
Chapter 39

Quasi-Periodicity in Islamic Geometric

Design

Peter Saltzman

Islamic Geometric Design

It is a commonplace assertion that Islamic cultures share the world’s oldest and most

sophisticated living tradition of geometric ornamental design. Ever since Jules Goury

and Owen Jones completed their monumental book on the Alhambra (1842–1845)

and Jules Bourgoin published his classic work on Islamic designs (Bourgoin 1879),

Western interest in Islamic geometric design has continued unabated.

Symmetry and Its Discontents

In addition to its aesthetic merit, Islamic geometric design is renowned for its

mathematical sophistication, constituting the most highly developed chapter in

cultural symmetry studies.1 Dihedral symmetry groups of high order, all seven

frieze groups, all seventeen crystallographic groups of plane isometries, and several

non-trivial chromatic symmetry groups may be found in abundance in both eastern

and western Islamic countries.2

First published as: Peter Saltzman, “Quasi-Periodicity in Islamic Geometric Design”. Pp. 153–168

in Nexus VII: Architecture and Mathematics, Kim Williams, ed. Turin: Kim Williams

Books, 2008.

1 For a general introduction to the cultural applications of symmetry studies, see Crowe and

Washburn (1991).
2 Good introductions to the symmetries of Islamic geometric designs include the delightful book

by Fenoll Hach-Alı́ and Galindo (2003) and the more comprehensive work by Abas and

Salman (1995).
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Yet the focus of these symmetry studies has little resonance in the scant

historical record documenting the techniques of the Islamic masters, and has

limited relevance to the aesthetic complexity of Islamic geometric design. In

many cases, one can reconstruct a design as a group orbit of a small motif, but

this tells us little about the properties of the design other than its symmetry group.3

The design within a single periodic unit cell is often quite complex, with symmetry

playing a subsidiary role. Grünbaum and Shephard have argued against over

reliance on group theory to interpret cultural artefacts, insisting that other

mathematical measures of order or disorder—and not just symmetries—are

necessary to explain the intrinsic features of the artefacts and better reflect the

intentions of those who produced them (Grünbaum and Shepherd 1992).

Responding to this challenge, crystallographers Emil Makovicky and

Purificacion Fenoll Hach-Alı́ have published a series of papers in the Boletı́n de
la Sociedad Española de Mineralogı́a over the past decade or more (Makovicky

and Fenoll Hach-Alı́ 1996, 1997, 1999, 2001), applying a variety of

crystallographic structural classification principles to the interpretation of Nasrid

designs in Spain. Thus, in addition to symmetries, they have developed informative

analyses in terms of crystallographic shear, occupancy of Wyckoff positions,

rotation of vortex elements and other crystallographic features that together

contribute to the development of a more nuanced grammar of Islamic geometric

design. Here, however, we will be concerned not with these crystallographic

features, but rather with “quasi-crystallographic” features of certain Islamic designs.

The Presentist Fallacy

Before proceeding further, it is worthwhile to issue a caveat concerning the historical

significance of mathematical properties that may attach to certain cultural artefacts.

In discussing the elaborate symmetries of Islamic designs, for example, it is tempting

to impute mathematical knowledge “ahead of its time” to the architects, artists or

others with whom they worked. However, we know little about the medieval artists

and scientists who were responsible for these masterful designs—although in the

tenth-century text of Abu’l-Wafa’ al Buzjani on geometric constructions there is

mention of regular meetings between mathematicians and artisans concerning the

design of geometric ornament (Özdural 2000). Nevertheless, imputing nascent group

theory or a nascent theory of quasi-crystals to medieval artists or mathematicians

simply cannot be justified on the basis of the historical record.

Ultimately, attempts to find precursors of contemporary mathematical thought in

the cultural production of medieval Islam, or any other period for that matter, fall

prey to the presentist fallacy—the fallacy of reading the present into the past, or, as

3 Several works analyse the orbit structure of Islamic designs in this manner, including Grünbaum

and Shepherd (1986); Abas and Salman (1995); Ostromoukhov (1998).
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Butterfield has expressed it in a different context, the fallacy of using the past as

“the ratification if not the glorification of the present” (Butterfield 1931). Therefore,

in assessing Islamic geometric designs for their mathematical properties, it is

important to keep in mind that we are not addressing the historical question of

what technical knowledge and concerns motivated the construction of those

designs, but rather the aesthetic question of how the mathematical properties may

help to explain the sensible qualities of the designs themselves.

Islamic Dual Designs

Fortunately, one of the few things we do know about the historical practice of

Islamic geometric design is the widespread use of grid dualization (sometimes

referred to as the “polygonal” or “polygons in contact” technique): the use of an

underlying polygonal grid from which the design is derived by a stylized variant of

topological dualization.4 This method is as important to Islamic geometric design as

linear perspective is to Renaissance painting. Fig. 39.1, showing two designs from

the magnificent Topkapi Scroll (Necipoğlü 1995) of the late fifteenth century,

suffices to convey the idea.

In each panel, an underlying polygonal grid is first laid down. Similar points (one

or more) are then chosen on each of the edges of the polygons, through which

“dual” lines are drawn at specified angles of incidence. The dual lines are then

continued (not necessarily linearly) until they meet other dual lines of similar

origin.

As can be seen from these examples, grid dualization is a highly versatile

technique, with three principal design choices: the type of grid, the method of

dualization, and the manner in which the design is rendered. Islamic artists used

radial grids, lattice grids and a wide variety of other tiling grids. The dual lines can

be drawn through just one edge point—usually the midpoint—or through two or

more edge points; and their angles of incidence with the edges can be set at various

values. The final design may include the underlying grid along with its dual

(an “additive” design) or exclude it; and the lines may be rendered by

interweaving (alternating “over” and “under” positions along each line), or with

the interlinear regions coloured to form a tiling pattern. Grid dualization has

enormous aesthetic value: even quite “ordinary” Archimedean or other tilings

have duals that appear far more interesting and dynamic than their progenitors.

According to Jay Bonner, the four most common families of eastern Islamic

designs were those whose dual lines were drawn through edge midpoints, with

angles of incidence chosen to be 36� (“obtuse”), 54� (“middle”) or 72� (“acute”),

4 Discussions of this technique may be found in Hankin (1925, 1934); Wade (1976); Bonner

(2003); Kaplan (2005).
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and those with dual lines drawn through two edge points.5 Grid dualization (or in

Bonner’s terminology, the “polygonal technique”),

is the only method for which there is documented proof that traditional designers used the

system widely throughout the Islamic world. The polygonal technique is the only method

that allows for the creation of both simple geometric patterns and the most complex

compound patterns, often made up of combinations of seemingly irreconcilable symmetries

. . . The polygonal technique has the further characteristic of allowing for the creation of all
four principal families of Islamic geometric pattern [obtuse, middle, acute and two-point]

regularly found throughout the Islamic world (Bonner 2003).

Many writers on Islamic geometric design ignore the grid method, inventing

various ad hoc surrogates in its place. For example, Lu and Steinhardt refer to the

“direct strapwork method”, which they illustrate with a straightedge and compass

construction (Lu and Steinhardt 2007a: Figs. 1A–D). They then posit a “paradigm

shift” from this direct strap work method to a modular tiling method, whereby a set

of five particular girih tiles (five of the ten shapes that Bonner includes in what he

calls the “5-fold system of geometric pattern generation”) decorated with particular

dual lines is used to construct a variety of designs. Certainly, it is sometimes useful

to develop and construct dual designs in this modular manner, but Lu and

Steinhardt’s claim that the modular use of these five decorated tiles constituted a

“paradigm shift” in medieval Islamic design is unconvincing. Whatever the

historical genesis of the girih tiles, modular use of decorated tiles is just one facet

of dualization, and many other sets of tiles and dual decorations were in constant

Fig. 39.1 Two dual designs Topkapi Scroll (Necipoğlü 1995). Thick lines show the underlying

grid. Drawing: author

5 An extensive discussion may be found in Bonner (2000).
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use. Moreover, because the same dual design can usually be derived from more than

one grid, it is not always clear which tile set was used to generate a given design.

Finally, it should be pointed out that grid dualization is of mathematical interest in

its own right. Dual designs inherit many of the symmetry and other properties of the

underlying grid, but also introduce certain novel tile shapes, colouring and other

combinatorial properties. Bonner (2000) and Kaplan (2005) have noted the fact,

already alluded to, that the same dual design can be derived from different grids (the

two being connected, in Kaplan’s terminology, by a “rosette transform”). For example,

the “obtuse” dual of the grid on the left side of Fig. 39.2, consisting of convex

pentagons, hexagons and decagons, is the same as the “middle” dual of the grid on

the right side of Fig. 39.2, consisting of a decagon packing with non-convex “bowties”.

This observation leads to consideration of an equivalence relation on the space

of grids (tilings), two grids being “equivalent” if any dual of one is a dual of the

other. Equivalent grids behave similarly with respect to symmetry and—to

anticipate our main theme—with respect to quasi-periodicity. In fact, grid

dualization—in a more modern incarnation due to N. G. de Bruijn—leads

directly to quasi-periodicity. These and other mathematical aspects of Islamic

grid dualization will be discussed in a sequel to this chapter.

Quasi-Periodicity

Non-Periodic Tilings

One of the frustrations of working with periodic planar grids (i.e., grids with

translational symmetries) is the inability to achieve (global) rotational symmetry

Fig. 39.2 Two different grids which produce the same dual design. The bracketed triangles
highlight the primary dual design of the spandrel at the Darb-I Imam, Isfahan; the tiled pattern
below shows one possible rendering of the dual design. Drawings: author, after Kaplan (2005)
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of orders other than 2, 3, 4 or 6.6 It is not immediately obvious how to overcome this

“crystallographic restriction” with a finite set of tiles, but in 1525, Albrecht Dürer

penned an example with just two tiles, a pentagon and a rhomb, achieving global

fivefold symmetry through what crystallographers refer to as “pentagonal twinning”

(Lück 2000) (Fig. 39.3a). Nearly a century later, Kepler produced another famous

example (Fig. 39.3b) (Grünbaum and Shepherd 1987: 52–53, 59). Because they

violate the crystallographic restriction, neither of these tilings are periodic.

Prior to Dürer’s work, European Renaissance art incorporated only lattice

tilings, not pentagonal, non-periodic or other complex tilings. It is certainly

conceivable that Dürer derived his interest, and even his tiling, from an Islamic

text: there was, after all, an intensive transfer of Arabic scientific works to Europe

after the fall of Constantinople to the Ottoman Turks in 1453 (Saliba 2007:

194–195). However, there appear to be no examples of pentagonal twinning in

Islamic design, although—as we shall see—Islamic artists did very early develop

other—perhaps subtler—examples of fivefold (and tenfold) symmetric designs.

Quasi-Periodic Tilings

In perhaps the most famous example of the “unreasonable effectiveness” of

recreational mathematics, in 1974 Roger Penrose constructed a non-periodic

tiling of the plane using pentagons, rhombs, pentagrams and partial pentagrams in

certain restricted configurations (or satisfying certain “matching rules”) (Fig. 39.4);

later he found other, essentially equivalent, tilings with fewer tiles (the “kite and

dart” and “rhomb” tilings) (Grünbaum and Shepherd 1987: § 10.3, 531–548).

Penrose’s tilings, however, are not just non-periodic but are also “quasi-periodic”,

meaning that any bounded portion of the tiling appears infinitely often in the tiling

(and in fact infinitely often in any one of the uncountably many other tilings with the

same tile set). Indeed, they have many other properties as well, summed up in the

all-encompassing term “quasi-crystalline”: the tilings have arbitrarily large bounded

fragments with crystallographically forbidden symmetries, they have global

“statistical” symmetries, they may be obtained as a projection of slices of higher

dimensional lattices, their vertices—considered as complex numbers—possess

striking algebraic properties and have “diffractive” Fourier transforms, and more.7

Thanks largely to the groundbreaking work of N. G. de Bruijn, the class of Penrose

tilings has emerged as a mathematical object of great complexity and interest.

After Penrose’s discovery, many other families of quasi-periodic tilings of the plane

and other spaces were produced, and soon—as with “fractals” and “chaos”—everyone

was speaking this new kind of Jourdainian prose. Most famously, in 1985 diffraction

6 See, for example, Grünbaum and Shepherd (1987: Chap. 1).
7 Good introductions to this subject may be found in Grünbaum and Shepherd (1987) and Senechal

(1995).
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images of an aluminium manganese alloy produced a quasi-periodic pattern,

inaugurating a new era of crystallography and condensed matter physics (Senechal

1995). Of more relevance here is the application of these ideas to aesthetics.

Interestingly, in one of his original papers on the subject, Penrose writes about the

aesthetic inspiration for his tilings, and proceeds to compare their visual appeal with a

design on the window of a mosque in Cairo:

As one simply stares at the pattern certain regularities seem to jump out. There are a great

many regular decagons which tend to overlap at various places . . . Things line up in a

surprising way. The appeal of this pattern would seem to have something in common with

the appeal of the mosque window . . . (Penrose 1974).

Indeed, if one believes with Birkhoff that aesthetic value may usefully be related

to measures of complexity (though not necessarily in the manner Birkhoff

Fig. 39.3 (a) Dürer tiling; (b) Kepler tiling. Both are non-periodic. Drawing: author

Fig. 39.4 Penrose tiling. Like the Dürer and Kepler tilings, this tiling is non-periodic, but unlike

them, it is quasi-periodic. Drawing: author
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promoted), then the mathematical properties of quasi-periodicity summarized

above can be used to argue that quasi-periodic designs do indeed have high

“aesthetic value”.8 Quasi-periodic patterns occupy an important niche between

highly ordered, periodic patterns and highly complex, random ones, and in E. H.

Gombrich’s words, give us a sense of the delight that “lies somewhere between

boredom and confusion” (Gombrich 1979).9 As Penrose observed, similar

sentiments apply to Islamic geometric designs, and surprisingly “Islamic” looking

designs can be produced by dualizing quasi-periodic tilings.10

Are certain Islamic designs, then, “quasi-periodic”? As it stands, the question is

nonsensical. By definition, quasi-periodicity (infinite repetition of bounded

fragments) is a property that pertains only to a tiling of infinite extent. So let us

define a bounded design as “quasi-periodic” if, first, it can be derived in some

systematic manner from a finite tiling (for example, as a dual design or through

other kinds of systematic decorations or erasures), and second, the finite tiling from

which it is derived can be extended to a quasi-periodic tiling of the entire plane.

This definition is consistent with the use of the term “quasi-periodic” or its cognates

in the recent literature on Islamic design.

It must be understood, however, that this or any other definition of

“quasi-periodicity” in the context of (bounded) designs has several pitfalls. Most

important, it is a fact that any finite tiling—even one that can be extended to an

infinite quasi-periodic tiling—can also be extended to a periodic tiling in a variety

of ways (Gähler and Rhyner 1986). Most Islamic geometric designs are, in fact,

explicitly embedded in periodic frameworks, and arguably all were so intended.

The definition given here, however, circumvents this rather sterile issue by focusing

on a segment of the design (for example, a unit cell), and calling that segment

“quasi-periodic” if its underlying grid is a fragment of an (infinite) quasi-periodic

tiling. This definition also accords with our interest in the “aesthetic question” (the

extent to which the sensible qualities of Islamic designs may be explained, at least

in part, by reference to mathematical properties of quasi-periodicity), rather than in

the “historical question” (regarding the intentions or motivations of the artists who

created the designs and whether they aimed at periodic or non-periodic patterns).

Inflation Tilings

One of the simplest ways to construct a quasi-periodic tiling is to start with a set of

tiles that can be inflated and then subdivided into smaller copies of themselves in

8An interesting discussion of Birkhoff measures relevant to these remarks is found in Rigau et al.

(2007). A study of the Kolmogorov complexity of finite subsets of tilings of the plane is found in

Durand et al. (2008).
9 Similar views are expressed in Arnheim (1971).
10 Such designs have been produced by Rigby (2006).
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such a manner that the process can be iterated. Subject to a variety of alternative

sets of conditions, such inflation rules generate quasi-periodic tilings of the plane.

As an example, consider the three tiles (decagon, bowtie and long hexagon) with

the inflation rules shown in Fig. 39.5. These elegant inflation rules are due to Lu and

Steinhardt, who noted that the subdivisions of the decagon and bowtie are implicit

in a design from the Darb-I Imam in Isfahan (Lu and Steinhardt 2007a). The tiles

themselves are a subset of the girih tiles studied by Lu and Steinhardt, and are a

variant of the “M2” tile set introduced by Makovicky (1992: n. 30, Fig. 10 and

surrounding text) in analysing an earlier design from Margaha, Iran.11

Start with an empty decagon centred at the origin, then inflate and subdivide it as

shown in Fig. 39.5. This gives the “level 1” tiles, each of which is then inflated and

subdivided to obtain the “level 2” tiles. Note that because the borders of the subdivided

tiles consist of symmetric half tiles and are all alike, the second level tiles all line up

properly. Also note that the level 2 tiles extend the level 1 tiles, which are still centred at

the origin. If this process is now iterated, we have a nested sequence of decagons that

increase in size; in the limit we obtain an “inflation tiling” of the entire plane. Since

each level of the inflation retains 5-fold symmetry, the same is true of the inflation tiling

of the entire plane, which is therefore non-periodic. Quasi-periodicity—infinite

repetition of each bounded fragment—follows very naturally from the inflation

process itself, as any patch of tiles which appears at some stage will be reproduced at

each subsequent stage.12

Two Designs from Iran

The Gunbad-i Kabud (Maragha)

We are now in a position to look at two designs that have been cited as the prime

examples of quasi-periodicity in Islamic art. In 1992 Emil Makovicky analysed the

unit cell design on the walls of the Gunbad-i-Kabud (Blue Tomb), an octagonal

tower in Maragha, Iran, dating to the late twelfth century (Makovicky 1992)

(Fig. 39.6). The unit cell of the primary design spreads over two walls and

repeats four times around the tower. The thin lines in Fig. 39.7 show

Makovicky’s more recent transcription of the primary design over half of its cell

unit (the other half is obtained by reflection through the middle vertical line).13

11 Aspects of the M2 tilings later appeared in high resolution transmission electron microscopy of

aluminium cobalt nickel alloys; see Cervellino et al. (2002).
12 For further discussion of inflation tilings, see Senechal (1995: Chap. 5).
13 The Gunbad-i Kabud has deteriorated, and thus the original design is obscured in parts. Lu and

Steinhardt (2007a: Fig. S6) had pointed out that the lower portion of the original reconstruction

given in Makovicky (1992) was incorrect. Emil Makovicky has carefully reconstructed the design

based on his inspection of the building (Makovicky 2009).
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Fig. 39.5 Inflation rules for the decagon, bowtie and long hexagon: Image: Courtesy Peter Lu
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There are a number of ways one might test a design like this for quasi-

periodicity. Given the five- and ten-fold symmetry elements, one might, for

example, suspect that the Penrose tiles themselves could be used to tile the

regions between the primary line elements in a way that could be extended to a

Penrose tiling of the entire plane.

This is the approach taken, for example, in a recent paper by Arik and Sancak

(2007). Such an analysis is incomplete, however, as generally all that can be done in

this regard is to reconstruct the design as far as possible with well-matched Penrose

tiles. But a well-matched patch of Penrose tiles is no guaranty of extendability to the

Fig. 39.6 The Gunbad-i Kabud, Maragha. Photo: Courtesy Emil Makovicky
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entire plane, so without more, this method does not offer a convincing method to

establish quasi-periodicity of a design.

A better method—and one implied by the definition of a “quasi-periodic” design

here—is taken in Makovicky’s paper: find an underlying grid from which the

design can be derived, and show that the grid is a fragment of a quasi-periodic

tiling. For the grid, Makovicky used the decagons, long hexagons and bowties

analysed above, together with five pointed stars. As may be seen from the implied

grid in Fig. 39.7, the designers of the Maragha tower decorated these shapes

consistently up to rotations of two of the decagons. To show that this grid is a

fragment of a quasi-periodic tiling, simply note that it appears in the centre of the

subdivided decagon in Fig. 39.5. (The inflation rules in Fig. 39.5 do not aggregate

hexagons and bowties into stars, as here, but it is straightforward to incorporate an

additional inflation rule for the five-pointed stars.) From the discussion of inflation

tilings above, therefore, the grid of Fig. 39.7 is a fragment of a quasi-periodic tiling

of the plane, and thus the unit cell of the Gunbad-i Kabud is quasi-periodic in the

sense defined here. The fact that the unit cell is repeated four times around the

perimeter of the Gunbad-i Kabud, so that the entire design is periodic (with one

translational symmetry), does not affect this conclusion.

In addition to the “quasi-periodic” primary design, the Gunbad-i Kabud also

features secondary lines within the regions formed by the primary lines. Fig. 39.8

shows a portion of Makovicky’s transcription of the complete design with both

primary and secondary elements. As may be seen, the secondary design is in effect a

two-point dual of the primary design, which itself—as we have seen—is a dual of

the implied M2 grid. The result is a masterful example of an “additive” or “double”

dual design. The great sophistication and complexity of this design may serve as an

appropriate reminder of the fact that Maragha was one of the premier centres of

Islamic science: one year after the destruction of Baghdad by the Mongols in 1258,

the great astronomer, Nasir al-Din al Tusi—whose key theorem on the “Tusi

Couple” was used by Copernicus in De Revolutionibus—supervised the

construction of the Maragha observatory to which he later brought “the most

distinguished company of astronomers ever assembled in one place” (Saliba

2007: 199, 244).

Fig. 39.7 Contours of the

underlying grid for the unit

cell of the Gunbad-I Kabud,

Maragha, with the primary

dual design filled in on the

right. Image: author
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The Darb-i Imam (Isfahan)

In 2003, Jay Bonner, an architect and leading student and practitioner of Islamic

design, published an insightful paper about what he refers to as “self-similar”

Islamic designs (2003). In it, he analyses a design found in an arch over a portal

at the Darb-i Imam in Isfahan, built in 1453–1454. According to Bonner, this was

the work of Sayyid Mahmud-i Naqash, “one of the relatively few architectural

ornamentalists in the long history of Islamic art who signed his name to his works.”

The same design appears also in a spandrel in a different part of the Darb-i Imam,

and it is the right half of that spandrel (Fig. 39.9) that Lu and Steinhardt analyse

(2007a). For the sake of comparison, I apply Bonner’s analysis to the right half

spandrel instead of the arch.

Bonner’s reconstruction of the Darb-i Imam design proceeds, as did

Makovicky’s reconstruction of the Maragha design, by imputing an underlying

grid—in this case, both a primary and a secondary grid. He first reconstructs the

large scale linear design as an obtuse dual of the primary grid on the left side of

Fig. 39.2: the two triangles in the centre top of Fig. 39.2 outline the left and right

halves of the spandrel with the primary dual lines. Bonner notes that this primary

Fig. 39.8 Detail from the

upper right portion of

Fig. 39.7 showing the

primary dual design with its

(secondary) two-point dual.

Image: By permission from

Makovicky (2009)

Fig. 39.9 A portion of the

right half spandrel at the

Darb-I Imam, Isfahan.

Image: Courtesy Peter Lu
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grid is the most common fivefold polygonal grid “that can be traced back as far as

the year 1000.” Next, the primary grid tiles can be subdivided into similar small

scale, secondary grid tiles, as shown in Fig. 39.10. The full design then emerges

through dualization at both the primary and secondary scales—with the large scale

dual design rendered linearly and the small scale dual design rendered in coloured

tiles. This procedure reproduces the original design with great accuracy: only a few

small tiles in the actual tiling differ from the reconstruction.

Analysing the same design, Lu and Steinhardt impute different, but equivalent,

primary and secondary grids—starting with the decagon packing on the right side of

Fig. 39.2 rather than the pentagonal tiling on the left (see Fig. 39.11). Furthermore,

they show that the secondary grid is a fragment of a quasi-periodic tiling, using the

inflation rules discussed above.14 Thus, with the exception of a few small tiles, the

Fig. 39.10 Reconstruction of the primary and secondary grids for the Darb-i Imam spandrel.

Individual tiles show the primary (linear) and secondary (tiled) dual designs; the decagon is

partially untiled to show the underlying secondary dual lines. The small region outlined in the

central half-decagon is explained in the text. Image: author, after Bonner (2003)

Fig. 39.11 Reconstruction

of the primary and

secondary grids for the

Darb-i Imam spandrel the

small region outlined in the

central half-decagon is

explained in the text. Image:

Author, after Lu and

Steinhardt (2007a)

14 Although not addressed in Bonner (2003), the subdivisions he uses are in fact part of a set of

inflation rules that can also establish the quasi-periodicity of a segment of this design. Those
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Darb-i Imam half spandrel design is a fragment of a quasi-periodic tiling of the

plane, and so is also quasi-periodic in the sense defined here. Again, the fact that the

spandrel design may be embedded in a periodic framework (with two independent

translational symmetries)—as is clear from Fig. 39.2—does not affect this

conclusion.15 What is perhaps most compelling about the Darb-i Imam design is

the fact that the inflation rules for two of the underlying grid tiles are implicit in the

design itself—in effect, a large portion of the design is included in the second level

inflation.

It should be emphasized, as Lu and Steinhardt themselves do, that the entire

spandrel design is not quasi-periodic. Considering the Lu and Steinhardt

reconstruction of the right half of the spandrel, the problem is that the large scale

grid contains configurations that do not occur in the inflation rules: in particular, the

placement of the two large-scale bowties does not occur in any of the inflation rules

and cannot occur in the resulting inflation tiling. If, however, the partial bowtie and

partial decagon in the lower right corner of the design are removed, what remains is

indeed a fragment of the inflation rule for the decagon—as shown in the patch of

small tiles outlined in the central half-decagon in Fig. 39.11—and therefore also a

fragment of the inflation tiling. The Bonner reconstruction of the design establishes

that a different portion of the spandrel is also a quasi-periodic fragment, as shown in

the patch of small tiles outlined in the central half-decagon in Fig. 39.10. However,

it can be shown that no inflation rules will reproduce the entire design. Lu and

Steinhardt attempt to rectify this problem by showing that the entire spandrel can be

(approximately) converted to well-matched Penrose tiles, but as already argued,

without more this does not establish quasi-periodicity because well-matched

Penrose patches are no guarantee of extendability to the entire plane.

Conclusion

As we have seen, the unit cell of the Gunbad-i Kabud design, and a large portion of

the Darb-i Imam design, are both quasi-periodic in the sense defined here. In

fact, both designs are derived from essentially the same underlying 5-fold

symmetric quasi-periodic tiling (M2 or its equivalents.) In both cases, however, the

quasi-periodic fragments are embedded in a larger scale periodic framework (in the

case of Gunbad-i Kabud, with one translational symmetry) or may be embedded in

such a framework (in the case of Darb-i Imam, with two independent translational

symmetries).

inflation rules, however, require a subdivision rule for the narrow rhomb and one for an extra

pentagon, and require more complex matching rules than those used by Lu and Steinhardt.
15 The large scale dual design from Darb-i Imam appears in multiple guises at many other sites

with explicit periodic repetition, though it does not do so in the spandrel studied by Lu and

Steinhardt. See Arik and Sancak (2007) and Cromwell (2009).

39 Quasi-Periodicity in Islamic Geometric Design 599



Invoking our earlier caveat, the conclusion that the Gunbad-i Kabud and Darb-i

Imam designs are (in whole or in part) “quasi-periodic” is notmeant to suggest that

medieval Islamic artists or scientists understood or were interested in

quasi-periodicity in anything like the sense we define the term today. It is clear,

however, that these artists developed a remarkable class of tilings to serve as the

underlying grids for complex dual designs that are the hallmark of the Islamic

geometric aesthetic.

Although we will not survey other examples here, evidence of quasi-periodicity

in Islamic designs from Spain and Morocco has been cited as well (Makovicky

et al. 1998).16 Most interestingly, E. Makovicky, and P. Fenoll Hach-Alı́ have found

evidence of the use of a quite different octagonal quasi-periodic design at the

Alhambra (1996). Their analysis of quasi-periodicity in that design proceeds

directly from a form of dualization rather than from inflation rules.
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