern
of non-linear standing waves is often observed at the surface of the liquid. These
waves, known as Faraday waves (Faraday 1831), are parametrically excited when
the vertical vibrations exceed a critical frequency fc, or critical acceleration Γc.
The acceleration Γ is defined according to the relation Γ = Aω2, where A is the
excitation amplitude andω(=2π f ) is the circular frequency. Faraday (1831) realized
that these waves are sub-harmonic because they oscillate at half of the harmonic
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excitation frequency.Modern experiments of single- and two-frequency forcing have
revealed that not only spatially regular patterns of parallel lines, squares, circles, and
hexagons may form but also many more complex symmetries such as quasi-patterns,
superlattice patterns, and oscillons (Douady 1990; Edwards and Fauve 1994; Binks
and van der Water 1997; Kudrolli et al. 1998; Arbell and Fineberg 2000a,b; Porter
and Silber 2002; Westra et al. 2003).

Understanding the types of patterns that form is challenging. The threshold for
instability and the observed patterns depend on the viscosity and surface tension of
the fluid, the accelerationΓ , and the shape and size of the vessel. The full mathemati-
cal description of the problem involves the Navier-Stokes equations in a domain with
a free surface, and the excitation makes the problem non-autonomous. In mathemat-
ics, a non-autonomous system is a system of ordinary differential equations which
explicitly depends on the independent variable. In this case, non-autonomicity results
from the external forcing that influences the fluid parameters when the oscillating
behaviour initiates. On the other hand, the mechanisms of pattern selection have
been investigated using the tools of symmetry and bifurcation theory (Silber et al.
2000; Rucklidge et al. 2003; Skeldon and Guidoboni 2007). The linear theory of
this instability has been developed by Benjamin and Ursell (1954), who showed that
the problem can be reduced to a set of Mathieu oscillators. However, the analysis
relies on the potential flow approximation which is restricted to inviscid fluids only.
If the instability is generated in a viscous liquid some mechanical energy is dissi-
pated. These effects are usually treated by adding a heuristic damping in theMathieu
equation (Landau and Lifshitz 1987), which is proportional to the kinematic viscos-
ity ν. The inclusion of such a term has been successively used in a number of linear
analyses Müller (1993); Kumar and Tuckerman (1994); Kumar (1996) and Perlin
and Schultz (2000). However, this approximation ignores viscous boundary layers
along the vessel walls and beneath the surface, where additional dissipation occurs.

The most advanced theoretical investigation of the stability problem is fully
numerical, which renders a physical understanding difficult Kumar and Tuckerman
(1994). An analytic expression for the onset of sub-harmonic Faraday waves was
obtained by Müller et al. (1997), which is applicable to a wide frequency range cov-
ering both shallow gravity and deep capillary waves. While this analysis is applica-
ble in the limit of weak dissipation, an analytic treatment in the opposite limit was
undertaken by Cerda and Tirapegui (1997). The linear aspects of the Faraday insta-
bility since Benjamin and Ursell (1954) were revisited by Müller (1998). It was not
until very recently that the first numerical simulations of the dynamics of Faraday
waves started to appear in the literature Périnet et al. (2009, 2012), involving the
full solution of the Navier-Stokes equations in three-space dimensions coupled to a
front-tracking method for resolving the free surface. In particular, these simulations
have reproduced the square and hexagonal patterns seen in Kityk et al. (2005, 2009)
with the same physical parameters. The hexagonal pattern was seen to be succeeded
by recurrent alternation between quasi-hexagonal and beaded striped patterns.

In spite of recent progress, most work on Faraday waves assume that either the
liquid bath has infinite extent or that the liquid surface is perfectly flat at the edge
of the lateral walls where no-slip boundary conditions hold, which is unrealistic for
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experiments where the meniscus dynamics is important (Douady 1990). In general,
as the system is shaken, the effective gravitational acceleration varies, making the
meniscus length to become alternately large and small. In order to preserve the
fluid mass, surface waves are emitted from the sidewalls of the vessel at the driving
frequency f . Viscous dissipation is the primary cause for damping of these capillary
waves.

In containers of small size there exists a strong coupling between the capillary
waves generated by the meniscus and the Faraday waves, where the former extend
all over the liquid surface. Recent experimental observations with cylindrical ves-
sels of small diameters indicate that an increase of the Γc threshold is required for
exciting Faraday waves in such small recipients Nguyem Thu Lam and Caps (2011).
As previously for the viscosity, the addition of a phenomenological damping term,
proportional to the thickness of the boundary layer, to the linear theory for mod-
elling the viscous dissipation due to meniscus waves has successfully reproduced
the experimental measurements of Γc for instability (Nguyem Thu Lam and Caps
2011).

Alternatively to experiments with single small containers, the formation of regular
patterns has also been observed over a square network of centimeter-sized cells
(Delon et al. 2010). After a transient state, just above the Faraday threshold, adjacent
cells synchronize to form regular square lattices over the entire network, whose
orientation with respect to the grid depends on the exciting frequency range. In this
chapter, we extend these experimental observations to the case of an isometric grid
consisting of equilateral triangular cells and study the effects of this geometry on the
collective cell behaviour.

2 Experimental Set-Up

The experimental set-up consists of a transparent Plexiglas vessel with a base size of
15 × 15cm2 and 15cm high, containing on its bottom plate a vinyl grid consisting
of 60 equilateral triangular cells of sides 25mm and depth 15mm each. The cells
are filled with coloured distilled water up to a height of 7mm, and placed on an
electromagnetic shakerwhichproduces a cleanvertical accelerationwaveform.Small
holes (of diameter 0.5mm) have been drilled at the bottom of each cell to ensure
equality of the fluid level in all cells. Fluid motion into these holes is prevented by
the viscosity of the fluid and the low frequencies of oscillation, typically of a few Hz.

The vessel acceleration, which is the relevant bifurcation parameter, is measured
by a piezoelectric accelerometer fixed onto the shaker table, receiving an oscil-
lating voltage. The signal from the accelerometer is acquired using a multifunc-
tional data acquisition board and processed by a host computer, where a software
is run to give the oscillation amplitude A in millimeters and the frequency f in Hz
from the maximum acceleration Γ normalized to the gravitational acceleration g0
(= 9.81m s−1). For pattern visualization the Plexiglas vessel is illuminated from
above with white light using a pack of four halogen bulbs of 50Watts each. The
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bulbs were placed at a height of 80cm from the Plexiglas vessel and turned on only
during video recording for not more than 20s in order to avoid alterations of the
density, viscosity, and surface tension of water due to heating. At such height, the
halogen bulbs will transmit an average heat power to the water surface of about 10W,
which may produce a temperature increase of 1◦C only after 100s of exposition. A
CCD camera PL-B742 is used to observe the pattern from the top, and a second CCD
camera (PL-B771) is positioned in front of one side of the vessel, tilted by an angle
varied between 0 and 45◦ with respect to a plane perpendicular to the wall of the
recipient, to record lateral and perspective views of the system. Pattern photographs
from the top were also taken with a NIKOND60 digital SLR camera for presentation
purposes. We varied the excitation frequency in the range between 10 and 30Hz. For
frequencies below ≈10Hz, it is the maximum peak elevation which prevents the
shaker from reaching the threshold acceleration Γc. Given the small size of the cells,
the interaction between the meniscus and the Faraday waves are expected to have
a stabilizing effect on the air/liquid interfaces (Nguyem Thu Lam and Caps 2011),
thereby rising the instability threshold above the value required for non-confined
liquids.

3 Observed Patterns

In a network of interconnected cells of small size, the relative effect of the numerous
capillary menisci at the cell walls is an important factor. Due to the external forc-
ing, the characteristic height of the menisci evolves according to h = [σ/ρg(t)]1/2
(Douady 1990), where σ is the surface tension of the liquid, ρ is its density, and g(t)
is the temporal modulation of gravity. This modification of the meniscus height leads
to the generation of capillary waves, which dissipate by viscous shear and interact
with the Faraday waves, excited sub-harmonically. This produces a stabilizing effect
on the free surface so that more energy is required to excite Faraday waves than in
large-recipient or non-confined fluids.

Just above ≈10Hz, the wavelength of the forcing oscillations becomes smaller
than the size of the cells, and after a transient state, adjacent cells progressively
synchronize to form a regular pattern over the whole grid. Figure1 shows top view
photographs of the grid when bumps of fluid higher than the depth of the cells form at
their intersections at f = 10Hz and Γ ≈ 1.12g0. If the driving force is maintained,
the same pattern is recurrently repeated with periodic peak alternation occurring at
the network scale along the horizontal direction every half a period as shown by the
two images of Fig. 1. In this case, all adjacent cells collaborate synchronously to form
a well-defined pattern by sharing nearly all of their liquid content into the emerging
bumps. Some of them eventually pinch off at their ends and some liquid may be
exchanged between adjacent cells. A similar collective behaviour was observed for
higher exciting frequencies in the interval 10 ≤ f ≤ 14Hz. In particular, Fig. 2
displays a perspective view of this mode for f = 12Hz. Synchronization is due to
interacting cell waves converging at grid nodes as shown on the top left of Fig. 3.
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Fig. 1 Top view images of the resulting pattern at f = 10Hz. Liquid bumps appear at grid nodes at
the dual vertical and triple horizontal network scale.Waves inside adjacent cells interact for a global
synchronization with alternation of the peak positions every half a period as seen by comparing the
two images

Fig. 2 Perspective view showing the bumps forming at grid intersections when a forcing frequency
of 12Hz is applied. This mode is the same of that in Fig. 1, except that at this frequency the nodal
bump distribution looks a bit more irregular

Note that six cells arranged in a regular hexagon contribute to each bump in the
network.

Wehaveobserved threemoremodes of synchronized collective behaviour depend-
ing on the frequency range as shown schematically in Fig. 3. For 15 ≤ f ≤ 17Hz, the
liquid bumps form at the edges of adjacent cells (top right), with no peaks appearing
on grid nodes. This pattern arises because waves inside four adjacent cells interact
at their common edges. In this case, the four contributing cells form a larger tri-
angle. For 18 ≤ f ≤ 20Hz, the patterning consists of bumps appearing again at
cell edges (bottom left). However, this time only two adjacent cells are allowed to
contribute and their union forms a rhombus. A top view photograph of this mode is



362 F. Peña-Polo et al.

Fig. 3 Schematic of the four patterns observed according to the exciting frequency range: (i)
10 ≤ f ≤ 14Hz (top left), (ii) 15 ≤ f ≤ 17Hz (top right), (iii) 18 ≤ f ≤ 20Hz (bottom left), and
(iv) 21 ≤ f ≤ 28Hz (bottom right). Alternation of the patterns is shown up by green and red dots,
which mark the position of bumps at the beginning of and at half a period, respectively. The arrows
indicate wave interaction between adjacent cells for one pattern (continuous) and its alternating
counterpart (dashed). The yellow figures enclose the adjacent cells that work collectively

displayed in Fig. 4 at f = 19Hz and Γ ≈ 2.38g0. The two images are separated
in time by half a period. Occasionally, some bumps may appear at grid nodes. For
21 ≤ f ≤ 28Hz, peaks form synchronously at cell centres and edges owing to wave
interaction between two adjacent cells (bottom right of Fig. 3). At such frequencies
only part of the liquid inside a cell is shared with its neighbour, while the other part
remains trapped within the cell to form a localized harmonic bump.

Beyond ≈28Hz, the wavelength of the driving oscillations becomes smaller than
half the triangular cell altitudes and so collective behaviour is no longer seen. The
waves appear within each individual cell without interaction. The resulting pattern
consists of localized harmonic oscillons forming at approximately the centre of each
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Fig. 4 Top view images of the observed pattern at f = 19Hz. Liquid peaks appear at the edges
between adjacent cells. Occasionally some bumps may form at grid nodes. The alternation of the
bump positions is not easily discerned from the two images

Fig. 5 Example of non-collective behaviour at f = 30Hz. At this frequency the waves remain con-
strained within each individual cell without interaction. The pattern consists of localized harmonic
oscillons at the centre of cells

cell as shown in Fig. 5 at f = 30Hz (Γ ≈ 2.45g0). Note that the size of the peaks
is irregular and that no peaks are produced within some cells.

4 Conclusion

We have presented experimental observations of the Faraday instability on a net-
work of triangular cells. For exciting frequencies between 10 and 28Hz, we have
observed four different mode patterns. Depending on the frequency range, collective
cell behaviour may results in symmetric patterns of liquid bumps, forming either at
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grid nodes or at cell edges. Above ≈28Hz, no collective behaviour is observed and
temporally harmonic oscillons form at the centres of individual cells.

In previous experiments on a network of square cells, the liquid bumps formed
square lattices at frequencies between 10 and 16Hz due to diagonal wave interaction
between adjacent cells (Delon et al. 2010). Evidently, changing the grid geometry
from square to triangular not only adds an extra degree of freedom for wave interac-
tion (due to the three altitudes in a triangular cell against the two diagonals in a square
cell), but also doubles the number of patterns that forms along with the frequency
range for which collective cell behaviour is observed.
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