
Chapter 91

Equiangular Numbers

Henry Crapo and Claude Le Conte De Poly-Barbut

Some mathematical problems are resolutely geometric. No matter what you do to

them, subjecting them to different sorts of manipulations and calculations, their

‘geometric content’ persists even in the tiniest parts of what remains, even in the

numbers used to express their solution, like the parts of an image residing

‘everywhere’ in a hologram, or like the smile of a Cheshire cat. We want to tell

you of one such problem, and of a delightful series of real numbers starting with 0,1,

. . . and tending toward 2, that does its best to recall the struggles along its path into
existence. We maintain that it is because of these ancient struggles (which are

bound to recur when one tries to ‘construct’ them) that these numbers are of

architectural and artistic significance.

σ2 σ3 σ4 σ5 σ6 σ7 σ8 . . . σ8
0 1 1.41421 1.61803 1.73205 1.80194 1.84776 . . . 2

You will recognize the first few even in this inappropriate form, rounded off to

five decimal places: (σ4 is √2, while σ5 is τ, the Golden Mean, and σ6 is √3). We call

the sequence {σn} the equiangular numbers.
The story begins with one of Donald Coxeter’s masterpieces, his algebraic

characterization of groups generated by reflections (Coxeter 1935). His

formulation is simple: you insist that your group be generated by a finite set of
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elements of order 2, say {si | i¼ 1. . . n}, and that the defining relations be all of the
form

sisj
� �cij ¼ ε

for extended integer values cij, where i< j and 2� cij�1, and ε is the identity

element of the group. These values are recorded in a graph whose vertices are the

generators, and where the edges ij are labelled cij whenever this value is at least

3. (By cij¼1 we mean simply that there is no corresponding relation imposed; all

the powers (sisj)
n are distinct.) For instance the graph denotes the group

with three generators, and relations

s21 ¼ s22 ¼ s23 ¼ s1s2ð Þm ¼ s2s3ð Þn ¼ s1s3ð Þ2 ¼ ε:

The hard part was then to show that every such group is geometrically

representable as a group generated by reflections.

Say you have a group generated by reflections in n mirrors, which we call the

generators, surrounding a fundamental region in a space. These generators are

reflected in each other to form virtual reflectors, which we call mirrors;
algebraically they are conjugates xsx�1 of a generator s by an element x of the

group. The space is divided up into cells, each an image of the fundamental region

under a succession of reflections, and representing the element of the group that

carries the fundamental region to that location (Fig. 91.1). Since each element x of
the group is expressible as the product of a word in generators, it has a length ‘(x),
equal to the minimum length of a word s1 . . . sn with product π(s1 . . . sn)¼ x x. A
word of this length is called a short word for x. Geometrically, the length is the

number of mirrors you have to cross in order to get from the identity (fundamental

region) to the cell representing the element x. Every mirror is a conjugate xsx� 1 of a

generator s by an element x; take this element x to be of minimum length among

such expressions, and choose any short expression for x. You find a short

palindrome s1 . . . sn . . . s1 for the mirror.

Under the partial order

x � y if and only if some short word for x
is a prefix of some short word for y

the group becomes a semilattice (to be precise: a complete meet-semilattice: every

subset of the group has a greatest lower bound), or simply a lattice, if the group is

finite. Each step, or covering pair [x,y], where x< y and ‘(x) + 1¼ ‘(y), has an

associated generator s¼ x� 1y and an associated mirror m¼ yx� 1, which we call the

generator label and mirror label, respectively, of the step. It is a nice surprise to

find that there are consistent drawings in which steps with the same mirror label are
drawn parallel. Perhaps even more surprisingly, if these vector directions xm, one
for each mirror m, are very carefully chosen in n-dimensional space, the resulting
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figure becomes the 1-skeleton of a zonotope (Fig. 91.2), the convex figure formed as

the Minkowski sum of the line segments [0, xm], or of a zonotopal tiling.
The question remains, for a Coxeter group, given, say, by its graph of generators

and relations, how do we choose the vectors xm in order correctly to draw the

corresponding zonotope or zonotopal tiling? In his charming article on zonotopes

(1962), Coxeter showed how it suffices to cut all the vectors by a hyperplane, and so

Fig. 91.1 The group generated by three reflections of the cube

Fig. 91.2 The group as zonohedron
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work with figures of projective points. This will be our approach, to construct these

mirror diagrams.
Look at Fig. 91.1 in detail. There is a cell for each element of the group

generated by reflections of the cube, with fundamental region shown in

grey. The three types of edges encode the corresponding generator labels, while the

letters are the mirror labels. The outer edges should be identified in pairs so that the

sheet forms a polyhedral surface (here, the cube). Figure 91.2 is a correct projection

of the corresponding zonotope, with flat octagonal, hexagonal, and square faces in

3-space. Figure 91.3 shows the mirror diagram for this group. Note that for any pair

xy of mirrors, their successive conjugates

x, xyx, xyxyx, xyxyxyx, . . .

are collinear, and that the mirrors at the ends of each line are of minimal lengths for

that line. Here are nine mirrors, arranged on seven major lines. This simple figure

already possesses a non-trivial projective property. Since the four mirrors a,
d¼ aba, e¼ bab, b lie at the four points of intersection of a line ab with the six

edges of a plane tetrahedron (vertices cfgi), these four mirrors are harmonic. If we
assign coordinates (1, 0, 0) to a, (0, 1, 0) to b, and place the points d and

e symmetrically relative to the midpoint (1, 1, 0), then the point d will have

coordinates (√2, 1, 0)¼ (σ4, 1, 0).
Mirror diagrams for the groups of permutations of

an n-element set are generalized Desargues configurations, as in Fig. 91.4, formed

by the intersection of n hyperplanes in general position in a space of dimension

n�1. For S4 this is a complete quadrilateral in the plane, for S5, the usual Desargues
configuration in 3-space.

Fig. 91.3 The mirror configuration for
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For the group generated by reflections of the icosohedron or

dodecahedron, the mirrors configuration (Fig. 91.5) already has no possible
projective construction! Any such construction would be a projective

construction of the golden mean, which is known to be impossible using

straightedge only. Try drawing this figure, just looking at a list of sets of points that

are supposed to be collinear. You will quickly see why we are making a fuss about

equiangular points! (You can get it right quickly by trial and error, but trial and error

has no standing as a projective construction.) We have shaded some triangular

regions of the diagram in order to emphasize that this is a projective regular
pentagon chgij, with inner and outer stars: take the line ab to be the line at infinity.

The problem of drawing mirror diagrams for Coxeter groups has a simple general

solution if we are willing to impose appropriate restrictions on the positions of those

mirrors on lines joining pairs of generators. If these choices are made in a natural

way, there is a straightforward construction of the remaining positions; everything

just falls into place. We must take a closer look at the case of two generators.

For two generators a,b, the simplest such group is that for (ab)1¼ ε. This is the
group you see in the barbershop (Fig. 91.6) with parallel mirrors on opposite walls.

You see not only infinitely many chairs, but infinitely many mirrors, each making

its own faithful reflected image of the entire infinite scene. The generators are the

two mirrors bounding region ε, with real silvered glass.

If the two generators are not quite parallel, the series of images will bend along a

circular path of large diameter. Whenever the angle between them is a rational

multiple of π, the images will pile up in a finite number of distinct positions. For

mirrors at an angle of π
n we find 2n images, one for each element of the dihedral

group Dn, and n concurrent mirrors at equal angles (Fig. 91.7).

Fig. 91.4 Mirror diagrams for the symmetric S4, S5, S16
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Consider a family P of n coplanar and concurrent equiangular lines L1, . . . ,Ln

through a point c in the plane. Intersect this family of lines with a line L parallel to

the bisector of a pair of consecutive lines, say of L1, and Ln. By ^ and _ we denote

the operators join (of a pair of points, to form a line) and meet (of a pair of lines, to

form a point), respectively, in the projective plane. Let pi¼ Li^ L, for i¼ 1 . . . n.
We call such a set En¼ {p1, . . ., pn} a centrally symmetric set of n equiangular
points (Fig. 91.8).

Without loss of generality we may select homogeneous (projective) coordinates

p1 ! 1; 0ð Þ
pn ! 0; 1ð Þpn ! 0; 1ð Þ

midpoint of the segment p0; pn½ � ! 1; 1ð Þ:

Fig. 91.5 Mirror diagram for the group of the icosahedron

Fig. 91.6 A portion of the group
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Then the projective coordinates of all points pi are determined, each up to a

non-zero scalar multiple. Let (σn, 1) be the coordinates of p2, given n equiangular

lines.

These values σn can be computed as roots of a sequence of polynomials, as

follows. Let r1 be reflection of the plane in mirror L1. The mapping

A : p ! L ^ r1 p
_

c
� �� �

is a projective map, an involution of the line L fixing the point p1 and inducing the

permutation

Fig. 91.7 The group (barbershop quintet)

Fig. 91.8 A line of seven equiangular points

91 Equiangular Numbers 655



p1ð Þ p2pnð Þ p2pn�1ð Þ . . . pkþ1

� �
if n ¼ 2k

p1ð Þ p2pnð Þ p2pn�1ð Þ . . . pkpkþ1

� �
if n ¼ 2k � 1

of the points pi. This mapping A can be expressed as right-multiplication by the

(2� 2)-matrix

�1 0

σ 1

� �

since this linear transformation and its non-zero scalar multiples are the only linear

maps that send (1,0) to a scalar multiple of itself, exchanging (σ,1) and (0,1) with

scalar multiples of each other.

Our symmetric choice of projective coordinates (1,0) for p1 and (0,1) for pn,
permits us to express the central symmetry D of the figure by the linear

transformation with matrix

0 1

1 0

� �
:

This transformation induces the permutation

p1pnð Þ p2pn�1ð Þ . . . pkpkþ1

� �
if n ¼ 2k

p1pnð Þ p2pn�1ð Þ . . . pkð Þ if n ¼ 2k � 1:

Composing the maps D, then A, we obtain a map that induces the cyclic

permutation ( p1 p2. . .pn) which advances the points along the line (a turn by one

of the 2n cogs of the wheel), and has matrix

0 1

1 0

� � �1 0

σ 1

� �
¼ σ 1

�1 0

� �
:

Using multiplication by this matrix DA to compute the coordinates of the

successive points pi, we find

p1 ¼ 1; 0ð Þ
p2 ¼ σ; 1ð Þ

p3 ¼ σ2, � 1, σð Þ
p4 ¼ σ2 � 2σ, σ2 � 1ð Þ

p5 ¼ σ4 � 3σ2 þ 1, σ2 � 2σð Þ
⋮

pm ¼ f m σð Þ, f m�1 σð Þð Þ,
⋮

for m¼ 1, . . ., n, where the fm form a sequence of polynomials
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f 0 ¼ 0

f 1 ¼ 1

f 2 ¼ x
f 3 ¼ x2 � 1

f 4 ¼ x3 � 2x
f 5 ¼ x4 � 3x2 þ 1

f 6 ¼ x5 þ 4x3 þ 3x
f 7 ¼ x6 � 5x4 þ 6x2 � 1

⋮

determined by initial values f0(x)¼ 0, f1(x)¼ 1 and the simple recursion

f m ¼ xf m � 1� f m � 2,

for all m� 2. In closed form:

f m xð Þ ¼
Xm�1ð Þ=2b c

i¼0

�1ð Þi m� i� 1

i

� �
xm�2i�1

The terminal condition fn¼ 0 applies, and permits us to determine the correct

value of σn, the largest positive root of fn. Factorizations of these polynomials, with

integer coefficients, and exact expressions for their roots in terms of radicals, begin

as follows:

Our attempts to use computer algebra systems to solve the polynomial equations

for fn¼ 0 yielded useful results only for n� 6, a difficult expression in radicals for

n¼ 7, and no results at all for n> 7.

A trigonometric solution, however, to the equations fn(x)¼ 0 exists, and takes

the form:

2 cos
kπ

n
for k ¼ 1, . . . , n� 1,

with largest positive root

0: 0

1: 1

2: x 0

3: (x� 1)(x + 1) � 1

4: x(x2� 2) 0, � ffiffiffi
2

p
5: (x2� x� 1)(x2 + x� 1) �1� ffiffiffi

5
p� �

=2

6: x(x2� 3)(x2� 1) 0, � 1,
ffiffiffi
3

p
7: (x3� x2� 2x + 1)(x3 + x2� 2x� 1).
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σn ¼ 2 cos
π

n
:

Using these values of σn we can construct a linear representation of the group.

Each generator si is given by standard unit vector,

si ¼ 0, . . . , 1 . . . 0ð Þ,

while the linear operator ‘conjugation by si’ is given by the matrix

1 0 � � � σ1i � � � 0 0

0 1 � � � σ2i � � � 0 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 � � � �1 � � � 0 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 � � � σn�1, i � � � 1 0

0 0 � � � σni � � � 0 1

0
BBBBBBBB@

1
CCCCCCCCA

Extend this matrix representation multiplicatively, first representing each

element x in the group as a product of generators, then ‘conjugation by x’ as the
corresponding product of matrices. It is now an easy matter to compute projective

coordinates for all the mirrors, since each is the conjugate of a generator by an

element of the group, and is thus the image of a standard basis vector under

multiplication by one of these product matrices. For instance, each mirror in the

symmetric group , being a permutation with cycle

structure (ij), gets coordinates (0,. . .,0,1,. . .,1,0,. . .,0), where the 1s are in

positions i through j–1.
In the limit, with σ¼ 2, the ‘translation’ map DA has matrix

2 1

�1 0

� �

and creates an infinite sequence of points

p1 ¼ 1; 0ð Þ, p2 ¼ 2; 1ð Þ, p3 ¼ 3; 2ð Þ, . . . pk ¼ k, k � 1ð Þ . . .

reaching a projective limit at the midpoint (1,1) (Fig. 91.9). Mirror reflection in the

line L1 the linear map A, permutes pairs of points on opposite sides of this midpoint

(Fig. 91.10):

k, k � 1ð Þ �1 0

2 1

� �
¼ k � 2, k � 1ð Þ:

In closing, we should notice that a geometric situation gave rise to a difficult

(yea, impossible) construction problem in projective geometry, then to a problem in
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polynomial algebra that taxes the powers of the best modern computer algebra

systems, but which had a simple solution in terms of trigonometry. It is fair to ask

whether these further values of σn, for n¼ 7,8,. . . occur already in nature, for the

simple reason that they are the natural coordinates of equiangular points. Finally,
since the merits of the golden mean are well recognized in artistic matters (planning

of paintings, design of building façades, or choice of relative dimensions for

European paper stock), where the aspect of 5-equiangularity is thoroughly

disguised, surely the subsequent values of sn for n> 5 can give rise to analogous

aesthetic feelings in similar situations. Can our readers point to any instances of the

use of s7 in ancient or contemporary architecture?
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Fig. 91.9 The limiting case of infinitely many equiangular points (Venice harbour entrance)

Fig. 91.10 Pairs of points on opposite sides of the midpoint
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