
Chapter 20

Calculation of Arches and Domes
in Fifteenth-Century Samarkand

Yvonne Dold-Samplonius

Introduction

Samarkand, with Bukhara the principal town of Transoxania, is first found in the

accounts of Alexander the Great’s campaigns in the east as Maracanda. Arab
legend makes Alexander founder of the city. In ca. 900 AD the Samanid kingdom

was founded, the beginning of a century of great prosperity for Transoxania, such as

would only be seen 500 years later with Timur and his immediate successors.

Although the capital was moved to Bukhara, Samarkand remained the premier

centre of commerce and culture, especially in the popular estimation of the Muslim

world. Among its native products, the paper of Samarkand, the manufacture of

which had been introduced from China, was especially famous. After surrendering

to Genghis Khan in 1220, the city was plundered and many of its inhabitants were

deported. For the next 150 years it was but a shadow of its former self. The revival

of the town’s prosperity began when Timur Lang (1336–1405) became supreme in

Transoxania after about 1369 and chose Samarkand as the capital of his ever-growing

kingdom. It was in his reign that the art called “Timurid” had its origins. Timur

enriched Samarkand with magnificent buildings and made it an international market

surpassing Tabriz and Baghdad, at least during his lifetime; he transplanted thither

the artists and craftsmen from the towns he conquered. The intellectual revival which

characterized the fifteenth century is in part the work of the Timurid sovereigns and

princes, many of whom were themselves poets, artists and scholars, and attracted to

their courts men of genius. Among the former are Timur’s son, Shah Rukh, who
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promoted historical studies, and his son, Ulugh Beg (1393–1449), astronomer, poet

and theologian, who really made Samarkand what Timur had dreamt of: the centre of

Muslim civilization. An artist, Ulugh Beg enriched Samarkand with superb buildings,

such as the Timurid burial place, Shah-iZindeh (Fig. 20.1), a madrasa (high school)

and others. A learned mathematician, he could solve the most difficult problems in

geometry, but he was above all an astronomer. When Ulugh Beg decided to construct

an observatory, he invited Ghiyāth al-Dı̄n Jamshı̄d Mas’ūd al-Kāshı̄ to his court—

sometime after 1416—as founding director, together with Mo’ı̄n al-Dı̄n al-Kāshı̄.

Director of the madrasa was Ulugh Beg’s mathematics teacher, Qādi Zāde al-Rumi

from Bursa (Turkey). The observatory, destroyed in the following century, was

regarded in his day as one of the wonders of the world.

Ghiyāih al-Dı̄n Jamshı̄d Mas’ūd al-Kāshı̄ ranks among the greatest

mathematicians and astronomers in the Islamic world. He was a master computer

of extraordinary ability, his wide application of iterative algorithms and his touch in

laying out a computation so sure that he controlled the maximum error and

maintained a running check at all stages; in short, his talent for optimizing a

problem show him to be the first modern mathematician. Al-Kāshı̄ died in June

1429 outside the Samarkand observatory, probably murdered on the command of

Ulugh Beg. Two years earlier he had finished the Key of Arithmetic, one of his

major works. The work is intended for everyday use; al-Kāshı̄ remarks, I redacted
this book and collected in it all that is needed for him who calculates carefully,
avoiding tedious length and annoying brevity. By far the most extensive book is

Book IV, On Measurements. Its last chapter, Measuring Structures and Buildings,
is really written for practical purposes:

Fig. 20.1 Façades of the mausoleums (qubba) at both sides of the Shah-i Zindeh. Image: author,

after Pougatchenkova (1981)
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The specialists merely spoke about this measuring for the arch and the vault and besides

that it was not thought necessary. But I present it among the necessities together with the

rest, because it is more often required in measuring buildings than in the rest.

Al-Kāshı̄ uses geometry as a tool for his calculations, not for constructions.

Besides arches, vaults and domes (qubba), al-Kāshı̄ calculates here the surface area

of a muqarnas (stalactite vault), that is, he establishes approximate values for such a

surface. He is able to do so because, although amuqarnas is a complex architectural

structure, it is based on relatively simple geometrical elements. For the calculation

only elementary geometrical rules are used.

Calculation of Arches and Vaults

In this section the terms “arch” and “vault” are interchangeable. The difference

between an arch and a vault is that the depth of an arch is not larger than its span,

whereas in the case of the vault the depth exceeds the span. The depth of the arch is

the distance between the front and back surfaces; that which is called depth in the

arch is called length in the vault. Al-Kāshı̄ remarks that,

The predecessors determined those (i.e., arch and vault) as half a circular hollow cylinder,

but we did not see something like it, neither in old nor in new buildings. We have mostly

seen ones that are pointed in the middle, and in few cases they are smaller than half a hollow

cylinder.

From the Byzantine Empire the Umayyads inherited a system of round arcading

that, in the rarest of instances, showed a tendency towards becoming slightly

pointed.1 The innovation of the pointed, or ogival, arch came from the East.

Under Umayyad rule the round arch persisted, but developed into the two-centred

form showing an increasing tendency towards pointedness. A round arch is struck

from a single centre. A pointed arch has more than one centre and can be thought of

in its simplest form as being struck from two centres with overlapping arcs; these

produce an increasingly pointed arch the further they are moved apart horizontally

(Fig. 20.2). In the succeeding two centuries this trend was still apparent, but was

complicated by the three- and four-centred arch. Based on this development it is to

be expected that in early arithmetic books only hemispherical arches are treated.

First al-Kāshı̄ explains extensively the different elements of an arch and how

these are connected, or which part could disappear in a wall. He then gives five

methods for drawing the façade of an arch.2 The first two are three-centred arches.

Figure 20.3 shows type 2, a three-centred arch, with point E as a double centre and

the other two centres situated in the two lower points Z and H. When the two lower

centres move, the arch will change its acuteness. Type 3 (not shown) deals with a

1 This is essentially Creswell’s theory, see Creswell (1960), Warren (1991: 59).
2 All five constructions are performed on the video “Qubba for al-Kāshı̄”, directed by Yvonne

Dold-Samplonius (1995).
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four-centred arch, which is similar to the three-centred arch except that the centre of

the semicircle is split into two points displaced towards the extremes of the span.

The greater the displacement, the shallower the profile. Type four (Fig. 20.2, lower

right) and five are two-centred. As the second façade was the most common in

al-Kāshı̄’s time, he uses it to illustrate his calculation method. This façade is handy,

according to al-Kāshı̄, when you need a span of 5–10, or up to 15, cubits.

Construction of the second façade (Fig. 20.3, taken from the oldest extant

manuscript, Tehran, Malek Library 3180/1, with Roman letters added):

(1) Describe a semicircle on AD, the span of the arch;

(2) Extend AD in both ends by the thickness of the arch to the points 1 and M. E is

the centre of the semicircle;

(3) Divide this semicircle in four equal parts through the points A, B, C, G, D;

(4) Extend BE and GE by EZ and EH, equal to AC, and by BK and GL, equal to

DM, the thickness of the arch;

(5) Describe from the centre E the arcs ML and Kl, from the centre H the arc GT,

and from centre Z arc BT;

(6) Connect HT and ZT and extend them by the thickness of the arch to the points

O and S;

Fig. 20.2 Diagram showing pointed arches formed with constant radii on centres with successive

separation of one-tenth, one-seventh, one-fifth, and one-third of a span. Image: author, after

Warren (1991)
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(7) Describe arc LO from point H and arc KS from point Z;

(8) Erect the perpendiculars SN and ON on the lines TS and TO.

The sections AK, KT, TN, TL, and LD form together the façade of the arch.

When we construct area AFQD with parallel sides and right angles, we obtain the

spandrels of the arch.

After al-Kāshı̄ has explained and carried out all five methods for constructing the

façade of an arch and has completed the characterization of arch and vault, he

continues with surveying them. He explains that he has already found out the

relation between some measures of an arch and its span and between some of

these and its thickness. He has laid these factors down in a table together with an

explanation of the method. These quantities are also transformed into Indian

numerals, which he has put down in the table as well. He also informs us about

the particulars of finding these quantities. With this table the following parts of the

arch (Fig. 20.3) can be found: the interior curve ABTGD, the inner height ET, the

upper width TN, and the surface area of the arch as well as the surface area of the

concavity, area ABTGDE.

With these values we can then calculate many different parts of the arch. To

calculate the volume of the arch we proceed in the same way as for round arches:

after the surface area of the arch has been found, by means of the table, we multiply

this number with the depth of the arch and obtain its volume. Sometimes the arch

disappears partly inside a wall and we want to know how much is visible and how

large the segments inside the wall are, section tDM and section JAI: these segments

are calculated by taking the difference of the circle segment MtE and the triangle

tDE:

Fig. 20.3 Construction of

the second façade. Image:

author
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ED

EM
¼ ED

Et
¼ cos∠tEM,EM ¼ MDþ ED,

tM ¼ arccos∠tEM ) arctM, arctM �ME ¼ 2MtE,

sin∠tEM ¼ tD

tE
) sin∠tEM � tExDE ¼ 2ΔtDE,

2MtE� 2ΔtDE ¼ 2tDM:

When we subtract this amount from the total surface area of the arch we obtain

the surface area of the visible part of the arch.

It might be necessary to calculate the spandrels, section NQt and section NFJ: in
this case we calculate the area AFQD and subtract from this amount the area of the

visible part of the arch, calculated above, and the area of the opening of the arch,

area ABTGDE, found by means of the table. This yields the surface area of the

spandrels. When we multiply this amount with the depth of the spandrels, we obtain

the volume of the two spandrels.

Al-Kāshı̄’s book is for practical use, as explained above. Hence he rightly shows

how to make life easier by working with rounded off values. More approximation is

involved, as the types of arches are more varied than those five given by al-Kāshı̄.

The method for calculating an arch is to select the type of arch nearest to

it. Golombek and Wilber (1988: 153–157) have considered existing examples of

Timurid arches in the order outlined by al-Kāshı̄. Examples have been recorded for

all but the fifth method, which was, however, certainly common in small windows.

In comparing the models described by al-Kāshı̄ with actual examples of Timurid

arches, we have to bear in mind that al-Kāshı̄’s purpose was calculating volumes

and surfaces, not constructing. This means that an elegant approximation, which

leads us to an easy calculation, is the ultimate goal.

Bulatow (1978) has analysed arches from the twelfth to fifteenth centuries in

Central Asia and suggests that some pointed arches were constructed as

intersections of ellipses. Questioning the reason for using the ellipse, he notes

that for spans exceeding 10 m these were easier to construct than four-centred

arches. The architects were familiar with the stability of the ellipse as well, for its

construction was known from Sassanian examples. According to his analysis, this

kind of arch is found in some of the most important Timurid buildings of the period,

as in the Gur-i Amir (Fig. 20.4) in Samarkand, and in the mausoleum of Timur Lang

and Ulugh Beg, for instance, in the dome, interior niches, arches of the zone of

transition, and entrance portal. The same arches have elsewhere been identified as

three- and four-centred arches and can be considered as such for all practical

purposes (see below).

The section on calculating arches ends in al-Kāshı̄’s Key of Arithmetic with the

following remark: I talked a lot about the subject of this section, as this section is
very important, and my predecessors did not treat it as they should.
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Calculation of Domes

The Arabic word for dome or cupola is qubba, plural qibāb or qubab. By extension
qubba also means a cupolaed structure or dome-shaped edifice, a domed shrine, a

memorial shrine, or kubba (especially of a saint). In pre-Islamic times the qubba
was a small domed leather tent carried by a camel, in which certain tribes kept

sacred stones. Also, the dome located in front of the mihrāb, a recess in a mosque

wall indicating the direction of prayer—as exemplified for instance in the Great

Mosques of Damascus, Qayrawan, Cairo, and Cordoba—might have had a special

meaning. From the late ninth and the tenth centuries A.D. the building of

commemorative structures over certain burial places, especially those of Shı̄’ı̄

saints, occurred. Throughout the entire Muslim world, all the special names for

sepulchral buildings, which vary with country and language as well as with the

person interred, come under the generic name of qubba (Fig. 20.1). There are

basically two types of monuments: the circular, tower-like form, and the often

more grandiose square or polygonal type. Both can be covered either by a circular

dome or a conical or pyramidal roof. Its original, and later stereotyped, form is a

square building covered by a dome. The oldest preserved example is the Qubba of
the Sāmānids in Bukhara, constructed around 907 but certainly before 943. It

consists of a square structure with a large central dome and four small corner

ones set over a gallery. As early as the Seljuq period (eleventh century) the

construction of domes with double shells was tried, which led to their successful

development in Timurid times. The aim of a drum and a double-shelled dome is to

Fig. 20.4 Gur-I Amir,

Mausoleum of Timur Lang

and Ulugh Beg with a

double-shelled dome.

Image: author, after

Pougatchenkova (1981)
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give a towering effect to the exterior. A striking example is the Gur-i Amir in

Samarkand (Fig. 20.4).

As long as domes consisted of cones or sphere-segments, their mensuration was

automatically included when measuring solids, and the qubba did not have to be

mentioned per se. At present it seems that, with the exception of al-Kāshı̄, only

qubbas in the form of hollow hemispheres have been considered in arithmetic

manuals. A hemispherical qubba is assumed to consist of the solid shell between

two concentric, parallel hemispheres. In praxis, the inner and outer surfaces of the

shell are never really parallel, because in the lower part, up to an angle of 61�, the
pressure exerts a pulling force in the upper part.

When the inner and outer diameters of a hemisphere qubba are known,

its volume and the inner and outer surface areas can be calculated as follows

(Dold-Samplonius 1998). We know how to compute the surface area of a sphere

with diameter equal to the outer diameter. Half of this amount is the outer surface

area of the qubba. In the same way, the inner surface area of the qubba can be

computed. To calculate the volume of the qubba, we compute the volumes of the

outer and the inner sphere and take each time its half. The difference between these

two amounts is the volume of the qubba.
The formulas for computing the area and the volume of a sphere are:

Area sphereð Þ ¼ 2rð Þ2 � π

and

Volume sphereð Þ ¼ Area sphereð Þ � r=3, 2r ¼ diameter

Al-Kāshı̄ does not carry out the calculation of the hemisphere qubba, but refers
to his calculation of the sphere. There he uses, as expected, the right formulas for

area and volume expressing л as the ratio between the circumference and the

diameter of a circle. He distinguishes the following categories of qubba:

They occur either in the form of a hollow hemisphere, or in the form of a segment of a

hollow sphere, or in the form of a polygonal cone, or in the form, which arises by imagining

the rotation of the façade of the arch, i.e. of an arch as mentioned in Section 1, around the

line of its elevation, that is the line, which connects its upper limit with the middle of the

line between its fundaments.

After remarking that the first three categories have already been dealt with

earlier in the book, he indicates how to calculate the complicated type of qubba,
i.e., the dome created by rotating an arch around its vertical axis. The method is

illustrated in Fig. 20.5. The dome is divided in parallel slices by drawing circles

from the axis on its surface. These circles have to be so close that the curves

between two of them equal the corresponding chords. Seven or eight of these circles

should normally suffice, according to al-Kāshı̄. In this way the dome is cut up in a

cone and several frusta. We first measure all the circles on the surface of the dome.

The next step is to measure the distance from the apex of the dome to the nearest
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circle, i.e. the chord (Fig. 20.5: the segment c) equalling the curve on the circle. By

multiplying half the circumference of the nearest circle by this amount we obtain

the surface area of the cone. Thereupon we multiply half the sum of every two

neighbouring circles by their distance to obtain the surface area of all frusta. The

sum of these products yields the surface area of the qubba.

To obtain the volume of the qubba, which is a hollow solid, we first measure the

volumes of the cone and the frusta, which fill the outer surface of the shell, and add

these. From this sum we then subtract the sum of the volumes of the cone and the

frusta filling the inside of the shell. The difference between these two sums is the

volume of the qubba, as we have seen before in the case of the hemispherical

qubba.
This general method is applied to a qubba based on the fourth type of arch, i.e. a

two centred arch with its span divided by the two centres in three equal parts

(Fig. 20.2, lower right). For practical application just the rules are enough. Hence,

“to simplify the procedure”, al-Kāshı̄ gives only the calculation method but does

not explain how he arrived at these results:

To obtain the surface area of the interior of the dome we have to multiply the square of the

diameter of the base of the hollow (¼ inner) dome by 1�4603200, if we compute

sexagesimally, or by 1.775, computing in the decimal system. When we multiply the square

of the diameter of the base of the (outer shell of the) dome by the same number, we obtain

the exterior curved surface area of the dome, as the inner and outer surfaces are supposed to

be parallel to each other. When we multiply the cube of the diameter of the base of the

hollow dome as well as the cube of the diameter of the base of the dome by 0�1802300, in the
sexagesimal system, or by 0.306, in the decimal system, and take the difference of these two

products, we obtain the volume of the hollow qubba.

In both cases the results were checked by modern methods and we found that the

factors are accurate and that the dome has been cut up in eight slices.

Could this factor be used for all kind of domes, with more or less deviation?

Al-Kāshı̄ makes no mention of the elliptical profile for either arches or domes.

There are a number of domes for which the profile may be interpreted as the

intersection of reflected elliptical curves. These include some of the most

important buildings of the period, as the Gur-i Amir in Samarkand. Bulatow has

demonstrated that the dome of the Gur-i Amir was probably designed using a pair of

foci and string. However, looking at his analysis of the Gur-i Amir (Fig. 20.6) we

Fig. 20.5 Qubba, sliced in

eight slices. Image: author
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see that this dome could also have been originated by the fourth method: with line

AD as the span and the points B and Z dividing the span in three equal parts, we

obtain the circle segments just inside the curve drawn by Bulatow. The difference

between the two curves lies within the margin of error accepted by modern

architects. It seems therefore that al- Kāshı̄’s factors can also be used for

calculating elliptical domes.

Conclusion

In medieval Italy it was common practice to pay artisans according to the surface

area they had completed. Also in seventeenth-century Safavid Iran architects were

paid a percentage on each building based on the cubit measure of the height and

thickness of the walls:

The Persians determine the price for masons on the basis of the height and thickness of

walls, which they measure by the cubit, like cloth. The king imposes no tax on the sale of

buildings, but the Master Architect, that is Chief of Masons, takes two percent of inheritance

allotments and sales. This officer also has a right to five percent on all edifices commissioned

by the king. These are appraised when they are completed and the Master Architect, who has

directed the construction receives as his right and salary as much as five percent of the

construction cost of each edifice (Necipoğlu 1995: 44, 159).

The same custom seems to have existed in the Arab world. It is also useful to

know, more or less, how much material is needed like gold for gilding, bricks for

construction or paint and such things. Payment per cubit was common in Ottoman

architectural practice where a team of architects and surveyors had to make cost

estimates of projected buildings and supply preliminary drawings for various

Fig. 20.6 Dome of the

Gur-i Amir. Image: author,

after the analysis of

Bulatow (1978) with

additions
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options. In addition to facilitating estimates of wages and building materials before

construction, al-Kāshı̄’s formulas may also have been used in appraising the price

of a building after its completion. His sophisticated formulas were, like the simple

formulas found in the Arithmetic Books, useful for everyday life. This was al- Kāshı̄’s

objective for writing his Key of Arithmetic.
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