Turbulent Diffusion of Heat at High Rayleigh
Numbers

Joseph J. Niemela

Abstract Thermal convection is observed in controlled laboratory experiments at
very high Rayleigh numbers using a relatively large apparatus filled with low tem-
perature helium gas. The low temperature environment offers two advantages toward
the study of turbulent convection; namely the favorable properties of the working
fluid in achieving very high Rayleigh numbers and the low thermal mass of the
heated metallic surfaces at cryogenic temperatures. The latter property is exploited
in order to provide a means of measuring an effective thermal diffusion coefficient
of the buoyancy-driven turbulence by propagating thermal waves into the bulk and
observing the damping of their amplitude with distance. The diffusivity measured
directly in this way compares well with values inferred from the time-independent
measurements of the global turbulent heat transfer at Rayleigh numbers of order
10° but are significantly different at Rayleigh numbers of order 10'3 which can be
interpreted as a consequence of the formation of well developed bulk turbulence
decoupled from the thermal boundary layers at the heated horizontal surfaces.

1 Introduction

Thermal convection is common to many natural and engineering systems, and tur-
bulence in these flows is more the rule than the exception, especially for large scale
natural phenomena. Familiar examples are convection in stars, in the outer core of the
earth, and in the atmosphere. Considering stellar convection alone, we could argue
that turbulent convection itself is the most ubiquitous type of flow that we know of.
Unfortunately, the values of the principal control parameter for stellar convection
are quite high and pose problems for laboratory experiments, notwithstanding the
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obvious difficulties in matching fluid properties and boundary conditions. If we con-
centrate on the first problem, namely the principal control parameter, and simplify
the rest of the problem by selecting an artificial system with well defined boundary
conditions, we have the possibility to make some progress. This assumes, of course,
that in doing this we retain the essential physics of the problem. It is important to
note that even a relatively simple system becomes highly nonlinear at high values
of the control parameter, and therefore poses a challenging problem in itself. The
system referred to here is Rayleigh-Bénard convection (RBC), in which a layer of
fluid is contained between two heated horizontal surfaces. The upper (lower) surface
is cooled (heated) so that a mechanically unstable density gradient is formed across
the fluid layer, which is assumed to be thin, in the sense that we can neglect com-
pressibility effects. In actuality, compressibility cannot be entirely neglected, and
a correction for adiabatic temperature gradients is necessary. We also confine our
attention to fluids for which the coefficient of thermal expansion has a reversed sign,
requiring the opposite heating arrangement (e.g. water below 4 °C). Any parcel of,
say, hot fluid near the lower boundary is subject to buoyancy forces which promote
its vertical rise, leading to convective currents, with the same consideration applying
to cold fluid near the top of the layer. The degree to which buoyancy overcomes dis-
sipative processes and can lead to convection is given by the dimensionless Rayleigh
number Ra given by
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where «, v and « are, respectively, the isobaric thermal expansion coefficient, kine-
matic viscosity and thermal diffusivity of the fluid, AT the temperature difference
across the fluid layer of height H and g the acceleration due to gravity. The inter-
play between heat and momentum diffusion is important, especially for turbulent
convection, and that is characterized by the Prandtl number
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2 Apparatus

The apparatus and methodology for the present work has been described in detail
in Niemela and Sreenivasan (2003, 2006, 2008). In brief, the fluid—in this case
helium gas near 5 K—is held between two OHFC copper plates separated vertically
by thin cylindrical stainless steel sidewalls with a fixed diameter of 50cm. The
height of the fluid layer in these experiments was either 50 or 12.5cm, so that the
diameter-to-height aspect ratio was I" = 1 or 4, respectively. The OHFC copper
used for the heated horizontal surfaces was annealed to have a conductivity near
1kW m~'K~! at helium temperatures. More importantly, it is nearly five orders
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of magnitude larger than the molecular conductivity of the working fluid so that the
corresponding Biot number is extremely small. This means that constant temperature
conditions are assured even when the fluid is turbulent. Heating is provided by a
serpentine metallic film encased in mylar and sandwiched to the top and bottom plates
by additional copper plates. The top plate is regulated to have constant temperature
and is connected through a variable resistance to liquid helium bath which acts as the
cold reservoir. Outside the sample space a common cryo-pumped vacuum provides
protection against either conductive or convective heating in parallel, and radiative
heating is controlled through the use of various concentric shields surrounding the
sample space, the inner-most one being at the temperature of the top plate.

Mean pressure is measured by a Baratron gauge, using heads appropriate to the
absolute pressure so as to maximize resolution. Temperature measurements rely
on semiconductor resistance thermometers made of doped germanium. Within the
fluid, cubes of neutron transmutation doped germanium, 250 L on a side, are used to
monitor temperature fluctuations.

The fluid has some special properties: its kinematic viscosity v can be quite
small when the density is large (i.e, near the critical point). The thermal expansion
coefficient « is naturally large in the ideal gas limit, as its value is simply the inverse
of the absolute temperature. The thermal diffusivity can be both very small and very
large depending on the operating point in the pressure-temperature phase space.
That is, near the critical point (at 5.2K) the specific heat Cp diverges and so the
thermal diffusivity « = k/pC p vanishes, where k and p are, respectively, the thermal
conductivity of the fluid and its density. In addition, « is thermodynamically related
to the specific heat and so it also gets quite large near the critical point. Taken together,
cryogenic helium gas presents a widely tunable fluid that allows both extremely large
values of the principal control parameter Ra but also large ranges of it.

3 An Effective Diffusivity

Let us consider the simple diffusion equation

T 92T
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Under conditions of fully developed bulk turbulence (i.e. decoupled from any
solid boundaries) we may consider that the turbulence can be modeled as a “fluid”
having an effective diffusivity «*. We may then consider Eq. (3), with an effective
diffusivity «° replacing the molecular value «. The corresponding time scale, then,
for turbulent diffusion is dimensionally given by L%/k®T on some characteristic
length scale L. On the other hand, we know for turbulent flows with characteristic
length scales L and velocity scales u, the corresponding time scale is of order L /u.
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Equating the two times scales gives « '

value then gives

~ yL. Taking its ratio with the molecular
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where Pe is the Péclet number. From Niemela et al. (2001) we know that
Pe = 0.13Ra%>%. We will return to consider this further below.

For a flow with mean velocity U sweeping along a heated surface we may also
define an effective heat diffusivity starting with the diffusion-advection equation
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Decomposing velocity and temperature for turbulent flows into mean and fluctu-
ating parts and averaging over the fluctuations (see Tennekes and Lumley 1997) we
obtain for the heat transfer

S oT
qj = pcp (Quj—lf—), (6)
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where 6 and u represent fluctuating components of temperature and velocity,
respectively. By Reynolds’ analogy we can define an eddy diffusivity for heat, k7 as

— oT
Ou,' = —Kr— (7)
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so that we may write for the total heat transfer Q in the vertical direction (for instance)

aT
2 _ —(kr +K)—. 3
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Approximating the gradient in temperature as the average over the entire fluid layer,
H/AT, and taking as a definition of the dimensionless heat transport the Nusselt
number Nu, where Nu is given by

H
Nu= 22 ©)
kAT
we obtain from Eq. (8)
Keff
Nu=—, (10)
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where

T = k1 +«. (11)

It is interesting to note that Eq. (10) can be reconciled with Eq. (4) only if
Nu ~ Ra'/?. (12)

In fact, Eq. (4) resulted from our consideration of a hypothetical fully developed
turbulence—i.e., without considering any boundary effects. We know that in the
case that the diffusive boundary layers are artificially removed in RBC simulations
(Lohse and Toschi 2003), Nu is indeed described by Eq. (12).

4 Time-Dependent Measurements of the Effective Diffusivity

Despite its academic interest, could we in fact measure an effective thermal diffusivity
of convective turbulence directly? The thermal diffusivity of solids, or any purely
conducting material, can be measured by applying a time-varying temperature at
one surface and measuring the damped amplitude or phase of the resulting heat wave
at some known distance along the direction of its propagation. The corresponding
experiment then is to oscillate the temperature of the bottom boundary of a Rayleigh-
Bénard cell and to then measure temperature at that frequency carefully at a known
height within the layer. Certainly this will work when the fluid is quiescent, but
the question is whether it will work when there are in addition turbulent eddies
transporting heat.

The experiment performed was just this: at the top plate we retained a constant
temperature as usual, while the bottom plate was subject to a sinusoidally oscillating
heat flux with a non-zero mean value giving rise to an oscillation of the bottom plate
temperature at the same frequency about some mean value larger than that of the top
plate.

Let us consider only the oscillating part of the bottom plate temperature, which
is of the form

T = Tocos(wt). (13)

A solution of Eq. (3) satisfying this boundary condition is

T = Tyexp _L cos wt—i , (14)
ds ds

where §s = (2k/ )12 is the penetration depth. Equation (14) describes a wave-like
phenomenon whose phase and amplitude depend on the thermal diffusivity of the
medium and the frequency w of the oscillation. Knowing the oscillation frequency, the
position of the temperature sensor, and the amplitude of the temperature oscillation
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at the plate, the only unknown is the thermal diffusivity, which is then measured.
With «°f in place of «, Eq. (14) describes a heat wave that experiences damping and
phase variation according to an effective penetration depth

2xcetf
Seff = 4/ . (15)
w

If we also measure the dimensionless heat transfer or Nusselt number Nu simul-
taneously, we have two independent measurements of diffusivity: one through Nu,
that requires no assumptions but only indirectly gives the diffusivity, and the other
which is directly sensitive to the diffusivity but requires that we postulate a turbulent
“fluid”. To see how Nu infers the diffusivity, we refer to Eq. (9). Multiplying both
numerator and denominator by the heat capacity of the fluid we obtain Eq. (10),
where we identify QH /AT as the effective thermal conductivity of the fluid and
«°T is then that value multiplied by the heat capacity.

The experiment is aided by the fact that metals at low temperature have high con-
ductivity compared to the fluid, as was noted above, and also have nearly negligible
heat capacity compared to the fluid. The resulting low thermal mass allows us to pro-
duce large amplitude, high frequency heat waves that can penetrate with detectable
amplitude through the entire bulk region.

The frequency of the modulation, fj; (in Hz), was chosen to be both below and
above the characteristic frequency of the largest scale circulation. The amplitude was
also varied and a dimensionless form is given by

Ay = (TO)rms/<AT>- (16)

Here and elsewhere (...) refers to averaging over integral periods of the modulation.
The experimental procedure consisted of applying sinusoidal heating at the bottom
with a DC offset and then waiting for at least 200 cycle times of the large scale
circulation to reach a statistical steady state before taking measurements. To obtain
Nu conventionally, the temperature difference was averaged over integer numbers of
the modulation cycle. From this both < Ra > and < Nu > could be computed.
Fluctuations in the temperature within the bulk were measured at the mid-height
of the cell, and about 4.4 cm radially inward from the sidewall. This point was 25 cm
above the bottom plate for I" = 1 and 6.25 cm above the bottom plate for I" = 4. Data
were collected at a rate of 50 Hz using the off-balance signal from an audio frequency
bridge circuit with lock-in detection. By Fourier analysis it was possible to measure
the amplitude of the signal due specifically to the heat wave having frequency fy.
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Table 1 Experimental conditions and measurements

I <Ra> fuHz) Ay Kk (cm? s™1) «f (cm? s71) - <Nu >
1 3.4 x 10° 0.01 0.05 4.03x107%2  3.893 96.6 98.6

4 1.9 x 10° 0.032 0.15 7.04x1073  0.583 82.9 81.6

1 45%x 102 0.04 028 793 x107*  3.6099 4535 9756

1 1.0 x 10" 0.025 022 479 x107*  3.31 6,904 1,277

5 Results and Discussion

Table 1 shows experimental conditions and measurements made in both I' = 1
and I' = 4 cells. In particular, the last two columns show the ratio of measured
diffusivities and the measured (time-averaged) Nusselt number. For the first two
rows at low Ra, the values in the last two columns are in excellent agreement. This
is remarkable given that in two very different-height systems Eq. (14) returns the
same effective diffusivity that one would have inferred from the Nu-measurements.
However, the situation changes for the last two rows, which correspond to the same
I' = 1 cell but at much higher Ra. In this case, the measured diffusivity is larger
than we would have expected and its ratio with the molecular value is roughly five
times that of the measured Nu.

The result is illustrated graphically in Fig. 1. Here we plot the various values
of Nu corresponding to the last two columns of Table 1 for I' = 1. In addition,
values of Nu taken in the absence of modulation, namely those from Niemela and
Sreenivasan (2003), are included. The dashed line represents Ra!/2. One striking fact
is that < Nu > and Nu are the same within experimental uncertainty for all Ra, even
when the amplitude of modulation is of the same order as the average temperature
difference.

The dashed line in Fig. 1 is meant to denote the expected slope of Nu, if the
effective diffusivity were determined by Eq. (3). It is arbitrarily adjusted to connect
through the two upper data points. It is tempting to think that at high Ra we are
measuring for the most part pure bulk turbulence by the propagation of heat waves
while at lower Ra we are sensitive to extended boundary layers above the heated
plates.

The heat transfer measured by Nu or < Nu > does not require any assumptions
about the fluid layer. It is simply the integration of the contributions of all features
of the flow, even if the entire contribution is only from two thin boundary layers
near the top and bottom plates at high Ra. On the other hand, the heat wave, at a
first approximation, is assumed to propagate through a homogeneous medium. The
fact that the thermal boundary layer is much smaller than wither the molecular or
effective penetration depth (a fact that is true for all Ra investigated here) would
seem to validate its use in RBC.
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Fig. 1 Nu vs. Ra for I' = 1 both with and without modulation. Included are values for Nu, as
computed by the ratio of the effective to molecular diffusivity. Inverted open triangles, raw Nu from
Niemela and Sreenivasan (2003) without modulation; open circles, Nu, for low Ra; solid squares,
Nu, for high Ra; solid circles, < Nu > for low Ra; solid triangles, < Nu > for high Ra

It should be noted that Nu can be determined as the ratio between the half-height
of the layer and the thermal boundary layer thickness. That is:

N H (17)
u~ —,

268
where § is the thermal boundary layer thickness. On the other hand, Nu, is not depen-
dent on the thermal boundary layer thickness at all, but rather on the ratio between
deff and §g, the effective and molecular Stokes layer thicknesses, respectively, so that

8eff 2
Nu, >~ (—) . (18)
s

In Niemela and Sreenivasan (2008) it was proposed that the heat wave method
“failed” at high Ra due to the emergence of a highly turbulent core region, which
was assumed, for simplicity, to have an infinite conductivity. In this situation the
amplitude of the heat wave would clearly cease to decrease with distance within the
core region, and therefore the position of the sensor would no longer be a relevant
parameter (i.e., it could be changed within the core region without affecting the mea-
surement). Note that the conclusions are not really that different than the discussion
above; namely, that at very high Ra there may exist a region of well-developed bulk
turbulence completely decoupled from the boundaries.
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Finally, the data here are few and additional conclusions would clearly benefit
from distributed temperature measurements instead of one fixed sensor position and,
of course, a larger coverage of Ra. Such experiments are currently underway.
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