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Abstract The non-linear oscillations of a viscous drop is a fundamental problem
in diverse areas of science and technology. In this paper, we analyze the large-
amplitude oscillations of an initially elongated liquid drop in two-dimensions by
solving the free boundary problem comprised of the Navier-Stokes equations, using
two different numerical codes. The drop models all start from the same deformation
in vacuum with zero gravity and varied Reynolds numbers (Re). We find that non-
isothermal drops undergo stronger damping than isothermal ones due to the additional
dissipative effects of heat conduction. Regardless of the drop parameters and physical
mechanisms of dissipation, the transition from periodic to aperiodic decay is seen
to occur for Re ≤ 1.5 in good agreement with linear theory and previous numerical
simulations.
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1 Introduction

The free oscillations of liquid drops have been studied extensively over more than
a century, both for the sake of basic scientific understanding as well as for their
dumbfounding applications in the chemical, pharmaceutical, and food industry.
The problem has applications in polymer processing, dispersion technologies, gene
chip arraying, inkjet printing, catalyst production, containerless processing technol-
ogy in space, and metereology among many others. In the absence of gravity, the
infinitesimal-amplitude oscillations of a drop were first shown to be correlated to its
surface tension, density, and size (Rayleigh 1879). Here by oscillations we refer to
periodic changes of the drop surface shape from spherical to ellipsoidal and back. A
few other analyses for viscous drops have been reported in the literature (Reid 1960;
Miller and Scriven 1968; Prosperetti 1980). It was shown that the initial motion of
a viscous drop is just that executed by a damped harmonic oscillator of natural fre-
quency ω′

n = (ω2
n −b2

n)1/2, for which the amplitude decays exponentially with time,
where ωn is the Rayleigh frequency (Rayleigh 1879) and bn is a damping parameter
depending on the drop density, size, and dynamic viscosity. Moreover, a transition
from periodic to aperiodic decay of the oscillations was found to occur between Re
≈ 1.3 and 1.768 (Prosperetti 1980), where Re is the Reynolds number.

For inviscid drops undergoing slightly non-linear oscillations, the oscillation fre-
quency was shown to decrease with increasing initial amplitude (Tsamopoulos and
Brown 1983). On the other hand, numerical simulations of large-amplitude oscilla-
tions of slightly viscous drops have revealed that even a small viscosity may have
a relatively large effect on resonant-mode coupling (Lundgren and Mansour 1988).
Simulations addressed to study the effects of finite viscosity on large-amplitude,
oscillating drops were also considered by a number of authors (Basaran 1992; Becker
et al. 1994; Mashayek and Ashgriz 1998; Meradji et al. 2001; Moran et al. 2003;
López and Sigalotti 2006). These calculations have revealed that frequency modula-
tion and mode coupling are dominant, even for small initial deformations (Becker et
al. 1994), whereas internal circulation may have significant effects on the frequency
and damping rate during the first few periods of oscillation (Mashayek and Ashgriz
1998). In the absence of internal circulation, the damping rate is essentially governed
by the combined action of viscous and surface tension forces (López and Sigalotti
2006).

Experimental observations of acoustically levitated drops have confirmed quali-
tatively the behaviour predicted by the linear and non-linear theory (Trinh and Wang
1982). For instance, mode coupling and asymmetries in the oscillation amplitude
of high-order modes have been observed in drops with initial n = 2 deformations
larger than about 10 % of their spherical radius (Becker et al. 1991). Experiments of
low-viscosity drops oscillating in the microgravity environment of a Space Shuttle
flight have shown that the frequency shift of the oscillations agrees well with the
predictions of inviscid non-linear theory (Wang et al. 1996). Unprecedented micro-
gravity observations of the maximal shape oscillations of a surfactant-bearing water
drop during a mission of Space Shuttle Columbia have also been documented by
Apfel et al. (1997).



Numerical Simulations of Freely Oscillating Drops 337

In this paper, we describe two-dimensional numerical simulations of initially
elongated liquid drops undergoing free oscillations in vacuum with zero gravity,
using two different numerical approaches. We consider two separate sequences of
calculations: one where the drops are kept isothermal with associated Reynolds
numbers in the range 0.5 ≤ Re ≤ 50 and the other where non-isothermal conditions
are adopted for 0.5 ≤ Re ≤ 1,000. We consider arbitrary viscosity and limit our
analysis to non-rotating drops.

In typical experiments of shape recovery of deformed drops, the drop is first
distorted in a shear flow field or by acoustic levitation. After the shear flow is abruptly
stopped or the levitating force is reduced to the strength necessary to maintain the
drop suspended, the transient behaviour of the extended drop proceeds in one of two
ways: the drop may relax back to its original spherical shape, or, if the extension was
beyond a critical aspect ratio, it may break up into a number of smaller droplets. In
the present study, we will only be concerned with situations where the initial drop
deformations are below the critical elongation ratio, i.e., the drop will always relax
back to spheres.

2 Isothermally Oscillating Drops

Calculations of a fluctuating liquid drop under isothermal conditions were carried out
using the JADIM code for 0.5 ≤ Re ≤ 50, where Re = (ρσ R)1/2/η is the Reynolds
number, ρ is the drop density, σ is the surface tension, R is the drop radius, and η is
the dynamic (shear) viscosity. We restrict ourselves to two-space dimensions so that
all variables are functions of the (x ,y)-coordinates and time t . In this way, the drop is
represented by an infinitely thin disk, with its oscillations about the spherical shape
corresponding to deformations of the disk perimeter about its unperturbed circular
shape.

The JADIM code is based on a finite-volume discretization method for solving the
Navier-Stokes equations, where all spatial derivatives are approximated by second-
order accurate central differences, coupled to the Volume of Fluid (VOF) method for
tracking and locating free surfaces and fluid-fluid interfaces (Magnaudet et al. 1995;
Legendre and Magnaudet 1998; Bonometti and Magnaudet 2007). Surface tension
forces are handled by adding to the Navier-Stokes equations a body force per unit
volume, Fs = −2κσn, where κ = ∇ · n/2 is the curvature of the interface and n is
the unit normal to it. The unit vector n is evaluated according to n = ∇c/[c], where
c is the colour function (or volume fraction) identifying each fluid in the system and
[c] is the jump in c across the interface. In the VOF modulus of JADIM, the colour
function is evolved by solving the transport equation

∂c

∂t
+ v · ∇c = 0, (1)
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Fig. 1 Effect of Reynolds number on the large-amplitude oscillations when a drop is released from
an elliptic elongation with aspect ratio a/b = 4 under isothermal conditions as calculated with the
JADIM code. Underdamped oscillations are shown for 2.0 ≤ Re ≤ 50 (left panel) and overdamped
aperiodic returns to the circular rest state for Re ≤ 1.5 (right panel)

where c = 0 if there is no traced fluid inside the cell volume and c = 1 otherwise,
while 0 < c < 1 when the interphasal surface cuts the cell volume. The time inte-
gration of the equations is performed using an implicit Runge-Kutta/Crank-Nicolson
algorithm so that the overall code is also second-order accurate in time. A detailed
description of the JADIM code and its VOF modulus can be found in the above ref-
erences, while validation of the method on the motion and deformation of fluid-fluid
interfaces can be found in Legendre et al. (2003) and Merle et al. (2005).

The initial model was constructed by mapping the elliptic drop on a square grid
of 64 × 64 elements. The drop has density ρ ≈ 1.764, uniform temperature T ≈
0.2, and internal pressure p ≈ 0.156 in reduced units. The area of the ellipse was
chosen to correspond to that of a circle of radius R ≈ 12.27. The outer vacuum
was approximated by assuming an ambient fluid (continuous phase) of density and
viscosity three orders of magnitude lower than the drop values. On the line borders
of the square grid no-slip boundary conditions are applied. All drops start with the
same parameters except for their coefficient of shear viscosity, η, which was varied to
provide a set of elongated drops with 0.5 ≤ Re ≤ 50. Because of assumed reflection
symmetry about the semi-minor and semi-major axes of the ellipse, only a quarter
of the computational domain is effectively included in the calculations.

The variation of the drop aspect ratio with time is displayed in Fig. 1 for differ-
ent Reynolds numbers. When Re is decreased from 50 to 2, the amplitude of the
oscillations decreases as the strength of the viscous forces increases over the inertial
ones. At low Reynolds (2 ≤ Re ≤ 5), the drop recovers its circular shape after
about three to four periods, while several more are needed for the Re ≥ 10 drops to
relax back to circles. A change in the regime of the oscillations from underdamped
(periodic), when 2 ≤ Re ≤ 50 (left panel), to critically damped, when Re = 1.5
and 1.25 (right panel), corresponding to a fast aperiodic return to the circular shape,
and then to overdamped when Re = 0.5, corresponding to a much slower aperiodic
decay mode, is clearly observed. This result is in good agreement with linear theory
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which predicts an aperiodic decay mode for Re between ≈ 1.3 and 1.768 (Prosperetti
1980). For globular drops, Basaran (1992) and Meradji et al. (2001) found the same
behaviour for 1.3 < Re < 1.4 and 1.2 < Re < 1.4, respectively, when the drop is
released from a second-harmonic shape with initial aspect ratio a/b ≈ 1.015.

3 Non-Isothermally Oscillating Drops

The non-linear oscillations of elongated drops under non-isothermal conditions are
investigated using a smoothed particle hydrodynamics (SPH) code. As before, atten-
tion is focused on large-amplitude oscillations of drops that are released from a static
elliptic shape with aspect ratio a/b = 4 in two-space dimensions. The SPH code
solves the equations of mass, momentum, and energy conservation in Lagrangian
form, including the effects of viscosity and heat conduction, coupled to the vdW
equations of state

p = ρk̄B T

1 − β̄ρ
− ᾱρ2, (2)

U = ξ

2
k̄B T − ᾱρ, (3)

for the pressure and thermal energy, respectively. In these equations, ξ is the number
of degrees of freedom of the molecules (= 2 in two dimensions) and k̄B = kB/m,
where kB is the Boltzmann’s constant and m is the particle mass. Furthermore,
ᾱ = α/m2 and β̄ = β/m, where α is the cohesive action and β is a constant
parameter due to the finite size of the particles.

The effects of surface tension are simulated here with the aid of Eq. (2) by separat-
ing the cohesive term, −ᾱρ2, from the remainder forces in the SPH representation of
the momentum equation. The same applies to the energy term, −ᾱρ, in Eq. (3). The
former term contributes with an attractive central force between the SPH particles,
while the latter one contributes with an effective heating due to the work done by the
cohesive pressure forces on the liquid within the free surface. A predictor-corrector
leapfrog scheme is used to advance the position, velocity, and thermal energy of
particles in time, from which updates of the density, temperature, and pressure are
computed. Numerical stability is guaranteed by limiting the time step according to
the CFL condition. A detailed account of the SPH code and its applications to model
free-surface phenomena can be found in López and Sigalotti (2006), Sigalotti et al.
(2006) and Sigalotti and López (2008).

In contrast to the isothermal models, the elliptic elongation is now obtained by
deforming a stable circular drop by means of an area-preserving coordinate trans-
formation (Twiss and Moores 1992). A circular drop is constructed numerically by
starting the calculation with a square-cell array of 900 SPH particles of equal mass,
separated along the x and y axes by a dimensionless distance 
s = 0.78. We adopt
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Fig. 2 Transient shapes during the first oscillation period of a drop released from an elliptic elon-
gation with aspect ratio a/b = 4 at Re = 500 as calculated with the SPH code. The time is given
in reduced units

m = 1, ᾱ = 2, β̄ = 0.5, and k̄B = 1 in reduced units. The initial density, ρ0,
and temperature, T0, are chosen such that ρ0 < 1/β̄ and k̄B T0 > 2ᾱρ0(1 − β̄ρ0)

2

for thermodynamic stability. With a subcritical temperature T0 = 0.2 and choosing
η = 1, ζ = 1, and κ = 5 in reduced units, where ζ is the bulk viscosity and κ is the
coefficient of heat conduction, a stable circular drop of central density ρ(0) ≈ 1.769,
pressure p(0) ≈ 0.162, temperature T (0) ≈ 0.423, radius R ≈ 12.5, and surface
tension σ = p(0)R ≈ 2.02, with no external atmosphere, is formed after t = 600.
A set of equilibrium circular drops was constructed with the same parameters as
before, except that the shear viscosity was varied in the range 0.0067 ≤ η ≤ 13.36,
corresponding to Reynolds numbers in the interval 0.5 < Re < 1,000. Fluid motion
is generated by deforming the reference circular drops into an elliptic shape via the
density-conserving coordinate transformations (Twiss and Moores 1992):

x ′ = x

1 + ε
, y′ = (1 + ε)y, (4)

where ε is the elongation given by ε = (a/b)1/2 − 1. An ellipse with aspect ratio
a/b = 4 is obtained by setting ε = 1 in Eq. (4).

The time resolved evolution of a drop for Re = 500 is displayed in Fig. 2 during
its first period of oscillation. The drop first contracts along its major axis as part of
its surface energy is transformed into internal liquid movement, passing through a
transient approximate circular shape (t = 24) before reaching a maximum elongation
along the x-axis (t = 60). At this point, the rim pressure exceeds the stagnation
pressure inside the drop, causing it to contract back under surface tension and reach
a prolate shape after completion of the first oscillation period (t = 120). The variation
of the drop aspect ratio with time is shown in Fig. 3 for all runs. At comparable Re
the drops oscillate with lower amplitudes and undergo stronger dissipation than the
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Fig. 3 Effect of Reynolds number on the large-amplitude oscillations when a drop is released from
an elliptic elongation with aspect ratio a/b = 4 under non-isothermal conditions as calculated
with the SPH code. Underdamped oscillations are shown for 2.0 ≤ Re ≤ 1,000 (left panel) and
overdamped aperiodic returns to the circular rest state are obtained for Re ≤ 1.5 (right panel)
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Fig. 4 Variation of the decay factor over several periods of oscillation for all runs: JADIM simu-
lations (open symbols) and SPH calculations (filled symbols)

isothermal models of Fig. 1. The damping of the oscillations is mostly due to viscous
dissipation and, to some extent, to the finite heat conductivity. The transition from
periodic to aperiodic decay occurs at the same Re predicted by the isothermal models,
suggesting that it is independent of the initial drop parameters and mechanisms of
dissipation.

Finally, Fig. 4 shows how the decay factor (or damping rate), defined as

�n = 1

τn
ln

[
(a/b − 1)τn−1

(a/b − 1)τn

]
n = 1, 2, ..., (5)

varies as a function of the oscillation period for both the isothermal and non-
isothermal models, where n is the period number. For all Reynolds numbers, the
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damping rate decreases with increasing period number, decaying most rapidly dur-
ing the first period and changing only slightly with increasing time. Evidently, the
lower is the Reynolds number, the higher is the damping rate.

4 Conclusions

We have presented two-dimensional calculations of the free oscillations of a viscous
elongated drop surrounded by a vacuum in microgravity. The full Navier-Stokes
equations with appropriate interfacial treatment were solved, using a finite-volume
code under isothermal conditions and an SPH-based code under non-isothermal
conditions, including the effects of heat conduction.

The main characteristics of drop relaxation back to its stable circular shape, with
transition from periodic to aperiodic decay of the oscillations as viscosity is increased,
are found in good agreement with linear theory and previous simulations. We find
that heat conduction is an important additional mechanism for enhancing dissipation
at moderate to high Reynolds numbers.
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