
Chapter 3

Mathematics in, of and for Architecture:
A Framework of Types

Michael J. Ostwald and Kim Williams

aetiology |ˌaētēˈäləjē| noun
The investigation or attribution of the cause or reason for something, often

expressed in terms of historical or mythical explanation.

teleology |ˌtelēˈäləjē | noun
The explanation of phenomena by the purpose they serve rather than by postulated

causes.

Introduction

The frontispiece of the thirteenth century Bible Moralisee conserved in Vienna

portrays a Christ-like figure leaning over a primordial world and using a pair of

compasses to measure and inscribe its limits (Fig. 3.1). Titled ‘God as architect of

the world’, it depicts the use of a mathematical instrument to determine the

functional, symbolic and aesthetic properties of the universe. The pair of

compasses is a symbol of all of the possible ways in which mathematics is used

to support design. Such symbols are useful for reinforcing the simple message that

the creative impulse relies on mathematics to translate a concept into reality. At the

same time, however, this symbolism masks the fact that the relationships between

architecture and mathematics are both richer and more diverse than the sign

implies. The purpose of the present chapter is to look behind the symbol of the
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Fig. 3.1 ‘God as architect of the world’. Bible Moralisée, Paris (ca. 1220–1230) (Image:

Osterreichische Nationalbibliothek, Vienna, Codex Vindobonensis 2554, fol. Iv. Reproduced by

permission)
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pair of compasses and to begin to identify the different ways in which mathematics

is used in architecture.

The Bible Moralisee was an illuminated manuscript in the medieval tradition

that used images to communicate important biblical themes. The illuminations were

evocative visual counterparts to the myths, beliefs, parables and morality tales,

originally transmitted orally, that sought to educate people about the world. The

conflation of God as both architect and geometer in the frontispiece is especially

noteworthy because it communicates mathematics’ fundamental contribution as

intermediary between the creative impulse and the product of that divine vision

(Kline 2001). What is often forgotten in this reading of the frontispiece is that the

analogy not only communicates something about God’s power and wisdom, but

also about the accepted role and skills of the architect. The allegorical effectiveness

of this image relies on the viewer being aware that architects use mathematics to

create structure. This message is reinforced by the representation of God stepping

through a timber portal, with one foot resting in the quotidian world of the designer

or artisan as user of geometry, and the other transcending this as maker of

the universe (Husband 2009). The frontispiece of the Bible Moralisee is a

culturally-coded representation of the vital bond that exists between architecture

and mathematics. Yet, while it presents this relationship as both natural and

necessary, it says nothing about the connection itself.

A common question in architectural scholarship asks why architects use

mathematics (Kappraff 1990; Rossi 2004; Goldberger 2009). Despite multiple

answers being offered (Scruton 1983; Evans 1995), the majority of such

responses have served a rhetorical purpose, providing the impetus for a personal

manifesto or theory (Salingaros 2006). For example, Mario Salvadori (2014) asks,

‘[c]an there be any relationship between architecture and mathematics?’, and after

considering several responses, concludes that architecture simply cannot exist

without mathematics. Salvadori’s answer, like many of the others that have been

offered, is eminently reasonable but it does not provide a holistic insight into the

different ways architects use mathematics.

Here we will identify some of the types of applications of mathematics that

conventionally occur in architecture, drawing on historic and contemporary myths

and models to propose a framework for classifying the ways architects use numbers

and geometry. We commence by examining connections between architecture and

mathematics first from a causal or mythopoeic perspective, and second from an

effects-based viewpoint. Here, the causes and effects are disconnected, each

informing and shaping the framework, but unable to be directly correlated

through that mechanism. This discontinuity is unavoidable because relationships

between architecture and mathematics are not predicated on a singular need, desire

or process; they serve a multiplicity of different and sometimes conflicting agendas.

Cause and effect cannot be perfectly aligned under such conditions, but there are

ways of investigating the two that are informative and useful for this purpose.

The study of the cause or genesis of an occurrence is called aetiology. This
approach to understanding the origin of an idea or relationship is often undertaken

through an investigation of the founding myths of a discipline. The present chapter
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commences by examining the classic Western myths of the first building—the

primitive hut of the ancients—and the first architect, Daedalus. The purpose of

this strategy is to reveal the presence of mathematics within the earliest accounts of

architecture. Such myths distil a series of ideas in such a way that their essential

message is retained while other peripheral issues are excised (Kirk 1975). A study

of myths reveals the values, superstitions and beliefs that are the historic

cornerstone of a discipline (Bettelheim 1978). The myths of the primitive hut and

Daedalus are crucial indicators of architectural attitudes towards geometry, pattern

and metrology and they resonate with other canonical value structures including the

Vitruvian triad of firmitas, utilitas, and venustas; terms that were aptly translated by

Sir Henry Wotton as firmness, commodity and delight (Kostof 1977; Johnson

1994).1

Whereas aetiology supports the consideration of causes without effects, the

examination of effects without causes is called teleology. A teleological

investigation of a relationship seeks to comprehend it in terms of its outcome and

without reference to its source. In the second major section of this chapter a more

modern myth—the collectively accepted model of the design process—is reviewed

to reveal the breadth and depth of uses of mathematics in more recent times. This

model has endured for many hundreds of years, embedded as it is in the practices of

the architectural discipline through pedagogical, fiduciary and curatorial

mechanisms such that, despite countless practical changes, the primary creative

systems continue to be conceptualised in this way (Miller 1995; Ostwald 2012).

Combining both the aetiological and the teleological readings of the

relationships between architecture and mathematics allows us to propose a

framework of types. Three purposive agendas are at the core of this framework:

the use of knowledge for supporting the design process, the desire to embed

knowledge in an aesthetic construct, and the application of knowledge through

design analysis. Within this framework 13 different types of mathematical

applications in architecture are identified. These are: logic; measurement;

surveying; modularity; performance and prediction; generation; aesthetics;

symbolism and semiotics; phenomenality and rationalism; inspiration; surface

articulation; analysis and informatics.

The framework proposed in this chapter is not intended to provide a definitive

epistemology; rather, its purpose is more akin to a genealogist’s study of kinship

and consanguinity. It investigates the natural mathematical relations or bloodlines

that have historically sustained architecture. Furthermore, the goal of this chapter is

not to explain why these different applications of mathematics occur in

architecture, but to provide a mechanism for recording the different types of

applications and for understanding them holistically, as either occurring in a

particular stage of the design process, or in support of a specific architectural

quality. Through this dual aetiological and teleological process the breadth of

1 “Well building hath three Conditions. Commoditie, Firmenes and Delight” (Wotton 1624: 1).
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approaches, applications and techniques—all symbolically represented by the pair

of compasses in the frontispiece of the Bible Moralisee—is revealed.

Myths of Architecture: An Aetiology

A common practice in the historiography of many disciplines is to link the origins

of ideas to specific incidents, either real or imagined. For example, in 1665, while

convalescing at the family home in Lincolnshire, Isaac Newton observed an apple

falling from a tree. In his later life he would recount this event, describing it as the

catalyst for his formulation of a universal theory of gravitation (Hall 1999). The

story of Newton and the apple has since become one of the enduring myths of

modern science. However, despite being allegedly based on real events, the term

‘myth’ is appropriate here because there are multiple conflicting versions of

Newton’s account (Brewster 1835). Indeed, five decades passed between the

windfall occurring and Newton describing its significance. Newton actually

invested several decades of his life in detailed research into the topic of gravity

but when called upon in his later life to explain the genesis of his work, he repeated

variations of this account of the falling apple. An aetiological perspective of this

event is not concerned with its historical veracity but with the reason Newton chose

to present his work in this way, emphasising the manner in which it uses an

everyday occurrence to evoke the presence of a universal system of physical laws

(Berkun 2010).

Every discipline has an equivalent origin myth, a tale that serves to elucidate and

authorise a set of actions or values. In Western mythology the two great origin

myths of architecture are both, as is typical of the genre, largely apocryphal. This is

why they should only be read as a post-rationalised or figurative explanation of why

certain acts should continue or particular relationships are important. The two

origin myths of Western architecture describe the construction of the first

building and the skills of the first architect. Whether one can be said to precede

the other is a point of minor contention, but the myth of the first building, the

archetypal primitive hut, is deliberately composed without the presence of an

architect and so it is the first that is considered here.

Joseph Rykwert (1981) argues that throughout history architects have returned to

the idea of the first house, the primitive hut of the ancients, whenever they have

sought to make sense of the purpose of architecture. According to Rykwert, an

interest in the primitive hut has been a constant throughout history: ‘[it] seems to

have been displayed by practically all peoples at all times, and the meaning given to

this elaborate figure does not appear to have shifted much from place to place, from

time to time’ (Rykwert 1981: 183). The myth of the primitive hut provides a

philosophical foundation for understanding, questioning or reinvigorating

architecture. Alberti, Laugier, Perrault, Viollet-le-Duc, Ruskin, Le Corbusier and

Wright have each studied the primitive hut in its various incarnations (Harries 1993;

Vogt 1998). Whether they have attempted to find its site, reconstruct its form, or
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study its construction, they have been drawn to seek inspiration from its imagined

properties (Mitias 1999). Rykwert maintains that the primitive hut provides a ‘point

of reference for all speculation on the essentials of building’ (Rykwert 1981: 183)

including the relationship between architecture and systems of knowledge (like

mathematics). The earliest extant version of this myth, from which most others can

be traced, is found in Vitruvius’s De Architectura.
Marcus Vitruvius Pollio, writing around the time of the Emperor Augustus in the

first century B.C., provides an imagined account of a primitive race of men who

‘were born like the wild beasts, [and lived in] woods, caves, and groves’ (Vitruvius

1914: 38). During a storm, the branches of some trees near the tribe’s cave ‘caught

fire, and so the inhabitants of the place were put to flight, being terrified by the

furious flame’ (38). After the storm had subsided, they gathered around the flames

and learnt to sustain them, and the fire in turn kept the tribe safe from predators. To

maintain both the fire and the community that had formed around it, a shelter had to

be constructed. This compulsion to create a structure in a specific location, rather

than to inhabit an existing cave or hollow, was to be the impetus for the first

building:

At first they set up forked stakes connected by twigs and covered these walls with mud.

Others made walls of lumps of dried mud, covering them with reeds and leaves to keep out

the rain and the heat. Finding that such roofs could not stand the rain during the storms of

winter, they built them with peaks daubed with mud, the roofs sloping and projecting so as

to carry off the rain water (Vitruvius 1914: 39).

A woodcut illustration in the 1521 edition of Vitruvius by Cesare Cesariano

depicts a large fire surrounded by a primitive tribe. In the foreground people are

gathering branches to feed the flames, while in the background, glimpsed through

the smoke-haze, the branches of the living trees can be seen entwined together,

suggesting a pitched or woven-roofed form. A second woodcut by Cesariano—

much like subsequent ones from later editions of De Architectura and those

in Vitruvius Teutsch—is less allegorical in its intent, displaying a more literal

representation of the first hut. In that woodcut, rows of evenly spaced,

vertically-arrayed tree trunks each end in a forked bough, which creates a natural

cradle for a horizontal timber spar to connect the columns and create an edge to the

roof. Between these columnar trunks with their forked pinnacles, smaller branches

have been woven (Fig. 3.2). The regularly spaced, if roughly hewn, rafters and

beams are also plaited together, creating an alternating surface of branches and

grass, woven as if ‘in imitation of the nests of swallows’ (Vitruvius 1914: 38).

The architecture of the Vitruvian primitive hut is founded, initially at least, on

the crafts of weaving or plaiting; the regular interleaving of elements forms a

reinforced surface which is also a recurring geometric pattern. Starting with

living branches and leaves, in groves or bowers, and then including loose grass

and partially dressed timber, woven structures formed the basis for tents, screens

and simple roofs. The first structures were created using felled trees as columns,

arrayed in such a way that their forked joints created natural supports, and sized

and spaced to achieve a consistent wall. These timber frames were the basis for
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subsequent woven and layered enclosures. Vitruvius states that variations of these

techniques can be seen in the primitive dwellings of many cultures, including the

Colchians of Pontus (near present day Georgia on the Black Sea). The Colchians

would commence by laying.

. . . down entire trees flat on the ground to the right and the left, leaving between them a

space to suit the length of the trees, and then place above these another pair of trees, resting

on the ends of the former and at right angles with them. These four trees enclose the space

for the dwelling. Then upon these they place sticks of timber, one after the other on the four

sides, crossing each other at the angles, and so, proceeding with their walls of trees laid

perpendicularly above the lowest, they build up high towers. The interstices, which are left

on account of the thickness of the building material, are stopped up with chips and mud.

Fig. 3.2 The primitive hut according to Cesariano’s edition of Vitruvius. Image: Cesariano (1521:

Bk. II, ch. 1, p. XXXI v
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As for the roofs, by cutting away the ends of the crossbeams and making them converge

gradually as they lay them across, they bring them up to the top from the four sides in the

shape of a pyramid (Vitruvius 1914: 39).

In the Colchian hut, stacked logs, carefully sized, spaced and cut to measure,

create both structure and enclosure. The form of this dwelling is square in plan with

a pyramid-shaped roof. In the various examples of the primitive hut the importance

of measurement (typically relative to other elements in a building), structural

stability (intuitively or empirically determined), geometry (for the creation of

symmetrical and stable forms in three dimensions) and pattern (in the

construction and expression of woven forms) are all reinforced.

A second architectural aetiology is found in Greek mythology where Daedalus,

the father of Icarus, is characterized as the first architect. Daedalus was an Athenian

craftsman who is credited with the design of Ariadne’s dancing floor and the

Labyrinth at Knossos. Whether he was a real person or an amalgam of several

different designers is unknown. Homer, Euripides and Ovid describe his actions in

poetic terms, dwelling on his invention of animated statues, the golden thread of

Ariadne and the waxed and feathered wings of Icarus that famously melted, sending

Daedalus’s son plummeting to his death. In contrast, Pliny the Elder treats Daedalus

as a historic figure, with a known parentage and birthplace.

In one of the earliest references to Daedalus, Homer’s epic poem the Illiad
(written in the seventh or eighth century B.C.) describes a ‘cunningly wrought

dancing-floor like unto that which in wide Cnosus Daedalus fashioned of old for

fair-tressed Ariadne’ (Homer 1924: 590). Produced in 415 B.C., Euripides’ play

Hecuba refers to Daedalus’s almost godlike power to give life to inanimate objects.

Aristotle, in Book I of Politics (ca. 330 B.C.), presents Daedalus as a legendary

sculptor and Plato in Book III of Laws, refers to the great inventions of Daedalus. In
Ovid’s Metamorphoses (ca. 8 A.D.) Daedalus is described as ‘an architect of

wonderful ability’ who ‘built with intricate design’ (Ovid 1922: 152). In 78 A.D.,

Pliny the Elder’s Naturalis Historia commends Daedalus on being the ‘first person

who worked in wood’ (Pliny 1893: 226). Pliny states, ‘it was [Daedalus] who

invented the saw, the axe, the plummet, the gimlet, glue, and isinglass’ (1893:

226). Notwithstanding the obvious fallacy of Pliny’s statement (axes existed long

before Daedalus is thought to have been born), Horace (Horatius Flaccus), Virgil

(Virgili Maronis), William Shakespeare and John Ruskin, amongst many others

from antiquity to modern times, have portrayed Daedalus as a master sculptor,

inventor and architect.

In mythology Daedalus’s most famous work is the Labyrinth at Knossos. Ovid’s

account of the origins of the maze commences with the unnatural birth of the

bull-headed man, the Minotaur. King Minos, seeking to imprison the Minotaur,

commissioned Daedalus to design and construct a maze:

This he planned of mazey wanderings that deceived the eyes, and labyrinthic passages

involved. So sports the clear Maeander, in the fields of Phrygia winding doubtful; back and

forth it meets itself, until the wandering stream fatigued, impedes its wearied waters’ flow;

from source to sea, from sea to source involved. So Daedalus contrived innumerous paths,

and windings vague, so intricate that he, the architect, hardly could retrace his steps

(Ovid 1922: 152).
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Thus imprisoned, the Minotaur had to be appeased with the lives of Athenian

youths and maidens. This sacrificial rite continued for many years until Theseus,

guided through the maze by Ariadne’s golden thread, slew the Minotaur and

escaped the Labyrinth (Castleden 1990).

Opinion is divided over whether Daedalus built Ariadne’s choros—an intricate

dancing floor—before or after Theseus’s escape from the Labyrinth (Ovid 1922;

Nichols 1995). Part of the confusion relates to the language used to describe the two

designs. Indra Kagis McEwen (1993) has demonstrated that several of Daedalus’s

inventions share a common etymology. That is, the Greek words used to describe

the act of dancing, a patterned dancing floor and a maze are all related to the

concepts of weaving or animation. Noting this connection, Kerenyi (1976) gave

Ariadne the title ‘Mistress of the Labyrinth’, a reference not only to the Minotaur’s

maze, but also to the elaborate formal structure of Ariadne’s dance and to its divine

or transcendent aspiration. Kern (2000) suggests that the geometry of the dancing

floor, itself a symbol of the ritual and possibly erotic conjoining of two bodies, was

repeated at larger scale in the Labyrinth, which explains why the two share the same

geometric pattern and language. For these reasons, in Greek mythology Daedalus’s

claim to the title architect is not a result of his ability to oversee the construction of a

building, but rather of his capacity to weave geometry into space and form which

has both symbolic and phenomenal significance.

In the examples of the choros and the Labyrinth, geometry is placed in the

service of design in three broad ways, each of which is aligned to one of the

Vitruvian triad of architectural qualities. First, it delineates and structures space

(firmness): both the dancing floor and the maze are geometrically defined and

controlled. Second, it fulfils a program function (commodity): the maze is a

geometric structure with a distinct spatial function—to disorientate, restrain, or

beguile visitors. The function of the choros was to enable the ‘crane dance’, a

tightly constrained marriage ritual. Finally, geometry provides a decorative motif

(delight): the geometric weave of the choros and the maze has since appeared on

coins, reliefs, pottery and in wood carvings (Fig. 3.3).

Homer notes that the Daedalic geometric weave is found in the decoration on

Achilles’ shield, and Ruskin traces the aesthetic and moral importance of ‘Daedalic

Right Line’ in Gothic architecture (Moore and Ostwald 1997). Like the application

of measurement, structure and pattern in the primitive hut, the presence of

geometric function, foundation and fascination in the work of Daedalus

Fig. 3.3 Representation of

the Labyrinth at Knossos

reconstructed from silver

coins (ca. 400 B.C.). Image:

Michael Dawes
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Table 3.1 Mathematical applications in the foundation myths of architecture

Application Myth

Type General definition

Primitive

hut Daedalus Instance

Measurement The use of mathematics to

record and communicate

dimensional information

Sourcing or modifying

materials to achieve con-

sistent, relative dimensions

Surveying The use of mathematics to

derive and translate loca-

tional or site-related

measures

Information relating to the

position and relative spac-

ing of columns and the

efficient sourcing or trans-

portation of materials

Performance

and prediction

The use of mathematics to

inform decisions about

structural, acoustic, envi-

ronmental, visual and

related physical properties

Empirically or intuitively

derived estimates of the

size of structural members

for stability and endurance

Surface

articulation

The use of mathematics to

achieve an efficient or con-

trolled coverage of a

defined plane

Empirically or intuitively

derived methods for

achieving a waterproof, or

wind-proof woven or

thatched surface. The use of

geometry to achieve an

intricate, patterned surface

covering

Generation The use of algorithms or

rules to evolve or

parameterise aspects of a

design

� The Labyrinth is a mathe-

matical construct with a

distinct set of geometric

and spatial parameters

Inspiration The use of mathematics as

influence, motivation or

animation

� Both the form of the

dancing floor and the Lab-

yrinth are geometric mazes

Aesthetics The use of mathematics to

achieve a particular

appearance or visual effect

The woven path of Ariadne

conforms to a

pre-determined symmetri-

cal field, within which sep-

arate circular and

orthogonal patterns rein-

force the overall structure

Symbolism and

semiotics

The use of mathematics to

represent or communicate

something about a building

The geometric decoration

of Achilles shield (likened

to Daedalus’s dance floor)

is intended to communicate

both a connection to Ari-

adne and to the heavens

Phenomenality

and rationalism

The use of mathematics to

evoke a connection by way

of the senses or the mind

� The geometric path on

Ariadne’s dance floor

evokes and enables a par-

ticular physical and sensual

ritual—the ‘crane dance’

(continued)
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reinforces the early, mythopoeically delineated set of relationships between

architecture and mathematics.

When the two foundation myths are viewed together, they present

complementary visions of the role of architecture and of the architect (Table 3.1).

The primitive hut stresses the importance of construction, structure and utility,

while the work of Daedalus emphasises aesthetic, inspirational and phenomenal

applications. Furthermore, despite their differing emphases, both myths contain

references to a larger set of pragmatic and poetic applications. For example, a

crucial function of the primitive hut is to shelter a community, both physically and

spiritually. Social and cultural concerns are present in this myth, even if its brevity

curtails them. The primitive huts described by Vitruvius also possess symmetrical

cross sections and plans, something that is especially significant when viewed in the

context of the larger body of his theory which uses geometry to evoke divine

relations. Similarly, in the Daedalus myth, technical skills are praised along with

the ability to work with particular materials. His capacity to measure and survey is

also assumed as a basic prerequisite skill of his craft. In addition, while not

explicitly stated in either myth, there is an implication that underlying all of the

basic actions and decisions is a capacity to think logically and consistently. Thus,

the correct size for a rafter in the primitive hut was not calculated, it was determined

either empirically (by loading different size beams until structural failure occurred)

or intuitively (by using a knowledge of the size of rafters that had worked in the

past). For this reason, and despite identifying nine different rudimentary

applications of mathematics in these myths, the central role of logic, the tenth

type, cannot be ignored.

Finally, it is possible to conceptualize each of these ten types of applications as

serving at least one of the core qualities of architecture. For example, if we accept

the Vitruvian triad then performance-related applications of mathematics may be

associated with firmness and aesthetic applications are related to delight. However,

some other types, like measurement, can be mapped to two categories—firmness

and commodity—while surface articulation and logic can potentially be used to

fulfil parts of all three Vitruvian qualities (Fig. 3.4).

Table 3.1 (continued)

Application Myth

Type General definition

Primitive

hut Daedalus Instance

Logic The reasoned or disciplined

application of knowledge

Underpinning the majority

of the applications of

mathematics found in the

two myths is the presence

of a reasoned and consistent

use of information

Key: ¼ application explicit, ¼ application inferred, � ¼ application absent
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Models of Architecture: A Teleology

The focus of this section shifts from historic myths to contemporary models. Just as

aetiology and teleology have a close, but inverse relationship, so too do myths and

models. Ian Barbour defines a myth as an archetypal event that reinforces a pattern

of behaviour in society. Myths ‘integrate the community around common memories

and common goals’; they ‘are neither true nor false; they are useful fictions which

fulfil these important social functions’ (Barbour 1974: 3). The modern counterpart

of the myth is the model or paradigm. For Barbour, the model is ‘a symbolic

representation of selected aspects of the behaviour of a complex system’ (3).

Whereas a myth describes the world, a model is an ‘imaginative tool for ordering

experience’ (3). The critical difference between myths and models is that the myth

derives a universal message from a specific event (thereby relating the particular to

the general), while the model starts with a universal system from which a specific

response is derived (progressing from the general to the particular) (Coupe 2009).

Thus, despite the way models are positioned in contemporary discourse as

encapsulating a global truth, they have innate fictional, imagined or conceptual

properties that are similar to those of myth. It is also often assumed that the model is

more cogently founded in reason, observation or data, but the myth too, represents a

body of received wisdom.

The primary role of the architect has historically been, and remains to the present

day, the visualization of a design and the communication of this intent, in such a

way as to support the construction of a building. The same is also true if the

architect’s purpose is to refurbish an existing structure, to design a landscape for

a park or create a new urban space. While the tools and technologies available to

architects have changed over many centuries, the conceptual process of designing

and executing a building has remained a surprisingly durable one. There are many

subtle variations of this model of the design process, although the majority are

conceptualised as an iterative or staged sequence with occasional recursive loops.

This model of the design process as a system is found in educational settings

Fig. 3.4 Conceptual mapping of application types against the Vitruvian triad (definitions in

Table 3.1)
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(Pressman 1993; Anderson 2011) and there is evidence that it is used by

professionals (Rowe 1987; Lawson 2005; Pressman 2012).2 Two of the more

common variations of the model are framed around cognitive and contractual

processes. The cognitive variation commences with problem definition, analysis

and synthesis stages, prior to conceptual and schematic diagramming, and finally

solution proposition, testing (the recursive loop) and realisation (Pressman 2012).

The more contractual or practical variation commences with client briefing,

conceptual design, schematic design, developed and detail design, and

construction. Several of these steps allow for a limited return to the previous

stage to revise or correct any errors which have occurred in the process or to take

account of any revisions—to the brief, budget or site conditions—which require a

more substantial redesign. More nuanced variations of this contractual model note

that there are parallel approval and review processes and that design often continues

throughout the construction period and through to post-occupancy evaluation and

optimisation. The cognitive variation of the model continues to cycle through the

same stages, but with each subsequent series the focus is on a smaller sub-problem

within the larger design. Although there are differences between these variations,

they both describe a simplified and universal vision of the role of the architect in

society. This model, and especially the contractual or practical variation, is useful

for identifying the various ways in which architecture uses mathematics.

A necessary precursor to the design process is the production of a design brief, a

document which defines the practical and functional limits of a project. The brief

typically comprises a list of functional zones, along with information about the

scale, critical dimensions and performance criteria. For example, a brief might state

that a particular house requires a living room which is at least 15 m2 in floor area,

with a minimum ceiling height of 3.5 m, and with a south-facing wall which is

mostly (between 5 and 8 m2) glass, at least 30 % of which is operable. These

measures or conditions are a numeric reflection of the need to accommodate a

certain size of social gathering in a space that doesn’t feel vertically constrained, is

illuminated with natural light, and allows for some natural ventilation.3

2A common and reasonable concern that has been raised with the standard design process model is

that design is not necessarily a linear or systematic process. Design is often characterised as an

‘ill-defined’ or ‘wicked’ problem (Brown et al. 2010). Design problems, unlike many

mathematical ones, rarely have a single ideal solution. Instead, design involves handling a range

of challenges that are described by scientists and engineers as either ‘non-trivial’ or ‘sub-optimal’.

Design involves balanced compromise between issues, some of which may be described with great

rigour (like structural stability and material strength) while others cannot (like the symbolic power

of a building, or the message its iconography communicates to society). This is why the design

process model, which may be appropriate for simple or formulaic buildings, is much less useful for

more complex building types.
3 For some complex building types, a much higher level of performance is specified in the

architectural brief including lighting levels, acoustic reverberation times and structural bearing

capacities. In the last few decades it has also become common for technically advanced buildings,

like hospitals, to rely on a relative performance brief. For example, a client might state that a new

oncology centre for Rome must function at least as well as the recently completed oncology centre
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Once the brief is defined, then the architect engages in a process of

parametrically-informed idea generation, wherein he or she seeks to derive a

solution to the constraints and opportunities of a brief and a site. This so-called

‘conceptual design’ stage draws on the architect’s ability to manage multiple,

sometimes conflicting requirements, simultaneously juggling both relative spatial

issues (like the relationship between a living room, a dining room and a kitchen)

and absolute ones (like the orientation of the site and the address or access to the

building). These interconnecting performance parameters may often be solved in a

larger number of alternative spatial configurations and thus the architect must be

guided by a vision or set of values, often embodied in a parti or organising

principle, which assists in determining which conceptual design variations to

present to a client. The vision or inspiration for a design remains ever-present

throughout the remainder of the project, but its core aesthetic, poetic or

representational agenda is typically delineated at this stage, along with possible

strategies for achieving this vision. Furthermore, the architect’s core values become

evident at this point, including the factors driving their design aspiration, from

ecological to social, technical and poetic values. Many of these factors involve

geometry in an aesthetic, symbolic, semiotic or inspirational role.

Whereas in the concept design stage spatial and contextual relations are

described in a topological manner (that is, through connections and relations

rather than absolute dimensions), in the schematic design stage, the concept and

parti of a design are given scale and dimensionality, in accordance with the

original brief, along with relative proportions. The first sense of structure and

three-dimensional massing (width, depth, height, bulk) is typically tested at this

stage, along with an early sense of fenestration and materiality. A preliminary

estimate of the cost of the design, typically based on ‘square metre’ or ‘floor

rates’, is also calculated to determine if the client’s brief and budget are viable.

For particular building types, the schematic design stage can also include simple

modelling and simulation of performance requirements, like the volume of indirect

natural light in an art gallery, clear sight lines in a theatre or overshadowing caused

by a tall building.

Once the schematic design has been approved, the next stage requires the

refinement of its principles. Depending of the building type, the developed design

stage can commence with extensive testing and modelling of design variations to

optimise important factors (light, security, efficiency, environmental impact) and

with each refinement the spatial program evolves while seeking to maintain the

topological and geographic relations agreed with the client in the previous stages,

but which are now forced to change in response to more detailed design

considerations. As the design is finalised, its overarching dimensions and

properties are delineated and cost estimates made prior to seeking approval to

commence construction.

in Sydney, but accommodate a 25 % growth in treatment capacity. Such a brief involves both the

measuring of the properties of the reference structure and then the interpretation and interpolation

of these performance criteria into the new design with increased capacity.
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Prior to construction commencing, construction documentation must be

produced to translate the design into a system which allows for multiple

contractors to undertake the work. At this time, structural engineers complete and

certify their designs of columns, beams and bracing, mechanical engineers design

services and equipment, and other specialist consultants use a range of

mathematical and computational approaches and techniques to determine and

specify systems which can be installed during the construction process (Ambrose

and Tripeny 2012). Some of the sub-contractors involved in this stage can include

pre-fabrication and curtain wall consultants, professionals who extract information

from architectural drawings and models to quantify the time it will take to

manufacture components, the implications for tolerances and batching (storing

pre-fabricated elements prior to construction) and site handling. Meanwhile, the

architect often coordinates all of these activities, defining the dimensions and limits

for each part of the building.

Several variations of the design process model end with a ‘post occupancy’

stage, in which the completed building is analysed to optimise or assess its

performance. Increasingly, theories and techniques have been developed which

can be applied to support improved social interaction, wayfinding and security in

buildings, amongst other factors. Such mathematical techniques are useful for

refurbishment and improvement and also for scholarly analysis. With the rise of

global information and positioning systems, data developed from a building may

also be applied to much larger models of suburbs or cities (Hilton 2007). Whereas

architectural analysis is typically focussed on extracting information from a

building so as to better understand its properties, the field of spatial or urban

informatics combines information from multiple buildings, transport networks

and infrastructure systems to analyse larger regions (Foth 2009).

If the complete set of applications listed in this section are categorised, a set of

thirteen types is identified, each of which can be cross-referenced to the stages in

the design process model in which they are likely to occur (Table 3.2).

Some application types are concentrated (but not exclusively present) in certain

stages. For example, applications of mathematics associated with modularity are

typically less important early in the design process, but become more significant in

the detail design and construction stages. Modularity may well be a consideration in

earlier stages in the design of particular building types, or for architects whose

theories rely on systematised construction, but it is more likely to be used in the

detail design stage (Kroll 1986). Similarly, the use of mathematics to generate the

form of a design is something that is most likely to occur in the concept and

schematic stages, and is often indirectly evolved from the brief itself. In certain

projects such generative or parametric techniques might continue to be important in

the detail design stage as well, but this is less common. Aesthetic and phenomenal

considerations are likely to be more prominent in these same early stages (concept

and schematic design) and play a lesser, supporting role, in later parts of the

process. Viewed in this way, the different types of mathematical applications in
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Table 3.2 Mathematical applications in the traditional model of the design process

Application Stage in the design process model

Type

General

definition Brief Concept Schematic Developed Detail Const.

Post

Occ.

Logic The reasoned

or disciplined

application of

knowledge

Measurement The use of

mathematics to

record and

communicate

dimensional

information

� �

Surveying The use of

mathematics to

derive and

translate loca-

tional or site-

related

measures

�

Modularity The use of

mathematics

for achieving

coordination

and consis-

tency within a

larger system

� �

Performance

and prediction

The use of

mathematics to

inform deci-

sions about

structural,

acoustic,

visual, envi-

ronmental and

related physi-

cal properties

� � �

Surface

articulation

The use of

mathematics to

achieve an effi-

cient or con-

trolled cover-

age of a defined

plane

� � � �

Analysis The use of

mathematics to

better under-

stand the prop-

erties of a

design

� � �

(continued)
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the design process can be understood in terms of their shifting potential at various

times in the project, rather than as a set of absolute values. This means, for example,

that while deriving inspiration from mathematics is something that usually happens

Table 3.2 (continued)

Application Stage in the design process model

Type

General

definition Brief Concept Schematic Developed Detail Const.

Post

Occ.

Informatics The use of

mathematics to

visualise or

characterise

architectural,

urban and

regional spatial

and formal

properties.

� � � �

Generation The use of

algorithms or

rules to evolve

or parameterise

aspects of a

design

� � � �

Inspiration The use of

mathematics as

influence,

motivation or

animation

� � � �

Aesthetics The use mathe-

matics to

achieve a par-

ticular appear-

ance or visual

effect

� � � �

Symbolism and

semiotics

The use of

mathematics to

represent or

communicate

something

about a

building

� � � � �

Phenomenality

and rationalism

The use of

mathematics to

evoke a con-

nection by way

of the senses or

the mind

� � � �

Key: ¼ common application, ¼ less common application, � ¼ rare application
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early in a process (Hahn 2012), it can also, in certain circumstances, be useful for

final detail design decisions (Jencks 1985).

The complete set of application types found in the contemporary design process

also include variations of those identified in the review of foundation myths.

However, whereas the first group could be readily conceptualised as serving core

architectural values, as exemplified in the Vitruvian triad, the second, larger group

have taken on a more directed quality. That is, the categories define types by their

use or application for different purposes. Thus, while it is possible to map the more

extensive set of contemporary types to the categories of firmness, commodity and

delight, this is less useful for the applications found in modern architectural

practice. For this reason, the following section considers an alternative, triadic

framework.

A Framework of Types

There are three overarching categories in the proposed framework for classifying

the types of applications of mathematics found in architecture. These categories

distinguish between mathematics that is used for the support of the design and

construction process, that which is visible in the design product, and finally

mathematics which is a property of the design itself. The first of the three

categories could be thought of as encompassing all the factors conventionally

considered under the Vitruvian rubric ‘firmness’, as well as some of those

associated with the more functional dimensions of ‘commodity’. This first part of

the framework, mathematics for architecture, is related to, amongst other things,

stability, function and environmental performance. The second category,

mathematics in architecture closely correlates to the classic Vitruvian quality,

‘delight’, and generally comprises aesthetic, sensual or intellectual properties.

The final category in the framework has no clear parallel in Vitruvius, although

some of the derived properties of ‘commodity’ in the sense of usefulness or function

may resonate with its purpose. The mathematics of architecture is concerned with

reasoning and analysis about spatial and formal relations present in a design.

Analysis, as a stand-alone activity, was uncommon in ancient times but it has

since become increasingly important. Collectively the three purposive

categories—for, in and of—provide an indicative way of classifying application

types (Fig. 3.5).

Importantly though, while the majority of the 13 applications identified in this

chapter are aligned to one of the three categories, a few potentially cross between

them depending on their purpose or application (Table 3.3).

Furthermore, logic, as a foundation or core value for any reasoned practice, is a

member of all three sets, although it has been listed here as part of the analytical

48 M.J. Ostwald and K. Williams



group of applications. Each of the three categories is described in more detail in

what follows.

The first category in the framework—mathematics for architecture—includes

practical techniques and tools that support architectural design, construction and

conservation. These applications occur as a natural part of the design process

informing decision-making about functional issues. They enable the development

of intrinsic properties of a building that are critical for its stability, environmental

performance and programmatic function, but are not necessarily expressed or

visually apparent in its final form. This means that the mathematical application

itself—for example, the calculation of the depth of a beam or the level of insulation

required in a wall—is completed as a precursor to construction commencing. The

outcomes of these calculations—the stability of the beam or the wall’s capacity to

mitigate heat—shape the ongoing function of the building, but the application itself

is over and its result is implicit in the finished building rather than explicit. For

example, surveying is a critical mathematical technique at certain stages in the

design process, but once these stages are completed the active role of mathematics

in the process is over. This first category is the most extensive in its list of types, but

also the most temporal, because most of these only occur briefly and as part of the

design process.

The specific application types that are exclusively allied with this first category

include measurement, surveying and modularity. Measurement is associated with

the use of mathematics to record and communicate dimensional information,

whereas surveying applies and develops such measures in the context of a

specific site. Applications of measurement, like those of logic, are so ubiquitous

that they are rarely acknowledged in architecture, whereas site-specific surveying

techniques have become more specialised over time. Modularity describes those

practices that support coordination and consistency in the construction processes.

Fig. 3.5 Conceptual mapping of application types against the proposed framework (definitions in

Table 3.2)
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Table 3.3 A framework of types: mathematics, in, of and for architecture

Primary

category Definition Type Examples

Mathematics for
Architecture

Practical or functional

tools or techniques for

the support of architec-

tural design, construc-

tion and conservation

Measurement—the use of

mathematics to record

and communicate dimen-

sional information

Theories/Techniques: rel-

ative measures, (cubits,

rods and rulers), decimal

and non-decimal systems,

absolute measures

(metric)

Surveying—the use of

mathematics to derive

and translate locational or

site-related measures

Theories/Techniques:

levelling, traversing, tri-

angulation and topogra-

phy, laser scanning, GPS,

GIF

Modularity—the use of

mathematics for achiev-

ing coordination and

consistency within a

larger design system

People: Moshe Safdie,

Lucien Kroll, Richard

Meier

Buildings: Habitat (Mon-

treal), Medical Faculty,

Louvain University

(Brussels), Sainsbury

Centre (Norwich)

Performance and

Prediction—the use of

mathematics to inform

decisions about struc-

tural, acoustic, visual,

environmental and

related physical

properties

People: Ove Arup, Renzo

Piano, Norman Foster,

Future Systems

Buildings: Menil

Collection (Houston),

London City Hall

(London)

Generation—the use of

algorithms or rules to

evolve or parameterise

aspects of a design

People: George Stiny,

William Mitchell, Patrik

Schumacher

Buildings: Water Cube

(Beijing), British Museum

Atrium (London)

Theories: Parametric

design, generative design,

shape grammar

Mathematics in
Architecture

Geometric or numeric

properties which are

demonstrated, visible

or sensible in

architecture

Aesthetic—the use of

mathematics to achieve a

particular appearance or

visual effect

People: Brunelleschi,

Andrea Palladio, Le

Corbusier, Hans Van Der

Laan. Buildings: Parthe-

non (Athens), Chartres

Cathedral (Chartres),

Notre Dame Cathedral,

(Paris), Unité

d’Habitation (Marseilles)

Styles: Medieval, Gothic,

Palladian, Renaissance,

Mannerism

Theories: Golden Section,

The Modulor, The Plastic

Number

(continued)
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Table 3.3 (continued)

Primary

category Definition Type Examples

Symbolic and Semiotic—

the use of mathematics to

represent or communi-

cate something about a

building

People: Leon Battista

Alberti, John Ruskin,

Robert Venturi, Charles

Correa

Buildings: Hagia Sophia

(Istanbul), Vana Venturi

House (Philadelphia),

Jawahar Kala Kendra

(Jaipur)

Styles: Medieval, Gothic,

Postmodern

Phenomenal and

Rational—the use of

mathematics to evoke a

connection by way of the

senses or the mind

People: Walter Burley

Griffon, Richard Neutra,

Louis Kahn, Stephen Holl

Buildings: Salk Institute

(La Jolla), Casa Del

Fascio (Como), Simmons

Hall (Cambridge, Mass.)

Styles: Rationalism,

Organic Modernism,

Regionalism

Inspirational—a use of

mathematics as influence,

motivation or animation

People: Oscar Niemeyer,

Zaha Hadid, Peter

Eisenman

Buildings: National Con-

gress of Brazil (Brası́lia),

Sydney Opera House

(Sydney)

Styles: Modernism,

Deconstructivism,

Generative

Surface articulation—the

use of mathematics to

achieve an efficient or

controlled coverage of a

defined plane

People: Antonio Gaudı́,

Lab, ARM

Buildings: Park Güell

(Barcelona), Federation

Square (Melbourne), Sto-

rey Hall (Melbourne)

Theories: Tessellations

and Tilings, Aperiodic

and Quasi-periodic Tiling

Mathematics of
Architecture

Logical and analytical

methods for quantify-

ing or determining var-

ious properties of

architecture

Analysis—a use of math-

ematics to better under-

stand the properties of a

design

People: Christopher Alex-

ander, Bill Hillier, Lionel

March

Theories: Space Syntax,

Fractal Analysis, Graph

Theory, Fuzzy Theor

(continued)
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In a sense, these are specialised routines for relative or rule-based measurement.

The remaining application types associated with this primary category can also be

found in other secondary categories as well. They include the use of mathematics to

predict and optimise the performance of a design, the use of rules or parameters to

generate and evaluate design alternatives, and applications of plane-filling

geometry (tiling, weaving and patterns). Specific examples of mathematical

applications in this category include static and dynamic load calculations for

structural stability, computational thermo-fluid dynamics for determining wind

load, and thermal conductivity formulas for estimating human comfort levels.

The second of the three categories—mathematics in architecture—encompasses

geometric or numeric properties that are intentionally designed into and are

demonstrated in the form and materiality of a building. This category includes

those applications of mathematics that are visible in the architecture, but are not

necessarily products of its structure, construction or other functional or

performance-related factors. Therefore, this category encompasses applications

which augment or supplant those associated with the basic needs for stability and

shelter. They could be described as being extrinsic factors because they are integral

to the expression of a building, whereas those in the previous category were

intrinsic to the function of the building. The type of mathematics that is found in
architecture is expressed in ways that can be seen, sensed or read in the completed

building. It includes the use of mathematics as inspiration for a design, the use of

numbers and geometry to perform symbolic or semiotic functions, and properties

that can be sensed either intellectually (aesthetic properties) or sensually

(phenomenological properties). It is possible, and indeed likely, that the structure

of a building will play a role in the expression of mathematics in architecture, but

this is not necessarily a factor of the practical performance of that structure (its

load-bearing or bracing capacity), but of the meaning or message it conveys

visually or perceptually. Thus, while acknowledging that the meaning of symbols

changes over time and that inspiration and phenomena cannot be consistently

Table 3.3 (continued)

Primary

category Definition Type Examples

Informatics—the use of

mathematics to visualise

or characterise architec-

tural, urban and regional

spatial and formal

properties

People: John James,

Michael Benedikt,

Michael Batty

Theories: Tochymetry,

Isovists, GIS mapping

Logic—the reasoned or

disciplined application of

knowledge

Theories: Inductive,

abductive and deductive

reasoning; computational

and heuristic reasoning
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transmitted from a building to a viewer, this category could be understood as

pertaining to those mathematical properties of architecture which are enduring or

continue to operate after the building is complete. Some specific examples of

applications in this category include proportional systems (like the golden mean

and the Modulor), symbols which use geometry or number to communicate

religious or cultural ideas (the Star of David), rationalist applications of Phileban

solids in architecture, and phenomenological uses of geometry to evoke

connections to nature.

The final category—mathematics of architecture—comprises analytical methods

and approaches that are used for quantifying or determining various properties of a

completed building or its context. These are mathematically-derived properties,

rather than innate ones. They are the by-products of other design decisions which

can be understood or modelled mathematically. The types of applications found in

this category are focussed on the analysis of information about buildings and cities,

for the purpose of understanding or optimising some aspect of a design. This

category could also be understood as relating to those mathematical properties of

a building that are only apparent when the building is subjected to a methodical

investigation using approaches which are not otherwise intrinsic in the design.

Examples of this category include space syntax and fractal analysis techniques,

isovist analysis and spatial cognition and urban spatial informatics.

The set of types which make up this framework represents a compromise

between accuracy and usefulness. At one extreme, it is possible to group almost

all of the applications into just two or three categories that broadly correspond to the

three overarching groups that are present in the final framework presented here.

But, as the examples, tables and diagrams demonstrate, there are multiple overlaps

between the three which undermine their utility. At a much finer-grained level, a

notably larger list of types was originally identified which separated out multiple

specific applications of mathematics, almost a third of which were used for

structural and environmental calculations. However, these mathematical and

computational approaches have changed over time and with increasing processing

power, techniques which were impractical a decade ago, are now in common use.

What has not changed is the core intent of all of these applications of

mathematics—to ensure that the performance of a part of a building meets a

given standard. Thus, a more extensive list of applications was merged into a

single type: performance and prediction.

A different challenge was present in the topics of measurement, surveying and

modularity. It could be argued that the first two are the same and that the third is

simply a specialised application of rule-based measurement. However,

measurement, like logic, is part of the base language of architectural design,

whereas surveying is, to extend the metaphor, a separate dialect with a specific

purpose and application. Modularity is a more contingent type because it is also

potentially related to the aesthetic consideration of proportions. Nevertheless, in the

pre-fabrication process and as part of a design approach, a separate tradition has
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developed around the topic of modularity to such an extent that it is worthy of

separation from the other types.

The decision to merge the symbolic and semiotic uses into a single type was

made to overcome the lack of distinction between them in many applications. For

the first of these, some historic uses of symbolic geometry are clear in their

application, while in much postmodern architecture, numbers are used as signs

and with an understanding of their semiotic and linguistic properties. Nevertheless,

for the majority of cases such a segregation is irrelevant because the design is

simply called upon to communicate an idea using one technique or another. A

similar logic was behind the decision to merge the phenomenal and the rational into

a single type. Proponents of phenomenological design tend to deny or understate

the role of the mind in responding to architecture and conversely, supporters of

rationalist design tend to consider the senses a debased extension of the mind which

distracts it from higher thoughts. Despite these differences, both phenomenal and

rational approaches rely on geometry and form to elicit either a physical reaction or

a mental one. It is their common desire for provocation that binds them together,

much as it is impulse to communicate that led to symbolism and semiotics being

similarly grouped.

Conclusion

In the thirteenth century, the pair of compasses in the hands of ‘God the architect’

symbolised the complete set of tools and devices used by designers to translate a

vision into reality. The central message—that mathematics serves to translate the

imagined into the physical—was reinforced by God the architect’s stance, framed

by a constructed portal and poised midway between the heavens and the earth. The

pair of compasses encapsulates the many different types of applications of

mathematics in architecture, with the majority present, in some rudimentary way

at least, in even the earliest myths of this discipline. The more extensive set of

application types in use today shares a clear lineage to these ancestral cases. The

specific formulas used by architects and engineers may have changed, and, amongst

other things, their capacity to work with non-orthogonal geometries has also

improved, but the fundamental purpose of the application of mathematics in

architecture has endured throughout history.
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