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Preface to Architecture and Mathematics

from Antiquity to the Future

In June of 1996, in his keynote address at the conference ‘Nexus’96: Relationships

Between Architecture and Mathematics’, the founding international conference of

what would become an international community for research in a new interdisci-

plinary field, eminent engineer Mario Salvadori asked, ‘[c]an there be any relationship

between architecture and mathematics?’ Over the next 18 years, the Nexus com-

munity came together for a series of bi-yearly conferences in Italy, Portugal,

Mexico, Turkey and the USA to examine, debate and celebrate the relationships

that exist between architecture and mathematics. The conferences were hosted

in locations where important historic connections had been proposed between

architecture and mathematics: in Europe these locations include Fucecchio

(1996), Mantua (1998), Ferrara (2000), Óbidos (2002), Genoa (2006), Porto

(2010) and Milan (2012). Further afield, conferences were held in Mexico City

(2004), San Diego (2008) and Ankara (2014). Conference venues were chosen to

permit participants to visit local sites of historic importance for architecture and

mathematics in post-conference workshops, such as Pompeii and Herculaneum in

1996, the villas of Palladio in 1998 and Teotihuacan in 2004. The speakers at these

events include some of the most influential people in architecture, art, mathematics

and engineering. Lionel March, Robert Tavenor, Alberto Pérez-Gómez, Marco

Frascari, Michele Emmer, Leonard Eaton and Mario Salvadori, amongst many

other luminaries, have all presented at the Nexus conferences and taken part in

round-table discussions, forums and visits to some of the great architecture of these

regions.

The first Nexus conference was actually conceived out of the frustration caused

by the difficulty of finding a venue for publishing interdisciplinary research: papers

in architecture and mathematics were seen as too mathematical for architectural

journals, but not mathematical enough for mathematics journals. At best, such

research was viewed as a curiosity, too far from the mainstream to garner much

interest. Because there was no single journal that encouraged such research, when

authors were fortunate enough to have an article accepted, publications were

scattered, and authors seldom knew about the work of others examining similar

topics. The Internet was in its infancy at that time, leaving far-flung scholars to
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work in isolation. One journal, The Mathematical Intelligencer, and its particularly
open-minded editor-in-chief, Chandler Davis, had accepted papers by three of the

participants at the first conference, Kim Williams, Benno Artmann and Heinz

Götze, who subsequently began to correspond. The 23 people who met in 1996 at

the first conference knew of each other’s work by word of mouth: friends sending

their work to friends. But already by the second conference, 2 years later, the

growing group felt the need for a publishing venue, and it was decided to found the

Nexus Network Journal—Nexus, from the name chosen for the first conference to

represent the idea of interweaving ideas from two disciplines, and Network, to
describe the group of people whose acquaintances and collaborations were

continuing to expand. The first issue of the journal, with Kim Williams as

editor-in-chief, was introduced online in 1999, was added to at trimester intervals

of the course of that year and was produced in print at its end. The journal continued

in that way for its first 2 years, but by volume 3 in 2001, submissions had grown so

much that it was published in two issues per year, until with volume 9 in 2010, it

grew to three issues per year.

Across 15 volumes, 35 issues and over 500 refereed papers, the international

reputation and impact of the journal have grown considerably. Now published

jointly in the Birkhäuser programme of Springer-Basel and Kim Williams Books

of Torino, Italy, the journal is highly respected and has a growing readership.

Beginning with volume 16 in 2014, the NNJ will be overseen jointly by the editors

of these present two volumes.

Foreseen along with the conferences was the publication of the proceedings. The

series entitled ‘Nexus: Architecture and Mathematics’ comprised seven volumes

from the first seven conferences. At the beginning, the conference books were seen

as separate from the journal. This changed with the eighth conference, when

speakers voiced the desire to see their papers published in the NNJ, which was by

that time mature and esteemed. Thus, since 2010, papers presented in the Nexus

conferences have been published in special issues of the journal and are available

online. However, the research presented at the early conferences was only available

in a series of limited edition books. With many of these being out of print there has

been growing pressure to make the most highly cited works from the early years of

the Nexus conferences available. Rather than simply republishing selected works in

the order in which they were written, such was the scope of these early Nexus

publications that an alternative proposition presented itself.

We, the editors, have assembled almost a hundred papers from the early years of

the Nexus conferences, and arranged them both thematically and chronologically to

trace key moments in the history and theory of architecture and mathematics, from

antiquity to the present day, along with predictions for the future. These chapters

describe over 60 major buildings and architectural works, consider more than

twenty major theories of geometry and design and cover themes and ideas arising

from five continents and spanning over four millenia.

Having said this, the present two-volume work does not pretend to be a

comprehensive encyclopaedia of the history and theory of every facet of the

relationship between architecture and mathematics. Being works by more than
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one hundred authors with backgrounds in not only architecture and mathematics but

also engineering, physics, chemistry, philosophy, music and more, there is a rich

diversity of approaches to the topic, along with some insightful synergies and

informative disagreements. All of the chapters have undergone minor editorial

revisions, including, in some cases, updated bibliographies. In a few cases authors

have chosen to make more substantial revisions, to bring their chapters up to date,

or direct the reader to advances that are currently occurring in their areas. In

addition to this, we have provided an overview chapter for each volume (Chap. 1

in vol. I and Chap. 48 in vol. II), to frame the sequence and structure of the whole as

well as a chapter entitled ‘Mathematics in, of and for Architecture: A Framework of

Types’ (Chap. 3) which seeks to classify, and thereby make more accessible, the

myriad connections proposed across this work.

Each of the chapters in the present work have become crucial landmarks in the

scholarly landscape of architecture and mathematics. Some represent pioneering

research, the first studies of the relationships between architecture and mathematics

in a specific period, or in the oeuvre of a given architect. They serve as both points

of departure for new voyages of discovery and as destinations for people entering

unfamiliar terrain. For the novice researcher these works provide a grounding for

their explorations, and for seasoned scholars these chapters offer a critical record of

the efforts of fellow travellers. We, the editors, hope that through this two-volume

work, these chapters can continue to inspire and guide future generations.

We wish to thank Maria Roberts, Valentina Filemio and Marco Giorgio

Bevilacqua for assistance with editing and proofing, and Michael Dawes for support

with image preparation and research assistance. We thank all authors for permission

to reuse their material, and for their help in updating texts and references. Finally,

we thank Anna Mätzener, Editor for Mathematics and History of Science, and

Thomas Hempfling, Executive Editor for Mathematics, Birkhäuser, for their sup-

port of the Nexus conferences and the Nexus Network Journal throughout the years,
and especially for their support of this present work.

Torino, Italy Kim Williams

Newcastle, Australia Michael J. Ostwald

January 2015
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Chapter 48

The Revolutionary, The Reactionary and The

Revivalist: Architecture and Mathematics

After 1500

Michael J. Ostwald and Kim Williams

revolutionary |ˌrevəˈloō sh əˌnerē| adjective
Involving or causing a complete or dramatic change.

reactionary |rēˈak sh əˌnerē| adjective
Opposing a person, a set of views, or political or social practice.

revivalist |riˈvı̄vəˌlist| adjective
A tendency or desire to resurrect a former custom or practice.

Premise

A common conceit in historical analysis is to view the world and its history as

following an essentially forward, progressive or evolutionary trajectory (Foucault

1972; Turchin 2003). This way of conceptualizing the past permits the construction

of a narrative sequence that commences with a time dominated by superstitions

and primitive practices and then moves towards an era of reason and civilization.

Even the naming of historic periods—from the “Dark Ages” to the age of

“Enlightenment”—serves to reinforce the message that advances in science,

philosophy and art illuminate and thereby clarify the world around us (Adorno

1998). As a corollary to this idea, if history is following an essentially forward

trajectory towards a more advanced or aware state, then movements or events that
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either retard or undermine this progress are regarded as following an inferior or

retrograde path. One example of this view is found in Edward Gibbon’s argument,

in The History of the Decline and Fall of the Roman Empire (1996) that a loss of

civic virtue, coupled with wanton immorality and decadence, set a once great

civilisation on a regressive path, culminating in its collapse and the consequent

spread of barbarism across Europe (Womersley 1994).

A variation of this way of thinking about history as a progressive trajectory is

found in the work of the German philosopher Theodore Adorno. Adorno developed a

school of thought, known as Critical Theory, which used techniques from the social

sciences and humanities to interpret or analyse history (Benzer 2011). One feature of

Adorno’s critique of the twentieth century is his division of various cultural,

artistic and scientific theories into two progressive types: the reactionary and the

revolutionary (Adorno 1981). Reactionary works are those motivated by failures of

the recent past to argue for the introduction of changes to improve the situation.

Adorno is mildly critical of such works because, through their process of rejection,

they inadvertently reinforce and sustain the continued presence of some trace of a

past, flawed, system. In contrast, revolutionary works are motivated by a desire for

something completely new. They are not intellectually framed in opposition to the

present or the past. Instead, the revolutionary agenda is relentlessly forward-looking

and both unfettered and uncontaminated by the past (Adorno 2003). While both

reactionary and revolutionary developments continue the forward trajectory of

civilization, there is also a category of behaviour which theorists of the Frankfurt

school, like Adorno, suggest might reverse this progress. These regressive

behaviours could be described as revivalist or revisionary practices; they either

stall or reverse progress, no matter which field they occur in. This way of thinking

about history as a trajectory towards (or away from) enlightenment is useful for

interpreting political, social, and aesthetic movements, but there are also parallel

theories for examining developments in science and mathematics.

Thomas Kuhn (1962), Karl Popper (2002) and Bruno Latour (1987) have all

observed that knowledge in science and mathematics is developed through a series

of revolutionary stages (paradigm shifts), which are then followed by successive

reactionary sub-stages, each of which refine or test knowledge. Such cyclical

revolutionary and reactionary processes are progressive, in the sense that they are

motivated by the will to develop new knowledge, even if they accept past knowledge

as part of a larger evolutionary trajectory. Although this way of thinking might

describe the majority of recent research in science and mathematics, throughout

history there have been moments when revivalist notions have deterred this forward

progress. For example, prior to the fifteenth century scientists and mathematicians

were frequently involved in debates about esoteric and hermetic principles as well as

being engaged in alchemical and occult practices. In the sixteenth century, the

research of mathematician John Dee (1527–1608) was focused on advancements

in both algebra and divine magic. In the seventeenth century, the pioneering

experiments in chemistry of scientist Robert Boyle (1627–1691) recorded details

not only about the materials and techniques he was using, but also about astronomical

events that occurred during his experiments. The research of Dee and Boyle, both of
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whom worked after the scientific revolution, could now be interpreted as following a

partially reactive (scientific) and partially regressive (superstitious) trajectory.

These three ways of thinking about the history of ideas—the revolutionary,

the reactionary and the revivalist—are useful for conceptualizing patterns in the

development and application of knowledge. They are, of necessity, only available

to us in hindsight and are only ever true in a limited sense. Furthermore, this

categorization of movements or trends is also, as Adorno suggests, more relevant

to the history of ideas and aesthetics than to, for example, the history of technology.

However, when examining connections and relationships between architecture

and mathematics—fields that are integral to both the history of ideas and

aesthetics—these categories can be useful. In particular, from the start of the

sixteenth century, the field of mathematics could be regarded as pursuing a more

consistently progressive path, while architecture’s trajectory over the same period is

marked by both forward and backward tendencies. This divergence between the paths

taken by architecture and mathematics begins to explain the separation between these

disciplines, which became apparent in the 1500s and widened in the eighteenth and

nineteenth centuries, before showing more recent signs of realignment.

In the present chapter these three tendencies—the revolutionary, the reactionary

and the revivalist—are used to frame changing relationships between architecture

and mathematics. However, rather than explicitly adopting the Frankfurt school’s

or Kuhn’s criticisms of regressive tendencies, here we take a more reconciliatory

stance. This is because, throughout history, certain instances of revivalism provide

moments of insight into the relationship between architecture and mathematics.

Furthermore, while revolutionaries, by their very nature, outline brave or radical

propositions, this does not necessarily make them more interesting than their

reactionary counterparts. Thus, while we shall use these three concepts to frame

an overview of the changing relationship between architecture and mathematics

since the 1500s, for the most part they are simply used to suggest patterns of

behaviour or attitudes towards knowledge.

Another reason for introducing these ways of conceptualizing the history of

ideas and aesthetics is because they help to explain why, despite hundreds of

scholarly works that identify connections between architecture and mathematics,

there are historic moments and movements that are barely considered. This is

because many of the most fertile connections between architecture and

mathematics have occurred when architects have sought inspiration for their work

through appeals to science or geometry (Evans 1995; Ostwald 1999; Di Cristina

2001). These moments are more likely to occur when architecture is pursued in a

revolutionary or reactionary way, or when both architecture and mathematics have

parallel, progressive trajectories. Examples of this type are especially prevalent

in Renaissance, Baroque and Modern architecture. This is also potentially why few

examples exist of innovative connections between architecture and mathematics

during the Gothic Revival, Egyptian Revival or Post Modern Historicist

movements. At such times architecture has sought inspiration primarily from

within, and the only—if any—mathematics being used in the design process is

adapted from a previous era.
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Tracing Trajectories

The choice of the year 1500 as the starting point for the present volume was

suggested more by changes in science, technology and mathematics than by

specific developments in architecture. In the closing years of the fifteenth century

the invention of the printing press by Johannes Gutenberg (1395–1468) gradually

led to many changes in society, not the least of which was finally achieving a

widespread acceptance of Arabic, rather than Roman or Indian, numeric systems.

Furthermore, from the early years of the sixteenth century a growing number of

people would view the world in an empirical manner rather than accepting

explanations of faith or magic. Research was also undertaken from both an

introspective (inquiry-based) and a more overtly global (discovery-based) frame of

mind. In particular, the Age of Discovery, the beginning of which is conventionally

dated by the fall of Constantinople in 1453, led to a remapping of the world based on

exploration, with Ferdinand Magellan (1480–1521) circumnavigating the globe in

1522. Nicholas Copernicus (1473–1543) first considered the prospect that the earth

might revolve around the sun in 1514, and expressed this in his De revolutionibus
orbium in 1543. That same year saw the publication ofDe Humani Corporis Fabrica
by Andreas Vesalius (1514–1564). This work provided the first detailed, illustrated

and comprehensive description of anatomical dissection, but failed to identify the

location of the human soul. The works of Copernicus and Vesalius, along with those

of Tycho Brahe (1546–1601), Gerardus Mercator (1512–1594) and Galileo Galilei

(1564–1642), are considered as having triggered the scientific revolution. While

these events did not precipitate the type of social upheaval set in motion by the

Protestant or English Reformations, they nevertheless signalled the first stage of a

substantial philosophical paradigm shift. In architecture, awareness of these

discoveries manifested themselves in a vocabulary of form that grew from being

based on circles and squares to embrace the ellipse, although the language of that

form remained classical. To be sure, mysticism and symbolism continued to shape

architecture’s formal and stylistic language, just as they continued to interest some

mathematicians. But in the aftermath of the scientific revolution the influence of

mysticism gradually waned (Shapin 1998; Henry 2008).

Technical advances that aided empiricism included the invention of optical

microscopes (Hans Lippershey 1590), refracting telescopes (Hans Lippershey

1608, and Galileo 1609) and thermometers (Roger Fludd 1638). The sixteenth

and seventeenth centuries also saw many important advances in mathematics

which helped people to understand what the new instruments made it possible to

observe. The age abounded in genius: John Napier (1550–1617), Henry Briggs

(1561–1630), Johann Bernoulli (1667–1748), René Descartes (1596–1650), Pierre

de Fermat (1601?–1665), and Blaise Pascal (1623–1662) all developed major

insights in mathematics. Isaac Newton (1642–1727) and Christopher Wren

(1632–1723) each proposed new applications of geometry and considered their

use in architecture. Notwithstanding continued and often clandestine interests in

alchemy (Isaac Newton is a case in point), the cabala and other hermetic traditions,
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mathematicians and scientists of the era were typically committed to the

advancement of ideas through rigorous and empirical testing, rather than through

the more symbolic or metaphysical properties of numbers. Thus, it is not surprising

that the first scientific journals began to be published in the seventeenth century (the

English Philosophical Transactions of the Royal Society was established in 1665)

and the first practices of scholarly and scientific review can also be traced to this

era, affirming the progressive (reactionary and revolutionary) agenda of science.

Architecture was slower to advance. Because of the time taken to design

and construct buildings, architecture in the sixteenth and seventeenth centuries

continued to use materials and methods similar to those employed in previous

epochs. The works of Guarino Guarini (1624–1683), such as the church of San

Lorenzo and the Chapel of the Holy Shroud, both in Torino, feature a Baroque

mantel of architectural forms cloaking the Gothic masonry structure that holds it

up. Moreover, many of the major works of architectural theory remained dominated

by ideas and principles derived from classical Rome that had been rediscovered and

refined two centuries earlier during the Renaissance (Kruft 1994). Because

architecture serves both a cultural and social function, and as buildings can last for

many generations, developments in architecture were also less dramatic than those

in science or mathematics. For example, in Italy Mannerism, the name given to the

style adopted by Michelangelo and others from about 1520 to about 1580, whose

emphasis on tension and instability contrasted with the composed, static equilibrium

of the Early Renaissance, could be regarded as a variation of Renaissance

architecture, just as in England Jacobean architecture grew from the Elizabethan

style. Both of these developments were reactionary in their trajectory and, for the

layperson, neither of these had an especially immediate or obvious impact.

The most important stylistic movement of the seventeenth century in Europe, the

Baroque, a development of late Renaissance architecture, started in central Europe

(Italy, Germany and France) and spread to England, Spain and Portugal (and through

them, to their colonies) and Russia. Baroque architecture was characterized by new

explorations of form, light and shadow and dramatic intensity to produce new spatial

effects such as dilatation and contraction. Baroque architecture was designed to

provide extravagant evidence of the predominance and centrality of the Catholic

Church during the Counter-Reformation, and was thus, by intent at least, not

progressive. Another movement that flourished in the seventeenth century is what

is today known as Palladian architecture, another reactionary descendent of the late

Renaissance, characterised by symmetrical facades and plans and an appreciation of

the impact of proportion and perspective. However, while Palladian architecture

took advantage of some new ways of thinking about space, this was tempered with a

desire to reference the seemingly timeless or transcendent forms of ancient Greek

and Roman temples.

Such approaches underline the tension that existed between the progressive

trajectory of the scientific and mathematical communities, and the more resistant

views of the clergy, philosophers and the wider community. Architecture, which

was informed by mathematics, but served a more general communal and cultural

function by expressing social values, was frequently at the centre of such strained
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relations and sought ways to reconcile the two. This tension was to worsen across

Europe in the eighteenth century, an era which is now seen as being responsible

for reviving or revising various older styles, theories and beliefs. Neo-classical

architecture and Gothic Revival architecture were amongst the largest stylistic

trends in the eighteenth and nineteenth centuries. The neo-classicists included

Karl Friedrich Schinkel (1781–1841) and John Soane (1753–1837) while the

works of French neo-classical architects Claude Nicolas Ledoux (1736–1806) and

Étienne-Louis Boullée (1728–1799) displayed a classical vocabulary of elements

draped over their otherwise more Rationalist works. Conversely, in the hands of

John Ruskin (1819–1900) and Augustus Pugin (1812–1852), the stark, Platonic

forms of neo-classicism were rejected in favour of the allegedly more spiritual

and phenomenally significant impact of a revived Gothic tradition. By the

mid-nineteenth century there were relatively short-lived revivals of Romanesque,

Egyptian, Greek and Renaissance (Italianate) styles. Despite some notable if

isolated successes, architecture at this time must have looked increasingly

moribund and self-referential to the younger generation of graduates. It is not

surprising then that, from amongst the young architects of the late nineteenth

century, and especially those who had been trained in these various revivalist

traditions, the roots of the Modernist rebellion can be traced.

In the early years of the twentieth century the Futurist and Constructivist

manifestos, each with their overt revolutionary agendas, strongly rejected the

revivalist and retrograde tendencies of the previous generation. Even the more

reactionary Arts and Crafts movement demonstrated an interest in themes which

prefigured Modernist preoccupations with labour, materiality and emancipation.

Organic and Functionalist architecture sought different inspirations, respectively

nature and industrialization, for producing a contemporary architectural style

(Le Corbusier 1927; Wright 1995). Both of these variations of Modernism, despite

later criticism (Blake 1974; Brolin 1976), reunited the progressive trajectories of

architecture and mathematics, which had been separated for 200 years. In the 1940s

and 1950s theories of non-Euclidian geometry were swiftly adopted by architects

and artists (Henderson 1983) and advances in complex surfaces and shells soon

found their way into architectural design and then returned to mathematics by way of

textbooks.

In the later years of the twentieth century (and following a different type of

historical revivalism in the 1980s) a major revolution in geometric thinking—

fractal geometry—was almost immediately appropriated by architects, leading to

a series of works, unbuilt and built, which tried to capture the essence of fractal

form (Ostwald 2001; Harris 2012). After that time, architects began to use

topographic tiling, including aperiodic tiles, often less than a decade after

particular sets (like Penrose or Conroy tiles) had been published in mathematical

journals (Di Cristina 2001). By the late 1990s the disciplines of architecture and

mathematics had become so specialized that few people could truly be considered to

make advances in both fields, while the progressive, revolutionary and reactive

trajectories of each had returned to a relatively close alignment, with new

computer-aided design tools guaranteeing their continued interaction.
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This Present Work in Context

The shifting relationships between the revolutionary, reactionary and revivalist

trajectories of architecture and mathematics after 1500 are traced in different ways

in the present work. Volume II continues the pattern developed in Volume I, of

interweaving the theory and history of architecture and mathematics. It is divided

into five parts, two of which are structured chronologically to cover the years

between 1500 and 1800 (Part VIII) and from 1800 to the present day (Part IX).

The 24 chapters in these 2 sections provide a broad coverage of the works of iconic

architects from these eras along with analysis of major built and unbuilt works. Part

IX is also the only section in these two volumes that is dominated by developments

in North America; prior sections have tended to emphasise people, concepts and

buildings in Europe, Asia, South America and the Middle East. The remaining three

parts in Volume II are all about theories or practices which connect architecture and

mathematics. The first of these, Part VII, is concerned with the modes of

representation that played a significant role in shaping European architecture in

the sixteenth and seventeenth centuries. The second of these, Part X, examines

contemporary approaches to the use of mathematics in design and analysis. The

final section, Part XI, concludes with eight chapters about computational, parametric

and algorithmic approaches to architecture. Parts IX and X also feature examples of

architecture from the Oceania region.

These final two parts of Volume II are the only ones which break from the

alternating structure adopted across both volumes, which interweaves a historical

chronology of buildings and architects with theories that were of relevance to the

era. These last two parts are both classified as primarily concerned with theory, but

they also feature research into specific buildings, designs or ideas. This reflects the

fact that the closer we come to the present day, the less historical the tone of the

research. Thus, even if a chapter is about a specific building or design, it is not

generally considered through a historiographical framing, but rather as an example

of the development or testing of a theory. The fact that several of the chapters in

the last section are about computational design, an approach that often directly

extrapolates or evolves a theory into the visualisation of a design, further reinforces

this difference. Finally, the chapters in the last section include both forward-looking

or projective research, and philosophical musings about the entire relationship

between architecture and mathematics enabled by the computer. In a sense, Part

XI, is neither purely historical nor purely theoretical, but rather comprises an

extended conclusion where the two come together. In the sections that follow we

will describe the content and themes in each of the five parts of this second volume.
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Part VII: Theories of Representation

Part VII is about theories and practices of representation, focussing on perspective

projections in art and architecture. The content of several of these chapters is based

on works or advances which occurred prior to 1500 but which were to remain

influential for several centuries. Prior to the Renaissance, artists used various

techniques and practices to suggest depth in a representation. One of the most

common involved the layering of objects in an image—so-called register

perspective—such that those deeper in a scene (or further away from the viewer)

were represented as being positioned partially behind those which were closer to

the front of the scene. Despite such practices, the origins of perspectival approaches

to constructing representational depth were only formalised in the fourteenth

century (Andersen 2007). For example, historians commonly trace the origins of

mathematical models of linear perspective to Filippo Brunelleschi’s (1377–1446)

paintings and panels (including the famous ‘peep-hole’ and mirror demonstration)

of the Baptistery of Florence (Argan 1946; Grave 2010). De Pictura, the

mid-fifteenth century treatise on painting by Leon Battista Alberti (1404–1472),

further defined the geometric construction techniques used by Brunelleschi, making

them more accessible. The contribution of Piero della Francesca (1415–1492),

which followed within two decades of Alberti’s work, was to refine the method

used for depicting Phileban solids; a crucial step for architectural representation

(Damisch 1995). Despite such progress, perspectival projections remained a major

point of both fascination and contention throughout the Renaissance. During this

era many different alternative construction techniques were proposed and tested,

with some being closely protected secrets of particular artists or schools, while

others were more widely disseminated by academicians (Damisch 1995).

The reason for the Renaissance world’s fascination with perspective is itself a

complex topic that has been extensively researched in the past. Perspective

representations appeared to offer a geometry-based system that defined the

relationship between the human body and the world. During the Renaissance this

relationship was still regarded as being the province of theology, and thus

perspectival constructions were of both practical and symbolic importance

(Panofsky 1996). Indeed, as has often been the case throughout history,

developments in mathematics and representation were frequently used to sustain

arguments about metaphysics, social reform and political power. However, in a

more subtle way, the rise of perspective techniques also brought into question the

purpose of representation. These themes are considered in the four chapters in Part

VII, all of which are about theories and techniques of representation, their

geometric construction and significance.

In ‘Architecture, Mathematics and Theology in Raphael’s Paintings’ (Chap. 49),

David Speiser examines the geometric construction of perspective in two famous

works by Raphael, L’incoronazione della Madonna (The Incoronation of the

Madonna) and Lo Sposalizio (The Wedding of the Virgin), both dated 1504.

Speiser argues that these present an early instance of multi-point perspective
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construction. Prior to this time, artists and architects used a type of artificial

one-point perspective involving a single vanishing point to which all lines, which

are not parallel to the viewing plane, converge. Through an analysis of the two

paintings Speiser demonstrates the existence of a non-frontally-constructed

perspective, which requires more than one vanishing point. Thereafter, he offers

an explanation for howRaphael constructed these representations and why they were

so revolutionary at the time. Kristina Luce’s chapter ‘Raphael and the Pantheon’s

Interior: A Pivotal Moment in Architectural Representation’ (Chap. 50) is also

about Raphael, but this time specifically concerning architecture. The subject is a

much-copied sketch by Raphael of the interior of the Pantheon in which the artist

attempted to represent the Pantheon simultaneously in both section and perspective.

Luce argues that this signals a critical attempt to reconcile the conflicting geometries

of architecture (the orthographic section) and of representation (the interior

perspective). While such techniques are commonplace today, Raphael’s simple

sketch suggests a major conceptual advance in Renaissance representation.

One of the landmark images in the history of perspective is a simple line drawing

of a chalice. Completed in the mid-fifteenth century, and inconclusively attributed

to both Paolo Uccello and Piero Della Francesca, this drawing depicts an intricate,

geometrically-faceted footed goblet. What is so striking about the image is its

rigorous and transparent construction; in much of the drawing, lines that would

otherwise be hidden are displayed. Richard Talbot’s chapter, ‘Design and

perspective construction: Why is the Chalice the shape it is?’ (Chap. 51) suggests

that the elevation of the chalice is critical to the construction of its representation.

This is important because, unlike many perspective drawings of this era, whose

construction relied on the human eye and a rudimentary knowledge of vanishing

points, there is evidence in the chalice drawing to suggest that it was directly

projected from a designed object. Thus, this drawing is a true visualisation of

intent, rather than a mediated representation of experience. While being

completed several decades prior to Raphael’s sketch of the Pantheon interior,

both of these examples dramatize the subtle difference between representations of

an object’s physical characteristics (its dimensionality) and its visual ones (its

phenomenological properties).

The final chapter in this section is about António Rodrigues’s late sixteenth

century treatise on architectural perspective. Rodrigues, a Portuguese architect and

educator, was well-versed in geometry and like many of his contemporaries,

worked on the design of fortresses and other military structures. In ‘Perspective

in António Rodrigues’s Tratado de Arquitectura’ (Chap. 52) João Pedro Xavier

examines the book entitled Liuro de Perspectiva, considering both geometric and

political properties of the work. As mentioned earlier, methods of perspectival

representation were often regarded as having important theological or symbolic

significance. Equally, they could be viewed as representing a rejection of previous

practices. For both of these reasons, treatises like that of Rodrigues are important

for understanding the techniques of architectural depiction, as well as the politics of

representation.
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Part VIII: Architecture from 1500 AD to 1800 AD

The chapters in Part VIII span 300 years of architectural history. The first group is

focussed on the sixteenth century and includes research into the works of Mimar

Sinan (1489?–1588), Andrea Palladio (1508–1580), Michelangelo Buonarroti

(1475–1564) and Francesco Borromini (1599–1667). Thereafter two chapters

consider the architecture of António Rodrigues (1520–1590) and Juan Bautista

Villalpando (1552–1608) along with the latter’s impact in the seventeenth and

eighteenth centuries. The remaining chapters offer readings of the designs and

theories of Inigo Jones (1573–1652), Christopher Wren (1632–1723), Robert

Hooke (1635–1703) and Claude Perrault (1613–1688). Throughout Part VIII

some of the chapters question the canonical interpretation of various architects,

while others reinforce the significance of their buildings and writings. However, it

is the influence of Vitruvius’s De Architectura—re-discovered and disseminated

across Europe at this time—that is the thread that binds many of these works

together (Kruft 1994).

The first chapter in Part VIII is about the great Ottoman architect Mimar Sinan

who was born in the late fifteenth century in Turkey. Serving three Sultans

(including Süleyman the Magnificent), Sinan completed several hundred buildings

in his career, the most famous of which are the Selimiye Mosque in Edirne and the

Süleymaniye Mosque in Istanbul (Kuban 1987). A contemporary of Michelangelo,

Sinan’s influence in the sixteenth and seventeenth centuries was extensive, with

several of his former students completing major works in Europe, the Middle East

and Asia (Necipoğlu 2005). Indebted to his training as a military engineer, and

inspired by the structure of the Hagia Sophia, Sinan’s architecture has been

repeatedly praised for both its geometric and structural properties and its careful

layering of form and ornament. Zafer Sağdiç’s chapter, ‘Ottoman Architecture:

Relationships Between Architectural Design and Mathematics in Architect Sinan’s

Work’ (Chap. 53) stresses the importance of Euclidean geometric forms in Sinan’s

architecture, recognising a range of recurring proportional systems. Sagdic also

describes the role Sinan’s knowledge of geometry and construction played in his

later works.

The second and third chapters in this section are dedicated to Andrea Palladio.

Born in Padua (Italy), Palladio’s work acknowledges a clear conceptual lineage

to the ideas of the Roman architect Vitruvius (Ackerman 1974). Supported by

wealthy patrons, Palladio was able to design and construct an influential series of

houses and public buildings during his lifetime (Giaconi and Williams 2003).

Palladio’s classically-inspired forms and ideals were promulgated through his

writings, notably including his I Quattro Libri dell’Architettura (The Four Books

of Architecture). This work, illustrated with woodcuts of Palladio’s own designs,

was published in Venice in 1570 and sets out a series of detailed rules for design

and construction (Tavernor 1991). Palladio’s architecture and writings have long

fascinated architectural historians and mathematicians for the way in which they

depict the use of harmonic proportions in plan, elevation and section (Wittkower
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1971; Rowe 1982). This interpretation of Palladio’s work, made famous by German

art historian Rudolph Wittkower in the early years of the twentieth century, is still

accepted today, though not unconditionally (Mitrović 1990); we now know that it is

not the only possible mathematical influence on Palladio’s work.

In ‘The Mathematics of Palladio’s Villas’ (Chap. 54), American mathematician

Stephen Wassell argues that Wittkower’s (1971) canonical reading of Palladio’s

villas tends to privilege just one of the major mathematical trends of the era,

harmonic proportion. Wassell suggests that the significance of other, equally

important theories of proportions, symmetry and geometry, has tended to be

understated in Wittkower’s work. For example, Wassell notes the significance of

several geometric constructions in Palladio’s designs including ratios derived from

√2, √3 and √5. The following chapter, ‘Golden Proportions in a Great House:

Palladio’s Villa Emo’ (Chap. 55) by Rachel Fletcher, has a similar focus on

alternative proportional systems. Constructed in the 1550s, the plan of Villa Emo

was published almost unchanged in I Quattro Libri dell’Architettura, whereas
many of the other plans in Palladio’s treatise were presented in a more idealised

manner. For this reason the Villa Emo is regarded as one of Palladio’s most

successful attempts to reconcile the practicalities of construction with the desire

to reflect a perfect mathematical premise. However, as Fletcher makes clear,

several features of the villa are proportioned in response to the golden section,

even though it is the harmonic proportions of the plan that are typically praised.

Fletcher, through a detailed review of the Villa, uncovers the appearance of hitherto

unrecognised golden proportions in both the elevation and plan, as well as in the

placement of individual doors and windows. Like Wassell, Fletcher’s purpose is not

to disprove Wittkower, but rather to uncover the existence of other significant,

geometric systems in Palladio’s oeuvre.

Trained in Florence and steeped in the humanist tradition, Michelangelo

Buonarroti undertook early commissions in both Venice and Bologna. Over the

next 50 years he created works of art for wealthy patrons from the Medici rulers to

popes, cardinals and ambassadors in both Florence and Rome (Condivi 2007).

Today Michelangelo’s name is synonymous with the High Renaissance of the

sixteenth century and he is revered as an artist, sculptor, poet and architect.

Michelangelo is credited as initiating the Mannerist tradition in architecture; an

intellectual, artificial (neither animistic nor naturalistic) and highly coded extension

of the Renaissance tradition (Ackerman 1986). Two chapters here are about his

architecture.

Constructed within the cloister of the Basilica di San Lorenzo, the Laurentian

Library has long been regarded as the site of the genesis of Mannerism (Shearman

1991). While the Library itself has been the subject of many interpretations, it is the

design of its red and white terracotta pavement that is the focus of ‘The Hidden

Pavement Designs of the Laurentian Library’ (Chap. 56) by Ben Nicholson, Jay

Kappraff and Saori Hisano. Concealed for much of the last two centuries by the

wooden library desks placed on top of it, this elaborate pavement consists of

15 pairs of panels, each comprising a different geometric design. In this chapter,

which is written in such a way as to reflect the differing views of its authors, a

48 The Revolutionary, The Reactionary and The Revivalist: Architecture and. . . 11

http://dx.doi.org/10.1007/978-3-319-00143-2_54
http://dx.doi.org/10.1007/978-3-319-00143-2_55
http://dx.doi.org/10.1007/978-3-319-00143-2_56


series of interpretations of the many unusual patterns and measures present in the

pavement is offered. One such explanation is that the designs reflect the content of

the works which were catalogued on shelves above them, thereby using geometry

and mathematics as a type of ordering device or commentary. The authors admit

that the original purpose of the panels will remain a mystery, but they underline the

significance of intellectual and geometric tropes in Mannerist design.

In ‘Measuring up to Michelangelo: A Methodology’ (Chap. 57), Paul Calter and

Kim Williams (also co-editor of the present volume) describe the method used to

survey the Medici Chapel (the New Sacristy of the Basilica of San Lorenzo) in

Florence. Using a theodolite to record specific points and trigonometry to

triangulate their position in space, Calter and Williams outline a procedure which

can be applied to the measurement of other historic structures, while also providing

evidence that the Medici Chapel possesses a set of recurring proportional relations

derived from a √2 rectangle. Calter and Williams emphasise the importance of

accurate measured structures for the validation of theories both historic and new

that seek to relate mathematics to architecture.

The next pair of chapters directs the reader’s attention away from Italy and

towards Portugal and Spain. In ‘António Rodrigues, a Portuguese Architect with a

Scientific Inclination’ (Chap. 58), João Pedro Xavier returns to the topic of

Rodrigues, featured previously in this volume for his work on perspective

representation. The Onze Mil Virgens Chapel at Alcácer do Sal is the starting

point for Xavier’s second chapter and through a review of this building and

Rodrigues’s Santa Maria da Graça Church at Setúbal, Xavier identifies a particular

way of working with geometry. Tracing the presence of a range of geometric

construction and proportion systems—from ad quadratum geometry to the use of

5:4 and 6:7 proportions—Xavier offers an explanation of the role of mathematics in

Rodrigues’s work.

Born in Córdoba, Spain three decades after Rodrigues, Juan Bautista Villalpando

was a renowned architect, mathematician and theologian. Villalpando designed

several significant buildings for the Jesuit order, including the San Hermenegildo

Church in Seville. However, his most enduring contribution to architecture is found

in his elaborate reconstruction of the Temple of Solomon (Kravtsov 2005).

Published in 1604 in Ezechielem Explanationes, Villalpando’s Temple of

Solomon, was designed around the principles of Platonic harmonies and ancient

measurements. Tessa Morrison, who has also produced the first extensive English

translation of part of Ezechielem Explanationes (Morrison 2009), provides the next

chapter in this section. In ‘Villalpando’s Sacred Architecture in the Light of Isaac

Newton’s Commentary’ (Chap. 59) Morrison notes that Villalpando imagined the

temple as a perfect demonstration of the formal grammar of classical architecture,

and sought to reconcile theological and architectural arguments in a single work.

From this beginning Morrison considers the impact of Villalpando’s design on

later scholars and architects, in particular Isaac Newton, who undertook a detailed

analysis of Villalpando’s Temple of Solomon, arguing that it was one of the

most important attempts to imagine an ideal architecture supported by perfect

mathematical principles.
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British architect Inigo Jones was influenced by both the classical tradition

(by way of Vitruvius) and Palladio’s interpretation of these principles. Jones,

Palladio and Villalpando, each in different ways, sought to develop Vitruvian

values through the practical and symbolic application of geometry in architecture.

Completing his better-known works in the seventeenth century, Jones also held the

post of the Royal Surveyor; it was while he was engaged in this role that he was

asked by King James I to examine the origins of Stonehenge. In ‘Coelum

Brittanicum: Inigo Jones and Symbolic Geometry’ (Chap. 60) Rumiko Handa

describes how Jones interpreted Stonehenge, through the geometry of its plan, as

a Roman temple of the Tuscan order. Handa demonstrates how Jones’s reading of

Stonehenge was part of his larger vision of Coelum Brittanicum, a poetic conceit

popularised by writer Thomas Carew to reimagine Great Britain and its monarchy

through a classical Roman allegorical lens (Sharpe 1987). Handa draws on an

analysis of Jones’s architecture and masques, informed by the mathematics of

Robert Recorde and John Dee, to develop this thesis, which is as much about

politics and symbolism as it is architecture and mathematics.

Typical characteristics of the seventeenth-century Baroque architectural

tradition include the presence of complex curvilinear forms, elaborate spatial

interpenetrations and a fascination with surface and naturalistic decoration

(Wölfflin 1964; Norberg-Schulz 1971). The Italian Baroque is commonly regarded

as arising from the works of Gian Lorenzo Bernini (1598–1680) and Francesco

Borromini in central Italy and from the architecture of Guarino Guarini and Filippo

Juvarra (1638–1736) in northern Italy. In Germany and across the Austro-Hungarian

Empire, Johann Bernhard Fischer von Erlach (1656–1723), Johann Balthasar

Neumann (1687–1753) and Christoph Dientzenhofer (1655–1722) all developed

particular, geometrically-rich variations of the Baroque (Wölfflin 1964; Hubala

1989). Thereafter it spread across Europe, retaining some of its Central European

characteristics, but also being modified to accommodate local traditions and

materials in Spain and Portugal to the west, Poland and Russia to the east, and

England and the Netherlands to the north (Hempel 1965).

Born near Lugano in Switzerland in 1599, Francesco Borromini was responsible

for several great works of the Baroque style (Millon 1961). Educated in Milan,

Borromini’s first serious commissions were in Rome and it was there that he

produced his most revered designs including the exquisite San Carlo alle Quattro

Fontane, the church of Sant’Agnese in Agone and Sant’ Ivo alla Sapienza (Wölfflin

1964). Unlike many architects of the preceding era, who published detailed treatises

promoting their ideas, Borromini’s sources are poorly documented. In ‘The Science

Behind Francesco Borromini’s Divine Geometry’ (Chap. 61), John Hatch suggests

that one reason for Borromini’s seemingly hermetic approach to design is that he

was as much influenced by science as he was by architecture. From this premise

Hatch traces a connection between the work of astronomer Johannes Kepler and

Borromini’s architecture, suggesting that features of S. Carlo alle Quattro Fontane

and Sant’ Ivo alla Sapienza are indebted to Kepler’s interpretation of the cosmos.

John Clagett’s chapter, ‘Transformational Geometry and the Central European

Baroque Church’ (Chap. 62) is also set against a backdrop of developments in
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science and mathematics although Clagett focuses on the work of Desargues,

Newton, Leibniz and Descartes. From this foundation Clagett demonstrates the

impact of mathematics on the design of space and form, transforming the ideally

proportioned but often static architecture of the Renaissance into a more dynamic,

transformative and challenging Baroque.

The next pair of chapters, both by American mathematician Maria Zack, are

about English Baroque architecture and its mathematical and scientific properties

and aspirations. In the aftermath of the Great Fire of London in 1666, Christopher

Wren was appointed King’s Surveyor of Works and Robert Hooke was named

Surveyor to the City of London. They were both responsible for rebuilding large

parts of the city as well as for the design of many major structures. Wren, trained as

an astronomer, geometer and physicist, had at that time just returned from Paris,

where he had viewed the plans of Bernini (Jardine 2003). Like Inigo Jones and

Villalpando, Wren had studied Vitruvius and was interested in the classical Roman

and Greek traditions, but the new Baroque buildings of Central Europe also shaped

his architecture. Although English Baroque was rarely as extravagant as its

Italian relative, it retained many of the latter’s proclivities, although tempered by

a more classical, geometric parti in plan and section (Downes 1966). In ‘Are

There Connections Between the Mathematical Thought and Architecture of Sir

Christopher Wren’ (Chap. 63) Zack investigates possible connections between

Wren’s building designs and his earlier mathematical theories, while in ‘Robert

Hooke’s Fire Monument: Architecture as a Scientific Instrument’ (Chap. 64), this

time about Wren’s colleague, scientist and architect Robert Hooke, she analyses the

latter’s Fire Monument (Stevenson 2005). This structure, consisting of a column on

an orthogonal prism base, contained a zenith telescope, an instrument which could

be used to measure gravitational affects or the position of stars.

The final chapter in Part VIII is about Claude Perrault’s Observatoire de Paris.

Designed around the same time as the Great Fire of London, this building was

originally intended to house the Paris Academy of Sciences. In ‘Practical and

Theoretical Applications of Geometry in Perrault’s Observatoire’ (Chap. 65)

Randy Swanson provides an overview of the building, focussing on the conceptual

themes that shaped the design. Swanson stresses two particular achievements in the

Observatoire, the first being in stereotomy—and associated with the design of a

cantilevered, elliptical-vaulted semi-helical stairwell—and the second a series of

previously unexplained dimensional eccentricities in the building’s form. Swanson

maintains that the Observatoire de Paris, presented Perrault with a unique

opportunity to test his own theories of proportionality and geometry.

Perrault’s work is also a fitting conclusion to Part VIII because not only was his

architecture influenced by the theories of Vitruvius, but he also embraced a revived

classicism more strongly than many of his contemporaries (Herrmann 1973). This

is significant because, starting in the mid-eighteenth century, a series of stylistic

revivals—led by neo-classicism but also including the Gothic revival—began to

dominate the design of major public buildings in Europe and America.
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Part IX: Architecture from 1800 to 2000

Many of the architects who are featured in Part IX were born in the closing years of

the nineteenth century and came to prominence in the twentieth century. Trained in

classical, traditional or arts-and-crafts-style architecture, these designers—

including Frank Lloyd Wright, Le Corbusier and Louis Kahn—went on to

define Organic, Functionalist and Brutalist variations of Modernism, as well as

twentieth-century Rationalism (Jencks 1973; Frampton 2007). Whereas in previous

centuries the symbolic potential of geometry was often tied to religion, in the

twentieth century it was more commonly used to suggest a connection to nature

(Portoghesi 2000; Steadman 2008). Moreover, in this era various structural and

technical advances allowed architects to experiment with new formal and spatial

compositions which were not easily available to previous generations. This same

era is also marked by a gradual shift in focus away from a consideration of churches

and palaces as key purveyors of architectural style and towards more profane,

domestic and commercial structures (Walden 2011).

The first chapter in Part IX is about Claude Fayette Bragdon (1866–1946), an

American architect who worked in architectural practice until the 1920s before

becoming a stage designer. While Bragdon’s early architectural designs were

undertaken in a revivalist Italianate tradition, he is best known today as a

proponent of a particular variant of the Arts and Crafts movement. Like his

contemporaries Louis Sullivan and Frank Lloyd Wright, Bragdon showed a

proclivity for ornamental and handcrafted methods, but was also informed by

new industrial materials and production techniques. Indeed, the architecture of

these three Americans varied considerably from that of the English Arts and

Crafts movement, characterised by the early designs of Edwin Lutyens or the

country houses of Charles Voysey. Instead, Bragdon is more correctly associated

with the Prairie Style, not only because of the way this approach mediated between

progressive and revivalist traditions, but also because of its rigorous approach to

geometry. In ‘Geomantic (Re)Creation: Magic Squares and Claude Bragdon’s

Theosophic Architecture’ (Chap. 66) Eugenia Victoria Ellis examines Bragdon’s

fascination with theosophy, number symbolism and divine proportions and

projections. Ellis traces the presence of the ‘magic square’ construction—a

mathematical procedure with both geometric and geomantic significance—in

Bragdon’s First Universalist Church in Rochester, New York.

The next two chapters, both by eminent Wright scholar Leonard K. Eaton, are

concerned with the Prairie Style and Usonian houses of Frank Lloyd Wright (1867–

1959). Wright was born less than a year after Claude Bragdon, and he is typically

regarded as having defined the basic principles of the Prairie Style. This style is

characterized by horizontally exaggerated buildings, with low, sloping roofs, wide

eaves, extensive terraces and clearly defined exterior spaces (Hess 2006).

Organised internally around a central fireplace, Wright’s prairie houses were less

cellular than most housing of their era, characterised by a free flow of space that

prefigured developments in European modern planning by over a decade (Lind
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1994). Wright’s prairie architecture has been celebrated for its rigorous geometric

planning and geometric detailing and ornamentation (Koning and Eizenberg 1981).

Both of Eaton’s chapters are concerned with these geometric properties, which

evoke connections to music and nature. In ‘Mathematics and Music in the Art

Glass Windows of Frank Lloyd Wright’ (Chap. 67), Eaton examines Wright’s

predilection for embedding the geometric language of a house into the design of

its windows. Within the context of patterns, both visual and musical, Eaton analyses

five windows from Wright’s Meyer May house in Grand Rapids, Michigan. Eaton

especially notes in these designs the way in which Wright seemingly anticipates

developments in non-figurative art, using a series of geometric ratios, which were

largely intuitively defined, to create a system of recurring patterns. Eaton observes

that, despite Wright’s desire to emulate the structure or timbre of Beethoven, the

geometric language of the windows more clearly prefigures the Modernist

compositions of Bartok.

Recurring geometric patterns are also at the centre of Eaton’s second chapter,

‘Fractal Geometry in the Late Work of Frank Lloyd Wright’ (Chap. 68), a reading

of the plan geometry of the Palmer House. Like Louis Sullivan, Wright had a deep

interest in geometry and patterns found in nature (Kubala 1990). This has led to the

observation that the geometric patterns developed by these architects are potentially

precursors to fractal geometry, a branch of geometry that was only formalised in the

late 1970s. In this chapter Eaton notes the presence of triangular geometry, repeated

across multiple scales, from siting elements through to decisions regarding design

details. Eaton’s argument is that Wright possessed an intuitive grasp of the way

geometric systems, when repeated across multiple scales, have an affinity to natural

systems. Thus, Eaton’s argument could be defined as one tying Wright’s

architecture to fractal geometry, by way of analogy.

In the following chapter, ‘Characteristic Visual Complexity: Fractal dimensions

in the architecture of Frank Lloyd Wright and Le Corbusier’ (Chap. 69), Michael

Ostwald, Josephine Vaughan and Chris Tucker develop a very different connection

betweenWright’s architecture and fractal theory. Ostwald (a co-editor of the present

work) and his colleagues calculate the fractal dimensions of five of Wright’s houses

and then compare these results with the fractal dimensions of five of Le Corbusier’s

houses. Ostwald’s and Eaton’s chapters clarify the difference between ‘fractal

geometry’ and ‘fractal dimensions’. The former is an algorithmically defined

process which generates a complex, deep and ordered figure from a recursive rule

(Mandelbrot 1977; Ostwald 2001, 2003). In contrast, any object can have a fractal

dimension, a measure of its spread of information across all scales of observation.

There are several mathematical methods for determining the fractal dimension of an

object and Ostwald, Vaughan and Tucker demonstrate one of the first computational

applications of this approach. Thus, where previous chapters have sought to uncover

the mathematical principles inherent in a design, this one instead describes the

application of mathematics to architectural analysis.

The subject of the next chapter is the work of Walter Burley Griffin (1876–1937)

and Marion Mahony Griffin (1871–1961), architects who, in their early careers,

worked in Wright’s Oak Park Studio in Chicago. In 1911 the Griffins submitted a
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master-plan concept for an international competition to design a new Australian

capital city, Canberra (Reid 2002). The Griffins, like many of their Modernist

contemporaries, were fascinated by the relationship between geometry and

nature. In their case, this passion was furthered through their reading of Rudolph

Steiner’s spiritual and psychological theory, anthroposophy, as well as through

various detailed investigations of the symbolic potential of geometry (Navaretti and

Turnbull 1998). These proclivities are the subject of Graham Pont’s and Peter

Proudfoot’s chapter, ‘From Cosmic City to Esoteric Cinema’ (Chap. 70), on the

Griffins’s attempts to evoke cosmic or spiritual ideals in architecture and urban

design.

A different type of geometric application, for the purpose of constructing

complex surfaces, is the subject of John Poros’s chapter, ‘The Ruled Geometries

of Marcel Breuer’ (Chap. 71). In the years following the Second World War,

engineers and architects including Pier Luigi Nervi (1891–1979) and Felix

Candela (1910–1997) had designed a series of structurally efficient shell surfaces

using a technique that relied on ruled lines (Ching 2007). Marcel Breuer (1902–

1981), a Hungarian-born Modernist architect who later designed the famous

Whitney Museum of American Art in New York, not only adopted such ruled

geometries to achieve structural solutions, but he also used them to shape space and

form to achieve unexpected and sometimes contradictory results (Hyman 2001).

Another famous example of the curved surface in twentieth-century architecture

is the subject of Alessandra Capanna’s chapter, ‘Conoids and Hyperbolic

Paraboloids in Le Corbusier’s Philips Pavilion’ (Chap. 72). Designed for the

Brussels World Fair and produced in collaboration with Iannis Xenakis (1922–

2001), the Philips Pavilion uses conoids and hyperbolic paraboloids to create an

enclosure for experiencing recorded music. Le Corbusier (1887–1965) designed the

pavilion at a time when he was interested in double-ruled quadric surfaces, a

geometric approach that is related to the one described in Poros’s chapter about

Breuer. A related, Modernist, curvilinear or parabolic approach to form is seen

in the work of Brazilian architect Oscar Niemeyer (1907–2012). More than any

other architect of the mid-twentieth century Niemeyer rejected simple orthogonal

geometry, embracing sensuous, serpentine curves, shallow domes and partial conic

sections. Niemeyer’s language of curved form is the subject of Benamy Turkienicz

and Rosirene Mayer’s chapter, ‘Oscar Niemeyer Curved Lines: Few Words, Many

Sentences’ (Chap. 73). Through a graphic comparison of the forms present in

Niemeyer’s canonical works, Turkienicz and Mayer demonstrate a particular set

of recurring geometric tropes.

Dom Hans van der Laan (1994–1991) was born in the Netherlands. Prior to

becoming a monk, he was trained as an architect, and his few completed buildings,

like the Monastery church in Tomelilla, Sweden, were designed for the Benedictine

order. Richard Padovan’s chapter, ‘Dom Hans Van Der Laan and the Plastic

Number’ (Chap. 74) is about one of van der Laan’s major contributions to

architecture and mathematics: a proportional system based on the ‘plastic number’.

Like the golden ratio and similar irrationals, plastic numbers are mathematical

constants. However, unlike the so-called ‘metallic ratios’, plastic numbers are not
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derived from quadratic equations. Instead, they form a proportional system which is

derived from cubic equations. The term ‘plastic’ refers to the extent to which a form

is perceptible, in and of itself, while a plastic number is the ratio that describes the

lower and upper limits of the human ability to perceive differences of size amongst

three-dimensional objects. Padovan describes the basic ratios of the plastic number,

3:4 and 1:7, and how they have been used in architecture.

The final two chapters in Part IX are about the architecture of Louis Kahn (1901–

1974). Kahn famously cultivated a metaphysical approach to materiality and form

which inspired many attempts to interpret his architecture as being emphatically

geometric in its proportions. Despite this, his buildings rarely reveal simple ratios

or systems. Instead, Kahn described his geometric intentions as being mediated by

the practicalities of siting, construction technology and budget. Like the French

Rationalists, Kahn’s use of Phileban forms was largely for their timeless or Platonic

appeal, and not necessarily for their specific geometric properties. Nevertheless,

spurred on by Kahn’s association with Anne Tyng (who had completed research on

complex geometries), various scholars have sought to find deeper mathematical

patterns in Kahn’s architecture. In ‘Louis Kahn’s Platonic Approach to Number

and Geometry’ (Chap. 75), Steven Fleming analyses several claims regarding such

hidden geometric systems in Kahn’s architecture. Fleming uses measured drawings

and a detailed knowledge of the construction techniques applied in these buildings to

show that Kahn’s work rarely, if ever, displays the precise type of geometric order

which he has since become famous for. Indeed, on many occasions it is apparent that

Kahn avoided creating forms which would have been perfect squares, or provided

ideal golden sections. In ‘The Salk: A Geometrical Analysis Supported by Historical

Evidence’ (Chap. 76), Steven Fleming undertakes an analysis of the historical

evidence surrounding the planning and geometry of Kahn’s Salk Institute in La

Jolla, California, while in parallel with this, co-author Mark Reynolds pursues a

graphical analysis of geometry in the same building. Through a combination

of Fleming’s scholarly and Reynolds’s intuitive geometric readings of the

building, they uncover several large-scale patterns, reminiscent of those identified

by previous scholars but not as clearly supported by a closer analysis of the working

drawings and dimensions chosen by Kahn.

Part X: Contemporary Approaches to Design and Analysis

There are eight chapters in Part X, the first three of which concern surfaces, including

minimal surfaces (soup bubbles) and two forms of topographic tiling (aperiodic and

quasi-periodic). The architectural potential of each of these three systems is

demonstrated using designs from historic and modern eras. The next three chapters

describe different methods for using geometry to generate architecture. These include

classical proportional systems, linear algebra and perspective hypercube constructions.

The final pair of chapters contains accounts of the use of computational techniques for

the analysis of geometry in historic structures.
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Soap bubbles and soap films are the minimal surfaces required to define a

three-dimensional space. Michele Emmer, in ‘Architecture and Mathematics:

Soap Bubbles and Soap Films’ (Chap. 77), describes the history of the

development of theories of soap bubble geometry in the late nineteenth century.

Emmer then provides an overview of examples of historic applications of such

isoperimetric forms, including the spherical designs of Ledoux and Boullée and the

more literal application of minimal surfaces in Frei Otto’s tensile structures.

Late twentieth-century applications of topographic tiling are the subject of the

next pair of chapters. In a mathematical sense, tiles are a system of geometric

patternation that fills a surface using a finite set of shapes without gaps or overlaps.

Tiles are one of the oldest forms of decoration in architecture and square,

rectangular, triangular and hexagonal sets have been used throughout history.

Such periodic tiling systems (so-called because they repeat a core pattern at fixed

intervals) are well known in architecture and, since the seventeenth century, have

been considered of only limited interest to mathematicians. However, in the

mid-twentieth century Hao Wang set out to discover if an aperiodic tile set exists,

that is, one that would perfectly fill a plane, but would never repeat the same

pattern. In ‘Aperiodic Tiling, Penrose Tiling and the Generation of Architectural

Forms’ (Chap. 78), Michael Ostwald provides a background to the history of

periodic tiling and then describes the search for an aperiodic tile set. Thereafter

he analyses the application of one of the most efficient aperiodic sets—the Penrose

tiling created by mathematician Roger Penrose (b. 1931)—in the refurbishment of

Storey Hall in Melbourne, Australia. Ostwald’s chapter finishes with a discussion of

various tiling properties that are yet to be fully examined by architects. This interest

in tiling surfaces is continued in ‘Paving the Alexanderplatz Efficiently with a

Quasi-Periodic Tiling’ (Chap. 79), by Ulrich Kortenkamp, which describes a

method for tiling a large, non-rectangular space. Using a refined version of the

Penrose tiling system, Kortenkamp creates a polygonal set of four tiles to produce a

quasi-periodic surface for a public plaza in Berlin.

The next three chapters examine mathematical systems for generating

architectural form, but the approaches they take are from very different traditions

and follow divergent historic trajectories. In ‘Generation of Architectural Forms

Through Linear Algebra’ (Chap. 80), Franca Caliò and Elena Marchetti provide a

mathematical taxonomy reliant on linear algebra which they use to classify

architectural forms from different eras. They acknowledge that architects largely

derive such forms intuitively, but demonstrate that these forms also have underlying

mathematical rules. Through this process they establish a core set of forms which

they use to demonstrate how variations in the underlying mathematics can produce

alternative geometric constructions. In ‘The Praxis of Roman Geometrical Ordering in

the Design of a New American Prairie House’ (Chap. 81), Donald J. Watts describes

an equally rigorous, but innately revivalist approach to design using proportional and

geometric systems. Watts demonstrates the application of classic Roman geometrical

ordering systems in the design of a 1980s prairie style house in Kansas. Possibly the

only Postmodern work in this volume, Watts’s design is a homage to, and analysis of,

two historic styles and their associated geometric themes. ‘Exploring Architectural
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Form in Perspective: A Fractal Hypercube-Building’ (Chap. 82) by Tomás

Garcı́a-Salgado commences with a discussion of relatively recent applications of

perspective, including references to twentieth-century architecture and cinema, to

bring into focus the way perspective can be used to challenge representation. From

this foundation Garcı́a-Salgado demonstrates a perspective construction of a

hypercube which he then “fractalises” to embed a smaller hypercube variant in one

corner. Through this operation—geometry mediated through perspectival

representation—Garcı́a-Salgado generates a conceptual method for building design.

The final chapters in Part X examine computationally-based systems of

measurement and analysis. In ‘The Compass, the Ruler and the Computer: An

Analysis of the Design of the Amphitheatre of Pompeii’ (Chap. 83), Sylvie

Duvernoy and Paul Rosin describe the application of two methods of

measurement for historic structures. The first of these uses geometry to replicate

or reconstruct the method used in ancient times for generating the form of a

building; the example presented is a Roman amphitheatre. Duvernoy and Rosin

next use modern digital tools to undertake an arithmetical analysis of the same

structure. Finally, the two sets of results are compared, and in the case of the

amphitheatre in Pompeii, the subject of their analysis, they independently arrive at

the same conclusion. The final chapter in Part X, ‘Correlation of Laser-Scan

Surveys of Irish Classical Architecture with Historic Documentation from

Architectural Pattern Books’ (Chap. 84) by Maurice Murphy, Sara Pavia and

Eugene McGovern, describes the application of three-dimensional surface

modelling, derived from a laser scan, of historic architecture. This is another

technically based and computationally intensive method for first recording, and

then supporting the analysis of, the form of a historic building.

Part XI: Theories and Applications of Computing

in Architecture

Four of the chapters in Part XI describe applications of digital technology in

architectural design. These chapters typically celebrate the creative potential of the

computer, identifying ways in which software allows architects to apply new

mathematical knowledge in design. In contrast, three chapters consider

computational design issues in a different light. One of these, the opening chapter

in this section, offers an overview of the rise of computers in architecture, while the

other two, are less sanguine in their assessment of the way architects have adopted

and used computers for design, identifying ethical and philosophical dilemmas faced

by architects in the digital design process. Taken together these seven chapters

provide a balanced view of the challenges and opportunities of computational design.

Lionel March was one of the earliest innovators in the use of computational and

contemporary mathematical approaches (like graph theory) in architectural design

and analysis (March 1976). Starting in the 1960s, and working for over four decades
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at the forefront of this field, March completed several books on both historic and

contemporary connections between architecture and mathematics (March and

Steadman 1974; March 1998). In ‘Architecture and Mathematics Since 1960’

(Chap. 85), he looks back on this period of great change and provides an account

of his personal experience in the field. That account commences with a consideration

of the way computers (and computationally informed ways of thinking) have altered

the relationship between architecture and mathematics, potentially returning

architecture to its former, revolutionary, trajectory. March borrows Karl Friedrich

Froebel’s three categories of mathematical thought—the quantitative, qualitative

and relational—to structure his review of the developments since the 1960s.

The next three chapters address closely related topics concerning the way in

which digital modelling and animation software has provided architects with a

means of generating form using parametric or algorithmic rules. This approach

has been widely if somewhat controversially praised in architecture, triggering a

plethora of publications and a growing body of research which tends to describe

these advances as scientific or evolutionary, thereby seemingly providing authority

for architecture through appeals to nature (Szalapaj 2005; Steadman 2008). In

‘Bio-Organic Design. A New Method for Architecture and the City’ (Chap. 86),

Alessandra Capanna provides a synopsis of these emerging design paradigms which

use software to generate complex, naturalistic forms. Citing advances in complexity

theory and non-linear dynamics, since the 1980s architects have used the so-called

“new sciences”, coupled with advances in hardware and software, to visualize

striking new forms. Andrejz Zarzycki develops this idea in ‘Formal Mutations:

Variation, Constraint, Selection’ (Chap. 87), to consider the role of formal

permutations in design decision-making. This type of outcome occurs because

some of the parametric modelling and animation software used by architects does

not generate a single design solution, rather it produces a myriad of alternative

forms, each of which fulfil the starting parameters to a greater or lesser extent. Such

variations often evocatively called ‘mutations’ by architects, are presented as

striking and original alternatives for an architect to consider. In ‘The Role of

Mathematics in the Design Process under the Influence of Computational and

Information Technologies’ (Chap. 88), Arzu Gönenç Sorguç takes a larger scale

view of these developments when she notes that the new focus of design is shifting

towards process, rather than product, although digital manufacturing and printing

techniques are also automating production at a similarly rapid rate. Sorguç also asks

whether the emphasis of architecture has now shifted away from design and more

towards presentation; that is, from ideation to representation. Focusing on the role

of mathematics in the design process, Sorguç analyses this question in the context

of contemporary software-driven design methods.

One of the first computational theories of generative design was developed by

George Stiny in the 1970s and is called a “shape grammar” (Stiny 1980, 2008).

Shape grammars could be regarded as early versions of more recent parametric

approaches to design. Both of these methods use rules to generate or refine a design.

In ‘A Grammar for Dynamic and Autonomous Design in 3D Virtual Environments’

(Chap. 89), Ning Gu demonstrates an auto-generative variation of the shape
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grammar for use in virtual environments. Gu’s work shows that such a design

grammar can use agent-based reasoning to begin to optimize the process of

generating design variations. Whereas the earlier chapters by Capanna and

Zarzycki highlighted the evocative and creative potential of computationally

evolved forms, Gu’s chapter is more in the spirit of March’s research, which calls

for the rigorous application of methods to make such processes useful.

Two of the final three chapters in Part XI are more critical of the use of computer

technology in design. In ‘Geometric Transformations and the Ethics of the Curved

Surface in Architecture’ (Chap. 90) Michael Ostwald reminds the reader that

throughout history systems of geometry have typically been used with a

knowledge and transparent demonstration of the basic mathematical principles

underpinning that geometry. These properties are often associated with beliefs in

correct, right or ideal applications of knowledge in architecture (Watkin 1977;

Evans 1997). Grouped under the general heading of ethical considerations, these

values have shaped some of the greatest architectural works of each generation

(Harries 1997). However, in the late twentieth century, and despite the growing

number of examples of applications of mathematics in architecture, the average

architect’s knowledge of mathematics has probably never been lower. This occurs

because the computer allows a designer to create forms without necessitating even

the most basic awareness of where these forms are coming from or what rules

(geometric or numeric) are shaping them. Architecture’s often shallow and

opportunistic appropriation of geometry is something that this chapter warns

against (Evans 1995; Ostwald 2010).

The future of architecture is sure to continue to include mathematics as a core

source of inspiration and validation. Even today numbers surprise and fascinate.

The field of number theory, aimed at discovering special qualities of numbers

and their combinations, might still prove to be fertile ground for the architect’s

imagination. In ‘Equiangular Numbers’ (Chap. 91) mathematicians Henry Crapo

and Claude Le Conte de Poly Barbut describe a class of numbers with peculiar

properties that have yet to find an application in architectural design, but which

future architects might find intriguing enough to pursue.

Finally, in his argument against the potential for digital architecture Alberto

Pérez-Gómez follows a historical trajectory coupled with an ethical or humanist

foundation. While Ostwald’s ethical dispute is against the complacency and

obfuscation which is common in digital design processes, Pérez-Gómez has

repeatedly argued against such architecture, on the grounds that it lacks both

phenomenal and spiritual depth. Pérez-Gómez (1992) was famously critical of both

the loss of sense of purpose and of a more transcendent aspiration in much

contemporary architecture and he sees these problems exacerbated in computational

design practices (Pelletier and Perez-Gomez 1994). In particular, in ‘Architecture as

Verb and the Ethics of Making’ (Chap. 92), Pérez-Gómez reiterates the trend

identified earlier by Arzu Gönenç Sorguç that digital designers valorise the process

rather than its product, but argues that this is a fundamentally flawed approach.

Furthermore, this practice relies too much on the appearance of being scientifically

based, rather than actually understanding the science on which its premise rests.
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Through a review of the theories of Luca Pacioli and Le Corbusier, Pérez-Gómez

suggests that the relationship between architecture and mathematics is at its

most productive (both in ethical terms and in terms of appropriately aspirational

or transcendent architecture) when designers demonstrate a deeper awareness of

the challenges and opportunities of the geometric systems they are using. In a

sense, Pérez-Gómez’s work reinforces the observation expressed at the start of the

present chapter, that the most productive and meaningful exchanges between

architecture and mathematics have tended to occur when each are on a converging,

but forward-looking trajectory.

Conclusion

In our opening chapter to Volume I, ‘Relationships Between Architecture and

Mathematics’ (Vol. I, Chap. 1) we position the content of that volume against the

backdrop of changing relationships between a field of knowledge—mathematics—

and a discipline of practice—architecture. While the chapters in Volume I

examined the works of particular architects and mathematicians, or provided

descriptions of famous buildings or theories of geometry and design, taken

collectively they also constructed a narrative thread through an era where

architecture and mathematics were both respected, and often closely related,

pursuits. However, impelled by increasingly specialised knowledge, supported by

differing educational approaches, and triggered by the growing separation of the

arts from the sciences, the years after 1500 begin to tell a different story.

Nevertheless, while all of these forces have worked to divide the architectural

profession from the discipline of mathematics, the two remain connected, as the

chapters in Volume II demonstrate.

In order to begin to explain how, with so many forces separating the two,

architecture and mathematics have continued to work productively together, here

we have suggested a different framework. Drawn from critical theory and the

history and philosophy of science, it has adopted three ways of viewing history as

a trajectory though time and space. These three ways of conceptualising trends in

aesthetics and knowledge—the revolutionary, the reactionary and the revivalist—

allow us to see that the majority of the positive, productive or fruitful connections

which have been proposed between architecture and mathematics appear to have

occurred when both have followed a more rigorous forward trajectory, driven by

revolutionary or reactionary agendas. At such moments, when the two disciplines

have an equally progressive outlook, the gap between them has been at least

partially bridged. Across 45 chapters and the work of 50 architectural historians,

and designers, mathematicians, engineers, philosophers and computer scientists,

this volume not only traces over 500 years of the history of the relationship between

architecture and mathematics, but it is also drawn to the future, offering technical

and philosophical views which will remain of relevance for many years, and will

continue to shape new, creative opportunities for architecture and mathematics.
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HARRIES, Kaarsten. 1997. The Ethical Function of Architecture. Cambridge Massachusetts: MIT

Press.

HARRIS, James. 2012. Fractal Architecture: Organic Design Philosophy in Theory and Practice.
Albuquerque: University of New Mexico Press.

HEMPEL, Eberhard. 1965. Baroque Art and Architecture in Central Europe: Germany, Austria,
Switzerland, Hungary, Czechoslovakia, Poland. London: Penguin.

HENDERSON, Linda Dalrymple. 1983. The Fourth Dimension and Non-Euclidean Geometry in
Modern Art. Princeton: Princeton University Press.

HENRY, John. 2008. The Scientific Revolution and the Origins of Modern Science. New York:

Palgrave Macmillan.

HERRMANN, Wolfgang. 1973. The Theory of Claude Perrault. London: Anton Zwemmer.

HESS, Alan. 2006. Frank Lloyd Wright Prairie Houses. New York: Rizzoli.

HUBALA, Erich. 1989. Baroque and Rococo. London: Herbert Press.
HYMAN, Isabelle. 2001.Marcel Breuer, Architect: The Career and the Buildings. New York: Harry

N. Abrams.

JARDINE, Lisa. 2003. On a Grander Scale: The Outstanding Life of Sir Christopher Wren.
New York: Harper Collins.

JENCKS, Charles. 1973. Modern Movements in Architecture. New York: Anchor Press.

KRAVTSOV, Sergey R. 2005. Juan Bautista Villalpando and Sacred Architecture in the Seventeenth

Century. Journal of the Society of Architectural Historians 3 (2005): 312–339.

KONING, H. and J. EIZENBERG. 1981. The Language of the Prairie: Frank Lloyd Wright’s Prairie

Houses. Environment and Planning B: Planning and Design 8 (1981): 295–323.

KRUFT, Hanno-Walter. 1994. A History of Architectural Theory, from Vitruvius to the Present.
New York: Princeton Architectural Press.

KUBALA, Thomas. 1990. Finding Sullivan’s Thread. Progressive Architecture 71, 10 (October

1990): 102–104.
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Part VII

Theories of Representation



Chapter 49

Architecture, Mathematics and Theology

in Raphael’s Paintings

David Speiser

Introduction

The subject I am going to talk about belongs, one may say, to the prehistory of

descriptive geometry: it is part of our modern discovery of space. Three times a

civilisation has made such an investigation: in ancient Egypt, in Antiquity, and in

modern times, where perhaps we should speak of space-time. And each time, not

only science, but also the arts participated in this endeavour. It is always extremely

interesting to compare the progress of the sciences with the evolution of the arts, as

well as their histories, their results, and also their methods. But it is fair to say that in

spite of many valiant pioneering efforts, so far this has not been done systematically

enough: think for instance of medieval architecture and its importance for the

progress of technology and science.

This small contribution is devoted to two mathematical, that is, geometric,

discoveries made in 1503 and 1504, and presented in two famous paintings by

Raphael: Lo Sposalizio (The Wedding of the Virgin) and L’incoronazione della
Madonna (The Incoronation of the Madonna). It is especially in the second one that
we find architecture, mathematics and theology closely intertwined in a way that is

deeply characteristic for this artist, whom we can see here also as a great scientist.
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La Dolce Prospettiva

Attempts to represent buildings in perspective go back at least to Giotto and his

school. But it seems that around 1400 Masaccio was the first to discover the law of

the vanishing point; I remind you here simply of the Christ on the cross in Sta.

Maria Novella and of his Frescoes in Sta. Maria del Carmine.

North of the Alps, the early Flemish painters approached this law step by step, by

trial and error. This process is described in an essay by Erwin Panofsky (1962); it

seems that the first correct painting is Dirc Bouts’ Last Supper in St. Peter’s in

Leuven. However, in all these paintings we find only the use of what is sometimes

called, a bit misleadingly, “central perspective”. This means that all buildings are

presented to us frontally, and the horizontal edges are either orthogonal to our view,

in the line of our view, or converging with it. Thus, there is always only one

“vanishing point”, the point towards which the parallels converge. A typical

example is the Giving of the Keys to St. Peter by Perugino in the Sistine Chapel

(Canuti 1931) (Fig. 49.1). Please note that this restriction forced the painter to place

all buildings parallel to each other and frontally with respect to the observer: a

severe restriction indeed! So we may ask: who was the first painter who succeeded

in representing correctly a building in other than the frontal position?

Perugino’s fresco dates from 1480/1481, and in a moment you will see a second,

very similar one. But in 1503 his pupil, Raphael Sanzio, was invited to paint for the

church of the Franciscans in Perugia an Incoronation of the Madonna, which is

today in the Pinacoteca del Vaticano (Fig. 49.2). I think that this is the first painting

where a structure in a non-frontal position, the sarcophagus of the Madonna, is

constructed rigorously. At least I have never seen an earlier one myself. So the

question arises: how did Raphael do it? How did he achieve what so many others,

presumably, had tried to do in vain?

But first: can we be sure that the sarcophagus of the Madonna is constructed

correctly? It is fairly easy to convince yourself that the long edges do indeed

converge to a vanishing point. For the short edges, this is obviously a bit more

difficult; I convinced myself that they do so, but it seemed that the vanishing point

to the left lies a tiny bit higher. But this may be due to my clumsiness together with

the fact that I had to work with a comparatively small reproduction, or it may be due

to the fact that according to Jones and Penny (1983) the painting was transported

from wood on linen.

So how did Raphael do it? You can see the answer in Fig. 49.3: draw the crossing

of the extended shorter edge at right with the horizontal that passes through the

summit at left, and then descend from the upper summit to this horizontal line and

extend it beyond. Now you see that this extension covers two lines in the painting:

one that lies in the horizontal plane, and a second one that descends vertically from

the central crossing point through the centre of the right side of the sarcophagus!

This means that the central crossing point is the centre of the two squares. In the

next figure you can now see how Raphael proceeded (Fig. 49.4).
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Fig. 49.2 Raphael, The Incoronation of the Madonna (Oddi Altarpiece), Pinacoteca Vaticana,

Vatican City. Image: Reproduced by permission, Musei Vaticani
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Raphael first drew a square, then he drew the diagonals that, finally, permitted

him to draw the square whose corner points are the centres of the four sides. As

often happens, it is all very simple, but one has to think about it! And this

construction, while special indeed, is not only the very special case it might seem

to be: namely a rectangle composed of two squares. You can, for example, extend

the sidelines beyond the half-square and construct any rectangle with a line towards

the vanishing point.

Having found the law of the two new vanishing points, Raphael has solved the

problem of correctly constructing the right angle of any rectangle that is bisected by

a line towards the central vanishing point. And my colleague M. Howald showed

me a trick that allows one to draw correctly a building seen from an arbitrary angle.

As he told me, it is contained in the writings of Leon Battista Alberti. That such

a solution was looked for can be seen from paintings that try to give the impression

of a building not placed frontally with respect to the spectator, although it is

really placed this way. An example is Titian’s famous Madonna with Members of
the Pesaro Family in Venice: there this effect is achieved simply by placing the

vanishing point far to the left, outside the painting. But buildings at which one looks

obliquely remained rare for a long time. And in many of them a not-frontally-placed

building is painted so that one cannot easily check its construction.

Fig. 49.3 The perspective

scheme of the sarcophagus,

The Incoronation of the
Madonna. Drawing: Kim
Williams

Fig. 49.4 Perspective

construction of the

sarcophagus. Drawing: Kim

Williams
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Now: theology. The painting makes indeed a theological statement, but one that

is in accordance with the instruction of the Franciscans, who commissioned the

painting: the Virgin is placed on the same level as the Christ, not lower, which is

unusual. If Raphael himself made a theological statement here, it might be as I am

about to explain, but I would not press the point. The axis of the geometric

construction does not coincide with the axis of the painting itself. But the former

concerns an earthly matter only, while the axis of the painting is determined by the

heavenly order. Always remember, especially when we now go to Lo Sposalizio,
that an altarpiece is a symbolic construction, and not only un coin de la nature vu
par un tempérament! Indeed, at the time, some may have found Raphael’s

innovation too naturalistic.

Lo Sposalizio

Lo Sposalizio, originally painted for Città di Castello, is now in the Brera in Milan

(Fig. 49.5). The High Priest celebrates the wedding of the elected Joseph with Mary.

Only Joseph’s stick bursts into flower, and thus his companions break their own

sticks, which remained barren. But what catches the eye more than everything else

is the building designed by Raphael, its grace, its lightness and, indeed its elegance:

one must look far ahead, deep into the eighteenth century to find such a graceful

building. Many things contribute to it: the cupola; the colouring; the elegant arcs

(the same that Michelangelo will use in an inverted position on the sarcophaghi in

the Medici Chapel). But if you look more closely, you see that the lightness is

especially due to one accomplishment, with which the pupil beat his master,

Perugino. Rather than the master’s slightly heavy octagon, he constructed (and he

was the first to accomplish this) a hexadecagon; the building has 16 sides! And this,

as I shall now show, was no mean achievement.

It is well known that a regular polygon whose order is a power of two can be

constructed simply by bisecting a number of times successively an angle with a

ruler. Starting from this result, the construction of such a polygon in central

perspective must be obtained in two separate steps. Recall that on the horizontal

line you can always assume Euclidean geometry to be valid, and thus I have

indicated for the octagon the relevant lengths, which you can transfer directly

onto the frontal line. But while this Euclidean construction is almost trivial for

the octagon (Fig. 49.6a, b), for the hexadecagon it is more cumbersome: you must

construct the equivalent of the extraction of a square root of a term which contains a

square root (Fig. 49.7a, b). And then the perspective construction proper must

follow; there are two ways to do it. You choose freely the angle from which you

see the square (for example, you may choose the rear edge) and with either method

you then draw the diagonals. The first way to construct the perspective is to

extend the diagonals to the vanishing points found by Raphael, then draw the

other, lower edges, then the lines to the central vanishing point, and finally

the second horizontal, which yields the last two edges. Mathematically, this is the
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Fig. 49.5 Raphael, Lo Sposalizio. Pinacoteca di Brera, Milan. Image: Reproduced by permission,

Ministero per i Beni e le Attività Culturali
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more transparent procedure, but you need to know the exact location of the new

vanishing points, which, as was seen, are often way out of the painting. This

difficulty can be avoided by drawing first the lines from all points marked on the

frontal edge to the central vanishing point, and then directly the horizontals that

yield the other edges. This method has the advantage that the painter need not work

outside the painting. Which way Raphael actually used remains a guess. Indeed,

both steps are fairly complicated for this figure, but Raphael worked rigorously: all

parallels on any side of the hexadecagon meet at the same vanishing point; this is a

grand accomplishment.

Theology in Lo Sposalizio

The investigation of theological points made in works of art was introduced in this

century by AbyWarburg and Erwin Panofsky under the broader concept “Iconology”

(Panofsky 1962).

How does theology come into this painting? I will begin with what you may call

the lowest level of it (Fig. 49.5). It is, I think, recognizable that the heads of the

Fig. 49.6 (a, b)

Perspective construction of

an octagon. Drawing: Kim

Williams
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Virgin’s five bridesmaids form a regular pentagon, and those of the four

companions behind Joseph a square. Of course, this may be due to nothing more

than Raphael’s well known desire to use geometric figures in his paintings for

arranging the people in the painting, especially in depth, as well as to his unrivalled

virtuosity of drawing in perspective. But he who draws (or, as here, forms) a

pentagon, also draws a pentagram. Thus, where on so many churches, usually on

the western front, we find a pentagram, even where it is artistically not especially

wanted, there must be a special reason for it. As examples I mention Hannover,

Strasbourg, Breisach, Basel and the largest cathedral in Italy at Raphael’s time, the

Duomo di Milano. No doubt, these pentagrams had a function: they served to keep

out the devil, the demonio. Thus I suspect that the bridesmaids here are performing

a pious service to the Virgin: they protect her, just as the four friends form a tower

of strength for Joseph. But again, I will not press the point, and I pass right on to the

higher level, that is, to the real theology, where we stay on safe ground.

Before doing so, I must say a word about the western tradition of the

representation of the temple. There are two aspects to this tradition: one aspect

follows the Biblical descriptions of Solomon’s Temple, and Ezekiel’s vision. The

other aspect, which Raphael follows, goes back mainly to the crusaders and is based

on what they saw, namely the octagonal mosque by Abd al-Malik, which they

imagined to have been built in the tradition of Solomon’s Temple: the seat of

Wisdom. As such, it became a symbol, not only of the church and of wisdom itself,

but also of Mary, the seat of true Wisdom. Still today in Louvain-la-Neuve the

academic year is inaugurated, Au nom de Notre Dame Siège de la Sagesse. This
tradition found expression also in numerous altar chapels, tabernacles etc., which

Fig. 49.7 (a, b)

Perspective construction of

a hexadecagon. Drawing:

Kim Williams
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always stand for the Temple, the Wisdom and the Virgin in one, as you can see in

the interesting book by P. von Naredi-Rainer (1994).

But while the real Temple in Jerusalem was directed towards the East, since

Yahweh enters into his house from the East, Raphael orients the front towards the

West, as you can see from the shadows cast by the figures; thus the spectator looks

towards the East.

I come now to the second step which Raphael took beyond his master, who also

painted a picture with an octagonal temple, but the subject of which is a Sposalizio
(Fig. 49.8), now in Caen. Both paintings were finished in the same year, and there is

no doubt that the master had begun his considerably larger painting much before.

Thus priority in choosing the subject belongs to him, as well as the idea of arranging

the couple and the high priest frontally before the temple. In both paintings,

contrary to Perugino’s fresco in the Sistine Chapel, the door of the Temple is

open, and there, in the opening, lies the vanishing point, so that you can follow

the lines of view in the painting towards it. Is this innovation with respect to

Perugino’s first fresco due to the master or to the disciple? I do not know, and the

question seems to be a difficult one to decide. In any case it was Raphael who saw

the artistic possibilities that this seemingly small step permitted (Fig. 49.5).

Perugino’s painting is arranged in two frontally oriented layers: the group of the

people, more or less on one line before the Temple, and the Temple itself, which

serves mainly as a historical indicator for the narration.

Raphael’s painting shows, as the German historian Hiller von Gaertringen

(1999) says, Tiefensog, that is, a pull towards the pictorial depth. Besides

breaking the one line of people up into geometrically composed groups, he

accomplishes this by constructing these many squares, forcing the spectator to

follow their edges with his eyes. And these edges meet where? Why, at infinity!

And who has his seat at the infinitely distant? Of course: HE, God! Looking towards

the vanishing point, you look towards infinity: you look towards God.

It is worthwhile to pause here. We often say that parallels meet at infinity, but

this is not so according to Euclidean geometry. The figures can extend to the

infinite, but Euclidean geometry makes only asymptotical statements about it,

and this holds even more for mechanics, which it underlies and upon which its

constructions depend. Bodies can go to and come from the infinite but we compute

their behaviour in finite parts of space and only asymptotically with respect to the

infinite.

It is different in projective geometry. There parallels do meet at infinity, and

projective geometry underlies the perspective design and the corresponding

theories of our view. Today we can formulate conceptually the difference

between the two geometries; at that time this was not possible, there was only an

idea, and it is natural that an artist could grasp it before and better than anyone else.

This is why Raphael underlined with all means at his disposal this convergence

towards the vanishing point in the open door: everything leads you to the infinite.

Projective geometry and perspective serve here as a symbolic construction!

This is Raphael’s first theological statement, and it is expressed through the

mathematics of perspective. I doubt that any theologian could have expressed this
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idea; what was needed here was a mathematician, since mathematics is the very

science of the infinite! But this statement was in line with the Florentine Platonism

of the time, one of the roots of which was the “Docta Ignorantia” of the German

philosopher and Cardinal, Nicolaus Cusanus.

Fig. 49.8 Perugino, Lo Sposalizio. Image: Reproduced by permission, Musée des Beaux-Arts de

Caen. photo: M. Seyve
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That I am not imagining these things is attested by Raphael’s second theological

statement, and this time it is the architect who makes it by designing this

magnificent edifice. Namely, you look towards God, if you look towards him

through the church.

Altarpieces of this time are loaded with theological implications, but most often

clad only in traditional, historic and sometimes accidental symbols. A construction

like the one we find here, where architecture, mathematics and theology are so

closely knit and intertwined, is surely extremely rare, if indeed not unique. For

producing it, an architect, mathematician and theologian in one person was needed.
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Chapter 50

Raphael and the Pantheon’s Interior:
A Pivotal Moment in Architectural
Representation

Kristina Luce

In the first decade of the sixteenth century, several artists from Bramante’s circle

created a series of six related drawings of the Pantheon’s interior.1 Although each

drawing exhibits unique traits, the set resulted from the copying of a single master

or model drawing. I believe that the drawing catalogued asUffizi 164 A.r., attributed
to Raphael, was that master image (Fig. 50.1).2

Although the debate over the primacy of Uffizi 164 A.r.may never be fully put to

rest, I would like to leave aside these issues in favour of a return to the question

originally asked by Hermann Egger. Why did this model drawing become so

famous and so frequently copied? (Lotz 1977: 25).

First published as: Kristina Luce, “Raphael and the Pantheon’s Interior: A Pivotal Moment in

Architectural Representation”, pp. 49–62 in Nexus VII: Architecture and Mathematics, Kim
Williams, ed. Turin: Kim Williams Books, 2008.

1 Three of these are now housed in the Uffizi, (U 1950 A r, U 4333 A r, and U 164 A r); one lies at

the Universitätsbibliothek in Salzburg (Salzburg H 193/2 r), and another is folio 30 r of the Codex

Escurialensis housed at the Biblioteca, El Escorial (Cod. Inv. 28.II.2). The sixth drawing, folio 33 r

from the Mellon Codex is held at the Pierpont Morgan Library in New York (1978.44). This last

drawing is clearly related to the others, sharing the same general point of view and compositional

strategy. However, the Mellon Codex drawing is executed at a much smaller scale and was

subsequently used to record what appears to be field measurements of the Pantheon, a particularly

interesting use considering the drawing’s deviation from that building’s architecture.
2 Subsequent discourse has offered alternative theories allowing the possibility of a lost model

drawing or the suggestion that the version within the Codex Escurialensis was the master.

However, none of these alternatives fully synthesize the various discoveries about the set.

Although the intricacy involved in resolving the work of scholars such as Hermann Egger,

Wolfgang Lotz, Gustina Scaglia and John Shearman is beyond the scope of this chapter, my

work with the drawings, in tandem with the rich scholarship of these other authors, has made it

possible for me to conclude that Uffizi 164 A.r. was the most likely master drawing. Their

arguments and my attempt at resolution, along with my own observations are provided as

Appendix to this chapter.
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This question is difficult to answer since Uffizi 164 A.r. defies our expectations of
what constitutes a master drawing on a number of levels. The image presents an edited

fiction of the Pantheon’s architectural composition using an extremely idiosyncratic

graphic structure. Generally, the drawing resists taxonomic categorization, and yet, in

our recognition of the drawing’s importance we have often elided these difficulties.

For example, while the drawing’s angle of view alone is enough to subvert the idea

that Uffizi 164 A.r. is a perspective in any Albertian sense, this simple fact has not

prevented the drawing from being “considered a masterpiece of applied perspective”

(Lotz 1977: 25). Wolfgang Lotz writes that it may have been used “as an example in

the teaching of perspective drawing,” even as he writes just three paragraphs later that

the drawing stands “in utter contradiction to Alberti’s definition of a perspective view

of an interior” (Lotz 1977: 26). Clearly Uffizi 164 A.r. is engaged in the creation of

illusions, and yet just as clearly its perspectival structure, if indeed the drawing’s

structure is perspective-based, is highly irregular.

Similar arguments might be made about the drawing’s portrayal of the vast space

of the Pantheon’s interior. By presenting the Pantheon from niche to vestibule, it

seems logical that the drawing would capture a sense of the Pantheon’s spatial feel.

Further, in light of the building’s compositional symmetry, this particularly

wide-angle view allows the entire building structure to be inferred. All the

information needed to understand the totality of the Pantheon seems to be presented.

However, none of these proposals turns out to be accurate.

Rather than capturing the Pantheon’s grand and centralized space, the

architecture appears flattened in Raphael’s image. The shallow sweeping curve at

the base of the wall is more suggestive of a wide ellipse rather than the circular plan

of the Pantheon’s ideal architecture.

Fig. 50.1 Interior view of the Pantheon, attributed to Raphael. Uffizi 164 A.r., Florence, Italy
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The dome above appears similarly compacted onto the drawing’s surface.

Uffizi 164 A.r. seems to offer little fidelity to the spatial experience of the

Pantheon. If on the other hand, the drawing was meant to capture the total form

of the Pantheon, the image still presents us with problems. Although the drawing

has a naturalizing tendency, presenting itself as a faithful transcription of the

Pantheon, as John Shearman has carefully demonstrated the image contains some

rather glaring solecisms (Shearman 1977).3 In its approximate 200� sweep, the

drawing captures the Pantheon from the altar-niche on the left to the vestibule on the

right, and between these are depicted two recesses and three aediculae. However, in

the actual Pantheon, as Fig. 50.2 shows, there are three recesses and consequently,

four aediculae.4

The arrangement of these in the building constitutes a carefully woven pattern of

hierarchically received axes. While the omissions of Raphael’s drawing might still

reflect the idea of this rhythm, they destroy the actual composition’s careful

structure. Considering the attentive study of antique architecture underway during

this stage of the Renaissance, the perturbation of the relationships the Pantheon

exemplified seems curious.

In other words, Uffizi 164 A. r. presents us with an image that was clearly

significant, having been the subject of study and replication by some of the most

important architects of the Renaissance, and yet, as modern viewers we have very

little ability to understand what it was our Renaissance counterparts saw as

remarkable. Further, Raphael’s association with the image becomes particularly

Fig. 50.2 Plan view of the

Pantheon showing the

extents of the building

depicted by Uffizi 164 A.r.
(light grey) and the area of

the building that the

drawing omits (dark grey).
Image: courtesy George

Weinberg, The Getty

Research Institute

3 However, Shearman is not the only scholar to have seen these documentary inaccuracies. Lotz

mentions them as well (1977: 26).
4 Lotz explains that these errors were a result of the author’s desire to capture the opposing

vestibule and niche, a goal that was impossible in terms of perspective given the “point of

view” for the drawing. Certainly, I agree that this approximate 200� sweep was a motivating

factor, but I disagree with Lotz’s assumption that a single graphic structure, and therefore singular

point of view, is reigning over the image.
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important in light of his letter to Pope Leo X, in which he advocates for a certain

methodology in the documentation of architecture: the combined use of plan, section

and elevation. It is possible that if we can recapture an explanation of why the

drawing served as such a significant model, this image may tell us something about

the development of that triadic system of architectural representation, its eventual

establishment as architectural convention and the hurdles that initially prevented its

acceptance. Such an explanation is the goal of this brief chapter.

Thus far we have established many things that Uffizi 164 A.r. is not. It is not a
traditional perspective. It is also not a reflection of the spatial feel of the Pantheon,

nor is it an accurate portrayal of the Pantheon’s architectural composition. Let us

now turn to what the drawing is. It is of interest that in spite of the ways in which the

drawing defies our expectations, it is still highly illusionistic. The space presented

by the image is coherent, even if that space is a fiction. Lotz resolved this effect and

his own contradictory impressions by concluding that the “Uffizi drawing

consequently represents the sum total of many glances” (Lotz 1977: 26).

Interestingly, this description mirrors that of a drawing from two to three

decades earlier. Although Juan Guas’s presentation drawing for San Juan de los

Reyes (Fig. 50.3), clearly captures a different architectural tradition, it engages in

very similar imaging practices as that of Uffizi 164 A.r. (Sanabria 1992: 163).
It is further the case with both drawings that our own modern viewing habits

mask many of the complexities of their compositions. The tendency is to read the

perspectival qualities of the drawings as evidence of a resolved form of picturing

space, but something much more transitional is taking place in both images.

While the Prado drawing may resemble a perspective, or even a cavalier

perspective, on closer examination the structure decomposes into an assemblage

of elevations that have been perceptually pleated into place, surfaces unfolding

whenever possible. “The space becomes like a folding polyptych, opened partially

to reveal all sides” (Sanabria 1992: 168). The vaults appear to have been tipped

backwards to reveal more of their surface. The rear transept walls likewise angle

backwards in the space, allowing the front wall of the transept to be seen. The same

is true of the clerestory windows, where the front-most jambs and their sculpture

are visible. Sergio Sanabria, described this drawing as having been treated as a

“fish-eye photograph. . .. The total space does not read as a unit; rather, there is a

succession and articulation of parts, connected by the viewer, who processes

nearsightedly through them” (Sanabria 1992: 168).

The Uffizi image functions similarly, but unlike the Gothic image where nearly

unabridged detail is offered at the expense of spatial coherency, the space depicted

in the Pantheon drawing functions as a complete unit. The drawing offers a strong

and seemingly consistent spatial depiction that, without immediate recourse to

other images or to direct experiences of the Pantheon, appears to be complete and

highly illusionistic. Uffizi 164 A.r. creates this spatial fiction by marshalling

together elements of multiple projective structures (perspective, cartography and

orthography) in its attempt to resolve and portray the Pantheon. The resulting

naturalistic impression of space makes it clear that perspective is playing a role in

the composition of the Uffizi drawing, but further explanation is necessary to
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Fig. 50.3 The presentation drawing for the altar piece of San Juan de los Reyes in Toledo, attributed

to Juan Guas, c.1479–1480 (Prado D/5526). Image: ©Museo Nacional del Prado, Madrid, Spain,

reproduced by permission
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demonstrate how the drawing also exhibits affinities with orthographic and

cartographic systems of projection.

The distinction between orthographic and perspective projections was voiced in

Alberti’s Book Two of The Art of Building in Ten Books, when he wrote that unlike

the painter who engages the relief of objects, the architect “takes his projections from

the ground plan and, without altering the lines and by maintaining the true angles,

reveals the extent and shape of each elevation and side” (Alberti 1988: 34). In

addition to describing the mechanics of creating an architectural drawing, the

quality that Alberti is emphasizing here is that of preserved shape, or, to put a finer

point on it, Alberti stresses the importance of formal commensurability between

the drawing and the building. In such a system, objects that are similar will appear to

be similar in the drawing because their true “shape and extent will be preserved.”

Perspective allows for no such preservation since identical objects depicted in

perspective can have vastly different shapes and sizes depending on their

relationship to the viewer/picture plane.5 And, while it is true that the orthographic

procedure Alberti outlines usually maintains the extent and shape of objects, this is

only the case when the object’s geometry is in harmony with geometry of

orthographic projection. Such a harmony requires that the object reinforce the

rectilinear projectors and 90� angles of orthographic projection with its own

parallel lines and 90� angles. When planes occur at oblique angles, or worse, when

they are round like the Pantheon, Alberti’s imperative for commensurability within

architectural drawings becomes impossible.

Uffizi 164 A.r., however, stands between the painterly and architectural models

for drawing that Alberti described. It attempts to depict both the relief and the

extents and shapes of objects. As resulted from the Prado image’s spatial

manipulations, by flattening the round and centralized space of the Pantheon,

similar objects could be portrayed at nearly the same scale. In Raphael’s drawing,

the identical columns of the recesses are similarly sized, as they would be in an

elevation. Likewise, the depicted sizes of aediculae are nearly identical even though

the perspective should dictate that the outer two be larger. The artifice of the image

and the alterations to the Pantheon’s actual architecture are working to blend the

two systems together. Perceptually, it is as if the Pantheon had been unrolled before

it was depicted in perspective, or alternatively as if it was actually a drawing of an

elevation partially bent into semi-cylindrical form.6 The result is, as Lotz wrote, to

make the drawing seem to occupy a place “halfway between the perspective image

of the interior and the orthogonal projection of the inner wall” (Lotz 1977).

However, Lotz’s explanation doesn’t fully articulate what is happening within

Uffizi 164 A.r. In addition to occupying the ground between perspective and section,
Raphael’s technique of unrolling or bending the Pantheon’s architecture shares

5While we may perceive the shape and extents of these objects as identical, their presentation on

the actual picture plane is not.
6 This description is a reference to James Ackerman’s analysis and description of Villard de

Honnecourt’s drawings of the choir at Reims cathedral (2002: 34).
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similarities with another form of picturing during the Renaissance. The

cosmographers, cartographers and choreographers of the late fifteenth and early

sixteenth centuries also attempted to resolve curved forms into flat representations.7

Just as the Pantheon problematized the projection of a sphere onto paper, so

mathematical geography required the globe to be similarly flattened onto a

surface. Raphael’s strikingly flat drawing of the Pantheon seems to be informed

by these contemplations of the globe. Although specific parallels might be drawn to

several of these early global pictures, Ptolemy’s generic framework projecting the

world onto paper is enough to demonstrate the links between the cartographic

images and Raphael’s depiction of the Pantheon (Fig. 50.4).

Perez-Gomez describes the form of Ptolemy’s global projection:

Ptolemy’s map itself is not a circle as would be formed by a section through the globe, nor

an ellipse as argued later by Edgerton, but an elongated and curved stretch of land—the

oikumēnē—whose center of curvature lies at the north pole (Pérez Gómez and Pelletier

1997: 95).

Fig. 50.4 Framework for the Ptolemaic projection of the globe, from Geographicae enarrationis
libri octo (Ptolemy 1541: Book I, Chap. 24, p. 23)

7 “Ptolemy’s Geographia was not included in the Ptolemaic opera introduced into the West in the

twelfth century. It was only rediscovered in the West c.1406, when it was translated into Latin by

Jacobus Angelus in Florence. In addition to numerous manuscript copies, it appeared in six printed

editions in the fifteenth century: Bologna 1462 (1482?); Vicenza, 1475; Rome 1478; Ulm, 1482;

Ulm, 1486; and Rome, 1490. It appeared in numerous editions in the sixteenth century in both folio

and quarto; twenty in Latin, six in Italian and two in Greek” (Cormack 1991: note 17).
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This account, and particularly that portion that describes the image as an

elongated and curved stretch of land, could apply equally well to Raphael’s

depiction of the Pantheon. Both drawings demonstrate considerable flattening of

their curvatures on the macro-level in order to portray more accurately the relative

sizes and shapes of the objects within their projective frameworks. One need only

imagine the interior of the Pantheon as the interior of a globe or as the celestial

sphere, not a large ontological leap given the sensibilities of the sixteenth century,

and even the curvature of the world map would then correspond to Raphael’s image

of the Pantheon.8 Raphael’s drawing, it would seem, actually stands between

orthography, perspective and cartography.

Unfortunately, using Ptolemy’s projection as a spatial framework, like the

spatial schema used by Guas, still required compromise and undermined the

Albertian goals for architectural drawing. By combining elements of orthography,

perspective and cartography artists could attempt to go beyond what each system

could capture on its own. However, this representational creativity undermined the

geometric accuracy of each system of projection. Though these drawings struck a

compromise in that they preserved a sense of commensurability, no actual

measurements could be taken from them.

Other, slightly later, drawings partially resolved this problem. An image taken

from the manuscript by the Giacomo Andrea da Ferrara (ca. 1490; Sgarbi 2004),

one of the earliest illustrated versions of Vitruvius, today conserved in the

Biblioteca Ariostea in Ferrara, is a drawing that pulls the tensions we have seen

in Uffizi 164 A.r. into projective clarity (Fig. 50.5).

In this drawing we find the Pantheon with its interior surface fully unrolled; its

dome broken into recognizable cartographically-influenced interrupted surface of

four lobes, or gores. Waldseemüller is known to have used interrupted surfaces for

cartographic images as early as 1507. While Uffizi 164 A.r. predates such images,

these drawings do indicate that a graphic discourse was taking place, that a form of

picturing and projection was being sought that could cope with centralized forms

like the Pantheon while maintaining the aims Alberti laid out for architectural

drawing.

Clearly, Raphael’s drawing gains some of its significance because of the

importance of this debate, but what is really at stake here? Alberti’s call for

formal commensurability is decades old, and yet for Raphael the Pantheon still

presented a problem for architectural representation. The image of the Pantheon in

the Vitruvio ferrarese suggestively gestures towards an increased acceptance of

orthography, but neither image follows Alberti’s description of how the architect

draws. Even though measurements could theoretically be taken from the Vitruvio
ferrarese, the image is not related to plan or section images of the Pantheon in a

8Although it changes the status of what we assume was Villard’s knowledge of geometry, it is

difficult not to see that the projection in Geographia also provides an explanation for Villard’s

visually ambiguous spatial contrivance for the Reims chapel drawings. Those structural features

that cause its curves to create an equivocating spatial illusion, first projecting inward and then

outward from the drawing’s top to bottom, seem consistent with Ptolemaic projection.
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linear manner. The projective links between the drawings were broken when the

wall was unrolled.

In other words, one thing that was at stake was the representation of the

particular type of building embodied by the Pantheon. Unlike the built form of

San Juan de los Reyes, the structure of the Pantheon is not an assemblage. It is an

interlocked totality of sphere, cylinder, axes and cross-axes.9 The round, centralized

form provides no opportunity to easily dis/re-aggregate building parts and drawn

elevations as did the additive structure of a Gothic building. Unlike those

Renaissance buildings that mirrored Gothic composition with a series of linearly

arranged repeating bays (buildings like Saint Peter’s or San Lorenzo), the Pantheon

resisted fracture. Where those other buildings could be drawn in a manner that

systematically portrayed some elements in one projective system and some in

another, the importance of the Pantheon was that it challenged the apparent

transparency of these hybrid techniques. Further, the building challenged

Alberti’s definition of the architectural drawing as an image that maintains

commensurability by being projected from the plan. In the case of the Pantheon,

such a projection would not preserve extent or shape. As a centralized space, the

curves of the Pantheon distorted the true shape and width of every element along the

wall when depicted in elevation. Nothing depicted in such a drawing would be

commensurable with the building. Uffizi 164 A.r. illuminates these tensions. It

demonstrates how the geometry of certain representational priorities may be at

odds with certain buildings. By 1519, Raphael would write of this problem in his

letter to Pope Leo X, when he identified domes and other inherently oblique

geometries as those special cases where the ground plan, elevation, and section

were ambiguous in themselves. In these cases, all three drawings were necessary,

and only through a comparison of all three could a correct understanding occur.10

When Raphael penned this statement, he was not just talking about the craft of

imaging. By allowing that no one representation could capture a building, he

effectively advocated for a relocation of the realm in which architectural images

could be verified. Where Brunelleschi’s experiments functioned to link the image

rhetorically to a reality against which that image could be measured and validated,

Raphael acknowledged that architectural images should not be corroborated to

vision, but instead to the mental constructs they created. He extended the primacy

of the architectural quality of shape and allied it with ideal geometries and

constructs. Where Alberti admonished the architect who tried to incorporate

relief, Raphael’s system dictated that such drawings should avoid perspective not

9 The spatial composition of the Pantheon is sometimes referred to as an “ideal dome.” This

arrangement perfectly nests a complete sphere into a cylinder whose height matches its radius,

allowing the base of the sphere to be exactly tangent to the base of the cylinder.
10 There is some dispute as to whether this description of perspective, which is only found in the

Munich copy of the letter, was actually authored by Raphael or was a later addendum by another

author. I tend to think that the Pantheon drawing, which seems to problematize this very issue,

makes a strong case for this thought being Raphael’s even if it only made it into one copy of the

letter. See Lotz (1977: 29 and n. 77).
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just because measurements were necessary, but because perspective belonged

outside the syntax of architecture. Through the projective grammar of plan,

section and elevation, architectural representation became an internally coherent

and verifiable system of architectural conception. Drawings that mimicked vision

were insufficient for the expression of architecture, and multiplying and assembling

views or glances could not solve the problem. Through the interplay of plan, section

and elevation architectural images broke free of their links to the realities of vision

and instead inhered to the abstract conception of a total building.

This shift in architectural conception is more than just a representational trope. It

is indicative of the transformed manner in which buildings were understood during

the Renaissance. Instead of the additive structure of a Gothic building conceived,

built and altered through time, the Renaissance conceived the building as a total and

coherent object. Fields outside architecture similarly shared this new grasp of the

subject as a totality and the desire to represent it as such. When analysing the late

fifteenth-century image depicting Florence, Map with a Chain, Samuel Edgerton

described a similar tension between unity and assembly. The image, wrote

Edgerton:

makes it possible to grasp instantly the overall plan of Florence and its relationship to the

surrounding countryside, but forces the viewer to lose tactile contact with the individual

details that so delight all the senses when he walks through the city. The unity of the

Renaissance view has replaced the diversity of the mediaeval one (Edgerton 1974: 277).

Again, a similar mode of thought and expression is presented by both

architectural and cartographic fields. For architecture, the centralized form and

ideal dome of the Pantheon was the ultimate example of this new conception of

the building as a totality, and the challenge of picturing the Pantheon offered an

especially timely problem: namely, if one begins to understand and conceive of the

building as a totality, how should it be represented? In 1519, Raphael suggested that

it should be represented within a system; not as a single image, but as a dialogue

between three images whose interplay created a larger unified concept of the

building. In essence, he suggests that if buildings are to be understood as

totalities, then they should be represented as abstractions.

In some ways, then, hidden in the quiet of Raphael’s drawing of the Pantheon is a

very large conflict. The silence of Uffizi 164 A.r. comes from its illusionism, from

the convincing way it mimics perspective, and therefore, speaks of the Pantheon

with all of perspective’s authority. Amusingly, however, the vision it presents is of

reality reflected in a fun-house mirror rather than Brunelleschi’s. The drawing is a

kind of trompe l’oeil. Delightfully, even when we know the image presented is

false, we are still convinced. Its deception throws into relief the opposition between

visual and conceptual frames of knowledge. More than just representational play,

the issue is one of abstraction, and in particular how a conceptual totality challenges

images that acquire their authority through recourse to vision. The perspective, as

explained by Damisch, was meant to be reality’s mirror, but in the case of the

Pantheon the building’s conceptual totality competes with what the mirror can

show (Damisch 1994). The impulse documented by Uffizi 164 A.r., and its
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200� + sweep, is to reach towards a total image of the Pantheon, but this mental

schema resists graphic representation.

These are the conflicts Raphael captures with Uffizi 164 A.r. The image became

so famous and so copied because it mounted so many questions about vision, formal

totalities and representation. Together these questions mount one more: what is it

that defines architecture? Is architecture of the world to be perceived and ordered by

vision, or is it conceptual and abstract? Such matters had a particular valence during

the Renaissance because the very discipline and definition of architecture was being

reworked. Uffizi 164 A.r. holds us paused in that moment right before the decisions

get made. The drawing captures neither the ideal nor the real, but is caught between

the two. It mounts a mimetic masquerade which, once uncovered, highlights

architecture’s ineffability and the gap between vision and conception without

picturing either.
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Appendix: Was Uffizi 164 A.r. the Primary Drawing? A
Summary of the Arguments and Another Suggested
Resolution

The question of dates and, by extension, the establishment of a model for this series

of drawings was raised in 1956 by Wolfgang Lotz in his article “Das Raumbild in

der Architekturzeichnung der italienischen Renaissance” (1956). Lotz proposed

Raphael as the designer of the drawing, but a conflict exists with the date of the

arrival of the Codex Escurialensis in Spain, which makes it nearly impossible for

Raphael to have constructed the model given our current understanding of his

arrival date in Rome.

John Shearman (1977) offers one resolution to this conflict, hypothesizing that

Uffizi 164 A.r., as it stands now, is a second, extended state of Raphael’s original

drawing, which was not in error. By identifying differences in the quality of ink and

line, Shearman argues that the right most tabernacle and vestibule portion of the
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drawing, among other features, are later additions that sought to transform

Raphael’s working drawing into something that resembled a veduta. The reduced

angle of view of Shearman’s proposed original state for Uffizi 164 A.r. eliminates

many of the perspectival irregularities that are apparent in the final drawing.

Shearman believes that the artist who was later responsible for extending

Raphael’s drawing had not seen the Pantheon, but had in his possession another

view that captured the right-most two recesses and the vestibule and that overlapped

with Raphael’s drawing. When fusing the two drawings together, the artist assumed

that the drawings presented the same two recesses, rather than there being only one

recess in common. This assumption resulted in an interior view of the Pantheon

with only two recesses between the altar-niche and vestibule. Shearman’s theory

also explains the incorrect rhythm of the tabernacle pediments depicted in the final

drawing. If the artist did indeed work with two overlapping drawings as Shearman

thinks, the belief that only two recesses existed would consequently eliminate one

of the segmental pediments, thus producing the incorrect alternating rhythm that

Uffizi 164 A.r. demonstrates.

I find Shearman’s theory intriguing, particularly because, through logical

extension, it establishes that Uffizi 164 A.r. was the model copied by the other

drawings, since those demonstrate only one state, not the two that Shearman sees.

However, Gustina Scaglia (1995) argues that the opposite is the case. She believes

that the Escurialensis drawing served as model to a now lost drawing, possibly by the

artist of the Chinnery Album, which was subsequently copied by the others. Her

argument is based on the use of abbreviated fluting seen inUffizi 164 A.r. and all other
copies. She sees these abbreviations as derivative of the complete fluting depicted in

the Escurialensis version. However, Shearman points out that Raphael’s abbreviated

fluting also indicated the cabling at the bottom of the columns, an observation more

accurate than the consistent fluting shown by the Escurialensis artist. Additionally,

because the Escurialensis drawing maintains the segmental, triangular rhythm of the

tabernacle pediments, I believe it must be a copy of Uffizi 164 A.r.
When considering these arguments together, it becomes significant that

Shearman fails to acknowledge the copy of Uffizi 164 A.r. found in Salzberg.

Scaglia quite convincingly argues that this drawing was also authored by

Raphael, and the attribution complicates Shearman’s theory. Even if a later artist

altered Raphael’s original version of the Pantheon interior, Raphael saw fit to make

a copy of these alterations. There must have been something compelling about the

new construction that made it worth recording, even in light of its documentary

errors. If Raphael did not author Uffizi 164 A.r. in its entirety, his replication of it in
the Salzberg drawing certainly legitimates his engagement with the unique features

of the altered composition.

Further, after examining the actual drawings in the Uffizi, and high quality

facsimiles of the drawings in Austria and Spain, I tend to believe that Uffizi
164 A.r. was the model for the other drawings. If the entire composition is not

original to Raphael, I believe that Raphael drew his version in tandem with visits to

the Pantheon. His drawing alone seems to engage in a process of sketching and

correction as he matches the image to his conceptions. Other drawings seem to
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replicate his pentimenti and even attempt to resolve the ambiguities. The left-most

aedicule is one area where these features are apparent. The other versions, including

Raphael’s copy of his own work in Salzberg, appear as simplifications of Uffizi
164 A.r., and given this observation, I believe logic dictates that Uffizi 164 A.r.
should be considered the model. As Shearman suggests, it may be our understanding

of Raphael’s travels that need some slight alteration, perhaps allowing for a visit to

Rome on his journey to Florence.
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Chapter 51

Design and Perspective Construction: Why Is

the Chalice the Shape It Is?

Richard Talbot

Introduction

The basis for this chapter is a study and examination of one of the most complex and

well-known examples of early Renaissance perspective drawings, the Chalice. This
drawing has become almost iconic within the history of perspective, although

neither the author nor the exact date of its execution is certain. It is most likely to

have been executed prior to 1460 and has been attributed variously to both Paolo

Uccello and to Piero Della Francesca, based largely on references in Vasari’s Lives
of the Artists.1 It is a drawing that I have long been fascinated and intrigued by

because of its complexity, clarity and technical accomplishment.

I first attempted a reconstruction of the drawing over 20 years ago, primarily out

of curiosity about the method of its perspective projection. I made a relatively

simple version of the drawing, using only 16 facets (see Fig. 51.7 below), rather

than the 32 in the original drawing. I quickly became aware, however, of the

technical difficulties in making a similar drawing with such apparent accuracy

and consistency at this scale the drawing is only 34 cm � 24 cm. I also realised

that although the method behind the perspective projection is, in fact, very

straightforward and is something that a good student could grasp in a few hours,

many questions about the drawing remained.

First published as: Richard Talbot, “Design and perspective construction: Why is the Chalice the

shape it is?”, pp. 121–134 in Nexus VI: Architecture and Mathematics, Sylvie Duvernoy and

Orietta Pedemonte, eds. Turin: Kim Williams Books, 2006.

1 Vasari mentions mazzocchi and a faceted stellated sphere as being forms that Uccello attempted;

he also mentions a faceted vase specifically in relation to Piero (Vasari 1996). Piero in De
Prospectiva Pingendi constructs a mazzocchio (Fasola 1942: Tav. XXVII, Fig. LI).
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These questions partly concerned the practical aspects of making the drawing

but primarily I felt that if someone had painstakingly constructed a drawing as

complex as this then presumably the design of the Chalice was more than just

something to hang a particularly clever and impressive technique on. The main

question that arose, and which is the subject of this chapter, is ‘why is the Chalice
the shape it is?’ The additional question of its attribution was not one that I had

intended to engage during the course of this study, but I believe that my research has

revealed aspects of the drawing that may have a bearing on it.2

The Subject Matter of the Drawing

The Chalice is a drawing of a completely self-contained object and does not appear

to be a preparatory study for a painting or for an object that was intended to be set

within a painting or some other kind of representation. It seems to fit into a category

of drawings that could be considered autonomous, speculative or investigative. It is

a ‘wire frame’ drawing a representation of an idealised three-dimensional form and

as such does not imply any particular material or scale. However, the basic shape

and specific forms and structures in the Chalice do reflect those of contemporary

chalices and other ecclesiastic and secular objects; chalices often had hexagonal

and octagonal elements in the base, a stem with a faceted widening and cut precious

stones mounted around the surfaces. These all appear to be repeated, in some way,

within the drawing, including the mixture of solid and transparent forms and the

hexagonal and stellated octagonal sectioned mazzocchi. The mazzocchio is the

semi-rigid frame within a particular fifteenth century head adornment but it has a

form and structure that lends itself to being adapted, idealised and increased in

complexity.3 Whatever the source of the forms in the Chalice, they mostly appear to

have simple geometric definitions. The forms themselves may have developed out

of the process of geometric construction, rather than being developed from or

referring to something already seen.

The object, therefore, could have been conceived as a pure crystalline structure

and constructed on a purely theoretical and geometrical basis. This also means that,

in theory, unravelling the procedures leading to the drawing should be more

straightforward, as we are dealing, presumably, with the geometry of the square,

circle and regular polygons and not with units, modules or possible wall thicknesses.4

In addition, because of the way the Chalice is drawn, a vertical cross section parallel

2 It forms part of a broader investigation on my part as an artist looking at how the physical layout

of a drawing on the paper, the method and approach of the perspective construction, and the

thinking processes relate to and influence each other.
3 Kim Veltman (1986: 128–137) discusses the mazzocchio in relation to Leonardo and, in

particular, his elaborate and playful transformations of it into spirals, wheels and cogs, etc.
4 Given the size of the drawing and the degree of error inherent in the method of construction, I

would expect high degrees of accuracy in the drawing. It seems to me the largest error that might

legitimately arise is possibly 1.5 mm at the most.
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to the picture-plane reveals its true elevation. Proportionally correct measurements

relating to its elevation can therefore be taken directly from the drawing. A more

direct relationship between the artist’s intentions, the underlying construction and the

final drawing should be apparent; however, in practise, many aspects remain very

uncertain and any analysis will be qualified.

Fig. 51.1 Paolo Uccello (1397–1475), perspective study of the Chalice, 1430–1440 (pen and ink

on paper). Gabinetto dei Disegni e Stampe, Uffizi, Florence, Italy. Image: ©Foto Scala Firenze.

Reproduced by permission
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Physical Aspects of the Drawing

The visible lines that define the image are drawn in ink, but the overall impression

of the actual drawing is of something more delicate than one would expect from

seeing the various reproductions of it (Fig. 51.1).

The underlying construction lines are inscribed into the surface of the paper

using a stylus and, where a specific point is plotted, the paper has often been

pricked.5 These various marks are almost invisible under normal lighting

conditions and it is only in an early twentieth century photograph taken in a

raking light that they are particularly evident. For this study, I have used a

high-resolution scan and a much enlarged photographic print taken from this

original photograph; I have also examined the actual drawing.

Building the Drawing

It is quite clear that the Chalice has been ‘built’ each point of every 32-sided

polygon being located in space using information from a ground plan and an

elevation. It is all constructed within a square-based, transparent rectangular

block split into horizontal layers, each layer containing an individually drawn

polygon. These make up separate but related interlinking geometric volumes,

some of which are drawn as if transparent, others as if solid, and still others as a

combination of both. The volumes that are drawn in their entirety are the

self-contained forms, such as the mazzocchi. As everything that has been

constructed has then been inked in, the decision as to what was to be visible was,

I believe, taken while the drawing was being made.

The same procedures, and as much effort, would have been required to construct

the smallest detail as would have been required to construct a larger or more visible

form. In general, the method used throughout has been consistent, but there are

exceptions. Two elements of the drawing appear to have been added by eye,

without the aid of any construction lines. These are a tiny curved profile slightly

below the lowest mazzocchio, and the vertical lip at the very base of the drawing,

added, possibly, to confer a feeling of solidity. In addition, there is an inconsistency

in the lowest constructed polygon, which could be the result of starting to use the

coordinates from one circle and then inadvertently using those from another. It is

here, at the bottom of the drawing that approximately 1 cm of extra paper has been

attached and, although it is impossible to know at exactly what stage it was added,

the scored lines on the surface appear to run seamlessly over the joint. However,

even if this error in the lowest polygon had not been made, the drawing would still

have fallen outside the bottom edge of the paper. As it is, the drawing appears to

5 I do not believe that they are the result of the drawing being ‘pricked through’ as part of a copying

process to enable the image to be used, possibly, in an intarsia design; see Kemp (1991: 241–242).
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have been altered in order to fit into the available space. The topmost polygon,

which is part of the upper hexagonal ring, is positioned as high as it could have been

on paper of this size and it is therefore impossible to know how much the size of the

paper ultimately dictated decisions regarding the design.

The top two mazzocchi are very accurately drawn, that is, they appear to contain

true hexagonal and octagonal sections, but the lowest one, which at first sight

appears to contain another regular hexagon, in fact, does not. Whether this was

intentional or not we will never know, but as all the points of polygons of equal

diameter should align vertically, it becomes apparent that this mazzocchio has been

constructed using circles that are used elsewhere in the drawing. It transpires that

several circles have been used more than once within the drawing and it appears

that it is the circles from the upper regular forms that are used again lower down.

This leads me to think that the drawing was, for the most part, constructed from the

top down.

The section containing the uppermost mazzocchio apparently defies gravity it is

not joined physically to the section below; this too supports the idea that it is an

autonomous drawing and that it is not, and never was, intended to represent a ‘real’

chalice. It also suggests to me that the design was not fully resolved before the

drawing was begun and that the progress of the drawing may have been relatively

organic. The elevation, which in the case of the Chalice is what determines its

design, originally may have been very simple and has grown in complexity, with

decisions made and elements added during the process of its making.

The Perspective Construction: the Layout

The method used for the perspective projection is straightforward.6 The preparatory

stages of the drawing would have involved establishing a plan and elevation,

although these could, to a certain extent, have evolved along with the drawing.

One approach to the design would have been to draw the elevation first and then

derive the plan from that elevation but, as I will demonstrate, I believe that the

elevation has, in fact, been derived from geometry involved in drawing the plan.

There are good practical reasons for having a plan and an elevation laid out on

the same sheet of paper as the main drawing, preferably positioned at the edges, as

in Fig. 51.2.

Alternatively, they could occupy the same space, lying underneath the final

drawing. However, examination of the Chalice suggests that the plan and elevation

were not positioned at the edges, nor can they be found in the myriad of underlying

6Martin Kemp (1991: 241–242) suggests that the artist used some kind of orthographic projection,

rather than perspective. Robin Evans also suggests that Piero’s ‘other method’ was used for this

drawing, but if this had been the case, different construction marks would have been present on the

drawing; see Evans (1995: 173).
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construction lines. This means that there must have been another drawing, or

drawings, presumably now lost, which contained the plan and elevation from

which the measurements required for the perspective construction were taken.

I propose that there were not two drawings, one each for the plan and the

elevation, but a single drawing, containing a geometric construction that fulfilled

both roles. This would certainly make sense on a practical level and, possibly, also

on an aesthetic level. A simple example in support of this idea would be the

preparatory drawings required to construct a faceted sphere; the elevation is

constructed first and the plan is developed from it. The plan now effectively

contains all the same information that is in the elevation, so the separate

elevation can be discarded. The geometry and constructions in the plan and

elevation become interchangeable the radiating lines required for establishing the

elevation become the same radiating lines needed for the plan (Fig. 51.3).

The auxiliary drawing for the Chalice would have initially required the same

construction procedures as those needed to create a 32-sided, faceted sphere a

circle, square and octagon, sub-divided repeatedly in order to produce the

32 divisions around its surface. I therefore suggest that the elevation of the

Chalice derived directly from these same constructions. The key to this is the

construction of the octagon, which is clearly a prerequisite of drawing the largest

Fig. 51.2 The general

principle of the perspective

construction. Drawing:

author
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mazzocchio but is also part of the construction of the radiating pattern that defines

the points around the 32-sided polygon. The octagon is, therefore, required for the

construction of elements within both the elevation and the plan (Fig. 51.4).

The Perspective Construction in Detail

The plan and elevation determined the dimensions of a square-based, transparent,

rectangular block, which would be subsequently split into horizontal layers.

Whatever the shape of the elevation, the plan would always be a set of concentric

circles, split into 32 equal sections, equating to the 32 facets describing the surfaces

around the object. The vanishing point of the Chalice has been placed centrally, at a
level that is roughly twice the height of the drawing. The rear corners of the

degraded square have been placed at a relatively low level, which means we are

looking at the object from a distance of roughly nine times the height of the

drawing. These measurements in themselves are not significant, but the relatively

large viewing distance does reduce the possibility of uncomfortable distortions

Fig. 51.3 Constructions in the plan and elevation are interchangeable. Drawing: author
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caused by being too close to the object. The construction has then taken place

within this block, a separate polygon being constructed in each layer.

Each layer in the Chalice has been constructed within a few millimetres of the

previous one, but it is only in those layers where a complete 32-sided polygon has

been drawn, for instance in the mazzocchi, that a full set of radiating lines has been

constructed. On the drawing the pricked marks indicating the ends of the radiating

lines are visible. The radiating pattern may have been located by constructing it first

in the base and then noting the points where the radiating lines touch the four edges

of the base (Fig. 51.5).

The horizontal position of these points would then be the same for all the layers

and so could be transferred using compasses, repeating their positions onto the four

edges of each layer. Because of the very acute angle of the receding sides of each

layer there is potential for inaccuracy if only the above method is used. Alternative

simple geometric constructional routes, the kind described by Piero Della

Francesca in De Prospectiva Pingendi and as demonstrated in Fig. 51.5, may

have been used to locate, or at least double check, the positions of the points on

the sides (Fasola 1942: Tav. VI, Fig. XIX).

Fig. 51.4 Construction of the octagon and 32 divisions. Drawing: author
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The points from the plan were then mapped onto the radiating pattern. The

horizontal positions of the points of each 32-sided polygon have been measured

using compasses and then transferred onto the front edge of the layer at which that

polygon is drawn (Figs. 51.6 and 51.7).

Fig. 51.5 Constructing the radiating lines and the polygons. Drawing: author

Fig. 51.6 The construction of polygons in each layer. Drawing: author
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In practise, this meant marking the same eight points on either side of the central

vertical axis. These points in turn, were aligned with the vanishing point and their

intersection with the appropriate radiating line located the points that form the

polygon. Again, all the marks from this procedure are visible, either as scored lines

from compasses on the leading edge, or as pricks in the paper where a point is

established.

The Design: the Plan and the Elevation

Other evidence in support of my idea about the interrelation between the plan and

the elevation comes directly from the drawing. For example, the object is

symmetrical about a vertical axis but also appears to be symmetrical about a

horizontal axis through the two concentric ellipses formed on the stem of the

object. This suggests that the design was formed about a central point (Fig. 51.8).

Measurements from the drawing yield up simple relationships that, again,

suggest that both the plan and the elevation were in some way, formed from the

same geometric construction.7 For instance, the radius R of the circle in Fig. 51.8,

which appears to describe the curve of the stem in the vertical plane, is the same as

the circle that defines the apexes of the pyramidal structures projecting from the

uppermost mazzocchio in a horizontal plane. The size of this curve and its position

may be defined by a construction that is itself part of the construction of an octagon.

This circle also defines the dimensions of the block in which the whole construction

has been made (Fig. 51.9).

Fig. 51.7 The construction of a 16-sided octagonal sectioned mazzocchio. Drawing: author

7 There is always a ‘chicken and egg’ situation in a geometric construction—what came first and

what was derived from what?
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In addition, the height of the base of the octagonal mazzocchio above the central

horizontal axis of the object corresponds with the outer radius of the mazzocchio. If

the square is completed, as in Fig. 51.9, its base corresponds with the original level

of the base of the object before the hand-drawn lip was added.

The dimensions of the octagon in the mazzocchio are very close to those of the

small central octagon that is created as a consequence of repeatedly constructing

octagons within the square, as shown in Fig. 51.9. The addition of the pyramidal

structures on the outside of the mazzocchio then gives the radius R. The

relationship between the outer radius of the mazzocchio and its octagonal section,

Fig. 51.8 Drawing: author

Fig. 51.9 Drawing: author
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could of course, be coincidental but, as I will explain later, there are other examples

of this. The main volumes of the object appear to be derived from, or are closely

related to the construction in Fig. 51.10, although the curve of the bowl and its

centre are particularly difficult to define.8

The Practicalities of Creating the Drawing

In the early stages of laying out the drawing the most crucial operations would have

been to establish true perpendiculars and a method of maintaining horizontals. The

accuracy and the logic of the drawing system rely on these and, as a consequence,

any errors become more obvious. A draughtsman today would experience the same

practical difficulties and use the same instruments as 600 years ago. While now they

might not think of using a stylus to inscribe lines, overtly visible construction lines

would quickly overwhelm the drawing process on an image of this scale and this

complexity. To have successfully accomplished the drawing of the Chalice the use
of a stylus was an absolute necessity. It is a much more accurate tool than a pencil,

and I believe that there are other reasons why its use would have been important.

As there are no annotations on the drawing, it may seem that the main difficulty

would be keeping track of all the information involved within a relatively small

space. My experience, however, is that once the main “scaffolding” of the space is

in place and visible, the logic of the process becomes clear and, in fact, annotations

Fig. 51.10 Drawing: author

8 I am assuming that profiles of the curves are defined by circles, but I would not rule out them

being parts of ellipses. Their construction would then have involved two concentric circles and a

set of radiating lines.
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would be a hindrance. In addition, the inscribed underlying structure, subtly

emerging out of the paper by the action of light, would have played an essential

role in helping the artist to follow the construction process. It would itself have been

quite magical, but would also have been an aid to the imagination, enabling images

and visual solutions to be found that otherwise might be inconceivable a process

perhaps similar to Leonardo’s use of indistinct images found within accidental

marks on walls.

A separate sheet on which both the plan and elevation exist together may well

have become an autonomous drawing a place for playful and creative thought,

rather than simply being a means to an end. This drawing, which could have been

relatively fluid and organic, would have provided measurements that were to be

used in the other drawing, the one which was governed by the rational system of

perspective. There would be a constant shift between the two drawings and

elements in the drawings: between the plan, the elevation, the diagrammatic and

the pictorial a quality that Martin Kemp has commented on specifically in relation

to Piero Della Francesca’s paintings (Kemp 1992: 20–40).

Thoughts on Its Attribution

There seems to be no conclusive proof of the Chalice’s attribution but its

construction would have needed a good knowledge and understanding of

geometry, including the concept of plan and elevation and the ability to

rationalise a three-dimensional form, whether real or imaginary. Both Piero Della

Francesca and Uccello are known to have drawn mazzocchi; Uccello uses them

repeatedly as elements in his paintings, most notably in The Deluge and The Battle
of San Romano. Their depiction was, however, to become a problem also tackled by

many other artists, particularly those involved in intarsia.

There are drawings of a stellated sphere and a solid mazzocchio in the Paris

Louvre, both attributed to Uccello, while catalogued alongside the Chalice in the

Uffizi are two drawings of hollow mazzocchi, one hexagonal and one octagonal in

section, (drawing 1756A), which are also usually attributed to him. These two

drawings are on relatively rough paper, whereas that on which the Chalice is drawn
is quite smooth. All three drawings in the Uffizi show evidence of the use of similar

drawing instruments compasses, a straight edge, a fine sharp point and a stylus and

they display, essentially, the same method of perspective construction.

In De Prospectiva Pingendi Piero demonstrates this same method, but he uses it

only for relatively simple geometric objects. He also demonstrates the construction

of a simple octagonal-sectioned mazzocchio, but using another more sophisticated

method appropriate for any kind of object, in any orientation a method that is

distinctly different from that displayed in all three drawings in the Uffizi.

Nonetheless, it is clear that, as far as the method is concerned, Piero could also

be the author of the drawing.
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The drawing in the Uffizi that has an octagonal section, drawing 1756A, is

visibly of a much higher quality and accuracy than either of the other two

mazzocchi drawings, which leads me to think that this drawing, in particular,

relates directly to the Chalice. I base this partly on visual appearances, but also

on the fact that the relationship between its octagonal section and its outer diameter

and, therefore, its possible derivation, appears to match that of the octagonal

mazzocchio in the Chalice (Fig. 51.11).
This relationship also appears to be the same as that of the octagonal-sectioned

mazzocchio that Piero constructs in De Prospectiva Pingendi. He does not show

how he arrived at the design of the particular mazzocchio that he uses, but he does

show its plan and elevation, in which the same proportional relationship seems to be

present. None of the mazzocchi in Uccello’s paintings appear to show similar

proportions. This evidence does not in itself prove that the Chalice is from

Piero’s hand, but it does favour him more than Uccello.

The Drawing in Context

Although the Chalice is, ostensibly, a drawing of a recognisable object, the methods

and geometry used in its creation make it part, if not a forerunner, of a large genre of

drawings of geometric objects. Some of Leonardo’s drawings of churches show the

same concern with the geometry of the octagon and its successive proportional

Fig. 51.11 The proportions

of the octagonal

mazzocchio (Uffizi 1756A).

Drawing: author
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division that seem to be demonstrated in the Chalice,9 while a drawing by Nicéron,
made at least 150 years later, shows an elevation being derived from a plan.10

Unlike many methods of perspective projection, the method used in the Chalice
positively lends itself to drawing individual, regular geometric forms. It is, in fact,

akin to that of carving thinking and locating points and forms within the confines of

a rectangular block. The concept of the transparent block, with its visible, internal

three-dimensional logic, would facilitate thinking in three dimensions and, I

believe, would have been a major factor in Piero’s and, later, Leonardo’s

understanding and manipulation of the geometry of solid figures.
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Chapter 52

Perspective in António Rodrigues’s Tratado
de Arquitectura

João Pedro Xavier

Introduction

The aim of this chapter is to discuss the Liuro de Perspectiva (Book of Perspective),
found in the extended manuscript Tratado de Arquitectura of 1576, which has been
attributed to António Rodrigues (c. 1520–1590) (Moreira 1982).

Considering the historical context of this work, its relevance lies mainly in the

introduction of an innovative perspective rule that was designed to solve the

questions raised by the propagation of inaccuracies and insufficiencies of previous

methods, particularly evident in Serlio’s second book, Di Prospettiva. However, the
author’s scientific limitations prevented him from fully understanding the enormous

potential of his geometrically accurate construction. He employed traditional

techniques of measuring distances, commonly used in maritime Portugal, related

to the basic principle of similar triangles, shapes that Alberti could assemble as a

piramide visiva, promoting its intersegazione with a surface ( finestra), and thus

obtaining a section that represents the exact perspective of the object. Decoding and

verifying the validity of this peculiar perspective rule leads to the centre of the

debate surrounding the origins of the perspectiva artificialis, which is still a matter

of intense dispute in spite of new contributions, reinforcing the theory that considers

practical geometry the mathematical basis of this representational system.

Rodrigues’s work demonstrates a striking fidelity to central perspective, likely

evidence of the Italian school Rodrigues belonged to. This is particularly obvious in

some of his perspective representations of architectural objects, especially one
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centrally-planned composition called edeficio quadrado (squared building) with

ad quadratum and ad circulum geometry, traditionally discussed in the treatises on

perspective and architecture at the time. In terms of architecture, we are dealing

with one of the most perfect realizations of an anthropocentric vision of the world,

the very core of the spatial research undertaken in the Renaissance, although by the

time that this Tratado was written, this was already being questioned by the

counter-reform movement.

Indeed, the inventory and analysis of architectural structures built following this

typological unit, consecrated in the representation of this edeficio quadrado in the

Liuro de Perspectiva, is one of the most important chapters in the history of modern

architecture, one in which Rodrigues inscribed his name with the construction of

Onze Mil Virgens Chapel (Xavier 2015), built some time before 1565 in Alcácer

do Sal.

The Tratado de Arquitecture and Perspective

in Sixteenth-Century Portugal

The Tratado de Arquitectura is a treatise related to the origins of architectural

teaching and theorization in Portugal. It was used as a textbook at the Lição de

Arquitectura Militar, a course in military architecture that began in 1573 under

Rodrigues’s direction in Paço da Ribeira School,1 which had been founded by

Pedro Nunes in 1559. According to Rafael Moreira,

in addition to Pedro Nunes’s lessons on Mathematics and Cosmography, António Rodri-

gues taught there the young nobles the elementary notions of Geometry applied to archi-

tectural drawing and perspective, the theoretical principles of engineering and fortification

and methods and secrets of the art of building well and cheap in order to serve the best

interests of the king (Moreira 1982: 75).

This was a Vitruvian curriculum, where one could not conceive of an architect’s

training that did not have a strong scientific foundation in mathematics, in

arithmetic and especially geometry, but which included astronomy and music as

well, completing the Quadrivium.
The treatise shows its inherent pedagogical inclination, especially obvious in our

Liuro de Perspectiva2; it is clearly meant to be a textbook. The approach to this

science, “which can be better learned by demonstration than by trial” (Rodrigues

1576: fol. 44v), begins with the foreshortening of surfaces, evolves to solid bodies,

and culminates with the perspective representation of objects and architectural

1 This school was shut down and transferred to Madrid by Filipe II, giving rise to the “Academia
Real Mathematica” directed by Juan de Herrera. Later, this sovereign, by then Filipe I of Portugal,
ordered its reinstitution in Lisbon, in 1594, with Filippo Terzi (c. 1520–1597) and João Baptista

Lavanha (1550–1624) as its directors.
2 An extended analysis of the Book of Perspective can be found in Xavier (2006).
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spaces, revealing its purpose and the reason for its being part of an architectural

treatise. Serlio did the same with his Secondo Libro, Di Prospettiva in 1545, and

Pietro Cataneo reinforced this with Libro Ottavo, when he added, in 1567, four new
books to his Quattro primi libri di Architettura of 1554.

The question was the definition of a new instrument for representation, one

which was capable of contrasting the need for models, and which, in association

with the orthogonal projections in use—plan, elevation and section—would

considerably enrich the resources available to the architect for describing, and

especially for visualizing, space.

Perspective was at that time regarded as essential among the elements of the

Vitruvian dispositio, as António Rodrigues says,

one of the parts that architects should master, [because] it was convenient for someone who

wanted to practice architecture to understand perspective so that he could show the outside

and the inside of the sketched building in order to avoid expenses with wood, wax or clay

models (1576: fol. 11r).

Although Rodrigues, and Cataneo as well, praised perspective pragmatically for

its economic value, I must emphasize that the claim that drawings can replace

models is based in the consolidation of a technique of representation, perspective,

that enables one to approach the three-dimensional nature of the architectonic

object. This claim is strengthened if we add axonometry to perspective, which

was already well known at the time.

As Gelabert Lino Cabezas states,

one of the consequences of perspective will be to allow drawing architecture according to

new spatial rules, both for representing pre-existing architecture, the ancient one, and for

visualizing and projecting new works. The verisimilitude attained with this new perspective

representation will allow new architects to control from the drawing (the disegno italiano) a
new concept of architecture, even coming to replace models . . . in the presentation of works
to be built. . . [Cabezas (1989): 167 (my translation)].

And so as the disegno science was growing, its first steps in Portugal were

closely connected to the establishment of the Lição de Arquitectura Militar.

Considering its context, the importance of Rodrigues’s Liuro de Perspectiva
(Book of Perspective) lies mainly in the presentation of an original perspective rule

intended to break a deadlock caused by the diffusion of inaccuracies—by Gaurico

(1504), Dürer (1525 and 1538) and Serlio (1545)—although the author’s scientific

capacity wasn’t sufficient for him to understand fully the potential of the

geometrically accurate construction he produced. Most probably, Rodrigues tried

to overcome the errors of Serlio’s first rule (Fig. 52.1), his main reference, through

the definition of a new non-canonical but flawless rule of his own.
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Rodrigues’s First Rule of Perspective

Rodrigues’s first rule opens his Liuro de Perspectiva and is applied to the

foreshortening of a hexagon.3 As traditionally the square was the preferred figure

for representing a plane, let us use instead the following example, found in

proposition 32, where the ensemble of procedures to obtain its perspective is

explained (Rodrigues 1576: fol. 46v) (Fig. 52.2).

Fig. 52.1 Serlio’s first perspective rule with the superimposition of the correct construction of the

second square QUAD. Drawing: author, after (Serlio 1600: Libro secondo, fol. 19r)

Fig. 52.2 Proposition 32, from Rodrigues (1576): fol. 45v/46r

3 The second rule appears in proposition 34 and it is said to be the same rule used by Serlio:

“Sebastianus Serlio bolognese in his “Book of Perspective” has foreshortened all the figures with

this rule” (Rodrigues 1576: fol. 47v).
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Here is a modern translation of those steps, numbered in order to facilitate their

identification (Fig. 52.3):

Proposition 32. The rule used to foreshorten the hexagon figure is general for all

the figures we want to foreshorten. And if we want to foreshorten the square 6.3.7.2:

1. draw the line A.P;

2. draw the line A.M perpendicular to it;

3. draw the line M.P;

4. join all the vertexes of the square to point A;

5. and if we want to show the foreshortening of this square, construct a straight

line like line 700.200 and draw over it the line 100.1000;

Fig. 52.3 Rodrigues’s first

perspective rule

(Proposition 32). Drawing:

author
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6. with the compass take the distance from point 1 to point 4;

7. and with this length construct line ab;

8. take the distance from point 1 to point 10, and draw a parallel line to line 700.200,
with the same length

9. take the distance from pt 10 to pt 20, put the point of the compass in pt 100 which
is the midpoint between pt 700 and pt 200;

10. take the distance from pt 10 to pt 30 and put the point of the compass in pt 1000

which is the midpoint of line 600.300;
11. draw two lines 200.300 and 700.600.

The figure 600.300.700.200 shows what is lost by the square when it is seen from point

A as can be observed in the illustration.

Is it? Could figure 600.300. 700.200 be the exact perspective of the square 6.3.7.2?
The first thing to note is that we have a plan and an elevation superimposed

where line A.P is simultaneously:

a. the horizontal projection of the central visual ray, A being the Foot of the

Observer and 6.3.7.2 the horizontal projection of the square;

b. the side projection of the ground plane,M being the Eye of the Observer and 1.P

the side projection of the square; hereM.P is the side projection of visual ray A.

P as it is of visual rays A.6 and A.3.

In the original drawing the perspective construction is shown to the side of this

system. I have aligned it with the horizontal projection in order to clarify the

correspondence of widths.

We must then point to the striking lack of correspondence between the represen-

tation of the Picture Plane in plan and side elevation. Actually, line ab is its

horizontal projection, while its side projection is a line coincident with points 1.2.

Contrary to what might be expected, there is no relationship with costruzione
legittima where the intersection of visual rays with the Picture Plane is achieved

with the aid of a systematized double orthographic projection.

However, the foreshortening of the square is obtained by combining the widths

taken from line a.b and the heights from the line passing through points 1.2, as is the

case of length 1.4 (equal to length 1.10) used to graduate the depth of the transversal
side 600.300.

We wonder if this can be possible!? . . . And surprisingly, the answer is yes!

Using an up-to-date drawing of proposition 32 (Fig. 52.4), with the lateral

elevation placed to the side, I verified the exactness of Rodrigues’s first perspective

rule using distance point construction. I checked the relationship between the

Observer and the Picture Plane and, as distance PD.PS 4 is equal to distance PF,

I could be sure that line ab in plan indicates the correct position of the Picture Plane.

So, the square represented in perspective is not in the square A1B1C1D1 shown in

plan, but the homothetic square ABCD, with its side CD coincident with the

4 Rodrigues extends the orthogonal sides of the square to the central vanishing point (PS) but he

doesn’t take advantage of it in the construction.
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Ground Line, although Rodrigues doesn’t draw it there. But if this is true we have to

check, using the side elevation, if height F1Y used to graduate the depth of

transversal side A1B1 is equal to height FX which determines the depth of side AB.

More than this, we should prove that for any position of the square A1B1C1D1,

similar to squareABCD in a homothety of centre P, the segment FX is always equal

to segment F1Y.

With the aid of the famous theorem attributed to Thales we can assert that the

triangle PEO is similar to triangle FEX, and so:

PE

PO
¼ FE

FX
: ð52:1Þ

On the other hand, the triangle PE1O is similar to triangle F1E1Y, so:

PE1

PO
¼ F1E1

F1Y
: ð52:2Þ

Fig. 52.4 Testing the validity of Rodrigues’s first perspective rule. Drawing: author
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From these two proportions we can deduce the following equality:

PO ¼ PE

FE
� FX ¼ PE1

F1E1

� F1Y: ð52:3Þ

As there is a homothetic relationship of centre P,

PE

FE
¼ PE1

F1E1

, ð52:4Þ

one may conclude from expression (52.3) that

FX ¼ F1Y:

QED!

Finally, one might be puzzled with the indication of step 7 to place the line ab,

the Picture Plane, taking the height 1.4. There is no geometric reason for that,

although it might be a way to control the dimensions of the perspective result. I tried

to overlap the orthogonal projections with the perspective drawing and at least it is

possible to recognize a good adjustment of the whole (Fig. 52.5). But,

unfortunately, this is more a sign of the author’s incapacity to understand the

implications of his own perspective rule fully, namely the perfect control of

viewing distance in relation to the object and the Picture Plane locations.

Rodrigues’s Liuro de Perspectiva in Context

If we look at Rodrigues’s Liuro de Perspectiva within an international frame of

reference we have to admit that it never achieved a position of great importance.

Although Vignola’s Le due regole della prospettiva pratica (ca. 1545) was only

printed in 1583 by Egnatio Danti, the truth is that these perspective rules were

already known to a select few, those who went down in history.

However, I believe that Rodrigues’s Liuro de Perspectiva is much more

interesting than it might appear on the surface if we look at the reasons that led

the author to search for a thoroughly successful solution where Serlio and his

predecessors failed.

We must remember that Serlio’s first, erroneous, rule of perspective is one more

in a series of attempts to draw the geometric construction described by Alberti in

De Pictura (1435). So, by criticizing Serlio’s work, Rodrigues ended up close

to the methodological assumptions underlying Alberti’s construction. When I

realized this unexpected similarity in methodology it became necessary for me to

re-examine the different interpretations of the perspective representation described

in De Pictura. The absence of graphic illustrations in Alberti’s work has given rise
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to the ongoing proliferation of several hypotheses that intertwine with the discussion

of the origins of the perspectiva artificialis and take us back to Brunelleschi, to

whom Alberti dedicated his work. I undertook this journey back to the origins

starting with a thorough review of Alberti’s original work, and I verified that,

within the time span from its appearance until the edition of Rodrigues’s book,

several authors translated its modo ottimo with only a graphic representation—such

as Filarete (1461–64, Fig. 52.6), Francesco di Giorgio (c. 1485), Leonardo da Vinci

(c. 1492) and Jehan Cousin (1560)—or with some theoretical contents as well—as

was the case with Piero della Francesca (c. 1460, Fig. 52.7), Giacomo Vignola

(c. 1545), Federico Commandino (1558) and Daniel Barbaro (1568), although this

last made exclusive use of Piero della Francesca’s contribution.

The problem was, in fact, the noise coming from works produced in the first half

of the 1500s, which determined a state of disturbing uncertainty due to the

ignorance of reliable sources (or to their inadequate decoding) and the prevalence

of practical recipes, not always correct, and without a theoretical basis.

Viator’s handbook,De Artificiali Perspectiva (1505), was an exception, as it was
irreproachable regarding operational matters, but lacked an indispensable

conceptual foundation. Viator took it upon himself to give legitimacy to the idea

of perspective as a graphic representation of natural as well as panoramic vision,

remaining within the sensory concept of a virtual pyramid (Fig. 52.8), in opposition

to Alberti’s attitude, of a rational nature, expressed in the concept of piramide visiva
and intersegazione (Mesa Gisbert 1994: 112). In the beginning of the following

century the first picture in Perspective (1604) by Hans Vredeman de Vries (Ioannes

Frisius) (1526–1609) (Fig. 52.9) will express eloquently the visual theory already

present in Viator’s work, placing the observer in the centre of the Horizon and the

pyramid vertexes in the circular line that defines it (Alpers 1983: 57).

Fig. 52.5 Rodrigues’s first

perspective rule with the

foreshortening of the square

overlapping the plan and

side elevation. Drawing:

author
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It was against this destabilized background that Rodrigues worked to legitimise

his book and its original perspective rule. That rule rests in the methodology and

instruments concerning the evaluation of inaccessible distances, which the

discipline called “practical geometry”, whose main driving force was nautical

science, along with astronomy and cosmography, in Portugal as well as in other

countries. In consequence, it is the actual application of the principle of similar

triangles—in which the observer’s eye is at one of the vertexes, and at the others

there may be a tree, or a tower top, or a mountain summit, or else the sight of the

coast line from a caravel or a twinkling star in the sky—that drove Rodrigues to the

discovery of a functional perspective rule, in spite of its lack of the conceptual

purity already known at the time but which he hadn’t heard of.

Even so, the fact that it was supported by the proportionality principle applied

with remarkable flexibility, fully mastering Thales theorem, usually employed in

practical measuring tasks, is sufficient in itself to make it worthy of note.

Indeed, this principle is the essence of the perspective representation system,

although its simple application occurs at a relatively basic stage of development,

Fig. 52.6 Alberti’s modo
ottimo by Filarete. Drawing:
author, after Tratatto di
Architettura (Bk. XXIII,

fol. 177v)

Fig. 52.7 Piero’s

perspective proof. Drawing:

author, after De Prospectiva
Pingendi (Bk. I, prop. XIII)
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taking us back to the origins of perspectiva artificialis and to the issue about the

mathematic principles underlying its genesis.

I suspect that the capacity to deal easily with proportionality, based in similarity

and homothetic relationships, contributed to Alberti’s definition of hismodo ottimo.
The precedence of a practical activity of measuring for the definition of his rule can

be felt in his work, especially in the Ludi Matematici. The illustrations of Francesco
di Giorgio that appear in his Trattati (Fig. 52.10) in the context of a thorough

inventory of typical problems of practical geometry unequivocally warrant that

connection.

Following Alberti’s requirement, Giorgio isolated the side elevation and

physically materialized geometric entities, drawing planes with rods and visual

rays with threads. In addition to the requirement of drawing the side elevation

separately, a decisive step for achieving the accurate definition of depth grading,

Alberti gave us the enigmatic indication that a small space (picciolo spazio) would

Fig. 52.8 The visual pyramids and the ‘tiers-points’ perspective construction. Image: Viator

(1505)
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be enough for its execution. This compression of the drawing frame allows us to

think of the possibility of working with dimensions smaller than the braccio, the
unit that divides the ground line (Fig. 52.11), as suggested by Pietro Roccasecca

(2001). And then their mutual dependence could be supported by a proportional

relationship, without compromising the transverse lines, which together with the

orthogonal lines already drawn would define the ground plane or pavimento.
In this particular matter, Rodrigues’s approach to perspective through a rule

based in homothetic principles was similar in its essence to methodology suggested

by Alberti, even though it appeared later.

Fig. 52.9 Panoramic natural vision. Image: De Vries (1604)

Fig. 52.10 Alberti’s modo ottimo by Francesco di Giorgio Martini (ca. 1490: fol. 33)
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Rodrigues’s Rule of Perspective and Centrally-Planned

Architecture

The mathematical systematization of the representational space conceived by

Alberti is primarily a project for space itself, which runs parallel to the need to

map the earth and sky for exploration.

If the general order of the universe was mathematical, a Pythagorean belief that

rested on Plato’s Timaeus, and geometry was the connection to subjects that dealt

with spatial problems, then the issue of the representation of visual space would be

dealt with by perspective, while cosmography would be charged with representing

the earth and sky. So there was a need for improved knowledge about the sphere,

with the contributions of geography and astronomy, facilitated by the discoveries of

the epoch. Eventually it was acknowledged that the first accurate maps of the

terrestrial globe and the celestial sphere were based on conic projections that had

been known since Antiquity: gnomonic in Mercator maps, in that case the surface of

projection being a cylinder tangent to the equator, and stereographic in Ptolemy’s

Planisphere. And, as in this last situation the surface of projection was a plane that

cut the sphere along the celestial equator, Federico Commandino realized (at last!)

the intimate relationship between this cartographic projection and perspective

(Commandino 1558).

The core idea of space codified by Alberti, which translated into a very particular

type of perspective—central perspective—corresponded to a concept of centralized

space, with its inherent fidelity to central (or at least bilateral) symmetry and,

naturally, the strict obedience to a measurement system, which implied a system

of proportional relationships of an arithmetic and geometric nature and which,

in terms of perception, would change into a system of harmonic proportions that,

through the correct rule, could be transferred to paper in order to become

perspective.

This could be a description of San Sebastiano, an exceptional centralized space,

but can also be applied to S. Andrea, both in Mantua. It is possible to evoke

Brunelleschi’s works, San Lorenzo or Santo Spirito, on which Wittkower

Fig. 52.11 Alberti’s modo
ottimo. Interpretative
drawing of Roccasecca’s

proposal (2001: 66).

Drawing: author
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founded his attribution of the discovery of perspectiva artificialis. It is Leonardo’s
thorough investigation of prospettiva liniale, and his studies of projects of buildings
with central plans (Xavier 2008) and, from there, the effective materializations by

Bramante and others that disclose the first evidence of this connection. Even so,

I think it is sufficient to recall the panels produced by the circle of Urbino

regarding the depiction of an ideal city in order to verify the convergence of a

global plan of space centralization, which is inevitably anthropocentric, and

because of that, avails itself of central perspective to affirm its value, but also to

persuade.

In architectural treatises in general, and in the books on perspective that became

part of them, as well as in specialized textbooks—even in the first of them,

De Prospectiva Pingendi—centralized spaces from cities to architectural objects,

closely associated with central perspective, are always given a place of privilege.

In parallel, a specific representational system that will end up in axonometry was

being developed mainly for cities, with an intuitive approach by Francesco di

Giorgio, already with its own rules by Maggi and Castriotto, and would soon be

preferred for military architecture and engineering.

Because perspective apprenticeship always started with a plane represented by a

square, which could be squared according to the most convenient measurements

conveying the Albertian spatial core, buildings or small spaces with square plans

have always been given preferential treatment. One can see them in Filarete’s early

sketches, in the treatises of Piero della Francesca, Francesco di Giorgio, Serlio and

Hernan Ruiz, and we should not forget that this was one of Leonardo’s favourite

subjects, although his spatial research was linked to his own particular

representational system (Xavier 2008).

Generally speaking, the Observer, standing, perceives space according to his

plane of axial symmetry—sia sempre la sua distantia all’entrare di esse, as Serlio
stated (1600: fol. 18r)—emphasizing that formal characteristic and amplifying the

centrality that the space already possessed.

It was in this context that one edeficio quadrado appeared in Proposição 42 of

Rodrigues’s Liuro de Perspectiva, foreshortened according to the first rule. It was

crowned with a dome, embodying the ad quadratum and ad circulum geometric

composition that was synthesized so well in Caesare Cesariano’s representation of

the Vitruvian man (Fig. 52.12).

I tested the reconstruction of this ideal building (Fig. 52.13) and compared it

with the sepulchral space of Onze Mil Virgens Chapel (Figs. 52.14, 52.15, and

52.16) and I found that this space could be considered as typological variation of

that ideal building. As the Onze Mil Virgens Chapel, according to Rafael Moreira,

was designed by the author of the sixteenth-century architectural treatise and its

book of perspective, António Rodrigues, I think that this attempt to represent an

archetype in perspective is a proof of the decisive role this unit played in the

formalization of centrally-planned churches, from its appearance in Byzantine

through the Mannerist period.

86 J.P. Xavier



Fig. 52.12 Proposition 42 from Rodrigues (1576): fol. 55v/56r

Fig. 52.13 3D models of the proposal for the ‘squared building’ reconstituted from the

foreshortened plan shown in Rodrigues (1576: Prop. 42, fol. 56r). Drawing: author
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Based on the extensive analysis done from the Onze Mil Virgens Chapel (Xavier

2015), in which one can recognize mainly rectangular shapes that express

consonances from the Pythagorean tetrachord, as well as other secondary

consonances, as well as other relationships that are specifically geometric, I must

emphasize that the utilization of the proportional ratios built as homothetic situations

evolving from centres, carefully located according to the modular structure of the

temple (Xavier 2006: 378–444), shows much the same methodology that underlies

the definition of Rodrigues’s perspective rule.

Fig. 52.14 The ‘squared

building’ of Proposition

42. Drawing: author
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Fig. 52.15 The sepulchral

space of the Onze Mil

Virgens Chapel. Drawing:

author
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Chapter 53

Ottoman Architecture: Relationships

between Architectural Design

and Mathematics in Sinan’s Works

Zafer Sağdiç

Introduction

To know and understand the relationship between mathematics and architecture

better, it is needed to make searches not only on west architectural styles, but also

on east architectural styles, as well. Thus, it is useful to study one of the unique

and magnificent architectural style of the world, the Ottoman Empire architecture as

its military and political achievements on three continents. Within Ottoman

architecture, the works of the great architect Sinan (1496–1588) occupy a

particular place, especially with regards to aesthetic qualities and highly advanced

structural characteristics. The relationship between design and mathematics is also

significant in Sinan’s works. In order to understand why, a general review of the

relationship between architectural design and mathematics is helpful.

Mathematics can be roughly divided into two main parts: one is “practical

mathematics”, such as the operations we use in daily life; the other is “pure

mathematics”, which is used in establishing the complex mathematical

relationships in the positive sciences. The study of the relationship between

architectural design and mathematics depends on “pure mathematics”.

We must first accept that all the objects in nature and the relationships between

these objects are governed by rules of geometry. As Galileo stated, nature has a

certain mathematical design: “the book of nature can only be read by those who
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know its language, which is mathematics” (King 1997). Thus, if we accept “pure

mathematics” as a kind of game, it can be said that nature is the medium in which

this game is played, and the constituent parts of nature are the symbols used in

mathematics; in other words, they are the pawns used in the game. Throughout the

game we can assume that the single symbols, by further developing the metaphor,

will form groups of symbols. As a result of these formations, we can see the

geometrical rules governing the symbols, that is, of the groups of objects existing

in nature. To put it more clearly, the rule(s) governing the relationship between

architectural design and mathematics can be found among the rules of forming/

establishing the relationships in nature.

Architects, while analysing the designs of various buildings, almost always turn

to nature, observing it carefully and transforming their observations into design

elements. Consequently, it can be seen that architects create their designs by

studying the geometrical rules that establish the various natural collaborations

with a concern for architectural style. In that sense, architects can be defined as

the organizers of the relationships between the forms and functions of buildings. As

Monroe Beardsley said, “the form of an aesthetic object is the total web of relations

among its parts” (Sağdiç 1998: 383). In this way, the geometrical rules in nature can

be taken as the rules of “Beauty”. It is known that, throughout the history of design,

architects have always created the designs for “the artificial environment” within

the framework of the geometrical rules (Beardsley 1958).

In the light of this preface, the question of how the mathematical rules

(symmetry, proportion, geometry, etc.) affected Sinan’s style can be answered

more clearly. But in order to consider the question in a certain framework, a few

more basic questions should be answered. What are the structural and aesthetic

rules that were used in Sinan’s works? Why is it so important even today to take

these rules into consideration? Why is Sinan’s period still being defined as the

“Classical Period” of Ottoman architecture?

The Classical Period of Ottoman Architecture

The development of Ottoman Architecture to its highest level, called “The Classical

Period”, during which it achieved its finest features, was due to the development of

building technology as well as its aesthetic value. Both of these were the results

of the political achievements and the economical growth of the Ottoman Empire.

The Classical Period of Ottoman architecture is sometimes referred to as the

“period of Architect Sinan” because of the fact that the most original and

monumental religious and public buildings in this period were created by this

great Master-builder. The fundamental principles underlying the dialectics of

building developed by Sinan provide the solution(s) for the system of its

structure. In this context, the most important point is that there exists a concept of

a certain form and aesthetics originating from the type of construction. In Sinan’s

architecture, the most important element is the dome, which forms the central point
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of the whole structure; therefore the overall structure of the building is oriented

towards carrying and supporting the dome. Considering the elements of this

monumental architecture, it can be seen that the system of relationships between

the elements establishing the dimensions and constituting the buildings has been

established on the basis of the dimension of the human body. These dimensions

were observed in storey layers related to the façade, in the choice of the proportions

of building elements such as windows and doors, and in calculating the proportional

relations of such elements/details. Sinan, who was called “the Euclid of his age”

(Kuban 1988: 620), developed a system of forms through an understanding of

architecture based on geometry, and through the consideration of functions.

According to Freely, “Euclidean geometry had a certain influence on Sinan’s

spatial compositions as well as the rules of construction” (Freely and Burelli

1992: 124). It can be said that the key that allowed intensive building activities to

spread throughout the large geographical area ruled by the Ottoman Empire is the

fact that Sinan had a common system of design in all his constructions.

In European architecture, the ideal form of the system of structure was attained

in Gothic architecture. It can be claimed that a similar development was brought to

a peak in Ottoman architecture by Sinan in the late fifteenth and the sixteenth

centuries. This means that in studying Sinan’s period, we will also be examining the

main lines and the general rules of Ottoman architecture.

Proportional Relationships in the Classical Period

of Ottoman Architecture

When we look into the relationship between mathematics and the architectural design

found in the monumental architecture of the Classical Ottoman period, it will be

observed that certain proportional relationships were used, the existence of which

cannot be denied. According to Arpat (1984: 40), these proportional relationships can

be divided into two groups: those that use modules or some religious-symbolic figures

as in-principle arrangements, and those that use proportions.

It can be seen that in three of his mosques—Pasha, Shehzade and Mihrimah

Sultan (Fig. 53.1)—Sinan used a modular network obtained by placing an octagon

within a circle with a radius of 68 cm (3 arshin) or multiples of this unit-measure.

It has also been established that the main module commonly used in all the

mosques mentioned above are multiplied by 3 (that is 3 � 3 ¼ 9 arshin). This

measure, 204 cm (9 arshin), was also employed in establishing the design principles

of such elements as the levels in buildings, the overhangs of the eaves of domes, etc.

(Arpat 1981: 33; Schemmel 1998: 78). Another fact that is important to emphasize

here is that, in the said period, the design principles governing monumental

architecture, both European and Ottoman, depended on some symbolic values

along with functionality. In Christian Architecture, the number 3 and its multiples

have been used symbolically in organizing space because of the Holy Trinity. In
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Islam, it is believed that there are three spirits: the good spirit, the evil spirit, and a

third spirit that tempts people to “evil deeds” (Egli 1954: 79). Moreover, in the

monumental religious buildings of both Christianity and Islam, a centralized plan,

believed to represent the monotheistic belief in the organization of space, is

commonly used. Here it also should not be forgotten that in Islamic religion,

namaz1 is the most important ritual of the daily life. On an Islamic point of view,

it has done for five times during a day. It also should be done on a mosque which has

a square like space in plan because of the tradition of to keep/be on the line of the

brothers of the religion which is called as “safh tutma”, while in Christianity

according to the ritual of the religion of taking bread and wine from the priest on

a corridor like rectangular space in shape, even the apsid part of the church is

centralized.

In Classical Ottoman Architecture the best example of the centralized plan is the

Süleymaniye Mosque with its huge dome placed at the epicentre of the complex

design (Fig. 53.2).

According to Ernest Egli, the proportion between the width and the length of the

big courtyard, in which the mosque and the enclosed cemetery (hazire) are located,
is 2:3, which is equal to the proportion between the axes. Again, measuring along

the vertical axis, Egli established a regular increase in the spaces covered by the

outer courtyard, inner courtyard, the area covered by the mosque building itself, and

the enclosed cemetery, which corresponds to 4, 5, 6 and 7. On the horizontal axis,

Fig. 53.1 The Mihrimah mosque. Photo: author

1Namaz is originally from Persian; it is salat in Arabic. In a general view it means praying and

giving greetings to Allah, the one and the only creator, the God.
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the measurements of the widths of the outer courtyard on the right, the space

covered by the mosque building itself, and the outer courtyard on the left

correspond to 4, 7 and 4. As for the measurements of the specific spaces, the

inner courtyard is 5:7, the space covered by the, mosque building is 6:7, and the

space of the enclosed courtyard is 7:7 (Haidar and Yazar 1986: 33).

In Shehzade Mosque (Fig. 53.3), another religious monumental building

designed by Sinan, the naos or cella (sahin in Turkish, an inner sanctuary)

consists of nine modules, and the inner space of the mosque has 25 modules, as

does the courtyard (Fig. 53.4). On the vertical plane, the relationships between the

measurements seem to have proportions of 1:√2, 2:3, 3:5, and 5:8 (Tuncer 1997: 30).
Another version of the same plan scheme applied by Sinan can be found in the

Beyazid Mosque, where the square plans consisting of 16 modules each for the

mosque and the courtyard are equal. The cella in this mosque has the size of six

modules, four covered by the main dome and two covered by the semi-domes at the

sides (de Launay et al. 1873: 15).

Generally, it can be said that in the mosques of the Classical Ottoman period, the

width of the capital on a column inside the mosque is taken as the module. The

height of the columns used in monumental buildings is usually 10–18 times the

radius of the capital. In all the orders used for columns, the radius at the bottom is

the size of six modules and the radius of the top is a five-and-a-half module. In this

connection, it might be useful to remember the orders used in columns: the conical

order (tarz-i mimari-i mahruti); the multiple-plane order (tarz-i mimari-i m€ustevi);
the stepped/crystal order (tarz-i mimari-i m€ucevheri). To define these orders briefly,
it can be noted that the conical order has columns whose maximum height is six

modules. In the multiple-plane order, the height of the whole column, including the

base and the capital, is ten modules. In the stepped/crystal order, which is both

spectacular and sophisticated, the maximum height of the column together with the

base and the capital is 18 modules (Soylemezoglu 1986: 69; Tuncer 1997: 132).

Fig. 53.2 The Süleymaniye mosque. Photo: author
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The relationship between architectural design and mathematics will be discussed

with regards to the drawings of two major mosques designed by Sinan, the Rustem

Pasha Mosque and the Sulemaniye Mosque.

The Rustem Pasha Mosque

Soylemezoglu (1986) studied the geometrical arrangements by using the quadrated

system using the available existing measured drawings of the Rustem Pasha

Mosque (Fig. 53.5).

In this study, the projection of the dome was drawn in a square and then another

square was superimposed on the first one at a 45o angle. An octagon was drawn by

using those squares. The axes of construction were created by the lines drawn on the

corners of this octagon, shown as SA in Fig. 53.5. The axes of the columns, by

which the dome was supported, were found from the intersection of axes SA and

two superimposed squares. The second octagon was drawn by connecting the

centres of columns, shown from 1 to 8. The inner borders of the mosque building

were found by the intersection of the line ZE1 and line CD, and then points K, L, P,
and H. In the second octagon, points G2, G3 and V are given to the outer borders of

the mosque building. Through similar methods, all the necessary points of the

design could be found, such as the outer and inner borders of the spaces, centres

and locations of the columns, etc. (Tuncer 1997: 111). The relationships of the third

dimension on the Rustem Pasha Mosque can be seen in the section in Fig. 53.6. By

using the intersections of the two big circles, which are superimposed on each other,

and six squares, all the necessary points for the creation of the design can be found.

Fig. 53.3 The Shehazade mosque. Photo: author
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The Süleymaniye Mosque

The Süleymaniye Mosque, designed for Süleyman the Magnificant (Kanuni Sultan

Süleyman) between the years of 1550 and 1557, has a centralized plan. The plan

scheme of the mosque (Fig. 53.7) is a perfect square; the main cella was covered by

a huge dome, which was supported by two semi-domes.

Side cellae were covered by five small domes. The mosque has a nice courtyard,

which had aisles all around and four minarets. According to Tuncer, the golden

rectangles BDGH, ACEF, CDIJ and ABMN, which were derived from the main

rectangle ABCD, were drawn. By using the connections of those rectangles, all of

the creative possibilities could be found, such as the inner and outer borders of the

mosque building, the borders of the mosque’s courtyard, etc.

Fig. 53.4 The plan of the

Shehzade mosque.

Drawing: author, after

Goodwin (1997)
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The quadrated system, which was applied to the mosque’s measured drawings,

can be seen in Fig. 53.8.

The side wall axes are drawn on the eleventh and twelfth squares; the axes of the

columns are drawn on the seventh and eighth squares; the axes between the mihrap
and the columns are drawn on the ninth and tenth squares; the axes of the huge

dome are drawn on the third and the fourth squares; the borders of the portal are

drawn on the fifth and sixth squares; finally, the locations of the flying buttresses are

drawn on the first and second squares.

It can be said that similar methods were used in the design of the façades of the

Süleymaniye Mosque. One-quarter of the main module used in the plan was used as

the main module for the creation of the façades. The golden rectangles that were

applied to the design of the façades can be seen in Fig. 53.9 (Tuncer 1997: 111).

Fig. 53.5 The plan of Rustem Pasha mosque. Drawing: author, after Tuncer (1997)
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Conclusion

It can be easily understood from the two examples given above that Sinan’s

architecture defines the Classical period of Ottoman Architecture because of the

sophisticated relationship between the architectural design and mathematics. Sinan

always used a specific space organization that was created in the light of the

structural rules and mathematical rules. By reflecting the idea of functional

design onto the creation of monumental buildings in the pre-modern world, he

became one of the most important and interesting master-builders in history. It may

be said that, even today in our modern age, Sinan’s compositions should be

observed because their rules of functionality reflect the relationships between

architectural design and mathematics.

Fig. 53.6 The section of Rustem Pasha mosque. Drawing: author, after Tuncer (1997)
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Fig. 53.7 The

Süleymaniye mosque. (top)
Plan, after (Tuncer 1997);

(bottom) Design phases

1–4. Drawings: author
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Fig. 53.8 The plan of Süleymaniye mosque with geometrical scheme. Drawing: author, after

Tuncer (1997)

Fig. 53.9 The section of Süleymaniye mosque. Drawing: author, after Tuncer (1997)
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thesis. Yildiz Teknik Üniversitesi, Istanbul.
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Chapter 54

The Mathematics of Palladio’s Villas

Stephen R. Wassell

By . . . showing to what extent [Palladio] was a natural
geometer, we do not make him less the great architect; on the
contrary, we show, in a way that gives more than mere lip
service to the proposition, how great architecture may flow
from geometry

(Hersey and Freedman 1992: 12).

Introduction

Much has been written about the mathematical qualities of Andrea Palladio’s

architecture, including his own I quattro libri dell’architettura. Often this has

been analysed within the context of a larger collection of architectural treatises,

including Vitruvius’ De architectura and Alberti’s De re aedificatoria, as well as
works by contemporaries of Palladio, such as Daniele Barbaro, Cesare Cesariano,

Sebastiano Serlio, and Giacomo Barozzi da Vignola. These Cinquecento writings

underscore the importance of proportion, symmetry and geometry in Renaissance

Italy; for example, Barbaro maintains that “some arts have more of science and

others less,” and the “more worthy (are) those wherein the art of numeracy,

geometry, and mathematics is required” (Puppi 1975: 18). Lionello Puppi

concludes, “Architecture obviously came into this category. . . . Palladio . . . bring
[s] to the concrete stage of his planning operation a single-minded scientific

approach, arrived at through ‘lofty speculation’ into number and proportion”

(Puppi 1975: 18). Rudolph Wittkower asserts, “[t]he conviction that architecture

is a science, and that each part of a building, inside as well as outside, has to be

First published as: Stephen R. Wassell, “The Mathematics of Palladio”s Villas”, pp. 173–186 in

Nexus II: Architecture and Mathematics, eds. Kim Williams, Fucecchio (Florence): Edizioni
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integrated into one and the same system of mathematical ratios, may be called the

basic axiom of Renaissance architects” (Wittkower 1952: 89). Many modern

authors have analysed Wittkower’s thesis that harmonic proportions derived from

musical scales played a central role in the minds and designs of Renaissance

theorists and architects. Central to this debate is Palladio’s oeuvre—his

architecture and his Quattro Libri.
This chapter provides a review of the mathematical aspects of Palladio’s work as

it has been discussed in the literature and offers a novel perspective on his

mathematical approach to architectural design. The argument is made that,

whether or not harmonic proportions played a major role in the beauty of

Palladio’s architecture, it is now time to search further for other mathematical

facets of his design philosophy. For convenience the body of analysis is arranged

in three sections, based on the categories of geometry, proportion and symmetry.

Geometry

One of Palladio’s great gifts was his ability to analyse the ancient and contemporary

architecture of Rome, visualize the key elements of plan, section and elevation, and

extract the forms that were appropriate to his own design needs. His interest in

geometrical form and the process of the extraction of that form from classical

elements of architecture developed throughout his career and may be traced in the

evolution of his villas.

The Villa Godi at Lonedo di Lugo (1540) has a façade devoid of classical orders.1

“The central spine . . . is simply inserted into a rectangular block rather than being

integrated into it by interlocking parts or by the proportions of the plan or elevation”

(Ackerman 1966: 164). The “ornamentation” of the facade is simply the pure form of

the geometry. The Villa Valmanara at Vigardolo (1541) takes this a step further. The

simple façade is articulated at the entrance with a Serlian arch, accented by two oculi

flanking the arch and square window and a third oculus placed well above it. Two

drawings for possible villas from this period also demonstrate Palladio’s early

recognition of the natural elegance of simple geometric forms. The first is a plan

and elevation study for a villa featuring a square perimeter, a biapsidal loggia, and a

cruciform, cross-vaulted salone (Fig. 54.1). This study anticipates the Villa

Malcontenta and the Villa Rotonda. The second drawing is the penultimate plan

and elevation for the Villa Pisani, Bagnolo (Fig. 54.2).

The major difference between paper and building is the hemicyclical portico of

the former. The Villa Poiana at Poiana Maggiore (c. 1548) is an illustration of

Palladio’s geometric interpretation of Roman elements. “The familiar Roman

columns and tabernacles were transformed into cubic blocks in a composition that

depends wholly on geometric form for its effect” (Ackerman 1967).

1 For a detailed discussion of Palladio’s architecture, see Boucher (1994).
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Although his mature villas are not abstracted to the point where architectural

forms give way to purely geometric ones, their treatment is governed by a notable

rigour often mathematical in nature. In the Villa Pisani at Montagnana (1552), the

Fig. 54.1 Study of a ground plan and elevation for Villa Valmarana, Vigardolo. Image:

RIBA31775, by permission of the RIBA Library Drawings & Archives Collections
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salone is square in plan, four free-standing columns marking the central area, with

eight engaged columns and four corner pilasters flanking apses in the corners. The

vaulting system is rich in geometrical intricacy. Several techniques are used by

Palladio to help integrate the entire design in the Villa Cornaro at Piombino

Dese (1552): the squarish salone has a flat beamed ceiling supported by four

free-standing Ionic columns which align with the second and fifth columns of the

Fig. 54.2 Study of a ground plan and elevation for the Villa Pisani, Bagnolo. Image: RIBA31796,

by permission of the RIBA Library Drawings & Archives Collections
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loggias; the Corinthian columns in the upper loggia are 1/5 thinner than the Ionic

columns below, lending them a strong verticality; as with the Villa Pisani, the

entablature of the first-storey loggia is continued around the entire elevation. At

the Villa Badoer at Fratta Polesine (1556) the most purely geometrical of the

experiments with the classical elements is the use of colonnades in the form of

quadrants (quarter circles) to integrate the agricultural outbuildings within the

design of the villa. The rear of the complex of the Villa Barbaro at Maser (late

1550’s) opens onto a hemicyclical nymphaeum, answered by a sweeping

semicircular exedra facing the road at the front of the villa (Fig. 54.3).

Fig. 54.3 Plan and Elevation of the Villa Barbaro from I Quattro Libri. Image: Palladio (1570: II,

xiii, 51)
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The plan of the Villa Malcontenta (also known as Villa Foscari) at Gambarare di

Mira (1560) is dominated by a Latin cross salone with a “semicircular cross vault,”

the impost of which is “as high above the ground as the hall is broad” (Palladio

1997: II, xiv, 128). Of the rear facade, Rowe writes, “it is by vertical extension into

arch and vault, diagonal of roof line and pediment that Palladio modifies the

geometrical asperities of his cube; and this use of the circular and pyramidal

elements with the square seems both to conceal and to amplify the intrinsic

severity of the volumes” (Rowe 1976: 11).

In summary, the main focus of the analysis of plan is the salone, since this is

often the most geometrically powerful room: it is given the form of the Latin cross

in the Villa Malcontenta and the Villa Pisani at Bagnolo, the Greek cross in one of

his theoretical villas (Fig. 54.1), the highly articulated square in the Villa Pisani at

Montagnana, and the pure circle in the Villa Rotonda and the Villa Trissino, which

will be discussed further below.

In Palladio’s mature architectural vocabulary, the elements he chose to extract,

taken from classical Roman architecture, were often geometric in form, in plan and

section but also largely in elevation. In a sense, Palladio developed a geometric

toolkit that included linear, planar and spatial tools, from mouldings and rustication

to arches and oculi to vaults and pediments. As we shall see in the next sections,

Palladio treated most of his classical elements in mathematical ways through the

measured use of proportion and symmetry.

Proportion

Beauty will derive from a graceful shape and the relationship of the whole to the parts, and

of the parts among themselves and to the whole, because buildings must appear to be like

complete and well-defined bodies, of which one member matches another and all the

members are necessary for what is required (Palladio 1997: I, I, 7; similar statements are

found in II, i-ii, 77–78).

These words of Palladio essentially restate principles that Vitruvius and Alberti

had embraced (Vitruvius 1960: I, ii, 13–14 and VI, ii, 174; (Alberti 1986): I, I, 1; VI,

ii, 113; and IX, v, 195). They suggest (at least) two criteria: (1) the parts of a

building must relate among themselves, and (2) the parts of a building must relate to

the whole (and vice versa). However, depending on the interpretation of the first

criterion, the two criteria may be in conflict! Thus it is necessary to consider what

the first criterion meant for Renaissance architects, Palladio in particular. “Parts”

may be defined in different ways. First, consider “parts” as the components of the

orders. These were governed by precise mathematical rules, but different theories

were developed to satisfy different requirements. Palladio had two sources for the

rules he considered legitimate: the authority of Rome, and mathematics.2 He omits

2 For a complete discussion of Palladio’s extensive rules governing the proportion of the orders,

Palladio (1997: xiii–xix, 18–55).
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the anthropomorphic origins of the column types discussed by Vitruvius and

Alberti; he also sides with the direct teachings of antiquity over Vitruvius when

they differ. The aspect of Palladio’s ornamentation that at first seems the least

mathematical is in fact rich in proportional content.

Architectural historians have focused principally on two related aspects of “parts”:

on individual rooms and on their dimensions. The relationships between the length,

width, and height of a room were highly important to Renaissance theorists. The

underlying reason for this is the focus of the debate over harmonic proportions

mentioned in the Introduction. The idea that harmonic proportions are beautiful to

the ear because they are part of a higher universal design and thus should be equally

beautiful to the eye is traced by Wittkower to the Pythagoreans via Plato, who

explained in Timaeus that “cosmic order and harmony are contained in certain

numbers” (Wittkower 1952: 91). Alberti draws on Pythagoras when he “conclude

[s] that the same Numbers, by means of which the Agreement of Sounds affects our

Ears with Delight, are the very same which please our Eyes and our Mind” (Alberti

1986: IX, v, 196–197). Palladio seems somewhat ambivalent on the subject:

He subscribed to the ancient topoi that the macrocosm of the world was reflected in the

microcosm of man and that the rules of architecture refer to the rules of nature, but there is

very little evidence that Palladio treated such concepts as more than metaphors. Indeed he

once remarked appositely that “just as the proportions of voices are harmony to the ears, so

those of measurement are to the eyes, which according to their habit delights [in them] to a

great degree, without it being known why, save by those who study to know the reasons of

things” (Boucher 1994: 239).

Although Palladio makes no specific mention of analogies to music in his

Quattro Libri, there is substantial use of harmonic proportions in that treatise.

One conclusion reached by Deborah Howard and Malcolm Longair (1982:121ff)

in their study of all 44 plans of Book II in order to measure statistically Palladio’s

use of “harmonic numbers” is that about 2/3 of the dimensions followed harmonic

proportions, whereas only 45 %would be harmonic had Palladio picked dimensions

at random. Branko Mitrović contrived an explanation of how √2:1 can be viewed as
a musical ratio using the augmented fourth of a tempered scale. After taking into

account heights as well as lengths and widths, he concludes that Wittkower’s thesis

was more consistent than it seemed (Mitrović 1990: 281–285).

If harmonic proportions really are at work in Palladio’s architecture, does it not

imply that some mathematical proportions are inherently more beautiful than

others? If so, does this not admit the possibility of additional mathematical

components of beauty? But if harmonic proportions are not at work, the search

for the operative factor must need to be expanded! One such operative factor may

lie in pure mathematics.

An examination of the plans of Book II for Palladio’s seven preferred room

shapes found significant evidence that room shapes were more important to him

than harmonic ratios. Howard and Longair suggest that either “Palladio used a

system of musical harmonies . . .; or . . . that he adhered to his own simpler

recommendations concerning room shapes; or . . . that he recognized the practical
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advantages of using simple, easily divisible numbers.”3 Mitrović is more

provocative. He finds that six unexplained ratios are close to √3:1, with the

closest being the four large corner rooms of the Villa Rotonda. Each corner room

has dimensions 26 by 15, which differs from √3:1 by only 0.07 %, a deviation

smaller than the allowable error used in many rigorous scientific experiments!

(Mitrović 1990: 285–286).

The ratio √3:1 is referred to as triangulature since it can be derived as the ratio of
the height of an equilateral triangle to half of the base. Mitrović informs us that this

method was well known in Renaissance times. In fact, Alberti (1955: IX, vi, 199)

describes precisely this construction, but immediately before this, he describes a

construction based on “some other natural Proportions for the Use of Structures,

which are not borrowed from Numbers, but from the Roots and Powers of Squares”

(Fig. 54.4). This construction simultaneously produces the ratios √3:l and √2:1 by

way of a perfect cube, and this may have appealed greatly to Palladio.

Regarding room proportions, many writers have argued that the difference

between a 30 � 30 room and a 29-1/2 � 30-1/2 room might be imperceptible

and that the concept of a proportional system (harmonic or otherwise) is thus

meaningless. This is not the point, however, with Palladio, who governed himself

Fig. 54.4 Illustration of Alberti’s construction of a cube exhibiting the proportions √3 and √2:
“. . .we may consider the Line drawn from one Angle of the Cube to that which is directly opposite

to it, so as to divide the Area of the Square into two equal Parts, and this is called the Diagonal.

What this amounts to in Numbers is not know: Only it appears to be the Root of an Area, which is

as Eight on every Side; besides which it is the Diagonal of a Cube which is on every Side, as

twelve” (Alberti 1986: IX, vi, 199). Image: author, after (Alberti 1986: Pl. 64)

3 Howard and Longair (1982: 136). For the seven preferred room shapes, see Palladio (1997: I, xxi,

57). He recommends circles, squares and rectangles of proportions √2:l, 4:3, 3:2, 5:3 and 2:1. The
last four are harmonic proportions; all are consistent with Vitruvius and/or Alberti, though circles

are discussed only in terms of temples; see Vitruvius (1960: IV, viii, 122–124 and VI, iii,

177–179); Alberti (1955: VII, iv 138–139 and IX, v–vi, 197–199).
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by principles, many of which were mathematical in nature. While it was impossible

for him to capture the ratio √3:l with integers, it was still possible to capture the

principle of the perfect cube, in a sense, by using an extremely close approximation

to this ratio.

Proceeding now with the other interpretation of the first criterion, we may take

whole rooms as the ‘parts’ of a building and consider ways in which multiple rooms

can relate among themselves. This was of explicit concern to Palladio:

But the large rooms should be distributed with the medium-sized, and the latter with the

small rooms in such a way that . . . one part of the building corresponds to the other so that

the whole body of the building would have an inherently suitable distribution of its

members, making the whole beautiful and graceful (Palladio 1997: II, ii, 78).

Wittkower maintains Palladio’s

systematic linking of one room to the other by harmonic proportions was the fundamental

novelty. . . . Those proportional relationships which other architects had harnessed for the

two dimensions of a façade or the three dimensions of a single room were employed by him

to integrate a whole structure (Wittkower 1952: 113).

What, then, was Palladio’s method? A simple answer lay in the restriction of the

dimensions of individual rooms to the “harmonic numbers,” thus the rooms would

relate to each other via harmonic proportions. Another, more ingenious approach is

found in Palladio’s rules for determining the heights of rooms. For flat ceilings, the

height is taken to be equal to the width, h ¼ w. For vaulted ceilings in square

rooms, Palladio’s rule is simply hs ¼ (4/3)w ¼ (4/3)l. For vaulted ceilings in

rectangular rooms, the height is determined in three possible ways, corresponding

to the arithmetic, geometric, and harmonic means: using the arithmetic mean,

ha ¼ (w + l )/2; using the geometric mean, hg ¼
ffiffiffiffiffi
wl

p
; using the harmonic mean,

hh ¼ 2wl/(w + l ). Of course, Palladio uses neither these names nor this modern

notation; his definitions are purely numerical, and he supplies examples with

numbers aligned in particular ways for ease of comprehension. (Alberti defines

the three means in his treatise, naming them arithmetical, geometrical and musical
(Alberti 1986: IX, vi, 199–200). Why Palladio does not use these names is a good

question.) More importantly, Palladio supplements the numerical methods with

illustrations of geometric constructions for each mean, employing a geometric

approach to ensure correct proportional relationships, both within rooms and

between rooms (Fig. 54.5).

Of the use of the three means for the heights of vaulted rooms, Palladio writes,

[W]e should make use of each of these heights depending on which one will turn out well to

ensure that most of the rooms of different sizes have vaults of an equal height and those

vaults will still be in proportion to them, so that they turn out to be beautiful to the eye and

practical for the floor or pavement which will go above them (Palladio 1997: I, xxiii, 59).

This can be done with a (limited) number of Palladio’s preferred proportions in

such a way that the height/width ratios are also among the Mitrović smaller

rectangular rooms of the Villa Rotonda are related to the large corner rooms.

Recall that each corner room has length/width ratio of 26:15, approximately equal
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to √3. The height of the corner room is determined using the arithmetic mean,

ha ¼ (26 + 15)/2 ¼ 20 1/2, so that the height/width ratio is 20 1/2: 15 ¼ 1.3666.

Each smaller room has dimension 15 � 11 (they share a dimension with the large

room), a length/width ratio of 15/11 ¼ 1.3636!4 The closeness of 1.3666 and 1.3636

suggests that Palladio was very careful about the proportional relationships of his

most celebrated villa, and it appears that he relied on pure mathematics as opposed to

harmonic proportions.

Finally, let us turn to the criterion that the parts of the building must relate to the

whole, where we still consider “parts” to be rooms and their dimensions. The

“additive problem,” choosing rooms from a small set of ratios such that they add

to produce another one of these ratios, is not easily solved, especially if the ratios

must be commensurate.5 Therein lies the inherent conflict between the two criteria.

Order may be introduced through the use of a square grid, as, for example, a 3 � 3

square grid containing only the ratios 1:1, 3:2, 2:1, and 3:1 (as opposed to a generic

3 � 3 grid, which can have as many as 36 different ratios embedded in it6) but this

may not always be either practical or aesthetically pleasing. Often the most

interesting solutions involve incommensurate ratios based either on √2 or √5.
Though solutions may be found with commensurate ratios, Scholfield notes,

“Palladio omits the overall dimensions from his plans, and so avoids the problem

of adding the separate dimensions together . . . His system of proportion integrates

the whole structure in the sense that it links the parts, or separate rooms, to each

other, but it still fails to relate them to the whole” (Scholfield 1958: 64). Howard

and Longair addressed this while trying to discover whether or not Palladio used

wall thicknesses to help develop additive solutions, (Howard and Longair 1982:

e
e

a f
f

b b b

c c
d

d

dA

g
c

f

e a

Fig. 54.5 Palladio’s constructions for the three means (equations 3–5) from theQuattro Libri. For
those wishing to verify Palladio’s definitions, use the Pythagorean theorem on the second and

similar triangles on the third. Image: Palladio (1570: I, xxiii, 53–54)

4Mitrović (1990: 289–291). Both decimal figures are close approximations of (l + √3)/2; for those

interested in pure trigonometry, this equals sin 30� þ cos 30� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos 30�

p ¼
ffiffiffiffiffiffiffiffiffi
1þ ffiffi

3
p
2

q
.

5 Although Palladio did allow himself the use of approximations of the incommensurate ratio √2:1,
he did not use it very often; see Howard and Longair (1982: Appendix, Table A4, 141–143), where

this ratio is found only four times out of over one hundred entries.
6 For more on the additive problem, see Scholfield (1958: 132–134).
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128–129) concluding that in some cases he did use wall thicknesses, while in others

he missed opportunities to use them.

In fact, Palladio recognized the occasional need to bend the rules, as his

instructions on correct vault heights indicate: “There are other heights for vaults

which do not come under any rule, and the architect will make use of these

according to his judgment and practical circumstances” (Palladio 1997: I, xxiii,

59). Many of his rules for dimensions of doors and windows are practical rather

than being based on abstract mathematics or harmonics. “Palladio’s intelligence

and experience would not have allowed him to suggest that a single proportional

theory alone would enable one to design a beautiful building, any more than a

musician could compose a great symphony merely with a knowledge of harmony

and counterpoint” (Howard and Longair 1982: 137). Indeed, Palladio’s toolkit

contained many tools, including one that was especially effective in solving the

problem of relating the parts to the whole.

Symmetry

The discussion of proportion often focuses on the rooms flanking the salone,
especially with consideration to the relationships of sequences of rooms to each

other. Palladio’s commitment to symmetry, simply yet forcefully expressed, ties

these elements together into a cohesive whole. His main paradigm is reflective

symmetry, the type of symmetry found in the bodies of so many of Earth’s

creatures. Palladio usually employs “a triadic composition with a central block

built around the axis of the entranceway, and two symmetrical flanking blocks. . . .
The design was thus tightly knit as an organism” (Ackerman 1966: 160–161).7 The

major events of his designs occur on axis, both in plan and in elevation, relating the

two to achieve a more integrated whole. Further, no walls are aligned on top of the

axis, and there are almost invariably doors at the perpendicular intersection of walls

with the axis, so that one has the pleasure of experiencing the design from anywhere

on the axis.

Palladio uses an especially rich symmetry in the Villa Rotonda and the Villa

Trissino at Meledo di Sarego.8 Both are sites on hilltops with excellent views in all

directions. Palladio uses the sacred circle for the shape of the salone and provides

loggias on all four sides, creating two perpendicular axes of symmetry that result in

180� rotational symmetry.9 The clarity of geometry and depth of symmetry make

these villas two of Palladio’s most influential designs.

7 See also Ackerman and James (1967: 11–12).
8 The latter was designed ca. 1567 but never completed, see Palladio (1997: II, iii, 94–95 and II, xv,

138); Puppi (1975: 384–388).
9 To be precise, the rotational symmetry is broken in the Villa Trissino by the forecourt, the arcades

of which project from the central block in quadrants as with the Villa Badoer. The Villa Rotonda,
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The symmetry concept underwent a rapid evolution during the Renaissance

(Hersey and Freedman 1992: 15–37). Symmetry’s original meaning was closer to

our concept of commensuration or correspondence in measure, and related more to

proportion than to our modern concept of symmetry. Vitruvius often employed the

term along with the concept of proportion, as in the phrase “symmetrical

proportions” (Vitruvius 1960: VI, ii–iii, 174–180). Hermann Weyl writes:

[i]n the one sense symmetric means something like well-proportioned, well-balanced, and

symmetry denotes that sort of concordance of several parts by which they integrate into a

whole. Beauty is bound up with symmetry. . . . [T]he second sense in which the word

symmetry is used in modern times [is] bilateral symmetry” (Weyl 1952: 3–4).

When symmetry took on its current meaning “the word’s ancient association

with ‘beautiful’ probably strengthened the idea that a design with two identical

halves was more beautiful than one without” (Hersey and Freedman 1992: 16). In

addition to bilateral or reflective symmetry, translatory and rotational symmetry

were also regarded as common denotations of symmetry. Wittkower points out that

Alberti, Leonardo, Francesco di Giorgio, and Serlio were quite intrigued by central

plans for churches (Wittkower 1952: 1–28, plates 1–13), their drawings showing an

explicit interest in rotational symmetries.

Because Vitruvius prescribed symmetry only for public buildings, the use of

symmetry for house plans in the Quattrocento “required vigorous reinterpretation”

(Hersey and Freedman 1992: 31). To this end, Cesare Cesariano was more than

willing to “clarify and extend” Vitruvius’ notion of symmetry so that it applied to

domestic as well as public architecture (Hersey and Freedman 1992: 33). Daniele

Barbaro insisted that private houses should be equipped with all the refinements of

public buildings, including the rigours of proportion and symmetry. Palladio’s

illustrations for Barbara’s edition of Vitruvius include a plan, section and

elevation exhibiting the hybrid design.

For his part, Palladio justified symmetry on structural grounds:

Rooms must be distributed at either side of the entrance hall, and one must ensure that those

on the right correspond and are equal to those on the left so that the building will be the

same on one side as on the other and the walls will take the weight of the roof equally [. . .]
if the rooms on one side are made large and those on the other side small, the former will be

more capable of resisting the load because of the thickness of their walls, while the latter

will be weaker, causing grave problems. (Palladio Palladio, Andrea 1997: I, xxi, 57).

Renaissance theorists, including Palladio, had thoroughly convinced themselves

that symmetry, at very least reflective symmetry, was the only correct design

choice. Though he did not give an anthropomorphic rationale for symmetry, he

did use the analogy of the human body in explaining the proper placement of rooms.

There are, in fact, many rationales for and interpretations of symmetry besides the

anthropomorphic and economic. The kinaesthetic rationale is related to the

experience of architectural space:

on the other hand, has essentially 90� rotational symmetry, except that the rectangular rooms do

not quite align in 90� rotation.
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[a] single axis of symmetry in a space impels the spectator smoothly along it, whereas two

precisely balancing cross-axes . . . as in . . . the Villa Rotonda, impart a sense of static

serenity (Tabor 1982: 21).

For Palladio, despite his structural claims, a combination of the political and

aesthetic arguments seems to be at work. On the one hand, the link through

Vitruvius to Rome provided legitimacy; on the other, the use of symmetry went a

long way towards solving the aesthetic problem of relating the parts to the whole.

Conclusion

Palladio exhibits a strong interest in geometry, both in the crafting of architectural

spaces and in geometric constructions for the correct design of architectural

elements and their interrelationships. We have explored Palladio’s concern with

the proportional relationships of parts among themselves and to the whole, as in the

elements of the orders and in the dimensions within and between rooms.

Concerning the latter, the whole numbers and occasional simple fractions used

are chosen for a number of reasons: to employ proportions suggested by Vitruvius

and Alberti, possibly informed by analogies to musical theory; to reference

proportions derived from simple, pure geometry; and to provide practical

solutions to the problems of a particular design. Finally, Palladio’s consistent use

of symmetry was an aesthetically pleasing and seemingly correct way to link plan

and elevation into a cohesive whole.
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Chapter 55

Golden Proportions in a Great House:

Palladio’s Villa Emo

Rachel Fletcher

Build them. . .with such proportions that together all the
parts convey. . .a sweet harmony.
–Palladio, I Quattro libri, Book IV, Foreword (1997: 213)

Introduction

Among the great houses of the Renaissance is Palladio’s Villa Emo at Fanzolo in

Northern Italy, built in the late 1550s by Leonardo Emo to realize a family seat in

the country. Created originally to support a farming economy in grain, spinning

mills and, eventually, maize, or Indian corn, from the New World, the villa until

recently belonged to the Emo family for 18 continuous generations and was family

farmed. The estate, which consisted of some 300 ha at the time of Palladio, lies on

an open plain in Italy’s Veneto region, the terrafirma countryside where Venetian

Renaissance patricians developed farm retreats to escape the city heat, diversify

family holdings, and develop food-producing economies.1

Villa Emo is the collaboration of its founding owner Leonardo Emo, architect

Andrea Palladio, and fresco painter Giovanni Battista Zelotti. Leonardo’s scheme

united a diverse community of nobles, landowners, farmers, peasants, craftsmen,

and artists about a single site. To support Leonardo’s social vision, Palladio

An earlier version of this chapter was published as: Rachel Fletcher, “Golden Proportions in a

Great House: Palladio’s Villa Emo”, pp. 73–85 in Nexus III: Architecture and Mathematics,
ed. Kim Williams, Ospedaletto (Pisa): Pacini Editore, 2000.

1 According to recent scholarship, the patron who commissioned Palladio to build Villa Emo was

Leonardo Emo, who died in 1586. He was the grandson of the Leonardo Emo who owned and

made improvements to the land in Fanzolo, likely had plans to build on it, and who died in 1539.

The date of Villa Emo is uncertain, but is believed to have been built c.1558 (Beltramini 2008: 11;

communication with Caroline Emo: October, 2001; May, 2012).
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connected luxurious family quarters to practical farm buildings, then situated the

villa complex to face nearby peasant dwellings of the villa’s borgo, or hamlet.

Natural Harmony

At Villa Emo, Palladio blended Vitruvian rules of measure with local customs by

combining the grace and elegance of classical mathematical proportions with

sustainable methods of farm planning and landscape siting. The long arcaded

wings flanking the central block derive from vernacular farm dwellings, or

barchesse, and, prior to modern-day renovations, were fitted with granaries on the

first floor, storage rooms on the ground floor, and dovecotes on the outer ends. The

villa is situated to promote energy and health and utilizes sun and wind for heating

and drying. The entire complex faces approximately 10� east of south, receiving

direct solar gain earlier in the winter day. The orientation aligns with the ancient

Via Postumia and a landscaped grid of cultivated fields, dating to late Roman times,

and with an owner-improved canal and irrigation system introduced prior to

Leonardo’s occupancy. At one time, water drawn from the Brentella, an artificial

canal diverted from the Piave River, serviced the villa’s fields on an 11-day cycle

and powered mills for grinding corn.2

Villa Emo is sited with respect to the cardinal points. Taking into account the 10�

solar adjustment, a hill of the distant Asolo range to the rear and an open avenue of

poplars planted in front mark north and south, respectively. The spacious

colonnades project into the countryside and express east and west. The axes

converge at the central block, where lofty rooms on the main floor (piano nobile)
are decorated with frescoes by Zelotti that depict mythological subjects and scenes

of agrarian life. An open corridor extends through the portico and central hall

(sala), lightening the overall mass and producing an interior to exterior flow.

Palladio’s methods for harmonizing buildings with their physical surroundings

borrow from rural traditions and local farm customs. The villa’s south-facing

ramped entry in front may have served as a threshing floor, where grain could be

spread in the sun to air and dry.3 Palladio adopted a number of classical rules for

building, originally recorded in De architectura libri decem (Ten Books on
Architecture), the master treatise of ancient Roman author and architect Marcus

Vitruvius Pollio. Vitruvius is well known for applying mathematical proportions to

a building’s measures, but was equally adept at achieving harmony in more

pragmatic and natural ways.

2Water rights were awarded by 1536 to the senior Leonardo who made improvements to the land

(Beltramini 2008: 11; communication with Leonardo Marco Emo Capodilista: December, 1993;

Cook (n.d.): 4; Favero 1972: 13–14).
3 The date of the ramp and its attribution to Palladio are questioned, but its presumed function as

a threshing area is in keeping with the owner’s agricultural vision. Structural components

underneath suggest it is contemporary with the original project (Fondazione Villa Emo Onlus).
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Vitruvius recommends running water and moving air for cooling and

purification, and orienting different room types to specific light exposures. Winter

dining rooms and baths ought to face southwest to receive the early evening light

and warmth of the winter’s setting sun. An eastern orientation permits bedrooms to

receive morning light, prevents the contents of libraries from discoloring and decay,

and moderates the temperature of spring and autumn dining rooms as the sun travels

westward through the day. Meanwhile, summer dining rooms, studios, and picture

galleries face north to avoid the summer heat and take advantage of indirect light

protection (Vitruvius 1960: 180–181; Vitruvius 1999: 80, 260).

Inspired by Vitruvius, Palladio promoted similar rules in his own architectural

masterwork I quattro libri dell’architettura (The Four Books on Architecture). The
owner’s house should connect to farm buildings by long colonnades that provide

undercover passage, shade, and fuel wood protection. Haylofts should open to the

south or west to prevent fire and fermentation. Wine cellars exposed to indirect

eastern or northern light prevent the wine from weakening. Storerooms and granaries

should be elevated, well vented, and face north to stay wind cooled and dry.

Threshing floors should be spacious and face south for full sun exposure (Palladio

1997: 123). At Villa Emo, storerooms along the barchesse open to the south, but the
loggias are sufficiently wide to accommodate wind cooling and shade protection.

Harmony in Number

In addition to these vernacular methods for integrating built forms and the natural

landscape, harmony appears mathematically in the villa’s dimensions. In fact, there

are two distinct versions of Villa Emo—the plan that Palladio published in I quattro
libri and the villa he actually built and that survives today. The discrepancy between
the two was known as early as the 1770s when Ottavio Bertotti Scamozzi published

Le fabbriche e i disegni di Andrea Palladio and attempted to reconcile the built and

published versions of Palladio’s works (Bertotti Scamozzi 1976: 75–76).

Palladio’s published plan of Villa Emo is measured in Vicentine feet, or piedi,
and describes a central block that consists of a 27 � 27 central hall, or sala, and
additional rooms of 12 � 16, 12 � 27, 16 � 16, and 16 � 27 framing the hall and

portico (16 � 27) (Fig. 55.1).

Various chambers in the wings measure 12, 24, and 48 piedi across. Rudolf
Wittkower, interpreting Italian humanist and architect Leon Battista Alberti, and

classical scholar Francis M. Cornford, commenting on Plato’s Timaeus, have

identified these measures in a mathematical system of harmony that is consistent

with the whole number ratios of musical consonance. The numbers of music

emerge when harmonic and arithmetic means are applied to the geometric

sequences 1, 2, 4, 8 and 1, 3, 9, 27 that comprise the Platonic lambda.4

4 The numbers in each series are multiplied by the number six (Plato 1948: 66–72; Wittkower

1971: 110–111).
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Alberti, whose De re aedificatoria (On the Art of Building in Ten Books) was the
first architectural treatise of the Renaissance, revived the ancient theories of

Vitruvius, Plato, and the Pythagoreans, and translated these numbers of musical

consonance into spatial ratios and proportions: “The very same numbers that cause

sounds to have that concinnitas, pleasing to the ears, can also fill the eyes and mind

with wondrous delight” (Alberti 1988: 305). Thus evolved architectural rules for

orchestrating a building’s individual measures and harmonizing the parts with the

whole.

At Villa Emo, Wittkower explains that the chambers in ratio 16:27 would be

viewed as a compound ratio generated from 16:24:27 and comprised of 16:24 and

24:27. In music, this translates to a fifth (16:24 or 2:3) and a major tone (24:27 or

8:9). The 12 � 27 room would read 12:24:27, or an octave (12:24 or 1:2) and a

major tone (24:27 or 8:9). Meanwhile, the measures of 12, 24, and 48 in the wings

express two musical octaves.5 Lionel March observes still more connections to the

lambda, and to the Pythagorean 3:4:5 right triangle (March 2001: 96–100).6

Fig. 55.1 Plan and façade elevation of Palladio’s Villa Emo by Andrea Palladio, 1570. Image:

Palladio (1570: II, xiiii, 55)

5 As Wittkower puts it, the measures would read (24:12:48) or (2:1:4), with 1:4 expressing two

octaves (Wittkower 1971: 131).
6March’s article was written as part of a debate with (Fletcher 2001).
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Symmetry and Proportion

The appearance of musical ratios in the measures of Villa Emo reflects the

Renaissance quest for order in structure and harmony in measure. From classical

times, a quadrivium of mathematical arts codified theoretical mathematics into four

distinct studies and provided a basis for order and harmony in numeric terms. One

reference to the quadrivium appears in Plato’s Republic. Besides music, or

harmonics, which addresses the laws of audible motion; arithmetic is the theory

of pure number; geometry, both plane and solid, conveys the eternal nature of

mathematical objects; and astronomy codifies the pure laws of bodies in motion

(Plato 1945: 235–250). This fourfold curriculum had far-reaching implications in

the classical world and was a cornerstone of Plato’s view of creation and doctrine of

unity, which he defined as harmonized diversity.

AГEΩMETPHTOΣ MHΔEIΣ EIΣITΩ

Inscribed at a later time over the door of Plato’s Academy, the school founded by

the Greek philosopher in Athens, this phrase from Euclid translates to: “Let no one

ignorant of geometry enter.” To Plato, mathematical symmetry demonstrated that

the universe is alive and endowed with intelligence, purpose, and order, with

number essential to its creation and geometric proportion a means of unifying its

endless variety. The Timaeus (32d) presents a universe “in the fullest measure a

living being whole and complete, of complete parts” (Plato 1948: 52). Thus, it is

called kosmos, the Greek word for “order,” “good order” and “form.” Before Plato,

Pythagoras proclaimed that, “All things accord in number” (Iamblichus 1986: 87).

To most people, “symmetry” is the division of space into identical fragments, as

in the bilateral organization of elements in anatomy, or the axial arrangement of

crystals where the whole is divided into identical parts and uniformly distributed

around a point, line, or plane. But “symmetry” can be synonymous with the quality

of harmony that relates unique and individual differences. The Greek for

“symmetry” is symmetria, which means “suitable relation” and “due proportion.”

In physiology, it refers to the harmonious working of the bodily functions,

producing a healthy temperament or condition. In this context, “symmetry” is

synonymous with “proportion,” which means “the harmonious relation of parts to

each other or to the whole.”

Incommensurable Proportions

In addition to the whole number ratios of musical harmony, the Timaeus introduces
a set of incommensurable ratios that characterize geometry’s elementary shapes and

achieve proportion in yet another way. Here, Plato’s Demiurge, a divine creator and

craftsman, organizes the elemental world by endowing fire, air, water, and earth

with certain mathematical properties of regular solid bodies. Specifically, the planar
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faces of different volumes divide into constituent triangles. Two 30�–60�–90�

triangles comprise each equilateral triangular face of the tetrahedron, octahedron,

and icosahedron, which Plato associates with fire, air, and water, respectively. Two

45�–45�–90� triangles comprise each square face of the hexahedron or cube, which

Plato assigns to earth (Plato 1948: 210–218).7 Briefly mentioned is a fifth

construction used “for the whole, making a pattern of animal figures thereon.” It

is assumed Plato means the dodecahedron, whose 12 pentagonal faces represent the

signs of the zodiac and are comprised of 36�–72�–72� isosceles triangles (Euclid

1956: II, 98–99; Plato 1948: 218–219).

The specific connection between these geometric shapes and elementary material

particles is not made clear. As Cornford explains, Plato’s cosmology is not an exact

account of the physical laws of modern science, but rather a poetic statement about

the imposition of exact mathematical principles on the sensible world to bring order

out of chaos and produce “an intelligent and intelligible design” “made after the

likeness of an eternal original” as near as possible (Plato 1948: 30–33, 36, 39).

Together, the tetrahedron, octahedron, icosahedron, cube, and dodecahedron

constitute the regular or “Platonic” solids.8 By describing their constituent

triangles, Plato introduces a set of incommensurable ratios that cannot be

expressed in whole numbers, but that inhabit the elementary shapes of geometry

precisely. The half-side and altitude of any equilateral triangle (or the two sides of a

30�–60�–90� triangle) are in ratio 1:1.7320. . . or 1:√3. The side and diagonal of any
square (or the side and hypotenuse of a 45�–45�–90� triangle) are in ratio 1:1.4142. . .
or 1:√2. And the side and diagonal of any regular pentagon (or the short and long

sides of a 36�–72�–72� triangle) are in ratio 1:1.6180. . . or (1:√5/2 + 1/2). This ratio

is commonly known as the “golden mean,” “golden section,” or “extreme and mean”

ratio, and is written 1 : ϕ (Fig. 55.2).

The incommensurable ratios that characterize these regular geometric shapes

have the potential to divide space proportionally, as they replicate through endless

divisions and relate one level of subdivision to the next. Twentieth-century artist

and scholar Jay Hambidge calls this method of spatial composition “dynamic

symmetry,” which he observes in the way that root rectangles divide into

reciprocals, or smaller rectangles of the same proportion (Hambidge 1967). A

1:√2 rectangle divides continuously into two reciprocals in root-two ratio. The

area of each reciprocal is one-half the area of the whole (Fig. 55.3).

7 Each triangular face divides further into six constituent 30�–60�–90� triangles and each square

face divides into four 45�–45�–90� triangles. Thus, the four triangular faces of the tetrahedron

contain 24 right triangles. The eight triangular faces of the octahedron contain 48 right triangles.

And the 24 triangular faces of the icosahedron contain 120 right triangles. The six square faces of

the cube contain 24 right triangles. In this way, Plato is able to pose mathematical formulas that

describe how elements transform into one another.
8 Each regular solid is a convex polyhedron in which: all faces are the same; all faces are regular

polygons (squares, triangles, or pentagons); the same number of edges meet at each vertex; and all

vertices touch the surface of a circumscribing sphere.
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A 1:√3 rectangle divides continuously into three reciprocals in root-three ratio.

The area of each reciprocal is one-third the area of the whole (Fig. 55.4).

The rectangle in ratio 1:1 : ϕ is called a whirling square rectangle because it

divides continuously into a reciprocal and a square (Fig. 55.5). Harmony is

sustained each time the governing incommensurable ratio repeats at a new spatial

level.

The Golden Section

The golden mean, or golden section, provides a remarkably efficient way to achieve

unity among a diversity of elements, for it increases simultaneously by geometric

progression and simple addition. This unique characteristic may account for its

appearance in natural form and human anatomy.

The ratio is identified by the Greek letter phi (ϕ ¼
ffiffi
5

p þ1
2

or 1.618034. . .), after the

Greek sculptor Phidias. It is found when a line divides into two unequal lengths

such that the shorter length relates to the longer in the same way as the longer length

relates to the whole. If the whole equals 1, the proportion translates to 1
ϕ2 :

1
ϕ :: 1

ϕ

Fig. 55.2 Incommensurable ratios in basic geometric shapes

Fig. 55.3 Root-two rectangle and reciprocals
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: 1
ϕ2 þ 1

ϕ

� �
or 1. The reciprocal of phi (1ϕ) equals (√5/2 � l/2) or 0.6180. . .. The ϕ

number sequence increases by geometric proportion (1ϕ : 1 :: 1 : ϕ) and by simple

addition (1ϕ þ 1 ¼ ϕ), since each new term is the sum of the previous two.

1
ϕ3

1
ϕ2

1
ϕ 1 ϕ ϕ2 ϕ3. . .

0.236. . . 0.382. . . 0.618. . . 1.0 1.618. . . 2.618. . . 4.236. . .

Although some do not agree, the extreme and mean proportion frequently

appears in nature, from sunflowers, apple blossoms, and daisies in the plant world

to spiral shells beneath the seas. Allowing for individual differences, the

proportions of the human body demonstrate golden mean geometry. Fingers

divide at the joints in golden mean progression. The face generally conforms to a

golden mean rectangle. The tradition of rendering the human body divided at the

navel in golden ratio dates to ancient Egyptian times and continued in the twentieth

century with Le Corbusier’s Modulor.9

The spiral-like triton shell approaches golden mean proportions, when viewed in

cross section. Its central pillar or stem divides continuously in golden ratio, similar

to the way that human fingers divide at the joints (Fig. 55.6a, b). Each curved whorl

Fig. 55.4 Root-three

rectangle and reciprocals

Fig. 55.5 Rectangle of

whirling squares

9 A condition of the Egyptian system is that a small portion of the crown is subtracted from the total

height (Le Corbusier 1980: I: 50–51; Schwaller de Lubicz 1998: 325).

128 R. Fletcher



of the triton approximates a portion of the same golden mean spiral-like figure

(Fig. 55.6c).10

As a mathematical principle, the extreme and mean ratio appears as early as

Euclid, if not before (Heath 1981: I, 168). But the origin and history of its use in art

and architecture are rigorously debated. Opponents are careful to distinguish phi as
a mathematical principle from its design application. Marcus Frings argues that the

golden ratio does not appear in the canon of proportion attributed to Vitruvius and,

therefore, architects and artists of the Renaissance who rediscovered Vitruvian

principles are unlikely to have adopted it (Frings 2002: 9–20).

Golden Proportions at Villa Emo

And yet, golden mean proportions appear in the constructed Villa Emo. In 1967,

architects Mario Zocconi and Andrzej Pereswet-Soltan completed a definitive

survey for the Centro Internazionale di Studi di Architettura Andrea Palladio (C.I.

S.A.). The plan and elevation from that survey (Figs. 55.7 and 55.8) provided the

Fig. 55.6 (a, left) The central pillar of a triton shell divides in golden ratio; (b, centre) human

fingers divide at the joints in golden progression. Photo: George Leisey for Brattleboro Museum &

Art Center, Brattleboro, VT; (c, right) the curved whorls of the shell approximate a portion of the

same spiral-like figure

10 In a true logarithmic or equiangular spiral, a radius vector “makes a constant angle with the

tangent to the spiral.” For a given angle of rotation, the distance from the pole is multiplied or

divided by a specific amount. Each point on the spiral develops from the same center or pole, and

the radius vector changes constantly (Sharp 2002: 59–62). The spiral in Fig. 55.6c resembles a

logarithmic spiral in ϕ ratio, but its individual arcs develop from different points and the radius

vector remains constant until a new arc is taken.
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basis for the geometric analysis that follows. The discrepancy between the built

plan and Palladio’s published version is subtle, but sufficient to allow for a different

proportional system (Favero 1972: 31–32). In the built version, the golden ratio

prevails throughout the elevation and plan, appearing repeatedly in the building’s

measures, from the overall proportions of the central block to the placement of

individual doors and fireplaces.

The plan of the central block is not perfectly square, but proportioned to a circle

inscribed by two smaller squares (Fig. 55.9). Room dimensions on the first floor

are in golden mean ratio. The system of dividing a golden rectangle into a square

and reciprocal golden rectangle is evident (Fig. 55.10). The central passage is in

golden proportion (Fig. 55.11). The placement of doors and fireplaces derives from

a regular pentagon whose base is drawn on the front edge of the portico (Fig. 55.12).

Approximate golden mean spirals flow through the scheme (Fig. 55.13).

Fig 55.7 First-floor plan of Palladio’s Villa Emo, Fanzolo. Survey drawing by Mario Zocconi and

Andrzej Pereswet-Soltan (1977: Pl. III). Reproduced by permission
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On the front façade of Villa Emo, double squares delineate the flanking walls.

The diagonals of the double squares locate the endpoints of the hip of the roof, in

golden mean proportion (Fig. 55.14). Proportions derived from other geometric

shapes are present. A rectangle proportioned to the half-side and altitude of an

equilateral triangle, in ratio 1:√3, defines the height and width of the upper two

Fig 55.8 Façade elevation of Palladio’s Villa Emo, Fanzolo. Survey drawing by Mario Zocconi

and Andrzej Pereswet-Soltan (1977: Pl. VI). Reproduced by permission

Fig 55.9 The plan of the central block is not perfectly square, but proportioned to a circle

inscribed by two smaller squares. Overlay: author
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stories (Fig. 55.15). But golden mean proportions dominate the façade overall

(Fig. 55.16).

Total Harmony

Palladio’s design reflects an integrated system of proportion in which a simple

geometric theme binds plan and elevation, interior and exterior, and whole and part

to achieve dynamic unity in three dimensions. Harmony is preserved at Villa Emo

not merely in the style and proportions of the architect’s classical building, but in

numerous aspects of villa life. The villa sustained a nurturing agricultural

relationship with the land for more than four and a half centuries.

Fig 55.10 Room dimensions are in golden mean ratio. The system of dividing a golden rectangle

into a square and reciprocal is evident. Overlay: author
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In I Quattro libri, Palladio recommends that houses and temples be built “with

such proportions that together all the parts convey to the eyes of onlookers a sweet

harmony. . .” (Palladio 1997: 213). Villa Emo achieves beauty and integrity not

merely in the mathematical design of spatial elements, but in the blending of

mathematical proportions with organic methods of land-use planning and siting.

Ultimately, Palladio’s vision of harmony evokes the heavens as a pattern for

architecture. As celestial revolutions produce the seasons, each in its proper place

and all in agreement, architecture should orchestrate the elements of building,

landscape, and the human community so that beauty will arise from “the

relationship of the whole to the parts, and of the parts among themselves and to

the whole” (Palladio 1997: 7, 213). To this Villa Emo aspires in each particular.

Fig 55.11 The central passage is in golden proportion. Overlay: author
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Fig 55.12 The placement of doors and fireplaces derives from a regular pentagon whose base is

drawn on the front edge of the portico. Overlay: author
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Fig 55.13 Approximate golden mean spirals flow through the scheme. Overlay: author

Fig. 55.14 Double squares delineate the flanking walls. Their diagonals locate the endpoints of

the hip of the roof, in golden proportion. Overlay: author
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Fig. 55.15 A rectangle proportioned to the half-side and altitude of an equilateral triangle locates

the upper two stories. Overlay: author

Fig. 55.16 Golden mean proportions dominate the façade. Overlay: author
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Chapter 56

The Hidden Pavement Designs

of the Laurentian Library

Ben Nicholson, Jay Kappraff, and Saori Hisano

Introduction

Although standard measure may have been used in ancient civilizations to measure

fields or for other practical considerations, it is fair to assume that the architectural

masterpieces of antiquity were created by using the elements of pure geometry. It is

our conjecture that the architects of antiquity used various geometrical tools of the

trade: the Sacred Cut, based on √2 geometry; a geometrical construction based on

the geometry of the half-square, discovered by Danish engineer Tons Brunés

(Brunés 1967) and referred to by us as the Brunés star; the square-within-a-square
(ad quadratum); circle grids; a system of proportions originating in ancient Rome;

the law of repetition of ratios (Kappraff 1998).

There is scant evidence to support the use of this sacred geometer’s tool kit since

there are few records of the architects’ plans for these ancient structures, but several

scholarly investigations have been made of ancient Roman rains that support our

point of view (Watts and Watts 1986: 132–139, 1987: 265–276). However, even in

First published as: Ben Nicholson, Jay Kappraff and Saori Hisano, “The Hidden Pavement Designs

of the Laurentian Library”, pp. 87–98 in Nexus II: Architecture and Mathematics, ed. Kim
Williams, Fucecchio (Florence): Edizioni dell Erba, 1998.

B. Nicholson (*)

School of the Art Institute of Chicago, 36 South Wabash, Chicago, IL 60603, USA

e-mail: bnicholson@saic.edu

J. Kappraff

Department of Mathematics, New Jersey Institute of Technology, University Heights, Newark,

NJ 07102, USA

e-mail: Kappraff@njit.edu

S. Hisano

2-4-16-503 Nishikicho, Aobaku-ku, Miyagi, Sendai-shi 980-0012, Japan

e-mail: saorikojin@gmail.com

K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to
the Future, DOI 10.1007/978-3-319-00143-2_9,
© Springer International Publishing Switzerland 2015

139

mailto:bnicholson@saic.edu
mailto:Kappraff@njit.edu
mailto:saorikojin@gmail.com


these instances there is a great deal of speculation. Therefore, Ben Nicholson’s

detailed study of a series of geometric pavement designs executed in terracotta that

lie beneath the floorboards of the Laurentian Library in Florence and his

investigation of their geometry is of great interest. The results of his work have

given additional evidence of the use of the sacred geometer’s tool kit.

The Laurentian Library

In 1774, a portentous accident occurred in the Reading Room of the Laurentian

Library, designed by Michelangelo (Nicholson 1997). The shelf of desk

74, overladen with books, gave way and broke. During the course of its repair,

workmen found a red and white terracotta pavement hidden for nearly 200 years

beneath the floorboards. The librarian had trapdoors, still operable today, built into

the floor so future generations could view these unusual pavements. In 1928 another

mishap resulted in the exposure of the entire pavement, which allowed photographs

to be made of the 15 panels on the West side of the library before the wooden floor

was replaced.

Overall the pavement consists of two side aisles and a figurative centre aisle.

Each side aisle is composed of a series of 15 panels, each measuring about

80600 � 80600, and is of a different design. The 15 panels mirror each other’s form

but differ by a very small degree and in subtle ways. When juxtaposed in a series,

the 15 pairs of panels appear to tell a story about the essentials of geometry and

numbers. Each panel settles upon a theme: the tetractys (Panel 5); Brunés’s star, √2
and the Sacred Cut (Panels 7 and 11); Plato’s lambda (Panel 14); the Golden Mean

(Panel 13). When assembled together they form an encyclopedia of the essential

principles handed down from ancient geometers.

Although they are hidden from view today, Nicholson believes that the panels

were laid according to a plan for a furniture layout that would have exposed them,

but that this plan was changed after the panels had been made. He suggests that the

original intention was to infuse the spectator with the foundations of ancient

geometry as he walked through the Reading Room of the Laurentian Library, the

geometry being a perfect complement for the 3,000 classical texts chosen to reveal

the body of ancient and modern learning.

Interpreting the Pavement

Ben Nicholson has worked with students over a 10-year period to reconstruct the

system that the team of geometers and theologians, which may have included

Michelangelo, used to create the original panels. He has recently collaborated

with artist Blake Summers and architecture graduate student Saori Hisano to

replicate all 15 panels at full scale. Working largely with straightedge and
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compass, Nicholson and his team have stumbled upon ancient tenets of geometry

which have been infused with an ingenious Mannerist twist to promote ideas of

irrationality and void, criss-crossed with the witty numerical conundrums so

admired in the late Renaissance.

At first glance, the panels appear to be square. However, curious irregularities

guide the dimensioning of each panel. Each panel is set into a rectangular frame that

measures approximately 4 braccia (233 cm) by 4 1/4 braccia (248 cm), but the size

of each panel is slightly different. Nicholson proposes that the geometric grids and

numerology in the pavement respond to the essential theological and scholastic

questions posed in the sixteenth century. For example, Plato’s lambda orders panel
14, which is aligned in its general appearance with descriptions in the Timaeus
setting the lambda within four interconnecting circles (Fig. 56.1).

Nicholson’s proposition that each pair of panels differs very slightly from East to

West now becomes relevant to the discussion. For example, there is evidence to

suggest that Panel 14 East is laid out on a grid of 81 parts, and that Panel 14 West is

laid out on a grid of 80 parts. The ratio 80:81 is a measure of the comma’s

difference between the Pythagorean and Just musical scales (Kappraff 1998). Can

these matters have been intentional? In the remainder of this chapter, we shall

present some details of two panel reconstructions.

Fig. 56.1 Laurentian

Library, Florence, panel

based on Plato’s lambda
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The Medici Panel

Panel 2 is called the “Medici panel”. The painted reconstruction by Nicholson and

Summers of the original terracotta design is shown in Fig. 56.2.

It seems to be wholly symmetrical and it has the same appearance as the antique

rosettes, of which there are many examples in Renaissance design. At the centre of

the rosette lies the emblema of Cosimo I from the house of the Medici, advertising

the threefold symmetry of the pattern. However, at second glance the panel exhibits

the mannerist tell-tale irregularities that are common to all the Laurentian pavement

designs: the panel is not square, but a rectangle with sides in the ratio of 12:13;

curving white bands radiate from the centre, a graphic treatment never present in

the antique form; ovals are inserted into the residual spaces between these bands.

The following steps show that Panel 2 is created by superimposing 96 circles on

a 12:13 rectangle that is composed upon a 13 � 13 square:

1. Form a 12:13 rectangle by dividing one axis of a square into 26 parts and extend

the left and right edges of the rectangle to form a 13:13 square as shown in

Fig. 56.3a. The diagonals of the 12:13 rectangle and 13:13 square are shown

(Fig. 56.3a).

2. Draw a second 12:12 square within the 13:13 square and place the x- and y-axes
at the centre of the squares.

3. Draw an equilateral triangle with side equal to the base of the 12:12 square. The

distance from the apex of this triangle to the centre of the square determines the

Fig. 56.2 Reconstruction

of the “Medici panel” based

on the rosette

142 B. Nicholson et al.



radius of a circle (Fig. 56.3b). This circle is called the pitch circle. The radius of
the pitch circle differs from 1/4 the diameter of the 12:13 rectangle by less than

1 %. Either value can be used for this construction. However we use the first

because of its elegance.1

4. Place x- and y-axes at the centre of the rectangle and draw a rosette pattern with

24 circles by the following procedure:

(a) Draw six circles whose radii are the same as the radius of the pitch circle.

The first circle has its centre point at the intersection of the pitch circle and

the upper y-axis; each of the other five circles’ centre points are intersection

points between the pitch circle and the preceding circle (Fig. 56.4a). The

centres of these circles define two sets of three axes through the centre of the

rectangle corresponding to the threefold axes of the Cosimo symbol in the

centre of the design. Notice that four of the circles intersect the vertices of

the 12:12 square. It is also worth noting that the rosette produces a series of

intersections between adjacent circles, known as the Vesica Pisces, a key

figure of sacred geometry (Kappraff 1991: 54, 87). It was in this region that

images of Christ were placed in many sacred designs.

(b) Draw six more circles using the same method as step 4a, beginning this time

with the intersection point of the pitch circle and the right hand x-axis as the

first centre point.

(c) Repeat steps 4a and b by using intersection points between the pitch circle

and diagonal lines of the 13:13 square as centre points to create 12 additional

circles forming the 24-circle rosette pattern (Fig. 56.4b).

5. The rosette is composed of a grid of curvaceous diamonds formed by the

intersection of the first 12 circles and the second 12 circles. Using as centres

the midpoints of the arcs on the pitch circle connecting adjacent circles of the

Fig. 56.3

1 This construction was also described by Paul Marchant, a member of Keith Critchlow’s

London-based group studying traditional geometry; see Marchand (1997).
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rosette pattern, draw 24 additional circles using the same method as in step

5 (Fig. 56.4c).

6. The small mismatch between the diagonals of the square and rectangle leaves

space to construct a reference circle. Draw 24 circles, identical to the reference

circle, with centres at the intersection points of the pitch circle and the latest

24 circles. Two of these 24 reference circles are shown on opposite sides from

the original reference circle.

7. Draw 48 circles with the same radius as the pitch circle and the intersection

points of the pitch circle and the 24 reference circles from the previous step as

centres (Fig. 56.4d). These circles are to become the white bands of the Medici

Panel. This step demonstrates how the panel makes “Mannerist space” out of the

difference between the series of circles generated by the 12:13 and 13:13

diagonals.

8. In the final step ovals of eight different types are created, to fill the diamond

shapes. The detail of this step is beyond the scope of this chapter.

Nicholson hypothesizes that this design represents an interplay between the

circle, representing the cosmic realm, and the square and rectangle, representing

the earthly domain. The ratio of 12:13 represents the solar and lunar cycles since the

Fig. 56.4
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sun goes through the 12 signs of the zodiac in approximately the time that the Moon

undergoes 13 revolutions about the Earth. The 96 circles that make up the pattern

and the original pitch circle are grouped in the series: 1, 3 + 3, 6, 12, 24, 48. We

recognize this series as the series that was used by Bode to determine the relative

distances to the sun of the planets up to Saturn (all the planets known in the year

1550) (Kappraff 1998). Therefore, the designer of this pavement was able, either

consciously or unconsciously, to compress a great deal of cosmic information into a

geometrical setting. The panel on the other side of the library is identical except that

it fits into an 11:12 rectangle. Nicholson conjectures that the numbers 12 and

11 refer to the number of Christ’s disciples with and without Judas.

The Mask Panel

Nicholson has named Panel 13 the “Mask” panel (Fig. 56.5). When looked at either

directly or from the side it appears like the classical masks of the theatre with either

a happy or sad face popular at the time. Michelangelo made a number of carvings of

the “mask of night.” Saori Hisano and Hingan Wibisono were able to use a

combination of the Golden Mean and the Brunés star to reconstruct this panel.

To construct a rectangle with Golden Mean proportions, begin with a square and

add the semilength of a side to the length from a vertex to the midpoint of the

opposite side (Fig. 56.6).

To construct a Brunés star, begin with a square divided into four half squares,

and place a pair of diagonals into each half-square (Fig. 56.7a). The Brunés star

provides a means for dividing a line segment into from 1 to 12 equal subdivisions.

Figure 56.7b shows positions for subdividing a line segment into 1, 2, 3, . . ., 8 equal
segments (7 is missing but can be approximated by another construction) (Kappraff

1998).

Rather than go into detailed explanations, we present in Fig. 56.8 one of the

diagrams in which Nicholson has defined a central unit square and two

symmetrically placed golden rectangles (proportions 1:ϕ).
The construction lines to create the golden rectangle are shown in the figure. The

central square is trisected by the methods of Brunés into first a 3 � 3 grid, then each

third is divided again by the Brunés star into a 4 � 4 grid. As a result the original

square is divided into a 12 � 12 grid. Notice that the star and the golden rectangle

share construction lines. Once again, the panel is just off from being a square, with

the difference between the length and width being equal to 1/6, i.e., a width of 1/12

placed on either side of the short side.

In Fig. 56.9 four circles of radius 1/ϕ are drawn about each vertex of the central

square as centres. The width of the four oblong regions of intersection of these

circles equals the diameters of the four black circles of the mask pattern. They are

equal to 1/ϕ2 units. These oblong regions are somewhat reminiscent of the Vesica
Pisces regions that formed the basis of panel 2. From this construction, Nicholson

was able to deduce that the widths of the white annuli around the black circles and
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the narrow white annuli in the left and right sections of the pavement were related to

the Golden Mean and summed to 1/12, the width derived from the Brunés star.

The reconstructed terracotta Mask panel was created by Nicholson, Hisano, and

Wibisono (see Fig. 56.5). The geometer, who may have been Michelangelo himself,

appears to have found ingenious ways of wedding two geometrically different

worlds, the one of the Golden Mean and the other of the Brunés star.

Fig. 56.5 The “Mask”

panel

2 2
1 √ 5

φFig. 56.6
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Fig. 56.7

Fig. 56.8

Fig. 56.9
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Conclusion

The pavement panels of the Laurentian library have presented us with a set of

geometrical puzzles and are remarkable because they represent, in a single building,

an almost complete set of the predominant forms of ancient geometry. It is

Nicholson’s hope that his work will generate sufficient interest among the

officials at the Laurentian Library to open these beautiful pavements to public

view, as well as affording the possibility of making a conclusive set of

measurements against which his thesis can be checked. Nicholson believes that

the panels are an unambiguous expression of Mannerism, which has long been

associated with a somewhat wilful and uncontrolled adjustment of Renaissance

principles of perceived wholesomeness. He considers the pavement as constituting

a ‘document’ of Mannerist number theory, albeit expressed in the difficult language

of geometry, that spells out, in a wholly reasoned way, issues of paradox, void and a

confrontation of the status quo for which Mannerist art is so famous. It is also

possible that this pavement forms the treatise on proportion that Michelangelo had

in mind to write and that was alluded to by Condivi in his biography of

Michelangelo (1553).

The panels are certainly in accordance with the ancient tenets of sacred

geometry, but new procedures are added to the construction of each panel

inferring a considered development of the extant body of knowledge. Panel

2 does spring forth from a single point that leads to a circle representing the

undifferentiated cosmos, but the geometer introduces a radius based upon a

distillation of the numbers 12 and 13, which throws a controlled, but irrational,

haze over the whole construction. Elsewhere, the appearance of a square shows up

in several panels: their well-defined vertical and horizontal axes classically imply

the immutable polarity of opposites—made more succinct by the crossing at its

centre, representing the essential generative qualities of male and female, necessary

for the sustenance of earth and nature. The crossing in Panel 14 follows this

tradition, but one of the limbs is measured with a string of whole number integers

and the second limb is formed by a √2 evolution of the first limb: thus the crossing is

caught in the tension of two systems that pit rational against irrational—and the

observer is left to gaze upon the whole and wonder why.

Acknowledgements Author Ben Nicholson thanks the Laurentian Library for permission to

make rubbings of the panels to assemble a set of accurate measurements. All figures herein are

by the authors.

Biography Ben Nicholson, British born, and educated at the AA, Cooper Union

and Cranbrook, is now Associate Professor at SAIC in Chicago. He was guest

professor at the Bartlett, SCI-Arc, Royal Danish Academy, Universities of

Cornell, Edinburgh, Michigan & Houston and a fellow of Chicago Institute for

Architecture and Urbanism. His publications include: The Appliance House,
Thinking the Unthinkable House, and a satire The World Who Wants It? He has

148 B. Nicholson et al.



exhibited at the Canadian Center of Architecture, Cartier Foundation, Whitney

Museum, and three times at the Venice Biennale of Architecture. Currently living

in New Harmony, Indiana where he sorts through issues of rural & urban life in

America—from urban agriculture to gun culture. His work on the hyper-minimalist

architectural plan resulted in 200 hand-drawn labyrinths exhibited at the 2008
Venice Biennale of Architecture. He contributed to the book Ineffable Architecture
(2009), and to AD Architectures of the Near Future (2009).

Jay Kappraff holds a Ph. D. from the Courant Institute of Mathematical Science at

New York University. He was associate professor of mathematics at the New Jersey

Institute of Technology where he has developed a course in the mathematics of

design for architects and computer scientists. Prior to that, he taught at the Cooper

Union College in New York City and held the position of aerospace engineer at

NASA. He has published numerous articles on such diverse subjects as fractals,

phyllotaxy, design science, plasma physics, passive solar heating and aerospace

engineering. He has also lectured widely on the relationships between art and

science. He is the author of Connections: The Geometric Bridge Between Art and
Science (1st ed, 1991; 2nd ed., 2001). His book, Mathematics Beyond Measure: A
Random Walk Through Nature, Myth and Number, was published in 2003.

Saori Hisano obtained an M. Arch at Illinois Institute of Technology after she

graduated from Yokohama national University at Japan. She works for A&I

Architectural office at Yokohama, Japan. She has been engaged in the projects to

improve the quality of the houses provided by a company of housing manufacture.

As part of it, she conducted a study and training program for the stuff of the

company, and also wrote articles to a magazine intended for the people who are

going to build a house. As a design work, she worked on renovation of residence

and apartment house.

References
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Chapter 57

Measuring up to Michelangelo:

A Methodology

Paul A. Calter and Kim Williams

Introduction

In the fall of 1998, we began a new survey of Michelangelo’s earliest built work of

architecture, the New Sacristy of the Basilica of San Lorenzo in Florence, also

known as the Medici Chapel. Kim Williams had surveyed the ground plan of the

Sacristy in 1993 (Williams 1997: 105–112), and found a recurring series of

proportional relationships related to the √2 rectangle. In order to establish a

systematic use of √2 proportions in the three-dimensional space of the Sacristy,

the dimensions of the interior elevations of the space were necessary. The Sacristy

had been surveyed by hand in 1939 by a group of students from the University of

Florence under the supervision of Armando Schiavi.1 But because the 1939 survey

contained dimensions that differed widely from Williams’s 1993 surveyed

dimensions, we had decided it was necessary to resurvey the entire interior using

a theodolite and a trigonometric method devised by Paul Calter (2014).

At the same time we were in Florence to survey the New Sacristy, Ben

Nicholson, who has spent many years studying Michelangelo’s Laurentian

Library (Nicholson et al. 2015), also in the San Lorenzo complex, approached us

about surveying a doorway in the library. We were happy to comply, although due

First published as: Paul Calter and Kim Williams, “Measuring up to Michelangelo: A

Methodology”, pp. 23–34 in Nexus III: Architecture and Mathematics, ed. Kim Williams,

Ospedaletto (Pisa): Pacini Editore, 2000.

1 This survey appears in (Real Accademia d’Italia 1934; Schiavo 1949, Fig. 6; Schiavo 1990,

Fig. 118).
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to restoration work in the vestibule of the library, we were unable to survey the

doorway that Nicholson had requested. Instead, we surveyed key dimensions of

the portal on the opposite side of the wall, that is, the portal that exits the reading

room and leads into the vestibule (Fig. 57.1). What follows is a description of our

findings. Significant as they may be in terms of what they reveal about

Michelangelo’s use of a proportional system, we have organized the present

chapter in order to concentrate on a methodology of obtaining data, organizing it,

and estimating its uncertainty. The intent is to begin to provide information that

may help establish standards relating to these tasks.

Description of the Surveying Method

Here we briefly summarize the trigonometric method for measuring façades using

surveying instruments.

We start by marking two theodolite setup locations A and B on the pavement.

They can be at different heights and at different distances from the façade. We

Fig. 57.1 The Laurentian

Library doorway designed

by Michelangelo. Photo:

Kim Williams
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record their horizontal distance c apart and the horizontal distance d from A to the

façade.

Next we set up and level the theodolite at location A. With the telescope

horizontal, we sight a vertical scale at the façade and record the height of the

instrument above the pavement (Fig. 57.2). We then sight setup location B at which

we zero the horizontal scale of the theodolite. We are now ready to take a series of

measurements. We sight each target point on the façade, recording the horizontal

angle α and the vertical angle θ for each.

After each target has been sighted, we move the theodolite to setup location B

and level it. As we did from position A, we record the height of the instrument, and

zero the horizontal scale of the theodolite while sighting location A. Again we sight

each target point on the facade, recording the horizontal angle b and the vertical

angle j for each.
Finally we enter all measurements into the computer spreadsheet, which is

programmed with the following equations, and print out the x, y, and z coordinate
of each target point.

Façade Equations

For each target point P we first calculate three intermediate values, γ, a and

b (shown in Fig. 57.2):

Fig. 57.2 An oblique view

of the theodolite setup for

the trigonometric method

for measuring façades using

survey equipment.

Drawing: Paul Calter
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γ ¼ 180� α� β

a ¼ c sin α= sin γð Þ
b ¼ c sin β= sin γð Þ

Where

c ¼ horizontal distance between theodolite locations

α ¼ horizontal angle at A from B to the target

β ¼ horizontal angle at B from A to the target:

The x and z coordinates of point P are then

x ¼ b cos α

z ¼ b sin α:

We get two values of the y coordinate, from

y ¼ b tan θ

and

y ¼ a tan f

where

θ ¼ vertical angle at A from the horizontal to the target

ϕ ¼ vertical angle at B from the horizontal to the target:

The values of y found from each setup position are independent, and their

comparison can be used to indicate the accuracy of the measurements.

Our coordinate axes will be as shown in Fig. 57.2, with the origin at A, with the

x-axis in the direction of B, the y-axis vertical and directed upwards, and the z axis
perpendicular to the x- and y-axes, directed towards the façade. A simple translation

of axes will later place the origin at any selected point, such as a corner of the

building. We have used this method to survey interior and exterior façades of the

Torre Bernarda in Fucecchio, both the interior and exterior, and two interior façades

of the New Sacristy. Kim Williams used it in order to assist Mark Reynolds in

studying the façade of the Pazzi Chapel (Reynolds 2015).
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The Setup in the Library

The floor plan of the library placed some constraints on our instrument setup

positions. The benches lining the aisle prevented us from laying out a base line

anywhere but in the centre of the library, at a distance of about 19 m from the

doorway. There, we could locate the two theodolite setup positions about 5.3 m

apart. For our calculations, these dimensions were each measured three times to the

nearest millimetre, and the readings averaged. Instead of marking setup points on

the floor, we selected joints between paving tiles for this purpose.

We used a wooden triangle to protect the library floor from the steel tips of the

tripod. To overcome the dim lighting in the library, Williams, standing near the

doorway, located each target point with a tripod-mounted laser pointer. Calter

then used the laser spot to approximately aim the theodolite telescope, and then

refined the adjustment to the actual target feature (corner, edge, crack, etc.), which

we illuminated by flashlight. The internal angle scales of the theodolite were

illuminated by lamps powered by a battery pack. The data were reduced using

Microsoft Excel and Quattro Pro computer spreadsheets.

The x and y coordinates of the target points, shown in Fig. 57.3, are given in

Table 57.1. Depth, or z coordinates, were also computed for reference, but due to

the great distance from the base line to the façade, they are of a lower order of

accuracy than the x and y coordinates. As they are not needed for the proportional

analysis that follows later, we omit them here.

Uncertainty in Coordinates

This trigonometric method is exact, in that it contains no approximations. However

it does rely on measured quantities, and no measurement is exact. In this method,

the location of each point is found from four measurements, which are then used

to calculate the coordinates of that point. We want to determine how inevitable

random errors in the four measurements, propagated through the computation,

affect the accuracy of the final coordinates. After that we can estimate the

uncertainty for dimensions, or the distances between points, and for the ratio of

two dimensions. To estimate the uncertainty in our computed x and y coordinates

we ran two computer simulations. Starting with the four measurements for a typical

point on the doorway (Point 1 in particular) we set each measurement in turn, to its

worst possible value, both low and high, and observed how this affected the

computed coordinates.

We had measured the base line with a tape graduated in millimetres, and

estimated each reading to the fraction of a millimetre. However, considering the

uncertainty in setting the end of the tape over one station, uncertainty about reading

the tape at the other station, and uncertainty about the exact location of the station

(that is, having to estimate the centreline of a mortar joint between tiles), we took
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the uncertainty of the baseline measurement to �2 mm. Our theodolite could read

angles to the nearest second of arc. Again, taking into account uncertainties of

levelling the instrument and uncertainties about the location of a target point

Fig. 57.3 Schematic scale

drawing showing the

location of survey target

points. Drawing: Kim

Williams

Table 57.1 Target Point

Coordinates, with x measured

left or right of the doorway

centreline and y measured up

from the pavement

Point x y

1 125.7 337.1

2 96.7 305.3

3 �95.6 316.2

4 120.7 400.8

5 142.6 467.7

6 150.4 485.4

7 192.9 484.9

8 �0.3 537.3

9 0.3 575.5

10 �192.4 484.5

11 �181.3 480.3
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(perhaps a chipped corner of a ledge, or the centre of a mortar joint, etc.) we took

the overall uncertainty of angular measurements as �1/2 min of arc.

For four measurements, each set to two extreme values, we have

24 ¼ 16 possible combinations:

Of these 16, certain combinations of extreme values “lined up” in a way that

gave the poorest results. We found that:

Maximum uncertainty in x or y coordinate � � 6mm:

This is the worst possible range of values attainable using the method, in this

situation.

But random errors in measurement seldom line up in the worst possible way; in

fact, they often cancel out (Briker and Taylor 1966). To get a better idea of what

errors to expect, we next altered each of the four measurements not to their two

extreme values, but to randomly selected values uniformly distributed between

those same two extremes. Again using the four measurements for target point

1, with values from the spreadsheet’s random number generator, we repeated the

computation 100 times. We thus obtained 100 random values for both x and y. A
frequency distribution of these values reveals that most were clustered near the

mean value, with relatively few towards the tails. None of the random combinations

gave errors as large as the �6 mm obtained using the extreme values.

This means, for example, that 50 of the 100 computations gave the coordinate

within �1 mm of the mean. In other words, any one computed coordinate has a

50 % chance of being within �1 mm of the mean.

It was noted earlier that the trigonometric method gives two independent

measures of the height, or y coordinate, of each point. Another measure of the

uncertainty in coordinates is the difference between each pair of y values. For this
survey we found that 91 % of the target points had y differences within �4 mm of

their mean value, a good agreement with the values obtained in the above test.

In surveying parlance, the probable error of a measurement is the range of

values within which 50 % of the random errors are expected to lie, and the standard
error is that range within which 68 % of the errors lie. Thus we can say,

approximately, that

probable error in a coordinate ¼ �1mm

standard error in a coordinate ¼ �1:6mm

with the standard error found by interpolation in Table 57.2.
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Uncertainty in Dimensions

Up to now we have been calculating the error of each coordinate. But we use

coordinates to find dimensions, by subtracting one coordinate from another, and we

now want to estimate the uncertainty of such a dimension.

When adding or subtracting two values, each with its own uncertainty, the theory

of errors as applied to surveying states that it is not correct to simply add the

uncertainties of the two values to get the uncertainty of the difference. Because

random errors partly cancel each other out, it can be shown that it is more

reasonable to give the final uncertainty as the square root of the sum of the

squares of the individual errors, a quantity called the mean-square error (Kissam
1966).

If E is the mean-square error of a difference, and e is the error in each of the two
values being subtracted, then

E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ e2
p

¼ �
ffiffiffiffiffiffiffi

2e2
p

¼ �
ffiffiffi

2
p

e:

Thus, if e ¼ �4 mm, for example, then E ¼ �4 √2 ¼ �5.7 mm. Rewriting our

table of frequency distributions for dimensions, we get (Table 57.3):
For example, a horizontal dimension obtained by subtracting two coordinates

has a 50 % chance of being within 1.4 mm of the mean. Our probable and standard

errors for dimensions become,

probable error in a dimension ¼ �1:4mm

standard error in a dimension ¼ �2:4mm, by interpolation

It should be mentioned that these figures will vary depending on the particular

set of random numbers chosen by the computer and the particular target point. We

are also using the same values for both vertical and horizontal measurements, a

further simplification.

Table 57.2 Frequency

distribution of points about

the mean, for coordinates

Distance from the mean (mm) Percent of points

�1 50

�2 75

�3 92

�4 99
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Key Dimensions

In order to derive key dimensions, we compared the dimensions found in the survey

with taped dimensions by Kim Williams and dimensions recorded on the drawing

of the upper part of the doorway by Carl von Stegmann and Heinrich von

Geymueller.2 Table 57.4 gives the key dimensions and their derivation.

We follow accepted practice of including the rightmost digit for which there is

some uncertainty, but no digits to the right of that one. Thus we give survey

dimensions to the nearest tenth of a centimetre (that is, to the nearest millimetre)

with it being understood that there is an uncertainty in the last digit of a few

millimetres.

The digits in each number, including the tenths of a centimetre, are called

significant digits. Thus 575.5 has four significant digits, while 90.6 has three

significant digits. We will need this distinction when computing ratios.

Uncertainty in Ratios

Usually we want not just dimensions, but ratios of dimensions. When we divide one

dimension by another, each with its own uncertainty, what is the uncertainly in the

ratio?

The usual practice in technical computation is to keep as many significant digits

in the quotient as contained in the divisor or dividend having the fewest significant

digits (Calter 1999). Thus, 385.4 has four significant digits, as does 575.5,

indicating that there is some uncertainty in the rightmost digit of each. When we

divide one by the other, (385.4 � 575.5 ¼ 0.6696) we keep only as many digits

(four) in our quotient as contained in the original numbers, but no more. This

indicates that the rightmost digit (6) in our quotient has some uncertainty. We have

followed this procedure in Table 57.5.

Table 57.3 Frequency

distribution of points about

the mean, for dimensions

Distance from the mean (mm) Percent of points

1.4 50

2.8 75

4.2 92

5.7 99

2 Carl von Stegmann and Heinrich von Geymueller’s measurements of the upper part of the

Laurentian Library doorway appeared in Die Architektur der Renaissance in Toscana, published
serially in 11 issues from 1885–1908. For the measurements referred to here, see (Stegmann and

Guymueller 1920: vol. 2, 42).
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Setting an Acceptable Margin of Error

An indication of a range of acceptable percentage deviations from ideal dimensions

was given by Howard Saalman, who once called a 2.43 % deviation “too large to be

accepted on its face”, while sustaining that a deviation of 0.8 % “cannot be

dismissed . . . lightly” (Saalman 1979: 1–5). In order to determine the range of

our margin of error for the doorway survey, we examined the dimensions for the

width of the doorway jamb. We chose this dimension because it is small enough to

readily indicate discrepancies, because it may be readily measured by hand, and

because three individual measurements existed for comparison. Again, the three

sets of dimensions derived from the Stegmann-Geymueller survey, KimWilliams’s

Table 57.4 Key doorway dimensions

Feature Dimension Percent errora

1. Overall height of door (floor to survey point

9 vertical)

From the Calter-Williams survey 575.5 cm �0.04 %

From Geym€ueller + Williams’s taped 574.4 cm

2. Overall width of arched pediment (pt. 7 to pt.

10 horizontal)

From the Calter-Williams survey 385.4 cm �0.06 %

3. Overall height of arched pediment (pt. 7 to pt.

9 vertical)

From the Calter-Williams survey 90.6 cm �0.26 %

4. Overall width of triangular pediment (obtained

by symmetry) 2 � (pt. 6 to pt. 8 horizontal)

From the Calter-Williams survey 150.7 � 2 ¼ 301.4 �0.08 %

5. Overall height of triangular pediment (pt. 6 to pt.

8 vertical)

From the Calter-Williams survey 51.9 cm �0.046 %

6. Clear width of door opening survey (inside to

inside of jamb, horizontally; pt. 2 to pt.

3 horizontal)

From the Calter-Williams survey 192.4 cm �0.13 %

From Williams’s taped dimensions 191.5 cm

7. Clear height of door opening (underside

of jamb to sill)

From Williams’s taped dimensions 383.5 cm –

8. Door jamb width

From the Calter-Williams survey 29.0 cm �0.83 %

From Williams’s taped dimensions 28.6 cm

From Geymueller 28.7 cm

9. Overhang of arched pediment to inside

of door jamb (pt. 7 to pt. 2 horizontal)

From the Calter-Williams survey (left side) 96.8 cm �0.25 %

From the Calter-Williams survey (right side) 96.2 cm �0.25 %
aBased on an estimated error of �2.4 mm for survey dimensions
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taped measurements on site at the time of the survey, and the calculated dimension

derived from the Calter-Williams survey (Table 57.6).

Our margin of error ranges from 0.28 to 1.5 %, well within the range indicated

by Saalman. The largest percentage deviation, 1.5 %, is equal to a value of .43 mm.

We generally assume that in taped measurements it is possible to be accurate to a

millimetre.

In larger dimensions, the margin of error remains similarly small. The largest

dimension taken was the overall height of the entire doorway, calculated from the

surveyed points as 575.49 cm. Deriving a composite dimension from Williams’

taped dimensions for the height of the clear doorway opening (383.5) plus the

height of the sill above the floor (4.9) plus Stegmann-Geymueller’s dimensions for

the upper moulding details (186.0), the resulting overall dimension is 574.4. The

actual difference between the dimensions is 1.09 cm; the percentage deviation is

0.19 % (Table 57.7).

Table 57.5 Significant proportional relationships in the doorway

Features

Ideal

ratio Actual ratioa

Difference

between actual

and ideal

Overall width to overall height 2:3 385.4 � 575.5 ¼ 0.6696 0.30 %

Clear opening width to doorway clear

opening

1:2 191.4 � 383.5 ¼ 0.4991 0.09 %

Doorway clear opening height to overall

door width

1:1 383.5 � 383.4 ¼ 1.000b 0

Overhang of arched pediment to doorway

clear opening width

1:2 96.8 � 192.4 ¼ 0.5031 0.31 %

Clear width of doorway to overall

doorway height

1:3 192.4 � 575.5 ¼ 0.3343 0.10 %

Overhang of arched pediment to inside of

jamb to overall door width

1:4 96.8 � 385.4 ¼ 0.2512 0.12 %

aUsing survey dimensions, where available
bWe get 1.000 (not 1.0003), because computationally that final 3 is meaningless

Table 57.6 Comparison of a survey dimension with taped dimensions

Source

Dimension

in

centimetres

% Deviation

from

Williams’s

taped

% Deviation

from

Stegmann-

Geymueller

% Deviation from

Calter-Williams

survey

% Deviation from

Average

Williams 28.6 – 0.35 1.5 0.63

Geymüeller 28.7 0.35 – 1.1 0.28

Survey 29.03 1.5 1.1 – 0.87

Average 28.78 0.63 0.28 0.87 –
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Conclusions

Out of 72 possible relationships between dimensions, only 29 reveal themselves to

be ratios of whole numbers. This means that about 40 % of the relationships are

significant, but that 60 % are not. This does not seem to statistically support a thesis

that Michelangelo relied on a proportional system for his design of the doorway.

On the other hand, when the six most significant relationships listed above in

Table 57.5 are represented graphically, as in Fig. 57.4, we are allowed to see how

one governing rectangle with proportions 2:3 is subdivided into smaller rectangles

to establish key relationships in the doorway.

Of course, these are only the first steps in what could be a very complex

geometric arrangement. In order to do a complete geometric analysis, many more

points would have to be surveyed. However, this simple geometric analysis of an

isolated element designed by Michelangelo affords us an exercise in organizing the

data and establishing a method of analysis that can be used in a much larger project.

In terms of the implications of this small study for the New Sacristy project, finding

rational proportions in the Laurentian Library doorway that are similar to those

previously noted in the ground plan of the Sacristy reinforces our theory of

Michelangelo’s use of proportion and helps focus our search for significant

relationships in the volume of the Sacristy.

What is significant for the present chapter, however, is that we feel we have met

our criteria of accurately surveying the portal, arranging our data so that our

accuracy is ascertained, and applying our data to the actual portal so that it may

be interpreted. Providing this kind of transparent approach in the analysis of

measurement may mean that multiple surveys of the same space by different

scholars can be avoided, because scholars may use the data provided by others

with the reasonable certainty that the data is valid. The interpretations of the data

may differ widely but of course, that is where science leaves off and imagination

takes over.

Table 57.7 Matrix of significant dimensions of the doorway and their relationships

575.0 385.4 90.6 301.4 51.9 191.9 383.5 28.8 96.2

575.0 — 2/3 1/11 1/3 2/3 1/20 1/6

385.4 2/3 — 1/2 1/1 1/4

90.6 — 6/20

301.4 6/20 —

51.9 —

191.9 1/3 1/2 — 1/2 3/20 1/2

383.5 2/6 1/1 1/2 — 1/4

28.8 1/6 3/20 — 6/20

96.2 1/6 1/4 1/2 1/4 6/20 —
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CALTER. P. 2014. Façade Measurement by Trigonometry. Springer, Heidelberg, Vol. I, pp. 261–269.

———. 1999. Technical Mathematics with Calculus. Fourth edn. New York: Wiley.

KISSAM, R. 1966. Surveying Practice. New York: McGraw-Hill.

REAL ACCADEMIA D’ITALIA (ed.). 1934. Opere architettoniche di Michelangelo a Firenze, Roma. I
Monumenti Italiani, fasc. II. Rome: Istituto Poligrafico e Zecca dello Stato.

NICHOLSON, Ben, Jay KAPPRAFF and Saori HISANO. 2015. The Hidden Pavement Designs of the

Laurentian Library. Pp 139–149 in Kim Williams and Michael J. Ostwald eds. Architecture
and Mathematics from Antiquity to the Future: Volume II the 1500s to the Future. Cham:

Springer International Publishing.

REYNOLDS, Mark. 2015. A New Geometric Analysis of the Pazzi Chapel in Santa Croce, Florence.

Chapter 46 in this present volume.

SAALMAN, Howard. 1979. Designing the Pazzi Chapel: The Problem of Metrical Analysis.

Architectura 9, 1 (1979): 1–5.

SCHIAVO, Armando. 1949. Michelangelo Architetto, Rome: Libreria dello Stato.

———. 1990. Michelangelo Nel Complesso Delle Sue Opere. Rome: Istituto Poligrafico e Zecca

dello Stato, Libreria dello Stato.

STEGMANN, Carl von and Heinrich von GEYMUELLER. 1920. The Architecture of the Renaissance in
Tuscany. 2 vols. New York: The Architectural Book Publishing Company.

WILLIAMS, K. 1997. Michelangelo’s Medici Chapel: The Cube, the Square and the Root-2

Rectangle. Leonardo 30, 2 (1997): 105–112.

164 P.A. Calter and K. Williams



Chapter 58

António Rodrigues, a Portuguese Architect

with a Scientific Inclination

João Pedro Xavier

Introduction

Mestre António Rodrigues (ca. 1520–1590) has been only recently acknowledged

as an important personality of Portuguese architecture, in spite of his promotion to

the post of First Architect of the Realm by D. Sebastião, in 1565, after Miguel de

Arruda, and to Master of Fortifications, in 1575, after the death of Afonso Álvares.

He performed both tasks for 15 years, which constitutes a unique event in our

country (Moreira 1993: 148).

We owe to Rafael Moreira this re-evaluation; he calls Rodrigues “a Portuguese

architect with a scientific inclination” (Moreira 1982: 56). Moreira attributed to

Rodrigues the authorship of a Tratado de Arquitectura (Treatise on Architecture),1

which was the textbook for the course in military architecture (Lição de

Arquitectura Militar) for which Rodrigues was responsible in the School of

Moços Fidalgos do Paço da Ribeira, as well as the architectural design of the

church of Santa Maria da Graça in Setúbal (presently the Cathedral), for which

Moreira found documentary evidence. On the basis of stylistic evidence, he also

attributed to Rodrigues the Onze Mil Virgens Chapel at Alcácer do Sal, an addition

First published as: João Pedro Xavier, “António Rodrigues, a Portuguese architect with a scientific

inclination”, pp. 253–268 in Nexus IV: Architecture and Mathematics, Kim Williams and Jose

Francisco Rodrigues, eds. Fucecchio (Florence): Kim Williams Books, 2002.

1 Two versions of this Treatise exist: a preliminary version (Biblioteca Nacional de Lisboa, Cod.

3675 (Rodrigues 1576)) and another, revised for print ca. 1579 [Biblioteca Pública Municipal do

Porto Ms. 95 Rodrigues (1579)]; both are incomplete.
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to the church of the convent of Santo António built as a mausoleum for Dom Pedro

de Mascaranhas.2

In fact, these attributions confirm:

– A solid theoretical formation, classically based, built on treatises, mainly those

written by Vitruvius, Serlio and Pietro Cataneo, and most probably nurtured by

direct contact with the Renaissance homeland. King João III used to encourage

learning in Italy; besides it is hard to believe that the architect of the Onze Mil

Virgens Chapel did not have firsthand knowledge of his sources.

– A pedagogical viewpoint in conformance with a teaching model in which,

according to Vitruvius, an architect’s formation could not be conceived

without a strong scientific basis of mathematics, especially geometry, but

where astronomy, music and the disciplines of the trivium were also taught.

This was indeed the method of teaching that took place at Paço da Ribeira’s

School founded by Pedro Nunes, who was the director of the courses of

mathematics and cosmography (the humanist philosopher João Pedro Lavanha

was also part of its teaching staff). It was later closed by Filipe II, the first king of

the Spanish dynasty in Portugal, and transferred to Madrid where it gave rise to

the Academia de Matematicas y Arquitectura directed by Juan de Herrera.

– The capacity to translate this knowledge into built work and to achieve results of

undeniable architectonic quality, the greatest being, in fact, the Onze Mil

Virgens Chapel (c. 1565), built of pink marble from Estremoz (Fig. 58.1). The

Cathedral of Setúbal (c.1570), with specific typological and programmatic

constraints, is nevertheless a well-executed work.

In fact, both the Onze Mil Virgens Chapel and the Cathedral of Setúbal show a

rigorous geometric structure, as expressed in the proportions and the purity of the

stereometric shapes that were used as well as in the clarity of their spatial

articulation. These characteristics are reinforced by the assuredness of a strong,

clean drawing technique, which is a fundamental vehicle for its poetry.

The Onze Mil Virgens Chapel

The founder of the Onze Mil Virgens Chapel, Dom Pedro de Mascarenhas, was the

well-known ambassador for King João III at the papal court in Rome and at the

Emperor Charles V’s Austrian House in Brussels. This has most certainly

influenced the exceptional character of his chapel.

2 Other works by António Rodrigues are the Igreja de São Pedro de Palmela and the Igreja da

Anunciada de Setúbal, no longer in existence, as well as the Chapter Room and Sacristy

(demolished) from the Convento de Jesus de Setúbal, according to documentary evidence found

by João Custódio Vieira da Silva.
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This highly cultivated and cosmopolitan man, who was familiar with the artistic

ways of his time as well as to some of its key personalities (he met Michelangelo

during his stay in Rome, according to Francisco d’Ollanda), died in 1556 while a

viceroy in Portuguese Indian colonies. He had trusted António Rodrigues with the

mission of erecting at his homeland a Roman-style work worthy of his prestige—a

sepulchral “temple” for himself and his family (where the relics of the virgins,

among others, would be kept) near the church of the convent of Santo António

commissioned by his mother, Dona Violante Henriques, the wife of Dom Fernando

de Mascarenhas, Governor of Alcácer.

This determination to tie the new sepulchral chapel to the church, permitting

their interconnection through an opening in the wall that becomes the link between

the two spaces symbolically celebrating the union of mother and son, was bound to

determine the spatial design of the new chapel, as well as its dimensions and

proportional relationships.

Fig. 58.1 The Onze Mil

Virgens Chapel. Interior

view looking east along the

longitudinal axis towards

the presbytery and

reliquary. Photo: author
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The Franciscan church commissioned by Dona Violante between 1524 and 1528

(Fig. 58.2) is formed by a double-square nave, and a presbytery corresponding to a

square plus a half to include the sacristy and a stairway, the whole being a rectangle

of the proportions 3:2 Belonging typologically to the family of small single-aisled

Romanesque and Gothic churches, it differs in the scale and in the nearly-square

proportion of its transversal section, as well as in the presence of Renaissance

architectural elements. Its main porch, indisputably Lombard, testifies to Dom

Pedro’s mother’s appreciation of new architectonic styles.

Fig. 58.2 Plans of (A) the

Santo António Church (left,
1528) and (B) the Onze Mil

Virgens Chapel (right, 1565
ca.) [(a) nave; (b) sepulchral

chapel; (c) reliquary;

(d) altar; (e) sacristy];

(C) galilee, constructed

after 1565. Drawing: author
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The Onze Mil Virgens Chapel (the Portuguese name means “chapel of the

eleven thousand virgins”) was designed to sit side by side with the convent

church nave, sharing its delimiting south wall, and adopting the same length

(16.60 m or 77 palms)3 through a complex construction process, which entailed

the demolition and subsequent reconstruction of this shared wall.

If this dimension, 16.60 m, is divided into three parts, and an allowance made for

twice the thickness of the pilasters that support the triumphal arch (62 cm, nearly

two palms and 7 in.), the result obtained is the side of the square sepulchral chapel

where Dom Pedro’s remains were buried, the nave of which consists of a double

square plus the above-mentioned dimension (Fig. 58.3).

The square piers of the serliana that divides the nave of the chapel and the

church have a square section with sides measuring 62 cm. The theme of the

repeated use of sides and diagonals of squares, reminiscent of ad quadratum
geometry, begins here: the sides of the piers, 62 cm, and their diagonals, 87.7 cm,

form the modules, combining to produce the length of the sides of the three squares

that form the chapel, 5.11 m (4 sides � 62 cm + 3 diagonals � 87.7 ¼ 5.11 m, a

deviation of only�0016 %) (Fig. 58.3a).4 The fact that the width of the pillars is not

a round number (for instance, three palms) may be due to the fact that the

dimensions of the pre-existing church conditioned those of the new chapel. The

chosen dimension could be more convenient for establishing the connection

between the general dimensions and the modular ones. Under these

circumstances, it seems that the definition of the module was not done a priori.

As the sepulchral chapel is the main purpose of the new “temple”, this space

becomes the prevailing element of the composition. On axis with the nave, in the

position of a non-existent crossing, it precedes the presbytery in the east, which is

subdivided into two spaces, the altar area and the relics’ enclosure. Presently

separated by a railed opening, once the enclosure for the relics must have been

closed by a double portal (the rabbet and some traces of former hinges are visible),

which probably was a diptych. A difference in the floor level accompanies this

spatial sequence: the chapel is 15 cm above the nave, the altar 72.7 and the reliquary

183.5.

The role of the sepulchral chapel is of such importance that it is tempting to

consider the nave as a large antechamber, as happens in Alberti’s Tempio

Malatestiano in Rimini. From another perspective, considering the sequence of

the reconstructed wall, a serlianawith an elegant alternation of arches and pilasters,
the only open arch of which corresponds to the nave area, the fluidity between the

two naves contributes to the preponderance of the sepulchre.

3 King Manuel I’s measurement system included the palm, 21.56 cm, which is divided in 8 in. One

foot corresponds to 1½ palms; one ell to five palms; and one fathom to ten palms.
4 Surveying drawings were based on manual measurements taken by the author. Concerning the

5.11 m dimension, I verified the measurements of 12 sides of all 3 squares and the greatest

deviation found was less than 0.4 %.
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Other factors contribute to the importance of this central-plan space, namely, its

resemblance to its more obvious models, the New and Old Sacristies of San

Lorenzo, by Michelangelo and Brunelleschi, respectively.

António Rodrigues makes masterly use of this mighty spatial macchina,
redefining it with marble and jasper, exploring the translucency and reflections of

Fig. 58.3 Geometrical analysis of the Onze Mil Virgens Chapel: (a) plan; (b) longitudinal

section; (c) transversal section. Drawing: author
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those materials while proudly asserting its geometry. And he was the first one to do

that in Portugal.

It should be emphasised that this spatial construction has an underlying ad
quadratum geometry as well, as seen in the relationship between the sepulchral

chapel and the dome that crowns it (Fig. 58.4).

The quadrangular coffers with inscribed circles that are present in the dome (and

in the nave vault) allude to the geometry, and the alternate ones, with inscribed

squares with vertexes in the middle position of the sides, reinforce this idea. In fact,

the circle that might circumscribe the square of the dome coffers, the area of which

would be the double of the inscribed circle, cannot be seen but is implicitly there. It

would be the horizontal projection of the semi-sphere cut by vertical planes that

correspond to the walls and that define the inscribed square. This square, in turn,

circumscribes the circle resulting from the intersection of the same semi-sphere by a

horizontal plane, where a small cylindrical wall sits. Over it stands the hemispherical

dome crowned by a lantern. The part resulting from the first semi-sphere is apparent.

The pendentives are spherical triangles that circumscribe blind circular oculi. I don’t

think it would be otherwise even if Donatello were around (Fig. 58.5).

The transition between a cubical space bounded by four walls and the

hemisphere of the dome was made with the insertion of a small drum that is not

present in either of the sacresties of San Lorenzo but which can be found in the

crossings of Santo Spirito in Florence or Sant’Andrea in Mantua. By means of this

small elevation the springpoint of the dome is made to correspond to a side and a

half of the square of the plan, obtaining in this way a 3:2 ratio.

The arches reveal the recurring influence of Serlio’s treatise both by its

stereotomy and by the coffered interior vaults. They sit on Doric pilasters and

form a portal 2.92 m wide. As the square space of the sepulchral chapel has a 5.11 m

side, the dimension of the arches was calculated so that the vertexes of its opposing

pilasters would form a 7:4 rectangle, a rational convergent of √3, which determines

the arrangement of the tombs. As the lesser side of that rectangle can be defined by

opposing sides of a hexagon the presence of that figure can be indirectly

acknowledged. This should not surprise us, as the hexagon’s connotation to

lifelessness suits the chapel programme (see Fig. 58.3).

The dome deserves some special attention because of its remarkable formal

expression, stereotomy, accuracy and material. It is divided in 24 semi-meridians

and 7 parallels (the distance between them varies according to a gnomonic growth

pattern), numbers of self-evident cosmic significance, aiming to symbolize, through

expressly declared geometry, the mathematical order of the universe. But it is the

translucency of the stone that increases its charm.5 Thanks to this singularity it

becomes more than a metaphor to the celestial dome as the sun actually projects

5 It was not possible to determine the thickness of the stones, but they must be thin, underlining the

quality and rigour of the construction. It is possible that its thickness diminishes approaching the

lantern, but this does not prevent the dome from revealing itself on the exterior as a perfect

semi-sphere. No covering was used, obviously, which is remarkable!
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Fig. 58.4 Sepulchral

chapel elements and its ad
quadratum geometry, from

bottom: chapel walls;

arches and pendentives;

drum; dome. Drawing:

author
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through it: a savoury Aristotelian touch within a neo-Platonic conception of the

cosmos.

I believe that this cosmic dimension, well expressed in the first version of Mestre

António’s Tratado, is strongly corroborated by the frequent utilisation of the 5:4

rectangle—hua sexquiquarta proposição de hum quadrado e hu quarto6—in the

making of different spaces (main chapel, sacristy, transversal section of the nave)

and different architectural elements (the altar window, blind niches) of the Onze

Mil Virgens Chapel.

If a gnomon is dimensioned according to the larger side of that rectangle, the

length of its noonday equinoctial shadow will be its lesser side, or as Vitruvius

Fig. 58.5 Corner of the

sepulchral chapel showing

the pendentives and blind

oculi. Photo: author

6 “A sesquiquartal proposition of a square and a quarter”, proposition 2 from António Rodrigues,

Proposições Matem�aticas (BPMP, Ms 95).
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would say,7 if the gnomon length is divided in five parts, the shadow will be four at

Alcácer pole altitude (Fig. 58.6).8

I think there is a strong possibility that this relationship is intentional because of

the references concerning these matters in his Tratado and also because of this

connection with the Great Cosmographer of the Realm, Pedro Nunes (born at

Alcácer) who lent him his own translation of the Vitruvian text, although the

Cesariano edition was already known among the Portuguese.9 In the Codex 3675

of the Biblioteca Nacional de Lisboa, there is a general description of the celestial

sphere and the apparent movement of the sun. There is even an explanatory drawing

for proposition 29, indicating his extensive knowledge of position astronomy

(Fig. 58.7).

The 5:4 rectangle is present in several building spaces: the nave, the main chapel

and the sacristy. I found that the springpoint of the vault is located at 6.42 m above

the ground level, so that the transversal section is made of a rectangle of

6.42 � 5.11 m, very close to 5:4 (a deviation of +0.995 %). Considering the

semicircle of the dome, the radius of which is half of the nave width, the section

can be inscribed in a 7:4 rectangle, which was taken into consideration when

discussing the width of the arches. The plan of the main chapel measures

3.47 � 2.78. The sacristy, measuring 2.965 � 2.42 m, is not exactly a 5:4

rectangle, but even so the deviation, �0.98 %, is acceptable.

With respect to the architectural elements, we must mention the blind niches

placed between the arches over the entablature of the serliana measuring

2.205 � 1.764 m, or 5:4 (see Fig. 58.3b). When the serliana turns the corner, the

blind niche is subdivided by the right dihedron angle this wall forms with the side

ones. This division gives origin to two 8:5 rectangles, approximating the golden

Fig. 58.6 Section of

celestial hemisphere visible

at Alcácer with the position

of the pole. Drawing: author

7Car le soleil étant au temps de l’ Equinoxe dans les Beliers aux dans les Balances, si la longuer
du Gnomon est divisée en neuf parties, l’ombre en a huit à l’élevation du Pole de Rome (Perrault
1979: IX, viii, 283).
8 Alcácer do Sal latitude is 38º 300 and the smallest angle of the right triangle of 5:4 cathetus

measures 38º400, a rather small difference. I thank Prof. Fernanda Alcântara (Geometry Course

supervisor at FAUP) for the suggestion made by about the relationship between the 5:4 rectangle

and the latitude or the celestial pole at Alcácer.
9 The whereabouts of this translation is not exactly known. It may have been sent to the Madrid

Academia of Juan de Herrera.
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section. The small window from the altar, measuring 120.8 � 95.9 cm, is also an

element of 5:4 family.

In addition to the similitude, I looked for a proportional relationship between

these figures. I found that, taking as a reference the longer side of the rectangle

formed by the nave, 6.42 m, and successively dividing it by 7/6, it was possible to

find the longer side of the rectangle represented by the great chapel plan. Following

through with this operation values were obtained that were quite close to those for

the other elements, which allows them to be considered as part of a geometrical

progression (Fig. 58.8).

I found the 7:6 ratio of the geometrical progression in the rectangle formed by

the back wall of the reliquary under the statue of Christ.

It must be added that, as the chapel plan is based on three squares, that of the

sepulchral chapel having a special importance, the visitor entering the space can

sense it as a well-proportioned harmonious whole. He has only to place himself at

the intersection of the axis and the west side of the first square and look towards the

altar. The concern with this work’s visual impact, or the way it would be seen and

perceived, should not be undervalued, especially at a time in which perspective was

being rediscovered. That António Rodrigues was concerned with perspective and

visual impact is shown by the chapter on perspective (Livro de Perspectiva),
included in his Tratado.

Fig. 58.7 The page from António Rodrigues’s Tratado showing the explanatory drawing for

proposition 29 (Rodrigues 1576: 43v–44r)
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One of the most puzzling aspects of this temple concerns the main façade, which

has been adulterated, or maybe never built according to the original design, due to

the addition of a two-storied body that sits transversally to both churches. Both

churches acquired a galilee (small porch, in Portuguese galilé) and the church of

Santo António was given a choir, but the space over the chapel porch was

obliterated (Fig. 58.9).

However, in spite of the running over of the mighty Chapel pilaster on the

southwest corner, which, together with the body of the sacristy, sustains the stresses

produced by the nave vault, the new building still manages to maintain some

stylistic affinity with the Onze Mil Virgens. However, its disrespect towards the

church of Santo António is complete: one of the new pilasters stands inexplicably in

front of the Renaissance porch. It is a “plain”,10 unpretentious work,11 somewhat

uneven, and that is why it stands closer to the chapel architecture, one of the first

Fig. 58.8 Diagram of a 7:6

geometrical progression

found in 5:4 rectangles

corresponding to

architectonic elements: N—

nave, A—main altar, S—

sacristy, B—blind niche,

W—window. The reliquary

transversal section is a 7:6

rectangle. Drawing: author

10 Georges Kubler emplyed the expression “plain” to name works made in our country from the

second half of the sixteenth to the mid-seventeenth century. According to Horta Correia, “by the

time ideological superstructures of counter-reformist nature grabbed the power in Portugal . . . the
tendency to decorative simplicity, the adoption of a certain classicism based on treatises and an

austerity with religious and military features converged to define a new architectonic era

dominated by what Kubler called plain style” (Horta Correia 1991: 48).
11 In the west elevation I found that there were originally three more rectangular openings identical

to the one still visible. Two of the openings were located where the oculi are presently. The third

one was to the right of the existing one, over the central arch.
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works in our country to show that style, which preceded the austere “Herreran”

style.

One of the surprising elements is the interior elevation of the façade. The tile

wall abruptly cuts the lateral serlianas that are unfinished, in what seems to be a

provisional solution. Only the cornice maintains the connection. I would prefer to

see the serliana arching as it does on the elevation opposite, together with the

cornice, the main entrance remaining confined to the inner arch. Figure 58.10 shows

my hypothesis of a possible reconstruction that would make a lot more sense.

From the exterior, based on some existing evidence, I decided to try out one

hypothesis for the façade drawing (I am somewhat less confident, but even so, it is a

possibility to be considered). The galilee pavement is at the same level as the

thresholds of the porticoes of both churches, higher than both naves, which is not

logical. The chapel threshold is still there, untouched, and it seems to have been a

step. The Tuscan pilaster of the southwest corner is unfinished at ground level; the

base is missing, probably buried. Its reconstitution makes me believe that three

steps would be needed to get to the chapel. As the pilaster can be measured on the

south side, its size can be inferred in the main façade. Symmetry would require one

pilaster on the other side of the porch and, besides, structural reasons would justify

its presence. The former chapel could resist lateral forces produced by its vault, but,

without the additional galilee, there would be no support to forces acting on the

façade. Further, it seems obvious that the façade should be finished at the top.

Observing the crowning of the existing pilaster, one can see that its capital is

different from the cornice that goes around the church and where the roof sits. It

is a detail of a portico, waiting for its pediment. In the present case, it is interrupted

by a central window, as happens in San Sebastiano in Mantova, for instance.

Finally, it must be remarked that if the façade were to be hypothetically rebuilt,

the surface between the pilasters and the base of the pediment would form a square

Fig. 58.9 West Façade. The porticos of Santo António Church and Onze Mil Virgens Chapel

stand below the galilee. Drawing: author
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and a half, the same figure as that of the sepulchral chapel. The level where the

dome springs is one and a half times the length of the side of its plan (see

Fig. 58.10).

All these possibilities seem more credible in the context of the reconstitution of

the design. Even so, some doubts remain, as were pointed out. It is hard to believe

that there was once a façade more or less similar to the one I have tried to design and

that the building of the galilee body had entailed its almost complete destruction.

That is why it appears that the decision of building that new area must have been

taken before the completion of the chapel, the project being adapted to the new

situation.

In the façade, the portico, which is still present, shortened because at least one

step is missing, deserves comment. It is possible to compare its design to the picture

included in the second version of the author’s treatise (the only one representing an

architectural element), which differs from the one in Serlio’s treatise only by the

suppression of the pinnacles over the pediment (Fig. 58.11).

Surprisingly, the trisection method cannot be applied to the portico of the Onze

Mil Virgens, but even so, the upper corners of the door fall on the diagonals of the

circumscribing square. Even more interesting is the fact that the subdivision of that

square in 7:7 results in squares with sides of 62 cm, that is the dimension of the

pillar that corresponds to the temple module, and that the portico’s opening forms a

5:3 rectangle (3.10 � 1.856 m), approximating the golden section.

As for the south elevation, distinguished by a strong and minimal design, it is

impossible to hypothesize about its geometrical structure at present, as it there is no

certainty about the ground level and the way the building was attached to

it. However, it is possible to detect the important role of the square windows,

opened in the limed white walls, contributing to impression of massiveness

Fig. 58.10 Inner main façade at left and its possible reconstitution at the center. At right, a
hypothetic reconstitution of the main façade. Drawing: author
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conveyed by the building. Paradoxically, its marble chamfered mouldings are

extremely delicate, a subtle announcement of the preciousness of its interior.

Conclusion

Although the study of the Onze Mil Virgens Chapel is not yet completed, it has been

demonstrated that this work discloses in several ways the omnipresence of geometry,

ever in association with numbers and calculus, essential to the definition of an idea of

architecture. The same can be said concerning the church of Santa Maria da Graça in

Setúbal, the analysis of which is underway at the moment.

This realization is not a surprise, but I did not expect the relationship to be so

close. It should be noted that there is still a lot to be discovered and that these results

are preliminary.

In the chapters on geometry (Livro de Geometria) and perspective (Livro de
Perspectiva) in the treatise by António Rodrigues are found a myriad of shapes and

constructions that were also present in the treatises that inspired his. But even

without a written sequence, lost or never completed, it is nevertheless possible to

find them in the configurations of the architectural spaces he created.

On the other hand, the cosmic sense of this close connection is undeniable. In

accordance to the neoplatonic ideal, every work is made as a microcosms,

becoming the representation of a mathematically arranged macrocosms.

Although António Rodrigues considered that “he who will be an architect should

also be a musician to understand the proportions of sounds, because their

proportions will make him understand the proportions of buildings” [Rodrigues

1576: fol. 10v (my translation)], I don’t think that the proportional relationships he

a b
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Fig. 58.11 The portico: (a, left) an illustration from Proposições Matem�aticas (BPMP, Ms. 95)

attributed to António Rodrigues; (b, right) drawing of the portico of the Onze Mil Virgens.

Drawing: author
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employed can be interpreted only in the light of musical theory. They have their

own mathematical meaning, which can be sometimes related to musical intervals,

but essentially follows the intrinsic logic of the building. And we have seen, in the

present work, that its structure was conditioned from the start by the need to

conform to the pre-existing building.

Like Vitruvius, Rodrigues warns his readers that it is “nesessario ser esperto na
Giometria” (Rodrigues 1576: fol. 10v). Geometry is the instrument he uses to build

bridges between reality and transcendence.

In the introduction to the chapter entitled, “What is geometry?” he explains,

“Geometry is no more than figures, that can not be done without lines, angles and

points. . . By the same Geometry we will see that nothing can be done without it,

and Mathematical Art cannot be understood without one being a Geometry

expert. . . .”
He concluded with some worthy advice: “The one who is curious about this art

should study Euclid, and will find there something to wonder about”.12
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Chapter 59

Villalpando’s Sacred Architecture

in the Light of Isaac Newton’s Commentary

Tessa Morrison

Introduction

The three-volume commentary on the Book of Ezekiel was to be a collaborative

project by two Spanish Jesuits priests, Hieronymus Prado and Juan Bautisa

Villalpando. Originally the project was led by Prado, and although it was to be

collaboration, Villalpando’s main contribution was to have been on chapters 40–42,

which consist of Ezekiel’s vision of the Temple of Jerusalem. The first of the three

volumes was published in 1596 as Ezechielem Explanationes et Apparatus Vrbis
Templi Hierosolymitani,1 and deals with the first 26 chapters of Ezekiel and was

mainly written by Prado. However, Prado died before the publication of this volume

and Villalpando was left to complete the project alone. Volumes II and III were

subsequently published in 1604. Volume II, De Postrema Ezechielis Prophetae
Visione, contains Villalpando’s famous reconstruction of the Temple along with his

justification for it. Volume III, Apparatus Vrbis ac Templi Hiersolymitani, consists
of explanatory notes for the first two volumes. The overall project is a massive body

of extraordinary and detailed scholarship. Villalpando was a highly skilled architect

and draftsman and his reconstruction of the Temple is illustrated by a portfolio of

exceptionally detailed architectural drawings. The project was an expensive one

and it was only made possible through the financial support of Philip II of Spain.

First published as: Tessa Morrison, “Villalpando’s Sacred Architecture in the Light of Isaac

Newton’s Commentary”. Pp. 79–91in Nexus VII: Architecture and Mathematics, Kim Williams,

ed. Turin: Kim Williams Books, 2008
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Villalpando studied mathematics under the royal architect, Juan de Herrera, who

at that time was involved with the construction of the Escorial. Herrera had an

extensive library of books on the occult; these books indicated a strong interest in

Hermetism, which is also supported by Herrera’s treatise Sobre la figura cúbica
(1935) on the Hermetic philosopher Ramón Lull. Fundamentally, Renaissance

Hermetism promulgated a belief in an astrologically ordered cosmology where a

geo-centric universe was divided into three worlds: the world of man, the celestial

world of the planets and the fixed stars, and the super-celestial world of God (Taylor

1972: 63–64). The Christian Hermetism that was practiced in the Renaissance was a

combination of Christianity and prisca theologia (ancient Knowledge). Ancient

mystical mathematics of music, geometry and arithmetic became prominent in

Renaissance Hermetism. This atmosphere of Hermetic learning pervaded the

Spanish Court, affecting even Philip II himself, and Villalpando’s In Ezechielem
Explanationes was a product of this atmosphere.

Villalpando’s “Flawless System”

In Volume II, Villalpando laid out a reconstruction of Solomon’s Temple based on

the vision of Ezekiel. Rudolf Wittkower described the rationale used in Villalpando’s

reconstruction as an “absolutely flawless system” (Wittkower 1988: 122). This

flawless system is a combination of: the three hermetic worlds of microcosm-

macrocosm; the Pythagorean-Platonic musical harmonies; a cosmic-astrologic plan

which determined the plan of the temple precinct; Vitruvian anthropomorphism; and

the module that governs the buildings. All of this was supported and justified by a

deep knowledge of both Christian and Hebrew Sacred Scripture.

Villalpando clearly distinguished sacred architecture from the profane

architecture of Vitruvius. He claimed that “Sacred architecture constitutes the

origin of architecture, and the profane one is like a copy, or better still, like a

shadow of sacred architecture” (Villalpando and Prado 1604: 414). The purpose of

Vitruvius, who Villalpando described as “the pioneer of our architects,” was to

equip the architect with the norms of architecture.

But Villalpando’s purpose was to examine the origins of architecture and to

extract the norms that were derived from God’s plan and promulgated by the sacred

scriptures; this natural order was followed by Vitruvius in his Ten Books on
Architecture. Villalpando’s reconstruction envisaged the Temple to be a building

that encapsulated the entire formal grammar of classical architecture, which begins

with the harmonic ratios.

Villalpando carefully defined all the measurements of the Temple as being

derived from the sacred texts. He provides all the measurements of the three main

floors of the buildings of Solomon; the measurements in column one are for the

house of the Lord, in column two for the atrium, and in column three for the house

of the king (Fig. 59.1). These are grouped under the headings: the diameter of the

columns; the height of the columns; the height of the entablature; the height of the
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Fig. 59.1 Symmetry of

sacred architecture. Image:

author, after Villalpando

and Prado (1604)
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floors; the height of the balcony and the overall height of the buildings. All of the

measurements of the atrium are double that of the house of the King, and the

measurements of the house of the Lord are double that of the atrium. In all of the

columns the numbers reveal that the second floor is a quarter part smaller than the

first floor, or a third part of its own measure smaller that the first floor; the third floor

is a fifth part less than the second floor, or the fourth part of its own measure smaller

than the second floor; proceeding in the same way it is possible to find out the other

measurements of the other floors, i.e., the fourth floor will be a fifth part smaller

than the third, or a sixth part of its own measure smaller than the third, and so on.

Villalpando also examined the heights of the columns and the entablatures

(Fig. 59.1). Considering the columns of the atrium, the overall height of the

atrium is 60 cubits: the height of the first floor columns is 20 cubits, a third of the

overall height, the height of the second floor columns is 15 cubits, a quarter of the

overall height and the height of the third floor columns is 12 cubits, a fifth of the

overall height. Thus the above ratios are reflected in the height of the columns in

relation to the overall height. The height of the entablature of the first floor is 1/12 of

the overall height; for the second floor it is 1/16 the height and for the third floor,

1/20 of the overall height. The ratio between the first and the second floor is 4:3 and

between the second and the third is 5:4 (Villalpando and Prado 1604: 441–443).

To deduce the heights of the entablature’s elements, divide the height of the

entablature by eight; two parts will be the height of the architraves and three parts

each for the heights of the frieze and crown. The width of the triglyph and the

metopes, are calculated from the distance between the centres of the columns. In the

first floor the height of the architrave was equal to the width of the triglyph, and that

of the metopes equal to the frieze (Fig. 59.2). The width of the triglyph of the

second floor to that of the first is in the ratio 3:2, and the third to the second 4:3

(Villalpando and Prado 1604: 449). For Villalpando the proportions of the columns

are the foundation of all other measurements and proportions of the entire temple

(Villalpando and Prado 1604: 423).

Villalpando used the monochord to demonstrate the relationships between the

widths of the triglyph and the metopes which resulted in intervals of the

Pythagorean musical scale. Figure 59.2 shows the inter-relationships between the

three buildings of Solomon. Although Vitruvius outlined six harmonic ratios—the

quarter (diatessaron), the fifth one (diapente), the eighth (diapason), the quarter of

the eighth (diapason with diatessaron), the fifth of the eighth (diapason with

diapente) and the double of the eighth one (disdiapason) (Vitruvius 1960:

Bk. 5, ch. 4)—Villalpando rejected the quarter of the eighth. Throughout his

commentary Villalpando followed Daniel Barbaro’s commentary on Vitruvius’s

De Architectura; Barbaro opposed the musical theory of Vitruvius. For Villalpando

“the quarter of the eighth, called ‘superpatiens’, is truly a dissonant chord, and

consequently, the chords are simply five: three simple and two composed”

(Villalpando and Prado 1604: 458).

Villalpando claimed that these harmonic proportions are most apt for a building

of divine origins and he implied the existence of a link between the harmonic

proportions and the celestial bodies. For Villalpando the Temple reflected the
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creation of God and thus had to incorporate itself into the universal harmony

according to the movements of the planets and the fixed stars. To this end he

examined the Tabernacle of Moses, since it prefigured the plan of the Temple. The

camp of the tribes of Israel that surrounded the Tabernacle is a primitive plan of the

Temple precinct (Villalpando and Prado 1604: 466). Villalpando first established

that the proportion of the atrium that surrounds the immediate temple and the altar

is a double square; he then considered the configuration of the camp of the tribes of

Israel. The configuration of the camp was highly structured, with the Tabernacle

placed in the centre, fortified by the four camps of the Levites (Moses and Aaron;

Caathi, Gerson and Merari). Surrounding them were the 12 tribes of Israel, each

tribe camped under its banner that declared its ancient lineage.

The distribution and placement of the tribes in the camp was determined by a

perfect plan with nothing left to chance, since it reproduced the plan of the Temple

and thus was the microcosm of the universe (Fig. 59.3). The four tents of the Levites

in the centre that fortified the Tabernacle corresponded to the four simple elements

of the sub-lunar world, and represented the world of man. These were encircled by

the celestial orbits made up of the seven atriums. The orbits are positioned on the

plan as Ptolemy assigned them in Almagest: “Thus Saturn is situated between

Capricorn and Aquarius; Jupiter in Pisces; Mars in Aries; Venus in Libra;

Fig. 59.2 Table of the parts of the entablature. Image: author, after Villalpando and Prado (1604)
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Fig. 59.3 The arrangement of the heavenly fortress. Drawing: author, after Villalpando and Prado

(1604: vol. 2, 470)
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Mercury in Virgo; the Sun in Leo and the Moon in Cancer” (Villalpando and Prado

1604: 469). Surrounding the 7 courts or celestial orbits were the 12 fortifications or

bastions of the Temple precinct perimeter, which corresponded to the 12 tents of the

tribes of Israel. Judah was represented by the lion, Ruben by the water-bearer,

Ephraim by the bull, Dan by the Scorpion, and so on, so that the tribe’s banners

represented the signs of the zodiac. In the centre was the Temple, ‘dedicated to the

profit of man,’ that represented the ‘true Sun’ of super-celestial world of the

Church. This true Sun is Christ, the ‘Sun of Justice’ whose light is salvation. This

light illuminates the 7 planets and the 12 constellations, and the centralized Earth is

illuminated by the Planet Sun that is located in Leo. This perfect plan represented

the three worlds of the microcosm and macrocosm: in the centre was the

super-celestial world of God; this is surrounded by the world of man; and this in

turn is surrounded by the celestial world of the seven planets and the fixed stars

encircling the Earth—a perfect hermetic vision of a geo-concentric universe.

Villalpando fully endorsed the anthropomorphic theories of Vitruvius. He

perceived that the humanity assumed by God is reflected in the measurements

and geometry of the Temple, which prefigured the perfection of the mystical

body of the Church. Man has a height of 6 ft, and this measurement agrees with

that of his arms extended; but if the arms are doubled in front of the chest, so that the

end of the longest finger of the right hand touches the end of the middle finger of the

left hand, then the width of man will be one and a half cubits, or 3 ft. The

colonnades of the Temple have eight intercolumniations and are divided into

three promenades or galleries that correspond to the barrel of the chest with the

arms (Fig. 59.4). These colonnades correspond to the proportion of 1:2, not only a

double square but also the harmonic ratio of an eighth, an octave. Here Villalpando

portrayed Christ taking the appearance of man as the cosmological man, which

emphasizes the microcosm-macrocosm analogy.

The gridded floor plan of Villalpando’s reconstruction (Fig. 59.5),

corresponding to the plan that represented the three worlds of the microcosm and

macrocosm, was crowded with colonnades and incorporated 1,500 columns. The

Temple precinct was 500 � 500 cubits and the exterior boundary 800 � 800

cubits. Its height, including the foundation, was a massive 420 cubits. Every part

or element was in a harmonious ratio to the entire building. For Villalpando this was

the greatest building ever built and no building could ever surpass it. His was the

first full-scale reconstruction of the divine archetype and this reconstruction

inspired not only other commentaries and other reconstructions of Solomon’s

Temple but it also stimulated discussion on the very nature of the origins of

architecture.

However, his reconstruction was not without its critics. In the seventeenth and

eighteenth centuries, critics included Louis Cappel, Samuel Lee, Louis Compiègne

de Veil, Nicolaus Goldmann and others who produced alternative reconstructions.2

2 Taylor (1972) is an excellent summary of the support and criticism of the Villalpando’s

reconstruction.
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There were many points of disagreement between the critics, including whether

Ezekiel’s vision was the same as the Temple of Solomon, whether the architecture

of the Temple could ever be surpassed, whether the Temple set the norms of

architecture and thus was the origin of architecture. There was also a vast array

of different interpretations of the sacred text, which resulted in many different

reconstructions. Cappel wrote a commentary on Villalpando’s reconstruction in

Brian Walton’s Biblia Sacra Polgotta (Cappel 1657), and a revision of this is in

Critici Sacri (Cappel 1660). Both contain large paraphrased sections of

Villalpando’s work, which continued to stimulate interest in Villalpando’s work

Fig. 59.4 A single

colonnade and the

resemblances to the division

of the human stature.

Drawing: author, after

Villalpando and Prado

(1604: vol. 2, 472)
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and Solomon’s Temple; many of the later critics often quoted from the paraphrased

version rather than from the original.

Newton’s Commentary

In the twentieth century, criticism from what appears to be an unusual source was

uncovered. Newton’s unpublished manuscripts reveal that he had a long-running

interest in Solomon’s Temple, yet the only published work of his on it was a very

brief summary of the floor plan in The Chronology of Ancient Kingdoms Amended,
which was printed posthumously in 1728 (Newton 1988). Two of Newton’s

manuscripts that contain a commentary on Villalpando are Prolegomena ad
Lexici Propretici partem Secundam: De Forma Sanctuary Judaici) known by its

call number Babson Ms. 0434 (Newton c. 1680) and Miscellaneous Notes and

Fig. 59.5 Villalpando’s floor plan of Solomon’s temple. Drawing: author, after Villalpando and

Prado (1604: vol. 2, not numbered)
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Extracts on the Temple, the Fathers, Prophecy, Church History, Doctrinal Issues,
known as Yahuda Ms. 14 (Newton n.d.).3

Newton’s comments are a mixture of both support and criticism. He says, for

instance, “Villalpando, although the best (and) the most eminent commentator on

Ezekiel’s Temple: yet (he is) out in many things” (Yahuda Ms. 14: 32r). Like

Villalpando, Newton strongly believed that Ezekiel’s vision of the Temple was the

plan of Solomon’s temple. In Babson MS 0434 he studied Ezekiel’s vision of the

Temple and confirmed this vision with readings of the ancient Hebrew and Greek

texts. From this study he reconstructed the structure of the temple, revealing it to be

mathematically perfect. However, his floor plan and description of the Temple are

remarkably different from Villalpando’s (compare Figs. 59.5 and 59.6). He

believed that Villalpando’s errors in his design were primarily derived from his

failure to take advantage of Jewish sources and his misinterpretation of the Latin

texts (Yahuda Ms. 14: 32r). Newton pointed out that the Latin text that Villalpando

used sometimes differed in its translation to the Hebrew texts, for instance in the

Latin version in Ezekiel 42:3 Villalpando translated ‘colonnades united’ to be a

triple colonnade but in the Hebrew text it translated to ‘colonnade against

colonnade three times’ indicating three storeys (Babson Ms. 0434: 12).

According to Newton, Villalpando created his grid plan of the Temple precinct

from an “incorrect translation’ and his plan “has no support and is lacking in

reason” (Babson Ms. 0434: 46). Villalpando interpreted Ezekiel 40:19–20 as

meaning that the length of the atrium from the south to the north is the distance

between the gates, a 100 cubits, and this divided the area of the precinct into nine

small atriums or anterooms, two of which formed the temple atrium and seven

exterior to it (see Fig. 59.5). These anterooms are divided from each other by triple

colonnades 50 cubits wide. Newton pointed out that these anterooms not mentioned

in Ezekiel. Regarding the 30 chambers that flank the sides of the gate, which are

expressly mentioned by Ezekiel, it is impossible to arrive at the number 30 for these

chambers if the spaces of the gates are not counted. However, this goes against the

text of Ezekiel. In addition, Newton also claimed that Villalpando’s grid plan

cannot be accepted “unless we want to move away from the proportion of Moses’

atrium that surrounds the immediate temple and the altar, which was established by

Villalpando himself as being a length over double its width” (Babson Ms. 0434:

46).

These criticisms based on Villalpando’s interpretation of the Biblical texts

challenge the basis of his reconstruction. The triple colonnades that Newton

claimed was a mistranslation were important to Villalpando’s plan. First, they

portrayed man/Christ as the cosmological man, emphasizing the microcosm-

macrocosm analogy. Second, they divided the gridded plan into the seven small

ante rooms and the temple atrium, which Newton considers to be ‘lacking in reason’

and their creation goes against the proportions of the Temple atrium that

3 For a full account of Newton’s comments on Villalpanda’s reconstruction and his own attempt,

see Morrison (2011).
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Villalpando had himself established. These triple-colonnaded atriums not only

formed a considerable part of Villalpando’s reconstruction they are also

significant for the plan of the three worlds of microcosm-macrocosm (Fig. 59.3).

Their removal from his plan changes his reconstruction so that it becomes

unrecognizable. Furthermore, Newton referred to Villalpando’s reconstruction as

a ‘fantasy’ (Babson Ms. 0434: 56). All of these criticisms beg the question of why

Newton considered him “the best (and) the most eminent commentator on Ezekiel’s

Temple?”

In Yahuda MS 14 (32r–33v) Newton agreed with Villalpando’s symmetrical

layout of the camp around the Tabernacle and with the heraldry of the tribe’s

standards. He accepted that this plan prefigures the plan and the proportions of the

temple, which were double that of the Tabernacle as proven in detail by

Villalpando. In addition, Newton is in agreement that the perfect architectural

harmony of the Temple represents a microcosm of the perfect harmony of the

macrocosm. However, Newton misread Villalpando’s geo-centric plan of the

Fig. 59.6 Newton’s floor plan of Solomon’s temple. Drawing: author, after Babson (Ms. 0434,

fol. 9r)
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microcosm-macrocosm and considered it to be a heliocentric system.4 Newton

claimed that “Temples were anciently contrived to represent the frame of the

Universe as the true Temple of the great God” (quoted in (Castillejo 1981: 33)).

Newton established that Solomon’s Temple was the model of all temples (Yahuda

Ms. 14: 1r, 6r). Thus this was the model microcosm of the universe and revealed the

mind of the Supreme Architect, that is, the mind of God. This precise concentric

model of the heliocentric universe is particularly strange given that Newton

established the orbital paths of the planet to be elliptical before his making his

comments on the Temple as the model microcosm of the universe.

A final point of agreement is that the Temple of Solomon was a masterpiece of

architecture and was not only the model for all future temples but also established

the norms of architecture as practiced by the later Greek and Roman architects and

codified by Vitruvius (Yahuda Ms. 14: 32r). In Newton’s reconstruction the

“capitals were carved in the Corinthian style of a beauty that was a miracle”

(Babson Ms. 0434: 15) and there were bronze Corinthian columns that were

“covered with a great deal of silver and adorned with gold” (Babson Ms. 0434:

19). There were also massive Doric columns (Babson Ms. 0434: 35, 38); like

Villalpando, Newton’s reconstruction was the perfect classical building.

In 1752, William Stukeley wrote his Memoirs of Sir Isaac Newton’s Life. He
recalled a conversation with Newton in 1725 on Solomon’s Temple, where Newton

claimed that the architecture of the temple was Doric and “the Greeks advanced it

into Ionic and the Corinthian, as the Latins into Composite” (Stukeley 1936: 19).

But the architecture of Newton’s reconstruction of the 1680s is both Corinthian and

Doric, and there is nothing in his papers to demonstrate this development,

mentioned by Stukeley, of the architectural orders, or that he had ever changed

his mind. Stukeley’s reminiscences appear to support his own concept of

architectural development rather that Newton’s. For although Newton does not

directly state that Solomon’s temple was the pinnacle of architecture that could

never be surpassed, he does point to proportions where “the columns will be less

numerous than in the proportion of the eustyli of Vitruvius, and far more beautiful”

(Babson Ms. 0434: 37). Architecture had not been improved by the Romans, but

had in fact declined with the loss of a most beautiful proportion.

4 In Chapter XXX of Ezechielem Explanationes Villalpando clearly describes and illustrates a

geo-centric system, where the Sun completes a circuit around the Earth every 24 h. There is some

ambiguity in the light of the centralised “Sun of Justice” Christ reflecting back to the Earth through

the illumination of the planet Sun. However the planet Sun is circling the centralised earth.

Villalpando clearly held a hermetic view of geo-centricism. Since he also lived and worked in

Rome in the early seventeenth century, he would have been aware of, if he had not personally

witnessed, the burning of Giordano Bruno in 1600 in Rome for promoting a heliocentric view of

the universe. Furthermore, Ezechielem Explanationes was published in Rome and would have

been censored if there had been any hint of the promotion of a heliocentric system. It is possible

that Newton did not see the original volumes of Villalpando, and that his knowledge of

Villalpando came from the paraphrased section of Cappel (1660), which is not as detailed as the

original. It is known that Newton owned a copy of Cappel; see Harrison (1978).
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Conclusion

Newton’s criticisms not only highlight fundamental errors in Villalpando’s

reconstruction based on his interpretation of the scriptures but also point to

inaccuracies in the rationale behind his “flawless” system. The anterooms and

their divisions and the triple colonnades are features that are fundamental to both

Villalpando’s architectural reconstruction and his concept of the microcosm/

macrocosm. Although Newton concurred with the temple as the microcosm of

the universe, he perceived this microcosm as a heliocentric system with the Temple

as the hearth—the sun—of the universe, not the complex geo-centric universe of

Villalpando. But despite In Ezechielem Explanationes being a book of the

Renaissance and Newton’s manuscripts being works of the Enlightenment, both

Villalpando and Newton strongly believed in the medieval concept of the Divine

Architect. In their architectural reconstructions they both attempted to find

mathematical and geometrical formulations of divine truths. For Villalpando

architects were the first Apostles, since they continued the work of the Divine

Architect (Villalpando and Prado 1604: 464). The image depicted by both is not far

away from the thirteenth-century illustration of the Divine Architect wielding his

compass in the Bodleian Bible Moralisé (Friedman 1974: pl. VII). Yet their works

remain exemplary of their respective periods, for the origins of architecture is to be

found in the Temple of Solomon, which was the perfect model for all sacred

architecture, and all profane architecture will ever be as a “shadow of sacred

architecture.”
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Chapter 60

Coelum Britannicum: Inigo Jones
and Symbolic Geometry

Rumiko Handa

Many of these monuments remain in the British islands,
curious for their antiquity, or astonishing for the greatness of
the work: enormous masses of rock, so poised as to be set in
motion with the slightest touch, yet not to be pushed from
their place by a very great power; . . . displaying a wild
industry, and a strange mixture of ingenuity and rudeness.
But they are all worthy of attention not only as such
monuments often clear up the darkness and supply the defects
of history, but as they lay open a noble field of speculation for
those who study the changes which have happened in the
manners, opinions, and sciences of men. . .

Edmund Burke (1887: 188)

Introduction

Inigo Jones’s interpretation that Stonehenge was a Roman temple of Coelum, the

god of the heavens, was published in 1655, 3 years after his death, in The most

notable Antiquity of Great Britain, vulgarly called Stone-Heng, on Salisbury Plain,

Restored.1 King James I demanded an interpretation in 1620. The task most

reasonably fell in the realm of Surveyor of the King’s Works, which Jones had

been for the preceding 5 years. According to John Webb, Jones’s assistant since

1628 and executor of Jones’s will, it was Webb who wrote the book based on

First published as: Rumiko Handa, “Coelum Brittanicum: Inigo Jones and Symbolic Geometry”.

Pp. 109–126 in Nexus IV: Architecture and Mathematics, Kim Williams and Jose Francisco

Rodrigues, eds. Fucecchio (Florence): Kim Williams Books, 2002.

1 There are two modern facsimile reproductions of Jones’s The most notable Antiquity of Great
Britain, vulgarly called Stone-Heng, on Salisbury Plain, Restored: of the 1655 edition (Jones

1972) and of the 1725 edition (Jones 1971). Although the 1655 edition was narrowly distributed,

and the 1666 Great Fire destroyed the unsold copies, it was re-issued in 1725, together with Walter

Charleton’s refuting account of 1662 and John Webb’s rebuttal of 1665. The page numbers

referred to in this article refer to Jones (1971).
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Jones’s “few indigested” notes, on the recommendation of William Harvey,

physician to James and to Charles I, and John Selden, antiquarian.2 The treatise

included a plan of the megalith restored (Fig. 60.1).

On the outer circle were 30 columns, to which a concentric circle of 30 smaller

columns corresponded, the radius of the latter tracing the outermost intersections of

the four equilateral triangles within the first circle. On the hexagon resulting from

two of the four triangles were six sets of two stones each. A side of this hexagon was

as wide as that of the dodecagon.

John Aubrey, seventeenth-century antiquarian and Royal Society member,

characterized Jones’s theory by a “Lesbian rule”, a soft lead ruler that fits curbs of

stones: Jones “had not dealt fairly, but had made a Lesbian’s rule, which is

conformed to the stone; that is, he framed the monument to his own hypothesis

which is much differing from the thing it self” (Aubrey 1862: 315;Hunter 1975: 179–

180). Since then, scientific archaeology has advanced our knowledge of the

monument. Thirty stones make up the outer circle, as Jones depicted. However, no

hexagon exists, but rather a U-shape of ten stones. No indication of Tuscan order is

found in the crude cuts of the stones. Isotopicmethod has proven several construction

stages between 2000 and 1600 B.C., ruling out the Romans, who reached the British

isles in 43 A.D. Some present-day scholars have suspected that Webb published the

theory of which Jones was not convinced, or simply borrowed the master’s name to

publish his own idea. However, the idea, if not the writing, should be attributed to

Jones, and reveals the architect’s sense of the past and imagination. The symbolism

of Coelum are also found in other works associated with Jones.

Fig. 60.1 Inigo Jones,

“Groundplot” of

Stonehenge. Image: Jones

(1655: Pl. 40)

2 These two individuals both have connections to Robert Fludd; see Yates (1969):

64, Rykwert (1980).
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Jones’s Stonehenge interpretation reveals an important difference between his

world and ours, as Edmund Burke’s statement above suggests. Jones demonstrated

the ideal through architecture, no matter if, as was in fact the case, the ideal was far

from the real. Mathematics, and geometry in particular, enabled him to do so. Stone-

Heng was not so much related to the original as to its ideal. It not only idealized the

megalith but also the nation and monarch. It further idealized Jones’s own realm, that

is, architecture, the architect, and his own being. To compare, today’s advanced

technology makes almost any construction possible but at the same time allows us to

be oblivious to what ought to be built. Professionalsmight ask what is timely, but often

fail to question whether being timely is always good. Positivistic clarity in the matters

of economy and efficiency makes it difficult for us to see ethical values. In order to

fully appreciate Jones’s world, we need to get at the provenance of his knowledge.

Jones’s Intellectual World and His Mathematics Education

Called by John Summerson “England’s first classical architect” (Summerson 2000:

1), Jones himself listed the Vitruvian qualifications for the architect:

An Architect; who, (as Vitruvius saith) should be . . . perfect in Design, expert in Geometry,

well seen in the Opticks, skilful in Arithmetick, a good Historian, a diligent hearer of

Philosophers, well experience’d in Physick, Musick, Law and Astrology (Jones 1971: 3).

Artisans of Elizabethan England could have known of Vitruvian qualifications

through English authors as well, including John Shute in The First and Chief
Ground of Architecture (1563) and John Dee in his preface to Euclid’s Elements
of Geometry (1570).

Jones himself must have made efforts in acquiring these qualities. Altro diletto
che Imparar non trovo (“I find no other pleasure than learning”), Jones wrote

decoratively for frontispiece of his sketchbook in January 1614. Jones owned a

copy of Daniel Barbaro’s translation and commentary of Vitrivius’s Dieci Libri
dell’Architettura in Italian of 1567, now in the Devonshire Collection. When and

how Jones acquired this book published before his birth, or any others, would be an

interesting but difficult topic to pursue. Out of about 50 volumes of Jones’s extant

library, five bear the dates of purchase, the earliest of which is 1601, in which the

28-year-old paid two gold coins for a copy of Palladio in Venice.3 Only a portion of

Jones’s library has survived, which range from architecture to history, geography,

mathematics and philosophy.4 Most of these books are in Italian, some with Jones’s

3 The particular dated inscription has been considered by generations of scholars “not by Jones” or

“by an Italian bookseller”. For the present author’s argument to affix the authorship to Jones, see

Handa (2006).
4 For a list of Jones’s extant books, see Johnson (1997, Anderson 1993). For the provenance of the

George Clark (1661–1736) collection which makes up the Worcester books, see Wilkinson (1926).

See also Sayce (1970).
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annotation, while the only two are in Latin without notes. Jones must have been

proficient in Italian but not in Latin. Jones cited about 60 authors in his Stong-heng,
out of which only about 10 are among his extant books. The fact that quotations are

in Latin with an English translation following should not refute the assumption

about his language capabilities. Jones could well have drawn quotations from

Italian, while Webb could have searched equivalent passages in Latin editions.

An observation can be made: While much was quoted from the 1567 Latin edition

of Barbaro’s Vitruvius, one statement was in Italian with a reference to the 1584

edition. The statement being in Italian is natural, for the 1567 Latin edition did not

include that precise passage by Barbaro. The citation is unusual, however, as the

only one that specifies a particular edition, and puzzling for not referring to the 1567

Italian, which Jones owned and which included the quoted passage. What should be

deduced is that Jones’s 1567 copy had left Webb’s hands before 1655. This might

begin to explain why the book was separated from others, which stayed with the

assistant until his death, and most of which are at Worcester College, Oxford.

Although we do not know where Jones learned mathematics, he grew up in a

time when mathematics was valued in practical trades. A number of individuals,

including Robert Recorde and John Dee, had spread the mathematics discipline.5

Robert Recorde, whose life ended before Jones was born, taught mathematics in

London (Taylor 1954). His books, Grounde of Artes, 1542, on arithmetic, Pathway

to Knowledge, 1551, on geometry, and Castle of Knowledge (1556) on astronomy,

written in vernacular English, were meant for tradesmen and artisans (Johnson and

Larkey 1935). Geometrical operations needed for Jones’s diagrams were in book I

of Pathway, such as drawing an equilateral triangle within a given circle, a circle

within a given triangle, and a hexagon within a given circle.

Inigo Jones’s Stonehenge Interpretation

Jones refuted preceding theories of Stonehenge and presented a new interpretation:

Wherefore leaving these, Stoneheng was dedicated, as I conceive, to the God Coelus, by

some Authors called Coelum, by others Uranus, from whom the Ancients imagined all

things took their beginning (Jones 1971: 101).

In the last portion of the book Jones gave principal reasons for his interpretation.

He first listed the surrounding environment: “My reasons are, first, in respect of the

situation thereof; for it stands in a Plain, remote from any Town or Village, in a free

and open air, without any groves or woods about it” (Jones 1971: 67). Jones had

rejected the popular belief of Stonehenge as a Druids’ temple for the reason that

Druids, who according to Julius Caesar lived in groves and woods, would not have

been involved in complex building such as Stonehenge. Jones quoted Vitruvius:

5 Taylor (1954) includes 582 individuals whose lives ranged from 1486 to 1768, and 628 printed

books and manuscripts on mathematics and related subjects.

200 R. Handa



In the first Age of the World (saith he) Men lived in Woods, Caves, and Forests, but after

they had found out the Use of Fire, and by the Benefit thereof were invited to enter into a

certain kind of Society, . . . Some of them began to make themselves Habitations of Boughs,

some to dig Dens in Mountains; other some, imitating the Nests of Birds, made themselves

places of Lome and Twigs, and such like Materials, to creep into, an shroud themselves in

(Jones 1971: 8).

Jones’s second reason came from observing the roofless nature of Stonehenge:

“. . .in regard of the Aspect; for Stonehenge was never covered, but built without a

roof” (Jones 1971: 67). Jones had learned the term hypaethros from Vitruvius,

noting in his copy, “7/hipteros the open or uncovered”.6 Jones listed the suitable

deities, quoting Vitruvius: “To Jove the Lightner, and to Coelus, and to the Sun, and

to the Moon, they erected buildings in the open air and uncovered” (Vitruvius 1567:

III, 2). These deities should be presented “in a clear and open view”, which required

the edifice not to be enclosed by walls but instead to be surrounded by columns.

Jones had earlier observed in Vitruvius: “Temples open to the Air, and without

Roofs, have columns on the Inside, distant from the Walls, as Courts Porticoes

about them” (Vitruvius 1567: III, 1; Jones 1971: 46). Additionally, Jones

considered it a “hainous matter to see those Gods confined under a roof, whose

doing good consisted in being abroad”.

Jones’s third reason concerned the circular plan (Jones 1971: 67). Pierio

Valeriano, Leon Battista Alberti, and Philander on Vitruvius were his sources.

Quoting from Philander (1549: 137–138), Jones observed:

Although (saith he) the Ancients made some Temples square, some of six Sides, others of

many Angles, they were especially delighted with making of them round, as representing

thereby the Form or Figure of Coelum, Heaven (Jones 1971: 67).

In Philander (1549: 138) Jones found a reference to circular temples with double

columns:

Varro de re rustica (as I find him cited by Philander) tells us, that they had in use amongst

them a round Building without any Walls, having a double Order of Columns round about,

this he calls by the name of Tholus, . . . A round Edifice (saith he) environed about with a

double Order of Columns (Philander 1549: 138).

Jones was ready to compare two types of circular temples. Referring to

Vitruvius, Jones stated, “there were amongst others two Forms of round Temples,

commonly in Use amongst them, the one called Monopteros (Fig. 60.2), the other

Peripteros” (Fig. 60.3) (Vitruvius 1567: IV, 7; Jones 1971: 51).

Earlier Jones had mentioned that peripteros “has the Cell enclosed about with a

continued Wall, and at a proportionate Distance from it, the Columns place which

made a Portico round about it, clean different from Stone-Heng”, while monopteros

was “made open, and instead of a Wall encompassed with a Row of Pillars only,

having no enclosed Cell within it at all, as much conducing to our Purpose in

Hand”. Jones had noted on the illustration of a monopteros in his copy of Vitruvius,

6 According to John Newman (1992: 33), the spelling mistake, came from the fact Jones did not

know the Greek language. The annotation is in Vitruvius (1511: 121).
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“the one without sell and only with Colloms/the other winged about” (Newman

1992: 48). Jones stressed the relevance of monopteros to Stonehenge, quoting

Barbaro in Italian: “I believe that Temple without Walls (speaking of the

Monopteros aforesaid) had a Relation to Coelum (Heaven) because the Effects

thereof are openly displayed to the full View of all Men” (Jones 1971: 71). A sort of

Fig. 60.2 The monopteros.

Image: Jones (1655: 55)

Fig. 60.3 The peripteros.

Image: Jones (1655: 56)
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evolution can therefore be observed about the circular temple, from monopteros,

peripteros, and to Stonehenge. The changes had taken place, for

Architect disdaining usual and common Forms, of both the aforesaid Forms [monopteros

and peripteros] composed one. For, taking the outward Circle from the Monopteros, he

made it open also as in that, but instead of the continued Wall circularly enclosing the Cell

of the Peripteros, at Stone-Heng he made only an Hexagon about the Cell, leaving the same

open in like Manner (Jones 1971: 51).

Architectural order of Stonehenge was the next topic. The megalith must have a

specific order, for “it was the Custom of the Ancients (as in Part I remembered

before) to appropriate the several Orders of Architecture, according to the particular

Qualifications of those they deified” (Jones 1971: 67–68). It must have been the

severest and most grave order: “[I]t is in mine Opinion,” Jones stated, “Respecting

therefore this Decorum used by the Ancients in building their Temples, and that this

Work Stone-Heng is principally composed of a most grave Tuscan Manner, by just

Proportions of an agreeable Form.” Jones might also have read Shute’s account:

Then the Tuscanes, beginning to builde, having knowlaige of the pillor, whiche was firste

invented by the Ionians, upon the Symetrie, of a strong manne invented to buylde stronglye

after the maner aforsayde, yea, and to garnishe also theyr cyties and townes beautifullye

with a pillour of their owne devise whyche yet at this present time, remayneth wholle in the

citie of Forence and in the countreis there about they fourmed and fashioned that pillor,

whyche to thys daye is named after the sayde countrey Tuscana. . .. This pillor is the

strongest and most able to beare the greatest of burteofal the others. And that same his

stregthe cometh by his shortenes, . . . (Shute 1563).

This severest and the most grave order was appropriate for Coelum, the

“ancientist” and “father of Saturn”. His understanding of Coelum came from both

classical and contemporary authors, Apollodorus, Boccaccio, Diodorus Siculus,

Plutarch, Johannes Rosinus,7 Thomas Godwin8 and Valeriano. Book 1 of

Bibliotheca of Apollodorus (1997), a grammarian of Athens of the second

century B.C., was a common guide to Greek mythology, which drew from older

sources like Hesiod’s Theogony, of the eighth century B.C., in which Ouranos,

Greek equivalent to Coelum, was described as the first deity:

Ouranos was the first ruler of the universe. He married Ge, and fathered as his first children

the beings known as the Hunred-Handers, Briareus, Cottos, and Gyes, who were

unsurpassable in size and strength, for each had a 100 hands and 50 heads. After these,

Ge bore him the Cyclopes, namely, Arges, Steropes, and Brontes, each of whom had a

single eye on his forehead (Hesiod 1968).

7 Johannes Rosinus (1551–1626) was Jones’s contemporary. Jones cited Book 2, Chap. 5 of

Rosinus’s Antiquitatum Romanarum (1645).
8 Thomas Godwin (1587–1642) was another contemporary of Jones. His Romanae Historiae
Anthologia. An English Exposition of the Roman Antiquities, wherein many Roman and English
Offices are parallelled, and diverse obscure Phrases explained of 1614 was intended for the use in
Abingdon school in Berkshire, where he was the schoolmaster, and was revised and reprinted a

number of times, till the sixteenth edition in 1696. Jones cited its Book 1, Chap. 20.
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Diodorus of Sicily, who in turn drew from Apollodorus, Greek historian of the

first century B.C., stated in his Bibliotheca historica:

As for the Muses, since we have referred to them in connection with the deeds of Dionysus,

it may be appropriate to give the facts about them in summary. For the majority of the

writers of myths and those who enjoy the greatest reputation say that they were daughters of

Zeus and Mnemosyne; but a few poets, among whose number is Alcman, state that they

were daughters of Uranus and Ge. . . (Diodorus 1935: IV, Chap. 7).

Diodorus, earlier, told the stories of Uranus, their first king, who improved his

subjects’ ways of living, and introduced the year, months and seasons based on the

observations of the stars (Diodorus 1935: III, Chap. 56).

In time, according to Diodorus, the people accorded Uranus with immortal

honours and made him the king of the universe.

In his copy of Vitruvius, Jones had made this note: “in musicke the(re) must be a

proportionatt distance between the low and heaygh/the same symphathy is in the

stares/the ruels of arethematicke that unite musick wth astrologiy” (Newman 1992:

27; the annotation is on Vitruvius 1567: 24). Near the end of the Stone-Heng book,

Jones discussed the correlation of architecture, astrology and music, made possible

through mathematics:

Lastly, that Stone-Heng was anciently dedicated to Coelus I collect from the Conformation

of the Work. For the Conformation of the Cell and Porticus in the Plan, was designed with

four equilateral Triangles, inscribed in a Circle, such as the Astrologers use in describing

the twelve celestial Signs in musical Proportions (Fig. 60.4).

He quoted Vitruvius:

In the Conformation thereof, let four Triangles be inscribed of equal Sides and Intervals,

which may touch the extreme Part of the Circumference: . . . by which Figures also,

Astrologers from the musical Harmony of the Stars ground their Reasonings, as concerning

the Description of the twelve celestial Signs (Jones 1971: 70; Vitruvius 1567: V).

Jones added that the hexagon, which made Stonehenge’s inner cell, was also a

tool of astrologers. He quoted Philander: “The Astrologers make use of three Sorts

of Figures, the Triangle, Tetragon, and Hexagon” (Jones 1971: 70). The four

equilateral triangles determined not only the hexagon, but also the openings, or

“comparting”, of the outer columns. According to Jones, “the three Entrances

leading into the Temple from the Plain, were comparted by an equilateral

Triangle; which was the Figure whereby the Ancients expressed what appertained

to Heaven, and Divine Mysteris also.” This must have stemmed from Jones’s

careful observation of an illustration of a theater in Barbaro’s translation and

commentary of Vitruvius (Fig. 60.5).

Jones reinforced the symbolism of the equilateral triangle, referring to

Valeriano: “The Magi add, that a Triangle of equal Sides is a Symbol of Divinity,

or Sign of celestial Matters” (Valeriano 1556: Bk. 39; Jones 1971: 70). Finally,

Jones related the stars’ circular movements in the heavens to the plan of

Stonehenge: “those several Stars which appearing to us in the Heavens in Form

of a Circle,” or “the celestial Crown”, was not “improbable” for the Stonehenge
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Fig. 60.4 The four

equilateral triangles that

govern Stonehenge. Image:

Jones (1655: 58)

Fig. 60.5 The illustration

of a theater from Daniele

Barbaro’s Latin edition of

Vitruvius. Image: Vitruvius

(1567: 188)
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composition, for “after Ages might apprehend, it was anciently consecrated to

Coelus or Coelum Heaven” (Jones 1971: 70).

Although Jones did not identify the “Astrologers”, Recorde and Dee, and also

Robert Fludd, are possibilities. Although Fludd’s books were in Latin, Jones’s

personal acquaintance on medical matters has been found by Joseph Rykwert.

With Recorde’s Castle alone Jones would have known circular movements of

celestial bodies (Fig. 60.6).

Jones’s Ideal Vision of Britain and the British Monarch

Jones’s interpretation of Stonehenge as a Roman monument was “profoundly

informed by Jones’s vision of Britain as the true heir of Roman culture” (Strong

1973: 82). Justifying the present by the virtues of the past had been in practice

before Jones. Brutus the Trojan and King Arthur represented English chivalry. The

poem Faerie Queen by Edmund Spenser (d. 1599), for example, had deliberately

linked Queen Elizabeth to Prince Arthur, and to Brutus, in order “to fashion a

gentleman or noble person . . . to be of good birth and to be aware of your past and

Fig. 60.6 Circular

movements of celestial

bodies. Image: Recorde

(1556)
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of the obligations imposed upon you by your past was an urgent first rule”

(Kendrick 1950: 130).

Early Stuarts also likened themselves to historical figures, including James I who

styled himself as King Solomon for uniting Scotland and England. In reality he was

never Elizabeth’s match officially or personally. The schisms between the monarch

and his subjects would continue with Charles I, eventually culminating, of course,

in beheading the monarch in the Civil Wars. And yet the sovereigns had an

extremely high vision, as James wrote in Basilikon Doron: “A King is as one set

on a stage, whose smallest actions and gestures, all the people gazingly doe

behold.” The monarch must therefore exemplify good laws

with his vertuous life in his owne person, an the person of his court and company; by good

example alluring his subjects to the love of virtue, and hatred of vice . . . Let your owne life
be a law-booke and a mirrour to your people, that therein they may read the practise of their

owne Lawes; and therein they may see, by your image, what life they should leade (Orgel

1975: 42–43; see also McIlwain 1918).

Such symbolism extended even to equate the king to the sun and to the god.

Why was the Roman origin advantageous? Other possibilities included, as John

Speed listed, Britons, Saxons and Danes. In emphasising the Roman past Jones was

not alone, however. Emerging historiography tended to discredit old chroniclers

like Geoffrey and instead to rely on artefacts and vocabularies found at the site.

According to William Camden, the word Britannia had nothing to do with Brutus,

but was a Celtic and Greek compound meaning “land of the painted people” (Woolf

1990). Others who rejected Brutus included John Clapham (1602, 1606), John

Selden and Richard Rowland (1605), and eventually Oxford University Almanac

in 1675 (Levine 1987; Smuts 1987).

Coelum was the oldest in Roman theogony, and yet it was not necessarily a

perfect representation, for Coelum was an archaic, and therefore less popular deity,

and even in the Roman pantheon

had a rather shadowy existence . . ., for he was more a personification of the heavens than a

god who was worshipped in the ancient world, and although he would have been credible as

a figure in a Renaissance masque, he was less so as the centre of a Roman cult (Parry 1981:

157).

The choice of Coelum must have been architectural: it could easily be tied to a

specific geometry, thus making the architect the supplier of symbolism, providing

him with an advantage over theologians or poests. Jones’s famous quarrel with poet

Ben Jonson, long-term collaborator of court masques since 1605, stemmed from the

desire of each to be superior to the other (Gordon 1975). A symbolism that was

geometrical and therefore architectural must have made the architect the idea

generator, while the poet was only the executor.

Where else did the notion of Coelum Britannicum appear?

If Jones considered Coelum important, then it should be natural for the same

symbolism to appear in other works among his opus. The first of such instances is

the design for James’s catafalque of 1625 (Fig. 60.7) (Peacock 1982: 1–5; Harris

and Higgott 1989). Its design sources included Domenico Fontana’s Catafalque for

60 Coelum Britannicum: Inigo Jones and Symbolic Geometry 207



Pope Sixtus V (Fig. 60.8) and Bramante’s Tempietto; however, differences between

Jones’s and Fontana’s designs are important here. Fontana’s looks Corinthian in

order, while Jones’s was likely Tuscan. While Fontana used six sets of double

columns on a circumference with an arched opening in-between, Jones’s sets of two

columns appear to line up in the radius, with a complete opening below the

entablature. Jones’s design is therefore closer to Vitruvius’s description of

monopteros. Another difference is in the dome, Fontana’s being pointed and

Jones’s semi-spherical. All these characteristics correspond to Jones’s symbolism

of the heavens.

Jones’s masque designs included Coelum Britannicum written by the young poet

Thomas Carew, performed on Shrove Tuesday in 1633/1634 at Banqueting House,

Whitehall. The allegory originated in Giordano Bruno’s 1584 Spaccio de la bestia
trionfante (The Explusion of the Triumphant Beast (1964)). Here the central figure

was Jove, ageing father of the gods, who was to bring forth much-needed reform

both of microcosm and macrocosm, or society as well as man, both disturbed by

religious, philosophical, and scientific crises (Giordano Bruno 1964: 27).

The Devonshire Collection includes a scenery design that generations of

scholars left unidentified (Fig. 60.9). Knowing the 60-year-old Jones had much

control over author, story line and allegory, one cannot help but notice a small yet

distinct depiction of a ring of stones in the center of this drawing. Additionally, the

opening scene matches the features of this drawing, making it highly probable the

Fig. 60.7 Jones’s design

for the catafalque of James

I, 1625. The Provost and

Fellow of Worcester

College, Oxford
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Fig. 60.8 Domenico

Fontana’s catafalque for

Pope Sixtus V. Image:

Catani (1591: Pl. 24)

Fig. 60.9 Sketch for a

scenery design by Inigo

Jones, with a small yet

distinct ring of stones in the

center. Image: Devonshire

Collection, Chatsworth.

Reproduction by permission

of the Duke of Devonshire

and the Chatsworth

Settlement Trustees
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drawing was for this masque: “the scene, representing old arches, old palaces,

decayed walls, parts of temples, theatres, basilicas and Thermae, with confused

heaps of broken columns, bases, cornices and statues, lying as underground, and

altogether resembling the ruins of some great city of the ancient Romans or

civilised Britons” (Orgel and Strong 1973: vol. 2, 571). John Peacock has traced

many elements of this scenery to Willem van Nieulandt’s (Peacock 1995:

315–320). What is important, however, is the ring of stones appears only in

Jones’s scenery.

Jones’s costume design for Atlas, a character in this masque, holding the

spherical cosmos on the shoulders, resembles an illustration from Valeriano’s

Hieroglyphica, one of Jones’s sources for Coelum (Figs. 60.10 and 60.11).9

Atlas’s characteristics matched the Tuscan order:

As namely Tuscana, is applied unto Atlas, the kynge of Mauritania . . . This [Tuscan] pillor
is the strongest and most able to beare the greatest of burteofal the others. And that same his

stregthe cometh by his shortenes, therefore he is linked unto Atlas, kynge of Maurytania,

and the piller is named Tuscana (Shute 1563).

In the same year as this masque production, Peter Paul Rubens was working in

Antwerp on what would become the ceiling paintings of Banqueting House (Strong

1980: 13). A panel depicted James I as King Solomon in a circular edifice of Tuscan

order under a semi-spherical dome (Fig. 60.11). Provided that Jones supplied the

Fig. 60.10 Depictions of Atlas holding the spherical cosmos on his shoulders: (left) from

Valeriano’s Hieroglyphihca (1602); by Inigo Jones. Image: Devonshire Collection, Chatsworth.

Reproduction by permission of the Duke of Devonshire and the Chatsworth Settlement Trustees

9 Frances A. Yates (1969: 180) made a passing remark that Jones used the 1602 edition of

Valeriano’s Hieroglyphica in Italian.
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allegory, we see that Jones made an explicit association of the deceased British

monarch as Coelum Britannicum. This then constitutes the third instance of the

symbolism.

The fourth possible instance is Charles I’s portrait by Anthony Van Dyck (1638),

who had come to London 6 years earlier on a royal invitation. The monarch, clad

in Roman armour, is passing through a triumphal arch of Tuscan order (Fig. 60.12).

Equestrian positions induced chivalry, endowing the monarch with much needed

powers and virtues. The second sitter, carrying Charles’s helmet and wearing a

medal, stands slightly ahead of the horse, and looks up and back at the monarch.

According to Oliver Millar and recent findings at Royal Collection,10 the figure is

Antoine Bourdin, French equestrian teacher to Charles I. A teacher in an

authoritarian portrait seems contradictory, however. Is it possible that the standing

figure was our Jones himself? Enough resemblance points to Van Dyck’s depiction

of Jones (Fig. 60.13), including facial features, hair and scull cap, and plain but wide

collars and shirt with many front buttons. While drawing the equestrian teacher

officially, could Van Dyck have secretly depicted another individual? A concrete

instance of such is Emperor Theodosius Refused Entry into Milan Cathedral by St

Fig. 60.11 Rubens’s

depiction of James I as King

Solomon (Crown copyright)

10 Letter from the Royal Collection to the present author.
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Ambrose, Archbishop of Milan, in which Van Dyck copied Rubens’s painting,11 but

cast his contemporaries so that the allegory made sense (Gritsai 1996: 28). Just as

Jones was the mastermind of court masques and of Rubens’s court paintings, the

architect could also have advised Van Dyck, a fairly new arrival in British court.

The painting then would reveal Jones’s ideal image of the architect. To see it, we

must go back to James I’s coronation. A royal procession took place in London in

March 1604, with a performance devised by poets Ben Jonson and Thomas Dekker

and seven triumphal arches designed by Stephen Harrison.

Among them was Fenchurch arch (Fig. 60.14) with a London cityscape for the

pediment, the British monarch immediately below, and a figure further below who

Fig. 60.12 Anthony van

Dyke, Charles I with M. de

St. Antoine. Image: The

Royal Collection ©2002,

Her Majesty Queen

Elizabeth II

11 Van Dyck’s copy is in the National Gallery, London.
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looked up the rest. Graham Parry identified this figure as Theosophia, or divine

wisdom. Jonson characterized her as, all in white, a blue mantle seeded with starres,

a crowne of starres on her head . . . Shee was alwayes looking up; in her one hand

shee sustayned a dove, in the other a serpent: . . . Intimating, how by her, all kings

doe governe, and that she is the foundation and strength of kingdomes, to which

end, shee was here placed, upon a cube, at the foot of the Monarchie, as her base and

stay.

The inscription in the entablature, “Par Domus Haec Coelo Sed minor est

domino,” predicated the city the monarch resided as Coelo, the heaven (Hart

1994). Now looking back in Van Dyck’s composition, we see the architect, the

source of wisdom to Charles I, who shone under a triumphal arch. And back in the

masque Coelum Britannicum, Jones might have portrayed himself as Atlas.

Fig. 60.13 Van Dyke’s

portrait of Inigo Jones.

Image: Devonshire

Collection, Chatsworth.

Reproduction by permission

of the Duke of Devonshire

and the Chatsworth

Settlement Trustees
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Conclusion

Jones’s theory of Stonehenge is not a singular instance of erroneous interpretation,

but an important piece of the grand ideal vision. We might interpret it as a political

maneuver, but that would describe nothing but our present conditions. Jones

believed in architectural symbolism if not for present, then for future, and if not

for future, then for utopia. Geometry collaborated in the construction of the ideal.
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Chapter 61

The Science Behind Francesco Borromini’s

Divine Geometry

John G. Hatch

Introduction

The popular notion of religion and science being at opposite poles within the

intellectual currents of the seventeenth century is challenged by the designs and

architectural iconography underlying the churches of Francesco Borromini (1599–

1667). Described as something of a licentious eccentric by Gian Lorenzo Bernini

and his contemporaries (Blunt 1979: 212–213; Steinberg 1977: 15–16), Borromini

nonetheless relied upon a complex geometric system in his architectural designs,

which ruled both the layout and elevation of his buildings. In turn, this use of

geometry also seems to have had an important theological justification, namely that

of stressing the underlying divine order of the universe whose existence or

revelation can only be perceived by the faithful. In essence, this is simply a

restatement of the Medieval idea of “God as Divine Geometer” except that, for

Borromini, God is no longer depicted in the garb of scholastic rationalism, but

rather, as I will show, of seventeenth-century scientific rationalism: a rationalism

that embraces the notion of divine revelation. Although Borromini’s interest in

ancient mathematics and geometry, as well as his interest in the work of Galileo, are

commonly known, one potential source for the architect’s interest in divine

geometry and cosmology has yet to be acknowledged fully. It is specifically in

the writings of Johannes Kepler that one finds the most consistent explanation for

Borromini’s use of geometry in architecture, as well as a source for the unusual

First published as: John G. Hatch, “The Science Behind Francesco Borromini’s Divine

Geometry”. Pp. 127–139 in Nexus IV: Architecture and Mathematics, Kim Williams and Jose
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cosmological Trinitarian references found at the churches of S. Carlo alle Quattro

Fontane (Rome: 1638–1641) and S. Ivo della Sapienza (Rome: begun 1642).1

S. Carlo alle Quattro Fontane

Upon entering the church of S. Carlo, it would appear preposterous even to suggest

the existence of a geometrical scheme (Figs. 61.1, 61.2). Our first impression of the

interior is of a flowing, almost dizzying, sense of movement. The walls are

composed of shallow and deep curved bays all linked by straight horizontal

elements. The whole interior surface is articulated by columns set into walls,

while the surfaces themselves are pierced by a series of niches of varying sizes,

adding yet another rhythmic dimension. All these elements combine to create a

sense of spatial plasticity, serving to dematerialize any notion of architectural

solidity. This interior has been described by various architectural historians as

“willfully complex”, producing a “rolling, rocking effect”, “a delightful

confusion”, etc., all epitomizing Heinrich Wölfflin’s characterization of the

Baroque’s “wild desire for movement” (Steinberg 1977: 15–16, 169; Wölfflin

1984: 59). In fact, this interior is so complex that countless interpretations, many

contradictory, have been set forth to explain the design logic of the interior, in spite

of the existence of Borromini’s drawings (Steinberg 1977: 18–41).

The dizzying character of the interior and, potentially, the diversity of

interpretations offered by scholars, simply reflects the intentions of the architect.

The main body of the interior is meant to confuse and destabilize one’s sense of

spatial orientation. There is no ideal viewpoint, but rather a multiplicity of

viewpoints which, as a totality, are not meant to exhibit a coherent whole.

However, despite this apparent ambiguity and “willful complexity,” the ground

plan is nonetheless based on a series of rather simple geometric manipulations.

Borromini’s preliminary drawing 173 in the Albertina Collection, Vienna, reveals

that the church interior is structured upon two equilateral triangles sharing a common

side, with two circles inscribed within them. The two circles are combined to form an

oval, describing the area of the dome. The longitudinal chapels are defined by the end

points of the two triangles, while the lateral chapels are marked out by the shared

corners of the triangles. Finally, the four piers of the church are defined by crossing

diagonals originating from the shared corners of the two triangles, cutting the centre

of the circles. In this manner, the layout of the building is based on two triangles and

two circles circumscribed by an oval.

What then are we to make of this paradoxical relationship between the actual

appearance of the interior and its underlying geometrical skeleton? The answer to

1 Blunt (1979: 47). Leo Steinberg does hint at a possible connection between Kepler and

Borromini, but more in terms of a shared zeitgeist than any direct links; see Steinberg (1977:

240–241).
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this query is partially revealed in the upper half of the church and, specifically, the

oval dome (Fig. 61.3). The shape of the dome represents the essential underlying

scheme of the lower part of the church, complemented by the decorative motifs

found in the coffering; in essence, the upper half of the church represents a synopsis

of the lower half. At this level of the church, one reaches the point of divine

revelation, where the complexity of the forms below are clarified through a

process of religious enlightenment. The dome space is clearly meant to be

understood as a metaphorical representation of the heavenly realm, which is

Fig. 61.1 Altar wall,

S. Carlo alle Quattro

Fontane, Rome, 1638–1641.

Photo: Kim Williams

Fig. 61.2 Dome, S. Carlo

alle Quattro Fontane, Rome.

Photo: author
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explicitly shown in the lantern where we find the symbol of the Holy Spirit and

behind it a series of rays depicting the spiritual light of revelation.2 This light is

complemented by the natural light that emanates from the windows at the base of

the dome, making this area the most brightly lit space in the whole church and,

consequently, reinforcing the notion of a progression from temporal reality towards

the perfection of the heavenly sphere, through the process of spiritual revelation.

A similar reading emerges with regards to the church of S. Ivo della Sapienza,

which Rudolf Wittkower describes as symbolizing a “movement downward from

the chastity of forms in the heavenly zone to the increasing complexity of the

earthly zone” (Wittkower 1973: 138). Thus at S. Ivo we should find a similar

symbolic program as we saw at S. Carlo, but with certain modifications more

ideally suited to the church of the future University of Rome.

Fig. 61.3 Dome, S. Carlo

alle Quattro Fontane, Rome.

Photo: Kim Williams

2 This idea of the dome or vault of heaven may have been inspired by Byzantine architecture since

we known that Borromini was collecting information on the Hagia Sophia and San Vitale in the

early 1640s; see Connors (1996: 50–51).
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S. Ivo della Sapienza

The interior of S. Ivo is as confused as that at S. Carlo (Fig. 61.4). Borromini

presents another complex fusion of architectural forms serving to create a sort of

amorphic structure. Though the central space is essentially circular, it is composed

of six bays, three of which are semi-circular, and three others of an irregular shape.

The wall surfaces are articulated by a series of niches and a string course serving to

divide the wall into two sections. Instead of columns, we find at S. Ivo the use of

pilasters, distributed in a complex rhythm, which are in turn combined with a series

of broken pilasters. On the ground level then, this interior serves to create a similar

sense of spatial disorientation as that found at S. Carlo. And like S. Carlo, we also

find at S. Ivo a controlling, geometrical skeleton underlying this plan (Fig. 61.5).

As was the case with S. Carlo, the key to understanding the geometry of design at

S. Ivo lies in the dome area (Fig. 61.6). Standing in the centre of S. Ivo, our eye is

gradually led upwards towards the dome.

Again we find expressed a process of design clarification where, at one level, the

entablature partially reveals the geometric structure, which in turn is further

clarified as our eye moves along the vertical ribbing of the dome towards its

apex. The whole underlying order is beautifully unfolded in a very gradual

process, finally culminating in the figure of the Holy Spirit bathed in a symbolic

representation of divine light. As is the case with S. Carlo, we are in the presence of

the vault of heaven at S. Ivo, punctuated by the stars decorating the dome and the

Fig. 61.4 Interior, S. Ivo

della Sapienza, Rome.

Photo: Kim Williams
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two superimposed circles formed by the Cherubim and Seraphim (Portoghesi 1968:

149–158).

Borromini’s use of geometry has always been puzzling. Comparing his

architecture with that of Palladio, we observe that where Palladio’s use of

geometry is explicitly demonstrated in the final structure, Borromini’s still

remains implicit to a large extent. Even in the buildings of such contemporaries

as Bernini, the geometry of design is still evident in controlling the unfolding of his

structures. In Borromini’s case, geometry is not necessarily meant to only generate

form, but also remains an implicit justification of the building as a whole. It

Fig. 61.5 Plan, S. Ivo della

Sapienza, Rome. Drawing:

Author

Fig. 61.6 Interior of the

Dome, S. Ivo della

Sapienza, Rome. Photo:

Kim Williams
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becomes a sort of hidden dimension, disguised by a profusion of structural and

decorative manipulations.3

Borromini and Kepler’s Geometric Universe

To my mind, the parallels are difficult to avoid between Borromini’s use of

geometry and the role geometry plays in the work of Johannes Kepler (1571–

1630). Kepler’s primary goal was to discover the invisible skeleton of the

universe; a skeleton that Kepler believed to be geometric (Fig. 61.7).

In fact, for Kepler, the eternal and ultimate truths of the universe are based on a

“divine geometry”. More importantly, geometry becomes a principle link between

the human and the divine. According to Kepler, God endowed “man” with an

understanding of geometry, providing him with the tools to deduce a priori the

whole blueprint of the universe and, through this process, come in contact with the

mind of God (Koestler 1979: 263–264; Martens 2000: 32–38, 48–51). In

Borromini’s case a similar interpretation emerges. The churches of S. Carlo and

S. Ivo represent, in a sense, a microcosm of the universe; the lower storeys

reflecting nature in its apparent haphazard and accidental form, the upper storeys

representing the divine in its simplicity and perfection. But the lower storeys of

S. Ivo, and particularly S. Carlo, as accidental and haphazard as they may appear,

are, as pointed out above, nonetheless conceived and ruled by a strictly organized

geometric system, echoing the inherent skeleton of the universe as a whole. In this

manner, Borromini recreates nature in its complexity, while in his designs he

supplies by analogy, obviously, its underlying order: a divine order ruling an

apparent chaos, as Kepler expressed it, and as Galileo spoke of when he wrote

that, “. . .the great book of nature . . . is written in the language of mathematics, and

its characters are triangles, circles and other geometrical figures without which it is

humanly impossible to understand a single word of it” (Blunt 1979: 46–47). This

idea of a hidden order may explain why Borromini guarded his plans so adamantly

(Blunt 1978: 48; Connors 1995: 590). It is most likely that Borromini did not want

to reveal the geometric underpinnings of his buildings largely because he expected

the viewer to undertake, unassisted, the process of decoding the substructure of his

buildings in a manner analogous to that outlined by Kepler; to become, as Kepler

puts it, “the priests of God, called to interpret the Book of Nature” (Koestler 1979:

264; Kozhamthadam 1994: 41–42).

The contrast of geometric complexity dictating the lower zones of Borromini’s

churches and the geometric simplicity of the upper zones is meant to reflect the

apparent imperfections of the terrestrial versus the perfection of the heavenly realm.

Such a contrast does not exist in the churches of Borromini’s contemporaries, where

3Wittkower argues that Borromini’s use of geometry represents a move away from “the classical

principle of planning in terms of modules” (Wittkower 1973: 132).
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geometric clarification rules throughout despite the proliferation of decoration. In

Borromini’s case, we are witnessing a strong debt to Neoplatonic philosophy; a

philosophy which serves as a foundation for modern science, and which influenced

extensively the work of Michelangelo whom Borromini admired profoundly. It is

Neoplatonism which rules the scientific inquiries of, for example, Nicholas Cusa,

Giordano Bruno and Kepler. In fact, the reading of the dialogue between the earthly

and the heavenly Borromini establishes at S. Carlo and S. Ivo, is succinctly echoed

in Marcellus Palingenius’s statement in the Zodiacus vitae (1534) where he posits,
“the opposition between the terrestrial and the celestial regions, where the former is

imperfect and nothing more than a shadowy reflection of the perfection of the

Fig. 61.7 Johannes Kepler’s nested sphere model of the solar system. Image: Kepler (1596:

Chapter III, tab. II [inserted between pp. 24 and 25)]
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latter” (Koyré 1957: 25). In sum, Borromini’s debt to Neoplatonism plays, in my

opinion, a substantial part in his vision of architecture as a microcosmic version

(or vision) of the universe, taking on the form of an architectural hieroglyphics

dictated by the creator whose interpretation must be pried by the power of reason

and observation in order to discover and understand its order, a process whose

interpretation can only occur through the contemplation of the divine. It is this same

Neoplatonism which might have made Borromini receptive to Kepler’s ideas to

begin with.

Borromini’s Cosmology

With Borromini’s religious architecture acting as a microcosm of the universe, it is

interesting to note that where the universe of Copernicus (and subsequently Galileo

and Kepler) removed the earth from its centre, Borromini shifts away substantially

from the classical conception of anthropomorphic architecture. Bernini himself

observed that architecture, in its design, depended on the proportions of the human

body; what distinguishes Borromini from his contemporaries was the break with this

tradition (Wittkower 1973: 130). Thus as science dislocated man from the centre of

the universe, Borromini abandoned the use of the human body as a model for

architecture.4 But the parallel does not end there. The sun quickly assumed the

heralded position at the centre of the universe in science, and with it occurred a

theological revision. Where God had previously been situated at the outer realm of

the universe, the Baroque saw him introduced, with some well-documented

difficulties, into the centre with the sun as his attribute. This change is reflected in

the words of Monsignor Giovanni Battista Agucchi who wrote

God himself may reasonably be designated and recognized as the middle because the

created things are outside Him yet always return to Him as do the rivers to the sea (Panofsky

1954: 39).

Kepler echoes these words in the Mysterium Cosmographicum (1596) where, in

attempting to justify the placement of the sun at the centre of the universe, he writes,

that the sun must be in the centre of the world because he is the symbol of God the father,

the source of light and heat, the generator of the force which drives the planets in their

orbits. . . (Koestler 1979: 263).

The sun is significantly the central symbol of the churches of S. Carlo and S. Ivo.

Both are crowned by lanterns through which sunlight enters and illuminates the

interiors. In the case of S. Carlo light acts as a symbol of divine revelation, where

4 It should be noted that Borromini does not sever completely his ties with the anthropomorphic in

architecture. One does still find occasional references to parallels between the human body and

architecture in Borromini’s notes and letters. In turn, when Borromini does reference the human

body, he adopts the more organic relationship between the body and architecture defined by

Michelangelo; see Ackerman (1966).
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the process of design clarification between the lower and upper storeys seems rather

sudden, while at S. Ivo light represents divine wisdom, where the movement from

the lower to upper story is more gradual.

But both S. Carlo and S. Ivo appear to carry this religious cosmology further. For

Kepler, the visible universe as a whole is a symbol of the Trinity. Not only is God

represented by and as the sun, but the sphere of the fixed stars represents Christ and

the invisible forces emanating from God represent the Holy Spirit. As Kepler

himself put it in the Mysterium Cosmographicum:

the Sun in the center, which was the image of the Father, the Sphere of the Fixed Stars, or

the Mosaic waters, at the circumference, which was the image of the Son, and the heavenly

air which fills all parts, or the space and firmament, which was the image of the Spirit.

(Martens 2000: 40; Kozhamthadam 1994: 29–34.)

Significantly, S. Carlo is co-dedicated to the Trinity, while S. Ivo contains

numerous symbolic references to the Trinity, and both contain symbols of the

Holy Spirit at the top of their respective domes. S. Ivo also has stars decorating

its dome, while at S. Carlo we find the presence of an oval dome. The latter is a

particularly curious feature since Kepler himself discovered in the Astronomia
Nova (1609) that the planets revolve around the sun elliptically rather than in a

circular manner.5 All of these factors seem to further reveal that Borromini was

aware of Kepler’s cosmology and applied some of its basic ideas to his architecture.

As suggestive as these parallels between Kepler’s scientific speculations and

Borromini’s architectural iconography are, how Borromini became familiar with

Kepler’s work is difficult to establish in any concrete way. Unfortunately, we know

little of Borromini’s formal education or what books were collected in his extensive

library, nor do we possess any first-hand documents explicitly outlining

Borromini’s position vis-a-vis science. But we do know this, that Kepler’s

popularity at the time had definitely reached Italy. He was protected often by the

Jesuits (despite the fact that Kepler was Lutheran), was offered the Chair of

Mathematics at Bologna, the highest position for an astronomer in Italy, and was

nominated to the Academia dei Linceie (Koestler 1979: 282, 353–354, 387.) We

also find instances recorded of Borromini’s contacts with Galileo’s students, who

could easily have made the architect aware of Kepler’s work (Connors 1996: 50–

52) In turn, one cannot ignore the possibility that the patrons of S. Carlo, the

Discalced Trinitarians, an order with which Borromini formed a lifelong

relationship, may have been attracted to Kepler’s rather unique Trinitarian

explanation of the cosmos. By whatever means Borromini came to know of

Kepler’s work, once exposed to it, he would certainly have been attracted to

5 It will, obviously, be pointed out that the dome at S. Carlo is oval rather than elliptical. I suspect

that Borromini may have decided that designing an elliptical dome was far too difficult; an oval is

much simpler to handle geometrically and does have architectural precedents. It should be noted,

however, that Kepler himself had toyed with the idea of planetary motion describing an oval

around the sun, but the observational data Kepler inherited from Tycho Brahe simply did not

support this; see Martens (2000: 87–90).
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Kepler’s unusual geometric and aesthetic approach to astronomy, which was rather

unique (Martens 2000: 12–13).

Conclusion

There can be little doubt that both S. Carlo and S. Ivo are microcosmic models of

the universe, devised along general Neoplatonic lines, and use geometry to

represent the underlying order of that universe. This is further supported by

Borromini’s belief that most ancient architecture was concerned largely with two

things, astronomy and mathematics (Steinberg 1977: 355). The specific connection

to Kepler is, admittedly, more difficult to establish with any certainty. However, in

closing, I would like to propose two more links that seem to point to such an

intellectual interchange. Kepler believed that the sun was the prime mover of the

planets. He was uncertain as to how this actually occurred but speculated that it may

be related to magnetism (Martens 2000: 83–84). Although he was uncertain about

the actual material forces at play, in terms of his Trinitarian model, the sun/God acts

through the Holy Spirit in moving the planets. Significantly, at S. Carlo, one finds

inscribed above the entrance that “the august Trinity is revealed as ruler of the

world’s circuit, the orbis terrarum”, an inscription that is underscored by the fact

that the Holy Spirit crowns the dome before a symbolic representation of the sun. At

S. Ivo, the lantern at the top of the dome is similarly crowned and the church itself is

dedicated to the Divina Sapienze—“the planet which leads men aright along every

path” (Steinberg 1977: 316, 386, n. 49).

Lastly, one finds a consistent ABA rhythm along the wall surfaces of both

S. Carlo and S. Ivo, often suggesting the shape of a triangle. This rhythm is most

definitely an inference to the Trinity, while also referencing the triangles used in the

designs of both S. Carlo and S. Ivo, yet it bears a possible connection to one more

aspect of Keplerian cosmology. Kepler held fast to the Pythagorean notion of the

music of the spheres which he reformulated in his book, Harmonice Mundi (1619)
(Kepler 1995: 199–200). The earth “sings”, as Kepler puts it, MI FA MI, which in

musical notation (Fig. 61.8) forms a visual analogue to the type of rhythms

Borromini produces along the walls of the lower parts of both S. Carlo and

S. Ivo. If both churches are dedicated in some form to planetary motion, and echo

in their lower storeys the terrestrial realm, as I have argued above, it may not be so

far fetched to assume that Borromini has included a musical reference as well.

Obviously, this chapter has not exhausted all the links that might exist between

Borromini and Kepler. It is hoped that the above speculations have at least pointed

to a new and fruitful direction that ultimately complements many of the existing

interpretations of S. Carlo and S. Ivo, by adding yet another fascinating wrinkle to

the church architecture of Francesco Borromini.
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Chapter 62

Transformational Geometry and the Central

European Baroque Church

John Clagett

The parts of a continuum, like a line, can only be
individuated if distinguished by an indivisible boundary
between them. Without such an indivisible divisor between
the parts, the parts themselves would compenetrate one
another; more than one part would be in the same place; and
parts would no longer be individuated by their situs. They
would in fact melt into the confusion of the indeterminate

(Smith 1954: 53–54).

The Central European Baroque church (CEBc) appears to be in endless conflict

with itself: it is both unified and chaotic, continuous and fragmented. Although the

plasticity of its composition augments a sense of singularity, its separateness is

heightened through incompleteness and irregularity of placement. Its walls are a

pliant, impermanent membrane; its vaulting an elastic, undefined surface, out of

synchronization with the ground plan. This is not a style of simple black and white

opposites, but rather one with infinite variables, as if it were created to be an

insoluble problem. Nonetheless, all of these observations are paradoxically

correct—to a degree—for it was the Baroque architect’s intention to hold a

multiplicity of ideas in harmonious suspension. Its theoreticians and practitioners

sought to achieve a sense of both Gesamtkunstwerk, where architecture and the

plastic arts merged into an interconnected, symphonic whole, and Zweischaligkeit,
in which contrasting tectonic systems coexisted as a composite envelope, serving to

dissolve sharply defined boundaries (Feulner 1923: 52–55).

Thus the arts acted to harmonize, while the structural systems acted to

disseminate. This effect of oscillating proximity resulted from an intention to

create a spectrum of elements eternally approaching singularity; to establish a

dynamic continuum.
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The scientific/mathematical developments of the seventeenth and eighteenth

centuries, as Table 62.1 illustrates, place the CEBc in context. During this time,

reasoning shifted from the isolated to the integrated. In Desargues’ Brouillon projet
(1639), a treatise on projective geometry, he postulates that all lines converge,

including those that are parallel, which intersect at infinity (Field and Gray 1987:

47–59). In Newton’s Principia (1687) the phenomena of dynamics was so lucidly

formulated that the physical world was redefined through motion. Newton and

Leibniz’s syntheses of integral and differential calculus were important, first, in

that they created a composite mathematics from unrelated studies, and second, in

that they achieved this synthesis via the concept of the limit, where a progressively

diminishing ratio was applied to problem solving. Descartes’ La Géométrie (1673)
also created a mathematical synthesis, in this case of algebra and synthetic

geometry, by formulating analytic or “arithmetized” geometry (Körner 1960: 67–

75). Descartes defined a process by which “any problem in geometry can easily be

reduced to such terms that a knowledge of the lengths of certain lines is sufficient

for its construction” (Descartes 1925: 2–3).

Given these advances, one could conclude that the prevailing mathematical/

theological order was thoroughly supplanted; that an opposing, superior system had

superseded it. Yet, the situation can be interpreted otherwise; that the pre-existing

structure was not obviated, but gradually transformed. This can be compared to a

structure that is progressively transformed by the act of building, or to geometry’s

subject matter that has been refined throughout history—many of its classical

assumptions persist, but every facet is continually redressed (Hugh of St Victor

Table 62.1 Mathematical and architectural developments: a comparative chronology, 1639–1827

Desarques: Brouillon projet 1639

Descartes: La Géométrie 1673

Leibniz’s first paper on the calculus 1684 G. Dientzenhofer: Pilgrimage church at

Kappel begins construction

Newton: Principia 1687 Approximate start of CEBc

1694 Fischer v. Erlach: Project for

Dreifaltigkeitskirche

1713 C. Dientzenhofer: Smirice, chapel

Taylor: Methodus incrementorum 1715

1726 J. Dientzenhofer: Holzkirchen

Sacheri: Euclid Vindicated 1733 Neumann: Wüzburg, Hofkirche

1737 Guarini: Architettura civile

D’Alembert: Traité de dynamique 1743

1744 J.M. Fischer: St. Michaelskirche

Euler: Introductio 1748

1763 Neumann: Vierzehnheiligen

John Love: Geodaesia 1768

Hyperbolic trigonometry 1770 Approximate close of CEBc

Lobachevskian geometry 1827

Compiled from the following sources: Boyer (1991: 686–687), Norberg-Schulz (1974: 369–379),

Hugh of St. Victor (1991: 7)
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1991: 17–23). This notion of the continually evolving sets the compositional

principles of the CEBc in a clearer light. Its architects sought a dynamic

continuum in which all subject matter was interrelated, in motion, and

progressing toward a spiritually ideal point. Their methodology involved

applying a set of operations which transformed space from the pure, static, and

isolated into the composite, dynamic, and interpenetrating. This strategy is reflected

in the vaulting of the CEBc:

I describe it as “unexpected” when domes rest upon lunettes (as in the church of the

Fraternity of St. Michael in Berg-am-Laim near Munich, 1737), that is, when there are

openings in the pendentives that are not the usual horizontal barrel vaults but vertical

cylinders covered by domes. In the parish church at Elwashausen, 1741, vaults that are

customarily found above circular plans are used above rectangular ones, and vice versa

(Frankl 1968: 68).

By examining such examples—in which the horizontal is rotated to the vertical,

or the circle is thrust into the square—the relationships between pre-figurative

intentions, a formal system of composition, and the built-form of the CEBc can

be interrelated. To this end, geometry has been referenced for specific reasons; first,

it is immediately relevant—the architects of the CEBc generated their plans through

strict geometric methods (Otto 1979: 37–38). Second, the process of geometry

involves identifying individual rules and grouping these into sets and subsets of

rules until a generalized, functioning system of logic is assembled, such as Euclid

achieved in his Elements. Third, architecture and geometry both involve problems

of figure-construction; that is to say these two fields make use of figure-construction

to demonstrate the cohesiveness and consistency of their system of logic.

The specific set of geometric operations known as transformation is applicable to

the CEBc and its property of dynamic continuum, for transformational operations

define the formal operations of repositioning and reconfiguration which

characterize the vigorous nature of the CEBc. These procedures allowed the

distinct elements of Euclidean geometry—plane, square, cube, etc.—to be

interpreted; these transformations in effect set them in motion, agitating the

elements so that they visually interpenetrated as they approached an in-motion

singularity.

A transformation is a type of mapping, and so is analogous to and, in fact,

influenced by the methods of cartographers such as Gerhardus Mercator. Mapping

can be illustrated by placing a globe onto a sheet of paper, and projecting the points of

the globe onto that sheet; in other words, projecting a three-dimensional form onto

two-dimensions. Every point on the globe except the uppermost pole can be mapped.

During this transformation certain relationships are distorted; for example, distances

between points become increasingly elongated the further those points on the globe

are from the paper, while other relationships remain constant-circles on the globe

that are parallel to the sheet of paper remain circular. This cartographic projection is

one specific case of transformation (Gray 1979: 46). In addition to projection,

contemporary geometricians identify a number of these operations, including: area,

rotation, reflection, translation, dilatation, and coordinate transformation.
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An area transformation alters the perimeter form of a closed figure while its area

remains invariant. Area transformations were the first of this class of operations to

be explicitly recognized as such. Pythagoras is attributed with having developed a

system of area transformation by which polygons can be reconfigured through a

manipulation of parallel lines and area formulae (Eves 1990: 90–91). Euclid made

use of area transformation when proving geometry’s most well-known theorem;

that for right-triangles, the square of the hypotenuse is equal to the sum of the

squares of the remaining face (Fig. 62.1). Beginning with the right triangle ABC,
each face of the triangle is ‘squared’—that is, three squares, ABFG, ACKH, and
BDEC (which I call a, b, and c) are constructed. Then the line AL is constructed

parallel to BD and CE and passes through c, which abuts the hypotenuse of the right
triangle ABC. The line AL passes through c so as to divide it into two rectangles

which I term a’ and b’; a’ is equal to a, b’ to b (Euclid 1956: Vol. 1, 349–360).
One of three constructive geometry problems posited but never solved by

classical geometricians, the quadrature of the circle, was seem as an area

transformation problem. Although it was finally proven insoluble twenty-one

centuries after Elements (Boyer 1991: 573), an equivalent architectural idea of

transforming the rectilinear into the curvilinear was an important concern for the

artists of the CEBc. The term “Borrominian transformation” describes the mutation

of a rectilinear spatial organization into an equivalent curvilinear structure,

while maintaining the starting rectilinear diagram; as is the case with Christoph

Dietzenhofer’s St Miklas on the Kleinseite, Prague (1711), a vertical hall with

side chapels (Franz 1987: 34–36), and Kilian Dientzenhofer’s St. Margaret,

Brevnov (1715), a Wandpfeilerhalle “wall-pillar-hall.” These Bohemian

examples of Borrominian transformation closely model the geometric notion of

Fig. 62.1 The Pythagorean

theorem, from Euclid’s

Thirteen Books of the
Elements (I Book,
Proposition 47). Image:

author
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transformation, for certain aspects of the form are transfigured, while others remain

invariant. The Borrominian transformation from the rectilinear to the curvilinear

has a number of variations, each with significance to other geometric

transformational qualities. The strategy predates the CEBc; Vignola in his Sant’

Andrea in via Flamina, Rome (1554) fused the line and circle into the form of

an oval (Murray 1978: 117), yet the CEBc substantially reinterpreted the idea.

In Johann Dientzenhofer’s plans for Holzkirchen (before 1726), the oval is

substituted with a bi-axially symmetrical, hemiolic curvilinear grouping—a

dominant central element flanked by symmetrical ancillary elements. The

equivocal, semi-longitudinal/semi-centralized organization of the oval’s singular

space was replaced by an increased indeterminacy; Johann Dientzenhofer’s

schemes both oscillate between a three-space interlocking composition and a

two-space overlapping composition consisting of a radially organized central

structure and an orthogonally organized longitudinal structure.

Balthasar Neumann’s Würzburg Residenz Hofkirche (1733, Figs. 62.2 and

62.3), designed in collaboration with Lucas von Hildebrandt, shares many of

Fig. 62.2 Würzburg,

Hofkirche. Photograph:

author
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the properties of Borrominian transformation expressed by Dientzenhofer. The

Würzburg palace’s planning is governed by a series of orthogonally subdivided

wings intersecting to produce four interior courts and a central cour d’honneur.
The Hofkirche, by occupying one of the south wing’s orthogonal compartments,

explicitly maintains the rectilinear organization at the exterior, and implicitly on the

interior. The area transformation from the rectilinear to the curvilinear expresses

Zweischaligkeit; from the interior, while the curvilinear order dominates, the

planar, orthogonal superstructure can be perceived through the curved form.

The linear transformations of rotation, reflection, translation, and dilatation are

each detectable in the CEBc. Rotation is the displacement of a form about a point.

A reflection is a mirror-image transformation in which the initial and resultant

images, when viewed together, are symmetrical about a line. A translation is a shift,

analogous to pulling a tablecloth set with dishes across a table: the relative positions

of the dishes themselves remain the same, but their positions with respect to the

table changes. A dilatation uniformly enlarges or reduces a figure without changing

the form or focus of dilatation.

Rotation is present throughout the underlying planning geometry of

St. Michaelskirche, Berg am Laim (1744). Its central rotunda has 12 circles

ringing the space. Because these circles are equal in radius, and are positioned at

equal increments, a strong sense of rotation is present. As well, a 12-pointed star is

present which is constructed by rotating an equilateral triangle at 90� increments

about the rotunda’s centre.

Unlike plans which clearly indicate reflection by maintaining a single axis of

symmetry only, in the Hofkirche the ground-plan diagram maintains bi-axial

symmetry. By doing so, rotation is expressed—the north-west and south-east

quadrants are rotational transformations of one another, as are the south-west and

north-east. Yet the ground plan’s north half is also a reflection of the south, as the

east side is of the west. While the mezzanine plan is more clear—it has a single line

of symmetry—it nonetheless adds to the transformational dynamism of the

Hofkirche in other ways. The ceiling plan, though, once again displays the

duality of rotation and reflection. Its dome-like structure, like the ground plan,

appears rotational, reflective, and translational. It can be read as comprising five

intersecting quasi-ellipsoidal domes, or three tangentially intersecting domes, with

the voids between these taken up by an additional pair of dome-fragments, or as the

section suggests, three interpenetrating domes. While the realized building does

deviate from Neumann’s plan and section, the sense of interpenetrating structure is

evident. When looking directly upward at the first full-height space after entering—

thereby simulating the Euclidean space of an architectural plan—the line of the

mezzanine produces a nearly complete oval, which visually frames the vaulting

above (Fig. 62.2). It also appears to be cast from the same mould that produced the

coupled transverse arches—all are ovals. Yet, like the crossing of Neumann’s

Pilgrimage Church of Vierzehnheiligen (1763), the centre of the mezzanine oval

is split by the transverse arches—the two plans are not in synchronization. This

phenomenological shift is the result of translation; the coupled arches appear to

have been repositioned by one-quarter period of the rhythmic cycle. Translation is also
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detected in the Hofkirche’s fenestration. The masonry vault- and wall-construction

of the chapel suggests that its fenestration be vertically stacked so that the resultant

structure acts as a series of inverted U-shaped frames, letting the building’s loads be

transferred through the walls directly as compressive forces. This is common sense—

masonry is strong in compression, but weak in shear, bending, and tension.

Yet Neumann’s section and the interior view discussed above show the transverse

arches seem to rest above glazed openings, as if Neumann once again deliberately

shifted the layers of the chapel’s plans. A similar shift is apparent in the relationship

between the interior cornice line and fenestration. The cornice line winds along

the interior walls, creating a series of alternating solid convex projections and

concave voids. Yet at the mid-point of the longitudinal walls—where a nearly

undetectable transept occurs—the cornice line cavity is aligned not with a glazed

opening, but a wall-pier separating two openings. Again translation identifies

Neumann’s recurring motif: solid and void alternate vertically through shifted plan

layers (Frankl 1968: 62–65) (Fig. 62.3).

Dilatation can be detected in the CEBc in conjunction with its sense of near-

symmetry, elasticity, and loss of centre-dominance. The plan of Neumann’s

Benedictine Church of the Holy Cross at Neresheim (commissioned 1748)

appears at first to be bi-axially symmetrical; a longitudinal nave interfused with a

centralized dome. Curiously, the choir/altar half of the nave is slightly narrower

than that of its near-mirror-image. The difference is not because these are intended

to be perceived as different building parts; in fact, their repeating organization

affirms they are two halves of a whole. The scale change is much more plausible as

a dilatation; a reduction in scale. The elastic nature of Neresheim is also found in

the Hofkirche’s section at its vaulting. The court chapel presents a rigid rectilinear

system of fenestration running along the space’s perimeter. Contrasting this are the

two scales of curvilinear form passing in front of the mezzanine-level fenestration.

The smaller scale exists as curved arches tightly surrounding this grid-work of

glazing, sometimes overlapping and obscuring the fenestration. Several arches,

unlike the glazing behind, vary slightly in width and height, as if their surfaces

were not only malleable—demonstrating plasticity—but capable of being

Fig. 62.3 Würzburg,

Hofkirche. Photograph:

author

62 Transformational Geometry and the Central European Baroque Church 237



stretched. The larger scale exists as the grouping of shallow domes described

earlier. Again a sense of elasticity is present. The domes are not rigidly defined as

simple geometric figures such as a cylinder and half-sphere, but appear as

continuously dilating forms, whose scale is dynamically fluctuating according to

their importance of position.

During the development of the CEBc, several characteristics evolved in concert

to fully transform its centre. Initially, as with Theatinerkirche at Munich (begun

1663), the Baroque church’s centre was defined vertically by a dome and lantern

resting on a drum, and horizontally by a fully extended transept. Together these

emphasized the hierarchical dominance of the centre. A gradual process of

dilatation occurred in which the drum was reduced in scale and finally

eliminated, allowing it to merge with the main aisle. The dome itself eventually

was transformed from a hemispherical to a flat dome. Similarly, the transept was

progressively decreased in scale (Feulner 1923: 5–9). Norberg-Schulz attributes

this loss of the centre’s dominance to the rise of democratic spirit in the eighteenth

century, but that period’s geometric developments are also a factor. By the start of

the CEBc period, geometricians had absorbed and began surpassing the work of

classical mathematicians. In Descartes’ Géométrie, number and geometric form

were fused. This ability to fuse or merge separate ideas is comparable to the CEBc’s

transformation of centre and transept, reinforcing a progressively increasing

continuity of spatial form. Neumann’s Hofkirche is an appropriate example of

this architectural tendency. Its transept exists as a shallow altar, basically

absorbed into the surrounding space (Fig. 62.3), while the domes’ flatness and

elasticity also increase the holistic unity of the chapel. In the case of Christoph

Dientzenhofer’s Chapel of the Castle at Smirice (1713), the transept is not merely

aligned with the nave, but compressed to the point that it forms a convexity of form

at the chapel’s centre.

The architect Guarino Guarini shortly predates the CEBc. Guarini is important

for disseminating the Italian Baroque throughout Europe, through his travels and

posthumously-published Architettura civile. In this treatise are included a number

of coordinate transformations, including a study transforming a polar coordinate

system to a Cartesian system (Fig. 62.4). A coordinate transformation allows for a

system’s scalar or angular units to be re-configured, and can also involve Guarini’s

transformation of coordinate systems. In a sense, this is a variation of an area

transformation. Yet, the quadrature of the circle was never resolved and finally

proven insoluble. Also, Guarini’s drawing illustrates that not only the perimeter, but

the full extent of the space is acted upon. The idea of an interrelated duality appears

prominently in the CEBc, and can be associated with two of its fundamental

principles: Zweischaligkeit and the interpenetration of polar and Cartesian

coordinate systems; in other words, centralized and orthogonal building-types.

The idea of Zweischaligkeit was raised earlier, yet the planning grid per se is not

a structural component. Instead, the perimeter wall-diaphragm which surrounds the

glazed openings is, as are the wall-pillars which abut the wall-diaphragm; together

they form aWandpfeilerhalle (Norberg-Schulz 1974: 65–76). It is in this sense that
the double-delimitation of space is typically referenced, for they are clearly two
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distinct structural systems—one a continuous-diaphragm, the other a point-load

system—which are smelted into a composite system of an interrupted diaphragm

welded to pillars rotated at right angles. Although a twice-defined structural system

might seem redundant, with the complex architecture of the CEBc it is inspired, for

the rectilinear wall-envelope is efficacious in defining the spatial boundary (both

literally as weather-proofing, and figuratively as a conceptual boundary) while the

curvilinear intermittent pillars effectively transform the stolid, physical Schlichtkeit
“modesty” of the exterior into a dynamic, curvilinear three-dimensional space.

A projective transformation is related to the cartographic analogy made earlier,

in which a form is projected, for instance, from a three-to two-dimensional surface.

In a correct geometrical sense, these projections originate not from a pencil of

parallel lines, but a pencil of diverging lines, as the Hofkirche’s plan shows. One

sees in Neumann’s plan a series of irregular voids which run the length of each of

the longitudinal walls. These segment similarly scaled, non-parallel wall-pillars.

Seen as a group, these voids and solids appear to radiate from a mirror-image pair of

points, external to the chapel, creating fan-shaped compositions. Geometrically

related to this is the correlation between the lower and upper limits of the

chapel’s space—the ground floor and vaulting. The ground floor is geometrically

a two-dimensional space; the vaulting three-dimensional. Interestingly, the

fan-shaped voids and ground floor/vaulting relationships can both be connected to

the geometry of projective transformation, a correspondence noted by Wittkower in

his description of Guarini’s Architettura civile:

Fig. 62.4 Guarini’s study

transformaing a polar

coordinate system to a

Cartesian system. Image:

Guarini (1737: Lastra XIV,

Fig. 3)
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More than one-third of the text is concerned with a new kind of geometry, namely the plane

projection of spherical surfaces and the transformation of plane surfaces of a given shape

into corresponding surfaces of a different shape. Guarini was perhaps the only Italian

architect who had studied Desargue’s Projective Geometry, first published in Paris in

1639, which was informed by the modern conception of infinity (Wittkower 1958: 27).

Desargues’ study of perspective, and the intersection of the cone and plane,

preceded his treatise on projective geometry. Both subjects involve a sectional

plane (a conic section or picture plane), a point or points at infinity, and

deformations which are continuous and definable geometrically (Field and Gray

1987: 14–30). Bernini’s Scala Regia (1666) and Palladio’s Teatro Olimpico (1580)

employ projective geometry in the form of trompe l’oeil. However, in the vaulting

of the CEBc a more far-reaching potential for transformational geometry to act as a

generative operation for form may be recognized: hyperbolic parabloid and other

complex, geometrically-indeterminant forms may be generated through the

projection of two-dimensional, Euclidean ground-plan forms onto negative- and

positive-curvature, three-dimensional surfaces. Neumann’s projects in particular

grew from a planar to a volumetric state (Otto 1979: 39), substantiating that the

vaulting’s form was based on ground-plan projection. Thus this “new geometry”

was directly generated from figures based on constructive geometry. The

Dientzenhofers’ Convent Church at Oboriste (1712), Chapel of the Castle, and

St. Margaret at Brevnov (1715) as well as Neumann’s churches at Neresheim,

Vierzehnheiligen, and Kitzingen-Etwashausen (1745) all exhibit a developed

awareness of projective geometry and its possibilities, as do, to a lesser degree,

J.M. Fischer’s St. Michaelskirche and the Abbey Church at Ottobeuren (1766).

In assessing the importance of transformational geometry and the CEBc, two

major conclusions can be drawn. One is that the architectural principle of the

dynamic continuum which can be applied to the individual built work is also a

characteristic of the ongoing creative process in architecture. Both the building and

the process can be enunciated through geometry, for their common subject matter is

continually evolving. As Hanfried Lenz has shown, a contemporary projective

geometric premise conjectures that that which originates as a point can be

transformed to an ellipse, and then to an indeterminate curve (Fig. 62.5). At the

very least the architects who composed the unexpected vaulting of the CEBc

grasped this as a precept. The vaulting cannot be derived simply as an extrusion

of the ground plan; a more complex, projective process was involved. But a train of

thought can be followed in the opposite direction as well. In The Elements, its first
definitions—of point, line, and plane—are based on the intellectually-genetic,

transformational nature of geometry, and of architecture.

The second conclusion is that transformational operations were employed to

make perceptible the experience of approaching singularity. These geometric

operations were intended to stir the emotions, engaging the participants in an
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active state of interpenetration, flexuosity, and transfiguration, drawing them close

to a point of convergence at infinity.
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Chapter 63

Are There Connections Between

the Mathematical Thought and Architecture

of Sir Christopher Wren?

Maria Zack

Introduction

After the Great London Fire of 1666, Sir Christopher Wren was appointed as a

member of the group that was charged with rebuilding the City of London.

Over the next several decades this massive reconstruction effort was lead by

Wren and Robert Hooke. Both Wren and Hooke were founding members of the

Royal Society and until the Great Fire both were best known for their work in

mathematics, physics and astronomy.

Wren has been credited with designing St. Paul’s Cathedral as well as more than

fifty parish churches that were rebuilt in the City of London. Current scholarship

indicates that the parish churches were most likely designed by Wren, Hooke and

others that worked in their office. Using parish church architecture as illustrations,

this chapter explores evidence for and against the notion that Wren’s mathematical

knowledge directly influenced his architectural designs.
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Wren the Mathematical Scientist

In On a Grander Scale, Lisa Jardine observes “Wren lived on the cusp of

the modern era, between a world saturated in received wisdom and one whose

fundamental scientific beliefs were grounded in observation and meticulously

recorded data” (Jardine 2002: xv). She goes on to cite this illustrative entry from

Hooke’s diary for Thursday August 16, 1677:

At the Crown [public house], Sir Christopher told me of killing worms with burnt

oyle. . .and of curing his lady of thrush by hanging a bag of live boglice about her neck.

Discoursed about theory of the Moon which I explaind. Sir Christopher told his way of

solving Keplers problem by the Cycloeid.

Though Newton called Wren one of “the foremost geometers of the

previous generation” (Newton 1999: 424), very little of Wren’s mathematical and

astronomical work was ever published. It appears that, like Newton, Wren was

interested in a wide variety of fields and often left projects incomplete and without

thorough documentation.

Thomas Sprat, in his 1667 History of the Royal Society, says of Wren “For in

turning over the Registers of the Society, I perceiv’d that many excellent things,

whose first invention out to be ascribed to him, were casually omitted.” He then goes

on to list work on refraction, the theory of motion, accurate optical measurement,

work on the rings of Saturn, the lunar globe, the weather, magnetism and navigation,

microscopy, injections and anatomy. Sprat says “I know very well, that some of

them he did only start and design, that they have been since carried out to perfection,

by the Industry of other hands.” Yet he argues that Wren deserves credit for his work

in each of these areas (Tinniswood 2001: 81–82).

Sir John Summerson in Sir Christopher Wren suggests that Wren wrote very

little down because so many branches of science were easy for him (Summerson

1965: 59). Tinniswood says:

[T]here is a restlessness about him which can’t simply be attributed to the conventionally

catholic interests of the seventeenth-century virtuoso a hunger, almost, as he pursued first

one thing, then another and another, switching between disciplines, hunting for answers,

chewing over problems and spitting out solutions (Tinniswood 2001: 83).

Perhaps it was this restlessness that kept him from publishing much of his work.

We do know that he did some significant mathematical work on cycloids in

response to a Kepler-related question posed by Pascal (under the name of Jean de

Montfert) and published that result. Perhaps because Wren gave well-attended

public lectures as the Gresham Professor of Astronomy and later as the Savilian

Professor of Astronomy at Oxford, he felt that it was sufficient to make his ideas

known via lectures. In a letter to Sir Paul Neile over his unpublished work on the

rings of Saturn (De Corpore Saturni), Wren says that in a Gresham lecture he gave

“fuller discourses on the same subject, which he thought was publication enough”

(Tinniswood 2001: 64). Much of his other mathematical or scientific work is

incorporated into larger documents written by others, among them John Wallis
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and Robert Hooke (Huxley 1960: 204, 207), or is documented in the

correspondence of Henry Oldenburg, the secretary for the Royal Society.1

Wren was firmly rooted in the English tradition of practical mathematics

that began in the mid-sixteenth century. At that time there was a demand for

improved techniques related to navigation, surveying, cartography and

fortification and thus there was a close relationship between mathematicians and

instrument makers. Bennett says “It can be summarized in their two fundamental

tenets: that mathematics is both certain and useful” (Bennett 1982: 7). Oldenburg

reported that Wren’s theory Lex Naturae de Collisioine Corporum (The Theory of

the Collision of Bodies) is a “synthesis of experimental results, constrained in its

expression by certain unspoken regulative principles of simplicity and symmetry”

(Bennett 1982: 72). Wren simply offered experimental results as proof. Neile

reported to Oldenburg that Wren “says that the appearances carrie reason enough

in themselves as being the law of nature” (Bennett 1982: 119).

This very practical attitude toward rules can be seen in Wren’s architecture as

well. He used the five orders of classical architecture in many of his buildings but

with some of the freedom usually associate with Baroque design. For him it appears

that theory was justified by utility. In a 1662 address to the Royal Society Wren

emphasized that the role of the members of the Society was “approving themselves

Benefactors to Mankind, and of perfecting something, for which Posterity may be

really obliged to us” (Wren 1750: 221). Clearly Wren himself would go on to

benefit mankind in a practical way and gain recognition for his architectural work.

Wren the Architect

There are a great many myths surrounding the architectural legacy of Wren, in part

due to personal attacks that were launched at him near the end of his life. In an

attempt to defend his father’s memory, Wren’s son Christopher (and later his

grandson Stephen), worked to compile and then publish Parentalia: or Memoirs
of the Family of the Wrens. This volume provides a family history and contains

detailed accounts of Wren’s astronomy, mathematics and buildings. Among the

claims made in this volume is that Wren designed all 51 of the post-fire City of

London churches. Current scholarship suggests that Wren and Hooke had an active

architectural practice and that the designs for the city churches were a mixture of

Wren’s work, Hooke’s work and the work of others in their office. In The City
Churches of Sir Christopher Wren, Paul Jeffery has done a meticulous job of

researching individual churches and attempting to attribute their design.

In considering the city churches, even those attributed to Wren, it is wise to

remember that much of the finishing detail was the work of craftsmen and may not

have been specified by Wren (with the notable exception of St. Paul’s Cathedral).

1 For further details about Wren’s mathematical work, see Bennett (1982).
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The available records (architectural drawings, building accounts, Hooke’s diaries

and parish vestry minutes) contain little about that level of detail in the church

designs. It makes sense, given the number of building projects that Wren and Hooke

were managing at any given time, that the details were left to others. So to look for

connections between Wren’s mathematics and his architectural work, it is

reasonable to focus on the general designs and not the decorative details.

In Wren’s architectural writing labeled Tract I in Parentalia he says:

There are two Causes of Beauty, natural and customary. Natural is from Geometry,

consisting in Uniformity (that is Equality) and Proportion. Customary Beauty is begotten

by the Use of our Senses to those Objects which are usually pleasing to us for other Causes,

as Familiarity or particular Inclination breeds a Love to Things not in themselves lovely.

Here lies the great Occasion of Errors; here is tried the Architect’s Judgment: but always the

true Test is natural or geometric Beauty (Wren 1750: 351).

Clearly Wren thought that true beauty came from using geometric forms, but

does that really mean that his mathematical ability influenced his architectural

work?

Arguments for and Against a Relationship Between Wren’s

Architecture and Mathematics

In his work on the Banqueting Hall of Whitehall Palace (1622) and the new portico

for the pre-fire St. Paul’s (1640), Inigo Jones introduced continental design in the

classical tradition to England. Jones’s ideas can be traced to his travels through

continental Europe and his contact with both the great architecture of the time and a

canon of architectural texts that included Vitruvius, Alberti and Palladio. Sir John

Summerson states that in the minds of seventeenth-century scholars, Vitruvius

provided the same basis for architecture that Euclid did for geometry, that to

them “the natural equivalent of scientific thought in architecture was classical

design” (Summerson 1960: 102).

We do know that Wren had access to this same canon of classical texts and all of

them advocate geometry, proportion and symmetry as the basis of architectural

design.2 Wren himself states in Tract I:

Geometrical Figures are naturally more beautiful than other irregular; in this all consent as

to a Law of Nature. Of Geometrical Figures, the Square and the Circle are most beautiful;

next, the Parallelogram and the Oval. Straight Lines are more beautiful than curve

(Wren 1750: 351).

Like many gentlemen of his time, Wren went to the continent to tour great

buildings and meet fellow scientists. He spent from July 1665 to February 1666 in

France. During that visit he formed some clear opinions about French architecture

2 Some further details can be found in Falter (2015) and Wassell (2015).
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that would later influence the classical nature of his work. Of the Palace of

Versailles he wrote “Works of Filgrand, and little Knacks are in great Vogue: but

Building certainly out to have the Attribute of eternal, and therefore the only thing

uncapable of new Fashions” (Wren 1750: 261). He would later write in Tract I:

An architect, out to be jealous of Novelties. . . and to think his judges those who will live

five Centuries after him,. . .That which is commendable now for Novelty, will not be a new

Invention to Posterity. . . The Glory of that which is good of itself is eternal (Wren 1750:

352).

While in Paris, Wren spent time with Adrien Auzout, a physicist, mathematician

and astronomer who, like Wren, had an interest in architecture (Tinniswood 2001:

121–123). Through friends in England, Wren also had a limited encounter with

Gian Bernini, who was considered the best living architect and was in Paris, having

been summoned by King Louis XIV to complete the east wing of the Louvre

(Tinniswood 2001: 126–129). By the time Wren began his post-fire designs, he

was conversant in both the philosophy and practice of architectural design in the

classical style and had seen many examples of Baroque buildings in Paris.

In 1981, in a tantalizing Scientific American article, Harold Dorn and Robert

Mark analyzed the structural aspects of Wren’s Sheldonian Theater in Oxford and

St. Paul’s Cathedral. They paid particular attention to Wren’s triple dome design for

St. Paul’s. Wren probably saw double domes during his 1665–1666 visit to Paris;

these were built based on a tradition that can be traced back to the thirteenth century

(Dorn and Mark 1981: 164). A careful analysis of the dome, piers and buttresses

indicates that the dome was over-engineered and that the buttresses (and hence the

second level façade that conceals them) are not necessary (Dorn and Mark 1981:

167). Certainly Wren was aware of Leonardo da Vinci’s analysis of the cracks in

domes presented in Codex Arundel, and in particular the cracks in the dome of

St. Peter’s in Rome, which resulted from what today we would call “hoop stress”

(Falter 2015). Wren’s clever triple dome design, with the central cone bearing the

weight of the lantern for St. Paul’s, was an elegant solution to the problems

observed in St. Peter’s. But there is very little documentary evidence that any of

the engineering was based on more than the rules of thumb and intuition used by

craftsmen for centuries.

Dorn and Mark do point out an intriguing bit of information. Hooke had noted

that a catenary arch acts only in compression and the shape of the conic dome in

St. Paul’s is approximately a catenary. It is unclear if this was intentional or just

coincidental (Dorn and Mark 1981: 173). In Tract II, written near the end of his life,

Wren gave a mathematical and mechanical analysis of the arch and of vaulting

(Wren 1750: 353–358). So it is clear that he was thinking about architecture in some

“mathematical ways” by that time.

When seeking connections between the mathematics and architecture of Wren,

many authors point to the strong use of geometry in his buildings. Derek Whiteside

says of Wren, “Perhaps his greatest mathematical gift was his visual sensitivity and

feeling for form which are obvious in his architectural designs and scientific

sketches” (Whiteside 1960: 107). He goes on to say:
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But at a deeper level a sense of precise mathematical form and feeling of order and clarity

suffused many of his architectural designs indeed, when it has tended to the monotonous

use of the simpler geometric shapes in uncomplicated juxtaposition, it has been seen by

some as a fault (Whiteside 1960: 111).

In Tract I Wren is very specific about beauty coming from regular geometric

shapes. These ideas can be traced to Vitruvius, Palladio and Alberti. However,

Wren “criticized architects who tried to reduce the proportions of the orders to rules

‘to strict and pedantick’” (Bennett 1982: 122).

J. A. Bennet in The Mathematical Science of Christopher Wren summarizes

these ideas by saying that Wren designed his buildings to satisfy the three criteria of

Vitruvius, “beauty,” “firmness” and “convenience.” He used geometric proportions

to create “beauty” and symmetry to make buildings “firm.” Wren’s churches were

“convenient” because he used the existing land and foundations (where possible)

and because his designs took into account the worship functions conducted in the

church (Bennett 1982: 92–93).

Wren used his mathematical mind in a further way to design the post-fire

churches in the city of London. Wren resolved over-determined parametric

systems in designing these small churches. I do not mean that he wrote down

long strings of linear equations and calculated a numerical solution, but rather

that he balanced a collection of needs, desires and constraints to find a design for

each parish with which he worked. To illustrate this, let us consider the elegant

designs for St. Stephen Walbrook and St. James Garlickhythe, both of which

provide good evidence supporting the belief that Wren designed these buildings

himself (Jeffery 1996).

The Parameters of Rebuilding

Let us begin by considering the general parameters:

• The need to keep costs down and construct the churches as quickly as possible.
The reconstruction of London put enormous strain on the financial resources of

the nation. In 1670 the coal tax was raised to help rebuild the city and construction

was begun (Tinniswood 2001: 187). In addition, many parishes were partially

funding the reconstruction and had limited resources. Because of the sheer

number of buildings that needed to be rebuilt, Wren and Hooke were constantly

involved in a juggling act to set priorities. Many congregations were worshipping

in hastily repaired parts of their unsound buildings or in temporarily erected

structures. In the cold London winters, this was a less-than-ideal solution. To try

to speed up the process, the old foundations of the destroyed buildings were used

wherever possible in the construction of the post-fire churches. Many of these

foundations were for buildings of irregular shape on land-locked pieces of

property. In some cases, the post-fire widening of some roads took land away

from the churches (for further details see (Jeffery 1996)).
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• The need for a church to have certain architectural features that by tradition
have specific theological meaning. Tradition holds that Christian churches

should face east, though Wren says “Nor are we, I think, too nicely to observe

East or West in the Position, unless it falls out properly” (Wren 1750: 319).

Each of the narthex, nave, aisles, altar and apse have very specific theological

meaning and were essential ingredients in the shape of a church. For further

details, see Margaret Visser’s excellent book The Geometry of Love.3

• The new demands put on worship spaces by the Reformation. The increased

emphasis on preaching influenced church architecture. Wren specifically stated

that “in our reformed Religion, it should seem vain to make a Parish-church

larger, than that all who are present can both hear and see” (Wren 1750: 320).

In the same document, he also gives some rough calculations to aid in the

placement of the pulpits (Wren 1750: 320–321).

St. Stephen Walbrook and St. James Garlickhythe

as Examples

The Vestry minutes of St. Stephen Walbrook (1648–1699, Guildhall Library

Manuscript MS 594, vol. 2, 128) state that “Dr. Christopher Wren in

consideration of his great care and extraordnary pains taken in the contriving the

designe of the Church and assisting in the rebuilding the same” should be given a

gift and invited to dinner.

The good people of St. Stephen’s had lost part of their property in a street

widening and were left with an irregular shaped piece of land. There is

good evidence that the pre-fire foundations were used for part of the building

(Jeffery 1996: 338). In this church, Wren skillfully uses geometry to impose a

centrally-planned church on a longitudinal space, turning a very plain box into the

most elegant of his parish churches. Lawrence Weaver says

Wren contrived to give the effect of nave, aisles and crossing to a plain room by his

ingenuity in carrying a circular dome on eight arches which rest on an entablature supported

by 12 columns. East of the dome is one groined bay, and west of it two groined bays divided

by four more columns: the side aisles having flat ceilings. The plan is thus an oblong room

with 16 free columns but so cleverly disposed as to produce the variety of effect described

above (Weaver 1923: 88–89).

Among the ideas Wren employs:

• A central plan in a cruciform shape was defined by the use of columns

(Fig. 63.1);

3 For further details, see Margaret Visser’s excellent book The Geometry of Love Visser (2000).
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• A nave and aisles that were created using those same columns to support an

entablature that formed an unusually-shaped clerestory resulting in a lowered

ceiling over the aisles (Fig. 63.2);

• The dome is supported on an octagon sitting inside of a square rather than a

circle. This particular configuration allows the aisles to be narrower than the

nave. This is an elegantly simple “mathematician’s solution” to the problem

(Fig. 63.3);

• Groin vaulting and tunnel vaulting are employed in various locations so that the

geometric shapes fit together like pieces of a graceful puzzle.

St. James Garlickhythe is known as “Wren’s Lantern” because of the very large

number of windows. In this building Wren also created a cruciform shape within a

rectangular box. The nave is the tallest of Wren’s parish churches with a lovely

clerestory and the four-column barrel vault.

Among the ideas Wren employs in this church:

• A cruciform shape was defined by a clever use of the columns supporting the

clearstory and an entablature (Figs. 63.4 and 63.5);

Fig. 63.1 St. Stephen

Walbrook, plan. Image:

courtesy Dan Schanaker

using dimensions in

Jeffery (1996)
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• Barrel vaulting is used to give the crossing the feel of a “central plan” church.

This was much more evident in the church in the past. Over time some of the

doors and windows have been bricked closed (Fig. 63.6).

The one discordant feature is that the church has a separate chancel, a rarity

among city churches and somewhat in conflict with a church that has the feel of a

central plan. It is believed this was retrained at the insistence of the parish vestry

(Jeffery 1996: 248). Vestry minutes from the period (Vestry Minutes of St. James

Garlickhythe, 1615–1693, Guildhall Library Manuscript MS 4813, vol. 1, overleaf

of 161) indicate that the parish vestry took a very active role in the rebuilding,

including paying two of Wren’s clerks to hasten completion of the building before a

planned dedication ceremony.

Fig. 63.2 St. Stephen

Walbrook. Photo: author
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Conclusion

Aldoux Huxley says of Wren:

a great gentleman: one who valued dignity and restraint. . . one who desired that men and

women should live with dignity, even grandeur, befitting their proud human title; one who

despised meanness and oddity as much as vulgar ostentation; one who admired reason and

order, who distrusted all extravagance or excess (Tinniswood 2001: 377).

Wren’s clear love of order and his belief that lasting beauty is derived from

regular geometric shapes is evident in his architectural work and philosophical

writings about architecture. There are no clear and documented links between his

work in pure mathematics or astronomy and his building designs. However it is

reasonable to say that he used his mathematically-trained mind to find elegant

solutions to many of the complex design problems that he encountered.

Fig. 63.3 St. Stephen

Walbrook. Image: courtesy

Dan Schanaker using

dimensions in

Jeffery (1996)
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Fig. 63.4 St. James

Garlickhythe. Image:
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Fig. 63.5 St. James

Garlickhythe, interior.

Photo: author

Fig. 63.6 St. James

Garlickhythe, interior.

Photo: author
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Chapter 64

Robert Hooke’s Fire Monument:

Architecture as a Scientific Instrument

Maria Zack

Introduction

After the Great London Fire of 1666, Robert Hooke was appointed to work in the

office of the City Surveyor of London. With that appointment, a scientist best known

as the Curator of Experiments for the Royal Society, whose research encompassed

both the microscopic (Micrographia) and the astronomical, embarked on a second

career as an architect and surveyor. For the next several decades the massive effort to

reconstruct London was led by Hooke and his long-time friend, fellow scientist and

co-founder of the Royal Society Christopher Wren.

Hooke was involved extensively in all aspects of the rebuilding of London, both

the mundane (widening streets and establishing property boundaries) and the

creative (designing churches and civic buildings). Very little of Hooke’s

architectural work has survived the passage of time. However, one shining

example of his creativity remains in London: the Monument to the Great Fire.

At the time of the monument’s design, Hooke was conducting experiments on

both the motion of the earth and the effects of gravity. The monument is an elegant

column that was constructed to contain a zenith telescope to further Hooke’s

research. This ingenious building is an excellent example of the intersection

between Hooke’s architectural and scientific work.
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Hooke the Scientist

Robert Hooke was born in Freshwater on the Isle of Wight in 1635. Hooke was the

youngest of four children of John Hooke, an Anglican priest with deeply Royalist

leanings. In 1648, Hooke’s father died “by suspending himself” (Aubrey 1957: 165)

leaving him “forty pounds of lawful English money, the great and best joined chest,

and all my books” (Cooper 2003: 12). John Aubrey, the diarist and friend of Robert

Hooke tells us:

When his father died, his Son Robert was but 13 years old, to whom he left one Hundred

pounds, which was sent to London with him with the intention to have bound him

Apprentice to Mr. Lilly the Paynter, with whom he was a little while upon tryall; who

liked him very well, but Mr. Hooke quickly perceived what was to be done, so, thought he,

why cannot I do this by myself and keep my hundred pounds? (Aubrey 1957: 164).

By 1649 Hooke had left Mr. Lilly (Lely) and was a student of Dr. Richard Busby

at the Westminster School. At Westminster, Hooke’s talent for mathematics and

mechanical devices became apparent.

H[ooke] fell seriously upon the study of Mathematicks, the Dr. encouraging him therein,

and allowing him particular times for that purpose. In this he took the most regular Method,

and first made himself Master of Euclide’s Elements, and thence proceeded orderly from

that sure Basis to the other part of the Mathematicks, and thereafter to the application

thereof to Mechanicks, his first and last Mistress (Hooke 1705: iii).

Through connections at the Westminster School, Hooke entered Oxford in 1653

as a “servitor” student with a choral scholarship and was awarded a Master of Arts

degree in 1662 or 1663 (Cooper 2003: 19). At Oxford Hooke developed the

scientific relationships that would define the rest of his professional life. Hooke

and Christopher Wren began a life-long friendship while they were both students

and in 1656 Hooke became Robert Boyles’s experimental assistant. By the early

1660s Hooke and many other virtuosi had moved to London, and this active group

of scientists formed the Royal Society. In 1662 Boyle nominated Hooke for the

position of Curator of Experiments for the Royal Society. Hooke’s duty was “to

furnish them every day, on which they met, with three or four considerable

experiments” (Cooper 2003: 28). Hooke became a Fellow of the Royal Society in

1663 and would take an active role in the affairs of the Society until his death

in 1703.

The Royal Society saw itself as a “Baconian” scientific institution. The members

knew Francis Bacon’s writings intimately and reflected them in their own

philosophy and work.

[I]t was Bacon’s general statements about the aims and methods of modern science that

early English experimentalists based themselves on. In Bacon’s view the business of

modern science was to amass a great corpus of precise information based on experiment

and observation, to generalize from this by the process of induction, and to do all for useful

ends (Espinasse 1956: 19).

In his role as the Curator of Experiments, Hooke himself performed many

experiments ranging from the microscopic to the astronomical. He used his
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mechanical genius to design a wide variety of instruments and to manufacture them

in partnership with many of London’s most skilled craftsmen (Cooper 2003: 45).

Hooke believed that instruments were an essential part of experimental science. He

said:

It is the great prerogative of Mankind above other Creatures, that we are not only able to

behold the works of Nature, or barely to sustain our lives by them, but we have also the

power of considering, comparing, altering, assisting, and improving them to various uses.

And as this is the peculiar privilege of human Nature in general, so is it capable of being so

far advanced by the helps of Art, and Experience, as to make someMen excel others in their

Observations, and Deductions, almost as much as they do Beasts. By the addition of such

artificial Instruments and methods, there may be, in some manner, a reparation made for the

mischiefs, and imperfection, mankind has drawn upon itself (Hooke 1665: Preface).

From the very beginning Hooke also made use of buildings as instruments. As

early as 1662 he conducted experiments on gravitational attraction by dropping

items from the top of Westminster Abbey (Cooper 2003: 46) and he conducted

additional experiments from the top of the pre-fire St. Paul’s Cathedral, leading to

his 1666 paper On Gravity (Cooper 2003: 54–65). Certainly the monument

provided another great height for Hooke’s gravitational experiments, but its

unique role was as a telescope. The telescope was designed to gather data to

measure the parallax and thus resolve one of the great scientific questions of the

time, the motion of the earth.

The Parallax

Hold a finger at arm’s length and look at a distant object beyond your finger. Close

each eye in turn. The position of your finger relative to the distant object appears to

change because of the alteration in your viewing angle. This apparent shift is known

as a parallax. This simple phenomenon was at the heart of 2,000 years of debate

about the nature of our universe.

Aristarcus (c. 310–230 B.C.) calculated that the sun was significantly larger than

the earth, and thus much more likely to be the centre of the solar system. Aristarcus

believed that the earth revolved around the sun and rotated on an axis.

[H]e realized that his model gave him a method for measuring the distance to the stars

because the motion of the Earth from one point in its orbit to the extreme opposite point

would cause the stars to show a parallax, that is, they would appear slightly shifted in the

sky (Wilson 1997: 32).

However, because his instruments were too crude for the distances involved,

Aristarcus was unable to detect a parallax. This lead Aristarcus not to abandon his

theory, but rather to conclude that the universe was very large (Wilson 1997: 33).

Ptolemy’s (c. 100–170 A.D.) elegant Almagest was used for roughly fourteenth

centuries to calculate with a high degree of accuracy the motion of the sun, moon,

planets and stars based on a geocentric model of the universe. In De Revolutionibus
Orbiun Coelestium (1543) Copernicus proposed a heliocentric universe with the
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sun in the centre of a fixed sphere of stars and the planets rotating around the sun.

Copernicus launched significant debate in the scientific community.

There were no astronomical observations that specifically favoured the Copernican system

over that of Aristotle and Ptolemy. The heliocentric model made the specific prediction of

stellar parallax—the apparent wobble in the position of the star as the earth moved from one

side of its orbit to the other side—whereas the geocentric model predicted none, and, indeed

none had been detected. . ..[A]t the time, the only argument in favour of the heliocentric

system was an aesthetic one—it had great simplicity and form—yet this was sufficient to

convince the most important scientific minds who were to follow Copernicus in the

Renaissance period (Wilson 1997: 54)

Those who gazed at the sky looking for signs of a parallax included Tycho Brahe

(1546–1601), Galileo Galilei (1564–1642), John Flamsteed (1646–1719) and

Robert Hooke. They knew that if they could find a stellar parallax this would

prove that the earth moves through space.

Zenith Telescopes and the Motion of the Earth

Tycho Brahe held to a “modified Copernican” cosmology. He believed that the

planets orbited the sun but still maintained that the Earth was stationary and fixed at

the centre of the universe (Wilson 1997: 62). Galileo agreed with Copernicus and

believed that the Earth joined the planets in revolving around the sun. In Dialogue
Concerning the Two Chief World Systems (1632), Galileo suggested using two

stars, a near star and a background star, as a way to compute the parallax (Hoskin

1997: 210) and thus prove that the heliocentric theory is correct.

In 1669, Hooke proposed a series of experiments to attempt to measure stellar

parallax. His stated purpose was “to furnish the Learned with an experimentum

crucis to determine between the Tychonick and Copernicuan Hypotheses” (Hooke

1674: 2). He chose the star Gamma Draconis primarily because it is bright and it

daily passes directly overhead (near the zenith point) in London (Hooke 1674: 13).

Picking a star that passes near the zenith simplifies the experiment because

gravity defines the zenith exactly, so the telescope could be aligned simply by

using a plumb bob. Hooke said “by this way of observing I avoid all the difficulties

that attend to the making, mounting and managing of great Instruments.” In

addition, because the star’s light passes perpendicularly through the Earth’s

atmosphere, calculations did not need to be adjusted to account for refraction

(Hooke 1674: 15).

Hooke described his experiments in An Attempt to Prove the Motion of the Earth
from Observations. In this paper he gave details of the construction, installation and
alignment of his 36 foot telescope (Hooke 1674: 17–23). To accommodate it, he

needed to cut a hole through the floor and ceiling of his lodgings at Gresham

College (Fig. 64.1).

In June of 1669, Hooke began his experiment; however, he made only four

observations (July 6, July 9, August 6 and October 21, 1669) before declaring:
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Tis manifest then by observations . . . that there is a sensible parallax of the Earths Orb to

the fixt Star in the head of Draco, and consequently a confirmation of the Copernican

System against the Ptolomaick and Tichonick (Hooke 1674: 25).

Hooke was however conscious of the possibility of experimental error

particularly in setting the plumb bob and keeping the telescope in position

(Hooke 1674: 24). By the 1660s astronomers realized that the distance between

the two extremes of the earth’s orbit around the sun was relatively small compared

to the size of the universe, thus slight instrumental inaccuracies could invalidate an

observation. Hooke’s 1669 parallax angle of 27 arc sec seemed unexpectedly large

(Chapman 2005: 93). Hooke believed that there was more to be learned using a

longer telescope. In his paper he considered the benefits to be gained from building

a 144 ft telescope and described the possibility of putting such an instrument in a

well to provide greater stability (Hooke 1674: 22). Hooke knew that the longer the

focal length of a telescope, the larger the image and hence the greater the ability to

Fig. 64.1 Hooke’s drawing

of his zenith telescope.

Image: Hooke (1674:

Table III)
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see a difference in the parallax angle. The monument was designed to provide his

desired long (nearly 200 ft) focal length.

The Monument

On October 4, 1666, just a few weeks after the Great Fire of London, the City of

London appointed Robert Hooke to the Rebuilding Commission and King Charles

II appointed Christopher Wren to the same Commission (Jardine 2004: 144). There

were four others appointed to the Commission, but less than 6 weeks after the fire

Henry Oldenberg (the Secretary of the Royal Society) wrote to Robert Boyle stating

that the rebuilding of London “is to be forthwith taken in hand, and that by the care

and management of Dr Wren and Mr Hooke” (Jardine 2004: 147). For the next

37 years, Hooke and Wren’s scientific collaboration was expanded to include

architecture. The collaboration ended only with the death of Hooke in 1703.

The 1670 City Churches Rebuilding Act provided funds for a monument to

“preserve the memory of this dreadful visitation” (Jardine 2002: 316). Not all of the

destroyed parish churches were to be rebuilt. The parish of St. Margaret’s Church

on Old Fish Street was merged with St. Magnus the Martyr and the new church for

the joint parish was constructed on the previous foundations of St. Magnus.

Because of its proximity to Pudding Lane where the fire began, the location of

the destroyed St. Margaret’s was deemed ideal for the construction of the memorial

pillar and a surrounding square (Cooper 2003: 198–199). The memorial was

intended to be viewed from a great distance (Fig. 64.2) and that was the case

until the relatively modern construction of high rise building around the square

(Fig. 64.3).

Hooke’s diaries from the 1670s show Hooke and Wren meeting almost daily for

both professional and social reasons (Batten 1937: 83). Certainly Hooke and Wren

collaborated on the Monument to the Great Fire, but it is now generally accepted

that Hooke was the designer of the Monument. There is a single drawing of the

Monument by Wren (at All Souls in Oxford), but it is not the design that was built.

Hooke’s drawings for the Monument and for the urn at the top are the ones that were

executed. These drawings are in Hooke’s hand and are part of a collection of “Dr

Hooke’s drawings” housed in the British Museum/Library. The confusion over

attribution is most likely rooted in the fact that these drawings, along with several

other designs of Hooke’s, were published by the Wren Society in vol. V of the

twenty-volume collected works of Wren (Robinson 1948: 51–52).

On January 26, 1671 the Court of Alderman considered “the draught now

produced by Mr Hooke one of the Surveyors of the new buildings of the Pillar to

be erected in memory of the Late dismall Fire.” Approximately 2 weeks later the

design was approved, the drawing signed by Wren and construction authorized to

begin (Cooper 2003: 200).

By 1673, the Monument was under construction. Hooke’s diaries indicate that he

was involved in each step of the construction process. On October 19, 1673 he

262 M. Zack



wrote “perfected module of Piller”; on June 1, 1674 “At the pillar on Fish Street

Hill. It was above ground 210 steps”; on August 7, 1674 “At the Pillar in height

250 steps”; on September 21, 1675 “at fish-street-hill on ye top of ye column”; and

on April 11, 1676 he was with Wren “at the top of ye Pillar” (Batten 1937: 84). Lisa

Fig. 64.2 The Monument To The Great Fire as depicted by engraver Sutton Nicholls, ca. 1750
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Jardine speculates that Hooke used the same attention to detail in the construction

of the Monument that he employed when designing other scientific instruments:

From the precision of the elements in the column as built (the accuracy of the height of each

individual stair-riser, the breadth of the circular apertures) it appears that Hooke took very

particular care with the construction of this single, vertical shaft, exercising close control

over its execution, which increased the period of completion significantly (Jardine 2002:

317–318).

With a bit of political manoeuvring, Wren ensured that the Monument would be

a scientific instrument. The City Lands Committee had thought it appropriate to

place a statue of the King at the top of the column, which would have made it

difficult to see straight though the column to the sky and would have ruled out its

use as a zenith telescope (Cooper 2003: 202). In July of 1675 Wren sent the

Committee a letter with some proposals for what might be placed at the top of

the column. He offers several suggestions: a gilt ball, a statue, a copper ball with

flames of gilt or a phoenix. He rules out the phoenix as being dangerous and

emphasizes the usefulness of either of the spherical options, claiming that they

would “give Ornament to the Town at a very great distance” and because “one may

goe up into it; & upon occasion use it for fireworks” (Jardine 2002: 316–317).

Fig. 64.3 Contemporary

view of the Monument to

the Great Fire. Photo:

author
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Though Wren carefully keeps the option of a statue as a possibility, he discourages

it because of the great expense. Fortunately Wren was persuasive and the

Monument’s use as a telescope was preserved.

The Monument was completed in 1677 and its use as a scientific instrument

began. It has an underground chamber set in a bed of gravel, which was the location

of the eyepiece of the telescope. The objective lens of the telescope was mounted

200 ft above, near the top of the pillar inside the ball but below the hinged doors to

the flaming urn (Fig. 64.4). The accuracy of the observations made by this zenith

telescope depended on maintaining the alignment of the eyepiece and objective

lens. Unfortunately, the vibrations caused by air currents traveling down the core of

the column and from the wheeled traffic passing by the pillar caused a misalignment

in the lenses that was greater than the changes in parallax that Hooke was trying to

measure (Cooper 2003: 201). In An Attempt to Prove the Motion of the Earth from
Observations Hooke discussed alignment difficulties with his 36 foot telescope:

I was forced to adjust the Instrument at every observation I made, both before and after it

was made, which hath often made me wish that I were near some great and solid Tower, or

some great Rock or deep well, that so I might fix all things at once, and not be troubled

continually to adjust the parts of the said Instrument (Hooke 1674: 22).

Fig. 64.4 The sphere and

urn at the top of the

Monument to the Great

Fire. Photo: author
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Though the Monument was built on a foundation of gravel to help provide

stability, his “solid Tower” was not solid enough. Perhaps he would have had

better success with a well, though architect Michael Cooper says “as so often was

the case with Hooke’s ingenious instruments . . . the methods and materials

available to him prevented him from making instruments accurate enough to do

what he wanted” (Cooper 2003: 201). It would be another 165 years before

technology advanced sufficiently to measure the parallax. In 1838 Friedrich

Bessel computed the parallax for 61 Cygni, whose angle of change is much

greater than that of Hooke’s Gamma Draconis (Wilson 1997: 101). Once again,

Hooke was ahead of his time.

Hooke did conduct some experiments on barometric pressure at the monument.

On May 16, 1678 his diary says “At Fish Street pillar tried mercury barometer

experiment. It descended at the top about 1/3 of an inch.” The proceedings of the

Royal Society for May 30, 1678, contain a report from Hooke about these

barometric experiments. He also continued some of his gravitational experiments

with pendulums at the Monument (Jardine 2001: 300–301).

Though the Monument was not as successful a scientific instrument as had been

hoped, it has remained an enduring memorial to the Great Fire of 1666 as well as a

symbol of Hooke and Wren’s enduring partnership in both architecture and

experimental science.
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Chapter 65

Practical and Theoretical Applications

of Geometry at Claude Perrault’s

Observatoire de Paris (1667–1672)

Randy S. Swanson

Introduction

Dr. Claude Perrault (1613–1688) was, among many things, a Vitruvian scholar who

developed unsettling questions and theories concerning the relation between the

perception of beauty and the proportions of form. He is credited with producing the

striking design of the double column colonnade for the East Façade of the Louvre

(1667–74), and yet he argued that architectural beauty did not rely upon the fixed or

idealized proportions that were then thought to be embodied by nature, music, or

ancient works of architecture. Perrault recognized the need for classical ornament,

but unlike the architects of his era, he argued that the minor adjustments of

proportions rampant throughout built works and architectural treatises made no

discernible difference to the public. He proposed—to the outrage of many—that the

proportions for architecture could be simplified and standardized without loss since

ornamental forms were transitory and matters of fashion or taste. Lasting beauty, he

proposed, was to be found in

. . .richness of materials, the size and magnificence of the building, the precision and

cleanness of execution, and symmetry, which in French signifies the kind of proportion

that produces an unmistakable and striking beauty (Perrault 1993: 50–51).1

First published as: Randy S. Swanson, “Geometry in Perrault’s Observatoire”, pp. 237–251 in

Nexus IV: Architecture and Mathematics, Kim Williams and Jose Francisco Rodrigues, eds.

Fucecchio (Florence): Kim Williams Books, 2002.

1 The conventional notion of building proportion was rooted in the analogy of the human form with

the cosmos where the relation of parts to the whole provided the highest expression of the act of

creation and remained at the core of architectural efforts. In this approach, beauty resided

principally in proportion. Perrault argued otherwise believing that the adjustment made by most

architects were to small to be appreciated. He had less faith in the ability of the public to perceive

the subtleties that most architects claimed were required for the perfection of beauty.
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This position was first let loose upon the Academy of Architecture early in 1672

and was fully developed for the publication of his treatise, Ordonnance For The
Five Kinds Of Columns After The Method Of The Ancients in 1683. In his day, his

position was regarded as a direct contradiction to his own practice and the canons of

Classicism. This view held that proportions were indivisible with beautiful forms;

that proportions with all their complexities were the terrestrial embodiment of

cosmic harmonies and were the basis through which an ideal beauty was sought.

Many of Perrault’s personal theories created in support of his position were also

dismissed in that era, but in the last quarter of the twentieth century have been

viewed as pivotal in the development of architectural theory.

Claude Perrault is less well remembered as the architect of the Observatoire de

Paris. Its external appearance, simple and severe without classical ornament,

contrasts thoroughly with the Louvre (Fig. 65.1).

The project is little known in standard architectural histories despite its

importance as Perrault’s only freestanding building design and as the first

building contributing to the institutionalization of science.2 The time frame for

design and construction coincide directly with the formation of his personal ideas

and his translation of Vitruvius’s Ten Books of Architecture (1667–1673, first

edition). When facing the prospect of forced changes to his plan after the

building construction had begun (1669), it is reported that Perrault strongly

resisted and appealed to Louis XIV, stating that the design was already perfect.

Some members of the Academy of Sciences even suggested that in his resistance,

Fig. 65.1 Claude Perrault, Observatoire de Paris, 1667–1672. Photo: author

2 The Observatoire has been touched upon in Herrmann (1973). The best scholarly treatment of

this project is Petzet (1967). Since that publication, the Observatory has been reviewed in (Picon

1987: 197–219). Picon’s work reinforces Petzet’s scholarship.
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he had placed the building form above its ability to serve the needs of science and

the state.3

What was so important to Perrault about the form of the Observatoire? What can

we learn from it concerning his position on beauty and proportion? This chapter

will take a preliminary step in addressing these questions by examining several

prominent features of the Observatoire design. The stairwell form and the general

building form will be examined for their constructional, proportional and formal

attributes. The results are the product of both archival and on-site field research. A

brief overview of the original facility programme, the building siting and general

construction will first be provided.

Background

The Observatoire was originally conceived to house the Academy of Sciences with

the consent of Louis XIV, and was sanctioned by Jean Baptiste Colbert (1619–

1683) after his first year in office as Intendant of France (controller general). The

Academy had been founded in 1666; Colbert immediately proceeded to have

Claude Perrault design the facility (1666–1669); and construction was undertaken

(1669–1672). It was Colbert’s intention that the Academy was to be comprised of

the most notable scientists and philosophers of Europe whose efforts were to be

directed in part, to the resolution of the problems of state. The facility was to

provide a meeting space for the members of the academy; be the center for

astronomical observations; provide laboratories for “chemistry”; provide space

for the display of new inventions, mechanical models and machines; provide

laboratories for anatomical dissections; as well as house the royal collections of

natural history objects (Cassini 1810; see also Hahn 1971: 18–60). Those familiar

with the work of Frances Bacon will no doubt recognize a resemblance to the

centralized scientific endeavor described in New Atlantis (1626).
This endeavor represented a turning point for the development of astronomy and

geography, and was appreciated as such from the outset. The new facility was

expected to provide a permanent platform to insure the consistent collection of

astronomical data over the next several centuries. It was intended to be a benchmark

from which the most exacting measurements were to be made—of Paris, of France,

of the earth, out to the planets, and ultimately beyond. A committee of the Academy

was formed to select the site. They chose the highest point south of Paris to obtain

the best views of the night sky. On 21 June 1667 (date of the summer solstice), the

astronomical and mathematical members of the Academy ceremoniously

3 The brevity of this chapter will not permit the relation this interesting incident. However, varying

descriptions can be found in the following works: (Wolf 1902: 19–37; George 1938; Perrault

1909a: 42–50, b: 219–221).
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established a true north orientation at the site. This act established the prime

meridian of France and the principal point of reference from that date forward for

their geographic and astronomical measurements. The meridian was adopted by

Perrault as the principal axis of the design and was signified within the building by

an inlaid bronze floor strip on the main (uppermost) level.

Perrault proposed a generous three-story building placed into the northern face

of a small hillside, which today lies just to the south of the heart of Paris (Fig. 65.2).

The stone is from the quarry of Montemarte, and the quality of finish and jointing

throughout is superior. Several construction strategies are revealed from a careful

examination of the construction and period figures. The walling indicates the

construction proceeded course by course, layered evenly throughout.4 An

interlocking pattern of voussoir construction can be observed at all apertures, as

demonstrated at the exterior window arch of the first floor salon, south facade

(Fig. 65.3).

Fig. 65.2 (above) Main

floor plan with Cassini

Salon. Existing conditions:

double vaults with piers,

1786 renovation; (below)
South–north section. Base

drawings (1987) provided

by permission of M. Herve

Baptiste, Architect en chef

des Monuments

Historiques, Paris

4 A detail of “Louis XIV being shown round the Academy of Science by Colbert” (1671), from the

frontispiece of Perrault’s Histoire des Animaux prepared by Sebastien Leclerc, also suggests the

construction proceeded layer by layer, evenly throughout construction.
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This approach offered maximum stability for the arch and wall (Fitchen 1961;

Heyman 1996). The method was more expensive than others since more surface

area had to be cut, but doing so prevented the slippage of stones over time. The

transition of the arched window opening to the interior vault is handled as an

intersection between two cylindrical surfaces, resulting in a visibly skewed

ellipse. The masonry jointing in the soffit of the window vault demonstrates that

the jointing of exterior and the interior stonework flow directly from one to the other

in a smooth pattern that can be found in most interior vaults (Fig. 65.4).

An examination of the earliest detailed sectional drawing (dating from ca. 1692)

reflects the heavy masonry construction of sufficient wall thickness to restrain the

vaults. What is not reflected is that each room varies modestly so that it’s likely that

each vault would have been laid out directly on the stone floor of each space to find

the final dimensions. The result is a remarkably harmonious effect of construction

and a fluidity of space. The fundamental construction strategies of simple stack

construction, interlocking prisms, working in situ, and the continuity of

construction geometry from interior to exterior constitute the basis of the

observatory construction.

Fig. 65.3 The interlocking

pattern of voissoir

construction in the exterior

window arch of the first

floor salon, south façade.

Photo: author
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Practical Application of Geometry

Connecting all levels of the design is a semi-helicoidal stone stair hall. The stair hall

is a marvelous and arresting form (Fig. 65.5).

Immediately it prompts the questions, “How was this done?” and “Could Claude

Perrault have been responsible?” Up to this point there is no reason to suspect that

anyone other than a master mason might have been relied upon by Perrault in the

production of this building. The stone vault prisms with complex warped surfaces

present an apparently impossible geometrical task of dimensioning, cutting and

shaping. A careful inspection of the stair demonstrates a structural and constructive

logic that would be prized in any era.

Dimensional data gathered in the field determined that the stair vault is elliptical

in section (Fig. 65.6).

The height and slope of the stairwell vaults made the act of taking consistent

dimensions physically improbable. The use of an acoustic range finder was

ineffective (June 1997) due to all surfaces being so highly curved and reflective.

A Pulse Laser Range finder (PLRF) was found to provide the best solution for

taking accurate dimensions in this environment. This type of instrument measures a

distance to any surface that the laser strikes up to a 1,000 ft with exceptional

accuracy and without the use of a reflector. It also permits measurements to be

taken by a single individual.

All readings in the stairwell were taken on 9 June 1999 by the author. The

instrument, a tripod mounted PLRF, was calibrated on site prior to beginning. The

Fig. 65.4 The interlocking

pattern of voissoir

construction in the exterior

window arch merging with

the second floor

cantilevered stair vault.

Landing ascent block and

window keystone outlined

in red. Photo: author
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check was made against a tape measure reading. The tape reading was 150-2½00�.

The PLRF reading was 15.220, and was the average of three readings.

150-2½00 ¼ 15.210, leaving a difference between tape and instrument readings of

0.010 or roughly 3 mm. Readings for each angle of inclination were provided by the

instrument in degrees. Ray length is from the instrument centerline to each joint

between voussoirs, starting from the top of the stair stringer to the vault spring line

joint. Each ray length dimension is the average of three separate readings. All

readings were rounded off to the nearest hundredth of a foot or degree.

Readings began on the main floor (upper level) starting with the vault above the

landing. The tripod was placed to permit the instrument the best opportunity to take

readings from all the construction joints within the vault. When the readings of the

vault above the landing were finished the instrument was placed at the center of the

landing and turned to face the rear of the stairwell and readings of the vault in that

location were taken. When completed, the tripod was moved down to the first floor

level and the process repeated (although these dimensions are not shown here)

(Tables 65.1 and 65.2).

Fig. 65.5 The semi-

helicoidal stair hall of the

Observatoire. Photo: author
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No readings were taken of the ground floor vault. The arc of the vault creates an

ellipse in section, shown as a dotted line that is consistent from landing to landing.

The dimension of the ellipse falls outside the width of the stair hall landing, so that

it seems doubtful that this form was a direct result of the medieval method of

constructing an ellipse. It is more likely that the ellipse was generated by placing the

arcs of two circles, a full stair hall width diameter and one-half diameter, into

simple relation with one another. Shown as solid lines, these circles also equal the

length of the stairwell dimension in plan when combined, as can be seen in

Fig. 65.7. This approach is much simpler and allows the form to be resolved in situ.

Fig. 65.6 (a, Above) Rear
wall of semi-helicoidal

stone stair hall and Pulse

Laser Rangefinder; (b,

Below) Vault dimensions,

rear stairwell, main floor.

Photo and drawing: author
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Several details of the stair begin to reveal the concerns of the designer. As the

stairs run down from each landing, the treads interlock with the sidewall throughout

the semi-circular rear wall to insure that all the tread work would remain fixed in

place. The lapping of the vault voussoirs suggest the stonework was completed

incrementally, progressing from the base of the wall upward and outwards, in

stair-step fashion, minimizing the formwork necessary in construction. The

interlocking nature of the last and first voussoirs of the stair stringer fixes the stair

form at each landing, and acts as a lead block for construction. The elliptical form

provided a modest weight reduction beyond what a simple circular section would

have provided.

A suggestion of how the stair vault may be constructed can be found by

re-examining the interlocking voussoirs in the arched window of the south façade

in Fig. 65.3. Visualizing this arch in section through the cantilever stairwell, would

result in the production of interlocking prisms with centers of gravity that would fall

behind the edge of the stone beneath it, thereby permitting each stone to be put in

place without the workman’s fear that it would fall from the vault (Rondelet 1817:

Pl. LXIV). Of course, there is the added complexity: that of being inclined and

curving in three dimensions.5 The quality of construction in the stair and the

building certainly attests to a societal shift toward increased precision that is also

being experienced in science and particularly in surveying and astronomy at this

time. Who might have been responsible for this: Perrault, members of his scientific

circle, or perhaps the master mason?

Table 65.1 Rear stairwell vault dimensions, main floor (see Fig. 65.6a, b)

Top of

stringer

Spring

line

Horiz.

distance

Point a b c d e f g h j k

Avg. ray length 17.000 16.420 17.550 18.480 19.300 20.150 20.850 21.450 21.700 21.350

PLRF angle of

inclination

25.05� 16.49� 13.91� 11.08� 8.31� 5.35� 2.70� �0.52� �4.80� 0.00�

5 The traditional method for cutting stonework with warped surfaces and compound curvatures

appears embarrassingly simple when described in nineteenth-century texts; see French and Ives

(1902: 26–28).

Table 65.2 Stair hall vault dimensions, main floor landing (see Fig. 65.7a, b)

Top of

stringer

Spring

line

Horiz.

distance

Point a b c d e f g h j k

Avg. ray

length

19.650 18.060 18.280 18.400 18.520 18.420 18.380 18.200 17.360 15.160

PLRF angle

of

inclination

63.35� 59.80� 55.73� 51.68� 47.36� 43.24� 39.07� 34.90� 30.04� 0.05�
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No archival drawings for the stair or its design have been found, from that era or

any other!6 The stair form was a resultant of the changes imposed after construction

had begun and is quite radical in comparison with what was originally intended for

the building—a set of stairs that were similar to those Perrault designed for the

Louvre. As a minimum, Perrault would have been responsible for selecting the

solution as it was implemented. While Perrault was quite skilled in drawing,

nothing in his background suggests that he was prepared to solve graphically a

construction problem of this complexity. More importantly, it is quite likely that no

one at that time could have drawn the stone prisms accurately enough to direct the

construction.

No record has been found that astronomical or surveying members of his

scientific circle were employed to solve this problem. The only individual who

might have had the skill at that time was M. Bosse (1602–1676), a student,

illustrator and refiner of the work of Girard Desargues (1591–1662). Desargues’s

method of a descriptive geometry may have provided an indirect source for the

helicoil stair form. The geometer, inventor and architect, developed a projective

method with sufficient precision to credit him as the first to design an escalier a jour
ou vis suspendu (a suspended day-lit elliptical stair), for the Hotel de Ville de Lyon,
in 1646 (Chaboud 1996). It is reported to be a stone staircase that appeared as a

seamless plastic form defying gravity.7 Further evidence of Desargues’s influence

may be due to the iron panel geometry of the handrail, which employs vertical

dividers, an issue of visual correctness argued for by Desargues. The influence

however would seem limited to the form alone, since none of the figures by

Desargues himself or by Bosse (1643, 1648, 1664) appear to demonstrate an

interlocking masonry construction technique.8 This observation would seem to

substantiate the criticism that Desargues received through the 1640s, that his

efforts did not fully correspond to the reality of masonry construction (Schneider

1983: II).9 The suggestion being made here, given the conventional limitations of

projective geometry and the absence of any other drawings at this time, is that the

6 See Evans (1995: Chap. 5), in which he posits that accurate stone dimensions might have been

produced as early as 1550 through drawing. However, on the advice of Mr. Arthur French, if the

form is too difficult to be defined by calculation then the approximate solution must be arrived at

by drawing alone—and the accuracy of drawing alone was not sufficient for good masonry

construction; see French and Ives (1902: Chap. 2). No finish dimensions should be taken from

the projections since the reduced scale of the drawings would not allow a sufficient accuracy nor

account for the changes that creep into a project due to the necessities of construction. The final

responsibility for accuracy of construction was the stonemason’s, who was expected to make

full-scale working drawings and then find the finish dimension of each prism in situ. This approach

seems to be a reasonable explanation for the case of the Observatoire.
7 Girard Desargues’s (1591–1662) method of projective geometry was rejected by the professors at

the Academie Royale and masons alike, for different reasons, despite the concerted efforts of his

student, Abraham Bosse; see Schneider (1998). See also Schneider (1983).
8 See Bosse (1643, 1648, 1664).
9 Desargues countered that he was not a craftsman and that his intention was to improve the

methods of geometric projection, not necessarily improve the craft of construction.
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Fig. 65.7 (a, Above) Stair
hall vault, main floor; (b,

below) Vault dimensions,

main floor landing. Photo

and drawing: author
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craft skill of the master mason was the only source sufficient for the resolution of

this problem.

Theoretical Application of Geometry

TheOrdonnance is best known for a proposed series of standardized proportions for
the five orders, but it is less well known that Perrault’s writings viewed the

application of proportion as a necessity to the totality of a design. Perrault did not

employ the orders at the Observatoire as it was a modern building without ancient

precedent, nor was it connected to Royal ceremonies that he knew would require a

classically mythic background. The present examination then will be limited to the

broader question regarding Perrault’s approach to proportion and beauty of the

general form and the disposition of elements.

Is it reasonable to expect that the Observatoire (1667–1672) or Perrault’s

published drawings from 1673 might provide sufficient evidence about his point

of view as expressed in the Ordonnance of 1684? The views presented in the

Ordonnance first appeared as opinions in his Vitruvius (1673) and were first

discussed before the Academy of Architecture in January and February 1672. The

commission to translate Vitruvius coincided almost directly with the commission

for the design and construction of the Observatoire. The argument over the

serviceability of the design, between the Head Astronomer, Cassini, and Perrault,

occurred in the fall of 1669, at which time he was reluctant to make substantive

changes. It would not have been unlike Perrault to use the design of the

Observatoire even in the late 1660s as an experiment to develop and test his

views. In this context then, it might interesting to ask what evidence exists in the

Observatoire and his published drawings concerning the use of a module of design

and how that module might relate to the proportions of the general form? It might

also be interesting to ask what proportions can be found that relate directly to the

traditional tools of the architect?

In working towards an answer for these questions, numerous attempts were

made to discover the module of the design. The scale shown in Perrault’s

drawing (Book I, Plate II, p 13) indicates toises, roughly 6½ feet per unit, but this

does not appear to easily relate to the general disposition of the design (Fig. 65.8).

After an examination of the masonry coursing, the focus shifted to the main floor

plan, and eventually upon the Cassini Salon. The salon was originally judged on site

as not the best place to start an analysis, given the substantive changes that were

completed there in 1734 by M. Soufflot. New roof vaults were put in place supported

by the insertion of new piers but the plan otherwise remained unchanged. Only after

having completed data collection on site did the diameter of the vertical viewing

ocular appear to demonstrate a useful module. This module could be used with

relative ease throughout the design in finding the length, width and height of

fundamental elements, as well as indicate minor elements such as window

openings. It became clear that a unit approach to the design was probably used and
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guided construction (Fig. 65.5). With the module proving equally useful in elevation

and section the sense developed that a proportional guide was also likely in design

development. The result was that a module was found that could have been used to

describe most volumes and masses in some combination of simple whole and half

modules. The simple and straightforward application of a module for achieving form

was an primary objective underlying Perrault’s theoretical efforts.

To what extent does the module proposed here relate to the drawings and

actually have meaning? A dimensional analysis was performed on the drawings

of both Claude Perrault (prepared by S. le Clerc, 1673) and the office of M. Baptiste

(del J. F. Gordon, 1987). Both sets of drawings were assessed in relation to

instrumented field dimensions recorded by the author. The difference between the

gross dimensions found in the Perrault drawings and those of M. Baptiste showed a

consistent proportional difference of roughly 1 %. The dimensional difference

between the module as drawn was 3.7 %, where the vertical viewing ocular

diameter used by Perrault was roughly 1.12 m and that by Baptiste was 1.08 m at

the roof. Selected checking of M. Baptiste’s drawings against instrumented field

dimensions recorded by the author revealed a consistent gross difference of roughly

3.4 % in both section and plan. The practical result is that the difference between the

general building form and the drawings is negligible for the questions we’re asking.

These differences do not seem to significantly betray a good relation between either

set of drawings and the physical building. It would be best however to return to the

site to verify this module and its relation to the built form.

Fig. 65.8 Module/design analysis, Observatoire de Paris. Image: author’s overlays on base

drawings (1987) provided by permission of M. Herve Baptiste, Architect en chef des Monuments

Historiques, Paris
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Like the module/design analysis, the proportional analysis also proceeded

indirectly. Perhaps through habit, the analysis began on the main floor plan with

the application of a 45� triangle that only led to frustration. Working through the

gambit of traditional triangles, the use of a 30�–60�–90� triangle and an equilateral

triangle proved fruitful. Since many principal points of the plan were located with

equilateral triangles, an elevation and sectional analysis followed (Fig. 65.9).

The south elevation offers the strongest suggestion that Perrault may have

directly applied the use of 30�–60�–90� and equilateral triangles for limiting

the field (area) of the façade and for the disposition of elements as well. The

south–north section seems less compelling, although is still susceptible to their

application. With significant points of the design appearing to be located in plan,

section and elevation with the use of an equilateral or a 30�–60�–90� triangle, the
proportional analysis stopped. Again, the application of these proportions is

straightforward and in retrospect, seems simple almost to the extreme. It was also

surprising in this instance that the octagonal end pavilions of the south façade fell

into the two-dimensional elevation scheme without significant manipulation.

Supposing that Perrault did use equilateral triangles to order his design, why

should he have chosen to employ those specific proportions? The best answer

appears to be provided by Vitruvius. In Book IX, Chap. 1, where Vitruvius

discusses the mechanics of the cosmos, he links the equilateral triangle with a

Fig. 65.9 Proportional analysis, Observatoire de Paris. Image: author’s overlays on base drawings

(1987) provided by permission of M. Herve Baptiste, Architect de Chef des Monuments

Historiques, Paris
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description of how the thermal rays of the sun are prevented from setting fire to

those planets with the nearest orbits: “The sun’s rays stretch out into the cosmos

along lines that take the form of a triangle with equal sides,” warming distant

planets at certain angles (Vitruvius 1931: 221–227; Vitruvius 1999: 109–111 and

285). Immediately upon this, Vitruvius presents the power of the sun as likened to

the power of a king with a line borrowed from Euripides, “the hot fire of the king

rising over the earth: He burns the distant; what is near he keeps temperate”

(Vitruvius 1931: 221–227, 1999: 109–111 and 285).

The ultimate client was Louis XIV and the classical allusion to his reign through

this passage might have provided Perrault with added grace at court. It also helps to

explain why Perrault initially chose to ornament the ceremonial south entry with

astrological symbols, but at the Head Astronomer’s objection, was induced to

change those images to contemporary instruments of astronomy and surveying.

Perhaps this is why Perrault was so vocal in maintaining the fundamental

proportions of the design in the presence of Louis XIV. The analogy also

provides a further glimpse into the larger social context of that era as still being

rooted in the faithful application of ancient analogies to contemporary life, in this

case, relating the forcefulness of Louis XIV to the power of the sun.

Conclusions

At this point the Observatoire de Paris seems to correspond quite closely to the

objective conditions of beauty that Perrault championed. The building not only

appears quite simple compared to its contemporaries, it also may have been the

result of applying a module and proportional system with simplicity. In its day the

building was only politely acknowledged (Herrmann 1973: 133–138.). It would not

be a surprise to learn that his peers may have viewed it as lacking a certain grace de
la forme, a condition ultimately causing his design for the triumphal arch at the

Porte Saint Antoine to be terminated (Pérez-Gómez 1993: 8). However, Perrault’s

choice for a module or proportion does not seem simple.

The present day re-examination of Perrault’s position is principally the result of

scholarly efforts by Wolfgang Hermann, Antoine Picon and Alberto Pérez-Gómez

(Herrmann 1973; Picon 1987: 197–219; Pérez-Gómez 1993). There are modest

differences in the appraisal of his position. On one hand, the work has been viewed

by Hermann as “less radical and far-seeing” than appears and was intended only to

provoke rather than initiate a full transformation of the classical view (Herrmann

1973: 138–140 and 188–189). But, on the other hand, Perrault, like the best

theorists before him, placed a high value upon innovation and invention, which in

this building can be found in the stairwell, the original Cassini Salon vaults, and in

the building form. In Hermann’s appraisal (following Blondel’s criticism), Perrault

may have been insincere with his arguments aimed only at trying to make a

practical simplification of the proportional divisions for each order acceptable to
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the architects of his era. But Perrault appears to have been faithful to many of his

assertions at least in this review of the Observatoire.

On the other hand, his efforts have also been characterized by Pérez-Gómez as

the first step toward the modern eradication of classical architectural values for

those of a technological position (Pérez-Gómez 1993: 36–37). In this view, the

creation of simplified proportions for the orders results in a prescriptive approach to

design that is viewed as the first reductionist step toward emptying architectural

form and practice of relevant meaning. The simplification of means however,

whether in planning or construction, doesn’t necessarily imply a paucity of idea

or heritage. The resulting design seems neither simple nor necessarily empty.

There is no doubt that this building was meant to endure the ages and to provide

an additional richness to French intellectual culture. It may also reach back to a

remote past albeit in a manner less obvious than one might expect. Without the

added richness of detail provided by classicism, an overt and public representation

was absent. But then, this building was not intended for the public. For those for

whom it was intended, its intricacies of meaning may have been more obvious.

Perrault doesn’t seem to have been insincere or entirely committed to overturning

the classical heavens. The Observatoire for Perrault may have simply been an

engaging way to explore a curious inconsistency of theory between buildings and

human beings. This was the kind of experimental activity he consistently pursued in

his chosen profession. The truth seems to turn upon both these views leading one to

think that Perrault was himself somewhat of a paradox, able to pursue the design of

the Observatoire with a bit of experimental objectivity and a measure of the passion

of the faithful.
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Chapter 66

Geomantic (Re)Creation: Magic Squares

and Claude Bragdon’s Theosophic

Architecture

Eugenia Victoria Ellis

If it be true that the soul of the world is about to animate the
materialism of modern life it will create for itself a new
language of power and beauty, and architecture will again
become a living art, for architecture deals in visible symbols,
and visible symbols form the very language of mysticism

(Bragdon 1901).

Claude Bragdon’s Theosophic Architectural Theory

At first glance there appears to be nothing unusual about Claude Bragdon’s First

Universalist Church in Rochester, New York (Fig. 66.1). In looking at its west

façade, the trained architectural eye would guess correctly that the plan of the

church was patterned after the traditional Byzantine Greek-cross arrangement: its

forms pile up around a central dome-like structure, the square base of which

projects through and is revealed to the exterior at the inter-cardinal directions of

the crossing, the limbs of the cross itself gesturing toward the cardinal directions.1

Universalism, the faith for which Bragdon designed his church, is built upon a

belief in the universals common to all life and the unity that binds all life into one

indivisible whole; for this reason, it embraces all the major world religions

(Morrison-Reed et al. 1983: 4–5). In keeping with this faith, Bragdon looked

toward the universal in the church’s design. Bragdon would have described the

First published as: Eugenia Victoria Ellis, “Geomantic (Re)Creation: Magic Squares And Claude

Bragdon’s Theosophic Architecture”, pp. 79–92 in Nexus V: Architecture and Mathematics, Kim
Williams and Francisco Delgado Cepeda, eds. Fucecchio (Florence): Kim Williams Books, 2004.

1 For the architectural symbolism of the Byzantine church, see Mathews (1995: 11–21). See also

Mathews (1998).
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design of the First Universalist Church as being in the “Gothic spirit” for the similar

reasons he labeled its inspiration, the Byzantine Hagia Sofia in Istanbul, a “Gothic

building.” However, Bragdon’s definition of “Gothic” was neither the popular

conception at the time, nor its present-day, historical, usage meaning an

architectural style distinguished by such characteristics as pointed arches, groined

vaulting, and buttressed walls. Rather, Bragdon was referring to Gothic in the

metaphysical sense, in terms of a design process that responds to prevailing

contextual conditions: “. . .Gothic means organic, as opposed to arranged

architecture,—spontaneous, as opposed to deliberate. It is a manner of building in

which the form is everywhere determined by the function, changing naturally and

inevitably as that changes. . .” (Bragdon 1908). When designed and built in the

“Gothic” way, architecture becomes a “living art” that relates to universals and to

life itself.

The First Universalist Church is a visible symbol of Universalism composed

using Bragdon’s invisible, mystical, architectural vocabulary that conflated Gothic

mysticism with Eastern spirituality. Bragdon’s architectural theory was influenced

by his interest in Theosophy, a belief system similar to Universalism that also

brought together Eastern and Western religious traditions. Four interrelated parts,

distinct and yet indivisible due to their mutual correspondences—nature, the human

body, number and geometry, and music—formed the basis of Bragdon’s theosophic

architectural theory, which emphasized a cosmological relationship between the

body and the building through number, geometry, and harmonic proportions.

Bragdon’s theosophic architectural theory influenced those aspects of

architecture that could not be seen. This invisible aspect of design, which is

consistent throughout his work, is a symbolic emphasis on the crossing and the

cardinal directions, together with encircling—a duality of polar opposites united

within one “divine androgyne” (Fig. 66.2). Historically, this symbol has both

Fig. 66.1 First Universalist

Church, 1907, west façade.

Photo: author
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Gothic and Eastern origins—it can be traced to the “rose” and the “cross” of the

Rosicrucians; and to the Hindu “Golden Person” or puruşa—and embodies a

cosmological relationship uniting aspects of nature, the body, number and

geometry, and music. The encircled crossing is a “circle of orientation” (Ghyka

1931: 142) that represents the primal act of architectural creation—a talismanic

operation with divinatory roots in the geomantic act of mathematical creation (and

recreation) known as the magic square.

Magic Squares and the Cardinal Directions: Divining

the Constructed World

Though the formation of magic squares is classed today among mathematical recreations. . .
a certain religious or mystical significance has always attached to such arrangements of

numbers—perhaps because they are so mysterious, and suggest the operation of some

supernal intelligence. Be that as it may, they are conspicuous instances of the intrinsic

harmony of number, and as such serve as an interpreter to man of that cosmic order which

permeates all existence (Bragdon 1928: 164–165).

Magic squares came to be known in the Western world via the Islamic texts of

the tenth century, most probably brought into Europe by Jewish traders. They were

common to the Muslims, Hebrews and Hindus, but the most ancient documented

magic square came from China. The magic square is a numerical acrostic disposed

so that, when summed, each column, row, and diagonal equal the same number.

Numeric squares become “magic” when the numbers in opposing corners sum to

n2 + 1, where n equals the base number of the square and the added unity is the

Fig. 66.2 Bragdon’s

example of a magic square.
The columns, rows and

diagonals all sum to 34; the

sum of the numbers of

opposing corners equals the

square of the square’s base
number plus unity

(13 + 4 ¼ 17 ¼ 42 + 1;

1 + 16 ¼17 ¼ 42 + 1).

Image: Bragdon (1928)
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universal symbol for the divine creator—the Tao, Allah, or the Brahman (see

Fig. 66.2).

The square of three is the smallest that can be constructed with magical

properties. Common to the Muslims, Hebrews, and Chinese was the belief that

knowledge of magic squares was divine: not a human invention, but a revelation.

The magic square of three was first published in the Islamic world around the

year 900 A.D. in an Arabic treatise traditionally ascribed to Jāsbir ibn Hayyān

(known to Europeans as Geber). It was presented as a charm known as the badūh
seal, which was written using the first nine numbers of an Islamic alphabet that

equilibrates letters with corresponding numbers, called the abjad system.2 The first

set of Islamic magic squares were presented in an encyclopedia published in 989 A.

D. called the Rasā’il, which was composed by the Ikhwān as-Safā, a Muslim

brotherhood known as the Brothers of Purity. These squares were presented as

illustrations and text, and were described as small models of a harmonious universe.

Along with magic squares, the canon of the Brothers of Purity included numerical

and musical correspondences that described a system of proportions based on the

human figure (Panofsky 1955: 76–77).

In the Islamic world, each of the four archangels are associated with their own

sigil derived from one of the first four magic squares; the badūh seal is considered

to be the seal of the archangel Uzrā’ı̄l. It also represents the planet Saturn when

spelled in abjad letter-numerals, the sum equals 45, the magic sum of all the

numbers in the square. Islamic magic squares often took the place of words

themselves, and by interchanging numbers and letters to create sums and words

that spelled the names of gods or planets, they became talismans to bring good

fortune. The first seven Islamic magic squares, with from three to nine squares per

side, came to be associated with the seven planets. In later European occult circles,

the magic path of the square of three, which connects the numbers in sequence,

became known as “the seal of Saturn.” This Islamic practice of calculating with

letters was considered to be a secret science, known only to “the authorities in

divine learning” (Canaan 1936: 89–92).

The first evidence of magic squares in Europe was the square of three discussed

by Abraham ibn Ezra of Toledo in twelfth-century Spain, written with Hebrew

letter-numerals in a style that became popular with later Cabalists. The earliest set

of European magic squares was most probably derived from the Islamic planetary

squares that were translated by thirteenth-century Jewish and Christian scholars

living in Spain. These are considered to be the source of the Islamic astrological and

cosmological lore that helped to build the tradition of the Cabala (Cammann 1969:

204). The Islamic method of interpreting letter-numeral squares and associating

2 The abjad system was a way of using Arabic letters with numerical values instead of numbers, as

was done before the introduction of numerals from India. Since these letters were arranged in an

archaic sequence, following the order of the Hebrew alphabet (the first four were alef, bā, jı̄m and

dāl and corresponded to the numbers one through four), the initials of these names for the Arabic

letters were taken to make the–otherwise meaningless—name abjad as a mnemonic device to be

used in remembering them (Cammann 1969: 190).
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mathematical sums with names for God may have been influential in the

development of gematria, a cabalistic method of interpreting the Hebrew scriptures

by interchanging words whose letters have the same numerical value when added.

In the Table of Jupiter derived from seventeenth-century alchemical and

Rosicrucian sources (Fig. 66.3), we can see the “first Persian square of four”

written in both Hebrew letter-numerals and Arabic numerals adjacent to a list of

“divine names” and their magic sums. The Islamic origins of this square can be seen

in its construction technique, which according to the Islamic method of writing

begins with the upper right-hand corner: the diagonals are marked with a dot and the

numbers are written horizontally in the dotted squares from right to left. The

unmarked “houses” are filled in reverse by beginning with the lower left-hand

corner. The square’s construction emphasizes the diagonals and their crossing so

that both the diagonals and the pairs of numbers encircling the crossing sum to 34.

Due to the mathematical reasoning of the square’s construction, the “intelligence of

Jupiter” is indicated by a talismanic sigil that is a cross inscribed within a circle,

which is also one “divine” source for the “rose” and the “cross” of the Rosicrucians

as well as Bragdon’s “divine androgyne.”3

The Islamic magic square was worn as a necklace or ring to ensure one’s well-

being and to bring good fortune to one’s immediate environment. To cast out evil

spirits, magic circles, squares, and figures were sketched on the ground, aligned

with the cardinal directions and the demoniac person seated in the center while an

incantation was read (Shurreef 1863: 218, 3321–239). The encircling of a person in

danger was a means of protection from evil: the disciple would be protected within

and oriented to the earth below and the universe above by becoming “square with

the world.”

Divining the constructed world was a geomantic, magical procedure used by

ancient cultures to orient their built world with the cardinal directions of the earth

and with respect to the cosmos (Vitruvius 1931: I, vi, 6). The divine coordinating

principle used was geomancy, which is derived from the Greek words geo, literally
meaning the earth, and manteia, meaning divination or coming from above.

Geomancy is the act of projecting lines onto the earth from the cosmos above

through marking the ground and encircling. This talismanic operation projects the

magic square’s properties upon the ground at the human scale as regulating lines to

provide auspicious conditions for the construction of the built environment and to

protect the constructed world. This is a “divine” act with heavenly origins. The

divine is embodied in an earthly construction that begins with the human body at its

center and origin. The body marks the beginning and the first point of contact with

the divine through its axis mundi. The divine resources for ancient geomantic

3 Bragdon’s square was created using the Indian method of writing, which would begin in the

upper left-hand corner and move horizontally through the rows from left to right. Although we

refer to our numbering system in the West as being “Arabic numerals,” these numbers most

probably came from India. The first recorded use of “Arabic” numerals is in Baghdad, where an

Indian scholar appeared in 771 A.D. with a treatise on astronomy using the Indian numerical system

that was later transmitted to the West by the Arabs by way of Moorish Spain.
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procedures included the positions and the paths of the sun, the moon, the stars and

the planets. The instrument used to take their measurements was the gnomon,
literally, interpreter. The gnomon is a vertical element, often in the form of the

human body, which is used to orient one’s position on earth with respect to the

greater universe of the cosmos by being encircled: the intersection of the gnomon’s

cast shadow and the circle in the morning and the evening at the summer solstice

locate solar east and west from which north and south can be determined

(Fig. 66.4).

In the Indian tradition, it was necessary to have “knowledge of the circle and the

line” in order to square the earth (Boner et al. 1996).4 Geomancy in India is called

Vāstu Śāstra: vāstu means to dwell and śāstra means science.5 Vāstu Śāstra is used
to orient the built world to the cosmos through squaring the circle using a gnomon

and the vāstu puruşa mandala (Fig. 66.5), a magic square in the anthropomorphic

form of a sacrificial victim lying face down in a yantra that serves “as an interpreter
to man of that cosmic order which permeates all existence.” A yantra is literally a

visual and graphic symbol in the form of a square with four gates at the cardinal

Fig. 66.3 The table of

Jupiter. Image: Kim

Williams, after McLean

(1989: 111)

4 In India there is no principle distinction made between the Fine Arts and the Practical Arts. A

Sthāpaka is one who has knowledge of the circle and the line and can be either a sculptor or an

architect. Śilpa refers to sculpture and vāstu refers to architecture. Although this upanişad is

directed toward both the sculptor and the architect, it is called a vāstusūtra most probably because

it does not have to do with “modelling” the three-dimensional qualities of a work or sculpture, but

has to do with its layout and geometric composition, which in either discipline has to do with the

organization of the work in plan and in elevation.
5Vāstu Śāstra is a geomantic art that was fully developed by the first century A.D. Its tenets were

not written down in any one ancient manuscript but developed out of a corpus of over 20 texts

referred to as Vāstu Vidya dating back to the sixth century A.D., most of the previous material

having been lost; see Padam (1998), Chakrabarti (1999). See also Nathan (2014).
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directions that is used for meditation purposes (Zimmer 1946; Mookerjee and

Khanna 1977).

The individual “houses” (pāda) of the square correspond with parts of the human

anatomy; the navel of the vāstu puruşa is located at the square’s origin in the center.
The pāda (literally, feet) are to human scale and are “regulated” by the human pace

in moving through the houses. The individual pāda control the disposition of the

whole and determine the function or use of the corresponding space to be

constructed. In India, the human sacrifice is related to the sun, because “the

Fig. 66.4 Determining the cardinal points with a gnomon and using circles to define the original

square. Image: author

Fig. 66.5 Vāstu Puruşa Mandala

66 Geomantic (Re)Creation: Magic Squares and Claude Bragdon’s Theosophic. . . 295



Brahman in the Sun and the Brahman in Man are One.”6 The human frame, the

constructed temple, and the whole of the universe are analogical equivalents;

therefore, the parts of the temple correspond both to the parts of the human body

and to the parts of the universe itself. The yantra represents an idealized sanctuary

of the mind and is also characteristic of Hindu temple architecture.7

The temple’s square-shaped central space, called the brahmasthāna, is open to

the sky and acts as a conduit for the exchange of communication between the earth

and the cosmos. The vertical central axis mundi of both the human body and the

Hindu temple communicate with the universe, located in the spine of the body and

the brahmasthāna of the temple. The brahmasthāna is set within another square,

both oriented to be “square” with the path of the sun. The generic Hindu temple

form is a nine-square grid, or magic square of three (Bunce 2002).

The magic square of the puruşa is a yantra that becomes a mandala when it is

encircled during the act of shadow casting to orient it with the sun. The geomantic

art in India begins at the navel with the casting of a shadow using a gnomon,

synonymous with the sacrificial post, or yūpa (Fig. 66.6), and symbolic of the

upright sacrificial person.

The geomancer is a “sacrificer” and the casting of the initial shadow to orient the

vāstu puruşa mandala to be “square with the world” is a rite of initiation and

Fig. 66.6 Yūpa, or
sacrificial post. Image: Kim

Williams, after Boner

et al. (1996)

6 This is a reference that Bragdon copied down from Max Müller’s Sacred Books of the East: The
Upanishads (Bragdon Family Papers, Department of Rare Books and Special Collections, University

of Rochester Library, A.B81, Box 36, Folders 1–3, dated 04/20/1891).
7 The Kandariya Temple in Bragdon’s illustration is comprised of three sequential magic squares,

or yantras.
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symbolic death.8 Vāstu Śāstra is a body-centered science that relates the body of the
building to the human body through divine analogy. This is a procedure that

“protects” the constructed world by encircling and by providing a “divine”

framework to ensure that architecture will correspond to cosmic laws. This is an

anthropomorphic procedure that through analogy guarantees alignment of the

earthly with the divine.

Body Building: The Occult Anatomy of the First Universalist

Church

If the body is a temple, it is not less true that a temple, or any work of architectural art, is a

larger body which man has created for his uses, just as the individual self is housed within

its stronghold of bones and flesh. Architectural beauty, like human beauty, depends upon

the proper subordination of parts to the whole, a harmonious inter-relation between and

adjustment of these parts, the expressiveness of each of its functions, and when such

functions are many and diverse, their reconcilement, one with another. In the ideally perfect

human form are exemplified all those principles of natural beauty dispersed throughout

nature (Bragdon 1901: 10–14).

The magic square is a universal symbol that was used to align the earthly with the

cosmos. It is a mathematical creation that is an operation of the active intellect, which

guides the architectural imagination in orienting the constructed world to be square

with the universe. Although the magic square itself is not visually apparent in the First

Universalist Church, it is symbolically present in its overall design; and the symbol of

the encircled crossing, or the “rose” and the “cross,” is evidenced throughout.

The organization of the First Universalist Church is clear from schematic plans

and the section (Fig. 66.7). The tripartite scheme is composed of the large sanctuary

and two arrangements of smaller support spaces. Its east–west axis, a “universal”

element consistent with both Eastern andWestern traditions, is emphasized through

the hierarchical configuration lengthening the building along this line. Bragdon has

selected symbolic attributes from several sources and combined them into one

unique whole. His fusion of Eastern and Western traditions and the human body

are evident in Fig. 66.8.

In the section of the First Universalist Church, the Byzantine Greek-cross plan of

the sanctuary can be seen to be rising out of the whole. Characteristically, the

movement into and through a traditional Byzantine church is axial: the participant

would enter from the west and move in an easterly direction through the nave

toward the altar; this is also true of the Western Christian church. In Bragdon’s

church, contrary to Eastern tradition, there is an axial shift at the entrance.

The western façade of the First Universalist Church is on Clinton Avenue, which

in 1907 was a broad thoroughfare with little traffic but is today heavily trafficked.

8 The symbolism of the temple and the body in India was found in several writings of A. K.

Coomaraswamy: Svayamātrnnā: Janua Coeli; An Indian Temple: The Kandarya Mahade; The

Symbolism of the Dome, all in Coomaraswamy (1997).

66 Geomantic (Re)Creation: Magic Squares and Claude Bragdon’s Theosophic. . . 297



Fig. 66.7 First Universalist Church, 1907, schematic floor plans and section. Image: author
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Nowadays, members of the congregation enter by the north elevation, but

originally, churchgoers entered through the two symmetrical porticos on Clinton

Avenue. These provided a transition space between the sanctuary and the outside

world. The participant entered from the west, and turned to the north–south axis of

the porticos prior to entering the nave itself. This axial shift is a very “modern”

solution to a traditional design problem with medieval origins.

In the first floor plan, the two porticos and loggia appear almost as appendages to

the Greek-cross, or as feet to an anthropomorphic plan. Bragdon’s inspiration came

from a diagram in Hargrave Jennings’s The Rosicrucians, first published in 1870,

the key points of which Bragdon reproduces for the readers of his House and
Garden article of 1902 on “The Bodily Temple” (Fig. 66.9) (Bragdon 1902: 195).

It is apparent from Bragdon’s drawing that he sees a relationship between the

body and the building: symmetrical to the upper left-hand corner drawing of a

Christian church is a representation in the upper right-hand corner of a crucified

Christ. The male and female pillars of the central diagram form a gateway into the

nave, or belly, of the building. In the First Universalist Church the two porticos

were most probably modelled after these pillars; however, Bragdon’s porticos are

transitional gateways between the sacred and profane spaces.

The second floor plan shows simultaneously both the plan and the reflected

ceiling plan of the sanctuary: to the north and south are the two choir lofts, and to

the east is the organ loft; however, the reflected ceiling plan is represented with a

“belly-button” at its center. In section, this center-point is connected directly to the

lantern above.

Fig. 66.8 “The body, the

archetype of sacred

edifices”. Image: Bragdon

(1910)
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The original First Universalist Church in Rochester was built in 1846 and was

extensively renovated in 1901, at which time many magnificent stained glass

windows were added. In 1907, the parishioners were made a generous offer for

the church property by real estate promoters. Bragdon was given the commission

for the design of a new building to be located a few blocks south of the original

church, with the caveat that the stained glass windows be incorporated into the new

church. An unusual feature of Bragdon’s design was the relocation of the “rose

window” to the ceiling at the center of the nave. Although the church’s design is a

conflation of Eastern and Western Christian traditions, Bragdon’s intention was

other than simply replacing a Byzantine Christ the Pantokratōr with a Christian

Fig. 66.9 “The symbolism of a Gothic cathedral”. Image: Bragdon (1902)
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rose window. In 1911 Bragdon wrote “that God works by sacrifice: that His

universe is itself His broken body.” At first, it would seem that Bragdon was

referring to Christ; however, he prefaces this comment by referring to “the

Golden Person, the Light of the World” (Bragdon 1911: 308). The “Golden

Person” is the puruşa, the cosmic person who is man and God alike. Unlike the

Byzantine who identifies with Christ through enlightenment and communion, the

Hindu body-image is inseparable from God, because Brahman is one in both man

and the sun—hence, the Golden Person. The First Universalist Church is a temple

modelled after God’s broken body, and as such man’s broken body, which “depends

upon the proper subordination of the parts to the whole.” Used in the design

process, this symbolic sacrifice regulates the lines of architecture by reconciling

functions part by part to be in harmony with the whole, which is what makes

architecture a “living art.”

In looking at the section in Fig. 66.7, it is apparent that Bragdon’s intent was for

the First Universalist Church to correspond to the bodily temple. This is a schematic

drawing and not the final design, and more clearly illustrates Bragdon’s imaginative

design process does than the final built work. It is evident that the sanctuary was

thought of as a brahmasthāna that could communicate directly with the cosmos

through its central vertical axis mundi. The light from the lantern above

theoretically could be channelled to the rose window below to become a

sun-column for the sanctuary. In plan the rose window is represented as a navel;

in section it defines the central spine of the sanctuary. Although the functional use

of the rose window may have been to provide light central to the nave, it has far

greater symbolic meaning as a Rosicrucian rose positioned at the intersection of a

cross—a symbol that is repeated as ornament throughout the building.

The First Universalist Church is a visible symbol expressing Bragdon’s

invisible, theosophic architectural theory that conflated Gothic mysticism and

Eastern spirituality. Embodied within this church is a symbolic emphasis on the

crossing and the cardinal directions, together with encircling—a united duality of

polar opposites within one “divine androgyne” that Bragdon symbolized through

number in the magic square. The magic square is a mathematical creation and

operation of the architectural imagination that demonstrates the cosmological

relationship between the body and the building through number, geometry and

harmonic proportions. According to Bragdon, number is the foundation of all

creation, and because the ideally perfect human form exemplifies all the

principles of nature, Man is the Magic Square (Fig. 66.10).

Biography Eugenia Victoria Ellis is a practicing architect and educator. She is a

principal at BAU Architecture dedicated to sustaining, preserving and cultivating

the natural and built environment. Her research interests include the visual and

non-visual effects of light, (eco)logical building technology, architectural theory

and wellbeing. Her aim is to create frameworks for the design of smart, sustainable
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Chapter 67

Mathematics and Music in the Art Glass

Windows of Frank Lloyd Wright

Leonard K. Eaton

Introduction

It’s not poetic or particularly pleasing to hear but we humans are basically pattern

recognition devices. Our eyes take in the world but what we really see are intricate patterns

of lines and curves and colours and brightness. Our ears hear sound, but we only recognize

music and language when we decode the signals into discrete patterns of tone and rhythm.

We crave finding patterns in the world around us because it is the only way that we can give

meaning to anything, including ourselves. Nature may loathe a vacuum but humans cannot

stand a lack of patterns (Blatner 1997: 72).

As in most other matters, Frank Lloyd Wright was articulate about the role of

leaded glass in his buildings. In 1908 he wrote:

The windows usually are provided with characteristic straight line patterns, absolutely flat

and usually severe. The nature of the glass is taken into account in these designs as is also

the metal bar used in their construction, and most of them are treated as metal “grilles” with

glass inserted forming a simple rhythmic arrangement of straight lines and squares made as

cunning as possible so long as the result is quiet (Wright 1959: 59).

As his autobiography reveals, from his earliest days as a boy on the farm in

Wisconsin he was sensitive to the patterns of nature. Many years later he recalled,

I used to love to sit down at the drawing board with a T-square and triangle and concoct

these patterns that you will see in the windows. I evolved a whole language of my own in

connection with these things (Wright 1952).

What was this language? We believe that in some houses it was a mathematical

language which was essentially musical. It was musical in the sense that it was

First published as: Leonard K. Eaton, “Mathematics and Music in the Art GIass Windows of Frank

Lloyd Wright”, pp. 57–71 in Nexus III: Architecture and Mathematics, ed. Kim Williams,

Ospedaletto (Pisa): Pacini Editore, 2000.
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related to the mathematics that one finds in an ordinary piano octave. It was one

feature of the design system which he used to control the entire building.

In this chapter we will study closely five windows from the Meyer May house

(Grand Rapids, 1908). One of the attractions of the May house is that practically

all of the glass has survived intact. When it was restored by Steelcase Inc. in

1986–1987, the windows were taken down, numbered, and carefully inspected

before reinstallation. Only a few minor repairs were necessary. The firm which

made the windows is not known. Purely on the basis of quality, we think that they

came from Chicago. There was a local art glass industry in Grand Rapids, but it is

difficult to believe that it produced these windows. They are not mentioned in the

daybooks of Niedecken-Walbridge, who supervised other aspects of the interior.

And we know that Wright was in the habit of going back to craftsmen who had

served him well. For the purposes of this chapter, then, we are assuming that the

Meyer May windows were made from a missing cartoon produced in the studio

after a design byWright himself. This cartoon would have had the exact dimensions

which are the key to the problem. It is these dimensions which we observe in the

windows themselves.

Window Design and Construction

Because it affects our analysis, we will first say a word about the technology of

window design and construction. None of the drawings from Wright’s studio have

dimensions between cames1 or of individual pieces of glass. Many do not have any

measurements at all other than the scale. Some windows were drawn freehand,

possibly byWright, and these are remarkable for their precision. Again, they are not

dimensioned. In all this material one important type of drawing is missing: the full

size shop drawing or cartoon. This would have been an absolute necessity for the

glaziers at Linden Glass or Gianini and Hilgart, the two firms which did most of

Wright’s windows. The cartoon was laid down on the glazing table, or bench, and

the window assembled on top of it. For multiple windows the pattern may have

been drawn on the bench top. This was the procedure in the Middle Ages before

large sheets of paper became available. If a cartoon was used, it would have been in

tatters by the time the job was finished. In my view the only way to replicate these

cartoons is by extremely careful measured drawings of the windows themselves.2

1 A “came” is the metallic division and structural support for individual panes of art glass; in cross

section the metal has the shape of an I-beam. The metal used must be malleable (or soft) to

conform to the various curving shapes of the individual pieces of glass. In medieval times lead

was most commonly used, hence the term “leaded glass windows.” Wright’s windows are

predominantly made using zinc came, sometimes coated with bronze or copper for particular

colour effects.
2 Letter from Ms. Julie Sloan to the author, 23 June 1995. I am much indebted to Ms. Sloan for

assistance with the technical side of this chapter. It is only fair to say that we differ in our views of
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Wright owed much to his glaziers. They had to be precise in cutting the glass and

came in order to build his windows. A geometric pattern requires much more

precision than a floral window because if the lines do not match, it is very obvious

and the window will quickly get out of square. It is likely that the pieces of Wright’s

windows were cut with jigs. Similarly the came would be jig cut; zinc was cut with

saws and lead with knives, but it was basically a hand process. Frank Linden

Jr. remembered Wright coming to his father’s studio and actually sitting down

with the manager to lay out sample windows. David Hanks notes that bins of

glass were available for Wright’s inspection. These visits must have been

familiarizations. It should be stressed that unlike the furniture or fabrics, the

windows were never turned over to Niedecken Walbridge, the Milwaukee interior

design firm with whom Wright worked on several important projects. They were

part of the architecture and were therefore the responsibility of the Studio.3

There is the additional problem of the glazier’s shop. Ms. Julie Sloan states that

there is no way that glaziers then or even now would be able to measure to

dimensions of thousandths of an inch. And instruments are only a part of the

problem. There is also a materials constraint. It is difficult enough to cut a piece

of double thick glass (which is 1/800 thick) to 1/400 tolerances simply because of the

way the glass handles. The 1/800 tolerance which we found in the root figures of the

May windows, was difficult but possible. And there is the problem of the cartoon. In

the cartoon the lead lines are often drawn with a wide marker or a paint brush as

wide as the lead is. But this is not a precise width. With the line on the pattern paper,

the cut sizes of the glass are created by using three blade shears which remove a

strip from between the pieces to allow for the came. It is not an exact process.

Wright’s windows might not have had patterns cut for them since they were

geometric, meaning that measurements could be used instead of patterns, but we

do not know the details of how his studio worked.

It is also important that the studios would not have bothered to cut to extremely

tight tolerances in view of what they could charge for their work. Astonishing

though it may seem, Wright’s art glass windows were not particularly expensive.

Wright advocated these windows as “art glass,” not “fine art” i.e., the windows of

Tiffany or La Farge. After all, “art glass” was a commodity sold through the

catalogues of Sears and Roebuck and Montgomery Ward. Sears’ windows and

Wright’s windows averaged around $1.00 or $1.50 per square foot. By contrast,

between 1900 and 1920 John La Farge’s windows averaged at least $100.00 per

square foot. La Farge even quoted some at $1,000.00 per square foot. Wright’s

lower pricing held because there were so few individual designs. A good example is

the Robie house. There were a dozen different patterns to be applied to 175 window

the importance of mathematics in these windows. She has set forth her views in Sloan (1997). I

agree with her conclusions but believe that the windows which I am discussing in this chapter

present a different set of problems.
3 Relying on Duthe (1908), David Hanks has beautifully described the craftsmanship in Wright’s

windows Hanks (1979: 57). Mr. Jim Hofstra of Tilton and Lewis was in charge of windows during

the Meyer May restoration and is the source of my information.
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openings. Hence 14–15 windows would be made in each design. This is very cost

effective. The only exception to this generalization is the Dana house where there

were a great many unique patterns.4

Musical Theory

Let us also define our musical terms. Remembering that Wright was a good pianist

let us pursue the musical analogy. We begin with the familiar diatonic scale as it

appears on a piano keyboard. We select the tone of C which is in approximately the

centre of the keyboard and play upward to the octave using only the white keys. The

succession of sounds produces the scale, which at some point of our education, most

of us have been taught to play or sing. This scale is really rather peculiar. The

composer Douglas Moore wrote:

Look at the keyboard and you will see that between the third and fourth note or E and F there

is no black key providing for intermediate tone, nor is there any to be found between the

seventh note B and the octave. The interval between E and F and between B and C is the

same as the interval between C and the black note above it. By interval is meant the number

of vibrations of the higher tone to that of the lower. If you were able to count the number of

vibrations, you would find the ratio exactly the same. The piano is conveniently divided into

88 tones which are an equal interval apart counting both white and black notes. In our system

we call this interval between tones a halftone. The interval between C and D which have a

black note between them is therefore that of a wholetone and between E and F and B and C

where the black key is missing, the interval is only that of a half tone (Moore 1937: 22–23).

The concept of interval is at the beginning of the idea of harmony. Every note

of the scale, when combined with a tone, has a sound which varies greatly in

consonance. Most Western musicians agree that the order from consonance to

dissonance is octave, fifth, fourth,5 third, sixth, second, and seventh. There are

4 Professor Narciso Menocal was the first to demonstrate a system for determining the elegant

geometric ratios which the architect employed to control his window designs. By careful

measurement Menocal elucidated the modular system of squares and rectangles which Wright

used to organize the design of a Tree of Life Window from the Martin house (Buffalo, 1904) at the

ElvehjemMuseum in Madison, Wisconsin. While acknowledging Professor Menocal’s primacy in

the geometric analysis of Wright’s windows, we differ with him in certain respects. Menocal

essentially argues that Wright used two modules. One was 0.472 of an inch across by 0.486 in the

vertical dimension. The other module, for the area at the bottom of the window, is slightly different

in measurement but very close to the first. We question Menocal’s findings because we do not see

how such fine tolerances could have been obtained with the measuring devices of 1904. Wright

and all his staff and colleagues of that time would have done design and layout with a conventional

architect’s scale or a full-scale metal rule. Menocal’s decimal divisions, 0.472 and 0.486, could not

have been laid out with such devices. They do not relate to the halving subdivisions of an inch (1/2,

1/4, 1/8, etc.) and they are carried to the third decimal place. They differ from one another by only

0.014, a tolerance which cannot be measured with pre-1985 instruments.
5 Professor Steve Larson of the Music School at the University of Washington points out to me that

the fourth was at one time considered a consonance but for many years has been classified as a

dissonance.
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various reasons for our preferences among the consonances, but a common

explanation emphasizes the simplicity of the ratios between the vibration numbers

of the limiting sounds: Octave, 2:1; Fifth, 3:2; Fourth, 4:3; Major Third, 5:4; Minor

Third, 6:5; Major Sixth, 5:3; Minor Sixth, 8:5.

Every pianist, whether a beginner or virtuoso, must observe these mathematical

relationships. With even this minimal background it is easy to agree with the

philosopher/mathematician Gottfried Leibniz that “music is the pleasure the

human soul experiences without being aware that it is counting”.6 In his Norton

lectures Leonard Bernstein remarked, “the fact is that music is not only a

mysterious and metaphorical art; it is also a form of science. It is made of

mathematically measurable elements: frequencies, durations, decibels, intervals.”7

More recently Edward Rothstein has claimed that music and mathematics have the

same kind of “inner life” (1994). In an intricate argument he holds that musical and

mathematical beauty are substantially alike. Architecture is only beginning to

receive such rigorous treatment. Here we simply want to demonstrate that certain

of the art glass windows of Frank Lloyd Wright have a musical quality which is

dependent on mathematics. We believe that for these windows he used a set of

dimensions which, in an abstract way, resemble a musical scale. It is no wonder that

many critics have found a musical quality in Wright’s art glass.

The Windows of the Meyer May House

In 1908 Frank Lloyd Wright built a house for Meyer May, who owned a department

store in Grand Rapids. The glass in the library corner provides a good overview of

the glass in the house (Fig. 67.1).

There are five different types of art glass designs for the May house: windows for

the living room, dining room, bedroom, main door and kitchen door. All are linked

in terms of dimension and proportion; the unit dimensions which are repeated

throughout the windows are, to say the least, provocative. They are 200, 1-3/400,
1-1/200, 1-1/400, 1-1/800, 100, 7/800 and 5/800. The unit of organization or cell is 1/800. The
intervals are somewhat more understandable if we write them as: 16/8, 14/8, 12/8,

10/8, 9/8, 8/8, 7/8, and 5/8. At first glance this appears to resemble an octave with

eight major tones and two types of interval. There are intervallic relationships

analogous to whole tones and half tones in the diatonic scale. But the intervals

do not fall as they would in a conventional octave. We conjecture that it is a

mathematical series which Wright devised in order to secure conveniently the

maximum number of consonances—that is, combinations of small whole numbers

6 The quotation from Leibniz is at the head of Chapter XIX in Kline’s Mathematics in Western
Culture (1964: 287) and is followed by a brilliant discussion of the work of Joseph Fourier.
7 Bernstein (1976: 9). Bernstein’s Norton lectures, in which he attempts to apply Chomskyan

linguistics to music, are extremely technical.
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pleasing to the eye as consonances are pleasing to the ear in music. We could even

say that Wright generally avoids dissonant ratios such as the Major Seventh (15:8),

the Minor Seventh (16:9), and the Tritone (45:32). The repetition of 1-1/800 and 200 is
especially significant. The ratio of these two numbers is 9:16, equal to the double

sesquialtera of 4:9, a significant musical proportion which Alberti describes as

“twice the width plus a further double tonus”.8 We do not claim that Wright knew a

lot of music theory—but he was knowledgeable enough to remark that in his own

work he preferred consonances and would leave the dissonances to others. With this

scale of his own devising he could work very much as a composer at the piano. The

1/800 dimension is, of course a constraint, like the limited range of the flute or

clarinet. In mathematical terms he could easily secure a variety of musical ratios.

Fig. 67.1 Library corner in

Meyer May House, Frank

Lloyd Wright, 1908. Photo:

author

8 Leon Battista Alberti, De Re Aedificatoria, IX.6 (Alberti 1999: 306 and 409 n, 94). I owe this last
observation to Ms. Kim Williams in a letter of September 18th, 1998. References by Wright to the

importance of music for his architecture are abundant in his writings; the most important is Wright

(1946: 200–202).
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The units 100, 7/800, and 5/800 are each in a 1:2 ratio to 200, 1-3/400, and 1-1/400

respectively. All the glass except the front door is of a simple floral or tree motif

which has three divisions: the base (or root), the trunk (or stem), and the branches

(or crown). Our major tool for the examination of this glass is the analytical

drawing. We begin with a window in the living room (Fig. 67.2).

The base appears in all but the bedroom window and the entry door. Let us

examine it closely. It is like a small song within a larger composition (Fig. 67.3).

Centred in the lower portions of the design, the figure is contained within a

7-1/400 by 2-3/400 rectangle. A 1-1/400 border runs on both sides. Two horizontal lines
cross the centre of the design. One is 1-1/400 below the top. The other is 5/800 or half
the upper width below the first for a 1:2 ratio. This arrangement leaves a 7/800 band
along the bottom. At the heart of the design is a 1-3/400 square, twice the 7/800

dimension on a side, with the top edge 7/800 above the bottom line, leaving 7/800

Fig. 67.2 Living room

window. Drawing: Doug

Smith
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below the rectangle. Adjacent to the 1-3/400 square and below the main rectangle are

two 7/800 squares.
This root figure is a small composition based on 1-3/400 and 1-1/400 and their half

dimensions, 7/800 and 5/800 (Fig. 67.4).
It reveals many 1:2 relationships. The height of this figure is a constant 2-3/400 in

all the windows where it appears, but the width is adjusted at the outside vertical

band to fit the upper border unit widths to which it visually relates. The figure is

slightly altered in the entry door composition. In studying it I am very much struck

by the resemblance to the “line ideas” of Arthur Wesley Dow.9 Kevin Nute has

noted that Wright never acknowledged that he had met Dow, but that it was very

likely he did so. Dow was a disciple of Fenollosa, the famous Boston orientalist.

Here, then is another example of the syncretic quality of Wright’s mind.

In these living room windows a 1-1/400 vertical element centred in the

composition connects the base figure to the floral crown. The crown shows a

delicate system of triangles and parallelograms, which introduce a thematic

variation within the design (Fig. 67.5). The central 1-1/400 band is symbolically

the stem or trunk linking the base or roots to the flower or crown. It terminates each

central figure with a 1-1/400 square of coloured glass. The entire colour scheme is

restrained. It consists of clear glass, yellow and amber. The mid-section of the

window is clear glass except for the crossing bars. Carla Lind remarks that the row

of windows dissolves the wall and obliterates the corner. At the same time, it is a

complicated exercise in geometry—and very musical.

Fig. 67.3 Detail of base figure, living room window. Drawing: Doug Smith

9 For a discussion of Dow’s line-ideas, see Nute (1993: 86–96).
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Fig. 67.4 Base figure with proportional relationships. Drawing: Doug Smith

Fig. 67.5 Detail of upper floral figure, living room window. Drawing: Doug Smith
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The Dining Room Windows

In the dining room windows we again encounter Wright’s mathematical series

(Fig. 67.6).

Its most important property is that it generates ratios which approximate those of

the piano scale. Thus we find a good many measurements in the approximate ratios

of 5:3 (the Major Sixth) and 8:5 (the Minor Sixth). These ratios yield decimal

values of 1.666 and 1.60. The values are close to that of the golden section (1.618).

It would be tempting to say that Wright sought to base his windows on the golden

Fig. 67.6 Dining room window. A ¼ 1-3/400; B ¼ 7/800; C ¼ 1-3/1600. Drawing: Doug Smith
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section, but that statement would be misleading. Because he used a series which

inevitably generated a number of approximate golden sections, some are present,

but in the overall scheme they are less important than the other ratios which come

close to those of the musical scale such as 2:1 (the Octave) and 3:2 (the Fifth). We

are constantly bumping up against the fact that exact decimal values require a

precision which is difficult, if not impossible, to achieve in leaded glass. Often we

run into a deviance which is too great to be convincing if we hypothesize that

Wright was designing on the basis of the golden section. Thus the design measures

30 1/200 overall and is divided 19-1/200 from the top so that we obtain a decimal value

of 0.56—too great a deviance to be allowable. A truer approximation of the golden

section would demand a division at 18-7/800. Although the came does not reach the

edges of the glass, it becomes the top of the stem and root portion of the design. The

19-1/200 portion is divided at 11-5/800 above this line. For a more proper golden

section the division should be at 12.0500—and again we run into an unallowable

deviance. The lower limit of the floral portion of the design is stopped at this point.

In this small section of the window we have two more approximate golden sections.

The remaining 7-7/800 is divided at a point 4-7/800 below the top of the design (in this

case we are close to a proper decimal value [4.87 vs. 4.85]). The 4-7/800 is again
divided at a point 200 below the edge of the window. The horizontal ordering of the

window is linked through a series of approximate golden sections which develop

into an approximate Fibonacci relationship (2, 3, 4-7/8, 7-7/8 as 2, 3, 5, 8).

Further, we can say that the vertical divisions of the window show a few golden

sections. The importance of these should not be overestimated. We are immediately

reminded of the wise words of Marco Frascari and Livio Ghirardini: “Approximate

measures are tangible and tamable, whereas uncompromising measures are elusive.

The Golden Mean is an untamable and intangible measure, since, in order for it to

be real and efficient, it must be explicitly exact” (Frascari and Volpi Ghirardini

2015). They go on to say that for the architect who wants to employ the golden

mean in an actual building, some real world factor such as the thickness of a mortar

joint is always getting in the way. With Wright it was the dimension of a window

came. However, we suspect that the approximations which produced the

approximate golden sections are a consequence of the musical series which he

had set up as an ordering device. We are, after all dealing with an architect who had

a remarkable mathematical and musical intelligence. We cannot refrain from

observing that the window might be interpreted as a musical composition in

which the Minor Sixth and the Major Sixth are dominant chords.

The middle and lower sections of the design mix units from the above and

introduce new ones as in the development of thematic material in a musical

composition. The horizontal spacing of the elements which connect the 200 base to
the root figure mirrors that of the top band (a, b, a, b, a). As noted earlier, the

spacing across the central section of the bottom band mirrors that of the main floral

figure (a, c, c, c, a). A complex rhythmic pattern is thus established between the two
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sections as they exist in the upper and lower portions of the window. There is a

strong analogy to the mirroring effect in Bartok. A good example is in his “Sonata

for Two Pianos and Percussion” (1937).10

Upper Bedroom Windows

The typical upper bedroom window (Figs. 67.7 and 67.8) is a bilaterally symmetrical

floral design with overall dimensions of 2700 wide by 44-1/200 high. Close examination

reveals the same kind of approximation of the golden mean that we encountered

earlier. Again we think that it is adventitious and that the musical series are more

important. These dimensions are close to a golden section relationship since the width

to height ratio is 0.606 (golden section ¼ 0.6181). A 200 high band runs along the top
and bottom of the design. The top band is divided into 1-3/400 and 1-1/200 wide units
except at the point where the 1-7/800 floral design joins the band. The bottom band

differs from the top in that it utilizes a combination of 1-3/400 and 200 width divisions

outside the vertical floral design zone and a 1-3/400 and 1-5/800 width divisions below

the floral design. This variation with the top band spacing establishes a polyrhythm

which is sensed through the interplay of alternating vertical lines from these lower

spacings into the upper section of the design.

The window is divided horizontally 2700 from the bottom so there is again an

inadmissible golden section (0.64) of the overall height (a truer golden section

Fig. 67.7 Upper bedroom

windows. Photo: author

10 There is substantial literature on the employment of the Fibonacci Series and the Golden Mean

in twentieth century music. This mathematics is especially important with Debussy and Bartok. A

short bibliography should include Bachmann and Bachmann (1979), Howat (1983), Kramer

(1973), Lendvai (1962), Lowman (1971). We will note that Bartok was fascinated with the

occurrences of the Fibonacci series in nature. In his response to the mathematics of the natural

world he closely resembles Wright.
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would fall at 27.500). This line, which does not extend to the outside edges of the

window, acts as a baseline for the major floral vertical elements. The remaining

17-1/200 overall height is further divided at 10-5/800 from the top which is almost an

exact golden section (0.61). The remaining 6-7/800 further divides at 4-1/200 for an
inconvenient ratio of 4.5–6.87. All of these divisions define significant horizontal

structural elements within the design.

In addition to those relationships, there are other mathematical devices in these

windows. The vertical line at 8-3/400 establishes the outside edge of the diagonal

Fig. 67.8 Upper bedroom window. Drawing: Doug Smith
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elements in the floral pattern. The 8-3/400 distance is comprised of five 1-3/400

segments divided at the 2:3 ratio point so that we encounter a partial Fibonacci

series. The 5-1/400 distance is split into three 1-3/400 segments which are again

divided at the 1:2 ratio point for yet another series (1, 2, 3).

The central floral portion of the design is basically constructed within a 9-1/200 by
17-1/200 rectangle. This floral design consists of two 1-1/400 vertical bands so

arranged that there is a 100 distance to the centreline. The central 1-1/400 vertical
band extends below the baseline established by the height into a 300 high band

below. The final 1-1/400 forms a square which is filled in with white glass and acts as

a lower terminus to the floral form.

Main Entry Door

Like the windows in the house, the doors are bilaterally symmetrical. The main

entry door (Fig. 67.9) has overall dimensions of 3200 wide and 54-3/400 high so that

we are again confronted with an inadmissible golden section of 0.68. The design,

which contains variations of the root and stem motif of the windows, is more purely

geometric in character. As in the living room windows there is a 200 border at the top
and bottom of the design. A 1-1/200 border frames the sides. A 1-1/200 high band runs
directly below the top 200 border but does not extend to the outer edges.

The height of the design is divided by two horizontal lines into three sections.

The bottom of the upper section is defined by a line which does not cross the entire

composition but stops at the edge of the primary vertical elements. This line is

36-1/400 above the bottom of the design at approximately two thirds of the 54-3/400

height. It is in a 1:2 ratio with the 18-1/200 remaining above. This 18-1/200 piece is
split into a 2:3 ratio at the base of the largest coloured rectangles. This point,

11-1/800 below the top of the design, marks a distinct change in the character of the

upper section of the design from repeated vertical squares to shifting rectangular

blocks. The “root” figure in the upper section of the door rests on a line 5-3/400

below the top of the glass. These two figures are variations on the “line ideas” used

at the base of the living room windows. They divide the top 11-1/800 into two parts

having a 1:1 ratio. The lower section of the design is defined by a line 15-1/200 above
the bottom of the glass. It divides the 36-1/400 into a 3:4 ratio. Wright projects a 100

square form above and below the lines which define the lower and upper sections of

the design.

The width of the window between the outside borders is divided by four vertical

lines into five sections. The lines which frame the central panel are 19-1/200 from
each outside edge. Here we are close to 3:2, the ratio of the Major Fifth. Moving

5-7/800 to the outside of the central lines are other parallel lines from top to bottom.

The primary design elements are placed within these two 5-7/800 bands. The widths
of the vertical bands across the 800 width of the central figure of the design are also

related through small number ratios. The widths of a and b (100 and 1-1/200) are in a

2:3 ratio and widths b and c (1-1/200 and 300) are in a 1:2 ratio.
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Kitchen Door to Terrace

The door from the kitchen to the east terrace (Fig. 67.10) is a symmetrical floral

design which incorporates elements from the living room windows and the main

entry door.

The glass measures 2200 wide by 5700 high for a 1:2-1/2 ratio of width to height. A
200 band crosses the bottom of the design. A top band is lacking. The divisions

across the bottom vary greatly but establish a sequence (a, b, a, c, a, d, d, d, a, c, a, b,

a) reminiscent of symmetrical arch forms in music (A, B, A, C, A, B, A). Bartok

was fond of such forms, especially in his string quartets. Vertical bands 1-3/400 in
diameter enclose the sides of the glass. In the bottom band the dimensional units are

Fig. 67.9 Main entry door. a ¼ 100; b ¼ 1-1/200; c ¼ 300. Drawing: Doug Smith
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Fig. 67.10 Kitchen door. A ¼ 1-3/400; b ¼ 2-3/400; c ¼ 1-1/800; d ¼ 1-1/400. Drawing: Doug

Smith
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also of great interest. All are 200 in height, but the widths vary: 1-3/400, 2-3/400,
1-1/800, 1-1/400. The rectangles thus generated measure 200 � 1-3/400, 200 � 2-3/400,
200 � 1-1/800, and 200 � 1-1/400. This is an extremely delicate series of relationships,

much like the line idea which reoccurs 800 above the bottom of the glass.

The design is divided by a short horizontal line 3500 from the bottom leaving 2200

above—an amount equal to the overall width of the design. This point approximates

(0.628) the golden section of the height of the glass (a more exact golden section

would fall at 21.63). Wright creates a square in the upper portion of the design

within which the floral elements are developed Once again one has the feeling that

Wright might have achieved a true golden section but was constrained by the size of

the door and by came dimensions. The line, which does not extend to the outside

edges of the design, is a baseline for the floral elements. Only the 1-1/400 wide centre
element projects 300 below this line. This upper 2200 square is divided at a point 1400

above the baseline; again we have a barely admissible approximate golden section

of.636 (a truer golden section would fall at 13.6). This important line establishes the

bottom of a 200 high horizontal band which crosses the composition and acts as a

transition point. It marks a change. The outside bands of the central floral element

change from diagonal lines to repeated squares. The 1400 below this band is split into

4-3/400 and 9-1/400 (1:2 ratio) segments above the baseline. This line establishes the

bottom of the 2-1/200 high band which crosses the door and is almost identical to the

band at the base. If the design is viewed as a whole from this band downwards, the

door glass contains nearly the exact design elements and position as the living room

windows. The line which supports the lower root or line idea is 600 above the top of
the 200 band—a 1:3 ratio.

The horizontal spacing of the two upper bands and the vertical lines linked

to them are in a slightly varied pattern which creates an interesting rhythmic

counterpoint between the upper and lower sections of the design. The location of

the vertical elements in the upper section of the design is such that the outside edge

of the triple banded floral element is located at a point having approximately a 2:3

ratio to the 2200 width of the glass.

The other terrace doors in the house are of a slightly different width and height,

typically 2800 wide by 6000 high. The basic design elements are the same with the

adjustments occurring in the width of the outside vertical panels and in the height of

the central open glass area. These doors are, then, an excellent example of Wright’s

ability to take the basic arrangement of elements in a design, vary the relationship of

these to the overall frame, and thereby secure a new and strikingly different

composition.

In 1941 Henry-Russell Hitchcock observed that the windows of Wright’s

Coonley Playhouse of 1912 foreshadowed certain varieties of non-objective

painting in Europe. Perhaps it is not too much to say that these windows at the

May House anticipated the process which Piet Mondrian went through in the design

of the paintings in his mature style of the 1920s. Concerning these works Robert

Hughes remarks, “he did not calculate mathematical proportions. He had no special

belief in the golden section or anything like it. His way of painting was wholly

intuitive, a matter of inspired guesswork and adjustment” (Hughes 1995: 93).
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We believe that much the same comment could be made about Wright’s design

process for many of these windows. Interestingly, Hughes argues that the high point

of Mondrian’s intuitiveness came with his “Boogie Woogie” paintings. These were

a response to modernist African American music. With Wright the situation is

paradoxical. In his architecture he wanted to emulate Beethoven. In these windows

he is much closer to Bartok. And he was constrained by came width and by the fact

that windows and doors had to fill openings dictated by architectural requirements.

And there was his determination to employ a strictly limited palette and to create a

“light screen”. Mondrian could select the size of his canvas and had a full palette of

colours at his disposal. But the design process must have been strikingly similar. If,

as Goethe remarked, “Architecture is frozen music”, Wright came as close as any

architect in recorded history to the idea in these windows.
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Chapter 68

Fractal Geometry in the Late Work of Frank

Lloyd Wright: The Palmer House

Leonard K. Eaton

During the incredibly long and fruitful career of Frank Lloyd Wright there are two

constants: Nature and Geometry. That Nature was Wright’s deity is well known. He

summed up his attitude in the following language: “I wish more life to creative

rhythms of great Nature, Nature with a capital N as we spell God with a capital

G. Why? Because Nature is all the body of God we mortals will ever see.” Several

scholars have commented on this attitude. Donald Hoffmann wrote that, “Nature

was, of course, Wright’s deity,” and quoted various passages from the architect’s

1908 and 1910 writings to support his contention. Hoffmann traced this vein of

thinking to the organic analogy in the works of Viollet-Le-Duc and noted that it was

present in a variety of other thinkers as well (Wright 1957; Hoffmann 1969; Hertz

1993; Creese 1985). Wright placed Pythagoras first in the list of 33 historical figures
to whom he acknowledged indebtedness at the conclusion of An Autobiography.
We submit that “Pythagoras” should not be understood as a specific individual who

created the theorem which bears his name. Rather, in this context “Pythagoras”

must mean something like “the spirit of geometry.” Recent scholarship has, in fact,

stressed the importance of Wright’s feeling for geometry. Anthony Alofsin has

pointed out the impact of Wright’s contact with the geometric forms of the Vienna

Secession and examined the Secession influence in the Midway Gardens (1914) and

the Imperial Hotel (1916–1922). Referring to Wright’s use of the rectilinear grid,

Narciso Menocal writes that it “was contingent on his conception of the universe as

a geometric entity that architecture mirrors.” Menocal traces this concern with

geometry to Wright’s absorption in the thought of Viollet-Le-Duc, whose

Dictionnaire Raisonné (Viollet-Le-Duc 1856) he probably encountered while in

the offices of Adler and Sullivan. Wright himself admitted that Sullivan’s ornament

had a powerful impact on him, and Sullivan’s System of Architectural Ornament

First published as: Leonard K. Eaton, “Fractal Geometry in the Late Work of Frank Lloyd Wright:

the Palmer House”, pp. 23–38 in Nexus II: Architecture and Mathematics, ed. Kim Williams,

Fucecchio (Florence): Edizioni dell’Erba, 1998.

Leonard K. Eaton (1922–2014)
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had a strong foundation in geometry. In short, the sources of Wright’s fascination

with geometry are manifold. Despite his assertion that only mathematics had

meaning for him during his time at the University of Wisconsin, the evidence is

that he did not learn much. He received a grade of “C” in descriptive geometry. A

possibility not to be lightly dismissed is that he worked out a lot of plane geometry

for himself without help from anyone. In any event, by 1904 he had sufficient

command of the discipline to organize the windows of the Darwin D. Martin house

in a complex series of ratios, which have a distinct musical quality. Whether or not

he was aware of such concepts as the Golden Mean and the Fibonacci series is a

moot point. Wright used nature as the basis of his geometrical abstraction. His

objective was to conventionalize the geometry which he found in Nature, and his

method was to adopt the abstract simplification which he found so well expressed in

the Japanese print. Therefore, it is not too shocking perhaps that in this quest his

work would foreshadow the new mathematics of nature: fractal geometry (Alofsin

1993; Menocal 1992).1

In the work of Wright’s Prairie years, his attitude toward Nature and Geometry is

perhaps most easily seen in the art glass of his windows. These windows, however,

were placed in houses that, like those for hundreds of years past, were built with a

Euclidean geometry of right angles, rectangles, and squares. Sometime in the early

1920s Wright became discontented with this conventional geometry and became

interested in composing his plans in a radically new manner. There is nothing

unusual about the plan of the Alice Millard house of 1923, but only a few months

later he produced his amazing project for the Little Dipper Community Playhouse

at Olive Hill, the estate of Aline Barnsdall [see the plan in Pfeiffer (2011: 190)].

Robert Sweeney has rightly noted that the plan of the Little Dipper features the

intersection of an irregular square and a circle. It is symmetrical on two axes but it

employs a non-conforming wing so that the balance of the composition is disturbed.

Sweeney writes:

The enclosed schoolroom, the square, is oriented on its diagonals; the stage, in one corner,

is on axis with the outdoor seating area. The cross-axial space is defined in plan and section

by a hexagonal ‘overhead’ lantern built of open trusses separated by windows, which

extends the length of the building (1993: 45).2

1 Professor Menocal very kindly sent me a copy of Wright’s transcript at Madison in a letter of

24 May 1992. The suggestion that Wright worked out much of plane geometry for himself comes

from Professor Grant Hildebrand. See also Wright (1967). Richard Joncas in his Ph.D. thesis

Joncas (1991) argues that Wright’s fascination with geometry stemmed from the Transcendentalist

ideals instilled in him since childhood. Joncas sees the beginnings of a non-rectangular geometry

in the early works of the 1890s, many of which featured polygonal and circular forms. I am unable

to accept this contention but agree with Joncas that Buckminster Fuller may have been a powerful

influence on Wright during the 1920s. Fuller’s Dymaxion house dates from 1927, and the first

project in which a triangular geometry was used as a module seems to have been one of the

outbuildings for San Marcos in the Desert (1928).
2 Sweeny (1993) is an excellent book on Wright’s work of the 1920s. This kind of diagonal

planning reoccurs in several of Wright’s projects of that decade, notably the Lake Tahoe Summer

Colony of 1923.
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It must be emphasized that the geometry that governs this project is still

Euclidean, though it is certainly non-rectangular. There is only a suggestion of

the amazing developments that were to come.

With Wright, the experience of a new section of the country and the encounter

with a new kind of landscape often coincided with a renewal of artistic inspiration.

Such a renewal certainly occurred with his move to Arizona. Concerning the

Ocatillo Desert Camp of 1927, he wrote:

The one-two triangle we used in planning the camp is made by the mountain ranges around

about the site. And the one-two triangle is the cross section of the talus at their bases. This

triangle is reflected in the general forms of all the cabins as well as their general plan. We

will paint the canvas one-two triangles in the eccentric gable scarlet. The one-two triangles

of the ocatillo bloom itself are scarlet. This red triangular form in the treatment is why we

called the camp “Ocatillo ‘Candle flame’” (Wright 1946: 274).3

The ocatillo cactus does indeed flower a brilliant scarlet in the spring and its

blossom can easily be interpreted as triangular. According to Webster, talus is “a

slope formed (esp. by) an accumulation of rock debris.” It usually occurs at the foot

of a cliff, and is commonly the result of an earthquake but sometimes of glaciation.

The first executed building in which the triangle was used as a planning module

is the Desert Camp of 1927 (Fig. 68.1).

Although this structure lasted only a season it was extremely important in

Wright’s career. Thereafter the triangular module reappeared in a large number of

both unexecuted projects and finished buildings. At this point we should emphasize

that the so-called “one-two” triangle to which Wright was alluding was the 30�–
60�–90� triangle (Hoffmann 1998: 68), found with most drafting kits. This triangle

has a short side of 1 and a long side of 1.7321 (¼√3) with a hypotenuse of 2. Most

importantly, it is exactly one-half of an equilateral triangle. The long side is an

irrational number, the first of many which we find in Wright’s later work.

The shift to equilateral triangles which serve as modules in themselves, or can

serve as units in a parallelogram, occurred in the Carleton D. Wall house

(Plymouth, Michigan, 1941).

Here Wright used a 30�–60� parallelogram grid with lines 2 ft on centre as the

basis for the plan. As a gridded plan this house is fairly successful, with most of the

wall elements falling near or on the grid. But some of the walls in the building fall

across grid points as if the house were actually laid out on a triangular grid rather

than a parallelogram. Further, the grid is dimensioned along the grid lines, making

it difficult for the builder to lay out. Notwithstanding this problem, Wright

suggested the direction that his architecture would take during the rest of his life

with the name that he gave to the building: Snowflake. He would seek to emulate

the beauty of one of Nature’s most perfect crystalline forms. Perhaps the name

foreshadows his later preoccupation with fractals.

3Wright used comparable language in a letter of June 1, 1928 to his son, Eric. In the first edition of

his Autobiography (1932) he wrote of the one-two triangle as “magical”. In later editions of the

work he excised this word [but see (1977: 335) where it is restored]. The deletion might have been

an indication of his desire to appear as an exponent of a rational and technological architecture

rather than as an architect in tune with the mystical vibrations of the universe.
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In the Palmer house (Ann Arbor, 1950–1951), Wright evidently decided that the

equilateral triangle was the most elemental shape in a grid based on 30�–60�–90�

triangle and therefore was the most versatile shape with which to work. The key

dimension is the 4-ft altitude of the triangle rather than the side. Wright’s

instructions on the working drawings for the house are clear: “The house is

planned on a triangular shaped unit. All masonry walls have one face on the unit

or half-unit lines. Wood interior partitions centre on unit or half-unit lines.” The

accompanying drawing, however, makes it clear that he was thinking in terms of his

favourite one-two triangle. However, the hypotenuse of the triangle at 40–7 9/1600 is
now merely a fact of trigonometry, irrelevant to the basic design procedure:

x ¼ 4
0

sin 60�
¼ 4:61888

0 � 40 � 7
9

16

00

actually 4:630, a 0:2% deviationð Þ:

The builder need not deal with the difficult measurement of the hypotenuse of

Wright’s beloved 30�–60�–90� triangle but can concentrate on the 4-ft altitude of

Fig. 68.1 Desert camp.

Photo: author
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the equilateral triangle. Testimony from the builder, Paul McDowell, is that he

found the system complicated at first but simple when he became accustomed to it.

In the equilateral triangle Wright came closest to fulfilling his desire to create a

geometry which would emulate Nature. In taking this direction Wright may have

been unconsciously following D’Arcy Thompson, who studied the basic geometry

of Nature in his great work of 1917, On Growth and Form. Thompson, whose

reputation grows with the years, was probably the most prescient biological

scientist of the twentieth century. His major effort was to put the biological

sciences on the same mathematical footing as physics and chemistry. To do so he

studied in depth the geometrical structure of a large number of natural forms,

including beehives, snowflakes and rams’ horns. Thompson was, for his time, a

good mathematician, but today most scientists would say that he lacked the tools for

the task which he had set himself.

Richard Voss correctly notes that the inability of Euclidean geometry to describe

accurately the natural world has been overlooked until recently. “In retrospect,” he

remarks, “clouds are not spheres, mountains are not cones, coastlines are not

circles, and bark is not smooth, nor does lightning travel in straight lines” (Voss

1985: 1). To describe these phenomena, a new geometry is needed.

“A fractal,” says Hans Lauwerier, “is a geometrical figure in which an identical

motif repeats itself on an ever diminishing scale” (Lauwerier 1991: 11).4 These

figures were at one time mathematical curiosities, but in the last two decades they

have received a great deal of attention from both pure mathematicians and physical

scientists. The father of fractal geometry is the Franco-American mathematician

B. B. Mandelbrot. He states that a fractal must be self-similar, which means that

each part is a linear geometric reduction of the whole, with the same reduction

ratios in all directions. Our first example is a commonly cited pure linear fractal

called a Sierpinski Gasket (Fig. 68.2).

It is simply a solid equilateral triangle which features a series of ordered

reductions in the same shape. Theoretically these reductions could be continued

to infinity, in which case we would have an object with a perimeter but no area. A

similar reduction in three dimensions can be performed with an equilateral pyramid

called a Sierpinski arrowhead.

The other most commonly shown example of a pure linear fractal is a Koch

snowflake (Fig. 68.3).

To construct this fractal, begin with an equilateral triangle with sides of length

1 as in the diagram. This figure is the generator. We proceed to add a new triangle

4 For the mathematically minded, I offer the following definition: “A fractal is a type of set

produced by a rule called recursive—one keeps applying the same transformations to parts of a

set that one applies to the whole. This means that any portion of a fractal curve contains the same

types of movements as the whole; any portion, magnified, will reveal as much information as the

whole. Thus, out of a simple set of proportions, the most complex curves and properties can be

described” (Rothstein 1994: 162). For a discussion of fractals in architecture, see Ostwald (2001).
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one third the size as in the intermediate stages of the diagram and continue the

process indefinitely. How long is the perimeter? After n iterations it will have

increased (4/3)n fold over the perimeter of the initial triangle. Hence, as we

approach infinity, the perimeter becomes infinitely long. To describe the

perimeter’s size we can therefore no longer use its length and must use the new

mathematics of fractal geometry.

We have been discussing pure linear fractals which are mathematical

abstractions; the starting point of the discipline was Mandelbrot’s The Fractal

Fig. 68.2 Sierpinski gasket. Drawing: Kim Williams

Fig. 68.3 Koch snowflake. Drawing: Kim Williams

330 L.K. Eaton



Geometry of Nature (1982). The attraction of fractal geometry derives from the fact

that it offers a method of describing and measuring all kinds of natural phenomena

that have hitherto resisted analysis. Many of these phenomena turn out to display

essentially the same kind of iteration and invariant scaling as the Sierpinski gasket

and the Koch snowflake. The fractal approach has, for example, proved especially

helpful to geophysicists whose task it is to measure and describe the extremely

bumpy surface of the earth. Consider the problem of measuring and describing a

classic geological formation, a talus slope on a mountainside, such as the one

Wright mentioned in An Autobiography. From a distance the talus appears to be a

Euclidean shape, perhaps a pyramid or a cone. Presumably one could walk across it,

measure it, and calculate its dimensions. But, says James Gleick, as the geologist

approaches, he finds that he is not so much walking on it as through it. The stuff is

composed of jagged boulders in a variety of sizes. Its three-dimensional surfaces

hook over and wrap around the human being. Crossing a field of talus can be a

strenuous business. It is not at all like walking across a tennis court. The tennis court

is a man-made bit of Euclidean geometry. The field of talus is a piece of fractal

geometry built by nature. Notwithstanding its apparently random character,

geologists have discovered that talus slopes are usually from 34� to 37�. Using
fractal geometry we can determine from this slope that a man scrambling across the

field will go about 2.7 times as far as he would if he were traversing a flat surface

like a tennis court. This figure of 2.7 is considered the effective, or fractal

dimension of the field of talus. It is analogous to the 4/3 which governs the

iteration in the Koch snowflake (Gleick 1988: 103–107).5 The field of talus is a

homely example of the great class of random fractals which are so common in the

natural world. Its analysis by fractal geometry confirms Eugene Wigner’s famous

remark that mathematics is “unreasonably effective” in describing the world of

nature.

But an architect is by definition a master builder, one who is concerned with

man-made objects, not with inert natural things. Is there any analogue among

man-made constructions to the field of talus? James Gleick suggests that the

structure of the Eiffel Tower is a good 3-dimensional approximation.6 Its beams,

trusses, and girders branch into a lattice of increasingly fine members so that one is

lost in a fantastic network of increasingly fine detail. Eiffel could not carry the

scheme to infinity, but the effect is striking. We think that the work of Frank Lloyd

Wright’s last decade is an even more striking anticipation of fractal geometry.

5 The example of the fractal dimension in the field of talus is crude. For a proper description of the

derivation of the fractal (or Hausdorff) dimension, see pp. 9–10 in Schroeder (1991: 9–10). For a

provocative application of fractals to a scientific problem, see Outcalt and Melton (1992).
6 Dr. Leonard Schlain, author of Art and Physics (1993), points out to me that the Eiffel Tower was

a structure fully in tune with the scientific and mathematical developments of its period. It

provided a platform for the yet to be invented transmission of radio waves. Also, it was the first

major structure whose construction was fully documented in photographs. Conversation with

Dr. Schlain, October 20, 1994.
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We have concentrated on Wright’s Palmer house in Ann Arbor, Michigan of

1950–1951. Its basis, as we have remarked earlier, is an equilateral triangle as

module. Let us then see how the new geometry worked out in the Palmer house.

In analysing the house we must remember that it is neither a mathematical

abstraction like a Koch snowflake nor a random fractal like a field of talus. By its

very nature it cannot be a pure fractal because it is a structure designed by a real

architect and built by real craftsmen for real people living in a real world.

Nonetheless we will find the basic fractal elements of iteration and invariant

scaling. We can see these qualities beginning to develop in Wright’s earlier

houses on a hexagonal module and in the Carl Wall house as well, but nowhere

are they carried so far as in the Palmer house. Edgar Kaufmann Jr., a great admirer

of the Palmer house, wrote that it was a “fugue.” If repetition and variation of a

single theme are the essence of a fugue, Kaufmann may have been right on target.

William Gray Purcell observed that a fugue was essentially a development from the

old round song and gave as an example:

Soprano—Scotland’s burning, pour on water—Scotland’s burning, pour. . .
Contralto—Scotland’s burning, pour on water—Scotland’s burning, pour. . .
Tenor—Scotland’s burning, pour on water—Scot. . .
Bass—Scotland’s burning, pour on. . .

By the time all four parts of Scotland are burning at the same time, said Purcell,

we have the makings of a fugue. If we play it with an orchestra until the listeners are

also burned up, we will have classical music.7 This, of course, is a humorous over-

simplification, but there is a kernel of truth in it. If we consider the triangular

module of the Palmer house as the basic statement of the fugue (Scotland’s

burning), we will note that it has the musical (and mathematical) property of

maintaining form regardless of magnification or diminution. Wright was here

achieving spatially what he had been able to do with his windows in two

dimensions. Once again the musical analogy is powerful. The invariant form,

then, is the equilateral triangle. Aside from its presence in the brick piers, which

compose into parallelograms, there are no less than 11 scales of equilateral triangles

ascending and descending from the basic triangle, which is 40 in altitude (Fig. 68.4).
In our view the fractal tendencies in the design reinforce this position that

Wright was seeking a biologically sound architecture. The new geometry was

simply another means to that end.

Consider the fractal qualities in the Palmer house. The entrance, one of the finest

that Wright ever designed, is marked by a triangular lamp. As the visitor proceeds

up the delicately scaled flight of steps, on his left are rows of clay blocks cut out in a

complicated triangular pattern. Under foot the slabs of tinted concrete are canted

slightly (Fig. 68.5). As he passes the threshold, his movement is temporarily

blocked by a bookcase. Thus the great space of the living room is all the more

7 ForWilliam Gray Purcell’s acute but sometimes cranky notion of the fugue, see Purcell (1950). A

more sophisticated analysis is in Aaron Copland (2011, Chap. 12).
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effective when he turns the comer and it explodes out in front of him. The floor

consists of slabs of concrete cast in the basic triangular module of the house

(Fig. 68.6).

The slabs are tinted red, waxed, and over the years have acquired a wonderful

glowing patina. Overhead are the great triangles of the ceiling. A view of the

kitchen shows a 120� angle in the brick wall and the complex triangularity of the

10X LIVING ROOM

9X CARPORT ROOF (TRUNCATED)

7X BEDROOMS #2&#3/STUDY

5X GALLERY/MASTER BATH

MASTER BEDROOM/FIREPLACE

4X TERRACE

3.6X STUDY

3X ENTRY

2.5X SHOP AND STAIRS/PLANTER

2X FIREPLACE AND SERVING

• 5X COLUMNS

• 25X CEILING LIGHT FIXTURES

1X (GRID SQUARE) PLANTERS & CLOSETS

Fig. 68.4 Triangles and scale in the Palmer house. Drawing: courtesy Eric A. Murrell

Fig. 68.5 Entrance of Palmer house. Photo: author
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clay block. And at the low end of the scale are the small inset triangular lights on the

soffit of the cove which runs around the room. A pair of drawings by architect Eric

A. Murrell show the variety of dimension in the triangles which are visible in plan

(Figs. 68.7 and 68.8). Remembering that we defined a fractal as “a geometrical

figure in which an identical motif repeats itself on an ever diminishing scale,” the

Palmer house is an excellent illustration of the concept. An equal compatibility

between definition and illustration would be found in a number of other possible

diagrams. Even finer details, such as the perforations of the ceramic blocks or the

entry lamp, are omitted from this diagram for reasons of size. Were the

diagramming done on a larger scale, those details would add yet another micro-

dimension of scaling. Nor is the recent garden wall included. It, too, would enrich

the diagram. Furthermore, similar diagrams could be drawn in section; the fractal

scaling of the Palmer house would then be seen to be eminently three-dimensional,

as one would expect of the late work of the most three-dimensional of architects.

These observations have experiential value. Many of Wright’s clients have

observed that he makes little spaces seem large and offers new discoveries over a

lifetime of contact. It is typical of fractals—the Koch snowflake is an instance—that

they have long perimeters—even theoretically infinite perimeters—enclosing a

finite area. So, too, Wright’s architecture meanders without end, leading us along

and through infinities of experience among its fractally bounded spaces, often

within what, as here, is not at all a large building.

In addition, a kind of “nesting” of fractal forms can be observed at two points in

the Palmer house: the entry way and the fireplace. At these places one encounters

not only actual triangles but also implied (truncated) triangles. The result is a three-

dimensional geometry of bewildering complexity. At the entrance there are not

only the triangles composing the ceramic ornament, there is also a triangular light

fixture atop of a triangular pier. There is a triangle jutting forward overhead, and

triangles in the red-tinted concrete slabs underfoot. The fireplace hearth is a

triangular cavity enclosed between triangular piers. The concrete slab on which

the grate rests is a triangle. Overhead are the triangular soffit lights and the larger

Fig. 68.6 Interior of

Palmer house. Photo: author
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triangles of the ceiling. The hassocks are truncated triangles. Perhaps the most

amazing detail in the entire house is the cast iron triangle on which the fireplace

implements rest. This is almost a complete anticipation of Eric Murrell’s drawing

made to show the different scales of triangle in the house. It is as if Wright were

hiding a clue at the hearth, or heart, of the structure.

Fig. 68.7 Fractal elements in the Palmer house. Drawing: courtesy Eric A. Murrell

Fig. 68.8 Fractal elements of Fig. 68.7 overlaid on the plan of the Palmer House. Drawing:

courtesy A. Eric Murrell
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It might be objected that diagrams such as these could be drawn for any building

and that therefore the distinction claimed for this example is false. There is only a

small measure of truth to this assertion. A typical floor plan of a rectilinear building

by almost any architect would, it is true, offer the opportunity to pick out rectilinear

patterns of floor tiles, appliances, bricks and the like, and thus could claim limited

illustration of fractal approximations. But the Palmer case is entirely different.

Firstly, the Palmer house presents iterations of precisely similar geometric units,

not approximations of varying sizes. Secondly, none of the iterations is the

serendipitous result of available manufactured materials; in the Palmer house the

fractal quality is in every case the result of a specific and conscious act of design.
We are not talking here about approximations or the odd chances of available

catalogue choices. At this point, one might perhaps cast an eye backward to find

similar conditions in much of Wright’s earlier work, thus opening insights on his

whole career. But it is the particular contribution of the Palmer house that Wright’s

manipulation of the triangular module reveals with special clarity, dramatically and

beyond debate, his intuition of what we now recognize as fractal geometry—a

discipline that was neither named nor recognized in his lifetime.
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Chapter 69

Characteristic Visual Complexity:

Fractal Dimensions in the Architecture

of Frank Lloyd Wright and Le Corbusier

Michael J. Ostwald, Josephine Vaughan, and Chris Tucker

Introduction

In the late 1970s Benoit Mandelbrot proposed that natural systems frequently possess

characteristic geometric complexity over multiple scales of observation (Mandelbrot

1977). In mathematics this realization lead to the formulation of fractal geometry and

was central to the rise of the sciences of non-linearity and complexity (Mandelbrot

1982). While architectural designers adopted fractal geometry within a few years of

Mandelbrot’s initial formulation, more than a decade passed before fractal geometry

began to be more widely used for the analysis of the built environment (Ostwald

2001). For example, Batty and Longley (1994) and Hillier (1996) have each

developed methods for using fractal geometry to understand the visual qualities of

urban space. Oku (1990) and Cooper (2003, 2005) have separately used fractal

geometry to provide a comparative basis for the analysis of urban skylines.

Yamagishi et al. (1988) have sought to determine geometric complexity in street

vistas and various other groups have applied fractal geometry to the analysis of

historic street plans (Kakei and Mizuno 1990; Rodin and Rodina 2000). While these

projects rely on a range of methods, the majority of examples of the fractal analysis of

architecture possess a more common lineage.

Carl Bovill’s Fractal Geometry in Architecture and Design (1996) demonstrates

how Mandelbrot’s “box-counting” approach to determining approximate fractal

dimension can be applied to the analysis of architectural elevations and plans.
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Bovill (1997) then offered an extrapolation of this method, and Bechhoefer and

Appleby (1997) used this approach to examine the visual qualities of vernacular

architecture. Bovill’s method has also been repeated by Makhzoumi and Pungetti

(1999) and Burkle-Elizondo et al. (2015). Importantly, in the original 1996 work,

Bovill demonstrates how fractal dimension can be used to analyse two façades; one

from Frank Lloyd Wright’s Robie House and the other from Le Corbusier’s Villa

Savoye.1 Bovill’s analysis of the two façades has been used to support a wide range

of arguments about architecture and, more specifically, a range of criticisms of

modernist approaches to design, but it has rarely been tested and never expanded or

developed (Lorenz 2003).

The present research undertakes a comprehensive analysis of the fractal

dimension of five houses each from the early careers of Wright and Le Corbusier.

The fractal dimensions of the elevations and plans of these houses are calculated

using TruSoft’s Benoit (vers. 1.3.1) program and Archimage (vers. 2.1), a program
developed by the authors. The following section explains what is meant by fractal

dimension and provides an overview of the box-counting method. Thereafter, the

chapter describes how the present study was undertaken and why the particular

houses were chosen. The chapter concludes with a review of the results of the study

and any questions raised by these results.

Determining Fractal Dimension

Mandelbrot argues that Euclidean geometry, the traditional tool used in science to

describe natural objects, is fundamentally unable to fulfil this purpose. To

paraphrase Mandelbrot (1982), mountains are not conical in form, clouds are not

spherical and rivers are not orthogonal. While science has historically considered

roughness and irregularity an aberration disguising underlying ordered systems

with fixed-state or finite values, Mandelbrot argues that the fragmentation of all

naturally occurring phenomena cannot be so easily disregarded: a coastline is not

straight and no Euclidean geometric construct can approximate the form of a

coastline without serious abstraction or artificiality (Ostwald 2003). As a result of

this natural fragmentation, mathematicians have shown that the length of a

coastline cannot be determined at all (Feder 1988). However, Mandelbrot

postulates that the degree of geometric irregularity or complexity that is visible in

a coastline at one scale (from a satellite) may be similar to that when viewed from

another scale (from a helicopter). If this is the case, then the coastline may possess a

form of consistent complexity, or characteristic irregularity, that can be measured.

1While Bovill’s Robie House façade is a relatively close approximation of Wright’s original

elevation, the elevation Bovill uses of the Villa Savoye lacks the same level of detail and it is less

consistent in its relationship with the original.
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The characteristic irregularity of a coastline may be measured by imagining that

the increasingly complicated and detailed path of the coastline is actually

somewhere between a one-dimensional line and a two-dimensional surface

(Schroeder 1991). The more complicated the line, the closer it comes to being a

two-dimensional surface. Therefore coastlines, as well as many similar natural

lines, can be viewed as being fractions of integers, or what Mandelbrot describes

as “fractal geometric forms”. Thus, fractal geometry describes irregular or complex

lines, planes and volumes that exist between whole number integer dimensions.

This implies that instead of having a dimension D of 1, 2, or 3, fractals might have a

D of 1.51, 1.93 or 2.74. One way of determining the approximate fractal dimension

of an irregular or complex object is to apply the box-counting method.

Consider a drawing of an elevation of a house. A large grid is placed over the

drawing and each square in the grid is analysed to determine whether any lines from

the façade are present in each square (Fig. 69.1). Those grid boxes that have some

detail in them are recorded. Next, a grid of smaller scale is placed over the same

façade and the same determination is made of whether detail is present in the boxes

of the grid. A comparison is then constructed between the number of boxes with

detail in the first grid and the number of boxes with detail in the second grid. Such a

comparison is made by plotting a log-log diagram for each grid size (Bovill 1996).

By repeating this process over multiple grids of different scales (Fig. 69.2), an

estimate of the fractal dimension of the façade is produced (Fig. 69.3). This method

is central to Bovill’s explanation and is also critical to the operations carried out by

Benoit and Archimage. However, there are many variations of how this method is

used to calculate D. For example, Bovill halves the grid dimension for each

comparison, whereas Benoit and Archimage use a range of scaling coefficients to

gradually reduce the grid size and generate a more accurate result. Other factors that

alter the way in which D is determined include the width of the lines in the

elevation, the position of the elevation in the image, and the way in which

statistical variations are handled.

Fig. 69.1 Starting grid

placed over the east

elevation of the Tomek

house showing

box-counting. Image:

authors
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Fig. 69.2 Third stage grid placed over the east elevation of the Tomek house showing

box-counting. Image: authors

Fig. 69.3 Log-log diagram of the comparison between the number of boxes counted in a grid and

the size of the grid. Image: authors
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The wider the lines in the source image, the more chance they have of being

counted twice when grid sizes become very small, leading to artificially increased

D values. To counter this situation, Archimage software pre-processes images using

a line-detection algorithm (Sobel gradient technique) that produces images for

analysis that are one pixel wide. Benoit overcomes this problem by allowing the

analytical grid to be rotated or resized to minimize the impact of line weight at each

scale of observation. In addition to the line width problem, the volume and

distribution of white or empty space around the source image can also alter the

result. To solve this, Foroutan-Pour et al. (1999) offer an algorithm to optimize the

way in which an image is positioned against its background and suggestions on how

to derive an ideal analytical grid. A further, related issue is that the proportions of

the image being analysed also influence the result. If the original image being

analysed is not pre-sized to produce a clear starting grid, then an additional step

must be added to ensure that a divisible starting grid is determined. Benoit solves
this problem by cropping the image size to achieve a whole-number starting grid.2

In contrast, Archimage enlarges the image by adding small amounts of empty space

to the boundaries. While neither of these variations change the elevation in the

source image, they produce subtle variations in the resultant D.
A final challenge for any application of the box-counting method is the problem

of statistical divergence. The average slope of the log-log graph may be the

approximate D value, but the points generating the line are not always consistent

with it. The D value is only a reasonable approximation when most of the points in

the chart correspond with the resultant average line. The question then becomes,

how are divergent points handled? While there is no definitive answer to this

question, divergent results tend to occur primarily at the extremes of the graph;

with the largest and smallest grid sizes but not normally those in between. Bovill is

aware of this problem and solves it by intuitively determining where the practical

limits of scaling in an image can be found. Benoit similarly allows the operator to

intuitively deactivate certain data points or use a range of algorithms to determine

best-fit for the data. While both of these are possible solutions, neither of them are

useful for producing a consistent analysis of almost 50 images.

For the present research, similar settings for starting grid proportion and size

minimize the number of divergent results associated with the largest grid

dimensions. However, for divergences associated with small scale grids different

tactics are used. The parameters of Benoit may be set to limit the smallest scale

grids uniformly, creating a consistent set of results. Archimage has no artificial limit

on the small grid size, and any divergences it produces are averaged into the log-log

graph. This means that, while the actual differences will be minor, Archimage is

likely to produce higher results in general, as well as slightly more accurate results

2 In its default mode, Benoit determines starting grid size by dividing the shortest input boundary by

four. The grid is then extrapolated across the image until the last complete grid-line fits on the page.

Any additional space in the source image is deleted. Thus, if the input image was 500� 1020 pixels,

then Benoit identifies a 4� 8 grid of 125� 125 pixels and it discards a 20 pixel wide slice of space at

the boundary of the input image.
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for objects which exhibit characteristic irregularity over a large range of scales.

Benoit, as set up for consistent application, is likely to produce slightly lower results
but may be marginally more accurate for objects which exhibit fractal

characteristics over a smaller range of scales.

Method

The early house designs of Frank Lloyd Wright and Le Corbusier are the focus of

the present study. Houses are ideal for this purpose because they possess similar

scale, program and materiality. While a study of commercial, urban or religious

projects by these architects is possible, none of these alternative sets have the same

potential for producing consistent, verifiable and statistically valid results.

A total of five houses by each architect was selected. In each sequence there are

four houses that prefigure the completion of an acknowledged masterwork of

architecture, along with the masterwork itself. For Wright, the masterwork is the

Robie House; for Le Corbusier it is the Villa Savoye. In both sequences of houses,

no more than 10 years separates the earliest design from the last. While within these

parameters a range of possible designs could be selected, preference was given for

single houses (rather than pavilions or estates), completed works (ensuring a similar

level of development) and houses with a relatively tight geographic distribution

(to limit the impact of climate on the form of the house).

No clear precedents exist for determining the holistic D value of a house. The

present research proposes that a holistic Dmay be produced either by averaging the

results for each elevation of the house, or by averaging the results for all elevations

and one or more plans of the house. The first of these methods produces a D(Elev)

result which is a reasonable approximation of the visual qualities of the building

when viewed from the exterior. The second method is more controversial and

results in a D(Plan + Elev) outcome which might be seen as reflecting the two- and

three- dimensional qualities of the building’s form. The research focuses primarily

on the former method for two reasons. First, while two-dimensional views of

architecture can be combined together to describe a three-dimensional building,

the D values derived from two-dimensional plans and elevations cannot be

averaged to produce a D value for the complete three-dimensional object.

Instead, the combined result, either D(Elev) or D(Plan + Elev), describes average

visual complexity for two-dimensional images of the building. Because

elevations are conventionally regarded as the primary determinants of visual

character (plans are more experiental) the former method is more appropriate.

The second reason for focusing on D(Elev) results is that past research, including

Bovill’s, suggests that elevations will more tightly clustered in their results than

plans, leading to more consistent results for D(Elev).

To produce a holistic result for each of the ten houses being considered, between

four and five data sources (elevations and plans) were developed for testing. In all

but two cases, the chosen houses possess traditional orthogonal or right-angled plans
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with four elevations. However, two of Le Corbusier’s villas are sited on urban streets

and possess party-walls with neighbouring structures. These walls are excluded from

the analysis, and average results for the house are only taken across the number of

visible elevations. Where an almost blank wall is part of one of Le Corbusier’s

designs (because the wall could have become a future party-wall), it was still

included in the analysis. For each house only a single plan was subjected to

analysis. Typically, this plan was of the primary living level; for Wright’s houses

this was the ground floor; for Le Corbusier’s houses it was often the piano nobile.
Following Bovill’s convention, the primary lines considered in the analysis

correspond to changes in form, not changes in surface or texture. Thus, major

window reveals, thickened concrete edge beams, and steel railings are all

considered, while brick coursing and control joints are not. Furthermore, the

images of the ten houses were all redrawn using consistent graphic conventions

and scales prior to analysis. The image source for Wright’s work was his original

working drawings reproduced by Storrer (1993) and Pfeiffer and Futagawa (1987).

Where the particular house was altered by Wright during construction, or only an

incomplete set of working drawings is available, the measured drawings of the

Historic American Buildings Survey were used to supplement the originals. For all

of Le Corbusier’s houses the definitive set of drawings developed by the University

of Tokyo was adopted (Ando 2001).

Twenty-five images of Wright’s houses and 22 of Le Corbusier’s houses were

prepared, each with consistent line weight and positioning within their respective

frames. These 47 images were analysed by placing, on average, 12 grids of decreasing

size over each image and making a comparison of the presence of detail at different

scales. The almost 600 data points were processed, leading to 94 separateD(Archi/Benoit)

values being calculated.3 For each house D(Elev) and D(Plan + Elev) outcomes, for

both Archimage and Benoit, were then produced, leading to 20 holistic results for

the houses. Composite results (D(Elev, Archi) +D(Elev, Benoit)� 2¼D(Comp)) were

then produced for each of the ten houses. Finally, the composite results for the

complete sequence of five designs were aggregated into a summary result for each

architect, D(Agg). The end result of the research is a distillation of almost

600 operations into 126 sets of data to inform a comparative reading of the early

houses of Wright and Le Corbusier.

The Ten Houses

The five houses by Wright were constructed between 1901 and 1910. Four of the

five are in the state of Illinois and the fifth is in Kentucky. All of the houses are

associated with Wright’s Prairie Style, an approach characterized by strong

3 The settings of Benoit were modified to match Archimage’s. Thus scaling coefficients, grid

angles, and line widths are consistent between the two programs.
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horizontal lines, overhanging eaves, low-pitched roofs, an open floor plan, and a

central hearth. Importantly, the five houses span the period between the first

publication of Wright’s Prairie Style, in the Ladies Home Journal in 1901, and

what is widely regarded as the ultimate example of this approach, the Robie house.

The first design is the F. B. Henderson House (1901) in Elmhurst, Illinois. The

house is a wooden, two storey structure with plaster rendered elevations. A range of

additions were made to the house in the years following its completion until, in

1975, the house was restored to its original form. The Tomek House (1904–1907) in

Riverside, Illinois, is also a two storey house although it possesses a basement and

is sited on a large city lot. This house is finished with pale, rendered brickwork, dark

timber trim and a red tile roof. Storrer notes that, in response to the Tomek family’s

needs, Wright later allowed posts to be placed beneath the cantilevered roof to

heighten the sense of support and enclosure (Storrer 1993: 128). As the posts were

not required for structural reasons, and Wright found them personally unnecessary,

they have been omitted from the analysis. The Robert W. Evans House4 (1908) in

Chicago, Illinois, features a formal diagram wherein the “basic square” found in

earlier Prairie Style houses is “extended into a cruciform plan” (Thomson 1999:

100). The house is set on a sloping site and possesses a plan similar to one Wright

proposed in 1907 for a “fireproof house for $5,000”. The Evans house was later

altered to enclose the porch area and the stucco finish on the façade was also cement

rendered. The Zeigler House (1910) in Frankfort, Kentucky has a similar plan to the

Evans house. Designed as a home for a Presbyterian minister, this two storey house

is sited on a small city lot and it was constructed while Wright was in Europe. After

a decade of development and refinement the quintessential example of the Prairie

Style, the Robie House (1908–1910), was constructed in Chicago, Illinois.

Designed as a family home, the three storey structure fills most of its corner site.

Unlike many of Wright’s other houses of the era, the Robie house features a façade

of exposed Roman bricks with horizontal raked joints.

The five houses by Le Corbusier were completed between 1922 and 1928. Four

of the five are in France and one is in Germany. The houses are significant because

during the 1920s Le Corbusier developed five strategies for an architecture that

would reflect the technological and social advances of its era. Initially published in

the journal L’Esprit Nouveau and later collated in Vers Une Architecture, these
strategies (pilotis, plan libre, façade libre, fenêtre en longueur and toı̂t jardin) are
found in their most refined form in the Villa Savoye.

The first house, the Maison-Atelier Ozenfant (1922–1923) in Paris, was

designed as both a home and studio for Le Corbusier’s close friend, the cubist

painter Amédée Ozenfant. Set on a complex and steep corner site, in an urban area

“already populated by artists’ studio houses” (Curtis 1986: 56), this three storey,

white rendered masonry building has large glazed areas and a saw-tooth roof. The

Villa Cook (1926) in Boulogne-sur-Seine was described by Le Corbusier as “the

4Despite its designation, original working drawings record that this project was for Raymond

W. Evans.
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true cubic house” because, as Gans observes, “[p]lan, section and elevation all

derive from the same square and in reference to one another” (Gans 2000: 66). The

house is a three storey structure of white rendered masonry with a roof garden. The

Villa Stein/de Monzie (1926–1928), also known as “Les Terrasses” or simply the

Villa Stein, is set on a narrow block in the suburbs of Vaucresson. The unusual

domestic brief was for a house and studio for Gabrielle de Monzie and her daughter,

to be shared with Michael and Sarah Stein. Curtis describes the house as the “most

monumental and luxurious of Le Corbusier’s houses of the 1920’s” (Curtis 1986:

79). In the late 1920s Le Corbusier and Pierre Jeanneret were invited to produce

residential designs for the Second International Exposition of the Deutscher
Werkbund at Stuttgart. The resulting Weissenhof-Siedlung Villa 13 (1927) is on a

corner block in the outskirts of the city. Le Corbusier and Jeanneret designed Villa

13 as a prototype for suburban row housing. The Villa Savoye (1928), or “Les

heures Claires”, is sited in Poissy, France. This two storey, freestanding house in

white rendered masonry, with an extensive roof-garden, is set in an open landscape.

For Meier, “the Villa Savoye illustrates with extreme clarity and is perhaps the most

faithful in its observation of (Le Corbusier’s) ‘Five Points of a New Architecture’”

(Meier 1972: 2).

Discussion and Results

For each of the ten houses the Archimage and Benoit determinations of D were

recorded for every elevation and plan. For example, for the north elevation of

Wright’s Henderson house the results are, D(Archi)¼ 1.59 and D(Benoit)¼ 1.54. Two

variations on the average D value for the visual properties of each house were then

produced, the first combining the plan and elevations and the second just the

elevations. For the Henderson house, the first average values for the house were

D(Plan+Elev, Archi)¼ 1.55 and D(Plan + Elev, Benoit)¼ 1.51. The second, holistic

calculation, reliant solely on elevations, produced the following results, D(Elev,

Archi)¼ 1.56 and D(Elev, Benoit)¼ 1.53. The final composite D result for each house

was calculated using both Archimage and Benoit outcomes and just the elevations.

The result for the Henderson house was D(Comp)¼ 1.545 (Table 69.1).5 For Le

Corbusier’s Maison-Atelier Ozenfant, the average results for the elevations were

D(Elev, Archi)¼ 1.53 and D(Elev, Benoit)¼ 1.46, leading to D(Comp)¼ 1.495

(Table 69.2). An analysis of just these two houses, the first in the sequence for

each architect, suggests that while, on average, Wright’s design exhibits a slightly

higher degree of characteristic complexity (a difference of 0.05 or approximately

5Archimage and Benoit produce data to three or more decimal places but present it rounded to,

respectively, two and three decimal points. In the present research the D(Arch + Benoit) values are

rounded to two decimal places while D(Comp) results are left at three (because they are an average

of two results).
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3.5 %) there are multiple occasions when Wright’s and Le Corbusier’s façades

have almost the same fractal dimension. Compare the south elevation of the

Henderson House—D(Archi)¼ 1.57 and D(Benoit)¼ 1.53—with elevation (2) of the

Maison-Atelier Ozenfant—D(Archi)¼ 1.57 and D(Benoit)¼ 1.51 (Fig. 69.4). While

one elevation has a horizontal bias, the human eye can detect some similarities in

visual detail. Furthermore, in this specific comparison, Wright’s elevation has

slightly more detail at the finer scale, while Le Corbusier’s has a greater and

more consistent spread of visual complexity across all scales.

The most visually complex and consistently scaled of all of the elevations

considered were the front façade of the Villa Stein/de Monzie (D(Benoit)¼ 1.59)

and the south elevation of the Robie house (D(Benoit)¼ 1.53). Again, in this pairing

Le Corbusier’s façade exhibits more levels of characteristic complexity than

Wright’s. The rear elevation of the Robie house has one of the lowest fractal

Table 69.1 D results for

Wright’s Henderson house
Henderson house D(Archi) D(Benoit) D(Comp)

Plan (Ground) 1.50 1.45 D(Comp)¼ 1.545

Elevation (North) 1.59 1.54

Elevation (South) 1.57 1.53

Elevation (East) 1.56 1.53

Elevation (West) 1.53 1.51

D(Plan + Elev.) 1.55 1.51

D(Elev.) 1.56 1.53

Table 69.2 D results for Le

Corbusier’s Maison-Atelier

Ozenfant

Maison-Atelier Ozenfant D(Archi) D(Benoit) D(Comp)

Plan (First) 1.56 1.56 D(Comp)¼ 1.495

Elevation (1) 1.55 1.48

Elevation (2) 1.57 1.51

Elevation (3/4) 1.46 1.38

D(Plan + Elev.) 1.54 1.48

D(Elev.) 1.53 1.46

Fig. 69.4 South elevation of the Henderson house (D(Archi)¼ 1.57) (left); elevation (2) of the

Maison-Atelier Ozenfant (D(Archi)¼ 1.57) (right). Image: authors
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dimensions of any of Wright’s façades (D(Benoit)¼ 1.45) along with most of the

façades of the Zeigler house (1.46<D(Benoit)< 1.49). Setting aside the featureless

party-walls, the lowest results for the Le Corbusier houses were typically found in

the Villa Savoye (1.41<D(Benoit)< 1.49) (Fig. 69.5).

The combined results for Wright’s houses ranged from D(Comp)¼ 1.505 for the

Zeigler House to D(Comp)¼ 1.580 for the Evans house. The Robie house result was

between these two extremes (D(Comp)¼ 1.550). Overall, the aggregated result for all

of Wright’s five houses was D(Agg)¼ 1.543 (Table 69.3). For Le Corbusier, the

combined results ranged from the simplest building, the Weissenhof-Siedlung Villa

13, D(Comp)¼ 1.420, to the most complex, the Villa Stein/de Monzie

(D(Comp)¼ 1.515). The aggregate result for all five of Le Corbusier’s houses was

D(Agg)¼ 1.481 (Table 69.4).

Fig. 69.5 North elevation of the Zeigler house (D(Archi)¼ 1.50) (above); elevation 1 of the Villa

Stein/de Monzie (D(Archi)¼ 1.67) (below). Image: authors
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The difference between the aggregated fractal dimensions of the houses of

Wright and Le Corbusier was 0.062 (approx. 4 %). Despite this, many of Le

Corbusier’s façades and houses had higher fractal dimensions that Wright’s. One

reason the aggregated result for Wright’s houses had a slightly higher D value is

that several of Le Corbusier’s houses have walls that are almost blank (future party

walls but with one or two windows) whereas all of Wright’s houses had elevations

with a relatively consistent level of detail in each façade. If these future party walls

were removed then the overall difference between Wright and Le Corbusier would

be further reduced.

When all houses are analysed in this way some larger patterns are revealed.

Archimage consistently produces higher results than Benoit, typically in the order

of 4 %. Because this variation is relatively consistent, it has limited impact on the

composite and aggregate results. For the five houses by Wright, the difference is in

the order of D(Agg)¼ 0.06. Variations in results for the two programs for Le

Corbusier’s houses are marginally higher at D(Agg)¼ 0.07. Two further factors

influence these discrepancies. As Lorenz warns, minor variations and

inconsistencies in initial image framing result in a range of disparities in D of up

to 2 % (Lorenz 2003: 63–65, 117–119). Furthermore, rounding inconsistencies

(from three to two decimal places) also produce subtle variations. Given the

differences in the way the two programs handle starting grid identification and

divergent results, the variation between the two programs is neither substantial nor

unexpected.

Table 69.3 Results for Wright houses

Frank Lloyd Wright houses

D(Elev,

Archi)

D(Plan + Elev,

Archi)

D(Elev,

Benoit)

D(Plan + Elev,

Benoit) D(Comp)

Henderson 1.56 1.55 1.53 1.51 1.545

Tomek 1.57 1.55 1.50 1.48 1.535

Zeigler 1.54 1.52 1.47 1.46 1.505

Evans 1.60 1.58 1.56 1.54 1.580

Robie 1.59 1.58 1.51 1.49 1.550

All houses 1.57 1.56 1.51 1.50 D(Agg) ¼ 1.543

Table 69.4 Results for Le Corbusier houses

Le Corbusier houses

D(Elev,

Archi)

D(Plan + Elev,

Archi)

D(Elev,

Benoit)

D(Plan + Elev,

Benoit) D(Comp)

Ozenfant 1.53 1.54 1.46 1.48 1.495

Cook 1.52 1.54 1.47 1.50 1.495

Stein/De

Monzie

1.55 1.57 1.48 1.51 1.515

Weissenhof. S. 1.46 1.46 1.38 1.39 1.420

Savoye 1.52 1.55 1.44 1.49 1.480

All houses 1.52 1.53 1.45 1.47 D(Agg) ¼ 1.481
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Conclusions

If each sequence of five houses, produced over a ten-year period by Wright and by

Le Corbusier, is taken in its totality, then there is relatively little difference between

the fractal dimension of each architect’s works. Certainly, Wright’s designs

typically possess higher D(Comp) and D(Agg) values, but the variation is often

marginal. Moreover, a number of Le Corbusier’s façades not only have higher

fractal dimensions than Wright’s, but they are more consistent over a wider range of

scales.

When Bovill analysed a single façade of a masterwork by Wright and one by

Le Corbusier, he happened to choose Wright’s most complex house façade from

the era and one of Le Corbusier’s simplest (Fig. 69.6). It is not surprising then

that he found Wright’s façade displayed a higher, and more consistent, level of

characteristic visual complexity. However, when a much larger sample size is

considered, the difference between the two architects’ works is considerably

reduced. The present analysis confirms Bovill’s isolated comparative case, but it

undermines the extrapolation of this result by other scholars to suggest that organic

or regionalist architecture is more fractal than Modernist architecture.

Prior to commencing this research, it was anticipated that the inclusion of plans

alongside elevations would not assist in the overall interpretation of the results. The

reason for this assumption is the view that while plans indirectly reflect the aesthetic

and spatial intentions of the architect, elevations provide a more thorough

description of the shape and form of the building. The present research only

Fig. 69.6 South elevation of the Robie house (D(Archi)¼ 1.62) (above); elevation 1 of the Villa

Savoye (D(Archi)¼ 1.53) (below). Image: authors
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partially supports this position. Most of the plans that were analysed possessed

D values that were similar to the results for the associated elevations. Typically

Wright’s plans had lower D(Archi/Benoit) results while Le Corbusier’s plans often had

slightly higher results. But for plans to be conclusively used as part of such an

analysis a range of decisions need to be made about which lines in a plan are

significant for the analysis. This question will be the topic of future research.

A final observation arising from this research is that, in isolation, fractal

dimension may not be the most useful way of differentiating the visual qualities

of elevations. Other factors, including line length, line clustering, implied

directionality and distribution of detail (not over multiple scales but in different

zones) may be usefully combined with fractal dimension for a more complete

analysis of architecture.
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Chapter 70

From Cosmic City to Esoteric Cinema:

Pythagorean Mathematics and Design

in Australia

Graham Pont and Peter Proudfoot

All things are exposed in time. Like the great fugues of Bach,
Griffin’s concepts expand into our growing consciousness. In
moments of crisis new dimensions emerge, new signs, new
energy

(Muller 1976).

Introduction

In his Walter Burley Griffin Memorial Lecture of 1976, Australian architect Peter

Muller argued that the plan of Canberra is a “solid mandala. . . an intelligible,

sensible three dimensional diagram packed full of significance and purpose”

(Muller 1976). The first to explore the “esoteric world” of the Griffins’ Canberra,

Muller rightly emphasised the significance of concentric circles in the original

proposals for the federal capital and its university. In both cases the radiating

circles represented a hierarchy (one governmental and administrative, the other

epistemological and encyclopaedic) proceeding “from the more essential to less

essential, from generals to particulars”. The mandala of concentric circles and

radiating diameters, he concluded, was “inscribed into the plan of Canberra in the

form of street patterns, appropriately named”, thus defining the “physical, political

and symbolic centre of our Nation”.

In The Secret Plan of Canberra, Peter Proudfoot rediscovered a lost cosmic city

and another mandala hidden at its ceremonial centre: a set of three intersecting circles

that he called the “double Vesica”. Proudfoot interpreted its role and significance in
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Pp. 195–206 in Nexus IV: Architecture and Mathematics, Kim Williams and Jose Francisco
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the city plan through a wide-ranging survey of urban forms, esoteric traditions, sacred

geometry and cosmological symbolism (Proudfoot 1994: Chaps. 1–2). More recently

Graham Pont has pointed out that the three equal intersecting circles are an old

Pythagorean symbol for the “Triad” and he has also identified Pythagorean forms,

numbers and symbols in the Griffins’ design for the Capitol Theatre, Melbourne.

Our latest research indicates that there is an esoteric rationale, also based on the

circle, that connects the first plan of central Canberra, the Capitol Theatre, Newman

College and several other Griffin designs. In all three of these major Australian

works, the Griffins made a focal point or generative seed out of the same mandala—

a circle quartered by a cross.

The Plan of Canberra

According to Marion Mahony Griffin, the plan of Canberra was produced during

9 weeks of “driving work” and submitted at the last possible moment. Although the

prize was awarded to her husband, it is now recognised that Marion was also deeply

involved in preparing the competition entry as a whole, and not just in her

exquisitely rendered plans and perspective views of the envisaged city. Our

primary focus is her beautiful City and Environs painting, which reveals the

mathematical key to the “Secret Plan of Canberra” (Fig. 70.1).

The Griffins’ plan is based on two axes suggested by the natural topography. The

principal “Land Axis” runs south-southwest from Mount Ainslie to Bimberi Peak,

some 30 miles away in the Brindabella Ranges. The minor and much shorter “Water

Axis” runs at right angles from Black Mountain in the northwest towards an area

known as “Mount Pleasant” (the prominence itself does not quite manage to

provide the fourth natural terminus). The role of this formative cross, its plan,

geometry and terminology (but none of its esoteric symbolism), are set out in “The

Federal Capital; Report Explanatory of the Preliminary General Plan” (Melbourne,

1913). What the Griffins never revealed is how they generated the rest of their plan

for central Canberra.

At the foot of the City and Environs plan there is a scale, the significance of

which has not previously been explained. One unit of the scale equals a mile. If we

adjust our compass to this unit we find that it exactly corresponds to the radius of a

circle which, centred on the intersection of the Land and Water Axes, passes

through the centre of Capital Hill (the ceremonial climax of Canberra) and the

site of what was planned to be Canberra’s second most important building, the

people’s Casino at the foot of Mount Ainslie. Thus the primary form or generative

seed of the Griffins’ Canberra is a mandala of a circle enclosing a crux decussata or
St Andrew’s Cross: this is also the Egyptian hieroglyph for a city or town. Less

explicit versions of the same mandala lie at the centre of Griffith, New SouthWales,

a town planned by Griffin in 1914, and of his proposed Arsenal City at Tuggeranong

(ACT), ca. 1916, as well as appearing in windows of Griffin houses at Castlecrag,

New South Wales.
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Fig. 70.1 Detail from Marion Mahony Griffin, City and Environs (1911). Image: courtesy

National Archives of Australia. Image processing: Keith Lo Bue
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The ancient pictograph concisely represents the fundamentals of urban form—

the circular enclosure of consecrated space and its division by the crossing of the

main streets into the four quarters traditionally assigned to the four castes or classes

of society. The mandala of circle-and-cross is probably the oldest geometric

representation of urban space. This symbol combines the paleolithic circle, one of

the first rational forms known to humanity, and the neolithic rectilinear grid,

representing the new geometry that was more convenient for the arrangement of

towns, cities and their supporting farmlands. The deft impressing of the mandala—

the essential mathematics of urbanity or civilisation—on a landscape the Griffins

had not yet seen, was a touch of genius.

When our compass, still adjusted to the canonic radius, is centred on Capital

Hill, we can retrace the second most important of Canberra’s formative circles, the

one enclosing the prominence which the Griffins planned to be the centre of

Government and which is now the site of the new Parliament House. Here again,

the esoteric circle is reflected in the surrounding street plan. A circle of the same

radius would neatly enclose Mount Ainslie whose peak is slightly more than two

canonic radii or one diameter from the intersection of the main axes. Despite all the

subsequent tinkering, that larger circle, centred on the crossing of the primary axes

in Lake Burley Griffin, still defines the ceremonial centre and spiritual heart of

Canberra.

Here the main Land Axis links two natural prominences, Mount Ainslie and

Capital Hill. The crucial importance of the intervening chord was emphasised by

the contraposition of two isosceles triangles whose apexes are respectively Mount

Ainslie and Capital Hill. The triangles share a common base that joins the

intersecting points of two circles, thus bisecting a vesica piscis. This bisector

forms the secondary “Municipal Axis” which runs parallel to the Water Axis,

joining the proposed “Urban Administration” and “Urban Mercantile/Military”

centres. In the original plan these nodal points (sites of the present Civic Centre

and the defence complex at Russell) are both located exactly at the distance of one

canonic radius from the central water-crossing. The geometry of the two isosceles

triangles is also determined by the grid system that originates at the peak of Mount

Ainslie. The grid module is the square of the canonic radius (one mile by one mile).

The canonic circle delimits the octagonal suburban centre to the north of the city

and—somewhat less precisely—those to the west and southeast. The centres of the

two suburban octagons just south of the dammed Molongo River are one diameter

apart. The three centres of the southeastern suburbs form another isosceles triangle

that almost replicates the triangles of the principal axis. The centre of the suburban

octagon immediately southeast of the Capitol is located at exactly one diameter

from the ceremonial centre. The east–west boulevard of the southeastern hexagon is

three diameters south of Mount Ainslie. The centre of the northern octagonal

suburb is almost, but not quite, one diameter from the peak of Mount Ainslie.

The centre of the western “residential suburb” (the present Yarralumla) is slightly

less than one diameter from the centre of Capital Hill. Some of these arbitrary

departures from geometrical consistency appear to be the result of the Griffins’ aim
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to make the natural prominences, particularly Capital Hill, the termini of vistas

along the main axes and thoroughfares.

The original plan of Canberra was a brilliant synthesis of a priori geometry,

classical precedent and ancient symbolism, on the one hand and, on the other, of a

prophetically modern vision of natural landscape, indigenous character and

ecological propriety. The Griffins’ appreciation of Australian landscape—a
posteriori—was immediate, joyous and definitive. After almost a century, their

environmental sensitivity and insight can hardly be faulted.

According to the original geometry, Canberra’s two most important monuments,

the governmental complex on Capital Hill and the people’s Casino at the foot of

Mount Ainslie, were to be linked by three intersecting circles of equal radius and

having a common diameter, thus forming a Pythagorean Triad. The neo-Platonist

Iamblichus (ca. 250–325 A.D.) recorded that the Triad had the following “names”

(or, as we might now say, “connotations”):

– Proportion (analogia)
– Harmonia

– Marrriage

– Knowledge (gnosis)
– Peace

– Every Thing

– Hecate (chthonic goddess of the cross-roads)

– Good Counsel

– Piety

– The Mean Between Two Extremes

– Oneness of Mind

– The All

– Friendship

– Purpose (Guthrie 1987: 22, 322).

How entirely appropriate for the ritual centre of a new democratic

Commonwealth! As the grand Triad of the Land Axis symbolises the harmony

that should exist between the people and their government, so the minor Triad on

Capital Hill echoes an analogous harmony or balance of the legislative and

executive powers—Parliament being positioned in the centre as the “mean”

between the “extremes” of the democratically-elected Prime Minister and the

imperially-appointed Governor-General. The Triad also symbolises the cardinal

virtue of Temperance and all its resonances, moral, domestic, civil and political.

The Griffins fully understood the ancient “Idea of a Town”; their ideal Canberra

was a true city, classically formed and cosmically oriented.1 The city might almost

1 The Griffins, who were both well read in the classics, were evidently familiar with the ancient

traditions of town planning. They might have seen the summary of the Etruscan-Roman rituals in

the article on “Augures” in Oskar Seyffert’s Dictionary of Classical Antiquities (1891) an

abridgment of which was published in New York in 1908.
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have been ritually inaugurated too, according to the most venerable precedents:

there could be much more to the secret magic that was so speedily wrought in 1911,

in faraway Chicago. Australian artist Judith McConchie has recently discovered an

intriguing congruence between the plan of Canberra and the constellation Crux or

“Southern Cross”.2 Could it be that the generative mandala of Canberra was no

other than a starry templum descried in the macrocosm and described on the world

below? Later on, at Castlecrag, the Griffins were involved in the production of a

community play calledMirrabooka—an Aboriginal name for the Southern Cross. If

McConchie is right, Canberra must indeed be the last cosmic city, the last complete

city—its mandala sealing a sublime marriage of Heaven and Earth.

Coming from a free and liberal democracy, the Griffins had expected to create a

new democratic capital where the magic of Pythagorean geometry would inform

and sustain the growth of a new and enlightened nation: their ideal—a modern

Pythagorean polity, no less, a new Croton. On arriving in Australia, however, they

soon had to cope with the mystifying constitution and colonial mentality of a

country that was still officially a “Dominion” of the British Empire. Confronted

as well by a ruthless, incompetent and incorrigible bureaucracy with its own

agenda, the Griffins were forced to revise their plan several times (1913–1918)

before losing control of the project altogether and moving to Melbourne, where

they lived until 1924. The analogies between the cruel treatment of the Griffins and

that later accorded to Jørn Utzon—the only other architectural genius to work in

Australia—are too painful to dwell on.

The Griffins in Melbourne

Of the works from the Griffins’ Melbourne sojourn, only two major buildings

survive (both in Melbourne’s principal thoroughfare, Swanston Street). They are

Newman College, a students’ residence at Melbourne University (1918) and the

Capitol Theatre, an office building and cinema which opened in 1924. Designed

contemporaneously, these important buildings both incorporate the circle-and-cross

mandala previously employed at Canberra.

The proposals for Newman College were drastically revised and only partly

realised but the formative mandala is clearly evident in the plan of the domed

and spired refectory which commands the profile of the extant building. It is

hardly surprising that the Griffins should adopt the classic plan of the Christian

sanctuary for the communal focus of a religious institution. Their first plan (1915)

shows two matching circle-and-cross structures terminating the principal façade.

It is interesting to note that, while the plan is symmetrical, the elevation is

asymmetrical, with the spire of the central chapel displaced to the left. The

original plan obviously reflects the traditional form of ecclesiastical cloisters and

2 “Canberra, city that reflects the stars”, Canberra Times, Panorama, 10 March 2001, 2–3.
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academic quadrangles; but is it too much to suggest that the grand axial opposition

of the temple-like termini is a deliberate echo of Canberra’s Land Axis and the way

it joins the governmental complex on Capital Hill to the people’s Casino below

Mount Ainslie?

According to Marion’s recollections, the design of the Capitol Theatre took fully

10 years from its original conception in 1914 to its spectacular opening in 1924. The

cinema auditorium, with its famous illuminated ceiling intact, has been acquired by

RMIT University and is now undergoing extensive refurbishment. On the occasion

of the re-opening on 7 November 1999 (its 75th anniversary), the ceiling was

ceremonially relighted. Suddenly, above the proscenium arch, there appeared the

glowing cosmogram of the Pythagoreans, the Tetraktys (Fig. 70.2a). The

symbolism of this mystical device and its significance for the Capitol Theatre are

to be explored in a forthcoming article which argues for the following conclusions:

– The Capitol Theatre is a secular temple with an esoteric Pythagorean rationale;

– The dominant motif of the cinema space is a “Crystal Tetraktys”;

– The decoration of the cinema is based mainly on the right-angled isosceles

triangle of Pythagoras’s theorem (the Griffins regarded the triangle as the

symbol and form of light);

Fig. 70.2 Capitol Theatre,

Melbourne: (a) (above)
view of auditorium with

“Crystal Tetraktys” above

the proscenium. Image:

Harold Paynting Collection,

courtesy State Library of

Victoria. (b) (below) part of
Detail Sheet 82 (dated

1922.4.15). Image: courtesy

Melbourne University

Architectural Collection,

State Library of Victoria
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– The Capitol design employs the constituent numbers of the Tetraktys

(1 + 2 + 3 + 4) and the whole-number ratios of harmonic proportion (1:1, 1:2,

2:3, 3:4);

– The building was deliberately “tuned” to simple harmonic proportions, includ-

ing the major third (4:5, a modern harmony that falls outside the old Pythagorean

canon).

The Griffins were well-informed musically and left numerous, though not

always entirely explicit, allusions to their philosophy of music and its application

to architectural design. Architecture, for them, was a kind of music—not frozen but

full of life.

By the 1960s the Capitol Theatre had become unprofitable and in danger of

demolition. Public opinion and professional objections, however, ensured the

preservation of the fabric but at the cost of major internal alterations which included

the replacing of the theatre lobby and stalls with a banal shopping arcade (1964).

It was probably the Griffins themselves who persuaded their Melbourne clients

to call the proposed theatre and office development the “Capitol”, for this was the

name that had already been used for the monumental centrepiece of Canberra—the

unbuilt ziggurat that was to crown Capital Hill. The common appellation is an

important clue to the esoteric rationale of the theatre complex and its surprising

relationships with the original Canberra plan.

One of the most striking continuities between the Capitol and the Capital is the

exploitation of crystalline forms and imagery (Proudfoot 1994: Chap. 5). Marion was

particularly keen on crystals and her enthusiasm is evident in her dreamy perspective

views of Canberra and the astonishing interior decoration of the Capitol Theatre. It is

said that she was entirely responsible for the design of the crystal ceiling and this is

confirmed by several of the detail sheets with her personal annotations. Among the

most interesting is her design for the theatre’s “Crystal Lanterns” which were built

up out of squares and isosceles triangles on the plan of a typical Pythagorean Tetrad

(Fig. 70.2b). In much the same spirit is her “Icicle Lantern” for the foyer, which was

designed on the plan of the eight-spoked “Cosmic wheel” (Detail Sheet 438). This

was also the form of some of Canberra’s projected suburbs.

We conclude with the latest and no less surprising discovery that the Capitol

Theatre also incorporated the mandala of circle-and-cross in another temple-like

edifice that reflected in miniature the Pythagorean philosophy, geometry and

symbolism of Canberra.

Original plans and photographs taken before the alterations of the 1960s show

how the cinema auditorium was approached through a lavishly-decorated lobby

raised slightly above the street level. Here the circle and the cross became the

dominant motifs of both plan and elevation (Fig. 70.3).

To the arriving patrons this elegant, if somewhat cramped, space might have

given the impression of a domed pavilion or—to the more discerning, perhaps—a

narthex or tempietto. Such impressions are confirmed by the plans for this room,

especially Detail Sheets 159 and 269. The reflected ceiling plan shows how the

octagonal columns and their matching “pilasters” form a square and support a space
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of circular forms. The main foyer space is arranged symmetrically around a cross

whose vertical and horizontal arms are on the central axes of the main building and

the theatre lobby respectively. Detail Sheet 159 also indicates the diagonal arms

that connect the centre of the lobby with its supporting columns Again, the

formative circle, made manifest, completes the mandala that the Griffins

employed in all their major Australian works.

Fig. 70.3 Capitol theatre, Melbourne: (a) (above) part of Detail Sheet 270, “Lobby Ceiling” (last
dated 1924.2.4). (b) (below) part of Detail Sheet 159, “Ground Floor Plan” (dated 1922.11.9).

Images: courtesy Melbourne University Architectural Collection, State Library of Victoria. Image

processing: Keith Lo Bue
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Like Canberra and Newman College, the Capitol has—or had—a ceremonial

centre planned on the circle and the cross. The continuity of form and symbolism is

unmistakable and the recreation of the ancient cosmic temple form within the

narrow site of the Capitol Theatre was both ingenious and highly significant. For

the Griffins, the new theatre was to be not just a scene of idle diversion but a temple

of the arts dedicated to public edification. Here again they revealed their

determination to establish a spiritual ethos as part of that covert Pythagorean

programme which was to achieve its finest expression in the development of the

bushland suburb of Castlecrag on Sydney’s magnificent Middle Harbour. These

high intentions are confirmed by the choice of Cecil B. de Mille’s silent epic The
Ten Commandments for the opening of the Capitol, which was embellished with

live music and drama as well as the magical illuminations of the crystal ceiling. The

Capitol Theatre was a veritable Gesamtkunstwerk—a total art-work.

Conclusions

Essential to the Pythagorean polity is the all-important notion of harmony—

harmony in nature, in art, in society and its habitat, in the heavens and in the

human body and soul:

Nature demands a unity in her ideal which embraces human nature and its expressions as

well as all animals, vegetables and inanimate creations, and requires of each a contribution

that shall fit into the great harmony.3

The Griffins saw their architecture, their life, as part of the “Great Chain of

Being”.

Their insistence on the human need for harmony, and its origin in the cosmos

itself, is thoroughly Pythagorean, even though they never mention the Master’s

name. Their silence, of course, is entirely in accordance with the esoteric tradition.

Harmony is fundamental to the Griffins’ world-view—their morality, polity and

sensibility. The sophistication and sincerity of their beliefs are perfectly apparent in

their writings, both published and unpublished; and these convictions are expressed

in, and impressed upon, their architecture and landscape design with extraordinary

passion, precision and determination:

In town planning as in architecture there must be a vision. There must be a scheme the mind

can grasp, and it must be expressed in the simplest terms possible. Just as music depends on

simple mathematical relations so do Architecture and Town Planning.4

Their commitment to the Pythagorean ideal of harmony was reaffirmed in the

lobby of the Capitol Theatre—which aspired to be no less than the narthex of a

secular cathedral. Detail Sheets 159 and 269 show how, on the horizontal axis of

3Walter Burley Griffin, as reported in Griffin (1940: Vol. IV, 34).
4Walter Burley Griffin, in Griffin (1940: Vol. I, 361).
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the foyer, the centre point is flanked by two almost equidistant centres of the

semi-circular apsidal spaces that flow out from the central square. If we complete

and make manifest these three hidden circles we finally discover that this lost

anteroom to the Capitol Theatre also embodied the same Pythagorean Triad that

had previously informed the site of Canberra: again, a plain and potent symbol of

social harmony. There can be little doubt that the Griffins had knowingly contrived

to deploy all the harmonic symbolism and spiritual power of the Triad in this new

cosmopolitan setting.

The resemblances between Canberra and the Capitol Theatre are sometimes

subtle but altogether too strong to have been accidental. They include, most

conspicuously, the transcendental form of the ziggurat which reappeared in the

crystal ceiling of the cinema (see Fig. 70.2a) and they probably extended to the

remarkable similarity in plan and disposition between the domes over the stairways

to the theatre lobby and the circular water basins of ceremonial Canberra.

Like Aeneas and his father, the Griffins fled the ruins of their capital and

eventually founded a new “capitol” in a distant land. Whether or not they

accepted the Virgilian version of the legend, the Griffins surely knew that the

Roman colony or camp was technically a provincial microcosm of the great Urbs

itself, formed on the same timeless geometry of circle-and-cross.

At Melbourne the essentials of Canberra’s visionary theatre and its crowning

monument, the proposed temple on Capital Hill, were boldly redistilled into a jewel

of enlightened urbanity—a brilliant-cut crystal that is the very quintessence of the

Griffins’ world-view, religion and philosophy. Thus the new southern Capitol,

Australia’s first skyscraper, became a microcosm of world-harmony, a

reaffirmation of moral, civic and spiritual values in the remote Antipodes and—in

due course—a mutilated endnote to the destruction of the ideal Canberra.
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Chapter 71

The Ruled Geometries of Marcel Breuer

John Poros

Introduction

In the 1950s, architectural structures began to be built that seemed to have more in

common with the incipient space race than traditional buildings. Thin shells with

double curvatures, mostly with saddle-shaped forms, began to roof large and

small buildings. These forms were characterized by their purely mathematical,

abstract qualities. While the forms looked exotic, the ability to make these

complex curved surfaces came from a simple generator, the ruled surface. Using

these ruled surfaces, a complex curve can be made from straight lines, making the

construction of these surfaces possible for the technology of that era.

A ruled surface is a surface defined by sweeping a line in space along two

paths. The swept lines are known as rulings. The two paths at the endpoints of the

lines are known as the base curve and the director curve. The simplest ruled

surface is a plane, that is, a straight line swept along two parallel, straight line

base and director paths. Two other simple ruled surfaces include cylinders, a line

swept between the circular base and the director curves, and cones, a line swept

along a circular base curve and held at a point at the other end of the ruled line

(Weisstein n.d.).

While simple ruled surfaces such as planes, cylinders or cones have been used in

architectural geometry for thousands of years, the doubly-ruled surfaces being

explored in the 1950s were of a more complex nature. In a doubly-ruled surface,

two lines sweep along paths that can be co-planar, defining a plane; non-coplanar,

defining a hyperbolic paraboloid; or along curves, defining hyperbolic paraboloids
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or hyperboloids. These surfaces have the great advantage of being able to be

constructed from straight lines or identical curves, simplifying the construction

process. The other advantage of these surfaces is structural: the curved surface

acts as a membrane and, ideally, forces are purely compressive or tensile, leading

to a highly efficient use of material. These shell structures have the capacity

to be very thin, in many cases simply several centimetres thick spanning tens of

metres.

For engineers of the time, the structural logic of these surfaces was paramount.

Engineers such as Felix Candela argued against the use of these forms as simply

new shapes:

Space frames, hanging roofs and concrete shells are all legitimate prey in what is pro-

nounced a move to humanize the arid, primitive idiom left to us by the pioneers

(of modernism). ‘Structuralism’ is originality’s new escape valve (Candela 1958: 191).

Yet these new forms in their geometrical purity were problematic as

architecture. The surfaces were typically quite large, and had no real human scale

to them as purely mathematical forms. The engineer Mario Salvadori understood

this problem of scale and wrote “Architects and engineers who want to use the new

shell forms effectively must understand the disturbing reactions they can evoke—

and how to deal with them” (Salvadori and Raskin 1958: 112). The thinness of these

shells gave them an insubstantial feeling that ran counter to the primeval need to

feel the sheltering of a roof or the traditional weight of building.

The architect Marcel Breuer, like many of his contemporaries, worked with

shells and the geometry of ruled surfaces in his work of the 1950s and 1960s. Unlike

his contemporaries, Breuer’s initial fascination with ruled surfaces to create thin,

weightless shells gave way to using ruled surfaces to express weight and mass. In

his best work, a ruled surface geometry is used to both create thin shell structures

and visually ground the structure.

The Challenges of Ruled Surfaces

The use of ruled surfaces after World War II started with the work of structural

engineers, but quickly caught the attention of architects as the new forms began to

be published. “The hyperbolic paraboloid is now a project type in design offices and

school workshops across the world,” commented Felix Candela in an article for

Architectural Record (1958: 191). Structural engineers such as Candela, Pier Luigi

Nervi and Enrique Torroja had made this form of ruled surface popular, using it for

factories, warehouses, churches and other building types throughout the 1950s. For

structural engineers, structural efficiency was what recommended these forms; the

ability to span large spaces with very thin shells was the reason for using a form

such as a hyperbolic paraboloid. Candela reminds architects of this point in this

article:
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It is forgotten that the paraboloid stemmed from purely functional and economic reasoning.

I doubt very much that it can be the answer to any stylistic problems. But after the novelty

of its shape has subsided perhaps it will be realized that the thin shell paraboloid has

qualities as a building form that are far more persuasive than just esthetic considerations

(Candela 1958: 191).

In an article in Architectural Forum, the engineer Mario Salvadori and architect

Eugene Raskin defined some of the architectural problems inherent in the use of

these mathematical surfaces. Salvadori and Raskin saw the mathematical and, to

their minds, ‘abstract’ forms of shells as providing little sense of protection and no

indication of scale, two traditionally important architectural qualities. Salvadori

defined the first problem thus:

One such basic assumption is that a roof is for safety and protection; it is an emotional as

well as physical symbol of security. How can the shell provide reassurance on this point? It

looks as though it had recently and temporarily alighted from a voyage on the wings of a

breeze. To the eye, which seeks protection in the conventional terms of bulk and strength,

the shell will seem unsatisfactory, forcing the designer to solve the human need for shelter

by another approach (Salvadori and Raskin 1958: 112).

A separate but related problem Salvadori and Raskin identified with shells is

defining the scale of a shell: “Shells are mathematical abstractions, just as well

represented by paper models as in concrete over 300 foot spans” (Salvadori and

Raskin 1958: 113). Salvadori and Raskin argued that the effect of these two

problems was to create “tension, anxiety and stimulation” in people encountering

these shell structures (1958: 113). Combined with the unfamiliarity of these shapes

as buildings, Salvadori and Raskin argue that these structures have very different

qualities to them than most traditional architecture, which telegraphs messages of

stability and permanence. For Salvadori and Raskin, the key to the architectural use

of these shell structures, besides their very weak suggestion of using terraces,

plantings, steps and paving to introduce scale, is to use the tension and anxiety

these structures produce in a positive way:

The tension and anxiety that these unfamiliar shapes generate are not always undesirable,

however. Games of skill, for example, produce tension and anxiety in a pleasurable sense;

so does the reading of an adventure novel, or the watching of a suspense drama. There is no

reason why these emotional states should not be favorably exploited architecturally as well,

for example, in public buildings for sports, shopping, meeting, or in domestic spaces for

entertaining. Actually, the argument could be made that serenity, calm, and restfulness are

obsolete as expressions of our age, and that the shell is not only the outcome of a

technological advance, but also the inevitable signal of a twentieth century aesthetic

(1958: 113).

While ruled surface shells were used in the 1950s and 1960s for many building

types, the issues that Salvadori and Raskin identified plagued most of these designs.

In many cases, the shell structure is very symmetrical and balanced, trying to fight

the inherent tension and anxiety of the shell’s shape and thinness. In only a few

cases, such as the work of Eladio Dieste, was the ability of the shell to cause a

sublime sense of balanced tension exploited. In most of the work of the period there

is an awkward sense of an alien object dropped in place.
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Marcel Breuer and the Ruled Surface

Complex ruled surfaces began to appear in Marcel Breuer’s work in the mid-1950s.

While for most architects of the period ruled surfaces were only used to create shells

and space-defining structures, Breuer’s work shows ruled surfaces both as

sculptural elements and as shells. While there is acknowledgment that the ruled

surface can be used for its structural efficiency, Breuer’s sculptural sensibility is

clearly seen to be driving the form of these elements.

The first use by Breuer of simple ruled surfaces for sculptural elements is evident

in the columns of the UNESCO Secretariat Building of 1955–1958 by Breuer and

Bernard Zehrhaus, with structural engineering by Pier Luigi Nervi. The columns on

the ground floor act as legs to create an open space underneath the Secretariat

building. While the columns are sculpted to impart a sense of muscularity, much as

are the legs of Le Corbusier’s Unite d’Habitation completed 3 years earlier, the

shaping of the columns also has a structural purpose. The legs of the UNESCO

headquarters are created by ruled surfaces where the base curve and the director

curve are lines askew to one another. These skewed lines allow the columns to be

thinner at the bottom and fatter at the top in the transverse direction but fatter at the

bottom and thinner at the top in the longitudinal direction. Besides the mass this

imparts to the columns, the thickening at the bottom allows for greater rigidity of

the column to resist forces in the longitudinal direction while the width at the top in

the transverse direction allows for the column to act as part of a rigid frame bracing

the building. According to press accounts of the time, the credit for the shaping of

columns is assumed to be Nervi’s, but there is no evidence one way or another in the

project correspondence whether the idea came initially from Nervi, Breuer or

Zehrhaus. Breuer himself saw the project as being a collaboration. In a letter to

the New York Herald Tribune on October 8, 1952, Breuer corrects an article that

mentions himself and Zehrhaus, but not Nervi in connection with the UNESCO

building calling Nervi, “co-designer of our team in equal standing” (Breuer 2005:

Series 8.3.5, Reel 5722, Frame 828).

While the UNESCO building used ruled surfaces in a building component,

Breuer’s first large work dominated by a ruled surface was for the Hunter College

Library in the Bronx, New York City, built between 1957 and 1960. The basic

structure consisted of six hyperbolic paraboloid shells placed on singular columns

like inverted umbrellas and fused together. Such a configuration of shells was

certainly not unprecedented. Candela’s “High Life” Garment Factory in Mexico

City of 1955 uses a similar pattern of square, inverted hyperbolic paraboloid shells

to form a roof. A more direct influence is found in the work of Eduardo Catalano, an

Argentinean architect, who is listed as a consultant on the Hunter College job.

Catalano first became famous in the United States as the architect of his own house

in Raleigh, North Carolina built in 1954. The Catalano House, a 1,700 sq. ft. house

roofed by a 4,000 sq. ft hyperbolic paraboloid, was published extensively in the

trade journals of the day. In an Architectural Forum article of 1955, the Catalano

house is featured, as well as Catalano’s own diagrams and models showing how
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hyperbolic paraboloids can be combined to create larger roofed structures (Candela

1955). While the multiple paraboloid combinations in the article do not match the

Hunter College paraboloid configuration, the concept of combining the parabaloids

is common to both.

In the design of the Hunter College Library, Breuer treats the hyperbolic

paraboloid shell much as his contemporaries do, as a thin, weightless, abstract

surface. The shell roof is hidden from exterior view by glass walls on all sides

screened with chimney flue tiles. The glass walls are actually supported by the shell

structure, but their placement on the edge gives the sense that the shell structure is

lightweight and is supported by the glass. The shell is only revealed inside the main

reading room of the library. The construction details give the ceiling a sail-like

quality that belies the weight of the shell. The ceiling, while revealing the use of

wooden formwork for the shell, with raised fillets where concrete was allowed to

seep out between the wooden boards, is painted white, which negates the

materiality of the concrete and further reduces the ceiling’s sense of weight and

mass. The raised fillets from the formwork are unbroken along the rulings of the

hyperbolic paraboloid surface, emphasizing the mathematical geometry of the

shell. Even the roof of the shell is striped with alternate colours, which again

emphasizes the nature of the shell as a geometrical figure and not a mass.

Breuer continues his work with ruled surface columns in a number of office

buildings, but usually not with the structural sophistication of the UNESCO

building columns. Sculpted columns become a feature of Breuer office buildings,

such as the IBM Building in La Gaude, France, or the HUD Headquarters in

Washington D.C. These columns are created using ruled surfaces in the most

basic sense; rectangular solids are cut at angles with planes to create the column

shapes. The use of non-parallel base and director curves, as in the UNESCO

building, is not used again by Breuer except for two projects: the Priory of the

Annunciation in Bismarck, North Dakota, and St. Francis de Sales Church in

Muskegon, Michigan.

At the Priory of the Annunciation, Breuer was commissioned to create a new

priory and college in the plains of North Dakota. The Priory, the first piece of the

campus to be completed, is composed of living and communal areas, a chapel, bell

tower, and cloister. While the living and communal areas are rectilinear buildings,

the chapel and bell tower use ruled surfaces in new ways that close the gap between

the abstract shell of the Hunter College Library and the muscularity of the

UNESCO columns. The Chapel has a shell roof that is in some ways like the

shell of the Hunter College library. The difference between the Hunter College

Library and the Chapel is that the Library has a complete “umbrella” shell

supported by a column, where the Chapel is covered by four halves of an

umbrella shell (Fig. 71.1).

The shells are split in half at the column, allowing the columns to be at the edge

of the space rather than in the centre as with the Hunter College Library. While

placing the columns at the edges allows the space in the centre to be column free, it

does create a problem structurally. The lateral forces, which are balanced in the

complete shell, are not balanced by the asymmetry of the half umbrella. The
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columns need to become buttresses, much in the same way as in a Gothic cathedral

the flying buttresses need to brace the vaults. The columns achieve this through

ruled surfaces which flare out at the bottom to act as buttresses and twist to run

parallel to the wall at the top, much in the way the columns at the UNESCO

building work.

The idea of the ruled surface as a way to brace a column is carried into the design

of the bell banner at the Priory of the Annunciation as well (Fig. 71.2).

The bell banner is a 100 foot high tower that holds a banner surface with a cross

cut into it and underneath the surface, bells. To resist wind pressures due to the

large, flat banner surface, the base of the banner is oriented perpendicular to the

banner. The ruled surface runs the entire 100 foot height of the tower and twists

from the base orientation to the orientation of the banner. The discontinuity of the

ruled surface makes it clear that the ruled surface is not a necessary structural

element, but instead an expression of the forces that are being transferred by the

steel reinforcing hidden within the concrete.

Critical to the development of the bell banner and the priory is the use of

isonometric drawings (plan, section, elevation) to describe the geometry

completely. The geometry of the ruled surface for the bell banner is described

only through elevation, section and plan, with no three-dimensional representation.

In the construction documents for the bell banner, the curving surface is not

apparent, except as rulings between the straight line base and director curves. The

priory roof is drawn in plan and section, but also in two axonometrics for the

construction documents. Studies for the priory roof show a grid of 10 � 20 squares.

This grid is organized into eight larger squares of 5 � 5 grid squares; each large

square is then bisected by two diagonals. The diagonals plot the curvature of the

roof, as shown in an elevation below, with one diagonal showing the maximum

curvature and the other showing the minimum curvature of the shell. As shown in

the drawing, the curvature of the shell is the result of setting the elevation of the

ends of the grid line, the grid is the ruling of the surface.

The ability to show the constructional geometry in isonometric views is critical

to the ability to construct these forms as well. For the bell banner, the construction

drawings show plans at the level of each concrete lift. The formwork would be built

so that the plan outline would be built at the top and bottom of the form. Planks

would then be nailed between the two outlines creating the rulings of the surface

Fig. 71.1 Shell of

annunciation priory chapel.

Drawing: author
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and the sides of the form. Concrete would be poured and the process repeated for

the next lift. The entire curved surface can thus be created by following a series of

outlines.

The Priory roof shell was constructed in much the same way that the vaults for a

medieval cathedral were constructed. From the construction photographs, it appears

that the formwork for the ribs, the lines of the 5 � 5 grid squares, was constructed

first. The ribs set up the system for planking, again the rulings of the surface, to be

laid in straight lines infilling between the ribs. Again, the advantage of the ruled

surface is that the entire surface can be formed by connecting points with a

straight line.

The most dramatic use of a ruled surface in Breuer’s work was at St. Francis de

Sales Church in Muskegon, Michigan, completed in 1967. The side walls of the

church twist upward in a hyperbolic paraboloid for 72 f. to meet beams that are

twisted as well to meet the geometry of sloped, splaying front and end walls. The

church from the exterior seems to be a large, trapezoidal solid with inward sloping

east and west walls and twisting side walls which rise up to hold the roof (Fig. 71.3).

From the inside, a series of structural ribs and beams that hold the building

together as a giant moment frame are exposed. These ribs run east-west and splay

out to match the trapezoidal surface of the east wall and narrow to match the west

wall. The result of this geometry at the roof level are beams that not only need to fan

out from the west wall to the east wall to connect to their respective ribs, but must

also twist in their cross section to connect to the sloping, splaying column ribs

(Fig. 71.4). The side walls, as evidenced by the construction photos, which show the

building of the east and west walls and roof first, are not structural but are only for

enclosure.

Breuer spoke about the use of the hyperbolic paraboloid for St. Francis in an

interview conducted by Shirley Rieff Howarth in 1977:

Fig. 71.2 Bell Banner

geometry, priory of the

annunciation. Digital

model: author
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. . .the hyperbolic paraboloids are used in the St. Francis Church for enclosure and not for

structural support. Now, this is the first time that they have been used for enclosure—they

were never used in this manner before. However, hyperbolic paraboloids have been used in

structure before. An example of this is in the Hunter College Library in New York. . . But in
the St. Francis church, the hyperbolic paraboloids are side walls and they are really

enclosures and purely for space and form reasons—this was not done before (Howarth

1979: 257).

Why was Breuer so concerned to state that his use of the hyperbolic paraboloid

was non-structural? I believe that this had to do with his desire to bring mass and a

sculptural sense to modern architecture. In his lecture “Material and Intrinsic

Form,” the Reed and Barton University Lecture on Design at the University of

Michigan, March 6, 1963, Breuer stated:

With the rebirth of solids next to glass walls, with supports which are substantial in material

but not negligent in structural logic and practical requirements, a three dimensional

Fig. 71.3 Exterior

geometry of St. Francis de

Sales. Digital model: author

Fig. 71.4 Concrete

structural frame of

St. Francis de Sales. Digital

model: author
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modulation of architecture is again in view; the brother or lover of our pure space. Although

not resting on lions or acanthus leaves, space itself is again sculpture into which one enters

(Breuer 2005: Series 6.1, Reel 5718, Frames 1092–1183).

Breuer saw a possibility in the use of these ruled surfaces that Salvadori and

Raskin did not: ruled surfaces used to create mass, scale and connection to the earth.

The ruled surface was not an abstract mathematical form for Breuer, but rather a

method for creating sculptural form using the construction methodologies of the

day. Breuer understood the structural implications of the ruled surface, but he was

also able to look beyond Nervi’s and many other structural engineers’ view of the

ruled surface as simply an efficient structural form. For Breuer, his own sense of the

architectural and sculptural requirements came first in the design, and the structural

implications were understood but did not overtake those requirements. Breuer’s

work was always grounded in the traditional qualities of building in many ways—

mass, solidity and material. It may have been difficult for him to see the new

possibility of expression in lightness and immateriality that Salvadori and Raskin

pointed to. However, by reconciling this geometry with traditional architectural

qualities, Breuer solved many of the problems of the shell seen by Salvadori and

Raskin, bringing new expression to this geometry.
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Chapter 72

Conoids and Hyperbolic Paraboloids

in Le Corbusier’s Philips Pavilion

Alessandra Capanna

The Expo 1958

The Philips Pavilion at the Brussels World’s Fair (Fig. 72.1) is the first of

Le Corbusier’s architectural works to connect the evolution of his mathematical

thought on harmonic series and modular coordination with the idea of

three-dimensional continuity (Capanna 2000).1 This propitious circumstance was

the consequence of his collaboration with Iannis Xenakis, the famous contemporary

musician working at that time as engineer in Rue de Sèvres.2 Xenakis’s very deep

interest in mathematical structures was improved on his becoming acquainted with

the Modulor, while at the same time Le Corbusier encountered double ruled quadric

surfaces.

At the beginning of 1956, Louis Kalff, the art director of Philips Industries,

proposed to Le Corbusier a new kind of participation in the World’s Fair: their

intention was not to expose their products, but rather they wanted a bold show of

sound and light effects, to illustrate what Philips’s technical progress was able to

lead to. “I won’t design a pavilion with façades, I’ll give to you a Poème Électronic
and the bottle containing it!”, answered Le Corbusier (Xenakis 1976). He designed

a building that represented a real synthesis of arts: coloured lights, contemporary

First published as: Alessandra Capanna, “Conoids and Hyperbolic Paraboloids in Le Corbusier’s

Philips Pavilion”, pp. 35–44 in Nexus III: Architecture and Mathematics, ed. Kim Williams,

Ospedaletto (Pisa): Pacini Editore, 2000.

1 Precisely the use of ruled surfaces was yet foreseen for enveloping Chandighar’s assembly hall,

designed during approximately the same period as the Philips Pavilion with the contribution of

Xenakis, as one can learn reading the letters conserved at the Fondation Le Corbusier, Paris.
2 For more about Xenakis, see (Capanna 2001).
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music, the projection of enormous warped images in a space without architectonical

quality. It could be, at the minimum, even a scaffold.

Minimal Surfaces in Three Space

The idea of a container without an aesthetic claim allowed Le Corbusier to think

only about the show; in the meantime he entrusted Xenakis with a “mathematical

translation” of his sketches, which represented the volume of a rounded bottle with

a stomach-shaped plan (Xenakis 1976).

Synthetically, the form of the pavilion had to comply with the following

principle: there was to be a maximum of free volume for a minimum of enclosing

surface. The classical answer is the sphere, but the sphere, beautiful in itself, is bad

for acoustics and is less perceptibly rich than some other double-curved, warped or

skewed forms. In that large family of surfaces they had to single out those

conforming self-loadbearing shells, easy to build in a common reinforced

concrete yard.

Xenakis planned a first solution of the stomach-shaped volume defined by

conoids and hyperbolic paraboloids (Fig. 72.2). The pavilion was enveloped by

the conoid E, a composite surface formed by two conoids A and D, the hyperbolic
paraboloids K and G, the connecting cone L and a couple of empty triangles for the

entrance and the exit. Those warped surfaces culminated on three cusps, 17, 13 and

11 m high.

Fig. 72.1 View of the

pavilion. Photo: Wouter

Hagens
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Some constructive difficulties brought about work on a new project. First of

all, it was necessary to change all conoids3 into hyperbolic paraboloids, whose

straight-lined generatrices made statics calculation easier. This second project was

the fruit of a hybrid of analytic and descriptive geometry.

As a matter of fact it is impossible to arrange all the surfaces of this kind only working with

its algebrical functions. The refinement in curvature and surface dynamism cannot be

imagined by studying its equation. The pavilion must be plastic, above all; for this reason

in an infinity of possible curves we had to choose the best composition of warped surfaces

(Xenakis 1958: 7).

Thus, the new height of the cusps and their consequent projections were

established accordingly on the horizontal plane, so as to increase the dimension

of the central cone L. The first cusp was fixed at 21 m from the ground, the second at

13 m and the third at 18. Afterwards, all paraboloids were modelled in accordance

with the condition that the intersection with the horizontal plane conformed to the

primitive scheme of a “stomach-shaped” plan.

Compared with the first one, this project introduced unchanged the hyperbolic

paraboloids G and K, conforming the principal surfaces for filmed projections; it

redefined and visibly widened cone L, and conoids A, E and D were transformed in

five paraboloids: A, E and B, N and D.Moreover, the paraboloids C and F had been

Fig. 72.2 First project.

Sketch: I. Xenakis

3 Conoids are those ruled surfaces defined by a curvilinear directrix and a couple of straight-lined

directrices.
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inserted. This last one, approached to the curved wall E, delimited the space

necessary for the room of the automation of the show, technical spaces and

services (Figs. 72.3 and 72.4).

This volume still required two pillars for the stability of the whole building.

Xenakis later said that, with the assistance of Mr. Duyster, the Strabed engineer

who suggested building the pavilion in pre-compressed concrete, he decided on

some final modifications in order to abolish all the vertical supports:

Mr. Duyster thought that the cone L and the hyperbolic paraboloid N formed the only

hyperbolic paraboloid later on defined with the M. Geometrical clearness was so improved.

. . . I suggested to him a further slight change to the hyperbolic paraboloids M and B. . . .
Moreover I changed the concave paraboloid C into a convex one: the stability of the very

steeply sloped third cuspid was so improved as well. Then I remoulded the hyperbolic

paraboloids up to the edges of the exit-entrance triangles. The pavilion became completely

self-loadbearing, lightweight and pillarless (Xenakis 1958: 10–11).

From this comes the configuration that makes use of hyperbolic paraboloids,

thus shaping a kind of enveloping form, closed and opened to the world at the same

time through the convergence of its geometrical construction (Fig. 72.5).

Correspondence of Geometrical and Mechanical Properties

in Hyperbolic Paraboloid Shells

In my opinion the fascination of forms derived by the minimal surfaces in design is based

on several properties:

Fig. 72.3 Second project.

Sketch: I. Xenakis
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1. the shapes of minimal surfaces can be astonishing from the aesthetical point of view;

2. the shapes of minimal surfaces allow the optimal use of materials;

3. the structural surfaces with a saddle shape are very stable and resistant;

4. the structures of minimal surfaces have natural geometric rigidity (Almgren 1982).

In 1935, B. Lafaille and E Aimond published their research on the distribution of

forces in thin curved walls, vaults and shells defined by simple ruled quadric

surfaces such as hyperbolic paraboloids and conoids. Mathematicians had long

known those kinds of surfaces, but architects only began designing with this

geometry after the accepted use of reinforced concrete to build modelled

roofings. Frei Otto pointed out the influence of Bernard Lafaille in the

Fig. 72.4 General plan of

the pavilion

Fig. 72.5 Volume
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development of lightweight roofing and tensile structures; he also remarked that at

the Brussels World Fair about 20 pavilions made use of saddle surfaces positively

corresponding to the aims of temporary buildings.

The coincidence of saddle surfaces with minimal surfaces was later denied.4

However, C.G.J. Vreedenburgh, from the University of Technology of Deft,

confirmed all the positive characteristics of such structures. He mathematically

verified that hyperbolic paraboloids, rigidly fixed to the ribs, fulfilled the

requirements of building5; he then provided some charge tests.

Before proceeding to the final construction in the assigned exposition area, two

models were required: one at a scale of 1:25 made with plaster, which served for

studying deformations due to accidental loads, proper weight and the eventuality of

fire; another at a scale of 1:10, built to simulate the reality of setting up the thin

shells; this one was also used to individualize the lines along which to put in tension

the cables, that coincided with the generating geometry. Again, the spirit of

geometry and mathematical theory adhere perfectly with constructive practice.

By testing the elementary deformations, it was possible to verify that in the

enclosing hyperbolic paraboloid shapes, a uniform system of solicitations on the

whole surface takes place: they were all funicular strains up to the edges, along

which the loads are transferred to the foundations in the form of normal efforts.

Owing to the large dimension and to the steep slope of the surfaces, it was

impossible to built them in one piece, therefore experiments with a sort of assembly

Fig. 72.6 (a, left) The double-system of generatrices of a hyperbolic paraboloid; (b, right) Part of
the surface delimited by the intersection of four generatrices: AB, CD, AC, BD

4 See Emmer (2015 (‘Periodical Minimal Surfaces’)); compare with the unconditional statement

taken from Otto (1973).
5 For the detailed exposition of the demonstration coming down from the equation of hyperbolic

paraboloids, see Vreedenburgh (1958).
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system were undertaken. The big paraboloids were divided in portions of around a

square metre, cut according to the irregular network constituted by the intersection

of the generatrices (Figs. 72.6 and 72.7) and then temporarily fixed to a framework

(Fig. 72.8).

Mathematics, Music, Architecture: The Poème Électronic

In any project such as this, scientific thought is a means with which to realize ideas

that have been born of intuition or of some kind of vision, even if they are not of

scientific origin.

In 1954 Xenakis was composing Metastasis.6 He declared that he had some

visual fantasy: straight lines representing the geometrical form of glissandi, which

transformed themselves into an auditory fantasy.

I started from a very simple serial problem: that is how to reach through the 12 sounds a

different formulation of chords. 1 sketched some lines connecting every other single sound

deriving from a chord of 12. Suddenly I thought of those lines as if they were glissando; this

effect of sonorous continuity was linked together with my remote experiences with mass

internal transformations (Restagno 1988).

Metastasiswas the starting point for his compositional research in which science

and mathematics are applied. Paradoxically, he declared that this work was not

inspired by music itself or by some logical principle, but by the impressions gained

during the Nazi occupation of Greece. He listened to the noise of the masses

marching towards the centre of Athens, to the shouting of slogans, to the

intermittent shooting of guns, superposing each other in a chaos. He never forgot

the unforeseeable transformation of the regular, rhythmic noise of a hundred

thousand people into some fantastic disorder.

From the beginning of the 1950s, Xenakis was interested in two compositional

themes. First of all, he wanted to write a kind of dodecaphonic music with the help

of computations, which builds the macroforms out of a few basic principles. In

Metastasis he made computations based on the permutation of intervals, with the

help of the axiomatic approach known in mathematics. In the second place, he was

interested in the continuous change of chords. Let us take, for instance, 6 of

12 notes. We get a harmonic colour. Then let us take the complementary pairs of

those six notes. Once again, we get a harmonic colour. The change between the two

occurs without any transition, abruptly.

6 The orchestra opus in which the Modulor defines a strict relationship between tempo and sound.

The name derives from “meta” that means beyond, after and “stasis” that means immobility. The

problem fascinated the ancient philosophers, beginning with Parmenide and Zenone Their paradox

about Achille and the turtle illustrate the very problem about the contrast between movement and

immobility. At the same time the whole word metastasis recalls the medical way to speak about the

proliferation of carcinogenic cells, as if one can indicate that they are similar to the improvement

of the mass density.
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Coming from the theory of geometrical transformation and from the study upon

sonorous masses—and its regular and irregular variations—the question is whether

it was possible to get from one point to another without breaking the continuity.

In music, if we remain in the same scale, the only solution is a glissando. From
the first six-note group toward the second one we can start in the direction of any

note and in each case we get a different perceptive result. Moreover, if we have

talked about the idea of continuous variation (“continuity charge”), in Metastasis
the parallel development of the idea of discontinuous variation (“discontinuity

charge”), represented by the permutation of intervals and the organisation of time

based on the Golden Section, is very interesting.

In Le Corbusier’s studio, Xenakis ran into fertile ground for his compositive

obsessions. Le Corbusier’s lessons on the mathematical spirit of the Modulor—about

the opposition between the harmony of nature and the intellectualism of rules—

joined forces with his researches on the Golden Section applied to dimensional

changes of scales. Music becomes the image of a continuous movement produced

by its own geometrical structure: a held note becomes a particular case of sonorous

Fig. 72.7 Elementary

quadrilateral
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curve (that is, the straight line) and, on the contrary, we find that the glissandomakes

perceptible a perfect continuity that can go on to infinity.

In Metastasis and in the Philips pavilion, Le Corbusier and Xenakis proved that

the forms used in music and in architecture are closely linked: in the musical work,

this problem led to glissandi, while in the pavilion, it resulted in the hyperbolic

paraboloid shapes. The difference between physical and musical space is that the

former is homogeneous: both dimensions are lengths and distances. In music the

natures of two dimensions (pitch and time) are alien to one another, only connected

by their ordering structure.

In the Poème Électronic the correspondence between music and architecture is

not only a matter of geometry. It was projected by Le Corbusier as if it were an

orchestral work in which lights, loudspeakers, film projections on curved surfaces,

spectators’ shadows and their expression of wonder, objects hanging from the

ceiling and the containing space itself were all virtual instruments. Architecture

played, at the same time, the role of orchestral instrument and of sound box,

container and contents.

The Son et Lumière Show

The Poème Électronic is an alchemy of 10 min length. Going into the pavilion,

one’s sight was lost in a neutral and disquieting space delimited by screen-walls

largely displaying their geometrical construction. Loudspeakers, electro-acoustics

and lighting sets were combined with the strained cable network in a curved interior

where architecture was losing its character to become an allegorical and

Fig. 72.8 Shell’s

assemblage
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apocalyptical show. The Poème was composed therefore from seven sequences,

projected according to a rigorous script.

This subdivision was not, however, in some way perceptible: the show flowed

instead without solution of continuity with the exception of two pauses during

which obscurity and the total silence went down, followed by the apparition of the

object mathematique and of a mannequin that were lit up with ultraviolet light. In

the place of the synthesis of the arts, the organic world of the living subject and the

rational, concerning the intellect, were represented separately. The 8 min of Le

Corbusier’s sequence of images was accompanied by the music of Edgar Varèse

and preceded by a brief interlude, composed by Xenakis: 2 min of concrete music

destined to accompany the projection of an introductory text in English, French and

Dutch. The most intense moments of this brief composition are those in which the

most rapid rhythm succeeds to mix a feeling of granularity and powderines of the

sound with that of perceptive continuity. The organization of time and rhythm are

introduced here as continuity in the discontinuous, as a mass of single discreet

elements. The result is the presentation, also in this very inner detail of the poem, of

the general theme of the work, that of continuity. The introduction of the acoustic

phenomenon as the element of dominion of the forms confirms the theory according

to which the geometric-mathematic rule constitutes the common base of the

architectural and musical compositions.

The novelty of the twentieth century, expressed in the Philips Pavilion, is the

overcoming of a geometry that governs the simple repetition of crystallographical

elements, in order to adopt more complex systems with independent and not

homogeneous variables in comparison to the unit of measure. The introduction of

the fourth dimension in the built space, after having discovered it in the abstract but

equally real realm of mathematics, is not an automatic operation. To the three

dimensions of Euclidean geometry is generally added the unit of measure of

the time to make perceptible the effect of movement. A pictorial representation,

or at least a sculptural one, of architecture, such as in a work of Boccioni,

cannot exhaust the search of new spatial quality in architecture.

For Le Corbusier, the expression of beauty would still seem to derive from

exactness, from a strong resistance to discord and from an iron will to oppose

randomness—as is apparent from his reflections on the form of houses and cities;

but the creation of the Philips Pavilion sketches the advent of sceneries in which the

rule can be also that of the random or that of light and sound diffusion. In fact,

the Poème Électronic predicted the deconstruction of music and of architecture: the

same necessity, more than 10 years after the demolition of Philips Pavilion, was

demonstrated, for example by John Cage, in the refusal of both dodecaphonical

tyranny and the rigidity of the roles inside the places appointed for the listening.

In the same way the space of the pavilion was flexible and the public could assume

different positions to follow the show. Music and noise were always on the point of

trespassing the one into the other. Deformity not only represented an ugly alteration

of the form, but also constituted a first idea in the studies on the modification of

architectural geometry. Double ruled quadric surfaces had freed the plastics of the
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volume, and with it the sonorous materials, conducting composition to the limit of

disorder, without yet going beyond it.

“The splendid result was the natural gift of numbers. The implaccable and

magnificent play of mathematics” (Le Corbusier 1954: 55). Music and architecture

are thus inserted once again in the historical-scientific tradition that from pre-Socratic

philosophy leads to contemporary mathematics, assuming eternal forms and

innovating subject matters.
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Chapter 73

Oscar Niemeyer Curved Lines: Few Words

Many Sentences

Benamy Turkienicz and Rosirene Mayer

Purism imposed a very heavy limitation in that the free plan
could occur only within the boundaries of pure geometric
forms

(Zevi 1974; our trans).

I am attracted by free-flowing, sensuous curves. The curves I
find on the mountains of my native land in the sinuous course
of its rivers in the clouds in the sky, and on the body of the
beloved woman

(Oscar Niemeyer, quoted in (Petit 1995)).

Introduction

This study is aimed at the description of the curves that identify the architecture of

Oscar Niemeyer and it is based on the geometrical structure of the identity of

buildings belonging to the so-called style of Niemeyer.

As opposed to the well-known discipline of Corbusier and Wright, Oscar

Niemeyer is widely known for his inventive attitude and conceptual freedom,

both associated with the use of curved surfaces, often called “free forms.” While

Corbusier and Wright postulated the importance of certain elements of control such

as the Modulor (Corbusier) and the grid (Wright), Niemeyer preferred to leave the

“theoretical” background of his designs at discrete levels, to the extent that his lack

of explanation has occasionally been interpreted as the opposite, that is, that every

individual building had been the result of a spontaneous act of will related to the

so-called “architectural inspiration” (Turkienicz 1994).
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The expression “free forms” raises two, more general questions related to the

geometrical identity of Niemeyer’s architecture:

1. that of the apparent paradox between the concept of free forms and individual

style;

2. that of what elements and geometrical relations are determinant for the

identification of an individual style.

The first question refers to the relationship between design freedom and shape

control: the concept of design freedom associated with the recursive use of

curves “free forms” may well suggest the absence of control, i.e., the idea of

randomly generated curves. Paradoxically, the identification of individual

styles and architectural languages does require a family resemblance between

buildings, implying that Niemeyer’s “free forms” are not as free as they

may appear.

The second question addresses the rationale behind the identity between buildings:

architects such as Kenzo Tange, Frank Lloyd Wright, Alvar Aalto, Eero Saarinen,

Louis Kahn, Le Corbusier and the Uruguayan Eladio Dieste, among others,

associated the circumference or the arc with orthogonal forms. However, the way

Niemeyer selects and utilizes the curves substantially differs from these architects.

His choice is clearly distinctive, in that he can create unique buildings out of a very

limited range of curves without primarily associating them with orthogonal forms.

Amidst the variety of curvilinear volumes designed by Niemeyer, such as the

Bobigny’s Employments Office and the recent Contemporary Art Museum of

Niteroi, Brazil, it is possible to trace a formal identity to the extent to which these

buildings can be identified as belonging to an individual style or architectural

language. The identity between these curves or “free forms” unequivocally unveil

the main stylistic attributes of Niemeyer’s architecture.1

Architectural critics have left unexamined the geometrical foundations of

Niemeyer’s architecture, and have thus failed to identify some important aspects

related to sophisticated mechanisms of shape generation and shape control applied

by the Brazilian architect in buildings with curved shapes. The present study will

help demonstrate that Niemeyer not only systematically uses classical dimensional

control mechanisms (rules of proportion) but is able to generate singular buildings

out of a limited (and thus predictable) vocabulary of curves and a sequence of less

predictable mathematical operations.

The study is not concerned with a formal approach. It deploys instead a graphical

description of the relationships that characterize the language of Niemeyer’s curves. It

1 The identification of these attributes as parts of a language has lead to the basis of what can be

described as a Niemeyer’s first shape grammar. The construction of the grammar was based in the

analysis of 20 buildings designed by Niemeyer between 1943 and 2003, all of them with curved

surfaces. In the study a comprehensive vocabulary of curves is shown in detail in addition to the

description of the dimensional control mechanisms pervading the architectural language of

Niemeyer. See Mayer (2003), Mayer and Turkienicz (2005a, b).
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should be understood as a preliminary step towards the depiction of the grammar that

Niemeyer has used in his projects throughout his almost 70 years of professional life.

The chapter is divided into four parts. In the first part, the structure of

Niemeyer’s architectural grammar is briefly introduced. In the second part, the

main argument of this chapter is developed through the description of Niemeyer’s

vocabulary of curves, followed by the third part, the representation of the

dimensional control mechanisms (rules of proportion) observed in the buildings

analyzed. The fourth part, the conclusion, refers to possible steps that might unfold

as future developments for this work.

Generative Processes in Niemeyer’s Style

To create a shape grammar for the description of Niemeyer’s architecture, a model

based on the idea of Shape Grammars (Stiny 1975; Gips 1975) was applied in the

description of the volumetry of 20 buildings designed by Niemeyer between 1941

and 2003 (Mayer 2003) (Fig. 73.1).

These 20 buildings have in common the use of curved shapes (mainly conic

curves, specially the parabola). Assuming that all 20 buildings were different from

each other, the goal was to describe their volumes (according to the Shape Grammar

model) using the smallest set of rules and operations. In order to assess their

generative aspects, shape schematic building plans and facades were drawn. The

drawings formed the basis for the correlation between the generatrix and the

directrix with the depiction of the operations necessary to the generation of the

surface of the volume of each building.

The generative elements of the volumes’ surfaces (generatrix and directrix)

correspond to the vocabulary of curves and line segment. Operations for the

generation of the initial volume were rotation and translation. A reference structure

was set so as to enable the description of the rules based upon axes for generative

elements as well as for the operations. Generative rules for volumetry were described

according to the relations between the generative element’s axes (generatrix and

directrix) and the axes of the generative operations: the position and the inclination

angle referred to the generative element and to the direction of the operation related to

the generatrix. Other determinant rules, as far as form is concerned, regard the

selection of the generative elements (vocabulary) and the number and existence or

not of similarities between the directrices.

After the generation of the initial volume the generative process evolves

throughout a series of complementary operations including reflection, translation,

scaling, intersection, addition and subtraction. Niemeyer apparently explores

possibilities of the generated initial shapes with these complementary operations.

The combination of the initial and the complementary operations, within

Niemeyer’s chosen vocabulary, gives rise to an immense set of alternative

designs (Fig. 73.2).
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Fig. 73.1 Twenty buildings designed by Oscar Niemeyer between 1941 and 2003, that have

curved shapes as a common feature. Image: authors
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The study of Niemeyer’s language and its generative steps has shown that

cognitive aspects related for example, to the environment context (and its

relations with the definition of the rules or with the generative steps) are relevant

for the description of his language (Mayer and Turkienicz 2005b).

The next section explores some generative aspects related to Niemeyer’s

vocabulary of curves.

Fig. 73.2 Diagram showing the sequence of rules that generate the buildings selected for the

sample. Image: authors

73 Oscar Niemeyer Curved Lines: Few Words Many Sentences 393



Curves in Niemeyer’s Style

In Pampulha my architecture’s plastic vocabulary began to be defined, like an unexpected

game of straight lines and curves (Niemeyer 2004: 153).

The description of Oscar Niemeyer’s architectural language according to a shape

grammar has unveiled the relative importance of the curve as a formal determinant

generative element and hence for the perception of a kinship relation between

buildings. In this study a detailed description of this shape grammar has been

made, along with the description of the vocabulary and of the curve’s grammar.

The process is complementary to the characterization of the architect’s generative

process and had two goals:

(a) To characterize the kind of curved geometry identifying Niemeyer’s

architecture;

(b) To shed some light on the strategies involving different utilizations of the curve

in the generation of elements and surfaces in Niemeyer’s architecture.

Considering the curved line as Niemeyer’s initial form, a preliminary

classification of the curves present in the sample analyzed was made. In

mathematical terms, he utilizes curves segments, polynomial and parametric. We

have identified two types of recurrent curves: (1) conic curves, specially the

parabola, and (2) the “composite” curve.

Conic Curves

The parabola is the most frequent of all curves found in the sample examined.

Different parabolas in different scales were identified (parametric shapes) In order

to examine the parametric shapes, an AutoCAD script using a Visual Basic

application was developed for the computational generation of parabolas and to

allow a parametric description of these curves:

The p parameter (distance from the focus to the directrix d ) and the height

(y coordinate) having the vortex positioned in (0, 0) may be specified through the

parabola generator (Fig. 73.3). The line segment AB can also be specified through

the coordinates A (x, y) and B(x, y).2

A comparative scheme was elaborated to demonstrate the transformations from

the initial parabolic shape to the actual buildings where this curve is observed

(Fig. 73.4). The scheme helped us to track transformations from the initial shape

and, at the same time, to identify the basic elements common to all buildings by

Niemeyer that were analyzed.

2 Parabolic lines were utilized as generatrices or directrices combined with line segments or in a

simultaneous manner as depicted by the grammar of Niemeyer’s 20 buildings designed with

curved shapes.
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Hyperbolic and elliptical curves are used less frequently. For example, the

columns of the Justice Palace may well be associated with the equilateral

hyperbole; in the Cathedral of Brasilia, despite the probable association with the

hyperbole, the curve fits better along a parabola; the shape of the Cathedral’s

baptistery is the resulting of the revolution of ellipses about its transversal axis

(Fig. 73.5).

Fig. 73.3 Parabola generator: an AutoCAD script using a Visual Basic application. Screen shot:

authors

Fig. 73.4 Comparative scheme of the parabolic occurrence in different buildings designed by

Niemeyer. Numbers indicate the correspondent building from the sample in Fig. 73.1. Image:

authors
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Composite Curves

. . . when I decided to adopt the cupola at the National Congress building . . . I have tried to
work it in a plastic manner, modifying it, turning the curve upside down, trying to make it

lighter . . . In the Senate’s cupola, overriding the self bearing characteristics offered by the

primitive shape the hemisphere and departing from the supporting circle line I have

designed straight lines aiming at the same sensation of lightness . . . After inverting the

National Congress cupola I explored its lines horizontally aiming at two goals: to increase

the internal visibility angles and, at the same time, trying to give the sensation as it has

simply “landed” at the Congress rooftop. I remember Joaquim Cardozo’s telephone call:

“Oscar, I have found the tangent which will allow the cupola to be set free, according to

your will” (Niemeyer 1993: 12).

The transformations suggested by Niemeyer were performed on the vertical

section, that is, from the curvilinear vertical profile. In his design for the

Brazilian National Congress, Niemeyer departs from the hemispheric cupola,

transforming its profile to achieve the configuration of a curve with the profile of

a parabola (Fig. 73.6). This sort of transformation gives rise to the so-called

composite curves which, in turn, in Niemeyer’s buildings, fall into two

categories: mixing of lines and composition of lines.

Fig. 73.5 Some conic curves in Niemeyer’s buildings. Photos: authors

Fig. 73.6 The National Congress: modifying curve from the vertical profile. Photo with overlay:

authors
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Composite curves are a designation adopted in this study for the composition of

curves: considering the straight line a special case of curve (first degree

polynomial), mixed lines constitute a special case of curve composition. In the

following section operations and rules utilized in the generation of this kind of

curve are described.

Mixed Lines

In Niemeyer’s vocabulary “mixing of lines” designates those lines defined by the

composition of arcs unified by line segments. Primitives for the mixing lines

(or original forms of the vocabulary) are, consequently, the arc and the line

segment. In the spatial relation “arc and line segment,” the following rules were

identified:

– In vertical profiles line segments are tangent to curves, and are therefore

perpendicular to the circumference radius which bypasses the tangency point.

Thus the tangent line’s inclination angle with respect to the axis on the AO

segment (height) of the arc is inversely proportional to this segment’s dimension

(Fig. 73.7);

– When the arc is a semi-circumference (plain arc) tangents bypassing the curves

extreme parts are parallel to the AO segment;

– The plan analysis has allowed the identification of other spatial relations, beyond

those found at vertical planes. These are:

• The use of the arc over 180� in horizontal sections along with tangent lines or
curves;

• A clear composition of lines where Niemeyer “softens” the corners with the

concordance of arcs (Fig. 73.8);

• Mixed lines are generated along with operations such as rotation, translation,

reflection, intersection, scale and addition. Figure 73.9 shows examples of

these generative rules.

Composition of Curves

I defined then the museum’s profile. A line which springs from the ground, and without

interruption grows and unfolds, sensually, up to the roof (Niemeyer 2000).

Composite curves are constituted by the composition of curved lines of different

radii, alternating concave and convex lines (sinuous lines), or by a sequence of

concave segments. The analysis has shown that Niemeyer frequently used a

sequence of parabolas or arcs of circumference of different diameters

(Fig. 73.10). The composition primitives the initial forms of the vocabulary are

therefore the arc and the parabola.
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The arc establishes spatial relations with other curves as secant, non-secant and

tangent (Fig.73.11).

As for the sample’s distribution of the curve types, 70 % have their origin in the

parabola; the composition of curves takes place predominantly in the horizontal

plane.

The percentile refers to the number of buildings with the curve incidence; an

overlapping of different types of curves occurs in many buildings in the sample

analyzed:

Fig. 73.7 A scheme of the tangency relation between curve and line segment in mixed lines.
Image: authors

Fig. 73.8 In straight lines compositions Niemeyer “softens” the corners with the concordance of

arcs. Image: authors

398 B. Turkienicz and R. Mayer



– Mixed lines occur both in the vertical as in the horizontal planes (more

alternatives are found in the horizontal plane);

– Composition of curved lines is predominant in the horizontal level;

– More frequent curves vary, in the average, between arcs of 45� to 180�.

Fig. 73.10 Restaurant and boat house, Rio de Janeiro, 1944. Image: authors

Fig. 73.9 Generation of designs based on mixed lines. Image: authors
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Geometrical Composition’s Strategies

– In composite curves that constitute vertical profiles generatrices or directrices of

surfaces the straight line or a parabolic line is generally used to create a transition

between the curve and the ground level (with lines closer to the tangent to the

curves);

– In vertical planes (such as pillars) the curve touches down with a proportionally

thin section, i.e., the “thin edge” column (Mayer 2003: 33) (Fig. 73.12);

– The relation between the curve and the volume generated;

– Closed composite curves constitute horizontal planes (generally canopies) or

directrices in the generation of one floor volumes situated aside or underneath

buildings;

– A frequent composition associates a cylindrical form with a circular or elliptical

base and a sinuous canopy (concave–convex curve), such as the restaurant and

boat house in Rio de Janeiro, 1944 shown in Fig. 73.10.

Fig. 73.11 The arc establishes spatial relations with other curves: secant, non-secant and tangent.
Image: authors

Fig. 73.12 The thin edge column: “. . . the palaces like just touching the ground . . .” (Niemeyer

2004: 180). Image: authors
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Proportions in Niemeyer’s Style

In the literature about Niemeyer’s designs and his written work no relevant

references are made concerning his attitude towards the use of proportions or

dimensional control mechanisms. In his writings he does refer to the importance

of linking plastic freedom to rules of proportion: “we guarantee absolute freedom of

conception, within, of course, proportion rules that architecture has always

required” (Corona 2001: 83).

In the Modulor, Le Corbusier describes the golden section and the Fibonacci

series “as rhythms apparent to eye and clear in their relations with one another. And

these rhythms are at the very root of human activities.” Lucio Costa, Niemeyer’s

first mentor, insisted on the importance of the understanding of proportion for the

achievement of harmony in designs: “. . .It is advisable for would be architects to

have from the very beginning of their education a perfect notion of the meaning of

proportion, modulation and modinatura. . .” (Costa 1995: 117).
Before developing the Modulor, Le Corbusier used in his designs a composition

system based in rules of proportion (tracés régulateurs). As Niemeyer was strongly

influenced by Costa and Corbusier, we have assessed the 20 buildings analyzed in

search of proportions eventually used in the design process. The proportional

analysis of the sample has revealed many relationships between parts of the

building; all of them referred to the golden section.

Some early examples of these relations of proportion are found in his project for

the airport in Diamantina (1954) (Fig. 73.13), where the (A0, a0) rectangle arises out
of the relation between the building’s total width (a0) and the building’s total length
(A0). Two golden rectangles (B0, b0) are shown demarcating the main access to the

building and the front yard. The (C0, c0) rectangle is inferred from the airport’s total

length and is, subsequently, divided as to generate (D0, d0) which demarcates the

stone wall. From D’s subdivision also emerge (F0, f0), (G0, g0) and (H0, h0), (g0)
corresponding to the building’s maximum height and (h0) the distance between the

tangent to the parabola and the building’s geometrical center. The dimensions of the

stone wall generate in turn the golden rectangle (I0, i0).

Conclusions

Some spatial relations, such as the connection of pair of arcs through lines or

directrices composed by multiple curves (Fig. 73.14), are more frequent at the

beginning of Niemeyer’s career namely at the Pampulha project and others,

becoming more rarefied from the 1960s (that is, after Brasilia). This strategy

remains present from there on in the generation of horizontal planes (canopies)

connecting volumes or ramps (parallel lines) or as directrices constituted by two or

three lines.
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It seems quite clear that the original steps of Niemeyer’s strategy are based on

two types of curves: in the parabola and in the arc of circumference added by the

line segment. Departing from these two curves, he further develops operations such

as rotation, translation, reflection, intersection, scaling (parametric curves) and

addition. The parabola is, by far, the most recurrent curve in Niemeyer’s

buildings both in the vertical as well as in the horizontal planes.

However, in the horizontal planes we find the majority of spatial relations and

consequently more freedom for new combinations within his vocabulary of forms.

Some patterns will be found only in the horizontal planes.

Fig. 73.13 The proportion analysis: regulating lines based on the golden section. Image: authors
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The graphic description through schematic drawings has allowed the

visualization of curve types and has enabled the depiction of their origin. The

drawings, based in orthogonal projections, allowed the dissection of buildings

into their geometrical primitives and the identification of the tracés régulateurs
originated in the golden section.

It is impossible to know whether or not Niemeyer has used the golden section in

his design process. The relevant issue here is that there exists enough evidence to

postulate that Niemeyer used classical rules of proportion as an intrinsic feature of

his work even in his very recent projects. The identification of the geometrical

structure of Niemeyer’s language is the key factor for the analysis and the

syntactical description of his work. This description does not have as its goal the

retrieval of Niemeyer’s design processes but rather seeks to create the conditions

for the generation of buildings according to Niemeyer’s language. In this respect,

the generation of buildings using Niemeyer’s curves may be understood as an

addition to the work developed, for example, by Koning and Eizenberg (1981)

and Pinto Duarte (2004), who have generated buildings that could have been

designed by Wright or Siza Vieira.

The knowledge that results from the study of Niemeyer’s language may well be

implemented as a pedagogical tool for the beginning years of architectural

education. It is quite evident that the multiplicity of combinatorial possibilities

based on spatial relations and simple geometrical transformations existent in

Fig. 73.14 Some compositions that were more frequent at the beginning of Niemeyer’s career.

Image: authors
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Niemeyer’s language are easily learned and applied. A simple example of this

application is given in Fig. 73.15, where a student was asked to design according to

Niemeyer’s style.

The example illustrates that once the geometric structure is made clear, it is

possible to correlate formal control mechanisms without the usual restrictive

character but as creative tools that are constantly fed by almost infinite

combinatorial possibilities of the chosen language.

This study has analyzed only buildings generated from a curved profile or

constituted by curved surfaces. The extension of the analysis towards other

geometries also present in Niemeyer’s work will certainly add other relevant

elements to the knowledge about his language and architecture.
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Fig. 73.15 A new design generated thanks to Niemeyer’s shape grammar. Image: Authors
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COSTA, L. 1995. Lúcio Costa: registro de uma vivência. São Paulo: Empresa das Artes.

GIPS, J. 1975. Shape Grammars and their uses. Basel: Birkhäuser.
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Chapter 74

Dom Hans van der Laan and the Plastic

Number

Richard Padovan

Introduction

The “plastic number” is the system of measure discovered in 1928 by the Dutch

Benedictine architect Dom Hans van der Laan (1904–1991). In fact he regarded it

not as a discovery but as the rediscovery of a forgotten system widely known in

ancient times. Nevertheless, in my view it is the first fundamentally new system of

architectural proportion discovered for at least 2,000 years. It is new both in its

mathematics and in its philosophical underpinning. I will start by describing a

problem with the older philosophies that van der Laan’s theory sets out to

overcome.

Collapse of the Ancient Cosmological Basis of Architectural

Proportion

Up to and including the Renaissance it was believed that the natural world had been

designed in accordance with a great mathematical order. We are all familiar with

medieval illustrations of Genesis showing God as Architect creating the heaven and

the earth with the aid of a huge compass; for God, the Bible tells us, “set a compass

upon the face of the earth”. And not only upon the face of the earth but also upon the

human body. The most famous of all proportion diagrams is Leonardo’s illustration

of Vitruvius’s statement that if a man lies on his back with arms and legs
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outstretched, and a compass placed with one point at his navel, the other will graze

the tips of his fingers and the soles of his feet. Le Corbusier’s “Modulor Man” is a

recent descendant of this ancient idea. Now, if the universe and all it contains,

including our own bodies, are governed by a divinely-ordained harmony, what

could be more reasonable than to apply the same harmony to the things we add to it:

architecture and other works of art?

The ancient belief in “a celestial and universally valid harmony” sustaining

architectural proportion was undermined, according to Rudolf Wittkower, by the

scientific revolution of the seventeenth century, which replaced it by a universe of

mechanical laws, of iron necessity with no ulterior plan, “a universe in which the

artist had to find his bearings by substituting purely subjective standards for the old

super-personal ones” (Wittkower 1978: 117).

Paradoxically, the universe revealed by Galileo and Newton, and later by

Einstein, Bohr and Schrödinger, is more completely mathematical than the

ancient cosmos, not less, so one might expect it to have inspired a resurgence of

mathematical proportion in art rather than to have killed it. But the new

mathematical universe is no longer, like the old, an architectonic whole—a sort

of house—hierarchically ordered and delimited, with mankind at its centre and the

sky and fixed stars as a protective roof. There is a beautiful passage in one of Primo

Levi’s books which describes the contrast very well:

Now, the sky which hangs over our head is no longer domestic. It becomes ever more

intricate, unforeseen, violent and strange; its mystery grows instead of decreasing; every

discovery, every answer to old questions, gives birth to thousands of new questions.

Copernicus and Galileo had wrenched humanity from the centre of creation: it was only

a change of location, yet many felt deposed and humiliated by it. Today we realize much

more: that the imagination of the artificer of the universe does not have our limits, indeed

has no limits, and our astonishment also becomes limitless. Not only are we not at the centre

of the cosmos, but we are alien to it: we are a singularity. The universe is strange for us, we

are strange in the universe (Levi 1991: 12).

The loss of the familiar “domestic” universe, and the absence of limits in the

new, intangible universe revealed by science, are central to the philosophy

underlying the plastic number. But we must first look briefly at other modern

responses to the problem.

Since the seventeenth century, Wittkower writes, art has been driven by “an

irrational creative urge” (1978: 117)—that is, by a reliance on the subjective

judgement of the individual artist. But not all artists took this route. Since the

mid-nineteenth century there have been continued attempts to construct a new

objective foundation for proportion in art and architecture. The existence of the

“Nexus: Relationships Between Architecture and Mathematics” conference series

exemplifies this. These attempts have been most commonly associated with the cult

of the golden section as an aesthetic paradigm.

Some have tried to give the golden section an objective justification by

subjecting it to statistical testing. Gustav Fechner is the outstanding example,

although he set out to disprove, not prove it. The trouble with this approach is
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that the more rigorous one wishes to make the test, the more one must eliminate all

variables. The result, as Rudolf Arnheim has observed, is that

“the more strictly investigators adhered to the criterion of preference, the more completely

their results neglected everything that distinguishes the pleasure generated by a work of art

from the pleasure generated by a dish of ice cream” (Arnheim 1986: 45).

The other route that has been followed is, in effect, to reconstruct the ancient

cosmological argument, but now on the basis of the golden section. In the 1850s the

polymath Adolf Zeising—mathematician, philosopher, poet, novelist and

playwright—claimed that the golden section was the key to plant growth, the

skeletons of animals, the proportions of chemical compounds, the geometry of

crystals, the physics of light, sound and magnetism, the disposition of the heavenly

bodies, and—not surprisingly—to that touchstone of ancient proportion theory, the

human body. From Zeising to Le Corbusier, the body constantly reappears as the

preferred example, but now—miraculously—we discover it to be subdivided

according to an irrational number, the golden section, and no longer, as Vitruvius

and Leonardo believed, rationally divided into aliquot parts. Thus much modern

proportion theory is a thinly disguised version of the ancient religious belief in a

God-designed universe, except that it is now based on the so-called Divine Proportion.

A typical example is Le Corbusier. In Towards a New Architecture he argues that

We say that a face is handsome when the precision of the modelling and the disposition of

the features reveal proportions which we feel to be harmonious because they arouse, deep

within us and beyond our senses, a resonance, a sort of sounding-board which begins to

vibrate. An indefinable trace of the Absolute which lies in the depths of our being . . . This is
indeed the axis on which man is organized in perfect accord with nature and probably with

the universe . . .; this axis leads us to assume a unity of conduct in the universe and to admit

a single will behind it . . .If the results of mathematical calculation appear satisfying and

harmonious to us, it is because they proceed from the axis (Le Corbusier 1946: 187–193).

So the biblical Creator who “ordered all things in measure and number and

weight” is still active behind the scenes, but now concealed in a sort of agnostic

disguise as the “single will” that accounts for the unity of nature. This universal

harmony, of which as products of nature we are supposed to be intuitively sensitive,

is allegedly the underlying cause of our aesthetic response to the proportions of the

things we see.

Van der Laan’s Empiricism

Van der Laan’s approach is altogether different. I shall outline the following ways

in which it differs from both ancient proportion theory and such modern variants as

Le Corbusier’s:

1. It is entirely empirical, and not based on any metaphysical belief in a designed

universe;

74 Dom Hans van der Laan and the Plastic Number 409



2. It is concerned primarily with scale rather than shape;

3. It is not concerned with precise measures but with “types of size” with a “play”

between lower and upper limits. This play, which is determined by human

psychology and not by any external datum, constitutes the basic proportion of

the system;

4. The proportions do not extend indefinitely, but are contained within a limited

number of “orders of size”;

5. The system is intrinsically three-dimensional;

6. Proportion is for van der Laan the key to the formation of architectonic space;

7. Furthermore, it plays a formative role in human society.

The first difference from previous theories is that van der Laan’s does not depend

on any explicit or implicit quasi-religious belief in a divine creation or in the human

body as a microcosm of the universe, such as one finds even in Le Corbusier’s

argument for the Modulor. Although as a Catholic priest van der Laan himself

believed that God created the world, no such belief is demanded by his theory of

proportion, which is entirely empirical. It is equally valid if you believe that nature

is the product of blind chance. That is why in my book Proportion (Padovan 1999) I
compare van der Laan to such eighteenth-century philosophers as Hume and Kant.

The plastic number is not derived from the order of nature as such, but from our

inability to discover that order except through the filter of our senses and intellect.

To grasp the phenomena that nature presents to us, we must impose upon them our

own human, intellectual limits. By accepting our limitations and making them its

foundation, the plastic number seeks to overcome the alienating limitlessness of

nature described by Primo Levi, in particular the limitless continuity of natural

space.

Being empirical, the aim of the plastic number is genuinely aesthetic: not in the

modern but in the original Greek meaning of the word, which concerns not beauty

but perception. The word “beauty” hardly occurs in van der Laan’s vocabulary. His

argument for the plastic number is not based on the alleged beauty of a particular

shape—the golden rectangle or any other—but on the limit of our ability to perceive

differences of size. Its ground-ratio or basic proportion is that size-difference

between two objects that is just enough to be instantly recognizable, even when

the objects are seen separately and cannot be measured directly against each other.

Psychologists estimate the smallest difference that can be distinguished by the eye

when two sizes are compared directly as about 4 % of the sizes concerned. But the

instantly recognizable difference that concerns van der Laan is much larger, as we

shall see: about 25 %.

I am indebted to the Dutch architect Leo Tummers for an elegant illustration of

this phenomenon. Many years ago, a visitor told van der Laan that a new length of

cigarette had just been introduced, called “King Size”. Van der Laan asked to

compare examples of both types of cigarette. The difference turned out to be almost

exactly the basic ratio of the plastic number. Asked how he knew this would be the

case, he answered that it was inevitable. The manufacturer’s choice of length must

be governed by two parameters: on one hand the new must be recognizably longer
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than the regular one, but on the other he wants to give as little extra tobacco as he

can get away with. Therefore the King Size has to be the first size just large enough

to be obviously larger than the normal one.

Measuring and Counting

We cannot measure continua, only count individual things. We can count exactly

the number of individuals in this room, because each of us is an indivisible unit, but

if we want to measure our heights we must resort to some conventional unit such as

the foot or metre. We can then measure our heights to any desired accuracy as

multiples or submultiples of that arbitrary unit. Such measurement serves well

enough in practical affairs, but architecture, for van der Laan, demands a kind of

measure that recognizes the continuity of natural space and derives from that very

continuity the limits necessary to make it tangible for us.

Van der Laan writes in Architectonic Space that the house (which, by the way, is
his general synonym for all architecture: for him every kind of building, and indeed

every city, is just a particular kind of house) is above all a means by which we give

measure to the boundless space of nature. He draws an analogy with music, which

gives measure to time in a similar way. It is not a matter of “measuring up”, in the

sense that we measure up space with a metre rule, or measure time with a clock, but

of “measuring out”: imposing measure on what is otherwise measureless:

The house must therefore bring us into intellectual contact with the continuous quantity of

the spatial datum. Hence the quantity presented to us in the space and form of the house

must embody its own unit and number, just as both unit and number are given in the discrete

quantity of the things we count (van der Laan 1983: 47).

In short, one can say that the plastic number differs from previous systems of

proportion in that it is primarily concerned with scale rather than shape. Certain
preferred shapes do arise from it, but these are secondary. The essence of the system

is relative size.

Types of Size

Being empirical, the plastic number is not, like Le Corbusier’s Modulor, a fixed set

of mathematically exact measures, but a series of approximate relations derived

from everyday experience. It starts out, as I said, from the observation that spatial

quantity is a continuum, as opposed to the discrete quantity of individual things that

we count. In order to quantify this continuum in some way, it breaks it down into a

series of segments or “types of size” contained between certain limits (Fig. 74.1).

The upper limit of a smaller type of size coincides with the lower limit of the next

larger type. The succession of types still forms a continuum, like space itself, but
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the continuum now comprises a sequence of discrete, and therefore perceptible,

segments. The extent of the type constitutes the basic proportion or ground ratio of

the plastic number.

This is how, in everyday life, according to van der Laan, we deal with the endless

continuity of sizes we encounter in nature: by sorting them roughly into types of

size. When it is hard to distinguish from one another a certain group of objects, we

say that they are “of the same type of size”. We do not bother with the size of each

individual leaf on a tree or each pebble on a beach, but classify them as small,

medium, large, and so on (a bit like the SMLXL used by clothing manufacturers).

The first object that is unmistakably larger than those of a first type becomes the first

representative of a first larger type. The King Size cigarette was just large enough to

be unmistakably larger than the familiar one. Van der Laan demonstrated the

grading process empirically by inviting his visitors to grade a collection of

pebbles (Fig. 74.2). First the group of largest pebbles is picked out, until a pebble

appears that is definitely too small to belong with the others. This becomes the first

of a second type of size, and so on.

Orders of Size

As soon as we establish the point at which two sizes begin to differ just enough to

belong to recognizably different types, we automatically determine also the limit of

what van der Laan calls an order of size: that is, the limit beyond which two sizes

cease to count for each other. The addition or subtraction that just begins to change

the type of a given size is by definition the smallest portion of that size that still just

counts for it. So like the type, the order is contained between two limits: a smallest

and a largest size that still just count for each other—or just begin not to count,

which amounts to the same thing. The order of size embraces seven consecutive

types, contained between eight measures (Fig. 74.3).

Fig. 74.1 A breakdown of

a continuum into a series of

segments or “types of size”

contained between certain

limits. Image: author
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The system generates a limited range of eight clearly distinguishable shapes,

which can be expressed by the simple numerical ratios 1:1, 4:3, 7:4, 7:3, 3:1, 4:1,

16:3 and 7:1 (Figs. 74.4 and 74.5). The extreme proportion allowed by the plastic

number is thus 7:1. Here it contrasts with most other systems—in particular, with

Le Corbusier’s Modulor.

The proportions of the Modulor form a limitless geometric progression; they

recede in infinite proliferation. Only the immediate relation between the whole and

its two parts is readily graspable. But the eight proportions of the plastic number are

held firmly between a lower and an upper limit, analogous to the octave in music.

And just as the type and order of size are each defined by a lower and upper limit, so is

proportion as such. The lower limit is provided by the extent of the type of size, the

upper limit by the extent of the order of size. Van der Laan sums this up as follows:

Within the limits of a type of size we call all concrete sizes identical; there is as yet no

question of proportion.

Within the limits of an order of size the types of size can be compared with each other;

here it is a question of proportion.

Beyond the limits of an order of size no relation is any more possible between types of

size; there can no longer be any question of proportion (van der Laan 1967: 30).

Fig. 74.2 The grading process of size applied to pebbles. Image: author

Fig. 74.3 The order of size embraces seven consecutive types contained between eight measures.

Image: author
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A System Based on Three Dimensions

The obvious question is: how can the extent of the type and order of size be

established objectively? The empirical demonstration using a set of pebbles is too

subjective to provide a satisfactory basis. Different individuals will sort the pebbles

differently and arrive at different proportions. Van der Laan employs a rather

sophisticated mathematical argument based on the distinction between lines,

planes and volumes. He argues that since we experience space in three

dimensions the appropriate proportion must be derived from relations of volumes,

and not (like the golden section and so far as I know all other systems) from the

geometry of lines or planes. This is another respect in which van der Laan’s system

Fig. 74.4 The range of shapes in van der Laan’s system are expressed by the numerical ratios 1:1,

4:3, 7:4, 3:1, 4:1, 16:3 and 7:1. Image: author

Fig. 74.5 The range of two-dimensional figures generates 120 three-dimensional forms. Image:

author
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seems to be unique. From this argument, which I cannot describe here in more

detail, he concludes that the only correct proportional system for architecture must

comprise a geometrical progression in which the largest of any four consecutive

terms equals the sum of the two smallest. Compare this with the golden section

progression in which the largest of three consecutive terms equals the sum of the

two smallest (Fig. 74.3).

I must confess that I remain unconvinced by van der Laan’s argument, and cannot

accept his dogmatic contention that the plastic number is the only valid system of

proportion, although it is certainly a very interesting addition to the repertoire. In my

view the real merit of van der Laan’s theory lies not in the specifics of his system but

rather in the fundamental concept of types and orders of size, which could be applied

to any system. Proportion in art should not be bound by rigid algebraic formulae or

geometrical constructions, but thought of in terms of broad perceptual categories.

Van der Laan’s whole theory of proportion, and indeed of architecture, can be

reduced to this: there are limits within which sizes can be related to each other, and

limits beyond which this relation breaks down. Taking these approximate limits as a

basis one can establish a chain of relationships by which the whole architectonic

environment, from a brick to a city, can be connected together and made intelligible

and humane. A certain piece of space is then no longer merely part of a measureless

continuum but has become a delimited territory, marked off in clearly recognizable

graded intervals. A piece of the unknown has become known.

Architectural Implications of the Theory

I earlier compared the order of size to the octave. And just as more than one octave

is allowed in music, more than one order of size is allowed in architecture. But the

orders are not arbitrary. Each corresponds to a particular level of architectural scale:

there is an order appropriate to the wall, another to the house, a third to the district

and a fourth to the city. The lower limit of the smallest order of size is determined

by the wall-thickness, the basic keynote, so to speak, of the whole architectural

composition. Here we touch on a central principle of van der Laan’s theory: that

architectonic space is constituted by a certain proportion of mass to distance, and

specifically of a wall-thickness to the distance between two walls. I fear I cannot do

justice to this theory on this occasion; but I will try to give you the gist of it.

Each of us, he says, relates a piece of space to ourselves: a zone of which we

become the focus by our presence; “a space involved in our existence” (van der

Laan 1983: 20, 5). This zone he calls “our neighbourhood”. Architecture arises

when we project this personal space-image onto other objects. Imagine you come

across a large boulder standing in an open field. At a certain distance you become

aware of being “in the neighbourhood of the boulder”. However, this

“neighbourhood” is not really a property of the boulder but the subjective

projection of your own neighbourhood onto the boulder. Van der Laan describes

the phenomenon as follows:
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. . . at a greater distance we see the stone as completely isolated, and it is only when we get

closer that at a certain point we find ourselves in its neighbourhood . . . The neighbourhood
of the stone is in fact wholly dependent on my presence. Actually when I approach the stone

it comes gradually into my neighbourhood: into that part of the great space that I command

by my presence (van der Laan 1960).

The temporary subjective perception can be made objective and permanent,

however, by placing a second boulder a certain distance from the first:

The two stones now stand in each other’s neighbourhood. The neighbourhood of each

stone, which first depended on my presence, now depends on the presence of the other

stone, so that between the two a neighbourhood arises which has become independent of

our presence (van der Laan 1960).

The mutual neighbourhood depends on the proportion between the size of the

stones and their distance apart. In architecture, two parallel walls replace the two

stones (Fig. 74.6).

An architectonic space arises when the proportion of the wall-thickness to the

distance apart is 1:7, the limit of the order of size. Once this primary space-cell is

constituted, the rest of architecture follows. Van der Laan expressed this concisely

in a lecture on music and architecture in 1978:

The space formed by the walls thereby acquires a certain autonomy, which enables us to

relate other space to it in turn . . .And this process can continue into the town, where streets
and squares arise between the houses (see Fig. 74.7). The whole urban space can by this

means be composed on the basis of the solid form of the walls, which are the only things

that we determine directly by their dimensions and their placing with respect to each other

. . . The architectonic process can thus be summed up as follows: linear measures define the

figures of surfaces which determine the form of the wall-mass, and it is this form that in turn

defines the form of the delimited space, by which means an “inside” is established which

can again determine new spaces with respect to the absolute “outside” of nature (van der

Laan 1978).

Ordered Measure and Ordered Society

Van der Laan’s proportion system is not intended as a mere aesthetic device, a sort

of optional addition to architecture by which it is smartened up and given a final

polish before being sent out into the world. As we have just seen, it is fundamental

to architecture, and he even went so far as to say that the plastic number is not

merely a means—something that contributes usefully to the making of buildings—

but an end—the ultimate reason why we build at all (van der Laan 1967: 113). For

even if we did not need shelter from the elements, we would still need architecture

in order to give measure to the measureless space of nature.

Moreover, proportion has a social dimension, not just a purely architectural one.

Even as a student in the 1920s van der Laan rejected both Functionalism and the

anti-modernist movement known in Holland as the “Delft School”. This movement,

led by van der Laan’s own teacher, M.J. Granpré Molière, played a crucial role in

Dutch architecture in the years 1925–1950. But in van der Laan’s view both

416 R. Padovan



Functionalism and Delft made the mistake of regarding architecture as the

expression or reflection of social forces. Their difference lay only over their

vision of the ideal society: for the Functionalists, one dominated by

mechanization and urbanization, but for the Delft School one based on hand

production and the small country town. Van der Laan rejected both: “The reason

why both Molière and the Functionalists ground to a halt was that they directed their

attention rather to the influence of society on architecture, than to the influence of

architecture on society” (van der Laan 1972: 32).

The forms of architecture are not, according to van der Laan, dependent on

society, but the forms of society dependent on architecture. Architecture, with its

hierarchy of orders of size, is not just a background for social life, but the ordered

framework necessary for society to arise. It is the condition that makes society

possible. The same idea appears in Hermann Hesse’s novel The Glass Bead Game,
and both men illustrate it with an identical story, except that van der Laan places

architecture, the ordering of space, alongside music, the ordering of time. Here is

Hesse’s version of the tale:

We recall that in the legendary China of the Old Kings, music was accorded a dominant

place in state and court. It was held that if music throve, all was well with culture and

morality and with the kingdom itself. The music masters were required to be the strictest

guardians of the original purity of the “venerable keys”. If music decayed, that was taken as

a sure sign of the downfall of the regime and the state (Hesse 1987: 28).

Fig. 74.6 In architecture, two parallel walls are in each other’s “neighborhood”. Image: author
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As I said, van der Laan believed that he had not discovered a new principle of

architectural proportion but recovered an ancient, long forgotten one. Innovation,

which inspires so much of modern art, held no interest for him. What concerned him

was not innovation but renewal, by which he meant the stripping away of

everything inessential to architecture and life. If you want to be truly original, he

would say, go back to the origins.

Biography Richard Padovan studied architecture at the Architectural Association,

London (1952–1957). Since then he has combined practice with teaching and

writing on architecture. He believes, however, that his real architectural education

began when in encountered the work and thought of the Dutch Benedictine architect

Dom Hans van der Laan in 1974. His translation of van der Laan’s treatise

Architectonic Space appeared in 1983, followed by a monograph, Dom Hans van
der Laan, Modern Primitive, in 1994. He is the author of Proportion: Science,
Philosophy, Architecture (E & FN Spon 1999) and Towards Universality: Le
Corbusier, Mies and De Stijl (Routledge 2002), which contrasts the grandiose

philosophical ideals of European modernism with its failure to realize those aims,

particularly in the building of cities.

Fig. 74.7 The constitution of a primary space-cell is followed by the rest of architecture.

Image: author
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Chapter 75

Louis Kahn’s Platonic Approach to Number
and Geometry

Steven Fleming

Introduction

A debate in the Nexus Network Journal over the proportional aspects of Palladio’s
Villa Emo highlights a sticking point in the analysis of partially-documented

ancient buildings. Where Lionel March (March 2001) finds no documentary

evidence to warrant cloaking the Villa Emo in the gold of the golden proportion,

Rachel Fletcher maintains that an accurate survey of the building as it was

ultimately constructed, does reveal golden mean proportions, regardless of what

the extant documentation suggests (Fletcher 2001). Doubts about on-site

procedures, the relevance of surveys and certain historical evidence could fuel

such a debate indefinitely. If, on the other hand, March and Fletcher were

debating the proportions of a modern building, one for which dimensioned

working drawings and complete office files were in existence, Fletcher would

have fewer avenues to refute March’s arithmetisation of geometry.

In his books on the works of Le Corbusier (Gast 2000) and Louis Kahn (Gast

1998), Klaus-Peter Gast provides a lively and scholarly commentary on the works

of these two great architects, accompanied by some of the author’s own very

revealing photographs. The two books also present a number geometrical

analyses which can be compared with dimensioned working drawings and

complete office correspondence held in the respective archives of these two

figures. The quantity of such evidence in each of Gast’s books has already been

remarked upon in book reviews published by the present author (Fleming and

First published as: Steven Fleming, “Louis Kahn’s Platonic Approach to Number and Geometry”,
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Ostwald 2001; Fleming 1998). The current chapter is more specific in its critique,

arithmetically testing some of Gast’s claims about Kahn’s buildings against those

buildings’ known dimensions. Discrepencies between Kahn’s drawings and Gast’s

analysis prompt an alternative interpretation of mathematics within Kahn’s work.

The discussion will focus primarily on Kahn’s First Unitarian Church and

School in Rochester, New York, since this building is a prime exemplar of what

Kahn refers to as his “form and design” thesis. Later, it will be seen that this thesis

could hold the key to Kahn’s actual approach to number and geometry.

What Do the Drawings Say?

Before looking at Gast’s analysis of Kahn’s church in Rochester, consideration of

an event that occurred late in the working drawings stage of this project will provide

some insight into Kahn’s interest—or disinterest—in proportion. Most unlike an

architect who is concerned with mathematical proportions, Kahn allows the

sectional proportions of this building to be altered late in its documentation stage,

at the advice of acoustical consultants. The central ceiling of the auditorium is

flattened out and the four light towers are made lower and wider, so that

acoustically they will act as part of the whole auditorium space.1 In the office

correspondence pertaining to this issue, there is no suggestion that any previously

calculated proportional system would be affected by such a late change, or that any

new proportional system would need to be conceived to accommodate such

dramatic alterations. The implications of this evidence for Gast’s claims will be

discussed in a moment.

According to Gast, many of Kahn’s buildings emanate from what is referred to

as a “Platonic Form,” the square. One of Kahn’s frequent sayings, “what will be has

always been,” is claimed to relate directly to Plato (Gast 1998: 185), thus

establishing Kahn as a Platonist in word and in deed.

In his chapter on the church in Rochester, Gast argues that the plan of this

building has a strict geometrical order, which derives from a “growth process” of

geometrically dependant extensions. The geometrical reconstruction of the building

begins from an imaginary central square, the corners of which are defined by the

inner edges of the aforementioned light towers above the auditorium. The original

square is twice bisected along the long and short axis of the space to form four

squares. It is then claimed that the auditorium’s width is determined by a “major

golden section” growth of those imaginary quadrants across the auditorium

(Fig. 75.1). In other words, measuring across the auditorium, as opposed to along

1 See the file labeled, “UCRNY—Bolt, Beranek & Newman Acoustical Correspondence,” Box

L.I.K. 15, Louis I. Kahn Collection, University of Pennsylvania and Pennsylvania Historical and

Museum Commission (hereafter cited as Kahn Collection). Refer specifically to “Notes from

December 15th 1960 Conference with Bolt Beranek & Newman, Cambridge, Mass.”
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it, a major golden section relationship exists between the distance from the center

line of the auditorium to the inner edge of the light tower, and the distance from that

same center line to the inner face of the auditorium wall. This line of reasoning is

extended, with claims that the geometry of the whole building goes on growing,

stemming always from this imaginary square formed by the inner edges of the four

light towers.

If this is true, then upon accepting the acoustical engineers’ recommendation to

make those towers wider—this occurs in December 1960, just 6 months prior to the

commencement of construction in June 1961—Kahn redesigns the entire building,

applying a new geometrical system, which needs to originate from what is now a

significantly smaller generating square. However the files for this project contain no

evidence that a last-minute revision of this kind ever occurred. Between Kahn and

his especially perspicacious clients, there are no letters to explain a further delay, or

to explain changes to room sizes resulting from such a proportional revision. Faced

with this evidence, it is hard to imagine such a major and time-consuming revision

occurring at all.

In the conventional way, the First Unitarian Church and School in Rochester was

built in accordance with scaled working drawings. According to common practice,

these drawings bear an instruction to builders that they work from written

dimensions, rather than scaled measurements. It is through these dimensions that

Kahn can be considered to formally and legally communicate his intentions. Can

claims regarding a hidden geometry underlying this building be supported by the

dimensions on Kahn’s working drawings?

According to the written dimensions on Kahn’s working drawing entitled “A2:

First Floor Plan,” (Kahn Collection), the auditorium is 530 wide, and 660 long, and it

Fig. 75.1 Width of

auditorium in relation to

central square formed by

inner edges of light towers,

according to Gast. Drawing:

author
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is enclosed by a hollow blockwork wall with a uniform thickness of 20. According
to Gast, a major golden section growth based on half of the auditorium’s width

provides the radius for a large circle which touches the outer corners of the

auditorium, thus determining the auditorium’s length (Fig. 75.2). In other words,

the distance from each of the auditorium’s outer corners to its center (that distance

will henceforth be referred to as x), should be 1.618 times greater than half of the

auditorium’s internal width (a distance henceforth referred to as y).
In order to check Gast’s analysis against Kahn’s working drawings, xwill first be

calculated for the diagonal distance from the outer corner of the auditorium to its

center. According to the Pythagorean Theorem (in a right-angled triangle, the

length of the hypotenuse squared is equal to the sum of the squares of the other

two sides), x squared equals half of the auditorium’s external width (that being

280-600) squared, plus half of its external length (that being 350), squared.

x2 ¼ 28:52 þ 352

x2 ¼ 20370 � 300

x ¼ 450 � 100:

Meanwhile, an identical x value should be found by multiplying half of the

auditorium’s internal width (y) by 1.1618

x ¼ 1:618y:

Since from Kahn’s working drawings y is known to measure 260-600, then

Fig. 75.2 Length of

auditorium in relation to

width, according to Gast.

Drawing: author
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x ¼ 1:618 x 260 � 600

x ¼ 420 � 1100:

This represents a discrepancy of 20-200 (or 4.8 %) against the diagonal

calculated above. Perhaps this is negligible. Rachel Fletcher argued at the

Nexus 2000 Round Table Discussion, that arithmetic precision of the kind that

only the mind can behold, does not affect architecture, which “is meant to be

experienced, it is meant to be lived in, it is meant to be perceived” (Watts

et al. 2000: 112). However, the wall in question is constructed using 800 cubic
concrete blocks, and Gast’s analysis is out by more than three block widths. Had

Kahn intended to produce a palpable effect, surely he would have done so to

within one block width.

The dimensions most affected by Gast’s analysis, namely, the length and breadth

of the auditorium, the thickness of its walls and the width of the ambulatory, are all

measured in whole feet on Kahn’s working drawings. They are 660, 530, 20 and 60

respectively. The odds against complex geometrical constructions producing so

many lengths measurable in whole feet are literally impossible. Granted, such

considerations may determine the width of the light towers, but such a minor

calibration, if it is there at all, hardly rivals the fascination for proportions usually

associated with geometrising architects. The dimensions of the auditorium and

surrounding ambulatory would appear to be modulated according to whole feet

for the most pedestrian of reasons. As stated above, the ambulatory wall is

constructed using an 8 inch cubic blockwork module and every three blocks

creates a dimension of two whole feet.

There is some doubt surrounding Gast’s statements regarding many of Kahn’s

other buildings as well. For example, it is claimed that the distance by which the

rectangular plan of the Kimbell Art Museum falls short of being a double square,

determines the span of that building’s concrete vaults. According to Kahn’s

working drawing A4 (“Upper Level Floor Plan,” Kahn Collection) the Kimbell is

3180 wide (measuring from north to south) and 1740 deep (measuring from east to

west). To be a double square, the building would need to be 3480 wide, that is, twice
as wide as its depth of 1740. The difference between its actual width and the width it
would be were it a double square is 300 and this is the distance Gast refers to in his

analysis as x, which should also be the span of the concrete vaults. However, 300 is
not the span of the concrete vaults. These only span 200, or 220 feet when measuring

from the centers of the supporting columns. This represents a discrepancy of at least

80 (or 40 %).

It is claimed that the separate living and bedroom sections of the Dr. and Mrs.

Norman Fisher House are based on two squares sized according to the short width

of the living section, that is 230-600. The distance by which the living section square

is claimed to have stretched in one direction is meant to be exactly twice the

distance by which the original bedroom section square grows in two directions.

The living section square is 40-600 longer than 230-600 in one direction, whilst the
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bedroom section plan is 20-600 greater than 230-600 in both directions.2 Twice 20-600 is
50, where it should be 40-600 according to Gast’s analysis. This represents a

discrepancy of 600 (or 12.5 %).

Gast analyses 14 more of Kahn’s buildings by similar means. Unfortunately,

many of these descriptions are difficult to follow since it is often unclear as to

whether the analysis is referring to the center lines or the edges of columns or walls.

Whilst not wishing to diminish Gast’s greater contribution to the field of Kahn

scholarship, the apparent discrepancies in three examples provided above suggest

that there could be another way in which to approach the topic of number and

geometry in Kahn’s work.

What Does Kahn Say?

Alberto Pérez-Gómez argues that “intentions have to be understood in reference to

their epistemological contexts” (Pérez-Gómez 1984:13). With this in mind, the

remainder of this chapter proposes an approach to number and geometry that is

intrinsic to Kahn’s espoused metaphysics.

Consideration of Kahn’s statements about proportion suggests that further

geometrical analysis of his buildings in search of mathematical relationships may

well be in vain. There is no record of Kahn advocating any interest in mathematical

proportions as they apply to architectural composition. To the contrary, Kahn

specifically states his preference for buildings without a clear sense of proportion.
He states that,

to make a thing deliberately beautiful is a dastardly act; it is an act of mesmerism which

beclouds the entire issue. I do not believe that beauty can be created overnight. It must start

with the archaic first. The archaic begins like Paestum. Paestum is beautiful to me because

it is less beautiful than the Parthenon. It is because from it the Parthenon came. Paestum is

dumpy—it has unsure, scared proportions. But it is infinitely more beautiful to me because

to me it represents the beginning of architecture. It is a time when the walls parted and the

columns became and when music entered architecture. It was a beautiful time and we are

still living in it (Kahn 1986: 91).

In the context of this quotation, the phrase “to make a thing deliberately

beautiful” refers to the application of sophisticated proportional systems to

architectural compositions, since what differentiates Paestum from the Parthenon

is its “unsure, scared proportions.” Whilst not rejecting the use of proportions

outright, Kahn subordinates this device to a sense of the “archaic.” Paestum is

championed for its chronological and, in a sense, its ontological proximity to

architecture’s mythical beginnings as a poetic discipline.

Many of Kahn’s theoretical pronouncements make an ontological distinction

between transcendent and terrestrial concerns. According to Kahn scholars

2 See the drawing entitled: “A3: First Floor Plan,” Kahn Collection.
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including Charles Jencks,3 Christian Norberg-Schulz,4 Joseph Burton,5 Vincent

Scully,6 David Brownlee,7 David De Long,8 Gerhard Auer,9 and the present

author (Fleming 1998), Kahn’s theory resembles classical Platonism in this

regard. Kahn’s Platonism is most evident in his “form and design” thesis (Kahn

1961), developed at the time of his work in Rochester.10 According to that thesis,

particular buildings of the same type share an archetypal counterpart, or “form,”

which is seen in the mind’s eye, or “psyche,” as a vague idea that can only be

represented by an esquisse-like diagram. When contemplating the ideal “form” for

schools, Kahn claims that an architect must

start right at the beginning, as though he were Socrates when he’s talking about school. He

must be this man [Socrates]. From it [the Socratic contemplation of typology] comes form,

from the other considerations comes another duty called design (Khan 1960).

The contention of this chapter, that Kahn is simply pragmatic when it comes to

making dimensions for his First Unitarian Church and School in Rochester, is entirely

consistent with his “form and design” theory, in which metaphysical significance is

primarily conferred on a building’s planning strategy, or “form.” “Design”

meanwhile, is the pragmatic act of building in a circumstantial world. Kahn states

that, “[d]esign is a material thing. It makes dimensions. It makes sizes”, while “[f]

orm,” on the other hand, “is not design, not a shape, not a dimension. It is not a

material thing” (Kahn 1991: 141). According to Kahn’s “form and design” theory,

3 Charles Jencks describes Kahn as the “major prophet” of the “metaphysical school” who built

elements that seem to have “arrived perfected from Plato’s ideal realm; see (Jencks 1973: 43–44,

232–233).
4 According to Norberg-Schulz, “Kahn’s philosophy evidently has Platonic origins. Thus he talks

about form in the Platonic sense of idea . . . . He even uses the word “shadow” in connection with

the concrete things of the world, as did Plato in his Allegory of the Cave. Kahn also subordinates

the existentia to the essentia, and thus thinks within the tradition of Western metaphysics”

(Norberg-Schulz 1979: 35).
5 According to Burton, “Kahn’s primary notion of [f]orm is like Plato’s theory of the ideas, also

known in English by the term ‘Forms’, as well as ‘Ideas’” (Burton 1983: 76).
6 Scully describes Kahn’s “form and design” theory as, “a curious but very useful amalgam of

Platonic Idealism and Pragmatic Realism” (Scully 1987).
7 Brownlee argues that Kahn’s “vocabulary was fortified by allusions to respected authority. Most

fundamentally, the role played by light and shadow in differentiating the ideal world from the

world of daily experience was an echo of the famous discussion of the same subject in Plato’s

Republic” (Brownlee 1991: 129).
8 David De Long uses the word “Platonic” as an adjective to describe Kahn’s notion of “form”

(De Long 1991: 72).
9 “Kahn’s form is not a visible idea,” Auer writes, “but a (Platonic) idea which has not yet

materialised, the premonition of a slumbering archetype, an intuitive inspiration, at best

formulated as an ideogram” (Auer 1992: 68–69).
10 The first recorded public expression of this precise thesis is contained within a public address

delivered at the Cooper Union entitled “The Scope of Architecture” on 20 January 1960, at the

time of a stand off between Kahn and his clients in Rochester over their request that he develop a

bi-nuclear scheme (Kahn 1960).
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dimensions are related to the measurable, or sensible process called “design.” They

are totally unrelated to the “unmeasurable,” or intelligible, concept of “form.”

Meanwhile, Kahn argues that a great building

must begin with the unmeasurable, must go through measurable means when it is being

designed, and in the end must be unmeasurable. The only way you can build, the only way

you can get the building into being, is through the measurable. You must follow the laws of

nature and use quantities of brick, methods of construction, and engineering. But in the end,

when the building becomes part of living, it evokes unmeasurable qualities, and the spirit of

its existence takes over (Kahn 1979: 48).

If dimensions are slaves to earthly circumstances, by what other means could

mathematics lend an “unmeasurable” quality to Kahn’s buildings? Possible answers

to this lie in the Platonic character of his theory.

The similarities between Kahn’s theory and Plato’s theory of Forms is most

clearly articulated by the philosopher Arthur Danto. Danto argues that Kahn’s

notion of “form” is “exactly like its Platonic and Pauline counterparts, invisible

and eternal” (Danto 1999: 187). Contemplating what most would expect a Platonic

building to look like—an image to which Kahn’s buildings do not conform, that of a

composite of archetypal geometrical solids—Danto finds Kahn to be even “more in

the spirit of Plato than architects whose buildings look like diagrams for geometric

theorems” (Danto 1999: 188). It is not that Danto would deny Plato’s famous love

of geometry, but he does remind us that Plato is not particularly concerned with

cosmetic appearances, dedicating his intellect instead to the correct deduction of

eternal essences. According to Danto, both Plato and Kahn are concerned with the

essential elements required of such things as political states, beds and Unitarian

Churches, for these things to exist at all. So crucial and perplexing is this search for

ideal and timeless archetypes, that the “look” of things, be that geometrical or

otherwise, becomes a secondary issue. Where to Gast, Kahn’s alleged geometry is

central to his being a Platonising architect, Danto casts Kahn as a Platonist precisely

because his buildings are not geometrical.

What Does Plato Say?

It will be apparent at this point that when Danto compares Kahn to Plato, he is not

thinking of the relatively small number of passages from Plato’s Timaeus that are
typically featured in discussions of architecture and mathematics and that are, in

some respects, peripheral to Plato’s philosophy as a whole.11 Neither is he thinking

in terms of the Neoplatonic tradition in architecture and the inscription of

11As it investigates nature, Jowett points out that the Timaeus is not expressed through the mouth

of Socrates, but by a Pythagorean, since in the Phaedo Socrates refuses to even discuss physics.

Concerned by its undue influence on posterity, Jowett warns that the Timaeus is not central to
Plato’s philosophy, but is like “a detached building in a different style” (Jowett 1953: 633).
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imperceptible proportions of religious significance. Rather, Danto is referring to the

Plato we read in the middle period dialogues, of which the best known is The
Republic. Whilst other Platonic dialogues also contain statements about

mathematics,12 The Republic presents a number of thoughts which seem to

resonate very well with Kahn’s thinking and which, in an embryonic way,

suggest a new line of inquiry into the relationship between Platonism and

architecture.

The central message of The Republic is well known: rulers and their citizens

need to be liberated from their attachment to the world of sense experience (which

is sensible but unintelligible), and turn their thoughts towards the realm of

archetypal Forms (which is intelligible, but cannot be sensed). Within this

context, The Republic ascribes two functions to mathematics. Firstly, it is a

practical discipline, since it can be applied to the organisation of armies and the

pitching of camps (Republic 525b and 526d). It also serves an epistemological

purpose, since it tends “to draw the mind to the truth and direct the philosophers’

reason upwards [towards the Forms], instead of downwards [towards sensible

particulars]” (Plato 1987: 274). However, The Republic provides few specific

instructions to “craftsmen” regarding the embodiment of mathematics within

human artifacts, aside from various prohibitions. For example, it is stated that

harmony and rhythm in both music and in architecture, as well as in every other

kind of manufacture, should be treated with simplicity and restraint (400–401), so

that people will not develop a taste for empirical fuss. Likewise, scene painters are

criticised for exploiting people’s vulnerability to optical illusions and other kinds of

“deceptive semblances.”13 Aside from what should not occur, what active role

might embodied mathematics play in leading viewer’s minds upwards, bearing in

mind that The Republic, like most of Plato’s dialogues, speaks of an elementary

kind of mathematics that simply deals with whole numerals?14

In Book 7, Socrates suggests that

there are some perceptions which don’t call for any further exercise of thought, because
sensation can judge them adequately, but others which demand the exercise of thought
because sensation cannot give a trustworthy result. (Plato 1987: 268)

12 Other than passages from the Timaeus, one passage from Philebus (51c) venerating “straight

lines and circles, and the plane or solid figures which are formed out of them by turning-lathes and

rulers and measures of angles,” has exerted considerable influence on architectural theory, its

influence on twentieth-century architecture being discussed by Reyner Banham; see Banham

(1988: 205).
13 “The apparent size of an object, as you know, varies with its distance from the eye . . .. So also a
stick will look bent if you put it in water, straight when you take it out, and deceptive difference of

shading can make the same surface seem to the eye concave or convex; and our minds are clearly

liable to all sorts of confusion of this kind. It is this natural weakness of ours that the scene-painter

and conjuror and their fellows exploit with magical effect” (Plato 1987: 370).
14 One passage in Theaetetus touches on the topic of irrational numbers, specifically √2; see
Theaetetus (147d).
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The sight of one’s own fingers does not stimulate thought insofar as counting

fingers is concerned, since “at no stage has sight presented the finger to [the mind]

as being also the opposite of a finger” (Plato 1987: 269). “But what about the size of

the fingers?” Socrates asks.

Can sight distinguish properly whether they are large or small? Does it matter which one is

in the middle or at the end? And can touch distinguish thickness and thinness or degrees of

hardness and softness? Aren’t all the senses in fact deficient in their perception of such

qualities? (Plato 1987: 269).

As Julia Annas explains,

[w]hat we see enables us to say that the finger is large, but also, and equally well, to say that

it is small. So in these cases the mind is forced to reflect, and to come in to settle the

problem. . . . [W]hen the mind comes in to reason things out (524b) it declares that the

contradiction is only an apparent one; ‘large’ and ‘small’ cannot really apply to the same

thing, since what is really large is distinct from what is really small (524c). Thus we are

moved to ask questions about what sort of thing it could be that could be really large or

small, and to grasp that it cannot be the same as the largeness or smallness that we perceive

with no effort in something like a finger. Rather, it is something ‘intelligible’, something

that has to be worked out and grasped by the mind (Annas 1981: 218).

Plato’s logic leads naturally to a theory of architectural embodiment, according

to which repetitive elements in a building edify the viewer as fingers do. A viewer’s

sensory apprehension of a particular building may be adequate to say that it has ten

windows, but consideration of which are large, and what is “large,” would,

according to Plato, engage the viewer in thoughts associated with the purely

intelligible realm.

The reasoning behind his analogy concerning fingers is the basis of Plato’s

mandate that trainee philosopher kings must study arithmetic. If the perception of

a unit

is always combined with the perception of its opposite, and seems to involve plurality as

much as much as unity, then it calls for the exercise of judgment and forces the mind into a

quandary in which it must stir itself to think, and ask what unity itself is (Plato 1987: 270)

The perception of two hands, for example, involves both unity and plurality,

insofar as each hand, representing one unit, also consists of five fingers, causing to

viewer to ask “what is The Unit Itself?” In the same way, a building comprising

multiple bays, each with multiple columns, could engage the viewer in the exercise

of pure mathematical reasoning.

Once we understand how the sight of hands can aggravate the curious mind, and

how buildings can have the same effect, we can extend this kind of thinking to two

of the remaining disciplines that Plato’s prescribes for potential philosopher kings:

plane and solid geometry.15 It follows that the sight of a building that is not quite

15 It will be noted that Plato also prescribes studies in astronomy and harmonics (Republic 529–

531). However, since he treats these as species of motion, their potential embodiment in a static

medium such as architecture is greatly limited.
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square, nor quite cubic, can be seen to draw the viewer into contemplating The
Square Itself and The Cube Itself.

What Did Kahn Do?

Of course Kahn was not a philosopher and his own latent dualism is not likely to

have led him to the kinds of deeply considered conclusions that Plato reaches.

However, be it due to his intuition, or simply coincidence, there is one sense in

which his “form and design” theory perfectly conduces buildings that edify viewers

in the same way as hands are claimed to. In the realm of abstraction, 1 Hand
Itself ¼ 5 � Finger Itself. In the phenomenal realm, circumstantial factors affect

the finger’s size, or perceived size, thus making the viewer think about Largeness
Itself. Similarly, in Kahn’s realm of “form,” The Unitarian Church Itself ¼ 1

Auditorium Itself, surrounded by multiple instances of Classroom Itself. However,
circumstances related to the “design” phase of Kahn’s church in Rochester caused

each classroom to be slightly different. It could be claimed that these differences

prompt the viewer to ask whether each is a classroom and what is classroom, which

is large and what is “large.” Kahn’s “form diagram” for the church indicates a

square auditorium, whilst circumstances related to the “design” phase caused the

built auditorium to be not quite square.16 The radial distribution of light towers and

entrance points about the auditorium lead those entering it to believe that it is

square. Their discovery that it is not square after all, would, according to the logic

of Plato’s finger analogy, cause some mental distress leading to contemplation of

The Square Itself.
In terms of Plato’s finger analogy, the treatment of this building’s façade

(Fig. 75.3) is potentially edifying, since the perception of any type of element, to

use Plato’s words, “seems to involve plurality as much as unity” (Plato 1987: 270).

The masonry alcoves suggest a single-storey building made up of six or more tall

spaces, but when “the mind calls in reasoning and thought,” (Plato 1987: 269) it

realises that the building’s sides are two storeys high and, typically, three

classrooms long. Likewise, the Fisher House looks like two double-storey forms,

but one of those forms has a double-height volume. Kahn takes a similar approach

with the Phillips Exeter Academy Library. This building looks to be five storeys

high, until reason enters in, and finds there are nine storeys above ground. Its outer

form and inner atrium space both appear to be cubic, but neither is exactly.

Renzo Vallebuona observes that Kahn treats the site of his National Assembly

complex in Dacca “as if it were possessed of no relevant dimensions” (Vallebuona

16Kahn’s preliminary schemes all feature square auditoriums. The “circumstance” that deformed

the shape of this space, was a letter from the building committee expressing their dislike of his

scheme’s “inherent squareness.” Letter, Williams to Kahn, 28 February 1960, file labeled,

“Building Committee Correspondence, April 1959 through December 1960,” Box L.I.K. 15,

Kahn Collection.
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1996: 65). Likewise, Vincent Scully links the “scalelessness and timelessness Kahn

. . . build[s] in the housing at Dacca,” to an earlier sketch by him of Siena’s Campo

in which “all details such as doors and windows that could suggest any particular

scale or function were blotted out” (Scully 1991). According to the logic of Plato’s

finger analogy, the National Assembly building’s ambiguity in scale might cause

viewers to ask if the buildings are large, and what is large.
One expects the vaults of the Kimbell Art Museum to be elliptical, until reason

enters in and finds them to be cycloidal. With the crescent-shaped glazing strips at

the ends of each vault, Kahn makes it clear that he wants the viewer to think, to use

reason. The upper chords of these windows are cycloidal, whilst the lower chords

are defined by an ellipse.

Conclusion

That Plato’s creation myth from the Timaeus should have had such an influence on

Gothic and Renaissance architecture while dialogues such as The Republic were

ignored, is an accident of history. An impression has been created that the

admixtures, harmonic proportions, the golden mean, the square root of two and

various elementary figures are central to Plato’s thinking and that these can be

viewed apart from Plato’s central concerns, which were his epistemology and his

metaphysics. Whilst the Neoplatonic tradition in architecture can be judged on its

own terms, it has little to do with Plato.17 Kahn can be forcibly enlisted into this

tradition, or he can be approached on his own terms. It is doubtful that Kahn would

have regulated his plans according to the golden mean when, by his own account, to

do so would be to commit a “dastardly act,” and the arithmetising of his working

drawings confirms this.

Whilst the interpretation of mathematics in Kahn’s work that has been presented

here may seem obscure, it provides an explanation of Kahn’s intentions that is

intrinsic to his own espoused metaphysics. Whether speaking of the “measurable”

and “the unmeasurable,” “law and rule,” “form and design,” or “silence and light,”

Fig. 75.3 The treatment of the façade of the First Unitarian Church. Drawing: author

17 Jowett describes the neo-Platonism as “the feeble expression of an age which has lost its power

not only of creating great works but of understanding them” (Jowett 1953: 631).
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Kahn divided the universe into two realms, one a slave to circumstances and

confusion, the other ideal. His discussions of his compromised Unitarian Church

always make reference to the building’s “form diagram,” as Kahn entices his

audience to contemplate the ideal, rather than the actual. To Kahn therefore, any

device which could force viewers of his buildings to exercise reason over

perception would be welcomed, since it would shift their attention from a

compromised and circumstantial building and towards the unseen realm of

“form.” Being in the habit of thinking dualistically, Kahn may have delighted in

the fact that visual apprehension alone does not reveal his buildings’ height in

storeys, their width in rooms, or their shape in terms of expected geometry. If these

effects were indeed intended, then Kahn has stumbled part-way down a route once

paved by Plato.
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Chapter 76

The Salk: A Geometrical Analysis Supported

by Historical Evidence

Steven Fleming and Mark A. Reynolds

Introduction

This is the second in a series of publications to marry the disciplines of geometrical

analysis and architectural history, in order to present a holistic picture of geometry in

Kahn’s work and thinking; our earlier research analyzed Kahn’s Kimbell Art

Museum in Fort Worth, Texas (Fleming and Reynolds 2006). The publications are

motivated by two overarching discontents: first, our discontent with geometrical

analysis that pays no attention to historical documents that might suggest that

proportions, no matter how accurate, are merely coincidental; second, our

discontent with scholarship that would take an architect’s silence on the topic of

geometry as proof that no geometrical analysis of that architect’s work is worth

pursuing. Kahn said little to suggest an interest in the geometry that is buried

everywhere in his work, making him the perfect subject for what we call historio-

geometrical analysis.

In contrast to our earlier chapter, here we ruminate with relative liberty upon the

possible meaning of the Salk’s proportions. Of course, we are mindful of the

arbitrary bond between signifiers and signified concepts,1 but we also believe that

the present context provides a fitting occasion for this kind of speculation.

First published as: Steven Fleming and Mark A. Reynolds, “The Salk: A Geometrical Analysis

Supported by Historical Evidence”, pp. 185–200 in Nexus VII: Architecture and Mathematics,
Kim Williams, ed. Turin: Kim Williams Books, 2008.

1 For an especially clear articulation of this argument see Saussure (1959).
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The Salk Institute for Biological Studies (Fig. 76.1) is a large building and much

of the documentation for its construction was issued via addendums after work on

site had commenced. We were therefore unable to defer to dimensions to confirm or

refute all of our findings. Neither have we been able to arrange access to conduct

in-situ measurements—though, in the case of the gardens shown in drawing LA4

(“Laboratory—middle level garden,” dated 17 Jan. 1963), such measurements will

remain an impossibility, as those gardens were never built. With less data at our

disposal than we would have preferred, we were beholden to be especially accurate,

thus we traced our analyses on high quality vellum, using only first generation

copies, and we ensured our line weights matched Kahn’s as well. For reasons of

reprogaphics the illustrations shown here are small, redrawn versions of the actual

analyses we used, and are therefore less accurate.

Our analysis was complicated by subtle complexities in the plan. Unlike Kahn’s

Kimbell Art Museum, which our earlier study found to be strictly regulated by a

two-feet square grid, the Salk has many irregularities to belie the solemn aura of its

famous plaza. Movable partitions mean interior ratios are elusive and variable,

while the architect seems all too willing to abandon rhythms established along the

length of a wing when end conditions dictate a change. In choosing what to

measure, and what to ignore, we have been guided by Kahn’s well known

privileging of enduring elements, that is, those elements that are structural and

therefore likely to outlive ephemeral fixtures when the Salk, in some mythical

Fig. 76.1 Salk Institute for Biological Studies, La Jolla, CA, Louis I. Kahn, architect. Photo:

Steven Fleming
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future, stands like the ruins that shaped Kahn’s sensibility when he sketched them in

Europe (Hochstim 1991). That is to say, we have measured the Salk’s bones, not its

flesh.

Superstructure

The Salk’s bones start with a superstructure with column centers regulated by an

array of 13 grid lines—running north–south like meridians—each 200 apart. These
grids lines are numbered 1 through 13 on sheet LA4, and they are crossed by four

lettered grid lines (A,B,C and D) running east/west. As this grid serves as an invisible

template for the project, we were interested to find the rectangle defining its

extremities is a mere a 3.50 short of being a 3:4 rectangle (it is 316.50 � 2400).
That rectangle defines column centers. The rectangle that can be drawn about the

outer edges of the columns is 319.50 � 241.50, and has proportions that deviate

from the 3:4 rectangle by a mere 1.03 %.

In a diffuse but telling series of public statements, Kahn—who was also a

pianist2—hinted at an interest in musical proportions, on one occasion attributing

to an imagined space “a sound character alternating with the tones of the space”

[Louis Kahn, cited in: (Robinson 1997: 12)], and on another claiming “a plan of a

building should read like a harmony of spaces in light,” just as “[t]o the musician a

sheet of music is seeing from what he hears” (Kahn 1961: 149). We also know that

Colin Rowe, Rudolph Wittkower’s protégé, gave Kahn a copy of Architectural
Principles in the Age of Humanism (Wittkower 1952), with a recommendation that

in it, “I think that you will discover attitudes with which you are profoundly in

sympathy.”3 The near 3:4 (or Major Fourth) proportions of the Salk’s columnar grid

tallies with Kahn’s interest in musical proportions, and is consistent also with the

musical proportions we discovered when we analyzed the Kimbell Art Museum that

Kahn designed in Fort Worth, Texas (Fleming and Reynolds 2006).

Our argument, that the Major Fourth proportions of the Salk’s superstructure is

likely intended, is based on three tenets. First, the proportion applies to something

that, because of his love of structure, Kahn is likely to have focused on. Second, it

deviates from a Major Fourth by only 1.03 %. Finally, 3:4 is a kind of proportion

that we know Kahn was interested in: it is a musical proportion. However, counter

arguments could be advanced. Why, if he was laying out a proportioned columnar

structure, didn’t Kahn place those columns within a 2400 � 3200 rectangle, when
nothing about reinforced concrete construction would have made that impossible?

2According to his daughter, Kahn helped support his family by playing the piano at a local cinema

in his youth; see Tyng (1984).
3 Letter from Colin Rowe to Louis I. Kahn, 7 February 1956, file labeled “Correspondence from

Universities and Colleges”, L.I.K. Box 65, Louis I. Kahn Collection, University of Pennsylvania

and Pennsylvania Historical and Museum Commission (hereafter cited as Kahn Collection).
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Also, why would Kahn have paid attention to a proportion that cannot be

experienced from any point on the ground? Such arguments prevent us from

calling the near 3:4 proportions of the Salk’s overall structure a certain intention,

despite the low percentage of deviation.

Overall Shape

Though the following claim may seem contradictory, we argue that the overall

squareness of the Salk—including elements lying beyond the main columnar grid—

is a much clearer intention, despite a percentage deviation comparable to the one

indicated above. The complex as a whole measures 362.960 � 372.60 and deviates

from a true square by 0.972 %.

Why do we show extra leniency when it comes to squares? Because Kahn spoke

of “square” buildings and spaces in his oeuvre that deviate from true squares by far

more than 1 %. His thinking about squares is perhaps most evident in what he had to

say about an earlier building, the First Unitarian Church in Rochester, New York.

For over a year Kahn generated preliminary schemes for that church, all with

perfectly square sanctuaries, before settling on a sanctuary that was 580 wide and

660 long. Though the sanctuary as eventually defined is hardly a precise square, he

tells the congregation at their church’s dedication, “[t]his building is . . . a

non-directional building”—this claim following a comparison to the Pantheon—

“it’s practically a square.”4 Like the 580 � 660 sanctuary in Rochester, Kahn would
have considered the 362.960 � 372.60 footprint of the Salk to be practically a

square, and symbolic of anything a perfect square might symbolize on that site.

Elevations and Sections

A more conventional approach to proportioning is evident in the elevations facing

the Pacific, for which Kahn has used the Major Second ratio of 4:5, while the study

towers flanking the laboratories in “Section 1 elevation” have 2:3, or Major Fifth

proportions. Given the complexities of the Salk’s program, with its highly serviced

laboratory spaces, it is possible but unlikely that Kahn manipulated either the plan

and/or the section to achieve this ratio, but programmatic constraints would not

have prevented him from raising parapet heights to make elevations four fifths or

two thirds higher than their respective widths.

We could debate the accuracy of these ratios, and whether or not they should be

measured from the floor of the colonnade or else from the variable height of the

4Kahn quoted in the “Dedication of First Unitarian Church, Rochester, NY—Dec 2 1962”,

Historical Records of The First Unitarian Church, Rochester.
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ground one step down, but in so doing we risk overlooking an unconventional

aspect of the Salk, and one that calls for a less conventional examination of its

walls. Questions surrounding the proportioning of elevations, we argue, are less

important here than questions concerning the section. Height constraints related to

aviation activity in the La Jolla area were a factor in Kahn’s decision to bury one

whole level (along with its attendant “pipe laboratory”), meaning the Salk’s true

sectional proportions, the proportions that mattered to Kahn, are likely to start

below ground. Therefore it is especially interesting to find that the hidden, or buried

Salk, has a √2 proportion. The significance of this proportion is that it is listed by

Palladio—as recorded by Wittkower, who Kahn read—and that it also played a

central role in Kahn’s Kimbell Art Museum. For reasons known only to Kahn

himself, it appears that he gave the Salk hidden—in every sense of the word—

proportions; they are literally hidden beneath the ground.

Visitors to the Salk are more likely to see what we saw when we opened drawing

LA11 (“Laboratory—garden elevations and sections,” dated 7 Jan. 1963), the

drawing from which we ascertained the Salk’s sectional proportions, and that is an

apparent grid of squares. Yet analysis reveals few of these are squares at all. This

leads us to the view that Kahn had an aesthetic penchant for square-like proportions,

without the fanaticism of one who would calibrate the thickness of every floor slab

and wall in the service of a truly square grid (as, for example, the architects Giuseppe

Terragni and Aldo Rossi have done). Qualifiedly, the Salk could be described as

having a grid of squares, of the kind Kahn conceived in Rochester. They characterise

the elevations and are evident in the remainder of the areas covered by our analysis,

that is, the plaza, laboratories, studies and other office wings.

Plaza and Unbuilt Gardens

Drawing LA4 (“Laboratory—middle level garden,” dated 17 Jan. 1963), the plan

that was used to set out and commence construction work on the Salk, features

sketchy details of garden beds where ultimately Kahn would make a plaza. Though

an absence of dimensions for these unbuilt gardens5 would restrict us to a purely

geometric analysis, the fact that their location would have made them the physical

and symbolic focus of the facility, calls for their close investigation. We invite

readers to think of these gardens as the metaphorical keys that unlock a geometrical

schema that could only have been conceived by an architect who was fascinated

with music.

A musical theme that is announced by the Minor Third (5:6) ratio of the two

smaller gardens at the western end of the plaza, would appear on first appraisal to be

contradicted by the adjoining four gardens, all of which have proportions

5 LA4 includes a note “see LSD 485” for details of the garden, though that particular drawing was

not available for the purposes of this analysis.
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approaching the golden section. But very close examination reveals those gardens

have a ratio of 1.625:1, or 13:8, a fact that seems irrelevant until one considers there

are thirteen notes in a musical scale, including the half-tones, and eight major notes

when flats and sharps are excluded. It also happens that 8 and 13 are partners in the

Fibonacci sequence: . . .3, 5, 8, 13, 21. . ..
At the eastern end of the plaza, a longer pair of garden beds have a ratio of

1.846:1. This is a compound ratio that includes the 5:6 ratio (the Minor Third) plus a

square—the note. Effectively, Kahn has replicated the western-most rectangles in

the East and added a square to each rectangle’s long side.

In Fig. 76.2, AKMZ circumscribes the extremities of the two laboratories, while

GNPR—which has a 2:3 ratio—roughly coincides with the unfinished gardens. In

the hope of determining Kahn’s way of laying out the gardens and pools we used the

structural grid of the laboratories as the basis of a 12 � 16 grid of 100 squares,
having three master squares: APRZ, EFHJ, and GKMN. Point W is the approximate

center of the courtyard. Notwithstanding a few anomalies, the grid reveals order

behind the seemingly random garden plan, such as the alignment of each garden’s

eastern inner edge to a north/south gridline.

Studies of Typical Plans

Geometric analyses of Kahn’s drawings for studies of typical plans on sheet LA18

(“Studies—typical plans,” dated 7 Oct. 1963) suggests he worked with the

fractional parts of the square to generate musical ratios, similar to Palladio’s

approach of dimensioning lengths of simple integers related to music.

In Fig. 76.3, it appears that Kahn’s basic plan is based on the 1:2 double square,

the octave, AKMZ. In order to better understand the ratios in the plan, readers

should note the ratios contained by the squares AKPR and PRMZ and then translate

these to the square on the other side. Each of the individual squares of the double

square was subdivided into fourths. For example, GU, UP, PV, and PN are fourths.

This makes the interior rectangles, AKUh, AHmR, jVMZ, and RmJZ all 3:4

rectangles. These rectangles intersect within the square, and intersect along the

diagonal at points, p1 and p2. These two points are critical to the width of the

northern wing of the building, UV. LWmarks the boundary of this wing as a double

square, p1LWp2. When the partitioned space in the northern-most end of the

building is included, this additional portion, LXYW, generates the 2:3 ratio,

which contains two 3:4 ratios. (The opposite is also true: a 3:4 ratio will contain

two 2:3 ratios.)

The 3:4 ratio is used for the width of the northern wing of the building, UV. UV

is one fourth—the quarter note—of the double square’s edge, KM, which then

generates the 2:3 ratio. This 3:4 ratio was also used for the wall partitions inside the

double square, along the line, HJ.

It can also be seen that the √2 ratio could also have been employed. Points p3 and

p4 are generated where the side of each square passes through its diagonal, making
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a reciprocal √2 (1:√2) in the base of each of the two squares. The top edge of each

reciprocal rectangle runs along SB. Even though the √2 is not a musical ratio, it is

on Palladio’s list.

The splayed blades forming the walls at 45�, a and c, are in a 3:4, Major Fourth

relationship, with a deviation of 2.7 %.

Laboratories

Each laboratory building is 3.87:1, being 2400 � 620. The ratios of 3.75 � 1 to

4 � 1 are significant because the traditional canons of measure for a human body is

a figure 7.5�8 heads tall by two heads wide at the shoulders. This can then be

Fig. 76.2 Geometrical analysis overlaid on LA4. Drawing: Mark A. Reynolds
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reduced to 3.75�4:1, the quadruple square. A human figure could stand within each

or either of these 3.87:1 perimeters. As there are two laboratories, one could

speculate that there is perhaps one for each view, front and back, or that one

represents a man and the other a woman, as the space was intended for biological

studies.

North Office Wing

Sheet LA47 (“Laboratory building—office wing elevations,” dated 7 Oct. 1963)

documents two elevations of the North Office Wing of the Institute. Figure 76.4

shows the geometric construction used to generate the ratio of the elevation,

AKMZ. This is 5:6, the Minor Third. The base of the wall, AZ, was used to

generate a square, APRZ; AZ ¼ AP. This square was divided into fifths by the

application of half-diagonals, AU and PF for example. Their intersection, at J, is

one fifth. One of these fifths, NR, was added onto the top of the square with the

length RM (NR ¼ RM). Doing so makes the rectangle of 5:6 units.

Fig. 76.3 Geometrical analysis overlaid on LA18. Drawing: Mark A. Reynolds
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This technique is of great value when working with fractional parts and musical

ratios when a square is employed. Most fractional parts are easily found when the

diagonals and half-diagonals are drawn inside the square. Whatever fraction is

applied, it converts the side of the square, considered to be unity (1), into that same

number of units indicated in the denominator of the fraction. All fractions can be

seen to be ratios, for example, generating fourths will change the value of the side of

the square from 1 to 4. Taking one of these fourths away, we will have a 3:4

rectangle inside the square. Adding a fourth will make the new rectangle 5:4 units.

The side of the square does not change length; only its assigned value does.

With regards to the other elevation on Sheet LA47, AKMZ (Fig. 76.5), has a

ratio of 2:3, the Major Fifth. Here, the height of the building, AK, was used to make

a square, AKPR. Then, half of this square, GNPR, was added to the right side to

make RPMZ, which is now 50 % longer than it is high; AKNG ¼ GNPR ¼ RPMZ.

The result is the 2:3 ratio.

Fig. 76.4 Geometrical analysis overlaid on LA47 (elevation on the left). Drawing: Mark

A. Reynolds
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Conclusions

Do the plans for the Salk “read like a harmony of spaces” as “[t]o the musician a

sheet of music is seeing from what he hears” (Kahn 1961: 149)? Because these

words are quoted from the text Kahn would routinely send to those inquiring about

his theory,6 which those close to him would say embodied his theory better than any

other,7 it is hard to dismiss them as hollow, and tempting to read them in the light of

what we know about Kahn’s reading ofWittkower, who wrote about the importance

of harmonic proportions to Palladio.

Our analysis raises two broad hypotheses. Hypothesis one: a complex array of

musical proportions informed many aspects of the design but, because he was not a

fanatic, Kahn was happy to alter dimensions to accommodate technical

considerations—advice from structural or services engineers, for example. This

hypothesis is consistent with the slight deviations from true ratios mentioned

throughout this chapter. It also tallies with the central tenet of his article “Form

and Design”, that a building’s fundamental planning arrangement is otherworldly,

Fig. 76.5 Geometrical analysis overlaid on LA47 (elevation on the right). Drawing: Mark

A. Reynolds

6 David De Long (1991) claims that those inquiring about Kahn’s theory would be routinely sent a

copy of “Form and Design”.
7 According to Tim Vreeland from Kahn’s office, “Form and Design” embodies Kahn’s thinking

better than any previous text. See: Letter, Vreeland to Pidgeon, 11 January 1961 “Master File,

November 1 through December 30, 1960,” Box L.I.K. 9, Kahn Collection.
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almost divine, while dimensions are subject to circumstantial factors such as

budgets and building technology.

Hypothesis two: geometrical analysis is capable of finding proportions an

architect would be surprised to learn he or she has even used. As it calls into

question our entire endeavor, we will admit this hypothesis cannot be adequately

explored in the context of the present chapter, where our aim has been to uncover

whatever proportions the Salk might contain, but we would invite others to ask the

hard questions. Why, if proportions meant anything to Kahn at all, do the

dimensions found on his plans indicate no precise ratios? Should analysts of

recent buildings, for which dimensioned working drawings are available, tolerate

percent deviations, no matter how slim, when that practice was developed with

ancient buildings in mind? Why would Kahn have used such a disparate variety of

ratios, when conventional wisdom would have architects striving for cohesion

through the reiteration of one, or a small family of ratios?

The analysis we have presented has, by no means, been exhaustive. Neither

should it be seen as an abrogation of previous studies of its kind, most notably that

of Klaus-Peter Gast (1998). Moreover, we hope it will be seen as the start of a

discussion that could be advanced in any of the following ways. A simple computer

program could be developed to digitally analyze the Autocad plan that the Salk

Institute so kindly provided us; given any point on the plan as a center-point, and

any related point on which to base a radius, such a program could automatically

populate the plan with circles with radii proportional to the first radius, in search of

precise ratios that might otherwise have eluded a human analyst working with his

eyes and a compass. It would be fascinating also to have a musicologist examine the

musical ratios we have identified—they might harmonize in ways we are not aware,

or even be related to a known tune. As we indicated in our previous research on the

Kimbell, we continue to publish in the hope that past associates of Kahn’s will

come forward with any anecdotal evidence of his interest, or disinterest, in

proportions.

Acknowledgments We would like to thank William Whitaker of the Architectural Archives of

the University of Pennsylvania, for his assistance during a 2004 visit to Philadelphia to access

relevant correspondence, when he also provided us with the first generation reproductions used in

our analysis; they were of sheets: LA4 “Laboratory—middle level plan, garden” (used as an

underlay for Fig. 76.2; LA18 “Studies—typical plans” (used as an underlay for Fig. 76.3); LA11

“Laboratory—garden elevations and sections”; and LA47 “Laboratory building—office wing

elevation” (used as an underlay for Figs. 76.4 and 76.5). Thanks also to the Salk Institute for

Biological Studies for their daily tours of the facility—these were invaluable in collecting

photographic records to supplement the above drawings—and to Bob Lizarraga for providing an

electronic copy of the plan. Keith Duke assisted with the analysis.

Biography Steven Fleming lectures in the history and theory of architecture at the

University of Tasmania, Australia. He received his Ph.D. in 2003 from the

Department of Architecture at The University of Newcastle, with a thesis on

Classical Platonism with respect to Louis I. Kahn’s concept of “form”. He has

worked as a practicing architect in Australia and in Singapore. He is well-known

76 The Salk: A Geometrical Analysis Supported by Historical Evidence 445
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Chapter 77

Architecture andMathematics: Soap Bubbles

and Soap Films

Michele Emmer

Introduction

I do not suppose that there is any one in this room who has not occasionally blown a

common soap-bubble, and while admiring the perfection of this form, and the marvellous

brilliancy of its colours, wondered how it is that such a magnificent object can be so easily

produced.

I hope that none of you are yet tired of playing with bubbles, because, as I hope we shall

see, there is more in a common bubble that those who have only played with them generally

imagine (Boys 1959: 13).

These are words by Charles V. Boys in the introduction to his famous book Soap
Bubbles, Their Colours and the Forces which Mould Them. The book is based on

three conferences that the author gave for a young public at the London Institution
during December 1889 and January 1890. The Society for Promoting Christian
Knowledge first published the book in 1902 and the author’s revised and expanded

edition was published in 1911.

The book quickly became a very popular and classic essay on the popularization

of a scientific subject. Boys was presenting in the volume the results of new

experiments on soap bubbles performed by scientists 30 years before the

publication of his book. There is no doubt of the great importance of the

nineteenth century for the study of what it is commonly called The Geometry of
Soap Bubbles and Soap Films.
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The Geometry of Soap Bubbles and Soap Films

The Belgian physicist Joseph Plateau published the results of his experiments on

soap bubbles and soap films in a two-volume treatise in 1873: Statique
expèrimentale et théorique des liquides soumis aux seules forces moléculaires
(Plateau 1873). In 1872, a year before Plateau’s results were published, the

famous impressionist painter Edouard Manet painted his Les Bulles de savon. If
the geometrical history of soap films starts with Plateau, soap bubbles already had a

long story of their own in literature and art (Emmer 1987, 1991, 2009).

Plateau had examined a vast number of small frames dipped into soapy water,

obtaining completely novel shapes which he did not hesitate to define as full of

charme, airy forms which in their essentiality are simply mathematical surfaces.

The problem in mathematics which is linked to the name of Plateau consists in

taking a generic curve in three space and then finding a surface with the least

possible area bounded by the assigned curve. If a tridimensional model of the curve

can be made, it can be dipped into the soapy water. When it is withdrawn, in very

many cases a soapy surface is obtained which is the empirical solution to the

problem. While this type of demonstration may be satisfactory to a physicist, a

mathematician demands a rigorous demonstration of the existence of the solution,

and seeks, where possible, concordance with the physical experiments. The general

mathematical solution to Plateau’s problem was to prove somewhat arduous

(Fig. 77.1).

The reason soap films and soap bubbles are excellent tools with which to study

minimal surfaces (surfaces of least area under some fixed conditions) is due to the

presence of surface tension, connected with the forces of attraction which come into

play between the molecules of a liquid. Surface tension is proportional to the

surface area of the film. For a liquid to achieve equilibrium, the energy must be

the least possible, and consequently the free surface area must be diminished as far

as possible. Hence the denomination: minimal surfaces. When a soap bubble is

blown, the soapy surface stretches and, when blowing ceases, the film will tend

toward equilibrium in the form of a sphere. The sphere presents the least exterior

surface area of all surfaces containing the same volume of in-blown air.

Besides investigating the solutions for different boundaries of the Plateau

problem, the Belgian physicist spent time on the geometry of soap bubbles and

soap films. Blowing with a small tube into soapy water, one notices that the more

one blows, the more complex the agglomeration of films becomes. Thus one could

assume that the way in which the various films meet together could give rise to

infinite possible configurations. And here we have Plateau’s discovery, incredible at

first sight. However many soap films come into contact with one another, there can

never be other than two types of configurations. The three empirical rules found by

Plateau concerning soap films are:

1. a cluster of soap bubbles or soap films attached to a wire consists of flat or curved

surfaces which intersect along curves with very smooth curvature.
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2. the surfaces meet in only two ways: either three surfaces meet along a line, or six

surfaces give rise to curves which meet at a vertex.

3. the intersection angles of the surfaces along a line, or of the intersection curves

in a vertex are always equal: in the former case at 120�, in the latter at I09�280.
However many intersections there may be, the only types of angles which the

soap films form among themselves are those found by Plateau! (Fig. 77.2).

Only in 1976 the American mathematician Jean E. Taylor was able to prove that

the laws of Plateau are correct. With some degree of pride, she wrote:

Although in the past 100 years, several mathematical models for area-minimizing surfaces,

all called Plateau’s problem, have been constructed, none of these models allowed the

general kind of surfaces which arise in real soap films (Taylor 1976: 135–142).

That same year Taylor and Almgren published an article in the Scientific
American with the results achieved on the geometry of soap films (Almgren and

Taylor 1976: 82–93; Emmer 1980). The text was accompanied by a set of splendid

photos. The article inspired the idea of a motion picture on soap films. The use of

the camera has made possible in-depth investigation of the soap film structures

revealing in slow motion a series of effects otherwise invisible to the naked eye.

Many mathematicians have worked on Plateau’s problem and the Minimal
Surfaces Theory in the last 120 years. The problem was solved in the 1960s by

the Italian mathematician Ennio De Giorgi, and again by American mathematician

Reifenberg in a completely independent way. In 1974 Italian mathematician Enrico

Bombieri received the Fields Medal (equivalent to the Nobel prize for

mathematicians) for his research on minimal surfaces theory.

So there is no doubt that the geometry of soap films and soap bubbles is a very

important topic in modern mathematics. But is there really any relationship with

architecture?

Fig. 77.1 E. Bisignani,

M. Emmer, “Soapy

Hypercube”, an illustration

of the Plateau Problem for a

cubic wire. Photo: author
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Minimal Surfaces in Architecture

Soap Films and the Form of Towns

It is well known that among all closed plane curves of the same length, the

circumference encloses the largest area, a property known as the isoperimetric
property. The first one to consider the isoperimetric problem in mathematical terms

was Pappus of Alexandria, in about 390 BC. In book V of his works on mathematics

and physics, we find the word isoperimetric used in context of geometry (the book

was written in Greek) (Hultsch 1933). It is possible to verify through very simple

experiments with soap films that the property of the circumference is correct. It is

enough to take a wire in the shape of a circumference and dip it in the soapy water

and then dip it out: the soap film will form a circle spanning into the circumference,

a soap film with the isoperimetric surface. An analogous formulation of the problem

is the following: find a plane curve that surrounds a given area with the smallest

length. The answer is again the circumference. In another experiment, one takes

two threads, the first fixed to the wire (still in the form of a circumference) and the

second fixed to the first. When, with a finger, one breaks the soap film between the

two threads, they stretch out forming a perfect circumference, so that the space

between them is the largest and the external one the smallest.

Mathematicians consider as very reasonable the hypothesis that those charged

with the design of towns in ancient times knew of the isoperimetric property at least

empirically, if not as a result of Pappus’ work. An architect in the Middle Ages who

wanted to construct town walls of the least possible length containing the largest

inside area had to build the town in a circular form. Georg Gerster, in his book La
Terre de l’Homme: Vues Aériennes (1975), has published photos of the earth taken

from a airplane. With this technique it is possible to draw attention to the structures

built by men. One of the chapters is dedicated to an Archetype d’habitat: la cité en

Fig. 77.2 Soap bubbles.

Photo: author
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forme de cercle. As Gerster points out, the most important motivation to build

towns in a circular form, during various historical periods and among different

civilizations, was probably not the isoperimetric property, but rather, “[t]he form of

the circle was the symbol of harmony and perfection.” Of course this does not mean

that the only hypothesis for the circular form of towns is based on its symbolic

meaning, excluding a priori the isoperimetric property. As Gerster points out, the

circular plan allows the inhabitants whose houses are located on circumcentric

circumferences to move easily towards the temple in the centre of the town or to the

golf green outside the town. It is interesting to note that the presence of towns with

circular plans is more significant in certain historical periods. In 1804 the French

architect Claude Nicolas Ledoux (1736–1806) published the volume

L’Architecture Considérée sous le Rapport de l’Art, des Moeurs et de la Lé
gislation (1804). In his treatise Ledoux presented two projects: the first one for

houses of workers, the second for the plan of a town. The first one was composed of

a circle inscribed in a square. As a comment Ledoux wrote: “[i]ts form is pure”

while for the second project: “the form is pure as the one the Sun describes in its

movement.” Moreover he added: “The circle, the square are the letters of the

alphabet used by the architects for the structures of their best works.”

Soap Films in Three Space: The Sphere

As the circle satisfies the isoperimetric property in the plane, the sphere satisfies the

same property in three space: for the same external surface area, the solid which

contains the maximum volume is the sphere, or if we assign a volume, the sphere is

the solid which contains the assigned volume and has the minimal external surface

area. When we blow to generate a bubble, we fix a volume of air (the air we blow),

while the soapy water, forming the bubble that surrounds the volume of air, builds

the spherical surface which solves the problem. As the isoperimetric property has

probably been used in the foundation of towns, so the sphere has been (and still is)

one of the favourite subjects in architecture.

One of the more utopian projects of Ledoux was related to the sphere. He was

planning a house for agricultural guardians. It was a perfect sphere located down in

a hollow and it was possible to reach it through four bridges. As Kaufmann has

pointed out: “The project was a rare example of pure geometry” (Kaufmann 1978).

For the French Revolutionary Architects (as he calls them), the sphere was

particularly suitable for all the constructions related with the Death and the

Eternity. Another French architect of the same period, Etienne-Louis Boullée

(1728–1799), made the plan in 1784 for the cenotaph of Newton. Boullée was

fascinated by the magnificent beauty of the spherical form, by the regularity of its

transformation from shadow to light. So the soap bubble and its spherical form is

both the allegoric symbol of the Vanitas, of the fragility of human life, and the

symbol of perfection, still related to the idea of death.
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Who knows if the Eskimos, when they build their igloos, are aware of solving an

isoperimetric problem to have inside a construction based on a plane the greater

possible volume for the same external surface. Of course there are static reasons

too. From the mathematical point of view this problem has a constraint (the plane)

in comparison with the free problem of blowing a simple soap bubble. The solution

is the hemisphere, the igloo, based on a plane, as is very easily verified with a real

soap bubble; when the bubble touches the plane, the phenomenon takes place so

quickly that only with a slow-motion camera is it possible to see the precise

moment when the bubble becomes a hemisphere.

Minimal Surfaces with Constraints in Three Space

The German architect Frei Otto has used soap bubbles and soap films as models to

design and construct his well-known tensile structures. The work of Otto, as it is

described in the volume Tensile Structures (Otto 1973), allows one to look to soap

films from another point of view: that of the designer. Otto has used soap bubbles

and films to study pneumatic structures, that is, structures which are under traction,
like membranes. Otto points out that “every form which a soap bubble can assume

can be obtained as pneumatic structure.” Frei Otto considers as particularly

important designs which can be obtained by experiments with soap bubbles.

The knowledge of minimum surfaces is very important for the design of membrane and

cable-net structures. However, minimum surfaces are not always the optimum structural

shapes. A minimum surface defines only the surface of least area with a closed curve. A

minimum surface is identical with a membrane everywhere uniformly stressed in all

directions. The minimum surface is also the shape of the most economical surface support

system. When additional loads act, the minimum surface is not always the optimum shape

(Otto 1973: Vol. 2, 49).1

Otto adds:

It is often necessary to change the form of the minimum surface in such a way that

membrane zones requiring higher rigidity also have greater curvature. Of course any

deviation from the minimum surface increases the total surface area. Determinations of

the minimum surface is essential despite these major reservations (Otto 1973: Vol. 2, 50).

The essential problem for the designer is the measuring of the soap film models,

a problem not so easy to solve. The equipe of Frei Otto set up, between 1959 and

1962, a technique to visualize soap film models in order to obtain a precise

photogrammetric evaluation. During the years 1960–1964 they made many

experiments to test the shape of soap films for different boundary curves. They

have solved experimentally many different Plateau problems. In the construction of

a membrane the problem is to find the minimum surface that touches the base

support and goes up to reach the higher points. All the solutions obtained by Frei

1 In mathematics the correct name is minimal surfaces instead of minimum surfaces.
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Otto follow the rules of Plateau, but he was able to discover many new forms. To

simulate these problems it is necessary to consider some fixed points in space (using

small supports) and thin threads which connect them and then to dip all in the soapy

water. After water has gone away, the soap film is stretched between the threads

reaching the equilibrium position of the minimum area. Particularly interesting is

the technique which uses the elasticity of soap film to make the film reach the

vertices, which simulate the higher points in the membrane that is to be built. Otto

has developed a technique to make the soap films get up through a very thin noose

thread, called an eye. The Institute of Architecture of Otto at the University of

Stuttgart was built along the lines of a model created by soap films using the eye
technique. One of the more recent books of the Equipe of Frei Otto has the title

Seifenblasen—Forming Bubbles.
The example of Otto is not unique in architecture. Due to their properties, soap

bubbles and soap films are used in various fields of design and architecture. The

American architect Peter Pearce in his volume Structure in Nature as a Strategy for
Design (1979) considers soap bubbles as an archetype for any kind of modular

structures.

Periodic Minimal Surfaces

In 1865 the German mathematician H.A. Schwarz was the first to solve the Plateau

problem for a non-plane boundary, the quadrilateral obtained by choosing four

vertices of a tetrahedron. Schwarz built several models of his solution. The surface

is a minimal surface as the mean curvature is zero in each of its points, while the

two principal curvatures have opposite directions: so the surface is of the type of a

saddle surface, in each point concavity balances convexity. To visualize the

surface, Hilbert and Cohn-Vossen suggest thinking of the pass of a mountain. An

example of surface of this type is the hyperbolic paraboloid. The problem of Plateau

solved by Schwarz has suggested many applications of soap bubbles in architecture.

The idea is to consider a skew frame, made of rectilinear and curved tracts, like the

one considered by Schwarz, to obtain the minimal surface that solves the Plateau

problem. In the chapter ‘Minimum Surfaces Stretched in Frames Subjected to

Bending’ of the volume Tensile Structures, Frei Otto wrote the following:

Experiments were undertaken in which soap bubbles were stretched in different frames and

measured photographically in order to determine their shapes. The first photos show soap

films in skew frames consisting of rods of equal length. The experimental result that a

minimum surface in a skew frame is not a hyperbolic paraboloid, was proved mathematically

(Otto 1973: 52).

Pearce recalls an important observation on saddle type surfaces:

Some areas on a saddle surface are flatter than others and, therefore, all points on the

surface do not respond equally well to concentrated loads. When such saddle surfaces are

associated in a periodic array, the physical interaction of one surface on another produces a

compensatory effect which greatly increases their efficiency as structures. An isolated
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saddle polygon is not a fully stable structure. It requires the cooperative effect of associated

saddle polygons if its advantages as a doubly curved surface are to be fully realized. This is

true whether the surface is a tension system, as in the case of the soap film, or a surface of

rigid material capable of resisting tension and compression forces (Pearce 1979: 14).

So it is necessary to put together saddle polygons or surfaces to obtain more

stable structures. Schwarz was able to find rules which allow a suitable repetition of

saddle-type minimal surfaces in order to obtain a new surface whose generating

element is repeated many times. The procedure can be repeated, in principle,

infinitely. The surfaces which can be obtained following the rules of Schwarz are

called Infinite Periodic Minimal Surfaces (IPMS). A systematic description of

frames to start the making of the most interesting IPMS can be find in the work

of Anderson and Hyde A Systematic Net Description of Saddle Polyhedra and
Periodic Minimal Surfaces (1984: 221–254).

IMPS without self-intersections can be characterized by the structures of tunnels

which pass through them. Pearce has created labyrinthic structures starting from

saddle polyedra for a very precise purpose: to amuse children.

Moving from mathematical abstractions through small scale models to structures of the

size used in the installation at the Brooklyn Children’s Museum in New York requires

considerable attention to details and to the subtleties of three dimensional space. The ideal

minimal surface is a structure of zero thickness. The surface modules used in the present

application have a typical wall thickness 0.190 inches. The translation of the zero thickness

of the ideal minimal surface to a surface module of such a thickness is a technical problem

of considerable complexity. . . Continuity of form is also a major consideration, since an

important recreational intent of the curved space structures is to enable children to slide

through the tunnel labyrinths. This requires joining systems without sharp edges and of

compact physical dimension (Pearce 1979: 231).

There is the need for a labyrinthic structure to be closed in order for it to be

stable. If we open it in order to provide an entryway for children and adults we lose

some local stability. Moreover the openings made possible by the frames also help

ventilate the labyrinth. These technical problems have been solved and in the

Brooklyn Museum there are three labyrinthic structures which consist of

118 cells repeating themselves. The basic cell of all the systems is a saddle

polyhedron. Children at the Brooklyn Museum make an important jump of

quality: from playing with soap bubbles to entering in the labyrinthic structure of

periodic minimal surfaces! (Fig. 77.3).

Final Remarks

The geometry of soap bubbles and soap films is of great importance in many fields

of scientific research: mathematics, biology, chemistry, physics. Their structures

are of great importance in architecture as well.

Not the least important element, as pointed out by Plateau, is the charme of soap
bubbles and soap films. They are fascinating in the simplicity of their structures. It
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is not by chance that soap bubbles, in addition to their importance in science, have a

very long history in the visual arts.

In my opinion the fascination of the forms derived by the minimal surfaces in design is

based on several properties:

1. the shapes of minimal surfaces can be astonishing by the aesthetical point of view;

2. the shapes of minimal surfaces allow the optimal use of materials;

3. the structural surfaces with a saddle shape are very stable and resistant;

4. the structures of minimal surfaces have a natural geometric rigidity (Almgren

1982: 170).

The author of these words on the importance of Minimal Surfaces Forms in

design is not an artist, but a mathematician. Fred Almgren is one of the most famous

experts in the Minimal Surfaces Theory. Minimal surfaces is really an

interdisciplinary field of great interest.
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Fig. 77.3 P. Pearce,

“Labyrinthic Structure”,

Brooklyn Children’s

Museum, New York,
©Pearce Struct. Inc. Photo:

author
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Chapter 78

Aperiodic Tiling, Penrose Tiling

and the Generation of Architectural Forms

Michael J. Ostwald

Introduction

In September of 1995 the Australian architectural practice Ashton Raggatt

McDougall (ARM) invited the eminent mathematician Roger Penrose to open

their soon to be completed refurbishment of the historic Storey Hall complex of

buildings at the Royal Melbourne Institute of Technology. Penrose, who admitted

that the design seemed “extremely exciting” (Penrose 1996), regretfully declined

on the grounds that he was already overcommitted to too many projects to visit

Australia at the required time. He concluded his response to the invitation with an

enigmatic postscript which records that he is currently working on “the single tile

problem” and recently “found a tile set consisting of one tile together with

complicated matching rule that can be enforced with two small extra pieces”

(Penrose 1996). This postscript contains the first clue to understanding the

mysterious connection between Penrose and Storey Hall, between a scientist and

a controversial, award-winning, building.

Storey Hall is significant for many reasons but only one prompted ARM to invite

Penrose to open it. The newly completed Storey Hall is literally covered in a

particular set of giant, aperiodic tiles that were discovered by Roger Penrose in

the 1970s and have since become known as Penrose tiles. While architecture has,

historically, always been closely associated with the crafts of tiling and patterning,

Storey Hall represents a resurrection of that tradition.
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But what is Penrose tiling and what does it have to do with architecture in

general and Storey Hall in particular? This chapter provides an overview of the

special properties and characteristics of Penrose tilings before describing the way in

which they are used in ARM’s Storey Hall. The purpose of this binary analysis is

not to critique Storey Hall or its use of aperiodic tiling but to use ARM’s design as a

catalyst for taking the first few steps in a greater analysis of Penrose tiling in the

context of architectural form generation.

Periodic and Aperiodic Tilings

The geometers Grünbaum and Shephard record that the “art of tiling must have

originated very early in the history of civilization” because, with the very first

attempt to “use stones to cover the floors”, humanity “could be said to have begun

tiling” (Grünbaum and Shephard 1987: 1). Throughout history tiling has always

been associated with architecture. From the moment the earliest primitive hut was

floored with woven matting, walled with masonry, or carved with geometric

patterns, it became, in mathematical terms, a tiled structure. The reason for this is

that mathematical tiling is not defined by the craft of combining materials but by the

repetitious creation of patterns formed through the application of a set of usually

polygonal shapes. For this reason cut-stone mosaics are as much examples of

mathematical tiling as painted frescos or carved Celtic knot-work. Any system of

geometric patterning that covers or fills a surface using a finite set of shapes is

considered tiling in a mathematical sense.1 One of the reasons Grünbaum and

Shephard suggest that the art of architecture has always been closely associated

with the craft of tiling is that tiling or patterning adds richness, through

ornamentation, to the surface of a building. Such ornamentation is not simply

valued for aesthetic reasons but also for symbolic, practical and monetary

purposes. At any point in history, Grünbaum and Shephard argue, “whatever kind

of tiling was in favour, its art and technology always attracted skilful artisans,

inventive practitioners and magnanimous patrons” (1987: 1). However, while many

treatises have been written throughout history on the formation of architecture

through geometric principles, such works rarely consider the relationship between

tiling and architecture.2 Further, despite Johannes Kepler’s analysis of tiling

patterns in his 1619 work Harmonice Mundi, a rigorous and scientific approach to

understanding the properties of tilings has been formulated only in the last few

decades.

1 In theory it does not matter how large the set of tiles is. An infinite set of different shapes that fills

a plane is still a form of tiling although an unconventional kind.
2Whereas minor or subtle references to the art of tiling may be discerned in various translations of

the works of Vitruvious as well as in those of Alberti, Vignola and Serlio, even such minor

references are increasingly rare in the treatises that followed; see Kruft (1994).
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Charting the rise in enthusiasm for geometric tiling patterns to the works of Hao

Wang in the early 1960s has become a veritable truism in mathematics (Penrose

1990: 174). In 1961 the philosopher Hao Wang became interested in questions of

pattern recognition in the use of geometry as a tool for symbolic logic. Wang

wanted to determine if, given a set of polygonal shapes, there is a procedure for

determining whether or not they will tile a plane in such a way that they will

necessarily repeat their configuration. Tilings that repeat their configuration or that

display multiple lines of symmetry are usually called periodic tilings. The most

recognisable periodic tilings are based on sets of squares, rectangles, trapezoids or

parallelograms. In order to examine the question of whether or not a procedure

exists for determining if a set of shapes will tile periodically, Wang developed a set

of square tiles, each with different coloured edges. The edges of Wang tiles are only

allowed to join other edges of identical colour—they may not be rotated or

reflected, only translated. Wang conjectured that if aperiodic tiles (tiles that do

not repeat their patterns) exist, then he could not derive a decision procedure

whereby a given set of tiles will periodically tile a plane. Conversely, if a

decision procedure could be determined, then there was no such thing as an

aperiodic system of tiling (Rubinsteim 1996: 20–21).

In order to clarify Wang’s agenda, it must be understood that there are two types

of aperiodic tiles. There are sets of tiles that can fill a plane both periodically and

non-periodically, and there are sets of tiles that only fill a plane non-periodically.3

An example of the former is Gardner’s set of quadrilaterals that tile both

periodically and non-periodically; the choice is up to the person placing the tiles

(Figs. 78.1 and 78.2). There are countless examples of geometric sets of this kind;

Penrose frequently uses Marjorie Rice’s 1976 single tile set to explain this

idea (Fig. 78.3). Despite this, the sets of shapes that are conventionally referred

to in mathematics as aperiodic are usually those that can fill a plane only

non-periodically, or those that are necessarily non-periodic. This latter category

of shapes is the one with which Wang was primarily concerned.

In 1965 Robert Berger developed Wang’s thesis to prove that there is no decision

procedure for tiling surfaces periodically and, thus, there must be a set of aperiodic

tiles in existence. Following this realisation Berger set about finding the first set of

aperiodic tiles. The tiling system he discovered, comprising a set of more than

20,000 different shapes, was exhibited the following year. However, Berger’s tiling

system was based on a peculiarity of logic, and in the following years a number of

mathematicians produced increasingly less numerous sets of tiles that would fill a

plane aperiodically. In 1967 Berger himself lowered the number of tiles from

20,426 to 104 and, in 1968, Donald Knuth further reduced the set to 92. Yet, in

3 It must be noted that there is some confusion surrounding the terminology “aperiodic” and

“non-periodic” as both terms are used interchangeably in popular mathematics and science. This

chapter generally conforms to the wording used in Grünbaum and Shephard’s encyclopedic work

Tilings and Patterns (1987) and uses “aperiodic” as an accurate description of the properties of a

tile set and “non-periodic” only when quoting from another work or when using the term as a

broad, non-definitive, descriptor.
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1971, a more dramatic reduction occurred when Raphael Robinson both allowed

the set of tiles to be rotated and reflected and then removed colour altogether from

the tiles. Instead of colour, Robinson used a series of geometric additions and

indentations to ensure that certain edges could be combined while others

couldn’t. In this way Robinson reduced the set of tiles, from Knuth’s 92 to just

6 (Figs. 78.4 and 78.5). In essence, Robinson’s tiles are still Wang tiles because they

are still based on a square tiling pattern, and for this reason they represent the

minimum possible set of aperiodic tiles founded on an underlying square period.

However, while the square tiling period has a minimum limit of six tiles, Penrose

proposed in 1973 that by using a parallelogram tiling period the set could be

Fig. 78.1 Gardner’s set of

quadrilateral tiles (with a

square period) used

periodically. Image: author

Fig. 78.2 Gardner’s set of

quadrilateral tiles (still with

a square period) used

aperiodically. Image: author
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reduced to just two tiles. Moreover, Penrose then proposed two sets of two tiles that

each could be tiled only aperiodically.

The first set of “Penrose tiles”, named by the mathematician John Conway the

“darts and kites” set, is derived from a rhombus (or parallelogram) with four sides

of equal length (length¼ ø) with obtuse angles of 108� and acute of 72�. A line is

then drawn between the acute corners of the rhombus (bisecting each of these into

two angles of 32�) and a length equal to the length of a typical side of the rhombus

(i.e., ø) measured along this line (Figs. 78.6 and 78.7). The new point created in this

way is connected to the remaining obtuse corners of the rhombus. The rhombus is

then cut along these two lines creating a kite form (with angles of 72�, 72�, 72�, and
144�) and a dart form (with angles of 36�, 72�, 36� and 216�). Then, if the two

Fig. 78.3 Rice’s single

polygon set tiling a surface

periodically. Image: author

Fig. 78.4 Robinson’s six

tiles set. Image: author
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cutting lines that connect the obtuse corners are of length 1, the other lengths

created are reflections, proportionally, of the golden mean (i.e., ϕ ¼ 1þ ffiffi

5
p
2

).

Finally, the two forms thus created, the kite and the dart, are coloured or indented

to ensure that they may only be connected to certain other surfaces and thus tile only

aperiodically.

An intriguing property of the “darts and kites” set of Penrose tiles is that if an

infinitely large surface is to be tiled, 1þ
ffiffi

5
p
2

(approximately 1.618) times as many kites

as darts is required; in other words, the ratio of darts to kites is the golden mean.

The first tile of the second Penrose set of aperiodic tiles is identical to the starting

rhombus used to construct the first pair. That is, the first tile is a rhombus with sides

Fig. 78.5 Robinson’s tiles

displaying forced

aperiodicity. Image: author

Fig. 78.6 Construction of

Penrose dart and kite tiles.

Image: author
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of equal length (length ¼ϕ), with obtuse angles of 108� and acute of 72�. The
second rhombus tile also has four sides of length equal to those of the first but with

obtuse angles of 144� and acute of 36�. These are then modified with colours,

shades or indentations to ensure that they tile aperiodically (Figs. 78.8 and 78.9).

This second set similarly has proportions and ratios that reflect the characteristics of

the golden mean. This close relationship between both sets of Penrose tiles and the

golden mean may be more readily appreciated by closely examining a Pythagorean

pentagram at multiple scales (Fig. 78.10).

One special characteristic of Penrose tiling patterns is that they exhibit quasi-
symmetry. Normally any type of symmetry in a tiling pattern would render a set

periodic, but Penrose tiles display partial, not complete, symmetry through rotation

at 72�. For this reason Penrose tilings are said to be quasi-symmetrical. This

characteristic is important because until 1984 it was believed that all crystalline

materials must be based on lattices with conventional periodic symmetries. Crystals

exhibit rotational symmetry at only 2, 3, 4 and 6 rotations. However, in 1984 Dany

Schechtman discovered an aperiodic crystalline structure in aluminium-manganese

by electron micrography. This crystalline structure, which was called a

quasicrystal, almost possessed fivefold symmetry in much the same way that

Penrose tiling patterns are almost symmetrical. Although, as Cracknell records,

fivefold symmetry in crystals had been discovered as early as 1966, it was

commonly believed that crystals could not have fivefold symmetry as such was

unknown in morphological crystallography (Cracknell 1969). For Gardner, the

discovery of the quasicrystal had great repercussions in science:

Among physicists, chemists and crystallographers the effect of this discovery was explosive.

Similar nonperiodic structures were soon being induced in other alloys, and dozens of

papers began to appear. It became clear that solid matter could exhibit nonperiodic lattices

with any kind of rotational symmetry. Wide varieties of solid tiles in sets of two or more

Fig. 78.7 Penrose dart and

kite tiles displaying forced

aperiodicity (note that the

coloured patches and
indents forcing the patterns

are removed for clarity).

Image: author
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were proposed as models, some forcing nonperiodicity, some merely allowing it (Gardner

1989: 25).

Fivefold quasi-symmetry defies the laws of crystalline restriction that suggests

that crystalline lattices cannot posses fivefold symmetry. However, as Stewart and

Golubitsky maintain, “quasicrystals ‘almost repeat’ their structure, and can have

axes of fivefold symmetry” (Stewart and Golubitsky 1993: 95). Nevertheless,

despite these recent developments in the geometry and mathematics of aperiodic

tiling patterns, Penrose tiles are still widely regarded as examples of “recreational

mathematics” (Gardner 1989). While Penrose tilings might possess some latent

ability to describe crystal anomalies or “symmetry-breaking” in natural inorganic

Fig. 78.8 Construction of

Penrose twin parallelogram

tiles. Image: author

Fig. 78.9 Penrose twin

parallelogram tiles

displaying forced

aperiodicity (note that the

coloured patches and

indents forcing the patterns

are removed for clarity).

Image: author
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forms (Stewart and Golubitsky 1993), they are still largely without clear application

in any specific field.

Storey Hall

Storey Hall is a large auditorium with ancillary spaces that are built into the shell of

an existing, historic structure (Figs. 78.11 and 78.12). The building was opened in

late 1996 and has since been awarded a number of state and national design awards.

The most contentious aspect of the design is the way in which ARM have carefully

restored and retained parts of the original Victorian building, only to combine them

with a glaringly modern, brightly coloured, geometric addition. The architectural

designer and critic Norman Day describes the original Victorian detailing as being

almost completely overwhelmed by a complex applique of “white, green, pink,

purple and red panels, with inset green neon lights and great panels of white

translucent and reflected light fittings” (Day 1995: 36). These tiles, which overlay

both the façade of the building in Swanston street as well as most of the interior

spaces, are all the second set of Penrose tiles (the twin parallelograms) marked in

accordance with Penrose colouring (not Penrose indentations). In the words of

ARM, on the exterior of the building the Penrose tiles are “shrouded in veil and

drapery, folded sash, delicious lace, and strong rope lines, marking the inner

boundaries of Penrose’s mysterious geometry” (Ashton Raggatt McDougall 1996:

9). On the inside of the building, particularly in the auditorium space, “the tile is

made to iterate its own pattern as if in multiple dimensions.”

ARM assert that in the design of Storey Hall they are using Penrose tiles as part

of a twofold strategy of transfiguring the dominant Euclidean geometry of the

existing structure and as a symbol for the power of the “new sciences.” For ARM

Fig. 78.10 The

Pythagorean Pentagram

displaying all four Penrose

tiles at different scales.

Image: author
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the use of Penrose tiles is not simply a reference to plane-filling geometry but to the

greater conceptual shift associated with what they describe as the “new

mathematics.” This is a claim that various critics read as suggesting that there is a

connection between Penrose tiling and fractal geometry. For example, Day claims

that the Penrose tiles must be read in concert with the form of the facade itself,

which is a “site-poured concrete wall” that is twisted “according to the new

geometry of complexity” (Day 1995: 40). Inside the building the act of reading

the meaning behind the giant Penrose tiles is further complicated because the tiles

are layered with a range of other icons from science and geometry (Kohane 1996:

8–15). Norman Day suggests that amidst the geometry of Penrose there are also

signs that lead to “chaos theory, Walter Burley-Griffin, urbanism, the sexual

Fig. 78.11 Storey Hall, designed by ARM. Photo: courtesy John Gollings

Fig. 78.12 Storey Hall, designed by ARM. Photo: courtesy John Gollings
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revolution, feminism, Einstein’s grotto, Plato’s cave, X and Y chromosomes, the

Vault sculpture, paradoxes [and] contextualism” (Day 1995: 37).

But are the Penrose tiles significant in any way or are they simply icons for

geometric knowledge? When the author of this chapter questioned Charles Jencks

on the validity of applying mathematical forms to the exterior of an historic

building, Jencks replied that the more “transformational” the use of iconography,

the more interesting the outcome. For Jencks, while Storey Hall “doesn’t really use

the Penrose tiling pattern in section or plan . . . it still uses it importantly in wall

depth, in all-over ornament, and iconographically” (Ostwald et al. 1996: 30). All of

these uses, Jencks argues, are appropriate means of creating architectonic forms.

But doesn’t this type of use border on simple “applique” or the “purely

ornamental”?—seemingly not for Jencks. There is more happening in Storey

Hall, according to Jencks, than simple conversion of Penrose tiles to architectural

ornamentation. “Look at the lighting,” he says, “and the way it relates to the old

Victorian building. Its musculature is similar to the Victorian building and it has the

same information density”. If it were simply “applique, or applied ornament” it

would be “less interesting than something that has greater organisational depth”

(Ostwald et al. 1996: 30).

ARM’s use of Penrose tiles as a generator of architectural form seems to reflect

not so much a close reading of topographical Mathematics but an awareness of the

role of these ideas in the understanding of quasicrystals and, less directly, as a

connection to fractal geometry. Leon van Schaik (1996: 5) describes Storey Hall as

“an architecture which works through the contemporary mathematics of surface”.

For van Schaik, the Penrose tiles refer not only to topographical mathematics but to

an “unfolding symphony of forms that envelop us in an encounter with the spatiality

of the new mathematics”. When viewed in this way, the architectural forms

generated through the use of Penrose tiles are simply extensions of the historic

relationship between architecture and tiling, a relationship that otherwise seems, in

recent years, to be lacking in creativity.

Penrose Tiling and Architecture

Despite their possible use in the interpretation of quasicrystals, Penrose tiles are still

simply plane-filling patterns with a few unusual properties. Moreover, these

unusual properties are not in any obvious way particularly relevant to

architecture.4 Ultimately, in the context of architecture, a periodic tile set is the

same as an aperiodic set; the choice of using one or the other is simply aesthetic. Yet

there are two recent developments in tiling geometry that have occurred as a result

of Penrose’s discoveries that seem potentially more profitable for the development

4Although Robbin’s arguments to the contrary are very intriguing, this author remains sceptical;

see Robbin (1990: 140–142).
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of architectural forms. The reason these two developments seem more useful is that

they promote the understanding of a spatial dimension in aperiodic tiling as well as

a topological one. In 1976 the mathematician Robert Ammann proposed that a

two-component set could be devised that would tile space aperiodically. This means

that instead of being a “plane-filling” system, Ammann’s tiles are “space-filling.”

Significantly, this same system was independently discovered at around the same

time by the Japanese architect and geometer Koji Miyazaki (Miyazaki 1977).

Ammann’s aperiodic space-filling tiles are a pair of rhombohedra formed by

creating two solids, each of which have six sides that are all the same as

Penrose’s starting rhombus for the formation of the dart and kite set. That is, each

of the surfaces of space-filling tiles is a rhombus with sides of equal length and with

obtuse angles of 108� and acute of 72�. The two solids produced in this way bear an
uncanny resemblance to the basic geometry of Peter Eisenman’s axonometric

model for House X as well as his House El Even Odd project (Eisenman 1982,

1995). When coloured or modified in a certain way, Ammann’s tiles will only fit

together in three dimensions, aperiodically.

One final discovery in the geometry of tiling—a discovery that is rather more

complex and is thus necessarily described in a very superficial manner here—

concerns forced holes in tiled planes. Significantly, in order to describe the

presence of forced holes in Penrose aperiodic tilings, mathematicians have

resorted to the use of architectural metaphors (Ostwald and Moore 1995; Ostwald

et al. 1997). For instance, John Conway describes the discovery of hole theory as

akin to imagining “a vast temple with a floor tessellated by Penrose tiles and a

circular column exactly in the centre. The tiles seem to go under the column.

Actually, the column covers a hole that can’t be tessellated” (Gardner 1989: 26–

27). Certain combinations of Penrose tiles (and indeed any necessarily aperiodic

tilings) can force areas that are unable to be tiled. Conventionally this type of error

is rectified by removing a number of surrounding tiles and reworking the pattern

until there are no holes. But if holes are formed, they impact on the greater pattern

in many subtle and significant ways. Holes in tessellated planes, like space-filling

aperiodic tiles, are emphatically spatial systems of geometry that broach many

possible connections between architecture, Penrose tilings and other aperiodic

tilings. These two aspects of aperiodic tiling warrant further investigation in

architecture.
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Chapter 79

Paving the Alexanderplatz Efficiently

with a Quasi-Periodic Tiling

Ulrich Kortenkamp

Introduction

In this chapter we describe a quasi-periodic tiling that was entered in a 2004

competition for the landscaping re-design of the Alexanderplatz in Berlin.

Although the tiling was only part of the whole design, we will concentrate here

on the reasons for using it, its mathematical properties, and how it could be realized,

and we will neglect all other aspects. The concept won one of the three first prizes in

the competition, but was not chosen for realization.

The area that had to be redesigned is located in the heart of Berlin, a metropolis

of 3.5 million inhabitants, which is still challenged by the process of the

reunification of Germany. Its architectural history is quite interesting and

probably well known to most readers.1 A concise article that gives a brief historic

summary can be found in the German Wikipedia at http://www.de.wikipedia.org/

wiki/Alexanderplatz_(Berlin).

The most challenging issue in the landscaping is the wide open area of

26,000 m2. One requirement postulated in the competition guidelines was that

this area had to be maintained. However, as the area is neither rectangular nor

quadrangular, but pentagonal (Fig. 79.1), it is not possible to use a customary

orthogonal tiling without favoring one side of the area over the other. Also, for

draining purposes tiling is preferred to a asphalt surface. Further, the area was to

First published as: Ulrich Kortenkamp, “Paving the Alexanderplatz Efficiently with a

Quasi-Periodic Tiling”, pp. 57–62 in Nexus VI: Architecture and Mathematics, Sylvie Duvernoy
and Orietta Pedemonte, eds. Turin: Kim Williams Books, 2006.

1 A concise article that gives a brief historic summary can be found on Wikipedia: http://www.en.
wikipedia.org/wiki/Alexanderplatz
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remain usable for small-wheeled vehicles such as baby carriages, scooters, inline

skates and skateboards; this prohibits the use of small paving stones.

The landscape architects, Landschaftsarchitekturbüro Mettler of Berlin, who

were consulting the mathematics department of the Technical University of

Berlin, asked if we could provide a tiling that fulfils several properties:

1. All tiles should be 5-, 6- or 7-gons, each approx. 1 m2 in size;

2. There should be no periodicity at all;

3. There should be only a few different types of tiles;

4. The layout should be easily executed by the construction team.

While the first two properties were due to the design concept of the architects,

the others were owing to financial constraints.

Fig. 79.1 Image: author
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A Mathematical Solution

Of course, as soon as non-periodic, irregular, but automatically generated tilings are

involved, a mathematician thinks of Penrose tilings and the like. Unfortunately,

Penrose tilings are made from quadrangles, so we could not come up with a solution

immediately, but we forwarded the request to Prof. Ludwig Danzer of Dortmund,

who is a well-known expert in all sorts of tilings. He suggested several, and the

landscaping architects chose one from them that seemed to be very well suited

(Fig. 79.2). It consists of 5-, 6- and 7-gons, and uses only four types of tiles. It is

non-periodic, and its flowery appearance is appealing (a television tower is next to

the Alexanderplatz, so it would have been possible to view the tiling as a whole

from 200 m above).

All seemed perfect, and there were still a few days left before the final plans had

to be submitted. A student of Danzer started to draw a larger version of the tiling

that could be included in the electronic version of the plan. A quick calculation

shows that approximately 26,000 tiles are necessary for the whole area a mere

number of 75,000 line segments to draw! Soon it became clear that it is not possible

to finish this task by hand in time. However, we received no information on the

rules that were behind the preliminary design. We could not find any publications

that could help in analyzing the tiling, so we had to re-engineer it on our own.

Fig. 79.2 Image: author
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Re-Engineering the Tiling

Before we describe the re-engineering, we want to describe the four tiles that were

used in the tiling.

(a) The Pentagon (Fig. 79.3a). The regular pentagon is reflecting the symmetry of

the pattern and is responsible for its non-periodicity. The length a of its side can
be chosen arbitrarily and thus sets the global scale of the tiling. The inner angle

is 108�.
(b) The flat hexagon (Fig. 79.3b). This non-regular hexagon is used, for example, to

surround a single regular pentagon. This description also shows that the inner

angles are 360� � 108�/2¼ 126�. The long side a fits the regular pentagon, the

short sides have length b, where a:b is ϕ (ϕ being the golden ratio).

(c) The hexagon (Fig. 79.3c). This hexagon can be created from the pentagon and

the flat hexagon by using three sides of the pentagon and half of the flat

hexagon. The lengths of sides and the inner angles are determined by this

data. This tile is used rarely in the design, and is easily confused with the

heptagon, tile D.

(d) The heptagon (Fig. 79.3d). Finally, the heptagon introduces a third inner angle,

144�. We can create the heptagon from the hexagon by placing to flat hexagons

on it. These two create a small “roof” on top of the middle side that came from

the pentagon. Again, we only use the two side lengths that were already used in

the hexagons.

These four tiles are fun to play with, but it is far from trivial to create a large area

without holes. It is definitely necessary to find the mathematical rules that create the

tiling.

From Penroseto Danzer There is a striking similarity between dart/kite Penrose

tilings and the Danzer tiling. Both have a kind of local fivefold rotational symmetry.

So we started with a Penrose tiling (Fig. 79.4) and compared it to the Danzer

tiling. Unfortunately, it was not straightforward to match these two this is not

very surprising, because of the local-global structure of a quasi-periodic tilings.

Quasi-periodic means that any local sub-configuration of a tiling can be found an

infinite number of times in the (infinite) tiling of the plane, but the tiling as a whole

is not periodic, i.e., it cannot be translated to match itself again.

Fig. 79.3 Image: author
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In other words, even if we find a local part in one quasi-periodic tiling that

matches another local part in another tiling, it is very likely that this matching does

not extend beyond this local area. In our example, we can match a five-star in the

Penrose tiling easily to a pentagonal flower in the Danzer tiling, but this will not tell

us how to define rules that matches a full Penrose tiling to a full Danzer tiling.

We asked Danzer again, and he gave us a little bit more information: We “just”

had to mark some points on each of the rhombic tiles, and this will give us the

vertices of the Danzer tiling (Fig. 79.5). Then “it should be clear how to connect the

dots.” Actually, it was easy for a human to connect the dots on a printout, but it still

was not clear how to do this automatically!

We managed to automate this step by marking the tiles with segments instead of

only points (Fig. 79.6). Apparently the line segments are invariant of the placement

of the tile. Using this observation we could generate drawings of 100,000 of tiles

using the well-known recursive methods for Penrose tilings.

Direct Generation Still, we were not satisfied with the solution. We could create

drawings, but the structure of the tiles was not represented at all. In particular, we

could not count the number of tiles of each different type, and we had incomplete

tiles along the border of the tiling. Also, we could not create lists from this data that

could be used for placing the real tiles.

As we knew that there is a recursive scheme for creating the Penrose tiling, we

were looking for a similar scheme for the Danzer tiling. The generation of Penrose

tiling is usually based on triangles (both rhombi are made of two congruent

triangles, which is also true for dart/kite-based Penrose tilings) that are

subdivided into three smaller triangles in each recursion step. This method could

Fig. 79.4 Image: author
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not be transferred: we could not find a simple subdivision into a few, say two to

four, triangles that can be combined to create each of the four original tiles.

We used another method for identifying “subdivision” rules. Using the

Penrose-based tiling software, we produced tilings that were produced using

Fig. 79.5 Image: author

Fig. 79.6 Image: author
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a certain number of recursion steps. By superimposing two drawings produced with

n and n+ 2 recursion steps (Fig. 79.7), we could identify a first set of replacement

rules for the Danzer tiles. Because applying the Penrose replacement rules once not

only scales the tiles, but also translates the original tiling, it was easier to compare a

tiling with the next one after. The translation is, in a way, undone.

Further investigation then showed that the four rules we read off the drawings

were incomplete, or better: wrong. They worked for a few iterations, but then they

produced holes in the tiling, and overlapping tiles. Comparing the tilings with the

ones produced using the Penrose recursion showed that sometimes other rules had

to be used for the pentagon and the heptagon. We ended up with six rules for six

tiles, where two pairs of tiles are indistinguishable. The recursion rules are shown in

Fig. 79.8.

Once we have found these rules, we can also easily calculate the expected

number of tiles for each type, which is given as a non-negative eigenvector of the

transition matrix below:

P a P b Hex1 Hex2 Hep a Hep b

P a 6 0 0 5 0 0

P b 0 1 0 0 5 0

Hex1 0 1 0 0 5 0

Hex2 0 0 0 2 1 1

Hep a 1 0 1 2 3 0

Hep b 0 1 0 0 5 0

Fig. 79.7 Image: author
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For the eigenvalue 7
2
þ 3

2

ffiffiffi

5
p

of this matrix we find the eigenvector
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ffiffiffi

5
p

, 1,
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5
p

, 1=2 � 25þ 11
ffiffiffi

5
p� �

, 1=2 � 15þ 7
ffiffiffi

5
p� �

, 1=2 � 5þ
ffiffiffi

5
p� �h i

:

In the limit case (i.e., for the whole plane), the ratios of tiles are thus:

(P1 + P2) : (Hex1) : (Hex2) : (Hep1 +Hep2) ¼
10 + 4√5 : √5 : 1/2*(25 + 11√5) : 10 + 4√5 �
18.94 : 2.24 : 24.80 : 18.94

We see that the number of pentagons is equal to the number of peptagons (if we

consider the whole plane, which is, of course, impossible). We also see that the

“round” hexagons are very rare, only about 1/28 of the tiles are of this type.

Fig. 79.8 Image: author
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Realization

Finally, we wanted to be able to create an easy description of the tiling that could be

used by the construction team. Given the immense weight of the tiles (the landscape

architects planned to use granite), it was clear that every tile had to be delivered by a

truck near to its final place. The plan had to be easy to understand and execute.

As we had a combinatorial description of the whole tiling (i.e., for every tile we

know all its neighbors), we could generate lists of adjacent tiles. Unfortunately, for

a non-orthogonal tiling we cannot give a line-by-line description. Our solution was

to remove the pentagonal tiles from the lists. Then, every “row” of tiles will be

linear (i.e., we can place one tile directly next to the last one and adjacent to the

previous row).

Not only does this “linearize” the tiling, but it also makes it possible to check the

alignment of tiles using lasers. This is extremely important for such a large area

which was to be built over several months.

Final Remarks

The tiling presented in this article is not new, and credit for it goes to Ludwig

Danzer. Our contribution was to make it more accessible for automated generation

using a recursive approach. We did not give rigorous proofs for the results in

Sects. 79.3 and 79.4 as they are beyond the scope of this article.

Although the tiling was not used for the Alexanderplatz after all, we were able to

show that it is feasible to use a quasi-periodic tiling for large areas. We hope that

there will be another opportunity to use this work in the future. Please contact the

author if you have an application for this or a similar tiling!

Biography Ulrich Kortenkamp works in mathematics and computer science. He

currently teaches in the Institut für Mathematik at Martin-Luther-Universität in

Halle, Germany. In his work in education he is always looking for topics that

exhibit the beauty of Mathematics and the usefulness of computer science, which

is almost always true for mathematically supported architectural themes. He is also

co-author of the interactive geometry software Cinderella, which constitutes a

user-friendly approach to geometry with a strong mathematical foundation.
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Chapter 80

Generation of Architectural Forms Through

Linear Algebra

Franca Caliò and Elena Marchetti

Introduction

This work has developed in a rather original environment, where a new approach to

the relationships between mathematics and architecture is conceived. Namely,

mathematics is not just considered as a useful calculation tool for structural

problems, but is seen by some mathematicians and architects as an interpretative

key to architectural forms. Under this aspect, it is capable of highlighting

symmetries and harmonic relations among different parts, of making evident a

structural logic, thus becoming a tool that lends itself to even critical and historical

interpretation. In short, we can state that various aspects of mathematics are used as

a technical language capable of speaking about architecture.

Obviously our efforts are aimed in this direction (Caliò et al. 1995; Caliò and

Scarazzini 1997; Marchetti 1998). Namely, we are trying to apply to some

significant classes of classical or modern architectural structures a mathematical

taxonomy or, to be more precise, a geometrical model. In other words we want to

describe them through mathematical formulae, even though it is very clear to us that

such formulae have by no means influenced the creativeness of the designers. The

purpose of our exercise is simply to better highlight the shape of the architectural

object, to extract from it an inherent rule, to make evident its structural rigour.

The final result of this exercise is a geometrical three-dimension model, that is, a

description of the geometrical object (a locus, or set of points) expressed through
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geometric analytical formulae, and its subsequent display over normal

bi-dimensional media, such as paper print or computer screen.

To achieve this result one could use classical methods based on geometrical

properties of the described objects. However, our approach is a different one and, as

such, it is useful also for shapes that at a first sight are not controlled by “classical”

relationships. At the same time, is more readily suitable to a straightforward

visualisation.

In this chapter we will illustrate the following approach: by establishing a few

basic elementary shapes we build the “core” of the architectural objects; by

imposing on them movements and deformation, we dynamically determine a final

shape; finally, we will give its equations and supply the relevant graphical

representations.

Describing the Technique in Use

This section deals with the mathematical concepts our method is based upon. It

happens to be necessarily a rather technical section, even if we tried to limit the use

of specific terminology and formulae to a minimum extent, perhaps at the expense

of a rigorous dissertation. On the other hand we describe here how our method

works, not what it can produce. For the latter one could directly go to the

subsequent sections; however the reader would find cross-references to the

present section which were impossible to eliminate completely.

There are two concepts basic to our method: the first one refers to the possibility

of treating any surface as a set of vector points; the second one refers to the

possibility of expressing in a matrix form some fundamental space motions. Do

not be alarmed at this point by such obscure statements; we will attempt to

clarify them immediately. Let us introduce, to describe the geometrical space, a

three-dimensional Cartesian reference system Oxyz. Here O is the origin point, x y
and z are the co-ordinate axes. We will call Cartesian space the space represented
in such a way.

A three-component algebraic vector (i.e., an ordered set of three numbers)

corresponds to a point in the Cartesian space, namely to the point having the

three numbers as coordinates. Reciprocally, there is a unique algebraic vector

corresponding to a given point. We have therefore a two-way correspondence

between algebraic vectors and points in the Cartesian space. We will call vector
point a point in the Cartesian space that corresponds to a vector.

Let us now assume that the components of a vector are not constant. Rather let us

impose on them a continuous variation; consequently also the vector point will

change and during this change it will describe a geometrical locus. If the components

of the vector are dependent on a single parameter then the corresponding locus is

what we call a curve, whose shape of course will depend on the mathematical

relationship existing between the three vector coordinates and the parameter. Such

a relationship is described by the parametric equations of the curve.
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If instead the components of the vector depend on two parameters, then the

geometrical locus is a family of curves (if we vary the first parameter we obtain a

curve, if we subsequently vary the other parameter we obtain the curve family)

which determines a surface. Hence, we conclude that one can generally express a

surface through a set of vector points correspondent to two-parameter dependent

algebraic vectors or, in other words, we can describe it through its parametric

equations. It is important for the remainder of this discussion to keep in mind this

concept, i.e., that a surface is “punctually” described by mathematical formulae.

As far as the second basic concept is concerned, let us make the following

statement: “linear geometric transforms, among them isometric transforms scaling

and similarities, can be expressed in matrix form”. A clarification follows.

A geometric transform is an operation through which we go from an initial

geometric locus (i.e. an initial shape) to another one. Since we describe shapes

through vectors, in order to transform them we will act on vectors. If such a

transform is applied to all vector points of a shape, a new shape is obtained. The

previously quoted statement is then equivalent to saying that a linear geometric

transform (a translation, a rotation or whatever else) can be expressed through the

generic algebraic relation:

Avþ b ¼ w:

In the previous expression A is a 3 � 3 matrix (i.e., a three-row three-column

array, or a nine-value table) called transform matrix, v is the vector that must be

transformed, b is the translation vector and w is the transformed vector. Such an

algebraic transform acts on the vector points of a shape in the space, giving rise to

an effect that can be interpreted as a movement. For instance a rotation (with no

translation) of amplitude around the z-axis is given by:

cos θ � sin θ 0

sin θ cos θ 0

0 0 1

2
4

3
5 v1

v2
v3

2
4

3
5þ

0

0

0

2
4

3
5 ¼

w1

w2

w 3

2
4

3
5:

Obviously, in the last formula the translations vector could be omitted since it is

the null vector; we have put it in evidence just to show how this is a particular

application of the general formula. Let us conclude such short comments by

remembering that the product of a matrix by a vector produces a vector, while the

product of a matrix by a matrix gives a matrix. This property allows us to operate

composite transforms, as in the following example where the vector v is firstly

modified through the partial transform A, subsequently the partial transform B and

translation b are applied to give the final result:

BAvþ b ¼ w

Let us now go to the core of our method. Let us take a vector and apply to it

subsequent translations such that all the translation vectors have the same direction
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but different magnitudes: the resulting transformed points lie on a single straight

line. We can conclude from this property that we can describe a line by means of a

point and a variable translation (i.e., a set of infinite translations) having the

property of not affecting the direction of the translation vector but, depending on

the values of a parameter, of continuously modifying its magnitude.

In a similar way we could think of a circumference as generated by a point that

starting from an initial place, rotates around an axis orthogonal to the

circumference’s plane through a continuous modification of its rotation angle. We

can then describe the circumference by applying a variable rotation matrix having a

parametric rotation angle to a vector point.

In the two previous examples we started with a point, applied to it a parametric
transform and obtained a curve. Now we take our curve and, through similar

considerations, generate a surface as a composition of transforms describing the

motion of our curve with respect to another curve.

This second series of transforms, which must be applied to all points of our

curve, is described by a second parameter. For instance the well-known saddle

surface can be obtained by translating a parable over another parable, as long as the

two parables lie in two perpendicular planes. If for instance one parable belongs to

the yz plane and the other to the xz plane we get:

1 0 0

0 1 0

0 0 1
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5 �
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�v2
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u2 � v2

2
4

3
5 ¼ w

The vector point corresponding to the transformed vector w describes, as

parameter u and parameter v vary, the saddle surface. The expression for w just

given is the parametric-vectorial equation of our surface.

It is clear that using this technique we can describe through mathematical

expressions very different shapes, even distant from the “classical” typologies,

since their parametric equations are easily handled by a vectorial graphic system.

On the other hand it is also true that our proposed method is nothing but a different

way of mathematically describing a shape. Many alternative solutions aiming at the

same target could be envisaged.

Application # 1: The Sogn Benedetg Chapel

Through the utilisation of the above described ideas we concentrated our attention

on some architectural structures and tried to interpret them mathematically. The

examined shapes have not been selected in a systematic way, as perhaps one could

expect from mathematicians, rather their choice has been constrained by the

available materials on the one hand and by our limited knowledge of the

architectural field on the other.
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The first example that caught our attention is a 1988 work by Peter and Annelise

Zumthor: the small wooden church of Sogn Benedetg in Switzerland (Zumthor

1998; Furer 1990) (Figs. 80.1, 80.2, and 80.3).

The new church is a single-roomed building at the top of a mountain pass

overlooking the village houses, and is named after the patron saint. This explains

the importance of the building and suggests that the modern construction is

superimposed on some older structure. For these reasons the building rests on a

privileged spot of the local geography and is given a peculiar architectural shape in

Fig. 80.1 Peter Zumthor, Sogn Benedetg chapel, viewed from the rear. Photo: authors
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order to be distinguished from the normal farmers’ dwellings. In fact, what

distinguishes it is actually its shape rather than the construction material, which is

common wood, typical of the local buildings.

Shape is therefore the dominant element. In an essay on Peter Zumthor, Martin

Steinmann (1989) states that the poetry intrinsic to Zumthor’s work must be found

basically in the simple shapes of its constructions. The simplicity is such that, by

attracting the attention to the delimiting surfaces, it gives the impression of a calm

Fig. 80.2 Peter Zumthor, Sogn Benedetg, viewed from the entrance. Photo: authors
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soul. Steinmann again considers the Sogn Benedetg church as the most significant

example of “right shape” among Zumthor’s work: on the one hand, it is smooth

enough to be receptive; on the other, it inserts itself so as to be protected from

avalanches (Figs. 80.3, 80.4, and 80.5). It is this characteristic—apart from any

aesthetical or critical considerations regarding the results—which attracted our

mathematical attention. We therefore tried our method and using the previously

described techniques generated a model simulating the church structure.

Let us start with the predominant importance of the shape: both the horizontal

plan and the longitudinal section are based on a specific plane closed and

symmetrical centred curve called a “lemniscate” A lemniscate can be generated

Fig. 80.3 Peter Zumthor, Sogn Benedetg, view of the ceiling. Photo: authors
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starting from a vector point by applying to it a parametric rotation. Such a rotation

modifies, during the rotation, the distance of the point from the centre.

Namely, we want to build a lemniscate lying on the xy plane and having as its

centre the origin. We start from the vector point on the x-axis at unitary distance

from the origin (its co-ordinates are 1,0,0). First we apply to it a scaling dependent

on the rotation angle v; subsequently a complete rotation around the z axis is

imposed, according to the algebraic expression:

Fig. 80.4 A lemniscate on the xy plane with its origin at the centre. Image: authors

Fig. 80.5 Surface obtained by translation along the vertical z axis of the lemniscate in Fig. 80.6.

Image: authors

490 F. Caliò and E. Marchetti



l vð Þ ¼
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where the a constant characterises the curvature of the lemniscate (Fig. 80.4).

The main structure can be considered as a s
1
u; vð Þ surface obtained by translation

along the vertical z axis of the lemniscate lying on the flat floor; it is therefore

described by the expression:
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where b is a constant. In our case we obtained through the analysis of the available

data: a¼ 28, b¼ 16 (Fig. 80.5).

The chapel roof, being formed by beams, is straightforwardly represented by a

ruled surface s
2
u; vð Þ, i.e., a surface having the property that in any of its points

there is a straight line completely contained within the surface. Our ruled surface is

obtained by moving a straight segment, the extremities of which lie on two curves,

called “guiding curves” (Fig. 80.6).

Mathematically, we determine two corresponding points on the guiding curves,

i.e. two points obtained through the same parameter value, and impose that the

straight line connecting them pertains to the surface. In our case the two guiding

Fig. 80.6 The ruled surface

obtained by moving a

straight segment along two

guiding curves. Image:

authors
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curves are the l
1
vð Þ plant lemniscate after its elevation to the quote b of the roof and

the lemniscate arc l
2
vð Þ, which is the longitudinal section of the roof.

Curve l
2
vð Þ has been obtained as follows:

1. On the xz plane, which is normal to the base plane, is determined a lemniscate;

2. The lemniscate is turned by a suitable rotation (π/12 in our case) around the

y axis;
3. A scaling whose constant parameter c depends on value a is applied;

4. Finally, the curve is vertically translated to the b height.

Results obtained through this procedure are illustrated in Fig. 80.7.
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Fig. 80.7 Image: authors
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In our case c¼ 30, v ¼ 2
3
vþ π

4
; therefore the parametric-vectorial equation of our

ruled surface of the roof results to be:

s
2
u; vð Þ ¼ l

1
vð Þ þ l

2
vð Þ � l

1
vð Þ� �

u� π

4
� v � 0 0 � u � 1

Application # 2: The American Air Museum

The other building we considered is completely different from the previous one

both for its destination, dimensions, technology used, materials and the enclosing

environment. However, in our opinion there is a common aspect they share, namely

their purely essential forms.

The American Air Museum in Duxford, Cambridgeshire (UK), houses a

collection of historic American combat aircraft in a building realised in 1995–

1997 by the architect Sir Norman Foster (Foster and Partners, 1997; Jodidio 2001).

Using the aircraft, other exhibits and supporting exhibitions, the American Air

Museum tells the story of American air power and its effect on twentieth-century

history from the Second World War to the Gulf War.

Apart from the advanced construction technique and the refined selection of

building materials, shape is the most notable characteristic of this edifice. It is the

shape that diverts the attention from its conspicuous dimensions, giving an

impression of lightness, especially from a distance. In this case as well, the form,

even if with purposes different from Zumthor’s case, is a simple one enclosing the

entire building into an essential shape.

This shape has been obtained as follows. The starting point is a toroidal surface

having a horizontal rotation axis, a big radius of 277 m and a minor one of 63 m. Of

this surface only a section is used, obtained by intersecting it with a horizontal plane

sufficiently distant from the axis so that a complete circular section is never

obtained.

Let us make some comments regarding the aesthetics of this choice. The

resulting shape gives the effect of something coming out from the ground and

fluently reaching towards the sky with the emerging part, while hiding the rest

under the grass In fact, both the selection of materials and the fact that the dividing

line between the metallic structure and the terrain is not simply horizontal augments

this effect.

Now let us describe the mathematical treatment. The basic torus can be obtained

by rotation of a circumference of radius r (the minor radius) around an axis lying in

the circumference plane and having a distance R (the major radius) from the centre
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of the circumference. A circumference, as we have already seen, is obtained by

rotation of a vector point around a centred axis, normal to its plane.

In our case we have taken the x-axis as the torus axis; r and R are obtained from

the available data. The mathematical expression is as follows:
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We consider only a portion by limiting the rotation angle to a half revolution.

Moreover, the geometric relationship between the variation limits of angle u and

angle v due to intersection of the horizontal plane is the following (Fig. 80.8):

arcsin
R cos v� b

r cos v

� �
� u � π � arcsin

R cos v� b

r cos v

� �
:

The final result corresponding to the object that stimulated our analysis is

illustrated in Fig. 80.9.

Fig. 80.8 Image: authors
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Conclusion

As a concluding remark we would note that the shapes used in our examples are still

sufficiently “classical” so that alternative mathematical methods could be employed

in order to describe them. However, they have been used on the one hand because of

their intrinsic beauty, on the other with the simple purpose of suggesting an idea.

If this idea demonstrates itself as a useful tool and finds acceptance, the next step

will be a systematic analysis of more complex shapes, for which alternative

mathematical approaches are inadequate. Secondary—and perhaps more

ambitious—outcomes could be given by historical and critical evaluations tied to

the possible interpretation of the examined shapes in mathematical terms, according

to the dynamic method we have envisaged and are proposing.
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Chapter 81

The Praxis of Roman Geometrical Ordering

in the Design of a New American Prairie

House

Donald J. Watts

Introduction

A new strategy for studying the properties and processes of ancient geometrical

architectural design occurred in 1988 with the design and construction of the Watts

house in Manhattan, KS, U.S.A. At the time, the author, together with his wife and

colleague Carol Martin Watts, had been studying the geometric ordering of

classical Roman architecture for nearly a decade and had learned many geometric

design properties previously unknown to us and today’s architectural profession

(Watts 2014a, b). We realized that while much important knowledge can be learned

from the analysis of historic structures, other important lessons could only be

learned through applying these geometric systems to the process of a new design.

After all, these historic geometric patterns were used as part of a design and

construction process at the site of ancient buildings. The Watts house (Fig. 81.1)

therefore became an important extension of our ongoing research of geometric

design processes in architectural design.
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The Site and Its Plan

Manhattan, KS is located in a region known as the Flint Hills, which lies at the edge

of the great midwestern prairie of the United States. The small rolling hills afford

visually enclosed lower ravines combined with hilltops having expansive distant

views to the horizon. As with the architecture of ancient Romans, we chose to build

upon a site that embodied the qualities of the larger landscape. The building site is

located just below a hilltop and is encircled by native cedar trees that visually

enclose the site at ground level. As one rises to higher elevations upon the site, the

distant horizon becomes dramatically visible.

Like most cities in the midwestern United States, Manhattan, KS, is planned upon

a one-mile grid and has minor deviations from this order to accommodate the major

topographic features of the town. The building lot is located at the intersection of

Crescent Drive and Hudson Avenue. Crescent Drive is a smaller residential street

that encircles a hilltop while Hudson Avenue is a major neighbourhood street

derived from the rural one-mile road grid of the region.

The major strategy for the design of the house was to clarify and order the

inherent qualities of the site. In so doing, it was hoped that the house design would

promote a strong connection of our lives to the neighbourhood, the city and the

world beyond. A series of geometric diagrams will be useful in explaining the

design responses to the building site. The place in which to build upon the site

began by recognizing the locations of the many existing trees and the natural open

spaces of the lot. This natural order was clarified through the creation of a datum

square (Fig. 81.2), placed inside the property lines of the building site. The datum

square reinforces the layers of enclosure occurring at the site by preserving the trees

at the site edges. The datum square is rotated from the cardinal orientations of the

Fig. 81.1 The Watts house, Manhattan, KS, USA. Photo: author
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city street grid by 15�. By such a rotation, the diagonal through its southeast and

northwest corners aligns with the orientations of the winter solar solstice sunrise

and summer solar solstice sunset. Sunrises and sunsets are particularly important

times of the day for hilltop locations.

The topography of the site, the location of existing trees and the views from the

site to the larger landscape all gave a direction for positioning the house. The

particular location of the largest existing tree together with an adjacent clearing

established the natural connection of the site to the street. The large tree became a

reference point in the subsequent site design. A sacred cut of the datum square

(Fig. 81.3) was found to closely relate to all of the above criteria and to establish a

centre for the house.1 Whereas the house was aligned with the datum square and the

distant views of the prairie, the garage (Fig. 81.4) was given an independent

Fig. 81.2 Site plan datum square with the solar solstice diagonal. Image: author

1 Brunès (1967: vol. 2). The sacred cut is a major thesis of this book.
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massing and an orientation that aligns with the cardinal directions of the grid of the

city.

The cross-axes of the house were conceived as visual axes that would connect

the house interior to the world beyond the site. It was therefore important that these

cross-axes extend beyond the confines of the datum square of the site. As shown in

Fig. 81.5, planting beds in the form of semicircles were designed as focal points and

visual extensions of the cross-axes of the house. A fireplace massing is located

within the house to serve as an internal focal point in counterbalance to the external

views. The fireplace axis occurs in parallel with the short axis of the house. These

two axes are later integrated into the stair tower element of the house.

Fig. 81.3 The sacred cut proportioning of the site plan datum square. Image: author
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The House Massing and the Principal Plan

The massing of the house began as a nominal cube with a side dimension being the

sacred cut square of the datum square of the site. The house was conceived as

having three levels above ground; the first level consists of the children’s sleeping

and living areas, the second level is the piano nobile of the house with formal living

and dining accompanied by kitchen and laundry, and the third level contains the

parents’ sleeping, study and bathing areas. Required spaces coupled with desired

views to the southeast and limited solar exposure to the west encouraged the

house proportions to elongate in an east/west direction. The sacred cut was used

to proportion the house into the desired rectilinear proportion and to define

cross-axes of the house. The positioning of the house within the larger site was

accomplished through the alignment of the sacred cut cross-axes of the site with the

cross-axes of the house. The initial regulation square of the house, derived from the

Fig. 81.4 Site plan datum square linkages to the city grid. Image: author
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site plan, was used to define a regulating cube with sides the size of the regulating

square. Originally 350–800 on each edge, necessary wall thicknesses and room sizes

required the cube to expand to 370. The 370 regulating cube encloses all of the house
volume, including the roof with an overhang of 20. Therefore, by subtracting the

roof overhang from the regulating cube, the enclosed volume of the actual house fits

within a smaller regulation dimension of 330. The interior spatial composition of the

house can be seen in plan as derived from a 330 datum square.

The spatial development of the second floor piano nobile best illustrates the

proportioning processes of the house plan. Following the dictates of the cross axes,

the interior spaces are ordered in the manner of the four quarters of the whole. This

plan is zoned such that the honorific spaces of formal living and dining take the

Fig. 81.5 Extensions of the sacred cut axes through creation of exhedra beyond the boundary of

the site plan datum square. Image: author
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frontal position within the house. Service activities of kitchen, laundry and bath

occur at the rear. The living room is the principal room of the second floor plan. Its

size was determined not by simply dividing the datum square plan into one-fourth

areas but rather by a one fifth proportioning strategy we discovered in our research

of Roman Gerasa (Fig. 81.6).2 The difference between one-fourth and one-fifth

areas (5 % of the total area of the second floor), is allocated to interior wall

thicknesses and other required masses within the plan. One-fifth the area of the

330 datum square is a square of approximately 140–900 on each side. The 900 were
allocated to the thickness of the exterior walls of the house thereby leaving a 140

square of open interior space for the living room.

As shown in Fig. 81.7, the 140 living room is located in the southwest corner of

the plan and its centre is aligned with the centre line of the overall house datum

square. An ad quadratum pattern of successively smaller squares within the 140

Fig. 81.6 One-fifth the area

of the house plan datum

square. Image: author

2Watts and Watts (1992). The construction of the one-fifth area subdivision of the square is a

variation on the capabilities of the sacred cut which we discovered in the research of Gerasa.
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square defined squares of 100, 70, 50 and 30–600 respectively. The ad quadratum

subdivision of the living room square became a template for the sizing of the other

principal spaces of the piano nobile. The sizes of the various spaces within the

house is similar to that found in our study of the classical Roman domus (Watts and

Watts 1986: 132–139).

The positioning of the ad quadratum series of squares within the plan is shown in

Fig. 81.8. The 100 square is used to size the dining room and kitchen. The 70 square
was used for the stair tower proportioning and as the nucleus of the breakfast space

located on the north end of the major entry axis of the house. The 50 square was used
as a module for the open space of the kitchen and the 30–600 square was used to

define the width of the secondary corridor of the laundry area.

Using principles analogous to a Roman urban street, the east–west axis of the

piano nobile is defined by a freestanding datum wall adjacent to a full length

walkway. The only opening for walking through this datum wall occurs at the

cross-axial centre of the house and is marked by a central archway. Necessary

Fig. 81.7 Ad quadratum
template of areas used in the

plan of the piano nobile.
Image: author
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machinery and storage areas are incorporated within the massing of the central

archway. The archway massing, together with the massing for a small bath

(Fig. 81.9) were positioned in such a manner as to form local symmetries for the

house main entry axis and the living room. This process also experimented with

allowing a massing element, the western jamb of the central arch, to participate in

the local symmetries of both the entry axis and the living room elevation.

The House Massing and the Principal Elevation

The principal elevation of the overall 370 regulating cube is a 370 regulating square.
A sacred cut arc (Fig. 81.10) is used to identify the position of the floor construction

of the piano nobile. As seen in the floor plan geometry, the centreline of the

regulating square coincides with the centreline of the western flight of stairs in

Fig. 81.8 Composition of

the ad aquadratum areas

within the design of the plan

of the piano nobile.
Image: author
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the stair tower. In the diagram of the elevation, the vertical centreline of the overall

datum square is seen to coincide with the centreline of the western flight of stairs of

the stair tower. As will be shown later, the horizontal centreline of the regulating

square serves as an important datum in the design of the elevation of the piano

nobile.

The determination of the position of the third floor construction atop the piano

nobile is shown in Fig. 81.11. The centreline of the eastern flight of stairs of the

stairtower is added to Fig. 81.10 and, by means of an arc passing through the centre

of the datum square, the distance between these two stair flight centrelines is

transferred to an equal dimension above the horizontal centreline of the datum

square. This upper horizontal line positions the third floor construction. The

separate rectangular box drawn within the confines of the floor and ceiling

datums identifies the actual floor to ceiling space of the piano nobile Its height is

one-fourth the regulating square, or 90–300.

Fig. 81.9 Local

symmetries developed

within the piano nobile.
Image: author
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The division of the regulating square by one-half, one-fourth and one-sixth

increments (Fig. 81.12), begins to establish datum lines for the further

development of the fenestration of the elevation. The lowest one-sixth horizontal

subdivision marks the floor elevation of the entry porch and the top of an implied

rustication band that remembers the plinth construction of the earlier stone

buildings of this Kansas region. The upper one-sixth divisions are used to

position strings of window sills upon the third floor elevation. A one-fourth

vertical subdivision of the datum square is used for centring the fenestration of

the living room side of the house elevation. The horizontal one-half subdivision of

the datum square is used to position the upper level windows of the piano nobile.

Fig. 81.10 Sacred cut of the primary elevation datum square determines the floor plane of the

piano nobile. Image: author
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The datums of the previous figures, together with the interior room geometries of

the plans, are interrelated through the final composition of the fenestration of the

principal elevation, Fig. 81.13. The groupings of windows for the various rooms are

composed in such a manner as to reflect the geometric composition of the rooms

they serve. It is important to note that the fenestration is the most obvious

connection between exterior and interior, and as such, its geometric design should

be commensurate with both exterior and interior systems. It is a vital link between

the world without and the world within.

Fig. 81.11 Determining the height of the piano nobilewithin the primary elevation. Image: author
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Fig. 81.12 One-half, one-fourth and one-sixth subdivisions of the primary elevation datum

square. Image: author
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Conclusions

Utilization of these geometric properties in an actual design application yielded a

number of valuable insights. The practice of the process revealed its basic

pragmatic virtues in terms of directly setting out datums and proceeding to

investigate alternative commensurate subdivisions of the datum frame. This

directness of application extends to the actual construction process whereby the

ongoing implementation of the design can utilize some of the same geometrical

processes done at full scale. Such a practice recalls that of classical times where a

courtyard floor or building templum shows itself as the layout table and palimpsest

of the construction process of the building.

Such a directness of application provides a ready feedback of correctness in the

field. It can also provide the opportunity for unforeseen minor adjustments in the

Fig. 81.13 Overall composition of the fenestration of the primary elevation. Image: author
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original design. In doing so, this process allows for improving the fit between the

original design intention and its final implementation.

Applying these geometric processes to today’s construction technology and

materials obviously created some new conflicts. Constructing such geometric

compositions is much easier when using building materials that can be formed to

any particular proportion and dimension. Such a process was an integral part of the

ancient construction on site process described above. The restrictions upon the

designer of using standardized building components required some flexibility in the

final construction process. The issues just described are no doubt why the architect

Le Corbusier argued in the late 1940s for a modular system of industrialized

building components. The history of why his idea never materialized is the

source of another paper but let it be said that while his proposed modular was

derived from human proportions, other scales derived from man’s machines have

increasingly become the dominant standards of measure.

These new standards of measure are reflections of new perceptions of existence

in today’s world. The cosmological meanings underlying the geometric systems of

the ancient builders are past paradigms of perception and understanding. And yet,

like past paradigms of science, the paradigm of geometric design processes retains

its structure and applicability within its own frame of reference. While today’s

designer does not utilize the geometric systems in a ritualistic process that is seen as

the recreation of the cosmos, the process none-the-less retains all its mathematical

properties and their pragmatic attributes.

As an architect and an educator, I see this system of design as valuable “lost

knowledge”. It helps designers perceive their environment in new (old) ways and to

discover new relationships. It has helped me see some of the ways this manner of

thinking and working has been carried into today’s homebuilding in the United

States. Lastly, it may also yield new approaches to the conception and utilization of

new technologies of design and construction.

Biography Donald J. Watts is an architect and professor in the Department of

Architecture at Kansas State University, Manhattan, KS, U.S.A. His interest in the

geometry of architectural design began with studies of vernacular Afghan

architecture while being a Peace Corps architect at Kabul University. Subsequent

research occurred at the Roman classical city of Gerasa, in Jordan while being a

Senior Fulbright Professor at Yarmouk University. This introduction to the

geometry of Roman architecture led to extensive research with his partner

Professor Carol Martin Watts at various locations in Italy. His geometrical

research has been published in sources including Scientific American and The
Journal of the Society of Architectural Historians.
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Chapter 82

Exploring Architectural Form

in Perspective: A Fractal

Hypercube-Building

Tomás Garcı́a-Salgado

Introduction

What would be more interesting for our presentation’s purpose? To analyze how

math has been used in the past or to attempt new applications for the present? This

is the question being put forward here. I believe that form in architecture can be

explored directly in three dimensions if one can manage an accurate and versatile

perspective method.

2D drawings and 3D models have been used either to represent or build

architecture since ancient times. These are usually made at any scale, whereas

perspective cannot be scaled, it allows the truthful rendering of a form in

proportions. Perspective mainly allows the designer to visualize a building within

an imaginary space.

Architects frequently use perspective when the design process is almost at an

end, to get an idea of how a building would be seen in reality. However the

customary use of 2D projections during the design process compels designers to

visualize forms fragmentarily. In contrast, the architectural example we are about to

present here was not based on 2D projections or a preconceived form; it was rather

the result of exploring form directly in perspective, of using mathematics to

visualize form beyond 2D. The Città Ideale perspectives, attributed to Piero della

Francesca, are one of the finest examples we have of architectural forms created in

perspective.
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Form as Structure

Conventionally architects use drawings to communicate ideas in the same manner

that writers use words to tell stories. Both languages, forms and words, encompass

underlying structures, as La Grande Arche in Paris or Dan Brown’s thriller

Deception Point. The main issue in this thriller, a ‘discovery’ made by NASA

and its implication during a presidential campaign in USA, becomes a nested

sequence of events directing the plot line through an invisible narrative structure

while the reader imagines all the places and characters until the story comes to

an end.

Likewise, elsewhere I have used a geometric network as a visual environment

for the design of the stained glass windows for a church (Garcı́a-Salgado 2005:

457). Thus, the process of formal synthesis was developed in a visually organized

environment in which the thematic form for each window were tried out until the

desired results were achieved. Even though the windows are separated one from one

another, the geometric network is perceived virtually as a continuous invisible

structure that gives them unity. Thus, the support structure should be broadly

understood as an organized system, since ultimately such a structure, visible or

invisible, can organize stories, spaces, themes and anything else.

The perspective sketch by von Spreckelsen submitted for the international

competition for La Grande Arche (Monnier 1988: 19) is a fine example of this

concept. The sketch is a simple drawing, made up of squares combined with

freehand lines, and needs nothing else to enhance its formal value. No other

sketch whatsoever could have been so convincing of the building’s formal

novelty: an organized spatial system within a hypercube, showing eight cells, five

of which make up the building’s mass while the central void-cells relate to the city,

addressing the visual axis of the Champs-Élysées from the distance and allowing it

to pass through until it vanishes. Just one simple sketch was capable of convincing

the competition’s jury in favor of its originality.

Naturally, von Spreckelsen’s sketches in plan and elevation were indispensable

for analyzing the building requirements and fulfill the program. It seems however,

that two towers linked by an extended roof was his initial idea, as one of these

sketches suggests. He was probably inspired to give the arch its square form when

he drew it in perspective. Certainly, perspective can improve the designer’s visual

thinking.

Sketch as Visual Thinking Approach

Why are perspective drawings so much more persuasive than other projections? We

already know that perspective can anticipate how a building may look in reality, but

why other projections cannot do that is the issue here. Plans, elevations and sections

are mainly used to rationalize the building design until both spatial needs and
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constructive system are satisfied, but these projections can describe a building only

fragmentarily, whereas perspective is par excellence the language of representing

architectural ideas as a whole.

I believe that sketching in perspective, either freehand or with an accurate

outlining method, not only serves to win international competitions, it also

enriches the designer’s visual thinking. Computers cannot do that because they

are made to process, transform, simulate and store. The dreams of artificially

emulating human intelligence are still just dreams, since creativity as an

individual human manifestation involves the so-called “flexible thinking”

(Caldwell 1999), which is beyond computers.

Before shooting the freeway chase sequence in the film The Matrix Reloaded,
the scene was visualized as a storyboard by the artist Steve Scroce. A variety of

images from quite different vantage points anticipated the dynamic sequence of

events. Nothing more than sketches and imagination were needed to start creating.

Later, a vast team of actors, expert drivers, mechanics, stuntmen, cameramen,

remote-control cameras, contractors, and extras, were involved in playing out

each event until the storyboard was converted into a spectacular crash course.

Genuine and Preconceived Forms

Years ago at a “Generative Art” conference at Milan, I said, “. . . the customary

design process is born in 2D sketches, matures either way, and gets old in 3D. So,

our perspective’s gospel suggests for it to be born in 3D at once” (Garcı́a-Salgado

2002). With this idea I presented a building embodied within a cross-form,

structurally solved. It was an insight of a preconceived form without more

options to explore (Fig. 82.1). However, a question arose after my presentation:

how can a form be freely explored before it has to compromise with either a

preconceived form or a structural system?

Frank Gehry modeled the Guggenheim Museum in Bilbao by hand, first shaping

its forms manually and only then defining its load-bearing structure by means of a

computer program (Di Cristina 2005). Historically, forms in architecture obey

constructive principles derived from the properties and applications of the

materials whether or not they were preconceived or modeled. The so-called

constructive truth, rational or intuitional, has traditionally been the cornerstone in

architectural design. This time, without expecting a lucky insight, I started outlining

a hypercube in perspective with the aim of exploring it geometrically until an

architectonic form was created. I knew where to begin but not where I would end.
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Exploring a Hypercube in Perspective

As we know, a hypercube can be geometrically represented in many ways as long it

has 8 cubic cells, 24 square faces, 32 edges and 16 vertices. François Lo Jacomo

gives a comprehensive description of the construction of a hypercube by using two

hyper-planes, each one containing a square and a cube (Lo Jacomo 2002: 31–33).

Thus aligning one hyper-plane underneath the other vertically, the fourth dimension

(4D) is obtained for each one of the figures. As a result, the square becomes a cube

and the cube becomes a hypercube. In general, a line is a plane, a plane is a cube and

a cube is a hypercube in 4D space.

I will explain now how a hypercube can be rendered in Modular Perspective.

Here I will use two practical rules of my method without going deeper into its

theory.1 The first rule is applied to foreshorten a cube in perspective, and the second

one to deduce its vertical modulation.

According to Euclid, Book III proposition 31 (attributed to Thales of Miletus

about 300 years earlier): An angle inscribed in a semicircle is a right angle. In my

own words: in a 2D plane, two lines intersecting at a point on the circumference of a

Fig. 82.1 The Cubic Church at the crossroads. Image: author

1 A full description of my method can be consulted in Garcı́a-Salgado (1982, 1988).
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circle form a right angle if and only if both lines cross its diameter endpoints at the

same time. This is quite a long statement but fits better with the first rule, since such

lines are constructed differently within the perspective plane (PP). Let us

commence step by step through Fig. 82.2.

Fig. 82.2 Outlining the process of modular perspective: from the ground to the hypercube. Image:

author
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First draw the PP as a square and locate the vanishing point (vp) at its center.
Thus, coordinates X, Y, P, of a point within the observer’s visual field can be

rendered directly on this plane (I changed the customary ‘Z’ for ‘P’ because it

stands for the first letter of the Spanish profundidad, meaning depth).

Run the visual horizon (vh) at the height of the vp and then carry out the

base-diagonals of the PP to the vp.
Locate the distance vanishing point (dvp) at the right side of the vh, in this case at

8.7m from the vp, therefore the vp dvp is the interval from the observer’s distance to

the PP. Next, run a line from the dvp to the left corner of the PP0 base and where it

crosses with the central vertical line, P¼ 5m is obtained. In the same manner,

where this line crosses with the right diagonal, P¼ 10 m is obtained. Then you have

on plane Y¼�5m a 10� 10m square floor (Fig. 82.2a).

Now using plane Y¼�5m, we have Line L1 defined by points (X¼ 0m,
P¼ 1.5m) and (X¼ 5m, P¼ 5m), and line L2 is defined by points (X¼�1.5m,
P¼ 0m) and (X¼�5m, P¼ 5m). Notice that the second coordinates of both lines

correspond to the circle’s diameter¼ |10m|, whereas in this case lines L1 and L2

depicts an approximately 35� angle on the PP.

Thus, where L1 and L2 intersect the circle at point A, an accurate 90� angle is

found since both lines cross the circle’s diameter endpoints. Even more interesting

is to bisect this angle in perspective by carrying out a line from point A to point

(X¼ 0, P¼ 10).

By extending this line until it crosses the vh, a new vanishing point is found. This

new point is called the diagonal vanishing point (dvp) and will be very useful for the
hypercube construction. In general, this short cut allows us to intersect points on a

circle in any radial direction we want (Fig. 82.2b).

Now, to divide the cube’s surfaces into five equal modules we first proceed by

dividing it horizontally and then vertically. Draw a horizontal line (hl) through
point A and then divide it into five equal parts. By carrying out lines from each mark

to the asymmetric vanishing point 1 (avp1), the cube’s base diminishing is obtained

where they cross the vanishing line A-avp2 (Fig. 82.2c). Notice that a cube always

has three avp (Garcı́a-Salgado 2003: 36). Then to find out the true length of the

cube’s right base along the same hl, we must apply the formula b¼ c� cos a. Here
b represents both the true length of the cube’s side and its height in perspective.

Once its height has been deduced it can be placed anywhere along the vertical line

A (Fig. 82.2d).

If the hl¼ 6 cm wide, then it would diminish as b¼ 6� cos 35� ¼ 4.91 cm. With

practice this procedure becomes much easier than it looks; you just go directly in

perspective with the squares and imagination. For instance, it took me just over

20 min to fully draw Fig. 82.2e. An additional advantage you may have following

this procedure is the freedom to draw at any scale you want since all dimensions are

modular.

The odd modulation of Fig. 82.2f made evident an obvious problem between the

50s and the 30s when attempting to connect the hypercube’s outer shape and the

inner-cube by diagonal lines. So one module was added in the subsequent sketch

obtaining a 6m 4m hypercube. So doing, the outer shape can be related evenly with

the inner cube at its center and extreme points (Fig. 82.2g). Here, instead of using
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the hypercube’s external shells as the building mass not unlike La Grande Arche I
used them to conform to an exoskeleton structure supporting the inner cube across

its six faces.

Since we now have useable spaces and a preliminary structure, even though the

exploration process has not yet been concluded, we need to somehow hypothesize

as to the program. Like the children’s toy “Meccano”, the exoskeleton structure

could be assembled and disassembled to move from one place to another, a facility

that suggests the idea of a movable pavilion devoted, for instance, to a traveling

Art and Math exhibition. Usually exhibits of this sort that travel from one museum

to another must adapt to the available spaces. In this case the pavilion’s

transportability eliminates this problem.

Fractalizing the Hypercube-Building

A fractal is a self-similar object, a concept that is not new in architecture. Some

Gothic buildings show recursive patterns with up to three iterations in windows,

such as in Metz Cathedral, for example (Scott 1999: 27). Surely the reader will

recall other, different examples since there are many. My curiosity to explore

fractal geometry in perspective was basically a challenge because I had never

done it before.

According to Mario Livio, “For a [three-dimensional] cube, a division into cubes

of half the edge-length ( f¼ 1/2) produces 8¼ 23 cubes, and one-third the length

( f¼ 1/3) produces 27¼ 33 cubes” (Livio 2002: 218). Coincidentally our design

combines both divisions since the exoskeleton’s outer shape is divided in thirds

while the inner cube’s shape is in halves. Notice that one half of the inner cube is

equivalent to one third of the exoskeleton’s outer shape.

The exoskeleton structure is confirmed by six pyramidal stumps with all its

vertices lying on the inner-cube surfaces. The resulting configuration is a system of

bars connecting all the vertices of the eight sub-cubes diagonally. Afterwards the

exoskeleton structure was fractalized, about one-third and a half and no further

iterations were performed (Fig. 82.3). Notice how one of the eight sub-cubes of the

inner cube is missing, since it was absorbed through the first iteration.

Once a computer program starts running it does not stop and think, as I did after

the first iteration. So my hypercube could end resembling the Menger-Sierpinsky

sponge if a computer program were to produce it, making it impossible to manage

utilitarian spaces. Mathematics can help architectural design but can never rule its

decisions. In Villa Rotonda, for instance, Palladio created new aesthetic rules for

the proportions of the columns of the porticoes. “The designer creates the rules

whereas math provides the tools,” occurs to me here as an appropriate aphorism.

Up to now we have been working in modules without caring about the building’s

dimensions. Before converting modules (m) to dimensions (m) we must establish

a module unit as a reference. Let this unit be 1/27 of the hypercube’s volume, since

any of its diagonal planes contains all the structural bars in their true dimension.

As this plane measures 1m� √2m and its diagonals √3m, the exoskeleton bars
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node-to-node would measure √3 � 2. In general, all possible lines joining the unit

vertices are √2 and √3, which is the beauty of a cube whose side¼ 1m.
Consequently, if the module unit m were equivalent to 20 m then the outer shape

of the hypercube would measure 60 m and its bars 17.32 m. In a similar manner the

fractal hypercube dimensions were deduced, giving it now an equivalence of 10 m.

Therefore its bars are 8.66 m. Observe in Figs. 82.3, 82.5, and 82.6 how the visual

complexity of the exoskeleton structure increases after the first iteration.

Composition

Formal complexity in composition has, among other properties, three important

aspects: the number of elements employed both structurally and architectonically;

the way they are organized; and their dimensions. It is appropriate here to mention

the Vitruvian triad of firmitas, utilitas, venustas to recall the timeless principles of

composition, faithfully illustrated by Palladio in Villa Rotonda, for example. When

one observes the porticoes of the Rotonda, the proportions appear well-balanced

and dynamic due the subtle increase in distance between its middle columns. The

magic formula for venustas was only the increase of the spacing by one column’s

half-diameter, enough to give it a unique appearance. Palladio’s architecture has

been widely imitated around the world but the imitations often fail to include such

important refinements.

Fig. 82.3 Fractalizing the

hypercube. Image: author
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Recalling these principles raises a question regarding the composition of the

hypercube: what options do we have for resolving both the inner cube and its fractal

in relationship to the whole? What would be the formula for venustas in this case?

To investigate some options I drew a detailed view of the fractalized corner to

closely see how these cubes interrelate to each other. As can be seen in Fig. 82.4, the

missing scaled fractal enhances the corner composition in such a way that it clearly

defines a natural entrance for the building.

In the Rotonda, it is the arrangement of the columns that emphasizes the

entrance, whereas here is a missing part. Now, two more aspects can be gained

by framing each of the seven sub-cubes: a manifestation of its structure and a

reinforcement of its scaled proportions. Intentionally I drew Fig. 82.5 at the

observer’s eye level in order to explore these features, otherwise they could

hardly be perceived. As a result we have seven fractal sub-cubes, of

10 m� 10 m, totally independent of the seven inner-cubes’ sub-cubes, of

20 m� 20 m, both sets floating within the exoskeleton structure.

Afterwards, several tiling patterns were attempted to encompass all the cube’s

surfaces in glass, a square grid being selected as best for dressing them. Thus both

the inner-cube faces and those of the fractals were divided in 1/8m according to its

scaled proportions (see Fig. 82.4).

Of course there are many other design components not yet explored, such as

stairways, elevators, floors, the exhibit design itself, all the systems (mechanical,

electrical, passive, security, etc.), and so on. If this building were real all of them

would have to be analyzed according to their functional and formal requirements

Fig. 82.4 The inner-cube

and its fractal. Image:

author
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within the project. In this case as well our perspective model could help us to assess

formal solutions.

The same is true for the exoskeleton structure, since I have assumed it can be

built but have not yet explained how it could be done. For instance, the use of

Mero’s systems for the exoskeleton bars, flooring, spider fixing for the glassed

surfaces, space frames, girders, and many other components might be suggested. To

go deeper into each one of these possibilities would necessarily take us to another

level of the process, which is beyond the scope of this presentation, in which I have

wished to emphasize that improving the designer’s visual thinking is the ultimate

goal of exploring form in perspective.

To conclude, the idea of an exoskeleton structure supporting the

glassed-enclosed cubes seems very suggestive. Just imagine this building,

appearing to have no foundation, challenging the fundamental principle that a

building must appear rooted in the ground, floating in the air like an object from

outer space, bathed in sunlight that reflects its image on the water, or dazzling at

night with multimedia screens and hologram projections on the glass surfaces.

Perhaps you will agree with me (Fig. 82.6).

Of course my initial question is it more interesting to analyze how math has been

used in the past or to attempt new applications for the present is a riddle. Simply, the

present cannot be improved by ignoring what has been done in the past, as without

the past there is no present. Thus our search for a new design approach can be

Fig. 82.5 Close-up view of the exoskeleton structure (not a computer drawing). Image: author
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summed up by saying, “if you can imagine it, you can draw it in perspective”. This

has been my intention here.

Biography Tomás Garcı́a-Salgado received his professional degree in architecture

(1968), Master’s degree, and Ph.D. (1982–1984). He is a formal researcher in the

Faculty of Architecture of the UNAM (México), and owns the distinction as

National Researcher, at level III. Since the late 1960s, he has devoted his time in
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Fig. 82.6 The hypercube-building seen from the access. Image: author
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Chapter 83

The Compass, the Ruler and the Computer:

An Analysis of the Design

of the Amphitheatre of Pompeii

Sylvie Duvernoy and Paul L. Rosin

Introduction

The purpose of research on design problems in historic architecture is usually to

understand and to reveal the hidden theoretical sciences that the architects applied

in their projects. The research may be oriented and supported by some written

documents: architectural treatises from the epoch that provide the researcher with

the basic information about the main theoretical design principles. Renaissance and

early Baroque are periods in which written evidence of existing mature design

theories are abundant. On the other hand, when studying ancient architecture from

classical antiquity, apart from a few minor texts that incidentally mention various

topics related to architecture, scholars have only the treatise De Architectura Libri
Decem by Viruvius to help them understand the design principles from a theoretical

standpoint. However, among the traditional typologies of Roman monuments, the

amphitheatre is not among the case studies discussed by Vitruvius. This absence of

scientific concern and of cultural recognition for this kind of building recently

engaged the curiosity of modern scholars, who for a few years now have been trying

to write, in Vitruvius’s style, the missing chapters about amphitheatres.

First published as: Sylvie Duvernoy and Paul Rosin, “The compass, the ruler and the computer”,

pp. 21–34 in Nexus VI: Architecture and Mathematics, Sylvie Duvernoy and Orietta Pedemonte,

eds. Torino: Kim Williams Books, 2006.

S. Duvernoy (*)

Politecnico di Milano, Milan, Italy

e-mail: syld@kimwilliamsbooks.com

P.L. Rosin

School of Computer Science and Informatics, Cardiff University, 5 The Parade, Roath, Cardiff

CF24 3AA, UK

e-mail: Paul.Rosin@cs.cf.ac.uk

K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to
the Future, DOI 10.1007/978-3-319-00143-2_36,
© Springer International Publishing Switzerland 2015

525

mailto:syld@kimwilliamsbooks.com
mailto:Paul.Rosin@cs.cf.ac.uk


The present research is a further attempt at revealing the intentional geometrical

and arithmetical order that underlies the design layout of some Roman

amphitheatres. The presence of this order may be proved either by using the same

procedures that ancient designers probably used themselves geometrical diagrams

drawn with some kind of manual graphic device, relying on simple arithmetic

calculations or by applying modern analytical procedures provided by

contemporary mathematics and computing.

In this chapter both approaches will be discussed and will prove to be

complementary.

Of course, while applying modern mathematical tools, we do not assume that the

ancient designers were aware of them; the objective is to demonstrate a knowledge,

but not the knowledge of the tool used for the analysis itself. On the contrary, while

applying a more traditional approach, which makes use of the basics of classical

geometry and arithmetic, we consciously and deliberately imitate the supposed

research methodologies of ancient designers, being careful to respect the limits of

their contemporary knowledge, as much as this is possible.

The modern approach is based on the use of computer technology and specific

software related to advanced mathematical theories, while the traditional approach

is based on the manipulation of the compass, the ruler and the natural integers.

Here, two different analyses of the same monument Pompeii’s amphitheatre

were conducted in an alternating rather than in a parallel way. The results that each

kind of analysis suggested then oriented and enriched the other aspect of the study.

The conclusions do not come from the mere comparison of two independent

researches but from the discussion of hypotheses that emerged alternatively from

one or another aspect of the inquiry. Both analyses are based on the same data

coming from an accurate survey of the monument that was conducted in 2001,

according to the “polar methodology”, i.e., by means of a single electronic

theodolite, located in the approximate centre of the arena.

This study is the continuation of research presented in another chapter in this

present publication (Duvernoy 2014).

Analysis Through Computer Technology

Modern computing and mathematical facilities provide us with two extremely

useful tools for the analysis of survey data: the first is a means of precisely fitting

geometric models to the data and accurately measuring discrepancies between the

model and data, and the second is statistical testing procedures to determine

whether a given model is appropriate to the data. We will demonstrate the

application of these tools to analyse the Pompeian amphitheatre.

Serlio’s Oval Constructions We already mentioned the lack of information about

amphitheatres in Vitruvius’s treatise. The main literary source for this kind of

monument is Sebastiano Serlio’s treatise on architecture (Serlio 1545; Hart and
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Hicks 1996). Serlio assumes that amphitheatres were oval and he discusses oval

shapes at some length (Rosin 2001). His four methods of construction are illustrated

in Fig. 83.1; these have been used extensively in architecture over the years.

Only the first construction allows a variable aspect ratio; the other three are all

fixed. It is the former we shall use in the following analysis. The oval consists of

four circular arcs with centres (�h, 0) and (0, �k) and radii a�h and b + k
respectively (Fig. 83.2).

It has the attractive property that the arcs join smoothly with tangent continuity.

This geometric constraint can be expressed algebraically as:

h ¼ k � a�b
2

k
a�b � 1

ð83:1Þ

Fig. 83.1 Sebastiano

Serlio’s oval constructions

(Serlio 1545: 14–15)
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The construction can be generated conveniently using two equilateral triangles

whose bases are centered on the origin. Their intersections with the axes determine

h and k, which can be expressed as:

h ¼ a� b
ffiffiffi

3
p � 1

; k ¼
ffiffiffi

3
p

a� bð Þ
ffiffiffi

3
p � 1

:

The lengths of the circular arcs are specified by extending the triangles’ diagonal

sides by a length s. When s is increased both a and b are increased, and so it is not

straightforward to choose geometrically correct values of h and s so as to achieve

specified values of a and b. In fact, the ratio is given by

a

b
¼ hþ s

h 2� ffiffiffi

3
p

� �þ s
:

Not all aspect ratios can be achieved with this method since two arcs per

quadrant are only drawn when s> 0 such that a
b � 1

2� ffiffi

3
p � 3:732.

The ratio of the radii of the two circular arcs also varies, and can be shown to be

2

2hþ s
:

Fitting the Model to Noisy Data The majority of the papers in the literature

analyzing the layout of amphitheatres tend to overlay (often manually) the proposed

shape (ellipse or oval) and then visually evaluate its appropriateness. While this

might be feasible with perfect data (and perfect manual capability) the Roman

amphitheatres have been subjected to damage over the years. On top of this, it is

quite natural that inaccuracies and local adjustments would occur in construction.

Thus, the positions of the walls no longer perfectly correspond to either an ellipse or

an oval composed of circular segments.

This problem is aggravated by the similarity between an ellipse and an oval.

Depending on the number of circular arcs used, an oval can be found that is a very

Fig. 83.2 Serlio’s

construction method for

variable aspect ratio ovals.

Image: authors
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good approximation of an ellipse (Rosin 1999), and so the difference between a

four-centered oval and an ellipse only amounts to a few centimeters. Given such

subtle differences, visual evaluation is inadequate, and a more objective approach is

required. This has led researchers to perform a fit between the proposed models

(i.e., ellipse, polycentric ovals) and use the fitting error as a criterion for selecting

the most appropriate model (Trevisan 2000).

In this chapter we also perform a best fit between the candidate models and the

data. Rather than use a traditional least squares error term we minimize the mean

absolute error using Powell’s method (Press et al. 1990). This is less sensitive to

outliers than least squares. The error at each data point is taken as the shortest distance

to the oval or ellipse. For the former the appropriate arc needs to be selected, making

the fitting a non-linear, iterative procedure. In the case of the ellipse, computing the

distances requires solving a quartic equation and choosing the shortest of the four

solutions, and so it is also a non-linear process. (Note that to ensure proper testing of

the ellipse we do not use the approximation to the distance to the ellipse developed

earlier (Rosin 1998). However, we found that the approximation was in fact very

accurate, resulting in values in the following tables very close to those obtained using

the true distance.) In addition to Serlio’s oval, the best fitting four-centered oval that

satisfies the tangent continuity constraint (Eq. 83.1) is found. Since the oval and

ellipse fitting is iterative an initial estimate is required; this is obtained by first directly

fitting a conic with a non-linear constraint to guarantee an ellipse (Fitzgibbon

et al. 1999).

Amphitheatre Data Figure 83.3 shows the data acquired from the amphitheatre;

the three nearly complete rings will be used for model fitting. Moving from the

innermost to the outermost, they contain 99, 69, and 80 points.

The ellipse and the two oval models were fitted to the data as described above,

and the fits are illustrated in Fig. 83.4. It can be seen that all curves provide a very

good fit to the data.

The mean absolute residual errors are given in Table 83.1.

The best fits (lowest errors) are highlighted and it can be seen that the ellipse

provides the best match to the data in all cases. However, despite the error values

providing such objective and quantitative information, interpretation of these

results must still be done with care. It is not sufficient to identify the best fitting

model and declare that this was the one used in the planning and construction of the

amphitheatre. For any set of data one of the models is bound to give a lower error

than the remaining models. However, the question is whether that improvement in

error of fit between one model and another is statistically significant.

Statistical Analysis To analyze the data the first step is to determine what

statistical model is appropriate. The fact that the different models have different

degrees of freedom makes directly comparing them based on their mean fitting

errors problematic. Instead we shall compare the models via their distributions of

errors, and test if two error distributions are significantly different or not.

The simplest and most common model assumes normal distributions.

Histograms of the signed residual errors for two of the rings are given in

Fig. 83.5. While some histograms look reasonably normal others are doubtful,
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moreover their appearance is somewhat dependent on the histogram bin width. To

check the hypothesis of normality more thoroughly the Shapiro-Wilk test (Siegal

and Castellan 1988) is applied to the signed residuals (Table 83.2). If p< 0.05 then

the null hypothesis of normality is rejected, and thus few fits (indicated by the

highlighted values) can be considered to have normally distributed residuals.

The above means that many standard statistical tests for comparing hypotheses

are not applicable to this data. A non-parametric test is more appropriate since it

does not require the assumption of a normal distribution. However, even when

Fig. 83.3 (a) Plan of the ruins of the monument, (b) measured data from the amphitheatre.

Image: authors
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considering non-parametric tests, most still make some assumptions on the two

groups of data (error distributions in our case) such as:

1. they have the same standard deviations;

2. they have symmetric distributions;

3. the distributions have the same shape.

There are few tests that do not assume any of the above, and so we are forced to

use the median test, which tests if two independent groups differ in central

tendencies (the alternative hypothesis) (Siegal and Castellan 1988). The

limitation of the median test is that since it makes so few assumptions it

inevitably has a low statistical power, i.e., it needs more data points and/or lower

noise levels to reach similar confidence levels than other comparable tests that

make more assumptions (especially parametric tests).

Fig. 83.4 Best fit curves overlaid on the amphitheatre data. Image: authors

Table 83.1 Mean absolute

errors of fitted models to the

amphitheatre data

Ring Inner Middle Outer

Ellipse 0.043 0.078 0.166

Serlio’s oval 0.119 0.162 0.289

Optimal oval 0.119 0.118 0.172

Fig. 83.5 Histograms of residuals for the three rings of points; each group of three shows the

residuals for the fitted ellipse, Serlio’s oval, and the optimal oval

Table 83.2 Normal test computed by the Shapiro-Wilk statistic; only the highlighted values can

be considered normal

Ring Inner Middle Outer

Ellipse 0.211 0.493 0.003

Serlio’s oval 0.000 0.000 0.001

Optimal oval 0.000 0.018 0.030
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The results of the median test are shown in Table 83.3. If χ2� 6.64 then the null

hypothesis of no difference between the distributions (at a significance level

α¼ 0.01) is rejected. In the case of the inner ring there is sufficient information

in the data to allow the median test to discriminate between the ellipse and ovals.

For the other two rings, although the ellipse model also fits the data better than the

four-centered ovals, it is not possible to prove that this is statistically significant.

It is of interest to compare a recently published analysis of a similar problem:

testing whether patterns in prehistoric wall paintings correspond to geometric

models (ellipses, spirals, polygons) (Papaodysseus et al. 2005). In this case

analysis was helped by two factors not available in our case of the Pompeii

amphitheatre. First, the residual errors were shown to be normally distributed,

and thus the more powerful t-test could be used to accept or reject the hypothesis.

The second difference is that multiple instances of various patterns exist in the

paintings. Assuming that the ones that appear to be circles were really intended to

be painted as accurate circles enabled the painter’s residual errors to be estimated.

Consequently, it is straightforward to test if the residual errors incurred when fitting

the other models (e.g., the ellipse) to patterns is greater than predicted by the error

model, and should therefore be rejected.

Area and Perimeter Comparisons Rather than concentrate on residual errors

calculated from the data points Kimberling took another approach when analyzing

the grassy square in Washington DC called the “Ellipse” (Kimberling 2004). He

compared values of area and perimeter measured from the data against the

corresponding values determined from both an ellipse and tangent continuous

oval. The ellipse was not fitted to all the data points, but rather its axis lengths

were set to the same values as the diameter and width of the data. Likewise, the axis

lengths of the oval were copied from the data. Two instances of the oval were then

chosen by determining the values of h and k to match either the area or perimeter

values measured from the data.

Tables 83.4 and 83.5 show the values we have obtained for the amphitheatre.

The “polygon” row indicates values derived from the original data, with adjacent

points being connected to form a polygon. Calculating the remaining values is

straightforward except for the perimeters of the ellipses, as no closed form solution

is available; therefore this was computed numerically using Mathematica. It can be

seen that in all cases the area and perimeter values measured from the data are most

closely matched by the ellipses’ values. However, there is insufficient information

available to perform statistical analysis.

Table 83.3 c2 values computed by the median test and applied to detect significant differences

between the residuals from the ellipse fit and either of the two oval fits; only the highlighted values

can be considered statistically significantly different

Ring Inner Middle Outer

Serlio’s oval 7.733 1.378 0.461

Optimal oval 6.761 0.000 1.842
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Analysis Through Ancient Mathematics

By the means of these various computations we have made an analysis of ellipse

and four-centered oval fits to the concentric walls of the Pompeii amphitheatre. We

have shown that both models provide accurate matches to the data, but the ellipse

always fits better. However, these differences are relatively small and subtle.

In order to come closer to a definite conclusion, the problem must be approached

from a practical architectural standpoint and no longer from a purely theoretical

point of view.

The Geometry of the Building Pompeii is the oldest of the extant Roman

amphitheatres (Fig. 83.6). It belongs to a building type that relies mainly on

ground modeling, rather than on heavy masonry technology. Its construction

involved partly excavating and partly raising the natural ground. The level of the

arena lies below the exterior ground level, while the upper part of the cavea, the
tiered seating area, is higher (Fig. 83.7).

The stone seats for the spectators used to lie directly on the ground, pre-modeled

to provide a suitable slope running all around the central void of the arena.

Therefore, tracing an oval curve for the arena would have meant that two out of

the four centres would have been placed high in the middle of the slope of the raised

ground, much above the level of the arena itself, while tracing ellipses using “the

gardener’s method” (two poles planted in the ground, and a rope) meant working on

a horizontal surface, and dealing with two “centres” only: the two focal points of the

curve located symmetrically on its major axis, inside its perimeter.

The superimposition of the diagrams, either of the ovals and the ellipses, on the

plan of the monument shows the hypothetical position of the centres of the circles

and the foci of the ellipses inside the monument itself (Fig. 83.8).

While discussing the advantages and disadvantages of each kind of curve,

scholars always point out the fact that parallel ellipses cannot be traced from the

same foci, while concentric oval curves can be traced from the same centres, and

this very point obviously lead later architects to prefer the use of oval shapes for the

design of later amphitheatres. But Pompeii’s monument, being among the earliest

Table 83.4 Estimated values

of area obtained from the

models fitted to the

amphitheatre data (in m2)

Ring Inner Middle Outer

Polygon 1862.47 2721.04 8746.07

Ellipse 1865.41 2729.57 8772.99

Serlio’s oval 1870.11 2738.37 8797.88

Optimal oval 1871.09 2734.41 8778.08

Table 83.5 Estimated values

of perimeter obtained from

the models fitted to the

amphitheatre data (in m)

Ring Inner Middle Outer

Polygon 165.363 194.983 337.255

Ellipse 165.293 194.986 337.455

Serlio’s oval 165.785 195.377 337.854

Optimal oval 165.800 195.274 337.663
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buildings of this kind, has to be considered as innovative architecture, one that

experimented with new geometrical patterns, and therefore attempting to reveal an

utterly perfect diagram embedded in its composition might not be an appropriate

goal [its builders did not even name it amphitheatre, but rather spectacula; the word
“amphitheatre” itself appeared later on (Golvin 1988)]. Figures 83.4 and 83.10

show that the hypothetical arcs of the ovals of Pompeii would not be concentric

anyway and their centres would be so distant from one another that this could not be

Fig. 83.6 View from the outside façade. Photo: authors

Fig. 83.7 View of the cavea from the arena. Photo: authors
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considered as errors due to historical traumas and subsequent permanent

deformations.

In the late Roman Republic conic curves were part of common mathematical

knowledge. We know that conic curves were first discovered by Manaechmus

while searching for the solution to the Delian problem around 350 B.C. He is

credited for having obtained them from the sectioning of acute-angled, right-angled

and obtuse-angled cones. The curves were further studied by Aristaeus and

Euclid. According to Sir Thomas Heath (1981), in Euclid’s day some kind of

focus-directrix property was already known. In any case, for tracing an ellipse

only the knowledge of the existence of the foci is necessary (independent of the

directrix). By the time Pompeii was built Archimedes and Apollonius of Perga had

further investigated the properties of the conics. The ellipse was also known to

Archimedes as the section of a cylinder; Apollonius even suggested that the planets

had elliptic orbits of which the sun occupied one focus. In his treatise entitled

“Conics”, Apollonius examines various properties of the lines drawn from the foci

to points on the curve or to specific points on straight lines tangent to the curve. And

finally, Book III, proposition 52 shows that if, in an ellipse, straight lines are

deflected from the “points resulting from the application” (i.e., the foci) to any

point on the curve, the sum of the distances will be equal to the main axis

(Densmore 1998). This well-known property of the ellipse, which has been

extensively applied to drawing elliptic curves by the so-called “gardener’s

method”, because of its simplicity, is not emphasized by the author and no

corollary of the proposition is provided to point out a reverse practical aspect.

Archimedes and Apollonius were the greatest mathematicians to dedicate

themselves to the study of conics, at the close of the golden age of Greek

geometry. They died respectively around 212 and 192 B.C., about a century and a

half before the building of Pompeii’s amphitheatre, which was not the first to appear

Fig. 83.8 The amphitheatre is built in the corner of the city wall. The superimposition of the

diagrams on the plan of the monument shows that the centres of the larger oval curves would be in
an awkward position for an easy layout. Image: authors
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in south Italy. We may be forgiven for thinking that we have here the proof of the

interaction between science and art, and mathematics and architecture in the early

Roman World.

Some attention must be paid as well to another aspect of the geometrical pattern

of Pompeii, i.e. the radii that divide the cavea in several wedges (Fig. 83.9).

Some awkward attempts have already been made to determine the position of

some converging points that would have facilitated their layout (Duvernoy 2014).

But in the context of an elliptical pattern and a non-oval shape, the wedges of the

cavea must have been drawn in some other way than radial division from a centre

that does not exist. The upper perimeter of the cavea is pierced by 40 gates from

which 40 stairs used to go down to the ima cavea. The upper ellipse of the

monument was thus divided into 40 segments approximating the curve by an

irregular 40 sided polygon. If we do the same thing with the lower ellipse of the

cavea, and if the vertices of the two polygons are connected by rays, the resulting

diagram quite perfectly matches the data coming from the survey (Fig. 83.10).

The inscription of polygons inside ellipses and circles is the methodology that

Archimedes used to apply in order to find out simple ratios between the areas of

ellipses and areas of circles having common “diameters”. Archimedes is legendary

Fig. 83.9 Two views of

some of the remaining stairs

that used to divide the cavea

into 40 different cunei,
wedges. Photo: authors
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for having attempted squaring the circle, but his efforts on squaring conics the

ellipse and especially the parabola are less famous. Nevertheless, he stated that the

area of a circle whose diameter is equal to the greater axis of an ellipse is in the

same ratio to the area of this ellipse as its diameter is to the shorter axis of the ellipse

(Conoids and Spheroids, prop. 4). Further propositions compare the areas of the

ellipses to the areas of the rectangles that circumscribe them, and to circles and their

circumscribing squares, etc. Since Archimedes also determined that the value of π
can be approximated to 3 + 1/7, we may assume that the calculations about

perimeters and areas of the various curves of Pompeii’s amphitheatre, required

for building construction and financial purchases (estimating material quantities

and costs), were possible.

The Arithmetic of the Building: Dimensions and Numbers of Pompeii The

search for a module acting as the major common divisor of all dimensions

(Duvernoy 2014) has shown that the axes of the three measured curves are

respectively 10–19, 13–22 and 26–35 modules. Applying Archimedes’ method

for calculating the area, S¼ (3 + 1/7)ab, we find out that the area of the arena is

exactly two thirds of the area of the curve closing the podium. In other words, the

elliptic ring of the podium is exactly half the area of the arena. Because of the

irrational value of π, numbers cannot be round for both the perimeter and the area of

each curve, but ratios and proportions are precise.

Table 83.6 includes numbers about the “hidden” curve that could not be

measured since it lies beneath the cavea, but its position can be precisely

assumed from the entrances to the ambulacrum, or passageway, behind the podium.

Fig. 83.10 Geometric diagram of Pompeii’s amphitheatre. Highlighted areas (in grey) are of the
same magnitude. Image: authors
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This curve is the perimeter of the supporting wall of the outer part of the

amphitheatre. It marks the division between the ground that was lowered and the

ground that was raised: the “void” and the “solid”. Therefore it must have been

traced as a first step in the building process, since the supporting wall needed to be

erected before starting any other operation. The area enclosed by the supporting

wall, whose axes measure 16 and 25 modules, is exactly 314.2857 [¼100(3 + 1/7)].

Consequently, the area of the raised cavea around the central void is

715� 314:2857 � 400,

which corresponds to the area of the rectangle circumscribing the “hidden” ellipse

(16� 25). In other words, the ratio between the “void” and the “solid” is equal to

the ratio of the area of the ellipse and its circumscribing rectangle. The elliptic ring

around the void has thus been “squared”: 400 is not only a rectangular number but

also a square one. The “squaring” of irregular areas has always been one of the main

concerns of ancient mathematics since Egyptian times, and in the case of Pompeii’s

amphitheatre, the squaring of the elliptic ring has been achieved thanks to the clever

choice of specific numbers for modular dimensions. Calculations and computations

are therefore easy. Each of the 40 wedges of the cavea has an area of 10 square

modules, etc. (Fig. 83.11).

Conclusion

The analysis of the amphitheatre of Pompeii by the means of ancient mathematics

was thus accomplished from two different standpoints. First, by noting the curves’

shape, their centres, and the tracing of the radii, we discussed the geometry (i.e., the

manipulation of the classical drawing tools, straightedge and compass mainly), and

then, by carefully interpreting the dimensions of the monument, thanks to our

knowledge of ancient metrology, we discussed the arithmetic (i.e., the

manipulation of the natural integers). The geometrical analysis and the

arithmetical analysis both converge to the same conclusion. Furthermore they

corroborate the conclusions suggested by the numerical analysis with modern

Table 83.6 Examples of computation in modules and square modules

Curve

“Diameters” “Radii”

Perimeter AreaA B a¼A/2 b¼B/2

Arena 10 19 5 9.5 �45.5 �150

Podium 13 22 6.5 11 55 �225

“Hidden” 16 25 8 12.5 �64.5 100 (3 + 1/7)

Amphitheater 25 36 12.5 18 �96 715

A “module” is equal to 12 Roman feet (roughly 3.50 m) and a “square module” is 144 square

Roman feet (roughly 12.25 m2). Comparison between Tables 83.4, 83.5 and 83.6 must be done

considering the approximate value for π
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mathematics (i.e., the manipulation of computer science). Therefore, the coherence

of the results coming from our different approaches allows us to assert that the

geometrical pattern of Pompeii’s amphitheatre is a rare example of elliptic shape in

architecture. Furthermore, its geometry and dimensions also show some of the

finest evidence of direct application of the latest discoveries in mathematical

knowledge and science in architectural design in classic antiquity.

And, most important, the influence of mathematical research on architectural

formalism survived the geometric improvements or changes in successive

amphitheatre design since the difference between an oval shape and an elliptic

one is imperceptible to the observer.
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Chapter 84

Correlation of Laser-Scan Surveys of Irish

Classical Architecture with Historic

Documentation from Architectural Pattern

Books

Maurice Murphy, Sara Pavia, and Eugene McGovern

Introduction

Traditional methods used for surveying and recording historic structures are

(a) based on manual measurement systems using tapes and levels, (b) instrument

based, using theodolite and level, and (c) imaged-based, using rectified photography

or photogrammetry. More recently, digital technologies have automated the process

of both the collection and the processing of measurement data. These technologies

are based on the use of a laser to detect range and geometry, digital photo-modelling

for supplying geometry and texture and, finally, software platforms to compute and

model virtual buildings and environments. The automated measuring systems for

recording the historic structures examined in this chapter are terrestrial laser

scanning, digital photo-modelling and a combination of both systems. The

product of the laser scan survey is described as a point cloud (Fig. 84.1.2) which

represents the x-, y-, z-coordinates of a scanned object. The point cloud can then be

textured from image data to create a virtual 3D model of a structure or object.

Architectural pattern books which were published in the eighteenth century in Great

Britain and the colonies are correlated with the laser scan survey data to facilitate a

more comprehensive analysis of historic construction techniques used in this

period.
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This research focuses on the recording and analysis of historic construction

techniques used in post-medieval (from 1700 to 1830) structures in Ireland. For

the purpose of this chapter, a case study is used which is confined to the front

elevation façade and street fabric of Henrietta Street. The street is located near to

the centre of Dublin City and is one of the earliest of the Georgian streets to be

developed in the city. Henrietta Street was chosen as a case study because it

represents the beginning of Dublin’s great classical building period of the

eighteenth century and can be traced back to its initial development in 1724

(Crimmins 1987).

Fig. 84.1 Laser scan survey and detail geometry of façades of Henrietta Street. Image: authors
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Recording System-Terrestrial Laser Scanners

The survey of the front elevation façade and street fabric of Henrietta Street was

carried out using a terrestrial laser scanner (RIEGL LMS-Z420i illustrated in

Fig. 84.1.1). The terrestrial laser scanner is a device that automatically measures

the three dimensional coordinates of a given region of an object’s surface, in a

systematic pattern and at a high capture rate near real time. The laser ranger is

directed towards an object by reflective surfaces that are encoded so that their

angular orientation can be determined for each range measurement. The entire

instrument and/or the recorded object are rotated to achieve, where possible,

complete 3D point coverage (Mills and Barber 2004). There are three types of

scanners suitable for metric surveys for cultural heritage: triangulation, phase

comparison, and time of flight. Triangulation scanners calculate 3D coordinate

measurements by triangulation of the spot or stripe of a laser beam on an object’s

surface, which is recorded by one or more CCD (charge-coupled device) cameras.

Phase comparison systems calculate range based on the difference in phase between

emitted and returning wavelengths. Time of flight scanners calculate range, or

distance, from the time taken for a laser pulse to travel from its source to an

object and be reflected back to a receiving detector (Boehler et al. 2001). Time of

flight scanners are most suitable for the metric survey of historic structures because

of their long range, which is between 2 m to 2,500 m as opposed to triangulation and

phase comparison systems, which are more suitable for recording smaller objects

(Blais 2004).

All scanning systems are fitted with a CCD camera and the image data can be

used to colour the product of the laser scan survey data, which is described as a

point cloud. The point cloud represents the x, y, and z coordinates of a scanned

object (Fig. 84.1.2). The RGB colour data from a digital camera can be mapped

onto the point cloud by taking account of point translation, instrument rotation and

perspective projection (Fig. 84.2.1). Both the laser and camera must be correctly

calibrated geometrically (Abmayr, et al. 2005). The mounting position and

orientation of the accompanying camera is defined in respect to the scanner’s

coordinate system, with every image representing a calibrated and registered

image. High-resolution colour images can be precisely mapped onto a geometric

model represented by a point-cloud, provided that the camera position and

orientation are known in the coordinate system of the geometric model (Beraldin

2004) (Fig. 84.2.1).

Processing Laser and Image Survey Data

The point cloud (Fig. 84.1.2) requires cleaning, sorting and combining of different

sets of point cloud data before processing takes place. Re-sampling by reducing the

density of the data for overly dense point clouds can reduce the amount of
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unnecessary data and file size. Software platforms, based on organisation of all data

in an octree structure (a data structure useful for visibility of 3D data) permits the

data to be sorted into an even point density on the scanned surface of the object

(Remondino and El-Hakim 2006). Registration is the combination of several point

clouds taken from different observation points or the referencing of the scanned

object in a global or project coordinate system. This is achieved through the use of

tie and control points that are either features of the object (e.g., corners) or special

targets (spheres, flat targets with high reflectivity), which are identifiable in the

point cloud at the processing stage. Software for registering point clouds usually

facilitates registration by special targets, by overlapping point clouds, or by a

combination of both.

Fig. 84.2 Correlation of a laser scan survey and historic data. Image: authors
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The range data in the form of the point cloud from the laser scanner can be

considered as a skeletal framework for recording the geometry of the historic

structure. This geometric framework is then mapped with the associated image

data allowing for more precise identification of the structure’s texture and features.

Polygonal surface meshing is the initial process which creates a surface on a point

cloud; the created surface is made up of triangles connecting the data points into a

consistent polygonal model (Remondino and El-Hakim 2006). Following the

creation of a triangular mesh the results are then textured from associated image

information (Fig. 84.2.1). The creation of an ortho-image from point cloud data

allows for all of the image and geometric data to be exported for visualisation or

further processing in CAD, VRML or other modelling platforms. In the processing

of laser scanning data ortho-images are photo realistic 3D models containing the

width, breadth and height of an object. The ortho-image represents the data for a

particular plane on the x, y, and z axes; this can therefore represent elevation, plan,

or section of an object.

Historic Data: Sources

The arrival of classical architectural styles in Ireland in the early 1700s marked a

change in technology and the beginning of the modern construction industry. Before

the arrival of classical architectural styles, the buildings were mainly medieval in the

form of fortified structures (Ryan 1994). The style and construction of Irish classical

architecture is based on fractal like components (Capo 2006), geometric proportion

and a limited range of material and texture. There is sufficient historic data from this

period concerning the historic construction techniques, and when combined with the

field survey scan data, a more complete re-engineering survey emerges.

The architecture of the Renaissance introduced new and more scientific rules for

the production of drawings and surveys. The most significant were the rules of

perspective defined by Brunelleschi and Alberti in the mid-fifteenth century.

Perspective rules introduced the concept of geometrical accuracy to represent and

visualise architectural forms before they are built (Wyeld and Allan 2006). In the

following century Palladio’s 1570 Quattro Libri dell’ Architettura introduced

concise documentation of the rules of classical architecture (Jokilehto 1986).

Palladio’s principles and documentation of classical architecture were further

developed by British architects in the seventeenth and eighteenth century. These

later publications inspired the architectural pattern books which were published in

the eighteenth century. The pattern books were based on the publications of

seventeenth-century British architects rather than directly based on Palladio’s

work, creating a British and colonial Palladian style referred to as Georgian. The

pattern books contained historic construction techniques used in the eighteenth

century such as geometry and principles of the external and internal structure and
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fabric, construction, the positioning of openings, proportional relationship of the

building’s elements, and classical detailing.

Correlation of Laser-Scan Surveys and Historic Data

Orthographic elevations representing the street façade are the first results as shown

in Fig. 84.1.3; these were plotted from the laser scan survey. Rocque’s street map of

1756 was rectified, scaled, and then plotted to show the building line in 1756

(Fig. 84.1.3). The street morphology can be identified from comparing the

historic map of 1756 and the façade geometry. From this comparison, it is

evident that the street is practically intact, with the exception of demolition of

part of 15 and 16, and the construction of the Law Library in 1828. Additional

historic data, such as the identification of builder and architect, assist in identifying

the evolving patterns of construction of the street. For example, Edward Lovett

Pearce, who was one of the most prominent designers in Dublin in the early 1700s

(Fearon O’Neill Rooney 2003), is accredited with the design of nos. 9 and

10 Henrietta Street. Pearce studied Renaissance manuscripts and in particular the

Palladian styles that were popular in the early 1700s in Ireland and Great Britain,

and subsequently this influenced his designs for Henrietta Street. There are no

surviving design drawings for Henrietta Street. The façade elevations, plotted

historic map and construction dates of the houses are shown in Fig. 84.1.3.

Detailed Geometric Façade Proportions

The rectangles in Fig. 84.2.2, 3 represent the Golden Section, a rectangular

proportion that was believed to embody aesthetic qualities and used to position

bay sizes and openings. The section was used to set out different combinations of

window openings and bay sizes and the opening sizes of doors or windows and can

be found in pattern book geometry. The proportional relationship between window

openings and the bay width is determined by variations in the use of the golden

section. The result is a modular system which can establish the dimensions of the

bays in the façade walls, the sizes of window components, and the widths of

supporting lintels (Ching 1979). The construction of the golden section in

Fig. 84.2.2, which determines the bay width, was plotted from the point cloud.

The section is formed initially by constructing a square, inscribing a circle from the

centre of one of the sides of the square, then side A is extended by the distance B to

meet the tangent, and the rectangle is completed (Fig. 84.2.3).
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Façade Construction

The components and materials used in the façades of the buildings in Henrietta

Street were identified and analysed from the point cloud and ortho-images. The

main elements, which make up the façades of the houses on Henrietta Street, are

the brickwork and stone in the external walls, the sliding sash windows, and the

door-cases, doors and fanlights. Some of the original elements of the buildings are still

in place and date back to about 1730 at the earliest, or have evolved with additions

over the centuries. The external walls in Henrietta Street are mainly constructed in

brick and laid in a Flemish Bond using a mortar mix of lime and sand. Flemish and

English were the principle bonds used in the seventeenth and eighteenth centuries.

Flemish bond was more economic when using facing bricks in the thick walls of the

early 1700s, as the proportion of stretchers is greater (Innocent 1916). The

arrangement for header followed by stretcher for each course in Flemish bond is

more complex to build for thicker walls than English bond (Fidler 1875: 17–22),

which is built with one course of headers and a next course of stretchers. The brick

joints for houses nos. 16 and 17 are tuck-pointed. Introduced in the early nineteenth

century, tuck pointing involved painting the existing brickwork and mortar which

was then re-pointed creating an impression of a more uniform brick with regular

mortar joints. Most of the original brickwork survives in the street with minor

alterations (Fearon O’Neill Rooney 2003). A sample of brick dimensions measured

from the scan survey is 900 in length by 2 1/200 high. The minimum dimensions

specified in the building act of 1729 (Roundtree 2002: 34–35) (introduced by the

architect Pearce who was also a member of parliament) were 900 in length by 4 1/400

in depth by 2 1/400 high. More than likely locally manufactured bricks were used, as

there were brickfields in Gardeners Mall and Moore Street nearby to Henrietta

Street in the 1700s. The colours of bricks varied from red, purple, or grey in the late

seventeenth century and up until about 1730 (Lynch 1993). Imported bricks from

Holland (Nicholson 1823) were grey in colour. The scan survey indicates that the

predominant colour of the facing brick in Henrietta Street is red to reddish-brown,

further evidence that these bricks were manufactured locally.

Stone

The scan survey illustrates that both limestone and granite are found in the façades

of the houses. Calp, a local limestone (Lewis 1837), is used in the walls of some of

the basements and is mainly covered with a render. Local granite is used in plinths,

cornices, steps, sills and copings. Imported Portland stone is used in the stone door

cases. Fredric Darley (Craig 1980), the architect of the Law Library, was a member

of the Darley family, which was involved in granite quarrying and building from the

early 1700s in Dublin, Wicklow and Meath (Ryan 1992: 36–37); local granite was

more than likely used for the construction of the façade of the Law Library.
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The Law Library was built later than the other buildings in the street; the building

methods were greatly influenced by the neo-classical style. Neo-classical detail and

proportion in the façade of the building is component-based but demanded a greater

detail in geometric accuracy in the carving and forming of the stone than did the

Palladian-influenced buildings constructed much earlier. The precision of

construction detail is applied across the variations of the classical components in

the building from the columns to balustrades to the dressed ashlar stone.

Windows and Doors

The sliding sash window, the traditional window used in Georgian houses in Dublin

in the 1700s, is used in all of the buildings in the street. From the early part of the

eighteenth century, stone door cases in a classical style were used. Constructed with

pediments supported by columns, the door cases were further enriched with carved

mouldings. Figure 84.2.6 is an example of a part illustration from a pattern book

showing Pain’s 1788 drawings of elements of a Doric pediments, including the

column capitals which were commonly used for building entrances.

Creation of 3D Objects Based on Historic Detail

Door-cases in particular were copied from the pattern books because of the detail

required in reproducing the classical orders. The pediment of the door case which is

plotted from Pain’s 1788 drawings (Pain 1788: Pl. XXXIII) as illustrated in

Fig. 84.2.5 as a 2D vector representation of its classical decoration and

proportioning. This modular relationship as detailed in Fig. 84.2.5 is based on

Pain’s 1788 interpretation of the Doric classical orders. The Classical

proportioning which is used is related to a series of modular relationships based

on the diameter at the base of the column. Figure 84.2.5 sets out the modular

relationships, all based on 1 module, which is the diameter of the base of the

column. The pediment is made up of the entablature in the centre with the capital

of the column supporting it and two raked cornices over it. These ratios establish the

depth and thickness of materials in the pediment and columns, identifying their

construction details behind the surface of the scan survey.

The 3D objects detailed in Fig. 84.2.8, i were constructed using the software

platform ArchiCAD. Initially the pediment is modelled as a 2D vector object, as

detailed in Fig. 84.2.5. The historic data taken from Pain’s 1788 pattern book is

used to build the profile of the 2D vector object. The main modular components, the

architraves and entablature (based on the diameter of the base of the column), are

used to model the object, the level of detail can be added to at later stages. The

column is built from Pain’s column detail (Pain 1788: Pl. XXXIII) again as a 3D

model. The pediment and column are combined with the wall section and mapped

to fit the geometry of the laser survey data (the point cloud; see Fig. 84.2.1). It is
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important to note that the 3D objects are modelled on the historic data first and later

edited to fit the point cloud surveys. The 3D object (Fig. 84.2.9) represents a door

case which contains details of direction, x-, y-, z-coordinate values, and construction
components (i.e., the capital, base and column can be separated). It can be modified

to suit accurately the geometry, scale and rotation of the point cloud survey.

Conclusion

The modelling process detailed in Fig. 84.2 illustrates a representation of some of

the historic elements which make up the buildings of Henrietta street. It is not

possible to model all of the components within the space of this chapter. In

Fig. 84.2, a historic building information model (HBIM) (Eastman 2006) is

proposed which correlates laser scan survey data with historic data in order to

analyse the building techniques of this period. The documentation and recovery of

historic methods of construction is critical in order to maintain, conserve and restore

the existing building stock. The parallel process of augmenting the results of the

laser scan survey with relevant historic data can be improved through increasing the

number of sources of archival information such as original maps, drawings and

related text. The most relevant sources of information concerning the construction

of Henrietta Street are the architectural pattern books of the early 1700s. While the

pattern books of the eighteenth century contain detail of building geometry, they are

limited in analysis of historic methods of construction. In contrast, technical

manuals from the middle of the nineteenth century were very comprehensive in

describing the science of building materials and varied approaches to building

technology. This is best illustrated in such texts as Nicholson (1823) and Fidler

(1875), which were published a century later but can assist in expanding the

technological and scientific detail. The additional detail of construction

techniques such as material specifications did not appear in pattern books but was

passed on to builders from previous generations as empirical knowledge.
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Part XI

Theories and Applications of Computer
Sciences



Chapter 85

Mathematics and Architecture Since 1960

Lionel March

“Mathematics and Architecture since 1960”—an impossibly tall order! In a short

chapter, I can only sketch an outline of work that I have had direct involvement

with since the 1960s. I will touch upon some of my own work and work by some of

my closest colleagues in architecture and urban studies.1 Much of this work is

recorded in the academic research journal Environment and Planning B, of which
I was appointed founding editor in 1974, and which, under the banner Planning
and Design, is now in its 29th year. Many Environment and Planning B
contributors have been colleagues “at a distance” whom I may have met on

occasions, or not.2

First published as: Lionel March, “Architecture and Mathematics Since 1960”, pp. 9–33 in Nexus
IV: Architecture and Mathematics, Kim Williams and Jose Francisco Rodrigues, eds. Fucecchio

(Florence): Kim Williams Books, 2002.

1 First in architecture at Cambridge University, for two years in urban studies at Harvard and MIT,

back at Cambridge as Director of the Centre for Land Use and Built Form Studies, then in systems

engineering at the University of Waterloo, in design technology at The Open University, later at

the Royal College of Art, London, and—for the last two decades—in architecture and urban design

at the University of California, Los Angeles, with a 6-month stop-over as a consultant at The

National University of Singapore.
2 For example, I co-authored a paper with the graph theorists Frank Harary in the USA and R. W.

Robinson in Australia in 1978 entirely by correspondence. I met Harary some years later at a

cocktail party in Cambridge, but Robinson, never.
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Introduction

A crude, but useful, distinction between mathematics and architecture is that the former

tends towards abstract generalizations, whereas the latter is concretely particular.

In mathematics, take the simple rule of the so-called Pythagorean triangle—in a

right triangle the squares on the sides sum to the square on the hypotenuse. Typical

of the mathematical enterprise, the mathematician Pappus of Alexandria extended

the rule to any triangle with any parallelograms on two sides (Fig. 85.1):

It is not difficult to see that Pythagoras’s Theorem is just a very special case of

Pappus. It is only a step further to arrive at what is known today as the cosine law.

Architecture tends to work the other way round. Given very general notions

about buildings, the architect is asked to tease out a specific design to satisfy certain

performance expectations. Mathematics can play a part at each of these three level:

generic knowledge, specific design, and the prediction of performance.

Mathematics has traditionally been used to predict physical performance such as

structural, acoustic, thermal, lighting and so on. Here, accepted laws of physics are

applied to specific geometries and materials to derive expected results which do, or

do not, satisfy requirements. Armed with this information, the architects may

modify their designs to seek improved performance. Similarly, there is economic

modeling in which various costs and benefits are assessed. I shall not dwell on this

analytical use of mathematical modeling which has nevertheless developed at a

pace over the past 40 years. Instead, I shall concentrate on the role that

mathematical thought plays in furthering generic knowledge in architecture, and

then touch upon its potential use in generating specific designs.

I mean by “generic knowledge” notions generally entertained by architects and

the public: the cultural fix, the conventional wisdom. In the 1950s, in the era of

reconstruction following WWII, it was generally accepted that tall buildings would

make better use of land than the low structures they were to replace. In the early

1960s, I was invited by Sir Leslie Martin to assist in producing a plan for such a

reconstruction of Whitehall, the national and government center in London.3 The

government architects had already built a prototypical office complex some mile or

so away. It sported three twenty-story towers over a three-story podium. It seemed

that the government’s intention was to pull down several Victorian structures

Fig. 85.1 Pappus’s generalization of the Pythagoras Theorem where, for any triangle, the areas of

the arbitrary black parallelograms on the left sum to the area of the appropriately constructed black
parallelogram on the right. Image: author

3 Professor of Architecture, University of Cambridge. Best known in Portugal for his work at the

Gulbenkian Foundation in Lisbon, but more widely for the Royal Festival Hall, London.
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(including Gilbert Scott’s “battle of the styles” Foreign Office) and insert new

buildings of this type next to Westminster Abbey, Inigo Jones’s Banqueting Hall,

William Kent’s Horse Guards, and Norman Shaw’s New Scotland Yard.

Consider an exercise using Friedrich Froebel’s third gift from the wooden

construction toys made famous among architects in Frank Lloyd Wright’s An
Autobiography.4 A square table marked with 25 squares is the site. Placing all

eight cubes on the center square creates a high-rise tower; placing them on the eight

squares of the next ring creates a low-rise court form. Now the fourth gift has the

same volume as the third, but is made from eight bricks with sides in the proportion

4:2:1. These eight bricks may be arranged around the sixteen perimeter squares at

half the height of the last ring and one-sixteenth the height of the central tower

(Fig. 85.2).

Buildings were arranged around courtyards in traditional development in, and

projects for, the Whitehall area. London itself is renowned for its Georgian

squares—examples of the courtyard form in urban design. I developed a program

to explore the possibilities of arranging the built forms (as our very abstract

representations of buildings were known) in three distinct arrays: the pavilion

form (or isolated structure); the street form; and the court form.

The government was looking to put a certain number of civil servants to work in

Whitehall. In building terms this translated into a gross building volume that was to

be distributed over the site with a variety of options regarding conservation. The

result of computations convinced us that the whole scheme could be arranged in

courts surrounded by buildings no higher than the existing Victorian and Edwardian

Fig. 85.2 Froebelian demonstration showing a given volume distributed in three different ways

suggestive of tower and court forms. Image: author

4 Friedrich Froebel (1782–1852) pioneered the modern study of form. He employed the three

Aristotelian categories of quantity, quality and relation in structuring the educational content of his

“gifts” which ran the gamut from solid, plane, line to point in descending order of concreteness,

and ascending order of abstraction. His categories were “forms of knowledge” in which

quantitative aspects are studied; “forms of beauty” in which the qualities of spatial

transformations and symmetries come into play; and “forms of life” in which the forms are

related to actual objects—a house, a bath, a chair, and so on. I use these categories to organize

this chapter.
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office buildings in the area. Tall towers were not necessary, although even after the

plan was accepted the government’s architect pushed on with plans to build an

office tower that would have dwarfed Big Ben in its bulk. It seemed that building

something to blend in with the existing fabric was not appreciated at that time as a

means to express the power of the “modern” state (Fig. 85.3).

These conclusions had been reached by number-crunching on an early card-hungry

computer, and represent one of the first uses of electronic computing in architectural

design. Shortly thereafter Leslie Martin established the research centre for Land Use

and Built Form Studies (LUBFS) initially with funding from the Gulbenkian

Foundation, and with myself as Director.5

Forms of Knowledge: Quantitative Studies

One of my first pieces of research was to formalize the results of the Whitehall

study. Using no more than high school calculus, the new models demonstrated the

superior effectiveness of low-rise courtyard development over street and pavilion

forms. These results were then compared to the famous Heilgenthal-Gropius result

that underwrote the internationalists’ images of a city of residential slabs and

towers. It was concluded that a more discerning appreciation of the mathematical

model’s ‘structure’ might have convinced Gropius that the greatest gains were to be

found in flachbau, low-rise housing (March 1972). Of course, every mathematical

model abstracts from actuality and only deals with a limited number of factors and

assumptions. In my view, such models are useful in questioning our prejudices and

sharpening our understanding as long as the limitations are taken fully into account.

A more general principle was extracted from such studies which we named after

Fresnel, the French physicist, who had used such a pattern for light refraction

gratings. Subsequently we learned that both Leonardo da Vinci and Albrecht

Fig. 85.3 Model of Leslie Martin’s National and Government Centre, Whitehall, London, 1964.

Image: author

5 Engineer Sr. Luis Lobato was an enthusiastic protagonist of this work.
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Dürer had drawn related diagrams in their graphic studies of isoperimetric

problems. Generically, the diagram shows a set of similar plane figures with areas

equal to 1, 2, 3, 4, . . . respectively. Fresnel and Leonardo used circles, we used

squares. When the squares are placed about a single center, the diagram shows a

series of concentric rings each of which is of unit area and therefore equal to the

area of the central square (Fig. 85.4).

In this diagram, the unit square in the center occupies one-ninth of the largest

square. The side lengths are thus proportionately √1¼ 1:√2:√3,
√4¼ 2:√5:√6:√7:√8:√9¼ 3. The illustration shows this same unit area distributed

in two ways—nucleated at the center and reticulated around the perimeter. Then,

retaining the overall content, the area is fractured into smaller parts, but retaining

the overall content. This diagram illustrates a problem with urban designers’ use of

the term density, and its subsequent architectural implication that high density

implies tall buildings. Spatially there are four distinctions to be made:

concentrated-nuclear, concentrated-linear, dispersed-nuclear, dispersed-linear. All

have the same density, but exhibit quite distinct spatial distributions that carry quite

different architectural and urban design implications.

Much of twentieth-century architecture has a basis in density calculations. Think

only of the work of CIAM members in the pre-WWII years and the application of

their doctrines in the years of reconstruction that followed. There was much

“scientific” hood-winking concerning persons per square kilometer, bed-spaces

per hectare and similar quantifications. This was the language of land-owners,

public and private, who sought to make efficient or profitable use of land. The

individual occupant is not put first. We very rarely hear about land per person, per

individual.

If land were divided up equally, how much land do different people have around

the world? Politically, this is a key question, because others have decided, or are

deciding, how to parcel up that land. In Singapore, the Peoples Action Party clearly

has decided to give over a substantial part of each individual’s entitlement of land to

public open space rather than private patios and gardens. Persons per hectare

Fig. 85.4 Left, the Fresnel square. Center, different spatial distributions of the same content (the

density of black against white) from left to right, concentrated to dispersed. Center top row,
nucleated distribution. Center bottom row, reticulated distribution. Right, Leonardo da Vinci’s

diagram reconstructed from Codex Atlanticus 221v-b in which each crescent has the same area as

the full circle. Image: author
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disguise this reality, whereas starting from the premise that each individual

Singaporean—man, woman and child—might count the land of a single’s

tennis court as their own, the question might be asked, as a family looks out from

its tenth-story apartment, how has most of it been used, for whom and by whom?

In the world today, each individual’s portion of the land surface of the globe

(excepting Antarctica) is equivalent to 150 � 150¼ 22,500 m2. Estimates suggest

that at the very worst this might fall to 13,500 m2 by 2050, but is far more likely to

have levelled out at 19,500 m2, or the size of two soccer fields. Does this individual

know that some two-thirds of this land is already consumed in permanent pasture,

forest, crop and arable land? Or that only two percent of the land surface is actually

urbanized? Or that this urban use may barely increase to three percent of the land

surface by 2050? Nevertheless, it does beg the question: how will this additional

one percent—1,360,000 km2—be urbanized, a land mass equivalent to the Northern

Territory, Australia? Or, if everyone of the estimated seven billion persons in 2050

were to live at the density of sprawling Los Angeles, that no more land than in use

today would be required for urban uses, and that an area the size of Japan might be

returned back to non-urban uses? On average, each and every person in Los

Angeles enjoys, appropriately, a basketball court of land. Yet, each individual

making up the world’s urban population (some 2.82 billion) average two and

two-thirds times the land an Angeleno currently has (Fig. 85.5).6

I trust these simple arithmetical manipulations and interpretations of

publicly-available data challenge the conventional wisdom. Part of the problem is

to visualize the arithmetic in sensible ways, and part is that the numbers arise from

the shape of urban and architectural artifacts. 2,750 persons per km2 is an abstract

concept: one person standing in an otherwise empty basketball court is concrete.

Yet, they are equivalent.

Architecture, in its applications, demands the concretisation of abstract mathematical

statements.

A study prepared for an The Open University television program in urban

geography is suggestive. I posed the problem of the compact city form and

showed that without using more land other forms were possible. Take, for

example, a nine block section of a theoretical compact city. The nine blocks

might be reconfigured spatially as annulated form in which the depth of “service”

from the roads is the same as in the compact city; or, as a cruciform. In each of these

two reconfigurations the length of road is reduced by a factor of 55 %, which means

that utility runs (water, sewers, electricity, telephone and cable) that normally

follow roads are also reduced by this same amount. The maximum trip length

across the compact section is 120 % of the same distances across the annular and

cruciform configurations. Moreover, both these latter forms show lower expected

mean distances than the compact city form: The cruciform shows that trips are

6 Information extracted from AAAS (2000a, b).
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likely to be 95 % of the compact from, while the ring is best with 92 %.7 Reductions

this order are significant in energy terms as well as in convenience. The study

suggests compelling counter-examples to the conventional wisdom about city

forms (Fig. 85.6).

Suppose now that a new urban area is to be planned. Conventional surveys

would pick out a piece of land and define a closed boundary around the urban area.

But why not mark the protected open areas and let the urban form fill the interstitial

spaces? The second two configurations suggest such an approach (Fig. 85.7).

There is no variety in these examples such as central city, market towns and

villages which make up many urban regions. Another diagram indicates a “line”

alternative to conventional “blob” thinking (Fig. 85.8).8

In the nineteenth century, the Spanish engineer, Ildefons Cerdà (1815–1876), set

out the first modern theory of urbanización with the compelling maxim “Rurizad lo

urbanos, urbanizad lo rural . . . replete terram”.9 There is an 1861 sketch of his that

illustrates the fundamental urban problem with compact city forms: that traffic

requires more land as centers are approached at the same time that buildings require

Fig. 85.5 Distribution of land in different communities and groups in the world population, 2000.

The circle with Franceso di Giorgio’s Vitruvian man marks the scale. Image: author

7 The unit of distance taken in this example is half a block length. The mathematical question of

mean distances is addressed in Baglivo and Graver (1983: 98–111). An architectural investigation

of built forms is found in Tabor (1971). On the assumption that all trips are equally likely, it should

be noted that the compact city-section favors short trips over the other two configurations, whereas

the annular form has an even distribution. In practice, trips are not likely to be equiprobable, and

this needs to be factored in according to expectations.
8 For a practical application of these ideas to the Central Region of Chile, see Echenique (1994).
9 “Ruralize the urban, urbanize the rural. . .fill the earth.” I was first introduced to the works of

Ildefons Cerdà by Dr. Marcial Echenique who had joined LUBFS from Barcelona to direct the

urban systems study. A useful summary is Soria y Puig (1999).
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more space. In 1961—quite unknowingly at the time—I illustrated this problem

with two figures. The first showed the expected distribution of floor space in a

theoretical city and the second the expected distribution of traffic. The two

requirements are in mutual conflict: central blocks rise skywards as central roads

become congested (Fig. 85.9).

The next exercise looks at this problem. Many downtown areas make use of

small blocks established at a much earlier period. The city of Singapore is a good

example in which the image of Manhattan has been adopted on sites so small that

the footprints of the tower blocks are often less than 25 % the area of a typical

New York high-rise. This has led to an exciting sky-line of elegant, but essentially

grossly inefficient, buildings. Take again a theoretical model of a downtown: first

with every one of 5� 5¼ 25 blocks filled by built forms eight floors high

Fig. 85.6 Top left, a nine block section of a theoretical compact city. Top center, the same land

area reconfigured as an annulated form. Top right, the same again reconfigured as a cruciform.

Below, the frequency distribution of trip lengths. Image: author

Fig. 85.7 Left, a theoretical compact city surrounded by a green belt. Center, four ring cities

occupying the same amount of urban land. Right, four equivalent cruciform cities unite to create a

reticular pattern. Image: author
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(25� 8¼ 200 units). Now suppose that this floor space is reconfigured to look more

like the arrangement with which we are familiar: each annuli from the center has the

same amount of floor space so that the 16 outer blocks have built forms four floors

high (4� 16¼ 64 units); the next annuli of eight blocks retains the eight story high

built forms (8� 8¼ 64 units). While the center 64 units of floor space (at 32:1 ratio)

occupy just one block to make 192 units in all annuli. There is a discrepancy of

8 units between the two arrays, but this of no consequence to the argument. The

“exponential” growth in building height mirrors, but exaggerates, reality. The same

roads serve the buildings, but it is clear that the central area will suffer acute

congestion.

The whole floor space may be reconfigured around a single courtyard. The

surrounding road consumes the same amount of land as before, but now there are

just four roads of much higher capacity than the 12 roads of the original scheme.

There is a ninefold reduction in intersections improving pedestrian flows, reducing

Fig. 85.8 Left, a theoretical urban region comprising a central city surrounded by a greenbelt,

satellite market towns with their greenbelts, and necklaces of villages around each of these. Right,
an alternative possibility: a regional park defined in the center, satellite community parks,

and smaller village greens. The urbanization is linearized around these protected open areas,

occupying the same amount of land as in the conventional configuration. Image: author

Fig. 85.9 A theoretical city. Left, distribution of floor space. Right, distribution of traffic.

Image: author
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the risk of accident and the pollution of waiting vehicles. The most surprising result

is that much of the land of the narrow and traffic-vulnerable sidewalks is collected

together in a protected, traffic-free, courtyard the size of nine former blocks. The

building is seven floors high containing 196 units of floor space (Fig. 85.10).

Efficient tall buildings tend to have large footprints because of the service core. It

is possible to retain the court form while halving the building depth for natural

ventilation and lighting. This is achieved in a four court array.

Even so, for every two lanes of traffic per road in the original layout, the single

court provides five lanes per road and the four courts provide three lanes per road:

always holding the area of land devoted to transportation constant. The lane

capacity of roads increases with the number of lanes. Keeping the road surface

constant, suppose the 25 blocks are regrouped into four blocks, two-lane roads are

replaced by three-lane roads with a lane capacity one and a quarter times higher, or

into a single block surrounded by four-lane roads with a lane capacity just over

double the two-lane scheme. Cerdá’s problem finds a solution in such a courtyard

arrangement, and this is precisely the form he chose as a type for Barcelona

(Figs. 85.11 and 85.12).

These studies of built forms and the distinct ways they use land are based on the

simple criterion of a sky ratio, or the angle at which the base of one built form

makes with the parapet of a form immediately opposite. It will be observed that this

angle is steep in the case of the pavilion forms, but much shallower in the

comparable court forms.

The implication is that the ground floor occupant in the court forms are likely to

see more sky than those in the tower configurations. A criticism that I make myself

is that the sky view from a ground floor window is not as simple as the model

assumes. In each individual case, a computer simulation will be needed to compute

a more realistic assessment. The tower forms suffer from not taking into account the

Fig. 85.10 A theoretical 5� 5¼ 25 block urban center: (a) An array of identical eight story

blocks; (b) The same floor space reconfigured to provide equal floor space in each annuli from the

center; (c) The same floor space reassembled in a seven story court form. Image: author
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Fig. 85.11 Three road networks showing the increase in traffic flows by increasing the lanes per

route, but maintaining the same total road surface. Image: author

Fig. 85.12 Sky angles in the four configurations in Fig. 85.11 together with the cross-section of a

four-court configuration, bottom left. Image: author

Fig. 85.13 Left, a view through a window in a court. Right, a view from a window in an array of

towers. The white area is the sky accounted for in the model from a ground floor window. The

middle gray area, together with the white, is the sky assumed to be seen from the rooms on the

façade facing the opposite building. The dark gray is the additional sky not accounted for by the

mathematical model. Image: author
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views around the sides of the built forms opposite, whereas the court only has

internal views of the buildings surrounding the court (Fig. 85.13).

A practical example of the effect of sky angles on architectural design is shown

in the considerations that led to Leslie Martin’s project for new office buildings

around courts inWhitehall, London. Historically, the early Tudor streets in the area,

with their overhangs, may be seen as an attempt to have light penetrate to the center

line of each floor. The later post-Fire (1666) terraces solved this problem by varying

the story heights (Fig. 85.14). The Whitehall project proposed a stepped section on

either side of an enclosed galleria for public use. The room depths now vary, but

this variation accommodated the variety of room sizes in the program. Research on

atrium offices since has confirmed that such a strategy has potential for energy

saving in the British climate. The stepped-back elevations to the court provide a

greater sense of openness in the courts themselves as well as in the offices on

opposite sides.

Mathematical processes of thought have been used here to provide

counter-examples to the conventional wisdom that society and professions have a

habit of promoting. Alfred North Whitehead has described this mode of thought as

“speculative”; it is profoundly radical in that it attempts to go back to basics. The

alternative to centralized development gained the name “perimeter development”.

Some London boroughs made use of this alternate concept in their public housing,

especially following a devastating gas explosion in one high-rise residential tower.

The award-winning work of Richard McCormac is notable in this regard, as is a

scheme in Battersea in which a proposal for 22-story towers was replaced by 4-story

town houses and walk-up apartments. Later New Towns in the UK such as

Livingstone and Milton Keynes adopted perimeter development. Richard

McCormac realized that it was possible to increase the perimeter length around a

site by something akin to crenelations, or more generally by foldings. This

corresponds to increasing the available frontage for the homes (Fig. 85.15).

Phoenix, Arizona, plans to expand urban development north of the city, into the

Sonoran Desert for some 300,000 persons. The desert is of great ecological

significance.10 The Nature Conservancy and partner organizations have identified

some 100 landscape-scale conservation sites and some 30 smaller areas. Urban

developments may flood around these conserved “islands”. The lines of desert cities

Fig. 85.14 Left, the sky angles for a typical Tudor street. Center, the sky angles for a typical

post-Fire street. Right, the sky angles for the cross-section of the proposed Whitehall court form.

Image: author

10 The Sonoran Desert covers about 222,700 km2. in California and Arizona in the United States,

and Baja California and Sonora in Mexico. It is the subject of a case study by the Nature

Conservancy in AAAS (2000a: 188–89). In 1995 the regional population was 5.5 million,

growing at the rate of 3.0 % per year.
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that fan out from Palm Springs, California, for some 50 km north and south of

Joshua Tree National Monument provide an example of this open-space centered

development. In opening a workshop on the Phoenix-Sonoran development, I

questioned the drawing of closed boundaries around future urban uses. All parties

agreed that people were migrating to the desert because they wanted to live the

desert life, yet the planners and architects were visualizing gated and walled

communities little different from other exurban developments elsewhere. It

seemed to me that a desirable goal would be to maximize the boundary between

the desert and the homes. I presented a simple fractal demonstration of how the

urban area allocated might remain constant, but the perimeter might be increased

threefold over the closed boundary favored by surveyors, or as much as required

depending on scale. This is not dissimilar to the convolutions of inlet and isthmus

that developers create in new oceanside communities to maximize access from the

homes to water. Curiously, and sympathetic to my prior arguments, the original

square tends towards a cruciform after a few iterations of the crenelating rule

(Fig. 85.16).

Fig. 85.15 The effective length of a perimeter may be increased by folds and crenelations. The

numbers compare the increase to the straight line as 100 units. Image: author

Fig. 85.16 Fractal development in which the perimeter between one use and another is increased

while holding area constant (fractal dimension 1.36). Image: author
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Forms of Beauty: Qualitative Studies

For Froebel, forms of beauty were abstract designs that exhibited strong

symmetries. Interestingly, he would break the symmetry of one design and,

through a series of moves, transform the design into a novel one.11 Symmetry is

unavoidable, in modern terms, since asymmetry, called the identity, acts like the

“one” of multiplication in common arithmetic, and thus it counts as a unique form

of symmetry. An object has symmetry if there are spatial transformations that allow

the object to move, and yet end up occupying the initial space. For example, if I take

a paper square and place a pin in the center, I can rotate the square through any

multiple of the right angle and each time its position will coincide with the original.

I could also turn the square over along any one of four axes through the center—the

horizontal, vertical, and the two diagonal—to achieve the same result. In the

modern group theory of symmetry, it is possible to precisely say whether an

object has more or less symmetry than another, and to know just how many

subsymmetries of an object there may be to exploit in design. Louis I. Kahn’s

Assembly building in Dacca, Bangladesh, provides an excellent lesson. The ceiling

of the main chamber is based on a regular 16-gon (the number 16 being a symbol of

wholeness in Indo-Arabic cultures). The order of symmetry of this shape is 32.

According to Lagrange,12 the order of subsymmetries must be factors of this

number: 16, 8, 4, 2 and 1, the identity. The facets of the ceiling mark out the

symmetry of the octagon (order 16), the mosque is based on the symmetry of the

square (order 8), the double squares of the offices follow the symmetry of the

rectangle (order 4), while their internal planning is bilateral (order 2). Finally, the

whole design has no overall symmetry (order 1): a globally asymmetrical

composition that is replete with local symmetries. Quite deliberately, the

powerful axis of the entrance lobbies, crossing that of the assembly chamber

itself, is symbolically broken by the mosque, which adjusts its orientation to Mecca.

While symmetry may be described mathematically, it is not the conventional

mathematics of solving numerical equations—typical of quantitative studies. The

geometry of Euclid, for example, is about determining the measurements of lines,

areas and volumes and comparing these properties for different figures such as the

five Platonic solids. There is absolutely no explicit discussion in The Elements of
the symmetry of these forms, yet it is symmetry that provides their compelling,

foundational importance today (Baglivo and Graver 1983: 246–250).13

11 Froebel had trained as an architect in Frankfurt, but became an assistant to Christian Samuel

Weiss, one of the founders of the modern science of crystallography.
12 Joseph-Louis Lagrange (1736–1813) was the founding Professor of Mathematics at L’Ecole

Polytecnique, Paris, during the tenure of the architect J. N. L Durand in the stereotomy department

under Abbé Haüy—Weiss’s French rival in the architecture of crystal forms.
13 There are just seven non-infinite spherical groups in space, two each associated with the Platonic

duals, the cube/octahedron and the dodecahedron/icosahedron, and three related to the self-dual

tetrahedron.
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A simple example of qualitative study of form is given by examining the set of

12 pentominoes—two-dimensional figures in which five identical squares are

joined in all possible ways edge to edge. Early configurational studies in

architecture made use of such objects as synthetic, impersonal populations of

designs. The 12 configurations may be grouped according to their symmetries:

five are asymmetrical (identity, of order 1); one exhibits half-turn symmetry (the

cyclic group, C2, of order 2), two are bilaterally symmetrical in the orthogonal

direction, two along the diagonal (all four are examples of the dihedral group, D1, of

order 2), one shows bilateral symmetry in two directions (the dihedral group, D2, of

order 4), and the regular cross has the full symmetry of the square (the dihedral

group, D4, of order 8). Preserving the orthogonal orientation, the identity forms

may assume eight distinct positions; the C2 form, four positions including left- and

right-handed versions; the D1 forms have four positions; the D2 form two distinct

positions, and the regular cross (say, the exterior of Palladio’s Villa La Rotonda)14

has only one position (Park 1996).

The population of pentominoes may also be classified topologically in terms of

connectivities between adjacent squares (Fig. 85.17). A linear, planar graph

represents this where a vertex of the graph stands for a square and the line joining

two points marks a shared edge. The 12 designs fall under just four equivalence

classes: seven are topologically equivalent to a simple “path”, three to a “tree” with

two branches; one to a “tree” with three branches; and one with a “cycle” where

four squares make mutual contact around a common point. Another representation

is the planar map, which may be thought of a rubber-sheet transformation of a

pentomino itself. I shall return to the importance of this later.

Polyominoes may be used to define the footprint of a built form. Suppose the

task is to accommodate 18 cubic units. One built form, 18 cubic units high, would

achieve this. There is also just one way with a footprint of two units—a nine cubic

unit high configuration. With a footprint of three units there are two distinct plan

possibilities at six cubic units high: a simple slab, or an L-shape. With three floors,

the footprint is six units. There are 35 hexominoes. Thirteen have the topology of a

“path”—a simple string of six units on each floor, no matter how this is folded.

Every cubic unit has at least two exposed sides. When the configurations have the

topology of a “tree” with branches then some units will have only one exposed face,

or possibly none. Twenty-two of the configurations are like this. A vertex with three

branches means that that unit has 4–3¼ 1 exposed face. A vertex of degree

4 represents a unit with 4–4¼ 0 exposed faces. That is to say, the unit is

completely surrounded on the interior. Eight of the scheme include a “cycle” in

their topology. These are the most compact schemes. The mean distance measure

within each floor of the configuration ranges from 1 for the nine-story slab; 1.33 for

both six-story designs, and from 2.33 to 1.67 for the 35 three-story schemes

(Figs. 85.18 and 85.19).

14 The interior of La Rotonda has the subsymmetry D2.
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An indication of the combinatorial explosion with this approach is demonstrated

by the 1285 distinct two-story 9-omino designs, and the 192,622,052 one-story

18-omino configurations. Almost all of these schemes are asymmetrical.

If the quantitative studies have the musty scent of Renaissance isoperimetric and

proportional problems, then these particular qualitative studies exude the antiseptic

smell of Durand’s polytechnic rationalism. Discrete elements are combined in

tinker-toy fashion. Even if three-dimensional polycubes were used instead of the

prismatic extension of two-dimensional polyominoes into three dimensions, such as

in the above example, nothing will have changed—we are still in tinker-toy land.

But until recently, this has been the cost of the abstraction necessary for the

mathematization of synthetic design in architecture (Fig. 85.20).

Fig. 85.17 The population

of 12 pentominoes classified

by symmetry and incidence

represented by linear graphs

and planar maps. Image:

author

Fig. 85.18 Left, 18 spatial

units assembled in one nine-

story tower based on the

unique domino plan. Right,
the two six-story towers

generated from the two

triomino plans. The

connectivity graphs and

mean graph distance are

given for the configurations.

Image: author
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Fig. 85.19 The population of three-story built forms based on the prismatic development of the

35 hexomino plans. The lightly tinted areas show spaces with only one external face, and the dark
tint indicates a space that is entirely interior. Image: author
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To generate more realistic schemes, several authors, including myself, toyed

with the idea of the “dimensionless grating”.15 This is best illustrated with one of

the hexominoes (Fig. 85.21).

It will be seen that it sits in 3� 4 grid, or grating. This configuration may be

described using a Boolean—0, 1—code for computational purposes:

1110 0011j j 0001

reading from left-top to bottom-right of the grating.16 Dimensions may then be

applied to the grating to transform the configuration, and the grating may be “torn”

to produce a yet more general transformation, while making the straight lines

curvilinear would produce “morphs” similar to those found in D’Arcy

Thompson’s On Growth and Form. Thompson’s book has been an influential

source in the development of contemporary morphological studies in architecture.17

Let me turn now to an example from my stay in Singapore. I had used the earlier

arguments to suggest that Singapore’s largely high-rise, UN Habitat award-winning,

New Towns had never been necessary. Those arguments had been introduced to at

least one Singaporean architect, Tay Kheng Soon, who for his criticism found himself

Fig. 85.20 From left to right: a 18-polyomino single story composition, and then three

18-polycube compositions—two-story, three-story and six-story—which are not prismatic

projections of two-dimensional polyominoes. Image: author

Fig. 85.21 Left, a dimensionless grating. Center and right, some dimensional transformations,

shears and cuts, of the same grating. Image: author

15 This concept arose initially from Newman (1964). Newman had directed the effort to build the

world’s first programmable, electronic computer at the University of Manchester, 21 June 1948.

He is especially regarded for having recruited Alan Turing—of Turing Machine fame—to his

staff.
16 This Boolean description of a building appears in March and Steadman (1971: 121–144). It was

subsequently elaborated in March (1976).
17 See, for example, Steadman, P. (1983). Architectural Morphology: An Introduction to the
Geometry of Building Plans. London: Pion Ltd.
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exiled in Malaysia planning and designing high-density, low-rise housing.18 My own

contribution was deliberately contentious. I showed that Singaporeans could have

been housed in one-story dwellings on no more urban land than currently used. The

form of housing that achieved this result was the courtyard, which has a long tradition

in the Chinese, Indian and Islamic cultures that meld together in Singaporean society,

in contradistinction to the high-rise slab and tower of twentieth-century

internationalism (March 1992).

Here, I use the example to illustrate an application of the modern mathematics of

symmetry. One type of site that was considered was the familiar nine-square

pattern. The site was walled and the dwelling could occupy at most 5/9 of the

land within. For the sake of argument, I envisaged five units somewhat after the

open manner of Kahn’s Trenton bath-houses, leaving the enclosures to individual

owners. The question was to maximize variety within these parameters. This

reduces to the mathematical question: how many ways are there of “coloring”

five of the squares in a 3� 3 square. The colored squares would then represent a

possible house plan and the uncolored squares would represent the open spaces, or

courtyards. A simple answer would be the mathematical expression “9 choose 5”

which is the factorial expression 9!/5!4! equal to 126. Many of these plans are the

same under symmetry: right- and left-handed, or rotated. How many distinct plans

is given by one of the most elegant pieces of modern combinatorial theory—George

Pólya’s Enumeration Theorem.19 I can only hint at its power here. First, I give the

answer diagrammatically (Fig. 85.22).

The result that there are just 23 distinct configurations under symmetry is

derived from the group of Pólya figures which indicate the symmetry operations

on the nine squares. The central square always remains the central square. Corner

squares may exchange only with corner squares, and the four side squares with side

squares (Fig. 85.23).

The information contained in the eight figures is captured in the cycle index:

1

8
f 91 þ 2f 1f

2
4 þ f 1f

4
2 þ 4f 31f

3
2

� �
,

which is short-hand for “in eight figures we may choose a figure with nine 1-cycles

or 2 figures with a 1-cycle and two 4-cycles or a figure with a 1-cycle and four

2-cycles or 4 figures with three 1-cycles and three 2-cycles”. The next step is to

make the following substitutions:

18 “Meng Ker introduced me to the book—(March 1972)—and from there we did some

morphological studies together and he did his thesis on Woodlands, one neighbourhood of

Woodlands. And he redesigned a neighbourhood, the typical HDB [Housing Development

Board] neighbourhood which was 10, 12, storeys at that time. He redesigned it to 5, 6 storeys,

with one-third of the dwellings having gardens. So, to answer your question, are there alternatives

to HDB, there are plenty of alternatives” (Bay 1998).
19 See Pólya et al. (1983), where the lively “voice” of the nonagenarian Pólya can be heard still

teaching at Stanford University, California.
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f 1 ! 1þ x, f 2 ! f þ x2, f 4 ! 1þ x4,

which are examples of what Pólya calls the “figure inventory”. The first basically

reads “in a 1-cycle we may choose to either not to color an element, 1, or to color it,

x”. The second reads “in a 2-cycle, if we color one element, then the other element

of the pair must carry the same color—hence the term x 2”. The third reads “in a

4-cycle, if one element is colored then so must the other three be colored likewise

under symmetry—hence x4”. After the substitution, the cycle index looks like

1

8
1þ xð Þ9 þ 2 1þ xð Þ 1þ x4

� �2 þ 1þ xð Þ 1þ x2
� �4 þ 4 1þ xð Þ3 1þ x2

� �3� �
,

which, when expanded, simplifies to the “counting polynomial”

Fig. 85.22 The catalogue of the 126 courtyard houses in a 3� 3 square in which four of the nine

squares are open spaces. The 23 black figures are the configurations enumerated by Pólya’s

theorem, the gray figures show symmetrically-equivalent configurations in the vertical columns.

The indents show configurations in which all five units are fully connected, then those in which

some contact is corner to corner, and finally configurations in which the house is divided in two or

more parts across a courtyard. Image: author

Fig. 85.23 The group of eight Pólya figures for the nine square problem. From left to right, if the
nine-square is not moved, then all nine squares also remain stationary. “Nine 1-cycles” is

symbolically represented by the expression below. Next, the figures show rotations through 90�,
both clockwise and anticlockwise, to give “two figures with one 1-cycle and two 4-cycles”. Center,
is the exchange resulting from a half-turn, 180� rotation. This gives one figure with “one 1-cycle

and four 2-cycles”. Right, four figures in which reflection is indicated in the vertical axis, the

horizontal, the leading and trailing diagonals. The symbolic notation reads “4 figures with three

1-cycles and three 2-cycles”, the 1-cycles occurring along the axis of symmetry in each case.

Image: author
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1þ 3xþ 8x2 þ 16x3 þ 23x4 þ 23x5 þ 16x6 þ 8x7 þ 3x8 þ x9:

The powers of x represent those designs with that number of colored elements.

There is one configuration with no colored elements (1¼ x0), as there is just one in
which all nine elements are colored (x9). The number we are looking for is the

coefficient of x5 which tells us there are 23 distinct designs of the nine square homes

under symmetry. These are the ones illustrated in black above. The coefficient of x4

is the same, since this could be read as coloring the four open spaces instead of the

five enclosures.

An elaboration of this example includes a second color that stands for the service

unit to the served spaces. The inventory then looks like

f 1 ! 1þ xþ y,

and so on for the 2-cycles and 4-cycles. The coefficient of the term x4y counts the
number of configurations with four served spaces, x4, and one service space, y. That
number is 89 (Fig. 85.24).20

Finally, in this section on qualitative studies, I return to the representation of

architectural plans by planar maps. It turns out that the number of potential

architectural plans can be enumerated and classified. There are only a certain

number of planar maps with n-faces, or the compartition of the plane into n-rooms.

These in turn may be derived from trivalent planar maps through “ornamentation”,

and every trivalent map in the plane is a stereographic projection of a

three-dimensional trivalent polytopes. In other words, Plato had the right idea.

Christopher Earl and I wrote,

Fig. 85.24 Left, a group of nine-square homes arranged around a common open space. The darker
tint indicates a service area. Center, the poché of the columns creates its own aleatoric pattern,

although strictly based on symmetry considerations. Right, the poché of columns in Kahn’s project

for the Adler House, 1954–1955. Image: author

20 For an excellent introduction to Polyá’s work in the design context, I recommend (Economou

1999).
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Essentially, the catalogue of trivalent 3-polytopes constitutes the “periodic table” for the

“chemistry” of room formations. The catalogue is exhaustive. Such forms pre-exist in the

recursive sense. They are produced by a simple rule system. At root we are saying that room

formation is not itself a design problem, whereas ornamentation is. Immanent structures

for each and every room formation are finite in number and are known aprioristically:

architectural design is pre-eminently a matter of selection and the appropriate physical and

material transformation of one of these fundamental plans (Fig. 85.25) (March and Earl

1977; Earl and March 1979).

It is also a mathematical fact that every such trivalent map can be represented

by an orthogonal arrangement of lines—that “free-forms” are no freer than the

right-angle. It may be of interest to note that there are just three “perfect” plans

corresponding to the tetrahedron, the cube and the dodecahedron. In the first, all

four spaces connect to three others; in the second, all six spaces connect to four

others; and in the third, all twelve space connect to five others (including the

exterior in all cases) (Fig. 85.26).

Forms of Life: Relations

We leave behind classical and neoclassical approaches such as those I have

described in the previous two sections with the statement by George Stiny that “a

design is an element in a n-ary relation among drawings, other kinds of

descriptions, and correlative devices”, and that “a relation containing designs is

defined recursively in an algebra that is the Cartesian product of other algebras”

Fig. 85.25 Top left, the three necessary and sufficient rules to enumerate all trivalent 3-polytopes

starting with the tetrahedron. The first rule shaves a 3-vertex to create a new triangular face, three

new lines, and two new points; the second cuts a line to produce a rectangular face, three new lines

and two new points; and the third takes three contiguous vertices and makes a cut which produces a

pentagonal face. Starting with a four-faced tetrahedron, the next trivalent polytope, like a slice of

cheese, has five faces; then there are two distinct six-faced polytopes including the cube; and five

trivalent polytopes with seven faces. Right, stereographic projections through faces of the

polytopes produce a countable number of trivalent planar maps, in this case with seven faces

including the exterior. Image: author
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(Stiny 1990). This is the language of modern mathematics and computation,

not—unfortunately—of contemporary computing such as to be found in

commercially available computer-aided design software. I draw a strong distinction

between “computation” and “computing”. Designers who compute using certain

programs unwittingly become prisoners of encoded modes of thought, which,

despite the flashiness of three-dimensional display, remain one-dimensional in

origin. Almost all current systems rely on representations of lines, planes and solids

as lattice point sets. Except for the square, it is rarely appreciated that a computer

cannot draw an equilateral triangle, or a regular pentagon, or any other regular

polygon. It has to fudge and fool the user into suggesting it can. Nor can a computer

scale up a square to double, or triple its area, and draw it. It looks as if it is capable, but

the task is actually beyond its digital powers. Digitization has its terrible limits, and it

exacts a frightening intellectual price.

The shape grammar formalism provides an escape in its approach to shape

computation. I have no space here to go into details. It is perhaps worth

remarking that the Turing Machine is the standard theoretical construct for

modern computation, and that a shape computation satisfies the criteria for a

Turing Machine using shapes in place of symbol strings, or other tinker-toy sets

in which there are primitives, or fundamental units. I will say that the repercussions

of “seeing” shapes in a calculation liberates us from the norms of thinking with

symbols, words and numbers (Stiny 2001).

Briefly, I will mention three examples of shape computation that the reader may

care to follow up at more leisure. First, the shape grammar formalism has been

successfully applied in examining questions of style in architecture and the visual

arts. Some of the best work in this area is by Terry Knight, whose examination of

the transformation in style for Frank Lloyd Wright’s Prairie houses to the Usonians

is particularly revealing (Knight 1994). My second case is recently completed work

by Dr. José Pinto Duarte at MIT, who wrote a shape grammar interpreter to emulate

Álvaro Siza’s housing at Malagueira, Portugal. The 1,200 home project started in

1977 and continues today. Duarte has enjoyed the support of Siza in this exercise.21

Finally, anyone who has had the misfortune to see a Frank Gehry building under

construction, before it is dressed in its sexy metallic integument, will have been

gravely disappointed by the massive clumsiness of the angled standard framing.

Fig. 85.26 Perfect plans. Left, the planar maps of the tetrahedron, the cube and the dodecahedron.

Center, orthogonal presentation of these maps as rectangular dissections. Right, free-forms

satisfying the same topologies. Image: author

21 See Duarte (2005a, b). Stiny and Knight were among Duarte’s Ph.D. advisors.
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Skin and skeleton are no more integrated than in Eiffel’s Statue of Liberty. At the

Engineering Design Centre, University of Cambridge, Dr. Kristina Shea is using the

shape grammar formalism to take up the “next challenge in free-form structural

design”, which she sees as the “simultaneous design of intriguing surfaces and their

corresponding structure” (Shea 2000; Papalambros and Shea 2001).

Concluding Remarks

In the late 1960s, I was told that the architects Alison and Peter Smithson found

themselves at a loss with their son’s schoolwork involving the “new maths”.

Apparently, they brought this generational gap problem to the attention of the

Royal Institute of British Architects (RIBA) Library Committee, which in turn

invited me to write a book for architects that would illustrate the potential of the

“new maths” in their field. I invited Philip Steadman to join me in this task. The
Geometry of Environment was published by the RIBA in 1971, and subsequently by

Methuen and the MIT Press. Hungarian and Italian editions followed. The

Smithsons had been impressed earlier by Rudolf Wittkower’s Architectural
Principles in the Age of Humanism (1949) and, in the debate on that subject at the

RIBA, Peter Smithson had expressed an interest in the relationship of mathematics

to architecture at mid-twentieth century as a parallel to the Renaissance. I have not

mentioned my own Architectonics of Humanism, published in 1999 as a fiftieth

anniversary companion to Wittkower, although its subject is probably closer to

current interests among Nexus readers than the matters I have described. I must

confess that my main motivation in writing Architetonics was not the proportional
analysis of architectural works, but the origins of the modern arithmetization of

geometry, essentially the digitization of shape. There is no map, there are no shapes,

in Alberti’s Discriptio Urbis Romae, only lists of coordinates—it is pure

digitization. The primacy of number has dogged us architects ever since, and

shape has been put on the back-burner. Yet, surely, giving shape to the human

environment is the architect’s primary task. The craze for digital imaging only

serves to obscure centuries of neglect in the study of shape itself.

In The Geometry of Environment, Philip Steadman and I introduced to the

architectural profession and schools the mathematical concepts of relations and

mappings; set theory and Boolean algebra; group theory and symmetry; spatial

transformations and matrix representation; and graph theory. We also updated

proportional theory to cover modular co-ordination. Today, shape grammars use

an extension of Boolean algebra called a Stone algebra that allows for a null shape,

but not for an infinite shape; they also employ Euclidean spatial transformations

that include scaling, translations, rotations and reflections. Symmetry plays a key

role in local shape rule applications. Graph theory provides another description.

Lattice theory provides the means to partially order decompositions of shape, which

with each shape rule application may change—there are no fixed parts, only

creative ambiguities. We can know what constitutes a shape after the final
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computation in its generation, and even then it depends on what rules we adopt to

view it!

I have not discussed space syntax, which has proved to be popular in South

American countries and especially in Brazil.22 Its recent architectural applications

include predicting pedestrian movements in buildings and the visual

comprehension of interior spaces (isovist studies). The architect Norman Foster

has employed these techniques in some projects (Hillier and Hanson 1984).

It would be amiss not to mention my old Cambridge student companion,

Christopher Alexander, and the stimulus that his Notes Towards a Synthesis of
Form (1964) gave to the mathematical treatment of architectural topics. Even

though he came to reject his original thesis, the subject of decomposing complex

programmes into manageable sub-problems persists. My problem in writing on

mathematics and architecture since 1960 remains the utter unmanageability of the

topic. In this, the Queen of the Sciences has forsaken me.
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STEADMAN, P. 1983. Architectural Morphology: An Introduction to the Geometry of Building
Plans. London: Pion Ltd.

STINY, G. 1990. What is a design? Planning and Design, 17: pp. 97–103. London: Pion Ltd.

———. 2001. How to calculate with shapes. Pp. 20–64 in E. K. Antonsson and J. Cagan, eds.

Formal Engineering Design Synthesis. Cambridge: Cambridge University Press.

TABOR, P. 1971. Traffic in Buildings. Ph.D. Diss., University of Cambridge.

578 L. March

http://www.rubanisation.org/index.php?option=com_content&view=article&id=287:interview-with-philip-bay-and-architecture-students-from-nus-on-spur-transcribed-by-dinesh-naidu&catid=40:articles&Itemid=56
http://www.rubanisation.org/index.php?option=com_content&view=article&id=287:interview-with-philip-bay-and-architecture-students-from-nus-on-spur-transcribed-by-dinesh-naidu&catid=40:articles&Itemid=56
http://www.rubanisation.org/index.php?option=com_content&view=article&id=287:interview-with-philip-bay-and-architecture-students-from-nus-on-spur-transcribed-by-dinesh-naidu&catid=40:articles&Itemid=56
http://www.rubanisation.org/index.php?option=com_content&view=article&id=287:interview-with-philip-bay-and-architecture-students-from-nus-on-spur-transcribed-by-dinesh-naidu&catid=40:articles&Itemid=56
http://www.rubanisation.org/index.php?option=com_content&view=article&id=287:interview-with-philip-bay-and-architecture-students-from-nus-on-spur-transcribed-by-dinesh-naidu&catid=40:articles&Itemid=56
http://www.rubanisation.org/index.php?option=com_content&view=article&id=287:interview-with-philip-bay-and-architecture-students-from-nus-on-spur-transcribed-by-dinesh-naidu&catid=40:articles&Itemid=56
http://www.rubanisation.org/index.php?option=com_content&view=article&id=287:interview-with-philip-bay-and-architecture-students-from-nus-on-spur-transcribed-by-dinesh-naidu&catid=40:articles&Itemid=56
http://www.rubanisation.org/index.php?option=com_content&view=article&id=287:interview-with-philip-bay-and-architecture-students-from-nus-on-spur-transcribed-by-dinesh-naidu&catid=40:articles&Itemid=56


Chapter 86

BiOrganic Design: A New Method
for Architecture and the City

Alessandra Capanna

Introduction

Over the last 20 years, many architects have proclaimed a new design philosophy

based on the emergent condition of complex-systems science, which opposes

conventional analytical methodology, or reductionism, and non-linear processes

including computer aided design.

There are those who claim that with the support of computers, entirely new

forms of design have become possible and others who believe that computers have

even modified the creative processes and design theory. In this sense, architects are

involved in scientific investigations of artificial life, genetic algorithms and neural

network programs.

Artificial Intelligence supporting the development of digital systems, both those

produced for self-generated architectures as well as those for drawing topological

transformations in Euclidean space is evolving faster than human intelligence and it

has often been speculated that it is only a matter of time before our machines

become smarter than us.

It is true that the use of digital systems for animation, on which programs such as

ALIAS and MAYA are based, has had a liberating and cathartic effect on architects,

enabling them to draw and control unusual shapes with high levels of complexity.
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The idea is not to automate design. It is not about being able to complete a design with a

click of the mouse . . . It is about higher quality, not more efficiency. We want it to be better,

not faster. It is also not about having the computer create a large number of proposals from

which to choose. It is not about using computers to create unusual forms. When used like

that, a computer would be nothing more than an extension of the pen in the hand. It is about

using computers to think, as an extension of the brain (Watanabe 2002: 7).

Artificial Intelligence: A Game Played in the Field
of the Architects

In 1950 Alan Turing wrote a very prophetical and provocative paper on Artificial

Intelligence, entitled “Computing Machinery and Intelligence” (Turing 1950).1

Turing was convinced that if a computer could do all mathematical operations, it

could also do everything a person is capable of, a still highly controversial opinion.

There are theoretical objections many like to believe that Man, in some subtle way,

is superior to the rest of creation and mathematical objections. According to a large

number of scientists, computer science will be able to create a machine capable of

simulating a fraction of the human minds capacity, at the most.

The English mathematician Roger Penrose is sure that he can demonstrate

mathematically that software cannot in any case produce a copy of human

intelligence (Penrose 1990). He is convinced that human mind does not work like

a computer even those based on neural network analogy following common

physical laws, because the rules of intelligence and the mechanism generating

thoughts are written in a quantum theory still to be acknowledged.

However, 50 years ago, skipping all the preliminaries, Turing started his paper

directly with the question: “Can machines think?” and then went on in less than

30 pages to describe all the hopes and the fears about the possibility of attributing to

the machines some specific “human” quality.

He called his method, played in the form of a dialog, the “imitation game.” The

test that enables us to distinguish a man from a machine is commonly known as

Turing test. The Turing test says: “If a computer is found to give answers to

questions that cannot be distinguished from answers given by a person, it must be

concluded that the computer can think.”

Q: Please write me a sonnet on the subject of the Forth Bridge.

A: Count me out on this one. I never could write poetry.

Q: Add 34,957 to 70,764.

A: (Pause about 30 s and then give as answer) 105,621.

1Alan Mathison Turing (London 1912–Manchester 1954), Ph.D. mathematics at Princeton

in 1938, was a pioneer in computational theory. With David Champernown he wrote the first

chess-playing program for computers. He is probably the first to imagine the possibility of

machines really thinking. The term “Turing machine” was introduced by Alonzo Church in his

review on Turing’s paper “On computable numbers” (Church 1937).
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Q: Do you play chess?

A: Yes.

Q: I have K at my K1, and no other pieces. You have only K at K6 and R at R1. It is

your move. What do you play?

A: (After a pause of 15 s) R-R8 mate.

The question and answer method seems to be suitable for introducing almost any

one of the fields of human endeavor that we wish to include (Turing 1950: 434).

Now, let us examine this well-known part of “Computing Machinery and

Intelligence” as an exploration of the relationship between Architecture and

Artificial Intelligence.

Douglas R. Hofstadter (1979) points out that few people realize that the solution

of the arithmetical problem took too long and, above all, the sum is wrong! The fact

would be natural if a human being was answering; it would be just a mistake.

However, it being a machine, we can think about several possibilities:

– a hardware random error (one that never occurs again);

– a accidental hardware or coding error, which repeated arithmetical mistakes;

– an intentional fault generated by a program code to make the machine wrong in

order to introduce incidental arithmetical mistakes and thus deceive the

questioner;

– an unexpected phenomenon: the computer program finds it difficult “to think” in

the abstract and simply made a “genuine mistake”, which it will probably never

repeat;

– a joke: the machine has intentionally teased the questioner. . . because is playing
the imitation game.

However we can tell that the answerer is a machine because of its incapacity to

work out “aesthetic thoughts”. People willingly accept a machine able to

understand and translate texts, to manipulate symbols (playing chess), to solve

algorithms of course, even to have sense of humor. If we admit it is able to joke, it

must be unable to shine in beauty competitions.

In fact the idea that Artificial Intelligence is unable to compose poetry supports

the argument of the impossibility of producing thinking hardware.

In the beginning of the information science revolution, architects, fascinated by

new technologies as well as by biological models, had begun to think along the lines

of virtual architecture and the architecture of artificial life. Virtual architecture is

more concerned with non-Euclidean geometries and includes architects-video-artists,

the trend being to design liquid spaces made with digital materials, moving and

transforming images that existing only in the personal computer. The architecture

of artificial life follows the new organic paradigm, which is born from the union of

auto-generative software and bio-morphic architecture.
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“The Tingler,” a painting/architecture hybrid performed in Vienna in the

summer 1999, is an example of the architecture of artificial life. Greg Lynn,2

together with the Argentine painter Fabian Marcaccio, who now lives in

New York, transformed the interiors of Olbrich’s Secession House into a

disquieting vertebrate, using Alias/Wavefront, Maya and Microstation (Figs. 86.1,

86.2, 86.3, 86.4, and 86.5).

The architectural structure from which Marcaccio’s paintings were suspended

grew out of the golden dome into the Secession House just like the parasite

protagonist of William Castle’s movie “The Tingler,” which was the inspiration

for the exhibit. In the film, the bothersome organism was living inside the human

backbone and grew bigger as one’s fears grew. Analogously in the exhibit, the

parasite designed by Lynn/Marcaccio penetrated inside the building, transforming

it into an animate form that seemed to have grown so enormous that the walls could

hardly contain it (Brizzi 1999).

In other projects by Lynn, animation software and computer-assisted

manufacturing are combined to build previously unimaginable, “living”

architectural forms. The ideas of the designer are supported by the amazing

performances of the machine.

Fig. 86.1 Greg Lynn, The Tingler at the secession house, Vienna, 1999: Plan and section. Image:

Courtesy of Greg Lynn FORM

2Greg Lynn heads up the architecture firm FORM based in Venice, California, where he uses

computers to design his wavy structures. His works, according to an article by Mark Dery in

Artbyte, “are made possible by the computer’s ability to generate warped or fluid forms. A typical

Lynn creation is a monstrous hybrid of architectural theory and cyberpunk science fiction” (Dery

2000) Lynn teaches at UCLA and at the University of Applied Arts Vienna.

582 A. Capanna



About 30 years ago, studies concerning pattern language analyzed thinking

processes in order to derive a coded method for automated design. The greatest

shortcoming of this system was probably only that it was conceived before the age

of personal computers, essential instruments for verifying the design processes and

acquiring the issues for possible new applications.

Fig. 86.2 The Tingler. Digital sketch. Image: Courtesy of Greg Lynn FORM

Fig. 86.3 The Tingler, exterior view. Image: Courtesy of Greg Lynn FORM
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Fig. 86.4 The Tingler, exterior view. Image: Courtesy of Greg Lynn FORM

Fig. 86.5 The Tingler, interior view. Image: Courtesy of Greg Lynn FORM
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On Growth of Form

It is evident that we are introducing a sort of mechanized creativity, as if artificial minds

could master an automatic artistic power in order to develop complex systems design.

The Induction Cities3 project by architect Makoto Sei Watanabe began in 1994

as research into Program Aided Design, which is capable of proposing solutions to

complex building settlements through the use of self-generated computerized

programs.

Its procedures are akin to the studies on pattern language. Both are based on the

discovery of hidden structures in urban and social systems. Complexity science has

discovered simple principles hidden within what appears to be utter disorder.

Consequently, instead of imitating forms, it is the process that contributes to design.

The purpose is not to build a grid-pattern city or a labyrinthine town on a whim.

It is to present the potentiality of a methodology for creating a city that will be as

natural as a spontaneously generated living organism, and will even satisfy certain

conditions. From 1994 to 1997 Watanabe made tests of the program, developing a

series of different “inducted cities”: the Self- and Other-Determining City, the

Sun-God City, the On Demand City, the City of Distorted Space, the

Comparative District City and the City of Correlative Wave Motion.

Each project uses the computer, combined selected output results, and computer

simulation to depict patterns of influence amongst local services, etc., in order to

find a fluid order of housing design, accessibility and pleasure.

Unlike conventional design, Induction City is a method for inducing results that

meet selected conditions. In planning residential quarters for multi-unit housing

architecture in Japan, for instance, access to maximum sunshine for each unit is

given top priority. The result of analytical methods, which often tries to decide

everything, is sometime monotonous box-like housing complexes. Sun-God City is

a program that performs this task automatically: the software combines units

randomly and sends sunlight to each. The process is repeated until all the units

are optimally arranged. This method can also be applied to create automatic

programs for other important conditions such as privacy and access.

On Demand City to take another example is a program created to optimize the

location of urban facilities and their relationships.

Because a city is a constantly moving and growing much like a living organism it

can be planned by an Evolutionary Design Program, a step forward as regards the

programs for City Generative. Again, it is a matter of programs exploiting the power

of computers to perform a huge number of procedures quickly and efficiently in order

to memorize them, to compare and to evaluate all the potential results. This is just

how “Deep Blue,” the machine able to play chess and win against the world

champion Garry Kasparof, works.

Going beyond the principle of randomness, Makoto Sei Watanabe designed the

Iidabashi Subway Station, developing, with his team, the Web Frame project,4

3 See the website http://www.makoto-architect.com/idc2000/.
4 See http://www.makoto-architect.com/idc2000/syb_e2.htm.
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whose aim is to move forward from the first phase of Induction Cities into the field

of “aesthetic” evaluation.5 Watanabe has explained that they intend the program to

satisfy “fuzzy” criteria such as “enjoyable” or “dynamic:”

At this point, we have to return to our earlier question, what is a “good” thing? In City of the

Sun Goddess, we chose as an index for evaluation exposure to sunlight, and in On Demand

City, our index was distance. . . . In both cases, that is, some aspect of “naturalness” showed

up. Naturalness is something that everyone can understand.6

He continues the same web page, “Why not introduce some principles of nature

for example, the laws of motion governing the movements of waves that give such a

sense of pleasure?”

The Iidabashi Subway Station is on the Ōedo line of the Tokyo underground

(Fig. 86.6). It is the first architecture to be completely carried out by a computer.

Completed in October 2000, Watanabe designed it in 1991 after winning a

Fig. 86.6 Makoto Sei

Watanabe. Iidabashi

subway station, entrance at

street level. The steel is

realized straight from the

same data files and can be

considered the next higher

level of generation. Photo:

Courtesy Andrew I-kang Li

5 See http://www.makoto-architect.com/WF_II/WF_II_e1.html.
6 Quoted from http://www.makoto-architect.com/subway/subway_2e.html.
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competition held by the Tokyo Metropolitan Subway Construction Corporation. He

applied the so-called “Induction Subway Project” system associating the city

planning with the “Induction cities”.

The principles on which the subway station are based are the same as in two

other architectural designs by Watanabe, the “K-Museum,” rising in the very heart

of an incipient city, and “Fluid Cites Fiber Waves”, designed just like a living

organism to interact with the visitors of the 2000 Venice Biennale. Both are

conceived “to make visible the invisible.”

Iidabashi’s subway passages and flow patterns constitute a submerged space that

delineates physical and virtual routes which are no more complex, however, than

the intense maze of the city’s nameless streets above ground. Both the city and the

underground accommodate the daily transit of people (whose level of stress and

feeling of disorientation is even greater underground), electrical systems, lighting

circuits, rainwater conducts (Figs. 86.7 and 86.8).

The design is anticipated by Tokyo’s urban configuration: roads which appear to

follow a regular right angled grid pattern imperceptibly deviate from the

orthogonal; the disorientation is accentuated by urban blocks not having a

building number sequence, thus only by knowing the neighbourhood it is possible

to reach any address. Consequently, the aid of clear, outstanding informative signs

indicating physical reference landmarks becomes indispensable so as to find one’s

way amidst the city’s urban layout, both above the ground and below.

Watanabe followed his guideline theory by inserting multi-sensory signalling

icons in the underground area. Large installations and small figurative works run

across its multimedia routes so that “to see is to touch.”

Fig. 86.7 Makoto Sei Watanabe. Iidabashi Subway Station. The electrical equipment network.

Photo: courtesy Andrew I-kang Li
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Hence Watanabe’s architectural design comes very close to the objective of

being a total communication media governing the theoretical as well the actual

physical space, constantly mediating between the mind’s logical processes with its

sensory systems.

The exposed networks of old and new tube routes that were visible during the

excavation to construct this underground extension were especially suggestive. The

13 subway lines that wind their ways beneath the surface of Tokyo delineate a

topological system resembling fossils suspended “in mid-air” (or should we say “in

mid-ground”?). Visible only for a short time before being buried below the earth

once more, the construction project truly made the invisible visible, in terms of

urban structure, its beauty, and indeed its character.

Trans-sensorial clues reveal directions and destinations from the inside as well.

A portion of a wall is treated with a Braille-like texture to enhance the juxtaposition

of visual and tactile feelings (Fig. 86.9).

If one “reads” with one’s fingertips of the fingers the phrase embossed on a

metallic surface, “WOODEN SURFACE TREATMENT,” two sensations became

superimposed, a tactile feeling and a visual image. The knowledge we have of the

different sensory experiences translates in our mind as messages that begin a

Fig. 86.8 Makoto Sei

Watanabe. Iidabashi

Subway Station. The

electrical equipment

network. Photo: courtesy

Andrew I-kang Li
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process of transferring information from a state of self-consciousness to one of

subconscious feelings and vice versa: a sort of perceptual oxymoron.

The whirl of the staircase handrails and of connecting routes between Iidabashi

station and the other underground levels make evident, like a collection of

superimposed layers, the topological structure of the site.

The network of underground conduits in this part of the Tokyo subway is

organised through three adjacent parallel tunnels, the central one being the station

proper, the lateral ones where the rail lines run.

In coherence with the initial premise making visible the invisible the central tunnel’s

ceiling was substituted by juxtaposed technological conduits lying in a cavity aligned

longitudinally with the pedestrian walkway. Finally, from the depths, 35 m below the

city, a steel flower blooms and germinates: this is “Wing,” the ventilation tower

housing all the technological equipment for the entire subway station (Fig. 86.10).

The mechanism of auto-generation seeks more water, more light, just like

“Elsie” (Electro Light Sensitive Internal External) and “Elmer” (Electro

Mechanical Robot) built in 1948 by Walter Gray Walter, an English

neurophysiologist who amused himself by fabricating cybernetic beings.7

Fig. 86.9 Makoto Sei Watanabe. Iidabashi subway station. Braille wall. Photo: Courtesy Andrew

I-kang Li

7 The intriguing history of Artificial Intelligence, from the first self-acting machines up to modern

artificial life, is told by Castelfranchi and Stock (2000).
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Conclusions

All digital computers now operate according to sequences of rules that the machine

follows step by step. A methodical exploration of computing theory brought

Penrose to criticize one of its philosophical corner-stones, the Turing test.

However, many computer scientists accept the test as a valid way of

distinguishing an intelligent program from a non-intelligent one, and a machine

from a human being.

After all, whether the program happens to be executed by a man or by a

computer makes no difference. It is not even a matter of believing whether it is

possible or not to achieve Artificial Intelligence, because some of the consequences

of the first attempts of computer science to create a huge thinking machine are

already useful design instruments.

In conclusion, in order for software developed for architecture to pass the Turing

Test, it must not only pretend to be human but also show an amazing capacity for

optimizing design choices and generating architectural organisms comparable with

those produced by humans, as well as and above all demonstrate its capacity to

generate aesthetically definable figures. (Our purpose here is not to argue the beauty

Fig. 86.10 Makoto Sei

Watanabe. Iidabashi

subway station: the Wing.

Photo: Courtesy Andrew

I-kang Li
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of digital architecture!) To the first question of the test, “Please write me a sonnet on

the subject of the Forth Bridge,” or if we like, “Please draw me a folded building or

an optimized new town,” the machine will not answer, “Count me out on this one. I

never could write poetry or draw architecture,” but rather, “Yes, you can choose

amongst the following solutions. . .”, thus winning the imitation game.
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about the topic of conceiving higher dimension architectures. She is a Ricercatore
at the Faculty of Architecture of Rome “La Sapienza”. She is the author of Le
Corbusier. Padiglione Philips, Bruxelles (Universale di Architettura 67, 2000), on
the correspondence between the geometry of hyperbolic paraboloids and technical

and acoustic needs, and its aesthetics consequences.
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Chapter 87

Formal Mutations: Variation, Constraint,

Selection

Andrzej Zarzycki

Novelty in human clocks requires independent acts of
creation. Novelty in biological clocks seems more suited to
iterative modification from a common origin.
M. Kirschner and J. Gerhart (2005: 7).

Origins and Parallels

We all are familiar with writers’ or artists’ blocks when faced with a clean sheet of

paper, white canvas or blank computer screen. As designers, we are full of

expectations and desires to create. . ., but the real question is how to begin. Many

painters would break through this initial moment by smearing a canvas with

abstract and meaningless scribbles. This breaking moment often helps us to

forget the difficulty involved in starting a new project. This quickly and randomly

chosen context for beginning the act of creation puts us on a specific path where we

start thinking in terms of transformations, changes and adaptation, and not in terms

of defining something from nothing. The idea of change, adaptation or inhabiting

the pre-existing context, seems to be a nature-like process that is intrinsically

gradual and as such, less threatening for the artist or creator. M. Kirschner and

J. Gerhart parallel this observation in the opening quote for this chapter.

While we often find the ideas of building on the work of predecessors or

preexisting conditions comforting, the question may be raised whether this

approach predetermines and limits possible outcomes. After all, there are examples

of great ideas emerging from questioning the basis of our assumptions about the
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nature of the world and reality. This was true with Einstein’s theory of relativity and

the constancy of the speed of light as well as many others human advancements.

Starting with an already predefined canvas may put the creative process into a

particular trajectory, resulting in a certain class of solutions. However, this possible

pre-determination does not limit the chosen method’s creative capacity. Some

might argue that it actually increases the creative challenge, resulting in more

interesting solutions. In Poetics of Music (1993), Igor Stravinsky talks about the

necessity of restraints and limitations in achieving creative outcomes. Working

against the hard edge of design limitations and imposed boundaries is what makes

solutions innovative and unique.

My interest in studying tectonic evolutions and simulating form mutations in

design comes from the observation that these operations are natural ways to

manipulate data and models within digital environments. It builds upon the

observation that editing already existing data is more native to digital environments

than inputting new data. Architecturally this could mean that transforming already

existing forms is a potent and effective way to derive new forms, ideas, and designs.

Finally, creating new ideas from scratch is almost always more difficult than arriving

at new ideas through gradual transformations of the old.

Towards an Augmented Design Process

Traditionally, we assume that the design process is a linear, gradual and creative

development of products arriving at the finality of a completed design project. This

means that if we were to choose continually the best scenario, we would end up with

the most successful design. However this static, somehow optimistic, approach to

the design process often misses many opportunities that, while part of some

possible scenarios, may be obscured by local inconsistencies. It may miss

possibilities that behave like many natural processes, where sometimes a series of

uninteresting or inferior solutions will precede a highly innovative form. The

reference to nature and biology is just one of many similarities. If we consider

the case of the caterpillar and the butterfly, we see that a caterpillar does not visually

imply a butterfly, or in other words, a butterfly is not an obvious or ‘rational’

consequence of an evolution of a caterpillar.

We assume that if we always do the logical thing we end up with the best

possible scenario. However, everyday life—not to mention advanced design

simulations—does not support this conviction. While experience leads us to this

conclusion in real life, we are just starting to realize alternate possibilities in design

with digital technology and mathematically based 3D simulations.

Nothing prevents the traditional process from exploring a multiplicity of

possibilities. The significant difference lies in the ease with which digital

technology permits studying multiple alternatives and pursuing parallel scenarios.

One common realization is that the copy command does not cost anything in digital

environments.
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This is particularly true when we consider the parametric and procedural nature

of digital design. In these ramifications it is relatively easy to alter various

parameters and test alternatives. This ease with which alterations can be made

may on occasions result in designers looping themselves in the possibilities and

having difficulty breaking away from what appears an infinite number of

possibilities. However the same characteristics enables digital design to create

ample variations that are prerequisite for any evolutionary system.

The design process begins with assumptions that are often arbitrary, but it results

in logical and unique solutions. It is judged by its logic and consistency in the

context of its starting assumptions. While one can certainly question assumptions

made, oftentimes there is no definite way to determine whether they are appropriate

or not. These assumptions can only be judged against their potential for creating a

broad number of design possibilities that have the ability to lead to innovative ideas

without the introduction of self-contradicting elements. In this sense, the design

process resembles the discipline of math, where we start with assumed fundamental

truths called axioms, and we build a self-consistent and integral set of knowledge.

This consistency and design integrity means that with each step in the design

process the number of the possible solutions is being reduced, slowly converging on

a final design. We could illustrate it as a design decision tree; with each step

forward, towards the resolution, we advance to the higher branch; thus, are left

with fewer choices that are consistent with our past decisions. Unlike when

climbing a tree, where we always can see other branches and understand our past

climbing choices, in design the further we progress the more difficult it is to see

other possibilities that are not a part of our present design trajectory, also called a

design horizon. This continuously narrowing focus brings many benefits in

decision-making, but also makes us miss design possibilities that may be more

suitable for our intentions.

“Seeing other branches” is especially critical in situations where we are faced

with the decision of choosing the less-than-perfect scenario. At that point, the

simple method of elimination of less desired solutions does not lead to the best

results. A weighted average of the possible scenarios and an understanding of their

ultimate potentials is the best approach to designing.

Types of Transformations

Since change and transformation have become the norm and the basic building

elements in the creative process, a new set of instructions is necessary to direct

these design agents. These instructions may involve simple form transformations as

well as topological changes, including object discontinuities.

The design is executed by applying simple rules and behaviours to the original

form. Each of these rules represents limited vocabulary and produces very

recognizable effects, such as the ‘bend’ transformation. However, by compounding

even a small number of simple transformations, the forms’ complexity and design
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possibilities grow exponentially and escape predictable visual patterns. The

phenotypic results of a single transformation may often appear not to change its

resultant form qualitatively, but the transformation is still present in its genotypic

definition of an object waiting to emerge. This dormant transformation may be

responsible later for a rapid emergence of the form/design once other

transformations are applied, leading to complex and sophisticated forms. This rapid

emergence of form results from narrowing the difference between the phenotype and

genotype potentials (Figs. 87.1, 87.2, and 87.3).

In most cases, the order of applied transformations is critical. Different orders

will produce different products, in the same way as the compounding of

mathematical functions F(G(x)) will, in most cases, produce different results than

G(F(x)). This is consistent with the non-linear nature of these transformations

(Figs. 87.4 and 87.5).

With the transformational model of design we can distinguish a number of

factors that influence form outcomes. These factors can be classified as:

• the type of transformation;

• the way a transformation is applied;

• the internal structure of a transformed object;

• the spatial properties of where the transformation occurs.

These factors reflect the critical component of any real life form development:

formal expression, what it is made of, and a context it exists in.

Fig. 87.1 An object with

no transformations applied.

Image: author
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Fig. 87.2 The original object with one transformation applied. Image: author

Fig. 87.3 The original object with a different transformation applied. Image: author
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Fig. 87.4 The original object with both transformations applied. Image: author

Fig. 87.5 The same object transformations applied in a different order. Image: author
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Additionally, the form transformation factor can be divided into three categories

of transformations:

• continuous;

• destructive;

• cohesive.

The way a transformation is applied—the relationship between the

transformational “gizmo” and the object’s axes of symmetry—would result in

visually different outcomes. Although all the outcomes would be consistent with

the mathematical definition of a particular transformation, they may not be obvious

and would be seen as distinct forms.

An internal structure of a transformed object is critical in expressing its resultant

form. For example, bending of a meshed object is dictated by its segmentation.

Since individual faces do not bend and are the smallest building blocks of a meshed

form, the size and number of segments may drastically change the result of applied

transformation. The difference between shapes like letters “V” and “U” lies in an

internal segmentation, not necessarily in a difference of transformation applied to

the letter “I” or a character “-”. In those situations, segmentation can be seen as an

object’s transformational degree of freedom, which defines a number of pivotal

points controlling facets and curvatures.

Transformation may result in a new form but also in a change in the internal

definition of a form. These changes, when continuous, result in a texturizing of an

object, creating an interesting relationship between a form and its texture (facture).

Spatial properties, often achieved through space deformers and warps, are

similar to object transformations; they are, however, a property of a space, not an

object. This means that they affect various parts of an object or various objects in

space differently based on their location.

The critical difference between spatial and form deformations is that an object

changes depending on its position in space—emergence of a design context. I will

be discussing spatial deformations later in this chapter in relationship to form

animations.

The following are three transformation categories. These categories are organized

around the object identity, not necessarily around topological commonalities. They

allow for disappearance and emergence of forms through changes in objects’

identities. This is a critical characteristic in evolutionary design systems.

Continuous transformations preserve an object’s topological identity and

continuity while deforming it. Examples are functions such as bend, twist, or

smooth with NURBs. These transformations, on occasions, may interfere with

sub-object topological levels but will not affect the cohesiveness of an object as a

whole (Fig. 87.6). In some cases the topology of an object can be disturbed while

preserving its identity. I would still call those transformations continuous although

they do involve some points of discontinuity. An example of such a condition is a

transformation from a sphere to a torus.

Destructive or populating transformations break an object’s physical identity

resulting in multiple new objects. This is achieved through object fragmentation,
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not copying. Common examples are modelling functions such as subdivide, explode,

and shatter, with each of them having slightly different properties or addressing

different topological levels. Explode results in multiple three-dimensional objects,

Fig. 87.6 Stages of a form

evolution using exclusively

continuous transformations.

Image: author
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while shatter results in subdivisions of surfaces and planes. The rate of population can

be controlled by transformation parameters, but also by the object’s surface

subdivisions. The surface subdivision can further control the shape or proportions

of resulting objects (Fig. 87.7).

Cohesive transformations result in merging multiple objects into one larger

entity. This can be achieved by attaching ‘adhesive’ properties into objects, but

also by capturing these objects in a space bubble through the use of space warps. An

example is a metaball or meta-object that behaves similarly to mercury, a liquid

with strong cohesive forces. Also its molecules seek to minimize surface tension.

Space warps are another means of forced cohesion. They are particularly effective

with objects using dynamics and with particles (Figs. 87.8 and 87.9).

This transformational model of design expresses a form in relative terms, as

related to other forms, and does not need to rely on the absolute definitions of forms.

This shift from an absolute to a relative reading means that an event or existence is

no longer predetermined by its initial conditions, but is rather primarily defined by

the local circumstances—having the capacity to behave in a non-linear manner.

Animation—Interpolation and Extrapolation of Static States

While using form transformations is a new and effective way to derive designs, even

greater design possibilities are achieved by animating those initial, static forms with

the use of space warps, morphs and form modifiers. Since most transformations are

parameter-based, it is easy to animate numeric values of these parameters and study

evolution of forms. This is usually executed by defining critical static states of a form,

also called keyframes, as an analogy to the traditional animation process, and

interpolating these values, as well as spatial positions and properties, into

in-between forms. While morphing forms we identify moments in an animation that

have interesting design opportunities and we can retrieve the parameters that define

the transformation’s particular states for further refinement. We can also register the

Fig. 87.7 Destructive transformations in conjunction with continuous transformations applied to

a single object result in a rich visual landscape. Three stages of an evolution. Image: author
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Fig. 87.8 Behaviour of two metaballs. Image: author

Fig. 87.9 Metaball particle system trapped in a space bubble. Image: author
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object’s particular state and output as a static, transformed form that no longer relies

on changing parameters. This newly-shaped form becomes a seed for another process.

Its simpler existence as a ‘flattened’ transformation stack, reduces the complexity of

the object’s definition, but is not critical in terms of the object’s visual definition.

Since many of these parameter driven functions behave non-linearly, the results

of these animations, as well as the in-between stages, are often unpredictable,

even though no random values are introduced. This is particularly evident

in transformations that introduce singularities and discontinuities into space. This

is perhaps the strongest element in this approach since it allows for the creative

leap—mutation—to occur. It also introduces strong and effective explorative

components into architecture in a way that is similar to how explorations of a

physical model can bring surprising new discoveries. However, in this case it

happens in a much more pronounced way and with greater intensity.

Tectonic animations can also be used as study tools. While it is common to

employ digital technology in performing light and shadow studies for a static

architectural space or a building, with this approach, we can animate the

envelope of a building with changing window apertures to arrive at the most

desirable lighting scenarios (Fig. 87.10). This effectively repositions the question

Fig. 87.10 Animation of a

building envelope allows

for in-depth lighting studies.

Image: author
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from what is the best lighting scenario for a particular design, to what is the design

that uses existing lighting possibilities most effectively.

This compounding strategy can be brought to another level of design thinking

where any form can be subsequently deformed and used as a seed for another

design. Consequently, through the parallel processing of ideas and designs, we

often talk about a class of all possible solutions or about the results the solutions are

tending towards, and less about geometric absolutes, which are seen as static and

finite design solutions, as well as designs that start obeying probabilistic rules rather

than definite and predictable patterns.

With an introduction of animation into design, two classes of transformations

emerge: form and space deformers. Form deformers change the object’s geometry,

which is a permanent change even if it only exists for a short period of time. This

new form is an attribute of an object and is not location-dependant. Form deformers

react only with particular objects and do not interfere with other objects that are in

the same locality.

Space deformers, also called space warps, are properties of space and affect any

object that is within a space unless specifically excluded from the operation. They

allow transformations that are only relevant to space or context, not a particular

object. Furthermore, their influence is location-in-space related, which means that

the form of an object is dependant on the location within a space warp and will

change if the object is moved (Fig. 87.11). This distinction between form and space

deformers is particularly applicable to architecture since space deformers can be

seen as the design context or environment. Ability to assign properties to space, not

much different than in real life, allows for global treatment of design. It also creates

favourable conditions for simulations of form mutations and dynamic systems.

Language of Mutations

The concept behind the project Formal Mutations brought this transformative

design methodology a step further, where the process of change is paralleled to

other processes like those found in nature and evolution. As a result, design

methodology has to account for the creative error—a mutation which helps a

designer to break away from the obvious and predictable while setting the design

on unexpected but meaningful trajectories. This can be achieved by introducing

chaotically behaving functions into design or by compounding multiple simple

rules that behave like switches enabling individual transformations.

Formal mutations, an example of a non-linear design process, relies on generating

new design forms from previously created forms. If established as a part of a

generative process, an element of reiteration is introduced into design. A present

design state can only be seen in the context of the immediately preceding state. As a

form evolves from generation to generation there is an opportunity to introduce

elements of noise or imperfections that can push designs in unexpected directions.
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Even in a simplified model of behaviour, where no mutation or contamination is

introduced, we can observe the development of great variations in forms.

Non-linear processes, especially those employing dynamics such as cloth

deformations or particles, are defined by their immediately preceding states. As

such, they tend to carry some residual values in discontinuities or deformations,

called here traces, from iteration to iteration. Traces, such as flexion, often result

from the inertia present in the material’s physical properties. In such situations, the

speed changes in the dynamics system can proceed faster than the material’s ability

to react to the change, leaving a discreet trace from the action. These traces can

Fig. 87.11 Behaviour of an

object as the location-in-

space changes. Image:

author
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manifest themselves as tears, folds, or other surface imperfections (Fig. 87.12).

Another example of a trace is inconsistencies in the spatial distribution of particles.

These inconsistencies are carried from generation to generation by the dynamic

interaction between particles.

Particle systems are, in many ways, what the idea of Formal Mutations suggests.

Particles are objects that, once created, become freely behaving agents that can only

be controlled with space deformations or other deformations that affect the entire

population of objects, not just individual instances. The two control areas over

particle systems are the initial conditions and global deformations.

A new set of design criteria is emerging. Terms such as contaminations, traces,

seeds, thresholds, attractors, etc., are becoming building blocks in the design

process. In this new world, chaotic functions become contaminants; residual

elements and values from previous states of existence are seen as traces. Any form

can be used as a seed for another architectural form while trajectories of individual

evolutions/mutations disobey a simple causality.

In some aspects, this iterative process is what design has always been about. A

process of continuous refinement, one layer of trace paper over another, is present

in both traditional and digital approaches to design. The difference is that digital

simulations allow for more parallel processing in design through a co-development

of several trajectories or multithreading.

These formal and tectonic possibilities are not always immediately recognizable.

Often they emerge from obscure landscapes through the process of spatial

mutations, and they are only noticeable when other components become activated.

Since they are often interdependent, they may remain dormant while waiting for a

spatial activator. These situations are particularly visible through the use of space

warps and dynamics, where objects have an ability to interact and acknowledge each

other.

Fig. 87.12 Dynamic cloth

deformations register traces

resulting from object

collisions. Visible tearing

and folding of surfaces.

Image: author
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Conclusions

This chapter identifies three levels of computational design as they relate to the

concept of formal mutation, with higher levels being a generalization of lower

levels.

Level one, is a simple transformation of forms within the computational

environment through the use of transformations. This traditional-yet-digital

method brings great potential to design. It is fully interactive and enables users

with a limited knowledge of computational concepts and software to engage digital

design on the ‘user’ basis.

Level two, formal transformations, has all the benefits of the previous level, plus
the ability to morph form transformations with animation tools that bring a new

class of design possibilities. The design process is still fully interactive, with design

results usually deviating from preliminary expectations.

Level three, formal mutations, introduces randomly-behaving functions into

level two transformations. It relies more on particle and dynamic systems that are

designed to obey the laws of physics. The role of a designer shifts from being

clearly interactive into a system manager who controls naturally evolving processes

through arranging various starting conditions.

In this new paradigm, a designer can retrace design steps for future revisions and

reconsiderations. This goes beyond the ‘undo’ button and helps us not only to create

new designs but also, and more importantly, to study the design process itself. This

design methodology allows for better scanning of potential design possibilities,

bringing them from the realm of the possible to the probable to the real. The second

critical advantage is that it enables us to understand, explain, and produce complex

designs with a set of simple rules or transformations. It is important to add that the

complexity of digital designs is not seen as an aim in itself, but rather it

acknowledges the nature of reality. These computational methods are looking for

ways to address this complexity, as well as to explain complex ideas and forms with

the simplest language possible.
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Chapter 88

The Role of Mathematics in the Design

Process Under the Influence

of Computational and Information

Technologies

Arzu Gönenç Sorguç

Introduction

The aim of this chapter is to discuss the evolving role of mathematics in the design

process under the influence of Computational and Information Technologies.

Mathematics is not just a tool for understanding form, order, harmony and more,

but it changes our minds and the traditional way of thinking into ‘algorithmic’

thinking, which provides the means to manage today’s multi-dimensional design

problems.

The rapid changes and developments encountered in all the disciplines from

science, technology to art, humanities, politics and others not only influence our

daily lives but also force us to redefine many fields of interest and disciplines

accordingly. In particular, the involvement of information and computational

technologies makes harder to propose rigid definitions for any field of interest.

Among many other disciplines, architecture, which can be defined as the art and

science of designing building and structures, has always been an interdisciplinary

field involving mathematics, science and technology, history, art, philosophy,

sociology, politics, etc. Therefore, it is possible to claim that architecture has

been more exposed to all these changes and consequently its definition, tasks,

tools and even the perception of ‘space’ have been continuously redefined. But it
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is also possible to claim that in all these evolutions, mathematics has always been a

tool for architects and today may be even being more important than before.

Mathematics, which is defined by Cambridge Dictionaries as “the study of

numbers, shapes, and space using reason and usually a system of symbols and

rules for organizing them”, helps architects in the search for order and beauty by

providing valid structural solutions to design ‘sub-spaces’ in harmony with the

universe. However, the impact of IT and computational technologies and the

resulting new design media, which are closely associated with mathematics,

forces architects to question the role of mathematics once again. Hence, in this

chapter the changing role of mathematics in architectural design will be discussed

not only in terms of design in digital media but also by questioning what changing

our minds to algorithmic thinking to solve complicated ‘multi-dimensional’

architectural design problems means.

The Role of Mathematics

In Book I, Chap. III ofDe ArchitecturaVitruvius proposed three criteria that must be

balanced and coordinated in order to achieve “good buildings”: “beauty”, “firmness”

and “utility” (Vitruvius 2009: 19). For this, mathematics and especially geometry

was indispensable for providing order and harmony in the visual elements and, to

some extent, to understand structural behaviors. It has been argued that the golden

mean or golden rectangle proposed by the Greeks was the primary guide in planning.

In Islamic architecture the ratio of 1:π was employed in plan and section in the

organization of the buildings. In India and Egypt complicated mathematical models

were used to map the movements of stars and planets to understand cosmic harmony.

The use of symmetry in Renaissance architecture, the complicated curvilinear forms

of the Baroque, the use of Euclidian geometry and, more recently, non-Euclidian

geometry employed mostly by architects who participated in the Deconstructivist

movement in the beginning of twentieth century also show how mathematics has

played an important role in the history of architecture.

However, it should be pointed out that in today’s architecture mathematics has

become more important than ever before, not only by providing geometrical

relations or ordering principles but providing a new way of thinking to solve

complicated “multi-dimensional” design problems comprising solutions from

many other disciplines in new design media. Igor Verner and Sarah Maor (2003)

considered the interaction between mathematics and architecture in three

different ways: the geometrical analysis of architectural forms and objects

regarding dimensions, proportions and spatial transformations; formal description

and interpretation of architectural concepts and symbols such as infinity and

multi-scaling; and mathematical background concerning science and technology

in design and construction.

Here, besides the well known interventions between mathematics and architecture

briefly discussed above, the new and evolving role of mathematics will be discussed,
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first by considering “design process” regardless of whether the design media is either

real or virtual, and second, by considering “design” in digital media. Algorithmic

thinking, which is a kind of mathematical thinking, must be considered the keystone

in this evolution, associating different domains of knowledge in order to solve highly

complicated today’s “multi-dimensional” architectural design problems, allowing

architects to fully explore new “design media” and “space”.

The Evolving Role of Mathematics and Possible Role

of Algorithmic Thinking in Architectural Design

What Does Algorithmic Thinking Mean in Architecture?

Involvement of several disciplines and demands of “clients/users” result in

“multi-dimensional” design problems for which architects must satisfy not only

the requirements of the design itself but also find ways to bring optimized solutions

fed by these different disciplines and satisfy the “client”. Yet architecture and all the

disciplines associated with it are continuously changing and developing, so achieving

“good designs” and “good buildings” is getting harder. When the complexity of

design problems are considered, then we must inevitably reconsider design as a

“process”, continuously evolving, from the “problem definition” through the end of

construction and even afterwards (Gönenç Sorguç 2005a, b).

At this point, it is possible to define design process with very basic mathematical

terms borrowed from set concepts, functions and mappings. In that way the

universal set of design can be thought as the collection of different domains of

knowledge involved in the design process and design itself; then the ideas of

architects with all those contributions of these domains of knowledge can be

mapped to a “state of form” in physical or a digital media, which can be

perceived by the “clients”. Although this model of design process appears to be

very simple, the implementation of it requires a different way of thinking. At this

point, I believe that the architects and designers in general should be more familiar

with so-called “algorithmic thinking”.

Although many people think that the word “algorithm” belongs to the computer

age, it actually dates back to the ninth century and comes from the name of the

Persian mathematician Al-Khwarizmi. At that time, algorithm was used to mean

arithmetic operations with Arabic numerals. Today, algorithm is used to define

systematic approaches having definite input, output and procedures to solve

problems and to fulfill complicated tasks. Consequently, algorithmic thinking is a

way of mathematical thinking that can be defined as the mental capacity to develop

algorithms (i.e., well-defined systems and methods) for problem solving. Thus, it is

possible to say that not only in computer sciences and programming but in any field,

algorithms and algorithmic thinking can be employed to define problems,

constraints and the procedures for solutions in a controlled and optimized way,
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no matter how complicated the problem is. Actually, due to the involvement of IT

and computational technologies every discipline has reexamined its way of thinking

and new models have been proposed to cooperate with other disciplines; one such

study discussed engineering design thinking and structured that thinking process in

a rigorous way (Dym et al. 2005).

At this point, it is possible to ask whether or not such a structured way of

thinking might limit the creativity of the designer. In order to answer this

question, it is necessary to consider the design as a process according to the

model proposed above, in which algorithmic thinking helps architects first to

clearly identify and rigorously define the design problem and its constraints, and

then to define the universal set of the design, the processes that include different

domains of knowledge as well as the processes of how mapping will be achieved

between different sets and how the design will be mapped in any media as the

output of algorithmic thinking. Since the architect or designer is free to define the

universal set and the algorithms, I believe that algorithmic thinking does not impose

limits on creativity, but to the contrary, with a well defined problem approach, the

output that is, the design and its process can be optimized according to the set of

constraints imposed by the designer. Hence, I claim that the new and evolving role

of mathematics goes beyond the conventionally recognised role of mathematics in

architecture and now means “a change in thinking”.

Algorithmic Thinking and Impact of IT in Architectural
Design

The impact of computers, computational technologies and IT in general, and their

close association with mathematics and algorithmic thinking, has forced architects

to question not only the design process but also different design media and their

different interpretations of design as well as in order to find ways to take advantage

of all the potential for design solutions offered by these by the new tools. Therefore,

architects should not only develop algorithmic thinking for the design process but

they should also learn to cope with these rapidly developing tools and media. Today

digital media are considered not only as new presentation media but also as new

“space” in which the architectural design has found new “meanings”.

Several CAD and CAM software applications allow architects to map their ideas

in an easily perceived way in 2D and 3Dmodels. In this modeling process architects

sometimes force the limits of these software applications or even develop their own

interfaces and algorithms according to their needs. Besides, these models change

the role of architectural design to “a left and right unique” set on which the whole

domain of knowledge interacts through that model in the design and construction

process and even afterwards (Gönenç Sorguç 2005a).

Thomas Fischer and Christiane Herr (2001) discussed “generative thinking”,

which became more plausible with the introduction of computer-aided design and
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computer-aided manufacturing. In their article, generative design is considered a

design methodology in which “the designer does not interact with products and

materials in a direct way but via a generative system which is a set-up based on

abstract definitions of possible design variations”. As can be understood, in

generative design the designer should also provide “algorithms” not just for the

creation of the product but for the creation of process as well.

Luı́sa Gama Caldas and Leslie Norford (2001) investigated ways to “map”

architectural design intentions to a generative design system, taking as an example

the School of Architecture in Oporto, Portugal. Their aim was to illustrate that

Generative Systems (GS) are very important tools for evaluating possible problems

and enhance the design accordingly. GS can then be considered as a feedback system

that is used to encode the design through algorithms.

Although these examples and the field of applications can be multiplied not only

in architectural design but in many other disciplines in which design is involved,

here it is intended to illustrate the how digital media and algorithmic thinking can

effect the architectural design process. It is important to note that algorithmic

thinking and digital media co-exist in any design executed in digital media both

as a way of design methodology and as a way to take advantage of the potential of

these media.

Moreover, these 2D and 3D models, which can also be easily be employed

by other disciplines for analysis and computation, allow architects to explore

more challenging geometries and combinations of materials. Frank Gehry’s

ground-breaking design for the Guggenheim Museum in Bilbao can be

considered as one of the most remarkable example of this tendency. Gehry and

his team obtained a 3D model of the museum with CATIA software, which was

originally developed for the aerospace industry. In that way, the complicated

geometry of the building and the structural system to support that geometry could

be investigated and implemented. In Gehry’s design, digital media was not merely a

presentation media. Rather, it was employed as a common interface between

architectural design and the other domains of knowledge involved in it. Although

only one example is included in this chapter, today CAD software and other 3D

visualization techniques are common practice in any design process and architects

have chances to experiment interactively with different geometries, configurations,

structural systems for very complicated organizations.

As mentioned above, another direct result of IT and designing in digital media is

the introduction of the concepts of “cyberspace” and “virtual reality”, which are

encountered very frequently even in daily life. There exist hundreds of articles

written about these new concepts in various fields of interests. It can be said that the

common element of all these studies is the effort to understand the nature of this

new “space” and to explore its potential and, of course, to understand the possible

impacts on different fields. Several definitions have been proposed for cyberspace

and virtual reality in these studies. Here, in order to discuss these concepts within

the realm of mathematics, I prefer to use the following definitions from the Oxford
English Dictionary: cyberspace is defined as a “notional environment within which

electronic communication occurs, especially when represented as the inside of the
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computer system; space perceived as such by an observer but generated by

computer system and having no real existence”; the definition of virtual reality is

“the notional image or environment generated by computer software with which a

user can interact realistically”.

It can be seen in these definitions that for cyberspace to exist or to have virtual

reality the “designer” in any discipline should be capable of not only using computer

software but, more importantly, he or she must be capable of questioning this rather

new and continuously changing media and its tools in order to reveal all the potential

and consequently the nature of “space” in that media. Mathematics, which actually

underlies everything “constructing” these new media and space, also provides the

basic tools for this exploring, learning and designing process.

Steve Ferrar (2001) questioned non-physical space and architects’ perception of

it. One of the important conclusions of that study is that multi-dimensional thinking

and the collection and management of information are inevitable in understanding

and creating non-physical spaces. In accordance with that study, I believe that

mathematics with its tools to collect and process information and algorithmic

thinking as a way of multi-dimensional thinking to manage all these various

domains of knowledge are ideal for understanding and design non-physical

spaces. In that sense, Marcos Novak’s attitude towards design, which comprises

physical and virtual spaces, and his perception of virtual space as an information

space, plays an important role in attempts of understanding non-physical space and

its direct relevance with mathematics. Nowadays, inquiries into non-physical space

through designs, movies, or books result in further inquiries and questions.

A Mathematics Course and Digital Design Studio Held

in the Department of Architecture of Middle East Technical

University

The concept of design and the design process and the role of mathematics discussed

above resulted in the proposal of a new course in the Department of Architecture at

Middle East Technical University entitled “Mathematics in Architecture”, which I

taught, and the “Digital Design Studio”, which was taught by myself and my

colleague, Dr. Sebnem Yalýnay. “Mathematics in Architecture” is aimed at

increasing awareness in the minds of students about the very close association

between mathematics and mathematical thinking and architectural design, aside

from geometry, which they are familiar with (Gönenç Sorguç 2005b).

In the “Digital Design Studio” this intention has been stated explicitly. In these

studios, the design medium is considered as the digital space and the subjects are

proposed accordingly. The students are asked to question this “new medium” by

changing minds to algorithmic thinking. It is important to make clear that it is not

expected that students will develop algorithms or codes for their designs; instead

they are expected to develop an awareness of the multi-dimensional design process
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through mathematics and algorithmic thinking without losing sight of architectural

design. In order to provoke students into making these design inquiries, the design

subjects are chosen as abstract concepts which are thought to be more generative in

the exploration of the digital medium. Some of the design topics were “huge”, “a

scalarity”, “one as many, many as one” and “the game”, for which students are free

to interpret the concept as they like in the very beginning of the studio, then as the

studio progressed, it was shown through criticism and lectures that digital medium

was much more than a presentation medium and that algorithmic thinking and

mathematics were essential for mastering that medium and its potential for the

design, which was actually a process in digital medium. Figures 88.1 and 88.2 show

the design projects that were accompanied by 2-min animations by students Sevil

Alkan and Onur Yuce Gun, aimed at explaining their interpretation of designing in

digital medium and algorithmic thinking.

Conclusion

In this study I have briefly discussed the evolving role of mathematics and

algorithmic thinking in today’s multi-dimensional architectural design under the

influence of computational and information technologies. I tried to avoid giving

names and examples which are actually acknowledged by all those who are

interested in the design process, the ones actually referred to here are intended to

reveal the existence of mathematics and algorithmic thinking in the center of the

Fig. 88.1 “Huge”, Arch. 470 digital design studio project by Sevil Alkan, 4th-year student
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design process. Aesthetics, design movements and the social and psychological

impacts are not argued; instead I concentrated on different implementations.

I wished to show that design has become a complicated process interacting with

various disciplines that influence the process in a direct or indirect way, resulting in

multi-dimensional design problems. Architects have several means for achieving

good designs and yet the amount of information or different domains of knowledge

makes this task harder. Mathematics and its ways of thinking especially algorithmic

thinking can provide ways to handle these complicated problems without posing

any limits on creativity or design insight.
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Chapter 89

Generative Design Grammars: An Intelligent

Approach Towards Dynamic

and Autonomous Design

Ning Gu

Introduction

Generative design research, particularly the theories and applications of design

grammars, have formed a very important part of design research. The generative

concept and the rule-based structure have heavily influenced the latest development

of Computer-aided Architectural Design (CAAD) technologies, for examples,

parametric design tools. Through the early mathematical models and the more

recent computer implementations, they have contributed to the formal

understandings of design analysis and design generation. By analysing existing

designs of a known style, design grammars can formally describe this design style

and generate other designs that also share the style. For nearly four decades, design

grammars have been refined and examined across a wide range of design disciplines

including architectural design, product design, engineering design and so

on. Grammars as design formalisms are advanced in a number of ways: They are

able to apply simple rules to produce designs with rich descriptions; and they enable

different designs that share a similar style to emerge by alternating the sequence of

the rule application.

With the adoption of computer technologies, design grammar research has

transformed from the early focus of mathematical models to the current

computational implementations, and the technologies have provided new ways to

further the design grammar research. Under such an influence, this chapter revisits

the grammatical approach to generative design, and presents the conceptual
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framework of Generative Design Grammars (GDG). The framework outlines the

general structure of GDG and the general structure of the basic components—

design rules. Integrated with a computational agent model (Russell and Norvig

1995) and a 3D virtual environment as the simulation engine, GDG can support an

intelligent approach towards dynamic and autonomous design. For demonstration, a

scenario of designing a virtual gallery is presented, where a computational design

agent reasons, dynamically and autonomously generates, simulates and modifies

designs of a virtual gallery in the 3D virtual environment, through the application of

a GDG example.

This research has enhanced the design grammar research by presenting an

intelligent approach to automating and optimising the generative design process,

through an integrated GDG framework supported with powerful agent reasoning

and design simulation. This approach to utilising computer technologies in design

implies both opportunities and challenges for designers.

Background

Design Grammars

The concept and development of GDG for this research are inspired by the notions

of shape grammars (Stiny and Gips 1972). The inspiration comes directly from

shape grammars as a design formalism for describing and generating designs in

general. In architectural design, there are many successful shape grammar

applications; for example, the Palladian grammar (Stiny and Mitchell 1978), the

Mughul Gardens grammar (Stiny and Mitchell 1980), the Prairie Houses grammar

(Koning and Eizenberg 1981) and the Siza Houses grammar (Duarte 1999).

Knight (2000) summarizes that a shape grammar is a set of shape rules, which

can be applied in a step-by-step manner to generate a set, or language, of designs.

The nature of shape grammars is both descriptive and generative:

– Shapes (points, lines, planes or volumes) as the basic components of shape rules

are descriptions of the designs that the grammars generate.

– The applications of the shape rules generate designs via shape operations and

spatial transformations.

Inheriting the descriptive and generative nature of shape grammars, our GDG

are capable of describing designs in 3D virtual environments using components of

the design rules, and generating designs via rule applications. The descriptive and

generative qualities of GDG well serve the purposes of designing in 3D virtual

environments.
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3D Virtual Environments

The terms “virtual environments”, “virtual worlds”, or “cyberspace” can be

understood as networked environments designed using the place metaphor. The

place metaphor provides a consistent context for people to browse digital

information, interact with the environment and communicate with each other.

The applications of 3D virtual environments have expanded from the original

internet gaming and military simulation to provide supports for other activities

such as electronic institutions, virtual museums, distant education, virtual design

studios, and so on. They have become an important part of the holistic living

environments we inhabit supporting everyday economic, cultural, educational and

other human activities. As CAAD tools, 3D virtual environments have shown

promising potentials in areas such as design simulation, distant team works as

well as interdisciplinary design collaboration.

Technologies for designing virtual environments have developed over the years

supporting multi-user text-based, 2D graphical and 3D virtual environments.

Nowadays, most virtual environments are visualised using 3D models. Platforms

for designing 3D virtual environments include Active Worlds (http://www.

activeworlds.com), Virtools (http://www.virtools.com), Second Life (http://www.

secondlife.com), and others that have been developed from gaming engines such as

Quake (http://www.idsoftware.com). Maher and Simoff (2000) first characterise the

design activities in 3D virtual environments as “Designing within the Design”.

Unlike in most CAAD systems, designers are also represented within the virtual

design. They are called avatars (animated characters). “Designing within the

Design” lately become the main idea for exploring and enhancing remote team

collaboration in design practice. For global design teams, 3D virtual environments

provide an integral platform that utilises digital communication, design

representation, and collaborative modelling. Figure 89.1 illustrates selected

designs in 3D virtual environments from our recent research and teaching.

Except for the input and output devices, 3D virtual environments are

implemented entirely in the computer environments. After all, they only comprise

of assemblies of computing entities, which can be flexibly programmed and

configured. This flexibility makes it possible to consider designing in 3D virtual

environments in terms of dynamics and autonomy. However, the current designs in

3D virtual environments often limits to static simulations. Our research challenges

this conventional use of 3D virtual environments in design; and presents GDG for

dynamic and autonomous design in 3D virtual environments.
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The Conceptual Framework of Generative Design

Grammars

This section presents a conceptual framework that provides guidelines and

strategies for developing GDG by defining the general structure of a grammar and

the general structure of its basic components: design rules. Using this framework,

designers define grammars that produce different design languages for 3D virtual

environments, rather than predefine every detail of all possible designs.

Generative Design Grammar Framework

A GDG is comprised of design rules R, an initial design Di, and a final state of the

design Df.

GDG ¼ R;Di;Dff g ð89:1Þ

The basic components of a GDG are design rules R. The general structure of a

GDG comprises of four sets of design rules: layout rules Ra, object placement rules

Rb, navigation rules Rc, and interaction rules Rd.

R ¼ Ra;Rb;Rc;Rdf g ð89:2Þ

The structure of GDG is determined by the four general phases of designing in

3D virtual environments. They are:

– To layout places/areas of the design: Each place/area has a purpose that

accommodates certain intended activities;

Fig. 89.1 Designs in 3D virtual environments. Image: author
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– To configure the places/areas of the design: Each place/area is then configured

with certain objects, which provide visual boundaries of the place/area and

visual cues for supporting the intended activities;

– To specify navigation methods: Navigation in the virtual design can be facilitated

to consider the use of way finding aids for assisting the designers and visitors’ in

exploring the design in the 3D virtual environment;

– To establish interactions: In general, this is a process of ascribing behaviors to

selected objects in each place/area of the virtual design so that physical interactions

of the design can be simulated or the designers and visitors can interact with the

virtual design.

The four set of design rules—layout rules, object placement rules, navigation

rules and interaction rules—address the above four design phases accordingly. The

generative design grammar framework is illustrated in Fig. 89.2.

The firing sequence of the design rules follows the order of layout rules, object

placement rules, navigation rules and finally interaction rules. Integrated with

relevant design and domain knowledge, GDG can be developed by following this

general structure. The stylistic characterisations of the generated designs—in terms

of the syntax (visualization, layout and object placement) and in terms of the

semantics (navigation and interaction)—are defined accordingly in these four sets

of rules.

Design Rules

The basic components of GDG are design rules. The general structure of design

rules is similar to the general structure of shape rules. In shape grammars, a shape

rule can be defined as:

LHS ! RHS ð89:3Þ

which specifies that when a left-hand-side shape (LHS) is found in the design, it will

be replaced by a right-hand-side shape (RHS). The replacement of shapes is usually

applied under a set of shape operations or spatial transformations. The shapes are

labeled (the use of spatial labels and state labels) for controlling the shape rule

applications.

Similarly, a design rule of GDG is defined as:

LHO þ sL ! RHO ð89:4Þ

which specifies that when a left-hand-side object (LHO) is found in the 3D virtual

environment, and the state labels sL are matched, the LHO will be replaced by a

right-hand-side object (RHO). The term “object” used here can refer to a virtual

object, a set of virtual objects or virtual object properties. Virtual objects are

visualised as 3D models in 3D virtual environments. Like shape grammars, GDG
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also use spatial labels and state labels to control the application of design rules. The

original use of state labels in a shape grammar is to control the sequence of shape

rule applications. In GDG, on one hand, this original purpose is maintained so that

the designs rules can be applied in the sequence of layout rules, object placement

rules, navigation rules and interaction rules. On the other hand, a special set of state

labels are also developed as discussed below. The general structure of design rules

implies the following two aspects:

– State labels are singled out and expressed explicitly as sL in the structure. The

use of state labels is essential to the application of GDG as they direct the

grammar application to ensure that the generated design satisfies the current

design goals. Each design rule is associated with certain state labels representing

specific design contexts that can relate to different design goals. In order for a

design rule to be fired, a virtual object, a set of virtual objects or virtual object

properties need to be found in the 3D virtual environment that match the LHO of

the design rule, and the design contexts represented by the sL of the design rule

need to be related to the current design goals;

– The basic components of design rules are objects and their properties, not

shapes. Therefore, they are not entirely visual/spatial. For the interaction rules

and parts of the navigation rules, the replacement of LHO with RHO is applied

under a set of general transformations.

Layout rules are the first set of design rules to be fired in the application of a

GDG. They are visual/spatial rules that generate the layout of places/areas

according to the kinds of activities to be supported, as outlined in the design

requirements. Figure 89.3 illustrates two example layout rules taken from a GDG

for a gallery design. By applying the first rule, the design of the gallery will be

expanded by adding an additional area. By applying the second rule, the design of

the gallery will be changed by subtracting an area.

Fig. 89.2 Generative design grammar framework. Image: author
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Object placement rules are fired after layout rules, they are also visual/spatial

rules. After a layout is produced, object placement rules further configure each

place/area to provide visual boundaries of the place/area and visual cues for

supporting the intended activities, through object placements. Figure 89.4 shows

two example object placement rules that generate the visual boundaries for two

different areas in a gallery design. Figure 89.5 shows an example object placement

rule that arranges the interior of a display area for exhibition.

Navigation rules are fired next in the application of a GDG, after layout rules

and object placement rules. Navigation rules provide way finding aids in the

generated places/areas to assist the designers and visitors’ navigation. Way

finding aids can be simulated in 3D virtual environments with direct references to

those in built environments (Vinson 1999; Darken and Sibert 1993, 1996). There

are at least two kinds of way finding aids we use in built environments:

– The use of spatial elements, for example, paths, openings, hallways, stairs,

intersections, landmarks, maps, signs and so on;

– The use of social elements, for example, the assistance gained from guides or

other people.

Besides these way finding aids originating from built environments, 3D virtual

environments also have their unique forms of navigation since virtual places/areas

are hyper-linked. Most 3D virtual environments allow people to move directly

between any two locations using hyperlinks. Hyperlinks are not parts of the actual

design as they cannot be reproduced in built environments. However they are

important for designs in 3D virtual environments as they often enable designers

and visitors to navigate and explore more efficiently.

Fig. 89.3 Two examples of layout rules. Image: author

Fig. 89.4 Two example layout rules that generate visual boundaries for different areas of a gallery

design. Image: author
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Navigation rules are not entirely visual/spatial. The application of the rules

indeed involves object placements for defining way finding aids in the generated

places/areas. However, before these object placements are made, navigation rules

are mainly about recognising the connections among these generated places/areas

and finding appropriate navigation methods for the designers and visitors to access

these places/areas. Figure 89.6 shows the effect of an example navigation rule.

The left-hand-side image is the interior of a display area in a gallery design.

The right-hand-side image shows that a hyperlink is created and appears as a

color stone on the floor. After appropriate behaviors are ascribed, the link will

take the designers and visitors to a different display area when it is “stepped” on, if

they require immediate exit from the current area.

Interaction rules are the final set of design rules to be fired in the application of

a GDG. The application of interaction rules ascribes appropriate behaviors to

selected objects in each generated places/areas. Therefore, physical interactions

can be simulated or the designers and visitors can interact with the virtual design.

Interaction rules are non-visual/spatial rules that recognise selected objects in

the virtual design and ascribe appropriate behaviours to these objects. There are

two different types of interaction rules. One supplements object placement rules

and the other supplements navigation rules. Object placement rules define visual

boundaries for each generated place/area and place purposeful objects in the place/

area. The first type of the interaction rule ascribes behaviours to relevant objects in

Fig. 89.5 An example layout rule that arranges the interior of a display area for exhibition. Image:

author

Fig. 89.6 The effect of an example navigation rule. Image: author
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order to simulate certain physical interactions in these places/areas. The other type

of interaction rule looks for way finding aids and hyperlinks generated by

navigation rules and ascribe appropriate behaviours to activate them.

Because interaction rules do not operate on a visual/spatial level they are not

appropriate to be expressed using illustrations. In this study, interactions rules are

expressed in the form of “IF. . . THEN. . .” Without getting into the technical details

of ascribing behaviours to objects in 3D virtual environments, Fig. 89.7 shows the

effect of an example interaction rule of the first type for supplementing object

placement rules. The left-hand-side image is the exterior of a gallery design with

an empty advertisement board. The right-hand-side image shows the same

advertisement board displaying digital images in an animated sequence, after the

interaction rule is fired, which configures the object properties of the advertisement

board object using a scripting language to enable the animation to be shown.

Designing a Virtual Gallery

This section presents a scenario of designing a virtual gallery. The scenario aims to

demonstrate the application of GDG, and their effectiveness for dynamic and

autonomous design in 3D virtual environments. GDG as generative design

systems can be manually applied by human designers, or as demonstrated in this

gallery design scenario, dynamically and automatically applied by computational

agents. In the context of computer science, agents as intentional software systems

operate independently and rationally, seeking to achieve goals by interacting with

their environment (Wooldridge and Jennings 1995). Unlike most computational

objects, agents have goals and beliefs and execute actions based on these goals and

beliefs (Russell and Norvig 1995). The agents used in this demonstration are

Generative Design Agents (GDA) (Gu and Maher 2005). GDAs are rational

design agents specified to have five computational processes: Sensation,

interpretation, hypothesising, designing and action. These processes provide a

basis that allows design and other domain knowledge to be integrated into GDA,

which together support reasoning and designing in 3D virtual environments.

Fig. 89.7 The effect of an example interaction rule. Image: author
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The design scenario consists of six different stages. The different stages present

various changes of design requirements during the designing process, for example,

changes of activities, changes of exhibition requirements, changes of gallery

capacities, and so on. The scenario shows that a GDA senses these changes of

design requirements, either being simulated in the 3D virtual environment or

entered directly by the human designer. By altering the sequence of the design

rule application in the GDG example, the GDA dynamically and autonomously

generates, simulates and modifies different designs in the 3D virtual environment to

address different changes of design requirements.

In terms of the technical implementation, the GDA is implemented using Java.

The scenario is implemented in a 3D virtual environment developed using the

Active Worlds platform. The design rules of the GDG example, and a general

rule base for supporting the GDA’s reasoning, are written using Jess (http://

herzberg.ca.sandia.gov), a rule-based scripting language (Friedman-Hill 2003).

Figure 89.8 illustrates different designs of the gallery, both 3D models and plans,

generated by the GDA through the application of the GDG example, for the six

stages of the scenario.

In the cases when there is more than one design rule that match the current

design context, a control mechanism is needed to resolve the conflict. In general,

there are three main methods for controlling the generative design grammar

Fig. 89.8 3D models and Plans of a virtual gallery generated for stages 1–3 (above) and stages

4–6 (below) of the design scenario. Image: author
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application. They are random selection, human designer intervention, and agent

learning mechanism. This scenario uses the human designer intervention method.

– The random selection method allows the system to randomly select one design

rule from the set of rules that meet the conditions.

– The human designer intervention method allows the system to turn to human

designers for instructions once such a conflict occurs.

– The agent learning mechanism provide a more dynamic but complex approach

to allow the system to resolve the conflict based on the agent’s past design

experience.

Conclusion

This chapter presents GDG: an intelligent approach towards dynamic and

autonomous design. The GDG approach extends design grammar research by

providing an integrated framework with powerful agent reasoning and design

simulation that can automate and optimise the generative design process.

– The use of 3D virtual environments provides a simulation tool for visualising

designs that are generated by GDG; and more importantly serves as a platform

for representing design requirements as well as simulating contextual information

that may affect the generation of the designs;

– Design automation is supported by the use of GDA. Computational agents as

intentional software systems can operate independently and rationally, seeking

to achieve goals by interacting with their environments (Wooldridge and

Jennings 1995). The use of GDA in conjunction with GDG presents a robust

approach to design reasoning and automation for executing the design grammar.

The effectiveness of both GDG and GDA has been demonstrated through a

virtual gallery design scenario. Although the design scenario is constructed with a

specific kind of virtual gallery design and a specific platform of a 3D virtual

environment in mind, it demonstrates the general effectiveness of GDG and GDA

both for autonomous designs in 3D virtual environments. Integrated with different

design and domain knowledge, they can be adapted for dynamic and autonomous

design in 3D virtual environments for other purposes.

This grammatical approach to dynamic and autonomous design in 3D virtual

environments also implies the following opportunities and challenges for design,

design research as well as designers.

For design, highlighted with GDG’s generative design capabilities, the use of

GDG provides a formal framework to describe and generate designs in 3D virtual

environments with certain stylistic considerations. The use of GDA presents a

robust approach to design reasoning, generation and automation. These design
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agents actively seek to satisfy their design goals to meet the changing design

requirements, by interacting with the 3D virtual environment.

For generative design research, the GDG framework presented in Sect. 89.3 can

serve as a base for developing GDG for different design styles that suit different

purposes. The GDG approach is a highly integrated and interdisciplinary one.

Combining with the use of agent technologies, it introduces dynamics and autonomy

to designing in 3D virtual environments. 3D virtual environments integrated with

GDG can go beyond the conventional purpose of design communication and static

simulation to support design generation and automation. The GDG framework also

provides a foundation to formally study the styles of 3D virtual environments.

Compared to other novice designs, 3D virtual environments designed with a specific

style in mind will achieve better consistency in terms of visualisation, navigation and

interaction, and this consistency provides a strong base to assist the designers and

visitors’ orientations and interactions in these virtual environments.

For designers, on one hand, GDG provides the generative force for dynamic and

autonomous design. On the other hand, each grammar defines coherent stylistic

characterisations shared by the designs it generates. Designers do not repetitively

produce individual designs. Instead, they specify GDG incorporating with their own

design styles, for design agents such as GDA. The application of GDG is then

applied by GDA on behalf of the human designers, and directed by the actual design

requirements, to dynamically and automatically generate individual design instances

in 3D virtual environments as needed. This will require designers to gain a different

set of skills in order to understand and accommodate the grammatical approach to

design. The emergence of generative design tools such as GDG offers cutting-edge

technologies for designers to exploit alternative ways of designing, but at the same

time imposes new challenges redefining their roles in design.
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Chapter 90

Ethics and Geometry: Computational

Transformations and the Curved Surface

in Architecture

Michael J. Ostwald

Introduction

Is it possible to criticise architectural form, the shape of a building, from an ethical

perspective? Since the nineteenth century a growing number of scholars have

maintained that not only is this conceivable but is indeed almost inevitable.

While the validity of this position is still being questioned to the present day, a

presupposition founding the question has rarely, if ever, been adequately

considered. If the shape of a building can be criticised from an ethical

perspective, and the production of architectural form is reliant on a range of

underlying conceptual armatures, then such devices must also be complicit in

architecture’s ethical status. Moreover, while a wide range of concerns influence

the built environment, it is the application of geometry that most consistently

enables the production of architectural form. Given this situation, is it feasible to

criticise or interpret architectural form from a moral perspective without first

considering the ethics of geometry?

The research contained in this chapter is broadly concerned with the way in

which a designer constructs architectural form from geometry and more specifically

with whether such constructions can legitimately be considered from an ethical

perspective. Because this topic is too extensive for a single chapter, the present

research focuses on a specific case wherein geometry and architectural form are

inextricably connected. This situation is found in the production of complex or
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compound curvilinear forms. Historically the creation of such forms has involved a

demonstrable awareness of geometry (or at a minimum its practical application)

whereas other architectural forms, especially rectilinear ones, do not have the same

overt reliance on geometric construction. While a possible connection between

curvilinear form and geometry is apparent in historic examples, more recently the

development of computational design tools have embedded explicit geometric

constructions into the creation of architectural form. One design strategy in

particular, algorithmic transformation, perfectly illustrates the way in which a

geometric construction can produce a curvilinear or organic architectural form.

For this reason, the present chapter analyses the computational transformation of an

object as a means of producing and representing architectural form. The analysis is

not concerned with the mechanics of the deformation the actual algorithm or

mathematical formula that underlies the geometric construction. The designer is

almost never aware of the mathematics governing the software. He or she is only

conscious of the geometric boundaries and rules which they can manipulate to

produce form. Instead the analysis is focussed on whether or not the transformative

operation has ethical implications for the resultant architectural form.

One of the reasons that the question concerning the role of geometry in

architecture’s moral dialectic is so complex is that classical philosophy holds, and

for good reason, that the question should not be asked at all. Within a neo-Platonic

or Aristotelian philosophical framework, architectural and ethical systems are

mutually exclusive. From this classical perspective the actions of a person may

be ethical (or not) but the objects they use or create are free of innate ethical bias

even if they possess functions that lend themselves to use in potentially unethical

ways. Thus, a gun is without intrinsic ethical bias because it may be used to assist

human survival (potentially ethically sound) in the same way that it might be used

to injure or kill (potentially ethically unsound). The actions of the person using the

gun are open to ethical interpretation, not the gun itself. Similarly, in the case of

geometry and mathematics, in Rhetoric Aristotle argues that “mathematical

speeches have no éthé, since they do not involve any resolute choice”

(Lachterman 1989: xi). Here Aristotle affirms the view that like architecture,

mathematics and geometry are objects in a philosophical framework; they do not,

in any connotative sense, result in a particular response. While it is difficult to

categorically refute the classical position, it has not hindered the production of an

extensive body of discourse dedicated to the ethics of architecture. In contrast, the

Aristotelian position seems to have largely overshadowed any propositions

concerning the ethics of geometry. One reason for this difference between

architecture and geometry from an ethical perspective is related to ubiquity.

Objects in classical philosophy are typically aligned with ideal or singular uses.

Thus, for Plato a chair has the same terrestrial function regardless of whether it is

made of wood or stone, or is decorated or plain. Even though the physical chair is a

universal object, all chairs are variations of an idealised or transcendent support

mechanism that the artisan is striving to imitate. While geometry occupies a

different role in Platonic metaphysics it is sufficiently omnipresent that it does

not control, in a moral sense, comportment or conduct (Elden 2001). Jacques
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Derrida describes the role played by geometry in metaphysics as being one of a

number of “ideal objects of science” (1989: 25), things that exist outside of human

desires, motives, or behaviours. In contrast to such ideal objects, architecture is less

ubiquitous precisely because it is shaped by an individual or group with an agenda

that is necessarily social or human. This is why a wider definition of ethics is

normally adopted in architectural discourse than in the philosophy of geometry.

Architectural ethicists typically postulate that some objects are sufficiently

complex that they have either: (1) a capacity to shape the attitudes or behaviours

of their users; or (2) some ability to communicate the designer’s intentions to the

user. In both instances the object, in isolation, has an impact on an individual or

group and is therefore vulnerable to ethical criticism both of itself and its creator.

The former proposal (1) is certainly open to dispute but at the very least scholars

agree that architecture provides shelter, a function that directly shapes inhabitation

and facilitates community (Levine et al. 2004). Barry Wasserman, Patrick Sullivan

and Gregory Palermo argue that architecture is fundamentally concerned with “the

design and construction of places for human affairs and human inhabitation” (2000:

36). This means that from the moment humankind constructed “a shelter for

protection in the natural wild landscape . . . architecture’s import for well-being”

became manifest (idem.). In the latter proposition (2) set out above, that some

objects can transmit a designer’s intent, the evidence is equally contentious. First,

can an artist’s or architect’s creative agenda be communicated through their work to

an observer? Second, can this communication occur in such a way that it influences

the user’s actions? Mary Devereaux (2001) and Berys Gaut (2001) independently

assert that the answer to both of these questions is yes and each focuses on objects

(art, film or architecture) that function as aestheticised propaganda. For example,

Albert Speer’s vast neo-classical plan for Adolf Hitler’s reformation of Berlin could

not be viewed as anything other than a sign of totalitarian power (Dovey 1999).

However, while Speer’s Berlin may evoke a subconscious recognition of fascism,

autocracy or opulence, a person who is unaware of history would be unlikely to

intuit overtones of xenophobic nationalism in its classical entablature and trabeated

colonnades. This line of argument, when taken to its logical conclusion, confirms

that architecture is at best a poor communication tool for complex concepts and at

worst is, in a linguistic sense, unable to sustain the connection between signified

and signifier (Eco 1980). Because geometry in itself has a further diminished

capacity to communicate, in ethical theory its role is relegated to that of an ideal

object. The present chapter acknowledges these philosophical limitations, but

accepts the possibility that architecture is open to ethical criticism and that, by

inference, the geometry that constructs architecture is also morally complicit in its

production. The chapter then tests this proposition in a case wherein architecture,

geometry, human experience and implied meaning are closely connected. That case

is the curved form in architecture and explicitly its production through

computational transformation.

One final clarification that is necessary before progressing is that in

philosophical enquiry the phrase “the construction of geometry” encompasses

both the physical drafting of shapes (tracing arcs, parallel lines and right angles
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to establish more complex configurations) as well as the logical description of a

sequence of actions (or calculations) which produce a spatial outcome. The concept

of geometric construction also assumes that it is a conscious endeavour; nature does

not construct geometry, humans do. Importantly, the phrase does not refer to the

physical erection of a building using bricks and mortar.

The present chapter is structured in four sections. This introduction has set out the

field of research, the approach taken to the specific case and some methodological

limitations. The second section reconstructs a short history of ethical theory in

philosophy and in architecture with the intention of drawing out aspects which are

most closely connected to geometry. This section relies on the small number of

philosophical theories that have been proposed for interpreting geometry in an

ethical framework. The third section describes the creation of curved, irregular or

organic surfaces in architecture, focusing on the connection between geometric

construction and architectural form. This penultimate section includes three

examples of computational transformations that result in a non-orthogonal

architecture. Finally the chapter considers computer-generated architecture and the

specific case of the transformative process of creating and representing a design. This

section concludes by questioning the design practice from an ethical perspective.

Ethics, Geometry and Architectural Form

Ethics is defined as the study of the moral standards that shape an individual’s

conduct. Ethical discourse is typically relied upon to provide advice on the right

(in a moral rather than legal sense) course of action in a situation. Ethics, like

geometry, does not rely on empirical observation but rather on formal

argumentation or construction; an ethical statement or position relies on a logical

proposition or presupposition (Beauchamp 2001).

The branch of ethics that provides guidance about deeds or actions is called

normative ethics. Normative ethics develops logical arguments that are intended to

assist moral decision making. Most writings on architectural ethics participate in

the normative approach because they are written with the intention of providing

advice on ways to approach the problems of architectural practice or design. There

are three primary normative schools of thought in Western ethical philosophy. First

there is the view, attributed to Aristotle, that a personal value system benefits both

an individual and society; this theory is called virtue ethics. The second is reliant on

the argument that people must learn duties and be taught values that lead, according

to proponents like Immanuel Kant, to the creation of an ethical society. This school

is known as deontology: the theory of ethics which develops universal laws

governing decisions regardless of local consequences. The third school of thought

says that the needs of the community are the benchmark of ethical thinking and that

the conduct of an individual should be shaped by these greater needs and values.

This theory of ethics is known as either utilitarianism or as teleological ethics. The

critical study of these three schools of normative ethics, known as metaethics,
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challenges the assumptions that are made as part of the ethical decision-making

process. Only a limited number of architectural examples exist of metaethical

theory. Because architecture is not, in a classical sense, a legitimate field of

ethical enquiry, its claims are rarely framed in such a way that they may be

interrogated by metaethical theorists. However, virtue theories of architectural

ethics have been common for many hundreds of years and in the last few decades

the deontological position has become increasingly prevalent.

From the earliest treatises, architecture has been presented as serving, either in a

functional or symbolic sense, the good of humanity. The Vitruvian triad of

“firmness, commodity and delight” clearly articulates architecture’s aspirational

role as central to the protection of humanity, the formation of community and the

maintenance of higher goals. The similarly archaic foundation myth of architecture

in the construction of the primitive hut also confirms that architecture’s role is to

shelter humanity, shape its practices and sustain its communal vision (Rykwert

1987). Wasserman, Sullivan and Palermo support both assertions when they note

that in the historical treatises architecture’s role is “providing ‘a good’ for society

through building” (Wasserman et al. 2000: 29). In the seminal architectural treatise

of the Renaissance, Alberti, like Vitruvius before him, argued for the “well-being of

society through architecture”, a claim that is concerned with “architecture’s ethical

potential” (idem). The Vitruvian moral argument, developed by Alberti, is

essentially a form of virtue ethics, as Spector (2001) observes. Importantly, in

these early works geometry is considered essential for the production of an

ethical architecture. For example, Vitruvius identified a system of geometry

circles, squares and associated Phileban solids as being an abstraction of human

form, which is itself a reflection of the image of God. The Vitruvian position has

strong parallels to the argument Plato offers that artefacts and nature may be

beautiful but they are both poor reflections of their ideal forms. Natural beauty is

a type of terrestrial diversion whereas geometric purity is more closely aligned to

the form realm, as it raises the mind’s focus to transcendent ideals. Although there

are serious differences between the Vitruvian and Platonic positions, both affirm

the connection between geometry and higher virtues. Each also supports the second

proposition which opened this present chapter that if architectural form is

susceptible to ethical criticism because it influences behaviour then the

underlying geometric construction must also be exposed in this way.

In the Ethical Function of Architecture Karsten Harries asserts that geometric

construction is central to the creation of architectural form which expresses the

spirit of the age; this is for Harries the pivotal ethical consideration for architecture.

A primary theme in his argument is what he calls “perennial Platonism”; the

connection between local objects (such as architecture) and universal ones (the

virtues and ideals of the form realm) by way of geometric and aesthetic rules which

are ethically framed. For example, Harries’s reading of Platonism leads to a

proposition about the possible relationship between geometry, form and the ethics

of timeliness associated with the view that architectural form should express

Zeitgeist, the spirit of the age. For Harries geometric construction shapes the

ethics of form precisely because the “appeal of the language of geometry
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transcends particularities of time and of place” (Harries 1997: 255): the geometric

construction is the action that imbues architectural form with an innate ethical quality.

Architectural form cannot simply be an object, in the classical sense advocated by

moral philosophy, because the underlying geometry has, in its specific process of

construction, a range of qualities or virtues. There are two related arguments in

philosophy, from Hobbes and Lachterman, that support Harries’s view.

In the seventeenth century the British philosopher Thomas Hobbes applied the

construction methods adopted in geometry and mathematics to political science to

create a logical method of social formation and, by inference, a moral community

(Grant 1990). For Hobbes, “geometry is said to deal with motion” (Sacksteder

1980: 103); this is because geometry cannot exist without action. Hobbes

maintained that it is the conscious process of description or motion (what the

present chapter calls construction) that gives geometry its innate rightness; a

proposition replete with ethical overtones. In the most famous twentieth-century

argument about the ethics of geometry David Lachterman (1989) develops a related

proposition.

Lachterman’s definition of ethics is derived from the Aristotelian ta éthé, which
refers to the common values that define the way in which a society operates. Like

the majority of other examples in this section, it is derived from virtue theory; its

focus is primarily on motivation and comportment rather than actions and their

consequences. Lachterman’s argument is that a close reading of the explication and

application of geometry throughout history reveals the motives and virtues of the

geometer and the resultant form or theory:

Accordingly, in speaking of a radical difference between the ethos of Euclid and the ethos

of Descartes I am not suggesting anything like a moral discrimination between persons;

rather, I have in view the disparate ways (mores) and styles in which the Euclidean and

the Cartesian geometer do geometry, comport themselves as mathematicians both toward

their students and toward the very nature of those learnable items . . . from which their

disciplined deeds take their name (Lachterman 1989: xi).

Thus one geometer may, in the process of construction, display a disdain for

their audience (of students) and their subject (geometry) whereas another’s method

of construction might be more respectful. In this way Lachterman identifies in the

geometric construction of Descartes “compelling evidence that [Descartes] wants

his ‘samples’ of method to display those virtues of absolute originality and

self-sufficiency by which genuine learning is distinguished from simple historia”
(Lachterman 1989: 149). Lachterman suggests that geometry, in its construction

(in modern philosophy) or axiomatic method of geometrical demonstration

(in classical philosophy) retains an ethical trace that reflects the attitudes and

virtues of its creator.

The arguments of Lachterman and Harries each affirm the close relationship

between the attitudes of the designer, the geometric construction they are

employing and the outcome it produces. In the nineteenth century John Ruskin

advanced an approach to the ethics of architecture that also accepts that geometry,

as it is expressed in architectural form, is ethically culpable. At the heart of

Ruskin’s polemic is the suggestion that aesthetics, like ethics, must have an
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underlying and supportable series of suppositions. If the aesthetics of a design rely

on misdirection or hidden structure then the design is no longer true or right (Moore

and Ostwald 1997). Ruskin argued that mechanically manufactured curvilinear

forms were lifeless and therefore lacking a suitable symbolic connection to

nature, a connection which is assumed to be their fundamental purpose for

existing on the façade of a building. For Ruskin, the “proper material of

ornament” is “whatever God has created” (Ruskin in Cook and Wedderburn

1903: vol. 9, 265). In practice, Ruskinian “right line” is a hand drawn curve that

provides an indelible connection between the human body (the stone mason), the

construction of geometry (by hand) and the carving of form, “their universal

property being that of ever-varying curvature in the most subtle and subdued

transitions” (Cook and Wedderburn 1903: vol. 9, 267). Only the construction of a

right line elevates the viewer’s mind to higher moral thoughts.

In the examples outlined in this section there is the suggestion that geometry,

through its construction, can be ethically coloured and that the architectural form

that results from such a construction will bear evidence of this taint. There is also

specific agreement in the examples that it is the construction process that reflects the

moral standards of the geometer or designer, not the resultant geometry.

Intriguingly, all of the arguments concerning the ethics of geometry are closely

related to the first of the normative schools of thought, virtue theory. Virtue theory

does not tell people how to distinguish between moral or immoral actions, rather it

argues that if a designer or geometer has the right personal qualities they will not be

motivated in immoral ways.

The Construction of Curvilinear Form

Historically, the production of curvilinear architectural forms has occurred in an

environment that is aware of the cultural, political or symbolic significance of such

surfaces and the geometry that underlies them. In semiotic theory this environment

is said to possess a “social contract” wherein words and forms have some degree of

consistent meaning, and that this meaning results from the construction of language

or architecture (de Saussure 1959; Broadbent 1970). For example, in medieval art

the vertical aureole form, the mandorla or vesica piscis, repeatedly frames images

of religious significance. The same almond-shape is also present in the curved

vaults and the window forms of religious structures of the era. Such arched forms

are a direct result of the underlying geometric armature and the symbolic

significance of its generation.

During the Renaissance circular forms were central to many religious structures,

and the treatises of Vitruvius and Alberti ensured that such constrained curves were

understood, at least by cognoscenti, as derived from the proportions of the human

body which, in turn, have a more numinous origin (Kruft 1994). The archetypal

Baroque compound curve found in the façade of Borromini’s S. Carlo alle Quattro
Fontane has both regular sinusoidal flowing surfaces along with more dynamic
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syncopated curves constructed of broken oval segments. Such curves responded to

the social, symbolic and phenomenological needs of the counter-reformation

(Norberg-Schulz 1971, 1980). Their construction, especially at the hands of

Guarino Guarini, was reliant on a rigorous geometric interpretation of the

connection between experiential or secular qualities (especially perspective) and

symbolic or profane characteristics (Meek 1988). The rise of Modernism, initially

in French Enlightenment architecture and later in Russian Constructivism, saw the

return of strong geometric curves. In such cases, ranging from Ledoux and

Boullée’s spherical buildings to Melnikov’s and Chernikhov’s intersecting

cylinders, architectural form was derived from clearly articulated geometric

constructions. Moreover, while geometry in such works was no longer

theologically nuanced it nevertheless had a symbolic role to play in evoking the

Zeitgeist. In all of these examples the curved architectural form has resulted from a

conscious understanding that certain geometric constructions possess properties

that lend themselves to particular semiotic (associated with meaning) or

phenomenological (associated with experience) applications. However, in recent

years the methods for producing complex curvilinear architectural forms have

become increasingly reliant on the computer and the process of transformation.

In the interpretive systems developed to analyse the philosophical or ontological

implications of classical geometry the persistent influence of an operation on a

spatial system is called a transformation. An example of a simple geometric

transformation is found in D’Arcy Thompson’s famous book of 1942 On Growth
and Form (1961). In this work Thompson presents a series of line drawings

showing how one species of fish can be seen to resemble another when they are

visually stretched according to a series of geometric rules (Fig. 90.1). William

Mitchell (1990) defines this process as a continuous geometric deformation and

compares it to Albrecht Dürer’s explanation of human physiognomy and proportion

using similar continuous deformations (Fig. 90.2).

Mitchell classifies a series of different types of linear deformations, including

“stretch”, “shear” and “perspectival”; so named because of the dominant geometric

distinction between a regular two-dimensional grid placed over an object and its

post-deformation version. Mitchell also provides examples of non-continuous

deformations where certain relational properties of a shape are retained while

others are altered. Importantly, in all of these cases the geometry that underlies

the transformation is both visible and controlling. Yet, in computer aided design

software the geometric construction is typically invisible. An informative example

of such a computational transformation is found in the work of architects Solan

Kolatin and Bill Macdonald.

In the last decade Kolatin and Macdonald have achieved international

recognition for their designs that have been produced through the application of

generative algorithms (2001). Their widely published Chimerical Housing project

takes as its starting point a found object; a “normative three bedroom, two-and-a-half

bathroom colonial house” (Kolatin and Macdonald 2000: 71), which came

pre-packaged as a library part with the modelling software they use. This found

object is then subjected to an iterative process that transfigures its form: a type of
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extreme weathering that attacks the edges of the object, slowly liquefying it until it

has been converted into an amorphous puddle. Kolatin and Macdonald’s intention

with the Chimerical Housing project is to determine the point at which the form has

become most visually arresting. They describe the transformative process as

consisting of three stages. In the first stage the transformation creates what they

call “useful” genetic aberrations: forms which still foster some level of semiotic

recognition. In the second stage the transformation produces “monsters”: mutations

where the form has become sufficiently attenuated or distorted that it may no longer

be a spatially useful outcome. Finally, when the algorithmic regression has reduced

the house to a flattened mass, they describe the form as “noise” or visual static.

Kolatin and Macdonald see their role in this process as deciding the stage at which

the transformation is halted. They are not explicitly interested in either the starting

point or the end point, nor is the geometric construction that underlines the

transformation ever mentioned. This method is in stark contrast to the historical

process of deploying geometric constructs to produce an architectural form that

possesses characteristic properties derived from the underlying geometry.

In 1995 I suggested an experimental case for challenging students to think about

the relationship between architectural form, geometry and the computer. Again a

found object is the starting point: most computer-aided design tools rely on found or

Fig. 90.1 Continuous deformation as a strategy for creating different species of fish. Image:

courtesy Tessa Morrison, after D’Arcy Thompson
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pre-packaged objects. In the majority of software modelling packages, walls,

surfaces and doors are pre-prepared and are simply modified by the designer. The

starting object in this case is Le Corbusier’s Villa Savoye, a building that has been

repeatedly used as a basis for different architectural investigations associated with

space and form. This experimental design, the Villa Sphere, has been modelled not

just as an overall form, but also individually so that every element can be contoured,

textured or surfaced. Moreover, each element is also fixed in certain distinct

relationships columns and beams are instructed to remain connected regardless of

what happens to the model. Then the starting object is selected and a single item is

chosen by the designer from a “drop-down” menu. The building’s form is gradually

transformed as the entire structure is “spherized” a standard operation from the

transformation palette of many modelling programs. Like Kolatin and Macdonald’s

Chimerical Housing, Le Corbusier’s seminal work soon buckles, unfolds and

inflates like a balloon, although all elements retain their necessary relationship

(Figs. 90.3 and 90.4). If left long enough, the transformation will stretch the

Fig. 90.2 Geometric Transformation as a strategy for creating different faces. Image: courtesy

Tessa Morrison, after Dürer
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building into a contorted globe with beams as meridians, columns as lines of

latitude and floors as continents.

This process of digital transformation is strikingly similar in concept to that

employed in creating many architectural forms in recent years. For example, it is

conceptually akin to Greg Lynn’s development of “blobs” isomorphic polysurface

structures from disconnected primitives and the application of a transformative

tool, the “metaball” function (Lynn 1995: 39–44; Lynn 1999).

In these three computational examples, Chimerical Housing, the Villa Sphere

and blobs, architectural form results from a process of transformation that is

disconnected from the geometric construction which underlies the operation. If

then the proposition that commenced this chapter that architectural form is open to

ethical criticism is tentatively accepted and the associated presupposition is also

accepted that geometric construction is complicit in the ethical framing of form

then what does ethical discourse say about these computational examples?

Conclusion

Throughout the chapter various arguments have been offered that the geometric

construction of architectural form has ethical implications. These ethical

arguments, which are primarily drawn from virtue theory,1 suggest that in the

case of geometry:

Fig. 90.3 Villa Sphere:

“Stage N+ 14

transformation”. Image:

Michael Ostwald and Rod

Halligan

1A problem with virtue theory, and its architectural application, is that it is asynchronous with

many contemporary values. Virtue theory tends to be derived from traditional or normative

western thought. Virtue theory should not be dismissed for this reason alone but it does have

more in common with historic approaches to architecture than contemporary computational ones.
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1. the process of construction must be a conscious act for it to be open to ethical

criticism. Virtue theory maintains that a conscious act should demonstrate a

degree of forethought, logic and rigour;

2. the process of construction reflects the respect the geometer or architect shows for

their audience and the subject. Virtue theory suggests that a person possessing the

right moral characteristics will comport themselves in an appropriate way and that

this behaviour will be reflected in their works.

In addition to the ethical characteristics of geometric construction in itself, the

architectural forms that result from such operations also possess potential moral

dimensions. The geometric construction, as it is expressed in architectural form,

has:

3. phenomenological qualities that condition the way in which an individual or

crowd reacts in a space. This experiential quality, an indirect result of geometric

construction, is a traditional architectural value directly associated with firmness

and commodity;

4. semiotic qualities that shape the messages communicated to an individual or a

community. Whether or not such qualities make architecture ethical depends on

the message being propagated.

In the remainder of this section these four types of ethical criticism of the

geometric construction are analysed in terms of computational transformation and

the Villa Sphere.

Consider the process of computational transformation. Even the most banal

computer-aided design software can generate complex three-dimensional forms

without the architect having to possess any knowledge of geometry. In the process

of computational transformation, geometry, as a system of construction, is hidden

behind iconic “tools” or “functions”, optimised operations prepared by software

programmers to allow architects to avoid geometric construction altogether. While it

Fig. 90.4 Villa Sphere:

“Stage N+ 20

transformation”. Image:

Michael Ostwald and Rod

Halligan
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is historically true that architects have been able to create form without a detailed

understanding of the underlying geometric construction, never before has this been

able to occur without a visible construction process. It is possible to argue that by

making the construction process invisible the computer has freed the architect from

the burdens of geometric construction and allowed them to focus exclusively on form.

Yet, historically it is the very process of geometric construction that provides

architectural form with meaning and governs its capacity to guide experience

(Pérez-Gómez 1992; Evans 1995; Pérez-Gómez and Pelletier 1997). Before

considering the semiotic and phenomenal implications of the transformative

approach, questions concerning consciousness and comportment need to be

considered; if the process of construction is invisible, has it occurred at all?

If an architect sets in motion a form-making procedure, regardless of whether it

is reliant on geometric construction or computational transformation, he or she is

acting consciously. However, if virtue theory is adopted as a framework then the

process is only ethical if the conscious act is at the very least logical, rigorous or

planned; Nigel Taylor calls this an ethics of “care” (Taylor 2000). Consider the

Villa Sphere example in this context and ignore its discursive intent. The act of

selecting a starting object and then subjecting it to transformation is undeniably

conscious and by inference the design must be open to the ethical criticism of its

geometric construction. The process of creating the object (the Villa Savoye) also

displays a certain care, but the transformation does not. The transformative process

may be stopped and analysed by the architect, again showing a limited form of

interest, but the end point is chosen without foresight or demonstrable logic. This

suggests that the design of the Villa Sphere may be ethically unsound. The second

ethical question associated with geometric construction is concerned with

comportment. Lachterman’s theory of the ethical virtue of geometric construction

may be extrapolated to the case of the Villa Sphere with two possible readings.

First, in the computer program the construction of geometry is without

comportment (expression of individual virtue or lack thereof), at least insofar as

the designer using the software has no personal expression in the geometric

construction. Alternatively, the comportment of the software programmer may be

embedded in the resultant form because the past construction (hidden in the

programming code) is enacted every time the software operates. In this example

there is a separation between construction and form a separation that either

disconnects architecture from the ethics of geometry or provides a diminished

connection. In either case, the architect’s disinterest in the underlying

construction process is a strong indicator of his lack of respect for potential

inhabitants and for the resultant architecture.

The invisibility of the construction process is also ethically contentious from the

point of view of both semiotics and phenomenology. This chapter has previously

argued that the visible construction of form from geometry is central to the historic

“social contract”; the communal agreement that, in this case, architectural form has

the capacity for communication in and of itself. While all form has some capacity

for evoking meaning, without the social contract every person will interpret form in

their own way. Thus, from an ethical perspective, a potential problem with the loss

of connection between construction and form is that the resultant architecture can
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only communicate with an individual, not with a community and ethical rules are

typically mediated by communal needs.2 Another way of understanding this

dilemma is to realise that without an appreciation of geometric construction the

historic rigour of form creation has been replaced with experimental and intuitive

form generation (neither of which display due care). Thus, regardless of whether or

not the social contract is important, the rigour of form generation is lost when the

construction process is invisible. In the case of the Villa Sphere, the geometric

construction lacks a human hand; the selection of a function in a software menu like

“spherize” or “metaball” may repeat the general rules of geometric construction but

they lack the spirit, or intentionality, which is presumed to give the resultant form

meaning.

While the present chapter cannot categorically support the opening proposition

that the process of geometric construction is complicit in the ethics of the resultant

architectural form it does identify several important approaches to this argument.

Moreover, in the specific case of the computational transformation there are

evidently serious limitations from the perspective of moral philosophy that have

to be considered by architects creating complex curvilinear forms in this way.
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Chapter 91

Equiangular Numbers

Henry Crapo and Claude Le Conte De Poly-Barbut

Some mathematical problems are resolutely geometric. No matter what you do to

them, subjecting them to different sorts of manipulations and calculations, their

‘geometric content’ persists even in the tiniest parts of what remains, even in the

numbers used to express their solution, like the parts of an image residing

‘everywhere’ in a hologram, or like the smile of a Cheshire cat. We want to tell

you of one such problem, and of a delightful series of real numbers starting with 0,1,

. . . and tending toward 2, that does its best to recall the struggles along its path into
existence. We maintain that it is because of these ancient struggles (which are

bound to recur when one tries to ‘construct’ them) that these numbers are of

architectural and artistic significance.

σ2 σ3 σ4 σ5 σ6 σ7 σ8 . . . σ8
0 1 1.41421 1.61803 1.73205 1.80194 1.84776 . . . 2

You will recognize the first few even in this inappropriate form, rounded off to

five decimal places: (σ4 is √2, while σ5 is τ, the Golden Mean, and σ6 is √3). We call

the sequence {σn} the equiangular numbers.
The story begins with one of Donald Coxeter’s masterpieces, his algebraic

characterization of groups generated by reflections (Coxeter 1935). His

formulation is simple: you insist that your group be generated by a finite set of
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elements of order 2, say {si | i¼ 1. . . n}, and that the defining relations be all of the
form

sisj
� �cij ¼ ε

for extended integer values cij, where i< j and 2� cij�1, and ε is the identity

element of the group. These values are recorded in a graph whose vertices are the

generators, and where the edges ij are labelled cij whenever this value is at least

3. (By cij¼1 we mean simply that there is no corresponding relation imposed; all

the powers (sisj)
n are distinct.) For instance the graph denotes the group

with three generators, and relations

s21 ¼ s22 ¼ s23 ¼ s1s2ð Þm ¼ s2s3ð Þn ¼ s1s3ð Þ2 ¼ ε:

The hard part was then to show that every such group is geometrically

representable as a group generated by reflections.

Say you have a group generated by reflections in n mirrors, which we call the

generators, surrounding a fundamental region in a space. These generators are

reflected in each other to form virtual reflectors, which we call mirrors;
algebraically they are conjugates xsx�1 of a generator s by an element x of the

group. The space is divided up into cells, each an image of the fundamental region

under a succession of reflections, and representing the element of the group that

carries the fundamental region to that location (Fig. 91.1). Since each element x of
the group is expressible as the product of a word in generators, it has a length ‘(x),
equal to the minimum length of a word s1 . . . sn with product π(s1 . . . sn)¼ x x. A
word of this length is called a short word for x. Geometrically, the length is the

number of mirrors you have to cross in order to get from the identity (fundamental

region) to the cell representing the element x. Every mirror is a conjugate xsx� 1 of a

generator s by an element x; take this element x to be of minimum length among

such expressions, and choose any short expression for x. You find a short

palindrome s1 . . . sn . . . s1 for the mirror.

Under the partial order

x � y if and only if some short word for x
is a prefix of some short word for y

the group becomes a semilattice (to be precise: a complete meet-semilattice: every

subset of the group has a greatest lower bound), or simply a lattice, if the group is

finite. Each step, or covering pair [x,y], where x< y and ‘(x) + 1¼ ‘(y), has an

associated generator s¼ x� 1y and an associated mirror m¼ yx� 1, which we call the

generator label and mirror label, respectively, of the step. It is a nice surprise to

find that there are consistent drawings in which steps with the same mirror label are
drawn parallel. Perhaps even more surprisingly, if these vector directions xm, one
for each mirror m, are very carefully chosen in n-dimensional space, the resulting
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figure becomes the 1-skeleton of a zonotope (Fig. 91.2), the convex figure formed as

the Minkowski sum of the line segments [0, xm], or of a zonotopal tiling.
The question remains, for a Coxeter group, given, say, by its graph of generators

and relations, how do we choose the vectors xm in order correctly to draw the

corresponding zonotope or zonotopal tiling? In his charming article on zonotopes

(1962), Coxeter showed how it suffices to cut all the vectors by a hyperplane, and so

Fig. 91.1 The group generated by three reflections of the cube

Fig. 91.2 The group as zonohedron
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work with figures of projective points. This will be our approach, to construct these

mirror diagrams.
Look at Fig. 91.1 in detail. There is a cell for each element of the group

generated by reflections of the cube, with fundamental region shown in

grey. The three types of edges encode the corresponding generator labels, while the

letters are the mirror labels. The outer edges should be identified in pairs so that the

sheet forms a polyhedral surface (here, the cube). Figure 91.2 is a correct projection

of the corresponding zonotope, with flat octagonal, hexagonal, and square faces in

3-space. Figure 91.3 shows the mirror diagram for this group. Note that for any pair

xy of mirrors, their successive conjugates

x, xyx, xyxyx, xyxyxyx, . . .

are collinear, and that the mirrors at the ends of each line are of minimal lengths for

that line. Here are nine mirrors, arranged on seven major lines. This simple figure

already possesses a non-trivial projective property. Since the four mirrors a,
d¼ aba, e¼ bab, b lie at the four points of intersection of a line ab with the six

edges of a plane tetrahedron (vertices cfgi), these four mirrors are harmonic. If we
assign coordinates (1, 0, 0) to a, (0, 1, 0) to b, and place the points d and

e symmetrically relative to the midpoint (1, 1, 0), then the point d will have

coordinates (√2, 1, 0)¼ (σ4, 1, 0).
Mirror diagrams for the groups of permutations of

an n-element set are generalized Desargues configurations, as in Fig. 91.4, formed

by the intersection of n hyperplanes in general position in a space of dimension

n�1. For S4 this is a complete quadrilateral in the plane, for S5, the usual Desargues
configuration in 3-space.

Fig. 91.3 The mirror configuration for
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For the group generated by reflections of the icosohedron or

dodecahedron, the mirrors configuration (Fig. 91.5) already has no possible
projective construction! Any such construction would be a projective

construction of the golden mean, which is known to be impossible using

straightedge only. Try drawing this figure, just looking at a list of sets of points that

are supposed to be collinear. You will quickly see why we are making a fuss about

equiangular points! (You can get it right quickly by trial and error, but trial and error

has no standing as a projective construction.) We have shaded some triangular

regions of the diagram in order to emphasize that this is a projective regular
pentagon chgij, with inner and outer stars: take the line ab to be the line at infinity.

The problem of drawing mirror diagrams for Coxeter groups has a simple general

solution if we are willing to impose appropriate restrictions on the positions of those

mirrors on lines joining pairs of generators. If these choices are made in a natural

way, there is a straightforward construction of the remaining positions; everything

just falls into place. We must take a closer look at the case of two generators.

For two generators a,b, the simplest such group is that for (ab)1¼ ε. This is the
group you see in the barbershop (Fig. 91.6) with parallel mirrors on opposite walls.

You see not only infinitely many chairs, but infinitely many mirrors, each making

its own faithful reflected image of the entire infinite scene. The generators are the

two mirrors bounding region ε, with real silvered glass.

If the two generators are not quite parallel, the series of images will bend along a

circular path of large diameter. Whenever the angle between them is a rational

multiple of π, the images will pile up in a finite number of distinct positions. For

mirrors at an angle of π
n we find 2n images, one for each element of the dihedral

group Dn, and n concurrent mirrors at equal angles (Fig. 91.7).

Fig. 91.4 Mirror diagrams for the symmetric S4, S5, S16
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Consider a family P of n coplanar and concurrent equiangular lines L1, . . . ,Ln

through a point c in the plane. Intersect this family of lines with a line L parallel to

the bisector of a pair of consecutive lines, say of L1, and Ln. By ^ and _ we denote

the operators join (of a pair of points, to form a line) and meet (of a pair of lines, to

form a point), respectively, in the projective plane. Let pi¼ Li^ L, for i¼ 1 . . . n.
We call such a set En¼ {p1, . . ., pn} a centrally symmetric set of n equiangular
points (Fig. 91.8).

Without loss of generality we may select homogeneous (projective) coordinates

p1 ! 1; 0ð Þ
pn ! 0; 1ð Þpn ! 0; 1ð Þ

midpoint of the segment p0; pn½ � ! 1; 1ð Þ:

Fig. 91.5 Mirror diagram for the group of the icosahedron

Fig. 91.6 A portion of the group
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Then the projective coordinates of all points pi are determined, each up to a

non-zero scalar multiple. Let (σn, 1) be the coordinates of p2, given n equiangular

lines.

These values σn can be computed as roots of a sequence of polynomials, as

follows. Let r1 be reflection of the plane in mirror L1. The mapping

A : p ! L ^ r1 p
_

c
� �� �

is a projective map, an involution of the line L fixing the point p1 and inducing the

permutation

Fig. 91.7 The group (barbershop quintet)

Fig. 91.8 A line of seven equiangular points
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p1ð Þ p2pnð Þ p2pn�1ð Þ . . . pkþ1

� �
if n ¼ 2k

p1ð Þ p2pnð Þ p2pn�1ð Þ . . . pkpkþ1

� �
if n ¼ 2k � 1

of the points pi. This mapping A can be expressed as right-multiplication by the

(2� 2)-matrix

�1 0

σ 1

� �

since this linear transformation and its non-zero scalar multiples are the only linear

maps that send (1,0) to a scalar multiple of itself, exchanging (σ,1) and (0,1) with

scalar multiples of each other.

Our symmetric choice of projective coordinates (1,0) for p1 and (0,1) for pn,
permits us to express the central symmetry D of the figure by the linear

transformation with matrix

0 1

1 0

� �
:

This transformation induces the permutation

p1pnð Þ p2pn�1ð Þ . . . pkpkþ1

� �
if n ¼ 2k

p1pnð Þ p2pn�1ð Þ . . . pkð Þ if n ¼ 2k � 1:

Composing the maps D, then A, we obtain a map that induces the cyclic

permutation ( p1 p2. . .pn) which advances the points along the line (a turn by one

of the 2n cogs of the wheel), and has matrix

0 1

1 0

� � �1 0

σ 1

� �
¼ σ 1

�1 0

� �
:

Using multiplication by this matrix DA to compute the coordinates of the

successive points pi, we find

p1 ¼ 1; 0ð Þ
p2 ¼ σ; 1ð Þ

p3 ¼ σ2, � 1, σð Þ
p4 ¼ σ2 � 2σ, σ2 � 1ð Þ

p5 ¼ σ4 � 3σ2 þ 1, σ2 � 2σð Þ
⋮

pm ¼ f m σð Þ, f m�1 σð Þð Þ,
⋮

for m¼ 1, . . ., n, where the fm form a sequence of polynomials
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f 0 ¼ 0

f 1 ¼ 1

f 2 ¼ x
f 3 ¼ x2 � 1

f 4 ¼ x3 � 2x
f 5 ¼ x4 � 3x2 þ 1

f 6 ¼ x5 þ 4x3 þ 3x
f 7 ¼ x6 � 5x4 þ 6x2 � 1

⋮

determined by initial values f0(x)¼ 0, f1(x)¼ 1 and the simple recursion

f m ¼ xf m � 1� f m � 2,

for all m� 2. In closed form:

f m xð Þ ¼
Xm�1ð Þ=2b c

i¼0

�1ð Þi m� i� 1

i

� �
xm�2i�1

The terminal condition fn¼ 0 applies, and permits us to determine the correct

value of σn, the largest positive root of fn. Factorizations of these polynomials, with

integer coefficients, and exact expressions for their roots in terms of radicals, begin

as follows:

Our attempts to use computer algebra systems to solve the polynomial equations

for fn¼ 0 yielded useful results only for n� 6, a difficult expression in radicals for

n¼ 7, and no results at all for n> 7.

A trigonometric solution, however, to the equations fn(x)¼ 0 exists, and takes

the form:

2 cos
kπ

n
for k ¼ 1, . . . , n� 1,

with largest positive root

0: 0

1: 1

2: x 0

3: (x� 1)(x + 1) � 1

4: x(x2� 2) 0, � ffiffiffi
2

p
5: (x2� x� 1)(x2 + x� 1) �1� ffiffiffi

5
p� �

=2

6: x(x2� 3)(x2� 1) 0, � 1,
ffiffiffi
3

p
7: (x3� x2� 2x + 1)(x3 + x2� 2x� 1).
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σn ¼ 2 cos
π

n
:

Using these values of σn we can construct a linear representation of the group.

Each generator si is given by standard unit vector,

si ¼ 0, . . . , 1 . . . 0ð Þ,

while the linear operator ‘conjugation by si’ is given by the matrix

1 0 � � � σ1i � � � 0 0

0 1 � � � σ2i � � � 0 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 � � � �1 � � � 0 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 � � � σn�1, i � � � 1 0

0 0 � � � σni � � � 0 1

0
BBBBBBBB@

1
CCCCCCCCA

Extend this matrix representation multiplicatively, first representing each

element x in the group as a product of generators, then ‘conjugation by x’ as the
corresponding product of matrices. It is now an easy matter to compute projective

coordinates for all the mirrors, since each is the conjugate of a generator by an

element of the group, and is thus the image of a standard basis vector under

multiplication by one of these product matrices. For instance, each mirror in the

symmetric group , being a permutation with cycle

structure (ij), gets coordinates (0,. . .,0,1,. . .,1,0,. . .,0), where the 1s are in

positions i through j–1.
In the limit, with σ¼ 2, the ‘translation’ map DA has matrix

2 1

�1 0

� �

and creates an infinite sequence of points

p1 ¼ 1; 0ð Þ, p2 ¼ 2; 1ð Þ, p3 ¼ 3; 2ð Þ, . . . pk ¼ k, k � 1ð Þ . . .

reaching a projective limit at the midpoint (1,1) (Fig. 91.9). Mirror reflection in the

line L1 the linear map A, permutes pairs of points on opposite sides of this midpoint

(Fig. 91.10):

k, k � 1ð Þ �1 0

2 1

� �
¼ k � 2, k � 1ð Þ:

In closing, we should notice that a geometric situation gave rise to a difficult

(yea, impossible) construction problem in projective geometry, then to a problem in
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polynomial algebra that taxes the powers of the best modern computer algebra

systems, but which had a simple solution in terms of trigonometry. It is fair to ask

whether these further values of σn, for n¼ 7,8,. . . occur already in nature, for the

simple reason that they are the natural coordinates of equiangular points. Finally,
since the merits of the golden mean are well recognized in artistic matters (planning

of paintings, design of building façades, or choice of relative dimensions for

European paper stock), where the aspect of 5-equiangularity is thoroughly

disguised, surely the subsequent values of sn for n> 5 can give rise to analogous

aesthetic feelings in similar situations. Can our readers point to any instances of the

use of s7 in ancient or contemporary architecture?
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Chapter 92

Architecture as Verb and the Ethics of Making

Alberto Pérez-Gómez

Introduction

Recent architectural production, considered at the leading edge of design,

celebrates the use of computers to generate impossibly novel forms and “spaces,”

with a complete disregard for historical precedent and seemingly oblivious of

humanity’s embodied consciousness, i.e., the oriented spatiality of the user. This

application of computer technology to design seems to have left behind its simple

utilitarian justification as a tool that might improve the efficiency of architectural

production, to be driven by the claim of the tool’s capacity to generate “new forms,”

totally “other” from our traditional “orthogonal” building practices. Indeed, recent

powerful software packages are now capable of treating surface as the primary

element in design, allowing for unimaginable geometric configurations that are at

once structurally sound and open up an infinity of formal possibilities. Theoretical

arguments behind these practices often argue an ethical intention, a desire to

overcome the wrongs of an architecture traditionally associated with repressive

power, artistic self-indulgence, and political control. These forms, exhibiting

“similarity” in their generative patterns to both cultural artifacts and natural

phenomena, are arguably capable of transcending many of our old dualistic

assumptions, particularly the opposition between scientific rationality and

irrationality, yet in their novelty they seem incapable of offering a place for the

collective imagination.
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Indeed, while it is imperative that we keep searching for more appropriate poetic

forms for the new “programs” of human life in our electronic age, it is simplistic to

imagine that formal extrapolations of “democratic/chaotic” structures may be the

way of the future, an instrumental vehicle to transcend our stylistic conundrums and

make a better dwelling place for humanity. These instrumental processes are

necessarily dependent on mathematical models, themselves “designed” by

computer engineers with the interests of electronic corporations in mind, and

when extrapolated to architecture often become an empty exercise in formal

acrobatics. Engaging these processes, architects tend to forget the importance of

verticality (our spatial engagement with the world that defines our humanity,

including our capacity for thought), our historicity (we are, effectively, what we

have been), and gravity (the “real world” of bodily experience into which we are

born, and that includes our sensuous bond to all that which is not human). At best an

excuse for decontextualized novelty, this rhetorical instrumentality typically results

in new forms of self-referential, structural determinism. The result is an architecture

both oblivious of its specific cultural context and of the experiencing body, hardly

attuned to its intended programmes and paradoxically, disengaged from its ethical

imperatives.

Cultural critics have declared that modernity’s blind faith in novelty for its own

sake should no longer be taken for granted. At a more personal level, we recognize

that spending all our time in front of a computer screen has rewards, but we suspect

that it also carries a price. We lose other kinds of knowledge, usually related to the

body and the senses, other potential sources of wisdom. This epic of “loss” is

already an old story, a transaction that has been going on for many years,

accelerating after the Scientific Revolution of the seventeenth century. Yet, in our

professional capacity, we must act, avoiding nostalgic escapades and engaging in

some way the increasingly more powerful instrumental devices that through their

rational transparency augment our power of transforming and controlling the world.

As architects we start to recognize that the reality of our discipline is infinitely

complex, both shifting with history and culture, and also remaining the same,

analogous to the human condition which demands that we continually address the

same basic questions to come to terms with mortality and the possibility of

transcendence opened up by language, while expecting diverse answers that are

appropriate to specific times and places. Architecture possesses its own “universe of

discourse,” and over the centuries has seemed capable of offering humanity far

more than a technical solution to pragmatic necessity. Our technological world is

often skeptical about architecture having any meaning at all (other than providing

for shelter). Yet, our dreams are always set in place, and our understanding

(of others and ourselves) could simply not be without architecture. We know

architecture allows us to think and to imagine, it opens up the “space of desire”

that allows us to be “at home” while remaining always “incomplete” and open to

our personal death, this being our most durable human characteristic. Even

cyberspace could not “appear” if we were not first and foremost mortal,

self-conscious bodies already engaged with the world through direction and

gravity. We don’t merely “have” a body, we “are” our bodies. It suffices to try to
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think in a totally dark room for more than a few minutes to convince oneself of the

“reality” of this unarticulated, pre-conceptual “ground” of being which includes

“architecture” as the external, visible order.

Thus I have often argued that architecture as an art communicates to us the

possibility of recognizing ourselves as complete, in order to dwell poetically on

earth and thus be wholly human. The products of architecture have been manifold,

ranging from the daidala of classical antiquity to the gnomons, machinae and

buildings which Vitruvius names as the three manifestations of the discipline,

from the gardens and ephemeral architecture of the Baroque period to the built

and unbuilt “architecture of resistance” of modernity such as Le Corbusier’s La

Tourette, Gaudı́’s Casa Batlo, or Hejduk’s “masques.” This recognition is

not merely one of semantic equivalence, rather it occurs in experience, and like

in a poem, its “meaning” is inseparable from the experience of the poem itself. As

an “erotic” event, it overflows any reductive paraphrasing, overwhelms the

spectator-participant, and has the capacity of changing one’s life. In order to

propitiate such events the architect must necessarily engage language. The main

concern of any generative theory of architecture is therefore, in my view, to find

appropriate language (in the form of stories) capable of modulating intended

actions (projects) in view of ethical imperatives, always specific to each task at

hand. The practice that emerges from such a theory can never be an instrumental

application, but rather appears as a VERB, as a process that is never neutral and

should be valorized, a process that in fact erodes the boundaries between the
artistic disciplines concerned with space.

This has been the story of an architecture of resistance since Piranesi, passing

through Hejduk, Libeskind and Peter Greenaway. From the moment when the

traditional divisions among the fine arts were subverted, first in epistemology and

eventually in practice., between the eighteenth and the early twentieth centuries, the

most significant works of art that “construct” a mysterious depth, a significant

spatiality, belong within this story.1

Disembodied computer generated processes usually claim that instrumentality

allows designers to bypass the questions of cultural specificity and ground design in

“scientific natural principles,” finally “closing the distance” between theory and

practice. This is arguably in response to cultural critics whose interest in the

vindication of minority rights has led them to condemn the artistic imagination

and its abuses as a vehicle for power, oppression and exploitation. Respect for the

other and political correctness, however, is hardly assured by instrumental

processes that operate in a historical and cultural vacuum. Richard Kearney has

convincingly shown, on the other hand, that only by engaging our own imagination

(with its inescapable horizon of language, and despite its dangers) can we be truly

compassionate (Kearney 1988). It is our imaginative faculty that allows us to

identify with the other, and truly understand her suffering. This entails a very

real, yet opaque connection between words and deeds. Thus valorizing the work

1 This is the story I tell in my own Polyphilo or the Dark Forest Revisited (1994).
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as process, as embodied making, is not only a means of formal discovery, it is also a

vehicle for ethical production. This form of relationship between theory and

practice, between words and process, is obviously not unprecedented in art, but is

less prevalent in architecture. In this essay I would like to sketch two examples,

from the fifteenth and the twentieth centuries, that illustrate this relationship. The

examples are intentionally far apart chronologically, and my use of them is unusual

in contemporary scholarship. My aim is to draw a map of the vicissitudes of

architecture as verb during the modernization of Europe.

Luca Pacioli’s Divina Proportione

Part Two of Luca Pacioli’s Divina Proportione (1509) is dedicated to the masons,

stone-cutters and sculptors from his home town who, according to Pacioli, had

asked him to provide guidelines for architecture based on arithmetic and geometry.

Unlike Vitruvius and other contemporary writers on the subject, Pacioli defines the

realm of architecture exclusively as buildings. This assumption, which would

become the norm for modern architecture, was indeed a novelty in the early

sixteenth century. Pacioli’s architectural theory has a distinct “technical”

emphasis. Yet, despite his interest in stone-cutting and other practical issues,

Pacioli’s understanding of theory and of the architect’s tools of representation are

unique. As a Franciscan mathematician, interested in teaching theology through

geometry, his characterization of the role of architecture as a true “middle realm”

between the human and the divine challenges our conceptions of Renaissance

artistic culture as a monolithic prelude to a scientific modernity. Rather, Pacioli’s

understanding of the relationship between thinking and making as moments of an

embodied process, differs significantly from both medieval practice, and from the

most generalized modern concepts. His is a non-instrumental relationship, unlike

that which we have come to take for granted for architecture after the Scientific and

Industrial revolutions.

Pacioli was primarily a professor of theology. He is portrayed in his Franciscan

habit by Jacopo de’Barbari2 and addresses us as a teacher prepared to demonstrate,

with his various mathematical and geometrical implements, the wonders of

revealed Truth. On the table lies a beautifully bound volume with initials

identifying it as a book by Pacioli himself. On top of the book is a wooden

dodecahedron, described by Pacioli as the symbol of the “quintessence” because

its construction subsumes the other four (the tetrahedron, cube, octahedron and

icosahedron) and because it must be constructed from the “divine proportion,” the

golden-section ratio that is inherent in the pentagonal faces of the solid. With his

left hand Pacioli points to the words “LIBER XIII” in an open book, while the

2 The responsibility of Pacioli in the design of his own portrait has been well established; see Daly

Davies (1977: 74–76).
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pointer in his right hand is directed toward the geometric diagram on a slate with

“EUCLIDES” inscribed on the side of its frame. Pacioli is demonstrating

Proposition 8 of the 13th (and last) book of Euclid’s Elements, where Euclid

discusses the regular bodies. This theorem is crucial for nesting regular bodies

into a sphere. It is also the beginning of speculation about the “squaring of the

circle,” the attempt to construct a square whose perimeter would be equal to the

circumference of a circle inscribed in the square (a problem that was recognized as

impossible only in the nineteenth century, when the irrational constant π was

understood). In other words, this theorem was believed to be the geometrical key

to the potential “solution” of duality into unity. It was a significant reference in the

discourse of logical reason for architects, alchemists, mathematicians, and

theologians until the late eighteenth century.

The most striking feature in the painting, however, is the floating, shimmering

corpo transparente on Pacioli’s right. This crystalline icosahexahedron (26-faced

body) seems to be half-filled with a transparent elixir, and appears both solid and

hollow. It is reminiscent of the engravings (by Leonardo da Vinci) of regular and

space-filling bodies that illustrate the Divina proportione, likely an allusion to the

“ungraspable true nature” of the primordial substance/space of the universe that is

described by Plato in Timaeus, the prima materia which is both the substance of

human artifacts (such as art and architecture), and the geometric space which is the

place of human culture. In the painting all 18 squares and 8 equilateral triangles are

perfectly and simultaneously visible, illuminated by an unseen source of light that

makes the vessel appear to radiate from within.

What is remarkable about Pacioli’s theoretical work is the explicit desire to

demonstrate a non-instrumental, “opaque” relationship between the most abstract

and the most concrete. His many books provide a comprehensive examination of

practical applications of arithmetic and geometry, as well as mystical numerology.

Architecture he believed to be the most propitious site for “experiencing” this dark,

“irrational” continuity. In his Divina proportione Pacioli’s mystical discussion of

the golden section synthesizes Pythagorean and Platonic themes with Christian

theology, culminating in a section on “practical” aspects of architecture. Pacioli

evidently believed that architecture could fulfill the human quest for spiritual unity

that underlies the mathematical demonstrations in his treatise.

The first four chapters of his book discuss theory and mathemata in general,

including their relevance for painting, sculpture, music, perspective, and

architecture. He emphasizes the origins of theory in vision, based on the wonder

that likely accompanied the experience of cosmic phenomena such as a lunar

eclipse (Pacioli 1509: 63). He insists that nothing can be grasped by the intellect

unless it has been previously offered to perception in some way, emphasizing the

distance existing between the world of perfect ideas and that of human existence. In

other words, Pacioli insists that a geometrical point or a line is not the real point or
line traced by a drafting instrument. The most noble sense is sight because it enables

the intellect to “understand and taste.” This “theory” is always in and of the world,
in accordance with the Greco-Roman understanding of theoria as a contemplation

of truth that also “saves the phenomena.” Such theory is always “discovered”; it
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never dictates to the hands of the artist “how” or “what” to do, yet its epiphanies
are corroborated through enlightened human action. The psychosomatic unity of

human consciousness (as opposed to post-Cartesian concepts) remains here a

primary assumption. This “traditional” theory could never be an imaginary

(scientific) construction of the world (like Copernicus’s cosmology, for instance)

understood from some godly point of view. For Pacioli (like in Plato) only in works

of art and craftsmanship do humans experience (without understanding clearly) a

“dark coincidence” between Being and becoming.

After this important preamble, Pacioli explains why the golden section merits

the attribute of “divine.” He claims that this proportion resembles God himself

through five major correspondences, and reveals Christian truth through

13 important properties that correspond to Christ and his 12 disciples.3 It is

crucial to note that “proportions” for Pacioli refer to the “practice” of

architecture, the actual stereotomy and stereometry of stone masonry, rather than

to the design of Albertian lineamenti in the mind or the architect’s drawings of

plans and elevations. This, and not Vitruvian theory, is indeed Pacioli’s true

concern: the capacity of the “craft” of architecture to reconcile duality into unity

through geometric operations. Speaking about “columns with sides” (pillars or

“square-based columns”), he refers to the “difficult problem of proportioning the

circle to the square using the science of quadratura circuli.” He then speculates that

3 The first of the five major correspondences is with the absolute uniqueness of this proportion, “the

supreme epithet of God Himself”; there is simply no other proportion (a:b::c:d) with the same

characteristics. The second correspondence is with the Holy Trinity; this proportion demonstrates

unity with only three terms, and with three terms alone. It is defined by one mean and two extremes

(proportio habens medium et duo extrema), and therefore is analogous to the Trinity’s one

substance in three distinct persons. The third correspondence concerns the impossibility of

defining God in human terms; this proportion cannot be constructed with “intelligible numbers,”

remaining always “occult and secret. . . irrational in the words of the mathematicians” (the “golden

number,” is approximately 1.618). The fourth correspondence is with the immutable essence of

God; the “divine proportion” is invariable and “continuous,” it arises as the constant factorial

relationship between consecutive terms of the Fibonacci series (mentioned above). The fifth

correspondence is an analogy to the quintessence or “celestial virtue.” In this case, Pacioli

identifies the Christian God with the Platonic demiurge, and Creation with the cosmogony

described in Timaeus. Pacioli argues that God himself created the quintessence, and from it, the

four elements that compose the universe: earth, water, air and fire. The generative function of the

quintessence (God’s heaven), identified here with a prima materia, is analogous “to our holy

proportion that provides formal being (according to Plato in his Timaeus) to the heaven itself,

attributing to it the figure of the dodecahedron. . . the body made of twelve pentagons that cannot

be formed without our proportion.” Consequently, this proportion functions as a “continuous

quantity” that assigns its respective forms to the four elements: the tetrahedron to fire, the cube or

hexahedron to earth, the octahedron to air, and the icosahedron to water; the quintessential

dodecahedron completes the set of five regular bodies. “And through them, our proportion gives

form to an infinite number of dependent bodies” (“space-filling” or irregular polyhedra), that

provide the complex richness we normally encounter in our experience of the world. Most

importantly, Pacioli concludes, without the divine proportion it is impossible to establish the

geometric relationship among these bodies and to demonstrate how can they be circumscribed by a

sphere and thus reconciled with a primordial unity (Pacioli 1509: 69–70).

666 A. Pérez-Gómez



the wise philosopher who is capable of finally solving the problem may have been

born already, “as for me I can demonstrate [its truth] palpabiliter [in a palpable

manner, through tactile intuition], to anyone who may question it” (Pacioli 1509:

170–171). This “perceptual knowledge” of wholeness is precisely the province of

architecture.4

In conclusion, Pacioli’s concept of architecture was unique, perhaps similar only

to the equally “unorthodox” understanding of architecture in the “pagan” and

“alchemical” Hypnerotomachia Poliphili (1499), arguably the work of another

Frate, Francesco Colonna.5 Pacioli’s concern is “technical” rather than

“humanistic,” recalling the alchemist’s search for “gold” as a mineral “sol,” that

is distinct from the true sun in heaven. Indeed, alchemy insists that the quintessence

is a “mortal heaven” that is not identical to God’s heaven. Analogously, Pacioli’s

mathematics were never truly “of this world,” but must be grasped through the

senses. The aim of the architect/craftsman was not to render the ideal world as a

concrete physical presence; this would be an absurd impossibility. Only close to a

century later, Juan Bautista Villalpando legitimized the obsession to actualize the

Temple of Jerusalem in Philip II’s Palace/Monastery of El Escorial, inaugurating a

modern tradition that would continue to our own time, passing through Walter

Gropius and Peter Eisenman. Consequently, Pacioli was not interested in the ability

of an architect/author to produce “pictures” of a future building. The pictura of the

Temple of Solomon in his treatise remained “otherworldly.” Although he was

familiar with the new power of art (particularly the perspectival epiphanies of

painting), his emphasis on craft distinguishes him from most contemporary

writers on architecture. More significantly, although architecture may be a craft,

it need not be devoid of a “philosophical” component. On the contrary: its discourse

is mathematical and theological.

Pacioli’s portrait, in which nothing is superfluous or accidental, reveals not only

his Euclidean teaching and its allusion to divine proportion, but also his interest in a

stereotomic glass architecture. The “philosophical” work of the architect was

modeled on the architecture of the Platonic cosmos that was echoed in God’s

design for the otherworldly Temple of Jerusalem. Stereotomy and stereometry

offer techniques, but also a philosophical understanding of what may be revealed

in the process: the “ephemeral gold” that must be recognized in the unending

process of transmutation which is a human work. Architecture, a “mediating art”

par excellence, emerges from humble materials, from the earth itself, like the glass

that forms Pacioli’s floating icosahexahedron is generated artificially from lowly

4We might recall here the “wondrous demonstration” of the squaring of the circle when a beam of

sunlight is projected into a dark chamber through a square orifice, and the projection turns out to be

a circle. This phenomenon remained a source of wonder during the sixteenth and seventeenth

centuries, well after Kepler’s demonstration of the “pin-hole” principle, according to which an

aperture of any shape will project the sun as a circle.
5 The authorship of the Hypnerotomachia has been the subject of much recent debate. My reading

of Pacioli’s Franciscan understanding of architecture tends to corroborate, albeit indirectly, the

original authorship attribution; see Pérez-Gómez (1994: xi–xvii).

92 Architecture as Verb and the Ethics of Making 667



ashes and sand, an alchemical symbol of rebirth and salvation. Following Pacioli’s

alchemical path, architecture could be construed as a virtuous and ethical craft,

truly a form of meditation, capable of transmuting matter (the earth) and liberating

it from gravity, and enabling humanity (humus) to recognize its spiritual

wholeness.6

Le Corbusier’s Poème

Operating in a very different world than Pacioli, in the wake of Nietzsche, but

within the same European tradition, Le Corbusier provides an excellent example for

the value of process work and the productive non-instrumental relationship between

thinking and making which we seek. The relationships that emerge in this historical

sketch of a longue duree are illuminating.

Le Corbusier admired Choisy’s axonometric images as an example of “modern

space,” objectified and determined precise measurement, a 3-D matrix governed by

scale. In this sense, he appropriated them for his arguments in his early definition of

L’Esprit Nouveau,7 perceiving the appropriateness of this objectified space to his

interest in technique as a determinant of form. He also understood quite early the

relationship between axonometric space and the new space of painting.

It is well known that Le Corbusier sought the integration of the arts. He painted

all his life, seeking at first public exposure. After 1927, however, he decided to

make his painting a private activity, and devoted to it every morning of the week.

He believed that his painting was crucial for his understanding of architecture, the

issue being not one of formal analogies, but rather the activity of making itself, i.e.,
an inquiry into the world of appearances coupled with the careful construction and

realization of projects.8 Critics and historians, incapable or unwilling to think

beyond the Renaissance categories of the Fine Arts, have often underplayed Le

Corbusier’s architectural quest through painting, or have dismissed it as a

propaganda ploy to have his architecture valorized as “art.” On the contrary, Le

Corbusier’s rhetorical plea is crucial to understand his legacy. As a reader of

Friedrich Nietzsche’s Zarathustra and admirer of Alfred Jarry, Le Corbusier

struggled all his life to find ways to translate into architecture, into the pragmatic

world of embodied experience, the new fascinating depth and temporality first

fabricated in canvas and paint, or sketched for sculpture or tapestry.

6 It is worth recalling the Franciscan tradition of seeking self-realization through making, one that

was never free of controversy. The ex-communicated Brother Elias, second General of the

Franciscans (1226–1284), was thought to be the author of various alchemical treatises during

the fourteenth and the fifteenth centuries.
7 The magazine L’Esprit Nouveau was launched in 1920 and ceased publication in 1925. Le

Corbusier was co-editor, with Amédée Ozenfant and Paul Dermée.
8 He described his work in these terms in a catalogue for an exhibition of his paintings at the

Galerie Balay et Carré, Paris, 1938.
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Le Corbusier’s abundant sketches and graphic meditations demonstrate a

pervasive, sharp self-consciousness of the difficulties involved in art as will to

power. Drawing for him was an act of reconciliation between the artist and a

pre-existing reality. He was not naive about the polarities between nature and

culture, geometry and life, or the city and the country. It is true that early in his

life, during his “purist” period, he stressed geometry, and possibly never abandoned

a progressive view of history. His painting during the early 1920s paid attention to

the intricate formal relationships between objects. Transformed into planes rather

than merely “flattened,” the superimposed objects seem to push out from the picture

surface, “squeezing out” space, i.e., common perspectival depth (Green 1987: 113).

By the late 1920s he became friends with Fernand Léger. He had in his possession a

catalogue of a major exhibition of Giorgio de Chirico’s work (1928), and his own

paintings focused on erotic themes. In the 1930s, Le Corbusier came to the

realization that the space of human significance had to be articulated as an erotic

distance. He considered the potential polarity of man against nature no longer

operative; hereafter the manufactured world and the natural one were to be

accepted equally, without compromising either.

A careful examination of Le Corbusier’s sketchbooks (1981) from 1914 to 1964

reveals a consistent use of perspectival views to visualize his ideas. There are often

diagrammatic plans and elevations, but never objectified drawings. Never does one

find an axonometric as the initial idea for a building. There are, of course, some “air

views,” but these are always contextual and perspectival. The only generative

“axonometric” spaces we find in the sketchbook are ideas for his paintings. We

may recall here how Le Corbusier emphasized the importance of patience in

creative work, expressing notions that echoed Filarete when it came to describing

the process of gestation of an idea. After being entrusted a task, he would “place it

in the interior of [his] memory.” He would sketch no more and let the problem

“float, simmer, ferment” until one day “out of the spontaneous initiative of the inner

being” one takes a pencil, charcoal, color pencils, and “one gives birth on the paper:

the idea comes out – the child is delivered” (quoted in Eardley 1981: 13).

The synthetic, comprehensive nature of architectural design generated in the

matrix of axonometric space is incompatible with this conception. Indeed, this

observation is consistent with the total disappearance of axonometric representation

from Le Corbusier’s mature work. Only in the period preceding 1929 (volume one

of the Œuvre complète) was there a frequent use of axonometric drawing.

Significantly, after the early 1930s and coinciding with his new realizations in

painting, there are almost no axonometric drawings in the remaining six volumes of

theŒuvre complète. An examination of the vast Le Corbusier Archives (1982–1985)
yields a similar picture.

Le Corbusier’s concern with this “modern space” in painting was, therefore, not

simply transplanted to architecture. His work can hardly be reduced to the

application of the matrix of axonometry as a place for modernist syntax, as has

been often assumed. Relatively early in his career his true struggle was to find

equivalent modes of presenting in the visual/erotic space of architectural situations.

His experimentation with projection in the space of representation was a life-long
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passion which included an interest in film, and that culminated in an awareness of

artistic discovery as the unveiling of unexpected relationships between objects of

the environing world, emerging from the new contiguities construed in the work. In

1938 he wrote, in terms that recall a surrealist understanding of collage, that the

difference between everyday, prosaic spoken language and painting consisted in a

different way of denoting things. While the former names things narrowly and

specifically, the latter is concerned with the quality of things, bringing them

together freely. Thus it is the unexpected relationships, i.e., the space of

metaphoric tension, that the artist discovers; this “is what the poet proclaims, that

which the inspired being creates” (Green 1987: 117). A decade later he wrote again

about art in New World of Space (1948). He explained the genesis of his Ubu
sculptures, deliberately named in honor of Alfred Jarry, the founder of pataphysics:

“Stones and pieces of wood led me on involuntarily to draw beings who became a

species of monster or god.” Le Corbusier was aware of how the process offered

much to his architecture precisely because it revealed “new things,” “unexpected”

and “unknown.” He concluded:

When the inexplicable appears in human work, that is, when our spirit is projected far from

the narrow relation of cause and effect . . . to the cosmic phenomenon in time, in space, in

the intangible . . . then the inexplicable is the mystery of art . . . (Corbusier 1987: 246).

Articulating this experience in poetic language, Le Corbusier’s Poème de
l’Angle Droit (1955) remains his most comprehensive, rather misunderstood

theoretical statement about architecture. Almost every important aspect of the

architect’s thought finds a place in the verses and images of the Poème. The
Iconostase, the prescribed arrangement for the color lithographs accompanying

the text, is deployed between the tool of the architect (the right angle) at the

center bottom, and the realm of the “cosmos” at the top. The form of the work

itself, in the wake of many other discursive writings, establishes a tension between

words and images, demonstrating Le Corbusier’s awareness of the importance of

the poetic word and of the space of collage to fully express his thoughts. The

“opaque” relationship between image and words communicates the possibility to

reconcile the ordering imagination of the architect and his tools, i.e., the right angle,

with the pre-given order that the architect encounters “already there.”

This issue, a fundamental question for human making and architecture, is not

resolved naively through some kind of theological formulation. Like Nietzsche, Le

Corbusier looked at the unquestionably significant traces of human history, at the

presence of genius, and at our ability to grasp the outlines of destiny, to fill the void

left by God’s demise. Echoing, perhaps unknowingly, the late writings of Nietzsche

in The Will to Power, he seemed to identify the power of artistic creation with the

erotic drive that characterizes the €Ubermann, leading the way for humanity to

discover a new form of spirituality through a reconciliation of will to power and

amor fati. Le Corbusier wrote: “A man who searches for harmony has a sense of the

sacred, the secret which is in every being, a great limitless void where you may

place your own notion of the sacred – individual, completely individual”

(Le Corbusier and Jeanneret 1995: IV, 170). The issue then is to reconcile
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extreme individuality, the work of the creator’s imagination, with a given world,

both natural and constructed, in the absence of a positive theology or cosmology.

The result is much more than a simple reiteration of the old Romantic themes of

transcendence through art, if by art we understand the production of “aesthetic

objects” placed in the homogeneous space of a universal museum.

The ultimate ground and foundation of the Iconostase (G.3) is the hand of the

architect, drawing a right angle within a bounded space, the space of the human

horizon. The Poème fails as “theory” if the expectation is to find a logical,

universally applicable structure for action, or if one still expects the architecture

it evokes to “signify” following a semiotic model. Le Corbusier sought the revelation

of coincidences, bringing together a perceptual faith and the implementation of the

architect’s tools. While respecting the primacy of our technological world—we must

emphasize that he was never naive about an unchanging nature as the ground of

meaning—the issue was the possible revelation of the poetic, the only kind of human

“truth.” This poésie could not be something imposed through a fabricated cosmology

or imported from another time. It had to emerge from our world of experience,

without resentment, embracing all its contradictions.

Some commentators have put forward an alchemical interpretation of the text

and images. At times this tends to rationalize the unresolved tensions in the work

and has been used as an argument to demonstrate Le Corbusier’s “symbolic”

preoccupations, beyond the “formal” and “functional” (Moore 1980). Used in this

way, the analogy cold be problematic. True symbolization occurs only when the

work is made “of” its own world, rather than construed through some alien

construct. In fact, Le Corbusier never expressed himself in the language of

alchemy or Gnosticism. The alchemical interpretation of his pervasive concern

with dualities and their engagement in the work of architecture is only adequate

after arguing that alchemy and mythology embody the traces of a collective

unconscious, rendering his quest in terms similar to those I outlined for Pacioli.

The work does disclose a “rare gold” in the gaps between fragments and words, in

the spaces unveiled by bringing together disparate objects on the same “playing

field” of the Iconostase. There is, of course, a significant affinity between the

techniques of collage and the search for the ineffable unity in alchemy, and the

issue of substantial transmutation (a self-transformation) through the work on the

opus is as present in the arcane science as it is desired by Le Corbusier from his

work. Yet, the issue is still the specific disclosure of truth in the particular

embodiments appropriate to our world, through its forms of representation.

The Poème de l’Angle Droit is, more specifically, a pataphysical text, where

individuality and universality are reversed and reciprocal. The issue of

self-transformation is indeed present, and is accessible to us through Jarry’s

exemplary work. This is indeed the fundamental question for the architect, as it is

for the participants (not mere observers) in his work. Truth must be sought in the

unique coincidences disclosed in each artistic work, a wondrous truth that cannot

be repeated or universalized. Like pataphysics, a modern incarnation of alchemical

theory, the Poème is a search for the exceptional, which is the universal, and

architecture is therefore construed as a “science” of imaginary solutions. This
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discourse is posited as our only possible “cosmology,” the “ground” for artistic

action. The Poème is therefore much more than a celebration of the événement
plastique.9 It is clear that Le Corbusier identified a sense of the sacred with a

harmonious relationship (accord) to the cosmos, attainable through art and

architecture. His work, however, is not simply a reiteration of the Romantic

program of man in a secular “nature;” his (our) nature is also art, without for this

reason being a “mere” construction. Le Corbusier must have been conscious of this

Nietzschean “paradox.”

Le Corbusier’s “patient search” from purism through surrealism led to an

awareness that architecture could not be conceived or perceived in “aesthetic”

terms, that its meaning had to be disclosed in a temporal medium, distinct from

that of the “aesthetic objects” of the modernist tradition. This, I would argue, is

most explicit in Le Corbusier’s late buildings, particularly in La Tourette, so

different in this respect from the early purist work, so respectful of the internal

historicity of the “type” and yet so revolutionary in its transformation. In this late

work, Le Corbusier recognizes that the “re-writing” of the program as a human

situation is a crucial aspect of architectural work, the construing (in words) of a

choreography beyond formal manipulations. The result is a building almost

impenetrable to prosaic human function, inhabitable yet “uncomfortable” and

demanding for human spirituality. While this topic is beyond the scope of this

article, it is worth noting how Le Corbusier became intentionally detached from the

construction process in this case, and “let go” formal aspects of the building that he

would have been obsessed with in his earlier work. La Tourette celebrates “faulty”

craftsmanship and “mistakes” in the translation process between drawings and

building; it profits from the space of unpredictability in the construction process

and transforms it into the place of meaning, the poetic instant that reveals, in a flash,

the coincidence between sublime work and human mortality.
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by Peter Carl (1988).

672 A. Pérez-Gómez
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Yaxchiáln (Mexico), 115, 122

K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to
the Future, DOI 10.1007/978-3-319-00143-2,
© Springer International Publishing Switzerland 2015

683



Archaeological Sites (cont.)
Yucay, Royal Estate (Peru), 365

Zacaleu (Guatemala), 115

Archbishop Eskil of Lund, 164, 165, 167,

174, 624

Archimedes, 61, 73, 190, 191, 193, 196,

219–220, 237, 587, 671, 672

Ariadne, 38, 39, 40

Aristarcus, 223

Aristotle, 38, 168, 617

Arnheim, Rudolf, 592

Arthur (King of Britain), 617

Artmann, Benno, 15, 70, 73, 74, 76, 453–466

Arup, Ove, 50

Ashton Raggatt McDougall (ARM), 51

Augustine, 75

Augustus (Roman Emperor), 36, 216, 220, 635

B
Bandholm, Niels, 14, 399–421

Baptisteries

Baptistery of San Giovanni (Florence),

68, 178

Pisa, 15, 535–546

Barbaro, Daniele, 78, 568, 665

Barbour, Ian, 42

Barrallo, Javier, 13, 325–332
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