Chapter 10
Geometry of Vedic Altars

George Gheverghese Joseph

Introduction

The earliest material evidence of Indian mathematics is found among the ruins of
the Harappa civilization, which dates back to the start of the third millennium
before the Christian Era. Archaeological finds show an elaborate system of weights
and measures. Plumb-bobs of uniform size and weight found throughout the vast
area of this culture conform to two series (binary and decimal) and their
combinations, in the ratio of 1, 2, 4, 8, 16, 32, 64 and 10, 20, 40, 160, 200, 300,
640, 1,600, 6,400, 8,000, and 12,800. Until recently, equivalent weights formed the
basis of an elaborate system of barter in certain parts of India, with conversion rates
almost identical to some of the above ratios.

Scales and instruments for measuring length have been found at major urban
centres of this civilization, such as Mohenjo-Daro, Harappa and Lothal. The
Mohenjo-Daro scale is a fragment of shell 66.2 mm long, with nine carefully
sawn, equally spaced parallel lines, on average 6.7056 mm apart. The accuracy of
the graduation is remarkably high, with a mean error of only 0.075 mm. One of the
lines is marked by a hollow circle, and the sixth line from the circle is shown by a
large circular dot. The distance between the two markers is 1.32 in. (33.5 mm) and
is known as the ‘Indus inch’.'

First published as: George Gherveghese Joseph, “The Geometry of Vedic Altars”, pp. 97-113 in
Nexus: Architecture and Mathematics, ed. Kim Williams, Fucecchio (Florence): Edizioni
dell’Erba, 1996.

! There are a number of interesting links between this unit of length (if indeed that is what it was)
and others found elsewhere. A Sumerian shushi is exactly half an Indus inch, which supports other
archaeological evidence of contacts between the two ancient civilizations. In northwest India, a
traditional yard known as the gaz was in use from very early times. In the sixteenth century, the
Mughal Emperor Akbar attempted unsuccessfully to have the gaz adopted as a standard measure in
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A notable feature of the Harappa culture was its extensive use of kiln-fired bricks
for building and flood control. This bricks were exceptionally well baked and of
high quality, and could still be used provided care is taken in removing them in the
first place. They contain no straw or other binding material. While 15 different
sizes of Harappan bricks have been identified, the standard ratio of the three
dimensions—the length, breadth and thickness—is close to 4:2:1. Even today this
is considered the optimal ratio for efficient bonding.

In the absence of any written evidence (the Harappa script has not yet been
deciphered), these bricks may serve as the only “link” over a period of 1,500 years
between the Harappa civilization and the beginning of the Vedic period of Indian
history—a link, as it were, between the “frozen” geometry from archaeology and
the first appearance of written geometry in the form of a surveyor’s guide to
constructing Vedic brick altars.

Geometry of the Vedic Age

An examination of the earliest written record of geometry in India involves a study
of the Sulbasutras,” conservatively dated around 800-500 Bc, although knowledge
from earlier times is incorporated as well.* The Sulbasutras contain instructions for
the construction of sacrificial altars (vedi) and the location of sacred fires (agni),

his kingdom. The gaz, which is 33 in. (or 5,840 mm) by our measurement, equals 25 Indus inches.
Furthermore, the gaz is only a fraction (0.36 in.) longer than the megalithic yard, a measure that
seems to have been prevalent in northwest Europe around the second millennium BC. This has led
to the conjecture that a decimal scale of measurement, originating somewhere in Western Asia,
spread widely as far as Britain, ancient Egypt and the Indus Valley (Mackie 1977).

2 Three of the more mathematically important Sulbasutras were the ones recorded by Baudhyana,
Apastamba and Katyayana. Little is known about these sulhakaras (i.e., authors of Sulbusutras)
except that they were not just scribes but also priest-craftsmen performing a multitude of tasks
including design, construction and maintenance of sacrificial altars (Thibaut 1875, Sen and Bag
1983).

3 Chronologically, this period of Indian astronomy and mathematics should be taken to commence
from when the Vedic hymns began to be composed, which some date as going back to 1500 Bc.
Certain issues regarding early Indian chronology have unfortunately become tug-of-war between
those Westerners who see themselves as the guardians and promoters of impartial scholarship and
invariably adopt conservative dating, and certain Indians who make excessive claims of antiquity
for the early sources of Indian mathematics and astronomy. The tunnel vision of both groups make
the task of incorporating recent discoveries in archaeology, necessitating drastic revisions the
conservative dating of the Vedic period, more difficult. What this evidence would indicate is that
earlier versions of both Sathapatha Brahmana and Sulbasutras should be placed about a 1,000
years earlier than the conservative dates attributed to these texts. For further details on recent
evidence from archaeology, see Frawley (1991) and Kak (1987, 1993). A thorny question on the
history of early Indian mathematics is how much importance should be given to oral evidence
compared to written texts. Ignoring the oral evidence and regretting the paucity of written evidence
has led to a fissure in the ranks of historians of Indian mathematics, generating more heat than light
even in current discussions of the subject.
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which, in order to be effective instruments of worship and sacrifice, had to conform
to clearly laid-down requirements about their orientation, shapes and size. There
were two main types of ritual: worship at home and communal worship. Square and
circular altars were sufficient for household rituals, while more elaborate altars, of
shapes which were combinations of these and other basic figures, were required for
public worship.

The composers of the Sulbasutras made it clear that their work was not original
but was to be found in earlier texts, notably the Samhitas and the Brahmanas, of
which the most relevant extant text, the Sathapatha Brahmana, is at least 3,000
years old.* Despite its obscurities and archaic character, this text contains a valuable
discussion of the technical aspects of altar construction.

An important section of the Sathapatha Brahmana deals with the construction of
altars to carry out a 12-day Agnicayana (“piling up of Agni”’) ceremony. The
ceremony often took place in an area containing two sections (Fig. 10.1):

i. The Mahavedi (Great Altar): Shaped as an isosceles trapezium, the two parallel
sides of this structure were constructed so that the larger side measured
30 prakramas on the west and the smaller side 24 prakramas on the east, with
the altitude of the trapezium being 36 prakramas.” Contained within the
Mahavedi was a falcon-shaped brick altar (Vakrapraksa-syena) representing
time.® Since many of the interesting results in Vedic geometry arose from the
construction of this altar, it will be discussed in the next section.

ii. To the west of the Mahavedi was a smaller rectangular area called
Pracinavamsa in which, at specified positions, were three fire altars called
Garhapatya (of circular shape symbolising the earth), Dakshinagni
(of semicircular shape representing space) and Ahavaniya (a square indicating

“The literature includes, four Vedic Samhitas (i.e., Rigveda, Yajurveda, Samayeda and
Atharavdveda) in their various recensions, being the collection and presentation in a classified
form of a large number of Vedic hymns; a set of elucidatory literature called Brahmanas of which
the Sathapatha Brahmana is the most important for our purposes; a set of philosophical treatises
called Upanishads; and six Vedangas, written for the purpose of instilling the correct methods of
recitation of the Vedas and performing Vedic rituals, of which two, the Jyotisa and the Kalpa, are
particularly important, since the first contains early knowledge of astronomy and the last contains
the Sulbasutras.
5The measures used in the Sathapatha Brahmana were the same as in the Sulbasutras. The
important units of measurement were:

1 pada = 15 angulas,

1 prakrama = 2 padas,

1 purusha = 4 prakramas = 120 angulas.

A prakarama is about 0.5 m.
Sn Vedic mythology, time was represented by the metaphor of a bird. The year was divided into
six seasons, with the head of the bird being the vasant, the body being both hemanta and sisira the
wings being sarad and grishma and the tail being varsha.



152 G.G. Joseph

Fig. 10.1 Drawing: author
Mahavedi

'/

A: Ahavaniyva

D: Dakshinagni
H* Soma Hall
G: Garhapatya
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implements and V: Vakrapaksa- Syena
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the sky). In the Sulbasutras, there is the suggestion that the areas of the three fire
altars were equivalent and equalled 1 square purusha.’

There were other structures contained in the Mahavedi and Pracinavamsa
(H, H* and S in Fig. 10.1) of functional and ritual significance, but yielding little
of mathematical interest.

The instructions for the design of the Mahavedi provide an insight into the
practical nature of the texts of the period. The Apastamba Sulbasutra (V.2)
contains the following instructions, a longer version of the original cryptic
instruction:

To a cord of length 36 prakramas, add 18 prakramas. Make two marks on the cord, one at
12 prakramas and the other at 15 prakramas from the western end. Tie the ends [of the
cord] to pegs on the ends of the East—west [prsthya] line of length 36 prakramas. Take the
cord by the mark at 15 prakramas and stretch it to the south and mark the point with a peg.
Do the same to the north. These are respectively the south west and the north west corners
of the Mahavedi. Untie the ends of the cord from the East—west line and retie the end that
was fastened previously to the peg on the east end to the west end and vice versa. Repeat the
previous procedure but using the mark at 12 prakramas to obtain the south east and north
east corners of the Mahavedi.

In Fig. 10.2, the length of the extended cord is 36 + 18 = 54 prakramas. From
the other end, the 12th mark is half of the smaller parallel side while the 15th mark
forms the base (AB) of a right-angled triangle (ABC), with its hypotenuse
(BC) being the remainder of the cord (i.e., 36 + 3 = 39 prakramas) and the other
side being the East—west line (AC) which measures 36 prakramas.

Apastamba gave other rational right-angled triangles that would satisfy the
measurements required by the Mahavedi. These are the Pythagorean triples (3, 4, 5)
multiplied by 4 or 5; (12, 5, 13) multiplied by 3; (15, 8, 17) and (12, 35, 37). All these
triples may have been chosen initially to ensure that at least one side was of the same

7 Seidenberg (1983, pp. 113—116) contains an interesting discussion of the ambiguities in the
Vedic texts relating to equivalences of area as well as the philosophical underpinnings of such a
requirement.
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Fig. 10.2 Drawing: author East
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length as one side of the Mahavedi. In the same text appears a modification to the
method of designing the Mahavedi that is suitable for any length of a given side.®

Another problem that led to some interesting mathematics related to the precise
distances and relative positions of the three fire altars, Garhapatya, Dakshinagni
and Ahavaniya contained in the Pracinavamsa, shown in Fig. 10.1. The general
requirement was: Dakshinagni should lie south of the line joining the other two fire
altars and its distance from the Garhapatya should be one third the distance
between the other two fire altars.

The Baudhyana Sulbasutra contains three different versions of how this could be
achieved. To quote the relevant passages, as given in Datta (1932, pp. 203-205),
with some modifications for sake of clarity:

(1) With the third part of the length [i.e. the distance between Garhapatya (G) and
Ahavaniya (A)], construct three squares closely following one another [from
west towards the east]. Garhapatya is at the northwestern corner of the western
square; Dakshinagni (D) is at its southeastern corner; and Ahavaniya at the
northeastern corner of the eastern square (Baudhyana Sulbasutra 1.67).

(2) Divide the distance between the Garhapatya and Ahavaniya into five or six
[equal] parts; add [to it] a sixth or seventh part; Divide [a cord as long as] the
whole increased length into three parts and mark the end of the two parts from
the eastern end [of the cord]. Fasten the two ends of the cord [to two] pegs at
either end of the distance between the Garhapatya and Ahavaniya, stretch it
towards the south, having taken it to the mark and fix a peg at the point reached
This is the position of the Dakshinagni (Baudhyana Sulbasutra 1.68).

8 Apastamba’s procedure may be interpreted as follows: Let the cord placed on the East-west line be
x units in length. If the length of the cord is extended by half the original length (x + 1/2x), and a mark
is made at a distance of 5x/12 from one end, then remaining part of the cord is 13x/12. If we now tie
the cord to the ends of the East-west line, and stretch it up to the mark, we get a right-angled triangle
who sides are x, 5x/12 and 13x/12. This relationship will hold for any integral value of x.
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Fig. 10.3 Drawing: author E
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(3) Increase the measure [between the Garhapatya and Ahavaniya] by a fifth;
divide [a cord of that length] into five parts and make a mark at the end of
two parts from the western end [of the cord] after fastening the two ends to the
east—west line. Stretch the cord towards the south having taken it to the mark
and fix a peg at the point reached. This is the position of the Dakshinagni
(Baudhyana Sulbasutra 1.69).

The figure constructed by Datta on the basis of these instructions, is shown in
Fig. 10.3. He obtained various estimates of the relative distances between the fire
altars.

Thus, if AG = x, it is easily shown that:

2
AD = w%xandGD = \/?xfrom(l);
16 7

7 8
AD = g* or AD = TR and GD = g*or GD = T from (2);

18 12
AD = 5% and GD = 75% from (3).

Moreover, if one assumes that the relative positions of all three fire altars are the
same irrespective of the rule used, then the estimates for V5 and V2 are:

V5 = 2.333,2.286, 2.169; V2 = 1.166, 1.143, 1.44

None of these estimates are accurate approximations, the best being only correct
to the first place of decimals. These rules were essentially practical “rules of thumb”
that an early surveyor might use, without mathematical considerations being
predominant. However, this does not mean that considerations of accuracy did
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Fig. 10.4 The first layer of a Vakrapaksa-syena altar: the wings are each made from 60 bricks of
type a, and the body, head and tail from 50 type b, 6 type c, and 24 type d bricks. Each subsequent
layer was laid out using different patterns of bricks with the total number of bricks equalling 200.
Drawing: author

not occur in early Indian geometry. For example, to calculate the square root of
2, the following instructions are given both by Apastamba (1.6) and Katyayana
(2.13) who came after Baudhyana: “Increase the measure by its third and this third
by its own fourth less the thirty-fourth part of that fourth. This is the value of a
special quantity in excess [which needs to be deducted]”.

If we take one unit as the dimension of the side of a square, the above formula
gives the approximate length of its diagonal as:

11 1
\/571+§+ﬁ—m*1.4142156....

The true value is 1.414213. ..

The Sulbasutras contain no clue as to the manner in which this accurate
approximation was arrived at over 2,500 years ago. A number of theories or
explanations have been proposed. Of these, a plausible one is that of Datta
(1932), based on the “dissection and reassembly” principle, and discussed in
Joseph (1992, pp. 234-36).

The Geometry of the Falcon-Shaped Altar

One of the most elaborate of the public altars (also found in the Mahavedi constructed
for the Agnicayana ceremony) was shaped like a giant falcon just about to take flight
(Fig. 10.4). It was believed that offering a sacrifice on such an altar would enable the
soul of a supplicant to be conveyed directly to heaven by a falcon.
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Most falcon-shaped altars were constructed with five layers of 200 bricks,° with
each of these constructions reaching the height of the knee. For special occasions
10, 15, and, improbably, up to a maximum of 95 layers of bricks were used in their
construction. The top layer of the basic altar was constrained to an area of 7.5
square purushas.'"® A purusha was defined as the height of a man with his arms
stretched above him, say 2 m, which would give the altar an area measure of
approximately 30 m”. For the second layer from the top, the prescription was that
1 square purusha should be added, so that the total area would be 8.5 square
purushas.'' Similarly, each successive layer area was increased by 1 square
purusha, so that in the rather exceptional (or more likely hypothetical) case of the
94th successive increase of 1 square purusha, the area of the base of this huge
construction would be 101.5 square purushas or about 400 m*!'?

°Two different types of bricks were used in altar construction. There were ordinary bricks
(lokamprina) and special (yajushmatt) bricks, each of which was consecrated and then marked
for purposes of identification. The bricks varied by size and shape and were used in different
combinations in constructing different layers of the altars. Thus for example, the first, third and
fifth layers of a falcon-shaped altar with six-tipped wings was made of 38 squares, 58 rectangles
(of two sizes) and 104 triangles (of two sizes); the second and fourth layers were constructed from
11 squares, 88 rectangles (of two sizes) and 101 triangles (of six sizes and five shapes). Different
configurations of these basic figures were used in construction of falcon-shaped altars with
five-tipped wings, with different rituals being performed on different altars. Staal (1978)
provides a detailed description of the construction of these altars and their accompanying
rituals, with one of the most recent ones involving a five-tipped falcon-shaped altasr being
performed in Kerala, South India, in 1990.

10 Apart from minor variations, the body of the top layer of the falcon-shaped altar was 4 square
purushas. The wings and tail were 1 square purusha each plus the wing increased by 1/5 of a
square purusha each and the tail by 1/10 of a square purusha so that the image would more closely
approximate the shape of a falcon. Thus the total area of the top layer is:
4+ (2 x 1.2) + 1.1 = 7.5 square purushas or approximately 30 m?.

"' In Katyayana Sulbasutra (5.4) appears the following instruction: “For the purpose of adding a
square purusha [to the original falcon-shaped altar], construct a square equivalent to the original
altar together with the wings and tail, add to it a square of one purusha. Divide the sum [i.e., the
resulting square] into fifteen parts and combine two of these into a square. This will be the [new]
unit of square purusha [for the construction of the enlarged figure]”.

12 The instructions given in Sathapatha Brahmana (X.2.3.11-14) for constructing a falcon-shaped
altar consisting of 95 layers of bricks may be interpreted as follows:

Area of the body = 56 + (12/7)(56)

Area of two wings = 2(14) + (3/7)(14) + (1/5)(1/7)(3)(14)

Area of tail = 14 + (3/7)(14) + (1/10)(1/7)(3)(14)

The total area is about 116 square purushas, which is an over-estimate of the actual 101.5 square
purushas, arising in part from a rounding-off error resulting from taking 14 rather than
(13 + 8/15). Baudhyana Sulbasutra contains an explanation of how the estimate of the total area
was obtained. Expressed in modem notation:

Let the new unit after the mth augmentation be x.

Then
x> =1 + (2m/15) where m runs from 1 to 94.
For m = 94,

X =13 + 8/15.
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Clearly, if in the construction of these altars the builders had to conform to
certain basic shapes and prescribed areas or perimeters, two geometrical problems
would soon arise:

(1) the problem of finding a square equal in area to two or more given squares;
(2) the problem of converting other shapes (for example, a circle or a trapezium or
a rectangle) into a square of equal area or vice versa.

The constructions were probably achieved through a judicious combination of
concrete geometry (the principle of dissection and reassembly),'® and the
application of ingenious algorithms, including the so-called Pythagorean theorem.

In the Katyayana Sulbasutra (named after one of the authors) appears the
following proposition: “The cord [stretched along the length] of the diagonal of a
rectangle makes an [area] which the vertical and horizontal sides make together”
(2.11).

Using this version of the Pythagorean theorem, the Sulbasutras showed how to
construct both a square equal to the sum of two given squares and a square equal to
the difference of two given squares. Other constructions, including the

So we see that 14, the estimate used, is a rounding-up of this number. The use of the more
accurate figure gives the calculated total area as 110 square purusha.

13 The essence of this method involves two commonsense assumptions:

i. Both the area of a plane figure and the volume of a solid remain the same under rigid translation
to another place.

ii. If a plane figure or solid is cut into several sections, the sum of the areas or volumes of the
sections is equal to the area or volume of the original figure or solid. For example, the following
sizes and shapes of bricks used to construct one of the layers of a falcon-shaped altar can be
“dissected and reassembled” from a square:

The reasoning behind this approach was very different from that behind Euclidean geometry,
but the method was often just as effective, as shown in the Indian (and Chinese) “proofs” of the
Pythagorean theorem. For further details, see Joseph (1992, 1994).
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transformation of a rectangle (square) to a square (rectangle) of equal area and of
square (circle) to a circle (square) of approximately equal area, were part of the
repertoire. In geometrical terms, the constructions “doubling the square” and
“squaring the circle” lead naturally to the devising of algorithms for the square
root of 2 and other numbers in the first case, and the discovery of the inexact nature
of the relationship between circumference of the circle and the diagonal (diameter)
of the square in the second case.'*

Apart from equivalences through area, the Vedic texts contain equivalences
established between phenomena through numbers. The starting point is the
centrality of the number 360 in the Vedic calendar and philosophy. Parallels are
drawn between human anatomy and planetary motions. Thus, the Caraka Samhita,
an early medical text, reckons the total number of asthis (or bones, teeth, nails, hard
cartilages) in the human body to be 360, obtained from considering the 308 bones of
the newborn babe (before they fuse into a smaller number of 206 in the adult),
32 teeth and 20 nails where each of these asthis are associated with each day of the
year. The parallel between the nominal year (360 days) and man (purusha) is
carried further in Sathapatha Brahmana where the basic falcon-shaped altar of
7.5 square purushas or 108,000 square angulas (1 purusha = 120 angulas) is
linked to 10 nominal years or 108,000 muhurtas (1 muhurta = 48 min)." It is
interesting in this context that a total of 10,800 ordinary (or lokamprina) bricks
were used in the construction of the three fire altars found in the Pracinavamsa, the
same as the number of muhurtas in a nominal year.'®

Kak (1993) has argued that the concept of equivalence is of central importance
in interpreting Vedic astronomical knowledge, so that in the design of altars an
astronomical code was present which required deciphering. For example, the
circular Garhapatya fire altar, which symbolised earth or the womb, was
constructed with 21 ordinary bricks and had an area of 1 square purusha.'” If the
basic falcon-shaped altar having an area of 7.5 square purusha corresponded to

% There are interesting similarities and differences between the geometry of Greece and that of
Vedic India. Both were used in the construction of sacred altars for ritual purposes; both had to
solve the fundamental practical problem of how to construct a square equal to the area of a given
rectangle. However, an important difference which shaped the way geometry developed in the two
cultures was the Greek concentration on volume, notably the problem of “doubling the cube”,
while in India the principal questions involved the area of altars: the circular, the square, the
trapezoid and combinations of these shapes. For a discussion of these constructions and the
mathematics underlying them, see Joseph (1992, pp. 228-236; 1993, pp. 6-11; 1994, p. 184-189).
15 Various rituals required the day-time and night-time to be divided into 2, 3, 4, 5 and 15 equal
parts. In the 15-fold division, each part was a muhurta, which would be equivalent to 1/15 of
(12 x 60), or 48 min.

16 A number of other parallels based on the equivalence of numbers is found the Vedic literature of
the period. For further examples, see Kak (1993).

'7 The choice of 21 is supposedly symbolic. It is the sum of 12 months, 5 seasons, 3 worlds and the
sun; or the three sets of rishis (or planets); or the sum of five elements (earth, water, fire, air, space),
five breaths (prana, apana, vyana, udana, samana), five organs of cognition (jrnanednriyas), five
organs of action (karmendriyas) and the inner ear (antakarana).
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360 days, then 1 square purusha would be equivalent to 48 days. The augmentation
of the basic falcon-shaped altar by 1 square purusha at a time was to be seen as a
correction to make the altar correspond closer to an actual year (366 days or
372 tithis or lunar days). A nakshatra year was taken as the number of
nakshatras (27) multiplied by the number of months (12) which would give
324 days (or tithis). An additional 48 tithis as a correction was needed to get an
actual year. However, this would mean an excess of 0.93761 fithi every year,
since the number of tithis in a solar year is 371.06239. Thus, by constructing a
falcon-shaped altar of 95 layers symbolising a 95-year cycle, with each
augmentation being 1 square purusha (or 48 tithis), starting from 7.5 square
purushas to 101.5 square purushas at the end of that cycle, the practice of a major
adjustment every 95 years to the calendar by 90 tithis (or 3 lunar months) made
sense. Such a correction implied that the length of the solar year is:
372 — (90/95) = 371.05263 tithis which corresponds to 365.24675 days.
Comparing this value to the present-day estimate for the tropical year of
365.25636 days, we are struck by the accuracy of estimates which are at least
3,000 old.

Conclusion

There is a view that Indian mathematics originated in the service of religion. The
proponents of this view have sought their main support in the complexity of
motives behind the recording of the Sulbasutras. Since time immemorial, they
argue, the needs of religion have determined not only the character of Indian
social and political institutions, but also the development of her scientific,
knowledge. Astronomy was developed to help determine the auspicious day and
hour for performing sacrifices. The 49 verses of Jyotisutras (the Vedanga
containing astronomical information) gave procedures for calculating the time
and position of the Sun and Moon in various nakshatras (signs of the zodiac). A
strong reason in Vedic India for the study of phonetics and. grammar was to ensure
perfect accuracy in pronouncing every syllable in a prayer or sacrificial chant. So
too, the construction of altars and the location of sacred fires, as we have seen, had
to conform to clearly laid-down instructions about their shapes and areas if they
were to be effective instruments of sacrifice.

However, there is a danger that the magico-religious beliefs surrounding the
Vedic rituals may be overly emphasized when considering the origins of Indian
mathematics. We have seen the crucial role played by the Agnicayana ceremony in
generating geometrical concepts and techniques found in the Sulbasutras. The
rituals associated with the construction of fire altars may be looked at from two
standpoints. The first is from the standpoint of the beliefs connecting the shapes of
altars with the specific desires to be fulfilled by their use in the sacrifices. The
second is that of technology pure and simple: How exactly were the altars
constructed to conform to specific shapes, specified size and by using a specific
numbers and types of bricks?
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It is clear that the geometry originating in the Sulbasutras had little to do with the
first standpoint. Thus, for example, whether a falcon-shaped altar ensured for the
sacrificer heaven or the annihilation of enemies was totally irrelevant to the
problem of constructing it to conform to certain size and shape. As a matter of
fact, these problems would be the same if somebody wanted a structure to be built in
the garden for ornamental purposes. In other words, the geometry developed in the
Sulbasutras was aimed at solving technological problems involved in constructing
brick structures. It is this geometry that is being studied by historians of
mathematics.'®

Once the Sulbsutras are seen as primarily manuals for technicians, the questions
then arise of where and when the practical knowledge relating to bricks and brick
technology were acquired. References to bricks are conspicuous by their absence
from the most sacred and earliest of Vedic literature, the Rigveda Samhita. When
they do make an appearance in a recension (Tattiriya Samhita) of a later Veda, the
Yajurveda Samhita, bricks are viewed as marvellous and mysterious entities.'’ In
the same text, there are exhortations that “tiles or potsherds” from the ruined
Harappa cities should be gathered for ritual purposes. It is, therefore, likely that
the priests were acquainted with the burnt bricks from the same sites and would in
course of time invest them with magico-religious properties.

In one of the last recensions to Yajurveda appears the Sathapatha Brahmana,
which, as mentioned earlier, contains a description of the Agnicayana. The
magico-religious elements of this ritual are accompanied by a short discourse on
the construction of brick altars of various shapes and sizes. While the discussion
lacks the geometrical sophistication of the Sulbasutras, it is clear that the
knowledge of brick technology which was abundantly evident in the Harappa
culture was slowly percolating into the Vedic rituals, to become the most critical
element of Vedic constructions.

Where, then are we to look for the origins of geometry in India? The common
view is that the Sulbasutras are the source. However, one hypothesis is that if the
geometry embodied in the Sulbasutra texts is to be viewed as the outcome of a long
and sophisticated tradition of brick technology, this geometry must have come into
being when there was in fact an advanced form of brick technology with a long
tradition behind it. This, in other words, would mean that whatever may be the time

" There are indications in the texts that the authors of the Sulbasutras were aware of this
distinction, for often one comes across expressions, “thus we are told”, “such are our
instructions”, etc. The implication is that these instructions (say, on the sacrificial efficacy of
different shaped altars or the astronomical codes to be adhered to) were not particularly relevant to
the main purposes of the texts. These instructions were simply taken for granted, while the texts
themselves paid exclusive attention to the technique of executing them. In fact, the texts are
exemplars of how exact science may grow directly out of applications.

' Consider the following passage from the Taittiriya Samhita (iv.4.11): “May these bricks, O
Agni, be milch cows for me, one, and a thousand, and a million, and ten million, and a hundred
million, and a thousand million, and ten thousand million,.,,; may these bricks, O Agni, be for me
milkers of desires named the glorious yonder in yon world”.
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of the actual codification of the Sulbasutras, their contents come down from a
different period. That must have been a period of flourishing brick technology. Only
one period answering to all this is known in ancient Indian history, and that is the
period of the Harappa civilisation mentioned in the introduction. The presumption,
in short, is that geometry which was eventually codified in the Sulbasutras could
have come down from the Harappan period. If this presumption is correct, the first
and earliest of the discontinuity in the chronology of Indian mathematics has been
filled with the assistance of bricks.
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