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Preface to Architecture and Mathematics

from Antiquity to the Future

In June of 1996, in his keynote address at the conference ‘Nexus’96: Relationships

Between Architecture and Mathematics’, the founding international conference

of what would become an international community for research in a new

interdisciplinary field, eminent engineer Mario Salvadori asked, ‘[c]an there be

any relationship between architecture and mathematics?’ Over the next 18 years,

the Nexus community came together for a series of bi-yearly conferences in Italy,

Portugal, Mexico, Turkey and the USA to examine, debate and celebrate the

relationships that exist between architecture and mathematics. The conferences

were hosted in locations where important historic connections had been proposed

between architecture and mathematics: in Europe these locations include Fucecchio

(1996), Mantua (1998), Ferrara (2000), Óbidos (2002), Genoa (2006), Porto (2010)

and Milan (2012). Further afield, conferences were held in Mexico City (2004), San

Diego (2008) and Ankara (2014). Conference venues were chosen to permit

participants to visit local sites of historic importance for architecture and

mathematics in post-conference workshops, such as Pompeii and Herculaneum in

1996, the villas of Palladio in 1998 and Teotihuacan in 2004. The speakers at these

events include some of the most influential people in architecture, art, mathematics

and engineering. Lionel March, Robert Tavenor, Alberto Pérez-Gómez, Marco

Frascari, Michele Emmer, Leonard Eaton and Mario Salvadori, amongst many

other luminaries, have all presented at the Nexus conferences and taken part in

round-table discussions, forums and visits to some of the great architecture of these

regions.

The first Nexus conference was actually conceived out of the frustration caused

by the difficulty of finding a venue for publishing interdisciplinary research: papers

in architecture and mathematics were seen as too mathematical for architectural

journals, but not mathematical enough for mathematics journals. At best, such

research was viewed as a curiosity, too far from the mainstream to garner much

interest. Because there was no single journal that encouraged such research, when

authors were fortunate enough to have an article accepted, publications were

scattered, and authors seldom knew about the work of others examining similar

topics. The Internet was in its infancy at that time, leaving far-flung scholars to

v



work in isolation. One journal, The Mathematical Intelligencer, and its particularly
open-minded editor-in-chief, Chandler Davis, had accepted papers by three of the

participants at the first conference, Kim Williams, Benno Artmann and Heinz

Götze, who subsequently began to correspond. The 23 people who met in 1996 at

the first conference knew of each other’s work by word of mouth: friends sending

their work to friends. But already by the second conference, 2 years later, the

growing group felt the need for a publishing venue, and it was decided to found the

Nexus Network Journal—Nexus, from the name chosen for the first conference to

represent the idea of interweaving ideas from two disciplines, and Network, to
describe the group of people whose acquaintances and collaborations were

continuing to expand. The first issue of the journal, with Kim Williams as

editor-in-chief, was introduced online in 1999, was added to at trimester intervals

of the course of that year and was produced in print at its end. The journal continued

in that way for its first 2 years, but by volume 3 in 2001, submissions had grown so

much that it was published in two issues per year, until with volume 9 in 2010, it

grew to three issues per year.

Across 15 volumes, 35 issues and over 500 refereed papers, the international

reputation and impact of the journal have grown considerably. Now published

jointly in the Birkhäuser programme of Springer-Basel and Kim Williams Books

of Torino, Italy, the journal is highly respected and has a growing readership.

Beginning with volume 16 in 2014, the NNJ will be overseen jointly by the editors

of these present two volumes.

Foreseen along with the conferences was the publication of the proceedings. The

series entitled ‘Nexus: Architecture and Mathematics’ comprised seven volumes

from the first seven conferences. At the beginning, the conference books were seen

as separate from the journal. This changed with the eighth conference, when

speakers voiced the desire to see their papers published in the NNJ, which was by

that time mature and esteemed. Thus, since 2010, papers presented in the Nexus

conferences have been published in special issues of the journal and are available

online. However, the research presented at the early conferences was only available

in a series of limited edition books. With many of these being out of print there has

been growing pressure to make the most highly cited works from the early years of

the Nexus conferences available. Rather than simply republishing selected works in

the order in which they were written, such was the scope of these early Nexus

publications that an alternative proposition presented itself.

We, the editors, have assembled almost a hundred papers from the early years of

the Nexus conferences, and arranged them both thematically and chronologically to

trace key moments in the history and theory of architecture and mathematics, from

antiquity to the present day, along with predictions for the future. These chapters

describe over 60 major buildings and architectural works, consider more than

twenty major theories of geometry and design and cover themes and ideas arising

from five continents and spanning over four millenia.

Having said this, the present two-volume work does not pretend to be a

comprehensive encyclopaedia of the history and theory of every facet of the

relationship between architecture and mathematics. Being works by more than
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one hundred authors with backgrounds in not only architecture and mathematics but

also engineering, physics, chemistry, philosophy, music and more, there is a rich

diversity of approaches to the topic, along with some insightful synergies and

informative disagreements. All of the chapters have undergone minor editorial

revisions, including, in some cases, updated bibliographies. In a few cases authors

have chosen to make more substantial revisions, to bring their chapters up to date,

or direct the reader to advances that are currently occurring in their areas. In

addition to this, we have provided an overview chapter for each volume (Chap. 1

in vol. I and Chap. 48 in vol. II), to frame the sequence and structure of the whole as

well as a chapter entitled ‘Mathematics in, of and for Architecture: A Framework of

Types’ (Chap. 3) which seeks to classify, and thereby make more accessible, the

myriad connections proposed across this work.

Each of the chapters in the present work have became crucial landmarks in the

scholarly landscape of architecture and mathematics. Some represent pioneering

research, the first studies of the relationships between architecture and mathematics

in a specific period, or in the oeuvre of a given architect. They serve as both points

of departure for new voyages of discovery and as destinations for people entering

unfamiliar terrain. For the novice researcher these works provide a grounding for

their explorations, and for seasoned scholars these chapters offer a critical record of

the efforts of fellow travellers. We, the editors, hope that through this two-volume

work, these chapters can continue to inspire and guide future generations.

We wish to thank Maria Roberts, Valentina Filemio and Marco Giorgio

Bevilacqua for assistance with editing and proofing, and Michael Dawes for support

with image preparation and research assistance. We thank all authors for permission

to reuse their material, and for their help in updating texts and references. Finally,

we thank Anna Mätzener, Editor for Mathematics and History of Science, and

Thomas Hempfling, Executive Editor for Mathematics, Birkhäuser, for their

support of the Nexus conferences and the Nexus Network Journal throughout the
years, and especially for their support of this present work.

Torino, Italy Kim Williams

Newcastle, Australia Michael J. Ostwald

January 2015
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Chapter 1

Relationships Between Architecture

and Mathematics

Michael J. Ostwald and Kim Williams

architecture |ˈärkiˌtek ch ər| noun
The art or practice of designing and constructing buildings. The style in which a

building is designed or constructed, esp. with regard to a specific period, place,

or culture.

mathematics |maθ(ə)ˈmatiks| plural noun
The abstract science of number, quantity, and space. Mathematics may be studied in

its own right (pure mathematics), or as it is applied to other disciplines such as

physics and engineering (applied mathematics).

Introduction

What is the nature of the relationship between architects and mathematicians or

between architecture and mathematics? As they are commonly understood these

two groups seem to have few obvious connections. The word ‘architecture’ is used

to describe either the practice of creating buildings or a particular class of

constructed—architectural—objects. In contrast, the word ‘mathematics’ denotes

a domain of pure or applied knowledge that is associated with the study or use of

abstract objects such as numbers and shapes or forms. Professions, like architecture,

tend to be isolated and controlled, restricting membership to experts who have been

awarded particular qualifications and have fulfilled certain criteria (Fournier 2000).

M.J. Ostwald

School of Architecture and Built Environment, University of Newcastle, Callaghan,

New South Wales 2308, Australia

e-mail: michael.ostwald@newcastle.edu.au

K. Williams (*)

Kim Williams Books, Corso Regina Margherita, 72, 10153 Turin (Torino), Italy

e-mail: kwb@kimwilliamsbooks.com

K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to
the Future, DOI 10.1007/978-3-319-00137-1_1,
© Springer International Publishing Switzerland 2015

1

mailto:michael.ostwald@newcastle.edu.au
mailto:kwb@kimwilliamsbooks.com


Instead, disciplines, like mathematics, are ways of grouping and identifying bodies

of knowledge and expertise that are both pertinent within the discipline and which

might also be applied in other fields (Klein 1996). However, despite these apparent

differences, the distance between these two—between a profession and a discipline

and between an object (of design) and a subject (of study)—is far less than many

would assume. In order to make sense of the contemporary view which considers

architecture and mathematics as dissimilar pursuits, it is useful to trace a brief

history of the growth of disciplines and professions over time; a history which, most

importantly, reminds us that in the past these two were very closely connected.

In the world of ancient Greece, learned professionals were trained in one of three

fields: religion, ethics, or the human condition. While some distinction was made

between the ways students were educated in each of these fields, a sound foundation

in both philosophy and mathematics was considered a necessity (Marrou 1956).

At the same time, the acts of creating a chair, designing a house or constructing a

ballista were all tasks that could be undertaken by artisans. Such skilled workers

were trained in the practical processes of making (stone-cutting, woodwork) along

with a range of knowledge domains including both geometry and metrology

(Kostof 1977a).

Later, in Roman times, Vitruvius tells us that the architect was neither a scientist

nor a craftsman, but one who had sufficient knowledge of a range of scientific

fields—first and foremost geometry, but also history, philosophy, music, medicine,

law and astronomy—to be able to oversee the work of all other disciplines

(Vitruvius 2009: 5).

A similar pattern of relationships is found in medieval Europe where the first

universities recognised graduates in law, divinity and medicine. In the medieval

university students were expected to complete preparatory studies on the trivium—
grammar, logic and rhetoric—along with studies in arithmetic, geometry and

aesthetics (Janin 2008). Seated in rows of carved pews, in high-roofed

tapestry-lined halls, these students were able to directly observe the geometric

mysteries of space and form. But the very halls they inhabited during these

studies had been created by master builders and teams of craftsmen and labourers

with a fund of geometric knowledge. Evidence of this knowledge is found in Villard

de Honnecourt’s Livre de Portraiture, where he wrote, “. . .in this book . . . you are

able to find the technique of representation as the discipline of geometry requires

and instructs” (Barnes 2009: 35). The most senior of the master builders, often the

direct descendants of artisan families, were given the title ‘architect’ or ‘engineer’

(Kostof 1977b). These master builders were trained in both the arts and sciences of

design and construction. Furthermore, in both the Classical and Medieval eras, the

mathematical disciplines provided a critical foundation for construction (Fitchen

1961; James 1981). This is why, for much of this era, there was little distinction

between professions and disciplines, or between architects and mathematicians.

This close and productive relationship between architecture and mathematics was

to continue for several centuries before reaching its most visible apogee during the

Renaissance.

2 M.J. Ostwald and K. Williams



During the Renaissance the Medieval educational foundation found in the

trivium was expanded to encompass a second tier of four arts (the quadrivium)
that typically included studies of arithmetic, geometry, music and astronomy. The

archetypical ‘Renaissance man’ was expected to have both a broad and

comprehensive knowledge across these seven subjects, along with their potential

application in at least one, and possibly more, of the following pursuits; science, art,

medicine and architecture. Leon Battista Alberti was one such polymath; an author,

artist, poet and linguist who had also mastered optics, perspective and cryptography

(Williams et al. 2010). Today, Alberti is best known as an architect, because it was

in the application of these ideas to design, in both written and built work, that he

achieved his most enduring success. For a similar reason Christopher Wren is also

regarded as one of the world’s great architects, even though he originally

distinguished himself in astronomy, physics and mathematics and only began to

design buildings when he was already a respected scientist (Bennett 1982). Robert

Hooke is another example of the natural philosopher-cum-architect. Even the great

Isaac Newton demonstrated an amateur, but informed, interest in architectural

theory. Such cases suggest that for centuries architecture and mathematics were

closely related, and equally respected, areas of inquiry.

However, despite the examples of Wren and others, the seventeenth century was

more generally marked by the rise in power of guilds and colleges who sought to

define and preserve their members’ interests (Melton 2001). For example, it was

around this time that the Freemasons formulated a series of rules of membership

and practice that sought to protect the knowledge and skills of the stonemasons.

Amongst the earliest articles of Freemasonry is a set of practical and symbolic rules

showing the essential relationship between architecture and geometry (Berman

2012). Thus, while the tradition of the ‘Renaissance man’ was still being

valorised in the eighteenth century, the guilds and technical colleges remained

the driving force which gradually separated professions from disciplines and,

inadvertently, increased specialisation began to distance architecture from

mathematics (Clarke 1994).

Over the ensuing 200 years, in parallel with the emergence of new technology

and the need for more focussed trades and skills, disciplines and professions

became increasingly specialised and their roles began to change (Duffy and

Hutton 1998). For example, established in 1794 the French École Polytechnique
was at the forefront of approaches to training a new, elite class of technocrats.

Embracing a scientific disposition, the curriculum included issues of aesthetic

perception, positivism and rationalism. In part because of this educational focus,

this era marked a growing separation between architects and engineers (Picon

1992). The French Enlightenment was also one of the last periods wherein

architects, still trained in descriptive geometry, directly contributed to

mathematical knowledge. In particular, the discipline of stereotomy was

developed largely by architects to allow stone blocks to be cut and assembled in

complex forms (Warren 1875).

By the early years of the twentieth century architectural education was split

between an atelier-based model, which traced its origins to the École des
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Beaux-Arts, and the technical college model, which acknowledged a lineage to the

apprenticeship system (Cuff 1991; Crinson and Lubbock 1994). The atelier system,

modelled on fine art practice, included geometry in its core curriculum but the role

of arithmetic was less apparent (Draper 1977). The technical college system

included both science and mathematics in its syllabus along with more extensive

applications of geometry. Significantly though, despite the apparent differences

between these systems, both effectively positioned mathematics as a secondary

discipline which merely served to buttress the education of architects (Boyer and

Mitgang 1996). In a comparable way, the discipline of mathematics divided itself

into a ‘pure’ and an ‘applied’ strand, with the former being regarded as the path for

specialists, and the latter for those who sought to engage more directly with other

fields (Davis et al. 1995). This pattern was repeated around the world with the

combination of increasing specialisation and the desire for professional recognition

gradually separating and isolating different knowledge domains and disciplines

from each other (Fournier 2000).

Such was the compartmentalisation of knowledge that occurred in the early part

of the twentieth century that British scientist and novelist Charles Percy Snow

famously criticised the rise of two distinct and separate cultures—science and

humanities—each seemingly unaware of the basic values and lessons of the other

(Snow 1998). Snow’s observations, derived from his identification of the growing

separation between disciplinary groups, were both widely reported and criticised

(Carafoli et al. 2009). Certainly it was becoming harder for a person to be qualified

in two or more fields and the era of the peripatetic scholar was effectively over. This

was true even within the discipline of mathematics itself; Henri Poincaré was

considered the “last universal mathematician”. Yet, the growing accessibility of

knowledge, no longer protected by professional guilds or enshrined in the lore of

esoteric societies, meant that rather than fostering the divide between two distinct

cultures, there were potentially a multitude of secondary connections to be made

between different groups, each creating new sub-cultures (Nicolescu 2002).

However, such new transdisciplinary groups face a twofold problem: visibility

and recognition (Doucet and Janssens 2011). In the first instance, while important

connections exist between fields, like architecture and mathematics, they are often

rendered invisible by contemporary educational practices and the legal implications

of professional ethics (Sokolowski 1991). In the second, sustained research must

take place before such hidden associations can be recognised, investigated and

celebrated. This is especially the case in contemporary society where these same

two problems of visibility and recognition continue to hinder our capacity to engage

with transdisciplinary knowledge.

Today, the extent to which architects are formally trained in mathematics is

probably lower than in any previous period in history (Ostwald andWilliams 2008).

The degree to which mathematicians directly engage with building design and

construction is at an equally low ebb. This is unfortunately true of the general

public as well, since no formal architectural education at all is offered in public

schools, while at least of minimum of mathematics is taught. Yet, this situation is

not entirely as it seems. Advances in computing have placed mathematical

techniques and processes at the fingertips of every young architect in the world,
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providing a means of using complex geometry which was previously unavailable

(Szalapaj 2005; Littlefield 2008; Ostwald 2012). In the last decade buildings have

been produced which model non-linear dynamical systems, are covered in fractals

or aperiodic tiles, are roofed in complex membranes and are optimised for energy

performance and wind-load using Boussinesq or Bernoulli equations (Ostwald

2006; Burry and Burry 2012). All of these developments rely on advances in

mathematics yet, paradoxically, the distance between the architectural profession

and the mathematical disciplines has seemingly never been greater. The problem is,

as stated previously, that a myriad of connections continue to exist between

architecture and mathematics, just as they have done for several millennium, but

in order to understand and appreciate these connections—to perceive and recognise

both their historical and theoretical significance—academics and professionals

must be willing to engage in transdisciplinary scholarship. This is where the

present work has an important role to play.

The relationship between architecture and mathematics is most visible and

recognisable when members of these two groups cross the divide and

productively work with concepts, themes and topics that have been developed in

the other field. Thus, for architects to talk with authority about geometry or

arithmetic requires both a willingness and a capacity to traverse disciplinary

boundaries. Similarly, a mathematician venturing into the realm of architectural

history, theory and design must engage with a field that has its own language and

traditions. The present, two-volume, edited collection represents the work of some

100 authors who have made such important transdisciplinary incursions. They have

investigated the complex interplay of connections between architecture and

mathematics and have engaged with bodies of disciplinary and professional

knowledge that are often separated in contemporary society. These authors have

worked to reconnect two fields that were once closely reliant on each other and, in

doing so, blaze a path so that other scientists, scholars, professionals and gifted

amateurs may follow.

At the start of this chapter two questions were raised. The first asked: “What is

the nature of the relationship that exists between architects and mathematicians?”

The short answer is that the two share a common intellectual heritage and similar

values and concerns. Both work with a highly structured system of symbols that

support each other hierarchically to achieve an edifice. Mathematicians, in fact,

speak quite often of “the mathematical edifice”. Here is Bertrand Russell on the

study of mathematics:

The discovery that all mathematics follows inevitably from a small collection of

fundamental laws is one which immeasurably enhances the intellectual beauty of the

whole; to those who have been oppressed by the fragmentary and incomplete nature of

most existing chains of deduction this discovery comes with all the overwhelming force of

a revelation; like a palace emerging from the autumn mist as the traveller ascends an Italian

hillside, the stately storeys of the mathematical edifice appear in their due order and

proportion, with a new perfection in every part (Russell 2009: 67).

The second question was more general and inclusive: “How are the subjects of

architecture and mathematics connected?” The answer to this involves a

1 Relationships Between Architecture and Mathematics 5



consideration of several thousand years of history, along with an investigation of

philosophy, number and shape, construction and material science. Issues of

representation, meaning, religion, culture and ethics are also pertinent to this

question. Thus, to begin to approach this larger topic, the following section of

this chapter describes the structure of the work, which alternates between historical

and theoretical themes.

The Structure of the Work

The chapters that comprise these present volumes have been arranged following a

predominantly chronological approach. We chose this convention because it best

represents the way architecture and mathematics—but especially architecture—has

developed. The architecture of any given historical period is usefully seen in

relation to the one that preceded it, perhaps as a natural development or

outgrowth, but also potentially as a rebellion against it. Often the underlying

reason for a change in style is a shift in thinking, or in knowledge or technique.

Thus we have interspersed the historically grouped chapters with groups relating to

ideas and theory. We believe in this way it is possible for ideas and concepts, along

with built works and processes, to juxtapose and illuminate each other.

The relationship between architecture and mathematics is both longstanding and

complex, with the two being bound together in a multitude of practical,

representational and contingent ways. On a practical level, the design and

construction process for a building relies on mathematics for measurements,

timelines, weights and structural calculations (Salvadori 1968; Swallow

et al. 2004). In a different way, architects have used numbers and shapes to

represent—through symbolic, metaphoric or semiotic means—a broad range of

themes that are socially and culturally significant (Rowe 1947; Preziosi 1979;

Evans 1995). A parallel tradition in architecture uses geometry and other

branches of mathematics to analyse the way designers approach form (Stiny

1975), to investigate spatial hierarchies (Hillier 1995) or measure visual and

phenomenal properties (Benedikt 1979). All of these examples involve different

types of connections between architecture and mathematics. Furthermore,

throughout history there have been various periods characterised by particularly

dominant types of relationships between architecture and mathematics.

In the ancient Greek and Roman worlds architects repeatedly used combinations

of shapes and numbers to evoke spiritual or cosmic themes. For example, the

Roman architect Vitruvius suggested that because the human body possesses

distinct geometric proportions, an architecture that is produced in accordance

with those proportions represents a microcosm of the divine universe (Rykwert

1996). In parallel with this symbolic application of geometry, the challenges of

supporting construction and trade throughout a rapidly expanding empire led

engineers and architects to develop a standard system of measurement (Kostof

1977a). In contrast, during the Renaissance systems of proportion based on the

musical ratios were the focus of much aesthetic debate. With the rise of Baroque
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architecture, a broader geometrical vocabulary including ovals and ellipses

was used to reinforce the combined spiritual and experiential power of space

(Norberg-Schulz 1971). In the eighteenth century French Enlightenment architects

designed buildings in the shape of monumental Phileban solids (spheres, cones, and

cubes) in an attempt to encourage contemplation of higher order scientific or

philosophical principles (Vidler 2006). However, by the nineteenth century

widespread concerns with health standards and overpopulation encouraged

architects to embrace industrial techniques, along with the new ways of managing

production scheduling and understanding material tolerances and limits. In our own

day, algorithmic and computational approaches to architecture have embedded

mathematics in every line of every CAD model or BIM file, and in every form or

shape evolved or generated in the computer (Szalapaj 2005). While measurement

remains of practical importance in contemporary architecture, it is no longer as

critical as it was in the ancient world. Similarly, while several Renaissance treatises

suggest that design could be parametrically determined, the power of computing has

allowed this once peripheral notion to become increasingly important. Thus,

throughout history the relationship between architecture and mathematics has

shifted and changed, with some key moments in this relationship being embodied

in a single building of a period or the work of a particular architect, but at other

times being only understood retrospectively through the efforts of historians and

theorists.

The structure of the present book reflects this interweaving of the theory and

history of architecture and mathematics. The first volume commences, in Part I,

with a set of chapters that are concerned with overarching theories connecting

architecture and mathematics, before progressing, in Part II, to the examination of a

particular period in architectural history: the ancient world prior to 1000 AD. This

transition from theory to history and back again is repeated for the remainder of the

two volumes. For example, in Part III, a series of chapters focus on the historic

importance of mathematics in creating systems of measurement and structural

stability. Thereafter, returning to the historic time line, in Part IV, architectural

examples drawn from 1100 AD to 1400 AD (from Medieval to Romanesque) are

analysed. This alternating structure, which knits a historical chronology of

buildings and architects together with theories that were of relevance to the era, is

repeated throughout the two volumes. The present work can therefore be read either

historically or thematically, but it is only in the combination of the two—through

viewing the complete fabric and not just its warp or weft—that the wealth and

profundity of connections between architecture and mathematics can be grasped.

The theory strand that connects the two volumes—Parts I, III, V, VII, X and

XI—examines the significance of essential concepts including measurement,

proportion, symmetry and representation. Theories and applications of tiling—

both periodic and aperiodic—fractals and scanning technology are examined in

the penultimate theory section. In the final of these parts, computational and

parametric theories are described along with the philosophical implications of

these developments in the context of architectural history. While this is the

shorter of the two strands that connect the two volumes of the present work, it
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frames the historical work, providing a foundation for ideas developed throughout

the chapters and a context for the changing role of mathematics in architecture.

The history strand comprises the majority of the two volumes—Parts II, IV, VI,

VIII and IX. It commences with Neolithic and Copper age construction, before

progressing through examples of ancient Egyptian, Greek, Roman and Mayan

architecture. The Renaissance and Baroque eras are covered in the intermediate

sections along with Islamic, Christian and Ottoman design. Architects and theorists

whose works are considered in this section include such giants as Michelangelo

Buonarroti, Andrea Palladio, Francesco Borromini and Christopher Wren, along

with lesser-known figures such as Juan Bautista Villalpando and Antonio

Rodrigues. The final section in this strand is focussed on the twentieth century

and the first decade of the twenty-first century. It considers examples of Modern,

Organic, Postmodern and Computer-Generated architecture. Works and texts by

Frank Lloyd Wright, Marcel Breuer, Le Corbusier, Louis Kahn and Oscar

Niemeyer, amongst many others, are considered in this part.

In what follows, we provide an overview of the first six parts of the present work

which collectively make up Volume I. A separate introduction and overview is

provided at the start of Volume II (Chap. 48) covering material in that work and

offering a framework for understanding why certain eras offer a multitude of

examples of connections between architecture and mathematics, while others

have a relative paucity.

Part I: Connections Between Architecture and Mathematics

The first part of the present volume comprises a series of chapters which consider a

range of themes pertaining to the overarching relationship between architecture and

mathematics. In ‘Can there be any relationships between Mathematics and

Architecture?’ (Chap. 2), the eminent engineer and mathematician Mario

Salvadori offers a provocative reading of the relationship between pure

mathematics and what he calls ‘concrete real architecture’. Salvadori, in a

personal address to the reader, illustrates pure mathematics using examples of

Euclidean and non-Euclidean geometries, and concludes that the beauty of

mathematics is that ‘it is totally free, it is abstract’. In contrast, architecture must

be constructed and it is because of this property that, in a mathematical sense, the

two are incomparable. But then, Salvadori reverses his own argument to

demonstrate that the connections between mathematics and architecture are so

many that ‘if mathematics had not been invented, architects would have had to

invent it themselves.’

In Chap. 3, “Mathematics in, of and for Architecture” we editors of this

publication, Michael Ostwald and Kim Williams, begin to formulate an answer to

Salvadori’s question; ‘can there be any relationships between mathematics and

architecture?’ Starting with a review of the two famous origin myths of

architecture, then though a consideration of more contemporary modes of

architecture practice, the chapter identifies three types of relationships. The first
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type, covers geometric or numeric properties that are intentionally designed into or
demonstrated in architecture. The second type encompasses analytical methods for

quantifying or determining various properties of architecture. The final includes

practical tools for the support of architectural design, construction, generation and

conservation.

In ‘Relationships between History of Mathematics and History of Art’ (Chap. 4),

which is similarly broad in its scope, Clara Silvia Roero examines the relationship

between the history of art in general and the history of mathematics. Her chapter

proposes three levels of connection between art and mathematics—a surface or

substrate level, the conscious or unconscious application of principles, and finally a

higher-level demonstration of knowledge.

While the close relationship between architecture and mathematics was

especially prevalent during the Renaissance, in ‘Art and Mathematics Before the

Quattrocento: A Context for Understanding Renaissance Architecture’ (Chap. 5),

Stephen Wassell demonstrates that this achievement should be understood by

considering the development of mathematics in previous eras. Starting with

Neolithic speculative geometry, and then progressing through mathematical

principles developed in Ancient Greece and Rome, Wassell proposes that the

practical and metaphysical foundation for Renaissance architecture can be

attributed to much earlier developments in both architectural and mathematical

knowledge.

In ‘The Influence of Mathematics on the Development of Structural Form’

(Chap. 6), Holger Falter examines the role played by mathematics in the

development of structural form. By tracing examples from different eras, Falter

argues that not only is mathematics (in the form of structural mechanics) essential

to every design, but that each era developed different architectural structures in

response to changing cultural conceptions and mathematical developments. While

Falter acknowledges that geometry often served important symbolic functions in

architecture, he argues that the structural and material properties cannot be

forgotten.

Part II: Architecture from 2000 BC to 1000 AD

Histories of architecture typically suggest that it was around 9000 BC, in the early

Mesolithic era, that the first consciously designed structures were built. Prior to that

time natural features in the landscape, including caves, hollows and rock overhangs,

provided rudimentary shelter from both the environment and predators. However,

in the Mesolithic era small communities began to create simple, but often extensive,

structures from naturally weathered stone that could be moved and arranged to

create earthen mounds or barrows. By selectively covering these mounds in

branches and soil, and inhabiting the voids between the larger rocks, these

structures became the equivalent of artificial caves. The remains of a large

number of these barrows have been excavated throughout the last century, with

some evidently serving community or ceremonial purposes, while others acted as

burial mounds (Spikins 2008).
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In the early Neolithic era, dating from around 5000 BC, a number of communities

in different parts of the world developed a capacity to create simple masonry

structures (Hofmann and Smyth 2013). Some of the most extensive of these

featured large, walled enclosures made of crude mud bricks which were

sometimes finished in a type of plaster. For example, in Southern Anatolia in

Turkey the Chalcolithic (Copper Age) people of Çatalhöyük constructed a dense

cellular architecture, wherein a network of broadly orthogonal masonry walls was

roofed with timber shingles. At around the same time, wattle and daub structures

with thatched roofs over timber beams began appearing across both Eastern and

Western Europe. In Germany, England and Ireland more elaborate timber

structures, including long houses, tombs and cisterns were also being constructed

(Cruickshank 1996).

In parallel with the latter part of the European Neolithic period, in North Africa,

the higher temperatures allowed for the development of large-scale techniques for

casting and drying mud-bricks. It was this advance which lead to the rise of

Sumerian architecture (Kramer 1963). Using clay-based masonry the

Mesopotamian culture developed methods that allowed them to stack layers of

bricks, typically without mortar, to produce buttressed walls and stepped pyramids,

or ziggurats. Supplemented with a limited amount of timber and occasionally clad

in coloured stone, these buildings were large in scale, but the friable nature of the

masonry core of these structures rendered them impermanent.

Just as architecture developed throughout the Mesolithic, Neolithic and

Sumerian eras, so too did mathematics. Simple attempts to record the passing of

time were common in early agrarian cultures. The need to plant and harvest crops at

appropriate times led to the need to measure and predict the seasons and thus the

first calendars were developed. The desire to trade with neighbouring lands was

responsible for the Sumerians developing simple weights and measures. However,

the first great developments in both architecture and mathematics can be traced to

the Ancient Egyptians. Responsible for a variation of the decimal system, for

surveying and the astronomical calendar, the Egyptian civilisation developed both

architecture and mathematics to a new level of refinement (Rossi 2004).

Spanning broadly from around 3000 BC to 500 AD, Egypt provided one of the

most enduring civilisations of the ancient world. In this era, however, Egypt was not

alone in making both mathematical and architectural advances; both the Ancient

Indian Vedic texts and Ancient Mayan (Mesoamerican) hieroglyphs reveal similar

levels of advancement, with the latter inventing a base-20 (vigesimal rather than
decimal, or base-10) system of counting. It is this age, when the Egyptian, Mayan

and Indian cultures developed systems of counting, measuring and geometry, which

is the focus of the opening four chapters in Part II of the present work. The majority

of the latter chapters in Part II address the architecture and mathematics of the

Ancient Greek and Roman civilisations.

In ‘Old Shoes, New Feet and the Puzzle of the First Square in Ancient Egyptian

Architecture’ (Chap. 7), Peter Schneider examines the origins of the first square,

one of the most primitive and recurring geometric figures in architecture. Schneider

finds evidence of a simple, yet sophisticated technique for constructing the square,
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in the ancient Egyptian measures of the 20 digit remen and the 28 digit cubit,
suggesting that this allowed architects to construct a primal square which could be

readily replicated. In ‘Geometric and Complex Analyses of Maya Architecture:

Some Examples’ (Chap. 8), Gerardo Burkle-Elizondo, Nicoletta Sala and Ricardo

David Valdez-Cepeda undertake a detailed geometric analysis of 26 pyramids

constructed by the Mayan civilization. Using fractal analysis they examine the

relationship between the formal properties of these structures and their

cosmological purpose. Again with regard to Mesoamerica and the stepped

pyramids of the first century AD, in ‘A New Geometric Analysis of the Plan of the

Teotihuacan Complex in Mexico’ (Chap. 9), Mark Reynolds offers a geometric

analysis of the plan of the Teotihuacan complex in Mexico. Rather than considering

the significance of these structures in an astronomical or archaeological sense,

Reynolds uses plan overlays to examine the organization of these culturally

significant buildings.

George Gherveghese Joseph proposes a different cultural relationship between

architecture and mathematics in ‘The Geometry of Vedic Altars’ (Chap. 10).

Ancient Indian systems of weights and measures can be traced in the construction

methods and forms of a series of sacrificial altars (vedi). Through an analysis of

these altars, Joseph demonstrates that while the origin of Indian mathematics has

often been linked to largely theological or symbolic purposes, the degree to which

this culture was able to solve practical problems in geometry has been

underestimated.

Site planning is the focus of Graham Pont’s chapter, ‘Inauguration: Ritual

Planning in Ancient Greece and Italy’ (Chap. 11). Drawing on a theory of

planning by polar coordinates, Pont considers 29 ancient sites, noting the

evidence for a system of site planning which involves the division of sites using

visual arcs. Such a ritual system, based on visual relations as defined from distinct

points in space, might explain why many Greek towns and sites have complex

angled plans, which have resisted standard geometric analysis techniques.

In ‘The Geometry of the Master Plan of Roman Florence and its Surroundings’

(Chap. 12), Carol Martin Watts describes the Roman town planning practice of

laying out major streets in accordance with cardinal points. Thereafter she offers a

possible explanation for the planning of both the city and countryside of Florence,

which is in accordance with Roman practices, relies on a range of clear geometric

processes and responds to symbolic concerns about genius loci. Continuing the

focus on Roman architecture, in ‘Architecture and Mathematics in Roman

Amphitheaters’ (Chap. 13), Sylvie Duvernoy examines a particular elliptical

shape used almost exclusively for the design of amphitheatres. The geometric

basis for Roman amphitheatres has been the subject of a body of specialised

research, leading to debates about the difference between oval and elliptical

forms. Starting with amphitheatres from the late Republic and early Roman

Empires, Duvernoy traces a series of simple geometric relations. Then, using

measured surveys of the amphitheatres of Pompeii, Roselle, and Veleia, she

analyses the nature of the geometric curves which provide the basis for each.

Geometry in Roman architecture is also the topic of Carol Martin Watts’s second

chapter in Part II, ‘The Square and the Roman House: Architecture and Decoration
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at Pompeii and Herculaneum’ (Chap. 14). Through an analysis of the Roman house

and its decoration, Watts uncovers several geometric systems and operations

(including a variation of the ‘sacred cut’) in the proportional relationships found

in the overall site planning, spatial organisation, and decorations and tiling of the

house. The penultimate chapter in this part continues the close analysis of geometry

in Roman architecture. In ‘The Quadrivium in the Pantheon of Rome’ (Chap. 15),

Gert Sperling examines the Pantheon in Rome, reviewing several famous

interpretations of its form, and partially rejecting the cosmological connections

that have been made between the building’s dome and the heavens. Taking into

account a survey of the metrical dimensions of the complex, Sperling proposes that

the geometry of the Pantheon not only reflects the heavens, but is also derived from

the mathematical knowledge of the heavens recorded in the ancient quadrivium.
In ‘“Systems of Monads” in the Hagia Sophia: Neo-Platonic Mathematics in the

Architecture of Late Antiquity’ (Chap. 16), Helge Svenshon and Rudolf Stichel

examine the relationship between mathematics and design in one of the most iconic

buildings of the first millennium. Hagia Sophia or Ayasofya in Istanbul (formerly

Constantinople), was built in the fifth century for the Byzantine emperor Justinian.

Famous for its enormous dome and the majesty of its interior, significantly, the

original designers commissioned for Hagia Sophia were not architects, but were

rather a scientist and a mathematician; respectively, Isidore of Miletus and

Anthemius of Tralles.

Part III: Theories of Measurement and Structure

The eight chapters in Part III are centred on theories of measurement and the role of

mathematics in the construction and structuring of architecture. In ‘Measure, Metre,

Irony: Reuniting Pure Mathematics with Architecture’ (Chap. 17), Robert Tavernor

takes as his starting point the argument that systems of measurement are

representative of the values of the culture that defined them. Thus, in the ancient

world the measures and proportions of the human, male, body were often used for

theological, rather than practical reasons. Tavernor illuminates the fundamental

irony that the systems of measurement developed and used by architects and

mathematicians are rarely so universal as they seem. In ‘Facade Measurement by

Trigonometry’ (Chap. 18), Paul Calter examines a different way of measuring the

built environment, derived from surveying and optimised for the consideration of

historic buildings and ruins.

Mark Wilson Jones describes his motivation for writing ‘Ancient Architecture

and Mathematics: Methodology and the Doric Temple’ (Chap. 19) as a desire to

bring greater rigour to the measurement of ancient Greek and Roman architecture.

In particular Jones is critical of proportional studies of façades and plans that are

neither precise nor objective enough. Jones offers seven criteria for evaluation of

the efficacy of a particular set of measures and their interpretation, each of which is

illustrated with specific examples from the ancient world.
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The act of measuring buildings is also the focus of ‘Calculation of Arches and

Domes in Fifteenth-Century Samarkand’ (Chap. 20) by Yvonne Dold Samplonius.

This chapter features a reading of the great mathematician al-Kashi’s work, Key of
Arithmetic, an important text about the measurement of buildings. The techniques

developed by al-Kashi were used to determine the surface area of vaults and domes

in order to support the practical construction (and estimates of costs and materials)

of architectural work. The mathematics of domes and vaults is also the subject of

‘Curves of Clay: Mexican Brick Vaults and Domes’ (Chap. 21) by Alfonso Ramı́rez

Ponce and Rafael Ramı́rez Melendez. The authors, father and son, analyse the

properties of traditional Mexican brick vaults and domes that were constructed

using brick stacking techniques that required no scaffolding or centering.

The structural properties of architecture are the primary topic of ‘Mathematics

and Structural Repair of Gothic Structures’ (Chap. 22) by Javier Barrallo and

Santiago Sanchez-Beitia. Founded in the proposition that architectural education

should include an introduction to mathematics, Barrallo describes processes for the

restoration and maintenance of Gothic buildings. While Barrallo’s chapter is

concerned with the European tradition, in ‘Mathematics of Carpentry in Historic

Japanese Architecture’ (Chap. 23) Izumi Kuroishi describes how Heinouchi

Masaomi, a nineteenth-century master carpenter and mathematician, developed a

theory of Kikujutu (stereotomy) and an application of the Japanese mathematical

system, Wasan, to carpentry. Kuroishi’s research into Masaomi’s theory

demonstrates both the technical and cultural significance of mathematics in the

construction process.

The final two chapters in this section continue the examination of different

cultural traditions of geometric construction and measurement. In ‘On Some

Geometrical and Architectural Ideas from African Art and Craft’ (Chap. 24),

Mozambique mathematician Paulus Gerdes suggests that the practice of weaving

large baskets or surfaces represents the early stages of architectural development in

Africa. Gerdes’s work undertakes a close analysis of geometric patterns and

construction methods found in woven mats, which were often used to line or

decorate traditional structures. Continuing the cross-cultural survey, in ‘Design,

Construction and Measurement in the Inka Empire’ (Chap. 25) William Sapp

commences by noting that the lack of consistency in Inkan architectural features

(doors, niches, windows) has lead to the suggestion that there were no clear

mathematical rules for generating architectural dimensions and proportions. Sapp

partially refutes this position demonstrating how the use of plumb bobs and a

proportional system, both known to have been in use by the Inka civilisations,

can explain the way their architecture was laid out.
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Part IV: Architecture from 1100 AD to 1400 AD

The twelfth century AD saw both the end of the late Romanesque architecture and

the rise of the first Gothic buildings that characterised so much European design at

that time. For the next 300 years developments in Early English and Muscovite

architecture occurred in parallel with more advanced Gothic brick and stone

structures until, around the beginning of the fifteenth century, the first

Renaissance buildings began to be completed. Part IV of the present volume

covers this 300-year period, which broadly coincides with the rise and fall of the

Gothic. However, of the 11 chapters in Part IV only four are about Gothic

architecture and only five are set in central Europe. The remainder of Part IV

features two chapters about developments in the northern parts of the continent

(Ireland and the Baltic Sea), two chapters about developments in Asia (India and

China) and two, North Africa (Egypt and Persia).

In ‘Vastu Purusha Mandala’ (Chap. 26) Vini Nathan describes the geometric

diagram, part of the Vastu Shastra doctrine, which was developed in medieval India

to provide a set of rules for translating cosmic or theological ideas and values into

architectural form. Nathan initially describes the way in which the Vastu purusha
mandala was used in India for the planning of buildings and towns. Thereafter

she argues that the geometric logic of the mandala had a much greater influence

on the cultural milieu of India than previously thought. While ostensibly serving

a function similar to the Indian Vastu Shastra, the Yingzao fashi, was a

twelfth-century Chinese manual of building and construction standards and

techniques. In ‘Algorithmic Architecture in Twelfth-Century China: The Yingzao
Fashi’ (Chap. 27), this historic rule-based system is used by Andrew I-kang Li as the

basis for a shape grammar; a set of rules which, collectively, provide an algorithmic

basis for understanding, and potentially replicating, a particular approach to design.

The way the Vastu purusha mandala operated in Indian culture to mediate

between the heavens and the earth has clear parallels to the use of stereographic

projections of the Heavenly Sphere in parts of Europe. In ‘The Celestial Key:

Heaven Projected on Earth’ (Chap. 28) by Niels Bandholm, the placement and

proportions of 15 medieval churches (constructed between 1150 and 1250) on the

island of Bornholm in the Baltic Sea are examined, and potentially explained, using

stereographic projection. Late Medieval architecture remains the focus of the

following two chapters. In ‘Friedrich II and the Love of Geometry’ (Chap. 29),

Heinz Götze revisits the Castel del Monte, describing its geometry and tracing

several precedents for its form in navigational charts, wind stars and mosaics. The

Holy Roman Emperor Friedrich II built the Castel del Monte in the thirteenth

century in southern Italy. This small castle features a particular nested octagonal

plan structure, which has fascinated architects and mathematicians for many

hundreds of years. In ‘Metrology and Proportion in the Ecclesiastical

Architecture of Medieval Ireland’ (Chap. 30), Avril Behan and Rachel Moss

examine the extent to which a close, empirical analysis of medieval Irish window

tracery can illuminate the backgrounds, training and work practices of the masons
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who constructed them. This study offers a different way of thinking about both

architecture and measurement, not for symbolic purposes, but for supporting

historical and archival research into construction.

Window tracery is also the topic of ‘The Cloisters of Hauterive’ (Chap. 31) by

Benno Artmann, although his focus is on Gothic church windows in the Cistercian

monastery of Hauterive near Fribourg, Switzerland. Gothic tracery is constructed

geometrically from an elaborate combination of circular arcs and straight lines.

Artmann uncovers a series of complex geometric patterns and rules which represent

a departure from the early Gothic tracery.

The next pair of chapters is concerned with the architecture and geometry of the

Islamic world. The first of these commences with a reading of the twelfth-century

Persian text On interlocks of similar or complementary figures, an important

treatise of the era which describes 68 geometric constructions for use by artisans.

In ‘The Use of Cubic Equations in Islamic Art and Architecture’ (Chap. 32), Alpay

Özdural uncovers a series of techniques that were historically used by artisans to

solve complex geometric relations. Such rich geometric relationships, which are

found in North African and Islamic decoration, are also present in the geometric

order of the Sultan Hassan Floor in Cairo. In ‘Explicit and Implicit Geometric

Orders in Mamluk Floors: Secrets of the Sultan Hassan Floor in Cairo’ (Chap. 33),

Gulzar Haider and Muhammad Moussa use a detailed measured survey of the

largest of these Mamluk floors to describe a computer-assisted analysis of the

geometric orders in the design.

The final three chapters in this part are all focussed on the architecture of Italy.

The first of these is about the Palazzo della Signoria in Florence, the second Milan

Cathedral and the last the Baptistery and the Campanile of Pisa. In ‘The Sequence

of Fibonacci and the Palazzo della Signoria in Florence’ (Chap. 34), Maria Teresa

Bartoli describes the significance of the Fibonacci sequence (a sequence of numbers

wherein each is the sum of the two preceding values) and which converges to ϕ, the
golden section, and traces its geometric presence (in the form of the Fibonacci

rectangle, which is also an approximation of the golden section) in the Palazzo della

Signoria. Through this analysis Bartoli demonstrates the extent to which the

Fibonacci sequence, when expressed as a set of geometric proportions, was

significant in society at that time. In ‘What Geometries in Milan Cathedral?’

(Chap. 35) Elena Marchetti and Luisa Rossi Costa show a similar point of

convergence on the use of geometric proportional systems in architecture. Milan

cathedral, with its late Gothic structure and early Renaissance façade, was

completed in the fourteenth century. Marchetti and Rossi Costa examine the

cathedral, seeking evidence for any of the common proportional systems

including the golden mean and other ‘metallic’ numbers. In ‘The Symmetries

of the Baptistery and the Leaning Tower of Pisa’ (Chap. 36), physicist David

Speiser describes and demonstrates the 15-fold and 30-fold symmetry of the

penta-decagonal campanile (the ‘Leaning Tower’) at Pisa, before examining the

even more striking 12-fold symmetry in the plan of the Baptistery at Pisa.
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Part V: Theories of Proportion, Symmetry, Periodicity

The Renaissance saw the rise of a particular fascination with relationships between

parts, involving theories of proportionality, symmetry and periodicity, many of

which were either explained or rationalised using musical or harmonic notions. Part

V contains five chapters, the first two of which are concerned with the use of music

as a means of connecting architecture and mathematics. In ‘Musical Proportions at

the Basis of Systems of Architectural Proportions both Ancient and Modern’

(Chap. 37), Jay Kappraff provides an overview of the way in which musical

proportions have been used to shape architectural form. A recurring theme

throughout this time was the conviction that the application of certain ratios or

proportions would endow a design with both an overarching sense of unity as well

as a distinct harmony between its component parts. Through this process Kappraff

identifies three significant proportional systems—Alberti’s musical ratios, the

Roman application of the ‘sacred cut’ and Le Corbusier’s Modulor—all of which

have a similar purpose, but use ratios in different ways. In ‘From Renaissance

Musical Proportions to Polytonality in Twentieth Century Architecture’ (Chap. 38),

Radoslav Zuk describes a related proportional system derived from consonant

musical intervals and traces its evolution. Zuk argues that for such proportional

relationships between architecture and music to be meaningful, they must

incorporate the three-dimensional properties of architecture, as well as the more

common two-dimensional relationships found in plans and elevations.

The following pair of chapters shift the focus away from proportions and ratios

and towards issues of symmetry (the mirrored or translated version of a shape

or form) and periodicity (the repetition of a shape or form at set intervals). In

‘Quasi-Periodicity in Islamic Geometric Design’ (Chap. 39), Peter Saltzman

undertakes a detailed analysis of Islamic geometry and tiling, reviewing both

published research and important examples. He concludes by noting the presence

of complex quasi-periodicity within tiling fragments in fifteenth-century Iranian

decoration and architecture. More abstract geometric notions also inform ‘The

Universality of the Symmetry Concept’ (Chap. 40), István Hargittai and Magdolna

Hargittai’s chapter about the apparent universality of symmetrical form. The authors,

both chemists, commence by describing the ubiquity of symmetry, before arguing

that a better understanding and appreciation of different types of symmetry may assist

the development of trans-disciplinary knowledge.

The final chapter in Part V contains one of the better-known counterarguments to

the practice of seeking hidden geometric traces, constructions and proportions in

historic buildings. In ‘Contra Divinam Proportione’ (Chap. 41), Marco Frascari and

Livio Volpi Ghirardini argue that the presence and importance of the golden mean

in historic architecture has been much exaggerated. They propose that such is the

allure and simplicity of the golden mean that it has been uncritically adopted to

explain a growing number of forms which neither closely conform to its geometry

nor have any theoretical affinity with it. By considering the way architecture was
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historically constructed, Frascari and Volpi Ghirardini demonstrate the potential

fallacy at the heart of many interpretations of historic buildings.

Part VI: Architecture from 1400 AD to 1500 AD

The fifteenth century saw the waning of the Gothic era, the growth in importance of

Renaissance architecture, and the first stages of the Tudor style in England. The first

four chapters in Part VI are about Leon Battista Alberti, his architecture and theory.

The following two chapters also have a focus on the Italian Renaissance while the

final chapter examines the geometry of Muqarnas vaulting.
Alberti’s Sant’Andrea in Mantua is widely regarded as one of his most refined

and complete works. In ‘Alberti’s Sant’Andrea and the Etruscan Proportion’

(Chap. 42), Michael Ytterberg uncovers an unusual proportional system in the

completed building and demonstrates that this ratio can be accounted for by

considering the Etruscan architectural tradition. Livio Volpi Ghirardini’s chapter,

‘The Numberable Architecture of Leon Battista Alberti as a Universal Sign of

Order and Harmony’ (Chap. 43), is also concerned with Alberti’s architecture, but

with a particular emphasis on signs of harmony and number symbolism.

Considering both Sant’ Andrea and San Sebastiano in Mantua, Volpi Ghirardini

investigates two conflicting interpretations of Alberti’s proportional geometry.

Volpi Ghirardini concludes by observing that Alberti relied on finite, but not

musical, ratios and progressions, which produced ‘numerically proportionate

triads, which are themselves proportionately interrelated.’ In ‘Leon Battista

Alberti and the Art of Building’ (Chap. 44), Salvatore di Pasquale examines

Alberti’s defence of the use of models, noting that while Alberti apparently

viewed the design concept as a fixed or inviolate proposition, he was also aware

of the importance of material and structural properties, using models to test basic

principles. The next pair of chapters are centred on the city of Florence in Tuscany.

The first of these analyses the geometric design of a single tombslab, while the

second considers the geometric composition of an entire church. Kim Williams

deciphers a geometric code, in ‘Verrocchio’s Tombslab for Cosimo de’ Medici:

Designing with a Mathematical Vocabulary’ (Chap. 45). Credited to Florentine

sculptor Andrea del Verrocchio, the tombslab in the basilica of San Lorenzo

features a set of complex geometrical forms and proportions. Williams (one of

the editors of the present volume) analyses Cosimo de’ Medici’s tombslab and then

compares its design with that of three pavements which were completed at a similar

time: the Sistine Chapel, the Medici Chapel in the Palazzo Medici and the Chapel of

the Cardinal of Portugal in S. Miniato al Monte. Williams’s conclusion stresses the

way geometry was used to reinforce humanity’s symbolic centrality in the cosmos.

In ‘A New Geometric Analysis of the Pazzi Chapel in Santa Croce’ (Chap. 46),

Mark Reynolds undertakes a geometric analysis of a single work by Brunelleschi.

Reynolds, whose analysis of the Teotihuacan complex was featured in an earlier

chapter, uses tracing techniques, overlaid on plans, elevations and sections, to
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analyse architecture. While informed by the interpretations of past scholars,

Reynolds’s approach applies a range of geometric constructions (like the ‘sacred

cut’ or the vesica pisces) to measured drawings to seek an underlying order in the

architecture. Here he develops evidence to support several common interpretations

of the Pazzi Chapel’s construction using divided squares and circles, along with the

suggestion that the altar space in the building may be constructed around the golden

Section.

A muqarnas vault is one of the characteristic architectural forms found across

North Africa and in Arabic and Islamic architecture. While examples of muqarnas
vaulting have been traced to the tenth century, it was during the fifteenth century

that some of the most complex were produced, and, not coincidentally, when the

mathematician Ghiyath al-Din al Kashi developed a technique for measuring their

surface area. In ‘Muqarnas, Construction and Reconstruction’ (Chap. 47), Yvonne

Dold-Samplonius and Silvia Harmsen describe their development of a database of

muqarnas dimensions and constructions to allow for the mapping of styles, regions

and timeframes using subtle developments that occurred in the geometry and form

of the vault.

Conclusion

Across 47 chapters, authored by 53 scholars of architecture, mathematics,

engineering and philosophy, the present volume contains examinations of key

theories, buildings and treatises which, between 2000 BC and 1500 AD, evidence

the crucial relationships between architecture and mathematics. In the theory

strand, overarching ideas have been introduced and analysed, while in the history

strand, precise examples have been considered in great detail, often testing past

ideas or proposing new ways of viewing famous buildings. Volume II, featuring a

similar number of chapters and with a commensurately wide range of authors, spans

the history and theory of architecture from 1500 AD to the present day.
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Part I

Mathematics in Architecture



Chapter 2

Can There Be Any Relationships Between

Mathematics and Architecture?

Mario Salvadori

My dear friend Kim,

Ladies and Gentlemen of the Congress,

Signore e Signori,

Señores y Señoras

Mes Dames et Messieurs,

Meine Damen und Herren,

I am greatly honoured to be asked to present a lecture at this congress on the theme

of Mathematics and Architecture, because I happen to be a mathematician and

because, although academically untrained in the difficult discipline of architecture,

it has been my good luck to collaborate as a structural engineer in the creation of

architectural buildings of all types and all over the world with architects like

Gropius, Breuer, Saarinen and many others, during the 30 years I spent in a well

known architectural engineering office in the United States.

Let me say that, as I prepared myself for today’s demanding assignment, I ran

immediately into a basic question. Since there is not just one mathematics, but

many, and there is not one architecture but many, which mathematics should I

discuss in relationship to which architecture?

I am afraid that, to clear these doubts, I will have to give the architects in this hall

some idea of how many mathematics there have been, there are and there will be in
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the future, and to the mathematicians sitting next to them how many architectures

there have been, there are and there will be in the future. But, in order not to bore

both groups of specialists, I will try to be brief and simple.

To start with, we all know that there is the mathematics we use to go to market,

but that kind of mathematics is an obvious practical derivation from a more

complex field of higher mathematics called number theory. Then there is the kind

of mathematics used by all technologists, which is extremely useful to all of them

but has little to do with the real mathematics. Finally there is the mathematics used

by the great scientists, that has allowed them to better understand the universe, of

which we are such a minimal part, and amazes all of us poor mortals with the

astonishing results it allows us to obtain. Yet, even this is not the highest level of

mathematics, which is usually called pure mathematics.
The essential character of pure mathematics is its purity and derives from the

fact that it is the fruit of our minds and has no relationship whatsoever to what some

people call “reality”. Just as we may think of a green cow, although there are no

green cows in our world, mathematics, pure mathematics, is the purest product of

our mind and has nothing to do with nature or the constructs of man.

Let me illustrate what I mean by a simple example. You are all familiar with the

geometry of Euclid that asserts how from a point outside a given line one can draw a

single line parallel to the given line. When discussing Euclidian geometry I like to

ask one of my young students: “And how long are the lines Euclid is talking about?”

He or she usually answers: “They last forever”, or: “They are infinite.” Upon

hearing this statement I like to remind the student that we both live on earth and

that, if we keep going on for ever, we will describe a circle and not a straight line.
The student becomes confused and I then explain that the concepts of point and of

line used by Euclid are purely abstract concepts and have nothing to do with the

earth on which we live, because straight lines cannot exist on a round earth. And to

convince my students of the total abstraction of mathematics I mention that towards

the end of the last century one Russian and one Hungarian mathematician invented

a new geometry in which not one but two lines could be drawn parallel to a given

line and, as if this were not enough, in 1907 the German mathematician Riemann

invented a geometry in which an infinite number of lines can be drawn parallel to a

given line.

I seem to hear some of our architects say: “Well, if mathematicians like to play

with abstractions and have a good time with them, let them. But we are interested in
‘reality’” (whatever this word means to them). To which I answer that if Riemann

had not invented the Riemannian geometry Einstein could not have invented his

general theory of relativity, which has solved a number of mysteries unsolvable by

the apparently “more real” Euclidian geometry.

In one word, mathematics is a fruit of the human spirit, like poetry, and, like

poetry, it is one of the infinitely beautiful fruits of the human spirit because it is

totally free, it is abstract.
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Let me now touch upon some characteristics of architecture. I know that there

are in this room many, highly knowledgeable, ladies and gentlemen who have

investigated the architectures of the past, those of the present and even tried to guess

those of the future. They know the theory of architecture better than many famous

architects and I have the greatest respect for their knowledge. But I must

unequivocally state that they are not real architects because the basic

characteristic of architecture is that it is among the most concrete of all human

endeavours and, may I add, that (in my humble opinion) it is also one of the most

demanding human endeavours, if not the most demanding. I know by experience

that architecture is much more difficult than mathematics, whose freedom of

invention is only bound by the needs of logic, while architecture is bound by

innumerable laws, opinions, traditions and, above all, by the whim of man.

What I am trying to say is that no architecture exists unless it is architected, that
is, concretely built without any reference to pure ideas, but constrained by the laws
of nature and, above all, I repeat, by the whim of man, the most unsatisfied animal

of the animal kingdom.

I am therefore asking myself, and all of you: “How can there be a relationship

between the totally abstract real mathematics and the totally concrete real

architecture?”

This is where I seem to hear a murmur in this hall that says: “But, come on, you

have forgotten geometry! If you don’t wish to consider other possible relationships,

how can you ignore the importance of geometry in architecture?”

Ladies and gentlemen, here again I must state that there are at least two aspects

of geometry: one that is obviously of interest to the architects and of no interest to

the mathematicians, and one that does just the opposite. The architect may be

interested in a geometrical shape called a triangle, but the mathematician doesn’t

care about the shape of the triangle. What excites him is that whatever the shape of
the triangle the sum of its three angles adds always to 180�. And he is not even

interested in the shape of a so called right triangle, but only in the fact that the sum
of the square of its two sides, whatever the shape and dimension of the right
triangle, always adds up to the square of its longest side, its hypotenuse! And

(may I add in parentheses) that it took over 300 years of very hard work by the

greatest mathematicians in the world to prove that, calling a and b the sides of a

right triangle and c its hypotenuse, by Pythagoras theorem:

a2 þ b2 ¼ c2,

but that there will never, never be a right triangle with integer sides for which:

a3 þ b3 ¼ c3,

or any other exponent larger than two. And let me finally add that all the

mathematicians in the world rejoice that one of them, just about a year ago,
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succeeded, after 7 years of concentration on this unique problem, to solve the

so-called Fermat’s last theorem, where everybody else had failed in the

preceding 300 years.

Ladies and Gentlemen, having “proved” that to look for relationships between as

abstract a science as mathematics and as concrete an art as architecture is

theoretically inconceivable, allow me now to take off my mathematical hat and

put on my engineering hat. As soon as I change hats, I realize that all my

disquisitions on the impossibility of relating mathematics and architecture vanish

and, as a technologist, I must agree with you that the relationships between

mathematics and architecture are so many and so important that, if mathematics

had not been invented, architects would have had to invent it themselves.

But there are so many architects and investigators of architecture in this hall that

I would not dare to address a topic they are more than capable and eager to present

themselves.

I therefore apologize for my long initial statement, but with an explanation. I

love mathematics and architecture equally, but find architecture so difficult that, as

the lazy man I am. I prefer to limit my activity in this field to helping the architects.

And I confess that, were it not for my technological knowledge, I would not dare

touch the sublime beauty and the scary difficulties of architecture, pacifying my big

ego with the thought that the architects of today perhaps could not architect without

the contributions of great engineers like Pier Luigi Nervi and so many more of us,

even if we are not of Nervi’s calibre.

Thank you very much for your courteous patience.

Biography Mario Salvadori (1907–1997) earned doctoral degrees in both civil

engineering and mathematics from the University of Rome in 1930 and 1933

respectively. An outspoken critic of Fascist regime, he left Italy in 1938 for

New York at the recommendation of his teacher and friend, Enrico Fermi. After

the war, he took up teaching at Columbia University, where he would become a

professor in 1959 in the School of Architecture, Planning and Preservation; he

taught at Columbia for 50 years. From 1954 to 1960, Salvadori worked as a

consultant and then principal at the engineering firm Weidlinger Associates. He

was a partner until 1991, when he became honorary chairman. As a structural

engineer, Salvadori became known for the design of thin concrete shells. As he

reached retirement age, he began volunteering to work with under-privileged

minority students from inner-city New York public schools. He is the author of

numerous books, including Mathematics in Architecture (1968), Why Buildings
Stand Up (1980) and Why Buildings Fall Down (1992).
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Chapter 3

Mathematics in, of and for Architecture:
A Framework of Types

Michael J. Ostwald and Kim Williams

aetiology |ˌaētēˈäləjē| noun
The investigation or attribution of the cause or reason for something, often

expressed in terms of historical or mythical explanation.

teleology |ˌtelēˈäləjē | noun
The explanation of phenomena by the purpose they serve rather than by postulated

causes.

Introduction

The frontispiece of the thirteenth century Bible Moralisee conserved in Vienna

portrays a Christ-like figure leaning over a primordial world and using a pair of

compasses to measure and inscribe its limits (Fig. 3.1). Titled ‘God as architect of

the world’, it depicts the use of a mathematical instrument to determine the

functional, symbolic and aesthetic properties of the universe. The pair of

compasses is a symbol of all of the possible ways in which mathematics is used

to support design. Such symbols are useful for reinforcing the simple message that

the creative impulse relies on mathematics to translate a concept into reality. At the

same time, however, this symbolism masks the fact that the relationships between

architecture and mathematics are both richer and more diverse than the sign

implies. The purpose of the present chapter is to look behind the symbol of the
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Fig. 3.1 ‘God as architect of the world’. Bible Moralisée, Paris (ca. 1220–1230) (Image:

Osterreichische Nationalbibliothek, Vienna, Codex Vindobonensis 2554, fol. Iv. Reproduced by

permission)
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pair of compasses and to begin to identify the different ways in which mathematics

is used in architecture.

The Bible Moralisee was an illuminated manuscript in the medieval tradition

that used images to communicate important biblical themes. The illuminations were

evocative visual counterparts to the myths, beliefs, parables and morality tales,

originally transmitted orally, that sought to educate people about the world. The

conflation of God as both architect and geometer in the frontispiece is especially

noteworthy because it communicates mathematics’ fundamental contribution as

intermediary between the creative impulse and the product of that divine vision

(Kline 2001). What is often forgotten in this reading of the frontispiece is that the

analogy not only communicates something about God’s power and wisdom, but

also about the accepted role and skills of the architect. The allegorical effectiveness

of this image relies on the viewer being aware that architects use mathematics to

create structure. This message is reinforced by the representation of God stepping

through a timber portal, with one foot resting in the quotidian world of the designer

or artisan as user of geometry, and the other transcending this as maker of

the universe (Husband 2009). The frontispiece of the Bible Moralisee is a

culturally-coded representation of the vital bond that exists between architecture

and mathematics. Yet, while it presents this relationship as both natural and

necessary, it says nothing about the connection itself.

A common question in architectural scholarship asks why architects use

mathematics (Kappraff 1990; Rossi 2004; Goldberger 2009). Despite multiple

answers being offered (Scruton 1983; Evans 1995), the majority of such

responses have served a rhetorical purpose, providing the impetus for a personal

manifesto or theory (Salingaros 2006). For example, Mario Salvadori (2014) asks,

‘[c]an there be any relationship between architecture and mathematics?’, and after

considering several responses, concludes that architecture simply cannot exist

without mathematics. Salvadori’s answer, like many of the others that have been

offered, is eminently reasonable but it does not provide a holistic insight into the

different ways architects use mathematics.

Here we will identify some of the types of applications of mathematics that

conventionally occur in architecture, drawing on historic and contemporary myths

and models to propose a framework for classifying the ways architects use numbers

and geometry. We commence by examining connections between architecture and

mathematics first from a causal or mythopoeic perspective, and second from an

effects-based viewpoint. Here, the causes and effects are disconnected, each

informing and shaping the framework, but unable to be directly correlated

through that mechanism. This discontinuity is unavoidable because relationships

between architecture and mathematics are not predicated on a singular need, desire

or process; they serve a multiplicity of different and sometimes conflicting agendas.

Cause and effect cannot be perfectly aligned under such conditions, but there are

ways of investigating the two that are informative and useful for this purpose.

The study of the cause or genesis of an occurrence is called aetiology. This
approach to understanding the origin of an idea or relationship is often undertaken

through an investigation of the founding myths of a discipline. The present chapter
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commences by examining the classic Western myths of the first building—the

primitive hut of the ancients—and the first architect, Daedalus. The purpose of

this strategy is to reveal the presence of mathematics within the earliest accounts of

architecture. Such myths distil a series of ideas in such a way that their essential

message is retained while other peripheral issues are excised (Kirk 1975). A study

of myths reveals the values, superstitions and beliefs that are the historic

cornerstone of a discipline (Bettelheim 1978). The myths of the primitive hut and

Daedalus are crucial indicators of architectural attitudes towards geometry, pattern

and metrology and they resonate with other canonical value structures including the

Vitruvian triad of firmitas, utilitas, and venustas; terms that were aptly translated by

Sir Henry Wotton as firmness, commodity and delight (Kostof 1977; Johnson

1994).1

Whereas aetiology supports the consideration of causes without effects, the

examination of effects without causes is called teleology. A teleological

investigation of a relationship seeks to comprehend it in terms of its outcome and

without reference to its source. In the second major section of this chapter a more

modern myth—the collectively accepted model of the design process—is reviewed

to reveal the breadth and depth of uses of mathematics in more recent times. This

model has endured for many hundreds of years, embedded as it is in the practices of

the architectural discipline through pedagogical, fiduciary and curatorial

mechanisms such that, despite countless practical changes, the primary creative

systems continue to be conceptualised in this way (Miller 1995; Ostwald 2012).

Combining both the aetiological and the teleological readings of the

relationships between architecture and mathematics allows us to propose a

framework of types. Three purposive agendas are at the core of this framework:

the use of knowledge for supporting the design process, the desire to embed

knowledge in an aesthetic construct, and the application of knowledge through

design analysis. Within this framework 13 different types of mathematical

applications in architecture are identified. These are: logic; measurement;

surveying; modularity; performance and prediction; generation; aesthetics;

symbolism and semiotics; phenomenality and rationalism; inspiration; surface

articulation; analysis and informatics.

The framework proposed in this chapter is not intended to provide a definitive

epistemology; rather, its purpose is more akin to a genealogist’s study of kinship

and consanguinity. It investigates the natural mathematical relations or bloodlines

that have historically sustained architecture. Furthermore, the goal of this chapter is

not to explain why these different applications of mathematics occur in

architecture, but to provide a mechanism for recording the different types of

applications and for understanding them holistically, as either occurring in a

particular stage of the design process, or in support of a specific architectural

quality. Through this dual aetiological and teleological process the breadth of

1 “Well building hath three Conditions. Commoditie, Firmenes and Delight” (Wotton 1624: 1).
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approaches, applications and techniques—all symbolically represented by the pair

of compasses in the frontispiece of the Bible Moralisee—is revealed.

Myths of Architecture: An Aetiology

A common practice in the historiography of many disciplines is to link the origins

of ideas to specific incidents, either real or imagined. For example, in 1665, while

convalescing at the family home in Lincolnshire, Isaac Newton observed an apple

falling from a tree. In his later life he would recount this event, describing it as the

catalyst for his formulation of a universal theory of gravitation (Hall 1999). The

story of Newton and the apple has since become one of the enduring myths of

modern science. However, despite being allegedly based on real events, the term

‘myth’ is appropriate here because there are multiple conflicting versions of

Newton’s account (Brewster 1835). Indeed, five decades passed between the

windfall occurring and Newton describing its significance. Newton actually

invested several decades of his life in detailed research into the topic of gravity

but when called upon in his later life to explain the genesis of his work, he repeated

variations of this account of the falling apple. An aetiological perspective of this

event is not concerned with its historical veracity but with the reason Newton chose

to present his work in this way, emphasising the manner in which it uses an

everyday occurrence to evoke the presence of a universal system of physical laws

(Berkun 2010).

Every discipline has an equivalent origin myth, a tale that serves to elucidate and

authorise a set of actions or values. In Western mythology the two great origin

myths of architecture are both, as is typical of the genre, largely apocryphal. This is

why they should only be read as a post-rationalised or figurative explanation of why

certain acts should continue or particular relationships are important. The two

origin myths of Western architecture describe the construction of the first

building and the skills of the first architect. Whether one can be said to precede

the other is a point of minor contention, but the myth of the first building, the

archetypal primitive hut, is deliberately composed without the presence of an

architect and so it is the first that is considered here.

Joseph Rykwert (1981) argues that throughout history architects have returned to

the idea of the first house, the primitive hut of the ancients, whenever they have

sought to make sense of the purpose of architecture. According to Rykwert, an

interest in the primitive hut has been a constant throughout history: ‘[it] seems to

have been displayed by practically all peoples at all times, and the meaning given to

this elaborate figure does not appear to have shifted much from place to place, from

time to time’ (Rykwert 1981: 183). The myth of the primitive hut provides a

philosophical foundation for understanding, questioning or reinvigorating

architecture. Alberti, Laugier, Perrault, Viollet-le-Duc, Ruskin, Le Corbusier and

Wright have each studied the primitive hut in its various incarnations (Harries 1993;

Vogt 1998). Whether they have attempted to find its site, reconstruct its form, or
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study its construction, they have been drawn to seek inspiration from its imagined

properties (Mitias 1999). Rykwert maintains that the primitive hut provides a ‘point

of reference for all speculation on the essentials of building’ (Rykwert 1981: 183)

including the relationship between architecture and systems of knowledge (like

mathematics). The earliest extant version of this myth, from which most others can

be traced, is found in Vitruvius’s De Architectura.
Marcus Vitruvius Pollio, writing around the time of the Emperor Augustus in the

first century B.C., provides an imagined account of a primitive race of men who

‘were born like the wild beasts, [and lived in] woods, caves, and groves’ (Vitruvius

1914: 38). During a storm, the branches of some trees near the tribe’s cave ‘caught

fire, and so the inhabitants of the place were put to flight, being terrified by the

furious flame’ (38). After the storm had subsided, they gathered around the flames

and learnt to sustain them, and the fire in turn kept the tribe safe from predators. To

maintain both the fire and the community that had formed around it, a shelter had to

be constructed. This compulsion to create a structure in a specific location, rather

than to inhabit an existing cave or hollow, was to be the impetus for the first

building:

At first they set up forked stakes connected by twigs and covered these walls with mud.

Others made walls of lumps of dried mud, covering them with reeds and leaves to keep out

the rain and the heat. Finding that such roofs could not stand the rain during the storms of

winter, they built them with peaks daubed with mud, the roofs sloping and projecting so as

to carry off the rain water (Vitruvius 1914: 39).

A woodcut illustration in the 1521 edition of Vitruvius by Cesare Cesariano

depicts a large fire surrounded by a primitive tribe. In the foreground people are

gathering branches to feed the flames, while in the background, glimpsed through

the smoke-haze, the branches of the living trees can be seen entwined together,

suggesting a pitched or woven-roofed form. A second woodcut by Cesariano—

much like subsequent ones from later editions of De Architectura and those

in Vitruvius Teutsch—is less allegorical in its intent, displaying a more literal

representation of the first hut. In that woodcut, rows of evenly spaced,

vertically-arrayed tree trunks each end in a forked bough, which creates a natural

cradle for a horizontal timber spar to connect the columns and create an edge to the

roof. Between these columnar trunks with their forked pinnacles, smaller branches

have been woven (Fig. 3.2). The regularly spaced, if roughly hewn, rafters and

beams are also plaited together, creating an alternating surface of branches and

grass, woven as if ‘in imitation of the nests of swallows’ (Vitruvius 1914: 38).

The architecture of the Vitruvian primitive hut is founded, initially at least, on

the crafts of weaving or plaiting; the regular interleaving of elements forms a

reinforced surface which is also a recurring geometric pattern. Starting with

living branches and leaves, in groves or bowers, and then including loose grass

and partially dressed timber, woven structures formed the basis for tents, screens

and simple roofs. The first structures were created using felled trees as columns,

arrayed in such a way that their forked joints created natural supports, and sized

and spaced to achieve a consistent wall. These timber frames were the basis for
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subsequent woven and layered enclosures. Vitruvius states that variations of these

techniques can be seen in the primitive dwellings of many cultures, including the

Colchians of Pontus (near present day Georgia on the Black Sea). The Colchians

would commence by laying.

. . . down entire trees flat on the ground to the right and the left, leaving between them a

space to suit the length of the trees, and then place above these another pair of trees, resting

on the ends of the former and at right angles with them. These four trees enclose the space

for the dwelling. Then upon these they place sticks of timber, one after the other on the four

sides, crossing each other at the angles, and so, proceeding with their walls of trees laid

perpendicularly above the lowest, they build up high towers. The interstices, which are left

on account of the thickness of the building material, are stopped up with chips and mud.

Fig. 3.2 The primitive hut according to Cesariano’s edition of Vitruvius. Image: Cesariano (1521:

Bk. II, ch. 1, p. XXXI v
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As for the roofs, by cutting away the ends of the crossbeams and making them converge

gradually as they lay them across, they bring them up to the top from the four sides in the

shape of a pyramid (Vitruvius 1914: 39).

In the Colchian hut, stacked logs, carefully sized, spaced and cut to measure,

create both structure and enclosure. The form of this dwelling is square in plan with

a pyramid-shaped roof. In the various examples of the primitive hut the importance

of measurement (typically relative to other elements in a building), structural

stability (intuitively or empirically determined), geometry (for the creation of

symmetrical and stable forms in three dimensions) and pattern (in the

construction and expression of woven forms) are all reinforced.

A second architectural aetiology is found in Greek mythology where Daedalus,

the father of Icarus, is characterized as the first architect. Daedalus was an Athenian

craftsman who is credited with the design of Ariadne’s dancing floor and the

Labyrinth at Knossos. Whether he was a real person or an amalgam of several

different designers is unknown. Homer, Euripides and Ovid describe his actions in

poetic terms, dwelling on his invention of animated statues, the golden thread of

Ariadne and the waxed and feathered wings of Icarus that famously melted, sending

Daedalus’s son plummeting to his death. In contrast, Pliny the Elder treats Daedalus

as a historic figure, with a known parentage and birthplace.

In one of the earliest references to Daedalus, Homer’s epic poem the Illiad
(written in the seventh or eighth century B.C.) describes a ‘cunningly wrought

dancing-floor like unto that which in wide Cnosus Daedalus fashioned of old for

fair-tressed Ariadne’ (Homer 1924: 590). Produced in 415 B.C., Euripides’ play

Hecuba refers to Daedalus’s almost godlike power to give life to inanimate objects.

Aristotle, in Book I of Politics (ca. 330 B.C.), presents Daedalus as a legendary

sculptor and Plato in Book III of Laws, refers to the great inventions of Daedalus. In
Ovid’s Metamorphoses (ca. 8 A.D.) Daedalus is described as ‘an architect of

wonderful ability’ who ‘built with intricate design’ (Ovid 1922: 152). In 78 A.D.,

Pliny the Elder’s Naturalis Historia commends Daedalus on being the ‘first person

who worked in wood’ (Pliny 1893: 226). Pliny states, ‘it was [Daedalus] who

invented the saw, the axe, the plummet, the gimlet, glue, and isinglass’ (1893:

226). Notwithstanding the obvious fallacy of Pliny’s statement (axes existed long

before Daedalus is thought to have been born), Horace (Horatius Flaccus), Virgil

(Virgili Maronis), William Shakespeare and John Ruskin, amongst many others

from antiquity to modern times, have portrayed Daedalus as a master sculptor,

inventor and architect.

In mythology Daedalus’s most famous work is the Labyrinth at Knossos. Ovid’s

account of the origins of the maze commences with the unnatural birth of the

bull-headed man, the Minotaur. King Minos, seeking to imprison the Minotaur,

commissioned Daedalus to design and construct a maze:

This he planned of mazey wanderings that deceived the eyes, and labyrinthic passages

involved. So sports the clear Maeander, in the fields of Phrygia winding doubtful; back and

forth it meets itself, until the wandering stream fatigued, impedes its wearied waters’ flow;

from source to sea, from sea to source involved. So Daedalus contrived innumerous paths,

and windings vague, so intricate that he, the architect, hardly could retrace his steps

(Ovid 1922: 152).
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Thus imprisoned, the Minotaur had to be appeased with the lives of Athenian

youths and maidens. This sacrificial rite continued for many years until Theseus,

guided through the maze by Ariadne’s golden thread, slew the Minotaur and

escaped the Labyrinth (Castleden 1990).

Opinion is divided over whether Daedalus built Ariadne’s choros—an intricate

dancing floor—before or after Theseus’s escape from the Labyrinth (Ovid 1922;

Nichols 1995). Part of the confusion relates to the language used to describe the two

designs. Indra Kagis McEwen (1993) has demonstrated that several of Daedalus’s

inventions share a common etymology. That is, the Greek words used to describe

the act of dancing, a patterned dancing floor and a maze are all related to the

concepts of weaving or animation. Noting this connection, Kerenyi (1976) gave

Ariadne the title ‘Mistress of the Labyrinth’, a reference not only to the Minotaur’s

maze, but also to the elaborate formal structure of Ariadne’s dance and to its divine

or transcendent aspiration. Kern (2000) suggests that the geometry of the dancing

floor, itself a symbol of the ritual and possibly erotic conjoining of two bodies, was

repeated at larger scale in the Labyrinth, which explains why the two share the same

geometric pattern and language. For these reasons, in Greek mythology Daedalus’s

claim to the title architect is not a result of his ability to oversee the construction of a

building, but rather of his capacity to weave geometry into space and form which

has both symbolic and phenomenal significance.

In the examples of the choros and the Labyrinth, geometry is placed in the

service of design in three broad ways, each of which is aligned to one of the

Vitruvian triad of architectural qualities. First, it delineates and structures space

(firmness): both the dancing floor and the maze are geometrically defined and

controlled. Second, it fulfils a program function (commodity): the maze is a

geometric structure with a distinct spatial function—to disorientate, restrain, or

beguile visitors. The function of the choros was to enable the ‘crane dance’, a

tightly constrained marriage ritual. Finally, geometry provides a decorative motif

(delight): the geometric weave of the choros and the maze has since appeared on

coins, reliefs, pottery and in wood carvings (Fig. 3.3).

Homer notes that the Daedalic geometric weave is found in the decoration on

Achilles’ shield, and Ruskin traces the aesthetic and moral importance of ‘Daedalic

Right Line’ in Gothic architecture (Moore and Ostwald 1997). Like the application

of measurement, structure and pattern in the primitive hut, the presence of

geometric function, foundation and fascination in the work of Daedalus

Fig. 3.3 Representation of

the Labyrinth at Knossos

reconstructed from silver

coins (ca. 400 B.C.). Image:

Michael Dawes
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Table 3.1 Mathematical applications in the foundation myths of architecture

Application Myth

Type General definition

Primitive

hut Daedalus Instance

Measurement The use of mathematics to

record and communicate

dimensional information

Sourcing or modifying

materials to achieve con-

sistent, relative dimensions

Surveying The use of mathematics to

derive and translate loca-

tional or site-related

measures

Information relating to the

position and relative spac-

ing of columns and the

efficient sourcing or trans-

portation of materials

Performance

and prediction

The use of mathematics to

inform decisions about

structural, acoustic, envi-

ronmental, visual and

related physical properties

Empirically or intuitively

derived estimates of the

size of structural members

for stability and endurance

Surface

articulation

The use of mathematics to

achieve an efficient or con-

trolled coverage of a

defined plane

Empirically or intuitively

derived methods for

achieving a waterproof, or

wind-proof woven or

thatched surface. The use of

geometry to achieve an

intricate, patterned surface

covering

Generation The use of algorithms or

rules to evolve or

parameterise aspects of a

design

� The Labyrinth is a mathe-

matical construct with a

distinct set of geometric

and spatial parameters

Inspiration The use of mathematics as

influence, motivation or

animation

� Both the form of the

dancing floor and the Lab-

yrinth are geometric mazes

Aesthetics The use of mathematics to

achieve a particular

appearance or visual effect

The woven path of Ariadne

conforms to a

pre-determined symmetri-

cal field, within which sep-

arate circular and

orthogonal patterns rein-

force the overall structure

Symbolism and

semiotics

The use of mathematics to

represent or communicate

something about a building

The geometric decoration

of Achilles shield (likened

to Daedalus’s dance floor)

is intended to communicate

both a connection to Ari-

adne and to the heavens

Phenomenality

and rationalism

The use of mathematics to

evoke a connection by way

of the senses or the mind

� The geometric path on

Ariadne’s dance floor

evokes and enables a par-

ticular physical and sensual

ritual—the ‘crane dance’

(continued)
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reinforces the early, mythopoeically delineated set of relationships between

architecture and mathematics.

When the two foundation myths are viewed together, they present

complementary visions of the role of architecture and of the architect (Table 3.1).

The primitive hut stresses the importance of construction, structure and utility,

while the work of Daedalus emphasises aesthetic, inspirational and phenomenal

applications. Furthermore, despite their differing emphases, both myths contain

references to a larger set of pragmatic and poetic applications. For example, a

crucial function of the primitive hut is to shelter a community, both physically and

spiritually. Social and cultural concerns are present in this myth, even if its brevity

curtails them. The primitive huts described by Vitruvius also possess symmetrical

cross sections and plans, something that is especially significant when viewed in the

context of the larger body of his theory which uses geometry to evoke divine

relations. Similarly, in the Daedalus myth, technical skills are praised along with

the ability to work with particular materials. His capacity to measure and survey is

also assumed as a basic prerequisite skill of his craft. In addition, while not

explicitly stated in either myth, there is an implication that underlying all of the

basic actions and decisions is a capacity to think logically and consistently. Thus,

the correct size for a rafter in the primitive hut was not calculated, it was determined

either empirically (by loading different size beams until structural failure occurred)

or intuitively (by using a knowledge of the size of rafters that had worked in the

past). For this reason, and despite identifying nine different rudimentary

applications of mathematics in these myths, the central role of logic, the tenth

type, cannot be ignored.

Finally, it is possible to conceptualize each of these ten types of applications as

serving at least one of the core qualities of architecture. For example, if we accept

the Vitruvian triad then performance-related applications of mathematics may be

associated with firmness and aesthetic applications are related to delight. However,

some other types, like measurement, can be mapped to two categories—firmness

and commodity—while surface articulation and logic can potentially be used to

fulfil parts of all three Vitruvian qualities (Fig. 3.4).

Table 3.1 (continued)

Application Myth

Type General definition

Primitive

hut Daedalus Instance

Logic The reasoned or disciplined

application of knowledge

Underpinning the majority

of the applications of

mathematics found in the

two myths is the presence

of a reasoned and consistent

use of information

Key: ¼ application explicit, ¼ application inferred, � ¼ application absent
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Models of Architecture: A Teleology

The focus of this section shifts from historic myths to contemporary models. Just as

aetiology and teleology have a close, but inverse relationship, so too do myths and

models. Ian Barbour defines a myth as an archetypal event that reinforces a pattern

of behaviour in society. Myths ‘integrate the community around common memories

and common goals’; they ‘are neither true nor false; they are useful fictions which

fulfil these important social functions’ (Barbour 1974: 3). The modern counterpart

of the myth is the model or paradigm. For Barbour, the model is ‘a symbolic

representation of selected aspects of the behaviour of a complex system’ (3).

Whereas a myth describes the world, a model is an ‘imaginative tool for ordering

experience’ (3). The critical difference between myths and models is that the myth

derives a universal message from a specific event (thereby relating the particular to

the general), while the model starts with a universal system from which a specific

response is derived (progressing from the general to the particular) (Coupe 2009).

Thus, despite the way models are positioned in contemporary discourse as

encapsulating a global truth, they have innate fictional, imagined or conceptual

properties that are similar to those of myth. It is also often assumed that the model is

more cogently founded in reason, observation or data, but the myth too, represents a

body of received wisdom.

The primary role of the architect has historically been, and remains to the present

day, the visualization of a design and the communication of this intent, in such a

way as to support the construction of a building. The same is also true if the

architect’s purpose is to refurbish an existing structure, to design a landscape for

a park or create a new urban space. While the tools and technologies available to

architects have changed over many centuries, the conceptual process of designing

and executing a building has remained a surprisingly durable one. There are many

subtle variations of this model of the design process, although the majority are

conceptualised as an iterative or staged sequence with occasional recursive loops.

This model of the design process as a system is found in educational settings

Fig. 3.4 Conceptual mapping of application types against the Vitruvian triad (definitions in

Table 3.1)
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(Pressman 1993; Anderson 2011) and there is evidence that it is used by

professionals (Rowe 1987; Lawson 2005; Pressman 2012).2 Two of the more

common variations of the model are framed around cognitive and contractual

processes. The cognitive variation commences with problem definition, analysis

and synthesis stages, prior to conceptual and schematic diagramming, and finally

solution proposition, testing (the recursive loop) and realisation (Pressman 2012).

The more contractual or practical variation commences with client briefing,

conceptual design, schematic design, developed and detail design, and

construction. Several of these steps allow for a limited return to the previous

stage to revise or correct any errors which have occurred in the process or to take

account of any revisions—to the brief, budget or site conditions—which require a

more substantial redesign. More nuanced variations of this contractual model note

that there are parallel approval and review processes and that design often continues

throughout the construction period and through to post-occupancy evaluation and

optimisation. The cognitive variation of the model continues to cycle through the

same stages, but with each subsequent series the focus is on a smaller sub-problem

within the larger design. Although there are differences between these variations,

they both describe a simplified and universal vision of the role of the architect in

society. This model, and especially the contractual or practical variation, is useful

for identifying the various ways in which architecture uses mathematics.

A necessary precursor to the design process is the production of a design brief, a

document which defines the practical and functional limits of a project. The brief

typically comprises a list of functional zones, along with information about the

scale, critical dimensions and performance criteria. For example, a brief might state

that a particular house requires a living room which is at least 15 m2 in floor area,

with a minimum ceiling height of 3.5 m, and with a south-facing wall which is

mostly (between 5 and 8 m2) glass, at least 30 % of which is operable. These

measures or conditions are a numeric reflection of the need to accommodate a

certain size of social gathering in a space that doesn’t feel vertically constrained, is

illuminated with natural light, and allows for some natural ventilation.3

2A common and reasonable concern that has been raised with the standard design process model is

that design is not necessarily a linear or systematic process. Design is often characterised as an

‘ill-defined’ or ‘wicked’ problem (Brown et al. 2010). Design problems, unlike many

mathematical ones, rarely have a single ideal solution. Instead, design involves handling a range

of challenges that are described by scientists and engineers as either ‘non-trivial’ or ‘sub-optimal’.

Design involves balanced compromise between issues, some of which may be described with great

rigour (like structural stability and material strength) while others cannot (like the symbolic power

of a building, or the message its iconography communicates to society). This is why the design

process model, which may be appropriate for simple or formulaic buildings, is much less useful for

more complex building types.
3 For some complex building types, a much higher level of performance is specified in the

architectural brief including lighting levels, acoustic reverberation times and structural bearing

capacities. In the last few decades it has also become common for technically advanced buildings,

like hospitals, to rely on a relative performance brief. For example, a client might state that a new

oncology centre for Rome must function at least as well as the recently completed oncology centre
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Once the brief is defined, then the architect engages in a process of

parametrically-informed idea generation, wherein he or she seeks to derive a

solution to the constraints and opportunities of a brief and a site. This so-called

‘conceptual design’ stage draws on the architect’s ability to manage multiple,

sometimes conflicting requirements, simultaneously juggling both relative spatial

issues (like the relationship between a living room, a dining room and a kitchen)

and absolute ones (like the orientation of the site and the address or access to the

building). These interconnecting performance parameters may often be solved in a

larger number of alternative spatial configurations and thus the architect must be

guided by a vision or set of values, often embodied in a parti or organising

principle, which assists in determining which conceptual design variations to

present to a client. The vision or inspiration for a design remains ever-present

throughout the remainder of the project, but its core aesthetic, poetic or

representational agenda is typically delineated at this stage, along with possible

strategies for achieving this vision. Furthermore, the architect’s core values become

evident at this point, including the factors driving their design aspiration, from

ecological to social, technical and poetic values. Many of these factors involve

geometry in an aesthetic, symbolic, semiotic or inspirational role.

Whereas in the concept design stage spatial and contextual relations are

described in a topological manner (that is, through connections and relations

rather than absolute dimensions), in the schematic design stage, the concept and

parti of a design are given scale and dimensionality, in accordance with the

original brief, along with relative proportions. The first sense of structure and

three-dimensional massing (width, depth, height, bulk) is typically tested at this

stage, along with an early sense of fenestration and materiality. A preliminary

estimate of the cost of the design, typically based on ‘square metre’ or ‘floor

rates’, is also calculated to determine if the client’s brief and budget are viable.

For particular building types, the schematic design stage can also include simple

modelling and simulation of performance requirements, like the volume of indirect

natural light in an art gallery, clear sight lines in a theatre or overshadowing caused

by a tall building.

Once the schematic design has been approved, the next stage requires the

refinement of its principles. Depending of the building type, the developed design

stage can commence with extensive testing and modelling of design variations to

optimise important factors (light, security, efficiency, environmental impact) and

with each refinement the spatial program evolves while seeking to maintain the

topological and geographic relations agreed with the client in the previous stages,

but which are now forced to change in response to more detailed design

considerations. As the design is finalised, its overarching dimensions and

properties are delineated and cost estimates made prior to seeking approval to

commence construction.

in Sydney, but accommodate a 25 % growth in treatment capacity. Such a brief involves both the

measuring of the properties of the reference structure and then the interpretation and interpolation

of these performance criteria into the new design with increased capacity.
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Prior to construction commencing, construction documentation must be

produced to translate the design into a system which allows for multiple

contractors to undertake the work. At this time, structural engineers complete and

certify their designs of columns, beams and bracing, mechanical engineers design

services and equipment, and other specialist consultants use a range of

mathematical and computational approaches and techniques to determine and

specify systems which can be installed during the construction process (Ambrose

and Tripeny 2012). Some of the sub-contractors involved in this stage can include

pre-fabrication and curtain wall consultants, professionals who extract information

from architectural drawings and models to quantify the time it will take to

manufacture components, the implications for tolerances and batching (storing

pre-fabricated elements prior to construction) and site handling. Meanwhile, the

architect often coordinates all of these activities, defining the dimensions and limits

for each part of the building.

Several variations of the design process model end with a ‘post occupancy’

stage, in which the completed building is analysed to optimise or assess its

performance. Increasingly, theories and techniques have been developed which

can be applied to support improved social interaction, wayfinding and security in

buildings, amongst other factors. Such mathematical techniques are useful for

refurbishment and improvement and also for scholarly analysis. With the rise of

global information and positioning systems, data developed from a building may

also be applied to much larger models of suburbs or cities (Hilton 2007). Whereas

architectural analysis is typically focussed on extracting information from a

building so as to better understand its properties, the field of spatial or urban

informatics combines information from multiple buildings, transport networks

and infrastructure systems to analyse larger regions (Foth 2009).

If the complete set of applications listed in this section are categorised, a set of

thirteen types is identified, each of which can be cross-referenced to the stages in

the design process model in which they are likely to occur (Table 3.2).

Some application types are concentrated (but not exclusively present) in certain

stages. For example, applications of mathematics associated with modularity are

typically less important early in the design process, but become more significant in

the detail design and construction stages. Modularity may well be a consideration in

earlier stages in the design of particular building types, or for architects whose

theories rely on systematised construction, but it is more likely to be used in the

detail design stage (Kroll 1986). Similarly, the use of mathematics to generate the

form of a design is something that is most likely to occur in the concept and

schematic stages, and is often indirectly evolved from the brief itself. In certain

projects such generative or parametric techniques might continue to be important in

the detail design stage as well, but this is less common. Aesthetic and phenomenal

considerations are likely to be more prominent in these same early stages (concept

and schematic design) and play a lesser, supporting role, in later parts of the

process. Viewed in this way, the different types of mathematical applications in
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Table 3.2 Mathematical applications in the traditional model of the design process

Application Stage in the design process model

Type

General

definition Brief Concept Schematic Developed Detail Const.

Post

Occ.

Logic The reasoned

or disciplined

application of

knowledge

Measurement The use of

mathematics to

record and

communicate

dimensional

information

� �

Surveying The use of

mathematics to

derive and

translate loca-

tional or site-

related

measures

�

Modularity The use of

mathematics

for achieving

coordination

and consis-

tency within a

larger system

� �

Performance

and prediction

The use of

mathematics to

inform deci-

sions about

structural,

acoustic,

visual, envi-

ronmental and

related physi-

cal properties

� � �

Surface

articulation

The use of

mathematics to

achieve an effi-

cient or con-

trolled cover-

age of a defined

plane

� � � �

Analysis The use of

mathematics to

better under-

stand the prop-

erties of a

design

� � �

(continued)
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the design process can be understood in terms of their shifting potential at various

times in the project, rather than as a set of absolute values. This means, for example,

that while deriving inspiration from mathematics is something that usually happens

Table 3.2 (continued)

Application Stage in the design process model

Type

General

definition Brief Concept Schematic Developed Detail Const.

Post

Occ.

Informatics The use of

mathematics to

visualise or

characterise

architectural,

urban and

regional spatial

and formal

properties.

� � � �

Generation The use of

algorithms or

rules to evolve

or parameterise

aspects of a

design

� � � �

Inspiration The use of

mathematics as

influence,

motivation or

animation

� � � �

Aesthetics The use mathe-

matics to

achieve a par-

ticular appear-

ance or visual

effect

� � � �

Symbolism and

semiotics

The use of

mathematics to

represent or

communicate

something

about a

building

� � � � �

Phenomenality

and rationalism

The use of

mathematics to

evoke a con-

nection by way

of the senses or

the mind

� � � �

Key: ¼ common application, ¼ less common application, � ¼ rare application
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early in a process (Hahn 2012), it can also, in certain circumstances, be useful for

final detail design decisions (Jencks 1985).

The complete set of application types found in the contemporary design process

also include variations of those identified in the review of foundation myths.

However, whereas the first group could be readily conceptualised as serving core

architectural values, as exemplified in the Vitruvian triad, the second, larger group

have taken on a more directed quality. That is, the categories define types by their

use or application for different purposes. Thus, while it is possible to map the more

extensive set of contemporary types to the categories of firmness, commodity and

delight, this is less useful for the applications found in modern architectural

practice. For this reason, the following section considers an alternative, triadic

framework.

A Framework of Types

There are three overarching categories in the proposed framework for classifying

the types of applications of mathematics found in architecture. These categories

distinguish between mathematics that is used for the support of the design and

construction process, that which is visible in the design product, and finally

mathematics which is a property of the design itself. The first of the three

categories could be thought of as encompassing all the factors conventionally

considered under the Vitruvian rubric ‘firmness’, as well as some of those

associated with the more functional dimensions of ‘commodity’. This first part of

the framework, mathematics for architecture, is related to, amongst other things,

stability, function and environmental performance. The second category,

mathematics in architecture closely correlates to the classic Vitruvian quality,

‘delight’, and generally comprises aesthetic, sensual or intellectual properties.

The final category in the framework has no clear parallel in Vitruvius, although

some of the derived properties of ‘commodity’ in the sense of usefulness or function

may resonate with its purpose. The mathematics of architecture is concerned with

reasoning and analysis about spatial and formal relations present in a design.

Analysis, as a stand-alone activity, was uncommon in ancient times but it has

since become increasingly important. Collectively the three purposive

categories—for, in and of—provide an indicative way of classifying application

types (Fig. 3.5).

Importantly though, while the majority of the 13 applications identified in this

chapter are aligned to one of the three categories, a few potentially cross between

them depending on their purpose or application (Table 3.3).

Furthermore, logic, as a foundation or core value for any reasoned practice, is a

member of all three sets, although it has been listed here as part of the analytical
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group of applications. Each of the three categories is described in more detail in

what follows.

The first category in the framework—mathematics for architecture—includes

practical techniques and tools that support architectural design, construction and

conservation. These applications occur as a natural part of the design process

informing decision-making about functional issues. They enable the development

of intrinsic properties of a building that are critical for its stability, environmental

performance and programmatic function, but are not necessarily expressed or

visually apparent in its final form. This means that the mathematical application

itself—for example, the calculation of the depth of a beam or the level of insulation

required in a wall—is completed as a precursor to construction commencing. The

outcomes of these calculations—the stability of the beam or the wall’s capacity to

mitigate heat—shape the ongoing function of the building, but the application itself

is over and its result is implicit in the finished building rather than explicit. For

example, surveying is a critical mathematical technique at certain stages in the

design process, but once these stages are completed the active role of mathematics

in the process is over. This first category is the most extensive in its list of types, but

also the most temporal, because most of these only occur briefly and as part of the

design process.

The specific application types that are exclusively allied with this first category

include measurement, surveying and modularity. Measurement is associated with

the use of mathematics to record and communicate dimensional information,

whereas surveying applies and develops such measures in the context of a

specific site. Applications of measurement, like those of logic, are so ubiquitous

that they are rarely acknowledged in architecture, whereas site-specific surveying

techniques have become more specialised over time. Modularity describes those

practices that support coordination and consistency in the construction processes.

Fig. 3.5 Conceptual mapping of application types against the proposed framework (definitions in

Table 3.2)
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Table 3.3 A framework of types: mathematics, in, of and for architecture

Primary

category Definition Type Examples

Mathematics for
Architecture

Practical or functional

tools or techniques for

the support of architec-

tural design, construc-

tion and conservation

Measurement—the use of

mathematics to record

and communicate dimen-

sional information

Theories/Techniques: rel-

ative measures, (cubits,

rods and rulers), decimal

and non-decimal systems,

absolute measures

(metric)

Surveying—the use of

mathematics to derive

and translate locational or

site-related measures

Theories/Techniques:

levelling, traversing, tri-

angulation and topogra-

phy, laser scanning, GPS,

GIF

Modularity—the use of

mathematics for achiev-

ing coordination and

consistency within a

larger design system

People: Moshe Safdie,

Lucien Kroll, Richard

Meier

Buildings: Habitat (Mon-

treal), Medical Faculty,

Louvain University

(Brussels), Sainsbury

Centre (Norwich)

Performance and

Prediction—the use of

mathematics to inform

decisions about struc-

tural, acoustic, visual,

environmental and

related physical

properties

People: Ove Arup, Renzo

Piano, Norman Foster,

Future Systems

Buildings: Menil

Collection (Houston),

London City Hall

(London)

Generation—the use of

algorithms or rules to

evolve or parameterise

aspects of a design

People: George Stiny,

William Mitchell, Patrik

Schumacher

Buildings: Water Cube

(Beijing), British Museum

Atrium (London)

Theories: Parametric

design, generative design,

shape grammar

Mathematics in
Architecture

Geometric or numeric

properties which are

demonstrated, visible

or sensible in

architecture

Aesthetic—the use of

mathematics to achieve a

particular appearance or

visual effect

People: Brunelleschi,

Andrea Palladio, Le

Corbusier, Hans Van Der

Laan. Buildings: Parthe-

non (Athens), Chartres

Cathedral (Chartres),

Notre Dame Cathedral,

(Paris), Unité

d’Habitation (Marseilles)

Styles: Medieval, Gothic,

Palladian, Renaissance,

Mannerism

Theories: Golden Section,

The Modulor, The Plastic

Number

(continued)
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Table 3.3 (continued)

Primary

category Definition Type Examples

Symbolic and Semiotic—

the use of mathematics to

represent or communi-

cate something about a

building

People: Leon Battista

Alberti, John Ruskin,

Robert Venturi, Charles

Correa

Buildings: Hagia Sophia

(Istanbul), Vana Venturi

House (Philadelphia),

Jawahar Kala Kendra

(Jaipur)

Styles: Medieval, Gothic,

Postmodern

Phenomenal and

Rational—the use of

mathematics to evoke a

connection by way of the

senses or the mind

People: Walter Burley

Griffon, Richard Neutra,

Louis Kahn, Stephen Holl

Buildings: Salk Institute

(La Jolla), Casa Del

Fascio (Como), Simmons

Hall (Cambridge, Mass.)

Styles: Rationalism,

Organic Modernism,

Regionalism

Inspirational—a use of

mathematics as influence,

motivation or animation

People: Oscar Niemeyer,

Zaha Hadid, Peter

Eisenman

Buildings: National Con-

gress of Brazil (Brası́lia),

Sydney Opera House

(Sydney)

Styles: Modernism,

Deconstructivism,

Generative

Surface articulation—the

use of mathematics to

achieve an efficient or

controlled coverage of a

defined plane

People: Antonio Gaudı́,

Lab, ARM

Buildings: Park Güell

(Barcelona), Federation

Square (Melbourne), Sto-

rey Hall (Melbourne)

Theories: Tessellations

and Tilings, Aperiodic

and Quasi-periodic Tiling

Mathematics of
Architecture

Logical and analytical

methods for quantify-

ing or determining var-

ious properties of

architecture

Analysis—a use of math-

ematics to better under-

stand the properties of a

design

People: Christopher Alex-

ander, Bill Hillier, Lionel

March

Theories: Space Syntax,

Fractal Analysis, Graph

Theory, Fuzzy Theor

(continued)
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In a sense, these are specialised routines for relative or rule-based measurement.

The remaining application types associated with this primary category can also be

found in other secondary categories as well. They include the use of mathematics to

predict and optimise the performance of a design, the use of rules or parameters to

generate and evaluate design alternatives, and applications of plane-filling

geometry (tiling, weaving and patterns). Specific examples of mathematical

applications in this category include static and dynamic load calculations for

structural stability, computational thermo-fluid dynamics for determining wind

load, and thermal conductivity formulas for estimating human comfort levels.

The second of the three categories—mathematics in architecture—encompasses

geometric or numeric properties that are intentionally designed into and are

demonstrated in the form and materiality of a building. This category includes

those applications of mathematics that are visible in the architecture, but are not

necessarily products of its structure, construction or other functional or

performance-related factors. Therefore, this category encompasses applications

which augment or supplant those associated with the basic needs for stability and

shelter. They could be described as being extrinsic factors because they are integral

to the expression of a building, whereas those in the previous category were

intrinsic to the function of the building. The type of mathematics that is found in
architecture is expressed in ways that can be seen, sensed or read in the completed

building. It includes the use of mathematics as inspiration for a design, the use of

numbers and geometry to perform symbolic or semiotic functions, and properties

that can be sensed either intellectually (aesthetic properties) or sensually

(phenomenological properties). It is possible, and indeed likely, that the structure

of a building will play a role in the expression of mathematics in architecture, but

this is not necessarily a factor of the practical performance of that structure (its

load-bearing or bracing capacity), but of the meaning or message it conveys

visually or perceptually. Thus, while acknowledging that the meaning of symbols

changes over time and that inspiration and phenomena cannot be consistently

Table 3.3 (continued)

Primary

category Definition Type Examples

Informatics—the use of

mathematics to visualise

or characterise architec-

tural, urban and regional

spatial and formal

properties

People: John James,

Michael Benedikt,

Michael Batty

Theories: Tochymetry,

Isovists, GIS mapping

Logic—the reasoned or

disciplined application of

knowledge

Theories: Inductive,

abductive and deductive

reasoning; computational

and heuristic reasoning
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transmitted from a building to a viewer, this category could be understood as

pertaining to those mathematical properties of architecture which are enduring or

continue to operate after the building is complete. Some specific examples of

applications in this category include proportional systems (like the golden mean

and the Modulor), symbols which use geometry or number to communicate

religious or cultural ideas (the Star of David), rationalist applications of Phileban

solids in architecture, and phenomenological uses of geometry to evoke

connections to nature.

The final category—mathematics of architecture—comprises analytical methods

and approaches that are used for quantifying or determining various properties of a

completed building or its context. These are mathematically-derived properties,

rather than innate ones. They are the by-products of other design decisions which

can be understood or modelled mathematically. The types of applications found in

this category are focussed on the analysis of information about buildings and cities,

for the purpose of understanding or optimising some aspect of a design. This

category could also be understood as relating to those mathematical properties of

a building that are only apparent when the building is subjected to a methodical

investigation using approaches which are not otherwise intrinsic in the design.

Examples of this category include space syntax and fractal analysis techniques,

isovist analysis and spatial cognition and urban spatial informatics.

The set of types which make up this framework represents a compromise

between accuracy and usefulness. At one extreme, it is possible to group almost

all of the applications into just two or three categories that broadly correspond to the

three overarching groups that are present in the final framework presented here.

But, as the examples, tables and diagrams demonstrate, there are multiple overlaps

between the three which undermine their utility. At a much finer-grained level, a

notably larger list of types was originally identified which separated out multiple

specific applications of mathematics, almost a third of which were used for

structural and environmental calculations. However, these mathematical and

computational approaches have changed over time and with increasing processing

power, techniques which were impractical a decade ago, are now in common use.

What has not changed is the core intent of all of these applications of

mathematics—to ensure that the performance of a part of a building meets a

given standard. Thus, a more extensive list of applications was merged into a

single type: performance and prediction.

A different challenge was present in the topics of measurement, surveying and

modularity. It could be argued that the first two are the same and that the third is

simply a specialised application of rule-based measurement. However,

measurement, like logic, is part of the base language of architectural design,

whereas surveying is, to extend the metaphor, a separate dialect with a specific

purpose and application. Modularity is a more contingent type because it is also

potentially related to the aesthetic consideration of proportions. Nevertheless, in the

pre-fabrication process and as part of a design approach, a separate tradition has
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developed around the topic of modularity to such an extent that it is worthy of

separation from the other types.

The decision to merge the symbolic and semiotic uses into a single type was

made to overcome the lack of distinction between them in many applications. For

the first of these, some historic uses of symbolic geometry are clear in their

application, while in much postmodern architecture, numbers are used as signs

and with an understanding of their semiotic and linguistic properties. Nevertheless,

for the majority of cases such a segregation is irrelevant because the design is

simply called upon to communicate an idea using one technique or another. A

similar logic was behind the decision to merge the phenomenal and the rational into

a single type. Proponents of phenomenological design tend to deny or understate

the role of the mind in responding to architecture and conversely, supporters of

rationalist design tend to consider the senses a debased extension of the mind which

distracts it from higher thoughts. Despite these differences, both phenomenal and

rational approaches rely on geometry and form to elicit either a physical reaction or

a mental one. It is their common desire for provocation that binds them together,

much as it is impulse to communicate that led to symbolism and semiotics being

similarly grouped.

Conclusion

In the thirteenth century, the pair of compasses in the hands of ‘God the architect’

symbolised the complete set of tools and devices used by designers to translate a

vision into reality. The central message—that mathematics serves to translate the

imagined into the physical—was reinforced by God the architect’s stance, framed

by a constructed portal and poised midway between the heavens and the earth. The

pair of compasses encapsulates the many different types of applications of

mathematics in architecture, with the majority present, in some rudimentary way

at least, in even the earliest myths of this discipline. The more extensive set of

application types in use today shares a clear lineage to these ancestral cases. The

specific formulas used by architects and engineers may have changed, and, amongst

other things, their capacity to work with non-orthogonal geometries has also

improved, but the fundamental purpose of the application of mathematics in

architecture has endured throughout history.
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Chapter 4

Relationships Between History
of Mathematics and History of Art

Clara Silvia Roero

During the course of centuries mathematics has interacted in many ways with

culture and human activities, and among these a place of privilege has been

reserved for art and architecture. Numerous artists, architects and historians of

mathematics have made these relationships evident, such as Piero della

Francesca, Leonardo, Albrecht Dürer, Maurits Cornelis Escher, Le Corbusier,

Felix Klein, G. David Birkhoff, Andreas Speiser and Federigo Enriques, to

mention only the most celebrated.

In this chapter I will show several examples of the existence of three levels of

interaction between mathematics and art: the presence of a mathematical substrate in

various archaeological and artistic relics from antiquity, the conscious or unconscious

application by artists of mathematical principles whose theories had not yet been fully

developed, and finally the relationship established by some mathematicians with

artists and art theorists that permitted an awareness and acquisition of mathematical

knowledge and rules that were then applied to artistic creations. The development of

these three levels of interactions between mathematics and art can be a valid aid to the

creation of a unified vision of the history of culture of peoples and civilizations,

indicating various kinds of influence: technical-practical, theoretical-scientific,

mystical-sacred, principles and customs, etc.

Indeed, in the wake of a long-term historiographic approach, new research

perspectives have emerged recently that have been favourably received by art

historians and critics. In particular, I wish to refer to some of the studies of Tullio

Viola (1904–1985), who in the latter years of his life was partial to interdisciplinary
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investigations connected to archaeology, art and technology, especially of the most

remote antiquity.

In 1984 Viola wrote:

Every geometric property found in a figurative work is in some way and some measure an

index of geometric sensitivity that cannot but manifest itself or be manifest in the works

that we are used to calling ‘scientific’. The ‘geometry of the deep’, which physicist

Wolfgang Pauli calls “Urintuition”1 is like the submerged mass of the iceberg, of which

we can see and know only the tip that rises above the surface. The rational systemizations of

geometric theories has their psychological, and therefore historical, roots in man’s

irrationality. Constructions logically demonstrated are based on spontaneous, unconscious

intuitions, of which aesthetic feeling is a trustworthy guide (Viola 1986: 314).

Under Viola’s guidance, since 1979 Livia Giacardi and I have studied a

Sumerian game in which a serpent that bites its own tail moves with

extraordinary regularity through a certain number of compartments, and if during

the course there is a succession of natural numbers, there emerges a magic square,

that is a square in which the sum of the elements of each row, column and diagonal

is constant (Giacardi and Roero 1979) (Fig. 4.1).

Through an examination of other relics (with intertwined serpents, ornaments of

the checkerboard of the royal tombs of Ur (Fig. 4.2) and polygonal disks with

stepped sides) we arrived at interesting topological properties of such interlaced

motifs and to the formulation of hypotheses as to their geometrical and

arithmetical-magical meanings.2

Each checkerboard, however formed, can be covered in one, and only one, way,

by intertwined serpents, regardless of the orientation of the intertwining, of the

exchange of “underpassages” with “overpassages” in the crossing of the “doors of

communication” between one compartment and the next, and of the collocation of

the heads of the serpents along the corresponding paths. For rectangular

checkerboards, in which the number of rows and columns are prime numbers, the

braid is always composed of a single serpent, while in square checkerboards of

n rows and n columns, there are exactly n serpents. In all cases, the methods of

numbering of the compartments can be described so as to obtain numeric tables that

present magic properties. This is an example of a mathematical substrate in an

artistic creation.

In 1980 Viola studied the problem of the passage from the contemplation of ideal

geometric figures of primitive man to that of the rational geometry in the work of

1 Jedes Verstehen ist ein lanwieriger Prozess, der lange vor der rationalen Formulierbarkeit des
Bewusstseinsinhaltes durch Prozesse im Unbewussten eingeleitet wird: auf der vorbewussten Stufe
der Erkenntnis sind an Stelle von klaren Begriffen Bilder mit starkem emotionalem Gehalt
vorhanden, die nicht gedacht, sondern gleichsam malend geschant werden (Every process of

mental comprehension is of long duration. Much before the possibility of the conscious

formulation of its content, it takes the form by means of an unconscious process. At the level of

pre-consciousness, in place of clear concepts are present images of a strong emotional content.

These are not only thought of, but are looked at as though painted) (Pauli 1961: 91).
2 Viola and I presented two papers on this theme at the eleventh Congress of the Union of Italian

Mathematicians in Palermo; see Giacardi et al. (1979, 1980).
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Thales of Mileto (Rizzi and Viola 1980). In order to demonstrate this, Viola chose

an ornament in gold leaf that was found in Iran and is datable to the second

millennium B.C., representing the head of a ram whose long horns curl in the

form of a volute, each of which has the forms of four ovals that are noticeably

elliptical (Figs. 4.3 and 4.4).

Having performed an accurate graphical analysis, Viola underlined the

extraordinary approximation of an ellipse of the external oval of one of the horns

and concluded:

It seems evident that the Iranian artist who created this jewel let himself be guided by

exclusively aesthetic requirements to reproduce a geometric figure (the ellipse) that he

contemplated in his own mind at the very moment that he was working. But simultaneous

and complementary contemplation and artistic creation are not in themselves sufficient to

permit the birth of the mathematical concept: for this, contemplation had to be enriched by

rational needs, and this effectively occurs a millennium and a half later, in a faraway land,

by another people, in an extremely complex, refined and philosophically profound cultural

context. . . [T]he geometry of Thales was not yet a rational geometry, in the way in which

we think of that, . . . in that, the contemplation of figures was no longer exclusively of an

aesthetic nature but was already enriched by the attempt at deductive justification, going in

search of the ‘reason’ behind certain properties (Rizzi and Viola 1980).

Fig. 4.1

Fig. 4.2

Fig. 4.3
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In the same year, Viola suggested that I study a bas-relief of a metope of the

Parthenon, the results of which enjoyed a considerable degree of success in the

international arena (Roero 1981, 1982; Ragghianti 1982). It was in fact possible to

demonstrate how a great artist such as Phideas intuited and visualized admirably in

his frieze the physical principle of equilibrium, two centuries before that would be

explicitly formulated by Archimedes (Figs. 4.5 and 4.6).

The rearing horse with only one hoof touching the ground is in static

equilibrium. Analogous research was undertaken by Viola in collaboration with

Maria Teresa Navale and Silvia Mazzoni (Manzoni and Navale 1980; Manzoni

et al. 1980), in which they were able to identify the possible construction technique

of the tunnel of the island of Samos in the fourth century B.C. by Eupalino of

Megara with the aid of triangulation (Manzoni et al. 1980, 1985).

Fig. 4.5

Fig. 4.4
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Together with Navale, Viola was then able to define the geometric form of the

profile of the Narmer Palette, a celebrated Egyptian masterpiece in slate of 3000 B.

C., demonstrating that it is an excellent approximation of the catenary curve

(Navale and Viola 1985, 1986) (Fig. 4.7).

They also found very interesting results in a long and complex

mathematical-historical analysis of some Ionic volutes of temples in Greece

and Italy (Navale and Viola 1980, 1982). Together with Silvio Curto, then

director of Turin’s Egyptian Museum, Viola studied the measurements of some

Egyptian colossi (Curto and Viola 1980) and conjectured as to the construction

of the pyramid of Cheops, without however arriving at definitive conclusions.

His historic approach was further stimulated by the research of Lina Mancini

Proia and Marta Menghini on the evolution of the shape of cupolas in churches,

from circular to ovals and only in the seventeenth century to a form that was

decidedly elliptical (Mancini Proia and Menghini 1984). These authors

Fig. 4.6
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maintain, for valid reasons, that the three Roman architects of the Baroque

Gianlorenzo Bernini, Giacomo Berrettini da Cortona, and above all, Francesco

Borromini, to whom we owe the first elliptical cupola, that of S. Carlo alle

Quattro Fontane were inspired by astronomical research and the fascinating

findings of Galileo.

The ellipse of the Iranian ram, the rearing horse of the Parthenon frieze and the

curve of the Narmer Palette are all examples of conscious or unconscious

application of mathematical principles whose formal theories would be fully

developed only much later.

Finally, to illustrate the third level of interaction and exchange of knowledge

between mathematicians and artists we can recall the historic studies conducted on

the proportional models to represent the beauty of the human body in classical

Greece and the Renaissance (Roero 1999, 2000), on the geometry of the fixed

compass from the Medieval to the 1900s (Roero 2006), and the symmetry of

Guarino Guarini (Roero 2005).

Translated from the Italian by Kim Williams

Fig. 4.7
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Chapter 5

Art and Mathematics Before

the Quattrocento: A Context

for Understanding Renaissance Architecture

Stephen R. Wassell

Introduction

In his classic Architectural Principles in the Age of Humanism, Rudolf Wittkower

convincingly argues that an understanding of the roots of Renaissance architecture

designed by masters such as Alberti and Palladio can be developed only by

appreciating the relationships between architecture, music and mathematics as

seen through the eyes of Renaissance architects and theorists (Wittkower 1998).

Crucial to developing this appreciation is the ability approach the world of

knowledge as Renaissance scholars would have, without inherently accepting the

artificial division of this world into arts and sciences—and the compartmentalized

disciplines within each.

Lionel March suggests “. . . the Renaissance might be called the era of

conspicuous erudition in which patrons, scholars, and artists displayed their

breadth of classical learning in various works and commissions” (March 1998:

xii). The foundation of learning upon which artists of the Renaissance built was

constructed through a determined search for reason in aesthetics, logic in beauty

and rational explanations to intangible phenomena, a search involving at least

implicit use of mathematics.

This is a vast topic, and I wish to state three restrictions from the outset. The

focus is almost solely on Western cultures; it is restricted to literature in English;

the emphasis is on recent literature. I have chosen selected topics in order to exhibit

the innate human desire to rationalize aesthetics.
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Neolithic Speculation

When humans were able to intellectualize, but before recorded history, they

developed modest skills concerning geometry and applied them to speculation.

Unfortunately modern investigators can only speculate on those! An example of

reasonable speculation is Tons Brunés’ The Secrets of Ancient Geometry and Its
Use (1967: vol 1, 19–108). The author develops a series of geometric constructions

based on the role of the circle in the perceptible universe. He takes the natural steps

of dividing the circle into four quadrants using a cross (thus marking the centre) and

inscribing and circumscribing squares within and around the circle (Fig. 5.1).

Brunés suggests that an early primitive observer would deduce the fact that

the inscribed square has exactly half the area of the circumscribed square. The

side–length of the inscribed square, which is equal to half of the diagonal-length of

the circumscribed square, thus may have been of interest.

This is the basis for the principal and most well known of Brunés’ constructions,

the Sacred Cut (Fig. 5.2). Brunés makes a quite compelling argument concerning

the importance of this construction in ancient geometry, based on the assumption

that, at some point, a prehistoric observer must have chosen to work with a square

of side 10, circumscribed about a circle of radius 5 (these numbers being natural

choices for physiological reasons). If a compass point—or more probably, one end

of a piece of twine—was placed in one corner of the square, and the other end of the

“compass” at the centre of the circle, then the distance from the corner of the square

to where the new arc cuts its side would measure 7 units (the exact measure is 5 √2,
or about 7.07, but 7 is merely 1 % off from the exact). Thus, the inscribed square of

Fig. 5.1 would have a perimeter of 4 � 7 ¼ 28 units, magically reflecting the

cycles of the moon. Brunés suggests that this may very well have been one of the

reasons for the prominence of the number 7 in early writings, such as the Old

Testament.

There is evidence that the Sacred Cut has been used as a foundation for

architectural designs. Brunés’ myriad examples include the Great Pyramid

of Khufu, the Parthenon, and the Pantheon (Brunés 1967: vol 1, 123–147;

vol 1, 301–310; vol 2, 38–56)1; more recent analyses involve the layout of a Roman

housing complex in Ostia, and the Baptistery of San Giovanni in Florence (Watts and

Watts 1986;Williams 1994). The SacredCut is perhaps the first component in the long

history of using ad quadratum relationships in architectural design.2

Another important geometric construction that dates to prehistoric times is the

vesica piscis or mandorla (literally, “fish bladder” or “almond”), formed by the

intersection of two circles whose circumferences pass through each other’s centres.

Ubiquitous in Christian art, it has been called the “shape in architecture that

1 The validity of Brunés analysis suffers somewhat from his exuberance.
2 Design ad quadratum (by the square) and ad triangulum (by the equilateral triangle) are

extensively discussed in March, Architectonics of Humanism; other examples are referenced

below in the context of the Middle Ages.

68 S.R. Wassell



symbolizes life, that represents the materialization of the spirit,” (Hale 1994:76)

and “the central diagram of Sacred Geometry for the Christian mysticism of the

Middle Ages” (Lawlor 1982: 31).

The light and energy emanating from Jesus in paintings of the Transfigurations are often

manifest as a vesica piscis. Paintings showing a vision of the Virgin Mary also commonly

employ this device, particularly at the moment of her Assumption (Speake 1994: 150; see

also Schiller 1971 for numerous examples).

The top half of a vesica piscis may have been the original inspiration for the

pointed arch.

I would like to speculate on a possible origin of the vesica piscis that seems so

natural that it is surprising to me that nobody else has suggested it. Our prehistoric

relatives associated the equilateral triangle with the number 3, the square with the

Fig. 5.1 An elementary

geometric construction.

Drawing: author

Fig. 5.2 The construction

of the Sacred Cut. Drawing:

author
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number 4, the regular pentagon with the number 5 and so forth (Fig. 5.3).3 What

shapes were associated with the numbers 1 and 2? One possible answer is that

“neither monad, nor dyad exhibit [that] shape which is first to be found in the triad’s

triangularity, the copula of the monad and dyad” (March 1998: 32).

There is reason to believe, however, that the circle was associated with unity

(Lawlor 1982: 12). While the triangle has three sides, the square four and so forth,

the circle has one continuous (curved) side. Any shape with only two sides must

necessarily involve at least one curve as well, since a polygon—the sides of which

must be straight line segments—must have at least three sides. A semicircle would

be a possible choice, albeit asymmetrical. Might the most suitable, most perfect,

shape for the number 2 be found in the vesica piscis? It is constructed from two

circles, i.e., two monads (if indeed the circle was associated with the number 1).

The vesica piscis is also a natural bridge between the numbers 1 and 3, because the

equilateral triangle results from its construction (Fig. 5.4); note that the first

proposition of Euclid’s Elements is based on this construction (Euclid 1956).

The megalithic stone circles of the British Isles provide evidence that neolithic

cultures did use and appreciate simple geometric forms. The solar orientation of the

giant circular structure at Stonehenge is unmistakable; its builders may have used it

as an astronomical guide. The existence of the altar in the circle’s middle provides

evidence of ceremonial use. Perhaps its circular shape was as important

aesthetically for ritual as computationally for astronomy. Benno Artmann relates

that the aesthetics of pure geometric forms were appreciated by these cultures:

About 390 neolithic carved stone balls of fist size dating from before or about 2000

B.C.E. have been found in Scotland. All of the five regular solids appear in these

decorations, the dodecahedron on one specimen in the Museum of Edinburgh (Artmann

1999: 300–301).

While the exact usage of the megalithic circular structures may never be known,

we may speculate that neolithic humans appreciated simple geometry for its

own sake.

Fig. 5.3 The association of

numbers 1 through 4 with

geometric shapes. Drawing:

author

3 I am well aware of the association of the point with 1, the line with 2, the equilateral triangle with

3, and the tetrahedron with 4; see, e.g., Christopher Butler, Number Symbolism, London:

Routledge & Kegan Paul, 1970, pp 3–4. This association was undoubtedly quite attractive to

classical scholars.
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Beginnings of History in the Middle East

What mathematics is inherent in the sizable architectural bequest left to us by

Egypt? The Great Pyramid of Khufu is the largest and best known of the famous

collection of pyramids. Its proportions have been the subject of intense scrutiny.

Brunés hypothesizes that the Sacred Cut was central to its design; others postulate

the use of the Golden Section and ë.4 What is certain about the pyramids is the use

of pure geometric form to make a statement of grandeur. As in Stonehenge, this

shows the inherent human fascination with simple geometry, especially on a grand

scale.

In art and architectural decoration, figural and natural representations such as

statues of humans or animals, or palm, papyrus and lotus plant forms, not

themselves inherently mathematical, were often governed by mathematical

principles. The prevalence of symmetry in Sumerian, Egyptian, Babylonian and

Persian art exhibits an early rational approach to aesthetics (Weyl 1952: 8).

Moreover, the rules of proportion by which the artists designed these biomorphic

elements, especially human forms, shows once again the desire for reasoned

guidelines in artistic endeavours. Looking at the evolution of rules of proportion

from Egyptian times through the Renaissance, Erwin Panofsky has describes two

types of proportional systems, “objective” and “technical” (Panofsky 1982: 55–107).

An objective system defines the normal or ideal proportions that the artist must strive

to capture, through whatever means possible; a technical system provides rules of

constructionwhich dictate what proportions are actually laid out on canvas or in stone.

Panofsky maintains that Egyptian art is the only example where both types of

systems were used simultaneously. The possible conflicts between the two did not

Fig. 5.4 An equilateral

triangle constructed in the

top half of a vesica piscis.

Drawing: author

4 See e.g., Peter Tompkins, Secrets of the Great Pyramid, New York: Harper & Row, 1971, 189ff;

John Michell, The New View over Atlantis, New York: Harper Collins, 1982, 144 ff.; and Mark

Reynolds, “A Comparative Geometric Analysis of the Heights and Bases of the Great Pyramid of

Khufu and the Pyramid of the Sun at Teotihuacan”, Nexus Network Journal, vol. 1 (Florence:

Edizioni Cadmo, 2000). The last of these contains not only a good review but also some fresh ideas

on the subject.
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arise essentially because of the simplicity of Egyptian art, which removed the need

to depict oblique views, movement or foreshortening. The Egyptian artist needed to

know the proportional relationships of humans and other animals, only in full

frontal or profile view (or ground plan view, for sculpture such as sphinxes);

these “objective” proportions were directly applied in a purely “technical” way.

Panofsky cites direct evidence that this was achieved by means of a grid of equally

sized squares, not merely to aid in transferring subject to canvas or stone but

actually to construct the representation from the start. Rules of proportion became

specifications for where the key points of the body landed on the standard grid: an

excellent example of the innate human desire to create rational guidelines for

beauty.

The First True Mathematicians

Of Greek art, in contrast to Egyptian art, Panofsky writes,

Classical Greek art took into account the shifting of the dimensions as a result of organic

movement; the foreshortening resulting from the process of vision; and the necessity of

correcting, in certain instances, the optical impression of the beholder by ‘eurhythmic’

adjustments (Panofsky 1982: 62–63).5

Greek artists strove to ascertain “objective” proportions, and then applied them

without being constrained to any specific “technical” system. This carried over into

architecture as well, with the use of such optical refinements as column entasis and

curvature of stylobates and architraves.

How were the correct objective proportions determined? Panofsky addresses this

by translating a passage from Galen’s Placita Hippocratis et Platonis.

Chrysippus . . . holds that beauty does not consist in the elements but in the harmonious

proportions of the parts, the proportion of one finger to the other, of all the fingers to the rest

of the hand, of the rest of the hand to the wrist, of these to the forearm, of the forearm to the

whole arm, in fine, of all parts to all others, as it is written in the canon of Polyclitus

(Panofsky 1982: 64).

He later states,

With the sole exception of Plotinus and his followers, classical aesthetics identified the

principle of beauty with the consonance of the parts with each other and the whole

(Panofsky 1982: 68).6

The classical theory of proportion was intended to capture beauty, not just aid in

the correct construction of art. Again, we have an example of the human search for

reason in aesthetics.

5 Panofsky cites a passage from Plato’s Sophistes that directly supports these ideas.
6 The reader who has studied the writings of Alberti or Palladio surely recognizes these ideas!
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Studies of proportion (by which authors often mean “ratio” rather than an

equality of ratios) were central to early Greek mathematics as well. Pythagoras is

generally credited for discovering that string lengths related by certain

commensurate ratios, when plucked, produce sounds that resonate with each

other. The Pythagorean school also discovered, to their dismay, the irrationality

of √2. This implies, for example, that the length of the diagonal of a 5 by 5 square is

not 7, as our neolithic ancestors believed. For ease of calculation (and perhaps to

maintain tradition), Greek mathematicians approximated irrational numbers with

ratios.7 This may be the basis for the practice of using rational approximations for

important irrational numbers (e.g. 7/5, 10/7, or 17/12 for √2, and 7/4, 19/11, or

26/15 for √3) in art and architecture (March 1998). One major milestone in

mathematics occurred when Archimedes calculated the true value of π to be

between 3–10/71 and 3–10/70 (Artmann 1999: 272).8

Since Greek mathematicians were wed to the use of rational numbers, they were

extremely interested in the general theory of proportions. The number of results

concerning proportions in Euclid’s Elements testifies to the importance of the

subject in Greek mathematical history. The basic question is, under what

conditions on s, t, u and v will the equality s: t ¼ u: v hold? Interesting

relationships develop when the same variable occupies more than one slot, such

as in the proportion a: b ¼ b: c. This implies that b is the geometric mean of the two

extremes a and c; Greek mathematicians were well acquainted with the arithmetic

and the harmonic means as well. These three means, and several others, were

discovered by Greek mathematicians to be generated by proportions involving

only three variables; for example, the harmonic mean of a and c is given by

b using the proportion (b � a): (c � b) ¼ a: b.9

The Golden Section was known in early Greece as well. Called “the extreme and

mean ratio,” it is the result of a proportion involving only two variables: (a + b):
b ¼ b: a. In his Elements, Euclid says: “A straight line is said to have been cut in

extreme and mean ratio when, as the whole line is to the greater segment, so is the

greater to the less” (Artmann 1999: 104). Because the number of references to this

construction is actually quite limited (Fowler 1987: 87), this tends to cast doubt on

the plethora of analyses that purport to show the ubiquity of the Golden Section in

Greek art and architecture.10 Although the debate continues on both sides, many

7 For an excellent treatment of this subject, see D.M. Fowler, The Mathematics of Plato’s
Academy: A New Reconstruction, New York: Oxford University Press, 1987.
8 For different views of Archimedes’ techniques, see D. H. Fowler, The Mathematics of Plato’s
Academy, New York: Oxford University Press, p. 31 ff. and Tobias Dantzig, The Bequest of the
Greeks, New York: Greenwood Press, 1969, pp. 152–157.
9 See Stephen Wassell, “Rediscovering (and Renaming) a Family of Means,” Pp. 58–65 in The
Mathematical Intelligencer 24, 2 (2002), for a review of the rich history of means.
10 Probably the most famous example is Jay Hambidge, The Parthenon and Other Greek Temples:
Their Dynamic Symmetry,New Haven, Connecticut.: Yale University Press, 1924; see also Fredrik

Macody Lund, Ad Quadratum: A Study of the Geometrical Bases of Classic & Medieval Religious
Architecture, London: B.T. Batsford, 1921, vols. 1 and 2.
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respected modern historians fairly adamantly reject the notion that the Golden

Section was a driving force in art and architecture before the second millennium

(Artmann 1999: 305; March 1998: 102; Frascari and Volpi Ghirardini 2015).

Not only Greek mathematics, but Greek metaphysics as well was highly

influential to later cultures in regards to the relationships between art and

mathematics. The association of gender to numbers, the infatuation with perfect

numbers, triangular numbers, square numbers, etc., and the general imbuing of

numbers with specific qualities was an integral part of Pythagorean “mathematics”

(March 1998). Plato, who maintained that mathematics is a crucial tool in

uncovering universal truths, played a significant role in inspiring others to study

mathematics; his metaphysical use of mathematics continued the Pythagorean

tradition (Fowler 1987: e.g. 106–108).

An example is Plato’s assignment of the five Platonic solids to the four elements

(fire, air, water, and earth) plus the universe. As cited above, these five regular

polyhedra were known to ancient humans (Euclid showed that there were only five

Platonic solids in Book XIII of his Elements). Plato hypothesized in Timaeus the
divine association between the elements and the Platonic solids. For example, “The
first will be the simplest, the tetrahedron, which is the original element and seed of
fire” (Emmer 1993: 215–220 - Plato’s words are shown in italics). Plato assigns the

octahedron to air, the icosahedron to water, and the cube to earth; leaving the

dodecahedron, “which God used in the delineation of the Universe” (Emmer 1993:

216). That Kepler, some two millennia later, would attempt to assign the Platonic

solids to the planets, even though he was much better aware of the facts of planetary

motion, testifies to the desire to rationalize the unknown through a combination of

reason, tradition and aesthetics.

The Masters of Engineering

While classical Greek mathematicians generally had a strong distaste for the

application of mathematics (except on metaphysical topics), the Romans held just

the opposite view. They viewed mathematics not as an end unto itself but as a

means of engineering. This would mean that rigorous mathematics (such as

Euclid’s Elements, for example) would be all but abandoned in classical Rome.

The role of mathematics in architecture, however, was heightened by this

non-theoretical, applied focus.

Roman architects greatly expanded the geometric palette upon which subsequent

cultures would draw. Their widespread use of the arch system was central to this

expansion. Influenced by the modest use of arches by Egyptians, Mesopotamians,

and Greeks, of vaults by the Etruscans and of concrete by the Greeks, the Romans

applied their engineering prowess to raise the use of the arch, vault, and dome to an

art form (Trachtenberg and Hyman 1986: 116). Moreover, the use and appreciation

of the arch system turned into a love affair with circular and semicircular forms in

general, and this often manifested itself in plan as well as elevation. The Greek
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amphitheatre and tholos were sources of inspiration, of course, but the Romans

freed the circle and semicircle to be applied as desired. Hadrian’s Villa provides a

wonderful example of the geometric freedom that evolved during the Roman era.

Of course the Romans were very careful to uphold established tradition when it

came to the canons of architectural form. Nowhere is this more evident than in the

treatise of Marcus Vitruvius Pollio. In his De architectura, Vitruvius carefully

describes the origins of the three principal orders as derived from Greek temples,

specifying the correct dimensions and proportions of the columns, capitals,

entablatures, intercolumniations, doorways, etc., as well as the same elements

from the Tuscan order as derived from Etruscan architecture. After detailing

these mathematical rules, Vitruvius states:

The laws which should govern the design of temples built in the Doric, Ionic, and

Corinthian styles, have now, so far as I could arrive at them, been set forth according to

what may be called the accepted methods (Vitruvius 1960: iv, vi, 120).

His goal is to quantify the beauty of the architecture passed down to the Romans.

Vitruvius proceeds to detail the correct proportions for the length, width, and height

of rooms using “symmetrical proportions,” “so that the beholder may feel no doubt

of the eurhythmy of its effect” (Vitruvius 1960: vi, iii, 175, 178).11 The

specifications governing design aesthetics found in De architectura became the

authoritative source for centuries of great architects.

Roman influence on Western art is most prevalent in architecture. Their

combination of the arch, vault, and dome system with the accepted orders of

architecture became the standard practice of later cultures. With their engineering

prowess, they were able to shape space elegantly; they taught later cultures to focus

on the void rather than the mass of the building. Their strong adherence to

symmetry in organizing spaces is another important aspect of their architectural

heritage. Much of the success of Roman architecture depended on their rational

approach to design aesthetics.

The Middle Ages

At the borders between the classical and the medieval worlds we find St. Augustine

and Boethius. Both of these transmitted onwards the more Pythagorean aspects of the

philosophy of proportion, for they dealt with it chiefly in the context of musical theory

(Eco 1986: 29–30).

Augustine introduced the concept of Christianity-as-philosophy, and in many

ways medieval scholarship constituted an attempt to reconcile classical philosophy,

essentially considered pagan, with the increasingly powerful church doctrine. The

attention that Augustine paid to number symbolism sanctioned its continuation by

11 For an illuminating discussion of Vitrivius’s use of the words proportio, symmetria, and
eurhythmia, see footnote 19 in Panofsy, Meaning in the Visual Arts, pp. 68–69.

5 Art and Mathematics Before the Quattrocento: A Context for Understanding. . . 75



his successors. Medieval number symbolism was heavily influenced both by

biblical themes and by Pythagorean philosophy (Hopper 1938; see also March

1998: 115 for examples of early number symbolism in Judaism).

Boethius strove to keep classical knowledge alive, including the acceptance of

the mathematical underpinnings of beauty, especially regarding the role of

proportion in musical theory. His role in securing the prominence in medieval

education of the trivium and quadrivium ensured the influence of mathematical

thought in medieval philosophy. Umberto Eco points out in Art and Beauty in the
Middle Ages,

All of the medieval treatises on the figurative arts reveal an ambition to raise them to the

same mathematical level as music. In these treatises, mathematical conceptions are

translated into canons of practice and rules of composition, usually detached from the

matrix of cosmology and philosophy, though united to them nevertheless by subterranean

currents of taste and preference (Eco 1986: 41).12

Returning to Panofsky’s analyses, in contrast to the Egyptian marriage of the

“technical” and “objective” proportions, or the Greek stress only on “objective”

goals, the medieval theory of proportions was based exclusively on “technical”

proportions:

Where the Egyptian method had been constructional, and that of classical antiquity

anthropometric, that of the Middle Ages may be described as schematic (Panofsky 1982:

73).

This is seen in the “three-circle scheme” of Byzantine and Byzantinizing art

(Fig. 5.5) or the Gothic system illustrated by French architect Villard de

Honnecourt (Panofsky 1982: 84, 86–87).

Other mathematical aspects of medieval art include the common use of

geometric elements, including symmetry, in triptychs and other altarpieces, in

textile art, and in Romanesque sculpture (Bouleau 1963: 50). An important trend

in medieval painting was the attention paid to frame design—both the overall frame

and the framing of individual subjects within the painting—and geometry and

symmetry were crucial in this regard. Moreover, to place the subjects within the

frame(s), medallions—geometric constructions, often based on inscribing a regular

polygon within a circle—were used to govern the layout of the key elements of the

subject.

Surely the most impressive form of medieval art is found in its architecture, and

mathematics was integral to its design and construction. Byzantine architecture,

with its influences from the East, provided new geometric elements such as the

centralized plan, the pointed arch and the use of pendentives, which would have

significant effects on subsequent eras. The evolution of cathedral design from the

Romanesque through Gothic periods showed an increasing dependence on

geometry, including ad quadratum and ad triangulum design of plan, elevation,

12 Examples include the Painter’s Manual of Mount Athos, and Cennino Cennini’s Il Libro
dell’Art; see also Panofsky, Meaning in the Visual Arts, 74 ff.
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and in details such as tracery (Lund 1921; Krier 1988; Artmann 2015: 15–26;

Bispham 1996). That geometry was central to cathedral design is without doubt,

given the existence of stonemason’s marks—based on intricate geometric

constructions—engraved on stones of various Gothic masterpieces (Fig. 5.6) (see

Bouleau 1963 for numerous examples). Even castle design was based on strong

geometric influences (Götze 2015: 62–80).

The Dark Ages were just that for pure mathematics in Western cultures. Progress

was slowly being made in quantitative reasoning, and the conflict between this and

qualitative reasoning characterized the medieval psyche. By the beginning of the

Renaissance,

TheWest was making up its mind (most of its mind, at least) to treat the universe in terms of

quanta uniform in one or more characteristics, quanta that are often thought of as arranged

in lines, squares, circles, and other symmetrical forms: music staffs, platoons, ledger

columns, planetary orbits (Crosby 1997: 10–11).

This did not all occur at once. Indeed, the modest gains in mathematics and

science in the West, which were partially aided by influences from the Near East,

through Leonardo Pisano (Fibonacci) in no small part, had to come in spite of

church and royal dogma. While inventions such as water mills and windmills

depended on increasing sophistication with levels, gears, and wheels, the

spiritual, even mystical, approach of medieval leadership hindered faster progress

(Crosby 1997: 52–53).

Conclusions

During the Middle Ages, the qualitative view of neo-Platonic metaphysics slowly

gave way to a more quantitative view of reality that would eventually allow science

to progress at a steady pace. This transition was slow, and Renaissance scholars

Fig. 5.5 The “three-circle

scheme” of Byzantine and

Byzantinizing art. Drawing:

author, after (Panofsky

1982)
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were still heavily influenced by long-held ideas on number symbolism and sacred

geometry. As did their predecessors, Renaissance artists sought to incorporate

meaning into their design by using a rational approach towards aesthetics. Some

of the most prominent theorists—Barbaro, Pacioli, and Dürer –focused their efforts

largely on concerns of geometry and proportion, often doing so within the context

of the ideas described above. Indeed, this was completely natural before the divorce

of arts and sciences in the Age of Reason! It is crucial, therefore, to be able to put

oneself in this same context if one is truly to understand Renaissance architecture.
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Chapter 6

The Influence of Mathematics

on the Development of Structural Form

Holger Falter

Introduction

To analyse the influence of mathematics on architecture from antiquity up to today,

the difference between the criteria which have always been the basis for the design

process must be recognized. Such criteria are the geometry, the structure’s function,

the loadbearing behaviour of the structural elements and of the structure, the

manufacturing technique and the choice of materials, the lighting as well as the

interior and exterior decoration (Falter and Mirabella 1996). Lately, ecological and

economical aspects have been added.

Although all these terms are well known, each era assigned different meanings to

them. While modern man understands the term “function” as purely meeting the

primary task, i.e. a bridge as a means to cross a valley, or walls and a roof as

protection from external influences, the definitions of past eras far exceeded this

understanding. A structure not only had to be of material usefulness—similar to

today’s idea of function—but also had to have a psychologically beneficial and

intellectually fruitful influence.

The religious structures before the Industrial Revolution were to form the

connection between man and divinity. Geometry was an important tool, as was

the choice of forms and proportions that relate the structural elements to each other.

By creating a pleasant atmosphere through harmonic proportions, they were to have

a psychologically beneficial influence. Form and proportion combined with the

symbolism of measurement and figure were to remind the visitor of the spiritual

background. However, the choice of the geometry and the measurements was
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limited by the technically feasible and the loadbearing behaviour of the selected

structural elements and the chosen materials, which in turn are closely connected to

the choice of manufacturing procedure. The manufacturing procedure also dictated

the form of the structural elements and consequently the geometry and the overall

appearance of the structure.

Mathematics combined with technology and mechanics is a part of every design

criterion. Each era applied this very differently to the structures, based on the

respective cultural understanding.

Pythagoras’ Intellectual Function of Mathematics and Its

Effects on Structures

The origin of the numeral’s meaning may certainly not be found in Pythagoreanism,

but it provides an essential basis for comprehending some developments in

structural history. The important Pythagorean aspect for structural engineering is

the connection between the qualitative—the sound—and the quantitative—the

chord of the monochord. Pythagoras transferred the audible (the qualitative) to

numbers (the quantitative). However, this also means that the object, the

monochord, attains a psychic and spiritual value through the number expressed

by the sounds and intervals (Kaiser 1991). The chord’s measurement is reflected by

the value of the sound and vice versa. Thus, following the harmonic theory, a

structure may express a spiritual meaning. Furthermore, material objects provided

man with an entrance to the spiritual body of thought and to the world of ideas.

Through the harmonic design of the form, Pythagoreanism attempted to create the

connection with intellectuality.

Up to the period of the Renaissance master builders endeavoured to shape the

structures according to various harmonic rules in order to manifest the qualitative

within the form. However, what was soon lost was the flip-side of this relationship:

recognizing ideas through the means of the form.

With Pythagoras and Plato, natural numbers have symbolic meaning based on

the observation of nature and the ideas about the origin of the world and mankind. A

symbol stands for something which cannot be described with words. Plato formed

the term “idea” and connected it to numbers. By recognizing the symbolic meaning

of the numbers, man should be able to experience these ideas. Plato views the

symbol as a way to make ideas accessible; materializing these numbers in a form so

people may recognize them. The number, hidden in the harmonic theory or the

geometrical form, made ideas accessible. Plato, Euclid and Vitruvius describe such

geometrical forms. The square, the cross and the circle especially affect structural

engineering and consequently the development of structures.

In all cultures with an architectural history, the square and the cube were

assigned to the material or the element “earth” and therefore the number 4. Plato

assigned the cube, consisting of 6 squares, to the element “earth.” Vitruvius
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considers the number 4 to be man’s number since, with outstretched arms, his width

equals his height, thus marking the height and width of a ideal square (Vitruvius

1960: III i, paragraph iii 72–73). The Middle Ages distinguished between four

elements: 4 major winds, 4 seasons and 4 continents (Eco 1991). Not only the

square but also the cross represented Fig. 6.4 and therefore the material and

earth-bound aspect throughout several pre-Christian cultures. Aside from the

square and the cross, the circle and the sphere are significant. As an infinite line,

the circle may symbolize anything infinite: time, eternity, infinity. The circle

symbolizes the periodicity of human life and the laws of nature. In architecture

the square represents exoteric human existence on earth, while the circle represents

eternity, intellectuality.

From ancient times to the period of the Renaissance, the circle, the square and

the cross were the basic elements of the design process. The Pantheon in Rome is an

impressive example for the use of the circle and the sphere (Fig. 6.1).

In elevation, a perfect sphere may be embedded in the interior, which is circular

in plan. The circle determined the plan and the interior vertical wall as well as the

hemisphere on top. The loadbearing structure had to absorb the dome’s shear. This

resulted in a 6-m-thick rotunda guided to the outside across the dome’s base,

creating the Pantheon’s depressed outer shape.

The Pantheon shows how a construction must fulfil the desire for a certain

interior shape. The interior shape and the spiritual function of the structure are

predominant. The structure is only the necessary means to accomplish this function.

All three basic shapes—the cross, the square and the circle—are used in the

Hagia Sophia (Fig. 6.2).

The church’s outline is almost square. The interior is a cross with a longitudinal

axis emphasized by the support-free nave. The circular dome rises over the

crossing. The structure must accomplish the transfer from the square crossing, the

symbol for everything earthly, to the circular base of the dome, representing

everything spiritual. The dome’s form and crown were chosen to have the most

favourable influence on the loadbearing sub-structure (Heinle and Schlaich 1996:

30–32).

These examples portray the desire for a certain basic form of a structure which is

especially prevalent in the interior. The structure had to meet these requirements

and substantially influenced the exterior form. Loadbearing behaviour and material

characteristics further limited the choices.

The use of the forms described above continued throughout the Middle Ages. In

the Byzantine Empire cross-plan churches similar to the Hagia Sophia were erected

over a square plan with a cross-shaped interior and a central dome over the crossing.

The naves and aisles of Gothic and Romanesque basilicas are a sequence of square

bays dictating the naves’ width and length.

Especially in the Middle Ages, but also in the Renaissance, the harmonic theory

was applied to pursue the spiritual and psychological function described above.

Examples are the Gothic cathedrals or the structures by the famous master-builder

Palladio.
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Fig. 6.1 Cross-section of the Pantheon in Rome. Drawing: author

Fig. 6.2 Plan of the Hagia Sophia in Istanbul. Drawing: author
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Visually Comprehending the Mechanics

to the Empirical Rule

In order to realize their ideas of form, the master-builders had to use structural

elements such as columns, arches, hemispheres, walls and piers without being able

to mathematically describe their mechanical behaviour. One reason was the fact

that the development of mechanics was not directly dependent on the natural

sciences because research was aimed at enlightenment and not on practical

application. Mechanics could only be experienced visually. Deformations, cracks

and other damage, even up to the collapse, could only hint at the mechanical

behaviour and facilitated conclusions in view of the necessary dimensioning of a

certain structural element.

For example, the relations between span, vertex-height, thickness of the arch and

of the column could be experienced during the construction of vaults by “trial and

error.” This knowledge about the mechanical interrelations remained a well-kept

secret among the master-builders up to the period of the Renaissance. The increase

in scientific activity during the Age of Humanism created empirical rules of thumb,

i.e., Alberti who related by means of numerical ratios the thickness of the arch and

of the column to the span of stone arch bridges (Alberti 1965) (Fig. 6.3). This

development replaces Pythagoras’ mathematics, based originally solely on the

spiritual meaning of numbers and the musical harmonies, with a purely practical

functional handling of the numbers.

From the Qualitative Assessment to the Quantitative

Dimensioning of the Structure

Although the huge domes of the Renaissance refer to the harmonic theory in the

choice of proportions, the sheer size of these domes demanded an increasing

attention to the influence of the loadbearing behaviour on the design and the

construction. Brunelleschi, in view of the large loads, deviated from the antique

examples and placed a steep lantern on his dome in Florence. He reduced the mass

of the dome by using a two-tier dome.

Shortly after the completion of Santa Maria del Fiore and long before the

construction of the dome of St. Peter’s in Rome, the first cracks appeared in the

dome in Florence. In the same period, Leonardo da Vinci studied crack formation in

walls, the behaviour of vaults and the loadbearing behaviour of domes. In the Codex
Arundel (1500–1506) Leonardo explained the causes for cracks in domes. He

realized that the joints will open just like an orange whose peel is cut into

meridional strips and pressed at the top (di Teodoro 1989: 33–34). This led to the

discovery that an excessive single load at the top of a dome will result in meridional

cracks. Leonardo concluded that a dome with a large single load would have to be

as steep as possible and its base would have to be supported at the sides (Fig. 6.4).
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Leonardo’s work proves that the humanistic holistic account in writing and in

drawings took the place of scientific proof and mathematical formulation.

In 1675, Robert Hooke published the first theory on form-finding recognizing an

analogy between the form of the chain and the pressure line of an arch. According to

his diary, Hooke was in close contact with Sir Christopher Wren, the architect and

builder of St. Paul’s Cathedral. Therefore it may be assumed that Hooke inspired

Wren to form the supporting dome shell in the form of the inverse geometry of a

relevantly loaded sagging cable/rope. The supporting shell is conical at the bottom

Fig. 6.3 Arch bridge

according to Leon Battista

Alberti. Image: author, after

(Straub 1992: 129, Fig. 32)

Fig. 6.4 Study of a steep

dome with a large single

load by Leonardo da Vinci,

Codex Trivulziano, fol 20v
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with a slight external belly and levels off just below the lantern, thus corresponding

to the load introduced by the heavy lantern and the weight of the exterior light shell

(Heinle and Schlaich 1996: 119–119).

The supporting shell’s profile proves that Wren understood the theory of the

pressure line and drew the correct conclusions from the damages to the shallow

dome of St. Peter in Rome (Dorn and Mark 1981). But this design method was still

based on experiments and could not yet be mathematically described. Leonardo da

Vinci’s purely intellectual connection between the necessity to transfer dead load

and the dome’s form became qualitatively depictable and comprehensible by

experiment through Hooke’s realizations. Apparently the result of this design

process failed to correspond to the traditional ideas of a large cathedral and

therefore the structure itself was encased internally and externally, thus

separating the structurally determined form from the desired, visual

architectural form.

The dome of St. Peter’s in Rome is a steep dome designed by Michelangelo and

altered by the master-builders Giacomo della Porta and Domenico Fontana. As with

the dome in Florence, the choice of structure was heavily influenced by the most

favourable load transfer. Three peripheral tie beams of iron were to assist in

absorbing the dome’s shear. Despite these conclusive measures, cracks were

reported as early as in 1631. In 1742, three mathematicians, Tomaso Le Seur,

Francesco Jacquier and Ruggero Boscovich, were requested to provide an expert

opinion as to the cause for these alarming cracks in the dome. This analysis was

published in 1743 (Fig. 6.5).

The authors explored new ground and produced history’s first statical proof,

resulting in the dimensioning of a structural element. They attempted to determine

the horizontal shear and prove that the three peripheral tie beams were inadequate to

absorb this force by applying a method probably most closely resembling today’s

statical principle of virtual translation.

In 1743, Giovanni Poleni was also requested to investigate the dome’s condition

(Fig. 6.6). His results were published in 1748. Following Hooke’s findings, Poleni

used a sagging chain loaded with balls and attempted to draw conclusions about the

dome’s behaviour. From the shape assumed by the freely sagging chain, he deduced

that the lantern was too heavy for the profile of the vault. To avoid further cracks, he

concurred with the three mathematicians and proposed reinforcing the dome with

additional peripheral tie beams.

The two methods described above were totally different: the three

mathematicians with their mathematically determined method and Poleni with his

solely qualitative descriptive method in the tradition of Leonardo and Hooke. In

consequence, Poleni heavily criticized the work of his colleagues; he writes,

Buonarroti non sapeva di Mathematica, e poi sempre seppe architettare la
Cupola . . . Perchè appunto ho grandissima stima di questa Scienza, altremente
me ne dispiace il suo abuso (Michelangelo was unfamiliar with mathematics and

could still build the dome. . . . Mathematics is an esteemed science but was abused

in this case) (Straub 1992).
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The Mathematical Calculation of Structures

The effects of the French Revolution and the Industrial Revolution influenced the

political climate of the nineteenth century. Liberalism, strengthened by the French

Revolution’s spirit of enlightenment, aimed at the rule of rationalism and a free

economic system. The tremendous progress in natural science and technology and

the achievements of the Industrial Revolution resulted in an optimistic belief in

man’s almost unlimited ability to shape the world.

Auguste Comte’s (1798–1857) positivism, founded on Newton’s work, based

mankind’s progress on raising the understanding to the positive level (i.e. the

scientific level), the highest possible for the human mind (Comte 1994). In this

scientific state an observation leads to a rule, the search for the ultimate cause is

abandoned and the interest is aimed towards the existing facts. To mathematics is

assigned the highest possible positivistic degree because it is ascertainable by pure

reason and does not require interpretation. The meaning of positive is the veritable

and the utilitarian; consequently, this implies the separation of theory and practical

application.

Fig. 6.5 Copperplate

illustration from Le Seur,

Jacquier and Boscovich,

Parere di tre mattematici
sopra i danni che si sono
trovati nella Cupola di
S. Pietro, 1742. Next to the

dome with the sketched

damages the plate shows in

the upper right-hand corner

the graphic drawing,

including the cracks as

joints
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Structural engineers gratefully accepted the theoretical knowledge of natural

science, translating it into practical applications. Mathematics, as far as structural

engineering was concerned, took two different routes. The new material iron was

inextricably linked with this development by concentrating forces in linear

loadbearing members. It is not difficult to see that the mechanics of such

structures were more easily described mathematically than those of the earlier,

massive masonry structures. At first this new material was applied only in stone

bridge construction by replacing the massive stones with parallel connected iron

bars. Although technological development had already surpassed this level, it was

only very slowly applied to structures. Therefore, it is impossible to relate the

development in mathematics directly to the structures. However, some relations are

to be explained.

Fig. 6.6 Reconstruction of St. Peter’s pressure line by Giovanni Poleni, from Memorie istoriche
della gran cupola del tempio vaticano, 1748
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At the beginning of the nineteenth century, the development of mathematical

methods went in two major directions: the so-called “graphical statics” and the

“analytical statics”. Based on the geometry by Sebastiano Serlio, Albrecht Dürer,

Girard Desargues and Rene Descartes, surveyor Gaspard de Monge (1746–1818)

and Jean Victor Poncelet (1788–1867) developed projective geometry. In Germany

Karl Georg Staudt refined the scientific principles of projective geometry, thus

creating the basis for graphic statics (Kurrer 1994: 79–86). The Swiss Karl

Culmann (1821–1881), the Italian Luigi Cremona (1830–1903) and the German

Wilhelm Ritter (1847–1906) applied the knowledge of graphic statics to develop a

complex graphic statics facilitating the analysis and dimensioning of complicated

three-dimensional structures. The method of graphic statics created the possibility

to visually conceive the flow of forces, thus uniting the design and construction

processes. The graphic method was especially suited for statically determined

structures consisting of linearly hinged iron bars; these prerequisites characterized

the “industrial architecture” with its roofs and bridges.

The shape of the Pauli-girder (fishbelly girder), named after its inventor August

von Pauli (1802–1883), keeps the forces constant across the entire length of the

upper and bottom chord (Fig. 6.7). In the trusses developed a few years later (1867)

by Johann Wilhelm Schwedler (1823–1894) the diagonals are only tension-stressed

(Straub 1992). The loadbearing behaviour and the mathematical method used for

the calculation determined the design in each of these three cases.

While the Pauli and Schwedler girders were used in bridge construction, the

three-hinge truss-arch is the loadbearing element in the final quarter of the

nineteenth century. This three-hinge truss-arch separated the wall from the roof.

Rooms were created by adding arches and longitudinally connecting them with

purlins and glass roofs. For over three decades this was the basic structure of

numerous train-stations in England and Germany and of a multitude of industrial

sheds.

By the end of the nineteenth century graphic statics reached its peak and the

gradual acceptance of analytical methods already caused its slow demise. The new

material ferroconcrete especially contributed to the favoured use of analytical

methods in statical calculations by the end of the nineteenth century. The

Frenchmen Navier (1785–1836), Cauchy (1789–1857) and Clapeyron (1799–1864),

major advocates of this method, treated the theory of mechanics and strength in a

strictly mathematical way, completely rejecting graphic descriptions. This might

explain why their methods were not practically applied but consequently pursued

further. The breakthrough came with Müller-Breslau’s (1851–1925) flexibility

matrix method published in 1904, the first major procedure to calculate statically

indeterminate member systems (Kurrer 1987: 1–8).

Tension and compression strength were characteristics of ferroconcrete, and it

could be shaped almost at will. Forming hinges was simple with iron, but difficult

with ferroconcrete. It created statically indeterminate frames continuing through

several spans, a difficulty only surmountable by using analytical methods. This was

the foundation for constructing the first major story frames, especially in the United

States.
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This change in paradigm, from graphic to analytical statics, caused the

loss of the analogy between design, calculation and construction, threatening the

flow-of-forces-oriented design of structures as dictated by the graphic procedure.

Only a limited number of statically indeterminates could be solved with these

new procedures, which is probably the reason for the mostly simple structures

causing as little calculating effort as possible. The structures by Pier Luigi Nervi

or Maillard’s bridges are examples which were partly calculated using the graphic

method.

Computer-Oriented Mathematical Procedures Facilitate

“Any” Structure

The Finite Element Method created a new fundamental development in the 1970s.

Although its basic method was well-known as the translation method, it gained

significance as a calculation procedure only through efficient computers. Almost

any structure could be calculated using this method. At the onset of this rapid

development its application had to be reduced to reasonable measure. The method

of finite elements was only partially applied to flow-of-forces-oriented structural

Fig. 6.7 Static calculation of the “Pauli girder” with the graphic method by Karl Culmann. Image:

(Culmann 1866: Tafel 18)
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designs, resulting in beautiful, constructively sophisticated structures such for the

1972 Olympic Games in Munich. However, even more efficient computers could

deal with almost any problem occurring in structural engineering. Though complex

designs could be executed such as membrane or cable structures, the constructive

aspect of the design process might be neglected at the same time, resulting in the

construction of structurally inferior designs based on calculation results. Design,

calculation and construction are drifting further apart and very often the structures

are proof of it. This “the-sky-is-the-limit-calculating” creates an unprecedented

variety of different structures. But this freedom necessitates an increased

consideration for the design and its effects on man and the environment.

Conclusions

There is a direct link between the function of mathematics in the story of its culture

and architecture. Pythagoras and Plato attributed primarily symbolic and spiritual

meaning to numbers. Consequently antique structures were designed to meet the

spiritual requirement, to connect man with divinity. The end of the Renaissance

brought the application of mathematics to the dimensioning of structural elements.

Until then there were only rules of thumb, expressed by numbers taking the visually

conceived mechanics into consideration. In the Renaissance the task of

mathematics consisted of contributing to the structure’s pleasant form determined

by the dimensions designed with aid of the harmonic theory. Although the

loadbearing behaviour gained increasing consideration in the design, it was more

an intuitive than a mathematical procedure. The simultaneous development in

mathematics and natural science found no practical application in structural

engineering at first. At the same time mathematics was completely losing its

spiritual background and the harmonic theory fell into oblivion. The Industrial

Revolution and the emergence of the material iron resulted in the practical

application of mathematics in structural engineering by facilitating the

description of the structure’s mechanical behaviour and the dimensioning of

structural elements. But the necessary idealization of the structures leads to a

replacement rather than to a description of the actual structure. Today the method

of finite elements combined with the computer results in an improved

comprehension of the structure. But not only reasonably optimized structures are

created, but also “everything possible” might be realized. These examples show

that the application of the new method requires intensive reflection about the

possibilities and the demands of designing.
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Part II

From 2000 B.C. to 1000 A.D.



Chapter 7

Old Shoes, New Feet, and the Puzzle

of the First Square in Ancient Egyptian

Architecture

Peter Schneider

Introduction

One day, a little under 4,000 years ago, in the city of On—Heliopolis—in ancient

Egypt, the twelfth dynasty pharaoh Kheperkare, Sesostris I, called together his

court. In the presence of the “companions of the palace”, he commissioned the

process of building his pyramid, established its design, and set its basic geometry.

The text known as the Building Inscription of Sesostris I records the steps

Kheperkare followed in commissioning his “house of eternity”. It moves through

four clear and ritualized stages:

Kheperkare1 first appears before his court and speaks, announcing his plan to

build his pyramid:

Behold, my majesty plans a work contemplates an act of value. For the future I will make a

monument, I will construct a great house. . . The hill is my name, the lake is my memory. . .
He who builds himself does not know oblivion, for his name is still pronounced.2

First published as: Peter Schneider, “The Puzzle of the First Square in Ancient Egyptian

Architecture”, pp. 207–221 in Nexus IV: Architecture and Mathematics, Kim Williams and Jose

Francisco Rodrigues, eds. Fucecchio (Florence): Kim Williams Books, 2002.

1 The pharaoh Kheperkare is also known by the names Sesostris I, Senwosret I, and Senusert I. He

lived and reigned in the twelfth dynasty, between 1971 and 1927 B.C. His building inscription is

preserved on a leather roll from the eighteenth dynasty, and is one remarkable for its completeness,

and its presentation of the formal act of commissioning a building. The inscription is long, and

much of its language is honorific. The excerpts that follow have been extracted from the text to

give an idea of the process that was followed. Three different translations on the Kheperkare text

were consulted. They are from Breasted (1988: Vol. I. Inscriptions 501–506), Lichtheim (1975:

Vol. I, 116–117), Parkinson (1991, 40–43).
2 The tradition of giving unique names to the individual pyramids had a long history in ancient

Egypt. The first recorded pyramid names date to the hills of the pharaohs of the fourth dynasty, in
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The court rejoices in the royal plan, delighting in its brilliance and significance.

They respond:

Discernment is in your words. Wisdom supports you. What you plan will come about. It

will serve as your image, and will establish you for all eternity.

Kheperkare then instructs his architect, the overseer of all works of the king, to

plan for and begin the great project.

Your counsel completes all of the works of my desires; you act according to my wish. Skill

and cunning belong to you. . . Now is the time to act. . .do according to your design.

Kheperkare finally participates in the ancient ritual called “stretching-the-cord”,

consecrating the place for the new monument, and establishing its proper

orientation and form: “The king appeared in his plumed crown, with all of the

people following him. The chief lector priest and scribe of the god’s books stretched

the cord. The cord was released, laid in the ground, made to be his monument. The

king ordered work to begin. Joined together were upper and lower Egypt.”

Stretching the Cord

The building inscription of Sesostris I is one of an extensive range of texts that

belong to the genre of the building inscription in ancient Egyptian literature. Within

that genre, it is both the most extensive, and the most complete. The story it tells

explains and expands on a range of other texts, some much older and others much

later, that describe the ritualized practice through which the great monuments that

mark the ancient Egyptian landscape came into being. It also sheds light—although

it is only a glimmer—on the structure of one particular part of that practice: the

archaic ritual of stretching-the-cord.

The practice known as stretching-the-cord finds it origins in Egypt’s ancient and

mythic past. Its constant use is documented in a range of texts that span Egypt’s

long 3,000-year history: from the annals of the Archaic Period, through the records

of the Old, Middle and New Kingdoms, to the chronicles of the Late Period.3 While

2600 B.C. Kheperkare’s pyramid was eventually given its own unique version of his name:

“Kheperkare, most favored; Sesostris, who gazes out over the two lands”.
3 The Palermo stone records the fragmentary and cryptic annals of the first through the early fifth

dynasties. They are translated in Breasted (1988). Inscriptions 76 through 166. The inscriptions for

the first and second dynasties mention the stretching-the-cord ceremony five times. Those

inscriptions are usually preceded by another inscription, recording another parallel ceremony

that had to do with the design and commissioning of a monument—a “house”. The paired

inscriptions typically read: “Design of the house called Shelter-of-the Gods”, and then, in the

following year, “Stretching-the-cord for the house called Shelter-of-the Gods by the prophet of

Seshat”. The paired design-of-the-house and stretching-the-cord rituals that are mentioned in the

ancient annals are echoed in the ritual followed by Kheperkare in establishing his monument: the

first three parts of the ritual deal with the process of its “design”, the fourth with its establishment

and construction.
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there can be no doubt that the ceremony was an essential part of the foundation and

construction of all important buildings in ancient Egyptian times, there is no fuller

description of the nature of the ceremony than the brief comment recorded in

Kheperkare’s inscription: “the chief lector priest and scribe of the god’s books

stretched the cord. The rope was released, laid in the ground, and made to be the

monument.”

Just what the set of practices that constituted that ceremony might actually have

been, and just what was embodied in and instanced through the ritual of stretching

that cord and laying it in the ground, is one of the puzzles that have intrigued

Egyptologists for over 150 years. While the details that surround the act of

stretching the cord are shrouded in the deep mists of the past, there is a general

acceptance of four facts that are established by and through its physical

consequences: the monuments themselves.

The first of these is the fact that the stretched cord inevitably established the

primary axial orientation of the monument: its alignment in the spaces of both the

physical and metaphysical landscapes of ancient Egyptian culture. The second is

the fact is that the stretched cord also inevitably established a right angle.4 The third

is the fact that the stretched cord—in one way or another—established and set out

the primary geometric figure—most often the square—that controlled the eventual

form of the building with a very high degree of precision and accuracy.5 The fourth

and final fact is that the ritual—again in some way or another—established the

measure and proportions from and through which the consequent geometries of the

building or complex of buildings could be derived: from and through which the

cord, laid in the ground, could be made to be the monument.

In spite of a general agreement that recognizes these four consequences of the

ritual of stretching-the-cord, the puzzle itself remains unanswered: Just what was

that ritual? How was it used to establish the right angle? How did it result in the

description of that first square with such precision? How could it control the form,

organization, design and proportions of the monuments so effectively, and so

predictably? These are the major questions this chapter sets out to answer.

4Most Egyptologists agree that the method for the construction of that right angle was separate and

distinct from that of the 3:4:5 or Pythagorean triangle. There is no contemporary evidence that the

ancient Egyptians were aware of the method of constructing the right angle using an early version

of the Pythagorean triangle. Gillings (1972: 242) cites conclusions by a range of scholars who dealt

with Egyptian mathematics that make that very clear. The proto-Pythagorean triangle with its

3:4:5 relationships was a Babylonian invention, and was evidently passed on to the Greeks through

their contacts with the ‘Persians’ in the archaic period of Greek history. The Babylonian origins of

the Pythagorean theorem are discussed in Neugebauer (1957).
5 In the case of a pyramid, applying an established and well-known ratio called the seked to the

dimension of its base derived its height. That same formula also set the gradient of the pyramid’s

surfaces. See Gillings (1972: 185–187) for a discussion of the application of the seked. An
interesting fact about the seked: the triangle that is the result of the ratios established by the

Rhind Mathematical Papyrus is a ‘proto-Pythagorean’right-angled triangle with sides of 21:28:35

digits.
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To do so, it moves into a future distant from Kheperkare’s time to encounter

variants of the ritual’s tradition: a tradition than involves both a simple geometric

method and a set of measures that embody the intrinsic geometries inherent in the

ritual’s basic figure: the square. After encountering traces of the tradition in a

number of different contexts, forms, and times, the narrative returns to

Kheperkare’s time—the time of that ritual geometry’s archaic origins—to

confront the puzzle of the cord’s unanswered questions and to sketch out the

framework within which one answer to these questions can be framed.6

Setting Out Muckross Abbey

Sometime between the years of 1440 and 1450 CE, near a place called Muckross in

County Kerry, Ireland, a small group of Franciscan Friars set about building their

new friary. It was eventually called Muckross Abbey.7 One of their first actions was

set out the building on its site using a simple and straightforward method that

established and fixed the form and geometry for the new abbey.8

The method that the friars used to set out their abbey was clearly one that was

well known, and absolutely familiar. It was a process that, for its time, was both

sophisticated and elegant. The controlling figure from which the whole abbey’s

organization is derived is its cloister: its first and original square.9 Once the first

6 The documents known as the Regius Poem and the Cooke Manuscript date from the

late-fourteenth and mid-fifteenth centuries, although the oral tradition they capture is certainly

much earlier. They are published in Knoop and Jones (1938). The manuscripts document the

points and charges that regulated the conduct of the lodges of masons and their gatherings in the

late-medieval period. They also record the traditional histories of the art of geometry and the craft

of masonry as these were known to the late-medieval masons. There are two histories—one called

the long and the other the short—recorded in the Cooke Manuscript, and one in the Regius Poem.
All of the histories locate the origins of the “true” geometry in ancient Egypt, in the time of the first

pharaohs and the invention of monumental stone building.
7 The history, geometry and characteristics of Muckross Abbey are discussed in Stall (1990).
8 Eric Fernie observes, “since the majority of pre-modern architectural designs in the western

world appear to have been laid out geometrically, one can if one wishes restrict oneself to coming

to terms with the diagrams of the argument” (Fernie 1990: 230). He also writes: “one proportion

appears to have been overwhelmingly more popular that any other in the design of [medieval]

buildings, namely the ratio of the side of a square to its diagonal, which is one to the square root of

two. . .” Roger Stall’s examination of the organization of Muckross Abbey is an exercise in coming

to terms with the diagram its particular argument, which is informed by its reliance on that

‘popular proportion’ of 1: √2.
9 They began by setting out the friary’s cloister: a great square measuring 48 units by 48 units.

Building on the geometry of that original square, they used the measure of its diagonals to establish

a set of subsidiary figures, and a second pair of squares. They did so by describing a series of arcs

using the corners of the original square as centers, and its diagonals as radii. Having established the

second pair of squares, they repeated the process, using the measure generated by their diagonals to

describe another set of arcs, which in turn established more figures and a third square. They used

the arc of the diagonal of that square one final time to establish the location for the east wall of the

choir.
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square had been marked out and accurately described, the subsequent

manipulations that allowed the form, proportion, organization, and design of the

building to emerge were quite predictable, and entirely consequential.10

The friar’s successive operations on the figure of the original square of the

cloister extended its geometries through a series of measured transformations

using a variant of the geometric technique for partitioning a square known as the

“sacred cut”. That technique exploits the relationship that exists between the

measures of a square’s side and its diagonal to produce a sequence of measures

and an ordered disposition of its various parts and components that are always

related in a ratio of 1:√2. The final organization of Muckross Abbey—its

final “sacred cut” geometry—emerged and evolved inevitably out of these

carefully-managed manipulations and operations on that prime figure: that first

and archetypal square (Fig. 7.1).

First Make a Square. . .

At almost the same time that those Franciscan friars were setting out their first

square and building their abbey at Muckross in County Kerry, three German master

craftsmen—Mathes Roriczer, Hanns Schmuttermayer, and Lorenz Lechler—were

practicing their art and craft in the south of Germany. In the closing years of the

fifteenth century or the early years of the sixteenth, at almost the same time that

construction on the abbey was finally being completed, each mason published one

or more brief but important booklets of ‘instructions’ explaining some aspect of the

art of geometry as it related to the craft of masonry and its methods and practices.11

In each case, after a brief preface and dedication, the text of their instructions and

teachings begins with an almost identical phrase. Mathes Roriczer says: “begin by

making a square”. Hanss Schmuttermayer exhorts: “first make a square”. Lorenz

Lechler insists: “first draw a square”. There are no instructions in any of the

10 There are many examples of plan and sectional organizations in history that are the outcomes of

the process of partitioning a square using the measure known as the “sacred cut”. The same kind of

manipulations and operations occur again and again in the smaller late-medieval Franciscan and

Cistercian friaries in Ireland, and in the general organization of many late-medieval monastic

complexes on the continent. Muckross Abbey is an interesting example of this process of

establishing 1: √2 sequences geometrically, in that its geometry is the outcome of a process of

successively enlarging the original square through the manipulation of its diagonals, rather than

the accepted and common practice of successively reducing the square through the manipulation

of the midpoints of its diagonal structure. The quantitative 1: √2 sequence that results at Muckross

through the manipulation of the sides and diagonals of its figures belongs the

12:17:24:34:48:64:96:128 series.
11 The booklets are: Roriczer (1486, 1488a, b), Schmuttermayer ca. (1489), Lechler (1516).

Translations of Roriczer’s booklets and that of Schmuttermayer appear in Shelby (1977). A

translation of selected excerpts from Lorenz Lechler’s unpublished manuscript appear in

Shelby (1971).
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booklets that tell one exactly how to begin: that tell one how to make that first

square.12 In each method, the first square is evidently a familiar thing: made, drawn,

and described. Its construction must have been so well known, such an essential part

of the knowledge of the craft, that it needed no explanation. In each of the methods,

that familiar first square was the condition precedent to all of the operations that

Fig. 7.1 The basic geometric system used to set out Muckross Abbey. The successive arcs

establishing the major geometric figures are numbered consecutively, and the apex of each of

the major squares are indicated by the letters a, b and c. Drawing: author

12 Roriczer does set out a method for making a “true square” in his Geometria deutsch (Roriczer

1488a; Shelby 1977: 114). Mathes’s method for constructing a right angle is a variant of the

well-known theorem that asserts that the angle described in any semi-circle is a right angle. That

theorem was evidently one of several mathematical propositions “borrowed” by the Ionian Greeks

in the archaic period from the Egyptians. Robert Hahn mentions this “borrowing” in Hahn (2001:

57–59).
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would follow. One made the first square, the prime figure, to make any and all other

operations on its hidden geometries possible, and visible.

In each method, the first square—that prime figure—is carefully operated on

using the process of ad quadratum: the process of defining successively smaller

squares by connecting the mid-points of the original—and the subsequent—figure’s

sides.

Mark the midpoints of each side. . . and draw lines between these points to make a second

square through the first. . .Do this again to make a third square inside the second (Shelby

1977: 84–85).13

Mathes Roriczer’s method requires three iterations of ad quadratum.
Schmuttermayer’s instructions call for eight. Lechler needs just two.

In each case, once the first square had been precisely made, drawn and described,

the subsequent quadratic manipulations let the form, organization and structure of a

pinnacle, a gable or a spire emerge quite predictably and consequentially by virtue

of the qualities and properties that inhere in the prime figure. Their final form is

inevitable, a product of their geometric process, just as the form of Muckross Abbey

exists as a consequential product of its geometric process.

Roriczer’s method differs significantly from those of Schmuttermayer and

Lechler in the absolute reliance it places on geometry as the sole means through

which a pinnacle and a gable are to be properly constructed. Mathes Roriczer says

so in his dedication: “[this method] arises out of the fundamentals of geometry

through manipulation of the dividers” (Shelby 1977: 83). Roriczer’s method is a

precise sequence involving over 250 subsequent operations of the dividers once the

first square has been described.

In contrast, Schmuttermayer’s and Lechler’s methods use the initial geometric

operations to establish a set of measures that are then applied as the controlling

dimensions that guide the design of a pinnacle, a gable, a mullion, or even a

building. Both ‘take’ the measures out of the original square using the process of

ad quadratum, and each measure is consequently related to the next in the series in

the ratio of 1:√2. These measures are identified as the old and the young in both

methods: the old and young shoes in Schmuttermayer’s; the old and young
measures in Lechler’s.

To explain his method, Schmuttermayer writes:

If you wish to draw a pinnacle and a gable, the first make a square, however large you wish.

In that square make eight squares smaller and smaller, so that each fits into the other on the

diagonal. Then set the eight squares beside one another. . .The first [square] is called the Old
Shoe, the next is called the New Shoe. . .Out of these eight squares and their measure come

all the settings-out of the pinnacle, the gable, and all measured work (Shelby 1977:

128–129). 14

13 Conflation of Mathes Roriczer’s initial instructions for setting out a pinnacle.
14 The other six squares, taken out of the first figure, are expressed as fractions—as halves, thirds,

quarters, sixths or eights—of either the old or the new “shoes”.
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Lechler derives just two measures using his method. He does so by rotating two

squares of the same size over one another, and then rotating another smaller square

inside the first. The vertical diagonal of the larger square is the “old” measure, the

horizontal diagonal of the smaller the “young”. He writes:

draw three squares through one another; in this manner you will find the length and the

breadth that are the correct measures out of which can be taken all of the measures that one

puts to use. . .through the device of [making] two squares within a square you will find the

two correct measures, the Old and the Young (Shelby 1971: 150–152, and Fig. 9).

Having described a geometric method for deriving the equivalent of

Schmuttermayer’s old and new ‘shoes,’ Lorenz Lechler then goes on to describe

another way—an alternative method—for finding the correct “old” and “young”

measures (Fig. 7.2). He writes:

Take one a part [side] of the (first) square and divide it into seven parts. That is the correct

old measure for all buildings. If you then wish to make a young measure, which one uses

often, then take two parts from the seven parts, leaving five parts. Those five parts are the

young measure. So, the old measure has seven parts, and the young measure five, and the

young is taken out of the old (Shelby 1971: 147–154).

Lechler’s twofold instructions are intriguing, and highly significant. In the first

place, they link and couple two distinct and different methods that derive the 1: √2
ratio out of a square: one method based in geometry, the other in number and

measure.15 Lechler’s young-to-old ratio of 5:7 is the first whole—and therefore

Fig. 7.2 Composite of

Lechler’s drawings for

deriving the old and new

measures, with the letters a

to h indicating the rotated

ad quadratum squares.

Drawing: author

15 The use of the coupled methods at Muckross—the geometric in the successive √2 manipulations

of the original and subsequent squares, and the numeric in the use of the 12:17:24:34:48 √2
series—supports a reading of Lechler’s instructions that clearly shows that these two methods and

practices of dealing with the puzzle of 1:√2 were familiar and customary in the late-medieval

period.
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rational—number approximation of the irrational ratio of 1: √2. It begins the √2
series 5:7:10:14:20:28. The twofold instructions also confirm both the importance

and validity of Kossmann’s discovery—and Paul Frankl’s later corroboration of

that discovery—that these two measures, five and seven, constituted a “great unit”

and a “lesser unit” that were used rather extensively in the medieval period to set

out buildings and complexes of buildings.16 They finally explain the existence and

significance of the repeated measures of five and seven that appear cryptically

in various drawings in the mid-thirteenth century Sketchbook of Villard de

Honnecourt, written some 250 years before Lechler began his manuscript.17

The method of ad quadratum and its parallel and coupled method of using

known sets of numbers and measures that established close approximations of the

1: √2 ratio were clearly a part of the secrets and mysteries medieval apprentices

were taught as they became adept in the mason’s craft (Frankl 1945: 46–51 and

57–60).18 They were fundamental parts of the tradition and its art: methods that

been obviously established by the “old ones” and passed down through geometry’s

long and rich tradition.19

16 Kossmann’s discovery is mentioned by Frankl (1945: pp. 49–51 and note 14). Kossmann’s

observations of the existence of these measures were evidently supported by other, parallel

discoveries by Steiglitz and Jenner; see Frankl (1945: note 14). Frankl himself discusses the

repeated appearance of the five and seven measures, and their derivatives of 10, 14, 20, 28, 40, 56,

as these were used in the mathematician Stornaloco’s 1391 ‘geometry’ for the Cathedral in Milan;

see Frankl (1945: p. 55).
17 The most significant examples of these measures of five and seven occur on sheets 39 and 40 of

the folio, sometimes attributed to Magister 2. One particular figure shows a triangle whose short

side has been ‘cut’ into five divisions. If one increases the length that side by two of those

divisions, the new seven-unit length matches the length of its longer side. There are also two

sketches on those sheets that show quite unequivocally that Villard was familiar with both the

method of ad quadratum, and that of the “sacred cut”. Frankl discusses the ad quadratum sketch in

“Secret,” (1945: 57). The diagram showing Villard’s familiarity with the principles of the “sacred

cut” geometry—which has not to my knowledge been previously identified and discussed—is a

square inside of which are drawn two intersecting lines that connect the points on the square’s

opposite sides marked by the arcs of the “sacred cut”: the arc described by a circle with its center

on the square’s corner, and a radius of one half of the square’s diagonal. A final, curious

coincidence occurs in Villard’s drawings of the various mason’s squares in the Sketchbook.
Almost all of them have been drawn so that the ratio between their shorter and longer sides is—

given the limitations of deriving exact measures from the old drawings—5:7 or, in modern terms,

1:√2.
18 Frankl clearly established the process of ad quadratum—and by inference the parallel method of

the ‘sacred cut’—as the “secret” of the medieval masons. What Lechler’s manuscript reveals is

that there were in fact two secrets: one geometric, the other numeric. Both exist in parallel: as a

twinned pair that holds and reveals the “secret” of the masons. A close reading of the well-known

Vitruvian text that describes the squaring of the square—Book IX, Introduction—shows Vitruvius

using both 10 and 14, the second pair in the 1:√2 series 5:7:10:14:20:28, to show how one can only

approximate the irrational products of 1:√2 arithmetically. The other common numeric √2
sequences were 12:17:24:34:48:68; and 29:41:58:82:116:164.
19 In their individual booklets, Roriczer, Schmuttermayer and Lechler each mention that their

knowledge has been inherited from “the old ones who knew this art”, from “the old ones among us,

who invented this art that has its origins in the level, the square, the triangle, the divider and the
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The Square in Classical Rome and Archaic Greece

Each of these well-established methods originates in and depends on the particular

attributes of the true square. Each is, through this, absolutely dependent of the

existence of an original square as the primary, archetypal figure. Any attempt to

uncover the origins of the coupled methods inevitably confronts an enduring

puzzle: the puzzle of the first square. The evidences of the geometric version of

the methods—and the puzzle—can be easily traced back through Vitruvius and

Plato’s Meno to the emerging intellectual culture of archaic Greece in Ionia in the

seventh century B.C. (Frankl 1945: 57; Hahn 2001: 56–60).20

The origins of the numeric method can be traced back—with a little more

difficulty—through Cetius Faventius and Vitruvius to a point a great deal further

back in time than that. It can be followed back to an archaic point in space and time

where an original square was evidently imagined, described and constructed in

ancient Egypt using a method that relied on the existence of two very ancient

measures that embodied the crucial 1:√2 ratio in what was perhaps an original and

archetypal form.

M. Cetius Faventius is known for his third century commentaries on Vitruvius,

and for the use Palladius made of those commentaries in writing the De Re Rustica.
Faventius’s commentaries are brief: glosses to the Vitruvian texts. They were

collated as a compendium in the edition of the Ten Books prepared by Valentin

Rose in 1867, and were published after the Vitruvian text in a section titled De
Diversis Fabricis Architectonicae. In the next-to-last chapter of his commentaries,

Chap. 28, Faventius describes with great precision the method one should use to

make a ‘perfect’ square. He writes:

Since the square is an invention with many uses, one without which nothing useful can be

constructed, here is how you can make a proper square: take three rods of equal thickness,

two each two feet long, the other two feet and ten inches long. Point their ends, and then

join them at the points to form a triangle. When you have the triangle, you have made a

proper square (Plommer 1973: 80–81, 109).

If the art of making the square was a familiar part of the technical knowledge of

the medieval architect, it was evidently not quite so familiar in the case of the

architects of Faventius’s time. Faventius’s short passage gives explicit instructions

on just how to do that: how to make a proper square. It is the first text we have

encountered that does so. One takes two measures, one of 24 units, and the other of

measure”, and from “our old fathers, who used this method”. While it is evident that they were

referring to their own fathers and older colleagues, it is also clear from a careful study of the texts

themselves that they were also referring to a much older set of “old ones”: a set whose history is

evidently contemporaneous with the emergence of the art of geometry and the craft of masonry in

ancient Egypt. See note 7 above.
20 Proclus writes: “Thales came to Miletus from Egypt, and brought geometry to Greece. His pupil

Anaximander, according to the Suda, ‘was the first to discover the square, bringing it into Greece

and making known the basis of geometry’.”

106 P. Schneider

http://dx.doi.org/10.1007/978-3-319-00137-1_28


34 and, by doubling and combining them in a particular way, constructs both a right

angle and a half-square that are proper, expert and perfect.21

Faventius’s instruction is simple, clear and entirely memorable. It is also

compelling in its brevity and clarity. Faventius’ use of those two special

measures—24 and 34—allowed any Roman architect or craftsman to make a

right angle and half-square simply, easily and perfectly. Lechler’s two correct
measures for all buildings—five and seven, young and old—the one taken out of
the other, would have let the architects, craftsmen and even friars of his time to do

exactly the same thing, using this method inherited from “old ones who knew this

art”.22

The Remen and the Cubit

As one looks at the history of measure in ancient Egypt, one finds there a “new”

measure that, like Lechler’s, is also taken directly out of the “old”. It is a 20-digit

measure called the rmn (remen), and is derived directly out of the 28 digit measure

known as the great or royal cubit.23 The remen’s numeric and dimensional

relationship to the cubit is identical to the 1:√2 ratio that characterizes the

coupled 10:14 unit ratio mentioned by Vitruvius, the 24:34 ratio used by

Faventius, Stornaloco’s 10:14 series at Milan, the paired 5:7 ratio derived by

Lechler, and even the 34:48 ratio used by the Franciscan friars at Muckross.

The existence of these two ancient Egyptian measures—the 20-digit remen and

the 28-digit cubit—and their clear relationship to these other measures that are a

part of architecture’s history solve in an elegant and convincing way the puzzle of

both stretching-the-cord and the construction of the first square in ancient Egypt.

Each of these those ratios, as we have seen, establish the correct and proper

21 Faventius’s familiarity with the 12:17:24:34:48:68 √2 series is echoed by Vitruvius’s apparent

familiarity with the 5:7:10:14:20:28 series, as he mentions it in his introduction to his Book

IX. The persistent appearance of measures from these two series—and measures from the

29:41:58:82:116:164 series—that occur in Roman houses and other architectural settings clearly

shows that familiarity with systems of measure based on the 1: √2 ratio were an intrinsic part of the
customary, practical knowledge of the time. It is also interesting that two of the important

measures used by the Romans agrimensores are directly related to the 5:7 series: the passus and
double-passus of 5 and 10 ft. respectively, and the actus of 120 ft.
22 It is perhaps no coincidence that the prime measures for Muckross Abbey—the inner and outer

squares of its cloister—are 24 and 34 feet, or shoes, and that the young or smaller measure must

have ‘been taken out of the other’ in just the way that Lechler describes in his method—by an ad
quadratum rotation.
23 The existence of the remen as a unit of measure in Ancient Egypt is well documented in a range

of contemporary papyri and inscriptions. It is also documented in the examples of a range of

measuring rods and staffs, which are clearly marked with both the cubit and remen measures.
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measures from and through which one may inevitably derive the perfect right angle,

and the perfect square.24 Simply, easily, precisely, predictably and conclusively.

Faventius did not “invent” his simple method for describing the proper square. It

was clearly an inherited part of the technological culture of his time, as it was in the

times of Vitruvius and Plato, and Anaximander and Thales. It had originated with

“the old ones who knew this art”, “who used this method”. Faventius, in framing his

instruction, was repeating a teaching that had been handed down through the

generations: from craftsman to craftsman, architect to architect. That older

teaching may well have been framed just a little differently, using different

words, and different tools:

Here is how you make a perfect square. Take three cords, two twenty-four digits long, the

third, thirty-four. Now join the cords end to end to form a triangle. When you have the

triangle, you have made a proper square.

What these words describe is a simple, clear, effective and efficient technique

using two cords with very particular characteristics to construct a square. This same

technique, when it was used with two cords using other, different sets of

measures—the one knotted in remen and the other knotted in cubits—allowed the

ancient Egyptian “architect” to stretch the cord and construct the perfect “first”

square from which all subsequent squares and proportions were derived with an

amazingly high degree of geometric accuracy. Simply, easily, precisely,

predictably and conclusively (Fig. 7.3).25

The instructions for the ritual called stretching-the-cord were well known to the

chief lector priest and scribe of the god’s books mentioned in Kheperkare’s

inscription. The god’s book was where those instructions had been recorded for

time immemorial: at the time of first occurrences in the dawn of Egypt’s history.

They had been established in the archaic time of the first architects, the “old ones

who invented this art that has its origins in the square and the measure”.

24 Richard Gillings mentions another unit, the double-remen of 40 units, which is the diagonal of a

squarewith a side of one cubit. He explains the usefulness of the remen, the cubit and the double-remen:

“Doublingwas standard technique inEgyptian arithmetic. . . inmeasuring land the relations between the

double remen, the cubit, and the remen enabled areas (whether squares, rectangles, triangles, circles

or other shapes) to be doubled and halved merely by changing the units of measurement [from

double-remen to cubit to remen]. . . a square on the side of the double-remen is double the area of a

square on the cubit, while a square on the side of the remen is half a square on the cubit” (Gillings 1972:

208–209).
25Most surviving paintings and drawings of Egyptian ‘surveyors’ show the surveyors as having

two cords: the one stretched out and being used to measure a line, the other coiled and carried over

the shoulder. It is clear why the paintings show the two cords, given Richard Gillings’s explanation

of the role of the two cords in note 25 above. Most contemporary measuring rods and staffs had

marks that established the remen and cubit measures. A simple technique for constructing a right

angle and/or square using a one-cubit rod would have been to mark out a line one cubit long and

then, using the remen measure as a radius, describing the intersection of two arcs centered on the

ends of the cubit-line. Joining those ends points to the arc’s intersection would have described a

true right angle. Repeating the process again would have led to the construction of a full square. It

is a deceptively simple technique, yet it is highly accurate, very efficient, and remarkably effective.
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Those ancient instructions might, if we expanded on and extended the basic

method preserved in Faventius’s instructions, have read something like this

(Fig. 7.4):

Stretch a cord so that it makes a line pointing to the place of the north star. Now, take a

remen cord and on that line mark out a circle whose radius is four hundred remen. Next,

mark out on the line of the circle the place of the north star. Take a cubit cord. Holding one

end of the cord on the mark of the north star, make a mark where its four-hundredth cubit

knot touches the circle again. Do that again, and again, and again. Draw lines between the

four marks you have made on the circle’s edge, and you will have made a true and perfect

square.26 Release the cords, lay them in the ground, and make them to be the monument.27

Fig. 7.3 The method for constructing a perfect square using the remen and cubit cords. The

composite illustration shows the geometry superimposed on the plan of a typical old kingdom

pyramid complex. Drawing: author

26 The measures used to establish the circle’s diameter, and then to section its circumference using

four chords related to its diameter in the ratio of 1:√2, inevitably lead to the construction of a figure
having four right angles, and four equal sides. It is the simplest, clearest and most direct method of

constructing a square using cords, and chords. It seems as such to meet the requirements of the

logical principle known as Occam’s Razor which holds that it is vain to do with more what might

be done with less. Put in another way: Occam’s Razor asserts that the simplest, clearest

explanation is always the best, and most often the most correct. The method described in this

hypothetical reconstruction inevitably finds its historic origins in the measures and methods

invented and used by the first geometers—the first measurers of the earth—who stretched the

cords for the many houses built in Egypt’s archaic period.
27 This is one method using the two cords that may have been used to set out the pyramids and

other Egyptian buildings. There are others, if one follows Faventius’s original method, in which

figures can be set out starting with a side, a central axis, or a diagonal. Each, however, depends on

the existence and use of the paired cords, one knotted in remen or double-remen, the other in the

great cubit. The use of the method of the great circle is certainly more elegant, and also more

appropriate given the structure of the ancient Egyptian cosmologies and creation myths.
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Conclusion

And so, the pharaoh Kheperkare appeared in his plumed crown, with all of the

people following him. The chief lector priest and scribe of the god’s books stretched

the cords. The cords were released, laid in the ground, made to be his monument.

Kheperkare ordered work to begin: “Construct the great house called Kheperkare,

most favored; Sesostris, who gazes out over the two lands,” he might have said, ‘its

hill is my name, its lake my memory.” Joined together were upper and lower Egypt,

and also joined together by an enduring tradition were the architects and geometers

of Kheperkare’s times, those of Anaximander’s, Vitruvius’s and Roriczer’s times,

Fig. 7.4 The numbers show the successive circles used to set out the pyramids, the letters the

successive squares inscribed in those circles, the roman numerals the three arcs that establish

centers and edges. The diagonal orientation axis is the line used to establish the true north/south

orientation for the complex. Drawing: author
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and those all-but-forgotten friars of Muckross Abbey. Their works, separated by the

millennia, all emerged and evolved inevitably out of their customary and measured

operations on a prime figure: a first and archetypal square derived though the use of

a technique that might more properly be called stretching-the-cords.
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Chapter 8

Geometric and Complex Analyses of Maya

Architecture: Some Examples

Gerardo Burkle-Elizondo, Nicoletta Sala,

and Ricardo David Valdez-Cepeda

Introduction

Few written documents about the works of art, sculpture, and architecture from

Mesoamerica have survived. Even so, there is no doubt that these are all products of

talented artists, because the execution often exhibits a great precision, showing a

definite mathematical knowledge of this extraordinary civilization. Analysis seems

to show that the ancient Mesoamerican architects and artists developed geometrical

concepts and used them in their works, for example, to orient their buildings with a

relationship with geomancy and alignment with the equinox, as described by Aveni

(1997), Hartung (1980) and Broda (1991). Mesoamerican cultural life existed for

nearly 2,000 years in Mexico, Guatemala, and Honduras, and the main civilizations

that developed were the Maya and the Aztec cultures, which reached two golden

periods, the first one around 650 AD, and the second one about 800 years later.
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Cosmological systems are viewed as structures together with the ideological

apparatus of the culture. To understand the complex structure of the architecture

and of development of the pyramids of Mesoamerica, we first need to realize that

this was a universe that combined the viewpoints of archaeology, anthropology, and

the history of their religion and politics. Pyramids had a religious function related

with the myth and the ritual expressions, traditions and ideology. These buildings

were established as specific sacred spaces in order that the people could experience

a powerful sacred event. The relationship between death, art, and the architecture is

also evident (Matos Moctezuma 1981). Many ritual ceremonies take place on the

top of the mountains or pyramids or on the platform-like steps. A pyramid was

fundamentally a ceremonial building that represented a pattern of the cosmological

organization and the center of the world (Freidel et al. 1999).

The role of the major cities in the organization of the pre-Hispanic societies is

well known, and has a relationship with the idea of authority as a complex power. In

their artistic works, architecture, and urbanism, the idea of harmony was very

important as a nexus between ideology and politics. For example, it is in myth

that the Mayas envisaged an end when creation would return to its beginnings. In

their calendar this is a great cyclical concept moving through space-time in which

the gods, trapped within the stars and the sun, travel ceaselessly in a daily cycle

from the upper to the underworld, beginning life again and again. Their cities, their

ceremonies, and their sacrifices, as reproductions of the cyclic cosmological design,

were permanent witnesses to the celestial order. By means of their pyramids—like

the center of the world, represented geometrically by a flat cross-section and the

cardinal points—and a ritual, they were able to rise to heaven or go down the steps

to hell (López-Austin 1994).

History, Pyramids, Styles and Geometry

In the ancient Mesoamerican religion, a pyramid was a sacred symbolic mountain

(Broda 2001). These geometries in Mesoamerica might be deemed arbitrary, except

for the finding by some authors of units of measure, and because it is obvious that

dynamics of the artistic composition and style are constant, as for example, in the

extraordinarily precise drawings of the Palenque panels in Chiapas, Mexico,

which Linda Schele and others have shown to have a geometrically structured

composition, involving standard measures and the use of mathematical canons of

proportion, as the primary tools inherent to a cosmic concept (Schele and Freidel

1999; Lhuillier 1992). Further study is needed to understand better the relationships

between observation of the sky, nature, and symbolism in relation to their artistic

and architectural expressions. At present, we know that the Mesoamericans had a

cosmic diagram that mediated between their faith and the material world, which

allowed them to imagine a universe of multiple planes in a vertical distribution,

with thirteen levels above the Tamoanchan, earth or upper world, and nine below

Tlalocan, underworld, the deepest level of which was the Mictlan (López-Austin
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1994). All these were very important, because the Mesoamerican people

symbolized and ordered their entire cosmic vision so as to integrate with it the

space where the pyramids and the cities were built. This whole process takes place

in time as a vehicle for men to return through material creation back to his maker, to

rebirth. This was the mechanics of the temple; this was the power of the pyramids.

Often the pyramids were crowned by a temple, sometimes connected with the

feathered serpent, symbol of instinct and life. In this way, Mayan architecture and

art reflect the Mayan character: serene, formal, but at the same time, sober and

magnificent in its stylistic development.

Mayan Architectural Styles

Mayan buildings reflect a characteristic attitude toward nature, especially in the

landscape forms imitating the mountains, in which pyramids are seen as sacred

mountains and their forms conceived in relation to the power of the divinity. Each

temple is a sacred description and has a complementary relationship with a god,

symbolizing, for example, the water from the sky, and the earth, which focused

primarily on the sacred mountain as a place of ceremonial operation between

human ritual and their cosmic vision.

Therefore, in all these sacred sites the relationship is fundamentally the same,

but with different styles within the context of the general landscape pattern, for

example, with different kinds of anthropomorphic figures, the forms of the bases

and platforms of the pyramids, the stairs, and the temples that crown the top like

caves. At different periods of time and at different places in Mexico, Guatemala,

and Honduras we see special characters from the human concept of an ideal

universe, and a way to create a connection with the world of the gods. It is

important to remember that the kind of political government that was used widely

in Mesoamerica was the city-state.

From this point of view, the city styles in the Mayan culture are the following:

– El Petén: slim, high pyramids with blocks composed by a mixture of a small

slope (talud), a molding, and a big slope, as at Tikal and Uaxactun.

– Cuenca del Rı́o Motagua: plinths of vertical slopes, stairs with hieroglyphic texts
and decoration at the friezes, walls and cresting, and with altars and stelae at the

base, as at Copán and Quirigua.

– Costa del Pacı́fico: early influence of the Olmeca culture and after from the

center of Mexico, characteristically by vertical slopes, vertical alfardas, twin
temples at the top, and few decoration, as at Cahyup and Zacaleu.

– Cuenca del Rı́o Usumacinta: temples with a hall with a vaulted ceiling and a

small sanctuary inside, thick walls, inclined slopes, high cresting, and plentiful

decoration as at Palenque, Yaxchilán, and Bonampak.
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– Rı́o Bec: steeply inclined pyramids with plinths and stairs with rather a

decorative function, with a simulated temple at the top and cresting like a

hideous mask, as at Xpuhil, Rı́o Bec and Hormiguero.

– Costa de Quintana Roo: with Toltec influence but with distinct characteristics

such as internal spaces, temples and columns, flat ceilings, cornices simulating

fastenings, and friezes with niches, as at Tulun, El Meco, and El Rey.

– Chenes: façades with plentiful decoration, serpentine elements and motifs

making up a big mask of the god Chaac, the mouth of which is the entrance to

the temple; a small base and no columns, as at Hochob, Chicanná and

Tabasqueño.

– Puuc: temples of a palatial aspect with many rooms, smooth walls decorated

with plentiful geometric forms, big serpentine forms, with small columns and

gods, without cresting and with arches, as at Uxmal, Labná and Kabah.

– Maya-Tolteca: with influences from the highlands of Mexico, for example,

erecting the main temple to the god Kukulcan (or Quetzalcoatl), the use of

board slope (tablero-talud) style at the platforms of the pyramids, the presence

of serpentine columns, Atlantis statues, a surplus of warriors, ceremonial skull

platform, Chaac Mool sculptures and circular temples, as at Chichen Itza and

Mayapan.

The structure of a pyramid reflects dimensions that refer to numbers representing

the mass, the length, the weight and even time. Numbers without dimensions refer

to trigonometry and exponents of power laws, etc. It seems that they employed in

their reckoning systems numbers without dimensions to refer to constant number

series, constant in terms of computation (Mora-Echeverrı́a 1984).

We think that they were able to use theoretical mathematics as well, and

symbolic representations of numbers and their behavior even in computations, for

example in the use of astronomical stones and some pyramids (Garcés Contreras

1995). Like good sky watchers they were, they found numbers relating to exponents

of power that reflect the orbits of the planets around the sun (Aveni 1997; Garcés

Contreras 1995; Trejo 1994). The symmetries, like patterns in the calendars,

codices, artistic works, urban designs, and architecture, suggest that number was

an intentional property (Thompson and Eric 1950). The only historical evidence

that indicates that ancient pyramidal structures were related to one another is the

fact that they all existed in the framework of their civilizations, but it is not difficult

to imagine that almost identical design diagrams were used by different cultures,

and that the underlying reasons for building in a pyramidal form were the same.

Each segment and line are geometrically determinate with a function to join the

relationships of the different meanings of individual or several elements without a

hierarchical scheme, except the whole structure has no center, which leaves the

imagination free to develop any possibility.

The use and the boundaries of linear dimensions remain to be resolved; for

example, their role in determining an area or volume, especially in very

complicated forms, is still not understood. Very often, the structures appear to

involve symmetrical quadrilaterals; as Margarita Martı́nez del Sobral explained,
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these squares and rectangles are formal units (Martı́nez del Sobral 2000). She

shows, as have others, that the Mesoamerican architects utilized geometry and

mathematics consciously (De La Fuente 1984). This geometry seems to be

somehow abstract, especially considering that it comes from the abstraction of

mythology joined with the possibility of imagining the geometrical order taken

from the sky and nature and made concrete in structure, platforms, and elevations. It

appears that in order to conceive these monumental structures it was necessary to

think in the same monumental way, looking at the buildings that came before as

very big multi-structural geometrical forms and a cosmos themselves within a

landscape containing this spectacular geometry (Harleston 1974). These stunning

buildings have complex symbolic meanings that can be studied from different

approaches—as art, philosophy, anthropology, history, psychology, and, of

course, mathematics and geometry (Euclidean and fractal). Pyramidal structures

mean or represent something—a sacred mountain, a calendar, a cave, the place of

the gods and the rituals dedicated to them—within a total universe (Broda and Báez

2001). The answer may be found in their scientific knowledge, related always to the

symbolic world, and their cosmic vision.

Characterization of Mesoamerican Pyramids by Different

Fractal Geometry Models

The pyramids and their urban contexts function together to confer an aesthetic

value to open spaces. These physical objects have also logical value as structures of

perception and coherence with the space, form, and historical moment.

Geometrically a pyramid maintains a balance with other structures, and the

overlapping of their platforms gives symmetry to the subjective perception that

causes a strong aesthetic power (Mangino Tazzer 1996). The geometric mix of

vertical and horizontal axes gives not only the idea of massive volume but a

wonderful equilibrium that contains at once both the rhythm and the movement

of the monumental scale proportions. It may be that the fractal geometry will permit

us to access a different way to study this architecture with a non-integer dimension,

helping us to understand better the practical reason underlying their forms

(Burkle-Elizondo et al. 2003).

Methods of Study

A pyramid is composed of a varying number of platforms of different dimensions.

We have to analyze the structure as a whole, but on the other hand, we must also see

these buildings as boundaries and try to study their individual, sequential, segments

in order to achieve an understanding of the distinct aspects of the correlations
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describing the fractality. Geometric studies of monumental art and architecture

have been done looking the pyramids as Platonic bodies (cubes or tetrahedrons) and

Euclidean structures (rectangles, squares, triangles, and circles). But the massive,

dense, pyramids are irregular and complex buildings.

The aim of our research is to discover the patterns, designs, and forms of the

complex geometry that appears to have a specific kind information encoded within

them. We have attempted to decipher the possible interconnections of different

reckoning systems. To do this, we carried out three different procedures of analysis.

The first studies the structures as series, from the point of view of areas against

volumes. In the second, we visualize the pyramid as volume interpolated with its

empty complementary mould. The third calculates the fractal dimension of a large

number of pyramids using the box counting method, which indicates the roughness

of an object or fluctuations of height over length. In the past, we have found that

Mesoamerican artworks, sculptures and architecture have fractal dimensions

(Burkle-Elizondo and Valdéz Cepeda 2001).

Procedure 1: Addition of the Areas Interpolated with Addition of Volumes To

understand this model, we must first break down the pyramid according to its

platforms so that many segments can be studied by individual mean values

(Fig. 8.1). The series proceeds in an inverse direction, that is, the correlation of

the areas of the platforms from the top to the base is interpolated with the volumes

from the base to the top of these segments. In this group we studied 16 pyramids.

The general average Fractal Dimension (Dv) was 1.236 � 0.108 with r2 ¼ 0.918.

Procedure 2: Ratio of the Volume to the Empty Complement To get a logical

structure it is necessary to add an extra, imaginary, platform at the top of the

pyramid in order to form a mould, making a complex model. The extra rectangle

added to the top of a figure in Mesoamerican geometry is called the ome rectangle,
which in native theology means Omeyocan or “house of Ometéotl god”, used by

them in design (Martı́nez del Sobral 2000: 54). This series was constructed by

taking into consideration an imaginary parallelepiped that included the extra

platform at the top as a whole, thus: one variable was estimated by adding

volumes occupied by platforms; the other one was calculated by subtracting from

the whole volume that was occupied by the building. Using this model we find that:

Xn

i¼1

VPi / VT�
Xn

i¼1

VPi

 !D

VPi is the volume of the platforms and VT is the total volume of the

parallelepiped that contains the pyramid.

Fourteen pyramids were included for the analysis in this group. The general

average fractal dimension (Dv) of this group was 1.312 � 0.179 with r2 ¼ 0.874.

Figure 8.1 shows the theoretical image of the second model with the extra platform

forming the mould. Figure 8.2 illustrates the variogram that belongs to “Tikal I”

pyramid.

118 G. Burkle-Elizondo et al.



In order to calculate the extra platform or base of the mould, we used an

arithmetic progression from the base rectangle, adding square units, an approach

that was recommended by Martı́nez del Sobral (2000).

Procedure 3: Fractal Dimension Twenty-six images from pyramids of different

Mesoamerican cultures were scanned and saved as bitmap files in a computer.

Then, in order to calculate Box, Information and Mass Dimension, and their

intercepts on log–log plots, the images were analyzed with the program Benoit®

(version 1.3: Fractal Analysis System, manufactured by TruSoft International Inc.).

The Box Dimension is defined as the exponent Db in the relationship:

N dð Þ � 1=dDb

where N(d) is the number of boxes of linear size d (the number of pixels in this study)

that is necessary to cover a data set of points distributed in a two dimensional plane.

The Information Dimension assigns weights to the boxes in such a way that

boxes containing a greater number of points count more than boxes with fewer

Fig. 8.1 Theoretical image of the second model. Rendering: Authors

Fig. 8.2 Variogram of Tikal I pyramid, from the second model
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points. Considering a set of points evenly distributed on the two dimensional plane,

we have:

N dð Þ ¼ 1=d2

we assume that m i ¼ d2, so the we have the equation:

I dð Þ � �N dð Þ d2log d2
� �� � � �1=d2 ¼ 2d2log dð Þ� � ¼ �2log dð Þ

where for the set of points composing a smooth line, we would find:

I dð Þ � �log dð Þ:

Therefore we can define the Information Dimension Di as:

I dð Þ � Dilog dð Þ:

In the Mass Dimension we have a draw of a circle of radius r on the data set of

points distributed in a two-dimensional plane, and count the number of points in the

set that are inside the circle as M(r). If there are M points in the whole set, we can

define the “Mass” m(r) in the circle of radius r as:

m rð Þ ¼ M rð Þ
M

We can also determine the Mass Dimension DM as the exponent in the

relationship:

m rð Þ � rDM

We obtain the measurement of the mass m(r) of circles of increasing radius

starting from the center of the set and plot the logarithm of m(r) versus the

logarithm of r. If the set is a fractal, the plot will follow a straight line with a

positive slope equal to DM, approach that is the best suited to objects that follow

some radial symmetry.

The total averages of this group were for Box Dimension Db ¼ 1.931 � 0.010,

Information Dimension Di ¼ 1.941 � 0.00017 and Mass Dimension

DM ¼ 1.959 � 0.042.

Figure 8.3 shows a log–log plot graph of “El Castillo de Kukulcán” pyramid, and

Fig. 8.4 illustrates the image of the same temple. In Table 8.1 we can see the

particular results of the values for the Fractal Dimension that we obtained in each of

the three procedures.1

1 The measurements are approximations of the actual, and the measurements and plans of

reference for our calculations were taken from (Marquina 1990).
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Conclusions

It would be speculative to conclude that comparison between our research and the

existing pyramids proves that the builders of these pyramids conceived their models

using the same structures that we have presented in this work. However, we think

that this system of mathematical computation, which works well for these

Fig. 8.3 Log–log plot for

“El Castillo de Kukulcan”

(Box dimension of 1.920). It

can be appreciated as a

straight line

Fig. 8.4 “El Castillo de

Kukulcan” pyramid, upper

view. Rendering: Authors
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Table 8.1 Procedures and methods to study the fractal dimension of Mesoamerican pyramids

Pyramids

Fractal dimension method Df (Benoit) Dimension Dv from procedures 1 and 2

Box

dimension

(Db)

Information

dimension

(Di)

Mass

dimension

(Dm)

Volume � Empty

complement (Dv)

Σ Areas �
Σ Volumes

(Dv) Segments

Temple V Tikal 1.940 1.937 1.9540 1.223 1.4950 14

�0.016 �0.003 �0.086 �0.206 �0.339

r2 ¼ 0.835 r2 ¼ 0.735

Temple I Tikal 1.925 1.951 1.995 1.286 1.204 12

�0.019 �0.0009 �0.173 �0.264 �0.037

r2 ¼ 0.772 r2 ¼ 0.993

Temple III Tikal 1.928 1.924 2.016 1.341 1.113 12

�0.014 �0.002 �0.020 �0.176 �0.028

r2 ¼ 0.879 r2 ¼ 0.996

Pyramid

Uaxactun E-VII

1.941 1.950 1.938 1.171 1.193 8

�0.005 �0.001 �0.013 �0.122 �0.069

r2 ¼ 0.929 r2 ¼ 0.977

Temple of

Inscriptions,

Palenque

1.922 1.938 1.936 1.117 1.157 12

�0.011 �0.001 �0.011 �0.079 �0.038

r2 ¼ 0.966 r2 ¼ 0.992

Temple of the

Sun, Palenque

1.933 1.936 1.925 1.181 1.310 14

�0.007 �0.002 �0.180 �0.114 �0.078

r2 ¼ 0.938 r2 ¼ 0.976

Main Temple,

Cempoala

1.932 1.947 1.917 1.221 1.100 20

�0.005 �0.002 �0.043 �0.113 �0.029

r2 ¼ 0.936 r2 ¼ 0.994

Xpujil (side

tower only)

1.933 1.939 1.948 1.238 1.113 13

�0.013 �0.005 �0.007 �0.118 �0.026

r2 ¼ 0.940 r2 ¼ 0.996

Yaxchilan

Structure 30

1.934 1.955 1.973 1.277 1.317 13

�0.020 �0.001 �0.035 �0.197 �0.081

r2 ¼ 0.857 r2 ¼ 0.974

Pyramid Monte

Albán Building M

1.934 1.934 1.932 1.146 1.266 10

�0.010 �0.001 �0.015 �0.106 �0.099

r2 ¼ 0.944 r2 ¼ 0.959

Pyramide of

Edzná Campeche

1.938 1.955 1.960 1.101 6

�0.010 �0.001 �0.066 �0.030

r2 ¼ 0.997

Pyramid

364 Nichos Tajin

1.926 1.910 1.927 1.100 8

�0.007 �0.002 �0.003 �0.166

r2 ¼ 0.879

Pyramid

Calixtlahuaca

Adoratorio

Ehecatl

1.924 1.945 1.948 1.224 8

�0.008 �0.002 �0.025 �0.166

r2 ¼ 0.872

Pyramid of

Cholula

1.941 1.964 2.001 1.172 9

�0.003 �0.001 �0.053 �0.167

r2 ¼ 0.875

(continued)
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buildings, reflects the presence of significant numbers and their fractal expressions

out of a pure randomness. This leads us to consider the possibility that

Mesoamerican architects conceived spatial representations before building a

pyramid or other of their monumental works. Given the ideological elements,

computational mathematics and a complex reckoning system had to exist in order

for the Mesoamerican architects to imagine and build their cities and temples, and

to express as well a correspondence between astronomical data and patterns and

Table 8.1 (continued)

Pyramids

Fractal dimension method Df (Benoit) Dimension Dv from procedures 1 and 2

Box

dimension

(Db)

Information

dimension

(Di)

Mass

dimension

(Dm)

Volume � Empty

complement (Dv)

Σ Areas �
Σ Volumes

(Dv) Segments

Temple IV Tikal 1.940 1.957 1.944 1.212 1.100 12

�0.011 �0.0008 �0.013 �179 �0.013

r2 ¼ 0.868 r2 ¼ 0.999

“The Castle”

Kukulcan

Chichen Itza

1.920 1.904 1.909 1.210 1.190 10

�0.009 �0.003 � 0.038 �0.173 �0.075

r2 ¼ 0.875 r2 ¼ 0.973

Temple I Tancah 1.935 1.958 1.945 1.131 14

�0.022 �0.0009 �0.006 �0.031

r2 ¼ 0.994

Great Palace

Tower, Palenque

1.935 1.945 1.948 1.639 9

�0.012 �0.002 �0.007 �0.373

r2 ¼ 0.506

Temple of

Tlahuizcan-

pantecuhtli, Tula

1.942 1.941 1.937 1.488 1.346 11

� 0.006 � 0.002 �0.005 �0.294 �0.388

r2 ¼ 785 r2 ¼ 0.632

Pyramid of Quet-

zalcoatl

Teotihuacan

1.937 1.946 1.952

�0.006 �0.002 �0.010

Observatory,

Chichen Itza

1.927 1.943 1.894

�0.009 �0.003 �0.010

Temple of the

Sun Teotihuacan

1.923 1.913 2.000

�0.004 �0.003 �0.014

Temple of the

Magician, Uxmal

1.908 1.911 2.085

�0.006 �0.0005 �0.124

Temple of the

Descending God,

Tulum

1.929 1.950 2.085

�0.006 �0.0005 �0.126

Pyramid

Huichapa

building C

1.937 1.967 1.952 1.158 12

�0.020 �0.001 �0.006 �0.107

r2 ¼ 0.944

Hall of Columns,

Mitla

1.928 1.949 1.902 1.236 21

�0.004 �0.001 �0.004 �0.116

r2 ¼ 0.942

Las Chimeneas,

Cempoala

1.349 � 0.268 10

r2 ¼ 0.760
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these massive forms. Our first two procedures show the existence of a fractality in

series of different kind of pyramids and the relation between the parameters. In the

third procedure, we have found bigger fractal dimensions than in the first two,

because the third procedure measures the roughness of an object as a whole, and is

completely different from measuring the geometric relations of particular scalar

properties and studying the power function that describes the fractality of the

pyramids. We presume that the first two procedures have generated a very similar

fractal dimension because they are not complex. Our findings lead us to believe in

the possibility that, when they designed their buildings, the architects were thinking

on the basis of the concept of movement. Keeping in mind their vision of the

cosmos, this complex mathematical design system could include the idea how the

universe works.
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Philosophy, 1989–1992. Universidad Autónoma de Zacatecas, México. Doctorate
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propósito del origen del calendario ritual mesoamericano. Boletı́n de Antropologı́a Americana,
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Chapter 9

A New Geometric Analysis

of the Teotihuacan Complex

Mark A. Reynolds

When anyone died, they used to say of him that he was now
teotl, meaning to say he had died in order to become spirit or
god.

Bernardino de Sahagun, sixteenth cen.

Introduction

San Juan Teotihuacan, which dates anywhere from 1500 and 1000 BC, was the

largest Mesoamerican city in antiquity, yet there are very few documents, drawings,

and stories that tell the story of this remarkable city. Little is known regarding the

identity of the city’s builders and inhabitants, whether the city plan was carried out

continuously or sporadically, and what time frame encompassed the building and

completion of the urban plan whose ruins we see today.

Finding reliable data concerning the geometric plans of the city is made more

problematic because of the great amount of deterioration at the site. Furthermore, it is

difficult to know with certainty which parts of the structures are original and which

parts have been altered and/or rebuilt.1 Additionally, although the complex appears to

be laid out on a square grid, almost everything at the site is skewed from true right

angles,2 and precise geometric alignments within the architectural elements are

virtually nonexistent. This creates technical problems when searching for geometric

First published as: Mark Reynolds, “A New Geometric Analysis of the Plan of the Teotihuacan

Complex in Mexico”, pp. 155–171 in Nexus V: Architecture and Mathematics, Kim Williams and

Francisco Delgado Cepeda, eds. Fucecchio (Florence): Kim Williams Books.

1 This is especially true considering the abuse and neglect of the site by Leopoldo Bartres.
2 It could be that the builders’ main concern was to just have the neighborhood communities placed

informally around the ceremonial complex rather than developing a strict right-angled grid. We

just don’t know.
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systems based on the square and the rectangle, the standard shapes of choice when

analyzing most ancient and classical architecture. Still, I was able to overcome many

of these difficulties, and to find a good deal of information in my analysis of the city.

I used the excellent survey maps from The Teotihuacan Map by Millon

et al. (1976), compiled from both land and aerial surveys, perhaps the best extant

plan document. I also referred to information on the Ciudadela area of the complex

by Drucker (1974).

The Analysis of the Overall Complex

In order to establish a geometric gridwork with which to develop the analysis, I

used the north/south axis of the Avenue of the Dead. Essential for my analysis, and

shown by line OQ in Fig. 9.1, this axis is called “Teotihuacan North/South” and is

about 15.25� east of True, or Astronomic, North. Next I constructed KM

perpendicular to OQ, which runs along the northern side of the Pyramid of the

Moon.

This line ends at points K and M, at the retaining walls of the two flanking areas,

called Group 5 and Group 51, to the east and west of the pyramid. It is believed that

the Avenue was constructed to unite the area that was originally just to the

Northwest of this wall, which was composed of several small villages, with the

area of the Pyramid and Plaza of the Moon. As Kostof writes in The City Shaped:

. . .In. . .Teotihuacan, the administrative powers invested in the religious complex were

sufficient to substitute a formal orthogonality (i.e., The Avenue of the Dead) for the pattern

of villages that originally occupied the site (Kostof 1999: 35).

From this information, I focused on the area of the Pyramid and Plaza of the

Moon as a key to the development of the analysis: if any plan had been originally

laid out, its roots would be found here.

After several attempts at determining a working length that appeared to fit well

in the area of the Pyramid of the Moon and the Plaza of the Moon, and could also

conceivably have been used as a reference or boundary line by the builders, line

KM was defined as 1.3 My decision was reinforced when I found that KM is very

nearly equal to both the east/west axis of the platform of the Pyramid of the Sun and

the east/west measurement of the platform for the Ciudadela, both of major

significance in the complex. This measure is also the distance from the center of

the bridge along the Avenue of the Dead that crosses over the Rio San Juan to the

east/west axis of the Temple of Quetzalcoatl in the Ciudadela.

By defining KM as 1, the north/south length of the complex, from the Northern

side of the Pyramid of the Moon to the Southern retaining wall of the Ciudadela, can

be defined as three √3 rectangles—AKMZ, UAZV, and GUVN—plus a reciprocal

√3 rectangle, SGNT, or, a little more than 5.75:1. Another way to lay off this long

3Millon was the first to realize, and document, the very large area that the city encompassed, and

that the extent of the city wasn’t determined only by the structures along the edges of the Avenue.
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space is to use the Rectangle of the Equilateral Triangle (which we will call 0.866

from now on for brevity), PKMR, which is half of a √3 rectangle. This particular

ratio, 1:0.866, clearly defines the area of the Plaza of the Moon and in locating the

east/west axis of the Pyramid of the Sun. There would then be six of these

rectangles, plus the reciprocal √3. In either case, the numbers 3 and 6 are present,

with a system of 0.866 rectangles and the square being identified.

Also in Fig. 9.1, KLM is an equilateral triangle. By extension of lines KL and

ML to meet the base of square IKMC at points a and b, the sides of the Avenue of

the Dead, from the Plaza of the Moon to the Rio San Juan, are indicated. This width,

ab, is also the width of the base of the steps on the southern face of the Pyramid of

the Moon. The 0.866 rectangle cleanly marks off the perimeter of the Plaza of the

Moon, and abuts the Northern side of the Temple of Agriculture compound on the

Western side of the Avenue of the Dead. Point g, where two half-diagonals intersect

in the second 0.866 rectangle, APRZ, defines the southern retaining wall of the Xala

Compound, along line gW.

There are few right angles to be found in any of the major structures in the entire

complex.4 One of the exceptions is the Pyramid of the Sun. By establishing line jh

perpendicular to the Avenue of the Dead, OQ, from the center of the square base of

the pyramid, I found that jh intersects OQ at point h, which is the center of the

second 0.866 rectangle, XAZY. This is the third rectangle down from the Pyramid

of the Moon. The base of this rectangle, XY, can be extended to point B, the

southeastern corner of the Pyramid of the Sun area.

In Fig. 9.2, KM was used to construct square PKMR, from which three irrational

rectangles based on the square were constructed: √2 rectangle PKGL; √3 rectangle

PKWE; and golden section rectangle PKNH. I did this in order to determine the

placement of various architectural elements that were built on the eastern side of the

Avenue of the Dead, and to see if these ratios could be applied. Although there are

significant buildings and features on the western side, such as the Temple of

Agriculture, the Plaza of the Columns, and the Great Compound, the most

significant features of the complex, for my interests, are on the eastern side.

Of other significance in Fig. 9.2 is:

• A north/south line, Nh, which can be drawn from the golden section rectangle,

PKNH, tangent to the Easternmost sides of the Pyramid of the Sun and the

Ciudadela, gh.

• A north/south line, Gm, which can be drawn from the √2 rectangle, PKGL,

tangent to the eastern base of the Pyramid of the Sun, bx, and the inner eastern

platform of the Ciudadela, tu.

• The western base of the Pyramid of the Sun, ef, which can be generated by a

fractional sixth point, v, of the 0.866 rectangle, VCDw, with point e tangent to

this rectangle’s diagonal, VD.

4Dr. Bruce Drewitt was kind enough to send me eight blueprints of various rooms and floor plans

in some of the apartments/compounds in the complex done during the Teotihuacan Mapping

Project, and no right angles are to be found, even in the smallest of these architectural plans.
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• A north/south line, WV, which can be drawn from √3 rectangle PKWE, giving

the Eastern side of the Xala Compound.

• Square VBWI has been drawn immediately below the third 0.866 rectangle,

VCDW, which is directly to the side of the Pyramid of the Sun. From VBWI,

golden section rectangle QVWq and the √3 rectangle dVWc were constructed.

The Rio San Juan passes directly through the difference in the heights of the two

rectangles, dQ and cq.5

By using the golden section rectangle in Fig. 9.2, we have the golden section

rectangle, AKPR, in Fig. 9.3. Extending sides AK and PR to the southernmost part

of the complex, that is, the southern edge of the platform of the Ciudadela, at points

S and W, we can draw square SEFW. The width of golden section rectangle KP

could also be considered as a basic unit, in that most of the important elements are

enclosed within the width of this unit.

Given this unit, then, STUW is a double square, with TW its diagonal. TU

defines the inner southern edge of the platform of the Pyramid of the Sun. By the

application of the construction of the golden section from the double square, we find

the golden section of ST at point H. HB then becomes the northernmost wall before

the Rio San Juan. SCVW is a reciprocal golden section rectangle whose long side,

HB, defines the northernmost edge of the Ciudadela.

In Fig. 9.4, we have a detail of the area of the Pyramids of the Moon and Sun.

AKMZ is the square base of the Pyramid of the Sun, from which golden section

rectangle RPMZ has been generated. The left side of rectangle AKMZ is almost

tangent to the Millon’s survey line of the Avenue of the Dead. Millon’s axis does not

divide all of the architectural elements along the Avenue of the Dead equally on

either side of it. This can be seen in the difference in the north/south axial bisectors of

the Pyramid of the Moon and the Plaza of the Moon, which simply do not coincide.

Still, Millon’s axis is the best possible average axial line. Within a small margin, side

RP could be considered to be congruent to the central axis of the Avenue of the Dead.

Also in Fig. 9.4, square UVWX is equal to square AKMZ, and fits well around

the Plaza of the Moon. Its northern edge is tangent to the platform at the top of the

stairs of the pyramid, and is also tangent to the easternmost and westernmost

platforms in the plaza. The center of the square, Q, marks the center of the

platform in the center of the plaza.

Also of note in Fig. 9.4 is the reciprocal golden section rectangle, TSGN, which

is generated by double square AKGN in master square AKMZ The left side of this

rectangle, TS, aligns with the right edge of master square UVWX around the plaza.

Additionally, the sides of rectangle EFMZ are in a 2:3 ratio. When extended

vertically to pass through the square of the Plaza of the Moon, UVWX, side EF will

generate the reciprocal golden section rectangle, UVLH, which is equal to RPKA in

size and ratio. EF becomes the eastern side of the Avenue of the Dead, and is

tangent to the eastern edge of the steps of the Pyramid of the Moon.

5When the city was being developed, the builders altered the course of the river so that it would

run where we see it in Millon’s survey.
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The Analysis of the Northern Half of the Complex

The primary focus of this part of the analysis is on the Pyramid of the Moon and the

Plaza of the Moon. Although Group 5 and Group 51 have been utilized, and

although there is much more that could be investigated, such as the Temple of

Agriculture and the Plaza of the Columns, a complete analysis is beyond the scope

of the present chapter.

Initial indications are that the entire area of the Pyramid of the Moon and its Plaza

conform to the 0.866 rectangle, and to the configurations generated by the

combination of ad quadratum and ad triangulum constructions. Figure 9.5 shows

the basic master grid that incorporates the equilateral triangle and the square, with

square PAZR and 0.866 rectangle KAZM. ADN/ADS is the axis of the Avenue of the

Dead, with SY as the vertical bisector to the square and the equilateral triangle in the

0.866. SY will, as mentioned above, at times be adjusted slightly, but generally is an

acceptable axis. Additionally, we do not know with certainty which foundations are

original, and this adds to the difficulties in maintaining bilateral symmetry along SY.

In other words, the “curbs” of the avenue, CG and XN, do not define the exact

edges of the architectural elements along the avenue.

Points e and f along the horizontal midline QH, and points t and r along the

diagonals of the square where they intersect arcs ZTP and ATR for the ad
triangulum construction, divide the width, QH, into a relationship where JD and

EF provide the caesurae for the base of the Pyramid of the Moon and both Groups

5 and 51. Also, caesura JD, extended down to L, defines the two flanking platforms

at the entrance to the Plaza of the Columns, at points a and b. Other architectural

elements are also tangent to LJ and EW and indicate that it is quite possible that the

layout of the complex could be based on two relationships: 1) between the square

and the equilateral triangle as found in the rectangle, PAZM; 2) simple fractional

parts of the original unit of 1 referred to previously. I will return to this a little later.

In Fig. 9.5, sides AT and ZT of the equilateral triangle have been extended to

points G and N on the base of square PR, in order to see if the width of the Avenue

of the Dead could be ascertained. Although this appears close, I found, in Fig. 9.6,

that by using the half-diagonals of the square, KY and MY, and their intersection, at

G and N, with the base of the 0.866 rectangle, PR, that G and N may provide the

other reasonable, and perhaps more precise, solution to establishing the width of the

avenue. In each case, the approximations are very close.

The width of GN, defined by vertical lines VT and WU, in addition to

determining the width of the avenue, also approximates the base of the steps on

the southern face of the Pyramid of the Moon, and the edges of the two

northernmost platforms of the “ring” of platforms in the center of the plaza. The

western edge of the top level of the pyramid falls along VT. The base of rectangle

PKMR, along PR, clearly marks the southern end of the Plaza of the Moon, and G

and N define the corners of the avenue as it enters the plaza.

Figure 9.7 shows 0.866 rectangle KAMZ divided into thirds, which provides a

reasonable scenario for the geometry of the plaza area and the pyramid. Half of the
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Fig. 9.6 Drawing: author

9 A New Geometric Analysis of the Teotihuacan Complex 137



Fig. 9.7 Drawing: author
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0.866 rectangle, IB, provide the caesura for the walls that divide the area in half as

well as the axial bisectors for the two northernmost buildings in this circular

arrangement of buildings in the plaza. This half is very nearly tangent to the base

of the steps on the southern face of the pyramid. Although not all elements are

precisely tangent to all the grid lines, it can still be seen that the plan follows the

general pattern of the construction.

Note that the thirds caesura, VT, extended down to X, provides the axial bisector

for the two flanking buildings in the Plaza of the Columns mentioned above.

In Fig. 9.8, the same 0.866 rectangle has been divided into halves, thirds, fourths,

fifths, and tenths. These fractional parts were used to further develop the layout of

the plaza. They were also extended southwards to see what alignments might occur.

Although there seem to be an infinity of elements, it can be observed that the sides

or central axes of most of the elements align with these fractional lines. Also,

observe that GN passes through the Plaza of the Columns as an axial bisector. GN is

4/5 of the Unit 1, KM used as the standard in this analysis. Further studies are

needed on this fractional parts approach.

Fig. 9.9 Drawing: author
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The Southern Half of the Complex

In keeping with the possibility that the square and the equilateral triangle were used

in the northern part of the complex, I considered it likely that those same systems

are a part of the Ciudadela in the southern part of the complex. I did not spend much

time on the Great Compound or other features in this area because of the scope of

this initial analysis. I can say that the Great Compound is in a ratio of 5:6, and there

are some general relationships with the Ciudadela, but nothing of major

significance.

The Ciudadela presented me with the same difficulties as other parts of the

complex: it is not a rectangle, but is an almost rectangular parallelogram.6 It is still

possible that its plan was originally rectangular and was then adjusted as specific

celestial observations became known, if this was, in fact, its original function.7 I

proceeded as if it were originally intended as rectangular, applying several

ratios—the 0.866 rectangle, the enneagon, or nine-sided figure, and the golden

Fig. 9.10 Drawing: author

6 Drucker believes this to be a result of the Ciudadela being an observatory for the study of Venus.
7 Prof. Drewitt made the comment to me that it seems people are quick to surmise that much of the

architecture in Mesoamerica was devoted to cosmological/astronomical observations, when, in

fact, this may not be the case.
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section rectangle—to the various areas that could be considered to be the total area

of the plan of the Ciudadela. When the walls are aligned to right angles, the inner

space does in fact fit into the 0.866 rectangle, as seen in Fig. 9.9.

AKMZ is a 0.866 rectangle, and ARZ and KPM are equilateral triangles. Their

intersections, at O and Q, define the Western edges of the two center platforms, one

of which is on the top of the Temple of the Feathered Serpent. Point Q also

determines the line JL, which defines walls and platform changes in the

compound. Points h, m, p, and r give the width of the Western portion of the

temple. The asymmetry is noticeable in the rectangle, yet, at the same time, one

senses the underpinnings of a rectangular grid. This is the most common feature

found throughout the site.

During my long explorations on this portion of the complex, I also found an

extraordinary relationship involving the enneagram, or nine-pointed star.

Figures 9.9 and 9.10 show this construction. Having noticed the four platforms

along the Avenue of the Dead and the central platform in the middle of the

compound, I decided investigate by drawing triangle AOZ using the approximate

centers of all the platforms. I had drawn the vesica piscis to get a perpendicular at Q,
and noticed that the second circle was almost tangent with the eastern edge of the

compound. I found that angle AOZ was 80�, which meant that, when bisected, there

were two 40� angles, creating the enneagon within the circle. Also convincing was

Fig. 9.11 Drawing: author
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the line parallel to the Avenue of the Dead that passes through points 2 and 9, which

lies exactly on the far western edge of the compound.

Figure 9.11 shows that all of the walls in the compound, as well as many of the

architectural features, are tangent to the apexes of two overlapping

enneagrams—for example, points C, E, J, L, U, V, S, and T—generated from the

two enneagons in the circles O and a. For clarity, I did not draw the entire star.

Before leaving the Ciudadela, I also looked at a slightly larger area that included

the additional outside walls, and was pleased to find master square AKMZ, as seen

in Fig. 9.12, which led me to explore the use of the golden section rectangle within

the overall area. Rectangles PGNR, AKCE, and LBNR are golden section

rectangles, and work quite well in defining the space. In defining the total area in

front of the temple, square PGBL further supports this view.

Figure 9.13 shows the diagonals of the two master golden section rectangles,

PGNR and AKCE. The diagonal systems, KE, AC, RB-V, and NL-W, further

define the architecture in a most convincing manner.

In Fig. 9.14, long side PR of golden section rectangle PGNR was rotated to

intersect GN at point Y, generating √ϕ rectangle PGYW and intersecting the

eastern wall at YW, behind the temple. Continuing the rotation to point E on the

wall facing the Avenue of the Dead defines the northernmost wall of the compound,

EF, which separates the compound from the Rio San Juan.

Fig. 9.12 Drawing: author
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Figure 9.15 further supports the evidence for the golden ratio in the Ciudadela.

PGNR is a golden section rectangle in square AKMR. LBNR is a reciprocal golden

section rectangle. Q is the center of square PGBL, and OO is the center of square

YXNR. Caesurae pq and no are the golden sections of rectangle PGNR.

Caesurae ab and cd are fourths. In Fig. 9.15, it will be seen that almost every

aspect of the Ciudadela plan fits into this golden section grid.

Conclusion

As mentioned in the Introduction, the plan analysis of San Juan Teotihuacan

presented notable difficulties. This may explain why so little has been written on

the geometric and analytical aspects of the site, other than the survey work done by

the Millon team and some earlier documentation done in the early 1900s, especially

by Manuel Gamio. Thus little of an authoritative nature has been established.8

It appears that the builders had a working knowledge of the circle, square, the

Fig. 9.13 Drawing: author

8With this, it must be stated for the record that all the professors I spoke with were quick to dismiss

the work of Hugh Harleston as being unscientific and without merit. Harleston’s writings,

presented in Tompkins (1976), and his claim of a “Teotihuacan Unit” precisely equalling the
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equilateral triangle, and various rectangular systems, especially those generated

from the square (the golden section) and the equilateral triangle (the 0.866). There

is also some evidence of fractional parts being applied to the overall plan.

Although there is no conclusive evidence that the Pyramids of the Moon and Sun

were contemporaneously, it appears that there are some relationships regarding the

square base of the Pyramid of the Sun and the Plaza of the Moon, which sits

between the two pyramids. I believe that the Pyramids of the Moon and the Sun may

contain all the numerical and geometric elements that were used in the construction

of the city.

Further studies need to be done on these relationships by building on the work of

Millon et al. (1976) who established a standard unit of measure of 82.3 cm (variations

run from 80 to 83 cm), or a little less than a yard (32.1500), found throughout the site.
The 0.866 rectangle appears to have been used in a number of ways, especially

as it may have been applied to both the areas of the Plaza of the Moon and the inner

Fig. 9.14 Drawing: author

twelfth root of two generated doubts in my mind as well. It is highly doubtful that the

Teotihuacanos were aware of this scientific, mathematical, knowledge.
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compound of the Ciudadela, effectively tying together the beginning and end of the

significant temple and palace architecture in the complex.

As my analysis is one of the few attempts at a detailed study of the geometric

layout of Teotihuacan, I had little on which to base it, but when I focused on what is

believed to be the earliest part of the city, the Pyramid and Plaza of the Moon

complex, the analysis began to develop some direction. Unfortunately, I have not

yet done any measurements in situ. However, new ground has been broken with my

examination of the Millon map.

We need to know more about the builders’ geometrics skills and knowledge at

the time when Teotihuacan was begun. Were there influences from Egypt, Africa,

or European and Greco/Roman sources? Did the ancient Mesoamericans know

about geometry as it was known and used elsewhere? If we understood more

about the Teotihuacanos’ practical and philosophical views regarding geometry,

specifically as an ordering and compositional tool, we would have a better chance of

solving the mysteries of the city. The search is a worthy one, for we may find

another connection regarding our common cultural heritage as dwellers on this

globe, and perhaps, also find the links that geometry can provide for us in the

realization of our common ancient history.
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Chapter 10

Geometry of Vedic Altars

George Gheverghese Joseph

Introduction

The earliest material evidence of Indian mathematics is found among the ruins of

the Harappa civilization, which dates back to the start of the third millennium

before the Christian Era. Archaeological finds show an elaborate system of weights

and measures. Plumb-bobs of uniform size and weight found throughout the vast

area of this culture conform to two series (binary and decimal) and their

combinations, in the ratio of 1, 2, 4, 8, 16, 32, 64 and 10, 20, 40, 160, 200, 300,

640, 1,600, 6,400, 8,000, and 12,800. Until recently, equivalent weights formed the

basis of an elaborate system of barter in certain parts of India, with conversion rates

almost identical to some of the above ratios.

Scales and instruments for measuring length have been found at major urban

centres of this civilization, such as Mohenjo-Daro, Harappa and Lothal. The

Mohenjo-Daro scale is a fragment of shell 66.2 mm long, with nine carefully

sawn, equally spaced parallel lines, on average 6.7056 mm apart. The accuracy of

the graduation is remarkably high, with a mean error of only 0.075 mm. One of the

lines is marked by a hollow circle, and the sixth line from the circle is shown by a

large circular dot. The distance between the two markers is 1.32 in. (33.5 mm) and

is known as the ‘Indus inch’.1

First published as: George Gherveghese Joseph, “The Geometry of Vedic Altars”, pp. 97–113 in

Nexus: Architecture and Mathematics, ed. Kim Williams, Fucecchio (Florence): Edizioni

dell’Erba, 1996.

1 There are a number of interesting links between this unit of length (if indeed that is what it was)

and others found elsewhere. A Sumerian shushi is exactly half an Indus inch, which supports other

archaeological evidence of contacts between the two ancient civilizations. In northwest India, a

traditional yard known as the gaz was in use from very early times. In the sixteenth century, the

Mughal Emperor Akbar attempted unsuccessfully to have the gaz adopted as a standard measure in
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A notable feature of the Harappa culture was its extensive use of kiln-fired bricks

for building and flood control. This bricks were exceptionally well baked and of

high quality, and could still be used provided care is taken in removing them in the

first place. They contain no straw or other binding material. While 15 different

sizes of Harappan bricks have been identified, the standard ratio of the three

dimensions—the length, breadth and thickness—is close to 4:2:1. Even today this

is considered the optimal ratio for efficient bonding.

In the absence of any written evidence (the Harappa script has not yet been

deciphered), these bricks may serve as the only “link” over a period of 1,500 years

between the Harappa civilization and the beginning of the Vedic period of Indian

history—a link, as it were, between the “frozen” geometry from archaeology and

the first appearance of written geometry in the form of a surveyor’s guide to

constructing Vedic brick altars.

Geometry of the Vedic Age

An examination of the earliest written record of geometry in India involves a study

of the Sulbasutras,2 conservatively dated around 800–500 BC, although knowledge

from earlier times is incorporated as well.3 The Sulbasutras contain instructions for
the construction of sacrificial altars (vedi) and the location of sacred fires (agni),

his kingdom. The gaz, which is 33 in. (or 5,840 mm) by our measurement, equals 25 Indus inches.

Furthermore, the gaz is only a fraction (0.36 in.) longer than the megalithic yard, a measure that

seems to have been prevalent in northwest Europe around the second millennium BC. This has led

to the conjecture that a decimal scale of measurement, originating somewhere in Western Asia,

spread widely as far as Britain, ancient Egypt and the Indus Valley (Mackie 1977).
2 Three of the more mathematically important Sulbasutras were the ones recorded by Baudhyana,

Apastamba and Katyayana. Little is known about these sulhakaras (i.e., authors of Sulbusutras)
except that they were not just scribes but also priest-craftsmen performing a multitude of tasks

including design, construction and maintenance of sacrificial altars (Thibaut 1875, Sen and Bag

1983).
3 Chronologically, this period of Indian astronomy and mathematics should be taken to commence

from when the Vedic hymns began to be composed, which some date as going back to 1500 BC.

Certain issues regarding early Indian chronology have unfortunately become tug-of-war between

those Westerners who see themselves as the guardians and promoters of impartial scholarship and

invariably adopt conservative dating, and certain Indians who make excessive claims of antiquity

for the early sources of Indian mathematics and astronomy. The tunnel vision of both groups make

the task of incorporating recent discoveries in archaeology, necessitating drastic revisions the

conservative dating of the Vedic period, more difficult. What this evidence would indicate is that

earlier versions of both Sathapatha Brahmana and Sulbasutras should be placed about a 1,000

years earlier than the conservative dates attributed to these texts. For further details on recent

evidence from archaeology, see Frawley (1991) and Kak (1987, 1993). A thorny question on the

history of early Indian mathematics is how much importance should be given to oral evidence

compared to written texts. Ignoring the oral evidence and regretting the paucity of written evidence

has led to a fissure in the ranks of historians of Indian mathematics, generating more heat than light

even in current discussions of the subject.
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which, in order to be effective instruments of worship and sacrifice, had to conform

to clearly laid-down requirements about their orientation, shapes and size. There

were two main types of ritual: worship at home and communal worship. Square and

circular altars were sufficient for household rituals, while more elaborate altars, of

shapes which were combinations of these and other basic figures, were required for

public worship.

The composers of the Sulbasutras made it clear that their work was not original

but was to be found in earlier texts, notably the Samhitas and the Brahmanas, of
which the most relevant extant text, the Sathapatha Brahmana, is at least 3,000

years old.4 Despite its obscurities and archaic character, this text contains a valuable

discussion of the technical aspects of altar construction.

An important section of the Sathapatha Brahmana deals with the construction of
altars to carry out a 12-day Agnicayana (“piling up of Agni”) ceremony. The

ceremony often took place in an area containing two sections (Fig. 10.1):

i. The Mahavedi (Great Altar): Shaped as an isosceles trapezium, the two parallel

sides of this structure were constructed so that the larger side measured

30 prakramas on the west and the smaller side 24 prakramas on the east, with

the altitude of the trapezium being 36 prakramas.5 Contained within the

Mahavedi was a falcon-shaped brick altar (Vakrapraksa-syena) representing

time.6 Since many of the interesting results in Vedic geometry arose from the

construction of this altar, it will be discussed in the next section.

ii. To the west of the Mahavedi was a smaller rectangular area called

Pracinavamsa in which, at specified positions, were three fire altars called

Garhapatya (of circular shape symbolising the earth), Dakshinagni
(of semicircular shape representing space) and Ahavaniya (a square indicating

4 The literature includes, four Vedic Samhitas (i.e., Rigveda, Yajurveda, Samayeda and
Atharavdveda) in their various recensions, being the collection and presentation in a classified

form of a large number of Vedic hymns; a set of elucidatory literature called Brahmanas of which
the Sathapatha Brahmana is the most important for our purposes; a set of philosophical treatises

called Upanishads; and six Vedangas, written for the purpose of instilling the correct methods of

recitation of the Vedas and performing Vedic rituals, of which two, the Jyotisa and the Kalpa, are
particularly important, since the first contains early knowledge of astronomy and the last contains

the Sulbasutras.
5 The measures used in the Sathapatha Brahmana were the same as in the Sulbasutras. The
important units of measurement were:

1 pada ¼ 15 angulas,
1 prakrama ¼ 2 padas,
1 purusha ¼ 4 prakramas ¼ 120 angulas.
A prakarama is about 0.5 m.

6 In Vedic mythology, time was represented by the metaphor of a bird. The year was divided into

six seasons, with the head of the bird being the vasant, the body being both hemanta and sisira the
wings being sarad and grishma and the tail being varsha.
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the sky). In the Sulbasutras, there is the suggestion that the areas of the three fire
altars were equivalent and equalled 1 square purusha.7

There were other structures contained in the Mahavedi and Pracinavamsa
(H, H* and S in Fig. 10.1) of functional and ritual significance, but yielding little

of mathematical interest.

The instructions for the design of the Mahavedi provide an insight into the

practical nature of the texts of the period. The Apastamba Sulbasutra (V.2)

contains the following instructions, a longer version of the original cryptic

instruction:

To a cord of length 36 prakramas, add 18 prakramas. Make two marks on the cord, one at

12 prakramas and the other at 15 prakramas from the western end. Tie the ends [of the

cord] to pegs on the ends of the East–west [prsthya] line of length 36 prakramas. Take the
cord by the mark at 15 prakramas and stretch it to the south and mark the point with a peg.

Do the same to the north. These are respectively the south west and the north west corners

of the Mahavedi. Untie the ends of the cord from the East–west line and retie the end that

was fastened previously to the peg on the east end to the west end and vice versa. Repeat the

previous procedure but using the mark at 12 prakramas to obtain the south east and north

east corners of the Mahavedi.

In Fig. 10.2, the length of the extended cord is 36 + 18 ¼ 54 prakramas. From
the other end, the 12th mark is half of the smaller parallel side while the 15th mark

forms the base (AB) of a right-angled triangle (ABC), with its hypotenuse

(BC) being the remainder of the cord (i.e., 36 + 3 ¼ 39 prakramas) and the other

side being the East–west line (AC) which measures 36 prakramas.
Apastamba gave other rational right-angled triangles that would satisfy the

measurements required by the Mahavedi. These are the Pythagorean triples (3, 4, 5)

multiplied by 4 or 5; (12, 5, 13) multiplied by 3; (15, 8, 17) and (12, 35, 37). All these

triples may have been chosen initially to ensure that at least one side was of the same

Fig. 10.1 Drawing: author

7 Seidenberg (1983, pp. 113–116) contains an interesting discussion of the ambiguities in the

Vedic texts relating to equivalences of area as well as the philosophical underpinnings of such a

requirement.
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length as one side of the Mahavedi. In the same text appears a modification to the

method of designing the Mahavedi that is suitable for any length of a given side.8

Another problem that led to some interesting mathematics related to the precise

distances and relative positions of the three fire altars, Garhapatya, Dakshinagni
and Ahavaniya contained in the Pracinavamsa, shown in Fig. 10.1. The general

requirement was: Dakshinagni should lie south of the line joining the other two fire
altars and its distance from the Garhapatya should be one third the distance

between the other two fire altars.

The Baudhyana Sulbasutra contains three different versions of how this could be

achieved. To quote the relevant passages, as given in Datta (1932, pp. 203–205),

with some modifications for sake of clarity:

(1) With the third part of the length [i.e. the distance between Garhapatya (G) and

Ahavaniya (A)], construct three squares closely following one another [from

west towards the east]. Garhapatya is at the northwestern corner of the western

square; Dakshinagni (D) is at its southeastern corner; and Ahavaniya at the

northeastern corner of the eastern square (Baudhyana Sulbasutra 1.67).

(2) Divide the distance between the Garhapatya and Ahavaniya into five or six

[equal] parts; add [to it] a sixth or seventh part; Divide [a cord as long as] the

whole increased length into three parts and mark the end of the two parts from

the eastern end [of the cord]. Fasten the two ends of the cord [to two] pegs at

either end of the distance between the Garhapatya and Ahavaniya, stretch it

towards the south, having taken it to the mark and fix a peg at the point reached

This is the position of the Dakshinagni (Baudhyana Sulbasutra 1.68).

Fig. 10.2 Drawing: author

8 Apastamba’s procedure may be interpreted as follows: Let the cord placed on the East-west line be

x units in length. If the length of the cord is extended by half the original length (x + l/2x), and a mark

is made at a distance of 5x/12 from one end, then remaining part of the cord is 13x/12. If we now tie

the cord to the ends of the East-west line, and stretch it up to the mark, we get a right-angled triangle

who sides are x, 5x/12 and 13x/l2. This relationship will hold for any integral value of x.
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(3) Increase the measure [between the Garhapatya and Ahavaniya] by a fifth;

divide [a cord of that length] into five parts and make a mark at the end of

two parts from the western end [of the cord] after fastening the two ends to the

east–west line. Stretch the cord towards the south having taken it to the mark

and fix a peg at the point reached. This is the position of the Dakshinagni
(Baudhyana Sulbasutra 1.69).

The figure constructed by Datta on the basis of these instructions, is shown in

Fig. 10.3. He obtained various estimates of the relative distances between the fire

altars.

Thus, if AG ¼ x, it is easily shown that:

AD ¼
ffiffiffiffiffi

5x

3

r

and GD ¼
ffiffiffiffiffi

2x

3

r

from 1ð Þ;

AD ¼ 7

9
x or AD ¼ 16

21
x and GD ¼ 7

18
x or GD ¼ 8

21
x from 2ð Þ;

AD ¼ 18

25
x and GD ¼ 12

25
x from 3ð Þ:

Moreover, if one assumes that the relative positions of all three fire altars are the

same irrespective of the rule used, then the estimates for √5 and √2 are:

√5 ¼ 2.333, 2.286, 2.169; √2 ¼ 1.166, 1.143, 1.44

None of these estimates are accurate approximations, the best being only correct

to the first place of decimals. These rules were essentially practical “rules of thumb”

that an early surveyor might use, without mathematical considerations being

predominant. However, this does not mean that considerations of accuracy did

Fig. 10.3 Drawing: author
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not occur in early Indian geometry. For example, to calculate the square root of

2, the following instructions are given both by Apastamba (1.6) and Katyayana

(2.13) who came after Baudhyana: “Increase the measure by its third and this third

by its own fourth less the thirty-fourth part of that fourth. This is the value of a

special quantity in excess [which needs to be deducted]”.

If we take one unit as the dimension of the side of a square, the above formula

gives the approximate length of its diagonal as:

ffiffiffi

2
p

¼ 1þ 1

3
þ 1

12
� 1

408
¼ 1:4142156 . . . :

The true value is 1.414213. . .
The Sulbasutras contain no clue as to the manner in which this accurate

approximation was arrived at over 2,500 years ago. A number of theories or

explanations have been proposed. Of these, a plausible one is that of Datta

(1932), based on the “dissection and reassembly” principle, and discussed in

Joseph (1992, pp. 234–36).

The Geometry of the Falcon-Shaped Altar

One of the most elaborate of the public altars (also found in theMahavedi constructed
for the Agnicayana ceremony) was shaped like a giant falcon just about to take flight

(Fig. 10.4). It was believed that offering a sacrifice on such an altar would enable the

soul of a supplicant to be conveyed directly to heaven by a falcon.

Fig. 10.4 The first layer of a Vakrapaksa-syena altar: the wings are each made from 60 bricks of

type a, and the body, head and tail from 50 type b, 6 type c, and 24 type d bricks. Each subsequent

layer was laid out using different patterns of bricks with the total number of bricks equalling 200.

Drawing: author
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Most falcon-shaped altars were constructed with five layers of 200 bricks,9 with

each of these constructions reaching the height of the knee. For special occasions

10, 15, and, improbably, up to a maximum of 95 layers of bricks were used in their

construction. The top layer of the basic altar was constrained to an area of 7.5

square purushas.10 A purusha was defined as the height of a man with his arms

stretched above him, say 2 m, which would give the altar an area measure of

approximately 30 m2. For the second layer from the top, the prescription was that

1 square purusha should be added, so that the total area would be 8.5 square

purushas.11 Similarly, each successive layer area was increased by 1 square

purusha, so that in the rather exceptional (or more likely hypothetical) case of the

94th successive increase of 1 square purusha, the area of the base of this huge

construction would be 101.5 square purushas or about 400 m2!12

9 Two different types of bricks were used in altar construction. There were ordinary bricks

(lokamprina) and special (yajushmatt) bricks, each of which was consecrated and then marked

for purposes of identification. The bricks varied by size and shape and were used in different

combinations in constructing different layers of the altars. Thus for example, the first, third and

fifth layers of a falcon-shaped altar with six-tipped wings was made of 38 squares, 58 rectangles

(of two sizes) and 104 triangles (of two sizes); the second and fourth layers were constructed from

11 squares, 88 rectangles (of two sizes) and 101 triangles (of six sizes and five shapes). Different

configurations of these basic figures were used in construction of falcon-shaped altars with

five-tipped wings, with different rituals being performed on different altars. Staal (1978)

provides a detailed description of the construction of these altars and their accompanying

rituals, with one of the most recent ones involving a five-tipped falcon-shaped altasr being

performed in Kerala, South India, in 1990.
10 Apart from minor variations, the body of the top layer of the falcon-shaped altar was 4 square

purushas. The wings and tail were 1 square purusha each plus the wing increased by 1/5 of a

square purusha each and the tail by 1/10 of a square purusha so that the image would more closely

approximate the shape of a falcon. Thus the total area of the top layer is:

4 + (2 � 1.2) + 1.1 ¼ 7.5 square purushas or approximately 30 m2.
11 In Katyayana Sulbasutra (5.4) appears the following instruction: “For the purpose of adding a

square purusha [to the original falcon-shaped altar], construct a square equivalent to the original

altar together with the wings and tail, add to it a square of one purusha. Divide the sum [i.e., the

resulting square] into fifteen parts and combine two of these into a square. This will be the [new]

unit of square purusha [for the construction of the enlarged figure]”.
12 The instructions given in Sathapatha Brahmana (X.2.3.11–14) for constructing a falcon-shaped
altar consisting of 95 layers of bricks may be interpreted as follows:

Area of the body ¼ 56 + (12/7)(56)

Area of two wings ¼ 2(14) + (3/7)(14) + (1/5)(1/7)(3)(14)

Area of tail ¼ 14 + (3/7)(14) + (1/10)(1/7)(3)(14)

The total area is about 116 square purushas,which is an over-estimate of the actual 101.5 square

purushas, arising in part from a rounding-off error resulting from taking 14 rather than

(13 + 8/15). Baudhyana Sulbasutra contains an explanation of how the estimate of the total area

was obtained. Expressed in modem notation:

Let the new unit after the mth augmentation be x.
Then

x2 ¼ 1 + (2m/15) where m runs from 1 to 94.

For m ¼ 94,

x2 ¼ 13 + 8/15.
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Clearly, if in the construction of these altars the builders had to conform to

certain basic shapes and prescribed areas or perimeters, two geometrical problems

would soon arise:

(1) the problem of finding a square equal in area to two or more given squares;

(2) the problem of converting other shapes (for example, a circle or a trapezium or

a rectangle) into a square of equal area or vice versa.

The constructions were probably achieved through a judicious combination of

concrete geometry (the principle of dissection and reassembly),13 and the

application of ingenious algorithms, including the so-called Pythagorean theorem.

In the Katyayana Sulbasutra (named after one of the authors) appears the

following proposition: “The cord [stretched along the length] of the diagonal of a

rectangle makes an [area] which the vertical and horizontal sides make together”

(2.11).

Using this version of the Pythagorean theorem, the Sulbasutras showed how to

construct both a square equal to the sum of two given squares and a square equal to

the difference of two given squares. Other constructions, including the

So we see that 14, the estimate used, is a rounding-up of this number. The use of the more

accurate figure gives the calculated total area as 110 square purusha.
13 The essence of this method involves two commonsense assumptions:

i. Both the area of a plane figure and the volume of a solid remain the same under rigid translation

to another place.

ii. If a plane figure or solid is cut into several sections, the sum of the areas or volumes of the

sections is equal to the area or volume of the original figure or solid. For example, the following

sizes and shapes of bricks used to construct one of the layers of a falcon-shaped altar can be

“dissected and reassembled” from a square:

The reasoning behind this approach was very different from that behind Euclidean geometry,

but the method was often just as effective, as shown in the Indian (and Chinese) “proofs” of the

Pythagorean theorem. For further details, see Joseph (1992, 1994).
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transformation of a rectangle (square) to a square (rectangle) of equal area and of

square (circle) to a circle (square) of approximately equal area, were part of the

repertoire. In geometrical terms, the constructions “doubling the square” and

“squaring the circle” lead naturally to the devising of algorithms for the square

root of 2 and other numbers in the first case, and the discovery of the inexact nature

of the relationship between circumference of the circle and the diagonal (diameter)

of the square in the second case.14

Apart from equivalences through area, the Vedic texts contain equivalences

established between phenomena through numbers. The starting point is the

centrality of the number 360 in the Vedic calendar and philosophy. Parallels are

drawn between human anatomy and planetary motions. Thus, the Caraka Samhita,
an early medical text, reckons the total number of asthis (or bones, teeth, nails, hard
cartilages) in the human body to be 360, obtained from considering the 308 bones of

the newborn babe (before they fuse into a smaller number of 206 in the adult),

32 teeth and 20 nails where each of these asthis are associated with each day of the

year. The parallel between the nominal year (360 days) and man (purusha) is
carried further in Sathapatha Brahmana where the basic falcon-shaped altar of

7.5 square purushas or 108,000 square angulas (1 purusha ¼ 120 angulas) is

linked to 10 nominal years or 108,000 muhurtas (1 muhurta ¼ 48 min).15 It is

interesting in this context that a total of 10,800 ordinary (or lokamprina) bricks
were used in the construction of the three fire altars found in the Pracinavamsa, the
same as the number of muhurtas in a nominal year.16

Kak (1993) has argued that the concept of equivalence is of central importance

in interpreting Vedic astronomical knowledge, so that in the design of altars an

astronomical code was present which required deciphering. For example, the

circular Garhapatya fire altar, which symbolised earth or the womb, was

constructed with 21 ordinary bricks and had an area of 1 square purusha.17 If the
basic falcon-shaped altar having an area of 7.5 square purusha corresponded to

14 There are interesting similarities and differences between the geometry of Greece and that of

Vedic India. Both were used in the construction of sacred altars for ritual purposes; both had to

solve the fundamental practical problem of how to construct a square equal to the area of a given

rectangle. However, an important difference which shaped the way geometry developed in the two

cultures was the Greek concentration on volume, notably the problem of “doubling the cube”,

while in India the principal questions involved the area of altars: the circular, the square, the

trapezoid and combinations of these shapes. For a discussion of these constructions and the

mathematics underlying them, see Joseph (1992, pp. 228–236; 1993, pp. 6–11; 1994, p. 184–189).
15 Various rituals required the day-time and night-time to be divided into 2, 3, 4, 5 and 15 equal

parts. In the 15-fold division, each part was a muhurta, which would be equivalent to 1/15 of

(12 � 60), or 48 min.
16 A number of other parallels based on the equivalence of numbers is found the Vedic literature of

the period. For further examples, see Kak (1993).
17 The choice of 21 is supposedly symbolic. It is the sum of 12 months, 5 seasons, 3 worlds and the

sun; or the three sets of rishis (or planets); or the sum of five elements (earth, water, fire, air, space),

five breaths (prana, apana, vyana, udana, samana), five organs of cognition ( jnanednriyas), five
organs of action (karmendriyas) and the inner ear (antakarana).
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360 days, then 1 square purusha would be equivalent to 48 days. The augmentation

of the basic falcon-shaped altar by 1 square purusha at a time was to be seen as a

correction to make the altar correspond closer to an actual year (366 days or

372 tithis or lunar days). A nakshatra year was taken as the number of

nakshatras (27) multiplied by the number of months (12) which would give

324 days (or tithis). An additional 48 tithis as a correction was needed to get an

actual year. However, this would mean an excess of 0.93761 tithi every year,

since the number of tithis in a solar year is 371.06239. Thus, by constructing a

falcon-shaped altar of 95 layers symbolising a 95-year cycle, with each

augmentation being 1 square purusha (or 48 tithis), starting from 7.5 square

purushas to 101.5 square purushas at the end of that cycle, the practice of a major

adjustment every 95 years to the calendar by 90 tithis (or 3 lunar months) made

sense. Such a correction implied that the length of the solar year is:

372 � (90/95) ¼ 371.05263 tithis which corresponds to 365.24675 days.

Comparing this value to the present-day estimate for the tropical year of

365.25636 days, we are struck by the accuracy of estimates which are at least

3,000 old.

Conclusion

There is a view that Indian mathematics originated in the service of religion. The

proponents of this view have sought their main support in the complexity of

motives behind the recording of the Sulbasutras. Since time immemorial, they

argue, the needs of religion have determined not only the character of Indian

social and political institutions, but also the development of her scientific,

knowledge. Astronomy was developed to help determine the auspicious day and

hour for performing sacrifices. The 49 verses of Jyotisutras (the Vedanga
containing astronomical information) gave procedures for calculating the time

and position of the Sun and Moon in various nakshatras (signs of the zodiac). A

strong reason in Vedic India for the study of phonetics and. grammar was to ensure

perfect accuracy in pronouncing every syllable in a prayer or sacrificial chant. So

too, the construction of altars and the location of sacred fires, as we have seen, had

to conform to clearly laid-down instructions about their shapes and areas if they

were to be effective instruments of sacrifice.

However, there is a danger that the magico-religious beliefs surrounding the

Vedic rituals may be overly emphasized when considering the origins of Indian

mathematics. We have seen the crucial role played by the Agnicayana ceremony in

generating geometrical concepts and techniques found in the Sulbasutras. The
rituals associated with the construction of fire altars may be looked at from two

standpoints. The first is from the standpoint of the beliefs connecting the shapes of

altars with the specific desires to be fulfilled by their use in the sacrifices. The

second is that of technology pure and simple: How exactly were the altars

constructed to conform to specific shapes, specified size and by using a specific

numbers and types of bricks?
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It is clear that the geometry originating in the Sulbasutras had little to do with the
first standpoint. Thus, for example, whether a falcon-shaped altar ensured for the

sacrificer heaven or the annihilation of enemies was totally irrelevant to the

problem of constructing it to conform to certain size and shape. As a matter of

fact, these problems would be the same if somebody wanted a structure to be built in

the garden for ornamental purposes. In other words, the geometry developed in the

Sulbasutras was aimed at solving technological problems involved in constructing

brick structures. It is this geometry that is being studied by historians of

mathematics.18

Once the Sulbsutras are seen as primarily manuals for technicians, the questions

then arise of where and when the practical knowledge relating to bricks and brick

technology were acquired. References to bricks are conspicuous by their absence

from the most sacred and earliest of Vedic literature, the Rigveda Samhita. When

they do make an appearance in a recension (Tattiriya Samhita) of a later Veda, the
Yajurveda Samhita, bricks are viewed as marvellous and mysterious entities.19 In

the same text, there are exhortations that “tiles or potsherds” from the ruined

Harappa cities should be gathered for ritual purposes. It is, therefore, likely that

the priests were acquainted with the burnt bricks from the same sites and would in

course of time invest them with magico-religious properties.

In one of the last recensions to Yajurveda appears the Sathapatha Brahmana,
which, as mentioned earlier, contains a description of the Agnicayana. The

magico-religious elements of this ritual are accompanied by a short discourse on

the construction of brick altars of various shapes and sizes. While the discussion

lacks the geometrical sophistication of the Sulbasutras, it is clear that the

knowledge of brick technology which was abundantly evident in the Harappa

culture was slowly percolating into the Vedic rituals, to become the most critical

element of Vedic constructions.

Where, then are we to look for the origins of geometry in India? The common

view is that the Sulbasutras are the source. However, one hypothesis is that if the

geometry embodied in the Sulbasutra texts is to be viewed as the outcome of a long

and sophisticated tradition of brick technology, this geometry must have come into

being when there was in fact an advanced form of brick technology with a long

tradition behind it. This, in other words, would mean that whatever may be the time

18 There are indications in the texts that the authors of the Sulbasutras were aware of this

distinction, for often one comes across expressions, “thus we are told”, “such are our

instructions”, etc. The implication is that these instructions (say, on the sacrificial efficacy of

different shaped altars or the astronomical codes to be adhered to) were not particularly relevant to

the main purposes of the texts. These instructions were simply taken for granted, while the texts

themselves paid exclusive attention to the technique of executing them. In fact, the texts are

exemplars of how exact science may grow directly out of applications.
19 Consider the following passage from the Taittiriya Samhita (iv.4.11): “May these bricks, O

Agni, be milch cows for me, one, and a thousand, and a million, and ten million, and a hundred

million, and a thousand million, and ten thousand million,.,,; may these bricks, O Agni, be for me

milkers of desires named the glorious yonder in yon world”.
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of the actual codification of the Sulbasutras, their contents come down from a

different period. That must have been a period of flourishing brick technology. Only

one period answering to all this is known in ancient Indian history, and that is the

period of the Harappa civilisation mentioned in the introduction. The presumption,

in short, is that geometry which was eventually codified in the Sulbasutras could
have come down from the Harappan period. If this presumption is correct, the first

and earliest of the discontinuity in the chronology of Indian mathematics has been

filled with the assistance of bricks.
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Chapter 11

Inauguration: Ritual Planning in Ancient

Greece and Italy

Graham Pont

Like so many visitors to Greece, I was immediately overwhelmed by the beauty of

the old temples and their harmonious relationship with each other and the

surrounding landscape. It was only later that I realised how such powerful

impressions are repeatedly conveyed by a range of building types, in various

states of disintegration, ruin and reconstruction, and in widely differing settings,

from coastal to mountainous. It took even longer to notice a strange anomaly: many

of these sacred sites seem to have been laid out with almost complete disregard of

orientation, axial alignment and geometrical planning; yet the buildings themselves

are masterpieces of geometrical symmetry and axial planning.

It was more than 30 years later that I came across the doctoral thesis of

Constantinos A. Doxiadis (1913–1975) which offers an ingenious and original

explanation of the apparently random planning of the Greek temple sites. First

published in German in 1937, his work has become widely known in the English

translation, Architectural Space in Ancient Greece (Doxiadis 1972), which includes
revisions, corrections, additional photographs and supplementary references to the

literature.

Doxiadis maintains that, despite appearances, the ancient temple sites (and some

secular spaces as well) were laid out rationally not by the system of axial or

Cartesian coordinates used at the drawing board, but according to a ‘natural’

system of polar coordinates established on the actual building site (Doxiadis

1972: 4–5). Polar coordinates are measures taken from a pole or fixed point in

this case, the position of the human planner standing at the site which precisely

locate another point or object in the surrounding landscape. That point is located by

two numbers: the first gives the distance r of that point from the pole or viewer’s
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position; the second gives the position of that same point on the circumference of a

circle whose centre is the pole and whose radius is r. This second number gives the

size of the angle (x degrees) between any two ‘directed’ radii or sightlines from the

viewing point to the points being viewed (Fig. 11.1).

The position of the planner’s viewpoint is critical to this system: for the Greek

planners it was usually located at the propylon of an acropolis or some similarly

important entrance to the site (Figs. 11.2 and 11.3).

Standing at this point, the planner could make coordinated sightings to the

perceived horizon, thus creating radii of an enclosing circle centred on the human

viewer. These radii extend either to the outermost point where the sky appears to

meet the earth or to some nearer object that interrupts the long view. Thus the

position of a temple in the perceived landscape can be accurately defined by the

angle between the two radii that touch on the visible vertical extremities of the

temple (the edges of the cornice or stylobate) and the distance of these points from

the viewer (rx). Similarly, one can plot the relative position of other temples and

monuments on the site, as viewed from the same vantage point.

To test his hypothesis, Doxiadis examined 29 ancient sites, of which only eight

were reasonably intact or ‘authoritatively reconstructed’ at the time of the research.

Despite the limitations of his sample, Doxiadis’s results are highly significant and,

indeed, quite astonishing. Most significant is his conclusion that urban sites of the

archaic, classic and hellenistic periods were developed through the employment of

a ‘uniform system in the disposition of buildings in space that was based on

principles of human cognition’ (Doxiadis 1972: 3).

For 400 years or more, the determining principle of sacred and at least some

secular planning in Greece seems to have been anthropocentric1: Doxiadis found

Fig. 11.1 Establishing

polar coordinates. Image:

Michael Dawes, after

Doxiadis (1972: 4)

1 Doxiadis cites the famous dictum of the fifth-century sophist Protagoras of Abdera: ‘Man is the

measure of all things’. This certainly seems relevant, even though Doxiadis’s system is found in

sixth-century sites.
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that, with few exceptions, temple site development and redevelopment were based

on the human view of the scene, as taken from the ‘first and most important position

from which the whole site could be observed’ (Doxiadis 1972: 5). This polar point

was usually the principal entrance, at the end of the traditional approach or sacred

way. The crucial viewpoint lies ‘where the mathematical axis of the propylon

intersects the line of its innermost step (i.e., the final step before one entered the

sanctuary) at the height of approximately 50700, the eye level of a man of average

height’ (Doxiadis 1972: 5).

Even though the precise location of the original viewing point is sometimes

debatable (Stevens 1940) and some of Doxiadis’s sightlines might have been

obstructed by lesser monuments (Scully 1962: 5), there remains a considerable

body of evidence indicating that the Greek buildings were positioned by canonic

Fig. 11.2 Reconstruction of the Acropolis after 450 BC: Perspective view from Point A (see

Fig. 11.3). Image: Michael Dawes, after Doxiadis (1972: 35)

Fig. 11.3 Athens, Acropolis after 450 BC: Plan by C.A., showing Point A at eastern entrance of the

Propylaea and radiating sightlines to other buildings. Image: Michael Dawes, after Doxiadis

(1972: 37)
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angles of vision and the distances from the viewer (the distances being apparently

based on geometric ratios derived from the angles of vision). Important buildings,

such as the Parthenon and the Erechtheum, were placed so that the observer could

enjoy a three-quarter view of the entire edifice. If this was not possible, a building

could be completely hidden from view but not partially concealed. Buildings were

positioned so as to relate to features of the surrounding landscape and create a

‘unified composition’. Ritually important views were left open to the countryside

and usually oriented east or west, or in a direction determined by the sacred way or

local cult traditions (Doxiadis 1972: 3–5).

In these principles, Doxiadis concluded, lay the secret of ancient Greek

planning, its sense of human scale and its power of ‘satisfying man and uplifting

his spirit as he entered a public space whether it was a precinct sacred to the gods

with its temples and votive columns or the agora with its stoas and statuary’

(Doxiadis 1972: ix).

The 10- and 12-Part Systems

Doxiadis’s most surprising results came from a mathematical analysis of the angles

of vision, which revealed that the laying out of these sites was determined by two

distinct geometries: generally speaking, the sites of buildings in the Doric style of

architecture were organised on a 12-part division of the 360� horizon circle,

whereas those of the Ionic style were mostly based on a 10-part division of the

horizon circle. Typical angles of vision in the former are 30�, 60� and 90� and, in
the latter, 18�, 36� and 72�. Doxiadis also observed that the Doric 12-part layout

always involved a path or sacred way that was left open and unobstructed so that the

views from the temple site could extend out into the surrounding landscape,

whereas the Ionic 10-part layout had closed views (or the impression of closure)

and the path was ‘wholly incorporated within the layout’ (Doxiadis 1972: 8).2

In both systems the visible horizon was viewed as a continuous line intersected

by the radii of the canonic angles of vision at mathematically precise points the

vertical edges of temples, altars, statues and other constructions, all carefully

positioned so as to appear in the field of vision as part of a regular rhythmic

pattern that united the built with the natural environment. Thus the main aim of

the planners was ‘to bring the outlines of the buildings into harmony with the lines

of the landscape’ (Doxiadis 1972: 8); but the system also applies to enclosed spaces,

such as peristyles and courtyards viewed from one or more points of entry

(Doxiadis 1972: xviff, 52, 58–61, 66, etc.) and even to sites which are

orthogonally planned (Doxiadis 1972: 66, 138, 147).

The planning technique revealed by Doxiadis appears to be a form of

architectural scenography, the mathematical organisation of the perceived

2Was this remarkable difference of layout associated with gender stereotypes? The Greeks

considered Doric to be masculine, and Ionic feminine.
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environment in the manner of large-scale perspective scene-painting: this art was

developed by the fifth-century painter Agartharcus of Samos and further

investigated by the philosophers Democritus and Anaxagoras. According to

Vitruvius, all three wrote books on the subject (Elderkin 1912). A well-known

example of architectural scene-painting is the irregular placement of the door and

windows in the western wings of the Propylaea, so that the openings might appear

to the viewer coming up the sacred way as being symmetrically placed between the

columns of the porch (Elderkin 1912).

When the original viewing point can be identified, Doxiadis’s theory is precise

and empirically testable; when the viewing point is unknown, canonic angles of

vision can sometimes help to locate that viewpoint. The Propylaea not only opens

eastward into the temple precinct but also looks out west over the sacred way from

the Agora. If this prospect is surveyed from another very likely viewpoint at the

intersection of the entry axis and the western edge of the stylobate we find that the

view of the temple to Athena Nike on the left falls exactly within a 30� angle of

vision: another application, presumably, of the 12-part system in the Periclean

reconstruction of the Acropolis (Fig. 11.4).3

According to Doxiadis, the earliest 10-part system dates from c.550 BC and the

earliest 12-part from 530 BC, and both systems were employed by the Greeks until

the second century BC. But he also found evidence of the 10-part system being used

by the Romans at Palmyra, during the first century AD (Doxiadis 1972: 21–2, 29). It

should be noted that both systems apply to the ground plans of temple sites and the

horizontal disposition of their monuments. In summarising his results Doxiadis has

included details of temple proportions (Doxiadis 1972: 9–14), but he does not

examine the possibility that polar coordinates might also have been used in the

vertical plane, to control the apparent height of buildings and their perceived

relationships with each other and the surrounding landscape (Stevens 1940: 5).

If the Romans did employ the Greek planning system in their colonies, they

might also have used it back home. Furthermore, that system could have been

introduced to Italy through the establishment of Greek colonies, especially in the

south (Magna Graecia) where there were numerous settlements from the eighth

century BC onwards. Rome itself has a very irregular plan4; and so has Hadrian’s

Villa (c. 118–134 AD), which was designed by the Emperor himself an architect and

well-travelled connoisseur of Greek culture. Since the Villa was packed with

3When the other principal buildings are viewed from the eastern end of the Propylaea, the angles

of vision are all 30� (Doxiadis 1972: 32); except for the angle between the west porch of the

Erechtheum and the nearest corner of the Parthenon, which is 36� (a tenth part of 360). This change
to the Ionic ten-part system may have been an imperial gesture towards reconciliation of the

western and eastern systems just as the Periclean rebuilding included two Ionic temples as well as

incorporating Ionic columns in the Doric Propylaea. See Scully (1991: 83–84).
4 Rykwert (1988: 72, 106ff). Note especially the reconstructed perspective view of the Capitol at

the Roman colony of Cosa (Rykwert 1988: 122): the temples are not all orthogonally aligned and

the view is very similar to some of Doxiadis’s irregular Greek sites e.g., (Doxiadis 1972: 35, 81,

87, 89).
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allusions to Greek architecture and landscape, Hadrian may well have organised the

scenery and its principal viewpoints according to the old Greek system.

After reviewing the very limited evidence of early Greek ideas on planning,

Doxiadis concluded that the method of planning by polar coordinates was what

Aristotle meant by the ‘traditional system’ (archaioteros tropos), as opposed to the
‘new system’ of grid-iron or chequer-board planning frequently but wrongly

attributed to Hippodamus of Miletus (fifth century BC) (Doxiadis 1972: 20).

Doxiadis apparently did not notice that tropos was also used as a technical term

in Greek music theory to mean ‘tuning’ (as a synonym of tonos and harmonia)
(Michaelides 1978). This striking coincidence of musical and architectural

terminology could be another significant clue to the lost theory of Greek planning.

Fig. 11.4 Athens, Propylaea: Plan showing conjectural approaches, viewpoint and sightlines to

porches. The temple of Athena Nike appears to have been positioned so that it would be viewed

from the western entrance within a 30� angle of vision. Image: Elderkin (1912: 12)
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Reconstructing the Etruscan Rite

No one, to my knowledge, has attempted to extend Doxiadis’s analysis to ancient

Greek or Roman town plans of Italy. His work has been entirely ignored by Joseph

Rykwert in three editions of an influential book, The Idea of a Town5; yet Rykwert’s
inquiry arose from a similar dissatisfaction with the modern city, its chaos,

alienation and lack of focus. His primary subject, however, is Italy and

particularly Rome itself; but his investigation of ancient foundation rituals and

city planning allows for the possibility of analogous Greek procedures, of which

almost nothing is known (Rykwert 1988: 86–88).

Early Roman planning borrowed much from the Etruscans, particularly in the

rituals of divination and inauguration conducted to determine a propitious time and

place for the creation of a new city. These were known as the ‘Etruscan Rite’ or

‘Discipline’. The foundation rite was the responsibility of a state official, an augur,

who conducted the procedure on a prominence which gave him a clear view of the

surrounding countryside. Here he sought the will of the gods in various omens,

including the flight of birds. An essential part of the ritual was the formal

delineation of a ‘templum’:

Temples and wild lands be mine in this manner, up to where I have named them with my

tongue in proper fashion.

Of whatever kind that truthful tree is, which I consider that I have mentioned, temple

and wild land be mine to that point on the left.

Of whatever kind that truthful tree is which I consider that I have mentioned, temple and

wild land be mine to that point on the right.

Between these points, temples and wild lands be mine for direction, for viewing, and for

interpreting, and just as I have felt assured that I have mentioned them in proper fashion

(Kent 1958: II, 275).

In commenting on Varro’s record of this incantation, Rykwert cites the story of a

famous Etruscan augur who drew a templum on the ground with his augural staff

(lituus) to mark the site (or centre) of a new city. Rykwert then goes on to show how

the ritual of inauguration proceeded with the division of the site into four quarters

with the east-west decumanus and the north-south cardo, which, he assumes, would

become the principal streets of a chequer-board town-plan (Rykwert 1988: 89ff).

It is important to note here, however, that Rykwert has interpreted the Etruscan

ritual formula as if it was used solely as a means of establishing a cardinally

oriented and orthogonally planned city.6 But his extensive survey of the ancient

world has identified only one Etruscan city, Marzabotto, with this idealised form

and no more than half a dozen other early sites which exhibit that same form

(Rykwert 1988: 42, 72ff, 78ff, 85ff, 194). So Rykwert’s version of the foundation

5 Joseph Rykwert in three editions of an influential book, The Idea of a Town (1976; revised 1988;
reissued 2002).
6 Rykwert’s argument is further weakened by his admission that ‘orthogonal planning. . . is not
immediately dependent on the Etruscan or any other related rite. . .’ (Rykwert 1988: 72).
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scenario leaves all the irregular Greek, Etruscan and Roman city plans completely
unaccounted for.7 Furthermore, since Rykwert also admits that ‘we have no guide

to tell us how the ancients laid out the public buildings and temples in relation to the

plan of the town’ (Rykwert 1988: 57), his ignoring of Doxiadis’s theory which

might well have solved the mystery is all the more puzzling.8

Doxiadis’s theory is immediately brought to mind by Varro’s comment that ‘in

making this temple, it is evident that the trees are set as boundaries, and that within

them the regions are set where the eyes are to view. . .’ (Kent 1958: II, 275).9 The
augur, it seems, established coordinates emanating from where he stood (with his

staff, presumably, as the originating pole) to nominate objects which marked the

limits of a templum or sacred site. Note also that the augur’s gaze or sighting

(conspicio) takes in ‘temples and wild lands’ the open and continuous view of the

horizon that seems to have been the basis of early Greek planning too (Rowland and

Howe 1999: 152 ff). This interpretation is confirmed by Varro’s quotation from the

poet Naevius:

Where land’s semicircle lies,

Fenced by the azure vault.

‘Of this temple, the four quarters are named thus: the left quarter, to the east; the

right quarter, to the west; the front quarter, to the south; the back quarter, to the

north.’ (Kent 1958: II, 275). Varro’s comment on these verses leaves little doubt

that templum here refers to the 180� view bounded by the horizon and that the

complete circle of 360� was ritually divided into four equal parts of 90�. However,
when Varro asserts that the templum ‘ought to be fenced in uninterruptedly and

have not more than one entrance’ (Kent 1958: II, 281), he is evidently referring to

the augur’s viewing position (the auguraculum) (Rowland and Howe 1999:

154, Fig. 12). This curious requirement has no apparent relevance to Rykwert’s

scenario of orientation and orthogonal planning but some such restriction would

have been absolutely necessary in Doxiadis’s system to ensure that the visitor

arrives at the principal viewing point of a sacred site and surveys the scene

appropriately.

The sectioning of the visible field into four quadrants is central to the rite of

inauguration, but the quadrant can be equally subdivided by either of Doxiadis’s

12- and 10-part systems; so Rykwert’s highly conjectural reconstruction of the

foundation ritual could easily be modified to accommodate Doxiadis’s system.

7 In other words, Rykwert’s reconstruction of the Etruscan rite is not supported, to any significant

degree, by the available archaeological evidence. However, his fifth chapter, ‘The Parallels’,

confirms that he will not abandon his fundamental urban paradigm, the rectilinear grid: this

turns out to be a Procrustean bed which simply cannot accommodate the irregular sites so neatly

explained by Doxiadis.
8 Space does not permit a review of the mixed reception accorded to Doxiadis’s theory. For a rare

sympathetic (yet not uncritical) response, see Scully (1962: 5, 1991: 68–69).
9 Since ancient times, trees have been revered as sacred sites and boundary marks. Cf. the

Australian colloquialism ‘beyond the Black Stump’ (meaning the remote outback or inland).
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Whether the Greek system of polar coordinates was actually employed in Italy

(where there were numerous early cities and temple sites laid out irregularly)

remains an open question; but our inquiry has at least established the possibility

that the ‘traditional’ Greek system of planning was based on ritual practices

analogous to the ‘Etruscan Discipline’.10

Temple as Macrocosm and Microcosm

Templum is a systematically ambiguous term. Varro distinguishes three levels of

templa, the celestial, the earthly and the subterranean a conception deriving from

archaic shamanism (Kent 1958: II, 271). Templum was probably derived from the

same root as the Greek temenos, meaning ‘a space cut off’ (that is, reserved as a

sacred enclosure); though templum can also refer to a celestial form or pattern.

The delineation of a heavenly templum and the marking out of its earthly

imitation or symbol on the ground was an essential part of ritual inauguration;

but this process did not necessarily involve actual building (Kent 1958: II, 281;

Rykwert 1988: 100)11: the ritual primarily consisted in ‘cutting off’ an earthly space

(creating a temenos or microcosm) according to some celestial or macrocosmic

template and so the ritual could have been older than the art of monumental

building. Varro’s augural incantation clearly derives from the pre-literate era

when boundaries, land-use and ownership were ritually sanctioned and

remembered in song and dance.12

All human knowledge was once preserved in song and dance by a global culture

that saw the motions of the Sun, Moon and stars as the dance of animate beings. As

our distant ancestors slowly came to recognise the cycles of the months, seasons

and years they began to imitate them more or less exactly in ritual formation and

religious liturgy. To them the world was not only cyclic but visibly circular: from

the blue vault of the sky and the sublime procession of the stars to the

ever-encompassing horizon. Their view of the world was regularly displayed and

remembered in astral or round dances and other circular symbolism; and, when they

finally came to build permanent houses and temples, the first seem to have been

mostly circular too.

10 On possible connections between early Greek and Etruscan planning, see Rykwert (1988: 85–

88, 195).
11 Thus ‘templum’ usually denotes the demarcation and limits of space; and, by extension, a sacred

building erected therein; but ‘templum’ was sometimes also used to denote a ‘cut off’ portion of

time. Cf. Rykwert’s suggestive inference that, according to Roman law, ‘the sunlit day is the

equivalent in time to the space of the templum’.
12 The old British custom of ‘beating the bounds’ was clearly a ritual means of preserving the

memory of parish boundaries. The ancient Romans observed a similar rite on 23 February in the

festival of Terminalis (god of boundaries).
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From this archaic ‘musical’ culture, we have inherited the circle as the prime

model of the world, as a type and symbol of perfect harmony and a fundamental tool

for measuring and allocating both space and time. Much of the conceptual richness

of that world-view is encapsulated in the ancient ‘tem-’ vocabulary: Tempe,

temper, tempera, temperament, temperamental, temperance, temperate,

temperature, tempest, tempestuous, template, temple, tempo, temporal,

temporary, temporize and, apparently, tempt, temptation, etc. To this we could

add derivatives such as contemplate, distemper, esteem, estimate and extemporise,

along with words of variant spellings, such as tamper, tense and terminus, as well as

several others that have fallen into disuse.13

These terms are all linked by the core meaning of ‘section cut off’; that is,

measure: precise measure, as in template, terminus and temperature; due measure,
as in temper, temperament, temperance; even undue measure, as in tempestuous,

temperamental, intemperate etc. But how did this vocabulary extend to the sacred

temenos and the augur’s templum? And what do these have in common with tempus
(time14)?

Having mastered the understanding and imitation of the circle, our ancestors hit

upon the regular or rhythmic division of the circle at first, presumably, in myth,

ritual, dance and seasonal celebration. That sense of rhythm, of the circular pattern

and its measured divisions became the basis of the primitive ‘musical’ world-view

which finally gave rise to a sophisticated mathematical cosmology, the ‘Harmony

of the Spheres’. According to the archaic world-view possibly thousands of years

older than Pythagoras the circular forms and cyclic movements of the heavenly

templumwere perfectly tuned (tempered) and therefore ideal models (templates) for

the harmonious organisation of earthly space (the temenos and its defining termini)
and the precise measurement (cutting off) of time. In essence, the temenos-templum
is a circular space ritually cut off and dedicated (among other things) to the

sectioning of space and time: hence temples are commonly built on (or made

into) elevated sites suitable for terrestrial and celestial observations.

Thus, from remote but uncertain origins, we have inherited the perceived circle

and its regular divisions as a paradigm for conceptualising and measuring space and

time. In the heavenly system we discern three great circles. The Ecliptic is the

apparent orbit of the Sun; the Zodiac is the broader celestial circle which includes

the observed motions of the Sun, the Moon and the Planets (their circles have long

been divided by the 12-part system but we also know of zodiacs based on the

decimal system). The third great circle is the terrestrial Equatorwhich encircles the

Earth equidistant from the poles: it is also divided by the 12-part system.

13 The classic study of the harmonic world-view and its pervasive vocabulary is Spitzer (1963). A

similar study of the harmonic vocabulary in Asiatic languages would doubtless yield similar

results.
14 The English term is derived, not from the tem root, but a (related?) Indo-European root di-mon
whose base da also means ‘cut off’.
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This last circle is in the same plane as the astronomical Equator whose plane is

perpendicular to the Earth’s axis. This circle is essential to the modern art of time

keeping, as it enables the equating of the hours, the division of both day and night

into 12 equal parts. The ancient art of time reckoning employed the circle and the

same duodecimal divisions for the notional year of 360 days from which we

developed our sexagesimal division of hours, minutes and seconds. There were

decimal calendars too as our names for the last 4 months testify but, while the

decimal system had obvious advantages in some areas, it was of limited use in

making and measuring music. With the duodecimal system, however, it was

possible to develop a more comprehensive system of musical time (the metres of

song and dance15); to explore the intricacies of harmonic space with monochord

circles divided into 12 parts16; and, most importantly, to develop a precise analogy

between the perceived circles of heaven and earth and a common mathematical

system that brought both cosmic orders into rational harmony.

Conclusion

Viewed against this vast panorama, the Etruscan augur’s ritual surveying no longer

appears far removed from the mathematical scenography of the Greek temple

planner. Both, no doubt, were derived from sacred arts (Rykwert 1988: 60); and

both appear to have addressed the surrounding landscape as a visual templum,
surveying the chosen site from a precisely defined vantage point, sectioning the

horizon circle with natural or made-made land-marks or termini (mountains, rocks,

trees, boundary stones, and, finally, buildings and other monuments) all with the

aim of creating a harmonious microcosm in imitation of the heavenly macrocosm.

While there is no documentary record of ritual surveying in ancient Greece

(Rykwert 1988: 80), Doxiadis has identified precise archaeological evidence

indicating that the methods used by the Greek surveyor-planners did not differ in

principle from the Etruscan Discipline. This conclusion, I suggest, is supported by

the close philological connection between temenos and templum and their common

origin and/or long association in the prehistoric musical world-view.

The musical or harmonic world-view and its fundamental numbers have played a

major role in the arts, techniques and sciences since ancient times: the archetypal

harmonic number 360, for instance, was central to the mensuration of the Assyrians,

Egyptians, Hebrews and Indians and the name for that number in Assyrian and

Hebrew also meant ‘earth’ and ‘horizon’ (cf. Latin orbis) (McClain 1976: 33 ff.

1978: 26 ff. Oppert 1887: 87).

15 Duodecimal forms of music include the 12-bar Blues and the Jig, Tarantella and Siciliana in

12/8. The chromatic octave scale is divided into 12 semitones.
16 See e.g. McClain (1978: 4, 11, etc.). The rich history and prehistory of the numbers 10 and

12 have been greatly illuminated by this book and its wide-ranging predecessor (McClain 1976).
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Our synopsis leaves outstanding a problem that is too large to resolve here: how,

why, when and where did the decimal and duodecimal systems arise and come to

coexist? My tentative answer would start from something like this: the decimal or

10-finger system belongs more to the ordinary public world, the market square, the

agora; whereas the duodecimal system belongs more to the esoteric priestly world,

the temple and the acropolis. However, as Vitruvius points out, the ancient Greeks

regarded both 10 and 12 as perfect numbers (Rowland and Howe 1999: 47–48) and,

while this fact alone would suffice to explain the canonic use of those numbers in

temple planning, it does not account for the interesting regional distribution of the

12- and 10-part systems or explain the significance of their combined use, as at the

Acropolis of Athens. Vitruvius’s brief discussion of the two number systems

concludes that they arose from a common origin in the size, shape and

symmetries of the human figure and that both systems were adopted in the

mathematics of temple design.

This philosophically suggestive section comes from the introduction to his third

book, on Temples; and, while there is no indication here that the numbers he

discusses might extend beyond the temple to the temenos, the argument leaves no

doubt that Doxiadis’s 12- and 10-part systems of temple layout are wholly in

accordance with what Vitruvius conceives to be the essential mathematics of

Greek sacred architecture (Doxiadis 1972: 15, 17–18).

And, whatever their system of measurement, the early Etruscan, Greek and

Roman planners do seem to have shared the essentials of an ancient ritual art

(Rykwert 1988: 195)17 one that was based, not on the square grid, but on a

circular world-view whose dim origins immeasurably antedate the chequered

culture of cities.

Biography Graham Pont, a specialist in interdisciplinary studies, taught in the

General Education programme at the University of New South Wales for 30 years,

where he introduced the world’s first undergraduate courses in Gastronomy. He was

a founding convener of the Symposium of Australian Gastronomy (1984) and

co-editor of Landmarks of Australian Gastronomy (1988). His last appointment

was a visiting professorship in the School of Science and Technology Studies,

UNSW. Trained in philosophy, his principal research area has been history and

philosophy of music but his interests have also extended to environmental studies,

17While I have proposed a common anthropocentric basis to ancient Greek and Italian planning, I

doubt that the methodologies and conclusions of Doxiadis and Rykwert could be entirely

reconciled. Doxiadis has offered a precise, quantitative and empirically testable hypothesis

which is supported by hard evidence and remains open to further testing. Rykwert has offered a

less precise theory, with some supporting evidence of cardinally-oriented and orthogonally-planned

cities. But he has no explanation for the far more numerous early cities that are irregularly planned and

non-aligned: that is, which exhibit characteristics already explained by Doxiadis at least in some Greek

and Graeco-Roman cities. To account for these would require a radical revision of Rykwert’s

foundation scenario; whereas Doxiadis has already shown that his theory extends to orthogonally

planned sites.

174 G. Pont



landscape, history of gardening, philosophy of technology, bio-acoustics and wine

history. In 2000 he published the results of the first major computer analysis of

Handel’s music and he is completing a biography of Australia’s first composer and

musicologist, Isaac Nathan (1792–1864).

References

DOXIADIS, C. A. 1972. Architectural Space in Ancient Greece. Cambridge: Mass. & London: MIT

Press

ELDERKIN, G. W. 1912. Problems in Periclean Building. Princeton NJ: Princeton University Press.
KENT, R. G., ed. 1958. Varro on the Latin Language with an English translation. London: William

Heinemann Ltd; Cambridge: Mass: Harvard University Press.

MCCLAIN, E. G. 1976. The Myth of Invariance. New York: Nicolas Hays Ltd.

———. 1978. The Pythagorean Plato; Prelude to the Song Itself. Stony Brook NY: Nicolas Hays

Ltd.

MICHAELIDES, S. 1978. The Music of Ancient Greece: An Encyclopaedia. London: Faber & Faber.
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Chapter 12

The Geometry of the Master Plan of Roman

Florence and Its Surroundings

Carol Martin Watts

The Romans brought a remarkably consistent approach to all scales of design, using

similar principles to order everything from pavement mosaics to the layout of cities

and entire regions. This consistent approach to all scales of design is a reflection of

their comprehensive and unified world view. This chapter will look at the larger end

of this spectrum.1 Florence, the Roman Florentia, was founded as a new town to

settle military veterans. Like many cities founded by the Romans, it was oriented to

the cardinal points. The major streets, a north-south cardo and east-west

decumanus, met in the centre of the rectangular walled town. A gate was located

at each of the four intersections of major street and city wall. A grid of secondary

streets divided the city into blocks. Even today, looking at an aerial view or a plan

of the city, this orderly central portion of Florence is evident.2

First published as: Carol Martin Watts, “The Geometry of the Master Plan of Roman Florence and

its Surroundings”, pp. 169–181 in Nexus III: Architecture and Mathematics, ed. Kim Williams,

Ospedaletto (Pisa): Pacini Editore, 2000.

1 This chapter is the outgrowth of joint research with Donald J. Watts on the Roman layers under

the Duomo of Florence. We presented this ongoing work at the Nexus’98 conference in Mantua,

Italy, “Roman Code”, and the 1998 Bridges Conference, Winfield, Kansas, “Traces of the

Geometrical Ordering of Roman Florence”. I wish to acknowledge the important contributions

of Donald J. Watts to the hypothesis presented in this chapter, as well as his work on the

illustrations. What follows is based on maps at 1:5,000 and 1:25,000 published in 1996 by the

Istituto Geografico Militare, Florence, based on satellite imagery. Given the scale involved, it was

impossible to personally take measurements.
2 Little remains of Roman Florence, but recently there has been a revived interest in understanding

the city’s origins. A good recent source is Alle Origini di Firenze, dalla Preistoria alla Citta
Romana (Capecchi 1996), the catalogue for an exhibition at the Museo Firenze Come’era.

Although the two main streets and the location of city gates followed typical Roman typology,

the city wall of Florentia appears to have deviated from the ideal rectangle in the southeast corner,

to respond to topography of the site near the river, as revealed by excavations below the Piazza

C.M. Watts (*)

The College of Architecture, Planning and Design, Kansas State University, Seaton Hall 21,

Manhattan, KS 66506-2902, USA

e-mail: cmwatts@k-state.edu

K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to
the Future, DOI 10.1007/978-3-319-00137-1_12,
© Springer International Publishing Switzerland 2015

177

mailto:cmwatts@k-state.edu


It was standard Roman practice, when founding a new colony, to survey the

countryside and assign plots of land to the settlers.3 The crossing of two major lines,

the cardo maximus and decumanus maximus, was established for the region, as with
the layout of a city. The land was then subdivided into a grid, using lines parallel to

the regional cardo and decumanus, generally into square plots 20 actus on a side.

An actus was 120 Roman feet.4 Every fifth division was particularly important, and

surveyed more precisely to keep the system accurate. Each century, as these

20 actus squares were known, was further subdivided into farm plots. This

process of organizing the countryside is commonly known as centuriation.
Evidence of such grids upon the countryside can still be seen, particularly in

aerial photography, throughout what had been the Roman Empire. The surveyors

made maps of each colony, with a copy (in bronze) sent to the land registry office in

Rome, and another kept locally. There was a standard notation system used to

describe the location of each allotment of land, and subsequent transfers of

property. Centuriation was a practical way to ensure equitable distribution of land

and recordkeeping of land ownership, and relied on the skills of the surveyors

whose responsibility it was.

Traces of the Roman centuriation of the region surrounding Florence reveal a

20 actus square grid. Usually cities and centuriation have the same orientation, and

often the same centre point, but at Florence the centuriation was oriented so that the

regional decumanus, running from northwest to southeast, traversed the length of

the long valley in which the colony was situated.5 Oriented to the cardinal points,

the city of Florentia was in a rotated position relative to the surrounding

centuriation (Fig. 12.1) The two orientations are off by a seemingly random

almost 31�. Some scholars have thought that this meant they were established at

different times, but more recently it has been assumed that the regional centuriation

and the city of Florentia were established at the same time, about 41 BC, and that

for practical reasons different orientations were used. The Roman colony was

located very close to the river Arno, in a flat and swampy plain. The nearest town

at the time of its founding was the Etruscan site of Fiesole, on a hill to the northeast.

Unlike many other Roman towns founded along pre-existing or concurrently built

major roads, Florence seems to have been located some distance from roads. The

della Signoria. In the late nineteenth century the urban renewal of a large area around the present

Piazza della Repubblica brought to light many Roman remains, but did not allow time for

systematic excavation. They were recorded by the architect Corinto Corinti, whose drawings

and notebooks are catalogued in (Orefice 1986). Today one can visit the south gate of the Roman

city, see the outline of the city wall on the east marked in the street at one point, and visit the crypt

of Santa Reparata below the Duomo, where a sequence of churches were built over Roman

housing. A Roman house excavated in the late 19th century can also be glimpsed below the

Baptistery of San Giovanni.
3 Dilke (1971) is a comprehensive work on what is known of Roman surveying techniques and

practices.
4 The Roman foot (as used in Florence) was 0.295 m ¼ 1 Roman foot.
5 For the centuriation around Florence see Instituto Geografico Militare (2003, PL 27–28).

178 C.M. Watts



Via Cassia, a major road, appears to have been originally located some distance

away, in the hills rather than the valley (Hardie 1965: 122–140).6

According to Hardie, the location of Florentia near the eastern end of the

regional colonial centuriation was due to numerous practical reasons.

The site of Florence was well chosen to exploit both the centuriated plain and the land on

the south bank. It was also near, though not on, the Via Cassia. The site also had some

natural defensible features being beside the Arno and also at the junction of the Arno with

the Torrente Mugnone that could serve as a moat for the eastern side of the city. Lastly, the

Arno was apparently navigatible up to the location of the city (Hardie 1965: 134).

A number of scholars have pointed out that there is one point of intersection

between the city and the centuriation (Fanelli 1997: 1–5; Hardie 1965: 132). This is

immediately outside the western gate of the city, which is also the umbilicus, or
origin point, where the regional cardo intersects at right angles the regional

decumanus.

It is my hypothesis that the angle between the two orientations was not random,

and that the relationship between the two systems goes far beyond overlapping at a

single point. Rather, there was a deliberate, sophisticated geometrical process

linking landscape and urban settlement.

In order to understand the following hypothesis of the process of laying out the

city and the region, it is important to note that surveyors’ practice entailed the use of

geometrical knowledge from surveying texts as well as the utilization of drawing

equipment during the execution of the survey. While most of the process described

involves the actual laying out of points and lines upon the site, a few of would have

been done as drawn geometric constructs by the surveyor in determining the steps

of the physical layout. Although there is no way to know exactly the sequence of

steps or thinking which went behind them, the explanation which follows is a

hypothesis which explains the observable phenomena in light of known Roman

practices.

Fig. 12.1 Roman

centuriation surrounding

Florence Drawing: author

6 The usual explanation for the differing orientations has been that the centuriation, for pragmatic

reasons, parallels the long, narrow valley and is thus a result of topography, while the city follows

established preferences to orient to the cardinal points, for cosmological reasons.
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A Hypothesis for the Process of Laying Out the City

and Countryside of Florentia

A political decision was made to found a colony in the general area near Fiesole, to

utilize the uncultivated plain of the Arno River. The next decision would have been

just where to put the city and how to begin to organize the landscape. A look at the

pre-existing landscape in the area, as the Romans found it can help us understand

their thinking. Figure 12.2 shows the valley in question (in white) in which hills

(in black) enclose a flood plain for the Arno River and several tributaries. The

topography suggests some natural axes. The exact location of the colony is defined

by the intersection of two of these axes.

The first of these is shown by the dashed line in Fig. 12.2. A due east-west line

can be observed to connect the point of the eastern entry of the Arno River into

the valley with the point of departure of the Arno out of the valley. This inherent

east-west line became the alignment of the decumanus of the city. It thus located the

city at this particular point near, but not on, the river, rather than in some other

position further north or south. Although the city contrasts in orientation to the grid

of the region, its order is based on the congruence of the path of the sun and the

natural east-west axis of the river.7

The second natural axis is northeast to southwest and establishes the line of the

regional cardo of the centuriation (Fig. 12.3). This line extends into small valleys on

the north and south edges of the Arno valley. The valley to the north is just below

the Etruscan town of Fiesole, where the river Mugnone, and probably a pre-existing

road crossing the Appenines, came through the mountains. The valley to the south

was the point where the Etruscan road from Volterra probably entered the Arno

valley.8

Fig. 12.2 Urban

decumanus marking

congruent paths of river and

sun from east to west

Drawing: author

7 According to Dilke (1971: 89), the east–west decumanus maximus was typically the first line

established in the Roman surveying process. The augur typically faced east.
8 This road may have crossed the river near the site of the city. One theory for the location of

Florence at this point has been that the Arno was navigable up to this point, or that it was a natural

crossing point for the pre-existing road system, at or near the site of the present-day Ponte Vecchio.
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The crossing of these two lines (the urban decumanus and the regional cardo)

establishes an origin point 0,0 and forms the kernel of geometric order for

anchoring both city and region to the cosmos.

In the Roman procedures for founding a city as described by Rykwert (1988), the

priest known as the auger was the first and most important official involved. A

congruence was established between the heavens above and the future settlement in

view before his eyes. The vault of heaven, depicted as a cross within the sky, was

conceptually mapped upon the landscape through the waving of the auger’s special

cane. City founding therefore began with establishing a specific conceptual and

spatial relationship between a specific primary feature of the site, as revealed to the

auger, and the cosmos. In the mind of the auger, the urban decumanus was not his

creation but rather already pre-existent and made apparent to him through his

devotion to religious ritual. Proceeding from this revelation, the duty of the

auger, and his servant the surveyor, was to make manifest the order of the place.

Through the use of a circle drawn upon the ground with its centre marked by a

sundial gnomon, a solar east-west orientation line is drawn as a cord cutting through

the circle (Dilke 1971: 57–58). This cord of the circle is bisected by a line coming

from the centre of the circle and this bisector defines the north-south orientation

line. Figure 12.4 shows the addition of the north-south line which follows from the

east-west urban decumanus.

The approximate angle between the two orientations was thus based on the

topography of the region as well as the cardinal points. The surveyors must have

then chosen the specific angle based on the closest angle having certain known

geometrical and numerical properties, probably by consulting a handbook. The

rotational relationship between the regional and urban grid at Florence can be

defined by a simple right triangle having a three to five proportion of its legs.

Such a proportion results in a rotation of 30�, 58 min or about 31�.9

Fig. 12.3 Regional cardo.

Drawing: author

9 The angle is described as 30� 580 or about 31� by Hardie (1965: 132). The fact that this is an angle
based on a 3:5 triangle was pointed out by John Peterson, in personal correspondence instigated

after viewing his Internet site. In an unpublished paper presented at the Theoretical Roman

Archaeology conference in 1998 he discussed meaning in the geometry of Roman planned
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Figure 12.5 shows the establishment of two large 3:5 triangles with the sides

along the regional cardo as one century or 2,400 Roman feet (20 actus � 120 ft).

The other sides are 1,440 and 2,800 Roman feet. These two triangles establish three

points (including 0,0) in order to accurately site this line. The same pair of opposing

triangles are plotted to locate the regional decumanus, at right angles to the regional

cardo, and to mark the one century distance along this axis (Fig. 12.6). These

triangles mark the first century division in each direction from the origin point. The

surveying proceeded outward from this point to establish the grid of farmland.

These triangles also create four squares one century on a side, or one large square

two centuries on a side (Fig. 12.7).

Through the study of the Roman use of geometrical ordering systems at many

scales of their built environment, I have observed their persistent use of regulating

squares (Watts 1996; Watts and Watts 1992, 1986). The four squares of the

centuriation grid can be seen as a single 40 actus square template (or regulating

square) within which the specific design of the city will unfold.

As described above, the original conception of the city and colony called for the

orientation of the city to remain true to the cardinal points. Therefore, in the process

of developing the design of the specific city plan, a regulating square was needed

that fell within the larger 40 actus centuriation template (Fig. 12.8) and was also

oriented to the cardinal points, thus ensuring mathematical commensurability and

geometric unity of both city and colony. The points of tangency where the urban

regulating square touches the sides of the 40 actus centuriation square lie 5 actus

from each of the midpoints of the centuriation square, or at the quarter points of

each 20 actus square (Fig. 12.9) (it was common procedure to subdivide the century

into quarter points to facilitate allotment of farmland). These points of tangency can

also be established through the use of the 3:5 triangle, as indicated on the diagram in

Fig. 12.9, which, as we have seen, is the rotational relationship between the

centuriation and city orientations. Whereas the entire urban regulating square

would have been part of the surveyor’s geometric diagram, only a portion of the

Fig. 12.4 North-south line.

Drawing: author

landscapes, including Florence. Peterson identifies a number of whole number ratios which can be

expressed as triangles which he finds used in Roman surveying.

182 C.M. Watts



eastern side of the square served as an actual component of the city. Using the

points 5 actus from the midpoints of the 40 actus centuriation square, the eastern

side of the urban regulating square could be located upon the site. This edge of the

regulating square defines the eastern wall of the city.

The Sacred Cut is a geometric procedure defined by Brunés (1967). As shown in

Fig. 12.10, arcs centred at the lower right and upper right corners of the urban

regulating square, passing through the centre of the square (equal in length to half

the diagonal of the square), intersect the right side of the square as shown. These

arcs determine the north and south limits of the city of Florentia. The sacred cuts

yield a dimension of 12.076 actus for this distance. It appears likely that by

Fig. 12.6 Establishment of

regional decumanus using

3:5 triangles. Drawing:

author

Fig. 12.5 Triangles in the

ratio 3:5 define precise

rotation between

centuriation and city.

Drawing: author
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rounding this off to an even 12 actus, or 6 actus either side of the urban decumanus,

it was possible to continue laying out the city using whole numbers. This distance

could have been measured either side of the urban decumanus, as shown by the

solid arcs in Fig. 12.10.10

Figure 12.11 shows two alternatives for establishing the position of the north and

south walls of the city. The Sacred Cut could have been repeated to the west, and

Fig. 12.8 Urban regulating

square within four century

square. Drawing: author

Fig. 12.7 Four century

square (40 actus per side).

Drawing: author

10 Continuing the Sacred Cut arcs creates a lozenge or petal-like form, and the complete Sacred

Cut operation would create four such petals, perhaps giving rise to the name for the city, Florentia.

Such a flower-like form was also common in Roman mosaic patterns.
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the points joined to position the edges of the city, or, knowing that the Sacred Cut

was a nominal 12 actus, the surveyors could have measured 6 actus to the north and

south of the decumanus, both from the 0,0 point and where the urban decumanus

intersected the eastern edge of the urban regulating square, and connected these

points. Since making the Sacred Cut on the site would have crossed the river, it is

likely that measuring 6 actus was more expedient. The discrepancy between these

two methods is 9 Roman feet, or 4.5 ft at each city wall. This could have allowed for

the wall thickness, with one system measuring to the outside of the wall and the

Fig. 12.10 Establishment

of length of east city wall

using Sacred Cut. Drawing:

author

Fig. 12.9 Establishment of

urban regulating square.

Drawing: author
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other to the interior of the wall.11 The next steps locate the position of the urban

cardo, the major north-south street (Fig. 12.12). The rectangle of the city defined

thus far is subdivided, using once again a 3:5 triangle. Another way to look at this is

as the drawing of a line parallel to the centuriation orientation, 7 actus in length,

crossing the urban decumanus, and continuing another 7 actus. It then turns due

north for 6 actus. The lengths of this line (7 + 7 + 6) ¼ 20 actus, or one century.

This procedure locates the centre point of the city, and thus locates the urban cardo.

Continuing the procedure (Fig. 12.13) locates the western edge of the city,

12 Roman feet east of the 0,0 point. It has long been noted that the origin point

of the centuriation was slightly outside the western gate of the city. One explanation

for this has been the presence of a stream which was diverted to flow just outside the

city wall, crossed at a bridge at this point.12

Conclusion

The preceding steps indicate a logical way in which the colony of Florentia, both

city and countryside, could have been laid out, consistent with what is known of

Roman practices and with the observable traces of the Roman settlement.

Relatively simple geometrical operations integrate the city with its landscape, and

with the cosmos as well. The landscape of the region, linked with the cosmos

Fig. 12.11 Establishment

of north and south city walls

using Sacred Cut. Drawing:

author

11 A similar accommodation occurs between dimensions commonly used for Roman house

regulating dimensions and block sizes. Another parallel is with pavement patterns, where a

border zone mediates different dimensions and accommodates irregularities between the outer

wall of a room and its mosaic pattern.
12 Archaeological evidence of the western gate has not been located.
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through the path of the sun, provided the initial positioning of the city. A geometry

based on the 3:5 triangle establishes the precise rotational relationship between the

two levels of scale, the region and the city. A conceptual square mediating between

the two orientations, and its Sacred Cut, establishes the limits of the city to the east,

north and south. The further use of the 3:5 triangle locates the centre of the city, and

its cardo, as well as its western edge. What at first glance may seem to be a

pragmatic adaptation to the site conditions is shown to be a rigorous geometric

relationship, predicated on using a meaningful set of whole numbers, in an

affirmation of the genius loci of Florentia.

Fig. 12.13 Location of

western city edge. Drawing:

author

Fig. 12.12 Location of

urban cardo and south gate.

Drawing: author
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Chapter 13

Architecture and Mathematics in Roman

Amphitheatres

Sylvie Duvernoy

Early Relationships Between Mathematics and Graphics

When we refer to the relationship between mathematics and architecture, we often

make the assumption that geometry existed before architecture, and that the former

always provided the latter with a solid background, a sort of database of shapes,

figures and proportional systems among which designers could pick, at any given

time, the solution that best answered their needs. This idea was given currency by

architectural treatises from the Renaissance on, which all began with a summary of

whatever contemporary available geometric knowledge might prove useful to the

architect before addressing the subject of the design itself. However, if we consider

geometry as a science that grew simultaneously with artistic culture, acting as a

motor as well as a recipient of research progression and cultural evolution, its

relationship with architecture appears more interesting and reveals traces of

reciprocal influences.

In ancient times, the true value of a number, today represented by an abstract

Arab symbol, was physically drawn and represented by an appropriate quantity of

dots, or by a line of appropriate length. The research methodology for arithmetic

and geometry consisted in the drawing of numbers. The first graphic

demonstrations in arithmetic are due to Pythagoras, the eldest of the brilliant

dynasty of Greek mathematicians, who lived approximately between 560 and

480 B.C. By arranging dots (or pebbles called calculi by the Romans) according to

First published as: Sylvie Duvernoy, “Architecture and Mathematics in Roman Amphitheaters”,

pp. 81–93 in Nexus IV: Architecture and Mathematics, eds. Kim Williams and Jose Francisco
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specific geometric patterns, Pythagoras classified numbers in different categories

named after their shape. By means of their graphic image, he proved that “triangular

numbers”, “square numbers”, “pentagonal numbers” all had particular properties,

and could be related to one another by specific arithmetical laws (Fig. 13.1).

For other purposes, numbers could be represented by lines of appropriate length.

In this case, adding two numbers meant joining the two respective lines, thus

obtaining the length corresponding to the sum. Multiplying two numbers meant

drawing a rectangle whose sides were equal to the numbers in question: the area

would be the graphic visualization of the result of the calculation. Multiplying a

number by itself lead to drawing a square, and we still today talk about “squaring a

number”, or about “square roots”. Consequently, drawing geometric figures was a

valid method for solving “quadratic” equations (Fig. 13.2). In addition to being a

calculation methodology, graphic representation is also a powerful means of

communication. Thus drawing acts simultaneously as a research tool and as a

persuasive demonstration.

By the time Archimedes was studying conics, between 280 and 212 B.C. three big

problems were still unsolved: the duplication of the cube, the quadrature of the

circle and the trisection of the angle. As often happened in ancient Greece, the first

problem was supported by a legend. We are told that the people of Delos, struck by

a severe plague, asked the oracle of Apollo how to calm the gods’ wrath. The

answer was that they had only to build a new altar to Apollo twice as big as the

existing one, which was of a cubic form. The locals immediately built a new altar,

whose edge was twice as long as the previous one. . . but the plague did not stop.

The problem of the duplication of the cube could not be solved as long as the

construction of plane geometric figures remained the only research methodology.

We now know that this method is limited to solving “quadratic” equations, but not

“cubic” ones.

We know as well that the second of the three problems, the quadrature of the

circle, could not be solved. . . by any means. Nevertheless, many Greek

Fig. 13.1 Pythagoras’s triangular and square numbers. The sum of two successive triangular
numbers is always equal to a square number. The sum of the n first odd numbers is equal to n2.
Drawing: Author
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mathematicians tried to find a solution, and among them, the results of

Archimedes’s efforts were to influence all further generations. The idea was to

find a squared figure—a polygon—the area of which would be equal to the area of

the circle. It sought to determine the true value of the number π. By comparing the

areas of two polygons of 96 sides, one inscribed inside a circle and the other one

circumscribing the same circle, Archimedes reached a most precise approximation

of π. He claimed that it lay in the narrow interval between 3 + 10/71 and 3 + 1/7.

This result was of fundamental importance for all further calculations. Since 3 + 1/

7 suffices for the practical purposes of metrical geometry, it became the value

commonly adopted for π from then on, and the ratio that best expressed this

incommensurable quantity was 22/7.

The last problem, the trisection of the angle, turned out to be the easiest, and we

have at our disposal several solutions proposed by different scientists. Among

those, Archimedes’s graphic appears rather complicated to our modern minds

trained to the use of the goniometer, but it provides excellent evidence of the fact

that the only methodology for solving arithmetic and geometric queries around the

end of the third century B.C. was still the graphic approach. The Babylonian division

of the circle into 360� had not yet been imported into western culture, and

trigonometry was not yet common knowledge. Greek mathematicians still relied

on the construction of plane figures for their studies and research, and used

ungraduated straightedges and compasses as their only graphic tools.

This need to sketch for research purposes was also familiar to architects, who

used to depend on the manipulation of the same professional tools for the solution

of technical and aesthetic queries. In his treaty, Vitruvius insists strongly on the

superiority of drawing over calculation in the process of researching the

harmonious proportions of the architectural object. In the Preface to Book IX,

quoting Plato and reporting his famous theorem on the duplication of the square,

he demonstrates that when a certain number is required that “[n]obody can discover

. . . by calculation”, accurate drawing is always possible (Vitruvius 2009: 243].

Vitruvius’s schemes for the design of Greek and Roman theaters provide the first

historical evidence of a close relationship between mathematics and architecture.

The schemes (Fig. 13.3) are clearly drawn with a ruler and a compass only, and the

Fig. 13.2 Graphic demonstration of a quadratic equation (a + b)2 ¼ a2 + 2ab + b2, and of the

Pythagorean theorem of triangles, c2 ¼ a2 + b2. Drawing: Author
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radial division of the tiered seating area called the cavea (the trisection of the right

angle of the half-cavea) is obtained thanks to the inscription of several polygons

(four equilateral triangles or three rotated squares) in the circle of the orchestra, the
space between the stage and the first rows of seats.

Geometry and Architecture in the Roman Amphitheatre

Evidence of dynamic interaction between geometric research and architectural

design can be found in the Roman world, around late Republican times and early

Empire. In those years a new type of building appears in Roman culture: the

amphitheater. Romans had a number of different buildings for shows and plays:

ballet, lyrics and music were performed in the theaters and odeons; stadiums were

built to host athletic games; circuses were used for horse races. All these building

Fig. 13.3 Geometric

diagrams for Roman and

Greek theater design

according to Vitruvius, De
architectura libri decem.
Drawing: Author
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types, as well as the spectacles they housed, came from the Greek heritage.

Amphitheaters, however, are a Roman invention as they were designed to host

shows of gladiator fights (munera and venationes), nonexistent in ancient Greece or
in oriental cultures. Amphitheaters first appeared in Campania at the beginning of

the second century B.C. They were immediately characterized by a closed elliptic

shape that had never been previously adopted in architectural design, and would

never be used for other purposes in Roman culture.

The end of the third century B.C. corresponds to the acme of the Golden Age of

Greek mathematics, whose last heroes were Archimedes (d. in 212 B.C. in Syracuse),

Eratosthenes (d. 192 B.C.), Apollonius of Perga (d. 190 B.C.) and Nicomedes.

Archimedes and Apollonius are famous for having devoted much effort to the

study of conics and conoids. Thus, the first apparition of elliptic-shaped buildings

in southern Italy no earlier than the beginning of the second century B.C. puts us in

front of a triple coincidence: historical, geographical and morphologic. We may

therefore consider that these simultaneities and similarities are not due to chance,

but that the necessity of designing a new building type provided theoretical

mathematics with a successful field of direct and immediate experimentation.

Are amphitheaters elliptic or oval? The question has already been widely

debated. The ellipse is a natural curve: it is the shape of the shadow of a sphere

or a disk on a plane; it is the path of the planets orbiting in the sky around the sun.

On the other hand, the oval is a closed polycentric curve, a graphic composition that

can be either egg-shaped or elliptic-shaped. Ellipses and ovals have different

mathematical properties. The tracing of an elliptic curve relies on the prior

determination of the length of its mean axes and, on occasion, the position of its

two focal points. The construction of an oval consists in joining at least three or four

arcs of different dimensions the centers of which can be arranged according to a

variety of patterns. Nevertheless any ellipse can be closely approximated by a

specific oval. The difference between the two curves of identical axes would only

be conceptual and therefore irrelevant as far as visual perception is concerned.

The Amphitheatre of Pompeii

In order to understand how the new typological pattern for amphitheaters was first

drawn, and how it was transformed into a variety of archetypal models during its

historical evolution, inquiries must be made on early samples, buildings that were

erected in the late Republic or early Empire. These are much less sophisticated

monuments than the late Flavian ones, but they testify to the first attempts to apply a

new geometric scheme to architectural design.

The most interesting building, from this point of view, is the one in Pompeii

(Fig. 13.4). Rather awkward and ungraceful from the outside, this monument

nevertheless shows an elegant and well-organized cavea. It is the oldest among

the surviving buildings, and the first one in chronological order. Unveiling its

geometric pattern means discovering the starting point of the design research.
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The construction of Pompeii’s amphitheater involved partly excavating and

partly raising the natural ground. The level of the arena lies underneath the

exterior ground level, while the solid peripheral wall (partly formed by the city

wall itself) contains the upper part of the cavea. The stone seats used to lie directly

on the ground, pre-modeled to provide a suitable slope running all around the

central void of the arena.

Only very accurate measurements could lead to reliable conclusions in the

search for the mathematical identity of the curves. The survey of the monument

was conducted according to the “polar methodology”, by means of a single

electronic theodolite, approximately located in the center of the arena. The

reflecting prisma, target of the theodolite telescope, was moved, at regular

intervals, along the arena wall, until the whole perimeter had been measured. The

same thing was done along the back podium line, and along the upper wall pierced

by forty gates, that encloses the summa cavea, the uppermost part of the tiered

seating area. Thus a significant amount of data was collected for each of the three

reasonably complete curves of the monument: the inner, the outer, and an

intermediate.

The polar coordinates so obtained were transformed into coordinates of a

Cartesian grid having the minor and major diameters of the curves as x- and

y-axes with their point of intersection (the exact center of the arena) as its origin.

The plot of the survey reveals three series of a hundred dots, approximating each of

the curves. In order to understand their real mathematical identity, a comparison

was made between the coordinates of the measured points, and those of points lying

either on an ellipse or on an oval curve of four centers, algebraically generated,

having the same diameters as the actual building. It appeared that the arena wall and

the back podium wall could unequivocally be considered ellipses.

Fig. 13.4 The amphitheater in Pompeii. Photo: Author
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Tracing an oval curve for the arena with minor and major axes of 10 and 19 units

respectively1 would have meant that two out of the four centers would have been

high in the middle of the slope of the raised ground, much above the level of the

arena itself, while tracing ellipses using “the gardener’s method” (two poles planted

in the ground, and a rope) meant working on a horizontal surface, and dealing with

two “centers” only: the two focal points of the curve located symmetrically on its

major axis, inside its perimeter. Even the foci of the outer perimeter of the corridor

are inside the arena.2 The layout of the outer (and upper) perimeter of the cavea is

the most imprecise, and measures show a wide range of irregularity.

The design of amphitheaters involves two of the classic problems of ancient

mathematics: the quadrature of the circle and the trisection of the angle. The upper

wall closing Pompeii’s cavea is pierced by 40 gates, and was thus approximated by

a polygon of 40 sides. From each gate, stairs used to come down the steps of the

cavea, dividing it into cunei (wedges) of more or less identical size. But the

ever-changing curvature of the elliptic ring interferes with its regular division,

and the stairs do not converge towards the foci of the central ellipse but rather to

independent points that are of no use for radial geometry; neither do they converge

to the center of the arena, the crossing point of its axes, nor to points that could act

as the centers of an oval curve.

The layout of Pompeii is rather awkward and irregular. It shows a number of

imprecisions and adjustments that are typical of “work in progress”. Perfection is

not yet achieved in this graphic/arithmetic pattern, but the search for it is obvious.

The errors and incoherencies of the diagram point out the problems that the later

architects would have to solve.

The Amphitheatres of Roselle and Veleia

Other inquiries for geometric patterns were done upon two other amphitheaters:

Roselle and Veleia (Duvernoy 2000). They were both built a little later than

Pompeii, presumably in the first half of the first century A.D. They therefore

belong to the first generation of monuments, and are typical small, provincial

amphitheaters of the Republican period. Respectively situated in the Regio VII

(Etruria) and VIII (Emilia) of the Empire, they appear very similar when

considering their estimated date of construction, size, and simple building type.

Like Pompeii they were partly dug, and partly erected above the natural ground, and

few rows of seats were arranged directly upon the modeled slope, forming a cavea

1 The architectural design unit in Pompeii’s amphitheater is equal to 12 ft of approximately

29.25 cm.
2 This hidden underground curve could not be measured during the survey of the monument.

Nevertheless, its position is known by the gates that lead to the corridor. Its elliptic shape is the

only assumption included in the geometric pattern proposed here, while all other conclusions come

from accurate measurements.
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of rather small width. No underground areas were present, and only in Roselle do

we find four small carceres opening directly on the arena, located under the first

steps of the cavea. The design of such open-air structures, lacking any sort of

decorated façades, mostly consists in the drawing of concentric curves, with very

few radial divisions. Not much is preserved of the Veleia amphitheater, whereas the

ruins in Roselle are a little more complete and in better shape. In both cases the

study focused mainly on the curved wall enclosing the arena, the best-preserved

part of the buildings.

The surveys were conducted according to the same methodology used in

Pompeii, and the analysis of the data followed the same procedure.

Both in Roselle and in Veleia, it appeared that the curve was a polycentric one,

composed of four arcs of circles, the four centers of which were symmetrically

arranged on the two orthogonal mean axes, although in different ways in each case.

In Roselle the centers are located on the vertices of a square inscribed inside the

arena, its diagonal corresponding to the minor axis (Fig. 13.5a). The numbers used

for the choice of the dimensions are particularly interesting. The square connecting

the centers of the curve has sides of five modules.3 Therefore the minor axis of the

arena, equal to the diagonal of the square and to the radius of the widest arcs, is of

seven modules. The number seven acts simultaneously as an approximation of

5�√2, and as a factor in the formula approximating π ¼ 3 + 1/7.4 The major axis is

of 11 modules, and is related to the minor one by a ratio of π/2. The designer of

Roselle’s amphitheater obviously worked out an arithmetic answer to the

architectural query, cleverly applying Archimedes’s numbers in the dimensions

of his project.

In Veleia (Fig. 13.5b) we can observe a game that is more graphic than

arithmetic, even though numbers are accurately chosen here too. The centers of

the oval curves lie on the vertices of a rhombus, formed by two equilateral triangles,

inscribed inside the arena, the height of which is equal to its minor axis. The

proportions of this basic figure for locating the centers lead to the drawing of a

less elongated oval ring than in Roselle. Here, the search may have included more

exacting aesthetic demands. The specific oval curve drawn by two circles

circumscribing the central rhombus, which runs exactly along the middle of the

width of the cavea, would be later called “the perfect oval” by the Italian architects
of the Renaissance.

Ellipses are clearly totally absent from the layouts of Roselle and Veleia, even

though the two amphitheaters are only slightly later than Pompeii. The reason for

the preference for polycentric diagrams, when ellipses and ovals are so aesthetically

equivalent, must be sought in the realm of ease and practical necessities. Even

though early Greek mathematicians only had straightedges and compasses as their

tools, we have evidence that later on, other instruments had to be invented in order

3 The architectural design module in Roselle corresponds to 12 ft of 29.38 cm.
4A circle having a radius of seven (or multiple of seven) will allow simple calculations for

perimeter or area, and the results will be expressed through round numbers only.
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to allow progress in science. We know for sure that Nicomedes built himself a

graphic tool in order to be able to draw the concoid curves that he was studying.5

This special sort of compass, made of two wooden pieces, one sliding in the other, is

conceptually very similar to the well-known elliptic compass, whose first

appearance in Western culture cannot be determined with certainty (Fig. 13.6).

This mechanical instrument is made of two orthogonal and fixed rulers that

allow a third one to rotate above them. On the mobile ruler two pivots and a graphic

point can slide and be fixed wherever necessary. To draw an ellipse having axes

equal to A and B, the first pivot must be fixed at a distance of A/2 from the pencil,

and the second one at a distance of B/2. The interval between the two pivots is thus
equal to the difference (A/2 � B/2). Moving the pencil only, without sliding the

pivots, the instrument makes it possible to draw “parallel” ellipses, regardless of the

Fig. 13.5 Geometric

patterns of the

amphitheaters of Roselle (a)

and Veleia (b). Drawing:

Author

5 An approximate image of this tool is published in Loria (1914).
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position of their foci. A similar tool may have been used by Pompeii’s architect in

his preparatory sketches. The three main central ellipses (arena, back podium and

outer wall of the “underground” corridor) have diameters whose difference is

constantly equal to three modules.

If the late Greek mathematicians and Roman architects were able to draw precise

ellipses on their tablets by means of appropriate tools, the “gardener’s method”

remained the only available one to trace an ellipse in full scale on the ground at the

building site. While the tracing of a single curve is as simple as laying out a circle, it

is much more difficult to set out a series of parallel ellipses than it is to set out

several concentric circles. Parallel ellipses are not homofocal, so the foci have to be

re-positioned every time. The oval is an excellent graphic imitation of the ellipse,

and it offers a number of interesting advantages, all leading to simplification and

ease as soon as problems of parallelism, concentricity, radial division and quantity

calculation arise.

Conclusion

Architecture and geometry interact when new morphologies or building types

appear. Architecture has such qualitative and quantitative demands that it not

only brings theoretical geometry into practical application, but also leads it to the

establishment of new theories. The creation of a new shape always requires

extensions of previous knowledge, as it opens new queries and forces one to

work out new diagrams and models. Architectural design by means of the

drawing tool (and construction practicalities) surely represented an opportunity

for geometry to grow and define new theorems and laws.

Oval diagrams became archetypal theoretical models, and were cited in the later

architectural treatises of the Renaissance. In those books, ovals are always

compared to ellipses: the former acting as basic theoretical knowledge for design,

the latter being the “vulgar” builders’ practice. Among all authors, Serlio is the

most exhaustive about oval geometry. In the first book of his treaty “Di Geometria”,
he gives examples of graphics for bridge or vault design, based on the drawing of an

elliptic curve. But the world “ellipse” is never mentioned. We are told about this

particular curve “of lesser height than the half circle” which “really pleases the

eye”. . . Masons trace it with a rope, whereas architects draw it by points with the

help of inscribed and circumscribing circles. This curve, he claims, “is similar to

Fig. 13.6 Ancient elliptic

compass. Image: Author,

after Catalano (1990)
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some oval forms drawn with the compass”. He then proposes four possible ways to

draw oval shapes, based on two sorts of different patterns and different proportions.

The second and fourth examples strongly recall the diagrams of the amphitheaters

of Roselle and Veleia.

By Serlio’s times, the ellipse was thus considered to be an imitation of the oval,

whereas the historical evolution of geometrical architectural diagrams involving

these sorts of curves, from antiquity to Baroque, seems to suggest that the oval

replaced the ellipse without compromising aesthetics. The move from classical

antiquity to the Renaissance marked an inversion between theory and practice, and

a decisive shift from the beauty of the mysterious ellipse to the grace of the

perfect oval.
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Chapter 14

The Square and the Roman House:

Architecture and Decoration at Pompeii

and Herculaneum

Carol Martin Watts

Introduction

The domus is the ancient Roman single-family urban house type. It was known

from descriptions in the treatise by Vitruvius, the late first century BC Roman

architect, even before the re-discovery of Pompeii and Herculaneum in the

middle of the eighteenth century. These towns on the Bay of Naples were

destroyed in 79 AD by the eruption of the volcano Vesuvius. Excavation of these

sites (still ongoing) has provided the opportunity to study Roman provincial towns

frozen at a moment in time. Houses, mostly of the domus type, occupied the

majority of each town. They varied in size, housing families of all social classes,

but followed the same traditions of organization and decoration. Examples from

Pompeii and Herculaneum range from the second century BC to the destruction of

the cities in 79 AD, and over these three centuries there was relatively little change in

the building type. The origins of the domus are obscure, but it had developed over

several centuries before the earliest examples known at Pompeii.

The Domus

The term domus was used by the Romans to refer to a single-family townhouse

organized around a central space, the atrium, (see Fig. 14.1). The domus was an

First published as: Carol Martin Watts, “The Square and the Roman House: Architecture and
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inwardly-oriented house, with few openings to the street, and generally surrounded

by other buildings except on the street facade. Originally only one story in height,

an upper floor was sometimes added. The most characteristic feature of the domus

was the large central space, the atrium, which usually had an opening in the roof,

providing light into the centre of the house. The fauces was the name for the entry

corridor leading from the street to the atrium. The tablinum or major reception room

stood at the rear of the atrium, and opened onto a walled garden or a peristyle. The
peristyle was a garden surrounded by colonnaded porticos, adapted from the

Greeks.

These spaces, specialized by function, formed the canonical core of the house,

with their relationship to each other rigidly prescribed. Ideally they were disposed

around an axis of symmetry, although this was often a visual axis rather than a strict

geometric axis, giving the experience of symmetry to the visitor entering the more

public spaces of the house. In addition to the major centre of the house (the atrium),

secondary centres organized parts of larger houses. These secondary centres

included the peristyle area, service areas, and suites of rooms. Other rooms found

in the domus in variable locations included triclinia (dining rooms), cubicula
(bedrooms,) reception rooms, kitchens and latrines.

Besides the traditional organization of the spaces of the domus, there were

traditions associated with the decoration of interior surfaces. These reflect more

rapid changes in style or fashion, but still follow deeply-held traditions. The

decoration of surfaces served many purposes, including the expression of the

status and interests of the owner, the reinforcement of architectural features and

the differentiation of functions of spaces. Walls and ceilings covered with brightly

coloured fresco paintings, and floors with patterns, borders, and demarcations were

all an integral part of the architecture of the house. Within these decorated surfaces,

there were special “pictures”, often small reproductions of famous Greek works,

executed in fresco in the centre of walls, or in coloured mosaic in the centre of

floors. These were the focal points of the decoration, but the “background” was also

important in contributing to the architecture of each space and the relationship of

one space to another.

Fig. 14.1 Plan and section

of typical domus. Image:

author
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It was while studying the relationships of these decorative ensembles (the way

the floor, ceiling, and wall surfaces related to each other and to the house as a

whole), that I discovered an underlying geometry which appears to operate at all

scales within the Roman house. Several well-preserved case study houses were

inventoried in detail, supplemented by less extensive documentation of a large

number of other houses at both sites.1 In the process, measurements were taken,

plans sketched, and the composition of painted walls and mosaic pavements

recorded. Analysis of these measurements, and of published drawings by others,

revealed a repeated pattern of proportions and dimensional relationships.

The Square

Analysis of houses at Pompeii and Herculaneum suggests that two simple

geometric systems, both based on the square, underlie the design of the Roman

house at all scales.2 These geometric systems explain the proportional relationships

which are found in the overall shape of the site and its organization and subdivision,

the relationship of volumes of space, and of planes such as walls and floors,

throughout the house.

Although Vitruvius does not specifically discuss the geometric systems to which

I refer, he does mention the importance of geometry to the Roman architect.

Geometry, also, is of much assistance in architecture, and in particular it teaches us the use

of the rule and compasses, by which especially we acquire readiness in making plans for

buildings in their grounds, and rightly apply the square, the level, and the plummet. . . .
difficult questions involving symmetry are solved by means of geometrical theories and

methods (Vitruvius 1960: I, 1, 4).

The two geometric systems, both based on the square, which I found in the

domus, can be constructed using only compass and straight edge. They could have

been laid out full scale on the site using chains or ropes and stakes. They both

enable one to design a plan or other composition in which the parts are all

commensurate and proportionally related, at many levels of scale. The square and

circle are closely related in this geometry.

Vitruvius emphasized the relationship of both circle and square to the human

body with the well-known “Vitruvian man” inscribed within a circle and a square.

Therefore, since nature has designed the human body so that its members are duly

proportioned to the frame as a whole, it appears that the ancients had good reason for

1 Case study houses included the houses of the Labyrinth, L. Ceius Secundus, Tragic Poet,

M. Lucretius Pronto, Vettii, Faun and Sallustius at Pompeii, and the houses of the Carbonized

Furniture, Samnite, Tuscan Colonnade, Wooden Partition, and Bicentenary at Herculaneum. For

the larger study of which the geometric analysis forms a part, see Watts (1987).
2 Similar geometric systems were also found in apartments and apartment complexes (insulae) at
Ostia Antica, near Rome. See Watts and Watts (1987); see also Watts and Watts (1986).
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their rule, that in perfect buildings the different members must be in exact symmetrical

relations to the whole general scheme (Vitruvius 1960: III, 1, 4).

By “symmetrical relations” Vitruvius is referring to commensurate relationships

rather than bilateral symmetry.

One geometric system frequently used in the domus is the square root of

2 progression, often known as ad quadratum. Figure 14.2, a photographic detail

of a marble pavement in a Roman house, illustrates this system. In this series of

squares the side of each square is equal to the diagonal of the next smaller square.

Each square thus relates to the next by a root 2 proportion. The area of each

successive square is either halved or doubled. This progression can be

constructed by joining the midpoint of the sides of a square, thus creating the

next smaller square, or alternatively by constructing a square tangent to the comers

of the original square and at 45� to it.

Vitruvius discusses a similar system, attributing it to Plato (Vitruvius 1960: IX,

intro 4). He explains how one can use geometry, rather than arithmetic, to double a

square by making the diagonal of the original square equal the side of the new

square. Vitruvius also mentions a root 2 proportion as one alternative for

determining the proportions of the atrium of a domus, “by using the width to

describe a square figure with equal sides, drawing a diagonal line in this square,

and giving the atrium the length of this diagonal line” (Vitruvius 1960: VI, 3, 1).

Unfortunately we have no other Roman texts which explain how a house or other

building was designed or laid out on the site, but we do have the evidence of the

actual buildings to give us further insight into how the Romans used geometry.

A related geometric system also based on the square, shown in Fig. 14.3, is

known as the “sacred cut” (Brunès 1967). Starting with a given square and its

diagonals, arcs are drawn with a compass centred at each corner of the square, with

a radius equal to half the diagonal, going through the centre point of the square.

Each of these arcs intersect two adjoining sides of the square, dividing each side

into three segments, with the centre larger than the side segments. Connecting the

points where the sides are cut by the arcs gives the nine-part grid shown in Fig 14.3.

The large central square of the grid will be referred to as the sacred cut square of the

original square. The smaller squares in the corners of the grid have sides equal to

half the diagonal of the sacred cut square. The rectangles within the grid have sides

in the ratio of one to the square root of 2. This geometrical construct can be

extended to smaller scales (by repeating the process within the sacred cut square),

and to larger scales. Figure 14.3 shows the construction of the next larger square, of

which the original square is the sacred cut.

Brunès called this geometric system the sacred cut because it combines the circle

with the square. The length of the arc of the sacred cut is within 0.6 % of the length

of the diagonal of half the reference square. Brunès argues that this level of

accuracy was sufficient for ancient builders to believe that with straight edge and

compass they were able to construct a circle with the same perimeter as a given

square and vice versa. The “squaring of the circle” is of great importance to

cosmological geometry because the circle represented the spirit or unknowable
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features of the universe, while the square represented the comprehensible world.

The expression of a near-equality between the circle and square thus represented a

way in which the unknown could be expressed by the known (Lawlor 1982: 74–79).

Both the sacred cut and the root 2 progression or ad quadratum would have had

pragmatic reasons for their use by the Romans, as an easy way to ensure

proportional relationships among the parts of a house without the need to do

mathematical calculations. They could have been used in drawings for the house

as well as on the site during construction to lay out the building and its parts, and to

guide the various workmen involved in the construction process, including

craftsmen responsible for painted and mosaic decoration. But beyond this

pragmatic application, such geometry also seems to have had a strong symbolic

meaning, tying all parts of the domestic environment together into a totality which

Fig. 14.2 Photograph of marble pavement from a Roman house using ad quadratum geometry.

Photo: author

Fig. 14.3 Diagrams of the sacred cut: left, arcs equal to half the diagonal intersect the regulating
square. Centre, the nine part grid created by joining the points where the arcs intersect the square.
Right, the generation of the next larger square, of which the original square is the sacred cut.

Image: author
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expressed a view of the world, and ultimately relating the house to its place within

the universe.

Both ad quadratum and the sacred cut are systems which emphasize a centre

through concentric reiterations of the same geometric operation. The emphasis on

centre is important in the domus at a variety of scales. The Roman world view,

placing themselves in the centre of the universe, permeates their design at all scales,

including the organization of the empire, the layout of cities, and the design of most

building types.

Geometric Organization of the House Site

Herculaneum was laid out with a regular grid of streets and blocks, and Pompeii,

while more irregular, also used grids of different sizes as the town expanded. These

generally rectangular blocks were subdivided into building lots. There is variety in

the size of the blocks and the size and proportion of the house lots, but all of the

examples which I have studied have lot proportions which can be expressed in

terms of squares. The placement of major elements of the house, such as the atrium,

peristyle, tablinum, and other major spaces appear to be related to a regulating

square and its sacred cut and/or ad quadratum. At Pompeii and Herculaneum the

houses use a limited number of proportions and of regulating square sizes. The most

common proportion of width to depth was 1:3, followed by 1:2. There were a few

occurrences of 1:2½ and 1:1. These can be expressed as squares as shown in

Fig. 14.4. In some cases the entire depth of the house could be divided into an

exact number of squares, and the diagonal of these squares was the width of the

house.

It is likely that the laying out of the house was conceived in terms of squares,

rather than numerical ratios, because further subdivisions of the house relate to the

geometry of such squares. The organization of the house site would first have been

conceived in a simple drawing, and then laid out full-scale on the actual site. The

“regulating square” would be established on the site, usually using the given site

width, and its sides and diagonals indicated with ropes or string stretched between

stakes, or even lines inscribed in the ground. The sacred cut could be determined

using arcs of rope stretched from the corners of the square to the centre (marked by

the crossing of diagonals), then rotated to intersect the sides of the square. The

sacred cut grid could be established by connecting these points, and these lines used

to position major walls of the house. A similar process could also work for the ad

quadratum series, and both appear to have been used in most houses. Such a method

would allow the plan to be laid out without the use of dimensions, although

dimensions in whole numbers of feet frequently occur in house plans, as the size

of regulating squares were often such to allow a series of dimensions close to whole

numbers. An important result of such a design method is to ensure commensurable

proportions throughout the house.
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The regulating square of a house can be seen in the basic layout of the plan, as a

geometric overlay, but it also provides whole number dimensions in either Oscan

feet or Roman feet which occur throughout the house.3 There are two common and

interrelated numerical series frequently found in dimensions of Roman houses. The

diagram in Fig. 14.5 illustrates a series using 12, 17, 29, 41, and 99 derived from the

sacred cut, as well as the ad quadratum series of 29, 41, 58, and 82. These series

Fig. 14.4 Table of proportions and regulating square size for case study houses at Pompeii and

Herculaneum

3The Oscan foot, used in the earliest houses at Pompeii and Herculaneum, is 0.275 m ¼ 1 ft. The

Roman foot in use at these sites is 0.297 m ¼ 1 ft. See Mau (1982, p. 280).
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have 29 and 41 in common. The particular numbers found in this sacred cut series

are those occurring in the Principle of Alternation, the Pythagorean method of

finding successive approximations of the square root of 2.4

Figure 14.6 illustrates the use of dimensions derived from the regulating square

in the House of the Tuscan Colonnade, Herculaneum. The site is three squares deep,

with each square 41 Oscan ft. The sacred cut of this 41 ft. square gives the

dimensions 17 and 12; 17 plus 12 equals 29, part of the ad quadratum series from

41. The diagonal of 41 is 58. The plan indicates where these dimensions are found

within the house. The width of the atrium is very close to 29 Oscan feet. The width

of the tablinum is 17 Oscan ft. The peristyle with its porticoes is 41 ft. square, and

the diagonal of the peristyle colonnade is also 41. The peristyle width within the

colonnades is 29 ft. Other spaces use dimensions of 17, 12, 7 and 5 Oscan ft. Other

houses surveyed show similar use of a set of geometrically related dimensions,

particularly for the major spaces (later additions, alterations, or service areas may

not conform to the system used in the core of the house). Although best documented

in plan, from what evidence survives of full height walls it appears that similar

dimensions also were used in three dimensions, so that the spaces of a house were

proportionally related volumetrically as well as in plan.

Within individual spaces, similar geometric relationships can also be seen. Many

spaces, particularly the more important rooms of the house, are cubes, or

rectangular spaces with two square walls. Figure 14.7 illustrates common room

proportions. Vitruvius devotes chapter 3 of book VI to the proportions of the

principal rooms of a house. He discusses the appropriate proportions in plan and

height for the atrium, alae, tablinum, peristyle, triclinia, and oeci (reception rooms).

Most of these proportions are based on the width of the room. He is concerned both

with the proportions of one room to another, and with proportions of the individual

Fig. 14.5 Diagram of related sacred cut and ad quadratum numerical series. Image: author

4 Lawlor gives a geometric demonstration of this principle in (1982, pp. 38–43).
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space. Studies of actual examples of the domus at Pompeii have shown only some

houses following Vitruvian proportion (Weiskittel 1979: 25–38). More examples

appear to use the geometry discussed here.

A common proportion in plan for rectangular rooms is one to the square root of

2. Vitruvius mentions this as one of three ways to proportion an atrium (Vitruvius

1960: VI, 3, 3). If the short side of such a space is a square in elevation, then the

length of the long side equals the diagonal of the square of the short side. The

ceiling line coincides with the sacred cut line of the regulating square of the long

side (Fig. 14.7). The same proportions in plan may have a different volume, with the

walls of the long sides equal to a square. In this case the short walls are taller than a

square. Their height is equal to the diagonal of their regulating square (or a square

plus the central sacred cut square). An example of this proportion is a triclinium in

the House of L. Ceius Secundus at Pompeii. The room measures 12 by 17 Oscan ft,

and appears to be very close to 17 ft high. The tablinum of the House of the Tuscan

Colonnade at Herculaneum has the same dimensions in plan, 12 by 17 Oscan ft, but

is a variation on the theme in height (Fig. 14.8). The long wall is the same height to

the top of the vault as it is wide, thus creating a conceptual square. The flat ceiling

on either side of the vault creates two short walls that are of a different proportion

than in the previous example. Here, the smaller wall can be seen as a square plus the

smaller dimension created by the sacred cut of that square. The floor of this room

Fig. 14.6 The regulating square of the House of the Tuscan Colonnade, Herculaneum. Image:

author
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consists of an over-all white mosaic with a black border. The border creates a

rectangle related to wall dimensions as shown on the diagram. The window

placement and size also relate to the regulating squares.

The same geometrical systems appear to operate in most cases at the smallest

scale, that of individual planes (walls, ceilings and floors) and their decoration. A

regulating square (the width in the case of walls) appears to determine the

organization of the composition and dimensions of parts. Figure 14.9 shows one

common motif used in different types of pavements as well as ceiling ornament in

Roman houses, and the diagram illustrates how this pattern is based on both the

sacred cut and the ad quadratum. This geometry permeates the Roman domestic

environment at all levels of scale, at times quite obviously expressed (as in

Fig. 14.2) and at other times not evident without analysis.

Conclusions

The house was of great importance to the Romans. The domus was one of their

earliest building types and remained the archetype for other buildings. As such, it

embodies the basic characteristics of Roman design, including an emphasis on a

centre, organizing axes, the differentiation of spaces, and the integration of

architecture and ornament. The geometry of the square also appears to be an

integral part of the house. Further study may reveal its operation in other more

monumental, Roman buildings. For its symbolic as well as pragmatic utility, the

Fig. 14.7 Diagrams of the common Roman room proportions. Image: author
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Fig. 14.8 The tablinum of the House of the Tuscan Colonnade, Herculaneum—photograph and

diagram showing the relationship of wall and floor planes and the dimensioning based on the

sacred cut. Image and photo: author
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square was the basis for the conception and construction of the domus, as we know

it from the well-preserved sites of Pompeii and Herculaneum.
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Fig. 14.9 Photograph of a floor pattern from Pompeii, and analysis of this pattern, showing both

the sacred cut and ad quadratum. Image and photo: author
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Chapter 15

The “Quadrivium” in the Pantheon of Rome

Gert Sperling

The Mathematic Concept of the Pantheon Complex

The Pantheon complex has been the object of countless interpretations. There is no

certainty as to how and why it was created and what it is meant to express, because

there are no documents concerning the identity of the architect, the exact datas of

conception, its origin and its function. Since ancient times we find vague references

to its symbolic function: according to Cassius Dio, it resembles the heavens. But the

cosmological interpretations do not take into consideration the real metrical

dimensions of the whole complex nor the relation between its numbers, shapes,

forms and proportions. Even the modules are identified very differently, so that it is

difficult to compare the various analyses (De Fine Licht 1966; Brunés 1967: 38).

This present analysis is based on a 1989 survey of the rotunda by Marco Pelletti

(1989: 10–18).1

There is an unusually high precision in the construction of the cylinder and the

cupola of the rotunda, as well as in the division of the cupola into 28 coffered

segments necessitating the realization of irrational angles (12.857. . .�) (Martines

1989). The curved distances of the upper zone, derived from the factorization of

28 as 4 � 7 are identical to pilaster-distances of the lower zone, derived from the

factorization of 32 as 4 � 8. The square modules of the pavement are integrated

into the architectural design of the cella (rotunda) through the derivation of their

First published as: Gert Sperling, “The “Quadrivium” in the Pantheon of Rome”, pp. 127–142 in

Nexus II: Architecture and Mathematics, ed. Kim Williams, Fucecchio (Florence): Edizioni

dell’Erba, 1998.

1 For a description of the mathematics involved in this system, see Calter (2014).
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dimensions from the interior dimensions of the Pantheon; the pavement design

“surgically” meets the perimeter of the rotunda.2

This ensemble of geometrical forms and their dimensions reflects the fusion of

opposite elements in order to achieve harmony. There is a fusion of integer

numbers. There is also a fusion of irrational numbers, represented by geometrical

shapes, such as π, √2, the Pythagorean theorem c2 ¼ a2 + b2, the Golden Mean (the

Fibonacci series), the Sacred Cut and the ad quadratum. Represented also are the

three “classical” mathematical problems: the doubling of the cube, the trisection of

an angle, and the squaring of a circle.

The main module of the rotunda is 147 Roman ft (1 Roman ft ¼ 0.2956 m).3 The

module may be thought of as 3 � 7 � 7, measured from the inner edge of opposite

columns. The number also relates to smaller modules determined by the height of

the column capitals, the column diameters, the length of the column shafts, the

diameter of the opaion (oculus) and formal elements of the former attica. The fact
that the main module is found there links the Pantheon to many sacred buildings

with a Greek tradition (Jacobson 1986). My own measurements and calculations

have identified the fusion of the Roman foot (0.2956 m) with the Roman palm (the

width of a hand, equal to 0.2173 m) in many of the Pantheon’s architectural details,

so that the building may be interpreted using two anthropomorphical measures

(ratio 34:25) as well as the geodetical meter: the radius of the main module, 73.5 ft,

equals 100 palmi, while the measured radius of the cupola 22.039 m equals 7π m!

The Golden Mean has been identified in the distance of the five rows of coffers,

and is related to data and angles of the positions of the sun between the equinoxes

and the summer solstice in ancient times (114 AC) (Alvegård 1987: 17). I believe

this fact explains the supposed uncentred position (winter solstice) of the Arcus
Pietatis Trajani in the forecourt, a point of view neglected by Fine Licht (1966:

295, note 43).

Two Roman “blueprints” were found in the travertine pavement in front of the

Augustus-Mausoleum, the larger one of them deciphered as a full-scale

representation of the gable of the pronaos of the Pantheon (Haselberger 1995a;

b). The angle of the gable shown is exactly 24�, referred to by Vitruvius as the

ecliptic angle of the polygonal with 15 angles (Vitruvius 1991: IX, 439–445), while

the angle of the actual gable is smaller, perhaps taken from the real ecliptic of those

times (23�410) and realized using geometrical gnomon theory and empirical

measurements of the angle. The edge blocks of the gable could have been

prepared as 24� in a first moment, then adapted and fitted into the shape of the

real given ecliptic-angle during the construction phase, so that the ancient sun

dictated the integration of the pronaos into the rotunda as well as, I believe, the

arrangement of the whole complex. The second gable above is a kind of “legend” of

the gnomon theory, projected onto the wall of the intermediate block.

2 For discussions of the Pantheon pavement, see Williams (1997a, b).
3 This value was measured and calculated by Pelletti (1989). Most Imperial buildings are based on

a foot of 0.29476 m, the 100th part of Cestius pyramid.
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While the rotunda represents the sphere of the sky, the convex pavement, some

28 cm higher in the centre that at the perimeter, is intended as an image of the

earth’s surface (representing, according to Pelletti one-seventh of the radius of the

earth) and originally supposed to be a real section of a sphere. The projection of the

rays of the sun on the pavement at the summer solstice indicates knowledge about

the real size of the earth and the Roman Empire. The east-west axis of the rotunda

represents the northern Tropic of Cancer (23�400), the centre of the beam of light on

21 June marks Rome’s latitude (41.88�). The rotunda is a circle with a radius

equivalent to the distance of the northern tropic to the equator, touching the

Canary Islands in the west and the border to the Parthers in the east: hence, the

northern part of the rotunda is an image of the Roman Empire under Trajan.

Haselberger has traced the date of construction to the time of Trajan by

analysing the substance of the walls, and maintains that the rotunda was already

half built in 115 A.C. Specific mathematical features of the whole building and its

relation to the Markets and the Column of Trajan indicate Apollodorus of

Damascus, a Greek-educated intellectual and famous architect, as the author of

the Pantheon (Heilmeyer 1975).

Scholars such as Giangiacomo Martines take the Neopythagorean roots of the

Pantheon seriously, interpreting the architecture as an integrated visualization of

the Greek mathematically-conceptualized theory of the cosmos, which consisted of

an amalgamation of cosmological, geodetical and anthropomorphical dimensions.

To generate harmony, the laws of arithmetic, geometry, astronomy and

musical-proportions are fused. The Pantheon can be considered an architectural

image of the Pythagorean cosmos, a “living organism” with a mathematically

proportioning “soul” and unchanging, “eternal,” consonant-symphonic ratios. It

“resembles the heavens”, but is a resemblance based on mathematical knowledge,

a summary of the ancient Quadrivium (Munxelhaus 1976: 41).

The Fundamental Role of Arithmetic and the “Perfect

Numbers”

The Pantheon is arithmetically related to the “perfect number” 28 (4 � 7), 7 being a

“holy” number in ancient symbolism and dedicated to Athena (Minerva) and Zeus

(Jupiter) (Nicomachus of Gerasa 1926; Stahl 1971; Capella 1977: 281). It is also

related in an important way to the planetary system and the ages of man.

Twenty-eight is the second member of a small family of really rare numbers,

which Nicomachus praised in his Introduction to Arithmetic as “perfect.” They

are the sum of their factors (this is the basis of harmony) and there is only one

number within the unit:
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Twenty-eight is emphasized in the Pantheon in each of the four quadrivial

disciplines: arithmetic, geometry, astronomy and music. Further, there are

remarkable relationships to the 7 � 7 ¼ 49 beneath the old Pythagorean

dogmatical meaning of the 10 (tetraktys) and its powers.

According to early Pythagorean philosophy, the whole of reality was a

subdivision of the unit (logos ¼ 1 ¼ the whole of being) into fragmented and

incessantly changing parts. Behind this instable process of materialization, there

is a constant system of numbers, which represents the “true,” everlasting aspect of

all being in its forms, sizes, quantities, qualities, colours, movements and so

on. Harmony is the mathematical power to fuse what consists of or represents the

opposite elements of being. And it is the same with numbers, because their

characteristics can also be different and sometimes opposite (for example: odd

and even); harmony is needed to put them together. According to Nicomachus, the

numbers 1 and 2 are not real “numbers”, they are both dualistically understood as

opposite elements or sides of the unit. The dualism has to be overcome by

mathematically fusing the opposite parts of worldly phenomena, represented by

the numbers, forms, shapes, proportions and the laws of movement.

Arithmetic being the fundament of the quadrivium, I have discerned many

arithmetic relationships within the formal arrangement of the pavement, which is

determined by a grid of 11 � 11 squares cut by the perimeter of the rotunda:

1. When a square is constructed within the Pantheon so that its corners touch the

interior perimeter, it contains 7 � 7 ¼ 49 square units within the paving grid.

Further, the total number of uncut (whole) paving squares is divisible in three

ways: 4 lateral rows of 7 ¼ 28; 3 rows of 11 ¼ 33; 4 longitudinal rows of

7 ¼ 28.

2. The sum of the odd numbers (circle-in-square panels) is 45; the sum of the even

numbers (square-in-square panels) is 44. Taking 1 and 2 together as the unit

(according to Nicomachus), there are 22 divisible odd numbers, 22 indivisible

prime numbers, and 44 even numbers. That means a proportion of 88 (total):44

(even):22 (odd: prime or divisible) ¼ 2:1; this is the octave-interval in the

Pythagorean music system, a queen of harmony.

3. Integers also are able to generate geometrical forms; because of this the stereotypical

change of these circles and squares in the panels can be read as a diagram

of qualities of the so-called “number-families.” The main difference of

6 = 1 x 2 x 3 = 1 + 2 + 3 = 6

28 = 1 x 2 x 2 x 7 = 1 + 2 + 4 + 7 + 14 = 28

496 = 1 x 2 x 2 x 2 x 2 x 31 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248

8128 = 1 x 2 x 2 x 2 x 2 x 2 x 2 x 127
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“odd and even” generates the diagonals (binary code); on the diagonals you find the
odd and even square numbers, beginning with 1 in the middle (centre of the sixth

row in both directions). The perfect numbers 6, 10, 28 are elements of the triangular
numbers, 6 consisting of 3 units, 10 of 4 units (tetraktys), 28 of 7 units on each side
of the triangle. The Platonic solids are based on triangles.

Other arithmetic relationships are found in the inner column shafts, which are

8 diameters and 7 capital-heights high, a fusing of 8 and 7 according to the upper

order (7) and the lower order (8). If the circle-in-square panels of the pavement had

been originally of the same size, they would have had a diameter of 8 ft, while the

squares have 7 ft, the greater ones 10 ft, again a ratio of 1:√2.The column shafts

equal the inner width of the oculus. The length of the whole Pantheon complex

equals nine times the radius of the rotunda; subtracting 1 radius for the south

building and the rotunda wall, there remain 8:2 radii or 4:1 diameters from the

south apse to the north entrance. This is the double-octave system derived from an

old model of sphere harmony; it is a distance of 21 � 28 ¼ 588 ft. Including the

apse, there are 600 ft, the 224th part (8 � 28) of the earth’s circumference

according to Eratosthenes (2 B.C.), in metres instead of kilometres (�10�3).

Nicomachus’ arithmetical row of numbers contains 28, 56, 112, 224, a row of

geometrical means. These 600 ft are equivalent to 100 average heights of man

according to Vitruvius (a man’s height ¼ 6 Roman ft) and this corresponds

geodetically to the division of the first three perfect numbers: 496 m:28

m ¼ 17,714 m ¼ 6 � 10 ft ¼ 10 Vitruvian man-heights. The fusing by

arithmetical numbers of geodetical and anthropomorphical qualities and musical

consonant proportions is obvious.

The Symmetry of Cylinder and Sphere, Their Irrational

Divisibility and the Inheritance of Archimedes

That the creator of the world should use irrational numbers as well as and instead of

integer numbers and “ratios” was a shock to the Pythagoreans. Archimedes wished

that his greatest discovery, the symmetry between cylinder and sphere, be inscribed

in his grave-stone: the surfaces of cylinder (tambour) and sphere with the same

radius have a ratio of 1:1, the volumina of 3:2; the irrational number π is involved,

approximated as 3.14 using his “method of exhaustion.” The ratios correspond to

the musical intervals of a prime and the fifth. The rotunda is the fusion of a cylinder

with a (semi)sphere, ideally combined with a cube; this is reflected by the

two-dimensional squares and circles of the pavement (Williams 1997b: 5). The

cylinder inside is half of the height of the rotunda, an interval of the octave (1:2),

outside it is higher due to reasons of statics, but still with a difference of √2 to the

inner height of the rotunda: 104–147 ft. The pronaos also is influenced by √2: the
square cutting the exedrae walls of the rotunda has a diagonal that fits exactly into

the depth of the pronaos (Williams 1997b: 5).
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The geometrical elements of the Pantheon and their dimensions are closely related

to the Mausoleum of Augustus: the circle of the tumulus has a diameter of

104 (8 � 13) ft; a square circumscribing this circle has a diagonal of

147 (104 � √2) ft, equal to the diameter of the rotunda. The pavement of the

rotunda is divided exactly in 8 � 13 � √2 ft with reference to the centre points of

the grid bands (Williams 1997b: 5). Both the Mausoleum and the Pantheon introduce

the factor √2, symbolizing “an ovation to Augustus” (Andreae 1973: 527–529).

The volumes of cubes with sides measuring 104 ft and 147 ft have a ratio of

10:28 (tetraktys: perfect number); the volume of the rotunda is approximately

100 times the cube based on the length of the column shafts (Geertman 1980:

203–229).

The cupola is divided in 28 segments with 5 rows of coffers, a division

impossible to construct with compass and straightedge. This division was cited

first in Rome in the era of Barock (St. Maria in Campitelli). The trisection (as well

as the division in seven parts) of a right angle is possible only using the trisettrice of
Hippias of Elis, or the conchoide of Archimedes.

The squaring of the circle is referred to in the dimensioning of the infrastructure

of the rotunda wall: the size of the pavement square is equal to the circle bordering

the semi-circular niches inside the wall. This circle provides the basis for a

consistent geometrical interpretation of the whole complex using derivations of

√2. The doubling of the cube relates to the inner and the outer square of the rotunda
wall, being identical to the squares obtained by performing the Sacred Cut.

The “Gnomon-Theory” and the Sun as Architectural

Constructor

Considering the fact that in 9 B.C. Facundus Novus, in order to pronounce the

cosmological relationship between the birthday of the first princeps (23 September,

autumn equinox) and his generation at the winter solstice, exactly projected the

AugusteanHorologium in relation to the main architectonic lines of the Ara Pacis in

its further position and the Mausoleum of Augustus (Buchner 1982) using the

positions of the sun, it is plausible to look for connections between the gnomon

theory and the construction of the Pantheon.

It is easy to demonstrate that the gnomon theory played a principal role in the

planning and construction of the rotunda, the intermediate block and the pronaos, as
well as determining the dimensions of the forecourt: historical astronomical data

indicates an ecliptic angle of 23�400 around the year 114 A.C. The gnomon theory

referred to by Vitruvius has to be centred in the middle of the oculus (Vitruvius

1991: IX). The latitude of Rome, 41.88� appears in the angle formed by the cornice

and the connection of the upper niches to the centre of the oculus. A plumbline
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along this line gives the position of the sun at the equinox, which exactly halves the

depth of the pronaos. Along the equinox line you can reconstruct the location of sun
rays during the summer and winter solstices: evidently the architectonic frames of

the building are cut by a circle with the same radius, given by the three sun positions

(Fig. 15.1). The point where the ray of the winter solstice meets the forecourt is

exactly given by the doubling of the rotunda’s diameter, the main module of

building (Fig. 15.2).

The triangle formed by the sunrays of the equinox and the point where the

sunrays of the summer solstice cut a plumbline dropped through the middle of the

rotunda is an exact configuration of the position, angle and form of the upper gable

Fig. 15.1 Drawing: author

Fig. 15.2 Drawing: author
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upon the intermediate block. The base line is identical with the cornice inside the

rotunda, its centre point is the navel of the inscribed Vitruvian Man, whose

dimensions relate to the height of the inner capitals by the factor 28 times the

irrational value of the Golden Mean (Fig. 15.3) (Alvegård 1987: 8). The head of the

Roman eagle also falls on the navel (Fine Licht 1966: 46) (Fig. 15.4), thus the

building’s proportions, contrived with the infallibility of scientific knowledge,

symbolize the cosmic legitimacy of Roman imperialism as an image of the

Fig. 15.3 Drawing: author
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cosmological logos and its reason, harmony and beauty. The pronaos was

intentionally contracted with the given height, angles and proportions of the

columns. Their arrangement is a fusing of eustyle and systyle to create the

harmonic concept of Hermogenes of Alabander (Haselberger 1995b: 303).

According to the hypothesis of Davies et al. (1987), a pronaos equal in height to

the intermediate block would have destroyed the importance of the sun positions as

significant lines to integrate rotunda, intermediate block, pronaos and forecourt.

It is evident that in the rotunda the gnomon theory is theoretically

revolutionized: the centre point of the gnomon model is the motionless point of

the geometrical arrangement; the top of a gnomon, or the globe on top of an obelisk,

represents the motionless earth in the middle of the geocentric view of the cosmos.

The changing length and position of the shadow is thought of as a reflection of the
sun’s movement. In the rotunda, the motionless point of the gnomon model is

represented by the middle of the oculus, projecting the sunlight as a cylindric

beam into the darkness of the rotunda. It is, therefore, an image of the sun and

consequently, within the theory, the motionless point. If the sun is thought of as

motionless and situated in the centre of the cosmos, the movement of the light-shape

inside the rotunda is a reflection of the two movements of the earth: the axial

rotation (day and night) and the orbit through the zodiac on the inclined plane of

the eclipse (year). The rotunda is a document of the first Greek heliocentrical

hypothesis, inaugurated by Herakleides Pontikos, Aristarchus of Samos, and

Seleukos of Seleukia, both cited by Plutarch in Quaestiones Platonicae shortly

before the construction of the Pantheon (Van der Waerden 1988: 148–155)

(Fig. 15.5).

Fig. 15.4 Drawing: author
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The Ancient Dogma of “Sphere Harmony” and the Interval

System in the Pantheon

By studying the mathematical laws of the consonant or dissonant intervals of tones on

a monochord, the Pythagoreans developed a harmonic system of a double-octave.

Unlike the single octave, it can be divided exactly in the middle; division of the single

octave into two parts can only result in a fifth and a fourth. F. Zaminer (1984) has

reconstructed the double-octave system from the earliest Pythagorean ideas of

“sphere harmony”, a “symphonic” system of consonant harmony derived from the

movements of the planets and the intervals between them. Taking the earth-moon

relationship as the basic tone and assigning to it the number 1, the Pythagorean

tradition constructed the following proportional steps:

Fig. 15.5 Drawing: author
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first octave:

earth - moon ¼ 1

earth - mercury ¼ 1 1/3 (4:3 ¼ fourth)

earth - venus ¼ 1 1/2 (3:2 ¼ fifth)

earth - sun ¼ 2 (middle) (2:1 ¼ octave)

second octave:

earth - sun ¼ 1

earth - mars ¼ 1 1/3 (4:3 ¼ fourth)

earth - jupiter ¼ 1 1/2 (3:1 ¼ fifth above octave)

earth - saturn ¼ 2 (4:1 ¼ double-octave)

This system includes the distinction between inner (“in front of the sun”) and

outer (“behind the sun”) planets as one important condition of the heliocentric

hypothesis. The sun is the centre of the interval system, and the movements of the

planets are calculated in relation to the position of the earth. If an image of the

cosmos had to be built, it was important to use these proportions in the structure and

in the architectonic arrangement of the building and its design elements.

On first examination, the double-octave systemmay be discerned in the well-known

structure of the rotunda: the cornice divides the rotunda in 2:1, and the perimeter wall

itself is divided horizontally in 2:1 by the first ledge above the columns and pilasters.

Taking into consideration the movement of the sunrays passing through the opaion,
these proportions can be identified as an astronomical proportioning of the main

horizontal lines inside the rotunda, as described by Ptolemy with his model of the

so-called helikon (Munxelhaus 1976: 123). Together with the extended tetraktys of

Nicomachus of Gerasa (12:9:8:6) (Munxelhaus 1976: 23), it is possible to demonstrate

a harmonic arrangement of the movement of the light in correspondence to the

horizontal lines: the sunrays will be divided by the cornice in 12:6 (2:1/4:2,

Gnomon-Modell (heliozentrisch) octave/double-octave); the base of the attica creates

the proportion 12:8 (3:2, fifth), and the ledge above the columns 12:9 (4:3, fourth).

This proportion is the same on each day of the year with regards to the rays of the

sun at high noon; the dividing points replicate the interval system derived from the

sphere-harmony of planets (Fig. 15.6).

It is not possible to identify these proportions in the decorative elements of the

rotunda wall in either the horizontal or the vertical distances of significant

architectural lines. They are hidden by mathematical laws: the significant lines of

the proportions are neither vertical nor horizontal, but are instead the diagonals of

the different rectangles inside the attica. Relating vertical and horizontal distances

to these diagonals reveals the traditional proportions of the Pythagorean system, but

only in combination with √(a2 + b2), the “law of Pythagoras.” Thus, the “sacred

proportions” of the soul of the cosmos are incorporated into the structure of the

building by mathematical transformations.

The length of the whole complex can be reconstructed using these proportions,

because they significantly agree with astronomical distances, arithmetical relations
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to the number 28, the radius of the main circle of 147 ft and the Golden Mean

proportion. The rays of the sun during the winter solstice striking the forecourt

result in exactly the doubled diameter as a main module of the rotunda; this gives

the supposed position of the Arcus Pietatis Traiani. If the double-octave system is

applied, this would be the midpoint (representing the sun), so that another

2 diameters due north would have been the entrance of the forecourt; these

4 diameters correspond to 3 � 7 � 28 ft. The distance from the centrepoints

inside the rotunda to the supposed entrance corresponds to 700 palms (152.1 m),

or exactly the 109th part of the distance between earth and sun in the aphel (at the
summer solstice).4

Biography Now retired, former Presbyterian minister Gert Sperling has

researched topics concerning the Pantheon for over 30 years. He is well known

from his many reports on the subject. His most complete work is his book, Das
Pantheon in Rom: Abbild und Mass des Kosmos (Munich/Neuried: ars una
Verlag, 1999).
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Chapter 16

“Systems of Monads” in the Hagia Sophia:
Neo-Platonic Mathematics
in the Architecture of Late Antiquity

Helge Svenshon and Rudolf H.W. Stichel

Introduction

The Hagia Sophia in Istanbul, built between 532 and 537 in the time of Emperor

Justinian, is universally acknowledged as one of the few examples of outstanding

architecture in the world (Fig. 16.1).1

An ongoing stream of descriptions continues in trying to explain this fascinating

“wonder of space”. Exuberant praise of the building is to be found as early as

Procopius (Aedificia I.1.9 (1940)), the historian of Justinian, who especially and

exceptionally highlighted the extraordinary “splendour and harmony in the

measures” of the temple.

Despite various and extensive scientific discussion the design of Hagia Sophia

still escapes complete and sufficient understanding. Anthemius of Tralleis and

Isidorus of Milet, the two architects of the Great Church, were among the best

mathematicians and engineers of their time. Thus it seems natural to search for

latent mathematics hidden in the extent of the building, to determine the substantial

structures of mathematical relevance and finally to develop an explanatory model

for the design and for the meaning of this spectacular architecture.

First published as: Rudolf H. W. Stichel and Helge Svenshon, “Systems of Monads as Design

Principle in the Hagia Sophia: Neo-Platonic Mathematics in the Architecture of Late Antiquity”,

pp. 111–120 in Nexus VI: Architecture and Mathematics, Sylvie Duvernoy and Orietta Pedemonte,

eds. Turin: Kim Williams Books, 2006.

1 For a general description of the Hagia Sophia, see (Mainstone 1988; Kähler 1967).
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According to general consensus, one has to start from a barely visible square,

which can be found in the floor plan between the four large main piers. With a side

length of almost exactly 31 m, it is obviously planned with a high degree of

accuracy. Such a distance can usually and at first sight quite convincingly be

translated to exactly 100 ft. Following this hypothesis the diagonal between the

piers results in an irrational number of 100 � √2 (¼ 1.4142135. . .) and

consequently leads to a large number of further irrational building dimensions

caused by their geometrical dependence on the basic square with which it would

have been hardly possible to plan, draw and mark out this building precisely

(Fig. 16.2).

Fig. 16.1 Hagia Sophia, interior. Photo: Authors
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However, the problem can be solved by a surprisingly simple process employing

a mathematical ‘trick’. If one assumes the length of the square side to be 99 ft.

instead of 100, the diagonal can be calculated at almost precisely 140 ft.; the margin

Fig. 16.2 Hagia Sophia, floor plan with the basic square. Image: Svenshon
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of error is now only within a few thousandths of a foot and thus remains irrelevant

for the building procedure (Fig. 16.2).

A proposition for this idea can be found in early Greek mathematics: a series of

so-called side and diagonal numbers. Theon of Smyrna, in his mathematical

explanations of Plato’s works (Hiller 2009: 43, 5–8) was the first to formulate it

as a rule. Some 300 years later Proclus Diadochus’s commentary on Plato’s

Republic (Kroll 1901: II, 24f.) summarised it within a precise mathematical

formula:

The Pythagoreans and Plato thought to say that, the side being expressible, the diagonal is

not absolutely expressible, but, in the squares whose sides they are, (the square of the

diagonal) is either less by a unit or more by a unit than the double ratio which the diagonal

ought to make: more, as for instance is 9 than 4, less as for instance 49 than 25. The

Pythagoreans put forward the following kind of elegant theorem of this, about the diagonals

and sides, that when the diagonal receives the side of which it is diagonal it becomes a side,

while the side, added to itself and receiving in addition its own diagonal, becomes a

diagonal. And this is demonstrated by lines through the things in the second (book) of

Elements by him [Euclid] (Fowler 1990: 101) (Fig. 16.3).

Starting with a square with a side of 1 unit (¼ monas) and according to the rule

s1, s2 ¼ s1 þ d1, s3 ¼ s2 þ d2, . . . and d1, d2 ¼ 2s1 þ d1, d3 ¼ 2s2 þ d2, . . . ,

a series of squares is developed. Its ratio between side and diagonal delivers at

every further step of that series a more and more precise approximation to √2,
because the difference between the square of the diagonals and the double square of

the sides alternates solely between +1 and 1, i.e., in every case exactly one unit

(Heller 1956: 4). The unit, however, does not by itself determine the elegant result

of this rule, but, “similar to a sperm, that carries within itself all the attributes of the

future life seminal, is by itself capable to produce this ratio between diagonal and

side in a square” (Heller 1965: 335f).

Theon of Smyrna justifies this with unmistakable clearness: “Therefore since the

unit, according to the supreme generative principle, is the starting-point of all the

figures, so also in the unit will be found the ratio of the diameter to the side.” It is

those properties “which give harmony to the figures” (Thomas 1980: 133ff.).

Thus it is not surprising that the simple practicality of the calculation, combined

with the hinted cosmological claim, promotes the side and diagonal numbers an

important component of Greek applied mathematics and geometry (logistike and

geodaisia).
Especially in the writings of Heron of Alexandria, under whose name

mathematical and engineering handbooks were edited between the first centuries

A.D. and the Byzantine middle ages, numerous examples can be found that

document the application of this method of calculation for handling integer

approximations of √2 (Cantor 1907: 381; Meissner 1999: 140f; Smily 1944: 18–26).

Depending on the needs and the demand for accuracy these values were varied

but never deviated from the side and diagonal numerical series and their

derivatives.
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Consequently Didymus of Alexandria uses for the surface calculations of a

square block of wood with the side measurements of 10 ft. a diagonal measuring

“approximately 14 1/7” (¼99/7), which corresponds with the decuple of the very

accurate approximation of √2 provided in the sixth square of our series (Bruins

1964: I, 125: II, 84; III, 178).

In contrast, Heron in his Metrika (Schöne 1903: III, 57f), an extensive and

probably original treatise about the methodical visualisation of surface and

volume calculations, utilizes the slightly more inaccurate values of the third and

fourth square, the 7:5 and the 17:12 ratio respectively, the latter a more familiar

approximation for the classical antiquity and the middle ages. Those also appear as

exemplifications in the formulas of Theon and Proclus.

But the practical advantages of this calculation method were known outside

Greek mathematics as well: In the cuneiform texts of ancient Babylon and

especially in the so-called coefficient list of Susa, which was written in the early

second millennium B.C., the ratio 17:12 is used as a√2 constant (in the Babylonian

sexagesimal system in the form of 1:25 ¼ 60/60 + 25/60 ¼ 85/60 ¼ 17/12)

(Bruins and Rutten 1961: 25ff pl. 4/5). Derivations that can only be imaginable

with knowledge of the square series, can be found on the ancient Babylonian

cuneiform tablets Plimpton 322 (Neugebauer and Sachs 1945: 38ff, 130; Robson

2001) and VAT 8512 (Neugebauer 1935: 341f, pl. 27, 52; Hørup 2002: 234).

Moreover, Lennart Berggren’s synopsis of ancient and medieval approximations

of irrational numbers (Berggren 2002) shows that the use of single values from the

side and diagonal numerical series is verified in nearly all antique cultures.

This exceptional phenomenon is easily understood, as approximations for √2 can
be demonstrated geometrically in a simple fashion. Theon’s remark that the side

Fig. 16.3 System of side and diagonal numbers. Image: Svenshon, after (Heller 1965: 334)
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and diagonal numbers in particular give “harmony to the figures” has also a strong

pragmatic connotation.

The exact numerical proportion, which can be calculated with the previously

mentioned algorithm, result in the side measurement of a regular octagon, after the

choice of the appropriate initial dimensions (s/d numbers). The evidence for this is

again supplied by Heron’sMetrika (Schöne 1903: III, 57f). For the area calculation
of a regular octagon with a side length of 10, two right-angled triangles with the

rational sides of 5 and 12 and the hypotenuse of 13 are constructed (Fig. 16.4). Next,

Heron divides the longer side, which is also the perpendicular bisector of the

octagon side, in two sections measuring 5 and 7, whereby an isosceles,

orthogonal triangle with catheti measuring 5 is formed over the half side of the

octagon. The hypotenuse corresponds approximately to the larger section of the first

triangle’s longer cathetus and is logically numeralised with the rational value of 7 in

order to accomplish the following calculations of the octagon’s surface area on the

solid basis of the side and diagonal numbers. The efforts of the ancient geodesists

and logisticians to be able to perform their computations on the foundations

provided by expressible numbers, interlinked through a super-ordinate system,

hardly become clearer than in this example.

The fact that these are not isolated cases of special knowledge, which only a few

experts would be able to draw upon, but rather are broadly received common

knowledge is proven by a letter of Gregorius of Nyssa written in late fourth

century A.D. It was his request for administrative assistance to Amphilochius of

Iconium for the building of an octagonal church (Teske 1997: 85–88). Besides the

detailed description of the structure, precise measurements are mentioned in this

letter, which were used in order to calculate the costs for the building materials as

exactly as possible. The particular data provided by Gregorius allow the

reconstruction of a four-winged structure with an octagonal nucleus, whose

dimension between axes (octagon side ¼ 10 cubits, circumcircle radius ¼ 13

cubits, internal radius ¼ 12 cubits) correspond exactly to the ones found in

Heron’s Metrika (Fig. 16.5).

It is known that the bishop’s friend and colleague, Gregorius of Nazianz, had

included Heron among those he considered the three key figures in Greek

mathematics (Cantor 1875: 12), along with Ptolemaeus and Euclid. Therefore it

is only natural to assume that Gregorius of Nyssa was acquainted with Heron’s

handbooks.

This source illustrates how interwoven the building processes and mathematical

thought of late antiquity were. It also demonstrates how the theoretical and

philosophical fundamentals of scientific mathematics were introduced to

architecture through the application-friendly disciplines of geodaisia and logistike.
Anthemius and Isidorus, the architects of Hagia Sophia, were mathematicians

and engineers, trained theoretically as well as practically. It is a fact that both of

them re-edited older treatises but also wrote scientific handbooks of their own. The

imperial request to plan the Great Church put them before a task for which no

adequate experience existed. Therefore it is even more probable that for the

conceptual work they resorted to well-tried basic principles from ancient

handbooks of mathematics, which at the same time they possibly also amended.
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If one also considers the central role that the described octagon with its rational side

measurements plays in ancient surveying (Cantor 1907: I 559), it encourages the

assumption that this figure was used for the building in a greater scale as well.

Constructing an octagon from two congruent squares with the side and diagonal

lengths of 99 ft. and of 140 ft. respectively by rotating one to the other by 45� results
in the division of the squares’ sides in nearly rational segments measuring 29 ft./

41 ft./29 ft. (¼ 99 ft.), which correspond to the side and diagonal numerical

proportion of the fifth square. Precisely those numbers are now used

constitutively for further construction of the church’s floor plan.

Fig. 16.4 Heron’s octagon

construction. Image: Author

after (Schöne 1903: III, 57f)

Fig. 16.5 The octagonal

church according to

Gregorius of Nyssa. Image:

Author, after (Restle 1979:

pl. 58)
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The concept of the concha circles can serve as an example, because they can be

derived from the basic geometric figure in a few steps. If one completes the lines

resulting at the north-eastern main square sides to further squares with the side

measurements of 29 and 41 ft. the intersection point of the two squares also creates

Fig. 16.6 Hagia Sophia, construction of the conchs. Image: Author, after (Svenshon 2003)
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the centre of the concha circles that thus obtain their final size with an exact radius

of 20 1/2 ft. (¼ 41/2 ft.) (Fig. 16.6). Following this pattern, the orthogonal structure

of the floor plan can be developed simply and using only rational measurements,

which nearly without exception follow or descend from the side and diagonal

numerical series.

Given, however, that the Hagia Sophia is a centralized structure dominated by a

dome, a new aspect of calculating with irrational numbers is introduced. In a similar

way as with the square side and diagonal, the diameter of the circle also stands in an

irrational ratio to the circumference, defined by the number ð (¼3.14159. . .).
However, for the planning of the dome, expressible numbers were essential to

make the execution of both exact and conveyable calculations possible, directly at

the building site.

Greek mathematics offers a practical formula for this purpose as well, which is

compatible with the side and diagonal numbers. Archimedes positions the

approximation for ð between 3 1/7 and 3 10/71. Even though this value is very

accurate, it is logistically very inconvenient. Therefore Heron suggested the use

of the less exact value of 3 1/7 (22/7), which is still completely feasible for all

circle-related calculations (Schöne 1903: III, 67). In the many exemplary

calculations that follow, the fact that the radius and diameter numbers are only

slightly varied stands out. The number 7 comes into use most frequently, followed

by divisors or multiples of this value. This is because the number 7 in the

denominator can be easily reduced in the circumference formula U ¼ 2 � ð � r

and thus produce an integer value for the circumference. In hisGeodaesia, Heron of
Byzantium used exactly those examples for the measurement of circles (Sullivan

2000: 130ff) (Fig. 16.7):

70� 22=7 ¼ 220 ¼ 140=2� 22=7ð Þ
210� 22=7 ¼ 660 ¼ 2� 105� 22ð Þ

These values can be rediscovered in the dimensions of Hagia Sophia. The

diagonal of the main square measures exactly 140 ft. and defines the circle on

which the great pendentives rest. The diameter of the dome is 105 ft. (3/4 � 140)

and so further divisors can be derived that are also compatible with the system of

the side and diagonal numbers.

As shown in the plan in Fig. 16.8, the principal architectural measurements of

Justinian’s Hagia Sophia may be expressed by integer numbers. They all are related

by well-defined arithmetical and (also) geometrical proportions. Therefore one

might speak of a “system of monads”, though perhaps not in exactly the same

sense as this phrase is used in ancient mathematical philosophy, e.g., in Domninus

of Larissa in the fifth century A.D. (Boissanade 1832: IV.413) or even earlier in

Iamblichus (Pistelli 1894: 10, 11) in the fourth century A.D., who is allegedly citing

Thales of Miletus from the sixth century B.C. (not cited in Diels and Kranz 1951/

1952: I§11).

This “system of monads” found in the geometry of the Hagia Sophia was well

known in Classical Antiquity and widely discussed not only by mathematicians, but
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also in philosophical circles, as the creation of the world was understood as a

geometrical problem. As a locus classicus one may cite Plato’s Timaeus:

. . . all . . . kinds were without proportion and number . . . in such a condition as we should

expect for anything when deity is absent from it. Such being their nature at the time when

the ordering of the universe was taken in hand, the god then began by giving them a distinct

configuration by means of shapes and numbers . . . with the greatest possible perfection

(53a-b; trans. Crawford 1959).

In a paragraph following this quote, Plato declares the isosceles right-angled

triangle the very first of all shapes used by the demiurge.

When the neo-Platonic philosophers Theon of Smyrna, second century

A.D. (Hiller 2009: 43, 5–8) and Proclus Diadochus, late fifth century

A.D. (Kroll 1901: II, 24f), discuss at length the mathematical phenomenon of the

numbers of the sides and the diagonal of the square, they are giving no more than

an explanation of Plato’s theories. In the Theologumena Arithmeticae of

Pseudo-Iamblichus, a work of ca. 300 A.D., the Diametrik�a are again cited in

connection with the creation of the world as in Theon’s work combined with

other groups of integer numbers through which all is determined spermatikôs
(through the sperm) (De Falco 1922: 79).

In the fourth chapter of Introduction to Arithmetic by Nicomachus of Gerasa, a

philosopher of Roman imperial times, one might find the same perception, but

expressed with a higher degree of verbal complexity:

. . . arithmetic existed before all the others in the mind of the creating God like some

universal and exemplary plan, relying upon which as a design and archetypal example the

creator of the universe sets in order his material creations and makes them attain to their

proper ends . . . (D’Ooge et al. 1926: 813).

This text was broadly received, especially in the sixth century A.D. Almost the

exact same words can be read in the commentaries of John Philoponus (Hoche

1866: 10) and of Asklepius of Tralleis (Tarán 1969: 30), both relying on the lessons

Fig. 16.7 Heron’s circle

measurement. Image:

Sullivan (2000: pl. 36)
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of Ammonius, son of Hermeias, a scholar of Proclus Diadochus, teaching in

Alexandria. It is also repeated in the Latin translation of Nicomachus by Boethius

(Friedlein 1867: 10, 10–15), the well-known statesman executed in the times of

Theodorich. The same thought is expressed in poetical form in his consolatio

Fig. 16.8 Hagia Sophia, floor plan with the most important measurements. Image: Author, after

(Svenshon 2003)
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philosophiae: “You steer the world by reason everlasting, Creator of heaven and

earth . . . . . . You bind the elements by numbers . . .” (O’Donnell 1984: 3, 9).

According to the text that proceeds this impressive poem, it is to be understood

as a prayer to the ‘father of all things’, the God of Plato’s Timaeus.
The architects of Justinian’s Hagia Sophia may have heard of this interpretation,

especially because they were in friendly contact with Eutocius of Ascalon, a former

pupil of Ammonius. Unfortunately it cannot be proven that Anthemius of Tralleis

and Isidorus of Miletus were indeed conscious of the philosophical discussion while

designing the church. However, if in their time and age someone would have

proclaimed, “As God when creating the kosmos, Anthemius and Isidorus in

building Hagia Sophia are using only integer numbers”, no doubt the meaning of

this proclamation would be comprehended by all. As a matter of fact Procopius of

Caesarea, historian of Justinian, speaks of God’s assistance in conceiving the Hagia

Sophia: “Whenever one goes to this church to pray, one understands immediately

that this work has been fashioned not by human power or skill, but by the influence

of God” (Mango 1972: 76). In his 562 A.D. poem for the inauguration of the Hagia

Sophia, Paulus Silentiarius similarly mentions the “guiding advice of the immortal

God” (De Stefani 2010: 301). In a simpler fashion the metaphor of the divine

architect is used by the author of the anonymous ninth century A.D. Byzantine

“Tale about the construction of Hagia Sophia”: “The plan of the naos was shown to

the emperor in a dream by an angel of the Lord” (Preger 1901: I, 83).

Thus according to our interpretation of the design principles of the Hagia Sophia

meaning executing the concept of the building solely in rational numbers, while

using principles of Classical logistike (applied mathematics) as well as

Neo-Platonic philosophy one may find himself in this church very close to God’s

‘ratio’ (his Logos), even before attending at the common and everyday rituals and

prayers of the Christian service, through which men’s approach to God is achieved

in a more manifest way.2
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TARÁN, L. ed. 1969. Asclepius Trallianus. In Nicomachi arithmeticam introductionem scholia.
Philadelphia: University of Pennsylvania, p. 30.

TESKE, D. 1997. Gregor von Nyssa: Briefe. Stuttgart: Hiersemann.

THOMAS, I. 1980. Selections Illustrating the History of Greek Mathematics, with an English
Translation. London: Harvard University Press.

242 H. Svenshon and R.H.W. Stichel



Part III

Theories of Measurement and Structure



Chapter 17

Measure, Metre, Irony: Reuniting Pure

Mathematics with Architecture

Robert Tavernor

Measure: mens (L - mind), mensurare ¼ measuring/measure

Metre: metron (Gk), metrum (L - measuring rod), mètre (Fr) ¼ metre

Irony: eironeia (Gk - simulated ignorance), eiron - dissembler and simulator

of power ¼ irony

Rulers and Ruled

No civilisation has existed without measures, and each has described measures in a

manner specific to its needs. To exist at all, measures must be practical and useful,

and most have their origins in everyday experience. At some stage in the

development of a civilised society measures will be refined, standardised and

regulated, and represented physically. To endure and be accepted by hundreds,

thousands, even millions of people—across great civilisations and around the

globe—measures must reflect and extend the authority of leaders. Measure is

therefore a statement and record of the changing balance of power and

independence. It is an expression of culture.

Consequently, measures are also symbolic. Throughout history measures have

embodied (literally, as we shall see) and demonstrated the potency of their creators.

The Egyptians attributed the creation of measure to Thoth, the Greeks to Hermes,
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and Judaic-Christian literature to Cain—the first offspring of Adam and Eve—and

thus to the beginnings of civilisation. In ancient times, leaders of communities had

the status of heroes and were elevated above the ordinary, being regarded as more

than mere mortals. Kings and queens were presented as divine beings in

communion with the heavens, and as channels of heavenly power and authority

they bore gifts from the gods with which to benefit their subjects.

Heroes, kings and queens—as earthly representatives and even representations

of gods—were correspondingly idealised and idolised. Their bodies were captured

in paintings and statues, works of art that sought to be as perfect and beautiful as

their subject. Their idealised forms, or the staffs and rods that defined their status,

provided the earliest recorded linear standards: weight and capacity were derived

from these principal lengths (Chisholm 1997).

Fundamental Measures

Although nomenclature varies from one ancient kingdom to another, the articulated

parts of the body are usually used to define small measures and are identified in

relation to the totality of the whole body. Thus, the digit (the breadth of the middle

part of the first joint of the forefinger) represented 1 part, the palm (handbreadth)

4 parts, the span 12, the foot 16, the cubit 24, the double pace 80, and the fathom

(the distance between the tips of the fingers of arms outstretched) 96 parts

(Chisholm 1877, p. 27). Sets of linear relations of this kind were usually

calibrated on rods and defined as a standard, from which replicas were made for

general usage. As kings were regarded in ancient times as symbols of sacred and

earthly authority, the original standards were safely stored in the treasuries of

temples, and replicas of them displayed in public places.

When the notion of the perfect body was not the basis of a nation’s linear

measures, easily tradable and taxable items in the kingdom—particularly cereal

grain—were used as standards. Invariably, however, these related back to the

proportions of a perfect body. In Roman times the uncia or ‘inch’ was introduced

as one-twelfth part of the foot measure. During the reign of King Edward II of

England in the fourteenth century, an inch was defined as ‘three barley corns, dry

and round’ (Cox 1957, pp. 23–4). Alternatives to a body-centred system were rare.

For although the random selection of any familiar and conveniently sized items and

actions may be related to one another to create a system or canon, they will not

necessarily make for useful or memorable comparison. There can be no doubt that

Western culture would have difficulty comprehending the irrationality of the

ancient Indian scale of measures in which the yôjana (a day’s march for an army)

variously equals 16 or 30 or 40 li, and is also equal to
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eight krôsas (keu-lu-she): a krôsa is divided into 500 bows (dhanus): a bow is divided into

four cubits (hastas): a cubit is divided into 24 fingers (angulis): a finger is divided into

7 barleycorns ( javas): and so on to a louse (yûka), a nit (likshâ), a dust grain, a cow’s hair, a
sheep’s hair, a hare’s down . . . and so on for seven divisions, till we come to an excessively

small grain of dust (anu): this cannot be divided further without arriving at nothingness . . .
(Si-yu-ki 1885: I, p. 70, quoted in Cox 1957, pp. 23–24).

This is why measures are usually rationalised in relation to a single coherent

form—and nothing is more readily accessible in everyday experience than the

human body and its constituent parts.

It has been generally accepted in Western societies since Greek antiquity that a

natural quality cannot be understood until it has been measured, or can be compared

with something that is measurable. The ancient Greeks also realised that qualities

could be described through a medium other than words, that is, through number.

Their numbers were more than quantities, for they represented qualities too.

Pythagoras defined the extraordinary properties of certain numbers, such as 6 and

10. He considered these integers to be perfect numbers, because they can be

regarded as the sum of their parts: 6 is the sum of 1 + 2 + 3; and 10 the sum of

1 + 2 + 3 + 4. Plato described the perfection of the natural harmony that existed in

the world and universe in the Timaeus. He adopted Pythagoras’s perfect numbers,

and the mathematical canon of united numbers and qualities he describes is

consequently known through a resolution of their separate conclusions, as the

Pythagoreo-Platonic system. Polykleitos of Sikyon, a sculptor working in the fifth

century B.C. in ancient Greece, gave form to this system of numerical perfection.

Famously, he created a perfect sculpture of a man in that its form visibly expressed

a total body in which its parts had a harmonious correspondence with the whole

(Fig. 17.1). This visual perfection could also be recorded through relationships of

ideal numbers, a system that subsequently became known as ‘the canon’ of perfect

proportions.1

Polykleitos’s source for this canon probably had its origins in Egyptian antiquity.

Whatever its origins, it was regarded by artists and architects as a symbol of natural

physical and heavenly perfection—and so it remained across two millennia,

through the civilisations of ancient Greece and Rome, and down to the European

Renaissance. Indeed, it continues to provide a fundamental point of reference for

notions of artistic proportion (and distortion) in modern art and design.

In Greek culture, philosophy, mathematics and art achieved a union that

underlay the system of weights and measures used in the ancient world. Marcus

Pollio Vitruvius, the Roman architect working and writing in the first century

B.C. absorbed this tradition, and stated—what was probably a commonly held

belief—that the finest buildings of antiquity reflected in their form the human

proportions of the Greek canon (Vitruvius 2009: III.1). Since the numbers of

these proportions were derived from Pythagoras and Plato’s numerical definition

of the universe, Vitruvius was aware that the measuring units he used to design

1 See, for example, Stewart (1978, pp. 122–31) and Rykwert (1996, pp. 104–112).
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buildings—the finger, palm, foot and cubit—and the perfect number relations

between them, are a combination derived from the measures of the universe and

of the idealised body of man. Consequently, body, architecture and the natural

world were in perfect harmony, and the body of man was regarded as a symbolic

microcosm of the harmonious universe.

Subsequently, Italian Renaissance artists and architects represented the idealised

Vitruvian man graphically as Homo quadratus, a naked figure with outstretched

limbs, bounded by a circle and square (Fig. 17.2). They also conflated this—

essentially pagan—figure with the symbol of Christianity, the crucified body of

Christ (Fig. 17.3) (Dodds and Tavernor 2002).

This association of the quality and quantity of measure with a sacred body

contrasts starkly with the bodily detachment—intellectually and physically—of

the modern era towards measure. The body is no longer used to define our official

Fig. 17.1 Doryphorus.
Florence, Uffizi. One of

many Roman stone copies

of Polykleitos’s bronze

statue of the spear-bearer

Doryphoros, which is

believed to embody his

canon of bodily proportions.

Photo: Courtesy Joseph

Rykwert
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measuring standards, as modern—post-Enlightenment—science cannot recognise

the relevance of bodily perfection to a universal system of measures.

The ancient union of mathematics and words is at the root of this modern

dilemma. By using numbers and symbols as the principal language to relate

abstract and concrete ideas, the sciences during the last two-and-a-half millennia

have become increasingly mathematical and reductive: that is, differences in

quality have been reduced to unitary differences of quantity. As qualities have

been turned into abstract scientific quantities, so everything can be dissected into

ever-smaller units of measurement, that is, into measures incomprehensible to and

Fig. 17.2 Homo quadratus. Woodcut from Cesare Cesariano’s Vitruvius (1521: Liber tertius,

XLIX)
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remote from everyday human experience: a level of absurdity that parallels the

ancient Indian scale referred to above.

Science and the Metric

The seeds of this situation were unwittingly sown by Sir Isaac Newton, the father of

seventeenth-century Enlightenment science. Newton still believed in a universe of

qualities where God permeated everything, from earth to the limitless boundaries of

space. However, being everywhere, Newton’s God was necessarily incorporeal—

and lacked the identifiable body granted to mortals (Newton 1704; Voegelin 1948).

Newton’s friend, the philosopher John Locke, extended this reasoning to society

and politics. Locke rejected a traditional belief in the divine origin for human

government and argued instead that sovereignty resides not in any one individual,

Fig. 17.3 Christ Crucified.
Filippo Brunelleschi. Wood

and painted sculpture, early

fifteenth century. Florence,

Santa Maria Novella. Photo:

Author
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but in all the people.2 In so doing, he provided the intellectual basis for social and

political revolution in France in 1792, which succeeded in uprooting the French

monarchy, and destroying the symbolic validation of political power through the

King’s sacred body.

The execution of King Louis XVI the following year was both sacrilegious

(as regicide always is) and, through the implementation of the recent invention of

the guillotine, intentionally impersonal. An elected but undemocratic body of the

nation’s representatives—citizens—were to rule in place of the divine authority of a

solitary monarch. However, the committees they constituted failed to unify the

nation until a charismatic leader of men—Napoleon Bonaparte—filled the void in

individual leadership Revolution had created. Napoleon was to become the nation’s

emperor, its surrogate king (Outram 1989). His was a modern reflection of the

king’s majesty and dominion, though (officially, at least) not his divinity.

Irrational notions about the divinity of kingship have been mostly expunged

from modern thinking, although democracy (another ancient Greek concept), has

flourished in the advanced societies of the modern era. Today, we place our faith in

elected leaders—rarely superior models of humanity, moral or physical—and an

advanced technological society; a value system shaped by (what we assume to be)

the dispassionate objectivity of modern science. Rationality is always held higher

than subjectivity in this system, and rational science is preferred to the subjectivity

of art—which is consequently poorly understood and mistrusted.

This modern imbalance is very evident in the changed response to the

representation of human proportion in art and architecture (Dodds and Tavernor

2002). While for thousands of years the body was seen to reflect and embody

universal harmony and was consequently related qualitatively to a prevailing

artistic canon, since the Enlightenment, scientists—in tandem with

philosophers—have scrutinised the human body with detachment. It is now

something to be dissected, analysed and quantified in ever-smaller microscopic

and atomic detail as is the metric system, a product of revolution and modern

scientific thinking.

The measurements of the internationally controlled metric system are precisely

calibrated abstract quantities, verified scientifically. They make no reference to

everyday experience or to art and symbolism, and have no obvious relation or

relevance to human form, ideal or otherwise. Indeed, the metric system is

deliberately anti-body. It developed from Enlightenment scientific concerns for

precision and international uniformity, and the demands of ordinary people—

originally mainly in France—for an equitable system that would provide

uniformity across the civilised world.3 In the search for ‘rational’ and universal

measures appropriate for all nations on earth, the metre rod, which is at the root of

2 This is encapsulated in two books by John Locke published in 1690: An Essay Concerning
Human Understanding and Two Treatises of Government.
3 For the origins of the metric system see in particular Bigourdan (1901) and De La Condamine

(1747).
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the metric system, was conceived as a fractional representation of the physical

dimensions of the earth in relation to the mechanical laws that were understood to

be controlling the forces of nature and the universe (Fig. 17.4).

A rational scientific conception was never delivered. The earth is not a pure

sphere and the metre rod is not and could never be a precise fraction of the earth’s

circumference as French scientists had intended.4 Nor have metric measures proved

to be finite, or any more ideal than the standards derived from the idealised human

form. Two hundred years after it first came into being the metric system has been

redefined several times, until a new definition was conjured up by scientists from

the insubstantial elements of the universe itself—of light and gas, using technical

apparatus of their own contrivance.5 The metre has become a measure without

relation to corporeal form or even common human experience; it is an abstract

scientific measure without tangible value.

Fig. 17.4 Commemorative medal of the metric system, designed in 1799 but not cast until 1840.

Pavillon de Breteuil, Sèvres, Paris. Image: Gonon (1840)

4 This was widely appreciated in France and abroad even while the metric system was being

defined. See for example the report by the United States Secretary of State Thomas Jefferson to the

US Congress in 1790 in (Peterson 1984, pp. 393–396).
5 In 1953 a ten-nation advisory committee meeting at Sèvres recommended the abandonment of

the physical metric prototype in favour of its definition through wavelengths of light. Finally, on

14 October 1960, it was agreed to return to a truly ‘natural’ and scientifically verifiable definition

for the metre rod derived from the radiation of the orange-red light emitted by the radioactive

krypton-86 atom. Correspondingly, it was agreed in 1960 that the metre should equal 1,650,763.73

wavelengths in vacuum of the radiation corresponding to the transition between the levels 2p10 and

5d5 of the krypton-86 atom. Since 1983 it has been defined, more simply (though no more

comprehensibly), as the distance light travels in vacuum in 1/299,792,458 (that is, in

approximately 0.0000003) of a second. See Danloux-Dumesnils (1969, pp. 36–42).
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The Metre Reconsidered

I have introduced measure here as an essential part of the history of ideas, because it

is more usually presented one-sidedly, as a catalogue of quantities of quasi-

scientific status. Indeed, metrology is usually defined as a ‘science or system of

weights and measures’.6 Numbers are calibrated with decimal point precision in

comparative tables and accepted as verifiable truths around the globe. Neither

scientists nor historians have considered measure as an art: as the outcome of

social and political conditions, or as a potent instrument in the hands of creative

artists, painters, sculptors and architects, those who provide the tangible imagery of

a culture. Yet, a nation’s measuring rod is the most succinct and precise statement

of the dominating forces within a civilised society, such that the history of measure

is always a history of ideas and of creativity, which has been promoted for and by

the powerful.

Although the need for measures has remained constant for five millennia it is

evident that the idea and reality of what measure represents has been transformed.

Measure, I argue, needs to be recognised as more than an abstract calibrated length

of inert material: it is a deliberate consequence of human thought—in Latin, mens
(the root of ‘measure’)—and the dissembler—in Greek, eiron (the root of

‘irony’)—and simulator of power. Indeed, the metre rod might be better

understood as the measure of all irony.

My interest in dimensional measure here is in its potential to combine the arts

and sciences. Measure is essential to the making, understanding, use and enjoyment

of a man-made object in a particular cultural setting. In particular, it is appropriate

to regard measure through the medium of architecture, as in this discipline art,

science and culture are entwined, and the human form is necessarily respected and

celebrated. Since antiquity and until the late eighteenth century, idealised notions of

the human body dominated measure as they did art and architecture, until this

tradition was shattered—probably irrevocably—during the French Revolution,

with the decapitation of King Louis XVI, the separation of Church from State,

and the attempt to rescind all measures associated with the ancien régime. In place

of traditional, anthropomorphically-related systems, the Revolutionaries sanctioned

and promoted the scientifically-inspired metric system ‘for the benefit of all

mankind’. But in the process of its refinement and adoption internationally, the

metre became disembodied, non-figurative and abstract—terms that, perhaps more

than coincidentally, are also applied to the art and architecture of the twentieth

century.

6 See for example (Chisholm 1877) and (Klein 1988). Problems associated with the assumption

that mensuration is a science is well discussed in (Fernie 1978).
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Humanising the Earth: Le Corbusier’s Modulor

During the twentieth century, some major artists and theorists questioned the

absurdity of the scientific search for precision through abstraction, of separating

body from measure, and challenged whether the metric system is appropriate for the

everyday needs of the greater part of society. I will refer here to the example of the

Swiss architect Le Corbusier (born Charles Édouard Jeanneret-Gris) who described

the metre as “nothing but a length of metal at the bottom of a well at the Pavillon du

Breteuil” (Le Corbusier 1954, p. 57), the headquarters of the International Bureau

of Weights and Measures laboratory at Sèvres to the south of Paris. Le Corbusier

designed a new measure called le Modulor (the Modulor) with which architects and

engineers might humanise the metric system, by combining it with classical

geometry and modern anthropometrics. The Modulor was developed during (and

despite) the Nazi occupation of Paris during World War II, in his studio in Paris at

35 rue de Sèvres, en route to the International Bureau of Weights and Measures

laboratory at Sèvres. Post-war, as his fame and opportunities increased, Le

Corbusier applied the principles of the Modulor to the design of buildings that

had a major impact on the development of modern architecture.

Le Corbusier sought a universal measure for architecture that would be

applicable in any nation. The metre rod did not satisfy his objectives, for it is “a

mere number without concrete being: centimetre, decimetre, metre are only the

designation of the decimal system”, whereas he would design the Modulor with

numbers that “are measures” (Le Corbusier 1954: 60): by relating meaningfully to

human physicality and culture. Le Corbusier assimilated recent and ancient

aesthetic theories about natural beauty in art and architecture, and the Modulor is

a measuring scale derived from ideal notions about the measurements of the

human body.

An early encounter with Schuré’s Les Grands Initiés (Paris, 1908) is thought to
have predisposed Le Corbusier to believe that Pythagoras, an ‘initiate’ of universal

natural order, was uniquely relevant for his own ambitions for architecture

in the twentieth century. He considered Pythagoras to be a pre-eminent

philosopher-mathematician, whose observations of the natural world enabled him

to reveal the universal truths underpinning harmony and proportion (Benton 1987,

p. 241). He was also familiar with the compositional studies of Renaissance art and

architecture made by three nineteenth-century art historians, Adolf Zeising,

Heinrich Wölfflin and August Thiersch, who were pioneers of art history as an

academic discipline and who reached influential conclusions for modern designers

on the fundamental rules of classical beauty. Zeising (1854) attempted to prove that

the Golden Section is the key to all morphology, both in nature and art. He referred

in particular to the thirteenth-century Italian mathematician, Leonardo of Pisa,

better known as Fibonacci. As is well known, the Fibonacci number series tends

towards the perfect ratio of 1:1.618, which was called the ‘Divine’ proportion by

Luca Pacioli in the early sixteenth century and subsequently became known as the

Golden Section. Wölfflin (1889) and Thiersch (1893) proposed that successful
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works of art and architecture embody fundamental geometries that recur throughout

their composition. Wölfflin further argued that rectangles of similar proportions

could be used to demonstrate the perfect compositional qualities of classically

designed façades.

During his Purist period from 1918 to 1929, Le Corbusier produced paintings

composed of equilateral triangles and the Golden Section. Similarly, as an architect

he used tracés régulateurs (regulating lines) to study past buildings and to ‘purify’

the elevations of his own designs for buildings. Le Corbusier emphasised in his

early designs ‘the placing of the right angle’ and the role of rectangles proportioned

by the Golden Section, which he illustrated in a chapter on ‘Regulating Lines’ in

Vers une Architecture (Towards a new architecture (1923)), arguably the most

influential architectural treatise of the twentieth century. His publication, Le
Modulor (1948/9), describes the Golden Section series—the séries d’Or (hence

‘Modul-Or’ or Golden module)7—arranged as two related scales colour coded red

and blue that relate to the body, head and outstretched arm of a man.8 He proposed

that measures or proportions of the Modulor man be taken from either coloured

scale, separately or together.

Initially, Le Corbusier determined the overall length of the Modulor according to

the height of “the Frenchman”, 1.75 m tall. He extended this to an upper dimension

of 2.164 m, the height of the Frenchman’s raised hand, a dimension that was also

arrived at by doubling the height of the Frenchman’s solar plexus, or ‘mid-point’,

above the ground. Unfortunately, the Frenchman’s height of 1.75 m led to awkward

subdivisions of British Imperial feet and inches and so proved difficult to use in the

dominant English-speaking Anglo-Saxon nations, Britain and the USA, which had

refused to embrace the metric system. Le Corbusier’s assistant Py resolved this

dilemma. (How aptly named he was for research into number and proportion,

though one wonders whether Py existed beyond Le Corbusier’s fertile

imagination!) Unshackled by the national chauvinism of his co-researchers, Py

made a seemingly random and somewhat audacious observation: “Have you never

noticed that in English detective novels, the good-looking men, such as the

policemen, are always six feet tall?” Immediately, as Le Corbusier relates the

story, the Modulor was adjusted in length to 6 ft, or 1.83 m and, almost

miraculously writes Le Corbusier, “the gradations of a new Modulor . . .
translated themselves before our eyes into round figures in feet and inches!”

(Le Corbusier 1954: 56).9 Le Corbusier made the blue scale twice the size of the

red. The red scale descends according to the Fibonacci series from 6 ft, or 72 in. to

7 See the comments of a correspondent in Le Corbusier (1955, pp. 91–2).
8 See the sketchModulor man demonstrating the red and blue scales that Le Corbusier made while

aboard the ship Vernon S. Hood in January 1946 while en route to New York (Le Corbusier 1954:

51, Fig. 18).
9 For a more complete account of Le Corbusier’s development of the Modulor and the contribution

of Hanning, among others, see (Matteoni 1894).
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4 in. the blue from 144 in to 8 in 144, the multiple of 12 � 12 in or 2 � 6 ft, also

appears in the Fibonacci series (Le Corbusier 1954: 82).

It is probably no coincidence that Le Corbusier’s choice of primary colours for

the Modulor scales relate to the scientific experiments of an American physicist,

A. A. Michelson, who had evaluated the primary colours of light as a means of

precisely formulating the length of the metre rod during the late nineteenth century.

Michelson suggested that the light from the metal cadmium would provide a

suitable alternative standard to a physical measuring rod, such that the metre

length could be defined as equivalent to a specific number of wavelengths of the

primary coloured light of the cadmium spectrum—red, green and blue (Michelson

1894). Using light to define the metre found an increasing number of supporters in

the global scientific community post-World War II, and on 14 October 1960

international agreement was eventually reached to set the metre against the

radiation of the orange-red light emitted by the radioactive krypton-86 atom

(Danloux-Dumesnils 1969, pp. 36–42) Scientists regarded this as a return to a

natural and verifiable definition for the metric system—although, compared to Le

Corbusier’s Modulor, their notion of natural measure is obscure to all but the high

priests of science.

Le Corbusier enjoyed myth making, although the evolution of the Modulor was

less magical than he would have us believe. He undoubtedly initiated the search for

a more meaningful human measure, but an Englishman, Gerald Hanning,

completed the groundwork that defined his revolutionary scale. From the outset,

according to surviving evidence, Hanning worked up a set of dimensions based on

the height of man in Imperial (British) inches. On receipt of this number sequence

in the spring of 1944, Le Corbusier recommended Hanning read a recently

published book by Elisa Maillard on the Golden Number sequence, Du nombre
d’Or (Paris, 1943). Hanning then subdivided these dimensions using the ratio of the

Golden Section to create the Modulor. It would appear that although Hanning had

begun with subdivisions of the Modulor in inches, Le Corbusier was persisting with

the dimensions of a metric “standard” man of 1.75 m up to 1950 (Benton 1987:

245). By the end of 1947 the Modulor was sufficiently resolved for Le Corbusier to

send a manuscript version of it to Prince Matila Ghyka in London for comment.

Ghyka was the author of Esthétique des proportions dans la nature et dans les arts
(Paris, 1927), and Le Nombre d’Or (Paris, 1931) and was well placed to offer Le

Corbusier an authoritative opinion on its relation to the Golden Section. He was

sufficiently enthusiastic about the Modulor to write an explanatory and supporting

account of it in the Architectural Review, published in 1948 (Ghyka 1948).

Le Corbusier first applied the Modulor to his innovative and influential housing

concept, the Unité d’habitation built Marseilles between 1946 and 1952 (Fig. 17.5).

The Unité has an overall form 140 m long, 24 m wide and 56 m high, and the

Modulor permeates every part of this complex building (Le Corbusier 1954:

pp. 132–153). Yet Le Corbusier states that only 15 of its scalar measurements

were required, which he enshrined in a block or “stele of measures” at the

building’s base (Le Corbusier 1954, p. 140). As Le Corbusier concluded about

this innovative structure: “We may safely say that such exactitude, such rigour of
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mathematics and harmony have never before been applied to the simplest accessory

of daily life: the dwelling.” (Le Corbusier 1954, p. 136).

It is perhaps no coincidence that this building was the first to be designed with

the Modulor—the metre modified. The name Le Corbusier chose for this building,

intended for communal living anywhere on the globe, theUnité d’habitation, can be
read as a subtle inversion of the Système International d’Unités, the united

international system that regulated the metric weights and measures, and which

Le Corbusier had been so keen to subvert. He intended that the inhabitants of his

Unité would dwell in harmony with nature in a vessel that celebrated the form,

senses and intellects of humanity. It was a valiant attempt to reunite body and

architecture—to put people before krypton atoms and the speed of light, to save

mankind from the abstractions of pure science.

Fig. 17.5 Unité d’Habitation, Marseilles. Le Corbusier. Roofscape. Photo courtesy of Tim Benton
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Le Corbusier’s Modulor was truly natural. It was born from the union of the

world’s two major measures, the metric and imperial systems, comprehended

through the human body. He succeeded in reuniting tradition and modernity, and

in making measure useful and meaningful again. Le Corbusier had the qualities of a

universal man in an era in which the tendency for specialisation and the separation

of the arts and sciences undermined such a concept. It is ironic then that the ultimate

sanctioning of the Modulor came from Einstein in 1946 as the Modulor and Unité
were being conceived. As Le Corbusier proudly—almost breathlessly—boasts:

I had the pleasure of discussing the ‘Modulor’ at some length with Professor Albert Einstein

at Princeton. . . . In a letter written to me the same evening, Einstein had the kindness to say

this of the ‘Modulor’: “It is a scale of proportions which makes the bad difficult and the

good easy.” There are some who think this judgement is unscientific. For my part, I think it

is extraordinarily clear-sighted. It is a gesture of friendship made by a great scientist

towards us who are not scientists but soldiers on the field of battle (Le Corbusier 1954,

p. 58).

The twentieth century’s greatest scientist and architect reached a natural accord.

Such unions will need to be more commonplace if the human body is to be properly

honoured in the architecture of the future.
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WÖLFFLIN, H. 1889. Zur Lehre von den Proportionen. Basel: Benno Schwabe & Co.

ZEISING, A. 1854. Neue Lehre von den Proportionen des Menschlichen Körpers. Leipzig: Duncker
& Humblot.

17 Measure, Metre, Irony: Reuniting Pure Mathematics with Architecture 259



Chapter 18

Façade Measurement by Trigonometry

Paul A. Calter

Introduction

We are all familiar with the trigonometry textbook problem, “The angle of
elevation to the top of a building from a point 200 ft from . . . Find the height of
the building,” and such methods are hardly new (Fig. 18.1). Here we describe a

trigonometric method that not only measures heights of points on a building, but

widths and depths of those points. It will give the height, horizontal position, and

depth, (x, y, and z coordinates) of each selected point. To get the depth dimension,

the procedure requires two theodolite setup positions, with a set of readings taken

from each location. This second setup also provides a second set of numbers with

which to check the first. This method will work with walls that are leaning out of

plumb, have offsets, are curved, or have projecting elements, like sills or cornices.

This procedure does not require the theodolite to be at the same height at each

position, thus is suitable for sighting from sloping ground. Further, it is not required
that the theodolite positions be at the same distance from the wall. The procedure

will give two values for each dimension (six figures for each point). The pairs of

x coordinates and of z coordinates are not independent, and serve only as a check on
the calculation. The two y coordinates are independent and can be averaged to give

a final value.

This method was developed for the purpose of measuring Medieval and

Renaissance structures in Italy, for research in the history of architecture. To

measure a building, a historian is most likely to use a tape measure from

scaffolding set up for that purpose, a direct but costly and laborious method.

Dimensioned drawings are also made by stereophotogrammatry, such as those for

First published as: Paul Calter, “Façade Measurement by Trigonometry”, pp. 27–35 in Nexus I:
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Independence Hall in Philadelphia (U.S. National Park Service 1992: 33). This

chapter describes an alternative, suggested to me by architect Kim Williams. A

literature search revealed few references to a trigonometric method. Martin Kemp,

talking about Filippo Brunelleschi, says “On his first visit to Rome, as described in

his biography, he made measured drawings of Roman buildings, using his

understanding of standard surveying techniques ‘to plot the elevations’, using

measurements ‘from base to base’ and simple calculations based on triangulation.

The basis for such procedures would have been the ‘abacus mathematics’ he learnt

as a boy” (Kemp 1990: 11). His source for this information is Antonio Manetti’s

Life of Brunelleschi (Manetti 1970: 152–153). A search of Manetti’s biography

Fig. 18.1 Fifteenth-century survey exercise. Image: Calandri (1491: 100v)

262 P.A. Calter



found reference to a visit to Rome, but no mention of his use of trigonometry to

measure façades. In fact, there is some doubt expressed by the editor, Howard

Saalman, that Brunelleschi ever went to Rome, and that this passage was added to

enhance the stature of Manetti’s subject.

The Method

1. Study the façade. Take photos. Measure by manual taping whatever can be

easily reached. Make a preliminary drawing. Choose and number the target

points. Place adhesive targets on the wall, where possible.

2. Select or lay out a base line. The intersection of the façade and pavement makes a

good base line, if it is straight and horizontal. Use a stretched cord if no suitable

physical base line is available, as shown in Fig. 18.2. The figure shows what is

possibly the most difficult measuring situation, a curved building on sloping

ground. Mark two theodolite setup points on the ground or pavement, which can

be at different heights and at different distances from the base line. Record their

horizontal distance c apart and their horizontal distances dA and dB to the base line.
3. Set up and level the theodolite at location A. With the telescope horizontal, sight

and mark a point T on the wall.

4. Set a plumb line over the other theodolite location. Sight the plumb line with the

theodolite and set the horizontal scale to zero.

5. Sight each target. For each, record the horizontal angle α and the vertical angle θ,
Fig. 18.3.

6. After each target has been sighted, move the theodolite to the second location.

With the telescope horizontal, sight a point on the wall vertically in line with

point T, found in step 3. Measure the vertical distance Δ from that point to T.

7. Repeat step 5, recording the horizontal angle β and the vertical angle φ for each

target point.

8. Enter all measurements into the computer spreadsheet and print out the x, y, and
z coordinate of each target point.

9. Make a final dimensioned drawing by hand or by use of a CADD program.

Derivation of Façade Equations

The equations the spreadsheet uses to reduce the data are easily derived. Starting

with the original taped measurements, Fig. 18.2,

c ¼ Horizontal distance between theodolite locations:

dA and dB are the horizontal perpendicular distances from base line to theodolite

locations.
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Δ ¼ Vertical offset between theodolite tubes

From these we get (Fig. 18.4),

δ ¼ Horizontal offset ¼ dB � dA

ε ¼ Angular offset ¼ arctan δ=cð Þ
L ¼ distance AA0between A&B parallel to baseline ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � δ2
p

:

Fig. 18.2 Theodolite setup. Drawing: author
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For each target P (Fig. 18.3) we have,

a ¼ horizontal angle at A, from B to target

θ ¼ vertical angle at A, from horizontal to target

β ¼ horizontal angle at B, from A to target

φ ¼ vertical angle at B, from horizontal to target:

Our coordinate axes will be as shown in Figs. 18.2 and 18.3, with the origin at A,

with the x axis parallel to the baseline and directed to the right, the y axis vertical

Fig. 18.3 Oblique view.

Drawing: author

Fig. 18.4 Plan view.

Drawing: author
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and directed upwards, and the z axis perpendicular to the x and y axes, and directed
towards the building. A simple translation of axes will later place the origin at any

selected point, such as a corner of the building.

We now calculate the x coordinate of point P. Referring to Fig. 18.3,

γ ¼ 180� α� β

a ¼ c
sin α

sin γ

b ¼ c
sin β

sin γ

From the plan view (Fig. 18.4) we see that

cos α� εð Þ ¼ x

b

x ¼ b cos α� εð Þ

From position B:

cos β þ εð Þ ¼ L� x

a

x ¼ L� a cos β þ εð Þ

Note that the x coordinate obtained from position B is not independent of that

obtained from A, but is useful for checking the computation. Next we find the

y coordinate of point P. From position A:

tan θ ¼ y

b

y ¼ b tan θ

From position B:

tanϕ ¼ yþ Δ

a

y ¼ a tanϕ� Δ

Here, the values of y found from each setup position are independent. Next we
find the z coordinate of point P. From position A,

sin α� εð Þ ¼ z

b
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From which,

z ¼ b sin α� εð Þ

From position B,

sin β � εð Þ ¼ zþ δ

a

From which

z ¼ a sin β þ εð Þ � δ

As with the calculation for x, the two values of z are not independent.

Field Test at VTC

The method was tested by taking measurements of the front façade of Green

Academic Centre (Fig. 18.5) at Vermont Technical College.1 The figure shows

eleven target points, all visible from both theodolite locations. These were sighted

using a Wild T2 theodolite, capable of a precision of about 0.2 s of arc. The baselines

were taped three times using a standard surveyor’s tape graduated in millimetres, and

the readings averaged. The data was reduced using Lotus 123 spreadsheet. Some of

the distances measured by theodolite were also taped, for comparison.

The following table gives the three coordinates of each target point, in metres.

Point x y z

1 �3.231 7.310 7.337 15.091

2 �3.230 6.451 6.443 15.091

4 1.381 7.363 7.351 13.271

5 1.381 (6.423) (6.153) 13.212

7 6.779 7.348 7.342 13.254

8 6.776 6.445 6.444 13.263

9 6.770 –0.275 –0.274 13.280

10 16.208 7.335 7.350 15.024

11 16.208 6.450 6.457 15.024

13 11.319 2.945 2.946 14.579

14 14.913 (3.042) (2.942) 14.508

1 The measurements were made with the able assistance of Douglas Pennington of Vermont

Technical College.
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The figures shown in parentheses for points 5 and 14 are considered measurement

errors, and were discarded. Note that a pair of values is given for each y coordinate,

corresponding to the two equations used for their calculation. These, of course,

should be identical for each target point, and their difference gives us some

measure of the precision of the method. For point 1, for example, the two values of

7.310 m and 7.337 m have an average of 7.324 m. Each differs from this by 0.0135m,

or 0.18 %. For the other points, the deviation from the average is also less than 0.2 %.

Next let us compare points that are expected to be at the same height on the

building, or at the same depth, or on the same vertical. For example, points 1, 4, 7, and

10 are at the top of the building, and should all have the same y coordinate. The

average y for these four points is 7.342 m, with a maximum deviation from this value

of 0.032m. These deviationsmay represent inaccuracies in the measurements, or may

represent actual differences in height of these points. Note that points 1 and 10 are at

opposite corners of the building, nearly 20 m apart, and that points 4 and 7 are on the

offset portion of the façade. Other comparisons are given in the following table.

Target points Average distance (m) Max. deviation from average (m)

Horizontal 1, 2 3.2305 0.0005 (0.015 %)

Horizontal 4, 5 1.381 0

Horizontal 7, 8, 9 6.775 0.005 (0.07 %)

Horizontal 1 0, 1 1 16.208 0

Vertical 1, 4, 7, 10 7.342 0.0032 (0.44 %)

Vertical 2, 5, 8, 11 6.448 0.009 (0.14 %)

Depth 1, 2, 10, 11 15.058 0.0034 (0.23 %)

Depth 4, 7, 8, 9 13.269 0.0013 (0.10 %)

On the basis of this one test, it would appear that, with moderate care, accuracies

within 0.5 % are easily obtained. There is no theoretical limit to the accuracy of the

method. If better accuracy is needed, then repeated measurements can be made

from the two theodolite setup points, or better, another set of readings taken from a

third setup point.

Fig. 18.5 Green Academic

Centre. Drawing: author
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Chapter 19

Ancient Architecture and Mathematics:

Methodology and the Doric Temple

Mark Wilson Jones

Introduction

For researchers into mathematical aspects of architectural design a multi-faceted

subject often referred to by the umbrella-term ‘proportion’ it can be disconcerting

how little weight is given to this field by some authorities on general architectural

history. Sir John Summerson, for example, the author of the evergreen Classical
Language of Architecture, impatiently dismissed most past thinking about

proportion as “a vast amount of pretentious nonsense” (Summerson 1980: 8).

Since the time of Summerson’s comment (which was first published in 1963)

proportional studies have made significant advances thanks to a higher standard of

rigour, as indeed is now expected by the editors of academic journals, the Nexus
Network Journal among them. Scholars who specialize in other areas do on

occasions profitably tackle mathematical aspects of design a case in point being

Janet DeLaine’s inclusion of an instructive analysis of the layout of the Baths of

Caracalla in a monograph primarily concerned with its construction (DeLaine

1997) yet there still remains the diffuse, if not clearly articulated, view that

proportional studies can be left to one side by mainstream scholarship without too

much loss.

Part of the reason for this state of affairs lies in the continuing perception that

when it comes to proportion it is possible to prove anything.1 Dissatisfaction also

arises when proportion is treated as a subject unto itself; too often it is not

sufficiently clear how the mathematical attributes claimed for a particular

First published as: Mark Wilson Jones, “Ancient Architecture and Mathematics: Methodology and

the Doric Temple”, pp. 149–170 in Nexus VI: Architecture and Mathematics, Sylvie Duvernoy and
Orietta Pedemonte, eds. Torino: Kim Williams Books, 2006.

1 Dinsmoor (1923, 1975: 161, n.1). For further scepticism see (Wilson Jones 2000a: 4–6).
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building engage with the design process that created it. This article proposes a

methodology based on a series of criteria or tests which proportional studies should

address in order to counter these problems, and in the general interest of

plausibility.2 Most of the material discussed is culled from antiquity and my own

research in particular, but it is hoped that this methodology will have wider

relevance. It will then be applied to a modular reading of Doric temples of the

Greek classical period, while preparing the ground for a forthcoming fresh

interpretation of the ‘poor old Parthenon’.

The Criteria

The proposed criteria may be summarized under the following headings:

I. Degree of ‘fit’

II. Corroboration in the form of texts

III. Corroboration in the form of non-textual sources, e.g., drawings

IV. Comparability

V. Mensuration

VI. ‘Pay-off’ in terms of design

VII. ‘Pay-off’ in terms of practicality

VIII. Corroboration at the level of detail.

The greater the number of criteria that are satisfied by a particular proposal, the

greater the weight it carries. In practice, however, it will be rare for all of them to be

addressed simultaneously; there might in many instances, for example, be no

textual evidence to draw on.

I. Degree of ‘fit’ This is the most obvious test, yet it is one of the most

problematic. Proportional studies often focus on single buildings or on a

relatively small body of comparative material; in such circumstances statistical

methods utilized in fields such as medical research are of limited applicability.

Statistical tools are being developed for the metrical investigation of archaeological

and architectural material (Pakkanen 2002; Baxter 2003: 231–233), but it is

important to recognize that they do not provide absolute objective evidence, since

they necessarily involve human discretion in establishing parameters, in selecting

data sets, and in setting thresholds of significance. The match between a

hypothetical project and its execution is inevitably subject to opinion, given

uncertainty surrounding a number of issues: constructional tolerances; the

rounding off or not of ideally intended dimensions; the precision of modern

surveys; the difficulty of knowing whether highlighted limits and relationships

were actually significant to the original designer. It is not my aim to pursue such

2 Some of the aspects that concern this article were treated in (Wilson Jones 2000a: 4–11), but in a

less methodical fashion.
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questions here, beyond a plea for as much as possible of the information that a

reader might need for evaluation, including hypothetical measurements/ratios and

actual measurements/ratios, as well as discrepancies between them, along with

clarification of any reliance on reconstruction and/or interpolation (Wilson Jones

2000a, b: 71–74).3 The degree of discrepancy that is considered acceptable is again

a matter of interpretation. Absolute differences seem more pertinent over small

distances, percentage differences over large ones; anything over half a percentage

point for medium to large distances is a poor match or a very poor one depending on

circumstances.4 (We might expect greater accuracy in relation to a simple

rectangular plan than a complex affair involving polygonal geometry and/or

curvature.) Scale drawings can never be more than indicative.

II. Corroboration in the form of texts Textual evidence is potentially decisive,

even if its interpretation is rarely straightforward. A notable resource is Andrea

Palladio’s Quattro Libri; yet the published and built projects notoriously diverge.5

In the ancient context the fragmentary nature of the evidence makes such exercises

more vexatious, as illustrated by the difficulty of reconciling the reconstruction of

the Mausoleum of Halicarnassus with Pliny the Elder’s account of it.

Vitruvius bequeaths us the general principles of ancient architectural design and

much more besides, but for one reason or another he may not always be our best

guide as regards specifics (Wilson Jones 2000a, b: 34–38, with further

bibliography). Suffice it to note the case of the Corinthian capital, and his

omission of the proportional relationship that dominated its design in antiquity:

the equality of the height of the capital to its cross-sectional width (Wilson Jones

2000a, b: 145–151, 154–155) (Figs. 19.1 and 19.2). This particular proportion may

not be Vitruvian [De Architectura IV.1.11–12], but otherwise the kind of
relationships he mentions, and the kind of ratios he recommends (1:1, 2:1, √2,
1/9, 6/7 and so on) do indeed strike a convincing tone. Inferences may also be made

about general practice on the basis of documentation relating to single projects, for

example the specification for the Arsenal at Piraeus or the correspondence relating

to the construction of Milan Cathedral.

III. Corroboration in the form of non-textual sources Architects’ drawings can

yield significant insights into design intentions. Elaborate as they are, with

successive re-workings and pentimenti, Borromini’s plans for S. Carlo alle

Quattro Fontane reveal the simple underlying geometry based on paired

3 For further observations see Coulton (1975).
4 In appraising measurements relating to the Corinthian order (Wilson Jones 2000a: 221–225),

I proceeded on the premise that a discrepancy of less than 3 cm represented an excellent match,

that one between 3 and 6 cm indicated a possible match, and that anything greater indicated a lack

of match. For a notional column height of 9 m, 3 cm and 6 cm represent thresholds of 1/3 and 2/3 %

respectively.
5 See the discussion in Mitroviæ (2004).
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equilateral triangles. Outside of Egypt, nothing quite comparable is known from

antiquity, but there does survive a corpus of full-size templates on stone surfaces.

One inscribed on the wall of the Hellenistic temple of Apollo at Didyma reveals a

Fig. 19.1 Design framework for orthodox Corinthian columns in the Roman imperial period.

Solutions with different characteristics can be achieved using a common set of proportional

principles that operate in such a way as to allow flexibility. The key dimensions are the total

height of the column, the height of the shaft, the lower diameter of the shaft (Y) and the diameter of

the flare of the shaft where it meets the base (X). The height of the capital and its cross-sectional

with also equal X. The most common relationships apart from 1:1 are 5:6, 2:3, 1:2, 1:8 and 1:10.

The ratio between X and Y is not fixed, but is most commonly 7:6, 10:9 and 11:10 (drawing by

author). In orthodox imperial Corinthian columns the shaft height is five-sixths that of the column,

this being the key to a series of proportional schemes. Meanwhile the diameter of the shaft is often

either one-tenth of the total height or one-eighth that of the shaft (especially if monolithic). In

addition the height of the base may be 1/2 X, or 1/2 Y. X must vary with respect to Y so as to suit

the overall column proportions. Drawing: author
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Fig. 19.2 Principal work-stages involved in the production of a typical Roman capital of the

imperial period. Drawing: author
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method of remarkable intelligence that was used to define the entasis of the peristyle

columns.6 Inscriptions too can be pertinent, as in the case of the measurements

sometimes inscribed on the bottom of imperial Roman monolithic column shafts,

discussed below.

IV. Comparability While analyses of unusual or ‘one-off’ buildings necessarily

stand on their own, the relative conformity of many ancient building types

facilitates comparison. In more recent periods, when it is far more common to

know the identity of a building’s designer, comparisons might be made across the

oeuvre of a single architect. Comparative analysis is a powerful tool, one which

counteracts the all-too-human tendency to select material which fits one’s

argument, while ensuring that the results pertaining to a single case are neither

fortuitous nor misleading (Coulton 1974: 61). Jim Coulton has produced some

compelling results on the basis of the comparative study of Greek buildings and

architectural elements (Coulton 1974, 1979, 1989), and I have made this a

cornerstone of my own research, for example on the proportions of the Roman

Corinthian order. Bearing in mind that there existed a substantial minority of

variations and exceptions, Fig. 19.1 summarizes the orthodox pattern of

Corinthian design in the imperial period. It is also instructive to compare the

remains of executed buildings with partly-finished components known from

quarries, stockpiles and shipwrecks (see Fig. 19.2).

Comparative analysis served to confirm the findings of Jean-Claude Golvin’s

study, namely that the majority of monumental amphitheatres were laid out with

variations on two oval geometries, one based on the 3:4:5 triangle, the other on the

√3 or bisected equilateral triangle (Golvin 1988; Wilson Jones 2000a, b: 60–61, 88–

89) (Fig. 19.3). When considering reasonably substantial sample groups, it is

neither necessary nor desirable to try and resolve every single member.

Exceptions and compromises are only to be expected of any grouping of the

products of human creativity, and if half to two-thirds can be seen to conform to

a pattern, that is quite sufficient to demonstrate that a certain procedure existed and

was reasonably if not universally popular.

V. Mensuration Antiquarians as long ago as the Renaissance appreciated the

desirability of expressing measurements in the units originally employed

(Günther 1998). The stability of Roman metrological systems allows foot values

to be presumed with relative confidence; it thus emerges from both surveys and

inscriptions that column shafts gravitate towards increments of 4 ft or, more

commonly, 5 ft (15, 20, 25, 30 and 40 ft being the most popular lengths). At the

6Haselberger (1980, 1997). On Graeco-Roman architectural drawings in general see (Haselberger

1997) and (Wilson Jones 2000a: 50–58, with further bibliography). Surviving scale drawings on

stone tend to be plans of record, associated with maps or testaments, but one on the base of the

Pergamonese statue group of the Dying Gaul does seem to have had a design purpose.
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same time the heights of complete Corinthian columns often match multiples of 6 ft

(see Fig. 19.1), so it is easy to deduce the existence of a rule that fixed the height of

the shaft as 5/6 that of the whole (base, shaft and capital combined).7 The

dimensions of monumental amphitheatres corroborate the focal triangles just

Fig. 19.3 Methods for laying out monumental civic amphitheatres using the ‘Pythagorean-

triangle-and-inscribed-circle’ scheme (left), and the ‘Equilateral-triangle-and-inscribed-circle’

scheme (right). Drawing: author

7 (Wilson Jones 2000a: 147–151; Appendix B). Correlation with measured diameters also

shows that shafts often had (or were supposed to have had) a slenderness ratio of 8 (Wilson

Jones 2000a: 155).
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mentioned; the 3:4:5 triangle used for the amphitheatre at Capua, for example,

measures 75:100:125 ft (Wilson Jones 1993: 416–417, 420, 433, fold-out, B).8

VI. ‘Pay-off’ in terms of design The motivation for instilling architectural

creations with mathematical harmony is abundantly clear over a wide sweep of

history. In line with the Greek principle of symmetria (mathematical harmony),

number, measure and proportion were thought to confer beauty, and to be a proper

preoccupation for artists and builders alike.9 There exists a wealth of sources to this

effect, most obviously Vitruvius’s treatise and those of his Renaissance followers.

Eminent modern scholars have written handsomely on this intellectual

underpinning, which can be taken for granted for the purposes of this article.

The most convincing interpretations to my mind are those that go beyond this

general motivation, identifying benefits or ‘pay-offs’ of an architectural kind, ones

that might arise out of a marriage between mathematics and the character of a

specific design. For example, Bramante’s choice of 1:1, 2:1 and √2:1 ratios for the

Tempietto (Fig. 19.4) makes perfect sense in the context of a centralized plan based

on concentric circles and cardinal axes, since these ratios fit an ad quadratum
sequence habitually used to resolve this kind of composition (Wilson Jones

1990). Not only do the measures employed underwrite such a scheme (witness

the interior radius of 10 palmi), but so does the type of floor Bramante chose. This is

an intricate pattern of small coloured tesserae and white borders in the medieval

Cosmatesque tradition that underwent something of a revival in the fifteenth

century. Given that the Tempietto otherwise promoted the latest architectural

fashion this was arguably an out-moded choice, one which Bramante presumably

favoured because its ad quadratura pedigree so suited his groundplan.

Arithmetic, however, was generally the ‘default’ mode of design in the Roman

period, and this holds true both for ancient Greece and the early modern period.

Geometrical ratios, primarily √2 and √3, come to the fore in a substantial minority

of cases, for solving what Vitruvius called “difficult questions of symmetria” (De
Architectura I.1.4), or in more general terms when there was some benefit
associated with their use, as at the Tempietto. Hence geometry was used for

setting out theatres, due to their radial layout, and amphitheatres, due to their

oval (or sometimes elliptical) plan. Hadrian’s Villa near Tivoli constituted a

veritable laboratory for testing innovative spatial effects based on the alternation

of curve and counter curve. Planning therefore involved the extensive manipulation

of compasses, just as it did in the case of the Annexe at Baiae discussed below

(Jacobson 1986; MacDonald 1993; Wilson Jones 2000a, b: 93–94).

8Wilson Jones (1993, 416–417). Meanwhile, understanding that the Punic cubit continued to be

used in North Africa helps identify instances where the imperial norms underwent a degree of

revision, with amphitheatre layouts conceived in Roman feet being adapted for a workforce

accustomed to the local cubit.
9 On the importance of symmetria see Gros (1989), (Wilson Jones 2000a: 40–43), with further

bibliography.
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VII. ‘Pay-off’ in terms of practicality It is surely no accident that the two most

common geometries used for amphitheatres were based on the 3:4:5 and √3
triangles. Among the simplest mathematically defined triangles, both offer almost

fool-proof ways of assuring that the axes of the oval met at a right-angle. The

metrical standardization of Roman shafts provided other kinds of benefit. Having

originated from quarries over a wide geographical spectrum, partly-finished

monoliths of marble, granite and other fine stones circulated all around the

Mediterranean.10 Standardization served to streamline operations; architects,

patrons and suppliers all must have become familiar with the ramifications of this

practice, a point of indirect benefit from conception through to completion. The

norms of design pertaining to the Corinthian capital brought comparable

advantages (Fig. 19.2). Quarry workers roughed out capitals using coarse tools,

the pick, point and mallet, while still working near the rock face (Wilson Jones

1991: 133 ff), a context in which simple proportional guidelines, chiefly 1:1, 3:2

and 1:2, simplified the fashioning of these relatively complex elements and reduced

the risk of error (The same could hardly be said of the golden section, for example).

It is true that Roman builders are renowned for their practical bent, yet few

architects of any period would have conceived proportional schemes that were

entirely divorced from practical considerations.

VIII. Corroboration at the level of detail The plausibility of a particular proposal

can be significantly enhanced if it accounts for some feature or detail for which no

other explanation comes readily to mind. The Roman Corinthian column is again

instructive; the rule stipulating that 5/6 of its height be assigned to the shaft implied

that a relatively tall base should accompany a squat capital, and vice versa, as

Fig. 19.4 The plan of the

Tempietto, Rome

(Bramante), with overlaid

ad quadratum scheme.

Drawing: author

10 For the marble trade in general see Ward-Perkins (1992), Fant (1993), (Wilson Jones 2000a:

152–165). See also various volumes in the ASMOSIA series of published conferences.
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Fig. 19.5 Sequence of geometrical operations underlying the generation of the plan of the

‘Annexe’ to the so-called Temple of Venus at Baiae, near Naples. The left side relates to the

layout of the ground floor, the right side relates to the layout of the upper floor, while h. shows the
upper level (dotted) superimposed on the lower level. Drawing: author
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indeed is frequently attested (Fig. 19.1). There is no other known precept, Vitruvian

or otherwise, that would predict such a combination.

Turning to individual buildings, the tendency of Roman architects to manipulate

wall thicknesses to suit their proportional schemes is illustrated at S. Costanza,

where the desire to achieve internal and external diameters of 75 and 100 ft resulted

in an unnecessarily thick outer wall one almost as wide as the ambulatory vault it

supported. The ‘Annexe’ attached to the rotunda known as the Temple of Venus at

Baiae offers another commentary on this approach (Fig. 19.5). It so happens that the

geometries of the upper and lower levels did not coincide in some respects. A

compromise was introduced in the interest of continuity of surface, resulting in

different centres being used for the inner and outer faces of the small counter curves

or lobes opening off of the central space. This explains one of the oddities of the

Annexe plan curving stretches of wall that are not uniform in thickness, but that

resemble instead portions of a crescent moon. The lobe walls are also curiously

thick, given that they carry only tiny vaults. Again this was price to be paid for

implementing geometries chosen on account of a concatenation of mathematical

niceties and whole number dimensions (Jacobson and Wilson Jones 1999; Wilson

Jones 2000a, b: 94–100).

Judging the Modular Hypothesis Against the Criteria

The same methodology can now be brought to bear on a single hypothesis, one that

pertains to a historical period other than those so far considered. The next section

reviews a comparative study of ten Doric temples from the classical period with

hexastyle (six-column) fronts: the temples of Zeus at Olympia, of Hephaistos at

Athens, of Apollo at Bassae, of Poseidon at Sounion, of Nemesis at Rhamnous, of

the Athenians at Delos, of “Juno Lacinia”, “Concord” and “the Dioscuri” at

Agrigento, and the unfinished temple at Segesta (see Fig. 19.6 below). The focus

is limited to the end façades of temples, since this aspect is likely to have governed

to a significant extent that of the rest (Wilson Jones 2002: 682).

Scholarly investigations into the design of Doric temples have generated such a

plethora of interpretations that some might judge the problem unsolvable. The

elusive nature of Doric temple design may in part be attributed to the frequent

lapses of regularity and symmetry which Vitruvius called “faults and incongruities”

[De Architectura IV.3.1]. These flowed from the problem of configuring the

peristyle and its frieze, and achieving axial coordination of triglyphs and columns

at the same time as whole triglyphs at the corners.

While in the archaic period architects appear to have relied on rules of thumb in

conjunction with a successive or stage-by-stage approach, by the second quarter of

the fifth century they had acquired more control over the design process, becoming

able to instil their projects with improved coherence, neater proportions, and greater

regularity in column spacing. In agreement with previous studies, such as Dieter

Mertens’s examination of Sicilian temples (1984a, b), my study confirms a

preference for accurate arithmetical ratios. A ratio of 2:3 between the widths of
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triglyphs and metopes became the norm, which makes column spacings equal to

five triglyph widths. This was not just one consideration out of many, but rather the

lynchpin of a modular design method based on the nominal triglyph width. It is

important to note that the nominal, ideal, triglyph module is not the same as the

actual triglyph width. The former tends to be a simple expression in feet and/or

smaller metrical units (usually the dactyl or digit, 1/16th of a foot), while the latter

reflected adjustments made in the course of detailed design and construction. Thus

three of the sample group of ten temples (at Athens, at Sounion and the smallest of

the three at Agrigento) share a common ideal module of 25 dactyls or ca. 511 mm,

while in practice their average triglyph widths measure about 515, 511 and 510 mm.

Fig. 19.6 (continued)
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Many of the most striking proportional relationships governing major horizontal

and vertical limits of classical temple façades yield whole such modules, a case in

point being the 2:1 relationship between the axial width of the peristyle and the

column height at Sounion, or 24 M:12 M (see Fig. 19.6).

Fig. 19.6 Modular interpretations of the façades of four Doric temples of the classical period

erected on the Greek mainland: the Temple of Zeus at Olympia, the Temple of Apollo at Bassae,

the Hephaisteion in Athens, and the Temple of Poseidon at Sounion. Each façade is scaled to a

common ideal nominal triglyph width or module of 1 unit (M). Drawing: author

19 Ancient Architecture and Mathematics: Methodology and the Doric Temple 283



There is not space here to go fully into the details of the modular hypothesis.

Instead its main features can be illustrated by the façades of four mainland temples

shown in Fig. 19.6, as well as three tables relating to all ten temples studied. The

first table sets out overall widths (Table 19.1), the second sets out salient limits of

height (Table 19.2), while the third identifies key proportional relationships

between measures of width and height (Table 19.3).

Contrary to what some see as a natural antagonism between modules and

proportions, these tables demonstrate that the Greeks’ handling of modular design

was not a technique that operated in opposition to proportional methods. Modules

and proportion went very much hand in hand, according to an approach which

privileged what might be called ‘modulated proportions’. Architects preferred

modular values that returned simple proportions, and proportions that returned

whole modules if not convenient fractions of them. It was not always possible to

get both modules and proportions to work in tandem, but this was the aim. Similarly

whole modules and very simple ratios would have been the ideal, but because of the

complexities of design fractional values of modules (e.g., 26 ¾ or 27 ½) and ratios

such as 12:7 and 20:9 were perfectly admissible. Designers evidently subscribed to

different approaches; in establishing the width of temple fronts most seem to have

privileged the axial width of the peristyle, but others privileged the stylobate width.

Because of the values assigned to column diameters (as well as the existence of a

projection or oversail between the face of the corner columns and the edge of the

stylobate), it proved impossible to achieve whole modular values for both the axial

width and the stylobate width.

It is important to understand that the principle of modulated proportions could

apply not just to the overall design, but also to smaller scale composition. The 2:3

relationship between the widths of triglyphs and metopes set the tone for

entablature design, which frequently yields a web of simple proportions. This

made the bay width 5 M, while other salient proportions also coincide with

simple modular expressions. Entablature schemes like those illustrated in

Fig. 19.7 are proof that numerical harmony can be expressed equally well in

terms of both proportions and triglyph modules; indeed, the modular approach

probably rose to prominence in part because this was so.

In broad terms Doric buildings famously display an ‘evolutionary’ progression,

with a long term trend towards lighter and more elegant proportions. In reality, as

Coulton (1979) has pointed out, this was not a continuous gradual process, but

rather one marked by relatively abrupt jumps or stages that might be likened to

Stephen Jay Gould’s concept of ‘Punctuated Equilibrium’. When creating a new

project architects evidently carefully appraised the composition of preceding

buildings of note; in this process certain proportions might be repeated while

others would be modified. We have been used to visualizing this process with

reference to proportion; a previously employed ratio of 9:4 (2.250) might for

example be refined to 20:9 (2.222) or 11:5 (2.200). But if anything such

adjustment was easier in modular terms; starting perhaps from the 4 M height of

the entablature of the Temple of Zeus at Olympia, and desiring a lighter effect, the

architect of the Hephaisteion by this token opted for a reduced value of 3 7/8 M.
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This modular hypothesis may now be subjected to the eight tests discussed

earlier.

I. Degree of ‘fit’ The tolerances between predicted and actual values are small.

Those for the whole number modular values listed in Table 19.1 are frequently less

than 1 cm, and only on two occasions do they exceed 3 cm. A similar trend

characterizes Table 19.2. A notional mean error lies between 1 and 1½ cm, that

is to say less than 0.2 % for dimensions such as the heights of a column or an order,

Table 19.1 Dimensions in plan of Doric temples expressed in terms of modules equivalent to the

nominal width of triglyphs

Temple

Overall width in

modules

Width of stylobate in

modules

Axial width of peristyle in

modules

WITH A THREE-STEP KREPIDOMA

Olympia, Zeus 29? 26 1/2 24 1/8

Bassae, Apollo 30 27 1/2 25

Athens,

Hephaisteion

30 26 3/4 24 1/2

Sounion, Poseiden 29 3/5 26 1/5 24

Rhamnous,

Nemesis

30 26 1/4 24

Segesta, unfinished 30 26 1/2 24

WITH A FOUR-STEP KREPIDOMA

Agrigento, Juno 32 27 1/2 25

Agrigento,

“Concord”

32 27 1/2 25

Agrigento, Dioscuri 32? 27 24 2/5

Delos, Athenians’

Apollo

30 1/4 26 1/2 24

Table 19.2 Dimensions in elevation of Doric temples expressed in terms of modules equivalent to

the nominal width of triglyphs

Temple

Height of order inc. geison

(M)

Height of order exc. geison

(M)

Height of column

(M)

MAINLAND & ISLANDS

Olympia 14 13 1/4 10

Athens 15 14 3/8 11 1/8

Bassae 15 14 7/12 11 1/4

Sounion 16 15 1/4 12

Rhamnous 14 3/4 13 3/4 10 3/4

Delos 16 2/3 16 12 2/3

SICILY

Agrigento, Juno 14 3/4 13 3/4 10 1/4

Agrigento,

Concord

15 1/2 14 1/2 10 7/8

Agrigento,

Dioscuri

16 15 11 2/5

Segesta 14 3/4 14 10 2/3
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and less than 0.1 % (one in a thousand) for overall measurements of width.11 As

regards ratios between measures of width and height, these typically produce

discrepancies between ½ and 2 cm (Wilson Jones 2001: 688, Table 3). As might

be expected, tolerances tend to be smaller for well-preserved marble buildings, and

larger for poorer preserved ones in humbler material.

II. Corroboration in the form of texts Here is essentially the same modular

approach to design that Vitruvius was four centuries later to recommend for the

Doric order, no doubt on the basis of Greek treatises. Meanwhile the preference for

commensurable dimensions and proportions concurs broadly with the thrust of

surviving specifications like that relating to the Arsenal at Piraeus (Jeppesen

1958). It is true that Vitruvius envisaged different proportions, more triglyphs per

bay and concedes a half metope at the end of the frieze as opposed to the usual

triglyph [De Architectura IV.3.3–8]. None the less, the core principle is manifestly

Table 19.3 Dimensions in plan and elevation of Doric temples expressed along with the ratio

between them

Different relationships occur as follows:

The axial width of the peristyle could enter into a relationship with the total height of the order:

Temple Axial width of peristyle in modules Height of order inc. geison (M) Ratio

Bassae 25 15 5:3

Sounion 24 16 3:2

Or to the height of the order excluding the geison:

Temple Axial width of peristyle in modules Height of order inc. geison (M) Ratio

Delos 24 16 3:2

Segesta 24 14 12:7

Or to the height of the columns:

Temple Axial width of peristyle in modules Height of order inc. geison (M) Ratio

Bassae 25 11 1/4 20:9

Segesta 24 10 2/3 9:4

Sounion 24 12 2:1

Alternately the stylobate width could be related to the height of the order:

Temple Axial width of peristyle in modules Height of order inc. geison (M) Ratio

Olympia 26 1/2 13 1/4 2:1

Agrigento, “Juno-

L.”

27 1/2 13 3/4 2:1

Agrigento, Dioscuri 27 15 9:5

11 Individual tolerances relating to the seven temples which display whole number modular values

for the axial width are as follows: 6 mm (Bassae), 3 mm (Hephaisteion), 13 mm (Segesta), 10 mm

(Juno), 24 mm (Concord), ca. 2 mm (Rhamnous) and 0 mm (Delos). Individual tolerances relating

to the four temples which display whole number modular values for the height of the order

including the geison are as follows: 5 mm (Olympia, as reconstructed), 10 mm (Hephaisteion),

32 mm (Bassae), 5 mm (Sounion), and for the three with whole number modular values for the

height of the order excluding the geison: 50 mm (Delos), 1 mm (Agrigento, Dioscuri), 3 mm

(Segesta). The large divergence at Delos suggests that either the supposed height of 15 modules

was not in fact intended, or that a modification was introduced at a late stage of design.
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the same: all dimensions should be convenient multiples or fractions of a module,

and it is surely no chance coincidence that his module, ostensibly half a column

diameter, equates to the triglyph width (Waddell 2002: 6; cfr. Falus 1979;

Wesenberg 1994). That the module should derive from some physical member of

the building such as a triglyph is underlined by the derivation of the word embater,
which Vitruvius uses on occasions as an alternative for modulus.12 Discounting his

preferred wider central bay, his method predicts a stylobate width for a hexastyle

Fig. 19.7 The entablatures of the so-called Temples of Juno-Lacinia (top) and Concord at

Agrigento (bottom) analyzed in terms of proportions, modules equivalent to the nominal ideal

triglyph width (M), and dactyls (d). This module is in both cases equivalent to 30 dactyls or digits

(1/16th parts) of the so-called Doric foot of ca. 328 mm. Drawing: author

12 It seems that in earlier usage embater denoted a physical element of a building, suggests as a step

or plinth (or a triglyph?), see Coulton (1989: 86). Vitruvius may have learned from Hellenistic

treatises of the modular/gridded plans of buildings such as the Temple of Athena Polias at Priene.
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front equivalent to 27 triglyph modules, this being perfectly consistent with the

values obtained in practice (i.e., a range of 26½–27½ M). In the past scholars have

tended either to trace Vitruvius’s account only as far back as the Hellenistic period,

or doubt its legitimacy altogether. Yet it if the present hypothesis stands up to the

other tests that follow, it would seem rather that he perpetuated a variation of fifth-

century procedures.

III. Corroboration in the form of non-textual sources, e.g., drawings Evidence

of this kind that may be invoked here concerns metrology. Archaeological artefacts

demonstrate the existence of the foot units implicated in this interpretation: ones

that are sometimes referred to as ‘Doric’, ‘Attic’ and ‘Common’ feet (this is modern

terminology, subject to different preferences). Since mensuration is discussed

below, suffice it here to list the salient pieces of evidence:

– the metrological relief from Salamis (which validates all three units) (Wilson

Jones 2000b);

– the metrological relief now in Oxford (which validates the Attic foot)

(Wesenberg 1976);

– a set of masons’ marks on the unfinished temple at Segesta (which validates the

Doric foot, being spaced at intervals of 10 such feet) (Mertens 1984a: 34–35,

Taf. 33; cfr. Haselberger 1999: 53–54);

– the drawing already mentioned at Didyma (which validates digits of the Doric

foot digits being 1/16th part of a foot, called dactyls in Greek);

– a builder’s rule recently recovered off the coast of Israel (which validates the

Doric foot) (Stieglitz 2006).

IV. Comparability A sample of ten relatively similar structures is sufficient for

analysis to throw into relief both general patterns and special cases or exceptions. A

case in point is the so-called Temple of Concord at Agrigento, the measurements of

which suggest that the flank was laid out using a second module (one that

approximated better to the actual triglyph width than to the nominal module used

on the front) (Wilson Jones 2001: 708). A degree of special pleading is required too

for the unfinished temple at Segesta on account of the presumed need for rounding

off. Yet as mentioned earlier it would be unreasonable to expect conformity of

every member of a given sample group; exceptions or compromises are bound to

have occurred in a minority of cases.

V. Mensuration There used to be a rift between scholars of Greek architectural

metrology, with one camp envisaging the use for construction of just three or four

‘standard’ units,13 while the other, ‘permissive’, camp admitted a much greater

number, subject to regional or local custom.14 Although the debate will no doubt

13 Dinsmoor (1961), Büsing (1982), Bankel (1983), Gruben (2001, 488, s.v. “Fuβ”); further

bibliography in Wilson Jones (2000b).
14 Jos DeWaele has gone so far as to argue that, in theory at least, every Greek building could have

been set out according to its own distinct foot unit, see (De Waele 1985, 1998); cf. (Ceretto

Castigliano and Savio 1983; Höcker 1993).
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persist, it is now substantially resolved by the above mentioned metrological relief

from Salamis (Fig. 19.8). This clearly documents a 326–328 mm ‘Doric’ foot and a

306–308 mm ‘Common’ foot, while at the same time implicating the ‘Attic’ foot of

294–296 mm and the Samian cubit of ca. 523 (which itself equaled the Egyptian

royal cubit) (Wilson Jones 2000b).15

The modular hypothesis goes hand in hand with this evidence in as much as most

of the ten temples yield nominal triglyph modules equal to multiples of the feet just

mentioned, and/or 5 dactyl increments (e.g., 15, 20, 25, 30 dactyls) (Wilson Jones

2001: 690 (including n.70) and Table 7).16 Interestingly enough, this is strikingly

reminiscent of the numerical pattern of standardized Roman monolithic shaft

lengths in feet.

Fig. 19.8 Survey of the metrological relief from Salamis overlaid with letter codes showing the

principal unit lengths. In particular the foot rule ‘A’ represents the so-called Doric foot of ca. 327–

327.5 mm, the forearm ‘C’ represents a cubit (1½ ft) of the same unit, while the anthropomorphic

foot print ‘F’ represents a foot of ca. 306–306.5 mm. Tracing by author and Manolis Korres, with

annotations by author

15 See Wilson Jones (2000b). See Wesenberg (2001) for further discussion.
16Wilson Jones (2001, 690 (including n.70) and Table 7). Triglyph widths tend to cluster around

15d (3 � 5 d), 16d (1 ft), 18 d, 20 d (4 � 5 d), 24 d (112 ft), 25 d (5 � 5 d), 30 d (6 � 5 d), 32 d

(2 ft), and so on. There are occasions when integral foot values and multiples of 5 dactyls could
coexist, as in the case of the temples of Juno-Lacinia and Concord at Agrigento, where the nominal

triglyph module is equivalent to both 2 Common feet and 30 Doric dactyls.
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VI. ‘Pay-off’ in terms of design The Doric temple was arguably modular in

conceptual terms, in as much as it might be interpreted as an assembly of

repetitive elements (columns, triglyphs, metopes, roof tiles and so on) that were

sometimes separately dedicated and financed by subscription (Fehr 1996). The

triglyph and metope frieze was certainly vital to the look of the Doric temple. A

building declares itself to be Doric by the presence of triglyphs, while one without

them is much less so than one that lacks, say, mutules (as was quite common in

Magna Graecia). If, as seems possible, they derived from tripods, ritual artefacts of

great religious and social importance for the Greeks, triglyphs were also devices

with a symbolic charge (Wilson Jones 2002). Furthermore, the triglyph frieze was

critical to the formal resolution of temple designs, lying at the root of the infamous

corner problem. Indeed modular design might be described as a strategy for

overcoming this problem by retrieving mathematical harmony in spite of corner

contraction.

VII. ‘Pay-off’ in terms of practicality The modular method helped in composing

schemes that could be scaled to the constraints of the budget and the site. It enabled

solutions to be transmitted easily from architect to architect, and so down the

generations [see (Coulton 1983)]. Modular design facilitated the calculation of

dimensions from the interrelationships between different members, and, if so

desired, dimensioning in feet and digits could have been left until an advanced

stage of design. As is shown by the entablatures illustrated from two of the temples

at Agrigento, the choice of a triglyph module of 30 digits or dactyls allowed their

desired modular and proportional characteristics to translate to a thoroughly simple

specification in terms of whole dactyls. Gauging corner contraction was doubtless

simplified by being couched in terms of the triglyph width for this was in any case

inherent to the calculation.

VIII. Corroboration at the level of detail In theory, design processes based on

arithmetical ratios could have produced similar results (provided these included a

2:3 triglyph:metope rhythm, and hence a column spacing of five triglyph widths).

The setting out of the substructure was, however, an independent issue. There

would seem to be no reason, deliberate intention apart, why the width of the

krepidoma should so frequently match the whole number modules 30 or 32 M.

The projection of the krepidoma with respect to the axial width of temples often

Table 19.4

Temple

Overall width less peristyle width,

in M

Metric

value

Actual

value

Difference in

cm

Bassae 5 2.647 2.649 0.2

Athens 5 1/2 2.825 2.840 1.5

Segesta 6 5.254 5.237 1.7

Rhamnous 6 2.286 ca. 2.287 ca. 0.1

Agrigento, Juno 7 4.314 4.323 0.9

Agrigento,

Concord

7 4.313 4.323 1.0
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matches whole numbers of modules, a related detail that acts as a small but

significant proof of the modular hypothesis, since again there is no obvious

alternative explanation for this pattern (Table 19.4).

Conclusion

In conclusion, the extent to which the modular hypothesis is able to stand up to the

eight tests or criteria confers it a decent level of plausibility. We thus have the

evidence, the motivation primarily a desire for universality and harmony in

resolving the particular problems of Doric design, and a witness in the form of

Vitruvius, our main direct authority on ancient architecture. The strength of this

case invites the reappraisal of Greek design methods in the classical period, and the

degree to which the modular interpretation complements, stand alongside or

supersede them.

Where past analyses of temples have yielded foot units that convert to

convenient fractions of triglyph modules (e.g., 5/6, 1/2, 3/8, 1/3), this to me

suggests that their authors have unwittingly picked up echoes of modular

procedures.17 On the other hand it may be impossible to say whether the

Athenians’ temple on Delos can be better explained in terms of primarily

proportional methods, as Mertens has proposed, or in terms of modules (Mertens

1984a: 220–227; 1984b; cfr. Bommelaer 1984, 1985). This is true in elevation, and

in plan too (Fig. 19.9). Both methods would be capable of producing similar

outcomes. In a recent study focusing on temple plans Gene Waddell has come to

conclusions that in some respects parallel the present ones. The main difference lies

in his belief that the triglyph module derived from the krepidoma, rather than, as I

see it, the other way around (Waddell 2002). Returning to issues of detail, it is

significant that while entablature proportions can vary quite considerably

(e.g. triglypgh height to width; entablature height to bay width; cornice

(or geison) height as a fraction of the total height), there is much greater

constancy with regard to the relative widths of triglyphs and metopes. I contend

that this so often matches a ratio of 2:3 precisely because it lends itself to an

ensemble of modulated proportions.

Looking towards the future, perhaps the most interesting challenge will be to

discern the nature of the interface a break or a merging? between the successive

design procedures championed so cogently by Coulton [esp. (1985)], and the more

unified approach implied by the concept of modulated proportions. Certainly, the

orchestration of overall measures in plan and elevation would seem to imply that

the outline design of classical temples was conceived in advance of construction, at

17 I would argue that this applies to several of the proposals put forward by DeWaele (1985, 1998),

as well as those of Riemann (1951), Ceretto Castigliano and Savio (1983), Höcker (1993), De

Zwarte (1996). For more detail see Wilson Jones (2001: 693–695).
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least in schematic form. Were successive techniques increasingly assimilated

within the concept of modulated proportions from around the middle of the fifth

century? But before advancing this discussion there is more to be done, and the

modular hypothesis needs testing not just on façades but on plans as well (besides

that of the temple at Delos). The debate also needs to be carried to that very

influential structure, the Parthenon. Suffice it to note, as a kind of parting shot,

that different scholars have detected a key role in its design for a module of 858 mm

a measurement just fractionally larger than the actual triglyph width (Berger 1984a, b;

Padovan 1999: 94–98; cfr. Sonntagbauer 1998).Despite the numerous features that set

it apart from the Doric temples examined here, the Parthenon does yet partake of a

common bondwith them.Might the Parthenon also belong to the same family in terms

of underlying design principles?

Biography Mark Wilson Jones is an architect and architectural historian whose

research can cross over into the domain of archaeology. Having begun his training

at the University of Cambridge, he went on to win the Rome Prize in Architecture at

the British School at Rome. After several years in practice in London and Rome, he

is Director of Postgraduate Research in the department of Architecture and Civil

Engineering at the University of Bath, where he teaching history, theory and studio.

Wilson Jones’s interests revolve primarily around issues of design, especially as

regards the ancient period. His book Principles of Roman Architecture (Yale

University Press, 2000) was the first to be awarded both the Banister Fletcher

Prize by the RIBA and the Alice Davis Hitchcock Medallion by the Society of

Architectural Historians (UK). Another book with the same press, Origins of
Classical Architecture, is to appear in 2014.

Fig. 19.9 Proportional and modular analysis of the plan of the Temple of the Athenians on Delos

according to D. Mertens (1984a: Abb. 79). Mertens’s module ‘E’ corresponds to half a triglyph

module. Drawing: author
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antiques.

———. 1989. Modules and measurements in ancient design and modern scholarship, ‘Munus non

ingratum’. Pp. 85–89 in Proceedings of the international symposium on Vitruvius’ “De
architectura” and the Hellenistic and Republican architecture. Babesch (Bulletin Antieke

Beschaving), Supp. 2. Leiden: Stichting Bulletin antieke Beschaving.

DELAINE, J. 1997. The Baths of Caracalla: A study in the design, construction, and economics of
large-scale building projects in imperial Rome. Journal of Roman Archaeology, Supp. 25.

Portsmouth, RI: JRA Editor.

DE WAELE, J. A. 1985. Le dessin d’architecture du temple grec au début de l’époque classique.
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Arch€aologischen Institutes, 67: pp. 133–69. Wein: Österreichisches Archäologisches Institut.
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Chapter 20

Calculation of Arches and Domes
in Fifteenth-Century Samarkand

Yvonne Dold-Samplonius

Introduction

Samarkand, with Bukhara the principal town of Transoxania, is first found in the

accounts of Alexander the Great’s campaigns in the east as Maracanda. Arab
legend makes Alexander founder of the city. In ca. 900 AD the Samanid kingdom

was founded, the beginning of a century of great prosperity for Transoxania, such as

would only be seen 500 years later with Timur and his immediate successors.

Although the capital was moved to Bukhara, Samarkand remained the premier

centre of commerce and culture, especially in the popular estimation of the Muslim

world. Among its native products, the paper of Samarkand, the manufacture of

which had been introduced from China, was especially famous. After surrendering

to Genghis Khan in 1220, the city was plundered and many of its inhabitants were

deported. For the next 150 years it was but a shadow of its former self. The revival

of the town’s prosperity began when Timur Lang (1336–1405) became supreme in

Transoxania after about 1369 and chose Samarkand as the capital of his ever-growing

kingdom. It was in his reign that the art called “Timurid” had its origins. Timur

enriched Samarkand with magnificent buildings and made it an international market

surpassing Tabriz and Baghdad, at least during his lifetime; he transplanted thither

the artists and craftsmen from the towns he conquered. The intellectual revival which

characterized the fifteenth century is in part the work of the Timurid sovereigns and

princes, many of whom were themselves poets, artists and scholars, and attracted to

their courts men of genius. Among the former are Timur’s son, Shah Rukh, who
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promoted historical studies, and his son, Ulugh Beg (1393–1449), astronomer, poet

and theologian, who really made Samarkand what Timur had dreamt of: the centre of

Muslim civilization. An artist, Ulugh Beg enriched Samarkand with superb buildings,

such as the Timurid burial place, Shah-iZindeh (Fig. 20.1), a madrasa (high school)

and others. A learned mathematician, he could solve the most difficult problems in

geometry, but he was above all an astronomer. When Ulugh Beg decided to construct

an observatory, he invited Ghiyāth al-Dı̄n Jamshı̄d Mas’ūd al-Kāshı̄ to his court—

sometime after 1416—as founding director, together with Mo’ı̄n al-Dı̄n al-Kāshı̄.

Director of the madrasa was Ulugh Beg’s mathematics teacher, Qādi Zāde al-Rumi

from Bursa (Turkey). The observatory, destroyed in the following century, was

regarded in his day as one of the wonders of the world.

Ghiyāih al-Dı̄n Jamshı̄d Mas’ūd al-Kāshı̄ ranks among the greatest

mathematicians and astronomers in the Islamic world. He was a master computer

of extraordinary ability, his wide application of iterative algorithms and his touch in

laying out a computation so sure that he controlled the maximum error and

maintained a running check at all stages; in short, his talent for optimizing a

problem show him to be the first modern mathematician. Al-Kāshı̄ died in June

1429 outside the Samarkand observatory, probably murdered on the command of

Ulugh Beg. Two years earlier he had finished the Key of Arithmetic, one of his

major works. The work is intended for everyday use; al-Kāshı̄ remarks, I redacted
this book and collected in it all that is needed for him who calculates carefully,
avoiding tedious length and annoying brevity. By far the most extensive book is

Book IV, On Measurements. Its last chapter, Measuring Structures and Buildings,
is really written for practical purposes:

Fig. 20.1 Façades of the mausoleums (qubba) at both sides of the Shah-i Zindeh. Image: author,

after Pougatchenkova (1981)
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The specialists merely spoke about this measuring for the arch and the vault and besides

that it was not thought necessary. But I present it among the necessities together with the

rest, because it is more often required in measuring buildings than in the rest.

Al-Kāshı̄ uses geometry as a tool for his calculations, not for constructions.

Besides arches, vaults and domes (qubba), al-Kāshı̄ calculates here the surface area

of a muqarnas (stalactite vault), that is, he establishes approximate values for such a

surface. He is able to do so because, although amuqarnas is a complex architectural

structure, it is based on relatively simple geometrical elements. For the calculation

only elementary geometrical rules are used.

Calculation of Arches and Vaults

In this section the terms “arch” and “vault” are interchangeable. The difference

between an arch and a vault is that the depth of an arch is not larger than its span,

whereas in the case of the vault the depth exceeds the span. The depth of the arch is

the distance between the front and back surfaces; that which is called depth in the

arch is called length in the vault. Al-Kāshı̄ remarks that,

The predecessors determined those (i.e., arch and vault) as half a circular hollow cylinder,

but we did not see something like it, neither in old nor in new buildings. We have mostly

seen ones that are pointed in the middle, and in few cases they are smaller than half a hollow

cylinder.

From the Byzantine Empire the Umayyads inherited a system of round arcading

that, in the rarest of instances, showed a tendency towards becoming slightly

pointed.1 The innovation of the pointed, or ogival, arch came from the East.

Under Umayyad rule the round arch persisted, but developed into the two-centred

form showing an increasing tendency towards pointedness. A round arch is struck

from a single centre. A pointed arch has more than one centre and can be thought of

in its simplest form as being struck from two centres with overlapping arcs; these

produce an increasingly pointed arch the further they are moved apart horizontally

(Fig. 20.2). In the succeeding two centuries this trend was still apparent, but was

complicated by the three- and four-centred arch. Based on this development it is to

be expected that in early arithmetic books only hemispherical arches are treated.

First al-Kāshı̄ explains extensively the different elements of an arch and how

these are connected, or which part could disappear in a wall. He then gives five

methods for drawing the façade of an arch.2 The first two are three-centred arches.

Figure 20.3 shows type 2, a three-centred arch, with point E as a double centre and

the other two centres situated in the two lower points Z and H. When the two lower

centres move, the arch will change its acuteness. Type 3 (not shown) deals with a

1 This is essentially Creswell’s theory, see Creswell (1960), Warren (1991: 59).
2 All five constructions are performed on the video “Qubba for al-Kāshı̄”, directed by Yvonne

Dold-Samplonius (1995).
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four-centred arch, which is similar to the three-centred arch except that the centre of

the semicircle is split into two points displaced towards the extremes of the span.

The greater the displacement, the shallower the profile. Type four (Fig. 20.2, lower

right) and five are two-centred. As the second façade was the most common in

al-Kāshı̄’s time, he uses it to illustrate his calculation method. This façade is handy,

according to al-Kāshı̄, when you need a span of 5–10, or up to 15, cubits.

Construction of the second façade (Fig. 20.3, taken from the oldest extant

manuscript, Tehran, Malek Library 3180/1, with Roman letters added):

(1) Describe a semicircle on AD, the span of the arch;

(2) Extend AD in both ends by the thickness of the arch to the points 1 and M. E is

the centre of the semicircle;

(3) Divide this semicircle in four equal parts through the points A, B, C, G, D;

(4) Extend BE and GE by EZ and EH, equal to AC, and by BK and GL, equal to

DM, the thickness of the arch;

(5) Describe from the centre E the arcs ML and Kl, from the centre H the arc GT,

and from centre Z arc BT;

(6) Connect HT and ZT and extend them by the thickness of the arch to the points

O and S;

Fig. 20.2 Diagram showing pointed arches formed with constant radii on centres with successive

separation of one-tenth, one-seventh, one-fifth, and one-third of a span. Image: author, after

Warren (1991)
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(7) Describe arc LO from point H and arc KS from point Z;

(8) Erect the perpendiculars SN and ON on the lines TS and TO.

The sections AK, KT, TN, TL, and LD form together the façade of the arch.

When we construct area AFQD with parallel sides and right angles, we obtain the

spandrels of the arch.

After al-Kāshı̄ has explained and carried out all five methods for constructing the

façade of an arch and has completed the characterization of arch and vault, he

continues with surveying them. He explains that he has already found out the

relation between some measures of an arch and its span and between some of

these and its thickness. He has laid these factors down in a table together with an

explanation of the method. These quantities are also transformed into Indian

numerals, which he has put down in the table as well. He also informs us about

the particulars of finding these quantities. With this table the following parts of the

arch (Fig. 20.3) can be found: the interior curve ABTGD, the inner height ET, the

upper width TN, and the surface area of the arch as well as the surface area of the

concavity, area ABTGDE.

With these values we can then calculate many different parts of the arch. To

calculate the volume of the arch we proceed in the same way as for round arches:

after the surface area of the arch has been found, by means of the table, we multiply

this number with the depth of the arch and obtain its volume. Sometimes the arch

disappears partly inside a wall and we want to know how much is visible and how

large the segments inside the wall are, section tDM and section JAI: these segments

are calculated by taking the difference of the circle segment MtE and the triangle

tDE:

Fig. 20.3 Construction of

the second façade. Image:

author
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ED

EM
¼ ED

Et
¼ cos∠tEM,EM ¼ MDþ ED,

tM ¼ arccos∠tEM ) arctM, arctM �ME ¼ 2MtE,

sin∠tEM ¼ tD

tE
) sin∠tEM � tExDE ¼ 2ΔtDE,

2MtE� 2ΔtDE ¼ 2tDM:

When we subtract this amount from the total surface area of the arch we obtain

the surface area of the visible part of the arch.

It might be necessary to calculate the spandrels, section NQt and section NFJ: in
this case we calculate the area AFQD and subtract from this amount the area of the

visible part of the arch, calculated above, and the area of the opening of the arch,

area ABTGDE, found by means of the table. This yields the surface area of the

spandrels. When we multiply this amount with the depth of the spandrels, we obtain

the volume of the two spandrels.

Al-Kāshı̄’s book is for practical use, as explained above. Hence he rightly shows

how to make life easier by working with rounded off values. More approximation is

involved, as the types of arches are more varied than those five given by al-Kāshı̄.

The method for calculating an arch is to select the type of arch nearest to

it. Golombek and Wilber (1988: 153–157) have considered existing examples of

Timurid arches in the order outlined by al-Kāshı̄. Examples have been recorded for

all but the fifth method, which was, however, certainly common in small windows.

In comparing the models described by al-Kāshı̄ with actual examples of Timurid

arches, we have to bear in mind that al-Kāshı̄’s purpose was calculating volumes

and surfaces, not constructing. This means that an elegant approximation, which

leads us to an easy calculation, is the ultimate goal.

Bulatow (1978) has analysed arches from the twelfth to fifteenth centuries in

Central Asia and suggests that some pointed arches were constructed as

intersections of ellipses. Questioning the reason for using the ellipse, he notes

that for spans exceeding 10 m these were easier to construct than four-centred

arches. The architects were familiar with the stability of the ellipse as well, for its

construction was known from Sassanian examples. According to his analysis, this

kind of arch is found in some of the most important Timurid buildings of the period,

as in the Gur-i Amir (Fig. 20.4) in Samarkand, and in the mausoleum of Timur Lang

and Ulugh Beg, for instance, in the dome, interior niches, arches of the zone of

transition, and entrance portal. The same arches have elsewhere been identified as

three- and four-centred arches and can be considered as such for all practical

purposes (see below).

The section on calculating arches ends in al-Kāshı̄’s Key of Arithmetic with the

following remark: I talked a lot about the subject of this section, as this section is
very important, and my predecessors did not treat it as they should.
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Calculation of Domes

The Arabic word for dome or cupola is qubba, plural qibāb or qubab. By extension
qubba also means a cupolaed structure or dome-shaped edifice, a domed shrine, a

memorial shrine, or kubba (especially of a saint). In pre-Islamic times the qubba
was a small domed leather tent carried by a camel, in which certain tribes kept

sacred stones. Also, the dome located in front of the mihrāb, a recess in a mosque

wall indicating the direction of prayer—as exemplified for instance in the Great

Mosques of Damascus, Qayrawan, Cairo, and Cordoba—might have had a special

meaning. From the late ninth and the tenth centuries A.D. the building of

commemorative structures over certain burial places, especially those of Shı̄’ı̄

saints, occurred. Throughout the entire Muslim world, all the special names for

sepulchral buildings, which vary with country and language as well as with the

person interred, come under the generic name of qubba (Fig. 20.1). There are

basically two types of monuments: the circular, tower-like form, and the often

more grandiose square or polygonal type. Both can be covered either by a circular

dome or a conical or pyramidal roof. Its original, and later stereotyped, form is a

square building covered by a dome. The oldest preserved example is the Qubba of
the Sāmānids in Bukhara, constructed around 907 but certainly before 943. It

consists of a square structure with a large central dome and four small corner

ones set over a gallery. As early as the Seljuq period (eleventh century) the

construction of domes with double shells was tried, which led to their successful

development in Timurid times. The aim of a drum and a double-shelled dome is to

Fig. 20.4 Gur-I Amir,

Mausoleum of Timur Lang

and Ulugh Beg with a

double-shelled dome.

Image: author, after

Pougatchenkova (1981)

20 Calculation of Arches and Domes in Fifteenth-Century Samarkand 303



give a towering effect to the exterior. A striking example is the Gur-i Amir in

Samarkand (Fig. 20.4).

As long as domes consisted of cones or sphere-segments, their mensuration was

automatically included when measuring solids, and the qubba did not have to be

mentioned per se. At present it seems that, with the exception of al-Kāshı̄, only

qubbas in the form of hollow hemispheres have been considered in arithmetic

manuals. A hemispherical qubba is assumed to consist of the solid shell between

two concentric, parallel hemispheres. In praxis, the inner and outer surfaces of the

shell are never really parallel, because in the lower part, up to an angle of 61�, the
pressure exerts a pulling force in the upper part.

When the inner and outer diameters of a hemisphere qubba are known,

its volume and the inner and outer surface areas can be calculated as follows

(Dold-Samplonius 1998). We know how to compute the surface area of a sphere

with diameter equal to the outer diameter. Half of this amount is the outer surface

area of the qubba. In the same way, the inner surface area of the qubba can be

computed. To calculate the volume of the qubba, we compute the volumes of the

outer and the inner sphere and take each time its half. The difference between these

two amounts is the volume of the qubba.
The formulas for computing the area and the volume of a sphere are:

Area sphereð Þ ¼ 2rð Þ2 � π

and

Volume sphereð Þ ¼ Area sphereð Þ � r=3, 2r ¼ diameter

Al-Kāshı̄ does not carry out the calculation of the hemisphere qubba, but refers
to his calculation of the sphere. There he uses, as expected, the right formulas for

area and volume expressing л as the ratio between the circumference and the

diameter of a circle. He distinguishes the following categories of qubba:

They occur either in the form of a hollow hemisphere, or in the form of a segment of a

hollow sphere, or in the form of a polygonal cone, or in the form, which arises by imagining

the rotation of the façade of the arch, i.e. of an arch as mentioned in Section 1, around the

line of its elevation, that is the line, which connects its upper limit with the middle of the

line between its fundaments.

After remarking that the first three categories have already been dealt with

earlier in the book, he indicates how to calculate the complicated type of qubba,
i.e., the dome created by rotating an arch around its vertical axis. The method is

illustrated in Fig. 20.5. The dome is divided in parallel slices by drawing circles

from the axis on its surface. These circles have to be so close that the curves

between two of them equal the corresponding chords. Seven or eight of these circles

should normally suffice, according to al-Kāshı̄. In this way the dome is cut up in a

cone and several frusta. We first measure all the circles on the surface of the dome.

The next step is to measure the distance from the apex of the dome to the nearest
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circle, i.e. the chord (Fig. 20.5: the segment c) equalling the curve on the circle. By

multiplying half the circumference of the nearest circle by this amount we obtain

the surface area of the cone. Thereupon we multiply half the sum of every two

neighbouring circles by their distance to obtain the surface area of all frusta. The

sum of these products yields the surface area of the qubba.

To obtain the volume of the qubba, which is a hollow solid, we first measure the

volumes of the cone and the frusta, which fill the outer surface of the shell, and add

these. From this sum we then subtract the sum of the volumes of the cone and the

frusta filling the inside of the shell. The difference between these two sums is the

volume of the qubba, as we have seen before in the case of the hemispherical

qubba.
This general method is applied to a qubba based on the fourth type of arch, i.e. a

two centred arch with its span divided by the two centres in three equal parts

(Fig. 20.2, lower right). For practical application just the rules are enough. Hence,

“to simplify the procedure”, al-Kāshı̄ gives only the calculation method but does

not explain how he arrived at these results:

To obtain the surface area of the interior of the dome we have to multiply the square of the

diameter of the base of the hollow (¼ inner) dome by 1�4603200, if we compute

sexagesimally, or by 1.775, computing in the decimal system. When we multiply the square

of the diameter of the base of the (outer shell of the) dome by the same number, we obtain

the exterior curved surface area of the dome, as the inner and outer surfaces are supposed to

be parallel to each other. When we multiply the cube of the diameter of the base of the

hollow dome as well as the cube of the diameter of the base of the dome by 0�1802300, in the
sexagesimal system, or by 0.306, in the decimal system, and take the difference of these two

products, we obtain the volume of the hollow qubba.

In both cases the results were checked by modern methods and we found that the

factors are accurate and that the dome has been cut up in eight slices.

Could this factor be used for all kind of domes, with more or less deviation?

Al-Kāshı̄ makes no mention of the elliptical profile for either arches or domes.

There are a number of domes for which the profile may be interpreted as the

intersection of reflected elliptical curves. These include some of the most

important buildings of the period, as the Gur-i Amir in Samarkand. Bulatow has

demonstrated that the dome of the Gur-i Amir was probably designed using a pair of

foci and string. However, looking at his analysis of the Gur-i Amir (Fig. 20.6) we

Fig. 20.5 Qubba, sliced in

eight slices. Image: author
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see that this dome could also have been originated by the fourth method: with line

AD as the span and the points B and Z dividing the span in three equal parts, we

obtain the circle segments just inside the curve drawn by Bulatow. The difference

between the two curves lies within the margin of error accepted by modern

architects. It seems therefore that al- Kāshı̄’s factors can also be used for

calculating elliptical domes.

Conclusion

In medieval Italy it was common practice to pay artisans according to the surface

area they had completed. Also in seventeenth-century Safavid Iran architects were

paid a percentage on each building based on the cubit measure of the height and

thickness of the walls:

The Persians determine the price for masons on the basis of the height and thickness of

walls, which they measure by the cubit, like cloth. The king imposes no tax on the sale of

buildings, but the Master Architect, that is Chief of Masons, takes two percent of inheritance

allotments and sales. This officer also has a right to five percent on all edifices commissioned

by the king. These are appraised when they are completed and the Master Architect, who has

directed the construction receives as his right and salary as much as five percent of the

construction cost of each edifice (Necipoğlu 1995: 44, 159).

The same custom seems to have existed in the Arab world. It is also useful to

know, more or less, how much material is needed like gold for gilding, bricks for

construction or paint and such things. Payment per cubit was common in Ottoman

architectural practice where a team of architects and surveyors had to make cost

estimates of projected buildings and supply preliminary drawings for various

Fig. 20.6 Dome of the

Gur-i Amir. Image: author,

after the analysis of

Bulatow (1978) with

additions
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options. In addition to facilitating estimates of wages and building materials before

construction, al-Kāshı̄’s formulas may also have been used in appraising the price

of a building after its completion. His sophisticated formulas were, like the simple

formulas found in the Arithmetic Books, useful for everyday life. This was al- Kāshı̄’s

objective for writing his Key of Arithmetic.
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Chapter 21

Curves of Clay: Mexican Brick Vaults

and Domes

Alfonso Ramı́rez Ponce and Rafael Ramı́rez Melendez

Introduction

Since the beginning of time, man has had to confront the world around him in order

to survive. To this end, he has had to create a vital second skin, thereby transcending

his biological skin. This second skin has come to be termed Architecture.

The building of this second skin was begun with Man’s dreams and out of the

raw materials which nature provided for him. Buildings made of materials such as

stone, wood, cane, clay, and brick are found in different regions of the world

throughout Man’s history. The specific techniques employed in these buildings

form an integral part of our cultures and our building traditions.

The comprehensive knowledge of materials and their corresponding building

techniques has become a vital necessity, given the backdrop of an ever increasing

demand for living space, particularly housing. Moreover, it has become vitally

important to rationalise the building process in order to achieve the lowest

possible cost.

This chapter aims to describe, analyse, and formalise some of the fundamental

properties of a popular construction technique for building brick vaults without any

use of framework or any additional reinforcements whatsoever. The technique is of

collective invention in Mexico dating back to the nineteenth century (Fig. 21.1a, b).

Brick vaults, made only of pieces of clay and the intuition and skillful hands of

First published as: Alfonso Ramı́rez Ponce and Rafael Ramı́rez Melendez, “Curves of Clay:

Mexican Brick Vaults and Domes”, pp. 143–154 in Nexus V: Architecture and Mathematics,
Kim Williams and Francisco Delgado Cepeda, eds. Fucecchio (Florence): Kim Williams

Books, 2004.

A. Ramı́rez Ponce (*)

E 21, M XII Educación, Coyoacán 04400, México, D.F.
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Fig. 21.1 (a, b)

Constructing the Mexican

vaults. Photo: authors
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craftsmen, apart from offering an economical solution even to this day to the

housing problem, possess both an architectonic and mathematical beauty.

The chapter is organized as follows: background; a description and examples of

the technique we have termed “the leaning brick;” a mathematical formalization of

the surface generated by this type of construction technique; and some conclusions

and indications of areas of future research.

Background

Throughout history, there have been many different techniques for building covers

with brick. According to their structural characteristics, the covers may be divided

in two main groups: covers in which the brick works only as a skin, and covers in

which the brick is both skin and part of the supporting structure. This second group

may be further divided into “layered” covers and “leaning” covers. Our technique is

inside this last subgroup.

Historically, the most ancient are the Nubic vaults of adobe, in southern Egypt

which were built at least 3,300 years ago. One example of this which can still be

seen today is in the Rameses funereal centre, in the Valley of the Kings, on the

banks of the Nile opposite the city of Luxor. Later, around the third century, we

have the vaults built in Persia. Later still, in the tenth century, are the incorrectly

named “false Mayan arches”, built with limestone in Yucatan (Fig. 21.2a, b).

The misnomer is due to the fact that these structures are not really arches; the

stones in the Mayan structures do not transmit their loads from the top to the base,

but are rather simply superimposed on the stones underneath with a small salient

part (more or less a fifth) coming out. This results in a structure forming a steep “A”

shape. Thus, the last stone placed on top of the structure which joins the two

inclined planes is not a keystone but a simple lid. Generally, this kind of structure

had a limited depth and was used to cover thresholds, doors or transition spaces.

However, a structure with several metres of depth is structurally a vault and may

cover an inhabitable space. Thus, the Mayan structures are really vaults initially

formed by inclined flat surfaces as in the cuadr�angulo de las Monjas (Quadrangle of
the Nuns) in Uxmal, and later forming curved surfaces as in Labná. Finally, we

have the Mexican vaults born in the region named el Bajı́o in central Mexico. These

vaults and the Nubic vaults mentioned earlier are based on the same basic principle,

bricks slightly tilted and leaning on one another. They are however quite different

both in terms of the type of brick used—adobe bricks in Nubia and small bits of

baked brick in Mexico—and also in the way the bricks lean on one another

(Figs. 21.3 and 21.4).

In Nubic vaults the bricks lean against a wall which is higher than the lateral

supporting walls. In the Mexican vaults the supports are the larger sides (in the case

of rectangular vaults) or the corners—literally just the points—(for square-shaped

vaults); this shall be shown in the corresponding diagrams. In Mexico, this

technique dates from the second half of the nineteenth century and there are two
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Fig. 21.2 (a, b) Examples

of “false” Mayan arches.

Photo: authors

Fig. 21.3 Ramesseum

vaults. Photo: authors
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possible sites of origin: San Juan del Rio in the state of Queretaro and Lagos de

Moreno in Jalisco. These structures have been constructed since the nineteenth

century and are the object of our research.

The “Leaning Brick” Technique

The “leaning brick” is a popular construction technique which is at the same time

millenary and modern. This technique is used for building roofs and covers with

bricks without any framework or any kind of external support, making it a very

economic way of covering space. Moreover it can be used between floors in a

housing block or to cover an open area such as a terrace. It is a technique which can

be learnt by professional builders as well as self-taught builders. It is an ingenious

technique, as will be illustrated later, not invented by architects or engineers, but

instead the fruit of common knowledge, all too often ignored or disregarded by

professionals and academics. Hence the reason that it is not taught in colleges and is

therefore in decline. The technique allows spaces of up to 10 m wide to be covered

and is ideal for the vast majority of architectural spaces, especially living spaces in

individual or collective housing, and spaces destined for educational or public

service use.

The technique’s low cost is based on three underlying conditions. The first, as

mentioned earlier, is that no scaffolding or additional supports are required whilst

the cover is being built. Secondly, low cost materials are used, such as the common

handmade clay brick or, alternatively, wet clay brick commonly known as adobe, or

an earth-cement brick in proportions of one to ten. Lastly, the labour-to-time ratio is

highly efficient, on average just 2 h manpower are needed to complete one square

metre of cover. Given our “build to finish” concept, that means that the vault’s

lower section would be completed. The technique does not even need additional

iron or concrete reinforcements, just clay bricks and building expertise.

Fig. 21.4 Nubic vault.

Photo: authors
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The brick used, called cuña, measures 5 � 10 � 20 cm (1,000 cm3)

(Fig. 21.5a). It has a resistance that fluctuates between 60 and 75 kg/cm2 and an

approximate weight of 1.5 Kg. In the case that a brick of these dimensions cannot be

obtained or if it is too costly to manufacture it, the standard wall brick can also be

used, either whole or cut in half; in Mexico, the standard wall brick’s dimensions

are 6 � 12 � 24 cm (Fig. 21.5b).

The mortar used is a mix of chalk, cement, and sand, similar to that used for

walls. This low level of resistance means that it can be cut in half manually with the

builder’s trowel (an important requirement for the timely building of vaults). A

skilled craftsman with the aid of a helper is able to achieve up to seven or eight

square metres per day. In other words, each square metre of vault takes 2 h work, a

figure which is three or four times lower than the man hours necessary to complete a

concrete cover. It is important to emphasise this point as this kind of technique is

often criticised for being too artesanal, overlooking the fact that to build a concrete

cover requires three or four times more hours/man per square metre.

The Process

When applying this technique, generally the vaults are built to cover a flat area

limited by a rectangular or square horizontal perimeter (Fig. 21.6). When the spaces

to be covered do not take one of the aforementioned forms, then they are forcibly

“regulated”.

In other words, if the area to be covered is L-shaped, then the craftsman or

architect requests for an intermediate beam to be placed, such that the L is now

subdivided into two rectangular shapes. Twenty years ago when we began our

experiments, we always based them on the conditions of the internal space, i.e., the

space to be lived in, and as a consequence we changed the vault’s shape and its

horizontal perimeter line.

The perimeter of the spherical sections we build can be regular or irregular.

Moreover the lines that make it up can be straight, curved or mixed lines and also

horizontal or inclined. These lines are the surface’s directives. Occasionally the

directives are concrete sections and at other times they are commercial metal

angles. On the other hand, the lines of brick which compose the surface have

Fig. 21.5 (a) left the cuña;
(b), right the standard
Mexican brick. Drawing:

authors
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different dimensions and as they move on the surface they become its generators

(Figs. 21.7 and 21.8).

The mortar is placed in such a way that the inferior part of the bricks is

enveloped in mortar whilst gaps are left in the upper part of the bricks. This is so

that when the vault is covered from above the mortar penetrates into the brick joints.

Only two people work on the vault, the bovedero (the vault builder) and his helper.
The latter takes care of rendering and cleaning the interior of the vault as the work

progresses.

This, it seems to us, is a very unique and intelligent construction technique.

Rather than confronting and fighting gravity, it assumes immediate defeat. But it is

thanks to the technique’s surrender, and other assisting factors such as its light

weight—that of a small brick—that it gains its stability and its vaulted form.

Fig. 21.6 Vaults built to cover a flat area limited by a rectangular or square perimeter. Photo and

drawing: authors

Fig. 21.7 Photo: authors
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Within the process there are three key characteristics of the technique. Firstly,

the bricks are placed one on top of the other in continual succession. Second, the

bricks to be supported need to be small and light (completely the opposite of those

large and heavy bricks whose purpose it is to support). With small reductions in its

dimensions, the brick goes from 1,728 cm3 to just 1,000 cm3 and it weighs only

60 % of a wall brick. Third, the vault brick, unlike a wall brick, is used dry (wall

bricks are wetted before being used) to increase the adhesion. The mortar is made

up of cement, chalk, and sand in proportions of 1:1:8 or 1:1:10 (Figs. 21.9, 21.10,

and 21.11).

Mathematical Analysis

Background Generally we think of a function as a correspondence which

associates to each element of a set X, an element and only one element of another

set Y. The set X is called the domain of the function. Typically, the domain of such

functions is the set of points of the x-axis. These functions are generally called

functions of one real variable. It is easy to extend this idea of a function to functions

of two or more real variables: a function of two real variables is a function whose

Fig. 21.8 Photo and

drawing: authors

316 A. Ramı́rez Ponce and R. Ramı́rez Melendez



Fig 21.9 Examples of vaults. The covers can be regular surfaces, generally rectangles of different

proportions and squares. However, any regular or irregular polygon can also be covered with the

system by subdividing the space in small sections. Photo and drawing: authors

Fig. 21.10 A configuration of our invention: ellipsoidal paraboloids or Ellipars. Photo and

drawing: authors
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Fig. 21.11 Examples of vaults and configurations. Photo and drawing: authors
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domain X is a set of points in the xy plane. If we call f such function, its value at

point (x,y) is a real number denoted by f(x,y). It is easy to imagine how such a

function can represent a practical situation in architecture. For instance, consider a

situation in which we are interested in determining the height of a ceiling of a room.

We may represent the height of the ceiling at a certain point by f(x,y) where the

domain of the function is the set of all points (x,y) which correspond to points in the
room’s floor.

Surface integrals A surface integral can be imagined as the equivalent in two

dimensions to the linear integral, a surface being the region of integration instead of

a curve. There are three main representations of a surface. One is the implicit

representation which considers a surface as a set of points (x,y,z) that satisfies an
equation of the form F(x,y,z) ¼ 0. Sometimes it is possible to isolate one of the

variables in the equation, e.g., z, from the other two, e.g., x, y. When this is possible,

we can obtain an explicit representation of the form z ¼ f(x, y). There exists a third
surface representation method which is more useful for the study of surfaces. The

parametric representation uses three equations to express x, y, and z as a function of
two parameters u and v:

x ¼ X u; vð Þ, y ¼ Y u; vð Þ, z ¼ Z u; vð Þ

Applying these equations, the surface defined by the points (x,y,z) is the image of

a two-dimension connected set T defined by the points (u,v). In order to combine

these three equations, a vector r is introduced which connects the origin (0,0,0) and

a generic point (x,y,z) on the surface. This results in the so-called vector equation of
the form:

r u; vð Þ ¼ X u; vð Þiþ Y u; vð Þjþ Z u; vð Þk where u; vð Þ∈ T

It turns out that the area of a (parametric) surface S, denoted by a(S), is
determined by the double integral

a Sð Þ ¼
ð ð
T

k∂ r
!

∂u
� ∂ r

!

∂v
du dvk

Thus, in order to calculate the area of S, it is necessary to firstly calculate the

fundamental vector product ∂r/∂u � ∂r/∂v and then integrate its length in the

region T. Sometimes ∂r/∂u � ∂r/∂v is expressed as

∂r=∂u� ∂r=∂v ¼ ∂ Y; Zð Þ=∂ u; vð Þiþ ∂ Z;Xð Þ=∂ u; vð Þjþ ∂ X;Yð Þ=∂ u; vð Þk

in which case we have
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a Sð Þ ¼
ð ð
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ Y; Zð Þ=∂ u; vð Þð Þ2 þ ∂ Z;Xð Þ=∂ u; vð Þð Þ2 þ ∂ X;Yð Þ=∂ u; vð Þð Þ2

q
du dv

If the surface S is explicitly given by an equation of the form z ¼ f(x, y), x and
y can be used as parameters and the fundamental vector product is

∂r=∂u� ∂r=∂vk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂f=∂xð Þ2 þ ∂f=∂yð Þ2

q
dx dy

and the integral for calculating the surface of the area takes the form

a Sð Þ ¼
ð ð
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂f=∂xð Þ2 þ ∂f=∂yð Þ2

q
dx dy

where the region T is the projection of S on the xy plane.

The Vault Surface as a Mathematical Function

Vault constructed on a square perimeter The first step towards a mathematical

analysis of the vaults we described is to formalize their surface as a function of two

real variables. Consider for simplicity, a vault of height 1 constructed on the

perimeter of a square of 2 � 2 (the generalization to a height and rectangular

perimeter of arbitrary dimensions is straightforward). The resulting vault would

look like the one in Fig. 21.12.

For any point p ¼ (x, y) in the xy plane, in particular for any point inside the area
delimited by the perimeter of the square of 2 � 2, we have tan θ ¼ y/x and thus

θ ¼ arctan(y/x) (Fig. 21.13):

Also, if we denote X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, then

X2 þ z2 ¼ D2

where z represents the point in which the line perpendicular to the plane xy and

passing by the point p ¼ (x, y), intersects the curve defined by the vault

(Fig. 21.14).

That is, z ¼ f(x, y) where f is the function of two real variables that we are

seeking. D is the distance from the point (x, y, z) to the origin. Thus z, representing
the expression we are interested in, is defined by the equation

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � X2

p
D can be defined as a function of X and θ. Let g(X, θ) be such a function:
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Fig. 21.12 Image: authors

Fig. 21.13 Image: authors

Fig. 21.14 Image: authors

Fig. 21.15 Image: authors
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g X; θð Þ ¼ 1þ
ffiffiffi
2

p
� 1

� �
X2 tan θ:

Fig. 21.15 is a graphical representation of g(X, θ):

Thus, z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � X2
� �q

becomes

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffi
2

p
� 1

� �
x2 þ y2ð Þ y=xð Þ

� �2

� x2 þ y2ð Þ
� �s

if x 6¼ 0

and given that tan θ ¼ y/x and X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
,

z ¼ f x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffiffi
2� 1

p� �
x2 þ y2ð Þ y=xð Þ

� �2

� x2 þ y2ð Þ
� �s

if x 6¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2ð Þ

p
if x ¼ 0

In order to calculate a(S), the area of the surface defined by the vault, we need to
evaluate the double integral

a Sð Þ ¼
ð ð
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂f=∂xð Þ2 þ ∂f=∂yð Þ

q
dx dy

where f is defined as above and the region T is the projection of S on the xy plane,
i.e., the square of 2 � 2 on which the vault is built.

Vault constructed as a section of a sphere Now consider again for simplicity, a

spherical vault with a radius of 1 constructed on four arches (the generalization to a

vault with arbitrary radius is straightforward). The resulting vault would look like

the one in Fig. 21.16.

Being a spherical vault, here we already know the two-real-variables function

which formalize its surface:

z ¼ f x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � y2

p
In order to calculate the exact vault surface we simply have to calculate the

surface of the semi-sphere on the square region on top of which the vault is

constructed (see Fig. 21.13). This results in

a Sð Þ ¼
ð ð
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂f=∂xð Þ2 þ ∂f=∂yð Þ2

q
dx dy

where f is as above and the square region T is the projection of S on the xy plane.
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Conclusions

We have described a popular construction technique for building brick vaults,

without any use of scaffolding and or additional reinforcements. The technique, a

collective invention in Mexico dating back to the nineteenth century, offers an

economical solution even to this day to the housing problem. As a first step towards

a mathematical analysis of the vaults we have formalized their surface as a function

of two real variables. We have explored two cases: the surface of a vault

constructed on a rectangular perimeter, and the surface of a vault constructed on

four circular arcs resulting in a section of a sphere. We also have indicated how to

calculate the area of the surface in both cases. In the near future, we plan to contrast

our mathematical results with measurements in existent vaults and also provide a

formalisation of the different patterns formed by the bricks on the vaults surface.
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Chapter 22

Mathematics and Structural Repair of Gothic

Structures

Javier Barrallo and Santiago Sanchez-Beitia

Introduction

Showing a visitor a range of geometrical models, Spanish architect Antonio Gaudı́

once remarked, with excitement in his eyes: Wouldn’t it be beautiful to learn
geometry in this way? Without any doubt, mathematical education for

architecture students would be more effective and pleasant if all the theoretical

knowledge were explained with the help of real architectural examples. The

relationship between classical architecture and mathematics is well known.

Architecture, unlike other scientific disciplines, can be used as a never-ending

source of numerical, algebraic, geometric, analytic and topologic problems, to

name just a few fields of mathematics. A modern concept of architecture should

necessarily include mathematics for its comprehension. Reciprocally, the teaching

of mathematics in architecture should be based on the constructive event to be

effective.

Interdisciplinary education provides a positive stimulus for both teachers and

students, resulting in a much more persistent and interesting training. It is obvious

that mathematical knowledge acquired inside an architectural environment is more

likely to be applied by future architects after their university studies. As an example

of this way of learning mathematics, in this chapter we will show some ideas and

mathematical concepts related to one of the more complex branches of architecture:

restoration, repair, and maintenance of Gothic buildings.
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Why Such Interest in the Gothic Style?

The constructive characteristics of the Gothic style are unique in the history of

architecture. Gothic cathedrals pushed structure to the limit—soaring

cross-vaulting, pointed arches, hollow walls and piers covered with tracery—and

used the arch as an external brace—the flying buttress—to form one of the most

beautiful stylistic elements of the Gothic style.

Gothic buildings changed the pier concept inherited from the Romanesque

tradition, recovering the concepts of the pier as a skeleton; the pillar instead of

the wall; the arch as vault centre instead of the arch as vault element; stress

concentration points instead of stress lines. The whole system is a linear frame

that supports forces in a delicate balance. This is the magnificence of the Gothic

style (Fig. 22.1).

This fragile equilibrium implies a permanent stress on all the elements. Any

failure provokes other structural failures in a chain reaction threatening the integrity

of the building. Obviously the technology of the thirteenth to sixteenth centuries

could not introduce numerical structural calculation because it simply didn’t exist.

The progress came by trial and error, empirical methods, and the results were

transmitted by travelling master builders and stonemasons.

Why Mathematics?

A Gothic building is special in the sense that its construction usually extends over a

long period of time. The building process was very slow due to technical and

economic problems. Besides, initial design errors were detected and corrected

during the construction, modifying the original design.

The construction of a Gothic cathedral usually began with the apse and

proceeded towards the end of the nave and aisles. This method implies that the

structural equilibrium of each part of the building has to be solved independently.

Consequently, the whole structure suffers from changing its equilibrium by

absorbing settling deformations due to its provisional situation. Furthermore, the

technological progress during the long construction process causes heterogeneity

between parts finished with older procedures and materials and parts executed at a

later time. This is the reason why an accurate correlation between a mathematical

model and the real building cannot actually be found. However, mathematical

modelling is the only effective tool to estimate and understand the actual balance

of a Gothic cathedral.

The study of Gothic buildings must take into account the following aspects:

– Heterogeneity of materials due to long construction periods;

– Technical alterations introduced by craftsmen;

– Wide variety of stone and mortars;

– Different stages of vertical and horizontal development;
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– Additions, substitutions, and partial collapses during the construction;

– Restorations and maintenance of the building.

These various aspects mean that, in many cases, it will be necessary to develop

several models of the same building corresponding to different periods of time in

order to determine the stress evolution of the building in a qualitative rather than a

quantitative manner.

To find the effectiveness of a mathematical model, we must verify two criteria:

– Predicted deformations must agree qualitatively with building deformations.

– Deformations measured in situ in the building must be of the same order as those

predicted by mathematical means.

Geometry of a Historic Building

Describing the geometry of a building is the first phase of historic restoration work.

A precise geometric model must be simple conceptually, but substantially

representative of the structural and constructive system of the building. In order

to create an accurate survey, there exist two basic techniques for acquiring the

geometrical data that defines a historic building: photogrammetry and topography

(Fig. 22.2).

Photogrammetry is based on the principle of three-dimensional vision starting

from two bidimensional images taken from points that are slightly separated. Just as

we use our brains to comprehend spatial depth by means of two bidimensional

images taken from our left and right eyes, a computer can reconstruct a three-

dimensional environment from two photographs taken from separate points

Fig. 22.1 Main nave of the Church of Santa Maria la Real, Najera, Spain. A geometric analysis of

the church shows the vaulting system to be completely distorted. Arches and vaults are deformed,

the walls and columns are bent, and cracks appear in the aisles. Geometry is the first test to verify

the structural state of a Gothic construction. Photos: authors
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directed toward the same focus. A pair of photographs of this type is known as a

stereoscopic image.

The geometric basis of photogrammetry is the following: an object placed near

the line of infinity appears in the same position in the bidimensional images, whilst

the relative positions of objects near the observer vary between the two images. By

measuring the displacement of the object in both images, we are able to deduce the

distance from the observer in the real world.

Topography is a well-known process for obtaing the spatial coordinates of any

construction. The geometrical theory is extremely simple: an object looks bigger or

smaller to us depending on its distance from the viewer. With an special device, the

size of the object is measured and the distance of the point deduced. By tracing

imaginary triangles from known coordinates, any visible point of the building can

be measured with a high degree of precision.

Once we have a database with enough points from the building, we proceed to

the elaboration of a three-dimensional, solid, model. Several shapes are used to

create the final model: ellipsoids, cylinders, paraboloids, hyperboloids, and other

shapes that fit the coordinates from the database until the geometry is successfully

completed (Fig. 22.3).

Fig. 22.2 Photogrammetry and topography are two techniques used to take precise coordinates

from existing conditions. Photogrammetry is based on the measurement of an object in two

photographs taken from separated points towards the same focus. Topography is based on the

geometry of an object that looks smaller the further away it is. Photogrammetry is a technique

usually used for detailed, ornamented, models while topography is generally used for larger, less

detailed, structures. A Romanesque style portico (a, left) rendered by means of photogrammetry

and the nave of a Gothic cathedral (b, right) measured using topography. Photo and rendering:

authors
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Experimental Measurements

Each part of a building has specific constructive and structural characteristics that

must be represented in the model. Every element of the mathematical model needs

to be associated with its mechanical properties.

The measurement of stresses and their directions is another important task

(Figs. 22.4 and 22.5). Very high stresses might fracture the stone-mortar

ensemble. Stresses whose directions do not follow the vertical structural elements

usually transmit forces outwards that should be opposed by the external buttress

system. If this is not the case, traction forces will appear in the structure, producing

serious disorders in the building. Also, bending, cracks and deformation of

structural elements might have occurred over time and should be measured for a

representative period of time in order to achieve the best possible simulation of the

building.

All these processes, known as monitoring, are completed by physical analyses of

the soil and the materials used in the construction, mainly compression/deformation

reports. The correlation of all the available reports, simulations, monitoring,

weather conditions and soil prospecting may provide clues for detecting and

solving the structural problems present in a building.

Fig. 22.3 Interior of the Bilbao Cathedral. The making of a computer model is similar to the

physical creation of the cathedral. First, the columns and arches are constructed, followed by the

vaults, piers and flying buttresses, and finally the walls, windows and ornaments. Rendering:

authors

22 Mathematics and Structural Repair of Gothic Structures 329



The Finite Elements Method

The Finite Elements Method is the methodology that nowadays gives the most

satisfactory results in the analysis of historic architectural structures, especially

Gothic cathedrals. The basis of this method consists in dividing a surface or volume

into a reasonable number of small elements. The mechanical characteristics, as

stress or displacement, of each and every element is calculated and transmitted to

the neighbouring elements.

Fig. 22.4 An example of a device to monitor cracks in a building. (a, left) and the graph

representing the movement of two cracks during a 24-h period; (b, right). The graph also includes
a third measurement indicating the external temperature of the building. It is obvious that there is a

clear correlation between the temperature and the movement of the cracks, which work as

expansion joints. Photo and graph: authors

Fig. 22.5 An example of an experimental method to measure stresses, the Donostia Method,

which was developed by the authors and has been widely used in several historic buildings: (a, left)
a simulation of a masonry wall loaded in a laboratory; (b, right) the basic principle of the process:
several electronic extensometric gauges placed around a hole drilled in the stone measure the

deformation of the hole after the drilling. The dimension of the deformation, which of course is not

perceptible by the naked eye, is transmitted from the gauges to an analog computer. Depending on

the mechanical properties of the material, and the deformation measured, the stresses in all

directions are calculated. Photo: authors
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The input for a Finite Elements Method analysis is a computer model

representing the geometry of the building. This model is not a simple drawing:

each geometric element must be perfectly defined and assembled with its

neighbours. Also, it must include appropriate contour conditions and physical

properties, such as the Young and Poisson Modulus and density, amongst others.

Once the geometric, mathematical, model is completed, it is meshed into small

elements (Fig. 22.6). In space, we usually use tetrahedra (four nodes) or brick (eight

nodes) elements, although these elements can also be implemented and extended to

10 and 20 nodes respectively by including an extra node to each aristae.

All this information is then translated to a system of equations in matrix form.

The size of the matrix depends not only on the number of elements and nodes, but

on the number of degrees of freedom. The degrees of freedom can be considered as

the variables we want to solve for each node. A typical degree of freedom is six,

which includes translation and rotation for each node along the three main axes X,

Y and Z.

After the matrix containing the model is solved, stresses and displacements for

each node can be easily estimated (Fig. 22.7). The results are usually represented

graphically with colour maps that represent magnitudes. This technique is widely

used, as it allows a quick visual understanding and interpretation of the model.

Fig. 22.6 Meshing a section of the external resistance system of a Gothic cathedral (flying

buttresses, vaults, pier and column). The basic element selected for the mesh was the 10-node

tetrahedra. Tetrahedra fit perfectly on complex geometries, such as the Gothic, with a reasonable

number of nodes. Drawing and model: authors
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Fig. 22.7 Church of San Antonio Abad in Bilbao. (a, left) the equivalent stresses on a section of

the church; (b, right) an estimation of the deformation suffered by the temple. Models: authors

332 J. Barrallo and S. Sanchez-Beitia



Chapter 23

Mathematics of Carpentry in Historic

Japanese Architecture

Izumi Kuroishi

Introduction

Historically in Japan, carpentry had been recognized as a mystical profession. In a

book entitled Hidasho-monogatari (飛騨匠物語), the master carpenter was so

skilled that he could make his house float in the air (Masamochi and Hokusai

2002) (Fig. 23.1).

Such legends arose from the fact that carpenters kept their knowledge secret and

transmitted their technology through apprenticeships. There are many old, mystical

architectural treatises dating from the fifteenth century, but most of them contain

lists of architectural styles and partial construction drawings, for which only limited

literal explanations are provided. Besides these treatises, there exist drawings of

large temples from the sixteenth century. However, among the drawings of whole

architectural forms and individual parts, there is no coherent explanation. In

constructing traditional Japanese buildings, carpenters retain their traditional

ways of construction; once clients and a master carpenter decide the size and

Kiwari (木割り) of the project, almost all the other design and structural systems

are automatically fixed.

When the Western notion of architecture was introduced into Japan at the end of

the nineteenth century, its idea of the mathematics as a fundamental knowledge of

an architect became dominant, and the historical design and technology of the

Japanese carpenter came to be regarded as too primitive. At the beginning of the

nineteenth century, master carpenter and mathematician Heinouchi Masaomi wrote
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theories of Kikujutu (規矩術, Architectural Stereotomy), and used his knowledge

of Japanese historical mathematics, Wasan (和算), to analyze the technology of

carpentry (Sekino 1947; Hiroshi 1985). In Japanese architectural history, Heinouchi

is recognized as a pioneer for introducing mathematics into Japanese traditional

architecture, and thus modernizing it (Katsushige 1978; Norihito 2000). However,

there were criticisms against Heinouchi’s theories that they simplified the forms of

historical architectures. Also, the nature of Wasan is very different from Western

mathematics, and the relationship between Wasan and Japanese historical

architecture has not been clarified yet. Thus, for the above cultural characteristics

in both of the Japanese architectural production and of mathematics, I argue that the

relationship between mathematics and the historical technology of Japanese

carpenter must be reexamined in a different way. Such varieties and subtleties in

the creation of architectural forms before the theorization by Heinouchi represent

the cultural identity in the relationship between Wasan and Japanese architecture.

Italian mathematician Enrico Giusti writes:

The objectives of mathematics are not the expression of the purified essence in the material

impurity of the outside world independent from human beings but the formalization of the

human being’s practice. . .Mathematics always begins from the technological practice, and

is not the daughter of the nature but of the art in its original meaning (Giusti 1999: 31–33;

my trans.).

Fig. 23.1 Drawings of the works by Hida carpenter by Hokusai from Hidasho monogatari
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The nature of mathematics in architectural creation has varied widely even in

Western architecture. In the present study, I am going to present a different

perspective for the role of mathematics in Japanese historical architecture by

focusing on the materials of carpenters’ works. I will explain that, contrary to a

kind of ideal mathematics that gives an order to the whole, there was another

mathematics in Japanese carpenters’ technologies, phenomenological

mathematics, which emerged from the process of rationalizing practical activities

and the public’s habitual understanding of architectural form, the latter merging

with the former to create the characteristic features of Japanese historical

architecture.

History of Japanese Mathematics and the Role of Carpenter

Technology

The Japanese learned about the square root and the theories of Pythagoras from

Chinese mathematic textbooks in the sixth century, and practical technologies, such

as calendar making, hydraulics, surveying, and financial administration, further

accelerated its development. In the sixteenth century, Tengenjutsu (天元術,

mechanical algebra) was introduced from China and theories of number

sequences and approximate solutions developed, leading to the Japanese

mathematics called Wasan. At the end of the nineteenth century, the Japanese

government decided to replace Wasan with Western mathematics. One reason for

this was that Wasan treated real, everyday, problems, and did not seek universal

fundamental principles and logic; thus it was not deductive as is Western

mathematics, but rather inductive. Since the seventeenth century geometric

problem solving had been a popular, competitive, sport. Mathematic pictures

known as Sangaku (算額,) hung in shrines (Fig. 23.2), popularizing the visual

inductive method, as well as furthering the evolution of abstract algebraic

theories. Also, Japanese calendar theory was based on that of China, so algebraic

geometry developed instead of graphical geometry, so there was no concept of a

coordinate system such as that of Descartes in Europe. Wasan solved solid

geometry with algebraic geometry alone, not with analytic geometry, and did not

encompass either the projection drawing method or the concept of the degree of

angle. It used only the Kokogenmethod (勾股弦術, Pythagorean theory method) to

solve geometrical problems.

The Kokogenmethod derived originally from Kanejaku-san (曲尺‐算, Kanejaku
mathematics), which derived from carpenters’ techniques of Kanejaku, an L-shaped
right-angle scale. Since the sixth century, Japanese people used Kokogen for the

four operations of arithmetic, square root, cube root, and for drawing polygons

(Katsushige 1985; Yoshio 1977). Descriptions of the Kokogenmethod appear in the

Gushikenki (愚子見記), the oldest, well organized carpentry book, written in the

seventeenth century (Katsushige 1978: 28–43; Kazuyoshi 1988). It is not an
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accurate calculation but rather a kind of empirical method, which emerged from the

act of measuring the drawn shapes, and was created by carpentry’s practical

technology (Fig. 23.3).

Development of Japanese Carpentry Technologies

Japanese carpentry technologies developed along with the elaboration of the

techniques of Kanejaku. Especially after the medieval period the techniques of

Kanejaku became more complicated in order to create detailed joints and

ornamental parts, and the essence of carpentry technologies was known as

Sashigane (差金術). Such emphasis on the construction technology in the

creation of architecture arose for two reasons: the refinement of methods

introduced by foreign technology; and the characteristic relationship between the

proportional system and the construction technology.

Refinement of Method From antiquity in Japan, large wooden structures were

built with simple construction methods. With the introduction from China of the

wooden structure technologies of Asuka-temple (飛鳥寺) in 588, the Chinese Sui

and Tang styles introduced with Toshodai-temple (唐招提寺) at the end of the

seventh century, and the North Sung styles with Zen temples in Kamakura period,

the ideas and technologies of Japanese architecture developed dramatically.

Japanese carpenters’ methods of learning and refinement of those Chinese

architectural ideas and technologies influenced the nature of Japanese architecture.

In the construction of large temples, Chinese master carpenters or Japanese

Buddhist monks educated in China directed Japanese carpenters not with literal

texts but with substantial models. In the construction of Aska-temple in the sixth

Fig. 23.2 Sangaku of Sakatare shrine in the city of Mita, 1811, renovated in 1967
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century, a 1:10 scale model was imported, enabling carpenters to conduct actual

examinations of the design, structure, and details. Carpenters established their job

hierarchies and the way of learning from models with visual and tactical methods.

Carpenters in ancient periods could neither read nor analyze their practice

theoretically, but learned only through empirical practice and dialogue with those

with greater experience (Naomi 1971: 156–217). Thus, the description of the ideas

and technologies in texts, such as the technological descriptions and lists of the

styles in the first organized architectural treatise Shomei (匠明) in 1608, became

Fig. 23.3 The various measurements on Kanejaku and Kanejaku-san drawings from Gushikenki
and Sugakutaizen
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formalistic and dispersive. For example, Shomei has an analogical drawing of a

human body indicating the relationship between the macrocosmic order with the

arrangement of Chinese temple, but without an explanation.1

The Development of Kiwari (木割, proportion system) and Sashigane In

buildings before the seventh century, all members had rounded shapes and

pointed joints, enabling assembly with nails and a dynamic combination of parts.

There were various joint systems, and not so much attention was paid to the

accuracy of their placement (Hideo 1985). Meanwhile, Japanese carpenters

created various ornamental forms, construction systems, and technologies by

modifying those of China to suit the Japanese climate and ways of life. In the

Heian period there appeared Noyane (野屋根), which had two layers of roofs

extending around the peripheral space of the building in response to the frequent

rainfalls. Because Noyane created the characteristic soft and delicate curves of the

long, thin, extended, eaves, the arrangement of structural beams and forms of joints

became more complicated, and more emphasis was placed on the construction

technologies of those parts and joints. North Sung style’s organized construction

systems and ornamental details, as well as the accurate joint technology using many

kinds of wood in Shoin-zukuri (書院造) from the Muromachi to the Edo period

accelerated the development of highly elaborated construction technology for the

edges of eaves and the joints.

In the history of the development of Japanese architecture between the Heian
and Edo periods, there was another important development in the area of

architectural proportion. Along with the introduction of the ideas and

technologies of Chinese architecture in the sixth century, its system of structural

proportions based on the size of the column also came into Japan. In theMomoyama
period, there were three modules: intercolumniation, size of column, and distance

between roof rafters; and almost all other parts’ sizes and the distances between

them were determined as integral multiples of these modules. This proportion

system is called Kiwari (木割), and the styles of Japanese architecture are

basically categorized according to Kiwari and roof designs (Fig. 23.4). However,

because of the canonical nature of the technology and designs that had been

introduced, Kiwari gradually became more unified and organized towards the

Edo period; as Japanese architectural historian Nakagawa Takeshi noted, it

became more focused on its numerical consistency independent from the total

spatial organization (Takeshi 1985). The more the idea of style follows the rule

of Kiwari, the less the liberal modification of the form was possible. On the other

hand, carpenters demonstrated their desire for expression in the creation of the

details by Sashigane independent from the total spatial organization.

As explained earlier, once the master carpenter or monk decided the size of the

project and Kiwari, almost all other aspects of the design were automatically

determined. Thus, Kiwari worked as ideal mathematics. Proportion, from its

1 The original author in the Momoyama period is unknown. Heinouchi Masanobu published the

first ed. in 1608; see Hirotaro and Yotaro (1971: 242).
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etymological meaning, is not merely formal but a flexible, organized, relationship

of the parts into a whole, thus implying the adaptation to phenomenal necessity.

However, as Kiwari became more numerically oriented in its canonization, the role

of proportion was narrowed and fixed, and its role as ideal mathematics detached

from phenomenal necessity in architecture.

The Idea of Geometry in Sashigane-zu (Drawing)

Kanejaku (曲尺) According to legend, at the origin of Kanejaku are the

instruments held by the god Fugi, depicted in cave drawings in Shangdon, China.

Fugi holds a Kanejaku and his wife Joka holds a compass. Kanejaku has not

changed so much. It has regular measure, Omoteme (表目), on the longer side

and Urame on the shorter side, and on the back there areUrame (裏目), Robang-jaku
(魯班尺), Omoteme and Maru-me (丸目). Urame is also called Nobi-no-ku (延び

の矩) and shows the length of the diagonal of a square, which is √2 times the

regular measure. Urame is used for the placement of the roof rafters, and for the

cutting of a square timber from a round trunk. As Japanese architectural historian

Muramatsu Teijiro notes, Japanese carpenters created this Nobi-no-ku in the

medieval period to accommodate the development of the Kokogen method to

create complicated roof shapes and joints (Teijiro 1973: 134).

The Method to Create Sashigane-zu and Kataita (型板, Template) Historical

wooden architecture has assembled joints on columns to make long extended eaves,

the corners of which curve upward, and the surface waviness of which forms

various roof curves. In order to assemble the parts to form the eaves and roofs

efficiently and accurately, carpenters draw Sashigane-zu on plates to create three

types of Kataita at full scale: for the eave’s front plate, which differs according to

Kiwari; for the same type joints; and for each roof’s rafters, which change along

with the roof curves. Carpenters transmit their ways of drawing Sashigane-zu by

Fig. 23.4 Kiwari drawing of a two-story pagoda from Shomei
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recording them in a book called Hinagata (雛形, model), and according to

Hinagata, carpenters draw the intersecting lines of each part on three surfaces

continuously. Thus, they create a developmental elevation of the intersecting

lines of the joint in order to see their three-dimensional relationships in a

two-dimensional composition of four surfaces at a glance (Fig. 23.5).

To draw this developmental elevation, carpenters first set the horizontal line as

the basis; however, they do not make it correspond with the total organization.

Carpenters use Kanejaku not only for drawing straight lines but curved lines as

well. The Kanejaku is tilted to plot each point of the curve at a small scale, then

similar triangles are drawn continuously according to the curve, and the length of

each part calculated with the Pythagorean theory. Then, the length of each part is

multipled into a larger scale curve. In the process of drawing lines, Kanejaku
technology uses a limited number of angles based on the simple combination of

similar triangles.

Sashigane-zu is, thus, an approximate drawing, and the ways of making

Sashigane-zu and Kataita differ for each carpenter, because they are based on the

actual measurement. Also, when a full-scale curved form is drawn with Kanejaku,
its height and length are usually modified slightly on site to make the curve appear

smooth, and the arrangement for such an effect of optical illusion was kept as a

trade secret in the carpenter’s school.

Sashigane-zu as a Medium The training of younger carpenters was based not on

their logical comprehension of joint structure but on their habitual memorization of

the method of drawing a Sashigane-zu. In that sense, again, Sashigane-zu was not a
logical drawing but a medium enabling carpenters to connect their ideas to their

practice by going through a serious of actions: drawing lines, checking by

comparison with real objects, adjusting the lines of the drawing, measuring the

Fig. 23.5 An explanatory drawing of a Sashigane-zu of a roof rafter
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parts of objects, calculating the length with the Kokogen method (Pythagorean

theory), and formulating the lines and angles according to the result of this series of

acts. Carpenters have to go back and forth between substantial object, algebraic

mathematics, and geometric presentations to put their ideas into practice. In other

words, their physiological and visual recognition are connected to the algebraic and

geometrical logics by the approximate solution with Kanejaku Kokogen method.

The lines of his Sashigane-zu are not the imaginative lines but the actual cutting

lines directly connected to the act of construction. This role of Sashigane-zu as a

medium is only possible because of its visual and empirical aspects, and projects a

fundamental question on the meaning of the explanation of the invisible parts and

systems in our architectural drawing.

Japanese carpenters have continued using this Sashigane-zu, but scholars regard
it as too basic, primitive, and illogical to be theorized. However, Sashigane-zu is a

simplified practice that can be adapted to the reality of the construction site. It

utilizes only the limited number of angles and types of intersecting lines based on

simple triangle assimilations, which carpenters can easily memorize. It also enables

carpenters to modify the forms of joints according to the situation: the various

nature of materials, site conditions, and complicated structural relationships

between parts.

Innovations with Sashigane

In this section I am going to explain two examples that show the kind of innovative

relationship created by Sashigane between architectural parts and the whole. One

specific characteristic of historic Japanese architecture is that, in the formalization

of Kiwari, carpenters came to focus on the elaboration of joints and ornament

independent from the total coordination of architectural form.

Kesen (気仙) Architectures In the historical architectures of Kesen, which is well
known for having produced many talented carpenters who traveled for major

projects all over Japan, there are typical examples of the extravagant elaboration

of details over the total balance, such as the sculpted roof rafters of Fumon Temple.

Too much emphasis on ornament sometimes transforms the structural order of

Kesen architecture (Kenji 1978; Segawa 1998). In the Saiko-temple (西光寺)

gate, built in 1567, the main central cross beam is unproportionally large and is

set horizontally in order to strengthen the horizontal bearing force against frequent

earthquakes in this region (Fig. 23.6).

There is no material explaining why the crossbeam is set horizontally, but from a

historical comparative study with the other crossbeams, it probably started as

vertical, then evolved into a square beam with sculptures projecting from the side

walls, finally turning into a horizontal element. Thus, crossbeams began as an

ornament and eventually changed the total structural system of the architecture.

This is an example of the innovation of carpentry’s ornamental technology moving
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beyond the stylistic and structural canons in order to adapt to the local condition of

architecture.

Kintaikyo (錦帯橋, Kintai Bridge) Another characteristic of historic Japanese

architecture is that Japanese carpenters created new forms and structures by

adapting Chinese models to the Japanese geographical conditions. Kintaikyo is a

35-m, five-arch bridge spanning the Nishiki river in the city of Iwakuni (岩国). It

has been rebuilt at least nine times since 1639 due to its repeated destruction by the

strong currents of the river (Izumi 1996). Iwakuni feudal load Kikkawa Hiromasa

formed a group of engineers and scholars of different disciplines—mathematician,

carpenter, masonry, metal workman, surveyor, earth worker—to create the bridge.

(Due to the popularity of Wasan games, many mathematicians traveled all around

Japan and worked for big projects at that period.) There is a small picture of a

Chinese bridge of Saiko-shi (西湖誌) given by a Chinese monk Dokuryu to

Kikkawa, but it does not indicate any technological methods for construction.

The form of the Kintaikyo bridge consists of four layers of eleven continuous

cantilever beams supported by ten cross beams from both sides, which were

connected by center cross beams (Fig. 23.7).

There are not sufficient materials to know how the construction of the bridges

was carried out and how the details were modified from one to the next. However,

according to a book on Kintaikyo’s construction by historian Shinagawa Moto,

there were small misalignments between each bridge’s base and carpenters had to

arrange the height and length of the curves and angles of beams slightly differently

in each case so that the bridges would appear uniformly curved at the construction

site (Moto 1984). The precise kind of wood used for each part of the bridge was

decided depending on where the part was to be put, and full-scale Sashigane-zu
were drawn. For the contraction and expansion of each piece, which also depended

on what part of the curve the piece was put, carpenters modified their length and

curves to 1/1,500 of the distance of beams.

In every renovation of the bridge, because of the lack of the Hinagata drawings

of each beam, and because of the natural modification of the bridge curves due to

Fig. 23.6 Saiko-temple

gate with a projecting

horizontal crossbeam from

Catalog for Kesen daiku ten
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the climate and the weight of the passengers, carpenters had to re-measure every

part and rearrange them to create new Sashigane-zu. The structural system and

forms of the bridge were obviously much advanced compared with other

constructions in Japan of the same period but, surprisingly, carpenters and other

engineers were able to build it in a series of reconstructions with only the small

picture to begin with.

Codification of Sashigane-zu with Mathematics

In the Edo period, because of the governing influences of the institutionally

authorized carpenters to realize the increasing number of big scale projects,

carpentry technologies were ruled more and more by the traditions and canons of

each school. Heinouchi Masaomi, originally a mathematician and later the master

carpenter of Tokugawa Shogun, published Shokakujutu-shinsho (諸家矩術新書) to

Fig. 23.7 Kintaikyo: Cantilevers and a construction drawing with records of modifications from

Catalog for Kintaikyo ten
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analyze and organize Sashigane according to charts of stereographic projection

(Masaomi 1848). He declared that without mathematics architecture cannot acquire

a logical structure and that carpenters cannot use Kanejaku without learning

mathematics. The word Kikujutu for his theories was derived from the etymology

of Dutch surveying. Heinouchi intentionally used this word to emphasize the basis

of his theory in Western mathematics, so avoiding empirical adaptations and

ambiguous differences in Sashigane-zu, and reorganizing Japanese carpentry

technology scientifically for the next generation.

Heinouchi introduced different types of drawings into Sashigane-zu through the

method of stereographic projection: putting together plans, elevations and sections

in one drawing; drawing coordination lines between the development drawings of

each side of joint; organizing their horizontal lines; three dimensional perspectives

of the joints; and three dimensional analysis drawings of structural frames

(Fig. 23.8). He also calculated the angles and arrangement of the most

complicated traditional fan frame roof rafter system. Thus he clarified the

invisible parts of joints in Sashigane-zu, which used to be interpreted

approximately by visual and empirical understanding, and calculated the angles

by trigonometry. Therefore, he unified the logic of geometrical drawing with

algebraic calculation and empirical application, and put together all the different

ways of visualizing an architectural form.

However, Heinouchi still presupposed the usage of Kanejaku and set the

Kokogen method as the premier principle of his deductive logical analysis of

Sashigane-zu. He did not try to reframe the proportional system of Kiwari to
establish the consistency with the geometrical orders in the construction of the

parts by connecting the two mathematics—ideal and phenomenological. Thus he

introduced ideas and representational methods of Western geometry, not as

fundamentally different framework of architectural creation, but as another

codification system of Japanese carpentry technology. Heinouchi presented

accurate analysis of joint sections and calculations of the length and angles of

their lines of intersection, however, this information were too complicated and

difficult for the average carpenter, who was unable to utilize Heinouchi’s theory in

making Kata-ita and using Kanejaku at construction sites.

Conclusion

Japanese carpenters did not objectify and express their ideas and methods in

writing, and their Kataita and Kiwari drawings were all executed on fragile

wooden plates. Thus, research materials for the historical ideas and technologies

of carpenters are rare. In this chapter, I have examined the limited historical

materials along with the historical materials of Wasan, and tried to shed new light

on the relationship between historic Japanese architecture and Wasan. The

mathematical application of Kanejaku to the algebraic geometry of Wasan and

the drawing method of Sashigane-zu both enabled the approximate unification
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Fig. 23.8 Heinouchi Masaomi’s Kikujutsu Drawings from Shoka Kujutu Shinsho
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between the real, sensible, comprehension of architectural forms, their graphical

representations, and the construction technologies. The adaptations by individual

carpenters and the role of Sashigane as a medium helped to situate Japanese

architecture in its local contexts. As I explained, such phenomenological

mathematics, contrary to ideal mathematics, was present among the historic

Japanese carpenter’s ideas and technologies.

Actually, it is difficult to define whether ideal or phenomenological mathematics

came first in the production of architecture. However, in the case of historic

Japanese architecture, I have shown that the latter was incorporated with and lead

the former to create the characteristic features of architecture. With that

mathematics, the ideas and technologies of Japanese carpenters developed in a

kind of closed system to create the ultimate elaboration of details of joints and

ornaments; in turn, they did not create groundbreaking architectural forms and

spaces as a whole. However, I believe that recognizing the dynamic contribution of

phenomenological to ideal mathematics in architecture will present a new

framework for understanding historic architectural forms.
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Chapter 24

On Some Geometrical and Architectural
Ideas from African Art and Craft

Paulus Gerdes

Introduction

The rich cultural diversity of Africa is clearly visible in the wide range of house

decorations, of architectural styles, and of settlement and enclosure shapes (Oliver

1971; Denyer 1978; Bourdier and Trinh 1985; Guidoni 1987; Eglash 1998). Unity

within this diversity appears in the importance of the artistic and geometrical

exploration of symmetrical forms and patterns. Shapes and decorations are not

static; they may vary with the seasons, mark changes in the family composition, or

be chosen for special ceremonies (Wenzel 1972; Courtney-Clarke 1986, 1990;

Changuion, Matthews and Changuion 1989; Gerdes 1998d, 1996). Some

traditional African architectural ideas may have been derived from or suggested

by experience and knowledge in other cultural spheres, such as basketry (Gerdes

1990: 107–111, 1998c).

In this chapter, some examples of geometrical ideas in traditional African

building will be presented, as well as some further suggestions for architectural

shapes inspired by African art and craft.
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Rectangle Constructions

Most African peoples south of the Sahara traditionally build houses with circular or

rectangular bases. Among the Mozambican peasantry, two methods for the

construction of the rectangular bases are common. In both cases, the rectangular

shape does not appear as the result of copying a rectangle or of starting with the

construction of the right angles one by one (Gerdes 1998a: Chap. 12).

Figure 24.1 illustrates the first method. The house builders start by laying down

on the floor two long bamboo sticks of equal length (a). Then these first two sticks

are combined with two other sticks also of equal length, but normally shorter than

the first ones (b). Now the sticks are moved to form the closure of a quadrilateral (c).

The figure is further adjusted until the diagonals—measured with a rope—become

equal (d). Then, from where the sticks are now lying on the floor, lines are drawn

and the house builders can start. This construction method reflects the knowledge

that when the diagonals of a parallelogram become congruent, the parallelogram

becomes a rectangle. The rectangular shape appears as the result of a continuous

transformation of a quadrilateral: a quadrilateral converges to a rectangle, the

rectangle being the limit.

Figure 24.2 illustrates the second method. The house builders start with two

ropes of equal length that are tied together at their midpoints (a). A bamboo stick,

the length of which is equal to that of the desired width of the house, is laid down on

the floor and, at its endpoints, pins are hit into the ground. An endpoint of each of

the ropes is tied to one of the pins (b). Then the ropes are stretched and at the

remaining two endpoints of the ropes, new pins are hit into the ground. These four

pins determine the four vertices of the house to be built (c). This rectangle

construction demonstrates the knowledge that as soon as two equally long curves

that intersect in their midpoints become, in a continuous transformation, straight

segments, they will constitute the diagonals of a rectangle. The defining elements of

the rectangle are its width and diagonal length. With both construction methods, the

four right angles of the rectangle appear exactly at the same time.

Changing Wall Decorations

Among the Ngongo, one of the ethnic-cultural groups of the Kuba Kingdom in

central Congo/Zaire, the decoration of the walls of the houses and palaces with mat

work was widespread. A collection of such architectural mats observed by the

Hungarian ethnographer Torday was published in 1910. Figure 24.3 presents

examples. The plane patterns have various symmetries. Horizontally one sees the

sticks which are woven together by the vertical lianas. The use of architectural

mats—Fig. 24.4 presents another example, this time a detail of a plaited mat that

decorates part of the wall above the door of the house of a Bamileke chief in

Cameroon—is one possible way to change decorations in agreement with the
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season, ceremony, or life cycle. Another context in which this is possible is the

litema tradition.

In Lesotho and neighbouring zones of South Africa, Sotho women developed a

tradition of decorating the walls of their houses with designs. The walls are first

neatly plastered with a mixture of mud and dung, and often coloured with natural

dyes. While the last coat of plastered mud is still wet, the women engrave the walls,

using their forefinger. Their art is seasonal: the sun dries it and cracks it, and the rain

washes it away. An entire village is redecorated before special occasions such as

Fig. 24.1 Illustration of the first traditional method for construction of the rectangular base of a
house in Mozambique. Drawing: author

Fig. 24.2 Illustration of the second traditional method for construction of the rectangular base of
a house in Mozambique. Drawing: author
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engagement parties, weddings, and important religious celebrations. The Sotho

women call their geometric patterns litema (singular: tema). Symmetry is a basic

feature of the litema patterns. They are normally built up from basic squares. The

Sotho women lay out a network of squares and then they reproduce the basic design

in each square (see the example in Fig. 24.5). Often the symmetries are two-colour

symmetries: horizontal and vertical reflections about the sides of the squares

reverse the colours (see the examples in Fig. 24.6) (Gerdes 1998a: Chaps. 1 and 6).

‘Squaring the Circle’: Suggestions from Basketry
for Architecture

Transport and storage baskets with square bottoms and circular openings may be

woven in such a way that the strands on the walls are either perpendicular to or

make angles of 45� with the sides of the square. The Makonde basket weavers in

northern Mozambique use the second method to make their likalala baskets. They

start making the basket by plaiting (twill weave) a square mat with 6 + 2(4 � 4) or

38 strands in both directions (Fig. 24.7a). At the midpoints A, B, C and D of the

sides of this square the corners of the basket will rise after folding and interweaving

the outstanding triangles 1, 2, 3, and 4 (Fig. 24.7b).

A diagonally woven basket like a likalala has the property that each horizontal

intersection, including the bottom square and the top circle have the same

Fig. 24.3 Examples of architectural mats from the Ngongo (Congo/Zaire)

Fig. 24.4 Examples of an architectural mat from the Bamileke (Cameroon)
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circumference. The inverted, upside-down likalala may constitute an attractive

architectural structural shape. The base circle converges to the square roof:

although all horizontal intersections are smooth (admitting in all their points

tangent lines), the limit curve, the square, is not.

Among the Bassari, who live in the Senegalese-Guinea border region, a very

special ‘basket’ of the likalala type is woven. It is the extreme case: the lowest

numbers of strands, 2 or 4 in each direction, are used. Figure 24.8a displays the

2 � 2 mini-basket. They call such an over-one-under-one plaited mini-basket epog
edepog; it is used as a penis holder.

Sometimes Bassari weavers do not make a rim but finish the mini basket in the

same way as it was started. They close it with a square top. The closed ‘basket’ is

twisted: the top square is rotated around the basket’s axis about an angle of 90� in
relationship to the bottom square (Fig. 24.9). The height of the basket is one and a

half times the side of the square. The small closed baskets are used to make a jingle

collar, called bamboyo. A collar is composed of about 20 of such small closed

‘baskets’. The sides of the squares are about 2–3 cm. The thread passes through the

centres of the bottom and top squares and the little bell baskets contain small stones

that ring when dancers wear the collar during the omangare feast. The bell basket
may also constitute an interesting architectural shape. The base square converges

smoothly to the middle circle and then returns to the square roof. All horizontal

intersections have the same circumference.

It is possible to weave a closed twisted basket still smaller than a bamboyo bell.

To avoid too much pressure on the strand, we may make it out of a strip of card

Fig. 24.5 Examples of wall decorations from Sotho. Drawing: author

Fig. 24.6 Examples of wall decorations from Sotho with two-colour symmetry. Drawing: author
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Fig. 24.7 (a) First square
mat. (b) Outstanding
triangles to be folded. (c)
Shape of the likalala basket.
Drawing: author

Fig. 24.8 (a) Shape of
epog edepog mini-basket.

(b) Bottom of epog edepog
mini-basket. Drawing:

author
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board paper and fold it several times in such a way that the strip after unfolding

presents the folding lines shown in Fig. 24.10a. Only one such a strip is sufficient to

weave the twisted decahedral basket in Fig. 24.10b, which may inspire a beautiful

architectural shape. Figure 24.10c shows the decahedron from above. All its

horizontal intersections have the same circumference and each of the eight wall

faces is a quarter of the base and top squares (Gerdes 1998a: Chap. 16).

Fractal Structures: Suggestions from Basketry
for Architecture

In the North of Mozambique, in the South of Tanzania, in the Congo/Zaire region

and in Senegal, a pyramidal basket is woven—called eheleo in the Makhuwa

language in the North of Mozambique (Fig. 24.11). In Tanzania and Mozambique

it is used as a funnel in the production of salt (Gerdes 1998a: Chap. 10). The eheleo
has the form of a triangular pyramid: its base (or top in the case of the funnel) is an

equilateral triangle and its other three faces are isosceles right triangles.

Figure 24.12 presents a rotated eheleo pyramid as part of a cube. The shape of

Fig. 24.9 Small twisted

closed basket. Drawing:

author

Fig. 24.10 (a) Strip with

folds. (b) Twisted
decahedral basket. (c)
Decahedron seen from

above. Drawing: author
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the eheleo is interesting for architectural exploration. Figure 24.13 shows the

composition of a structure that explores the right angles of the eheleo, and the

idea of similarity as current in African art. The height of each new pyramid that is

added to the structure is a fixed proportion of the height of the last one (In Fig. 24.13

this proportion is 2/3). Progressing with this building up and introducing pyramids

inside others (for instance, using glass or another transparent material) allows us to

visualize a fractal architectural structure. Another way to produce a fractal

architectural structure with eheleo pyramids is by joining differently sized eheleo

pyramids placed on their equilateral-triangular base. Figure 24.14 displays the first

four phases in building up this fractal structure (seen from above).

Fig. 24.11 Eheleo-funnel.
Drawing: Marcelino
Janu�ario

Fig. 24.12 Eheleo-pyamid
inside a cube. Drawing:

author
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Hexagonal Weaving: Suggestions from Basketry
for Architecture

In various parts of Africa and also in several other parts of the world, artisans

weave baskets with a pattern of regular hexagonal holes. The strands are woven

one-over-one-under in three directions leading to a very stable fabric (Fig. 24.15).

In Kenya, Madagascar and Mozambique, craftsmen use the hexagonal weaving

technique to produce transportation baskets and fish traps. The technique is used for

various other purposes: in Kenya for making cooking plates; among the Pygmies

(Congo/Zaire) and in Cameroon for weaving carrying baskets; in northeastern

Congo/Zaire among the Meje for covering pots; among the Mangbetu for

weaving hats. Basket makers who use the hexagonal weaving technique also

know that when they want to curve a woven surface more than what is done with

a cylindrical surface (in other words, when they want a basket with corners), this is

possible if they introduce one or more smaller holes, normally pentagonal in shape

(Fig. 24.16). This idea may be explored in architecture in the style of Buckminister

Fuller. Figure 24.17 shows a woven, semi-spherical dome structure with a central

pentagonal hole on the top surrounded by a layer of pentagonal holes. Many other

related dome structures may be conceived: a pentagonal hole on the top surrounded

Fig. 24.13 Composition of an eheleo inspired shape. Drawing: author
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by a layer of hexagonal holes; a hexagonal hole on the top surrounded by a layer of

alternately pentagonal and hexagonal holes; pentagonal hole on the top surrounded

by one layer of hexagonal and one layer of pentagonal holes (Gerdes 1998a:

Chap. 13, 1998b: 40–45).

Fig. 24.14 Composition of another fractal architectural structure inspired by the eheleo. The first
phases are illustrated. Drawing: author

Fig. 24.15 Hexagonal weaving technique. Drawing: author
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Interweaving Art and Mathematics: Colourful Circular Basket Trays from the
South of Mozambique.

Fig. 24.17 Semi-spherical

dome structure web with

pentagonal holes only.
Drawing: Marcos Cherinda
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Chapter 25

Design, Construction, and Measurement

in the Inka Empire

William D. Sapp

Introduction

When the Spaniards entered the Andes in AD 1532, the Inka empire was less than

100 years old. When Pachacuti Inka Yupanqui assumed control of the Inkas in AD

1438 they were only one of several regional polities competing for power in the

Central Andes. Under the leadership of Pachacuti Inka Yupanqui, his son Topa Inka

Yupanqui, and his grandson Huayna Capac, the empire exploded in size. Between

AD 1450 and AD 1528 they conquered and incorporated more than 80 separate

polities, including Chimor, until then the largest empire in the New World. By

the time the Spaniards arrived, the Inka empire stretched over 4,200 km and 32� of
latitude, roughly the same distance from Glasgow, Scotland to Cairo, Egypt. It

reached from the modern border of Ecuador and Columbia to the Maule River in

central Chile, and from the Pacific Ocean to the cloud forests of the Amazon Basin

and the pampas of northwestern Argentina.

Architecture and Expansion

Despite the relatively short duration of the Inka empire, there was a massive effort

on the part of the state to acculturate conquered polities through the imposition of a

single language and state-sponsored religion, the organization of a complex

First published as: William D. Sapp, “Design, Construction, and Measurement in the Inka
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administrative system integrating local elites, and the colonization of rebellious and

under populated territories with loyal citizens.

Imperial expansion and acculturation was facilitated by a massive building

program. The state constructed administrative centres, storehouse complexes,

ritual centres, country estates for the emperors and their lineages, terracing and

irrigation systems to bring previously unproductive land under cultivation, and a

40,000 km road system. As part of this effort, a number of skilled craft specialists,

including masons and carpenters, were removed from their local ethnic groups,

exempted from the general labour tax and worked exclusively for the state.

The program of state construction undertaken by the Inkas adhered to a rather

strict set of architectural canons that used a repetitive set of architectural spaces,

elements and ornamentation. These features were plazas, free standing rectangular

rooms, and trapezoidal niches, windows, and doorways. So amazingly ubiquitous

are these features and the degree of formal unity in Inka architecture that the

German naturalist von Humbolt wrote:

. . . but what seems to me worthy of the highest interest, is the uniformity of construction

that one perceives in all the Peruvian monuments. It is impossible to examine attentively a

single edifice of Inca times, without recognizing the same type in all the other monuments

that cover the back of the Andes . . . One should think that a single architect has built this

large number of monuments (Protzen 1993: 11).

Architectural Canons

The plaza was the central focus of public ritual in Inka cities, administrative centres,

and country estates. Many public ceremonies were held in the plazas of Cuzco, the

Inka capital. Most corresponded to important dates in the agricultural cycle,

including the two solstices. There were also ceremonies associated with the death

and coronation of emperors. Many ceremonies lasted for several days and all were

accompanied by sacrifices, recitations, dancing, and the consumption of large

quantities of alcohol by all participants (Rowe 1946: 308–312). Plazas were

usually constructed near the centre of a site, often astride the main road. In

Cuzco, the main plaza stood at the intersection of the roads that led to the four

quarters of the empire. Plazas were typically surrounded by enclosures and

freestanding rectangular buildings.

The basic architectural element was the freestanding rectangular room. Rooms

were often grouped symmetrically inside of a walled compound or cancha
(Fig. 25.1). Rectangular rooms were used for virtually all types of activities,

including habitation, workshops, palaces, temples, and administrative facilities.

Larger rooms, called kallanka, were used as barracks and to house public rituals

when inclement weather prevented ceremonies from being held outdoors.

Freestanding rooms and canchas occur at all socio-economic levels of society,

from farmsteads constructed of sod to the palaces of the emperors constructed of the

most finely dressed stones. Around the two central plazas in Cuzco large kallankas
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and canchas served as palaces, temples, and residences for nobility. Rooms were

constructed with gable, hip, or shed roofs of thatch (Fig. 25.2).

Rectangular rooms and cancha enclosure walls were decorated with a set of

architectural characteristics that are repeated in virtually all bureaucratic and elite

constructions: symmetrically placed trapezoidal niches, windows and doorways.

Most niches are window-sized, although door-sized niches also occur. Double jams

were used on some doors to indicate high status. Doors were normally centred on

one of the long walls of a room. Small rooms had one door, while larger rooms had

more. Two kallanka that face the plaza at the provincial centre of Huánuco Pampa

are about 75 m long. One kallanka has four doors evenly spaced on a long wall,

while the other has nine doors.

Despite the fact that there were only a few architectural features utilized in a

limited set of combinations, considerable variation is demonstrated by construction

style and the design of individual buildings.

Construction and Design

The quality of Inka stonework reflects a combination of style and social status

(Niles 1999: 229). The finest stonework, associated with the highest level of social

status, is found in Cuzco. Much of the city was destroyed during the siege of Manco

Inca in AD 1536–37. It was further destroyed by the Spaniards, who tore down most

of the remainder in order to rebuild the city to reflect their own ideas of urban

design. However, because Inka Cuzco was laid out on a grid pattern generally

maintained by the Spaniards, many cancha enclosure walls have been preserved on
the exterior of current buildings (Fig. 25.3). These walls provide examples of the

finest stonework found in the empire. Walls of this style are constructed of solid,

Fig. 25.1 Isometric view of

a double cancha at the royal
estate of Ollantaytambo.

Image: author, after Lee

(1996)
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dressed stone. Individual blocks are typically large and dressed on all sides. They

represent a greater expenditure of labour than other styles of stone construction.

Cuzco-style masonry occurs in two general sub-groups: irregular polyhedral blocks

and coursed masonry of rectangular blocks. Walls were typically battered and joints

were rusticated. The size of stones tended to decrease as the height of walls

increased (Figs. 25.3 and 25.4). Cuzco-style masonry was used for some of the

canchas and rooms at a number of country palaces, such as Machu Picchu and

Ollantaytambo, and administrative centres, such as Huánuco Pampa.

Unworked fieldstone and mud mortar construction is associated with the lower

levels of social status in the Inka empire. Around Cuzco this style of building was

used for support facilities, such as storehouses and small rooms at royal estates. At

provincial centres it was used for storehouses and lower status residential

constructions.

In between high status Cuzco-style masonry and lower status fieldstone and mud

mortar construction is Intermediate-style masonry, which consists of dressed, or

partially dressed stones (Niles 1987: 211–212). The stones are polyhedral

(Fig. 25.4), fitted (Fig. 25.5), or coursed (Figs. 25.6, 25.7, 25.8 and 25.9). Walls

are generally constructed with two separate faces of stone and a core of rubble and

dirt. Intermediate-style masonry is typically associated with royal estates and

provincial administrative centres. It is the most common type of high status Inka

construction outside of urban Cuzco.

All three styles of masonry exhibit the basic architectural features of Inka design.

While it is clear from the symmetry demonstrated by Inka buildings that specific

measurements and design criteria were employed, we do not know exactly how

these designs were recorded or transmitted. Garcilasco de la Vega wrote that the

Inkas built models of proposed constructions, but the existing models of canchas
are rather crude, and they are not sufficiently detailed to transmit necessary design

data for construction purposes (de la Vega (1609) 1961: 43–44). Juan de Betanzos

wrote that the Inkas used cords to lay out proposed buildings, but he tells us nothing

about what units of measurement were used (de Betanzos (1557) 1996: 45).

Fig. 25.2 Plan view of the

same cancha. Image:

author, after Protzen (1993)
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The design and construction of Huayna Capac’s royal estate at Yucay was the

responsibility of Sinchi Roca, the emperor’s half brother (Niles 1999: 123). Corvée

labour used to construct the royal estate was provided by a general labour tax, the

primary source of imperial revenue. Under this system communities provided

workers for state construction projects. On projects requiring expert knowledge,

Fig. 25.3 Cuzco. Coursed,

Cuzco-style masonry

incorporated into a modern

building. Note distinct

batter, minimal rustication,

and decreasing size of

courses. Photo: author

Fig. 25.4 Lower retaining

wall of Tarahuasi at

Limatambo. Polyhedral,

intermediate-style masonry

showing significant

rustication. Note decreasing

stone size with increasing

wall height. Photo: author
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Fig. 25.5 Machu Picchu,

Room 1. Double masma

constructed using

intermediate-style masonry

of roughly fitted stones. The

ratio of niche to space width

is approximately 1:3. Photo:

author

Fig. 25.6 Machu Picchu,

Room 2. Long wall of the

symmetrical room with one

door constructed using

intermediate-style masonry

of coursed stones. The ratio

of niche to space width is

approximately 2:3. Photo:

author

Fig. 25.7 Machu Picchu,

Room 2. Short wall of the

symmetrical room with one

door constructed using

intermediate-style masonry

of coursed stones. The ratio

of window to space width is

approximately 2:4. Photo:

author

Fig. 25.8 Machu Picchu,

Room 3. Long wall of the

symmetrical room with two

doors constructed using

intermediate-style masonry

of coursed stones. The ratio

of niche to space width is

approximately 2:2. Photo:

author
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these workers laboured under the direction of trade-specific specialists. From this

evidence it is possible to envision a system where a master architect oversaw the

design and building of state structures, while quarrying, dressing, and construction

were carried out by masses of corvée labour working under the direction of master

craftsmen in the appropriate trade.

What Units of Measurement Were Used by the Inka?

Despite extensive studies of Inka architecture, we still don’t know what

measurements and mathematical relationships were used in the design of

buildings and the placement of niches, windows and doors. Building layouts

reflect Inka architectural canons, but substantial variations occur both within and

between sites. Differences in niche width and spacing suggest that the onsite team

of experts were given substantial leeway in design and construction, maintaining

aesthetic values while fitting buildings to the local landscape.

We know that the Inka knew of the plumb bob, and possibly the sliding scale

(Rowe 1946: 225). We also know that there are Quechua (Inka) words for

anthropomorphic measurements including the half arm-span or yard (sikya), the
forearm or cubit (cuchuch), the foot (chaqui), and the hand-span (capa). The
possible use of anthropomorphic measurements in building design led Vincent

Lee to posit that architectural measurements could be expressed as ratios of small

whole numbers (Lee 1996: 10–13). According to Lee, these ratios represented the

widths of niches, doors, windows, and the spaces in between them. The use of ratios

based on anthropomorphic units to describe and design buildings would have

allowed the use of quipu to transmit measurements. The Inka had no written

language, but used quipu, mnemonic devices, to record accounting, tax, and

census data. Quipu were sets of coloured strings in which different types of knots

were tied. String colours indicated categories and knots indicated numbers of units.

Quipu are ideally suited to carry the kind of information described by Lee.

According to Lee’s hypothesis and our knowledge of Inka construction

technology, an architect in the field could stretch a cord across the span to be

occupied by a wall and drop plumb bobs to mark the placement of niches, windows,

and doors. To establish a base unit to apply to the ratios, the appropriate

Fig. 25.9 Machu Picchu,

Room 3. Short wall of the

symmetrical room with two

doors constructed using

intermediate-style masonry

of coursed stones. The ratio

of niche to space is

approximately 2:3. Photo:

author
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anthropomorphic measurement would be taken from an onsite architect or

craftsman using a sliding scale. This would account for variation between sites.

Using an average height of 157 cm for a pre-Hispanic Andean native,

anthropomorphic measurements are fairly simple to calculate (half arm-span:

81 cm; forearm: 40 cm; foot: 27 cm; hand-span: 20 cm) (Lee 1996: Fig. 16). Lee

measured the placement of niches in walls at some 50 sites representing a cross

section of construction styles. He found that he could express the relationship of

niches and the spaces in between them as ratios of small whole numbers using

anthropomorphic measurements as a basic unit. Using the largest unit of

anthropomorphic measurement possible while still retaining ratios based on small

whole numbers, it is possible to test the hypothesis on other existing Inka walls.

Using Lee’s methodology, we will examine the findings from three rooms at Machu

Picchu.

Machu Picchu

Machu Picchu is one of the most recognized archaeological sites in the world. It is

believed to have been a country estate constructed during the rule of Pachacuti Inca

Yupanqui. This would establish its construction sometime between AD 1450 and AD

1473. It is located above the Urubamba River at the upper limits of the two canopy

rain forest found on the western edge of the Amazon Basin. Most of the buildings at

Machu Picchu are constructed of Intermediate-style masonry, although some are

constructed of Cuzco-style masonry. The rooms reviewed here are constructed in

the Intermediate-style. They include one half of a doublemasma of fitted stones and
two rectangular buildings of coursed stones. The masma is a form of rectangular

room in which one long side is left completely open (Gasparini and Margolies

1980: 165–169). A double room is formed when a rectangular building with a gable

roof contains a dividing wall that runs between the short walls at the gable peak.

The double masma at Machu Picchu has a gable roof, a dividing wall, and the two

rooms thus formed each have one open side (Fig. 25.5).

In these rooms we will look only at the placement of niches and windows and not

at the placement of doors. The measurements presented here were calculated at the

bottom of the niches. Measurements were taken at the middle and top of niches as

well, but the results could not adequately be described using anthropomorphic

units.
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Room 1: Double Masma

The double masma was reconstructed sometime after 1951. A photograph from that

year indicates that the niches on the short walls were reconstructed in their original

location. It is assumed that the long wall was similarly reconstructed to reflect the

original placement of architectural ornamentation.

There are three windows on the long wall and two niches on the short walls of

the double masma. The windows and niches are all approximately the same size.

They are 40–44 cm wide at the bottom, 35–37 cm wide at the top, and 78–80 cm

high. They are approximately 110 cm above ground level. On the long wall, the

spaces between the niches, and between the niches and the ends of the wall range

from 135 to 150 cm wide. Using a forearm as the unit of measurement, the long wall

exhibits a ratio of niches to spaces of approximately 1:3. The spaces between the

two niches on the short walls are approximately the same size as the spaces on the

long wall. The spaces on either end of the short walls are smaller, ranging from

45 to 97 cm in width.

Room 2: Symmetrical Room with One Door

This room is situated immediately to the east of the doublemasma. There is a single
entry flanked by two niches on one of the long walls. The other long wall contains

four niches (Fig. 25.6). The short walls each have two windows (Fig. 25.7). The

niches and windows are 56–60 cm wide at the bottom, 45 cm wide at the top, and

102 cm high. The bottoms of the niches are approximately 108 cm above ground

level.

The spaces between the niches on the long wall range from 90 to 98 cm wide.

Using an anthropomorphic foot as the unit of measurement, the wall demonstrates a

ratio of niche to space width of approximately 2:3. The spaces at either end of the

wall are 60 cm wide, smaller than the spaces between the niches. The spaces

between the windows on the short walls are approximately 128 cm wide. The

spaces on either end of the short walls are the same width as the spaces between

the windows. The ratio of the widths of windows to spaces on the short walls is

approximately 2:4. While visually the ratios appear to apply on the long wall and

short walls, exact measurements demonstrate that the spaces are slightly wider than

these ratios indicate.
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Room 3: Symmetrical Room with Two Doors

This room is located immediately to the north of the doublemasma. One of the long
walls has two doorways and three niches. The other long wall contains six niches

and a window (Fig. 25.8). The short walls have four niches and a window

(Fig. 25.9). All of the niches and windows are 55–58 cm. wide at the bottom.

45 cm wide at the top, and 93 cm high. The bottoms of the niches are approximately

135 cm above ground level.

While the niches in this room are nearly identical to the niches in Room 2, the

spaces between them are not. On the long wall with seven niches and windows, the

spaces between the niches are approximately 65 cm wide, while the spaces at either

end of the wall are 25 and 31 cm wide. The ratio of niche to space width on the long

wall is close to 1:1, but it is not exact. The difference in niche width to space width

is not great, but the spaces are consistently 8–10 cm, wider than the niches they

separate.

The spaces on the short walls are approximately 90 cm wide, while the spaces at

either end of the walls range from 32 to 37 cm wide. Using one foot as the unit of

measurement we can generate a ratio of niche to space width of 2:3. As on the long

wall, the ratios appear to apply visually, but exact measurements demonstrate that

the spaces are slightly wider than even multiples would indicate.

Discussion

Room 1 differs from Rooms 2 and 3 in both the type of construction (fitted versus

coursed masonry) and the size of the niches and windows. The width of the niches

and windows in Room 1 averages 42 cm, which corresponds most closely to a unit

based on one forearm. The niches and windows in Rooms 2 and 3 are wider, ranging

from 52 to 60 cm, or approximately two anthropomorphic feet.

The spaces between the windows and niches in Room 1 exhibit greater variation

than is found in Rooms 2 and 3, ranging from 135 to 150 cm in width. On the long

wall in Room 2 the spaces between the niches range from 95 to 98 cm. On the short

walls of Room 2 the spaces range from 127 to 128 cm. On the long wall of Room

3 the spaces range from 65 to 68 cm. On the short walls of Room 3 the spaces range

from 89 to 90 cm. On the long wall of Room 1 and the short walls of Room 2, the

spaces at the ends of the walls are the same width as the spaces between the niches.

However, on the long wall of Room 2 and both walls of Room 3 the spaces at the

ends of the walls are substantially narrower than the spaces between the niches and

windows. It would appear that it was more important to maintain a prescribed

distance between niches than it was to maintain the same relationship at the ends of

walls. The width of spaces at the ends of the walls appears to be a function of

overall wall length rather than contingent on niche width.
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Rooms 2 and 3 are virtually identical in terms of construction style and in the

size of niches and windows. The stones in both of these rooms are more finely

dressed than in Room 1. It is possible that these rooms were constructed under the

direction of the same individual using the same base measurement to establish

niche width. In both rooms the niches are spaced closer together on long walls than

on short walls. When the average space width on the long wall is compared to the

average space width on the short wall the results are surprisingly similar. In Room

2 the spaces on the short walls are 1.36 � the width of the spaces on the long wall.

In Room 3 the spaces on the short walls are 1.35 � the width of the spaces on the

long wall. Because we allowed for a degree of error, the ratios do not reflect the

exactitude of this relationship. The ratio of space width in Room 2 is 2:3, while in

Room 3 it is 3:4. Lee’s data is limited to single walls at most sites, so direct

comparisons are not possible. However, it further suggests that the width of

spaces between niches represented an important variable, while the spaces at the

ends of walls were less important.

The distances used to determine the ratios generated for all of the walls are

approximate. In fact, the spaces between niches in all three rooms are consistently

larger than even multiples of the unit of measurement would suggest. On the long

wall of Room 2 the difference averages 11 cm per space and on short walls the

difference averages 14 cm. On the long wall of Room 3 the difference averages

9 cm per space and on the short walls the difference averages 5 cm. It is impossible

to tell from the present sample whether these differences were deliberate, or simply

the result of translating design into actual construction. Lee published ratios rather

than actual measurements for the walls in his sample, so a comparison of results

cannot be made.

Conclusion

Lee offers an interesting hypothesis for designs based on ratios of small whole

numbers and an anthropomorphic-based system of measurements. The evidence

from Machu Picchu appears to support his hypothesis. The width of niches and

spaces in each of the rooms can be expressed as ratios of anthropomorphic

measurements. While the spaces are consistently larger than the ratios would

suggest, the differences do not appear to be significant. Perhaps they are a

function of construction procedure or overall wall length rather than of actual

design criteria.

A comparison of space width between niches on the long and short walls of

Rooms 2 and 3 suggests a relationship between space width and wall length that Lee

did not consider. Testing whether this relationship is an Inka architectural canon, or

merely the preference of the designer of these two rooms, requires that the long and

short walls of a large number of rooms from various sites be measured, analysed,

and compared.
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north coast: Lambayeque, Chimú, and Inka. His excavations at Algarrobal de Moro

and Farfán (both directed by Carol Mackey), and Cabur capitalized on his expertise

in monumental architecture, elite burials, and high status ceramics. He currently

serves as a director of Conservation Volunteers International Program, a non-profit

corporation that organizes volunteer work parties to help maintain ruins and trails in

the Machu Picchu Historical Sanctuary, a 35,000 ha park that includes the citadel of

Machu Picchu, scores of other magnificent Inka archaeological sites, and many

kilometers of Inka roads and trails.

References

DE BETANZOS, Juan. 1996. Narrative of the Incas (1557). Roland Hamilton and Dana Buchanan,

trans. Austin: University of Texas Press.

DE LA VEGA, Garcilasco. 1961. The Royal Commentaries of the Incas [1609]. Maria Jolas, trans.

New York: The Orion Press.

GASPARINI, Graziano and Luise MARGOLIES. 1980. Inca Architecture. Patricia J. Lyon, trans.

Bloomington: Indiana University Press.

LEE, Vincent. 1996. Design by Numbers: Architecture and Order Among the Incas. Wilson,

Wyoming: self-published.

NILES, Susan. 1987. Callachaca. Iowa City: University of Iowa Press.

———. 1999. The Shape of Inca History. Iowa City: University of Iowa Press.

PROTZEN, Jean-Pierre. 1993. Inca Architecture and Construction at Ollantaytambo. New York:

Oxford University Press.

ROWE, John H. 1946. The Inca Culture at the Time of the Spanish Conquest. Pp. 183–330 in Julian

Steward, ed. Handbook of South American Indians. Vol. 2. Bureau of American Ethnology

Bulletin 143. Washington, D.C: United States Government Printing Office.

372 W.D. Sapp



Part IV

From 1100 A.D.–1400 A.D.



Chapter 26

Vastu Geometry: Beyond Building Codes

Vini Nathan

Introduction

During the medieval ages in India, no single dynastic power served as the

undisputed dispenser of cultural and artistic ideas. However, despite their

regional flourishes, Hindu temple designs displayed a remarkable unity of

aesthetic purposes. This unified philosophy was codified into a system of rules or

canons (a compendium of architectural guidelines) called the Vastushastras. These
canons were the purview of the priestly class (Michell 1988), were intentionally

made very complex so that they were incomprehensible to even skilled building

craftspeople (Grover 1980) and were seldom challenged (C.H.G. Rao 1995;

S.K.R. Rao 1995).

Of all the canons and rules in the Vastushastras, the one that found the most

favor with building designers from ancient times to the present day is the Vastu
purusha mandala. Michell describes the Vastu purusha mandala as “a collection of

rules which attempt to facilitate the translation of theological concepts into

architectural form” (Michell 1989: 49). This law of proportions and rhythmic

ordering of elements not only found full expression in temples, but extended to

residential and urban planning as well.

This chapter argues that the influence of the Vastu purusha mandala extended

beyond building activity to encompass the cultural milieu as well. The first section

discusses the principles underlying the Vastu purusha mandala. The application of

the Vastu purusha mandala in residential design and city planning is discussed in
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Fig. 26.1 The Vastu purusha mandala. Image: Author, after Dhama (1962)
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the second section. The implications of the mandalas on the social milieu are also

identified. Finally, the current status of the mandala in contemporary Indian

architecture and urban design are identified. (Throughout this chapter, the terms

vastu and mandala refer to the Vastu purusha mandala.)

The Vastu Purusha Mandala

The Vastu purusha mandala is a compendium of laws governing the cosmos that

corresponds to the built environment on earth. This master grid for design

comprises a square with the symbol of a cosmic man who is pressed down on

each of its subdivisions by various divinities (Chakrabarti 1999; Crouch and

Johnson 2001) (Fig. 26.1).

Vastu refers to the site and to the buildings, purusha denotes man, and mandala
represents a closed polygon (Janardana 1995). The six factors underlying these

building canons include cosmic influences, solar energy, geo-magnetic fields,

geology of the crust, hydrology and eco-systems, and socio-cultural beliefs.

Using the contextual information as a point of departure, detailed directives are

provided regarding site selection; where and when to commence excavation;

location and extent of open spaces; location of the water source; laying of the

foundation stone; orientation of the entrance door; number and placement of

windows; direction and location of stairs; suitable location of resting areas;

location of bathrooms; and types of vegetation surrounding the house (Deshpande

1995).

Though the mandala can be derived from any closed polygon, the favored shape

is a square since it is considered to be the most basic, rational and elementary of all

geometric forms. Unlike the circle that represents mobility, the square symbolizes

stability. Stability was particularly significant since the buildings that were the

bedrock of the mandalas, temples, were meant to be the permanent abodes for

elusive gods. In addition, for some unexplained reason, only the square form was

believed to house the movement of the Sun and the Moon (Janardana 1995).

The mandala can be generated in 32 ways. The most basic consists of one square;

all the others result from the division of this square into 4, 9, 16, 25, 49, 64, 81 and

so on, up to 1,024 smaller squares. Individual gods occupy the quarters or small

squares, called padas. The central square is assigned to the god Brahma (the

Creator). The squares of the mandala are proportioned to reflect the “perfection

of the universe, and architects strove to achieve a similar effect by controlling the

dimensions of the building” (Crouch and Johnson 2001: 41). Figure 26.2 shows the

sakala, pechaka and pitha mandalas which represent the single, four, and nine grid

mandalas respectively.

Of the numerous forms of the mandala, two are of particular importance: the

manduka mandala (Fig. 26.3), consisting of 64 padas, and the paramasayika
mandala, consisting of 81 padas. The manduka mandala is generated by dividing

the sides of the squares into even numbers of parts. Its central axes are oriented

towards the cardinal points. The paramasayika mandala (Fig. 26.4) is generated by
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dividing the sides into uneven numbers of parts. In both kinds of mandala, the

central god, Brahma, is surrounded by 44 Vedic gods. Important gods occupy the

innermost ring and gods of lower rank in the celestial hierarchy occupy the outer

rings.

The size of the mandala is considered immaterial as far as its magical potency is

concerned. In a plan for a large area the mandala regulates the disposition of the

various buildings, and in the plan of a single building it defines the proportion of

different architectural elements. Chakrabarti (1999) argues that since the mandalas

could be derived in different ways, its versatility accommodated regional variations

Fig. 26.2 The sakala, pechaka and pitha mandalas, representing respectively the single-, four-

and nine-grid mandalas. After Acharya (1980)
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in climate, topography, availability of building materials and the prevailing

socio-cultural milieu. For example, Fig. 26.5 shows how the basic 9 � 9 grid

mandala could be applied to accommodate two different regions.

In calculating the proportions for a building form or town plan, the ceremonial

priest was not concerned with the final result, but with the remainder, which had to

conform to the rules of proportion. The interpreters of the mandala regarded the

remainder as the most important result of the whole arithmetical operation. Thus in

Indian architecture the doctrine of proportion was, strictly speaking, a “doctrine of

the remainder” (Volwahsen 1994).

Eight basic equations, each using the remainder from the preceding equation

were used for calculations. It was difficult to coordinate all eight requirements.

The nature and degree of the compromises that were inevitable remain unexplained.

The need to keep all mandalas deliberately complex, confusing and open to

interpretation was motivated by the argument that only the learned, priestly class

could properly cull the magic force from the symbols.

Fig. 26.3 The manduka mandala. Image: author, after Dagens (2000)
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Fig. 26.4 The paramasayika mandala. Image: author, after Acharya (1980)

Fig. 26.5 The basic 9 � 9 grid mandala can be applied to accommodate two different regions.

After Chakrabarti (1999)
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The Mandala in Town or City Planning

Due to the scale and magnitude involved in town planning, the mandala was used in

a freer fashion, and often societal and cultural systems such as caste and later class

superceded the canons. In planning a town or village, the appropriate vastu purusha

mandala had to be ascertained. Of the 32 possibilities the priest-astrologer chose a

mandala that was most auspicious and at the same time had as many padas as there
were to be residential quarters. Once again, mandalas with 64 and 81 padas were
held in particularly high regard.

As far as the natural features of its setting permitted, the town or city was

supposed to be an exact rectangle, if not actually a square in outline. The town

wall was erected along the outer order of the mandala. Streets were aligned from

north to south and from east to west along the lines demarcating the padas from one

another. One dwelling block was exactly coextensive with one pada. The mandala

also provided detailed instructions about the network of streets. The widths of the

street followed a strict hierarchical order; the widest streets were the ceremonial

way, and the streets narrowed as one moved from the residential quarters of the

higher to the lower castes. Only the main thoroughfares that gave the city its basic

aspect had to conform to the divisions specified in the Vastu purusha mandala. The

dwelling blocks produced by the division of the padas could be subdivided by

alleys and foot paths in any sort of pattern.

Cruikshank’s analysis of the planning principles of the city of Jaipur (Cruikshank

1987) suggests that the architect, Vidhyadhar, who was also a mathematician and

an astrologer, used the nine-square mandala to guide his design decisions. However,

the mandala had to be revised to accommodate the unique site conditions of the city.

Though the appropriateness of superimposing mandala geometry in a post-mortem

analysis of the city is questionable (Chakrabarti 1999), during the planning of a

satellite town to Jaipur, the architect B. V. Doshi combined mandala planning

principles with modern architectural building elements. Fig. 26.6 shows the plan

of Jaipur with the superimposed nine-square mandala. The concepts underlying the

plan of the satellite city (Vidhyadhar Nagar) is shown in Fig. 26.7.

In some instances, the guidelines in the mandala contradicted each other. For

example, a particular canon approved a square form for a city for all castes, whereas

another canon in a subsequent section of the mandala restricted the use of such a

form for a city that will be inhabited by Brahmins only. There was no explanation

provided for this apparent contradiction. In addition, the amount of detail provided

was proportional to the hierarchy of the caste discussed. As a result, the dwelling

prescriptions for the Brahmins (priests, highest caste) were the most profuse, and

those related to the Sudras (servants, lowest caste) were very sketchy and open

ended.

Until the Mogul period most Indian cities were built of unbaked clay, wood and

other perishable materials. Stone, the most durable material, was reserved for

temples and other significant buildings. Thus only fragmented remains of urban
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complexes or townships have survived and it is not easy to gauge how strictly the

rules of the mandala were followed.

The Mandala in Residential Design

The influence of kinship and caste as significant prime social influences could be

seen in residential building activity. Once the site had been selected based on its

orientation and soil characteristics, the actual building form and design were

determined. The soil was examined meticulously; its color, small, feel and taste

were taken into consideration. The color of the soil indicated for which caste the site

was particularly well suited. Four colors were distinguished: white soil was for

Brahmins (priests); red for Ksatriyas (warriors); yellow for Vaisyas (merchants);

black for Sudras (servants). In addition, the taste of the soil was linked to caste

system: sweet for Brahmins, astringent for Ksatriyas, pungent for Vaisyas and bitter

for Sudras. The next step involved selection of appropriate building materials. The

canons prescribe that stone or wood was worthy of gods, Brahmins, and kings, but

unsuited to Vaisyas and Sudras.

The most popular ground plan was the catushala, in which the inner court was

enclosed on all four sides by buildings. All the rooms open onto the court, and

corridors afford communication between them. With this type of house, several

storeys could be built within a closely-confined space. The outer walls facing the

Fig. 26.6 The plan of Jaipur with the superimposed nine-square mandala. Image: author, after

Volwahsen (1994)
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street did not have any windows, for reasons of security. With this symmetrical

ground plan the location of the entrance to the house was not problematic, even

though it was oriented in a direction corresponding to the house owner’s caste.

In addition to the popular catushala type of house, a prospective owner could

choose between the following types: the trishala, with three wings arranged in an U
pattern; a dvishala with two wings set at right angles; an ekshala, a single

rectangular building. Certain forms were taken for granted and strongly resisted

change. Consequently some of these forms persisted for long periods of time.

If the builder/owner was not satisfied with any of these basic types of houses, or

if the front and rear door could not be located in the proper place, then one could

refer to the manual in which all the permissible combinations were listed. Each of

the 14,000 possibilities had a name of its own. When a particular alternative was

chosen, the builder had to ensure that no deviations occurred from the

closely-defined model form. There was little or no premium on originality. The

canonical rules left no room for any later modification, particularly for expansion

Fig. 26.7 The concepts underlying the plan of Vidhyadhar Nagar. Image: author, after Curtis

(1985)
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since, as Rao points out, “a house when completed and constructed is an organic

whole and must not be mutilated on any account” (C.H.G. Rao 1995: 25).

The main entrance of a dwelling should never be sited axially; the orientation of

the entrance depended on the caste of the occupant. Wherever a house was located

in the city district, the entrance door had to be on the south side if the resident was a

Brahmin, on the west for Ksatriyas, on the north for Vaisya households and on the

east for Sudras.

The square of the mandala was the basis for the residence of a Brahmin. It was

considered the perfect form, appropriate only for those close to the gods. For this

reason the ground plan of a Brahmin house should not deviate from the square by

more than one-tenth the length of a side. In clearly defined deviations from this

absolute standard, the proportions of the sides in a Ksatriya house should be 1:1 1/8;

for a Vaisya house, 1:1 1/6; for a Sudra house, 1:1 1/4.

The actual building form was again dictated by different rationales for different

aspects of the house. Typically, the house is built around a central open space, ruled

by Brahma (the Creator), as depicted in the mandala. Each side of the square forms

a wing of the house (Fig. 26.8). Depending on the scale of the house, additional

grids are added to make it a seven-wing house (Fig. 26.9) or a ten-wing house

(Fig. 26.10) (Chakrabarti 1999).

The caste stratification of Hindu society was reflected not only in the ground plan

of a house but also in its vertical section. The rules pertaining to the number of

storeys permitted in houses made it easy to determine the caste to which the owner

belonged (Table 26.1).

The mandalas also provided detailed instructions regarding the placement of

doors, windows, furniture and other household items. It is uncertain to what degree

to these rules were followed, especially with movable furniture and goods.

On examining the mandala for residential building one finds that most of the

guidelines are related to houses for the more affluent, higher castes. In addition, the

mandalas prescribed generous dimensions for the higher castes and smaller

building sizes for the lower castes. It appears that the assumption is that the

higher castes are by default the more affluent and the lower caste, poorer. Since

only the Brahmins, the priestly higher caste, were allowed to interpret the mandalas

and allow “deviations” where appropriate, what would be the residential options for

a lower caste affluent householder?

The mandalas prescribed large clusters of semi-independent rooms, thereby

implicitly endorsing the joint or extended family system. This is ironic since

records indicate that the mandalas were composed when the joint family system

was pervasive only in the lowest castes.

The mandala does not address issues related to mobility between the different

castes. For example, it appears that a house built by a Brahmin would have to be

sold or rented only to another Brahmin. One assumes that vertical mobility was

possible in one direction (downward); therefore, Brahmins are allowed to buy or

rent houses built for Ksatriyas or Vaisyas, since the more modest Ksatriya or Vaisya

house will still conform to the maximum dimensions that are allowed by the

mandalas for the higher caste Brahmins.
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Fig. 26.8 A typical house built around a central open space. “RB” indicates roof beams. Image:

author, after Dagens (2000)

Fig. 26.9 Additional grids are added to the basic house to make the seven-wing house. Image:

author, after Dagens (2000)

Fig. 26.10 The ten-wing house. Image: author, after Dagens (2000)
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Evolution and Contemporary Applications of Vastu

The mandala was not only the precursor to the modern day grid but was also a grid

in its own right. Some scholars maintain that the canonical orders of the mandala

served as the precursor of Leonardo da Vinci’s system of proportions demonstrating

how the human figure could be contained in a circle (Grover 1980). Parallels

between the grid in modern architecture and the mandala in early Hindu

architecture are also common. It has been argued that Le Corbusier articulated his

system of the Modular based on a rationale comparable to that of the mandala. In a

similar vein, the success of Le Corbusier’s design of the city of Chandigarh has

been attributed to its adherence to vastu principles. For example, vastu “specialist”

Harish Saini (1996) analyzed Chandigarh (Fig. 26.11).

He was quoted in the popular press as saying that Chandigarh ‘stands in contrast

to the other cities in terms of its “orderliness” and “disciplined development.”

Further to it, its positive response to the Vastu Shastra, i.e., proper

archaeo-astronomical placement, makes it free from all misfortunes and as such

the city is bound to flourish’ (Saini 1996).

With the advent of Modernism in Indian architecture, the three major qualities of

traditional Indian architecture, decoration, plasticity and good craftsmanship, were

soon lost. The tacit assumption was that these three qualities would be a natural

outcome of establishing a unique identity to Indian architecture. Interestingly, the

revival of interest in Indian building traditions have largely ignored these qualities

and has instead focused on the orientation and organization of space using ancient

sacred texts as references. Chakrabarti identifies attempts by noted Indian architects

to mesh the issue of identity and distinctiveness amidst the fervor and fascination

with new technology and architectural expressions (Chakrabarti 1999: 28). One

example includes emphatic references and esoteric vocabulary borrowed from

ancient building treatise, the Vastu purusha mandala being the most popular.

Increasingly, the works of prominent architects such as Charles Correa and

Balakrishna Doshi have revived interest in the mandala in contemporary India.

The implicit rationale is that associating design thinking with long standing canons

such as the mandala impart design with a philosophical, vernacular edge. The

degree to which interest in the mandalas go beyond being a passing fad remains

to be seen.

Table 26.1 Maximum building height allowed for different castes

Caste Maximum building height allowed for residence

King (royal) Ground Floor + 7½ floors

Brahmin (priest) Ground Floor + 6½ floors

Ksatriyas (warrior) Ground Floor + 5½ floors

Vaisya (merchant) Ground Floor + 4 floors

Sudra (servant) Ground Floor + 2½ floors
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Conclusion

The Vastu purusha mandala is an exhaustive, complex and confusing system of

building rules or canons that are based on a curious mix of sacred and pragmatic

considerations. The geometric principles of the mandalas were such that “each part

of the design was calculated to conform mathematically to a specific proportional

system based on an established unit” (Crouch and Johnson 2001: 41).

Despite their genesis from sacred buildings (Hindu temples), the mandalas

provided a plethora of laws of proportions and ordering that were applied to

towns and secular buildings. The mandalas were created during medieval times

and their directives for residential designs reflect the socio-cultural milieu at that

time. Though they were seldom challenged, they seem to have evolved through

revisions and deviations made to accommodate specific circumstances. Only

Brahmins were allowed access to the information and the authority to interpret

these guidelines and therefore, the degree to which their decisions were skewed by

caste divisions (and discrimination) is hard to determine.

In recent times, the mandala has resurfaced in Indian architecture as the primary

means for imparting a unique Indian sensibility to otherwise modern design. In

contemporary India, the mandala, divorced of its overly religious or superstitious

overtones, is used as a geometric organizing tool or grid in the design of civic

buildings. Interestingly, it is in the residential sector that the sacred rituals and other

protocols in addition to the geometric principles associated with the mandala seems

to find full expression.

Fig. 26.11 Harish Saini’s

analysis of Chandigarh.

Image: author, after Saini

(1996)
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Chapter 27

Algorithmic Architecture in Twelfth-Century

China: The Yingzao Fashi

Andrew I-kang Li

The Yingzao fashi as Algorithmic Architecture

The Yingzao fashi (Building standards) was written by Li Jie (d. 1110), court

architect during the late Northern Song dynasty (960–1127), and published in

1103. Li evidently meant to educate government officials who commissioned

buildings and to set standards for the builders who built them. He set out rules for

designing foundations, masonry buildings, wood-frame buildings (da muzuo, or
structural carpentry), finish carpentry (xiao muzuo), and painted decoration. He also
defined terms and provided methods for estimating materials and labor. The book

includes numerous drawings, but these reflect a much later style—probably Ming

(1368–1644) or Qing (1644–1911)—and so can be used as references for the Song

only with caution.

In the classical Chinese literature, the Yingzao fashi is one of only two surviving
books that deal with architecture. The other is the Gongcheng zuofa zeli (Structural
regulations), published in 1733. These two books are important simply by existing,

since architecture—or, perhaps more properly, building—was not an appropriate

subject for literati. However, they are interesting on their own account, because

they document what had developed as, and probably still was, an oral tradition of

structural carpentry. In the case of the Yingzao fashi, that tradition used a few rules

to create many designs. We will examine this approach in more detail, but for the

moment let us just call it rule-based.

First published as: Andrew I-kang Li, “Algorithmic Architecture in Twelfth-Century China: The
Yingzao Fashi”. Pp. 141–150 in Nexus IV: Architecture and Mathematics, Kim Williams and Jose

Francisco Rodrigues, eds. Fucecchio (Florence): Kim Williams Books, 2002.
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As an example of this approach, consider the curved roof section, so often

identified as the characteristic feature of Chinese architecture. Li Jie does not list

legal roof sections for the builder to choose from. Rather, he spells out in a two-rule

procedure called juzhe how to create the roof section for a building of any given

depth. We will see this procedure in detail later. For now, the important point is that,

given these two rules and a building of any legal depth, we can always find the

correct roof section.

Another example of this approach is the modular unit fen. The fen can have eight
different values, from 9.6 to 19.2 mm, depending on the grade or rank (deng) of the
building. So, for example, a (modular) dimension of 10 fen can have eight possible

(absolute) values, ranging from 96 mm. at the eighth grade to 192 mm. at the first

grade. Li Jie stresses that the fen is fundamental and usually uses it when specifying

dimensions. The user chooses the appropriate scale or rule, reads off the dimension

in fen, and obtains the correct length. Again, few rules, many designs.

Liang Sicheng (1901–1972), who pioneered the study of the Yingzao fashi,
perceived the significance of this approach and called the manual a “grammar

book of Chinese architecture” (Sicheng 1984a). I go one step further and

formalize Li’s rule-based approach. This allows us to see the Yingzao fashi as
algorithmic, gives a graphic version of the text, and provides other benefits, as we

will see.

Formalizing the Yingzao fashi

We begin our formalization with a definition: a style is a set or language of designs

perceived to be similar (Stiny and Mitchell 1978). There are two basic ways of

defining a language of designs: by listing the member designs (enumeratively) and

by showing how to create them (generatively).

The important difference between the two is that the second, by showing how to

create the designs, helps explain why they look similar and thus why we perceive a

style. This was Li Jie’s approach. We can say that the Yingzao fashi is a generative
definition of the official Song architectural style.

To formalize the text, we “translate” it into a formal language (Here, distinguish

formal language and language of designs). The language we use is shape grammar,

which is not only formal but also graphic: it manipulate shapes, like plans, sections,

and elevations. This contrasts with most other formal languages, which manipulate

symbols, like letters and numbers. Thus our grammar will appeal to designers.

How does shape grammar work? Here is an extremely brief and informal

introduction. A shape grammar consists of an initial shape and replacement rules.

An initial shape is often a point in the working plane or space. A replacement rule

consists of two shapes—one on the left, one on the right—with an arrow in the

middle.

To create a design, compare the left side of a rule to the current shape; if you are

just beginning the process, this is the initial shape. If there is a match, subtract (that

is, erase) the left-side shape from the current shape and add (draw) the right-side
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shape. This yields a new current shape. Continue until finished. There are precise

definitions for shape, compare, match, subtract and add, but an intuitive

interpretation of these terms will suffice for a general appreciation of the grammar.

I have written a grammar of the Yingzao fashi that generates designs, each

consisting of plan diagram, section diagram, plan section, roof section, elevation

and text descriptions. In this chapter I show only the part which creates roof sections.1

A Grammar of Roof Sections

When considering the roof section in a Chinese building, it is important to

remember that the purlins (tuan) support the rafters (chuan). The rafters span

from purlin to purlin, forming the curved section. This is the opposite of the

western practice, where the rafters support the purlins, and span from ridge to

eaves in a straight line, forming a triangular section.

Li Jie’s procedure for creating the roof section requires that we know the depth

vy of the building, where v is the number of rafters and y is the horizontally

projected length of each rafter. We then calculate the height of each purlin, with

the eaves purlin taken as zero. There are two steps: ju, ‘raise,’ and zhe, ‘lower.’
First, find the height h0 ¼ vy/4 of (i.e., raise) the ridge purlin; call it the roof

height. Draw a line connecting the ridge purlin and the eaves purlin; call it the

working roof line.

Next, find the height of the first purlin below the ridge purlin. We already know

its horizontal location: it is offset by y from the ridge purlin. Find the intersection of

the working roof line and the vertical line at a distance of y. Lower this point a
distance of h0/10; the resulting point is the elevation of the purlin. From this point to

the eaves purlin, draw a new working roof line. Repeat with the remaining purlins,

each time halving the lowering: h0/20, h0/40, etc. For any set of legal starting

conditions, there is exactly one legal roof section.2

Now let’s translate this procedure into a shape grammar (Fig. 27.1).

The grammar consists of an initial shape, an initial description, and four rules.

The initial shape consists of the point (b, c), indicated by a cross and the state label

“E” that indicates that this is stage E, which deals with the roof section. Stage A

creates the plan diagram, stage B the section diagram, and so on. Rule E1

corresponds to “raise,” and rule E2 to “lower.” Rules E3 and E4 perform

housekeeping functions like erasing construction lines. The grammar generates,

not only the section, but also a description l comprising the height differentials

between purlins.

1 For the complete version, see Li (2001). A Shape Grammar for Teaching the Architectural Style
of the ‘Yingzao fashi’. Ph.D. Diss.: Massachusetts Institute of Technology.
2 This account of juzhe is slightly simplified, but it serves our purpose.
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To show how the grammar works, let’s use it to create the roof section of a

building 6 rafters deep with rafters 100 fen long; that is, v ¼ 6 and y ¼ 100 fen
(Fig. 27.2).

We apply rule E1 to raise the ridge purlin to a height of 150 fen above the eaves

purlin. We apply rule E2 to find the elevation of the next purlin down. The

intersection at the working roof line is 150/3 ¼ 50 fen below the ridge purlin.

Rule E3 increments the counter i and calculates the new working height (150–

65 ¼ 85 fen) and erases the construction lines. The description is l ¼ 65. We still

initial d

initial l l = 0
i = 0

(b, c)

E

E E

E

E2

E4E3

h0 hi

+

(b, c)

E

E1

h0  = vy/ 4

vy / 2 (v / 2 – l )y (v / 2 – i – 1)y

F

hi

h(
i+

1)

EE
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ai

li

E

ai
di

di

yy

y

+

li = d(i-1) + a(i-1)
hi = h(i-1) – li

For i = v / 2 – 1

For 0 ≤i <v / 2 – 1
di = hi l (v / 2 – i)

ai = h0 l  (10 x 2^i)

i  + 1 i 

l, li l l (i + 1)  =  hi 
l, li l 

Fig. 27.1 A grammar of roof sections. Image: author

Fig. 27.2 Derivation of the roof section of a building six rafters deep with rafters 100 fen long

(i.e., v ¼ 6, y ¼ 100). Image: author
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have another purlin to locate, so we apply rule E2 again. The third purlin is lowered

42.5 + 7.5 ¼ 50 fen. Rule E3 establishes the new working roof line, erases the

construction lines, increments i, and updates the description l ¼ (65, 50). Now we

have finished with all the purlins, so we apply rule E4, which removes the labels,

updates the description l ¼ (65, 50, 35), and changes the state label from “E” to

“F.” The design is ready for the next stage of generation.

Formalizing the Human Role

We have now seen how the explanation of juzhe that Li Jie wrote in words can be

expressed formally and graphically as a shape grammar. We have also seen that,

given any appropriate starting conditions, we can always create a roof section.

Different starting conditions lead to different sections, but there is always a section

at the end. This is because the generative definition is complete. But in practice, the

information is not always complete. When there are gaps, then the design can be

completed only if the missing information is supplied. Where does that information

come from? Is it reliable?

The answer to both questions involves us, the users. We have three roles in the

generative definition of a style. This is easy to explain in formal terms. First, we

perceive the initial similarity. Second, we propose the hypothetical definition. And

third, we evaluate whether new designs created by the definition belong to the

language.

As an example, take the sections of a building type called a ting hall (Fig. 27.3).
The structural frame of a ting hall is composed of repeated transverse frames

(liangjia) perpendicular to the front elevation. Each of these transverse frames is

composed in turn of columns (zhu) and transverse beams ( fu). The Yingzao fashi
shows 18 transverse frames drawn in section.

Our first act is to accept this corpus of 18 sections as being similar. The question

immediately comes to mind: what is the relation between this corpus and the

language of sections? By accepting the 18 sections as similar, we have also

assumed that they are legal (i.e., in the language). This implies that the language

contains all 18 sections and possibly more; that is, the corpus is a subset of the

language.

Our second act is to propose a grammar of the language (Li 2001). It generates,

among others, the following five sections of six-rafter buildings (Fig. 27.4). That is,

we formulate a hypothesis that makes five predictions.

Our third act is to evaluate these sections. Do they belong to the language? Are

the predictions true? The first section is not exactly like any of the 18, but it is not

obviously illegal either; it is probably legal. The second is in the corpus; definitely

legal. The third is not very different from any of the 18; probably legal. The fourth

has no spaces deeper than one rafter, which makes the building difficult to use; it is

almost definitely illegal. The fifth has a clear span, which is seen in the smaller

section (four rafters) but not in the larger sections (eight and ten rafters); maybe

legal, maybe not.
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If we accept as legal all sections but the fourth, then we can revise our grammar

so that it no longer creates that section. One way is to allow one-rafter bays to be

created only once, at the exterior of the building. With the revised grammar, we can

generate more designs. If the designs seem dissimilar from those known to be in the

style, we revise the grammar again. In this way, we refine our hypothesis until it

defines the style as best we understand it.

Fig. 27.3 The Yingzao fashi contains 18 sections of ting halls from four to ten rafters deep. Five

are of 10-rafter halls, six are of 8-rafter halls, three are of 6-rafter halls, and four are of 4-rafter

halls. The seven sections of 4- and 6-rafter halls are shown here. Image: author, after Sicheng

(1983a: 319–321)
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Formalizing the Student’s Role

This suggests another role for our grammar: to provide a useful experience for

students learning about the style of the Yingzao fashi. I believe that the most useful

such experience is to participate in composing and testing the hypothetical

definition. Thus, our grammar generates all and not only (in other words, more

than) the designs that are likely to be in the language. As the grammar reflects the

imperfections of the text, so do its products, which the student can evaluate.

This differs from the usual analytical approach, in which the author is also the

judge, because he is aiming for an authoritative definition. We might call this the

expert approach. The advantage of our approach is that the student, not the teacher,

aims for the authoritative definition. We give her no more information than there

already is, so she must confront the gap between what she knows and what she

Fig. 27.4 Five 6-rafter sections generated by the grammar. Whether or not they are legal is for the

user to determine. Image: author
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needs to know. What information is missing, and why? Was it knowledge common

to Li Jie and his readers, but now lost to us? Was it overlooked by Li? Was it

specialized builder’s knowledge that, whether by design or by ignorance, Li

omitted? What assumptions are needed, and are they justified? We might call this

the naı̈ve approach.

In our example of the sections, the student need not agree with my evaluations.

She may, for instance, consider that six-rafter-long beams are impractical, making a

clear span unlikely in a six-rafter-deep building (Fig. 27.4, fifth section). She could

then modify the grammar to limit the length of clear spans to four rafters. The

important thing is that she can consider the question because it has been made clear,

indeed almost inescapable. The lesson here is that style is not “out there”; it is a

human construct.

Conclusion

We have seen that the Yingzao fashi as a definition of style is primarily generative,

and have used shape grammar to characterize that definition formally and

graphically. This has clarified, not only where the gaps are in the definition, but

also how we users are responsible for filling those gaps. This in turn has suggested

an explicitly experimental approach to teaching the style.

From here it is easy to imagine automating a grammar to emphasize the user’s

interaction with it: what she decides and when she decides it. In this case, we need

not actually implement the shape grammar mechanism; we can merely simulate

it. This allows the user to concentrate on the overall structure and logic of the

grammar as a characterization of the style.

To test the feasibility of this approach, I have used Macromedia Flash to begin a

prototype simulation of the section grammar, generating—in real time—a large

number of designs. Freed of the distraction of executing the grammar manually, the

user can consider issues of more direct interest: what her choices are at any stage,

how those choices affect the design, which designs are in the language and which

are not. One drawback is that the simulation cannot be modified by the user; it

generates this one language of designs and no other. There is no immediate solution

to this, but the benefit is clear: it shows how designers can use grammars to think

about design more practically.

Other possible future work is a comprehensive comparative study of Chinese

wood-frame architecture. The Yingzao fashi prescribes a style that evolved until just
after the beginning of the Ming. At that point, there was a great stylistic break, after

which the style changed markedly and virtually ceased to evolve (Sicheng 1984b:

103). Coincidentally, for this period we have the Gongcheng zuofa zeli of 1733
(already mentioned). This sets up a series of comparisons that can be done with

shape grammar. For instance, now that we have a grammar that generates buildings

in the style of the Yingzao fashi, we can formalize the relation between the manual

and the extant pre-Ming buildings: how does the grammar have to be modified to
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produce those buildings? Then, since the extant buildings change through time, we

can see how the grammars evolve, as Terry Weissman Knight does (1994).

Similarly, we can construct grammars of the style of the Gongcheng zuofa zeli
and of that of Ming–Qing buildings. We can compare them with each other and

with their pre-Ming counterparts.

Thus we can do a shape-grammatical study of Chinese wood-frame architecture

from the eighth to the twentieth century; if we consider indirect evidence, we can

begin even earlier. This would be a complete formal statement of a long tradition,

and an appropriate extension of the studies, begun by Liang Sicheng, of this

“grammar book” of Chinese architecture.
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Chapter 28

The Celestial Key: Heaven Projected

on Earth

Niels Bandholm

Major Geographical and Historical Setting1

The island of Bornholm, with an area of 587.5 km2, is situated 40 km southeast of

Sweden in the Baltic Sea but is territorially a part of Denmark (Fig. 28.1). It

harbours a rich field of archaeological remains. Excavations reveal that it was

settled before the Stone Age, around 3600 BC, when many dolmens, passage

graves and some woodhenges were constructed. From the Bronze Age (1700–

500 BC) there is rock art on flat, glacier-scoured rock surfaces, burial mounds,

cairns and monoliths.

From the Iron Age (500 BC–800 AD) there are remains of stone ship settings,

stone burial mounds, stone circles and 250 monoliths, plus numerous finds of glass,

jewellery, weapons, coins and thousands of small Gold-Figure Foils.

The first written record of the island dates from the Viking period, when

Wulfstan (890 AD) relates that “Burgenda land (Bornholm) is independent and

has its own King.” Gamleborg in Almindingen was built as the main fortification

in this period.

Bornholm came under Danish rule at the time of Harold Bluetooth (911–986),

the first Danish king to convert to Christianity. During the transition to Christianity,

between 1050 and 1150 AD, around 40 runic stones were erected.

First published as: Niels Bandholm, “The Celestial Key: Heaven Projected on Earth”. Pp. 95–116

in Nexus VII: Architecture and Mathematics, Kim Williams, ed. Turin: Kim Williams

Books, 2008.

1 Nielsen (2006). The second edition (1994) contains an English summary; see also http://www.

bornholm.info/historie and http://www.sacredsites.com/europe/denmark/bornholm.htm
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The village of Aakirkeby plus three of the four districts of the island were given

to the Archbishop in Lund as a gift of absolution from the Danish King in 1149.2

Archbishop Eskil’s sovereignty over the major part of Bornholm lasted until he

resigned in 1177. The medieval stone churches on Bornholm are generally believed

to have been planned and initiated around the time when he was Archbishop

(Fig. 28.2).

Cultural Succession and Integration

Since the Bronze Age, Bornholm has been a stepping stone in the Baltic Sea for

cultural influences streaming north/south and east/west—a melting pot for cultural

succession and integration.

Fig. 28.1 Bornholm with alignments in Baltic Sea. Image: author

2 Svend II Grathe (1146–1157). In 1103/1104 Lund became Episcopal See of the North (Denmark,

Sweden, Norway, Iceland, Greenland, the Faroe Islands, the Orkneys and Shetland, the Hebrides

and the Island of Man). The first Archbishop in Lund was Asger (1103–1137) followed by Eskild

(1137–1177) and Absalon (1178–1201).
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Before the reign of the Archbishop of Lund, the island is believed to have been

Christian in the forms of Aryanism, Iroceltic Christianity and Orthodox Christianity

(Lidegaard 1999, 2004: 121–186). Christian influence could have begun as early as

the era of the Great Migration in the sixth century.

Beliefs from earlier death and fertility cults were incorporated into the new faith.

There are many examples of cultural integration, such as a phallic stone at

Bodilsker church (Fig. 28.3) and capitals showing female genitals at Dalby

(S. Sweden) (Fig. 28.4), besides the aforementioned Christianised runic stones, in

or near most churches. Genitalia were common ornaments in early Roman church

buildings (Geese 2004: 334–345). Placement near former holy springs (Rø church

and AA church; see Table 28.1) and wells in the crypts at Lund and Dalby, show

connection to the fertility cult and pagan holy places (Andrén et al. 2002: 299–332).

In general it is common knowledge that many Christian customs and symbols,

including the cross, are legacies of earlier belief systems. Graveyards, crypts and

the holy remains of saints show connections to older death cults.

Fig. 28.2 Bornholm with churches. Image: Wienberg (1986), reproduced by permission of Jes

Wienberg
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The Celestial Key, as presented here (Fig. 28.5), could be the result of a similar

cultural integration of former astronomical practices into the Christian adaptation

of Muslim astronomy. This is further elucidated in the discussion, but first a

presentation of the geometrical riddles, which call for an explanation.

Distances (km)

The tables in Fig. 28.5 show the distances between churches as fractions of the

ØL–Chr distance or of the NL–ØL distance on the central NL–ØL–Chr line

(Haagensen 2006: 125).3 The upper table contains values corresponding to

ØL–Chr, drawn on the map as thin double lines. The lower table contains values

Fig. 28.3 Phallus at Bodisker Church (Bo). Photos: author

Fig. 28.4 Genitals and well in Dalby Crypt near Lund. Photos: author

3 Haagensen (2007: 227–229) introduced the point Chr as √7/√3 times the vector NL–ØL from ØL

along the geodetic. It is about 61 m SSE of ST. Thus the distance ØL–Chr is constructed. It is used

for comparison with former publications and to illustrate the meridian-convergence. (The distance

ØL–ST is 21.930 km.)
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corresponding to NL–ØL, drawn as thick single lines. “Measured” distances are

shown in bold type.4 These represent quarter, third, half or whole measures of the

two unit distances ØL–Chr and NL–ØL. Clearly there is a striking pattern to be

seen, with surprisingly little deviation. The ratio of the two unit distances is very

close to √7/√3. This ratio will be derived below when the Celestial Key is presented.

Table 28.1 Signs and saints connected to churches with coordinates in unity of NL-ØL ¼ 14336m.

The bold coordinates are very close to whole numbers, but much more remarkable are the distance

ratios as shown in Fig. 28.5

Sign Church Patron Saint Comment Coordinatesa

ØL Østerlars St. Laurentius Round church oldest: 1150 0.0000; 0.0000

NL Nylars St. Nicholas of Myra Round church �0.6530; �0.7574

Ny Nyker All Saints. Round church �0.8558; �0.2486

Ol Olsker St. Olaf Most recent Round church �0.7149; 0.5024

AA Aaker St. John the

Baptist,

Largest, renovated in 1874 �0.1891; �0.7830

Ru Rutsker St. Michael New tower 1886 �0.9389; 0.3414

Rø Rø St. Andreas Rebuilt (moved?) 1888 �0.2909; 0.3042

Kl Klemsker St. Clement Rebuilt (moved?) 1882 �0.7064; 0.0289

ØM Øster Marie Blessed Virgin

Mary

Rebuilt, original ruins remain 0.2409; �0.2579

Kn Knutsker St. Canute Lavard New tower 1879 �0.9328; �0.5000

VM Vester

Marie

Blessed Virgin

Mary

Rebuilt moved 34 m in 1885

(Haagensen 2007: 164–172)

�0.6085; �0.5110

Ib Ibsker St. Jacob Mostly undamaged 0.6354; �0.4219

Bo Bodilsker St. Botolph Renovated 0.4937; �0.8512

Pe Pedersker St. Peter Tower from 1500 cent. 0.0651; �1.1256

Po Poulsker St. Paul Most recent 1250 0.3532; �1.1557

ST Store Tårn Island “Earth

goddess”?

Big Tower, Christiansø

built 1684

0.9961; 1.1609

Chr Calculated point on Christiansø 61 m SSE of Big Tower 0.9975; 1.1569

Ales Stone Circle Bronze Age? Ship setting in Sweden �4.0060; 1.6677
aThe coordinates are based dimensions from a 1985 survey found (Haagensen 1993: 174–175).

They are transformed to spherical coordinates of the geoids of 1950 and then projected to a plane

touching the sphere in ØL through a stereographic projection. This plane projection is shown in

Fig. 28.5

4Distances are calculated from coordinates in the geoids 1950 as above but along geoids using the
program KmsTrans from Danish State survey Kort og Matrikelstyrelsen.
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Fig. 28.5 The geometric riddle. Image: author
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Angles

Four of these distances have azimuths5 near �56.79� with a mean deviation of

about 0.5� [The azimuth in each end of a vector distance is slightly different

because crossing meridians converge on the North Pole, e.g., NL(40.71) ! ØL

(40.83�) ! Chr(41.02�) ! (compare with table in Fig. 28.5)].

Two of these (Kl–Rø and Pe–Bo) are nearly parallel sides in a “rectangle”

Kl–Rø–Bo–Pe with corner angles close to 90�. Consequently the azimuths of the

other sides are close to the complementary angle (56.79–90� ¼ �33.21�). Both
these angles will be derived below when the Celestial Key is presented.

Alignments ( Fig. 28.1)

The projections of the lines Kl ! Rø and NL ! ØL meet on the islet Christiansø,

about 21.9 km from ØL. Christiansø is a part of “Ertholmene”, probably named

after the pagan Earth Goddess, Nerthus.

The line AA ! VM projects about 62.2 km to the largest stone ship setting in

Scandinavia: Ales Stena in southern Sweden, which is itself aligned with the rising

midwinter sun. In clear weather it is possible to see Bornholm from Ales with the

naked eye.

Although it is not possible to see the island Rügen from Bornholm, more than

130 km from ØL, it is remarkable that Bo ! Pe and ØL ! VM both point to

Marienkirche (founded 1185) and ØL–Kn point to the heathen cult place Arkona

(conquered in 1136 and destroyed in 1168) (see Fig. 28.1).

Many churches on Bornholm are approximately aligned with sacred springs:

“Holy-Spring” with Pe–Ibs and Po–Bo, and both “Solomon’s Spring” and “Josephs

Spring” with the three churches Rø–ØL–ØM.

Coordinates and Deviation (Table 28.1)

In the coordinate system, with distance ØL–NL ¼ 14.336 km as unity, some places

have striking coordinate values (x,y). Chr x � 1, Ales Stena x � 4, Ol y � 0.5, Ny

y � �0.25, Kn y � �0.5. Turning the coordinate system +0.15� (left) makes Chr

x ¼ 1.000 and turning�0.15� makes Ol y � 0.500, Ny y � �0.250. A deviation in

5Azimuth is the angle from the North measured positive clockwise. They are in the interval �90�

to 90�, as church distances are vectors oriented from south towards north. Negative azimuth is

chosen to make symmetry apparent.
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angles of about 0.3� must be expected, equal the difference between azimuths in

each end of the line Nl ! ØL ! Chr (to Rügen about the double deviation).6

Apparently there is greater uncertainty in angles than in distances. In the first

publication of these results (Bandholm 2007), the calculations of distances were

based on a spherical earth and were less accurate than Fig. 28.5, based on the

geoids.

Previous Research

This study is inspired by Erling Haagensen’s work, and owes much to his

discoveries. He is the first person to have done serious research into the geometry

behind the geographic placement of the churches on Bornholm as described in five

books (Haagensen 1993, 2003, 2007; Haagensen and Lincoln 2000). He gives a

Vesica Piscis construction of the azimuth of 40.89� for the axis NL–ØL–Chr, and he
derives the ratio √7/√3 ¼ 1.5275. . ., although he does not clarify why this ratio was
chosen. Haagensen’s work has been criticised by several historians.7

Haagensen does not explain the azimuth around �57� found for four distances.

Nor does he connect the layout of churches to the stereographic projection used in

the astrolabe.

The Astrolabe and the Stereographical Projection 8

Important new astronomical knowledge and technology were transferred from the

Moslem to the Christian world, at the time when the Nordic countries were

Christianised. An example is the astrolabe—a technical wonder of the period. Its

practical application as an analogue computer for calculating time and direction

must have been at least as great a marvel then as the digital computer is today. It

was later the model for making the first church clocks (North 1974).

6 The azimuth of ØL ! ST(40.88�) ! is closer to theory (40.89�) compared with ØL ! Chr

(41.02�) ! .
7Most distinctly by professor Jes Wienberg (2002a: 175–188). See also (Wienberg 2002b).

Weinberg could not see much historical evidence to support Haagensen’s hypothesis that the

round churches were constructed by the religious brotherhood of the Knights Templar, inspired by

M. Wivel (1989). Haagensen’s scientific reputation may have been compromised by his books

having been the inspiration for several popular films on the Templars’ hidden treasure and by his

having co-written the popular book The Templar’s Secret Island together with Henry Lincoln

(Haagensen and Lincoln 2000).
8 For conform properties of the stereographic projection, see M. Jaff, “From the Vault

of the Heavens”. Pp. 49–63 in Nexus Network Journal, 5, 2003.
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I propose the geometry behind the construction of the astrolabe as the template

and inspiration for the geometrical layout of the churches on Bornholm.

The planispheric astrolabe is based on a stereographical projection of the

heavenly sphere on the equatorial plane (Fig. 28.6). Each point on the sphere

(e.g. a star) is connected with a line to the South Pole. Where the line intersects

the plane of the equator, the point is represented with a star pointer on the so-called

rete, a fretted network free to turn around the centre—the North Pole—over what

looks like a spider’s web called the climate. This engraved network is a projection

of the sky’s spherical coordinates (azimuth and latitude). Curved azimuth lines

radiate from the climate’s web representing the zenith, the point directly above the

observer. Around the zenith are eccentric circles representing equal latitudes on the

sky. The climate’s coordinate web changes with the geographical latitude of the

observer and must be replaced as the observer moves along the north–south

dimension (as he “changes climate”). All climates have the same three concentric

rings, representing the Tropic of Cancer, the Equator of the Sky, and the Tropic of

Capricorn. The Tropic of Capricorn is usually the outer limit of the astrolabe. The

three rings should have been on the rete as they turn with the stars, but centred as

they are on the North Pole, they do not change in turning and can be inscribed

identically on all climates independent of geographical latitude. On the rete is

shown an eccentric circle touching both tropics. This is the sun’s yearly path (the

ecliptic) through the zodiac.

The astrolabe has a sighting instrument underneath it to enable measurement of

the altitude of the sun or, at night, a star. The rete is turned until the heavenly object

has the right altitude on the climate’s “spider web”. The user can then read the time

of day or night and the azimuth of the object, and orient the astrolabe towards it and

use it as a compass.

Transmission of Astrolabe Theory to the Nordic Countries

The theory of the stereographic projection can be traced back to the Greek

Hipparchus (180 BC) and is described by Ptolemy (about 100–160 AD), who may

have used an astrolabe. Later in the Hellenistic period it spread from Alexandria to

both the East and the West. It was copied and developed by the Arabs, and the

Western type of astrolabe is derived from the Moorish type found in Spain.

Towards the end of the tenth century, knowledge of the astrolabe began to enter

into the Latin West. It was introduced into the schools of Lorraine, for example, at

Liége (Welborn 1931). From this area the English, and later the Danish king Canute

the Great (1018–1035), engaged many educated men to become bishops in England

and the Nordic countries. This could have provided an early acquaintance with the

astrolabe in these learned circles. In 1092 the English Prior, Walcher of Malvern,

used an astrolabe and a lunar eclipse to make a lunation table. Better known is the

influence of Gerbert of Aurillac (930–1003), who was the only mathematically

learned Pope (Sylvester II 999–1003). In his youth he went to Moorish Spain to
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learn mathematics and astronomy. Found among his works is the first Latin work on

the astrolabe, Liber de astrolabio (Pedersen 1996: 225–227). The construction and

use of the astrolabe was described by the monk Hermannus Contractus of

Reichenau (1013–1054). After that it was possible to construct an astrolabe with

a northern climate as Walcher might have done. Gerbert was a teacher in Reims and

one of the first to teach Arabic science in the Latin world. Later, during the twelfth

century, many Arabic astronomical tables and theories were translated and taught in

Europe.

A third, but less well documented way for the astrolabe to reach Scandinavia

could have been its use as a navigational instrument, e.g., during the Norman reign

in Sicily.

Thus there were ample possibilities for the planners of Bornholm’s churches to

learn of the astrolabe and to apply it to the geometrical layout. A key figure could

well have been the Archbishop Eskil (1100–1178), who in his early youth went to

the Latin school in Hildesheim (1112–1130). Later as Archbishop (1137–1177) he

travelled extensively and had close contacts with Bernard of Clairveaux (1090–

1153) (canonised in 1174). Thus he had many possibilities for meeting teachers of

organisation, mathematics and astronomy. Perhaps, then, it was in some of these

circles that what follows might have been developed.

Fig. 28.6 The stereographic projection and the astrolabe. Image: author
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The Celestial Key

The term is a combined expression for two views of the stereographic projection:

(1) The orthographic projection on a plane through the poles and solstices (see

Fig. 28.7 and the centre of Fig. 28.9 in half size);

(2) The plane projection of the sphere on the equatorial plane (see Figs. 28.9 and

28.10), and the special tri-Vesica Piscis construction of the equator and the

tropics in the equatorial plane (see Fig. 28.8).

Ptolemy used the term analemma for a combination of these.

The Orthographic Projection

A plane cut through the poles and solstices in the stereographic projection

(Fig. 28.6), now called an orthographic projection (Fig. 28.7), reveals several

striking coincidences with the geometric riddle in Fig. 28.5.

In the general calculation shown below, the sine to the ecliptics obliquity is

called s. By use of similar triangles it is easy to calculate the ratio of the tropics if

the angle of the ecliptic is known.

By choosing the value s ¼ 0.4, for example, the obliquity of the ecliptic is

Arcsin(0.4) ¼ 23.578. . .�, the ratio (R2) between Equator radius and radius of the

Fig. 28.7 Orthographic projection. Image: author
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Tropic of Capricorn is exactly √7/√3 in the planispherical projection and,

furthermore, the projection angle is Arctan(√7/√3) ¼ 56.789. . .� .

Proof The circle has a radius OC ¼ 1, AF ¼ s is sinus to angle AOF, which is the

obliquity of the Ecliptic and FO is cosine AOF ¼ √(1�s2). BO is the radius R1 of

the Tropic of Cancer and OE is radius R2 of the Tropic of Capricorn.

The triangles ABF and CBO are similar, hence FB ¼ AF · BO/OC ¼ s · R1 and

FO ¼ √(1�s2) which is also FO ¼ FB + BO ¼ R1 · (1 + s)

Hence the radius of projection of the tropic of Cancer is R1 ¼ √((1�s2))/

(1 + s) ¼ √((1�s)/(1 + s))

The triangles CBO and ECO are also similar, so R2 and R1 are reciprocal

R2 ¼ 1/R1 ¼ √((1 + s)/(1�s))

The obliquity of the ecliptic has decreased since antiquity.9 By using

Newcomb’s formula for the change of obliquity, it is possible to identify 918 AD

as the year with the value 23.578. . .� (¼ 23�34.690 decimal minutes). Has any

Arabic astronomer used this value for the obliquity? Not exactly, but almost. The

value 23�350 has been used by Habash (mid-ninth century), Al-Battani (850–929),

Ibn Yunus (940–1009), Al-Biruni (973–1048), and Al-Tusi (1201–1272) in 1250

(King 1999: 230, 355).

So how can one be sure that the exact value of Arcsin(0.4) was intended? This

follows from a very special tri-Vesica Piscis construction for the value of √7/√3
(and √3/√7). It could well have been used by the makers of astrolabes.

Fig. 28.8 Tri-Vesica

construction of equator and

tropics in medieval

astrolabe. Image: author

9 Newcomb’s formula: e ¼ 23�.452294–0�.0130125 · T–0�.00000164 · T2 + 0�.000000503 · T3,

T in centuries before 1900 AD (see graph Bandholm 2007).
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The Tri-Vesica Piscis Construction

The points K, E and F correspond to the churches NL, ØL and (Chr), and the axis

has azimuth Arcsin(√3/√7) ¼ 40.893. . .� Compare with Fig. 28.5.

Construction On a vertical line two points A and B are marked. Two circles with

the radius AB and centres in A and B are drawn, and then a third circle with the

same radius and its centre in their crossing point C. The horizontal line CD is

perpendicular to AB and crosses in the central point E.

A line from E to the crossing point F is drawn and it crosses the circle at G.

Now if EC is equal to 1 (the radius of equator), then EF is √7/√3 (radius of tropic
of Capricorn), EG is √3/√7 (radius of tropic of Cancer) and FH is the diameter of the

ecliptic.

Proof (See Fig. 28.8) Triangle AEC (not drawn) is right-angled in E and AE is half

AC. Using Pythagoras gives EC2 + AE2 ¼ AC2 substituting gives

12+ ½ AC2 ¼ AC2 and AC becomes AC ¼ 1/(1�½2) ¼ 2/√3. But AC ¼ CF in

right-angled triangle ECF (not drawn). Using Pythagoras in triangle ECF gives

EF2 ¼ EC2 + CF2 ¼ 12 + (2/√3)2 ¼ 7/3 hence EF ¼ √7/√3.
Triangle CGE (not drawn) is right-angled in G and similar to triangle ECF. CGE

is a right angle because angle CGI spans the diameter CI (not drawn). Substituting

values in the proportion EG/EC ¼ EC/EF gives EG/1 ¼ 1/(√7/√3) hence

EG ¼ √3/√7.
This construction, shown in Fig. 28.8, is more accurate and faster than Fig. 28.7

for making the template of an astrolabe.

I have not been able to trace this construction, nor the use of the exact value of

Arcsin(0.4) for the obliquity.10 If it can be done, a historical connection to the

geometrical layout might be found.

Application of the Key

More support for the idea that the key (¼orthographic and plane projection) was the

inspiration for the layout appears if the trace of the sphere as NOPSTM is drawn at

half-scale but still centred on ØL in Fig. 28.9.

The projection lines are drawn from the celestial North Pole N in (0; 0.5) grey

lines. The line Kl–Rø not only has the right azimuth, (as Pe–Bo) but it is close to the

projection line L–M–N (Rø 65 m and Kl 103 m distant) and, even more strikingly,

this line goes nearly through the point F (Chr).11

10 In private correspondence Dr. John D. North declared that he had not seen the construction before.
11 This is a mathematical coincidence as the punctured line from N with angle Arctan(√3/
√7) ¼ 56.789..� is cutting the vertical (x ¼ 1) in √3/√7 + ½ ¼ 1.15465. . . whereas the

tri-vesica construction above gives 2/√3 ¼ 1.15470. In reality the difference is only 0.77 m at Chr.
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The plane projection of Capricorn (double line) has radius ØL–Ib.

The projection line NP perpendicular to LN has azimuth �33.21� and it happens
to be close to azimuth for:

Bo �34:15∘ð Þ ! RØ �34:29∘ð Þ !
Pe �33:80∘ð Þ ! Kl �33:94∘ð Þ !
AA �33:79∘ð Þ ! Ru �33:93∘ð Þ !

Furthermore the projection line OS through the South Pole S goes to AA

(missing 47 m) and is perpendicular to AA–VM, which is parallel to SL as is

Ib–ØL.

Plane Projection of the Ecliptic

It has not been possible to find the distance representing the radius of the Tropic of

Cancer, nor the zenith or horizon in the plane projection, but the radius of the

ecliptic (grey circle in Fig. 28.10) can be calculated by means of the two tropical

radii as it touches both circles in the projection (thin and double line). For example,

R(ecliptic) ¼ ½(R1+ R2) ¼ ½ (√3/√7+ √7/√3) ¼ 5/√21. With the unity of ØL–NL

of 14336 m it is 15641.8 m. This corresponds almost perfectly to the distance

between Rø and AA (triple line) which is measured as 15638.7 m. The difference is

Fig. 28.9 Application of

the celestial key. Image:

author
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only 3 m. The only church on the ecliptic is AA, the largest church on Bornholm

which might represent the sun.12

Furthermore the ecliptic almost touches (230 m short) both tropics, as it should,

in the two solstice points (Summer and Winter) and the line through these points is

very close to the line Rø–ØL–ØM (ØM is 60 m distant).

Transformation of Chr and ØL to Ol and Ny

The placement of Ol and Ny does not come out directly of the key, but points to

another way to construct √7/√3 as shown in Fig. 28.11 where a special

transformation reallocates Chr to Ol and ØL to Ny—and explains why the

azimuth of Ny ! Ol should have the value 10.89� (¼ 40.89 � 30�).13

Fig. 28.10 The ecliptic.

Image: author

12 The Sun’s position at the ecliptic on an astrolabe represents a date around 24 April at 1:30 pm.
13 Also described as a construction by Haagensen (2003) and nicely illustrated on http://www.

new-science.co.uk
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Description of Transformation in Fig. 28.11

EC ¼ 1 by definition, hence isosceles triangle ACF (grey) and ABC (grey in one

of its halves) both have vertical of 1. The diagonal EF is shown to have the length

√7/√3. Now the big grey triangles are multiplied by½ and turned 30� anticlockwise
and displaced so point A is moved to A0. It is then obvious that the ordinates of F0

and E0 are 0.5000 and—0.2500 with a difference of ¾. The abscissas are less

obvious, but the coordinates can be calculated to be:

F0: (�0.7113; 0.5000) and E0: (�0.8557;�0.2500) with

Ol: (�0.7149; 0.5024) and Ny: (�0.8558; �0.2486) for comparison.

This implies that Ol is about 61 m and Ny 20 m from the transformed placement.

But the distance Ol–Ny is only about 5 m longer than the expected value of½·√7/√3
over nearly 11 km.

The azimuth of Ny ! Ol is seen to be 40.89 � 30� ¼ 10.89� but can be derived
directly by realizing that the difference in ordinates between churches was intended

to be ¾ and the distance Ny–Ol is believed to be ½√7/√3; the ratio is 0.982. By

looking at Fig. 28.11 it is clear that the azimuth is Arccos(0.982. . .) ¼10.89�.

Fig. 28.11 Construction of

the coordinates of Ol and

Ny. Image: author

414 N. Bandholm



Deviation Between Theory and Facts

It is difficult to decide when a hypothesis deviates so much from fact that it has to be

rejected. Is the difference a result of inaccuracy or methodological problems

(plane ! spherical representation)? Or is it simply wrong?

If the layout was intended, the differences between actual values (medieval

position, e.g., VM is moved 34 m), and those predicted by the plane models

(Figs. 28.8, 28.9, 28.10, and 28.11) require consideration. If angles from the

plane model are transferred to the spherical earth and measured from the North

(azimuth) a deviation of about 0.3� might be expected as mentioned.14 Furthermore,

some inaccuracy in practical layout must be allowed for, and this might accumulate

in the measuring process to result in the observed difference in angles of about 0.5�

seen in Fig. 28.5 (giving a relative error of 0.87 %). Distances seem to be 10 times

more accurate.

A coarse estimate of the probability for a chance arrangement of 7 distance

vectors transformed with multiple distance relationships and intended angles from

the key is indeed very small.15

Some displacement may even have been intentional to take into account

practical necessities or accommodate conflicting measures, e.g., alignment with

springs, local geography or geometrical figures (Haagensen 2007).16

In the case of Pe–Bo, it is difficult to decide which distance was intended. It

would be logical to assume it to have the same length as Kl–Rø so Kl–Rø–Bo–Pe

could become a perfect rectangle, but the distance 7300 m is close to 1/3 of ØL–Chr

(7299 m) compared with 1/2 of NL–ØL (7168 m). It seems that maybe Bo should be

placed about 170 m further west, because the azimuth Pe(�33.80�) ! Kl fits very

closely to that of AA(�33.79�) ! Ru, but deviates from Bo(�34.15�) ! Rø.

Furthermore the ratio between 1/2 (NL–ØL) and 1/3 (ØL–Chr) ¼ 0.982. . .is the
same as seen in the placement of Ny–Ol. Surely then the difference of 132 m was

known. Archaeological explanations may be discovered.

Further study on the churches not mentioned—e.g., Kn nearly south of Ru with

y ¼ �0.5, Azimuth Po(�40.79�) ! Ru, y(Po) ¼ �1.1557 � -y(Chr)—and

14 The difference of 0.31� between azimuth in each end of NL ! ØL ! Chr. Line.
15 From the coordinates in Table 28.1, the vectors NL ! ØL, ØL ! Chr, Kl ! Rø, Pe ! Bo,

AA ! VM, Ib ! ØL, Ny ! Ol and NL-VM are calculated and correspondingly multiplied with

1(def), √3/√7, 2, 2, 2, 2√3/√7, 2√3/√7 and 4, and turned 40.89�, 40.89�, 56.79�, 56.79�, �56.79�,
�56.79�, 10.89� and 10.89�, in that order. These transformed vectors are nearly parallel and

expand a very little space of uncertainty around the vector (0;1) (�0.126 km2). Random chance

vectors are allowed length 0.25 to √7/√3 and azimuth from 0� to 90�. These chance vectors are

each represented by 15 vectors by combinations of factors 1, √3/√7, 2√3/√7, 2 and 4 - and turned

angles of 10.89�, 40.89� and 56.79�. The chance vectors are taken from an area � 151 km2

(reduced by symmetry and geography). The probability that seven representatives all fall within

the uncertainty area is less than 10�13 > (15 · 0,126/151)7.
16 Haagensen has assumed that it is the case for Ol to show a method to measure the radius of the

earth. I do not agree.

28 The Celestial Key: Heaven Projected on Earth 415



studies of churches in southern Sweden might give additional evidence, or they

might reveal that the correspondence with predictions from The Celestial Key is a

lucky, though very improbably coincidence.

The mathematical probability of the geometrical layout of Haagensen has been

disputed by J. Schmidt (2002: 189). But it is defended by Professor Niels Lind

through genuine Bayesian statistical analysis (Lind 2002). His analysis has been

criticised by J. Jerkert (2003). Despite this rather technical discussion, Jerkert

points to the importance of the context in which the geometrical layout of the

churches should be seen. Was Christiansø known for its religious significance at

that time? Was deliberate alignment of churches relevant to the worldview of that

era? Was the technique available in Bornholm at this time?

Discussion—Astroarchaeological Prelude

Before the new knowledge of the astrolabe, there was a long indigenous tradition of

observing the directions of the rising or setting sun on important dates (McCluskey

1998). There is hardly any written documentation, so it must be inferred from

archaeological finds and astronomical alignments of stones and rock carvings, but it

does give further support to the Celestial Key.

John D. North describes how long barrows and cursus (one 10 km long) are

oriented towards the rising and setting of stars as far back as 4000–3000 BC (North

1996: 138–188). The heliacal rising of stars (their appearance on the horizon before

sunrise) is the episode used to fix the day of the year. But caused by the precession,

it changed slowly (1� in 72 years around the ecliptic pole) and must be steadily

corrected, so date fixing was supplemented by observing the periodic movement of

the sunrise along the horizon from solstice to solstice.

The rising and setting of a star is symmetrical along the north south direction.

Alignment to a star at a certain height over the horizon can be used with high

precision to fix azimuth of the direction. If this method were used in the layout of

churches it would explain the obvious north–south symmetry as well as the parallel

directions. For the azimuth around �56.8� the star used might be identified, e.g.,

Sirius at an altitude of 2.36� looking south (1150 AD)—or Arcturus at an altitude of

7.2� looking north. It might even explain why these angles cluster in two groups.

The solstice alignment shows up at Newgrange (3500 BC) and Stonehenge (3000

BC). The Nebra sky disk (1600 BC) has been interpreted as showing the angle (82�)
between the solstices at the latitude of the hill Mittelberg (51�), and from here

alignment towards two distant mountain peaks by sunset at midsummer and on the

midquarter days, around 1 May and 2 August.

At the latitude of Bornholm the angle between solstices has been exactly 90�

(1600 BC in the south and 500 BC in the north).17 Several rock art carvings on

Bornholm show alignments to solstice and mid-quarter days (Fig. 28.12) (Jensen

17With the sun’s center on the horizon, the latitude λ can be found from λ ¼ Arccos(√2 · sine)

with e from Newcomb’s formula (note 11).
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2000–2001). Furthermore Haagensen has identified upper windows in the ØL

church to be in alignment with the sunrises of the winter and summer solstices

with azimuth of 43.1� and 132.73� (Haagensen 1993: 87, 90; 2003: 76–78, 82–83;

2007: 112–129).

The digital calendar took over when important pagan feast days were substituted

by Christian holy days (McCluskey 1989, 1998: 60–76).

In Table 28.2 there are eight feast/holy days: the four dates of solstice and

equinox and, between these, the mid-quarter days, which were well-known

festivals in the Celtic calendar. This division is traceable to the Stone Age,

inferred by the astronomical alignment of graves and stone settings.18

The azimuth at solstice, equinox and mid-quarter days depends on the latitude

and height above sea level. It is also influenced by refraction and, therefore, factors

such as air temperatures. Investigations carried out by Jens Lindhard of hundreds of

alignments between neighbouring churches and barrows in the northwestern part of

Denmark emphasize angles of 41�, 86� and 126�. These are interpreted as

Midsummer Solstice, Equinox and Winter Solstice respectively, at the latitude

around (57�) (Linhard 2007).

The azimuths of 43.2� and 58.4� are noticeable as being close to azimuths of

40.9� and 56.8� found for 6 pairs of lines connecting the churches at Bornholm.

These azimuths could have been a near continuation of an older Norse practice for

fixing a religious date. Using the Key, angles were now linked to the sky and the

tri-vesica construction of the astrolabe, and were thereby independent of the place

of observation. It could be a symbol of the unchanging heavenly world with great

persuasive power for heathen priests converting to Christianity, even more so if

these alignments included pagan sites such as Ertholmene and Ales Stena.

Fig. 28.12 Sun cross at

Bornholm. Photo: author

18 The eight-part year was first proposed by Lockyer (1906: 30), discussed in great detail by Thom

(1967: 107–117, supported by Heggie (1981: 219), discussed in North (1996: 301, 509, 540) and

criticized by Ruggles (1999: 47–67, 88, 142–3).
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Discussion: Symbolic Use of the Celestial Key

In the early Middle Ages many phenomena were interpreted symbolically as signs

revealing higher truth (Pedersen 1996: 194–197). That the special value of the

obliquity Arcsin(0,4) will generate the exact ratio of √7/√3, could be a sign for the

shrewd cleric, who could also see the Tri-Vesica Piscis construction. This is even

partly depicted in ØL as shown in Fig. 28.13. Besides, 7 and 3 are holy numbers.

If the Celestial Key was used in the arrangement of churches would it not also

have been used in the design of churches? A striking illustration is the plan of the

Cathedral of Stavanger (1130) (see Fig. 28.14).19 The length of the nave is √7/√3
times the width, as shown with the overlay of the plane projection. Furthermore the

orthographic projection of the Tropics is aligned with the columns, which are

crossed by the Equator, and the projection of Tropic of Capricorn. The light in

Table 28.2 Substituting of Celtic/Norse festivals with Christian feasts

Approximate date

(Julian calendar)a Astronomical Celtic/Norse Christian

Azimuthb ØL

year 1150

21–22. December Midwinter

solstice

(Sol Invictus)/

Yule

Christmas 132.1�

1. February Mid-quarter day Imbolc/diesting Candle mass,

St.Brigit

117.7�

21–22. March Spring equinox Goddess Eostra? Marys Annunciation,

moon ! Easter

88.3�

1. May Mid-quarter day Beltane/Mayday Voldermas, May

Queen, Cross

mass

58.4�

21–22. June Midsummer

solstice

/midsummer

festivities

Saint John the

Baptist.

43.2�

1. August Mid-quarter day Lugnasa/hay

harvest

Lammas,

St. Oswald,

St. Justus

58.4�

23. September Autumn

equinox

/Thanksgiving Conception of

St. John the

Baptist.

88.3�

1. November Mid-quarter day Samhain/butcher

feast

Halloween, All

Saints, All Souls

117.7�

aThe date in the Gregorian calendar for the astronomical mid-quarter days is from 2 to 8 days later.

See McCluskey (1989). The mid-quarter days are calculated as geometrical midpoint on ecliptic.

e.g., sinδ ¼ �sine/√2; see note below
bThe angle from north to sunrise with the sun’s upper limb over the sea horizon (�160) and
corrected for refraction (�350) and height above sea level. Azimuth ¼ Arccos((sinδ�sinλ · sinθ)/
cosλ · cosθ) where declination: δ ¼ �e (solstices, e from note 9), 0 (equinox) and for δ at

mid-quarter days (see note above); λ is geographical latitude and θ is the angle from the horizon

(negative under) ¼ �0.0321 · √(height in m) �35/60 �16/60 in degree, see North (1996: 553–

563) and Ruggles (1999: 22)

19Measured by Gerhard Fischer in 1939–1940.
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the church comes in through the clerestory to descend between the tropics,

symbolizing the suns place projected from heaven’s sphere in the church (Nielsen

2001: 28).

A similar plan can be drawn of the Cathedral of Lund (c.1110 AD). But here some

holy numbers come into play as close rational approximations to √7/√3 � 55/

36 � 84/55. The inner width of the nave is about 55 “natural cubits” (cu) and

produces radii of tropics of 36 cu and 84 cu.20 Mogens Koch has shown that 12 cu is

one of the modules in the church and width between columns is 24 cu. (Koch 1993:

96–100).

Fig. 28.13 Christ as

Majestas Domini in a (Tri)

Vesica Piscis in Østerlars.

Notice the sun, moon and

rainbows. Photo: S.Plum/

Majpress firstmay@image.

dk

20Mogensen measured the width of the nave to 54.86 “natural cubits”, see Mogensen (2003: 49).

The “natural cubit” ¼ 0.4666 m was discovered by Mogens Koch on the capital in the crypt.
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The “natural cubit” is 1½ feet. This in itself is another, but not as good,

approximation for √7/√3 � 1.5.

Surely the proportions of churches and their symbolic meaning contain many

mysteries that have yet to be discovered. It is possible that the Celestial Key could

unlock some.

Conclusion

The Celestial Key combines several striking astronomical, mathematical and

geographical coincidences.

The obliquity of the ecliptic was 23�350 as measured by the Arabs in the eleventh

century. Assuming an obliquity of Arcsin(0,4) it generates the exact ratio of √7/√3
and the angle 56.8� in the stereographic projection, and leads to a “Tri-Vesica

Piscis” astrolabe construction with the angles of 40.9�. This angle is close to the

azimuth of the rising midsummer sun on Bornholm and the azimuth of 56.8� is

close to the rising sun at important mid-quarter days in the Celtic calendar (1 May

and 1 August). Both directions have also been found in rock art from the Bronze

Age (1000–500 BC), and the symbolic value was reinforced by pointing out

pre-Christian holy places, “Ertholmene” and “Ales Stenar”.

Fig. 28.14 Plan of nave in Stavanger Cathedral. Image: Fischer (1964), with overlay by the author
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The stereographic projection of the heavenly sphere is a remarkable metaphor

for the connection between heaven and earth, so it may perhaps be found in the

measure and proportions of Romanesque church buildings.

The Celestial Key could be the result of thousands of years of semiotic evolution

reinforced in a network of symbolic interpretations—many now extinct—but then

known at that time to the myth-creating minds of the Middle Ages.
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Chapter 29

Friedrich II and the Love of Geometry

Heinz Götze

Introduction

The Castel del Monte was built in the northern part of Apulia by the Holy Roman

Emperor Friedrich II of Hohenstaufen in the last decade of his life.1 Even today it

remains an object of wonder (Fig. 29.1). Standing on a conical hill in the flat

table-like countryside called the Murge that slowly falls toward the sea, the castle is

visible from afar, golden in the bright sunshine. Its unique form—eight-sided with

octagonal towers at each corner—is sharply defined by shadows. The stark, sharply

delineated walls emphasize its stereometric character. For Castel del Monte, there is

no need to invent or to guess at the geometric relationships. They simply exist in the

building, which cries out for a mathematical analysis to help evaluate it as an

architectural object in the same way that historical, chronological, art-historical,

and architectural-historical analyses do.

One must, of course, ignore small deviations of the castle’s actual measurements

from the obvious design objectives. The architect here built in certain small

First published as: Heinz Götze, “Friedrich II and the Love of Geometry”, pp. 67–79 in Nexus I:
Architecture and Mathematics, ed. KimWilliams, Fucecchio (Florence): Edizioni dell’Erba, 1996.

This chapter originally appeared in The Mathematical Intelligencer, vol. 17, no. 4 (1995)

pp. 48–57. This was a somewhat expanded version of an article in Architektur Aktuell 169/170
(1994) pp. 88–95. English translation by L.L. Schumaker. Computer-generated Fig. 29.1b was

prepared by Susanne Krömker of the Interdisciplinary Center for Scientific Computation of the

University of Heidelberg. Reprinted by permission.

Heinz Götze (1912–2001).

1 This discussion is based on work presented in Heinz Götze, Castel del Monte,Gestalt und Symbol
der Architektur Friedrichs I, 1st edn (Munich, 1984) and 3rd edn (1991) pp. 9–12 and 84 ff. See

also Heinz Götze, “Die Baugeometrie von Castel del Monte,” in Sitzungsberichte del Heidelberger
Akademie der Wissenschaften, Phil.-hist. Klasse, Jahrg. 1991, Bericht 4.

K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to
the Future, DOI 10.1007/978-3-319-00137-1_29,
© Springer International Publishing Switzerland 2015
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deviations; for example, to emphasize the east wing of the building. This did not

lead to a devaluation of the basic concept—quite the contrary. The deviations

clearly are based on a well-defined overall plan.

A Geometric Analysis and Definition

The two-dimensional layout of Castel del Monte can be identified as a symmetry

group with 16 elements: eight reflection planes and eight rotation planes. It is an

automorphic group. These symmetry relations reveal themselves in all tour towers

(Fig. 29.2). The multiplicity of symmetries is expanded by homotheties, that is,

“similarities” among the large octagon of the main building, the octagon of the

inner courtyard, and the eight octagonal towers placed in the same system of axes.

The ratios of the size of the three octagons “similar” to each other is given by 4/h
(I):2h(II):2(2√2�1)h(III), where h is the mesh size of the basic grid (Fig. 29.3). The

ratios of the sides of the three octagons is 2a:a:c(√2�l), where a is the side length of
the courtyard octagon. The symmetry group involved here is a planar group of type

D16, in the notation of J. M. Montesinos-Amilibia (1987).

Simple reflection symmetry, which is often encountered in nature, has long

played an essential aesthetic function in architecture. There are other

mathematical relationships that have equally strong aesthetic effects, and which

also appear in nature—for example, the “golden ratio” which is connected with the

pentagon. The architect of the Castel del Monte was clearly aware of the aesthetic

importance of symmetries. He used them to achieve the impressive appearance of

the castle, which still affects us today.

The planimetric aerial photo (Fig. 29.4) shows that the tangents of the octagon

forming the inner courtyard intersect at the centres of the octagonal corner towers:

Fig. 29.1 The Castel del Monte. Photo: author
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they form an eight-pointed star, the tips of which lie at the centres of the towers.

This provides a geometric relationship between the inner courtyard and the corner

towers, established by the similarity relationships discussed above.

This relationship was first discussed in my book on Castel del Monte (Götze

1984), where I also gave a geometric construction for the layout (Figs. 29.5, 29.6,

and 29.7). I am indebted to three very famous mathematicians who have dealt with

this geometric configuration and my construction: F.L. Bauer of Munich, Marcel

Erné of Hannover, and Max Koecher of Münster. It was Max Koecher who first

thought about the strong aesthetic effect of the multiple symmetries in the

geometric plan, and defined it as a geometric configuration with its own intrinsic

Fig. 29.2 The symmetry

group that characterises

Castel del Monte. Image:

author

Fig. 29.3 The basic grid.

Image: author
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aesthetic (Koecher 1991: 221–233). He described it as a configuration of octahedra,

generalized from regular polygons, built up according to the following principles:

1. The configuration comprises the centre and the vertices of a central octagon O,
along with the centre points and vertices of eight smaller translated copiesOV, of

the central octagon, all equal in size.

2. The centres MV, of OV, lie on the rays passing through the centreM of O and the

vertices of O.
3. All MV, are at the same distance from M.

4. As many as possible of the vertices and centres ofO and ofOV, are collinear; that
is, they lie on common straight lines. This last condition is essential for the

aesthetic configuration. Koecher then discussed the many different possible

collinear arrangements.

In Fig. 29.8, two such “collineations” (i.e., points of the basic octagonal

construction which lie on a single line) are marked: the line connecting the centre

of the octagons MaMv (or equivalently, the line through c and b), and the tangent

lines to the two exterior octagons.

An alternative to the construction of the layout shown in Figs. 29.5, 29.6, and

29.7 (which require both compass and ruler) is due to Marcel Erné of the Technical

University of Hannover; it does not require a compass (Fig. 29.9).

After drawing a right angle, as in the first construction, we divide a large square

into 16 subsquares with side lengths h (as in Fig. 29.3 above). The quantity h can be
considered as a modulus, the size of which can be computed from the measurements

of the castle. In the next step a second, equally large square is created and rotated by

45� so that the vertices of the new square lie on the extensions of the main axes of

the original square. We have here just the classical approach to constructing an

octagon by rotating a square. One of the advantages of this second construction is

that one can readily compute the lengths of all line segments.

Fig. 29.4 The aerial view

of the Castel del Monte with

the geometry overlaid.

Image: author
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Relationships

The sides of the octagon forming the interior walls of the outside of the castle are

determined by the intersecting grids and are twice as long as the sides of the octagon

forming the interior courtyard. The width of the eight outside towers is equal to the

length of a courtyard side a.
Instead of the quantity a, we can also use the mesh size h as the basic unit. The

quantity a can be found from the actual building by measuring the width of a tower

or the length of a side of the interior courtyard. It is not so clear how to measure the

quantity h, although it is of great importance as the basic unit used in constructing

Fig. 29.5 Step 1 in the

geometric construction of

the Castel del Monte.

Image: author

Fig. 29.6 Step 2 in the

geometric construction of

the Castel del Monte.

Image: author

29 Friedrich II and the Love of Geometry 427



the rectangular grids. The grid plays an essential role in the development of the

layout, and presumably also played a key role in the translation of the drawing to

the actual physical construction of the building. For this kind of complicated

geometric configuration, it is impossible to build without marking it full-scale on

the construction site. It is also clear that this could not have been done “by hand,”

but must have been accomplished with mechanical measurement tools which were

readily available. Using h as the basic unit, we have the following (refer to

Fig. 29.3):

Fig. 29.7 Step 3 in the

geometric construction of

the Castel del Monte.

Image: author

Fig. 29.8 Two collinear

arrangements. Image:

author
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1. The distance between the outside of the courtyard walls and the inside of the

exterior walls is h.
2. The diameter of the interior courtyard from the centre of one wall to the centre of

the opposite wall is 2 h.
3. The distance between the centres of the towers is also 2 h.

4. The lengths of the sides of the towers is b ¼ a2h
2
, and the thickness of the outer

walls is c ¼ a2

2
ffiffi

2
pð Þh.

5. The overall width of the castle is 4
ffiffiffi

2
p

� �

h. This mathematical prescription

corresponds to the geometrical configuration.

The appearance of √2 is noteworthy, albeit not surprising since we are dealing

with the construction of squares and octagons.

The Russian architectural historian M.S. Bulatov pointed to a high multiplicity

of symmetries as well as the repeated use of the quantity √2 as characteristics of

Islamic architecture (Bulatov 1988: 98–104). Bulatov based his interpretation on

his own careful studies and surveys of central Asian architecture as well as on the

writings of Arabic scholars.

As already suggested, the practical marking of the floor plan on the construction

site probably began with the two gridded squares that determine the outer octagon.

This was technically possible using the grid size which provided the basis for all

other measurements. The essential role of the initial square, and with it the outside

octagon, is also suggested by the exact equality of the distances between opposing

walls of the outside octagon—it is 36 m, which is approximately 120 Roman feet.

Castel del Monte was erected by Cistercian masons. Friedrich II felt a close

affinity to this order, which played a major role in the architecture of the high

Fig. 29.9 The alternate

construction for the layout.

Image: author

29 Friedrich II and the Love of Geometry 429



Middle Ages. For comparisons, note that the nave of the abbey church of Eberbach

in the Rheingau region of Germany, also erected by Cistercians, has a length of

approximately 71 m, that is, around 240 Roman feet—exactly twice the distance

between the insides of opposite walls of Castel del Monte. Furthermore, the central

room of the Basilica of Fanum of Vitruvius is 120 Roman feet long and 60 Roman

feet wide.

In all three buildings, the lengths are multiples of 60 Roman feet, and thus

correspond to numbers in the hexadecimal system, known since the time of

Babylonian astronomers, and which remained in use in Europe until the tables of

Regiomontanus appeared (1436–1476). In view of this, it seems quite reasonable to

consider the hexadecimal system of the outside octagon as the practical starting

point for the construction of the layout. This leads us to wonder where this very

unique idea for designing a European building at this time in history might have

originated. The layout of other castles built around the same time (for example, the

Wartburg in central Germany, the Marksburg on the Rhein, and the Chateau Chillon

near Montreaux, to mention only three arbitrary examples from different regions)

are all very far from the kind of geometrical configuration which Castel del Monte

exhibits. The keeps of castles in southern England and donjons in northern France

are two other examples lacking such a geometrical structure.

The practical aspects of building, the technique of ribbed arches, and the design

of capitals were all part of the work of the Cistercian masons, who were dedicated to

the Gothic style of Middle Europe. This says nothing about the design of Castel del

Monte itself. Even the book of the contemporaneous architect Villard d’Honnecourt

contains nothing remotely similar. There are no written records concerning the

history of the design of the castle, and we do not know who the architects were. But

we need not depend on conjecture alone to learn something about the creation of

this remarkable building, given its well-defined geometric configuration and its

inner aesthetic.

Searching for related structures, we find in the Carta Pisana, a navigational chart
drawn at the end of the thirteenth century, an interesting depiction of an octagonal

compass that exactly matches the shape of the layout of the Castel del Monte

(Fig. 29.10).

The navigational charts of the Mediterranean are primarily of Arabic origin

(including the Arabic Caliphate of Córdoba). Two other examples include the

Maghrebian navigational chart of the western part of the Mediterranean

(Fig. 29.11) produced in the first half of the fourteenth century, and a drawing of

two symmetric wind roses that does not include any underlying geographical

information (Fig. 29.12).

On the other hand, both of the wind roses in Fig. 29.12 clearly show an

underlying square grid and the extended grid lines of the crossed squares, the

intersections of which determine the vertices of the eight-pointed star.

Fuat Sezgin has carefully studied navigational charts (Sezgin 2000). He cites the

historian Ibn Fadlallah al-’Umari (d. 1349) as saying that navigational charts

always include wind roses. In addition, as part of work done for the seafarer Abu

Mahammad ‘Abdalla B. Abi Nu’ Aim al-Ansari al-Qurtubi of Córdoba, Ibn
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Fig. 29.10 Geometrical construction of the Castel del Monte overlaid on a reproduction of the

Carta pisana (Bibliotheque Nationale de France, Dep. des Cartes et Plans, Res. Ge. B1118).

Image: author

Fig. 29.11 Geometrical construction of the Castel del Monte overlaid on a reproduction of a

Maghrebian navigational chart. Image: author
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Fadlallah al-’Umari also reported that only the four principal directions and the four

directions halfway between have Arabic names, even when the wind rose shows

more than eight directions (up to 32). Clearly, wind roses in the form of

eight-pointed stars were developed by Arabic-Spanish sailors. The use of this

style of wind rose for the design of the layout of Castel del Monte provides a

clear indication of its origin, and possibly also for the meaning of the building itself.

Eight-sided stars are older than the navigational charts. They can be found already

as projections of the ribs of the cupola in front of the Mihrab in the Umaiyaden

Mosque in Córdoba (AD 961–966). This mosque also contains the first stage of the

pattern in the form of crossed squares, which can also be seen in the cupola of the

Umaiyadi Alferia Palace (second half of the eleventh century) in Zaragoza.

The appearance of eight-sided stars is not confined to the Arabic region of the

Mediterranean—they also appear as far away as Persia, India, and central Asia.

As the examples show, the eight-pointed star constructed from crossed squares is

a widely used motif in the Muslim world, appearing in many contexts. Its use in the

Fig. 29.12 Geometrical

construction of the Castel

del Monte overlaid on a

reproduction of two wind

roses. Image: author
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cupolas of religious buildings as well as in the form of wind roses suggests a

connection with concepts of the heavens. For the discussion here, it suffices to

recognize the underlying geometric configuration, exalted by the places in which it

was used, and characterized by its multitude of symmetries.

The navigational charts, along with a mosaic of similar form in the Alhambra

(Fig. 29.13) exhibit an additional step in the development of the eight-pointed star

figure: the intersection points of the tangents, that is the vertices of the star, are

distinguished by bundles of rays.

Here a new idea of the architect of Castel del Monte comes into play: he

emphasizes the special position of the tips of the stars by repeating the

eight-sided pattern in smaller, similar form. These corner towers are not only

connected by a line from their centres Mv to the centre M of the central octagon,

but they also form a complete geometrical system together with the octagons of the

outside wall and the inside courtyard (see Fig. 29.2 above).

With this novel idea, the architect increased the symmetries by an order of

magnitude, and thus the aesthetic effect of the entire building. Since simple

reflection-symmetry is already regarded as a harmonizing element in architecture,

it is no surprise what an immense effect this additional symmetry has.

Suppose we carry the idea of the architects of Castel del Monte one step further

and construct new eight-pointed stars formed from the tangents to the sides of the

towers (Fig. 29.14). We immediately recognize geometric relationships between

these outer stars as manifested in additional collineations.

This is not to say that the architect of Castel del Monte took this additional step.

It is not needed to establish the geometric relationships found in the castle, as these

Fig. 29.13 Geometrical

construction of the Castel

del Monte overlaid on a

photograph of a mosaic

from the Alhambra. Image:

author
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are based on the geometric system that includes the eight exterior octagons as well

as the two basic octagons. The figure of the eight exterior stars corresponds to

patterns found in Indo-Arabic constructive geometry, as can be seen in the mosaic

in the centre of the mausoleum of Humayun in Delhi (1565), in which the stars are

aligned along lines and touch each other only at one tip (Fig. 29.15).

The close geometric connections between the eight “satellite” stars, as shown by

the touching of the points of neighbouring stars, provide additional evidence that

the size of the towers was not chosen arbitrarily, but follows the geometrical

system. These connections further support the completeness of the geometric

design of Castel del Monte as an example of a configuration with an inner aesthetic.

The repetition of the basic eight-pointed star can be continued and, as Max

Koecher observed, results in a fractal with infinite iteration possibilities

(Fig. 29.16).

An indirect proof of the geometric rules underlying the design of the castle is the

fact that a computer-graphics model of the castle requires nothing more than these

rules to effect complete reconstruction, as the Heidelberg Centre for Scientific

Computing has shown.

The determination and analysis of the origins of the basic geometric form

underlying the design of Castel del Monte establishes a connection between it

and Indo-Arabic geometry. Such a complex geometric analysis, however, is

unusual even for this area. It is thus natural to ask if the emperor himself

Fig. 29.14 A further development of the Castel del Monte geometry. Image: author
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provided the inspiration for the design of this, the crown of his castles. His interest

in mathematics and architecture is well known. The collection of permanent

scholars at his court included Arabic mathematicians such as Theodorus of

Antioch, who carried out mathematical correspondence with Leonardo of Pisa.

This was the period in which Leonardo of Pisa collected Indo-Arabic

mathematical results and disseminated them throughout Europe. The

accomplishments of Greek mathematics had been preserved and extended by

Fig. 29.15 Eight-pointed stars in a mosaic from the mausoleum of Humayun in Delhi. Photo: author

Fig. 29.16 Computer rendering of the fractal iteration of the Castel del Monte geometry. Image:

author
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Arabic scholars. Leonardo was in close contact with Friedrich II and his court. It

may be assumed that Friedrich II, given his interest in mathematics, took an active

part in the design of this castle, which could symbolize the principles of his empire.

Thus, Castel del Monte, with its extraordinary aesthetic radiance, is not only an

art and architectural monument without equal, but also a scientific and cultural one.

It stands at the crossroads of the Arabic-geometric and Middle-European-Gothic

worlds, and represents the ruling spirit of one of the most important emperors of the

middle ages.

Biography Heinz Götze (1912–2001) was a partner, longtime CEO and member

of the board of the Springer publishing group. He was a promoter of science and

research in the field of humanities and cultural sciences, especially archeology,

classical philology and art history in Europe and Asia, and a collector of East Asian

calligraphy.
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Chapter 30

Metrology and Proportion

in the Ecclesiastical Architecture

of Medieval Ireland

Avril Behan and Rachel Moss

Introduction

The 1140s marked a turning point in Irish monastic architecture. Up to the twelfth

century Irish monasteries had typically comprised an apparently random collection

of small buildings, the churches small in scale and simple in planning. The

introduction of European monastic orders, in particular the Cistercians, was to

lead to a revolution in both the layout and the aesthetic of monastic architecture,

a topic which has received much attention from architectural historians over the

years. However, the technologies required to achieve this revolution—in particular,

the proportional systems and metrology used—have come under less scrutiny.

While a small number of scholars have acknowledged a consciousness of the use

of proportional systems, few have explored in any depth how the adoption of

particular systems may have affected the overall design of buildings, in particular

their detailing; what they tell us about the origins and training of the craftsmen who

were using them; and what a study of the development of such systems can add to

the poorly documented building history of Ireland.
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Parameters of the Study

Metrology and systems of proportion have only been touched on in literature

dealing with Irish architectural history. A number of commentaries on a tenth- to

twelfth-century Irish law tract, which deals with the costing of ecclesiastical

buildings, including round towers, conclude that the standard proportionate

system for early single cell churches was 1.5:1.1 The foot or traig was the unit of

measurement used, but as yet the exact value of this is unclear. Stalley examined the

proportions and systems of measurement of round towers, concluding that many

towers appear to have adhered to a 1:2 ratio of circumference to height, and,

certainly in the case of Glendalough tower, the English foot (0.3048 m), which

may have been equivalent to a traig, was the unit of measurement used (Stalley

2001). Almost without exception the study of proportionate systems in later

medieval Irish architecture has been limited to an examination of the use of √2
and the golden section in the laying out of monasteries and parish churches from the

twelfth to the fifteenth centuries.2 While there is a general consensus that both

methods were engaged, there has been little attempt to expand this line of enquiry

into the use of similar systems in the design of elevations and architectural

detailing, or to look at the units of measurement used. As has been demonstrated

by a number of studies from continental Europe (Paul 2002; Davis 2002; James

1973), this methodology can prove particularly successful in the study of window

tracery. Tracery, having both structural and artistic functions, is an indicator of the

abilities of the mason in two important elements of the craft: design and stereotomy

(Curl 1992). In addition, in an Irish context, the sponsorship of windows is one of

the most frequently documented activities relating to building history, allowing

firm conclusions to be drawn regarding the context in which such designs were

created.3

This study will focus on the tracery of a group of buildings with similar ‘looped’

tracery. Figure 30.1 shows the locations of the selected sites overlaid on the

medieval kingdom boundaries c.1534 suggested by K.W. Nicholls (1976).

The occurrence of this particular form of tracery is relatively widespread, both

regionally and temporally. For the purposes of this study two clusters located in

regions under different political control during the later middle ages, one Gaelic and

one Anglo-Norman, have been selected (see Fig. 30.2 and Table 30.1). Although

difficult to date with any precision, buildings that range in date from the late

thirteenth to the sixteenth centuries have been included in the study in order to

1 The original manuscript text of the law is in Trinity College Dublin MS H.3.17. The most

comprehensive of the texts is in Long (1996: 141–164).
2 For Cistercian and Franciscan planning see Stalley (1987, 1990) For proportional systems in

medieval parish churches see O’Neill (2002). For medieval friaries in Connaught see

Mannion (1997).
3 For example references to several schemes of refenestration are mentioned in the medieval

Register of Athenry Friary; see Coleman (1912). For other references, see Moss (2006).
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establish whether any degree of continuity etc. can be detected. The buildings

chosen also vary in the type of establishment, with the sample covering each of

the main orders (Augustinian, Cistercian, Dominican and Franciscan) as well as a

collegiate church and a cathedral.

Field Data Collection

Since this study is empirical rather than stylistic, the primary requirement is the

collection of detailed measurements of looped tracery at the selected sites. For this

particular evaluation, measurements in all three dimensions (plan and elevation) are

required, an exercise best achieved through the generation of 3D models of the

tracery (Fig. 30.3). Although a number of methods exist for the production of such

models,4 stereo photogrammetry5 was chosen. This method results in the creation

of true-to-scale 3D models, created using a small number of reference (control)

measurements and a pair of photographs, which also have a wide range of

interpretative uses.6 This technique also has the advantage of using relatively
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Chancell
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Tower
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Lady
Chapel
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Transept
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Abbey North

Transept
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nts

A

A
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B
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C

C

C

E

D

D
St.Nicholas,

Galway

Fig. 30.1 Site locations shown against medieval kingdom boundaries c.1534. Image: authors,

after Nichols (1976)

4 Other options include terrestrial laser scanning and discrete point/line measurement using a

reflectorless total station. The total station option was rejected because the required field time was

prohibitive for the number of sites being visited for the ongoing project. Terrestrial laser scanning

was not used due to the unavailability of equipment, because there would be no gain in accuracy,

and because significantly more field time would be required without a commensurate reduction in

processing time.
5 Photogrammetry is the science of generating measurements from imagery. Stereo

photogrammetry uses two photographs captured and viewed in a simulation of the way human

eyes achieve depth perception from offset images.
6 This is to be compared with the results of terrestrial laser scanning, which although usually

accompanied by supporting photographs, requires a detailed understanding of the handling of

point clouds (set of 3D points) to ensure the best results.
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inexpensive field equipment7: for this study photographs were taken using a Nikon

D70 with 18–70 mmNikkor lens, while a Leica TPS 1205 reflectorless total station8

was used to collect the control (scale and orientation) information.

The field activities required for each window of interest were as follows:

• A pair of photographs of the window was acquired. The required conditions for

the photo pair were as follows:

– the plane of the camera sensor (the camera back) was aligned approximately

parallel to the main plane of the window;

– the two photographs were taken such that they overlapped by between 70 and

80 %;

Fig. 30.2 Ground plans of

Ross Errilly, St. Nicholas’,

Galway, Holy Cross and

Old Leighlin showing

window locations (not to

scale). Image: authors

7 Suitable digital cameras cost between €500 and €1,000; reflectorless total stations of sufficient
accuracy cost about €12,000. This is still inexpensive when compared to a terrestrial laser scanner

price of more than €80,000.
8 The reflectorless total station generates a 3D coordinate for any point, identified by the operator

with the crosshairs of a telescope, using horizontal and vertical angle measurements and a distance

measured using a time-of-flight laser. The calculation is based on trigonometric formulae and is a

standard surveying technique.
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– auto-focus was switched off and focus was set to infinity, and

– a light-meter was used to ensure sufficient radiometric quality of the images.

• The relative positions of a minimum of three control points were measured in

three dimensions—here the reflectorless total station was used. The points were

clearly identifiable in the photographs and could be measured unambiguously

using the total station. In this study, typically between 6 and 12 control points

were measured to ensure redundancy.9

Table 30.1 Sample of medieval sites containing looped tracery

Site name

Medieval

kingdom

Window

location

Window

orientation

Modern

county

Meelick Franciscan Friary Connaught Chancel East Galway

Ross Erilly Franciscan Friary Connaught South Transept East (A & B) Galway

South Transept West (C)

St. Nicholas’ Collegiate

Church, Galway

Connaught Nave South (A) Galway

Nave North (D & E)

Nave West (B & C)

Fethard Augustinian Abbey Ormond South Transept East Tipperary

Holycross Cistercian Abbey Ormond North Transept East (A & B) Tipperary

South Transept East (C & D)

St. Laserian’s Cathedral,

Old Leighlin

Ormond North Chapel North (A & B) Carlow

St. Dominic’s Dominican

Friary, Cashel

Ormond South Transept South Tipperary

Fig. 30.3 3D model of

tracery with overlaid

contours. Rendering:

authors

9 This level of redundancy was required mainly because the chosen control points were naturally

occurring (e.g., sharp corners on stonework or patterns caused by lichens) or pre-existing features

(e.g., screws holding protective grilles or metal bars used to prevent unauthorised entry to sites).

To generate the highest accuracy photogrammetric products it is advisable to use man-made

targets (typically plastic cards or reflective stickers) but these could not be used in this survey
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Processing

To generate the 3D model from the stereo imagery the processing package Leica

Photogrammetric System (LPS) was used in combination with Autodesk Civil 3D

2007/2008.10 The processing steps involved were as follows:

• The control was checked using Civil 3D to ensure that the x-y plane of the

coordinate system was parallel to the plane of the camera sensor (this was a

requirement of the LPS software);

• Orientation was established by measuring the exact relative geometries of the

images at the time of capture and defining the positions of the control points on

both photographs to assign a scale to the stereo model in three dimensions;

• A 3D digital model of the tracery was generated using LPS’s Automatic Terrain

Extraction method, which uses image matching techniques11 to define 3D

coordinates for a grid of points laid across the model.

• The quality of the 3D model was improved by removing erroneous points and

adding breaklines. In LPS an operator, viewing in stereo, can define points or

lines in 3D, ensuring that major features (such as significant changes of direction

in the moulding profiles) are accurately included.12

Information Extraction

For each window a number of key elements was extracted from the 3D model.

Table 30.2 lists the nine key dimensions extracted for each window, while Fig. 30.4

shows the locations of those dimensions. Table 30.3 lists the nine derived

because of the delicate nature of some of the sites (and the potential damage that the targets might

cause) and the inaccessibility of the features (lifting or hoisting equipment could not have been

used in many of the locations because of issues of topography and the position of the features in

very close proximity to modern graves). The extra points enabled detailed accuracy checking after

the modelling procedure.
10 This is a Computer Aided Drafting package with a number of enhancements for the better

handling of survey generated data and the manipulation and visualisation of three-dimensional

models.
11 Image matching involves automatically checking the levels of similarity between pixels in the

overlapping images to find the best correspondence. Once identikit pixels have been found, a space

intersection can be carried out using the orientation information previously calculated from the

control information to generate a 3D coordinate for the matched point.
12While image-matching techniques are relatively robust the LPS software was primarily

designed for aerial photogrammetric work and, thus, needs operator input to ensure the highest

quality of the resultant 3D model.
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Table 30.2 Details of extracted dimensions

Item of interest Quantity

Full window (1) Width (2) Overall height (3) Height to springing of the arch

Light (4) Width (5) Overall height (6) Height to springing of the arch

Arch (7) Span (8) Height

Mullion (9) Width

For the measurement of light widths, where possible, an average was taken between the width at

the base of the light and at the spring of the arch

Fig. 30.4 Diagram

showing the locations of

extracted dimensions in

Table 30.2. Image: authors

Table 30.3 Details of proportions studied

Item of interest Proportion

Full window Tracery field height to

light height

(at springing point)

Tracery field height to light height

(at arch peak)

Overall width

to overall

height

Light Light width to light

height (at springing

point)

Light width to light height (at arch

peak)

Window

width to

light

height

Mullion Mullion width to overall

window width

Normalised mullion width to overall

window width (based on number

of mullions)
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proportions (since the intention of the mason with regards to important dimensions

and proportions is not known, a number of variations have been examined, e.g.,

height to springing of the arch or to its peak). A list of all extracted dimensions and

proportions is available from the authors.

Analysis

Seven different sites with a collective total of seventeen looped-tracery windows

were surveyed. Nine sets of proportions and nine measurements were recorded for

each window.

Proportional Analysis

Following the model of previous studies, proportional analysis was carried out

initially through a search for proportions known to have been used in Irish medieval

architecture, such as the Golden Section or 1:√2 relationships. In Britain and

continental Europe authors have found evidence for the use of both of these

relationships as well as 1:√3 and less geometrically-based proportions such as

1:2, 1:3 and 1:4. Reuse of the same measurement, i.e., a 1:1 relationship, has also

been examined. Each potential proportional relationship within the sample of

17 windows was examined in normal and inverted forms producing a total of

306 proportions.

A search for each possible relationship was made within the 306 proportions

extracted. Since the measurements can vary from their true value due to variables

such as the photograph orientation process, human error in the measurement phase,

and weathering of the stone, a range of values distributed about each ideal

proportion were examined. �5 % was added to each ideal proportion to generate

a range of values that mirrors statistical norms of 95 % confidence intervals.

Golden Section, 1:√2 and 1:√3

Limited evidence for the occurrence of the Golden Section, 1:√2 and 1:√3
proportionate systems was detected in the analysis of tracery from the study

sample. The nature and distribution of the elements where such systems were

detected suggest a random rather than deliberate use in the design process.
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1:2 0.5 (range 0.525–0.475)

1:3 0.333 (range 0.350–0.316)

1:1 (range 1.050–0.950)

The relationship of 1:2 occurs eight times overall; in three cases in the category

“Overall window width to overall window height” and in the other three as

“Window width to light height (at arch peak)”. In each of these six cases another

proportion or regular relationship is also evident in the data. For the two north nave

windows of St. Nicholas’ (Fig. 30.5) the 1:2 relationship of window width to light

height is accompanied by a 1:3 relationship between the window’s width and its

height. The other proportions for these two windows also display similarities when

compared. Interestingly the tracery in these two windows is quite different in

character, although both fall within the category of the looped style.

At Fethard Augustinian the 1:3 relationship is also demonstrated for light width

to height in combination with the 1:2 ratio for overall window width to height in the

east window of the south transept. At Old Leighlin Cathedral the 1:2 ratio occurs

twice (window width to light height and tracery height to light height) in the eastern

north-facing window of the Lady Chapel (B in Fig. 30.2) with the 1:3 ratio evident

in the proportion of overall window width to height. At St. Dominic’s, Cashel, the

1:2 relationship of window width to height is accompanied by a 1:1 ratio between

window width and light height in the nave south window. The fact that both

proportions are width to height could point to a deliberate plan by the mason.

Fig. 30.5 St. Nicholas’ Collegiate Church, North Windows E (left) and D (right). Photos: authors
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Perhaps of most interest is the occurrence of four identifiable proportions in the

northeastern window of the north transept at Holycross (A in Fig. 30.2). In this one

window there are two occurrences of 1:1 ratios and one each of 1:2 and 1:3. The

result, not unsurprisingly, is an aesthetically pleasing window of beautiful

proportions (Fig. 30.6).

At the same site, the two east windows in the south transept also utilise the 1:1

proportion and are very close to using the 1:2. As at St. Nicholas’ the tracery

designs of the two windows are quite different but these similarities in

measurements and proportions hint that the work had the same basis.

Holycross underwent a major programme of renovations during the fifteenth

century which, although not documented, can be closely linked to members of the

powerful Butler family through the incorporation of heraldry in the fabric of the

church. A recent study of moulding profiles in the abbey church has led Danielle

O’Donovan (2007) to suggest that Holycross provided a major hub for masons

brought into the area by the Butlers, whose work was subsequently emulated

throughout the territory. The relatively rare occurrence of such a perfect set of

proportions in the window help to reinforce this argument, suggesting perhaps the

work of a craftsman trained in the basic principles of design.

1:4 0.250 (range 0.263–0.238)

Fig. 30.6 Beautifully

proportioned north transept

(north eastern) window at

Holycross. Photo: authors
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The final standard ratio worth mentioning occurs in four windows at three sites

and in all cases represents the relationship between light width and light height. All

four windows have two lights, but the examples at Ross Errilly and Old Leighlin are

very simple in tracery style, while that at Holy Cross is more complex.

Metrological Investigation

Eric Fernie, James Addiss and others have highlighted the many potential pitfalls

that exist in establishing the units of measurement used in a medieval building,

suggesting that “one can get any foot from any building” [Raper 1760, in Fernie

(2002)]. This study has been careful to follow Addiss’s recommendation of using

“explicit and comprehensive” measurement as a means of increasing the probability

that the conclusions drawn will be correct (Addiss 2002).

In order to conduct an objective metrological investigation, an adaptation of

F. Bettess’s methodology was used (Bettess 1991). This method is based on the

principle of ‘least squares’ and offers significant flexibility by supporting full units

and their fractions. Each measurement taken from the sample window is divided, in

turn, by a range of potential units resulting in an integer value plus a remainder

(A ¼ I + r). Since it is known that medieval masons used full units and halves,

thirds and quarters thereof, the remainder is evaluated for similarity to each of these

for each candidate unit (i.e., r is compared with I/2, I/3, I/4, 2I/3 and 3I/4). Based on

an analysis of known medieval foot units, a range of sample units from 0.249 m to

0.325 m, were selected for the study (Zupko 1978; Bettess 1991; Stalley 2001;

Addiss 2002).

The analysis steps were as follows:

1. Each window measurement (Table 30.2) was divided by the sample unit;

2. The difference was calculated between the remainder and the unit, and between

the remainder and each of the standard fractions of the unit (half, quarter, third,

two-thirds, three-quarters);

3. The minimum difference calculated in step 2 is extracted—this is taken to denote

the most probable unit plus fraction combination (the fraction can, of course,

equal zero indicating that an integer number of units was used);

4. The variances of the minimum differences chosen in step 3 were calculated for:

• Each site

• Each region

• The full data set;

5. The variances in each category were compared and the minimum value

extracted, resulting in Table 30.4 which lists the most probable metric unit

value for each site, each region and for the full dataset;

6. The probable units were compared with proven units of measurement.
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While it is possible that measurements made by medieval masons may have been

based on a small unit such as a palm or a span, this investigation focussed on a

limited selection of ‘foot’ values that are known to have been used in the period.

The options chosen are: the standard English Foot (0.3048 m), which was shown by

Roger Stalley to have been in use in early medieval times; the English Medieval

Foot (0.3167 m), used for building works in England and believed to be derived

from the Greek Common Foot; and the Anglo-Saxon Foot (0.2800 m), reported by

Bettess in his studies at Jarrow and Yeaverling (1991).13

Table 30.4 Most probable units from analysis related to known units (all unit and difference

values are quoted in metres)

Probable

unit Location

Closest

known unit Difference

Sample size

(number of windows

and measurements)

0.309 St. Dominic’s, Dominican

Friary, Cashel,

Tipperary

0.3048

Standard English

Foot

0.0042 1 & 9

0.319 Fethard Augustinian

Abbey, Tipperary

0.3167

English Medieval

Foot

0.0023 1 & 9

0.320 St. Laserian’s Cathedral,

Old Leighlin

0.3167

English Medieval

Foot

0.0033 2 & 18

0.285 Holy Cross Cistercian

Abbey, Tipperary

0.2800

Anglo-Saxon

Foot

0.0050 4 & 36

0.284 Kingdom of Ormond 0.2800

Anglo-Saxon Foot

0.0040 8 & 72

0.295 Meelick Franciscan

Friary, Galway

0.3048

Standard English

Foot

0.0098 1 & 9

0.299 Ross Errilly Franciscan

Friary, Galway

0.3048

Standard English

Foot

0.0058 3 & 27

0.317 St. Nicholas’ Collegiate

Church, Galway

0.317

English Medieval

Foot

0.0000 5 & 45

0.269 Kingdom of Connaught 0.2800

Anglo-Saxon Foot

0.0110 9 & 81

10.275 Full Sample 0.2800

Anglo-Saxon

Foot

0.0050 17 & 153

13 For a list of comparative linear measures, see Zupko (1978) and Strayer (1989: 580–596). For a

similar list including the English Medieval Foot (based on the Greek Common Foot and used for

buildings) see Skinner (1967).
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Units of Measurement

As with the proportional systems examined above, the random nature of

measurements close to the Standard English and Anglo-Saxon foot values

suggests that they were not used in the building sample chosen here.

The most compelling evidence is for use of the English medieval foot of

0.317 m. It appears as the most viable candidate at three sites, Old Leighlin and

Fethard Augustinian church in Ormond, and St Nicholas’ Collegiate Church in

Gaelic Connaught, where the match is very good.14

Little is known of the history of the two Ormond sites; the construction of the

Lady chapel in which the Old Leighlin windows are found is usually associated

with the episcopate of Matthew Sanders, the Drogheda-born bishop between 1527

and 1549, who is also credited with the ‘erection and glazing’ of the south window

in the church (Ware 1739–1746: I, 461). Of the construction of the south transept at

Fethard, nothing is known. In Galway, however, we are on safer ground. A

manuscript preserved in Trinity College entitled “Account of the town of

Galway” records that in the year 1538 during his mayoralty of Galway, “John

French alias Shane Itallen, soe called on account of the abundance of salt that he

brought into the country, built the north side of the church” (p. 10). Isolated among

other Connaught examples, it is tempting to see the effect of this influential and

well-travelled patron at work in the design of the windows, possibly introducing

professionally-trained masons into the area to conduct this work.

Conclusion

The sample of just 17 windows examined from only seven sites is, of course, small,

and results gleaned from this survey cannot be seen as conclusive. However,

preliminary findings suggest that the areas of medieval metrology and

proportionate systems in design do have the potential to provide empirical

evidence for the work of professionally-trained masons in Ireland, and to

distinguish them from craftsmen who had the ability to copy architectural form,

but without understanding the underlying principals of design.
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Chapter 31

The Cloisters of Hauterive

Benno Artmann

Introduction

One of the most typical elements of Gothic architecture is the tracery found in

windows, on walls, and in many other places in Gothic churches. What is

mathematical about it? Tracery is exclusively constructed from circular arcs (and

straight line segments)! It is the most mathematical kind of art known to me. In

many of the thousands of Gothic churches and other buildings of that time surviving

in Europe one can find nice examples, take photos, and analyse them geometrically

at home. In what follows I will first give a short introduction to tracery (German:

Maβwerk, French: réseau) and then direct your attention to one mathematically

outstanding example.

General Remarks About Tracery

The Gothic style originates from France, more precisely from the parts of France

close to Paris, from about 1150. Tracery, however, first appears in the 1210s in

Reims, so that for instance you will find no tracery windows in the older parts of the

cathedral of Chartres. Gunther Binding (1989) defines three principal periods of

stylistic development: (1) 1270 High Gothic, (2) 1270–1360/1380 Radiant and

(3) 1350–1520 Flamboyant. Obviously, the years are to be taken approximately;

in various parts of Europe the architecture of the same year may be very different.

First published as: Benno Artmann, “The Cloisters of Hauterive”, pp. 15–25 in Nexus I:
Architecture and Mathematics, ed. Kim Williams, Fucecchio (Florence): Edizioni dell’Erba,
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p. 44–49. Reprinted by permission.
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The first tracery windows were built by the architect Jean d’Orbais in the

cathedral of Reims during the years 1211–1221 (Fig. 31.1). Their construction is

based on the equilateral triangle as shown in Fig. 31.2. An iteration and variation of

the first construction can be seen in the north window of the church of Haina, a

former Cistercian monastery, located about 30 km north of Marburg, Germany

(Fig. 31.3). The two smaller parts of this window are clearly repetitions of the first

Reims tracery. The upper part can be found in Reims as well, and the whole

composition is found in St. Denis (Binding 1989: 47, 51). From the large upper

circle we are able to learn how architects free themselves from the overly strict rules

of geometry in favour of aesthetic considerations. How is that part of the window

constructed?

Start with the two small pointed arcs, which are constructed from equilateral

triangles (Fig. 31.4). The points of abutment of these arcs are A, B, C. Now the

architect selects the point M, or, equivalently, the radius r of the great circle. The

size of this circle is determined by the architect’s artistic judgment. The distance

AM will then be a + r, because the arc and circle are in contact. For the completion

of the window the architect needs the points X, Y of abutment for the great arc such

that XYZ is an equilateral triangle and the circle about M is touched by the arcs. The

distance from Y to the point of contact T must be 2a, hence the distance from M to

X (or Y) should be 2a–r, and x, y can be found. Observe that, in the real window, the

architect marks A, B, and C but conceals X and Y.

The most important mathematical tools in this—and all other constructions of

traceries—are circles in contact and the division of a circle into equal parts.

Sometimes a little more has to be known. Readers may amuse themselves by

constructing a so-called 8-foil as in Fig. 31.5 or by finding M and r in Fig. 31.6,

where ABC is again an equilateral triangle. Thereafter, the design of traceries

became rapidly more complicated. Figure 31.7 shows an example from

Strasbourg about 1285. It is basically an iteration of equilateral triangles.

Some 80 years after the north window, the great west window of Haina was built,

about 1330 (Fig. 31.8). Observe the wavy pentagram consisting of curved

equilateral triangles and the division of the great circle into 15 parts. One final

example shows the different stylistic means of the late Gothic times in Germany

(Fig. 31.9).

The Role of Geometry in Gothic Architecture

In their fundamental work on early Gothic architecture, Kimpel and Suckale say

tracery is the specially favored medium of the Gothic ‘love of geometry.’ One of the main

pursuits of architects up to the sixteenth century was to decorate a building with a profusion

of variants and to invent new ones. Tracery is that part of the Gothic style that is most

distant from the anthropomorphic architecture of antiquity. To put it positively: It is one of
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the few creations of ornaments in Europe that doesn’t owe anything to antiquity. (Kimpel

and Suckale 1985: 26)

The mastery of geometry raised Gothic architects above the artisans and made

them—in medieval terms—scientists. In fact the stonemasons considered geometry

an essential part of their trade. Figure 31.10 shows a late medieval woodcut

associating geometry with stonemasonry.

We have seen a little of the freedom and the constraints of the geometric

methods for the construction of traceries in the example from Haina (north

window). More elaborate designs follow the same rules: every detail has to be

geometrically constructed, except for the smallest ornamental pieces or things such

as the profiles of the mullions. In modern terms we could clearly speak of

geometrical or “concrete” art long before the “Neo-Geo” of the twentieth century.

Fig. 31.1 Reims 1211–

1221. Image: Binding

(1989: 46)

31 The Cloisters of Hauterive 455



Once one has seen a specimen of tracery, it is in most cases relatively easy to

reconstruct it and hence “understand” such a window to a much higher degree than

other works of art. But always remember that geometry is the servant and not the

master of the architect. The geometric methods were easily understood and adopted

2a

a

a

Fig. 31.2 Construction

based on the equilateral

triangle. Image: author
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by the nineteenth century architects who created so many “neo- Gothic” churches in

Europe and America.1

However elaborate the construction of a tracery window might be, it was not an

exercise in mathematical geometry as we know it. Just as little was it geometry in

the sense of the contemporary mathematicians such as Leonardo Fibonacci (Kimpel

and Suckale 1985: 45). Euclid was known in Latin translation since about 1150, but

long before that people learned geometry from the so-called pseudo-Boethius.

which in its essential parts is a boiled-down version of the first books of Euclid

without proofs.2 The first proposition in Euclid’s first book is the construction of an

Fig. 31.3 Haina, north

window, dating from 1250.

Image: Ungewitter (1890–

1892: Tafel CXXIV)

1Nineteenth-century architects wanting to build Gothic churches could find complete instructions

in G. Ungewitter, Lehrbuch der Gotischen Konstruktionen, 2 vols. Leipzig, 1890–1892.
2 For an edition of the principal medieval-textbook on geometry before Euclid was translated, see

Menso Folkerts, “Boethius,” Geometric 11, Wiesbaden: F. Steiner (1970).
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equilateral triangle using the arcs that we see so frequently in Gothic traceries. The

use of circles in contact and subdivisions of a circle into equal parts was the

principal method of construction. The traceries became more and more

BA

X

M r

T

Z

Y

C

a

a 
+ 

r

2a - r

Fig. 31.4 Construction of

window in Fig. 31.3. Image:

author

Fig. 31.5 An eight-foil

drawing. Image: author
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complicated, but geometric methods remained the same. Essentially the same

phenomenon has been observed by Jens Hoyrup in Babylonian mathematics: a

fixed method (in that case a way to solve quadratic problems) remains in constant

A B

C

M

r

2a

Fig. 31.6 Find M and r.

Image: author

Fig. 31.7 Strasbourg, north

window of the cathedral

from 1285. Image: Binding

(1989: 426)
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use, and its school of practitioners adds more and more complicated examples.

Hoyrup calls this “subscientific mathematics”; it is the trademark of Babylonian

schools of scribes as well as of medieval guilds of masons (Hoyrup 1990: 63–87).

I believe the concept of “subscientific mathematics” is most suitable to describe

what we see in Gothic architecture. A fixed supply of elementary geometry was

used for traceries and for other problems in the plan of a Gothic building as well. It

Fig. 31.8 Haina, west

window dating from 1330.

Image: Ungewitter

(1890–1892: Tafel CXXV)

Fig. 31.9 Esslingen, south

window dating from 1410.

Image: Binding (1989: 331)
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is of no use to speculate further about constructions according to the golden section

and the like. K. Hecht has rejected dozens of theories about “secret methods” of

medieval architects by confronting them with the actual buildings (Hecht 1979).

(If you measure enough distances and allow generously for tolerances, you will find

the golden section in any old building.) We have some Gothic design booklets from

about 1500, edited by Shelby (1977). A careful analysis by Hecht confirms what

Fig. 31.10 Geometry and

stonemasonry (Nümberg

1493). Image: Binding

(1993: 35)
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was said above: they are as “subscientific” as everything else (Hecht 1979: 171–

201).

The Cloisters of Hauterive

The tracery windows in the cloisters of Hauterive are quite different from the

traceries we have discussed so far. They are not only constructed by geometric

methods, but in fact they show geometry itself.

The Cistercian monastery of Hauterive is situated on the banks of the river Saane

(Saarine) some ten kilometres south of Fribourg in Switzerland. It is still inhabited

by Cistercian monks. The history of its buildings is presented in detail by Catherine

Waeber-Antiglio (1976). The cloisters and the choir of the church were built in the

years 1320–1328. Some reconstruction took place around 1910, but what you see in

Hauterive are essentially the original medieval windows (Figs. 31.11 and 31.12).

The west, north, and east parts of the cloisters are in their original condition. The

south part was taken away in the eighteenth century and two of its windows have

been placed on the west and east side (numbers I and XIX). On the ground plan

(Fig. 31.13) you can see the foundations of the old south wing.

In each bay of the cloisters (except for the ones in the corners) we find the same

composition of windows: three small ones, separated by double columns and round

arches, looking almost Romanesque, on the lower level and above them either

pointed or round tracery windows. The pointed windows have elaborate and

delicate traceries, but they are not what we are looking for. The round ones have

the geometrical motifs. Before giving a mathematical analysis, let us look at the

cloisters as a whole.

In the north wing we see only round arches; the east and west wings have

alternating pointed and round arches. Windows I and XIX come from the old

south wing (Waeber-Antiglio 1976: 136). The great window in the choir of the

church was built in the same period and clearly shows the same style as the

cloisters. Waeber-Antiglio gives a detailed stylistic and historical analysis of the

cloisters and the choir of Hauterive, placing them firmly in context with their

neighbours in space and time and especially with the building tradition of

Cistercian monasteries. She points out the cloisters’ specific originality: by using

a very conservative (for the time) design of the triplets below and placing above

them the most modern traceries, the cloisters of Hauterive are uniquely

distinguished (Waeber-Antiglio 1976: 123–178). Spahr and Cist (1984: 23) say

that the cloisters are among the finest preserved north of the Alps.

Neither Waeber-Antiglio nor Spahr mention the mathematical significance of

the designs of the windows, which we now discuss. First, observe that the architect

stresses interest in the circle by selecting round arches. He approaches this topic

systematically by subdividing the circle in three (window II), four (IX), five (VI),

six (XI) equal parts. With little ornamental subdesigns the architect tries to alleviate

the dry geometric diagrams, sometimes successfully, as in IX, sometimes less
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Fig. 31.11 The bays of the cloisters of Hauterive as they go around in numerical order. Photo:

author
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Fig. 31.12 The windows of cloisters of Hauterive arranged according to their geometrical

construction. Photo: author
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convincingly as in XI. Fivefold symmetry is repeated by the pentagram in VIII and

again in the beautiful and ingeniously constructed rose in window IV.

The subject of triangles is taken up and iterated in window XII. Observe that II

has the sequence 3–9–27 built into it. Three- and six-fold symmetries are combined

in window XVI, which has a very simple construction once you view the circle as

the incircle of an equilateral triangle. Four and eight are combined in XIV.

Window X tries to have it its own way: in spite of the supplied round arch, we

see no circle but two squares with conventional pointed arcs above them. A second

view reveals the role of this window: its bilateral symmetry stresses its position in

the middle of the cloisters right across from the (former) fountain chapel. It is quite

understandable in the overall composition of the cloisters.

So far I have described what we see. Is there an interpretation that gives a general

and coherent explanation of the designs? I offer this one: the architect was

interested in theoretical geometry, especially in Euclid’s theory of the subdivision

of a circle as presented in the Elements, Book IV. In that Book Euclid treats, in a

rather Bourbakist fashion, the construction of the regular n-gons, more specifically

the inscription of regular 3-, 4-, 5-, 6-, 15-gons into given circles. I understand the

cloisters of Hauterive as a commentary to Euclid Book IV, carved out of stone.

Can I maintain this interpretation in the case of window XVIII with its implicit

9-gon? First observe the five-foil in the centre and the three bars of an equilateral

triangle in the surrounding annulus. The combination of these two designs would

result in the regular 15-gon as constructed by Euclid. By subdividing each of the

three parts of the annulus again into three equal parts the architect goes beyond

Euclid: the construction of the regular 9-gon by ruler and compass is impossible. I

believe that in this particular case aesthetic considerations overwhelmed

mathematics: 15 little ornamental triangles would have required a very narrow

Fig. 31.13 Ground plan of the cloisters of Hauterive. Drawing: author, after Waeber-Antiglio

(1976: 132)

31 The Cloisters of Hauterive 465



annulus and a much greater five-foil with a rather empty centre. As it is, this

window is one of the most beautiful of the cloisters. Go to Hauterive and judge

for yourself: is it about mathematics or not? In any case you will enjoy it.
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Chapter 32

The Use of Cubic Equations in Islamic Art

and Architecture

Alpay Özdural

Introduction

The predominance of geometry in the ornamental arts that adorn the buildings of

the Islamic world, from Spain to Central Asia, has always been a fruitful field of

research. Starting in Umayyad times in Damascus as hesitant experiments, simple

geometric motifs had developed almost instantly into intriguing and awe-inspiring

ornamental geometric compositions that reached continually new climaxes, with

increased complexity or new horizons, in Baghdad, Isfahan, Cordoba, Alhambra,

Tabriz, Samarqand, Delhi, Istanbul, and again Isfahan. It is generally viewed that

those intricate patterns were conceived and produced by artisans who were not only

masters in their crafts but also in geometry. To imagine all those medieval artisan/

architects also as mathematicians well versed in Euclid, though an attractive

thought, had always seemed rather implausible to me since they were known to

be mostly illiterate. Lately I have been developing the ideas that most of the

aesthetic, structural or spatial innovations that we observe in the major

architectural centers of the Islamic world were mainly due to the active role of

mathematicians at the conception stage, and that some of the great

accomplishments of Islamic art and architecture can be explained as the products

of the collaboration between mathematicians and artisans at special meetings.1

This sort of collaboration is best exemplified by a Persian work on ornamental

geometry, Fı̄ tadākhul al-ashkāl al-mutashābiha aw al-mutawāfiqa (On interlocks

First published as: Alpay Özdural, “The Use of Cubic Equations in Islamic Art and Architecture”.

Pp. 165–179 in Nexus IV: Architecture and Mathematics, Kim Williams and Jose Francisco

Rodrigues, eds. Fucecchio (Florence): Kim Williams Books, 2002.

Alpay Özdural (1944–2003).

1 The first part of the argument was first mentioned in (Holod 1988). For my publications on this

point, see (Özdural 1995, 1996, 1998, 2000). Similar views are expressed in (Necipoğlu 1995:

167–175).

K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to
the Future, DOI 10.1007/978-3-319-00137-1_32,
© Springer International Publishing Switzerland 2015
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of similar or complementary figures; referred to hereafter as Interlocks of Figures).2

It is an anonymous work, or rather a collection of 68 separate constructions, which

appears to have been compiled from notes taken by a scribe at a series of meetings

between mathematicians and artisans around the turn of the fourteenth century. This

approximate date corresponds to the golden age of the Ilkhanid era, which began

with the reign of Ghazan Khan (1295–1304). He and his vizier, Rashid al-Din

(1247–1318), undertook huge construction campaigns around Tabriz and gathered

a great number of scholars, scientists, and artisans there. Rashid al-Din specifically

dedicated his suburb, the Quarter of Rashid, to the encouragement of the arts and

sciences. Interlocks of Figures seems to be produced in the vigorous atmosphere

created by this intensive architectural activity. The meetings were probably held at

Tabriz under the sponsorship of either of the leaders, who perhaps demanded the

application of the highest possible advancements in geometry to the

ornamental arts.

The last point is my conjecture based on the fact that three of the constructions in

Interlocks of Figures involve the solutions of cubic equations, one of the great

achievements of Islamic mathematics up to that time. These three constructions

were essentially verging procedures, that is to say, mechanical equivalents of the

solutions by means of conic sections. Owen Jones remarks on the significance of the

use of cubic equations in the ornamental arts:

As with proportion, we think that those proportions will be the most beautiful which it will

be most difficult for the eye to detect; so we think that those compositions of curves will be

most agreeable, where the mechanical process of describing them shall be least apparent;

and shall find it to be universally the case, that in the best periods of art all mouldings and

ornaments were founded on curves of higher order, such as the conic sections; whilst, when

art declined, circles and compass-work were much more dominant (Jones 1982: 69).

Verging Procedures

The first of these verging procedures surfaces in Construction 16 of Interlocks of
Figures (Fig. 32.1):

Triangle AK[B] is a right-angled triangle in which the ratio of the difference between the

shortest side and the hypotenuse to the difference between the [former] difference and the

shortest side [the rest of the sentence is missing in the text; add “is the same as the ratio of

the shortest side to the intermediate side”].

Section

The procedure is this:

By means of GD (A, B, D in the text; to make the procedure more understandable, it

should read “mark a given length, GD, on an arbitrary line AB, and by means of GD”) erect

perpendicular GE [equal to GD]. Make point E the center and then with [compass opening]

EG describe arc ZH in the direction of B. Bisect GD at point T (E in the text).

2 The only copy of this manuscript is preserved in Ms. Persan 169 in the Bibliothèque Nationale,

Paris, a compilation of twenty-five works on mathematical subjects, mainly practical geometry.
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Put [one] arm of the compass fixed on point [T], and place the straightedge so that its

edge always touches point E (more information is needed at this crucial juncture, add “so

that at every instance it cuts simultaneously arc ZH at point K and the line at point A. With

the other arm of the compass, compare the changing lengths of TK and TA”). Give motion

to the straightedge until [the position is reached] that the lengths of TK and T become equal.

Mark points K, A, and B [by making TB equal to TA]. When lines AK and KB are drawn,

triangle AKB is the required right-angled one. [In this triangle,] AD is equal to BG and

BK.When BL, which is equal to BD, is subtracted from BK, KL is equal to GD. God knows

best [Bibliothèque Nationale, Paris, Ms. Persan 169, sec. 24, fol. 185r].3

The scribe’s lack of familiarity with the verging procedure is apparent in the

amount of the missing information. He had some acquaintance with ordinary

geometrical methods, but when the construction involved advanced techniques,

his knowledge proved insufficient to record the explained procedure accurately.

Despite all the missing information in the text, we are able to restore it to a fully

detailed verging construction. According to the text, the hypotenuse is AB, the

intermediate side AK, and the shortest side BK. Also, BK ¼ BG, AG ¼ BD. Then,

AB�BK ¼ AG ¼ BD and BG�AG ¼ GD. According to the restored text, AG :

GD ¼ AK : KB. If perpendicular GE is drawn, by similar triangles, AG : GE ¼ AK

: KB. Then GD ¼ GE. Since angles K and G are right angles, GB ¼ BK, and BE is

common, triangles EGB and EKB are congruent. Then GE ¼ EK.

Fig. 32.1 Construction

16 of Interlocks of Figures.
Image: author

3 In this translation from the original Persian manuscript, simple restorations are added in square

brackets; more detailed ones are explained in parentheses.
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The problem in the text is to construct a right-angled triangle ABK with these

properties. In other words, to construct triangle ABK so that (AB�BK):(BK�
[AB�BK]) ¼ AK:KB. Since GD is assumed in the text as the given length, the

problem is to determine points A, K and B. The solution is reached by means of a

verging procedure, that is to say, constructing points A and K by way of iteration in

such a way that AEK is straight and AT ¼ TK. If it were only this text that

accompanies the construction, it would seem merely a geometric problem. Its real

objective is stated in the text added to the reverse side of the folio:

Section

In this knot pattern (‛aqd) we need a right-angled triangle such that if [a length equal to

the shortest side] is cut from the hypotenuse of the triangle towards the shorter side and a

perpendicular is erected at the point of cutting, it cuts off the intermediate side at a point

where [the distance] from it to the right angle is equal to the perpendicular itself.4

Obtaining a triangle of this sort is difficult. It falls outside the Elements of Euclid and

concerns the science of conics (makhrūṭāt). If the perpendicular length is assumed, as in this

example, the construction is achieved by means of a moving straightedge [Bibliothèque

Nationale, Paris, Ms. Persan 169, sec. 24, fol. 185v].

The scribe appears more confident in explaining the properties achieved once the

construction is completed than when he was explaining the details of the “moving

geometry” (the term used by Muslim mathematicians for verging procedures). He

also relates the explicit words of the author of the construction that it cannot be

achieved by means of compass and straightedge, the tools of Euclidean geometry,

because it concerns “the science of conics,” i.e., cubic equations. Indeed it does. It

is in fact the solution by means of moving geometry for the equation:5

x3 þ 2x2 � 2x� 2 ¼ 0 if GD ¼ 1 and GA ¼ xð Þ:

Construction of the Knot Pattern (‘aqd)

We understand that the purpose of the whole exercise was to create a special knot

pattern (‛aqd, as it was called in those days), from which an ornamental

composition would be generated. The basic unit in this pattern is a right-angled

triangle of which the hypotenuse is divided into three parts by a medial segment in

such a way that if a perpendicular is erected from the end of the segment to the

intermediate side, the shorter segment it cuts off from the intermediate side would

be equal to the length of the perpendicular, which is also equal to the given medial

4 In Arabic, ‛aqd literally means knot. Here it is used to mean the unit to be repeated to generate an

interlocking ornamental composition. To convey both meanings, I translate it as “knot pattern.”
5 It is assumed in the text that the length of segment GD is 1 and GA is x. Then perpendicular

GE ¼ 1, EK ¼ 1, BD ¼ x, BK ¼ BG ¼ 1 + x, EA ¼ √(1 + x2). Since AG:GE ¼ AK : KB, we

have x : 1 ¼ [1 + √(1 + x2)]:(1 + x). This equation can be reduced to x3 + 2x2�2x�2 ¼ 0. The

equation has one positive root, x ¼ 1.1700865 accurate in seven decimals. I also compute the

angles: tan ∠AEG ¼ x, so ∠AEG ¼ ∠B ¼ 49.481553�, ∠A ¼ 40.518447�,
∠AKG ¼ ½∠AEG ¼ 24.740777�.
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segment (KE ¼ EG ¼ GD). In this seemingly complicated problem, there are two

requirements to be met: (1) triangle AKB should be right-angled; (2) the three

segments, DG, GE and EK should be equal to each other. Both of these

requirements are met simultaneously by means of moving geometry: (1) since

TK ¼ TA ¼ TB by the aid of the compass on point T, triangle AKB is half of a

rectangle, hence right-angled; (2) since GE is taken equal to GE and arc ZH is

drawn with radius EG from center E, EK is equal to EG wherever AEK cuts arc ZH.

One wonders what sort of an ornamental composition would require such

delicate properties? It becomes apparent in Construction 37 of Interlocks of
Figures (Fig. 32.2):

The construction of this knot pattern is [performed] by a T-ruler (gunyā mistar). I say that in
this knot pattern defined by the repeat unit (khāna, literally “house” or “home” in Persian)

ABDG (ABD in the text), it is required that the “orange” ABZT be congruent to the

“orange” (turanj) DGEH in such a way that BZ will be equal to GE and [a portion of]

each will be common to both, thus BE will be equal to GZ. The other [requirement] is that

since in the “orange” EGDH sides EG and GD is equal, EH and HD will also be equal.

Necessarily, the angles at E and D will be equal and right [angles]. As this preliminary is

now known, let us assume that side GD of the knot pattern of the repeat unit is known but

the indefinitely extended side DB is unknown (that is, line DB is drawn but point B has not

been defined on it).

Then we take the ruler and from point D*, [which marks the intersection of perpendicular

arms,] with an arbitrary compass opening mark lengths D*K* and D*T* equal to each other.

Then go back to the repeat unit of the knot pattern, and, in the same manner that the lengths

are marked on the ruler, mark points M* and N* on sides DG and DB. Take the ruler again

and position the letter T* on the perpendicular arm at the letter N* so that both points are fixed

on each other. Then give motion to the ruler pivoted on this point from left to right until

lengths S*D* and K*O* on either side of the ruler become equal. Point T* should never be

Fig. 32.2 Construction

37 of Interlocks of Figures.
Image: author
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separated from point N*. [At this position] draw line S*O*. From point G, which is known,

and parallel to S*O* draw line GB to define the rectangle. Divide line BG according to the

proportion of S*D*, D*K*, and K*O* (it can be done for instance by drawing lines from

point D through points D* and K*). On the ruler, which is parallel to GB, length S*D* is

equal to K*O*, and K*D* is equal to D*T* and T*D. Thus, on line GB length BE will be

equal to ZG, and ZE equal to EH and to HD. These constitute what is required. God knows

best [Bibliothèque Nationale, Paris, Ms. Persan 169, sec. 24, fol. 190r].6

From the figure and explanation we understand that the gist of this and the

previous construction was to create a special rectangular repeat unit so that when

two congruent right-angled isosceles quadrangles (which are called “orange” in this

example) facing opposite directions are contained in it, the segment that they share

on the common diagonal is equal to their shorter sides. What I call “isosceles

quadrangle”, for want of a better term as it does not exist in modern mathematics, is

a figure peculiar to the ornamental arts throughout the Islamic world, but known

under different names such as “orange,” “pine cone,” “almond,” “barleycorn” and

“rhomboid.” In this combined form of two isosceles triangles, with the aid of the

axis through their vertices, it can be subdivided into multiple isosceles quadrangles.

Depending on the angles of the initial isosceles quadrangle, ornamental

configurations can be obtained from these subdivisions when the unit pattern is

repeated. It was particularly on this point that the authors of these two constructions

had concentrated their efforts. Whichever method of moving geometry is used, the

pattern it yields generates by repetition a delicate composition (Fig. 32.3).

The second method too is the mechanical equivalent of a cubic equation, which

is the reduced form of the same problem. In this case, since GD ¼ 1 and EH ¼ x, it
corresponds to: x3 � 3x2 � x + 1 ¼ 0 (Özdural 1996: 199). Here, the procedure of

the moving geometry is given in full detail in the text. Apparently this time the

scribe was able to record the explanation of the author correctly; but again shows

his unfamiliarity with the subject by placing the T-ruler on the wrong side.7

In this second solution, the T-ruler has replaced the traditional straightedge in

performing the moving geometry. With its permanently perpendicular arms it

proves to be a practical and efficient tool in meeting the two requirements of the

problem: it ensures that HE is always perpendicular to the diagonal while the

movement of its long edge, on which the required proportion of the segments is

marked, determines the position of the diagonal. Its useful peculiarities should have

6 In the figure of the original manuscript, the points that belong to the T-ruler and those used to

perform the moving geometry were distinguished by red ink. Some of these were identical to the

ones that were used for the pattern itself; and no differentiation was made in the text. In order to

avoid the confusion they create, the letters written in red ink are distinguished here by adding stars

above, both in the figure and the text.
7 In the original figure, the T-ruler is placed upon triangle GAB. The explanation in the text,

however, makes sense only if the ruler is placed upon triangle GDB.

472 A. Özdural



attracted the attention of the participants of the discussions; a full page is allocated

in Interlocks of Figures for its description and potential use (Fig. 32.4):

The true nature of the proportion of this [preceding] knot pattern belongs to conics. This we

can draw with the aid of an instrument called T-ruler. That is an instrument with which

many knot patterns formed by conics can be drawn. In fact, this is the opinion of Katib[i];

whether it is true or not is not clear.

Be that as it may, one produces the ruler in the same way as the alidade of an astrolabe

(‘id
˙
ada-i asṭurlab). At the middle of it erect a perpendicular ruler similar to the “arrow”

(sahm) of the alidade of the “boat astrolabe” (asṭurlab-i zawraqı̄, which was developed by

al-Sijzi ca. 980). This is called the “mast of the bracket” (saṭāra-i gunyā).
For example, the ruler ABGD consists of ruler AB and perpendicular [arm] GD. Should

an inclination (inhiraf) be given to the edge AB of the ruler, like the inclination of the

“tailored (mujayyab) alidade,” the edge GD of the perpendicular [arm] would have the same

declination. While [the declination] from the perpendicular line GD becomes distinctly

apparent, point D on the edge of the alidade remains fixed. Angle GDA is found so perfectly

perpendicular that with this ruler many amazing proportions (nisbathā-i gharı̄b) can be

created [Bibliothèque Nationale, Paris, Ms. Persan 169, sec. 24, fol. 191v].

The T-ruler appears from the text as an instrument devised for executing patterns

that involve conic sections. It is interesting that this instrument, which looks so

familiar to us as it is very similar in principle to the T-square that is ordinarily used

by the architects today, was newly invented and being introduced at that particular

meeting. To describe this new instrument better, it was compared to the astrolabe,

an instrument peculiar to astronomy. We thus understand that the latter, even a

specialized version of it, the boat astrolabe, was known more commonly than the

former in those days. Hence, we can say that this ordinary looking instrument, that

facilitates drawing parallel and perpendicular lines, was not actually known in the

Islamic world until the turn of the fourteenth century. With its introduction about

Fig. 32.3 The decorative

scheme generated by

construction 16 or

construction 37. Image:

author
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1300, the ornamental arts and architecture appear to have gained a new impetus. So

far the abundance of architectural drawings in the Islamic world after the fifteenth

century was explained by the encouraging effect caused by the development of

cheap paper industry during the Ilkhanid era (Necipoğlu 1995: 4–9); we can now

add to it the factor of the invention of the T-square.

Al-Katibi was the name of the person who introduced the T-square at that

particular meeting. The same name appears in the signature of the designer, Ali

ibn Ahmad ibn Ali al-Husaini al-Katibi, of the luster tile mihrab from Imamzada

Yahya at Varamin in Persia (Ritter et al. 1935: 67). Its date, 1305, suggests the

attractive possibility that he and the inventor of the T-square were the same person.

If this were the case, it means that a mathematician who participated in the

discussions that produced Interlocks of Figures was also a practicing calligrapher;

he thus personifies the intimate link between theory and praxis in those times.

Despite its generalized use in the future, when it was first introduced, the T-ruler

was looked upon merely as a convenient tool to construct complex ornamental

patterns. We see it in function again in another pattern that concern cubic equations,

Construction 40 (Fig. 32.5):

The proportion of this knot pattern is also [derived] from conics. It requires the construction

of a right-angled triangle so that the altitude plus the shortest side is equal to the hypotenuse. Ibn

[al-]Haytham composed a treatise on the construction of this triangle, and his construction is by

means of conic sections, a hyperbola and a parabola (qaṭṭā‘a-ı̄ makhrūṭāt zayid wa mukafi).

However, the objective can be achieved here with the aid of this T-ruler. According to the

aforementioned preliminary, the object of our knot pattern is those four figures: “pine cones”

(sanaubarı̄) with two right angles surrounding a right-angled equilateral and equiangular

quadrangle (i.e., the square). For example, the pine cone-like quadrangles AIHK, GHMN,

DMLS, and BLKO surround square KHML.

Now, as angle H of the square and both [angles] of the figure are right angles,

necessarily lines KG (K in the text) and HD are straight. Thus triangle AKG is

Fig. 32.4 The ABGD

T-ruler described in

Ms. Persan, fol. 191v.

Image: author

474 A. Özdural



right-angled and equal to triangle GHD. Since this triangle is right-angled, it is inscribed in

a semicircle. Then point H has to be sought on arc GE (AE in the text). Subsequently, at

every instance we have angle T of the ruler right-angled, its AB straight, and side AB of the

[given] square and of the ruler are fixed on each other (the crucial information missing in

the text can be deduced easily from the figure itself: “Give increments of sliding motion to

the T-square so that it cuts the semicircle at changing positions of point H. At every

instance put one arm of the compass on point H and with the other arm compare the

changing lengths of HT and HG. When HT ¼ HG, mark the point H as its required

position”). God knows best [Bibliothèque Nationale, Paris, Ms. Persan 169, sec. 24, fol.

191r].

The Contributions of Omar Khayyam and al-Katibi

Although the scribe missed the crucial part of the procedure based on moving

geometry, displaying again his incompetence with advanced geometrical

techniques, the elegance of the restored construction indicates a high caliber

mathematician behind it. When TH and HG be equal, the proof of the

requirement is visible: TH + HZ ¼ HG + HZ ¼ GD, i.e., “the altitude plus the

shortest side is equal to the hypotenuse.” The scribe wrongly attributes the

authorship of a treatise concerning this problem to Ibn al-Haytham. Among about

180 works of this prolific author, none answers the description. In an untitled

treatise, however, Omar Khayyam describes precisely the problem concerning

this special triangle, reduces its solution to a cubic equation,

x3 � 20x2 + 200x � 2000 ¼ 0, and offers two solutions by means of conic

sections and one by approximation using astronomical tables (Amir-Moéz 1963).

Probably the scribe was mistaken because “Khayyam” sounds similar to

“Haytham,” and the latter is widely known by his works on conic sections. It was

evidently Omar Khayyam, also a prominent mathematician who is celebrated by his

Fig. 32.5 Construction

40 of Interlocks of Figures.
Image: author
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works on cubic equations, who was the discoverer of this unique triangle

(Fig. 32.6). When his equation is solved by modern means, angle BAC

corresponds to 57.0648796�.8

The solution by means of moving geometry in Interlocks of Figures is in fact

nothing but a direct translation of the problem into conic sections. The parabola is

defined as the path (locus) of a point moving so that its distance from a fixed line

(the directrix) is equal to its distance to a fixed point (the focus). What is achieved

by the aid of T-ruler in Construction 40 answers precisely the parabola according to

this definition (Fig. 32.7).

The distance of a point (H) from the directrix (side AB of the square) is set by the

perpendicular arm of the T-ruler (TH), and the point’s distance to the focus (G) is

defined by the compass opening (HG), when the two distances be equal the point is

located on the parabola. Since this particular position of point H is also located on

the semicircle, the required solution thus becomes “the intersection of a parabola

and a circle,” as described by Omar Khayyam in his treatise.

We thus understand why al-Katibi claimed that with the T-ruler many knot

patterns formed by conics could be drawn. In this example, a parabola can actually

be drawn passing through points D and H by sliding the T-ruler and measuring the

distances at regular intervals. The vertex of this parabola, point (O), is equidistant

from the directrix and the focus. The focus and the vertex determine the axis of the

parabola (GA), and the line through the focus parallel to the directrix is the latus
rectum (GD). General equation of a parabola is y2 ¼ 2px. In our case, by assuming

GD ¼ 1, GZ ¼ y, and ZH ¼ x, it becomes y2 ¼ 1 � 2x. Its intersection with the

circle, x2 + y2 ¼ y, reduces the problem to the cubic equation x3 � 4x2 + 6x � 2.

This neat and simple solution suggests the authorship of a resourceful and

talented mathematician, and the fact that it was based on the use of the T-ruler

Fig. 32.6 Omar

Khayyam’s triangle. Image:

author

8 Assuming AC ¼ 1, the following values are also computed for later use: AB ¼ 0.543689,

BD ¼ 0.4563109, CB ¼ 0.83922867, CD ¼ 0.7044022, and AD ¼ 0.2955977.
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points to its inventor, al-Katibi. If al-Katibi were both the author as well as the

designer of the luster mihrab from Varamin, then the connection between

mathematics and arts that he personally represents provides us a sharp insight

into the milieu that created the high standard in the ornamental arts in those

times. In any case, whoever the author of this solution based on moving geometry

might be, he had the imagination to envisage a decorative composition as elegant as

its solution (Fig. 32.8).

Fig. 32.7 The solution of

construction 40 by means of

conic sections. Image:

author

Fig. 32.8 The decorative

scheme generated by

construction 40. Image:

author
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Omar Khayyam’s Triangle and the North Dome Chamber

This decorative scheme is not the only outcome of Omar Khayyam’s triangle. He

says:

A triangle with mentioned properties is very useful in problems similar to this one. This

triangle has other properties. We shall mention some of them so that whoever studies this

paper can benefit from it in similar problems (Amir-Moéz 1963: 326).

A more attentive study of this triangle reveals indeed some very interesting

properties (Fig. 32.6): between the hypotenuse AC and the shortest side AB, CB

becomes the geometric mean, CD the harmonic mean, and GO, the perpendicular

on the midpoint of AC, the arithmetic mean.9 Then, AC:GO::CD:AB, which Greeks

called “the musical proportion” and judged most perfect. Simpler numerical

versions of this proportion, such as 12:9::8:6, are known to have been used in

Renaissance architecture. In the hands of Omar Khayyam this proportion attains a

mathematical complexity with its irrational magnitudes obtained by means of cubic

equations. The richly interrelated proportions embodied in Omar Khayyam’s

triangle present themselves provocatively as tools suitable for architectural

application.

The North Dome Chamber in the Friday mosque of Isfahan has always

impressed its visitors with its mature proportions. Eric Schroeder has judged it as

marrying genius and tradition more elegantly than many other famous domed

structures (Schroeder 1938–1939: III, 1005). Its foundation is dated 1088–1089.

It was the time when Omar Khayyam was enjoying high prestige as the leading

astronomer in Isfahan who had already published his major works on geometry and

algebra, and whose reformed calendar was lately adopted by royal decree.

If Omar Khyyam’s triangle is superimposed over a drawing of the North Dome

so that the hypotenuse corresponds to the span, we perceive that the generating

force behind that astoundingly powerful space is the musical proportion contained

in this singularly unique triangle (Fig. 32.9 and Table 32.1). The geometric scheme

is my own, but its very close agreement with actual dimensions gives it credibility

and suggests strongly that Omar Khayyam, one of the greatest intellects the Islamic

world had produced, was actually the designer of one of the greatest

accomplishments of Islamic architecture.10

9 The following values are computed in addition to the ones in n. 16:GO ¼ 0.7718445,

CF ¼ 0.5911954 ¼ CB2.
10 For my detailed argument on this point, see (Özdural 1998: 699–715). The photogrammetric

drawing and the dimensions obtained from Rassad Survey Company, “Masjed-e Jame‘Esfahan”

(paper presented to the International Committee for Architectural Photogrammetry at the

Symposium on the Photogrammetric Survey of Ancient Monuments, Athens, 1974, pl. 13), are

published in ibid., Fig. 32.5.
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Biography Alpay Özdural (1944–2003) was Associate Professor at Eastern

Mediterranean University, Faculty of Architecture in North Cyprus, where he

taught design and history of architecture courses. By profession he was an

architect specialized in restoration and preservation of historic monuments and

sites. His other fields of interest were architectural photogrammetry, history of

mathematics, and historical metrology. The last 10 years of his life he concentrated

his efforts on muqarnas, a type of three-dimensional geometric decoration peculiar

Fig. 32.9 The geometric scheme generated by Omar Khayyam’s triangle. Image: author
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to Islamic architecture, and on the collaboration of mathematicians and artisans in

the medieval Islamic world. He published articles in such journals as Historia
Mathematica, Technology and Culture, Muqarnas and Journal of the Society of
Architectural Historians.

Table 32.1 Relationships between key points shown in Fig. 32.9

Dimensions of the 
North Dome 

Chamber

Components of Omar 
Khayyam’s Triangle

Theoretical values Actual 
Measurements

Error

AC AC 9.900m 9.90m. Nil

GM CD 6.974 6.99 0.2%

NQ AB 5.383 5.36 0.4%

GO GD 7.641 7.63 0.1%

GM acts as the harmonic mean between AC and NQ.
GO acts as the arithmetic mean between AC and NQ, thus:
AC:GO::GM:NQ becomes the upward musical proportion

NR CD 6.794 7.00 0.4%

LR GO 7.641 7.63 0.1%

KQ GO 7.641 7.64 Nil

NR acts as the harmonic mean between AC and NQ.
RL and KQ act as the arithmetic means between AC and NQ, thus:

AC:LR::AC:KQ::NR:NQ becomes the downward musical proportion

GK ½AC 4.950 4.95 Nil

JK ½GO 3.821 3.81 0.3%

KO ½AB 2.692 2.66 0.4%

OQ ½AC 4.950 4.96 0.2%

NP ½CD 3.487 3.47 0.5%

GO AC+ ½AB 12.591 12.59 Nil

GN ½ (AC+BD) 7.209 7.23 0.3%

By the rule of halves:
GK:KJ::OQ:JK::NP:KO becomes the musical proportion of halves

Since AC = AB + BC,
AC acts as the arithmetic mean between GQ and GN

QS √AC-DC- ½AC2 6.674 6.68 0.1%

CS BC 8.309 8.29 0.2%

JM CF 5.853 5.85 Nil

PQ AB - ½ CD 1.896 1.89 0.3%

QS and CS are components of the isosceles triangles CSA, TCS and CDS;
CS:AC::BC:AC::BD:AB

JM:GM::KL:PQ::PQ:KN::KN:KO::QR:PQ::NR:CS::CS:AC
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Chapter 33

Explicit and Implicit Geometric Orders

in Mamluk Floors: Secrets of the Sultan

Hassan Floor in Cairo

Gulzar Haider and Muhammad Moussa

Introduction

During two and a half centuries of Mamluk rule in Egypt (1250–1517 A.D.), the

integrated complexes of mosque-academy-mausoleums and even attached

dormitories and hospitals were refined into a building type that represented an

essential and creative relationship among power, patronage, faith, and architecture.

Added to and transformed beyond the Fatimid memory, Cairo became the “City of a

Thousand Minarets.” The Sultan Hassan Complex is considered to be a masterpiece

of this period and universally accepted as one of the finest example of Islamic

architecture.

The Mamluk Madrassah (religious academy) is key to such complexes and is

characterized by central courtyard with four iwans (deep vaults). The iwan that

marks the Mecca orientation is usually slightly larger than the other iwans and

houses the mihrab (prayer niche) and the mimbar (stepped pulpit). The courtyard

and the iwans are multi-use spaces for congregational prayer, small group prayers

and academic gatherings around the teachers of various subjects. Beyond this

central court of mosque-madrassah the complex comprises a substantial

mausoleum of the patron, dormitories and other essential facilities.
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The Sultan Hassan is the most magnificent in scale, quality of design,

construction, and decorative detail among all such complexes in Cairo (Figs. 33.1

and 33.2). In addition to four schools of religious law with their respective

dormitories, a large mosque-iwan, and the Sultan’s tomb, it also includes a

hospital, an orphanage and a water well. The main courtyard is a prominent open

space in the heart of a dense and massive edifice; it acts as the essential center

towards which all the significant spaces of the complex open. It is a quasi-cubic

void, which measures 32 � 34.6 m in plan, and is about 40 m high, its top stellated

edge framing the open sky. A domed octagonal water basin marks both the center of

the courtyard and the axis mundi in this complex. The floor of the courtyard space is

the geometrical marble pavement, the largest of its kind in Egypt (Fig. 33.3). Its

texture and colors bring a sense of liveliness into the heart of the building, like a

flowered valley at the foot of a stone canyon. This impression is accentuated by the

geometry of the floor, which gives an order like that of a formal garden (Fig. 33.4).

This chapter is the first detailed measurement and morphological report as well

as an interpretive analysis of this geometric-architectural treasure.

Documentation of the Courtyard Floor Pattern

The documentation process of the Sultan Hassan marble floor was initiated in

December 1992 during a Carleton University studies abroad trip directed by

Dr. Gulzar Haider. Between 1993 and 1996, scaled drawings of the floor pattern

were manually attempted. The challenge of accurate manual drawings at

convenient scale as well as dimensional discrepancies necessitated a second field

trip in 1998. Back in Canada, it took Muhammad Moussa about 15 weeks to get the

first AutoCAD drawing of the entire pattern. The experience of making this drawing

in itself had started to reveal the “not so simple” nature of the floor and further

research was planned, which evolved into a master’s thesis. It was considered

prudent at that time that a final on-site check be made of connectivities of the

drawn pattern in comparison with the actual floor. This led to the final field trip in

summer 1999. Muhammad Moussa defended his Master’s of Architecture thesis

reporting the analysis and interpretations of the Sultan Hassan Floor in 2001,

Carleton University.

Construction of the Digital Floor Model

Line Drawing Models of Individual Patterns The analysis of the pavement

aimed at the study of geometric elements and patterns and their organization into

the whole. Questions and curiosities about symbolism and meaning consciously

imparted by the makers of the floor were deliberately held back. The intent was to

allow the architecture to take the lead in unfolding its scientific and/or cultural
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significance, through investigating its mere physical presence as manifestation and

choreography of geometric operation. The nature of the geometric operations in two

dimensions makes it possible to carry out such a ‘performance;’ imagining the

motion that an object must go through in order to coincide with its image. For

instance, performing the operation of translation denotes a different movement than

performing an operation of reflection. A significant distinction between these two

operations is that translation is achieved through sliding in the two dimensional

plane, while reflection requires a flip through three dimensional space. In fact, two

dimensional symmetry operations are grouped according to as “proper” and

“improper” operations, proper operations being traceable in the two dimensional

plane (translation and rotation), while improper operations involve a path between

the object and its image that is not traceable in two dimensions (reflection and glide

reflection). The fact that the total sum of the two-dimensional symmetrical

operations is only four provides another advantage to derive their different

compositional possibilities. Purely as symmetry operations, their combinations

have been explored, counted and classified as the known symmetry groups: seven

linear (frieze) groups, and 17 periodic (planar).1

Fig. 33.1 Three-dimensional AutoCAD study model of Sultan Hassan complex. Image: authors

Fig. 33.2 Sultan Hassan complex in Cairo skyline. Photo: authors

1 The study employed the common classification of symmetry groups, also known as

“Crystallographic groups”, as outlined by Stevens (1980).
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Layered Model of Line Drawings and Color Patterns The floor as a two

dimensional plane is divided into nine sectors labeled A1, A2, A3, B1, B2, B3,

C1, C2, and C3 (Fig. 33.5). Numbers refer to the sectors arranged parallel and

letters refer to the sectors arranged normal the Mecca orientation. Sector B2 is in the

center of the floor, row A is closest to theMihrab and row C is farthest. Constituent

patterns in each sector were isolated and classified under symmetry groups. This

stage revealed the commonalities and differences among various sectors as well as

the unique character of each sector.

Initially, when the line drawing of the entire floor was assembled in a digital

format, line merely denoted the color difference among neighboring marble pieces.

As the on-site documentation photographs were carefully reviewed, color started to

Fig. 33.3 Line drawing of the geometric marble patterned floor. Image: authors
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emerge as a dimension far more significant than some random choice of natural

tones. Overlooking the slight color variations among different cut pieces, the floor

can be seen as a pattern of white and five other colors: sand yellow, sky blue, olive

green, wine red, and black. While the black marble pieces are used just like other

colors, the white operates as a background on three levels. First, the white is a

general background between all the enclosed patterns within a sector; second, it is

the filler between different patterns within a single patterned frame; third, it is the

filler within the patterns themselves. Color information was added to the AutoCAD

model of the floor by creating a separate digital layer for each color in each of the

nine sectors. A layer indicating the pattern of white could be obtained by taking the

entire model and rendering all the five colors as black (Fig. 33.6).

Fig. 33.4 View into the courtyard from the roof. Photo: authors

Fig. 33.5 Diagram of patterned areas, Sultan Hassan main floor plan, and division of the floor into

nine sectors. Image: authors
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Analysis as Pursuit of a Typology of Patterns

The analytical process of line drawings and individual color configurations can be

outlined as follows:

1. Line geometry within the individual patterned frames and their symmetry group.

2. Patterned area as a motif in itself.

3. Peeling of colored layers and the repeat of steps 1 and 2, for each patterned area.

4. Applying steps 1, 2 and 3 above to individual sector as well as the overall floor.

Corresponding to these four points of analysis are few key discoveries:

– Patterns that could be considered to exist at the level of line geometry only, that

is, their symmetry is not altered when we consider their color configuration.

– Patterns that present certain symmetry through line geometry, but alters or

transforms as color configuration is taken into consideration.

– Patterns that do not alter at the scale of the individual patterned area as the color

comes in but the shift occurs in the way the repetition happens in the larger

context of the sector and/or the entire floor (Fig. 33.7).

Fig. 33.6 Color analyses of the Sultan Hassan pavement. (a) detail of sector C1; (b) line drawing;

(c) black and white representation of color; (d) Red color selection; (e) black color selection; (f)

yellow color selection; (g) blue color selection; (h) green color selection. Image: authors
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Analysis as Performance

The above analysis pointed to intriguing geometric phenomena revealed through

the separation of colors. Expectations of continuity of a symmetric pattern are

defied either through color or through the enlargement of the area of study within

the floor. Contrary to expectations of reflection, in most cases, it is possible to

visualize the floor patterns generating and repeating through “proper” two

dimensional operations only (rotation and translation). These realizations led to

questions about both the conceptualization of the floor as a catalyst for imagination

and the realization of the floor as an experience. The frame of reference of the study

shifted from the “forensic” geometric analysis of a 500 year old marble floor to an

experiential, morphogenetic understanding of the floor as a multi-level, geometric

and color, transformative phenomenon. The term and concept of “performance,”

quite similar to George Steiner’s pursuit of “understanding that is simultaneously

analytical and critical” and an approach of “interpretation as understanding in

action” (Steiner 1989: 7–8), helped parallel and simultaneous theorizations about

the actual construction of the floor, as well as the formation of its geometric

essence. The transformations that occur between the explicit orders of the line

geometry and the not-so-explicit orders of color configuration strongly suggest the

likelihood of layered geometric patterns at different scales. It seems highly

improbable that the constructors had a pile of precisely pre-cut colored geometric

marble pieces and then tried to figure out how to assemble them into a composition

of the complexity one encounters.

It is also important to point out that without the aid of high-speed digital tools,

most of our discoveries about the multi-layered geometry of the floor would have

not been visible to the eye. Our analysis as “performance” is very much dependent

upon the speed of geometric computation, not unlike the movements discovered

when still frames are run at a certain speed to achieve the simulation of movement.

This, however, does not imply that the craftsmen who masterly composed this floor

did not experience these realities in their own way with their own tools, whether

physical, intellectual, or spiritual.

Fig. 33.7 Detail of a pattern. (a) line drawing; (b) black and white representation of color; (c)

black color selection; (d) red color selection; (e) yellow color selection. Image: authors
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Choreography of Symmetry Operations

It has been possible for us to posit a morphogenesis of the floor which can justifiably

be called a choreography of symmetry operations leading to the floor as we see it. It

is presented here as a series of interpretive drawings which could be viewed in their

totality as linked, though each can also be treated as a single finding (Fig. 33.8). The

drawings mainly seek to highlight certain generative and operational themes in the

floor with their corresponding phases:

1. Rotation (4 phases),

2. Color transformation and complexity (2 phases),

3. Pattern pairing (2 phases), and

Fig. 33.8 Interpretive diagrams of the morphological aspect of the floor’s geometry. Image:

authors
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4. Synchronization of color and motion (3 phases).

Rotation, Phase 1 (Fig. 33.8a) In the line geometry, the pattern closest to the

center of the floor is most evident in suggesting a rotational symmetry. It repeats

four times around the central octagonal fountain basin. The geometrical analysis of

the motif established an understanding of how the four triangular motifs would

relate to the corners of the square that inscribes the central octagon. An

anti-clockwise rotation of approximately 4� results in the position of the motifs in

the floor. This initial spark of rotation can be seen echoed in the subtle

counter-clockwise tilt of the main axis established between sectors A2 and C2. In

sector C2, the patterned frames to the left are larger than those to the right. What

might seem at a first glance as a form of inaccuracy, repeats again in sector A2 on

the opposite side of the floor, only this time the right side patterned frames are

larger than those of the left, confirming a 180� rotational relationship around the

center of the floor between the two sectors A2 and C2.

Rotation, Phase 2 (Fig. 33.8b) Still looking at the line geometry, the second phase

of the operation of rotation could be considered as the 180� rotations of the eight

sectors surrounding B2, the central one. The four corner sectors A1, C3, A3, and C1

relate diagonally across. The top central sector A2 relates to the bottom C2, and the

left central B1 to the right central B3. This twofold 180� rotation is in clear defiance
of axial, reflective, symmetry.

Color Transformation and Complexity, Phase 1 (Fig. 33.8c) There are two

ways in which color configuration influences the final group designation of the

patterns: transformation on the level of the motif or the pattern unit itself, or

transformation only on the level of repetition in the floor sectors. In this first

phase of color transformation and complexity, the highlighted patterns transform

on the level of the individual patterned area once color configuration is considered.

It is intriguing that these patterns are concentrated in the centers of the eight

peripheral sectors.

Synchronization of Color and Motion, Phase 1 (Fig. 33.8d) Filtering the color

from the previous drawing into the second phase of rotation reveals an intricate

relationship between motion and color. Since line geometry always precedes color,

this phase could be imagined as a sequential process of motion initiated by the line

geometry, resulting in the overall rotation of the floor around its center, which then

is followed by the introduction of color into the central patterns of each of the

bordering floor sectors.

Color Transformation and Complexity, Phase 2 (Fig. 33.8e) Patterns

highlighted in this phase form the second phase of color transformation as the

impact of the color configuration is only sensed once the larger context of the floor

is considered. Interestingly these patterns appear in the boarders of the eight

peripheral sectors.

Pairing, Phase 1 + 2 (Fig. 33.8f) Aside from the apparent presence of the

phenomenon of pairing between all the patterns in the floor, its significance
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becomes more evident through color configuration. More than a few patterns that

repeat in groups of four or more pair up into sets of two through color. This

phenomenon operates both at the level of a single sector and that of the entire

floor. This pairing reinforces the rotational symmetry as the patterns pair diagonally

in most cases (180� rotations).

Synchronization of Color and Motion, Phase 2 + Rotation, Phase 3

(Fig. 33.8g) Superimposition of layers reveals a sequence of rotational ripple

effect. The initiation of the operation of rotation on the line drawing level, which

is most evident in the center of the floor, starts to echo in the bordering sectors as an

overall 180� rotation once the color is brought into consideration.

Synchronization of Color and Motion, Phase 3 (Fig. 33.8h) The final phase of

the synchronization of color and motion extends the ripple effect mentioned earlier.

The third phase of color transformation and complexity integrates into the sequence

as the echo of the rotations generated by the central patterns of each of the floor

sectors.

Rotation, Phase 4 (Fig. 33.8i) This drawing recapitulates the operation of

rotation-like ripples caused in water after the stones sink under the surface. It is

possible now to imagine the floor continuously rotating where the motion keeps

rippling from the center outwards to the corners. Once there is a sense of rest in our

perceptual map another ripple begins from the slight shifts in the heart of the floor

and the surrounding sectors and is infused to the spatial understanding of the entire

courtyard.

Concluding Comments

The most striking experience in the Sultan Hassan complex is the great space

carved out of the heart of this monumental monolith. One is awe-struck at how it

softens the harsh Cairo sunlight while illuminating the deepest corners of the four

iwans of study and supplication (Fig. 33.9). It is the essential space everyone

experiences before and after engaging in prayer, arriving at any of the four

schools, or visiting the mausoleum. Besides acting as the only access to the four

schools, it also forms the interior “public” space for the students of different schools

to socialize without leaving the sacred environment of knowledge.

The orientation of the main axis towards the Kaaba in Mecca2 is fundamental to

every Islamic prayer and funerary space. The subtle elongation of the courtyard in

the direction of Mecca is hardly noticeable from any viewpoint in the courtyard. In

2 The city of Mecca in Saudi Arabia is the Holy city for Muslims. It houses the Kaaba (literally

translated as “Cubic”), a stone building within a great court/sanctuary. It is the goal of Islamic

pilgrimage and the point toward which Muslims orient themselves towards in prayer. Muslims

believe that Prophet Abraham first built it as a landmark for the House of God, for the sole purpose
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fact it was an unexpected discovery during the documentation process, and later on

enticed our curiosity, since the makers’ capabilities in achieving precise

measurements and geometries are quite evident in other spaces in the building;

such as the space of the mausoleum (21 � 21 m). The floor ambiguously merges

the sense of a central fourfold and an axial twofold symmetry. Peculiarly, the

courtyard has closely similar quasi-cubic proportions as the Kaaba; except the
Kaaba has a volume about one-eighth of the court’s. In other words, the Kaaba
would approximately occupy a unit volume of an equal 2 � 2 � 2 division of the

courtyard’s space.

Furthermore, as the geometrical analysis has intriguingly revealed, the

monument’s main axis rotates slightly as it projects beyond the space of prayer

through the plane of the geometric floor (Fig. 33.10). The concept of rotation in the

Islamic tradition resonates at different levels. The most prominent is the ritual of

circumambulating the Kaaba in Mecca (Fig. 33.11). It is conceptually remarkable

to realize that the distant orientation towards the Kaaba is radial and static,

while the closest ring around it in Mecca is concentric and dynamic in a

counter-clockwise direction.

In a possibly analogous gesture, the monument’s main three-dimensional body

imparts an explicit axial symmetry, while the floor pattern generates an implicit

rotational field. This concept also manifests itself in one of Islam’s most eloquent

spiritual paths, Sufism. The courtyard floor of the Sultan Hassan mosque silently

mirrors the motion of the heavens, not unlike the whirling dervish who meditates

the motion and rhythm of the celestial bodies revolving around a vertical axis while

rotating around a distant centre.

The study presented here has revealed that the usual static and restrictive view of

geometry is not only unfair but is also potentially limited in helping us see a life

beyond a fixed order of points, lines and polygons. Indeed, the tradition speaks of

Fig. 33.9 Sultan Hassan

Courtyard after the weekly

congregational prayer on

Friday. Photo: authors

of worshipping of God alone. The first ritual a Muslim would embark on upon arriving at the

sanctuary is seven circumambulations (Tawaf ) around the Kaaba.
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Fig. 33.10 The axial shift of the two dimensional floor from the main three-dimensional body of

the edifice. Image: authors
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the different elevations or stations (maqamat) of the seeker of divine truth. Form

every station one is able to perceive different facets of “reality,” where “reality” is

composed of multiple layers to which one could relate with different capacities and

through different frames of reference at different stages of the ascending journey.

To many, the courtyard might seem empty and static, yet as this study has revealed,

the void is suggestively inhabited with a mathematical elegance and colorful

eloquence of a hidden dance.

The heavens revolve day and night,
Like a potter’s wheel,
And every moment the master’s wisdom,
Creates a new vessel,
For all that exists,
Comes from one hand,
One workshop.3

Fig. 33.11 The Kaaba in

the holy sanctuary, Mecca.

Photo: authors

3Mahmoud Shabistari (d. 1320), quoted in Nasr (1978: 105).
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Chapter 34

The Fibonacci Sequence and the Palazzo

della Signoria in Florence

Maria Teresa Bartoli

Introduction

The Palazzo della Signoria in Florence is the oldest part of the Palazzo Vecchio,

built by Arnolfo da Cambio (the architect who began S. Maria del Fiore) between

the end of the thirteenth and the beginning of the fourteenth centuries (it was begun

in 1298) (Romanini 1980). From its beginning it has been the house of the

municipal government. As Florence was one of the biggest towns in Europe, its

town hall was exceptionally large; its dimensions were larger than average. Until

the dome of S. Maria del Fiore was built by Brunelleschi, the Palace with its

extraordinary high tower embodied the Florentine pride and sense of power

(Figs. 34.1 and 34.2). Recently, with the help of graduate students who earned

their ‘Dottorato di Ricerca’ in “Surveying and representing architecture and

environment,” I measured and surveyed the Palazzo della Signoria and now have

in hand the results: plans, sections and elevations. Examining the drawings,

especially the ground floor plan (Fig. 34.4), I could finally find the secret ratio of

the original project. This is the subject of the present chapter.

Since the Middle Ages historians have criticized the irregular form of the palace

perimeter. It is a trapezoid, with two non-right angles, which made the interior

design of the palace very difficult. I investigated the problem and now believe that

this anomaly must be related with the peculiar layout of the last and largest city

wall, which dates from the same time.
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In any case, even given the trapezoidal plan, the rectangle in the trapezoid is a

very interesting one. If we define its measurements by means of the braccio da
panno, the Florentine unit of measure in that time, the dimensions are very

significant. From now on I will describe my findings point by point:

Fig. 34.1 Palazzo della

Signoria in the Piazza della

Signoria, Florence. Photo:

author

Fig. 34.2 The tower of the

palace in the skyline of the

town center. Photo: author
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1. The rectangle of the palace is 73 braccia long and 45 wide: 73/45 ¼ 1.622; a

close approximation to the irrational golden number, 1.618039. . .. This number

is the characteristic ratio of the golden section, a geometrical proportion in

which a line AB is divided by P in such a way that AB/AP ¼ AP/PB (Snijders

1985). In a rectangle of sides AB and AP, we can consider a square of side AP

and another rectangle of sides AP and PB. This new rectangle is another

rectangle of the golden section, divisible into a square and another rectangle,

and so on (Fig. 34.3).

At the beginning of thirteenth century Leonardo Pisano, also known as

Fibonacci, in his Liber Abaci (Boncompagni 1857–1862), describes the numbers

of the sequence that bears his name, obtained by the example of the rate of

reproduction of a pair of rabbits. The numbers of the sequence are rational, and,

as the sequence increases, the ratio between any two numbers in succession

approximates ever more closely the golden number. The sequence is: 0, 1, 1, 2,

3, 5, 8, 13, 21, 34, 55, 89, 144. . . Mathematicians are familiar with another

series, the Lucas series, which is constructed so that every element in the

series is equal to the sum of the corresponding term in the Fibonacci series

plus the second term following it (for example, the sixth term of the Lucas

series—18—is equal to the sixth term of the Fibonacci series—5—plus the

eighth—13). These sequences solve in a simple way the problem of finding

rational approximations for the irrational golden section.

2. Looking at the palace plans (Fig. 34.4), I realized that the golden section, in the

form of the Fibonacci sequence, is the starting point and the basic principle of

the whole project. The ground floor consists of a large rectangular hall (the Sala

d’armi), a Fibonacci rectangle of six cross-vaulted bays, and an almost-square

courtyard; at the second floor, the perimeter of the Sala is divided into two

rectangles, according to the golden section (Fig. 34.5).

3. A particular rule is followed in the plan of the tower of the palace. The tower is

famous for the fact that, rising over the battlements, it leans out beyond the

façade of the palace in a very bold way. A less known fact is that the orientations

of its lower façades that lie within the palace are not the same as those of its

façades that rise above the palace: the tower turns and changes its position

(Fig. 34.6). This anomaly indicates that the building of the palace probably

Fig. 34.3 The golden

section. AB : AP ¼ AP :

PB ffi 1.618
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started from the tower, then it was decided to change the program (the reason

isn’t easy to ascertain, but this is a different problem) and so the orientation of

the palace was changed, but the inner basement of the tower was preserved. So

we must consider the plan of the ground floor, along with the layout of the tower

in its upper floors.

Fig. 34.4 Plan of the first floor. Image: author
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Fig. 34.5 Plan of the second floor. Image: author
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Fig. 34.6 Plan of the attic. Image: author
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4. Now, referring to the sketch in Fig. 34.7, I will describe the final results of

investigations but without explaining the individual stages, each one being very

complicated to reach. Let us start from a couple of numbers in the Fibonacci

sequence: 34 and 21. The beginning is a rectangle 68 braccia long, 42 braccia
wide. A grid of 10 � 10 minor rectangles subdivide the major one. Take the

2 � 2 rectangle with one side on the shorter axis and the other one on the longer

side of the mayor rectangle: that will be the place of the tower. The line on the

right side of the 2 � 2 rectangle is the central axis of a square of 45 � 45

braccia, to which is added a rectangle of 28 � 45 braccia that can be considered
as the addition of two Fibonacci rectangles, 21 � 34 and 7 � 11. Now we have

the Fibonacci rectangle 45 � 73. These measurements are the lengths of the two

façades of the palace. The total inner length of the west façade is 68 braccia. The
distance between the outer side of the west façade and the inner side of the east

wall is 42 braccia.
5. Now we must take into account the non-right angles of the plan. They certainly

depend on the intention to have one side parallel to the existing direction of Via

della Ninna. The angle between this direction and the Northern wall of the palace

is 12�. Starting from the southern extreme of the western façade, we draw a line

at such an angle, so marking out the trapezoid. The bisectors of the non-right

corners determine the thicknesses of the western and southern walls, which is

why their measurements are different and are not whole numbers. That is also

why the corner that is the most structurally stressed has the thinnest walls.

6. In the plan of the palace we have a rectangle, a square, and a triangle. In the

rectangle is placed the Sala d’Armi, whose ratio, described in the sketch in

Fig. 34.7, is very simple. In the square plus the triangle lies the courtyard. The

axes of the square become the composition lines of the courtyard. Their divisions

determine the location of pillars and arches of bays. Superimposing the sketch in

Fig. 34.7 over the ground floor plan, we can verify the congruence of our

hypothesis (Fig. 34.8).

Now we go to the elevation, but this requires an introduction. Many years ago

I took part in the survey of the Palazzo Strozzi, built at the end of the fifteenth

century according to the designs of Giuliano da Sangallo and Antonio Pollaiuolo

(Fig. 34.9). The measurements of its elevation seem to derive from the Fibonacci

and Lucas sequences: it is exactly 68 braccia long and 55 braccia high, that is,

two rectangles 34 � 55; from the street to under the cornice, it is 48 braccia
high; it measures 47 braccia from the top of the bench (one braccio high) to

beneath the cornice. The 47 braccia are divided into three parts: the lower part is
18 braccia, while the sum of the middle part (16 braccia), and the upper part

(13 braccia) is 29. Numbers 18, 29, and 47 are found in the Lucas sequence;

34 and 55 are numbers of Fibonacci (Fig. 34.9). The sketch shows that other

details of the elevation, for instance the ground floor windows, take their

measurements from the two sequences. We must remember that Filippo Strozzi,

who commissioned Palazzo Strozzi, had to demonstrate that it was smaller than

the Palazzo della Signoria, in order to obtain the permission of Lorenzo de’

Medici.
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7. Looking at the elevation of the Palazzo della Signoria, we can remark the

following numbers (Fig. 34.10): from the level of the entrance to the level of

the starting landing of the tower stairs, the height is 45 braccia; from the lower

landing of this staircase to its top on the first crenellated floor of the tower, the

height is 73 braccia (219 + 1 steps). These are the same measurements found in

the plan. The façade is divided vertically into three parts, on the top of which is

placed a crenellated, projecting, gallery. The three parts, the first of 19, the

Fig. 34.7 Sketch of the layout of the palace. Image: author
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second also 19, the third of ten braccia, add up to 48 braccia. But the first palace
façade (of which we have paintings and literary evidence: the fresco on the

Expulsion of the Duke of Athen from Florence and the Cronaca of Giovanni

Villani (1991) about political events under the Duke of Athens) had a bench of

two stairs above which the height was probably of 47 braccia, the sum of

18 + 29, the same numbers that appear in Palazzo Strozzi, but nearly two

hundred years earlier. In the Lucas sequence 18, 29, and 47 are followed by

76. The crenellated gallery is a little more than 77 braccia long, but it would be

very difficult to reach exactly the number 76 because of the projection from the

Fig. 34.8 The sketch put on top of the first floor plan. Image: author

Fig. 34.9 The Palazzo Strozzi (photo, above) and the schematic diagram of the façade (below).
Image: author
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four trapezoidal sides, with non-right angles. Measurement tends toward the

number 76, even if they don’t reach it exactly; the height of the gallery, 47/2

braccia, confirms the intention. The highest points of the tower, on the final

embattlements, are 146 braccia high on the entrance, that is, 73 � 2. Thus the

western façade is inscribed in two squares, while the northern façade is inscribed

in two Fibonacci rectangles.

Fig. 34.10 Front and partial sections of Palazzo Vecchio. Image: author
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Conclusions

I hope to have given evidence of the use of the numbers belonging to the Fibonacci

and Lucas sequences by the architect of the Palazzo della Signoria. This use had

two different aspects. First, it was substantial, and connected with the idea that the

palace might possibly have to be enlarged and divided in a progressive and uniform

way, preserving the same shape. On the other hand, it was instrumental, connected

with the necessity to work out a set of numbers linked by a rule, therefore easy to

remember, to control, and to communicate.

According to proceedings of scholasticism, substance and form have the same

rule; the scientific paradigm of the sequence gives the solution both for the

architectural pattern of a Medieval town hall, and the technical way of arranging

its measurements.
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Chapter 35

What Geometries in Milan Cathedral?

Elena Marchetti and Luisa Rossi Costa

Introduction

For many years we have promoted connections between mathematics and

architecture, therefore it now seems mandatory to analyse with mathematical eyes

our own Milan Cathedral, the Duomo, one of the most important and symbolic

monuments of our city. In fact, tourists are used to hearing that the Duomo is one of

the three symbols of the town, together with The Last Supper and La Scala.
The Duomo, whose construction started at the end of the fourteenth century, is a

surprising monument (Fig. 35.1). Although it is considered Gothic, it is quite

different from the traditional Gothic cathedrals found in northern European

countries (Brivio and Majo 1980).

At first glance everybody understands that the planning does not follow the

canons of the famous French, English or German Gothic monuments, but the result

is very harmonious and pleasing. Designers, architects, engineers, artists and

construction workers, members of the so-called Veneranda Fabbrica del Duomo,
which still manages the building today, were probably inspired by both the

contemporary culture and by their origins and traditions.

No individual architect or engineer who is credited with having planned the

building, and many sculptors and craftsmen worked together during long years of

construction; their common local traditions probably resulted in the harmonious

elegance of the interior and exterior. In any case, we can confirm that the
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proportions among parts were studied and respected appears evident, for example,

in a drawing by Cesare Cesariano (Fig. 35.2).

Year after year, workers combined Gothic forms with traditional Italian shapes.

For example, the gable-like Renaissance façade (a capanna, typical of the

Romanesque style) is in harmony with all the unusual Gothic elements.

Nevertheless the monument is popular with everybody!

It would be interesting to know the secret of such harmony! For now we must be

content to analyse the structure of some of its geometrical parts, such as the rose

windows (Pirina 1986) and the decorated pavement.

After a brief historical description of the Cathedral in sections “A Short

Historical Presentation,” “A Mathematical Approach in Describing Symmetries”

we introduce some mathematical tools suitable for describing symmetries. We

especially point out the rose windows and introduce the notion of group, as well
of cyclic and dihedral groups linked to rotational symmetries (Weyl 1952). The

mathematical description is completed with particular examples and virtual

reconstructions of recognisable parts of the Cathedral. In section “Analysis of

Some Geometrical Decorations” we describe lines and forms found in the

pavement and in the windows. We chose to underline these geometrical aspects

because they appear only in this artistic context but in other different applied fields

(physics, mechanical engineering, etc.) as well (Dedò 1999).

We conclude that Milan Cathedral never ceases to amaze us: it is not only a

splendid monument rich in art and elegant architecture, but also a good collection of

mathematical examples hidden within its bewildering decorations.

Fig. 35.1 Photo: authors
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A Short Historical Presentation

The construction of the Duomo went on for very long time, beginning in 1386 as

recorded on a tombstone on a wall. Cardinal Carlo Borromeo consecrated the

Cathedral in 1577, nearly two centuries after it was begun. The existing façade

was completed in the nineteenth century and many details were added in the last

century. The very important structural refurbishing of the main pillars was realised

in the second half of the twentieth century.

As we said in the introduction, no single architect is credited with having

planned the Milan Cathedral but many important figures (included Leonardo da

Vinci and Bramante) worked in it, with surprising results. Among others, we

mention Simone di Orsenigo, named first general engineer in 1387, and Cesare

Cesariano. In 1521 Cesariano, holding to the canons of Vitruvius, designed the

Scenographia (Fig. 35.3), a vertical section of the Duomo that allows a statue of the

Virgin Mary to be placed on the main central spire.

Among the craftsmen we note particularly the sculptors known as Maestri
Campionesi, who carved the white-pink marble of Candoglia, the main material

in the Duomo. The Candoglia quarry is situated in the northwest of Milan, close to

the west side of Lake Maggiore. The marble was brought in on barges travelling

over rivers, lakes, and canals, such as the famous Navigli projected by Leonardo. A
special dock was created close to the construction site, in the area where now you

find Via Laghetto (“small lake”). The Candoglia quarry is actually the property of

La Veneranda Fabbrica and its marble is employed only for the restoration of the

Duomo.

We are still convinced that the Veneranda Fabbrica’s workers have to have had
a strong professional approach and profound artistic and scientific knowledge, in

order to have realized the remarkable aesthetic of the monument.

3

3 3 3 3 3 3 3 3

3 3 3

Fig. 35.2 Image: authors
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One of the more exciting parts of visiting the Cathedral is to climb the spiral

stairs to the roof in a sunny day, to find yourself in a forest of pinnacles with the

delighted view of the Alps’ snowy peaks. The mathematics that we talk about here

provides another key for reading the beautiful sculpture of the Duomo’s decoration

(Fig. 35.4).

Fig. 35.3
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Construction on the Duomo is still underway even today, and in Milan we have a

saying about projects that never end, “It looks like la fabbrica del Duomo!”

A Mathematical Approach in Describing Symmetries

In this section we will introduce some of the necessary mathematical tools for

analysing symmetries in decorations, with the aim of exploring the Milan Cathedral

with mathematical eyes.

Cyclic and Dihedral Figures As well known a general affine transformation of

the Oxy Cartesian plane points can be algebraically represented by the following

notation

v0 ¼ Avþ h,

where v ¼ x
y

� �
, v0 ¼ x

0

y0

� �
are vectors corresponding to the point P(x,y) and its

image P0 (x0,y0).
As usual A(2,2) and h(2,1) are square matrix and column vector respectively,

characterizing the transformations.

For our purposes we deal with the following matrices and vectors:

• A ¼ cos ϑ � sin ϑ
sin ϑ cos ϑ

� �
and h ¼ 0 ¼ 0

0

� �
resulting in a rotation (anticlockwise)

centred in O of an angle ϑ ∈ [0, 2π), (in our context often ϑ ¼ 2π/n, n positive
integer).

Fig. 35.4 Photo: authors
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The choice ϑ ¼ 0 gives the identity.
The choice ϑ ¼ π refers to the symmetry with respect to the centre O.

• A ¼ cos 2ϑ sin 2ϑ
sin 2ϑ � cos 2ϑ

� �
and h ¼ 0 resulting in a symmetry (or reflection) with

respect to a straight line—symmetry axis—through O, forming an angle ϑ
(ϑ ∈ [0, π)) with the x-axis.

The choice ϑ ¼ 0 or ϑ ¼ π
2
refers to the symmetry with respect to x-axis or

y-axis, respectively.

• A ¼ λ cos ϑ �λ sin ϑ
λ sinϑ λ cos ϑ

� �
and h ¼ 0 resulting in rotation and scaling (ϑ angle of

rotation, λ > 0 scaling factor).

The vector h 6¼ 0 adds a translation to the transformation represented by the

matrix A.

For a mathematical description of forms let us characterize plane symmetric

figures:

– a figure presents only cyclic symmetry when it has no symmetry axis, but rather a

centre of symmetry; consequently suitable rotations transpose the figure onto

itself (Fig. 35.5);

– a figure presents a dihedral symmetry when it has at least one symmetry axis;

consequently a reflection, with respect to that axis, transpose the figure onto

itself (Fig. 35.6);

– a figure with more than one symmetry axis has a centre of symmetry (the

intersection of the axes); consequently appropriate reflections and rotations

transpose the figure onto itself (Fig. 35.7);

– a dihedral figure is also a cyclic figure (but not vice-versa) (Loria 1930).

In the following Cn denotes figures presenting only cyclic symmetry, without

symmetry axes, and transformed in their self by n rotations around a centre

(ϑ ¼ 2π/n rotation angle, n positive integer). In particular C1 denotes figures

having any symmetry at all (Fig. 35.8).

Dn denotes figures having n symmetry axes, that is, dihedral symmetry.

Consequently n reflections with respect to the axes transpose the figure onto

itself. A Dn figure is also cyclic.

The Cn patterns can be generated by n rotations of a basic motif about the centre.

Dn patterns can also be generated by n reflections of a basic motif with respect to

the axes.

To operate algebraically it is convenient insert the pattern into an Oxy Cartesian
system, superimposing the centre of the figure (if present) on the origin O and one

of the symmetry axes (if present) on to one of the Cartesian axes.

In this way each point of the figure is represented by a v(2,1) vector, the rotations

and/or reflections are realized by matrices A(2,2).
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Dihedral and cyclic figures are aesthetically important: they can be found in

furniture and in buildings and are frequently visible in artistic decorations.

In Milan Cathedral many Cn orDn figures are recognisable. We focus on the rose

windows (rosoni) present in the big glass windows and on cyclic or dihedral figures
in the pavement.

Finite Groups of Symmetry We introduce now the notion of group for a succinct
description of cyclic and dihedral figures.

A group is a set T provided with a binary operation “∘”, satisfying the following
properties:

– 8 t1, t2 ∈ T ) t1 ∘ t2 ∈ T (the set is closed under the operation ∘);
– 8 t1, t2, t3 ∈ T) t1 ∘ (t2 ∘ t3) ¼ (t1 ∘ t2) ∘ t3 (the operation ∘ is associative);

Fig. 35.5 Photo: authors

Fig. 35.6 Photo: authors
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– 8 t ∈ T, ∃ u ∈ T such that t ∘ u ¼ u ∘ t ¼ t (u is called unit or identity

element);

– 8 t ∈ T, ∃ t0 ∈ T such that t ∘ t0 ¼ t0 ∘ t ¼ u (each element t has an inverse

t0).

A group with a finite number of elements is said finite.
The group T is commutative if t1 ∘ t2 ¼ t2 ∘ t1 , 8 t1, t2 ∈ T.
The set T of all transformations realizing the symmetries in Cn or Dn figures,

forms a finite group, called finite symmetry group. In particular considering a

pattern in a Oxy Cartesian plane, T can be related to a set of matrices A(2,2)

Fig. 35.7 Photo: authors

Fig. 35.8 Photo: authors
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acting on the vectors v(2,1) linked to the points of the pattern. The composition law

∘ between two elements t1,t2 belonging to the group T, has to be intended like the

application of the operation t1 to the result of the operation t2, that is,
(t1∘t2)(v) ¼ t1(t2(v)).
Following (Budden 1972) we present the structure of some finite groups

connected with symmetric forms in Milan Cathedral. We adopt the following

conventions:

a. the identity i always appears first, both across and down;

b. the order in which the elements appear shall be the same across as down;

c. to find the product t1 ∘ t2 , we take t1 in row and t2 in column, i.e., the first

operation is given across, the second operation is given down.

Each transformation corresponds to the matrix adequate for the algebraic

realisations of the operation itself.

(1) C1 (Fig. 35.8) is transformed in itself by identity, intended also as rotation rϑ,
ϑ ¼ 0 (mod 2π). In the following all the angles are given (mod 2π).

Let us denote with C1 ¼ {i} the set of transformations of C1, the trivial case

with only one element.

C1 i

i i

(2) D1 (Fig. 35.6) is transformed in itself by the identity and by a reflection s1 with
respect to the symmetry axis. Let us denote with D1 ¼ i, s1f g the set of

transformations of D1 whose compositions can be represented in the following

table. We notice that C1 � D1.

D1 i 1s

i i 1s

1s 1s i

(3) C2 (Fig. 35.9) is transformed in itself by the identity and the rotation rϑ, with
ϑ ¼ π . Let us denote with C2 ¼ {i, rπ} the set of transformations of C2 whose

compositions can be represented in the following table:

C2 i r

i i r

r r i
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(4) D2 (Fig. 35.10) is transformed in itself by the identity, by a rotation rϑ with

ϑ ¼ π , and by two reflections s1, s2 with respect to two symmetry axes. Let us

denote withD2 ¼ i, rπ , s1, s2f g the set of the four transformations of D2

whose compositions can be represented in the following table; it appears that

the group D2 is commutative. It is easy to verify that C2 � D2.

D2 i 1s 2s r

i i 1s 2s r

1s 1s i r 2s

2s 2s r i 1s

r r 2s 1s i

(5) C3 (Fig. 35.11) is transformed in itself by the identity and by rotations rϑ
(ϑ ¼ 2π/3 and ϑ ¼ 4π/3 ). Let us denote with C3 ¼ {i, r2π/3, r4π/3} the set

of transformations of C3 whose compositions can be represented in the following

table:

Fig. 35.9 Photo: authors
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Fig. 35.10 Photo: authors

Fig. 35.11 Photo: authors
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C3 i
3
2r

3
4r

i i
3
2r

3
4r

3
2r

3
2r

3
4r i

3
4r

3
4r i

3
2r

(6) D3 (Fig. 35.7) is transformed in itself by the identity, by rotations rϑ (ϑ ¼ 2π/3
and ϑ ¼ 4π/3 ) and by reflections s1, s2, s3 with respect to three symmetry axes.

Let us denote withD3 ¼ i, s1, s2 , s3 , r2π
3
, r4π

3

� �
the set of transformations of

D3 whose compositions can be represented in the following table:

D3 i 1s 2s 3s
3
2r

3
4r

i i 1s 2s 3s
3
2r

3
4r

1s 1s i
3
4r

3
2r 3s 2s

2s 2s
3
2r i

3
4r 1s 3s

3s 3s
3
4r

3
2r i 2s 1s

3
2r

3
2r 2s 3s 1s

3
4r i

3
4r

3
4r 3s 1s 2s i

3
2r

It is evident that C3 � D3.
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It becomes easy to compose in the same way the tables for any other Cn or Dn

pattern.

A transformation group is commutative if and only if its table (read like a matrix)

is symmetric with respect to the principal diagonal.

Analysis of Some Geometrical Decorations

The Milan Cathedral provides the occasion to discover other mathematical

peculiarities: meaningful curves in the inlaid marble pavement decorations or the

decorative geometric figures in the windows present properties used even in

mechanical engineering.

More precisely we note the cycloid, other related lines such as epicycloids and

hypocycloids, and the Reuleaux polygons. We identified some of them in the

Duomo but all these forms are easily recognisable in many other cathedrals or

monuments.

Cycloid, Epicycloids, Hypocycloids The cycloid is the curve traced by a point P

on the edge of a circle γ (radius r) rolling along a straight line, without slipping or

stopping (Fig. 35.12a).

Starting in the sixteenth century many mathematicians and physicians, such as

Galilei, Bernoulli, Leibniz and Newton, investigated the numerous peculiarities of

the cycloid (Kline 1996). Among other properties we mention that this curve is the

solution of the brachistochrone problem: that is the cycloid is the curve minimising

the travel time of a bead travelling between two points (not on the same vertical

line), frictionless and influenced only by the gravity.

Fig. 35.12 (a, b, c). Image:

authors
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The epicycloids are curves described by P when the circle γ (radius r) rolls
around a circle γ0 (radius a) with r � a. We represent some epicycloids related to

the choice of the ratio q ¼ a
r, together with pictures of elements of the Duomo in

which similar curves are recognizable:

– if q ¼ 1 the curve is known as cardioid (Fig. 35.13);

– if q ¼ 2 the curve is known as nephroid (Fig. 35.14);

– if q ¼ m, m ¼ 4, 8, 20 you can find similar curves in the Duomo decorations

(Figs. 35.15, 35.16, 35.17);

– if q ¼ 3
2 , the form is evident in some Duomo windows (Fig. 35.17).

The hypocycloids are curves described by P when the circle γ (radius r) rolls
inside a circle γ0 (radius a) being r � a (Fig. 35.18).

We mention some particular cases related to the choice of the ratio q ¼ a
r:

– if q ¼ 1 the hypocycloid becomes a point;

– if q ¼ 2 the curve image is a diameter of γ0;
– if q ¼ 3 the hypocycloid is known as a deltoid;

Fig. 35.13 (a, b). Photo

and Image: authors
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– if q ¼ 4 the hypocycloid is known as an astroid, as seen in the Duomo

decoration shown in Fig. 35.19;

if q ¼ 5 the curve is related to the form of a starfish;

if q ¼ 8/3 the curve corresponds to a Duomo rose window shown in Fig. 35.20.

Vector parametric equations of the curves described, with reference to an

appropriate Oxy Cartesian system, are the following:

vcycl ¼ r t- sin tð Þ
r 1� cos tð Þ

� �
, t∈R,

Fig. 35.14 (a, b). Photo

and Image: authors
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vepi ¼
aþ rð Þ cos t� r cos

�
aþ r

r
t

�

aþ rð Þ sin t� r sin

�
aþ r

r
t

�
2
66664

3
77775, t∈R, a � r > 0ð Þ,

vhypo ¼
a� rð Þ cos t� r cos

�
a� r

r
t

�

a� rð Þ sin t� r sin

�
a� r

r
t

�
2
66664

3
77775, t∈R, a � r > 0ð Þ:

There are different variations in the cycloid path, if the point P has distance

d (d 6¼r) from the γ centre but it is consistent with the circle; thus a general vector

equation:

wtro ¼ r t� d sin t
r � d cos t

� �
, t∈R:

In Fig. 35.12b–c we show the paths (trochoids) traced out by a fixed point closer
(d < r) or farer (d > r) from the centre of the circle respectively.

Fig. 35.15 (a, b). Photo

and Image: authors
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Let us consider the circle γ (radius r) rolling outside a circle γ0 (radius a, and
q ¼ a

r > 1). Let us fix a point P inside or outside γ, consistent with it. The trace of P
is a curve belonging to the epitrochoids family; thus a epitrochoid vector equation,

where d is the distance of P from the centre of γ0:

wepit ¼
aþ rð Þ cos t� d cos

�
aþ r

r
t

�

aþ rð Þ sin t� d sin

�
aþ r

r
t

�
2
66664

3
77775, t∈R, a � r > 0, d > 0ð Þ:

In Fig. 35.21 you see one example of epitrochoid corresponding to q ¼ 2 and

d < r.
Starting from the hypocycloids but fixing the point P inside or outside the circle

γ, consistent with it, we obtain curves named hypotrocoids. A vector equation of the

family curves is:

Fig. 35.16 (a, b). Photo

and Image: authors
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whypot ¼
a�rð Þ cos tþ d cos

�
a� r

r
t

�

a� rð Þ sin t� d sin

�
a� r

r
t

�
2
66664

3
77775, t∈R, a � r > 0, d > 0ð Þ:

For an interesting visualization of all the mentioned curves we refer to the

website of Ferréol and Mandonnet (Ferréol and Mandonnet 2005).

The Reuleaux Triangle The circle is the simplest curve of constant width: in each
direction the maximum of the distance between two points belonging to it is the

diameter’s length. Consequently a circle can rotate between two parallel straight

lines having distance equal to the diameter.

There are many other non-circular curves having constant width, just discovered
at the time of Leonardo da Vinci and mentioned by Euler (Boyer 1968; Kline 1996):

one of these is the Reuleaux triangle (Fig. 35.22b).

Fig. 35.17 (a, b). Photo

and Image: authors
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Starting from an equilateral triangle ABC we replace each side by a circular arc

centred in the opposite vertex and radius equal to the side length ‘ (Fig. 35.22a).
The three arcs form the Reuleaux triangle of constant width ‘; the boundary curve

has length π‘ (the same of the circle having diameter ‘) and the enclosed area

measures A ¼ π� ffiffi
3

p
2

‘2.

This very elegant shape fits skilfully in art: look the harmony of its insertion in

Duomo windows (Fig. 35.23). It has important technical implications as well.

In the Wankel radial engine the section of the rolling pistons is a Reuleaux
triangle. A drill chuck allows us to cut square holes if its section is a Reuleaux
triangle.

In both cases geometrical properties are crucial (Marr 2000):

– in the Wankel engine the Reuleaux piston turns in a specially shaped housing,

bordered by an epitrochoid curve (Figs. 35.21 and 35.24) and results in the

4-stroke of an internal combustion engine;

– in the case of a drill chuck we point out that a square, having sides equal to the

width of the Reuleaux triangle, presents four points of contact with it. This

Fig. 35.18 (a, b). Photo

and Image: authors
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property is crucial to realize square holes; in fact during the rotation the three

triangle vertices describe approximately the square perimeter (Fig. 35.25).

The Reuleaux triangle can be generalized to regular polygons with (2n + 1)
sides; the Reuleaux polygons have constant width ‘ and (2n + 1) circle-arcs as

sides.

The perimeter of each is again π‘.
As examples of Reuleaux polygons we recall some coins of different countries:

the British 20- and 50-pence and the 2-crown coins of the Czech Republic

(Fig. 35.26).

Fig. 35.19 (a, b). Photo

and Image: authors
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This choice in minting may be related to recognizing coins easily. Like circular

pieces they roll in strips of constant width such as are used in coin-operated

machines (vending machines, etc.).

Fig. 35.20 (a, b). Photo

and Image: authors

Fig. 35.21 Image: authors
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We conclude this section with the mathematical reconstruction of the Reuleaux
triangle, using the approach described in section “A Mathematical Approach in

Describing Symmetries”. We consider now the Reuleaux triangle as a D3 form,

generated by suitable rotations or reflections of a part.

Fig. 35.22 (a, b). Image:

authors

Fig. 35.23 Photo: authors

Fig. 35.24
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We apply matrix and vector calculus as straightforward procedures to generate

all cyclic or dihedral figures.

In the Oxy Cartesian plane let us consider the equilateral triangle ABC of side ‘
and the corresponding Reuleaux triangle (Fig. 35.27).

Fig. 35.25 Photos and

Image: authors

Fig. 35.26
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When the vertices are fixed in A ‘
2
, � ‘

ffiffi
3

p
6

	 

, B 0, ‘

ffiffi
3

p
3

	 

, C � ‘

2
, � ‘

ffiffi
3

p
6

	 

,

then a vector equation of the arc AB is vAB ¼
‘ � 1

2
þ cos t

0
@

1
A

‘ �
ffiffiffi
3

p

6
þ sin t

0
@

1
A

2
6666664

3
7777775
, t∈ 0; π

3

� �
.

In the following we consider also the arc AA0, obtained with t∈ 0; π
6

� �
, with A0 as the

middle point of the arc AB.
The vector equations of the arcs BC and CA can be obtained in two different

ways:

1. starting with the entire arc AB and using rotation matrix

A ¼
cos

2π

3
� sin

2π

3

sin
2π

3
cos

2π

3

2
6664

3
7775

so that vBC ¼ AvAB and vCA ¼ AvBC ;

2. starting with the arc AA0 , the matrixM0 ¼ cos 2ϑ sen2ϑ
sen2ϑ � cos 2ϑ

� �
, (ϑ ¼ π

6
) reflects

the arc AA0 with respect to the axis OA0 and gives vA0
B ¼ M0vAA0 ; then other four

iterations with the reflection matrices

Fig. 35.27 Image: authors
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Mk ¼
cos 2ϑþ 2k

π

3

0
@

1
A sen 2ϑþ 2k

π

3

0
@

1
A

sen 2ϑþ 2k
π

3

0
@

1
A � cos 2ϑþ 2k

π

3

0
@

1
A

2
6666664

3
7777775
,

k ¼ 1,2,3,4, applied to the transformed arcs, give all the boundaries:

vBB0 ¼ M1vA0
B, vB0

C ¼ M2vBB0 , v
CC

0 ¼ M3vB0
C, vC0

A
¼ M4vCC0 ,

where B0, C0 are the middle points of arcs BC, CA respectively.

Conclusions

We have suggested some tools for discovering several architecture and artistic

aspects of the Milan Cathedral in a mathematical way.

We especially underlined the symmetry aspects in forms and decorations and

described some peculiar curves, so that visitors to the Duomo can follow an

interdisciplinary cultural path.

We hope the reader will become aware that mathematical tools are not so

difficult to learn and manage. Increasing our mathematical and scientific

knowledge can make every tour of a monument, museum or exhibit more

interesting. The discovery of mathematical peculiarities both enriches the whole

view and provides the opportunity to appreciate individual elements.

There is another geometrical aspect of the Milan Cathedral left to be

investigated: the proportions among parts hinted at in the drawings by Cesariano.

More secrets of the building’s aesthetic canons wait to be revealed.
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DEDÒ, M. 1999. Forme: simmetria e topologia. Bologna: Zanichelli.
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Chapter 36

The Symmetries of the Baptistery

and the Leaning Tower of Pisa

David Speiser

The Symmetry of the Leaning Tower

By “symmetry of a tower”, I mean here simply the symmetry of the ground plan

(Grundriss.) The ground plan of the tower of a church is usually a square. Not

always but often its covering has the same four-fold symmetry too. Sometimes the

tower has only an ordinary roof, the four-fold symmetry is then lost and only a

two-fold symmetry survives; we then say that the four-fold symmetry is “broken.”

Sometimes, to the contrary, the covering shows a more refined eight-fold

symmetry. The most famous example of this is the tower of the Cathedral of

Freiburg im Breisgau, Germany. In Pisa, the tower of S. Nicola is round below,

but its upper levels are octagonal. There are many other, smaller towers with plans

following this idea. Occasionally, we find a tower with a six-fold symmetry, but

these cases are very rare. Of course, there are also round towers, for example, the

ones in Ravenna. And such a round tower is the Leaning Tower. The symmetry of a

circle is an infinite one. However, the architectural elements of the tower may

reduce this infinite symmetry to a finite one. Before we show how this happens in

the case of the Leaning Tower, we shall summarize its structure in a few words

(Fig. 36.1).
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The massive ground floor consists of a blind arcade. Above the ground level

there are five tiers of open arches; a sixth tier is a bit taller. All have twice as many

arches as the ground level. On the top there is a somewhat smaller drum (tamburo).
Thus in all there are eight levels. Obviously the finite symmetry of the tower is

determined by the number of pillars and arches. What is this number?

If one counts them, one is stunned to find, that there are neither 16, as one would

have guessed at first, nor 12 or maybe 20: there are 15 arches on the ground level,

and 30 on the following ones! The drum, finally, has six major and six minor arches,

in such a manner that the minor ones are spanned above one, the major one above

four arches of the seventh level. This 15-fold and 30-fold symmetry is probably

Fig. 36.1 The Leaning Tower of Pisa. Photo: Author
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unique; at least, it must be extremely rare.1 Therefore it demands an explanation,

the more so as it is used on such an outstanding building.

In a book about the Leaning Tower Piero Pierotti (1990) demonstrated the

importance which the Pisans attached to exact numerical measures: the height of

the Tower is exactly 100 Pisan bracci, the equivalent of 20 Pisan pertiche,while the
circumference measures exactly 100 Pisan piedi.

These numbers strongly indicate how the Pisans of those times delighted in

mathematical relationships and used them in building design: so they knew what

they were doing when they constructed a pentadecagonal campanile. But it is of
fundamental importance to distinguish between significant numerical values such

as these and geometric relationships, or in our case, geometrical symmetries. While

the former are numerology, the symmetries represent partitions of space or,

perhaps, partitions of the plane. The following example illustrates a means of

partitioning the plane: in a given square, drawing the diagonals and then a

horizontal line through their intersection halves the square. The half-square may

in its turn be halved by drawing its diagonals and a second horizontal line

(Fig. 36.2a).2 What might be the use for this construction? Just insert with a

colour pencil the following profile (Fig. 36.2b). This profile is not just a mere

curiosity noted post festum, but it is the basis for the design of the façade of the

Duomo of Pisa. That this is true is shown in Fig. 36.3. Obviously (except for the

2, since we twice divided the plane into two equal parts) numbers do not play any

role here: the construction is a purely geometric one. Thus in the case of the

Leaning Tower and also, as we shall see, the Baptistery, it is not sufficient to

speak of 12 or 15 or 20 arches, windows, etc.; these elements express, respectively,

a 12-fold, 15-fold, or 20-fold symmetry of an object in space.

The Symmetries of the Exterior of the Baptistery

The visitor who comes from either the Tower or the Duomo to the Baptistery,

cannot help feeling at first a certain uneasiness. Partly it must stem from the

somewhat strange dome (cupola) which begins as a conventional dome-shape,

changes to a cone-shape, and is crowned by a final, smaller dome (cupolina).
This ungainly construction seems neither fish nor fowl. Then too, the spectator

will see that, unlike the Tower, the Baptistery is built in two styles, Romanesque

and North-Italian Gothic (Fig. 36.4). But the patient spectator will discover deeper

discrepancies between the different levels of the Baptistery exterior. These

1 There are many leaning towers besides the one in Pisa, but to the best of my knowledge, the

15-fold symmetry is never mentioned in any book or scientific paper. Even the Baedeker, that
faithful companion, fails to mention this fundamental fact. For the only correct reference that I can

find, see Carli (1989).
2 I found this construction in an Italian journal of design shortly after the war. Unfortunately I have

forgotten the names of the authors and of the journal, so I cannot give proper credit.
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Fig. 36.2 (a, left) The partitioning of a square; (b, right) The basis for the profile of the façade of

the Duomo. Drawing: Kim Williams

Fig. 36.3 The façade of the Duomo of Pisa. Photo: Author
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discrepancies are real contradictions which make any grand harmonious effect, like

those which impress us of the Duomo and the Tower, impossible. We proceed now

to a close analysis of the building.

On the exterior, the Baptistery presents itself as having been constructed, if one

includes the cupola, in four levels. The second level, counting from the ground

floor, is surrounded with a garland of arches. Every pair of arches is topped with a

pointed gable. Most of these gables contain a bust in a circular frame, and between

gables there is a column-like vertical element. Thus, all counted, there are five

elements whose symmetry we shall now investigate one by one.

Of the four levels, the ground floor, in the Romanesque style, is without a doubt

the most beautiful and the most impressive. 20 semi-circular arches of equal size

Fig. 36.4 The exterior of the Baptistery of Pisa. Photo: Author
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rest on 20 pilasters, forming a blind arcade. Four of these arcades contain portals;

the remaining 16 are pierced by small arched windows in their upper halves. The

walls surface is articulated by 10 white and 9 grey bands. This horizontal

subdivision emphasizes the roundness of the wall, thereby stressing the heaviness

of the building and, we would like to say, its dignity. The large arches with the

portals, as well as the windows, correspond to those of the Duomo, but here at the

Baptistery the proportions are more beautiful. One would wish to see the Baptistery

completed in this style, but this is not the case.

Ignoring for the moment the second level, we turn to the third. Here too we find a

division into 20 equal parts. Each part contains a semi-circular arched window, but

the window is split in its middle by a colonnette and filled with Gothic ornaments.

Each window is crowned with a pointed Gothic gable. Between gables there are

groups of three colonnettes. The gables contain small, round medallions with

geometric figures. If we now compare the first level with the third, we see that

their symmetry is the same. On the other hand, one cannot be but a little bit

disappointed by the quality of the higher one.

When one looks at the cupola, the first impression is hardly that of a cupola at all

but of a somewhat unwieldy mass. One gets the feeling that something went wrong

during the execution. What really troubles the observer, first subconsciously, but

soon consciously, is the new symmetry which is sharply at odds with the first and

the third level: the cupola is not divided into 20 but into 12 equal parts. Since these

two divisions are not in unison, the cupola does not appear as the artful completion

of the entire edifice, but a structure in sharp contradiction to the lower levels.

Let us return to the second level and penetrate, as well as we can, through the

surrounding garland to the wall itself. One notes that this level, like the one below,

is divided into white and grey horizontal stripes, but less carefully so. The only

easily visible elements of the wall are the windows. They are larger than the ones on

the ground floor and at least taller if not wider than the ones on the third level. But

now a big surprise meets, or I should say, hits, the eye. We find here only

12 windows: thus between the 20-fold symmetry of the ground and third levels,

appears a level with 12-fold symmetry; it corresponds to the cupola, but not to the

two levels above and below it. Why then is this symmetry clash not as manifest as

one would expect it to be?

If one tries to imagine the Baptistery without the garland, one recognizes the

painful dissonance between the 20-fold division of the ground and third levels and

the 12-fold division of the intermediate level. For instance, the windows of the

second level stand in no constructional relation whatsoever to those below or above,

and the effect would not only be painful but quite probably a bit comic. Obviously,

the garland was added to conceal this situation. But how does the garland

accomplish this? For the counting eye the device was simple enough: the garland

consists of 60 columns which support 60 arches, and since
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3 � 20 ¼ 60 ¼ 5 � 12

the garland stands in a consonant relation to both the levels below and above as well

as to the one whose true symmetry it conceals.

The Interior of the Baptistery

The visitor who enters the Baptistery is at once captivated by the upward surge of

the 12 interior pillars and columns which surround the innermost space covered by

the cupola. Above is a gallery supporting 12 pillars, and on top of that finally

appears the cupola with the 12-fold division. It is a magnificent view indeed. Thus

the innermost space is structured 12-fold throughout, although the four pillars mark

a square. With respect to the square marked by the four portals, this square is rotated

by 45�, so that the portals correspond to the middle arches between the pillars

(Fig. 36.5). The octagonal baptismal font, a later addition, responds to this quite

cleverly: four of its walls correspond to the portals and four to the pillars, so that

between the 12 and the 8 no discrepancy arises, except in the paving design, which

reflects the octagonal shape of the font. Everything in the interior, then, is

subordinated to the dominant 12-fold symmetry.

Now we may ask, what effect does the symmetry clash between the interior

walls have on the interior space? The answer is that the impression made by the

central space is so strong and compelling that the contradiction with the exterior

wall is hardly felt. Only when one consciously looks for evidence of the 20-fold

symmetry of the exterior does the contradiction become evident. The contradiction

of symmetry of the windows of the ground level does not really hurt, but it does not

help either, let alone develop, the great effect of the central structure. Not quite the

same may be said for the windows of the third level, some of which, obviously in

conflict with the interior structure and perhaps because of this, are blind.

One would expect the 12 windows of the second level to appear splendidly in the

inside, since they are in harmony with it, but, surprisingly, they cannot be seen from

the ground floor at all. One sees them only when climbing between the two shells of

the outer wall to the gallery. The reason is that they are located right at the floor

level of the gallery, so that their compositional effect is lost. At last one then

realizes that the interior does not correspond to the exterior at all: in correspondence

to the three exterior levels, not counting the cupola, there are only two interior

levels! As we said, the central space is surrounded by two levels of 12 pillars and

columns, supporting 12 arches. Behind each arch there is a vaulted bay.3 Besides

the several clashes between contradictory symmetry schemes, this

non-correspondence between interior and exterior is the most puzzling aspect of

the Baptistery (Fig. 36.6).

3 For a very careful description of the Baptistery, see Smith (1978).
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We must add one last remark concerning the ground plane. While inside the

pavement design simply follows the octagonal symmetry of the baptismal font, the

outside presents one more surprise. In the partitioning of the platform on which the

Baptistery rests, one would expect either a continuation of the eight-fold symmetry

of the interior pavement, or a reflection of the 20-fold symmetry present in the

ground level architecture. No: we find again a 12-fold symmetry.

A Proposal for the Phases of the Baptistery’s Construction

In light of the many symmetry clashes presented above, two questions come to

mind. First, are such changes compatible with what we know from the documents

concerning the construction of the Baptistery? Second, is it possible that these plans

have been repeatedly revised and fundamentally modified? A complete answer is

beyond the scope of this chapter, but we will summarize the argument.

The chronology of the Baptistery construction is complicated by diverse facts.

First, the Baptistery has two coverings. The inner cone is partly enclosed by the

outer cupola, and this doubling presents a riddle. Second, this first covering was

preceded by another one, which also may have been a cone or a cupola, though the

exact history is obscure. But the most striking puzzle remains that there are three

exterior levels, and only two interior levels. Figure 36.7 shows schematically the

various levels and conflicting symmetry schemes of the exterior, together with the

four points of rupture. It seems best to examine the problem that they pose

beginning with the latest one, uppermost in our figure.

Fig. 36.5 The plan of the

Baptistery. Image: Paolo

Radicati di Brozolo

542 D. Speiser



This symmetry rupture, 12-fold versus 20-fold, does not really pose a problem,

because for constructional reasons a return to the 12-fold-symmetry was almost

unavoidable. The forms of the coverings, especially the cone, follow the 12-fold

symmetry of the interior, and thus become, one might say, logically dodecagonal.

Fig. 36.6 Section through the Baptistery. Image: From Grassi (1831)
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Automatically we presuppose here that, when the third level was begun, the

garland surrounding the second level did not yet exist. In principle this could have

been otherwise, the garland might have been built together with the second level,

but this seems unlikely. This time the architects did not have their hands tied: they

could freely decide whether to go on with the 12-fold symmetry of the second level,

or to return to the 20-fold level of the first. As was seen in the Leaning Tower, the

Pisans had learned the peculiar relationship between the triangle, the pentagon and

their respective families, which could produce the pentadecagon with its family

30, 60, etc. So why not make good use of this relationship? If this hypothesis is

correct, sometime after the completion of the second level, two decisions were

made, namely, to return to the 20-fold symmetry of the ground level, and to

surround the second level (with its 12-fold symmetry) with a garland of

60 arches. 60 is indeed compatible with all three levels.

The situation which confronted the builders after the completion of the ground

level seems not unlike the one which a few decades later would confront their

successors. Both times, the builders chose a solution that was in contrast with a part

of what was already built. The second level could not be built in agreement with

both the interior and the ground level. Yet, in one respect the situation was quite

different. Unlike the undistinguished second level, the ground level is of a very

beautiful and harmonious design. It would be rather extraordinary if the radical

changes in the project had not caused the Pisans to quarrel. And indeed there exists

Fig. 36.7 Schematic

diagram of the ruptures of

symmetry. Drawing: Kim

Williams
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a series of documents which testify to a long and bitter feud that pitted the

Archbishop, the lord over the Duomo and the Tower, against the Canons to

whom the custody of the Baptistery belonged. This fight was about the right to

appoint the operaio, or head architect of the Baptistery, and it lasted from 1210

to 1221.

The ground level was constructed in wilful defiance of the already existing

internal structure and its 12-fold symmetry. Thus it is the most surprising of all

ruptures in the Baptistery’s history. Those who defied Diotisalvi’s plan were under

no aesthetic pressure whatsoever to do so; on the contrary, the interior was

beautifully conceived, and we may suspect the same of the exterior. There must

have been a powerful motive at work for inducing such a change. Moreover, the

new ground level stands up to a comparison with the interior with respect to both

design and execution, though, to be sure, the aesthetic aim of the new exterior

ground level is different. We are forced to look for an artistic event of first rate

importance that could have provided the impetus for the artist as well as for his

supporters, but we need not look very far. Behind the Duomo the Pisans had begun

to build what they wanted to be the world’s highest tower, and this tower had a

ground plan based on the newest discoveries of the scientific world. Could there be

a stronger stimulus for swaying opinion in favour of a new design and overcoming

resistance to a break with the old plan? In 1186, a new operaio, Guido (Guidolotto)

da Ugone, was appointed and sworn in at a time when the outer wall had already

been built to the height of the doors. Thus we are led to affirm that 1185 was the

year when a new plan of the Baptistery’s exterior was conceived by a new

architect.4

A Summing Up of the Construction in Chronological Order

In 1185 the original plan for the exterior by Diotisalvi was replaced by one of

Guidolotto, who, if he had not himself designed the Leaning Tower, was at least

strongly influenced by it. His design made use of a radically new idea based on

Pisan geometric knowledge: the construction of the regular pentagon and the

regular pentadecagon, which had appeared for the first time in the construction of

the Tower. This conception remained unique in the history of European

architecture. But Guidolotto’s coup d’état, though presumably wildly cheered by

many, was not to everybody’s liking. Circa 1221, the quarrels ended and

Diotisalvi’s original idea triumphed: the 12-fold symmetry carried the day. The

60-fold garland was added at this time, or a bit later. A third reversal happened circa

1278. The icosagonal symmetry was the victor this time, though the aesthetic

quality of the third level was decidedly inferior to the ground level. At about the

same time, the 30 gables were added and filled with Giovanni Pisani’s sculptures.

4 The architect of the Tower is not known: could it have been Guido himself?
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How and when the cupola and cone were added, both with 12-fold symmetry, must

be determined by archaeological examination.

Looking today at the Baptistery, we find the greatest artistic impulses and the

highest achievements in Diotisalvi’s interior and in Guidolotto’s exterior ground

level. Both are extraordinary conceptions deserving admiration; but they contradict

each other, one is tempted to say, fratricidally. The consequence was a continuous

striving for reconciliation. But despite its many clashes, the impression the

Baptistery gives to the observer, especially when illuminated by the full moon, is

an overwhelming one.
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Theories of Proportion, Symmetry,
Periodicity



Chapter 37

Musical Proportions at the Basis of Systems

of Architectural Proportion both Ancient

and Modern

Jay Kappraff

Introduction

Throughout the history of architecture there has been a quest for a system of

proportion that would facilitate the technical and aesthetic requirements of a

design. Such a system would have to ensure a repetition of a few key ratios

throughout the design, have additive properties that enable the whole to equal the

sum of its parts, and be computationally tractable—in other words, to be adaptable

to the architect’s technical means. The repetition of ratios enables a design to

exhibit a sense of unity and harmony of its parts. Additive properties enable the

whole to equal the sum of its parts in a variety of different ways, giving the designer

flexibility to choose a design that offers the greatest aesthetic appeal while

satisfying the practical considerations of the design. Architects and designers are

most comfortable within the realm of integers, so any system based on irrational

dimensions or incommensurable proportions should also be expressible in terms of

integers to make it computationally acceptable.

In his book, The Theory of Proportion in Architecture (1958) P. H. Scholfield

discusses three systems of architectural proportion that meet these requirements:

the system of musical proportions used during the Renaissance developed by Leon

Battista Alberti, a system used during Roman times, and the Modulor of the

twentieth-century architect, Le Corbusier. All of these systems draw upon

First published as: Jay Kappraff, “Musical Proportions at the Basis of Systems of Architectural
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identical mathematical notions already present in the system of musical proportions

as we shall show in Sect. 37.2. While the Roman system is based on the irrational

numbers √2 and θ ¼ 1 + √2, the Modulor is based on the golden mean,

τ ¼ (1 + √5)/2. Both of these systems can also be approximated arbitrarily

closely (asymptotically) by integer series, and these integer series can be used to

implement the system with negligible error. We shall demonstrate this in Sect. 37.3

for the Roman system, since the Modulor has been adequately covered elsewhere.

We will also show in Sect. 37.4 that at the basis of the Roman system is a

geometrical construction discovered in the Renaissance, known as the “law of

repetition of ratios.” The sacred cut will be shown to lie at the basis of the

Roman system. In Sect. 37.5 we shall illustrate, by way of Kim Williams’s

analysis of the Medici Chapel, that both the law of repetition of ratios and the

sacred cut are geometric expressions of the additive properties of the Roman

systems and insure the presence of musical proportions in a design. The chapter

will conclude with a discussion of Ezra Ehrenkrantz’s system of “modular

coordination” based on both musical proportions of Alberti and Fibonacci numbers.

The Musical Proportions of the Italian Renaissance

During the Italian Renaissance Leon Battista Alberti and Andrea Palladio

developed a system of architectural proportion based on proportions inherent in

the musical scale (Scholfield 1958; Wittkower 1971). This movement was a

response to the neoplatonic ideas prevalent at the time. Alberti modelled his

system on the Pythagorean scale based on the octave, musical fifth, and fourth.

To achieve an octave above the fundamental tone, the bridge of a monochord

instrument is moved to the midpoint of the string, (i.e., ratio of 1:2 as shown in

Fig. 37.1), and the string is plucked. The fifth is obtained by shortening the string by

a ratio of 2:3 while the fourth shortens the string by a ratio of 3:4.

All musical proportions of the Pythagorean scale can be expressed as ratios of

powers of the prime numbers 2 and 3. For example, the whole tone corresponds to

the ratio 8:9. The system of Palladio was based on the Just scale which also included

the prime number 5.1 What is of greater relevance is the manner in which a system

of architectural proportion was built from these scales. The first suggestion appears

in the “lambda” figure,

1

2 3

4 9

8 27

found in Plato’s Timaeus and referred to as “world soul.”

1 For further details of the musical scale built from these intervals, see Kappraff (1990: 9–12).
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Consider the series,

1 2 4 8 16 . . .

Next, construct additional integer series made up of the arithmetic means of

adjacent numbers as shown in Fig. 37.2.

Notice that Plato’s lambda appears on the boundary of these series. It is also

evident that the ratio of successive terms in the horizontal direction is in the octave

ratio, 1:2, while the left-leaning diagonal represents the ratio 2:3 (musical fifth) and

the right-leaning diagonal exhibits the ratio 3:4 (musical fourth).

Each number x of these scales is the geometric mean of the numbers y and z to its
left and right, i.e. x ¼ √yz. By its construction, each number x is the arithmetic

mean of the two numbers y,z bracing it from above, i.e., z � x ¼ x � y or x ¼ l/2

(y + z). Finally each number x is the harmonic mean of the two numbers y,z bracing
it from below, i.e. (z � x)/z ¼ (x � y)/y or 1/x ¼ l/2(l/y + 1/z) which can be

rewritten as x ¼ 2yz/(y + z).
As the result of these relationships, any sequence x,u,v,y that includes the

arithmetic and harmonic means u,v of its endpoints x,y insures a repetition of

ratios as illustrated for the sequence 6, 8, 9, 12. Here, 9:6 ¼ 12:8 and 8:6 ¼ 12:9.

Sliding bar

Unison Fourth Fifth Octave

Fig. 37.1 A sliding bridge on a monochord divides the string length representing the fundamental

tone into segments corresponding to musical fifth (2:3), fourth (3:4), and octave (1:2). Image:

author

Fig. 37.2 Integer series of Alberti’s system of musical proportions
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ð37:1Þ

Musically, it is said that “when the musical fifth is inverted in the octave it

becomes the musical fourth.” Architecturally, any relationship that incorporates

musical proportions insures that key ratios repeat in the context of a design.

Alberti used this system by focusing on a hexagon of numbers as shown in

Fig. 37.2. The dimensions and subdivisions of the rooms of his buildings had

measures given by adjacent numbers within the hexagon. This insured that ratios

of these lengths would embody musical ratios. Wittkower has described Alberti’s

use of musical proportions in the design of S. Maria Novella and other structures of

the Renaissance (Wittkower 1971: 33–56).

Although the Renaissance system of Alberti succeeded in creating harmonic

relationships in which key proportions were repeated in a design, it did not have the

additive properties necessary for a successful system. It is fascinating that a system

of proportions used by the Romans and the system of proportionality developed by

Le Corbusier, known as the Modulor, both conform to the relationships inherent in

the system of musical proportions depicted in Fig. 37.2 with the advantage of

having additive properties (Kappraff 1996a, 1996b).

The Roman System of Proportions

The well known integer series,

1 1 2 3 5 8 13 21 . . . ð37:2Þ

in which each term is the sum of the preceding two terms, is known as a Fibonacci

series. The ratio of successive terms approaches the golden mean, τ ¼ (1 + 5)/2 in

a limiting sense. It is the additive properties of this series that led Le Corbusier to

make it the basis of his Modulor series of architectural proportions.

Another integer series possessing additive properties is

1 2 3 12 29 70 . . . ð37:3Þ

known as Pell’s series, in which twice any term in the series added to the previous

term results in the next term. The ratio of successive terms from any Pell series such

as Series (37.3),

2=1 5=2 12=5 29=12 70=29 . . . ð37:4Þ

approaches the irrational number θ ¼ 1 + √ 2in a limiting sense. The θ series,
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1

θ2
1

θ
1 θ θ2 θ3 ð37:5Þ

where θ ¼ 1 + √ 2, is the only geometric series that is also a Pell series. Thus,

1

θ
þ 2 ¼ θ, 1þ 2θ ¼ θ2, θ þ θ2 ¼ θ3 ð37:6Þ

Therefore, a Pell series possesses many additive properties, which is why it was

used in ancient Rome as the basis of a system of architectural proportions.

In order to describe the Roman system, first consider a pair of integer Pell series,

1 3 7 17 41

1 2 5 12 29 70 . . .
ð37:7Þ

This series has many additive properties, although we shall list only the three

fundamental properties from which the others can be derived. Each Pell series

certainly has the defining property,

x x x Prop. 1: a + 2b ¼ c

a b c

Other additive properties are,

d c

x x Prop. 2: a + b ¼ c, e.g., 2 + 5 ¼ 7,

x x Prop. 3: a + d ¼ b, e.g., 2 + 3 ¼ 5.

a b

Also, the ratio of diagonally adjacent numbers from Series (37.7) are

approximations to the √2, i.e., the series

1=1 3=2 7=5 17=12 . . . ð37:8Þ

approaches √2 in a limiting sense.

Again, these series exhibit the same geometric, arithmetic, and harmonic mean

relationships as Fig. 37.2. in an asymptotic sense. Thus each term is the approximate

geometric mean of the terms to its right and left, e.g., 52 � 2 � 12. Each term in the

second series is the average of the terms that brace it from above, e.g. 5¼ 1/2(3 + 7).

Each term from the first series is approximately the harmonic mean of the two terms

that brace it from below, e.g., 7/21 ¼ 1/3 � 1/2(1/2 + 1/5) ¼ 7/20. Finally,

any term in the first series divides the interval bracing it below approximately in

the ratio 1: θ, e.g., (41–29)/(70–41) ¼ 12/29 � 1 : θ.
Notice that the double series (37.7) has one problem. The sum of two successive

numbers from one series is found in the series above it. Therefore the sum of a pair

of numbers in the upper series is not represented in this system. However, we can

37 Musical Proportions at the Basis of Systems of Architectural Proportion both. . . 553



expand the system by doubling the numbers in the lower series to obtain a third Pell

series,

2 4 10 24 58 . . .
1 3 7 17 41 . . .
1 2 5 12 29 70 . . .

ð37:9Þ

Notice that the additive properties and the mean relationships continue to hold,

in addition to the approximation to the √2 gotten by taking the ratio between any

term and its diagonally adjacent term from the series above it. This can of course be

continued ad infinitum, as indicated by the dots in Series (37.9).

The Roman system of architecture uses the following infinite sequence of

θ-series equivalent to Series (37.9):

This system continues to exhibit all additive relationships of Series 9 and the

exact mean relationships exhibited by Fig. 37.2. Donald and Carol Watts have

studied the ruins of the Garden Houses of Ostia, the port city of the Roman Empire,

and found that they are organized entirely by the proportional system of Table 37.1

or its integer approximation, Series (37.9) (Watts and Watts 1986: 132–140).

The Geometry of the Roman System of Proportions

The algebraic properties of the Roman system of proportion can be made palpable

by considering the equivalent geometric properties. We shall find that three

rectangles of proportions 1: 1 (square—S), 1: √2 (square root rectangle—SR) and

1: 1 + √2 (Roman rectangle—RR) form an interrelated system. For example, if S is

either removed or added to SR, this results in RR, as Fig. 37.3a illustrates. This is

equivalent to Properties 2 and 3. That 2S + RR ¼ RR is equivalent to Property I

(Fig. 37.3b). Finally, if SR is cut in half it forms two SR at a smaller scale

(Fig. 37.3c), while two SR added together form an enlarged SR (see Fig. 37.3d)

as predicted by the doubling property of Series (37.9).

The key to understanding the Roman system of proportions is a geometrical

construction called the “sacred cut” by the sacred geometer Tons Brunés (Brunés

1967). When the compass point is placed at the vertex of a unit square, and an arc is

swept out as shown in Fig. 37.4a, the edge is reduced by a factor of 1/√2, the sacred
cut. If four sacred cuts are drawn from the corners of the square and points of

section on the edges are joined, a regular octagon results as shown in Fig. 37.4b.

The four sacred cuts also divide the square into four S at the comers, one larger

central S, two SR, and two RR (Fig. 37.5). Donald and Carol Watts (1986) have

discovered a tapestry preserved from the ruins of the Garden Houses of Ostia

organized according to the pattern of Fig. 37.5; other, later designs featuring the

sacred cut appear in the Baptistery of Florence (Williams 1994).

The computational properties of the Modulor and the Pell series are also the

result of the “law of repetition of ratios,” well known in the Renaissance and
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revived by Jay Hambidge as the key to his concept of dynamic symmetry.2 To

illustrate this law, draw a diagonal to a rectangle and intersect it with another

diagonal at right angles as shown in Fig. 37.6a. This subdivides the original

rectangle or unit (U), of proportions a: b, into a rectangle referred to as gnomon

(G) and a similar unit of proportions (U) (Fig. 37.6b) b: c, i.e.,

a=b ¼ b=c and Gþ U ¼ U ð37:10Þ

This has the effect of reproducing ratios in a rectangle just as the insertion of

Table 37.1 The Roman system of proportions based on θ ¼ 1 + √2

2√2 2√2θ 2√2θ2 2√2θ3 2√2θ4 . . .

2 2θ 2θ2 2θ3 2θ4 . . .

√2 √2θ √2θ2 √2θ3 √2θ4 . . .

1 θ θ2 θ3 θ4 . . .

Fig. 37.3 The square (S), square root rectangle (SR), and the Roman rectangle (RR) are

interrelated

2 For studies of dynamic symmetry, see Hambidge (1967, 1979) and Edwards (1967).
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arithmetic and harmonic means did within the octave for the musical scale (see

Series 37.1).

This process can be repeated many times to tile the unit with “whirling

gnomons” and one additional unit

U ¼ Gþ Gþ Gþ . . .þ U,

as shown in Fig. 37.6c. We see that the vertices of the gnomons trace a logarithmic

spiral.

In Fig. 37.7 this procedure is applied to a square root rectangle. We see that the

gnomon equals the square and SR is subdivided into two SR. However, this

construction also possesses a second important geometrical relationship well

known to ancient geometers. Notice the upward and downward pointed triangles

in Fig. 37.7. It can be shown that for any rectangle, the intersection of such triangles

with the diagonals of the rectangle result in a trisection of the length and width of

the rectangle (see Fig. 37.8). As a result, the law of repetition of ratios not only

1

1
2

a b

Fig. 37.4 (a, left) The sacred cut reduces a length by a factor of 1/√2; (b, right) four sacred cuts

form the vertices of a regular octagon. Image: author

Fig. 37.5 Subdivision of a square by four sacred cuts into squares (S), square root rectangles (SR),

and Roman rectangles (RR). Image: author
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bisects but also trisects SR. The beautiful design in Fig. 37.9 captures these

relationships.3 In the next section we shall show that these twin relationships lay

at the basis of the architecture of the Medici Chapel as uncovered by KimWilliams.

Relationship Between the Roman System and the System

of Musical Proportions

Since the time of the Greeks, there has been a tension in architecture and design

between the use of commensurate and incommensurate lengths, i.e., lengths

governed by rational or irrational numbers. It was Pythagoras who, it is said, first

Fig. 37.6 (a, b) The “law

of repetition of ratios”

divides a unit rectangle into

a gnomon and proportional

unit; (c) a series of whirling

gnomons form a

logarithmic spiral. Image:

author

3 This design appears in Edwards, Design with Dynamic Symmetry, Fig. 16, p. 25.
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Fig. 37.7 Application of

the law of repetition of

ratios to a square root

rectangle. Image: author

Fig. 37.8 Trisection of (a)

length; and (b) width of a

rectangle. Image: author
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discovered that the ratio of the diagonal to the side of a square was

incommensurable, i.e., no finite multiple of one equalled a multiple of the other.

On the one hand, incommensurable ratios were distressing since they did not fit the

model that the Greeks had of number (Kappraff 1990: 16–20). On the other hand,

they were easily constructible with compass and straightedge and had interesting

geometric properties, some of which have been outlined in this chapter. Although

incommensurable measurements were equally incomprehensible from a number

theoretic point of view to architects of the Italian Renaissance such as Alberti,

Wittkower says:

Medieval geometry (with its use of incommensurable ratios such as 1:√2 or 1:√5) is no
more than a veneer that enables practitioners to achieve commensurable ratios without

much ado (Wittkower 1971: 127).

Architect Kim Williams believes that one function of the system of musical

proportions may have been to integrate the Roman system of proportions based on

the incommensurable ratio √2: l with the commensurable ratios at the basis of the

musical scale. Williams made these discoveries while surveying the famous Medici

Chapel in Florence built by Michaelangelo (Williams 1997) (Fig. 37.10a).

The ground plan of the chapel is a simple square in plan with a rectangular apse,

called a scarsella, added to the north end as shown in Fig. 37.10b. The sides of the

square which form the main space of the chapel measure 11.7 m. The vertical height

of the chapel walls measure 11.64 m, suggesting that the main space of the chapel

was meant to be a cube. The overall perimeter of chapel and apse fits into a √2
rectangle. Williams recognized that a √2 rectangle is embedded in a cube as the

rectangle formed by any pair of opposite edges. Thus the volume of the chapel and

the shape of the ground plan are intimately related.

A second √2 rectangle is found in the chapel in the ensemble of the altar and the

scarsella. Williams makes the important point that the altar protrudes into the

Fig. 37.9 A design based

on two intersecting square

root rectangles after Edward

B. Edwards
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Chapel to the extent that the ratio of the distance between the face of the altar and

the opposite wall to the width of the chapel is 8:9, the ratio of the musical whole

tone. Other dimensions within the chapel were derived from a combination of

application of the law of repetition of ratios and the method of trisection

illustrated in Fig. 37.8. The method of trisection is itself a means of generating

the musical ratios. For example, Fig. 37.11 illustrates how this construction was

used by the Renaissance architect Serlio to proportion the portal of a church. Notice

the key ratio 1:2 (octave) in the proportion of the door and the ratios 2:3 (fifth) and

1:3 (fifth above an octave) in the positioning of the door.

As we saw in the last section, when the law of repetition of ratios is applied to the

1:√2 rectangle, it results in a gnomon equal to the original unit, i.e. the rectangle is

divided into two similar √2 rectangles. If this construction is repeated, a sequence of
√2 rectangles is formed with dimensions in the ratio of 1:2, 1:4, 1:8, . . . in

Fig. 37.10 (a) Interior of

the Medici chapel. Photo:

Kim Williams (b) Plan of

the Medici chapel.

Drawing: Kim Williams
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comparison to the original. These ratios are the ones generated by the factors of 2 in

Plato’s lambda.

To demonstrate the geometric system in the Medici chapel, Williams

constructed a √2 rectangle with dimensions 27 x 27√2, as shown in Fig. 37.12.

By the trisection construction, the intersection point of BJ with diagonal AK is the

vertex C of another √2 rectangle with side CD, 2/3 of 27 or 18. The construction is

repeated to yield a family of √2 rectangles with short sides 27, 18, 12, 8 . . . The law
of repetition of ratios creates another sequence of √2 rectangles beginning with long
side 27 and proceeding to 18, 12, 8 . . . As is evident from Fig. 37.12, the ascending

series: 4, 6, 8, 9, 12, 18, 27 inherent in this construction is obtained. These numbers

are recognized as being components of the musical proportions of Fig. 37.2 derived

from Plato’s lambda. Furthermore, geometric series were considered to be

proportional systems par excellence, with regard to Renaissance architecture. It

was stated by Alberti, “The geometrical mean is very difficult to find by numbers

but it is very clear by lines, but of those it is not my business to speak here” (Alberti

1755: 200).

Williams supplies the demonstration that length BC is the geometric means of

AB and CD, i.e., BC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27� 18
p

. In a similar manner, the zig-zag path AB, BC,

CD, DE, EF, FG, GH, . . . yields a geometric series with common ratio
ffiffi

2
3

q

and

another sequence of √2 rectangles beginning with the rectangle with sides BC:

CK ¼ 1:√2.
Choosing a key dimension of the chapel, 3.52 m, which is the overall width of

the lateral bays from perimeter wall to the far edge of the pilaster, and using this as

the value for side GK of the diagram, Williams found that the other proportional

lengths generated in Fig. 37.11 corresponded with other dimensions which appear

in the chapel. For example side EM, calculated at 4.31 m, corresponds to the clear

width between pilasters of the scarsella, which actually measures 4.33 m, with a

deviation of only 0.46 %. Making this the long side of a √2 rectangle, its short side,
EF, is found to be 3.048, which corresponds to the dimension of half of the

rectangle mentioned previously as circumscribing the ensemble of scarsella and

Fig. 37.11 Construction of

a door using the method of

trisection. From Serlio’s

first book. Image: Author,

after Wittkower (1971:

127, Fig. 10)
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altar, deviating by only 0.9 % from the measured dimension of 3.02 m. The altar

completely fills the other half of the √2 rectangle, and likewise measures 3.02 m.

Work by historian Guglielmo De Angelis D’Ossat has revealed proportions in

vertical elements of the chapel which, like the ground plan dimensions, may be

seen in relation to the repeated trisection of the √2 rectangle. In a diagrammatic

analysis of the portal found in each of the lateral bays of the chapel, he points out

the ratios 1:2, 1:3, and 2:3. He has also found the ratio 1:2.4, which will be

recognized as the proportions of the Roman rectangle (D’Ossat 1984: 189 and

Fig. 190). This indicates that all the elements of the chapel were designed with

regards to a comprehensive proportional system, and geometric series and musical

proportions appear to have been the means of unification for all dimensions of the

architecture.

Ehrenkrantz’s System of Modular Coordination

In recent times, the architect Ezra Ehrenkrantz created a system of architectural

proportion that incorporates aspects of Alberti’s and Palladio’s systems made up of

lengths factorable by the primes 2, 3, and 5, along with the additive properties of

Fibonacci series. To picture this system requires a three dimensional coordinate

system as shown in Fig. 37.13. As a number moves from left to right, in the X

direction, it doubles in value. As a number moves from back to front, in Z direction,

the number triples in value. The sum of two numbers in the vertical, or Y direction,

equals the next number in the series. Also notice that the upper edge of Plate 1 and

the upper left corner points of Plates 1, 2, and 3 of Fig. 37.13 recreate Plato’s

lambda. The lambda along with the Fibonacci series 1, 2, 3, 5, 8 that comprises the

first column of Plate 1 provide the boundary conditions upon which all other

numbers of Fig. 37.13 are generated. The Fibonacci series is truncated at

8 because the next number of this series, 13, is a prime number other than 2, 3,

and 5.

Fig. 37.12 Derivation of

the proportions of the

Medici Chapel. Drawing:

Kim Williams
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This system is successful at providing the architect with standard lengths that

insure many possibilities for the subdivision of any length that appears in Fig. 37.14

For lengths up to 144 in., 35 dimensions are available, 20 of which are greater than

2 ft. Of course, dimensions which do not appear in Fig. 37.14, such as 99 in., can be

created as the sum of elements from the figure, e.g. 99 ¼ 27 + 45 + 27. However,

compare all the possibilities for creating 96, a number from the figure, with 99 a

number not in the figure. Figure 37.15 shows that there are 11 possible summations

for 96 as compared to only two for 99.

According to Ehrenkrantz, and referring to Fig. 37.13:

This system helps to coordinate dimensions which may come from different base modules

and therefore be normally considered incompatible. More directly, if one wishes to use

multiples of 3 in. with those of 4 in., one can move to the right on the X axis from 3 in. and

backwards on the Y axis from 4 in. They intersect at 12 (Plate 2, Column C) and all the

numbers below, to the right, or behind 12 are multiples of both 3 in. and 4 in., i.e., foot

intervals. Multiples of other base dimensions may be related in a like manner (Ehrenkrantz

1956).

Conclusion

We have discussed a series of relationships inherent in the musical scale well

known to the Greeks and even more ancient civilizations, and we showed that

they form the basis of three successful systems of proportionality (in addition to the

Modulor of Le Corbusier not discussed here): a system used by Alberti and other

Renaissance architects, the system of proportions used by the Romans, and a system

of modular coordination of Ezra Ehrenkrantz. These systems ensure a repetition of

key ratios, and possess properties related to the musical scale, while the latter two

systems provide for additive properties that enable designs to be carried out in

Fig. 37.13 Image: author
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which the whole equals the sum of its parts. These systems can also be expressed in

terms of integers to facilitate their use.
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Chapter 38

From Renaissance Musical Proportions

to Polytonality in Twentieth Century

Architecture

Radoslav Zuk

Introduction

The predilection of Renaissance architects and theorists for proportional systems

based on consonant musical intervals is well known to scholars of that period. For

those who do not have the opportunity to peruse the relevant treatises and to

measure exemplary buildings, the writings of Rudolf Wittkower, and especially

his seminal Architectural Principles in the Age of Humanism (1971), published in

the middle of the past century, provide a most helpful guide. In the chapter entitled

The Problem of Harmonic Proportion in Architecture, Wittkower summarizes the

principal reasons for this interest and focuses his attention on the writings and

buildings of Leon Battista Alberti and Andrea Palladio, two of the most prominent

and influential Renaissance architects, to provide tangible examples. He refers

specifically to the Pythagorean monochord, by means of which the relationships

between any two consonant sounds can be expressed as whole number ratios, and to

the two Platonic sequences of numbers, traditionally shown in the configuration of a

Lambda, which contains such “consonant” ratios. Wittkower argues that the

Renaissance preoccupation with “harmonic” proportions, that is, specific

relationships of whole number ratios, stemmed from an attempt to reflect in the

built environment the cosmic order which, according to contemporary philosophy,

was based on such proportions and revealed in music (1971: 101–154).

An earlier version of this chapter was published as: Radoslav Zuk, “From Renaissance Musical

Proportions to Polytonality in Twentieth Century Architecture”, pp. 173–188 in Nexus V:
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Towards the end of the chapter Wittkower reviews several instances of the

opposition to an objective architectural design approach, implied by the reliance

on predetermined proportions, a trend which began in the middle of the seventeenth

and continued well into the twentieth century. The subjective attitudes which were

engendered by this opposition moved the revolutionary architect, Le Corbusier, to

comment that “The Greek, the Egyptian, Michelangelo or Blondel employed

regulating lines. . .The man of to-day employs nothing at all. . .But he proclaims

that he is a free poet and that his instincts suffice. . .” (Le Corbusier 1983: 70). The
subsequent rational attitudes of Modernism, which welcomed Wittkower’s findings

(Payne 1994: 339), did not last very long, and the free-for-all design trends that

were ushered in with Post-Modernism continue to the present day. The subjective

and essentially anti-intellectual attitudes in the current design culture are

exemplified not only by the fashionable idiosyncratic contemporary architectural

production, but also by statements of some of its more prominent exponents. This

should not be surprising, as there appears to be little, if any theoretical support for

objective design principles in general, and the music-architecture proportional

parallels in particular. Among the rational objections raised is the lack of a

demonstrable physical proof of optical equivalents to the measurable frequency

ratios of consonant acoustic intervals (Forssman 1973: 35). Branko Mitrović (1993)

points to another area of skepticism, which centers around the issue of metaphysical

or organic interpretations of historical proportional systems.1 However, he

advocates the possibility of an empirical theory of proportion, outside of any

system of reference, but rather based on the study of the great works of the past.

This is exactly what Howard and Longair have undertaken in their brilliant

study, “Harmonic Proportion and Palladio’sQuattro Libri” (1982), albeit within the
limited sample of the nevertheless impressively prodigious work of Palladio. They

examined the length and width dimensions of all the plans illustrated in Book II of

Palladio’s treatise and found that while not all the examined buildings have plans

that correspond fully to musical proportions, there is a significant group of buildings

whose plans are based entirely or almost entirely on harmonic numbers. Among

them are “. . . the Villas Emo, Badoer, Barbaro, Malcontenta and Rotonda.” In their

words, “It can hardly be fortuitous that these are probably the most famous and best

loved of all Palladio’s villas and palaces” (Howard and Longair 1982: 126–127).

That negative attitudes towards objective theories of architecture have existed

not only in the past few centuries, but even in the Renaissance period, is best

illustrated by Alberti’s statement that

. . . there are some who will . . . say that Men are guided by a Variety of Opinions in their

Judgment of Beauty and of Buildings; and that the Forms of Structures must vary according

1 See Mitrović (1993: 67), where he perhaps best summarizes the prevailing attitudes when he

states that “The mystic metaphysical argumentation of the theory of proportion can hardly expect

to find serious supporters nowadays. . .,” or earlier, “. . .who would be prepared today to explain the
beauty of a numerical relationship by analogy with musical intervals, quoting Pythagorean and

Platonist mysticoastrological speculations in support of such a theory?,” and is equally skeptical of

analogies with natural organisms.
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to every Man’s particular Taste and Fancy, and not be tied down to any Rules of Art. A

common Thing with the Ignorant, to despise what they do not understand! (Alberti 1955:

bk. VI, ch. II, p. 113).

Order

Indeed, it is not easy to grasp something, which is essentially transcendental in its

nature—that evasive abstract order that underlies great works of art. It is an order

that is sensed rather than consciously perceived and thus lies beyond easy literal

interpretations. The great twentieth-century architect Louis I. Kahn (1955: 59)

stated: “Order is.” He did not continue to explain. An objective analysis of his

buildings is necessary to identify the elements of that pervasive order. What such an

analysis yields is the distinct coherence and poetry of each of the systems that are

integral to a great work of architecture and of their inventive synthesis in an

inspiring built form.2 Among those systems, the system of geometry and of

concomitant proportions occupies a central position, as has been amply

demonstrated by Klaus-Peter Gast (1998). Earlier in the century a very young Le

Corbusier posed the following question: “What is the rule that orders, that connects

all things?” (Le Corbusier 1954: 26). Later in life he proclaimed that “. . .axes,
circles, right angles are geometrical truths. . . Geometry is the language of man”

(Le Corbusier 1983: 68). Eventually this quest for order led him to spend several

years on developing the well-known system of proportions, the Modulor

(Le Corbusier 1954: 36–38). Although not based entirely on consonant whole

number ratios, but rather on a combination of one of them with the golden ratio

(Zuk 2013: 159), it bears witness to a commitment to objective ordering principles

on the part of a creative genius.

The problem with the acceptance of the musical intervals theory may lie not only

in the lack of an exactly matching physiological analogy, but also in its frequently

narrow interpretation. Limiting the theory to the length to width ratios in isolated

spaces or objects renders only the most basic and potentially banal results. After all,

many works of Western music contain primarily consonant intervals. They are also

those that are often quite ordinary and boring.

Another problem may lie in Wittkower’s legacy of linking the theory almost

exclusively to Platonic cosmological philosophy. In view of the gigantic advances

in scientific knowledge over the past five centuries, this cannot help but generate

skepticism. One may argue, however, that it is the sense of the convincing order

inherent in the mathematical structures underlying and revealed in the relationships

of consonant intervals which has motivated thinkers in various periods of human

evolution to formulate philosophical theories based on them. Such theories may

then have been used to provide legitimacy to what great artists have discovered to

2 The systems structure was mentioned already in Zuk (1983: 3) and explored further in Zuk (1999:

65–67).
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be intrinsic to the essential quality of their art, and thus to establish sanctioned

guidelines for others to follow.

The studies of Howard and Longair suggest that an empirical theory of

proportion does not need to exclude the already known proportional systems that

may have been legitimized by classical philosophy, but rather may confirm their

validity, once a sufficient number of examples is analyzed.

Numerical Relationships

To be meaningful, the comparison between consonant musical intervals and

architectural proportions must be extended beyond the parallel between a single

frequency ratio of two musical pitches and a length-to-width room ratio. An

examination of more complex structures reveals that more comprehensive

comparable relationships are inherent in the systems of musical harmony and

architectural proportions, respectively. The two Platonic Lambda series of

numbers provide a useful starting point, as has been demonstrated by Wittkower.

The series “1, 2, 4, 8” and “1, 3, 9, 27” consist, respectively, of a progression of

geometric means, b : a ¼ c : b, etc. (i.e., 2:1 ¼ 4:2 ¼ 8:4, and 3:1 ¼ 9:3 ¼ 27:9).

Wittkower, quoting Francesco Giorgi, who in turn quotes Ficino’s Commentary to

Plato’s Timaeus, points out that the two series can be filled in by additional

numbers, yielding two additional series “6, 12, 24, 48” and “6, 18, 54, 162”

respectively. Both of these series are also geometric (i.e., 12:6 ¼ 24:12 ¼ 48:24,

and 18:6 ¼ 54:18 ¼ 162:54, respectively). By introducing arithmetic means,

b � a ¼ c � b, and harmonic means, b�a
a ¼ c�b

c , between the two original series

and/or their extensions the same numbers may be obtained (Wittkower 1971: 111).

The extended structure may then be shown as follows:

1 2 4 8 16 32 64 . . .

3 6 12 24 48 . . .

9 18 36 72 . . .

27 54 . . .

81 . . .

The numbers following the arithmetic means are:
3–2 ¼ 4–3; 6–4 ¼ 8–6; 12–9 ¼ 9–6; 12–8 ¼16–12; etc.

The numbers following the harmonic means are:

4� 3

3
¼ 6� 4

6
;

8� 6

6
¼ 12� 8

12
;

12� 9

9
¼ 18� 12

18

36� 27

27
¼ 54� 36

54
; etc:
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The mathematical rigor underlying these relationships is remarkable,

irrespective of whether it reflects a “cosmic order” or not. It may therefore

provide sufficient rational justification for the employment of these numbers for

dimensional relationships in the human environment, with the aim of establishing

an abstract order that is in tune with the logical side of the human mind.

Also, it may still be considered significant that specific ratios within this

structure constitute the mathematical basis for those musical intervals (literally

“distances” between specific musical “pitches,” but actually ratios of frequencies of

sound), which are perceived by human hearing as being pleasant and therefore

referred to as consonant or harmonious. It is a natural phenomenon, rooted in

mathematics, to which not only the human ear but also the human eye, as when

viewing a Palladian villa, responds with delight.

Consonant Ratios

The consonant intervals referred to as Pythagorean or “perfect” are the frequency

ratios of the Unison, 1:1; the Octave, 2:1; the Perfect Fifth, 3:2; and the Perfect

Fourth 4:3 (Backus 1969: 116). As can be seen, they are generated by the first four

numbers of the two Lambda series, 1, 2, 3, and 4. Moreover, the same ratios of other

numbers in the series (e.g., 9, 18, 27 and 36, or 16, 32, 48 and 64) can generate

equivalent intervals.

The phenomenon of the similarity of the acoustical effect of those notes whose

pitches (frequencies) are at the intervals of octaves (e.g., at double, quadruple, half,

quarter, eighth, etc.) of any frequency, has led to the concept of “pitch class.”

Therefore, all such notes are considered to belong to a specific pitch class. Hence,

any interval added to the interval of an octave, or to its double, triple, etc., produces

a similar acoustical effect as the interval itself. Thus the ratio 3:1 (3:2 and 2:1, or

3:2 � 2:1, or the interval of a Perfect Fifth + an Octave), is acoustically similar to a

Perfect Fifth (3:2) alone. Likewise 6:1 (3:2 and 4:1, or 3:2 � 4:1, or the interval of a

Perfect Fifth + two Octaves), is similar to a Perfect Fifth alone. This fact allows the

establishing of relationships equivalent to small number ratios between any of the

respective numbers in the extended Lambda series.

It can be observed that the ratios of the first four numbers, or their multiples,

contained within the extended Lambda series, correspond to the dimensional ratios

for the lengths and widths of “areas” (plans of spaces) recommended by Alberti

around the middle of the fifteenth century in the first, and thus highly influential,

architectural treatise since antiquity, De Re Aedificatoria (Alberti 1955: bk. IX,

ch. VI, pp. 197–199).

These ratios are: three ratios for “short” areas (1:1, 3:2, and 4:3); three ratios for

“intermediate” areas (2:1, 9:4, and 16:9); and three ratios for “long” areas (3:1, 8:3,

and 4:1).

As we have seen, 1:1 is the Unison, 3:2 is the interval of the Perfect Fifth, 4:3 is

the interval of the Perfect Fourth, 2:1 the interval of the Octave, and 3:1 (3:2 and
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2:1) is the interval of the Octave plus the Perfect Fifth, 8:3 (8:6 and 6:3) is the

interval of the Octave plus the Perfect Fourth, and 4:1 (4:2 and 2:1) is the interval of

two Octaves. These are all “perfect” consonant frequency ratios. Two ratios for

“intermediate” spaces are dissonant intervals. 9:4 is the interval of the Major Ninth,

and 16:9 the interval of the Minor Seventh. Wittkower tried to explain this apparent

inconsistency by a non-musical argument. He suggested that Alberti simply added

two consonant intervals to produce these ratios: two Perfect Fifths (9:6 and

6:4—each 3:2) for the 9:4 ratio, and two Perfect Fourths (16:12 and 12:9—each

4:3) for the 16:9 ratio (Wittkower 1971: 116).

But this may have troubled Palladio. He avoided these two ratios when some

120 years later he recommended a similar set of length-to-width ratios for plans of

architectural spaces, in Book I of another highly influential treatise, I Quattro Libri
dell’ Architettura, published in Venice in 1570.

Palladio’s recommended ratios for rectangular plan shapes are: 1:1, 3:2, 4:3, 2:1,

5:3, and √2:1 (or approximately 45:32). Palladio adds also the shape of the circle to

this list (1997: bk I, ch. XXI, p. 57). The first four of these ratios are the same as

those recommended by Alberti. They also contain the first four numbers of the

Lambda series. In musical terms they are all perfect ratios. The circle (the perfect

geometric figure, with a constant diameter) may be seen as the Unison, like the

square (1:1), and can be included in this group of ratios. The √2:1, or diagonal of the
square: the side of the square (1.414:1), is a dissonant musical frequency ratio and

will be dealt with later. The ratio 5:3 will be discussed below.

The complete list of equivalent musical intervals is as follows:

– 1:1 and the circle—the Unison;

– 2:1—the Octave;

– 3:2—the Perfect Fifth;

– 4:3—the Perfect Fourth;

– 5:3—the Major Sixth;

– √2:1 (approximately 45:32)—the Tritone (the Augmented Fourth or the

Diminished Fifth).

Wittkower comments astutely that Palladio’s inclusion of the 5:3 ratio among his

recommended floor plan ratios may have been due to the influence of Ludovico

Fogliano of Modena, who in 1529 asserted in his Musica theorica that the Major

and Minor Thirds, Sixths, Tenths, and Thirteenths are also consonant intervals

(Wittkower 1971: 132–133). The frequency ratios producing what is now referred

to in musical terminology as “just” consonant intervals are:

– 5:4—the Major Third;

– 6:5—the Minor Third;

– 5:3—the Major Sixth;

– 8:5—the Minor Sixth (Backus 1969: 122).

The Major and Minor Tenths and the Major and Minor Thirteenths are the

respective Thirds and Sixths added to Octaves, producing equivalent acoustic
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effects. This follows the principle of pitch class discussed above in reference to

intervals whose ratios are greater than 2:1.

Although Palladio recommends only the 5:3 ratio from among the just intervals,

Wittkower states that he used also 5:4, 6:5, and other ratios, which include the

number 5 in the designs of his buildings (Wittkower 1971: 132). The √2:1 ratio was
and is still technically referred to today as a dissonant interval. So are the ratios 9:8,

9:4 and 16:9, discussed previously.

What may be of interest is to place the number 5 in the mathematical context of

the extended Lambda series. As could be seen, these series are made up of

geometric, arithmetic and harmonic progressions. Another series based on the

progression c ¼ a + b, d ¼ b + c, etc., starting at 1 yields 1, 2, 3, 5, and 8. This

of course is the Fibonacci series, which in higher number ratios approaches the

golden ratio. This (Golden) frequency ratio, 1.618:1, is in its effect quite discordant,

as it falls (not evenly) between the Major and the Minor Sixth. It is not one of the

accepted musical dissonant interval ratios, such as 9:8 or √2:1, which, as will be
seen later, form part of distinct musical structures. However, the first five numbers

of the Fibonacci series, when combined with the Lambda numbers, can readily

yield the just ratios, 5:4, 6:5, 5:3 and 8:5. This can be considered as significant, yet

seems to have been overlooked by Wittkower.

The combined series reads then as follows:

1 2 4 8 16 32 64 . . .

5

3 6 12 24 48 . . .

9 18 36 72 . . .

27 54 . . .

81 . . .

The Fibonacci series numbers are shown in bold in the above diagram. The new

number is 5 and if it were extended into an arithmetic series (shown also in bold),

the beginning of the combined new structure would look as follows:

1 2 4 8 16 32 64 . . .

5 10 15 20 25 . . .

3 6 12 24 48 . . .

9 18 36 72 . . .

27 54 . . .

81 . . .

The significance of the musical implications of the proportional relationships

between the following numbers in the modified Lambda series above—1, 2, 3, 4, 5,

6, 8, 9, 12, 15, 16—lies in the fact that they constitute the basis for the system of

tonal harmony.
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Tonal Harmony

In describing the system of tonal harmony the eminent musicologist, Donald Jay

Grout, states:

That system was the major-minor tonality. . .in the music of the eighteenth and nineteenth

centuries: all the harmonies of a composition organized in relation to a triad on the key note

or tonic supported primarily by triads on its dominant and subdominant. . . This particular
tonal organization had long been foreshadowed in music of the Renaissance, especially that

written in the latter half of the sixteenth century. Rameau’s Treatise on Harmony (1722)

completed the theoretical formulation of the system. . . (Grout 1980: 303).

Actually, in spite of the revolutionary twentieth century explorations of

alternative harmonic structures, the use of the tonal system or of its modified

versions is still very much present today. According to the prominent composer

and theorist, Walter Piston, even the “twelve-tone” system, which represents an

extreme departure from the tonal system, “. . .as well as almost all music intended to

be atonal, that is without a key, comes sooner or later to be heard tonally” (Piston

1962:336).

Grout refers to “triads.” A triad is a formation consisting of three notes

(frequencies) in a specific relationship of two adjacent intervals of “thirds.”

(Triads are thus specific chords, a chord being a formation of three or more

simultaneously sounding notes). The lowest note (frequency) of a triad is referred

to as the “root,” the middle note as the “third,” and the highest as the “fifth,” of the

respective chord.

The triad whose root is in the relationship of the intervals of a Perfect Fifth (3:2)

and of a Perfect Fourth (4:3), to the roots of two other triads, respectively, becomes

the defining chord of a “key” or “tonality.” This root note is referred to as the

“key-note” or “tonic,” the other two as the “dominant” and the “subdominant,”

respectively. The three triads are also similarly referred to as the Tonic, the

Dominant, and the Subdominant of a Tonality. Between them these three triads

contain all the seven basic notes (frequencies) of a Key or Tonality. The sequence

of ascending frequencies of these notes is referred to as a “diatonic scale.” Each of

the seven notes is also a potential root for each of the seven triads belonging to the

respective tonality. This includes the already familiar principal Tonic, Dominant

and Subdominant triads, as well as four secondary triads.

The sequence of notes in an ascending Diatonic Scale helps to explain the

designation of musical intervals as, for example, a Fourth or as a Fifth. Since the

root of the Tonic triad is also the first note (or “degree”) of a Tonality, the nearest

higher (frequency) note in the scale is the Second, the one after that, the Third, and

thus the Fourth, the Fifth, the Sixth, the Seventh, and then the Octave follow.

The above description is based on frequencies within an Octave. As was already

pointed out, similar patterns pertain at double or other exponential frequencies.

Hence, the accepted designation of a note frequency by a letter (for example, C, F,

A-flat, etc.) is maintained for the double, the half, or the quadruple of that

frequency.
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As this discussion is meant only to introduce the complex realm of tonal music at

the most basic level, the “chromatic” scale, which yields twelve notes in an Octave,

as well as the “enharmonic” tonalities, will not be discussed here. The twelve Major

and twelve Minor tonalities (and their variants), which are based on these twelve

notes and which bring the total of diatonic tonalities to twenty four, will be dealt

with briefly below.

Taking into account the various ratios inherent in the modified Lambda series

one can observe their striking coincidences with several of the following structuring

musical phenomena.

Scales

The degrees of a Diatonic Scale are determined by the intervals between the Tonic

(Keynote) and the respective notes, and thus by the relevant frequency ratios. These

degrees will be designated here by Roman numerals, I, II, III, IV, etc. It should be

noted that some degrees may form either a “major” or a “minor” interval with the

Tonic, depending on whether it is in a Major or in one of the variants of a Minor

tonality, and the designations + (¼ Major) and � (¼ Minor) will be used

accordingly. The corresponding degrees, intervals and ratios are shown in

Tables 38.1, 38.2, 38.3, and 38.4.

In the Natural Minor Scale, the degrees of the ascending and the descending

versions are identical and follow the pattern of the descending Melodic Minor scale

shown in Table 38.4.

A diatonic scale can be constructed also with mathematical “means.” The

importance of considering means here lies in the fact that they deal with three

quantities that are combined in very distinct structured patterns. Of crucial

importance are the means of the intervals of Fifths, as they generate triads, the

basic harmonic structural elements of the tonal system.

Triads

As was already mentioned, the Tonic, the Dominant, and the Subdominant triads

contain between them all the seven basic notes of a tonality. The Tonic chord (triad)

contains the following three degrees of a tonality, starting from the lowest to the

highest (frequency): I, III, V; the Dominant: V, VII, II; and the Subdominant, IV,

VI, and I.

Each of the secondary triads contains also three of the seven basic notes of a

tonality, at intervals of thirds. The specific notes of each of these chords are

determined by the position of the root of the respective chord with respect to the

Tonic. Thus the Supertonic triad contains (in ascending frequencies), II, IV, VI; the
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Mediant triad, III, V, VII; the Submediant triad, VI, I, III; and the Leading Note

triad, VII, II, and IV.

Depending on whether the above chords belong to a Major or a Minor Tonality,

some of them will be “major,” others “minor,” and others still, “diminished,” or

Table 38.1 Major scale Degree Designation Interval Ratio

I Tonic Unison 1:1

II+ Supertonic Major Second 9:8

III+ Mediant Major Third 5:4

IV Subdominant Perfect Fourth 4:3

V Dominant Perfect Fifth 3:2

VI+ Submediant Major Sixth 5:3

VII+ Leading note Major Seventh 15:8

I Tonic Octave 2:1

Table 38.2 Minor scale

(Harmonic)
Degree Designation Interval Ratio

I Tonic Unison 1:1

II+ Supertonic Major Second 9:8

III� Mediant Minor Third 6:5

IV Subdominant Perfect Fourth 4:3

V Dominant Perfect Fifth 3:2

VI� Submediant Minor Sixth 8:5

VII+ Leading note Major Seventh 15:8

I Tonic Octave 2:1

Table 38.3 Minor scale

(Melodic—ascending)
Degree Designation Interval Ratio

I Tonic Unison 1:1

II+ Supertonic Major Second 9:8

III– Mediant Minor Third 6:5

IV Subdominant Perfect Fourth 4:3

V Dominant Perfect Fifth 3:2

VI+ Submediant Major Sixth 5:3

VII+ Leading note Major Seventh 15:8

I Tonic Octave 2:1

Table 38.4 Minor scale

(Melodic-descending)
Degree Designation Interval Ratio

I Tonic Unison 1:1

II+ Supertonic Major Second 9:8

III– Mediant Minor Third 6:5

IV Subdominant Perfect Fourth 4:3

V Dominant Perfect Fifth 3:2

VI– Submediant Minor Sixth 8:5

VII– Subtonic Minor Seventh 9:5

I Tonic Octave 2:1
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“augmented” (one only) triads. This depends on the interval between the degree of

each of the two upper notes in the respective chord and the degree of its root.

The Major triad consists of three notes which are produced by the arithmetic

mean of the interval of the Perfect Fifth (3:2): 6:5:4; that is, the interval between the

root and the third of the chord is a Major Third (5:4), and between the third and the

fifth of the chord, a Minor Third (6:5).

The Minor triad consists of three notes which are produced by the harmonic

mean of the interval of the Perfect Fifth (3:2): 15:12:10; that is, the interval between

the root and the third of the chord is a Minor Third (6:5), and between the third and

the fifth of the chord, a Major Third (5:4).

The Diminished triad consists of three notes which are produced by the

geometric mean of the interval of the Diminished Fifth (Augmented Fourth),

called also the Tritone, (√2:1): approximately 45:38:32; that is, the interval

between the root and the third of the chord is a Minor Third (approximately 6:5),

and between the third and the fifth of the chord, also a Minor Third (approximately

6:5). The interval of the Tritone is produced by the geometric mean of the Octave

(64:45 ¼ 45:32, approximately).

The Augmented triad consists of three notes which are produced by the

geometric mean of the interval of the Augmented Fifth (Minor Sixth)

(8:5)—approximately 32:25:20; that is, the interval between the root and the third

of the chord is a Major Third (5:4), and between the third and the fifth of the chord,

also a Major Third (approximately 5:4).

The four types of triads—Major, Minor, Diminished and Augmented—are

distributed among the seven degrees of the Major, and of the three variants of the

Minor, tonalities as shown in Tables 38.5, 38.6, 38.7, and 38.8.

Inversions

Because of the phenomenon of pitch class, the “third” and the “fifth” (note) of a

triad, each belonging to its own respective pitch class, can be disposed at intervals

of one, or more, octaves above or below their original position in relation to the root

of the respective triad, and still maintain the harmonic character of the resulting

chord. Placing these notes an octave, or more, “higher” (at a higher frequency)

maintains the original interval, with the interval of one octave, or more, added with

respect to the root. Placing them one octave, or more, “lower” and thus below (the

frequency of) the root also maintains the harmonic character, or technically

“function,” of the new chord, but introduces new intervals between the three

notes. The latter new positions are called “inversions.”

Thus, a First Inversion occurs when the third of a triad is lowered by (the interval

of) an octave to become the “bass” (lowest frequency) note of the new chord. The

interval between it and the root (now above) is a Minor Sixth (the ratio of 8:5) in a

Major triad, and a Major Sixth (the ratio of 5:3) in a Minor triad. When the fifth of

the triad is also lowered by an octave, the interval between it and the root (above) is
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a Perfect Fourth (the ratio of 4:3) in both a Major and a Minor triad. The interval

ratios within the latter two chords are thus 8:6:5 in a Major chord, and 20:15:12 in a

Minor chord, respectively. Similarly, a Second Inversion occurs when the fifth of a

triad is lowered by an octave to become the bass note of the new chord. As above,

the interval between it and the root is a Perfect Fourth (4:3). When the third of the

triad remains in its original position, the interval ratios within the new chords are

5:4:3 in a Major chord, and 24:20:15, in a Minor chord, respectively.

Table 38.5 Major key

(Tonality)
Root degree Designation Type Ratios

I Tonic Major 6:5:4

II+ Supertonic Minor 15:12:10

III+ Mediant Minor 15:12:10

IV Subdominant Major 6:5:4

V Dominant Major 6:5:4

VI+ Submediant Minor 15:12:10

VII+ Leading Note Diminished 45:38:32

Table 38.6 Minor key—

harmonic
Root degree Designation Type Ratios

I Tonic Minor 15:12:10

II+ Supertonic Diminished 45:38:32

III– Mediant Augmented 32:25:20

IV Subdominant Minor 15:12:10

V Dominant Major 6:5:4

VI– Submediant Major 6:5:4

VII+ Leading Note Diminished 45:38:32

Table 38.7 Minor key—

melodic (ascending)
Root degree Designation Type Ratios

I Tonic Minor 15:12:10

II+ Supertonic Minor 15:12:10

III– Mediant Augmented 32:25:20

IV Subdominant Major 6:5:4

V Dominant Major 6:5:4

VI+ Submediant Diminished 45:38:32

VII+ Leading Note Diminished 45:38:32

Table 38.8 Minor key—

Melodic (descending) and

natural

Root degree Designation Type Ratios

I Tonic Minor 15:12:10

II+ Supertonic Diminished 45:38:32

III� Mediant Major 6:5:4

IV Subdominant Minor 15:12:10

V Dominant Minor 15:12:10

VI� Submediant Major 6:5:4

VII� Subtonic Major 6:5:4
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Inversions of a diminished triad (within an octave) produce combinations of

related intervals; that is, of an Augmented Fourth (√2:1, or approximately 45:32)

and a Minor Third (6:5), the latter being the approximate geometric mean of the

first. The First Inversion gives the interval ratios of approximately 54:38:32, and the

Second Inversion, the interval ratios of approximately 54:45:32 within the resulting

chords, whose extreme notes are at the interval of a Major Sixth, or in the ratio of

approximately 5:3.

Inversions of an augmented triad (within an octave) produce the same interval

relationships as in the original chord. Since the latter consists of two Major Thirds

(5:4), the remaining interval within the Octave is a Diminished Fourth (also 5:4),

and thus the inversions consist of two acoustically, although not “functionally,”

equal intervals; that is, a Major Third and a Diminished Fourth, within the resulting

chords, whose extreme notes are at the interval of an Augmented Fifth (acoustically

equivalent to a Minor Sixth, or in the ratio of 8:5).

Tonal and Polytonal Composition

The great variety of chords and of their inversions within any one tonality offer

endless possibilities of their combinations, even within the rather strict rules as

regards their structure and sequence. Structured motion from one tonality to

another, called “modulation,” provides further opportunities of harmonic variety

and is a mark of compositional sophistication. The ability of composers to deal

creatively with this material and with its underlying structural principles has thus

resulted in the extraordinary harmonic richness of the great works of the late

Renaissance, Baroque, Classical and the Romantic periods of Western music.

At the beginning of the twentieth century the tonal system of harmony reached, it

seemed, the end of its evolution. Various new compositional approaches were

initiated, among them that of “polytonality.” In this harmonic organization two or

more distinct tonalities operate at the same time, hence the terms “bitonality” and

“polytonality,” respectively. Since each of the concurrent tonal systems maintains

its own harmonic structure (series of chords), the ear may be in a position to

perceive the inherent order of each, and thus the apparent conflict and the

concomitant dissonances can be mitigated, while a new complex composite order

emerges.

Several prominent composers have used this technique, such as Darius Milhaud,

Bela Bartok, and probably the most influential among them, Igor Stravinsky, who

applied it in several of his major works. Examples from two works by this

undisputed master may provide illustrations of possible combinations of chords

belonging to different tonalities. The first is the notorious—and, for its time (1911),

shocking—dissonant sound of two superimposed Major triads, the dissonant

interval of the Augmented Fourth (√2:1) apart, the lower one in its First

Inversion, from the ballet Petrushka. The second example can be found at the
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end of the Symphony of Psalms (1931). It shows chords from two Major tonalities

whose separating interval is the consonant interval of a Minor Third (6:5).

“Tonal Harmony” in Architecture

Since architecture is a volumetric entity, its geometric definition involves three

dimensions. Bringing the length, width and height of individual spaces, of total

buildings, and even of smaller architectural components, into optimal harmonic

relationships may be thus considered as an essential design challenge. Alberti and

Palladio seem to have been aware of that, and made recommendations for

determining proportional dimensions for heights of spaces. Among them were the

arithmetic, geometric, and harmonic means between the lengths and widths of the

plans of such spaces. For square spaces, Palladio recommended the ratio of

4:3 between the height and the length (width) (Alberti 1955: bk. IX, ch. VI,

pp. 199–200; Palladio 1997: bk. I, ch. XXIII, p. 58).

Following these recommendations interesting comparisons can be made. Taking

Alberti’s preferred length-to-widths ratios, distinct length-to-height-to-width

proportions can be obtained (Table 38.9), while Palladio’s recommended floor

plan ratios can yield a substantially different set of spatial proportions

(Table 38.10).

As can be seen the length-to-height-to-width (L:H:W) proportions in both charts

show some striking parallels to the interval relationships in chords which form the

constituent parts of musical structures. Table 38.10 shows also the evolution of

Palladio’s proportions beyond those of Alberti, in relation to the developments in

tonal harmony. Proportions based on Palladio’s recommended horizontal ratios,

other than those related to the Unison, the Perfect Fourth, and the Octave, are

equivalent to triads (or their inversions, in one case) with which either a Major or a

Natural Minor tonality could be fully constructed.

“Tonality” and “Polytonality” in Architecture

While direct analogies can be drawn between the frequency ratios of a musical

chord and the dimensional ratios of a single architectural space, the differences in

the intrinsic nature of the realms of sound and of space may preclude such exact

analogies when larger harmonic structures of musical works and the proportional

structures of entire buildings are compared.

However, when it is considered that a meaningful architectural experience

involves movement from space to space, a broad comparison can be made

between such an experience and the experience of a musical composition, where

a sequence of varied harmonic events (chords) is revealed to the listener. As in

music, where the imaginative and judicious selection of these events and their
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structured relationships become a measure of the ultimate success of a work, so in

architecture, the specific proportions of the component spaces and their

interrelationships (not in a predetermined sequence as in most musical

compositions, but in a variety of possible sequences) may determine decisively

the inherent quality of a building or group of buildings.

A conjecture can be made that when such spaces are aligned orthogonally, then

their proportional relationships may be compared to those of musical chords, which

belong essentially to one tonality. Likewise, a building, a group of buildings, or

even entire cities, where the architecture is experienced as a series of spatial events

revealed in sequences that follow distinct changes in direction, may be considered

to be similar to compositions that exhibit a high degree of “modulation,” that is,

movement to and from other tonalities.3

A work of architecture where the spaces and/or volumes intersect at distinct

angles, and are therefore experienced simultaneously, may be compared to a

polytonal composition where the superimposition of two or more chords

belonging to two (or more) respective tonalities is determined by a distinct

interval or intervals. In such buildings two or more proportional systems are also

superimposed at a distinct angle or angles (Zuk 1986).

Table 38.9 Proportions derived from Alberti’s preferred ratios

Plan ratio Length Width Mean Height L:H:W Music equivalent

1:1 1 1 Any mean 1 1:1:1 Unison

3:2 6 4 Arithmetic 5 6:5:4 Major triad

3:2 15 10 Harmonic 12 15:12:10 Minor triad

4:3 8 6 Arithmetic 7 8:7:6 None

2:1 4 2 Arithmetic 3 4:3:2 Perfect Fourth and Perfect Fifth

9:4 9 4 Geometric 6 9:6:4 Two Perfect Fifths

16:9 16 9 Geometric 12 16:12:9 Two Perfect Fourths

3:1 3 1 Arithmetic 2 3:2:1 Perfect Fifth and Octave

8:3 8 3 Fibonacci 5 8:5:3 Minor Sixth and Major Sixth

4:1 4 1 Geometric 2 4:2:1 Two octaves

Table 38.10 Proportions derived from Palladio’s preferred ratios

Plan ratio Length Width Mean Height L:H:W Music equivalent

Circle 1 1 Any mean 1 1:1:1 Unison

1:1 3 3 Not a mean 4 3:4:3 Perfect Fourth (special)

3:2 6 4 Arithmetic 5 6:5:4 Major triad

3:2 15 10 Harmonic 12 15:12:10 Minor triad

4:3 8 6 Arithmetic 7 8:7:6 None

2:1 4 2 Arithmetic 3 4:3:2 Perfect Fourth and Perfect Fifth

5:3 5 3 Arithmetic 4 5:4:3 Major triad, second inversion

√2:1 45 32 Geometric 12 45:38:32 Diminished triad

3An attempt at a possible interpretation of modulation in architecture was made in Zuk (2003).
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Assuming that several spaces within an architectural project will follow an

orthogonal alignment within one or the other (or more) of its principal underlying

“tonal” proportional systems, the “polytonal” proportional superimpositions can be

extended to other spaces, and in fact, to an entire building, and even beyond, to the

larger urban or rural environment. When each of these systems is of a highly

coherent order, and the angle or angles of the superimposition are judiciously

chosen, a convincing complex composite geometric order can result.

Since new dimensional ratios are produced in spaces where non-orthogonal

juxtapositions of the main proportional systems occur, the character of the

resulting totality will depend on both the nature of each of the component

proportional systems, as well as on the angle(s) of the super-imposition(s) of

these systems.

The geometric shifts in Le Corbusier’s Carpenter Center for Visual Arts at

Harvard University may be considered to represent a “polytonal” spatial

composition. The angled deviation of the principal orthogonal building block

from the urban grid and thus from the alignment of the adjoining orthogonal

buildings exhibits a “bitonal” juxtaposition of two clearly articulated proportional

systems (geometric grids). The straight portions of the two protruding,

geometrically distinct, rounded major building components deviate at two

different angles from the main block and thus imply two more “tonalities.” The

various angles of the ramp, even if the latter is relatively small in scale, contribute

further to the “polytonal” richness of this twentieth century masterpiece (Sekler

1978: 345–357).

Richard Meier’sMuseum f€ur Kunsthandwerk in Frankfurt offers another striking
example of a sophisticated geometric superimposition. Two orthogonal grids

intersect within the building at a distinct angle, which also has its reference in the

larger urban context. Thus the walls of the interior courtyard, of the main ramp, of

the crosswalk and of the café terrace deviate clearly from the prevailing geometry

of the main body of the building, which is based on a square. Series of spaces of

“bitonal” dissonance result, but the underlying rigor of each of the two principal

proportional grids mitigates the “dissonant” and potentially disturbing effects and

allows for a complex yet ordered work of architecture to emerge (Klotz and Krase

1985: 124–126).

These and a number of similar twentieth century projects demonstrate that the

dynamism of the current aesthetic preference for geometric shifts and collisions in

the built environment, which have their justification in the reality of the prevailing

complexities in most spheres of human existence, can be revealed in rich and

apparently discordant, yet ultimately coherent spatial compositions. Thus, instead

of the arbitrary, idiosyncratic, decorative and shallow twists displayed in the

configurations of many recent, popularly promoted buildings, equally

imaginative, but deeply rooted in the underlying proportional order and therefore

inherently profound, geometric structures can result. If other component systems of

architectural built form of such a project are also of comparable coherence, then a

truly great work of architecture can be achieved.
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Chapter 39

Quasi-Periodicity in Islamic Geometric

Design

Peter Saltzman

Islamic Geometric Design

It is a commonplace assertion that Islamic cultures share the world’s oldest and most

sophisticated living tradition of geometric ornamental design. Ever since Jules Goury

and Owen Jones completed their monumental book on the Alhambra (1842–1845)

and Jules Bourgoin published his classic work on Islamic designs (Bourgoin 1879),

Western interest in Islamic geometric design has continued unabated.

Symmetry and Its Discontents

In addition to its aesthetic merit, Islamic geometric design is renowned for its

mathematical sophistication, constituting the most highly developed chapter in

cultural symmetry studies.1 Dihedral symmetry groups of high order, all seven

frieze groups, all seventeen crystallographic groups of plane isometries, and several

non-trivial chromatic symmetry groups may be found in abundance in both eastern

and western Islamic countries.2

First published as: Peter Saltzman, “Quasi-Periodicity in Islamic Geometric Design”. Pp. 153–168

in Nexus VII: Architecture and Mathematics, Kim Williams, ed. Turin: Kim Williams

Books, 2008.

1 For a general introduction to the cultural applications of symmetry studies, see Crowe and

Washburn (1991).
2 Good introductions to the symmetries of Islamic geometric designs include the delightful book

by Fenoll Hach-Alı́ and Galindo (2003) and the more comprehensive work by Abas and

Salman (1995).
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Yet the focus of these symmetry studies has little resonance in the scant

historical record documenting the techniques of the Islamic masters, and has

limited relevance to the aesthetic complexity of Islamic geometric design. In

many cases, one can reconstruct a design as a group orbit of a small motif, but

this tells us little about the properties of the design other than its symmetry group.3

The design within a single periodic unit cell is often quite complex, with symmetry

playing a subsidiary role. Grünbaum and Shephard have argued against over

reliance on group theory to interpret cultural artefacts, insisting that other

mathematical measures of order or disorder—and not just symmetries—are

necessary to explain the intrinsic features of the artefacts and better reflect the

intentions of those who produced them (Grünbaum and Shepherd 1992).

Responding to this challenge, crystallographers Emil Makovicky and

Purificacion Fenoll Hach-Alı́ have published a series of papers in the Boletı́n de
la Sociedad Española de Mineralogı́a over the past decade or more (Makovicky

and Fenoll Hach-Alı́ 1996, 1997, 1999, 2001), applying a variety of

crystallographic structural classification principles to the interpretation of Nasrid

designs in Spain. Thus, in addition to symmetries, they have developed informative

analyses in terms of crystallographic shear, occupancy of Wyckoff positions,

rotation of vortex elements and other crystallographic features that together

contribute to the development of a more nuanced grammar of Islamic geometric

design. Here, however, we will be concerned not with these crystallographic

features, but rather with “quasi-crystallographic” features of certain Islamic designs.

The Presentist Fallacy

Before proceeding further, it is worthwhile to issue a caveat concerning the historical

significance of mathematical properties that may attach to certain cultural artefacts.

In discussing the elaborate symmetries of Islamic designs, for example, it is tempting

to impute mathematical knowledge “ahead of its time” to the architects, artists or

others with whom they worked. However, we know little about the medieval artists

and scientists who were responsible for these masterful designs—although in the

tenth-century text of Abu’l-Wafa’ al Buzjani on geometric constructions there is

mention of regular meetings between mathematicians and artisans concerning the

design of geometric ornament (Özdural 2000). Nevertheless, imputing nascent group

theory or a nascent theory of quasi-crystals to medieval artists or mathematicians

simply cannot be justified on the basis of the historical record.

Ultimately, attempts to find precursors of contemporary mathematical thought in

the cultural production of medieval Islam, or any other period for that matter, fall

prey to the presentist fallacy—the fallacy of reading the present into the past, or, as

3 Several works analyse the orbit structure of Islamic designs in this manner, including Grünbaum

and Shepherd (1986); Abas and Salman (1995); Ostromoukhov (1998).
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Butterfield has expressed it in a different context, the fallacy of using the past as

“the ratification if not the glorification of the present” (Butterfield 1931). Therefore,

in assessing Islamic geometric designs for their mathematical properties, it is

important to keep in mind that we are not addressing the historical question of

what technical knowledge and concerns motivated the construction of those

designs, but rather the aesthetic question of how the mathematical properties may

help to explain the sensible qualities of the designs themselves.

Islamic Dual Designs

Fortunately, one of the few things we do know about the historical practice of

Islamic geometric design is the widespread use of grid dualization (sometimes

referred to as the “polygonal” or “polygons in contact” technique): the use of an

underlying polygonal grid from which the design is derived by a stylized variant of

topological dualization.4 This method is as important to Islamic geometric design as

linear perspective is to Renaissance painting. Fig. 39.1, showing two designs from

the magnificent Topkapi Scroll (Necipoğlü 1995) of the late fifteenth century,

suffices to convey the idea.

In each panel, an underlying polygonal grid is first laid down. Similar points (one

or more) are then chosen on each of the edges of the polygons, through which

“dual” lines are drawn at specified angles of incidence. The dual lines are then

continued (not necessarily linearly) until they meet other dual lines of similar

origin.

As can be seen from these examples, grid dualization is a highly versatile

technique, with three principal design choices: the type of grid, the method of

dualization, and the manner in which the design is rendered. Islamic artists used

radial grids, lattice grids and a wide variety of other tiling grids. The dual lines can

be drawn through just one edge point—usually the midpoint—or through two or

more edge points; and their angles of incidence with the edges can be set at various

values. The final design may include the underlying grid along with its dual

(an “additive” design) or exclude it; and the lines may be rendered by

interweaving (alternating “over” and “under” positions along each line), or with

the interlinear regions coloured to form a tiling pattern. Grid dualization has

enormous aesthetic value: even quite “ordinary” Archimedean or other tilings

have duals that appear far more interesting and dynamic than their progenitors.

According to Jay Bonner, the four most common families of eastern Islamic

designs were those whose dual lines were drawn through edge midpoints, with

angles of incidence chosen to be 36� (“obtuse”), 54� (“middle”) or 72� (“acute”),

4 Discussions of this technique may be found in Hankin (1925, 1934); Wade (1976); Bonner

(2003); Kaplan (2005).
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and those with dual lines drawn through two edge points.5 Grid dualization (or in

Bonner’s terminology, the “polygonal technique”),

is the only method for which there is documented proof that traditional designers used the

system widely throughout the Islamic world. The polygonal technique is the only method

that allows for the creation of both simple geometric patterns and the most complex

compound patterns, often made up of combinations of seemingly irreconcilable symmetries

. . . The polygonal technique has the further characteristic of allowing for the creation of all
four principal families of Islamic geometric pattern [obtuse, middle, acute and two-point]

regularly found throughout the Islamic world (Bonner 2003).

Many writers on Islamic geometric design ignore the grid method, inventing

various ad hoc surrogates in its place. For example, Lu and Steinhardt refer to the

“direct strapwork method”, which they illustrate with a straightedge and compass

construction (Lu and Steinhardt 2007a: Figs. 1A–D). They then posit a “paradigm

shift” from this direct strap work method to a modular tiling method, whereby a set

of five particular girih tiles (five of the ten shapes that Bonner includes in what he

calls the “5-fold system of geometric pattern generation”) decorated with particular

dual lines is used to construct a variety of designs. Certainly, it is sometimes useful

to develop and construct dual designs in this modular manner, but Lu and

Steinhardt’s claim that the modular use of these five decorated tiles constituted a

“paradigm shift” in medieval Islamic design is unconvincing. Whatever the

historical genesis of the girih tiles, modular use of decorated tiles is just one facet

of dualization, and many other sets of tiles and dual decorations were in constant

Fig. 39.1 Two dual designs Topkapi Scroll (Necipoğlü 1995). Thick lines show the underlying

grid. Drawing: author

5 An extensive discussion may be found in Bonner (2000).
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use. Moreover, because the same dual design can usually be derived from more than

one grid, it is not always clear which tile set was used to generate a given design.

Finally, it should be pointed out that grid dualization is of mathematical interest in

its own right. Dual designs inherit many of the symmetry and other properties of the

underlying grid, but also introduce certain novel tile shapes, colouring and other

combinatorial properties. Bonner (2000) and Kaplan (2005) have noted the fact,

already alluded to, that the same dual design can be derived from different grids (the

two being connected, in Kaplan’s terminology, by a “rosette transform”). For example,

the “obtuse” dual of the grid on the left side of Fig. 39.2, consisting of convex

pentagons, hexagons and decagons, is the same as the “middle” dual of the grid on

the right side of Fig. 39.2, consisting of a decagon packing with non-convex “bowties”.

This observation leads to consideration of an equivalence relation on the space

of grids (tilings), two grids being “equivalent” if any dual of one is a dual of the

other. Equivalent grids behave similarly with respect to symmetry and—to

anticipate our main theme—with respect to quasi-periodicity. In fact, grid

dualization—in a more modern incarnation due to N. G. de Bruijn—leads

directly to quasi-periodicity. These and other mathematical aspects of Islamic

grid dualization will be discussed in a sequel to this chapter.

Quasi-Periodicity

Non-Periodic Tilings

One of the frustrations of working with periodic planar grids (i.e., grids with

translational symmetries) is the inability to achieve (global) rotational symmetry

Fig. 39.2 Two different grids which produce the same dual design. The bracketed triangles
highlight the primary dual design of the spandrel at the Darb-I Imam, Isfahan; the tiled pattern
below shows one possible rendering of the dual design. Drawings: author, after Kaplan (2005)
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of orders other than 2, 3, 4 or 6.6 It is not immediately obvious how to overcome this

“crystallographic restriction” with a finite set of tiles, but in 1525, Albrecht Dürer

penned an example with just two tiles, a pentagon and a rhomb, achieving global

fivefold symmetry through what crystallographers refer to as “pentagonal twinning”

(Lück 2000) (Fig. 39.3a). Nearly a century later, Kepler produced another famous

example (Fig. 39.3b) (Grünbaum and Shepherd 1987: 52–53, 59). Because they

violate the crystallographic restriction, neither of these tilings are periodic.

Prior to Dürer’s work, European Renaissance art incorporated only lattice

tilings, not pentagonal, non-periodic or other complex tilings. It is certainly

conceivable that Dürer derived his interest, and even his tiling, from an Islamic

text: there was, after all, an intensive transfer of Arabic scientific works to Europe

after the fall of Constantinople to the Ottoman Turks in 1453 (Saliba 2007:

194–195). However, there appear to be no examples of pentagonal twinning in

Islamic design, although—as we shall see—Islamic artists did very early develop

other—perhaps subtler—examples of fivefold (and tenfold) symmetric designs.

Quasi-Periodic Tilings

In perhaps the most famous example of the “unreasonable effectiveness” of

recreational mathematics, in 1974 Roger Penrose constructed a non-periodic

tiling of the plane using pentagons, rhombs, pentagrams and partial pentagrams in

certain restricted configurations (or satisfying certain “matching rules”) (Fig. 39.4);

later he found other, essentially equivalent, tilings with fewer tiles (the “kite and

dart” and “rhomb” tilings) (Grünbaum and Shepherd 1987: § 10.3, 531–548).

Penrose’s tilings, however, are not just non-periodic but are also “quasi-periodic”,

meaning that any bounded portion of the tiling appears infinitely often in the tiling

(and in fact infinitely often in any one of the uncountably many other tilings with the

same tile set). Indeed, they have many other properties as well, summed up in the

all-encompassing term “quasi-crystalline”: the tilings have arbitrarily large bounded

fragments with crystallographically forbidden symmetries, they have global

“statistical” symmetries, they may be obtained as a projection of slices of higher

dimensional lattices, their vertices—considered as complex numbers—possess

striking algebraic properties and have “diffractive” Fourier transforms, and more.7

Thanks largely to the groundbreaking work of N. G. de Bruijn, the class of Penrose

tilings has emerged as a mathematical object of great complexity and interest.

After Penrose’s discovery, many other families of quasi-periodic tilings of the plane

and other spaces were produced, and soon—as with “fractals” and “chaos”—everyone

was speaking this new kind of Jourdainian prose. Most famously, in 1985 diffraction

6 See, for example, Grünbaum and Shepherd (1987: Chap. 1).
7 Good introductions to this subject may be found in Grünbaum and Shepherd (1987) and Senechal

(1995).
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images of an aluminium manganese alloy produced a quasi-periodic pattern,

inaugurating a new era of crystallography and condensed matter physics (Senechal

1995). Of more relevance here is the application of these ideas to aesthetics.

Interestingly, in one of his original papers on the subject, Penrose writes about the

aesthetic inspiration for his tilings, and proceeds to compare their visual appeal with a

design on the window of a mosque in Cairo:

As one simply stares at the pattern certain regularities seem to jump out. There are a great

many regular decagons which tend to overlap at various places . . . Things line up in a

surprising way. The appeal of this pattern would seem to have something in common with

the appeal of the mosque window . . . (Penrose 1974).

Indeed, if one believes with Birkhoff that aesthetic value may usefully be related

to measures of complexity (though not necessarily in the manner Birkhoff

Fig. 39.3 (a) Dürer tiling; (b) Kepler tiling. Both are non-periodic. Drawing: author

Fig. 39.4 Penrose tiling. Like the Dürer and Kepler tilings, this tiling is non-periodic, but unlike

them, it is quasi-periodic. Drawing: author
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promoted), then the mathematical properties of quasi-periodicity summarized

above can be used to argue that quasi-periodic designs do indeed have high

“aesthetic value”.8 Quasi-periodic patterns occupy an important niche between

highly ordered, periodic patterns and highly complex, random ones, and in E. H.

Gombrich’s words, give us a sense of the delight that “lies somewhere between

boredom and confusion” (Gombrich 1979).9 As Penrose observed, similar

sentiments apply to Islamic geometric designs, and surprisingly “Islamic” looking

designs can be produced by dualizing quasi-periodic tilings.10

Are certain Islamic designs, then, “quasi-periodic”? As it stands, the question is

nonsensical. By definition, quasi-periodicity (infinite repetition of bounded

fragments) is a property that pertains only to a tiling of infinite extent. So let us

define a bounded design as “quasi-periodic” if, first, it can be derived in some

systematic manner from a finite tiling (for example, as a dual design or through

other kinds of systematic decorations or erasures), and second, the finite tiling from

which it is derived can be extended to a quasi-periodic tiling of the entire plane.

This definition is consistent with the use of the term “quasi-periodic” or its cognates

in the recent literature on Islamic design.

It must be understood, however, that this or any other definition of

“quasi-periodicity” in the context of (bounded) designs has several pitfalls. Most

important, it is a fact that any finite tiling—even one that can be extended to an

infinite quasi-periodic tiling—can also be extended to a periodic tiling in a variety

of ways (Gähler and Rhyner 1986). Most Islamic geometric designs are, in fact,

explicitly embedded in periodic frameworks, and arguably all were so intended.

The definition given here, however, circumvents this rather sterile issue by focusing

on a segment of the design (for example, a unit cell), and calling that segment

“quasi-periodic” if its underlying grid is a fragment of an (infinite) quasi-periodic

tiling. This definition also accords with our interest in the “aesthetic question” (the

extent to which the sensible qualities of Islamic designs may be explained, at least

in part, by reference to mathematical properties of quasi-periodicity), rather than in

the “historical question” (regarding the intentions or motivations of the artists who

created the designs and whether they aimed at periodic or non-periodic patterns).

Inflation Tilings

One of the simplest ways to construct a quasi-periodic tiling is to start with a set of

tiles that can be inflated and then subdivided into smaller copies of themselves in

8An interesting discussion of Birkhoff measures relevant to these remarks is found in Rigau et al.

(2007). A study of the Kolmogorov complexity of finite subsets of tilings of the plane is found in

Durand et al. (2008).
9 Similar views are expressed in Arnheim (1971).
10 Such designs have been produced by Rigby (2006).
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such a manner that the process can be iterated. Subject to a variety of alternative

sets of conditions, such inflation rules generate quasi-periodic tilings of the plane.

As an example, consider the three tiles (decagon, bowtie and long hexagon) with

the inflation rules shown in Fig. 39.5. These elegant inflation rules are due to Lu and

Steinhardt, who noted that the subdivisions of the decagon and bowtie are implicit

in a design from the Darb-I Imam in Isfahan (Lu and Steinhardt 2007a). The tiles

themselves are a subset of the girih tiles studied by Lu and Steinhardt, and are a

variant of the “M2” tile set introduced by Makovicky (1992: n. 30, Fig. 10 and

surrounding text) in analysing an earlier design from Margaha, Iran.11

Start with an empty decagon centred at the origin, then inflate and subdivide it as

shown in Fig. 39.5. This gives the “level 1” tiles, each of which is then inflated and

subdivided to obtain the “level 2” tiles. Note that because the borders of the subdivided

tiles consist of symmetric half tiles and are all alike, the second level tiles all line up

properly. Also note that the level 2 tiles extend the level 1 tiles, which are still centred at

the origin. If this process is now iterated, we have a nested sequence of decagons that

increase in size; in the limit we obtain an “inflation tiling” of the entire plane. Since

each level of the inflation retains 5-fold symmetry, the same is true of the inflation tiling

of the entire plane, which is therefore non-periodic. Quasi-periodicity—infinite

repetition of each bounded fragment—follows very naturally from the inflation

process itself, as any patch of tiles which appears at some stage will be reproduced at

each subsequent stage.12

Two Designs from Iran

The Gunbad-i Kabud (Maragha)

We are now in a position to look at two designs that have been cited as the prime

examples of quasi-periodicity in Islamic art. In 1992 Emil Makovicky analysed the

unit cell design on the walls of the Gunbad-i-Kabud (Blue Tomb), an octagonal

tower in Maragha, Iran, dating to the late twelfth century (Makovicky 1992)

(Fig. 39.6). The unit cell of the primary design spreads over two walls and

repeats four times around the tower. The thin lines in Fig. 39.7 show

Makovicky’s more recent transcription of the primary design over half of its cell

unit (the other half is obtained by reflection through the middle vertical line).13

11 Aspects of the M2 tilings later appeared in high resolution transmission electron microscopy of

aluminium cobalt nickel alloys; see Cervellino et al. (2002).
12 For further discussion of inflation tilings, see Senechal (1995: Chap. 5).
13 The Gunbad-i Kabud has deteriorated, and thus the original design is obscured in parts. Lu and

Steinhardt (2007a: Fig. S6) had pointed out that the lower portion of the original reconstruction

given in Makovicky (1992) was incorrect. Emil Makovicky has carefully reconstructed the design

based on his inspection of the building (Makovicky 2009).
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Fig. 39.5 Inflation rules for the decagon, bowtie and long hexagon: Image: Courtesy Peter Lu
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There are a number of ways one might test a design like this for quasi-

periodicity. Given the five- and ten-fold symmetry elements, one might, for

example, suspect that the Penrose tiles themselves could be used to tile the

regions between the primary line elements in a way that could be extended to a

Penrose tiling of the entire plane.

This is the approach taken, for example, in a recent paper by Arik and Sancak

(2007). Such an analysis is incomplete, however, as generally all that can be done in

this regard is to reconstruct the design as far as possible with well-matched Penrose

tiles. But a well-matched patch of Penrose tiles is no guaranty of extendability to the

Fig. 39.6 The Gunbad-i Kabud, Maragha. Photo: Courtesy Emil Makovicky
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entire plane, so without more, this method does not offer a convincing method to

establish quasi-periodicity of a design.

A better method—and one implied by the definition of a “quasi-periodic” design

here—is taken in Makovicky’s paper: find an underlying grid from which the

design can be derived, and show that the grid is a fragment of a quasi-periodic

tiling. For the grid, Makovicky used the decagons, long hexagons and bowties

analysed above, together with five pointed stars. As may be seen from the implied

grid in Fig. 39.7, the designers of the Maragha tower decorated these shapes

consistently up to rotations of two of the decagons. To show that this grid is a

fragment of a quasi-periodic tiling, simply note that it appears in the centre of the

subdivided decagon in Fig. 39.5. (The inflation rules in Fig. 39.5 do not aggregate

hexagons and bowties into stars, as here, but it is straightforward to incorporate an

additional inflation rule for the five-pointed stars.) From the discussion of inflation

tilings above, therefore, the grid of Fig. 39.7 is a fragment of a quasi-periodic tiling

of the plane, and thus the unit cell of the Gunbad-i Kabud is quasi-periodic in the

sense defined here. The fact that the unit cell is repeated four times around the

perimeter of the Gunbad-i Kabud, so that the entire design is periodic (with one

translational symmetry), does not affect this conclusion.

In addition to the “quasi-periodic” primary design, the Gunbad-i Kabud also

features secondary lines within the regions formed by the primary lines. Fig. 39.8

shows a portion of Makovicky’s transcription of the complete design with both

primary and secondary elements. As may be seen, the secondary design is in effect a

two-point dual of the primary design, which itself—as we have seen—is a dual of

the implied M2 grid. The result is a masterful example of an “additive” or “double”

dual design. The great sophistication and complexity of this design may serve as an

appropriate reminder of the fact that Maragha was one of the premier centres of

Islamic science: one year after the destruction of Baghdad by the Mongols in 1258,

the great astronomer, Nasir al-Din al Tusi—whose key theorem on the “Tusi

Couple” was used by Copernicus in De Revolutionibus—supervised the

construction of the Maragha observatory to which he later brought “the most

distinguished company of astronomers ever assembled in one place” (Saliba

2007: 199, 244).

Fig. 39.7 Contours of the

underlying grid for the unit

cell of the Gunbad-I Kabud,

Maragha, with the primary

dual design filled in on the

right. Image: author
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The Darb-i Imam (Isfahan)

In 2003, Jay Bonner, an architect and leading student and practitioner of Islamic

design, published an insightful paper about what he refers to as “self-similar”

Islamic designs (2003). In it, he analyses a design found in an arch over a portal

at the Darb-i Imam in Isfahan, built in 1453–1454. According to Bonner, this was

the work of Sayyid Mahmud-i Naqash, “one of the relatively few architectural

ornamentalists in the long history of Islamic art who signed his name to his works.”

The same design appears also in a spandrel in a different part of the Darb-i Imam,

and it is the right half of that spandrel (Fig. 39.9) that Lu and Steinhardt analyse

(2007a). For the sake of comparison, I apply Bonner’s analysis to the right half

spandrel instead of the arch.

Bonner’s reconstruction of the Darb-i Imam design proceeds, as did

Makovicky’s reconstruction of the Maragha design, by imputing an underlying

grid—in this case, both a primary and a secondary grid. He first reconstructs the

large scale linear design as an obtuse dual of the primary grid on the left side of

Fig. 39.2: the two triangles in the centre top of Fig. 39.2 outline the left and right

halves of the spandrel with the primary dual lines. Bonner notes that this primary

Fig. 39.8 Detail from the

upper right portion of

Fig. 39.7 showing the

primary dual design with its

(secondary) two-point dual.

Image: By permission from

Makovicky (2009)

Fig. 39.9 A portion of the

right half spandrel at the

Darb-I Imam, Isfahan.

Image: Courtesy Peter Lu
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grid is the most common fivefold polygonal grid “that can be traced back as far as

the year 1000.” Next, the primary grid tiles can be subdivided into similar small

scale, secondary grid tiles, as shown in Fig. 39.10. The full design then emerges

through dualization at both the primary and secondary scales—with the large scale

dual design rendered linearly and the small scale dual design rendered in coloured

tiles. This procedure reproduces the original design with great accuracy: only a few

small tiles in the actual tiling differ from the reconstruction.

Analysing the same design, Lu and Steinhardt impute different, but equivalent,

primary and secondary grids—starting with the decagon packing on the right side of

Fig. 39.2 rather than the pentagonal tiling on the left (see Fig. 39.11). Furthermore,

they show that the secondary grid is a fragment of a quasi-periodic tiling, using the

inflation rules discussed above.14 Thus, with the exception of a few small tiles, the

Fig. 39.10 Reconstruction of the primary and secondary grids for the Darb-i Imam spandrel.

Individual tiles show the primary (linear) and secondary (tiled) dual designs; the decagon is

partially untiled to show the underlying secondary dual lines. The small region outlined in the

central half-decagon is explained in the text. Image: author, after Bonner (2003)

Fig. 39.11 Reconstruction

of the primary and

secondary grids for the

Darb-i Imam spandrel the

small region outlined in the

central half-decagon is

explained in the text. Image:

Author, after Lu and

Steinhardt (2007a)

14 Although not addressed in Bonner (2003), the subdivisions he uses are in fact part of a set of

inflation rules that can also establish the quasi-periodicity of a segment of this design. Those

598 P. Saltzman



Darb-i Imam half spandrel design is a fragment of a quasi-periodic tiling of the

plane, and so is also quasi-periodic in the sense defined here. Again, the fact that the

spandrel design may be embedded in a periodic framework (with two independent

translational symmetries)—as is clear from Fig. 39.2—does not affect this

conclusion.15 What is perhaps most compelling about the Darb-i Imam design is

the fact that the inflation rules for two of the underlying grid tiles are implicit in the

design itself—in effect, a large portion of the design is included in the second level

inflation.

It should be emphasized, as Lu and Steinhardt themselves do, that the entire

spandrel design is not quasi-periodic. Considering the Lu and Steinhardt

reconstruction of the right half of the spandrel, the problem is that the large scale

grid contains configurations that do not occur in the inflation rules: in particular, the

placement of the two large-scale bowties does not occur in any of the inflation rules

and cannot occur in the resulting inflation tiling. If, however, the partial bowtie and

partial decagon in the lower right corner of the design are removed, what remains is

indeed a fragment of the inflation rule for the decagon—as shown in the patch of

small tiles outlined in the central half-decagon in Fig. 39.11—and therefore also a

fragment of the inflation tiling. The Bonner reconstruction of the design establishes

that a different portion of the spandrel is also a quasi-periodic fragment, as shown in

the patch of small tiles outlined in the central half-decagon in Fig. 39.10. However,

it can be shown that no inflation rules will reproduce the entire design. Lu and

Steinhardt attempt to rectify this problem by showing that the entire spandrel can be

(approximately) converted to well-matched Penrose tiles, but as already argued,

without more this does not establish quasi-periodicity because well-matched

Penrose patches are no guarantee of extendability to the entire plane.

Conclusion

As we have seen, the unit cell of the Gunbad-i Kabud design, and a large portion of

the Darb-i Imam design, are both quasi-periodic in the sense defined here. In

fact, both designs are derived from essentially the same underlying 5-fold

symmetric quasi-periodic tiling (M2 or its equivalents.) In both cases, however, the

quasi-periodic fragments are embedded in a larger scale periodic framework (in the

case of Gunbad-i Kabud, with one translational symmetry) or may be embedded in

such a framework (in the case of Darb-i Imam, with two independent translational

symmetries).

inflation rules, however, require a subdivision rule for the narrow rhomb and one for an extra

pentagon, and require more complex matching rules than those used by Lu and Steinhardt.
15 The large scale dual design from Darb-i Imam appears in multiple guises at many other sites

with explicit periodic repetition, though it does not do so in the spandrel studied by Lu and

Steinhardt. See Arik and Sancak (2007) and Cromwell (2009).
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Invoking our earlier caveat, the conclusion that the Gunbad-i Kabud and Darb-i

Imam designs are (in whole or in part) “quasi-periodic” is notmeant to suggest that

medieval Islamic artists or scientists understood or were interested in

quasi-periodicity in anything like the sense we define the term today. It is clear,

however, that these artists developed a remarkable class of tilings to serve as the

underlying grids for complex dual designs that are the hallmark of the Islamic

geometric aesthetic.

Although we will not survey other examples here, evidence of quasi-periodicity

in Islamic designs from Spain and Morocco has been cited as well (Makovicky

et al. 1998).16 Most interestingly, E. Makovicky, and P. Fenoll Hach-Alı́ have found

evidence of the use of a quite different octagonal quasi-periodic design at the

Alhambra (1996). Their analysis of quasi-periodicity in that design proceeds

directly from a form of dualization rather than from inflation rules.
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Chapter 40

The Universality of the Symmetry Concept

István Hargittai and Magdolna Hargittai

Introduction

The notion of symmetry brings together beauty and usefulness, science and

economy, mathematics and music, architecture and human relations, and much

more, as has been shown recently with many examples (Hargittai 1986, 1989;

Hargittai and Hargittai 1995, 1996). There is a lot of symmetry, for example, in

Béla Bartók’s music. It is not known, however, whether he consciously applied

symmetry or was simply led intuitively to the golden ratio so often present in his

music. Bartók himself always refused to discuss the technicalities of his composing

and stated merely “We create after Nature.” Another unanswerable question is how

these symmetries contribute to the appeal of Bartók’s music, and how much of this

appeal originates from our innate sensitivity to symmetry. This question might be

equally asked of symmetries in architectural composition.

The present chapter takes a broad view of the symmetry concept. It demonstrates

its breadth and versatility. There are no distinctly different specific symmetries in

various disciplines, yet there are discernible differences in emphasis of the

application of this concept in different fields. This emphasis changes with time as

well. For example, there is a marked emphasis on the presence of symmetry in

chemistry, in contrast to physics where the importance of broken symmetries has

been stressed during the past decades. Generally though the symmetry concept

unites rather than divides the different branches of science, and even helps bridge

the gap between what C.P. Snow called “two cultures.” Sciences, the humanities,
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and the arts have all drifted apart over the years and symmetry can provide a

connecting link among them. Its benefits are available to us if we free ourselves

from the confinements of geometrical symmetry.
Everything is rigorous in geometrical symmetry. According to one definition,

“symmetry is the property of geometrical figures to repeat their parts” (Shubnikov

1951). Another definition says that “a figure is symmetrical if there is a congruent

transformation which leaves it unchanged as a whole, merely permuting its

component elements” (Coxeter 1973). In the geometrical sense, symmetry is

either present or it is absent. Any question regarding symmetry has a restricted

yes/no alternative. For the real, material world, however, degrees of symmetry and

even gradual symmetry is feasible and applicable. Beyond geometrical definitions

there is another, broader meaning to symmetry—one that relates to harmony and

proportion, and ultimately to beauty. This aspect involves feeling and subjective

judgment and, as a result, is especially difficult to describe in technical terms.

Simple considerations are indispensable in classifying different kinds of

symmetry. There are two large classes of symmetry, point groups and space
groups. For point group symmetries there is at least one special point in the

object or pattern that differs from all the others. In contrast to this, in space

groups, there is no such special point. There are also some terms that are useful

in the description of different types of symmetry. Thus, the action that characterizes

a particular type of symmetry is called a symmetry operation. The tool whereby the
operation is performed is called a symmetry element.

Point Group Symmetry

The simplest kind of point-group symmetry is bilateral symmetry. Bilateral

symmetry is present when two halves of the whole are each other’s mirror images

(Fig. 40.1). This is the most common symmetry and the every-day usage of the term

“symmetry” refers to this meaning. The symmetry element is a mirror plane, also
called a symmetry plane or a reflection plane. The symmetry operation is reflection.
Applying a mirror plane to either of the two halves of an object with bilateral

symmetry recreates the whole object. Bilateral symmetry is probably the most

common symmetry in architecture as well, from simple buildings to larger

assemblies (Fig. 40.2a, b).

Another kind of point-group symmetry is rotational symmetry (Fig. 40.3). It is

present when, by rotating an object around its axis, it appears in the same position

two or more times during a full revolution. Rotation is the symmetry operation and

the axis of rotation is the symmetry element. Rotational symmetry may be twofold,

threefold, fourfold, etc. It is common that reflection and rotation appear together.

The presence of some symmetry elements may generate others and vice versa. If we

look at the Eiffel tower from below (Fig. 40.4) we have twice two orthogonal

reflection planes which generate a fourfold rotation. The cupolas of many state
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capitols and other important buildings have reflectional and rotational symmetry

together (Fig. 40.5).

The regular polygons, so basic in architectural design, also have both rotational

and reflectional symmetry. Best seen when viewed from above, many buildings have

outlines of a regular polygon (Fig. 40.6). The regular polyhedra, also called Platonic

solids, all have equal regular polygons as their faces. As H.S.M. Coxeter, professor of

mathematics at the University of Toronto, remarked, “the chief reason for studying

regular polyhedra is still the same as in the times of the Pythagoreans.” Namely, that

their symmetrical shapes appeal to one’s artistic sense. There are other highly

symmetrical polyhedra, called Archimedian polyhedra, whose faces are also

regular polygons but not identical ones. Buckminster Fuller’s geodesic dome is

composed of lightweight bars forming regular polygons. His geodesic dome at the

Montreal expo (Fig. 40.7) inspired some chemists who saw that the structure of a

newly discovered substance may be the truncated icosahedron. This molecule, C60,

called buckminsterfullerene (Fig. 40.8) is characterized, among others, by six axes of

fivefold rotation (Hargittai and Hargittai 1994: 100–101). Experimentally discovered

in 1985, its great relative stability was predicted already in 1970, based solely on

symmetry considerations.

Chirality

A special kind of symmetry relationship is when two objects are related by mirror

reflection and the two objects cannot be superposed. Our hands are an excellent

Fig. 40.1 The orchid has

bilateral symmetry. Photo:

authors
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example, and the term chiral derives from the Greek word for hand. Chiral objects

have senses and following the hand analogy they are left-handed (L) and

right-handed (D). The simplest chiral molecule is a methane derivative in which

three of the four hydrogens are replaced by three different atoms, such as, for

Fig. 40.2 (a) The whole

assembly of the Blue

Mosque in Istanbul, Turkey,

has bilateral symmetry. (b)

The design of St. Peter’s

Square in Vatican City also

shows bilateral symmetry.

Photo: authors

Fig. 40.3 This hubcap has

sevenfold rotational

symmetry. Photo: authors

606 I. Hargittai and M. Hargittai



example, fluorine (F), chlorine (Cl), and bromine (Br). There may then be a

left-handed C(HFClBr) and a right-handed C(HFClBr) molecule which will be

each other’s mirror images but won’t be superposable (Fig. 40.9). A chiral object

and its mirror image are called each other’s enantiomorphs.
The two chiral molecules look the same in every detail; only their senses are

different. The distinctions between the twins of a chiral pair have literally vital

significance. Only L-amino acids are present in natural proteins and only D-nucleotides

are present in natural nucleic acids. This happens in spite of the fact that the energy of

both enantiomers is equal and their formation has equal probability in an achiral

environment. However, only one of the two occurs in nature, and the particular

enantiomers involved in life processes are the same in humans, animals, plants, and

microorganisms. The origin of this phenomenon is a great puzzle.

Once a chiral molecule happens to be in a chiral environment, the two chiral

isomers will be behaving differently. This different behaviour is manifested

sometimes in very dramatic ways. In some cases one isomer is sweet, the other is

bitter. In some other cases the drug molecule has an “evil twin.” A tragic example

was the thalidomide case in the 1950s in Europe, in which the right-handed

molecule cured morning sickness and the left-handed one caused birth defects.

Other examples include one enantiomer of ethambutol fighting tuberculosis with its

evil twin causing blindness, and one enantiomer of naproxen reducing arthritic

inflammation with its evil twin poisoning the liver. Ibuprofen is a lucky case in

which the twin of the chiral form that provides the curing is converted to the

beneficial version by the body.

Even when the twin is harmless, it represents waste and a potential pollutant.

Thus, a lot of efforts are directed toward producing enantiomerically pure drugs and

pesticides. One of the fascinating possibilities is to produce sweets from chiral

Fig. 40.4 The Eiffel Tower

from below. It shows both

reflections and rotational

symmetry. Photo: authors
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sugars of the enantiomer that would not be capable of contributing to obesity yet

would retain the taste of the other enantiomer.

Chiral symmetry is also frequently found in architectural design either in two- or

in three dimensions, as illustrated by Fig. 40.10.

Space Group Symmetry

A different kind of symmetry can be created by simple repetition of a basic motif

leading us to space-group symmetries. The most economical growth and expansion

patterns are described by space-groups symmetries. There are three basic cases of

space groups, depending on whether the basic motif extends periodically in one

Fig. 40.5 The cupola of the

Hungarian Parliament with

both reflectional and

rotational symmetry. Photo:

authors
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direction only, or in two, or finally, in three. These three cases are described by the

so-called one-dimensional, two-dimensional, and three-dimensional space groups.
Border decorations are examples of one-dimensional space groups. In border

decorations a pattern can be generated simply by repeating a motif at equal

intervals. This is translational symmetry. The symmetry element is constant
translation; the operation is the translation itself. The resulting pattern shows

periodicity in one direction. Repetition can be achieved by a simple shift in one

direction as can be seen very often in the rows of columns of grandiose buildings

(Fig. 40.11) or in the ancient aqueducts of the Romans. Fences are typical examples

of one-dimensional space groups (Fig. 40.12), the ease and economy of using the

same elements repeatedly makes this obvious. Repetition can also be achieved in

Fig. 40.6 The outline of the Pentagon in Washington, D.C. with its regular pentagonal shape.
Photo: authors

Fig. 40.7 Buckminster Fuller’s Geodesic Dome at the Montreal Expo. Photo: authors
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Fig. 40.8 C60, the buckminsterfullerene molecule. Image: authors

Fig. 40.9 A chiral pair of molecules. Image: authors

Fig. 40.10 Chiral rosettes on a building in Bern, Switzerland. Photo: authors
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Fig. 40.11 Colonnade on

St. Peter’s square in

Vatican City. Photo: authors

Fig. 40.12 Repeating

pattern of a fence in the

Topkapi Palace in Istanbul,

Turkey. Photo: authors

Fig. 40.13 Another

illustration for

one-dimensional space

groups: the units turn 90� at
every translation in this

chain. Photo: authors
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other ways, such as by reflection, rotation (Fig. 40.13), or glide- reflection.
Glide-reflection is another new element that does not occur in point-group

symmetries. It means the consecutive application of translation and horizontal

reflection. When we walk in wet sand along a straight line we leave behind a

pattern of footprints whose symmetry is described by glide-reflection. There is a

total of seven possibilities for generating one-dimensional space-group symmetries.

Helices and spirals have also one-dimensional space-group symmetries although

their bodies may extend to three dimensions (Hargittai and Pickover 1992). Helical
symmetry is created by a constant amount of translation accompanied by a constant

amount of rotation. In spiral symmetry, again, translation is accompanied by

rotation but the amount of translation and rotation changes gradually and

regularly. An extended spiral staircase has helical symmetry. Well-ordered

biological macromolecules also have helical symmetry. Helices are always

three-dimensional whereas there are spirals that extend in two dimensions only.

Occurrences of spirals may be as diverse as chemical waves and galaxies and snails.

Spirals and helices have also been used in various ways in architecture, from

ancient times to the present, as Trajan’s column in the Forum Romanum

(Fig. 40.14) and the spiral ramp of Frank Lloyd Wright’s Guggenheim Museum

in New York indicate.

Another beautiful example of spiral symmetry is the scattered leaf arrangement

around the stems of plants, called phyllotaxis. Numbers of the Fibonacci series (1, 1,

2, 3, 5, 8, 13, 21, . . .—each new element is the sum of the two previous elements)

characterize the ratios defining the occurrence of every consecutive new leaf in

scattered leaf arrangements. Thus, for example, there is a new leaf at each 3/8 parts

of the circumference of the stem as we move along the stem in one of the

characteristic cases. The pineapple (Fig. 40.15) displays a pattern of spirals that can

be thought of as if it were a result of compressed phyllotaxis. Such ratios when

involving very large numbers approximate an important irrational number,

0.381966. . ., expressing the so-called golden ratio. The golden ratio is created by

the golden section in which a given length is divided such that the ratio of the longer

part to the whole is the same as the ratio of the shorter part to the longer part. If the

whole is 1.00, the lengths of the longer and shorter parts will be 0.618 and 0.382,

respectively. This may be the single most important proportion in architecture and in

artistic expression. Its relationship to phyllotaxis may have inspired Leonardo da

Vinci’s description of the scattered leaf arrangement as “more beautiful, more simple,

or more direct” than anything humans could devise (Leonardo da Vinci 1939).

Spiral symmetry can also be considered as belonging to the broad concept of

similarity symmetry. Here pattern generation always involves an increment of a

characteristic property (Fig. 40.16).

With two-dimensional space-groups, there is a total of 17 ways to generate

different patterns. It is a special case when the planar network covers the plane

without gaps and overlaps. Of the regular polygons, only the equilateral triangle, the

square, and the regular hexagon are capable of covering the plane without gaps and

overlaps. For arbitrary shapes though, there are infinite possibilities. M.C. Escher’s

periodic drawings and the wall decorations in the Alhambra of Granada, Spain
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(Fig. 40.17) are famous examples. The façades of buildings, especially those of

modern skyscrapers often display symmetries in two dimensions (Fig. 40.18).

Space utilization by periodic arrangements seems to be the underlying principle

of the occurrence of three-dimensional space-group symmetries. This is a common

arrangement of the building elements in crystals. The packing of spheres was first

considered as the key to the internal structure of crystals by Johannes Kepler. As he

Fig. 40.14 Spiral

symmetry of Trajan’s

column in the Forum

Romanum in ancient Rome.

Photo: authors
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Fig. 40.15 The pineapple displays a pattern of spirals that can be thought of as if it were a result of

compressed phyllotaxis. Photo: authors

Fig. 40.16 (a) Similarity symmetry, the increments being the change in size or the change in age.

(b) An architectural example of similarity symmetry where the increment is the change in size of

the units of the church-tower in London, England. Photo: authors
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was looking at the exquisitely beautiful hexagonal snowflakes, he made drawings of

sphere packing, similar to a pyramid of canon balls (Fig. 40.19).

There are restrictions for the regular and periodic structures, such as the

nonavailability of fivefold symmetry in generating them. This can be understood

Fig. 40.17 Two-

dimensional space group:

decoration from the

Alhambra Granada, Spain.

Photo: authors

Fig. 40.18 The façades of

modern skyscrapers are

typical examples of

repetitions in two

dimensions. Photo: authors
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easily when we find it impossible to cover the plane without gaps or overlaps with

equal-size regular pentagons.

Crystals are advantageous for the determination of the structure of molecules.

The great success of X-ray crystallography may have diverted attention from

structures of lesser symmetry though of not necessarily lesser importance. The

discovery of quasiperiodic crystals [in short, quasicrystals (Hargittai 1990)] by the

Israeli scientist Dan Shechtman in 1982 has by now persuaded many scientists that

their view of crystals is unnecessary narrow. David Mermin compared abandoning

the traditional classification scheme of crystallography, based on periodicity, to

abandoning the Ptolemaic view in astronomy, and likened changing it to a new

foundation to astronomy’s adopting the Copernican view (Mermin 1992).

Recently, even such descriptive fields of biology as zoology have displayed a

growing activity in symmetry matters. Not surprisingly, the role of external

symmetry is being recognized as decisive in mate selection. Empirical evidence

supports the notion relating “animal beauty” to the symmetry of outlook. The

degree of left-and-right correspondence of the wings seems to correlate with

hormone and pheromone production (Angier 1994: C1).

In view of the fundamental importance of the symmetry concept, it is surprising

that even very basic discoveries about it were left to be made in this century. When

P.A.M. Dirac was asked about Einstein’s most important contributions to physics,

he singled out Einstein’s “introduction of the concept that space and time are

symmetrical” (Yang 1991: 11). An important step was Emmy Noether’s

recognition that symmetry and conservation are connected. Indeed, the idea that

the great conservation laws of physics, like the conservation of energy and

momentum, are related to symmetry opened up a wholly new way of thinking for

scientists. Realizing that Nature included continuous symmetry in her design

physicists started to look for new connections.

It was Dirac who had the prescience to write already in 1949, that “I do not

believe that there is any need for physical laws to be invariant under reflections”

(Dirac 1949). Yet, even most physicists were surprised by the discovery of the

nonconservation of parity in 1957 that brought the Nobel prize in physics to

T.D. Lee and C.N. Yang. C.P. Snow called this discovery one of the most

astonishing in the whole history of science. Since then broken symmetries have

been receiving increasing attention.

Fig. 40.19 Random arrangement of canon balls provides much poorer space utilization than their

regular arrangement. Photo: authors
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There seems to be a difference in approach and emphasis between physicists and

chemists in viewing symmetry. It may even be related to the ancient Greek

philosophers, stressing the importance of continuum by Aristotle, and of the

discreet, by Lucretius and Democritos. From the point of view of continuum, even

the ideal crystal may be discussed in terms of broken symmetries. On the other hand,

the chemist’s approach is succinctly symbolized by Democritos’ statement:

“Nothing exists except atoms and empty space; everything else is opinion.”

Of course, the way symmetry is looked at can vary a great deal. While

mathematical symmetry is exact and rigorous, the symmetry we encounter in

everyday life is much more relaxed. The vague and fuzzy interpretation of the

symmetry concept may also aid scientists to recognize trends, characteristic

changes, and patterns. This is getting close to blending fact and fantasy. As

Arthur Koestler expressed it, “artists treat facts as stimuli for the imagination,

while scientists use their imagination to coordinate facts” (Koestler 1949).

Biography István Hargittai, Ph.D., D.Sc., is Professor Emeritus (active) of the

Budapest University of Technology and Economics. He is a member of the

Hungarian Academy of Sciences and the Academia Europaea (London) and

foreign member of the Norwegian Academy of Science and Letters. He is Dr.h.c.

of Moscow State University, the University of North Carolina, and the Russian

Academy of Sciences. His recent books include: Buried Glory: Portraits of Soviet
Scientists—Makers of a Superpower (Oxford University Press, 2013); Drive and
Curiosity: What Fuels the Passion for Science (Prometheus, 2011); Judging
Edward Teller: A Closer Look at One of the Most Influential Scientists of the
Twentieth Century (Prometheus 2010); Martians of Science: Five Physicists Who
Changed the Twentieth Century (Oxford University, Press 2006; 2008); The Road to
Stockholm: Nobel Prizes, Science, and Scientists (Oxford University Press,

2002; 2003).

Magdolna Hargittai, Ph.D., D.Sc., Research Professor at the Budapest University of

Technology and Economics. She is a member of the Hungarian Academy of Sciences

and the Academia Europaea (London). She is Dr.h.c. of the University of North

Carolina. Her recent books (with István Hargittai) include: Symmetry through the
Eyes of a Chemist, 3rd ed. (Springer, 2009, 2010); Visual Symmetry (World

Scientific, 2009); Candid Science I-VI (Imperial College Press, 2000–2006); In Our
Own Image: Personal Symmetry in Discovery (Kluwer/Plenum, 2000).

References

ANGIER, N. 1994. The New York Times, February 8, 1994.

COXETER, H.S.M. 1973. Regular Polytopes. 3rd edn. Dover Publications: New York.

DIRAC, P.A.M. 1949. Forms of Relativistic Dynamics. Rev. Mod. Phys. 21, 392.

40 The Universality of the Symmetry Concept 617



HARGITTAI, I. ed. 1986 and 1989. Symmetry: Unifying Human Understanding 1 and 2. New York

and Oxford: Pergamon Press.

___. ed. 1990. Quasicrystals, Networks, and Molecules of Fivefold Symmetry. New York: VCH.

___. ed. 1992. Fivefold Symmetry. Singapore: World Scientific.

HARGITTAI, I. and M. HARGITTAI. 1995. Symmetry through the Eyes of a Chemist. 2nd edn.

New York: Plenum Press.

___. 1994. Symmetry: A Unifying Concept. Bolinas, CA: Shelter Publications. Rpt. New York,

Random House, 1996.

HARGITTAI, I. and C. A. PICKOVER, eds. 1992. Spiral Symmetry. Singapore: World Scientific.

KOESTLER, A. 1949. Insight and Outlook. Macmillan: London.

LEONARDO DA VINCI. 1939. The Notebooks. 1508–1518. Jean Paul Richter trans. Oxford: Oxford

University Press.

MERMIN, N.D. 1992. Copernican Crystallography. Phys. Rev. Lett 68, 1172 (1992).

SHUBNIKOV, A.V. 1951. Simmetriya I Antisimmetriya Konechnykh Figure. Izd. Akad. Nauk SSSR:

Moscow.

YANG, C.N. 1991. The Oscar Klein Memorial Lectures, Vol 1, G. Ekspong ed. World Scientific:

Singapore.

618 I. Hargittai and M. Hargittai



Chapter 41

Contra Divinam Proportionem

Marco Frascari and Livio G. Volpi Ghirardini

An account of the discovery of the role of the Golden Ratio in
the gambler’s world of probability, and its consequence to us
all
(Subtitle of a web page entitled “Golden Ratio selling a

gambling method based on the Divine Proportion”)

In his Dictionnaire raisonné de I’architecture française du XIe au XVIe siècle
(1854–1868), under the entry “Proportion,” Eugène Viollet-le-Duc asks himself:

Measuring a hundred times the Parthenon with the difference of few millimetres, what is

the use of such a compilation of documents, if we do not know how to derive from them the

generating principle of proportions?

What is the generating principle of architectural proportion? The question raised

by Viollet-le-Duc is essential, but the clarity of its formulation has been constantly

soddened by the mystical and aesthetic clouds of the ϕaithful.
Are architectural proportions metric, numeric, geometric or golden? Which ones

among the many in a building are the markers that should be considered reference

points for the proportioning of its parts? A golden or divine magnifying glass that

distorts rather than clarifies has been applied to everything in the name of aesthetic

and mystical impulses. A proportion called the Golden Mean has long been the only

explanation for a successive mélange of proportions in all the visual arts. This

Golden Mean (also called the Divine Proportion) has been found repeatedly in the

pictures of growth patterns embodied in natural events or in the pictures of human

products. Since the last century it has so fascinated mathematicians and artists that

it is proposed by many as the absolute aesthetic value.

First published as: Marco Frascari and Livio Volpi Ghirardini “Contra Divinam Proportionem”,

pp. 65–74 in Nexus II: Architecture and Mathematics, ed. Kim Williams, Fucecchio (Florence):
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By tracing lines onto pictures, this ideal proportion has been found in man-made

artefacts and used to mark human achievements. As the acme of this mystically

scientific process, pictures of the Parthenon with Golden sections traced on

them have been exhibited as demonstrations of the beauty of its man-made, but

nature-inspired, rational design. This graphic notion of beauty is so alluring and

pervasive that it has been acritically forced upon us as an aesthetic paradigm since

grade school. In many school books appear the usual photographs of a nautilus, a

pattern of leaf growth and the Parthenon with black or red lines of different

thicknesses, all presented as testimonials of the beautiful presence of this perfect

ratio in human as well as natural creations, intended to safeguard us from the

ugliness of other proportional systems.1

What is the Golden Section? It is a way to divide a line so as to create an ideal

relationship between the parts. A given length is divided such that the ratio of the

longer part to the whole is the same as the ratio of the shorter part to the longer part.

In other words, “the smaller is to the larger as the larger is to the whole.” To explain

simply this ‘divine concept’ for the divination of gambling and for future designs, it

is stated that the segment AB is divided so that the ratio of AC to AB is the same as

the ratio of CB to AC. If AC is 1.000, then AB becomes 1.618, which is also known

as the Golden Mean, or ϕ. The symbol is derived from the initial of Phidias.

The German Apollonian search within the combined sciences of mathematics,

philosophy and archaeology lies at the root of the scientific proposal of the Golden

Mean as a panacea for explaining the composition of parts and foretelling the

aesthetic future of man-made designs. German philosopher Adolf Zeising has

made the Golden Mean the only possible principle of a scientific aesthetic and

used the Parthenon with the usual diagram traced on it to provide the necessary

archaeological authority for his theory of the omnipresence of the aesthetic

guarantor ϕ. In 1876, in a ponderous article published in memory of Zeising,

mathematician Siegmund Gunter reviewed Zeising’s scientific aesthetics in a

critical manner, but even he admitted that the presence of ϕ in antique

architecture, and notably in the Parthenon, was clear evidence of its being the

powerful quintessence of classical aesthetic values. Without any doubt Zeising and

Gunter were very skilful at measuring pictures, but it is clear that neither of them

had ever measured a building according to tectonic principles (Fig. 41.1).

Vincenzo Scamozzi, in the passage in his treatise on architectural ideals devoted

to a discussion of the utility and importance of properly measured drawings, refers

to one of Aulus Gellus’ Attic Nights. In this philosophical story, Gellus depicts an

event that took place during a dinner at Frontonis Cornelius’s house. A few artisans

and an architect present at the dinner are submitting to the host a selection of

bathroom designs in order that he might choose the one that he would like to add at

his villa. After some consideration, Cornelius makes his selection from among the

designs and then asks what the cost of the making of the new bath will be. This

appropriate question is used as a premise for raising the philosophical issue on

1 For a specific discussion of the Golden Mean and architecture, see Ostwald (2001).
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which the conversation will be focused during the repast. From the reactions and

answers of the architect and the artisans, it appears that the presented set of

drawings, although complete in their description of the design, does not allow a

precise estimate of the expenditure. A word recurring quite often in the artisans’ and

the architect’s statements is praeterpropter (Italian: pressapoco, circa; English:
about, nearly). The peculiar term praeterpropter tickles Cornelius’ philosophical
inquisitiveness and, after having remarked on its presence in the discourse, he asks

a preposterous and precise Apollonian grammarian who is attending the dinner for a

definition of this curious term. Immediately this grammarian dismisses

praeterpropter as a vulgar term used by unscientific artisans. However, Cornelius

recalls that the term has been used a few times by Cato, and that Ennius uses it

specifically in one of his tragedies. The quote from Ennius’ text is incerte era
animus, praeterpropter vita vivitur (the soul wanders, we live approximately our

lives). In the play, Ennius uses this line to point out that he who acts around things is

in a state of equipoise between otium and negotium, between relaxed mental

constructions and tense constructive activity. Analogically, we can derive the

consideration that architects and builders are just so when they are setting the

measures of their designs. Otium and negotium are the twofold structure of

material and existence through which the physical and the metaphysical measures

and matrixes of a specific design are elaborated. Mentally conceived, these

negotiated measures are the approximate tools for construing and constructing a

design. The duality of otium and negotium relates the ineffable qualities of a design

to the storytelling ability of a construction. This polar binomial is the working tool

that, through the negotiation of purely and utterly conceived numerical controls,

Fig. 41.1 The old ϕaithful Parthenon, as probably seen by Adolf Zeising, without the diagram of

ϕ on the image. Photo: A. Normand (1851)
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permits the translation of a design into built form or of an idea into a design. These

numerical expressions are the resources for the architect’s conceiving imagination

as well as for the builder’s constructive imagination. Even in their approximation,

they are very precise tools in the sense that they determine the substance of a design

and govern how the design is materially realized.

In metrical terms, every constructive part of building has its geometric order:

masonry, in decimetres; wood carpentry, in centimetres; metal works, in

millimetres. Every part is exactly approximate. The same is true of the parts

conceived by the imagination. Traditionally speaking, a design begins with a

tracing of a few lines of a sketch. For instance, one tries to imagine an opening of

3 m by 5 m and traces a few lines. This can be done because most designers know

approximately how long 6 m are, but they know much less about 5 m and 3 cm, and

they do not know anything at all about 5 m, 3 cm and 5 mm. In designing, we need

approximation because it is with the approximation of our body that we know how

to measure. Palms, braccia or feet are the proper measures. This is because in

walking and gesticulating we measure a building. However, our bodies are all

deviant from the norm and this humanly precise measuring can be only

approximate. We know our palm, but we do not know the palm of the other.

Design is the understanding of the other and therefore to approximate is the

essential condition of the interpretation of an individual otium in the alterity of

negotium. Furthermore, proportions resulting from designers’ otium are then

negotiated in the material selected for the construction. Approximate measures

are tangible and tamable, whereas uncompromising measures are elusive. The

Golden Mean is an untamable and intangible measure since, in order for it to be

real and efficient, it must be explicitly exact. However, architecture does not permit

this categorical exactness, because there are always mitigating factors such as play

in the joints and the density of materials. The thickness of a mortar joint, for

example, gives dimension to what on paper is an ideal line. The precision of the

Golden Mean, an intolerant aesthetic rule, does not acknowledge any play; if such

an undesirable factor is discerned, it is called tolerance, something that,

unfortunately, the ϕ believers must tolerate.

Within a few centuries of each other, two architectural events took place in

Milan, each of which dealt with the relationship between the theory and the practice

of architecture. Considered together, these events can facilitate the understanding of

the positive and negative conditions created when a design is ruled either by the

pseudo-precision of ϕ or by an approximation of the rational integration of integers

that can be translated into a built form. The first event took place on the construction

site of the Cathedral of Milan at an impasse in the design. The second event took

place on the grounds of the Milanese Triennale at the particular moment of

architectural fervour that had been generated by the need and the forces of the

post-war reconstruction in Europe.

The first episode was characterized by the presence of an intolerant French

architect. Although he was not advocating ϕ as a universal remedy for the

architectural ailments of the Cathedral, the trendy French master builder was

setting the forma mentis for an understanding of the use of proportion in design
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based on a rigorous configuration which did not have any direct point of reference

with regards to the points of the order ruling the construction of the building. Any

point is good for tracing a scientific relationship among the parts of a building. It

does not matter if that moulding or cornice is really a point belonging to the

configuration of the building erection where a real plumb line or snap line has

been applied or must be applied. As for the ϕ believers, any point is good for

making the point.

The debate between the French master builder and the Milanese master masons

was about the use of geometry. The debate has been presented and discussed by

several scholars and the dominant interpretation is that the Parisian master builder

advocated geometry as the true science ruling architecture, whereas the Italian

master masons did not, instead working by rules of thumb. The famous line of

the French master is Ars sine scientia nihil est (the art of construction without a

geometrical science is nothing). However, the Italian master masons did believe in

geometry, not as an intolerant science, but as a system of orderly, constructed and

practical associations. As they state in the answer to the French master, they apply

an ordo geometricus, a pre-instituted unique condition of proportion imposed as a

prerequisite for a mystical aesthetic.

This condition of a pre-posterous science opposed to a prosperous order, a

procedure of design based on an elegant ruling of chosen ratios, was the

intellectual horizon towards which the advocates of ϕ as an essential condition

for proper design would push their agenda during a conference held at the Triennale

as well as in an exhibition illustrating a ϕ-biased view of the evolution of historical

images showing the use of proportions from the mythological past up to the re-use

of the ϕ-proportioned tubular frames conceived by Pagano for the famous Fascist

exhibition of the progress of Italian aviation. The aim of this event was the official

imposition of ϕ as a design rule on every architect. The resolution, voted on by

scholars and designers present at the conference, lost by a vote and the proceedings

have been never published (thank G. . .!).
This preposterous lion’s share of ϕ, as we have already pointed out, began with

the German Apollonian and mathematical pan-aesthetic. Following an iconophile’s

logic, the ϕ becomes a sacred measure that is the indispensable means for painterly

composition and from that it follows that it is the quintessential universal aesthetic

requirement for any human and natural invention. This powerful divining procedure

of the human world, which foretells and backtells any human intervention, is the

great discovery of Matila prince Ghyka, who combines the two systems by making

clear that the science raises the question and the myth gives the answer. Scientific

and mystical otii can forego the necessary negotii.
In recounting the life of Pericles, a forgetful Plutarch does not tell which

proportions were preferred by the craftsmen in charge of the renovation of

Athens during the second half of the Fifth century BC, nor does he tell what the

great Phidias thought of it. We are doubtful of the statement that ϕ originates in a

concealed passage of the sixth book of Euclid’s well-known Elements; that this was
written a century after Phidias’ time does not help. But for the ϕaithful, the Golden
Section is a divine principle which has been, is and it always will be.
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Plutarch’s silence entitles us to make a few observations as to the

commensurability of ϕ. First of all, 5:3 and 8:5 are ratios generating a rational

number, whereas ϕ generates an irrational number. For a fifth century Athenian, the

first two above mentioned ratios were intelligible since they are finite terms, while

ϕ, on the contrary, is undefined. It is a vague number that is neither odd nor even,

hence neither male nor female: it is not even an hermaphrodite, but an

undetermined sexual aberration. For the Greeks, the infinite was undefined, and

the indeterminate could not be beautiful, measurable or perfect. This concept of

Pythagorean tradition was ordinary wisdom among the agora-goers. Any Athenian

could follow the elegant thinking embodied in the paradox of Achilles and the turtle

set by such a rational mathematician as Zeno. The same is true for the elegant arts of

construction, and the measurable presence of harmony. They cannot be born of

antithetical models. Our hypothesis is that all the “discoveries” of the Golden

Sections of the golden past are actually based on the ratios 5:3 and 8:5. This is a

probable hypothesis, which does depend on few measured millimetres.

In 1674, spending two laborious months on the Acropolis, Carrey produced the

first modern set of measured drawings of the Parthenon. At that time, Athens was

under Turkish rule, therefore it was before the Venetian Siege, during which a

bomb explosion ruined part of the temple. The Turks were judiciously distrustful of

foreigners, and if a gate was opened so that Western culture could know the forms

of the Parthenon, it was the result of a gift to the ruling Aga: six measures (braccia)
of Red Venetian brocade, half a dozen four-pound geese and coffee for a total value

of 50 gold pieces (zecchini). The negotiation that allowed westerners to gaze on the
proportions of the Parthenon was forged on two fundamental counting systems that

contain the six and the ten (6 measures, 6 geese, 50 gold pieces), their Golden

numbers. The ratio between these two Golden numbers—highly regarded by the

ancient mathematician and philosophers—is 5:3.2 Perhaps, in this ratio lies the

hidden key for correctly reading the proportions of the Parthenon.

As Sophists and their modern counterpart, the Attorneys, teach us, any reasoning

can be turned around. Even where the ratios 5:3 and 8:5 are clearly spelled out, any

strict believer in the aesthetic power of ϕ will see in it the Golden Section.

In his Architectural Principles in the Age of Humanism, Rudolf Wittkower

focused the attention of architects and scholars on how the issue of

commensurable entities must have been a substantial problem for the

Renaissance artists who were discovering and reinventing the Classical Arts. In

De Re Aedificatoria, Leon Battista Alberti, the most consequential personality

among the architectural theoreticians of the period, defines the ‘aureate ratios’ in

which a proper architect should believe. Alberti’s ‘aureate ratios’ are structured in

three groups of three entities each: (a) small areas (1:1, 2:3, 3:4), (b) medium areas

2 The evil architect Squaronthehypotenus from the Asterix comic book The Mansions of the Gods
based his design for a typical condominium in a Roman holiday resort in the upper Gallia on the

plan of Alberti’s San Sebastiano in Mantua; the design is based on the ratio 5:3; see Goscinny and

Uderzo (1972: 26). For a correct and recent measured drawings of the plan, see Calzona and Volpi

Ghirardini (1994: Dis. 2).
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(1:2, 4:9, 9:16) and (c) large areas (1:3, 3:8, 1:4) (Alberti 1755: IX iv, 198). The

ratios 5:3 and 8:5 do not show up among these three sets of Albertian areas.

However, in his practice, Alberti uses the ratio 5:3, primarily to underscore the

spaces of the church of San Sebastiano, built in Mantua during the second half of

the Quattrocento. First, this forethought can reduce the importance of golden ratios,

framing them within a theoretical realm; second, it can establish the ratio 5:3 as a

full-fledged reality of the negotiation to be matured and refined within the

constructive realm of any architectural plan.

The idea of reading ϕ when it is clearly written 5:3 can be asserted with

arguments that are not presumptive. It is well known that during antiquity ratios

were used to manifest incommensurable entities. These approximations were

judged perfectly acceptable. For instance, in his Ludi rerum mathematicarum,
Alberti used the ratio 22:7 to define π, but, considering it too roughly estimated,

he refused the ratio 7:5 for defining the right angle. However, he then uses the same

ratio to substitute Vitruvius proportion of √2:1, as Zoubov made it clear by

comparing excerpts by the two authors.

During the first conference in the series “Nexus: Relationships Between

Architecture and Mathematics” in 1996, the nature of Alberti’s proposition of

areas and the characteristics belonging to ratios among the measures was

demonstrated (Volpi Ghirardini 2015). The areas are born, on the one hand, from

the otium of a pure mathematical thought, from a ludus among numbers embraced

by 1 and 4, and, on the other hand, by a negotium with the final growth and change

of the design translated into a built form. In other words, this is a procedure that

takes place within the superior and inferior limits of the Pythagorean tetraktys. The
ratio 5:3 joins the above-mentioned ludus, widening the beginning terms of a unit,

that is, enlarging the field from 1 to 5. The logical procedure followed by Alberti

has a lucid precedent in the arithmetic of Nicomachus. It is a tribute to the natural

number. It is also a tribute to a Greek-Hellenistic mathematics, which is a puissant

sibling to geometry. Although related, it is not geometry because of its expression

Fig. 41.2 A mind to which Zeising and Ghyka refer frequently is the one of Luca Pacioli. The

Italian government dedicated a 500 lira coin to this famous figure. The financial peregrinations of

the coin, an instrument for gambling, are always recorded using the Fibonacci double entry system.

Photo: authors
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of commensurable entities. The ratio 5:3 cannot represent the incommensurable ϕ,
which then is out of the game, pardon, out of the ludus of the negotiations of

architectural design.

If someone still harbours doubts that 5:3 can be a guise behind which is

concealed the Apollonian ϕ, wandering among edifices to allure our fantasy we

come upon another ab abumdantiam argument. In the central-plan church of

Alberti’s San Sebastiano, the numbers 5 and 3 not only zestfully mould the

monochord ratio that harmonizes the whole design, but are also the ideal

measures of the central room around which the design of the whole edifice takes

shape. Indeed, the length of the side of the square central room is equal to the sum of

the squares of 5 and 3. Accordingly, the whole is commensurable; as it is said in the

Old Testament book Wisdom, all is distributed on the base of weight, number and

measure [Wisdom 11:20]. The irrational numbers do not dwell in this architecture

and ϕ is definitely annihilated: take Nicomachus of Gerasa, Livio of Mantua and

Marco of Mantua’s word for it (Fig. 41.2).
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Part VI

From 1400 A.D.–1500 A.D.



Chapter 42

Alberti’s Sant’Andrea and the Etruscan

Proportion

Michael R. Ytterberg

Introduction

The church of Sant’Andrea in Mantua is a paradox (Fig. 42.1). It is the last of the

church designs of Leon Battista Alberti, and though construction was not begun

until the year of his death, it is the most complete of his churches, and therefore the

one in which his intentions might seem to be clearest in the resulting structure. Yet

though the church takes the form of a Latin cross, the evidence suggests that Alberti

had intended a basilican plan. In an extant letter, Alberti was explicit about his

intentions in at least one respect: his proposal was for a church of the type “known

among the ancients as the Etruscan.”1 But the church is not planned like an Etruscan

temple as described by Vitruvius. The description Alberti gave in his treatise, De re
aedificatoria, adhered to the account of Vitruvius in only one way—the presence of

the unusual proportion of 5:6.2 Yet in spite of numerous attempts to discover

Alberti’s proportional system at Sant’Andrea, no one has convincingly found the

presence of the proportion 5:6 in the completed building—until now.3

First published as: Michael Ytterberg, “Alberti’s Sant’Andrea and the Etruscan Proportion”,

pp. 201–216 in Nexus VII: Architecture and Mathematics, Kim Williams, ed. Turin: Kim

Williams Books, 2008.

1 Alberti sent this letter, accompanied by a sketch, to Ludovico Gonzaga on 20 or 21 October 1470.

For a photograph, transcription and translation of the letter, see Johnson (1975: 8, 64, pl. 12).
2 The manuscript was completed about 1450 but was first published in 1486 after Alberti’s death;

see Alberti (1988: xvi–xviii). All references to Alberti’s De re aedificatoria herein are to

Alberti (1988).
3 The following is a partial list of publications which include a proportional analysis of

Sant’Andrea: (Sanpaolesi 1961; Krautheimer 1969: 333 ff.; Borsi 1977; 229 ff.; Morolli 1994;

Furnari 1995; Tavernor 1998: 169–181; March 1998: 192).
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Alberti and the Etruscan Temple

Why an Etruscan temple? Sant’Andrea is not the cathedral of Mantua, but it

nevertheless figured prominently in the efforts of Alberti’s patron, Ludovico

Gonzaga, to consolidate power over the city of Mantua. The existing building is

built on the site of a previous Benedictine abbey church, the last abbot of which

died in 1470. At Ludovico’s behest, the abbey was abolished in 1472 and refounded

as a collegiate church of which Ludovico’s son, Cardinal Francesco Gonzaga, was

made head (Borsi 1977: 229). The church is in possession of a sacred relic, samples

of the Blood of Christ. The Blood is contained in two vials, now on display in the

crypt, which were at one time displayed to the pious each Ascension Day. Thus, in

Alberti’s words, the “principal intention [of the reconstruction] was to have a great

space where many people would be able to see the Blood of Christ” (Johnson 1975:

8, 64, pl. 12). It was for this aim that Alberti proposed an Etruscan temple, which he

said would be “more capacious” (Johnson 1975: 8, 64, pl. 12) than a competing

design. On the basis of the testimony of Virgil, himself a Mantuan, Mantua has

traditionally claimed its origin as an Etruscan city. Alberti’s strategy, then, at least

in part, was to enhance the prestige of the Gonzaga family through this patriotic

gesture.

Fig. 42.1 Sant’Andrea,

Mantua, façade. Photo:

courtesy Paolo Monti
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Several historians, the first of which was Richard Krautheimer (1969: 338–339),

have commented on the fact that Alberti’s description of an Etruscan temple in his

treatise bears a much closer relationship to the Basilica of Maxentius than to

Vitruvius’s description of one (or to actual Etruscan temples, for that matter), and

that the nave of Sant’Andrea resembles both the Basilica of Maxentius and

Alberti’s description (Fig. 42.2). This has led to the current consensus that the

existing Latin cross plan was not intended by Alberti.4 It is possible that the

decision to extend the church was made around 1526 according to the designs of

Giulio Romano. Giulio may also have been responsible for the first of what seems to

have been many changes to the windows in the nave as well as aspects of the

interior decoration. Round-headed rectangular windows lit the interior of the

Basilica of Maxentius. Robert Tavernor suggests that round-headed rectangular

windows and niches once reproduced in the nave of Sant’Andrea the appearance of

the façade.5 Currently, oculi occur in these positions (Alberti was on record as

disliking these).6

If only the nave was intended, how might Alberti have terminated his design?

While the Basilica of Maxentius terminated in the typical semicircular apse, a

sixteenth-century drawing shows what appears to be a rectangular chapel at the

end of Alberti’s nave (Tavernor 1998: 165). That such a configuration was possible

is confirmed by Alberti’s statement, “The tribunal itself may be rectangular or

semicircular” (Alberti 1988: 187).

But why would Alberti identify the Basilica of Maxentius as an Etruscan

temple? Since it was vaulted Alberti may not have recognized it as a basilica,

which, to him, were all timber-roofed, aisled structures. No other extant monument

in Rome or the rest of Italy corresponded to Vitruvius’s description of the Etruscan

temple with its three cellae side by side facing forward. The Basilica of Maxentius

had three sets of chapels facing each other on both sides of a central nave. In the

absence of any other evidence this may have motivated Alberti’s identification.

Perhaps he imagined the Basilica to be a development of the Vitruvian type,

and, given his skeptical attitude toward Vitruvius, preferred to describe a building

he had actually experienced rather than something whose details he could not

corroborate.

4 Recently, Robert Tavernor analysed the number of bricks said in a contemporary letter to have

been stockpiled for the project and concluded that they were sufficient only for the nave of the

extant building; see Tavernor (1998: 160–165) and Johnson (1975: 14, 65).
5 An innovation at Sant’Andrea is the close correspondence of interior and exterior; see Tavernor

(1998: 167–168).
6 Alberti expressed disapproval of oculi in a letter to Matteo de’ Pasti, the site architect for another

of Alberti’s churches, the Tempio Malatestiano Tavernor (1998: 60). Johnson, however, suggested

that the original form of the interior elevations of the nave may have included round headed

rectangular niches above the doors to the small chapels, similar to the façade, surmounted by the

existing oculi. There is evidence for this view in the form of walled-up openings visible from

within the western transept piers. See Johnson (1975: 16–17, pl. 17, 18).
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Moreover, the Basilica of Maxentius had been misidentified since antiquity; only

in the nineteenth century was it accurately identified. A misreading of ancient texts

had caused the Basilica to be mistaken for the adjacent Temple of Peace, of which

very little remains.7 The Temple of Peace had been founded by Vespasian to

commemorate the suppression of the Jewish revolt of 70 CE and housed plundered

treasure from the destroyed Temple of Jerusalem. Since Rome had housed remnants

of the Temple of Jerusalem, the Church had additional reason to claim Rome as the

successor to Jerusalem, particularly in light of the Muslim occupation of that city.

At all times the Temple, whose dimensions and proportions are given in the Bible,

has been the model for Christian churches, most commonly as a metaphor but also

Fig. 42.2 Sant’Andrea, Mantua, nave. Photo: courtesy Paolo Monti

7 For many centuries the Basilica was therefore referred to as the Templum Pacis or the Templum
Pacis et Latonae or simply Templum Latona, which is how Alberti knew it. The reference to

Latona is another mystery and possibly another case of confusion with an adjacent monument, in

this case with the Arcus Latronis. Latona was the mother of Apollo and Artemis (Alberti 1988:

22, 370, note 83).
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frequently in terms of physical structure.8 The combination of Etruscan and

Jewish references in this single monument—both mistaken—may have made the

Basilica of Maxentius an overpoweringly appropriate model for the church of

Sant’Andrea.

As mentioned above, the common element in the descriptions of an Etruscan

temple by Alberti and Vitruvius is the presence of the proportion 5:6, an unusual

proportion because it is not one of the Pythagorean musical consonances upon

which so much of ancient and Renaissance proportional theory was based. Alberti’s

description, which otherwise fits the Basilica of Maxentius very closely, does not

initially seem to match in terms of the proportional scheme of the overall plan.9 But

subtracting the vestibule, the main part of Basilica of Maxentius does conform to

the proportion of 5:6 (Fig. 42.3). The reality of the situation is that the combination

8 Establishing the Temple of Jerusalem as the model for Sant’Andrea would be most convincing if

there were the replication in Sant’Andrea of the dimensions and/or proportions of the inner

chamber of the Temple, given in the Bible as 20 cubits wide by 30 cubits high by 60 cubits

long, a proportion of 2:3:6 (1 Kings 6.2). This corresponds to Pythagorean musical consonances of

a fifth (2:3) and an octave (1:2 ¼ 3:6), ratios condoned by Alberti in his treatise (1988: 305).

Numerous observers have measured Sant’Andrea and have found that the width of the nave is

40 Mantuan braccia wide by 60 Mantuan braccia high, a ratio of 2:3, the same as the Temple

(Tavernor 1998: 169 f).

The question of the length is more difficult since the extension of the church in the sixteenth

century. At least one observer, the local historian Giovanni Cadioli, established in 1763 that the

nave of the then Latin cross plan was 120 Mantuan braccia long, see Cadioli (1974: 61). If this

figure was the same for Alberti’s plan, then the correspondence with the Temple would be perfect,

and the ratio between height and length would be 1:2, an octave. Yet the best attempts to

reconstruct Alberti’s design fail to support this number. Tavernor measured the length of the

existing nave as “closer to 115 braccia,” based on a photogrammetrical survey made of the church

prior to a 1994 exhibition (Tavernor 1998: 171). Based on the same survey, the present study

suggests that the length of Alberti’s nave was precisely 116 Mantuan braccia long. This result

would not seem to fall within an acceptable range of approximation to the Temple for an architect

as rigorous as Alberti, so the proportional model for Sant’ Andrea must lie elsewhere.
9 Tavernor has suggested that the disconnect between Alberti’s description of the Basilica

Maxentius and its proportional scheme may have been a typographical mistake. He suggests

that with a simple transposition of numbers, Alberti’s proportional scheme can be made to fit the

Basilica of Maxentius more exactly. Alberti’s text reads, “In plan, their length, divided into six, is

one part longer than their width. A portico, serving as the vestibule to the temple, takes up two

parts of that length” (Alberti 1988: 197). Tavernor suggests that a closer fit to the Basilica of

Maxentius would be obtained if the passage were to read, “In plan, their length, divided into six, is

two parts longer than their width. A portico, serving as the vestibule to the temple, takes up one

part of that length” (Tavernor 1998: 177). Unfortunately, Tavernor prints a diagram which does

not conform to his suggestion. The diagram he publishes divides the Basilica lengthwise into seven

parts, not six. But the diagram is correct, for it demonstrates that the main part of the Basilica of

Maxentius does conform to the proportion of 5:6. The vestibule is an addition to this proportion,

making a total length of seven units, not a subtraction from the overall proportion of six units as

Alberti’s text suggests. For Alberti’s description to be an accurate account of the Basilica of

Maxentius, it would have to read, “In plan, their length, divided into six, is one part longer than

their width. A portico, serving as the vestibule to the temple, is one part in addition to that length.”

If this were the case the text would precisely reflect the reality of the plan of the Basilica.
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of three chapels on a side and the proportion of 5:6 would have been enough to

convince Alberti that the Basilica of Maxentius, known to him by a different name,

corresponded more closely to Vitruvius’s description of an Etruscan temple than

any other surviving example of antique architecture.

Fig. 42.3 Proportional prototypes: 5:6. Drawing: author
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Other Prototypes

The Basilica of Maxentius is not the only ancient prototype for Sant’Andrea. The

Roman triumphal arch, particularly that of Constantine, was an equally important

source for the form of the church. The Blood of Christ, the sacred relic of

Sant’Andrea, is both the wine that is drunk at Communion, in remembrance of

Him as a community of believers, and the very means to our salvation. It is through

Christ’s sacrifice and subsequent Resurrection that the pious may defeat death and

enter heaven.

It was due to Constantine’s efforts that the triumph of Christ came to be

associated with the Roman triumph. The specifically Roman column capital, the

Composite, originally appeared on triumphal arches and was therefore associated

with the triumph of Rome. Seemingly in deference to the Saviour, Constantine’s

own triumphal arch in Rome, however, has Corinthian capitals.10

Alberti had already used the triumphal arch motif for the church façades he had

executed at the Tempio Malatestiano at Rimini, where the model was the local Arch

of Augustus, and at Santa Maria Novella, where the model was the Arch of

Constantine in Rome.11 At Sant’Andrea the use of the triumphal arch motif for

the façade becomes a completely three-dimensional creation for the first time, a

building in its own right.12 Due to the presence of the relic of the Blood of Christ, at

Mantua the triumphal arch motif became a specific expression for a particular

church in addition to being a standard theme appropriate for every church.

Possibly for this reason Alberti continued the triumphal arch motif inside the

church onto the walls of the nave. Each major chapel with its two adjacent minor

chapels repeats the organization of the façade. This gave Sant’Andrea an unusual

degree of correspondence between inside and outside, which was to have important

consequences for the future of Renaissance architecture. But in one important way

the inside and outside are different: the pilasters on the façade are Corinthian, while

those in the interior of the church are Composite.

Neither the façade nor the nave walls conform to the proportional system for a

triumphal arch which Alberti provided in his treatise (Alberti 1988: 265–268).

Alberti’s system does not establish an overall relationship of width to height. The

height of the arch depends on the dimensions of the columnar order, which

dimensions are not directly controlled by the geometry of the arch as a whole.

The illustration that was provided by Cosimo Bartoli in the first illustrated edition

10 See Onians (1988: 59) for a discussion of the meaning of the Composite capital, the Roman

triumph, and Christianity.
11 Alberti’s experiments became standard motifs for subsequent Renaissance architecture; see

Rudolf Wittkower’s classic discussion of Alberti’s church façades (1962: 37 ff.). Robert Tavernor

(1998: 178) links the Arch of Constantine with the façade of Santa Maria Novella.
12 One of the most distinctive facts about Sant’Andrea is that the presence of the pre-existing

campanile meant that the portico could not be as wide as the church behind, thus accentuating its

semi autonomous nature.
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of Alberti, published in Florence in 1550 [reproduced in (Alberti 1988: 267)],

shows an arch that has a height equal to its width, and this seems to have

influenced subsequent authors. If one proportional diagram is printed in any work

dealing with Sant’Andrea, it is one that shows that the façade fits within a square. It

is true that the width of the portico is equal to the height of the pediment, and this is

taken by Tavernor and others as a link to Alberti’s preferred proportions for a

triumphal arch. In the process, however, a key relationship is obscured. Roman

triumphal arches were built to a variety of designs and proportions. Alberti’s

description of one in his treatise was intended to refer to a typical, not a specific,

arch. The Arch of Constantine, to which Alberti’s description of an arch otherwise

closely adheres, does not fit within a square.

Rather, the Arch of Constantine is controlled by the proportion of 5:6, and its

details fit rather neatly into a grid of that proportion (Fig. 42.3). Thus both the

appropriateness of the design for a city founded by the Etruscans and the

appropriateness of the design to a church that houses the Blood of Christ point to

the same proportional system as crucial to the meanings embodied in this particular

building. But it still remains to demonstrate the use of this proportion in the building

as built.

A Demonstration of the Proportions

This task seems simple enough, but its solution has evaded all those who have

attempted it. Not atypical in this regard is the plan diagram reproduced in the

beautiful book on Alberti’s architecture published by Franco Borsi (1977: 232)

(Fig. 42.4).

In this diagram the solution seems simple: the nave has a proportion of 5:6 based

on a square module which defines the cells of the major and minor chapels. There

are two problems, however. First, this system does not include what would

have been the final chapel and is now the crossing pier, suggesting an unlikely

asymmetrical elevation of the nave wall in Alberti’s building. Second, if one places

the plan at the left over the diagram on the right, one discovers the reason for not

showing the diagram on top of the plan: they do not correspond. The faint lines of

the plan beneath the diagram have been stretched to make the diagram work. More

honest, but still unsatisfactory, are all other published attempts to place a diagram

over the plan which illustrates an application of the Etruscan proportion.13

13 See the list of publications in n. 4 above.
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Fig. 42.4 Sant’Andrea, Mantua. Plan and proportional diagram. Drawing: author, after Borsi

(1977)
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Fig. 42.5 Sant’Andrea, Mantua. Proportional scheme, plan. Drawing: author
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The present analysis begins with the plan in its restored state, using the plan

restoration published by Robert Tavernor (Fig. 42.5).14

It has been immediately noticeable to all observers that the side chapels divide

the length of the building such that the void of the major chapels approximately

equals the solid mass of wall surrounding the minor chapels. This divides the length

of the nave into seven equal spaces, not counting an extra bit at each end caused by

the repetition of a pilaster in the corner. However, a square drawn around these

chapels, taking as its side the longitudinal modular dimension, produces no

apparent relationship to the width of the nave, yet this square is apparently equal

in size to the plan of the campanile left over from the Benedictine abbey church.

Closer study of the major chapels reveals that the centreline to centreline distance

between the pilasters and arches that define the front and rear of the chapels appears

to be in the ratio of 5:6 to the width of the chapels. This suggests a modular

dimension created by dividing the notional width of the chapels by 6. The width

of the nave measures 15 of these proposed modules across. The width of the nave

has been given by numerous observers as 40 Mantuan braccia.15 Dividing by

15 gives the unusual dimension of 2 2/3 braccia as a possible module, a puzzling

number. However, multiplication by 6 for the width of the chapels produces the

result of 16 braccia, the Vitruvian perfect number, the sum of 10 and 6, the numbers

explicit in the human body.16 In his treatise Alberti does not single out the number

16 as did Vitruvius, but he does call 6 and 10 the “perfect” numbers (Alberti 1988:

304). The dimension of the sides of the existing campanile appears to be 16 braccia,

at least notionally, and the starting point for the layout of the new church. Applying

14 In the case of Sant’Andrea good drawings are available on which to base a proportional study.

An exhibition on Alberti’s architecture was mounted in 1994 by the Alberti Group, an organization

created with the financial assistance of the Olivetti Corporation for the purpose of staging an

exhibition. Photogrammetric surveys were made of the major works of Alberti at that time. The

surveys that were available for Sant’Andrea were the south and west elevation of the nave and the

west façade. These plus a restored plan and west elevation from Tavernor (1998: 142, 185) formed

the basis for this study. These drawings show current conditions, of course, and not the original

intentions of Alberti. No attempt has been made to restore these elevations or to suggest any

disagreement with the restorations published by Tavernor. It should be noted that using another’s

reconstruction of the original building helps to avoid the trap of devising a plan to fit a proportional

system. Verification of key dimensions of the photogrammetrical surveys was possible by

comparison with the survey published by E. Ritscher (1899: 2–19, 182–189), republished in

Johnson (1975: pl.14, 15, 45, and 79). Every modular dimension in this chapter that can be

verified numerically by comparison to Ritscher’s work deviates less that a fraction of a percent

from the actual given value.
15 See above, n. 9. A braccio (arm, plural braccia) is an Italian cubit whose exact length varied

from city to city. The Mantuan braccio was equal to .467 m. A stone monument still exists in

Mantua which established the official standard for the braccio and other measures. There is a

photograph in Rykwert (1979: 76).
16 The length of the plan unit, 16 Mantuan braccia, can be verified numerically. A close look at

Ritscher’s (1899) survey and the photogrammetrical survey reveals that the bays of the nave side

elevations, which appear to be uniform in terms of their decoration, in fact show a degree of

variation, as one might well expect. If we take the average in either case and extend the existing

nave by this dimension for the missing final bay, the answer gives a dimension, which, when

divided, produces a value of within a fraction of a percent of 16 braccia. See n. 16 above.
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the ratio of 5:6 to the number 16 produces a modular plan unit of 13 1/3 � 16

braccia that defines both the major chapels and the nave itself, which is defined by a

grid that is three of these plan modules wide by seven long. The odd fractions

produced by the proposed module may have a rational explanation. The module of

2 2/3 braccia equals 8/3, which can be restated as 16/6 braccia.

The proportional scheme of the major chapels is repeated in the central vaulted

bay of the façade, with the exception that the rear pilasters at either side of the entry

door and their corresponding arch have been truncated at their centre, reinforcing

the idea that the centreline dimension has significance.17 The tribunal at the other

end of the nave as restored by Tavernor according to the sixteenth-century sketch

and based on the side chapels neatly balances the central bay of the façade. The

interior of the porch has the ratio of 1:4, based on a square of four modules. This

same four-module square circumscribes the minor chapels.

Turning to the side elevations of the nave, attention is directed first to the

triumphal arch motif that has been said to characterize the nave walls when

looking at a grouping consisting of one major chapel and the two minor chapels

on either side (Fig. 42.6).

The floor of the nave before three contiguous chapels has a dimension of

15 modules by 18 modules, a proportion of 5:6, highlighted on the plan in the

centre of the nave. The height of the cornice line of the interior has been given as

40 Mantuan braccia, the same dimension as the width of the nave.18 This means that

Fig. 42.6 Sant’Andrea, Mantua. Proportional scheme, nave south elevation. Drawing: author

17 Ritscher gives the width of the central façade bay as 7.1 m versus the width of the typical major

chapel as 7.16 m; see Johnson (1975: pl.14, 15, 45, and 79).
18 Ritscher’s measurement is 18.82 m, which is 0.75 % greater than the ideal value of 40 Mantuan

braccia, or 18.68 m; see Johnson (1975: pl.14, 15, 45, and 79).
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the three bays of the triumphal arch motif also fit within a proportion of 5:6

following the example of the Arch of Constantine. Moreover, the inspiration for

the articulation of the plan of the major and minor chapels, where the void of one

equals the solid wall mass encasing the next, is now seen explicitly to have been the

Arch of Constantine. There the internal dimension between the central two columns

equals the out-to-out dimension of the pair of columns on either side. In the case of

the Arch of Constantine it is the precisely this arrangement of columns which

establishes the proportion of 5:6, and not the mass of masonry beyond to which the

columns are attached. In both the Arch and Sant’Andrea, the key dimensions seem

to occur at the pedestals.

Fig. 42.7 Sant’Andrea,

Mantua. Proportional

scheme, nave west

elevation. Drawing: author
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Squares as well as 5:6 rectangles occur repeatedly in the details of the side

elevations of the nave. The arched openings of the major chapels conform to the

proportion of a square on top of a 5:6 rectangle. Squares and 5:6 rectangles also

appear on the west end wall of the nave (Fig. 42.7).

Major elements as well as the subdivision of entablatures and other mouldings

appear to be dimensioned typically in multiples of either sixths or sixteenths of the

module and their factors of three, four, and eight respectively. The west end

elevation reveals the 2:3 proportion of the section through the nave.

The height to the apex of the pediment of the west façade is approximately equal

to the distance across the façade measured at the dados of the pedestals (Fig. 42.8).

Fig. 42.8 Sant’Andrea, Mantua. Proportional scheme, façade. Drawing: author
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As already mentioned, this is the proportion of the square as commonly observed

in writings on Sant’Andrea. But unnoticed by virtually every writer—and

undoubtedly more significant—is the fact that the ratio of the height to the top of

the entablature to the width across the façade is 5:6, following yet again the

example of the Arch of Constantine. Again, squares as well as 5:6 rectangles

occur repeatedly in the details and many of the other dimensions of the façade

are again multiples of the module or of sixths or sixteenths of the module. The

central doorway is rigorously based on a double square, the patterning of which can

be further subdivided into a grid of 81-module squares. Perhaps the most

spectacular discovery concerns the painted grid which once filled the blank wall

spaces of the façade and of which only small traces remain. The module of 2 2/3

Mantuan braccia which has been proposed as the key to the design of Sant’Andrea

receives its ultimate validation by precisely dimensioning this grid on a

reconstruction drawing by Tavernor, made without knowledge of the

proportioning system proposed here (not reproduced here due to lack of space).

The modular system extends to the order of the interior and the major and minor

orders of the façade (Figs. 42.6 and 42.8) The interior Composite order is 10 1/2

modules, or 9 implied diameters, tall. The height of the capital equals the column

diameter equals 13/12 of the module. The major Corinthian order of the façade is

11 modules, or 9 1/2 implied diameters, tall. The height of the capital equals the

column diameter equals 7/6 of the module. The minor Corinthian order of the

façade is 1/12 module less than 8 modules, the same less than 9 1/2 implied

diameters, tall. The height of the capital is 1/12 module less than the column

diameter, which equals 5/6 of the module. From this it would appear that every

single dimension of the building can be proportioned according to the modular

system.

Alberti’s Design Process

In Architectural Principles in the Age of Humanism, Rudolf Wittkower described

the creation of Renaissance architectural theory through the ideas and architecture

of Alberti and Palladio. Wittkower credited to Palladio the creation of an

architectural design methodology that unified a systematic proportional procedure

with an interest in precedent conceived as type. According toWittkower contrasting

Neo-Platonic and Aristotelian doctrines were unified in Palladio’s architectural

design process through the control by number of a building fabric whose design

was determined by the interplay of functional types, based in present patterns of

use, and of formal types, found in the Classical past (Wittkower 1962: 68). Clearly,

a design process of this type is implicated in the work of Alberti at Sant’Andrea.

The need to house and show the Blood of Christ suitably was met with a scheme

which integrated a functional type, the traditional basilica, appropriate for the

accommodation of crowds, with three formal prototypes from the ancient world:

the Basilica of Maxentius, with its presumed tie to the Temple in Jerusalem; the
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Arch of Constantine, emblematic of the victory over death offered by Christ; and

the Etruscan temple, suggestive of civic pride and independence. All three

prototypes shared the same generative proportion, 5:6, which was then applied to

Sant’Andrea as well. A module was devised which related to the 5:6 proportion

through the perfect numbers of 6 and 10, and through this module every detail of the

work was related back to the generative ideas which informed the whole.

Figure 42.9 summarizes the relationship of the 5:6 proportion to the fabric of the

building.

The axonometric drawing over which the diagram is drawn is taken from Robert

Tavernor and illustrates his reconstruction of Alberti’s intentions for various details

of the interior of the church.19 A point that has been made as forcibly as possible is

that there is no detail that is too small not to be integrated into the overall system,

either by Alberti or his many followers, both great and small, in the centuries during

which the building was under construction. On this point Alberti was absolutely

clear:

In short, everything should be measured, bonded, and composed by lines and angles,

connected, linked and combined—and that not casually, but according to exact and explicit

method. . . so that however much [one] searched, he would not find anything in the entire

work inconsistent or incongruous or not contributing its every number and dimension to the

splendor and grace (Alberti 1988: 314).

Fig. 42.9 Sant’Andrea, Mantua. Axonometric of 5:6 proportional scheme. Drawing: author

19 Note that this axonometric drawing shows an apsidal termination to the nave, another possible

solution to the question of how Alberti would have completed his design.
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Chapter 43

The Numberable Architecture of Leon

Battista Alberti as a Universal Sign of Order

and Harmony

Livio G. Volpi Ghirardini

I must confess that my interest in the mutual relationships between mathematics and

architecture has been tied for many years to practical matters of building and

restoration. I began to radically transform my attitude (that is, to comprehend the

difference between using mathematics to solve problems and conceiving problems in

terms of a mathematical order) when I was charged with the care of the last imposing

and complex edifice designed by Leon Battista Alberti, the Basilica of S. Andrea in

Mantua. Assuming responsibility for the restoration, and attempting to ensure that

even the smallest element whichmight contain clues helpful in the restoration process

would not be disturbed, led me to seek to discover just how much of the project

conceived by Alberti, the father of modern architecture, is still discernible today.

In order to further the search, it was necessary to return to the theoretical aspect

of the project and see how problems involving Alberti’s conceptual methods had

been treated historically. To my great surprise I discovered that the intimate

relationships between number and architecture, even though generally accepted

with regards to both the architecture of the Renaissance in general and the

architecture of Alberti in particular, had been interpreted in so many different

ways that it was possible to schematize them, mathematically speaking, in two

opposing schools of thought. The first is the rational, rooted in whole numbers and

ratios of whole numbers; the second, the irrational, admitting the presence of

quantities which may not, as Alberti has noted, be expressed in whole numbers.1

First published as: Livio Volpi Ghirardini, “The Numberable Architecture of Leon Battista Alberti

as a Universal Sign of Order and Harmony”, pp. 147–166 in Nexus I: Architecture and
Mathematics, ed. Kim Williams, Fucecchio (Florence): Edizioni dell’Erba, 1996.

1 “In establishing dimensions, there are certain natural relationships that cannot be defined as

numbers, but that may be obtained through roots and powers” (Alberti 1988: IX.6, p. 307).
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The rational school is characterized by an interpretive model elaborated between

the 1940s and the 1960s by Rudolf Wittkower (1962), and owes a great debt to the

thoughts of Ernst Cassirer (1927), who in his turn followed a path of thought begun

by Jacob Burckhardt (1860). It is from this moment that the idea of an Alberti who

is spherical, champion of the tranquil humanism of Cicero and creator of universal

harmonies, began to take hold. Wittkower extended to the whole humanistic

phenomenon, and in particular to the architecture of the fifteenth and sixteenth

centuries, the basic concepts contained in De harmonia mundi totius, a work of

esoteric mysticism by the Franciscan Francesco Zorzi printed in Venice in 1525.

Into this vision of the period, Leon Battista Alberti was inserted as well; his

architecture was held to reflect a supreme harmony and musicality because the

divine numbers of Pythagorean and neo-Platonic thought correspond to

architectonic measures, and because the same harmonic/musical relationships are

found in the architectural elements. Therefore nature, the universe, and God are

reflected through a total musicality which takes as its point of departure audible

music, and in architecture becomes crystallized music.

This hypothesis, which is largely accepted by scholars, has been somewhat

forced, however, in the effort to ideally reconstruct Alberti’s projects through the

application of musical relationships. Of the many scholars who have pursued this

trail, I limit myself to mentioning Paul von Naredi Rainer, who has examined the

whole of Alberti’s work (von Naredi Rainer 1977a: 81–213, 1977b: 178–181, 1982,

1994: 292–299).

On the other side, beginning in the early 1960s, if somewhat timidly at first, a

different interpretative model based on Alberti’s use of geometric systems of

proportions was proposed. The work of Zoubov2 and Sanpaolesi are particularly

representative of this school of thought. Sanpaolesi has justly noted that the

decomposition of the facade of S. Maria Novella proposed by Wittkower is so

“simple” that it can hardly be considered as representing a compositional method,

and additionally, that the elements contained in De re aedificatoria are not in

themselves sufficient for the “theoretical formulation of a method for the

proportioning of the buildings” (Sanpaolesi 1965: 95–101, esp. 95).

The fact that the major part of the monuments designed by Alberti were not

completed has certainly facilitated the creation of a multitude of hypotheses

(or rather, the multitudinous efforts to rediscover the original design through

applications of exact science), and has indirectly allowed opposing interpretative

models to coexist. The research into Alberti’s design methods has certainly not

been helped by Julius von Schlosser’s having defined Alberti as a “drawing table

architect” (von Schlosser 1929). It is significant that in the buildings themselves

2 Zoubov, taking as his point of departure the agreement of Vitruvius and Alberti with regards to

the dimensions for atria, demonstrates that the latter substitutes √2 with the rational value 7/5, and
similarly, that the same root is substituted by the rational 10/7 in the Corinthian capital. He

attempts through such argument to show that for Alberti the relationships between whole numbers

actually represent values for square roots, exactly as the ratio 22/7 was substituted traditionally for

the irrational π; see Zoubov (1960: 54–61).
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every situation that diverges from the dictates of De re aedificatoria is considered

either an error of workmanship or an alteration of Albertian thought, as if there must

necessarily exist a rigid relationship between cause and effect. In short, there has

been an all-too-frequent tendency to attribute to De re aedificatoria the traits of a

builders’ manual which it does not possess.

When scholars have attempted to apply their interpretative models to built

architecture, they have often been faced with a very different reality. In various

cases attempts have been made to adapt the reality to the model by proposing an

ideal Albertian “module” which in some way accommodates the theoretical

intentions (Baldini 1989: 155–204). Effectively, the existence of different

proportional solutions for the same building, or for isolated elements of a larger

whole,3 demonstrates how difficult it is to convincingly establish the nature of the

design process. The explanation of the divergences is relatively simple: it lies in

different readings of the original data, in large part owing to the hardships

involved in precisely determining the dimensions. Too often one finds drawings

in which the dimensions are altered with respect to the reality, and in which there

exists a discordance between dimensions related to a single length, as is

demonstrated by Table 43.1, which compares values from several surveys of

S. Francesco in Rimini4 (Fig. 43.1). The degree of accuracy obtained by graphic

solutions is not usually sufficient to serve as the basis for an analysis; a drawing

representing proportional relationships is not credible if it is not supported

by numerical values which are clearly expressed, a situation not frequently

encountered.

In some cases, however, even precise measurements, though always necessary,

are not in themselves sufficient to provide an exact interpretation. For example, the

relationship between the larger term and the smaller term of the golden section is

1.618 . . ., while the major sixth (5:3) is equal to 1.666 . . .: their difference is a

matter of hundredths. Similarly, the relationship between the diagonal and the side

of a square, √2:l ¼ 1.414, differs by less than 2 % from 7:5 (¼1.4). To visualize

this, one may reflect that on a drawing with a scale of 1:100, the length of a metre is

inferior to the thickness of a thin line. These differences are small, and become

completely negligible when one keeps in mind that in actual buildings factors such

as settlement, structural damage and restoration may cause translation and/or

rotation (out of plumb) and even require the substitution of original elements.

When the existence of such factors is verified, it is clear that one may no longer

3 For example, the geometric representations of the proportions of the façade of S. Andrea share

the attempt to circumscribe the elevation of the principle portico with a square. But the square is

different each time: Sanpaolesi’s version does not include the stairs, while Borsi’s version does,

though this is achieved by adding only the necessary number of steps; see Sanpaolesi (1975,

pl. XX, XXI) and Borsi (1975, p. 234, fig. 244).
4 The values which appear in this table are taken from von Naredi Rainer (1977a: 170) and (Petrini

1981); my own survey was completed with Arturo Calzona and Bruna Restani in summer 1995.
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trust the task of defining the exact relationship between parts to the measurement of

individual elements. The solution must be sought, given of course a base of correct

dimensional data, within the framework of the whole, in the perfect fit of the parts,

which will concatenate only if expressed in a certain way. Elements which cannot

be seen as part of a larger framework must remain isolated, incapable of indicating a

system of design.

There exists another problem, which regards the identification of a unit of

measure. Both the graphic design process and the numeric design process always

have a basic unit of length which is carefully chosen. But just as the laws of the

cosmos are not made evident if the phenomena in which they are manifest are not

correctly understood, if the correct unit of measurement is not adopted for the

analysis of the architectural dimensions, then the number inherent in them will

Table 43.1 Comparative dimensions, façade of San Francesco, Rimini (in cm)

Description Naredi-R Petrini Volpi-G

Total height, lower level (after restoration) 1,396 1,382 –

Height of pedestal 258 227 258.7(1)

Height at the ornamental strip, pedestal 92 97 –

Height of the column, including capital and base 943 965 964.9(r)

975.4(1)

Height of the trabeation 195 190 –

Height of impost, lateral arch 532 526 531.3(r)

529.3(1)

Total width 2967 2972 2964.5

Width, central arch 683 686 683.0(*)

Width, lateral arch 484 484(r)

486(1)
484.5(r)

485.2(1)

Width of piers 332 331(r)

327(1)
328.5(r)

327.7(1)

(r) ¼ right
(1) ¼ left
(*) ¼ the width is not constant: at the opening, 682.2; at the walls, 682.5; at the pedestal, 683.0

Fig. 43.1 Schematic diagrams of ideal reconstructions of the facades of the churches of San

Francesco (Rimini), San Sebastiano (Mantua) and Sant’Andrea (Mantua). Images: author
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remain hidden.5 Further, if the unit of length used as a base is not correctly defined

in terms of the original standard of measurement, then the measurements derived

from it and the relative proportional relationships proposed remain questionable. It

was not coincidental that I dedicated a section of Il San Sebastiano di Leon Battista
Alberti to the unit of measure, which had never been clearly established (Calzona

and Volpi Ghirardini 1994: 229–234).

By now the nature of the arguments I am expounding is evident: they are, to phrase

it after Vico, “proper to small intellects, and place in shackles and distress the mind

accustomed to the infinite ranges of the various genre . . ..” In any case, without an

examination of the unit of measure, one is forced to remain on the surface of the

problem.Unfortunately for us, the total lack of drawings byAlberti relative to his own

architecture doesn’t aid empirical research.6 However, in regards to San Sebastiano in

Mantua there exists an important document: the sixteenth century drawing byAntonio

Labacco representing Alberti’s temple (“di mano di mesere Baptista Alberti”) which
offers a fundamental key for its interpretation (Fig. 43.2). The collation of the data

furnished by the drawingwith that whichmay be drawn from the built elements which

are surely Albertian show that all values of the principle dimensions of the building

may be encompassed in a system of a few mathematical relationships.

Labacco’s drawing includes a valuable plan with measurements of the upper

church, a long annotation of its internal measurements, and a small sketch of the

view looking towards the apse. There is not a trace of the actual lower church, more

commonly known as the crypt, and neither is there any indication of the stairs

(Figs. 43.2 and 43.3). This fact has caused much discussion among scholars, who, in

any case, agree that the planimetry and the annotation are derived from a design by

Alberti. This is a sufficient base from which to depart in analysing the design

method because, to achieve that end, it is immaterial whether or not Labacco has

reproduced in its entirety the Albertian model, and that, in its realization, the church

is somewhat removed from the design (Fig. 43.4).

Separating ideally the individual members of the building reproduced by

Labacco (the central square, the arms of the cross, and the portico), one observes

that the respective internal measurements, expressed in braccia, form the following

three numerical progressions of ratio 3:5:

34, 34ð Þ, 56 2=3 ðaÞ

representing the side of the central square (the dimension 34 is repeated to signify

that the sides are equal), and the height;

12, 20, 33 1=3 ðbÞ

5 In De re aedificatoria (IX, 5), Alberti commented at length on numbers, their significance and

their properties, referring to both Vitruvius and the Greek tradition; see Alberti (1988: 303–304).
6 The drawing attributed to Alberti by Howard Burns cannot be related to any built edifice. See

Howard Burns, “A drawing by L.B. Alberti,” pp. 45–56, in Architectural Design Profile 21, 49,
no. 5–6 (1979).
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Fig. 43.2 Antonio Labacco, drawing of San Sebastiano. Uffizi, Gabinetto Disegni e Stampe,

1779A, Florence. Image: ©Foto Scala Firenze. Reproduced by permission
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representing the arms of the cross (respectively, the length of sides at their base, and

height);

10, 16 2=3 ðcÞ

representing the transverse section of the portico (respectively base, length and

height) (Fig. 43.5).

The other measurements in Labacco’s drawing refer to smaller elements of the

church: the main entrance portal (4 4/5 and 8) and the absidioles (8 and 13 1/3).

These two architectural elements, besides corresponding to one another with

respect to the longitudinal axis of the church, offer a numerical correspondence

as well: the height of the portal equals the width of the absidioles. By arranging the

dimensions in ascending order, the following sequence is obtained:

4 4=5, 8, 13 1=3 ðdÞ

As were the previous three sequences, this sequence takes its rhythm from the

relationship 3:5. Consequently, all of the dimensions of the drawing without

exception make up a well-defined group, forming duads or triads in the ratio of

3:5. This means that Alberti’s design, as transmitted to us by Labacco, is developed

from numerical scales which define the entire architectural space. What remains to

be explained, however, is the link between the fundamental dimensions furnished

by Labacco for the three elements of the upper church (the portico, arms and

square) or rather, the numbers 10, 20, and 34.

Fig. 43.3 San Sebastiano, longitudinal section and plan constructed with the dimensions indicated

by Labacco. Image: author, updated diagram from Calzona and Volpi Ghirardini (1994)
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By relating the side of the central square, 34, with the square of the numbers

which form the recurring relationship, 3 and 5 (32 + 52 ¼ 34) (Calzona and Volpi

Ghirardini 1994: 227), I obtain a combination which univocally defines all three

fundamental dimensions of the upper church. The values 10, 20, and 34 may be

deduced from the series of the squares of the first five numbers, as the progressive

sums of odd and even squares (Fig. 43.6).

Fig. 43.4 Above, hypothetical reconstruction of the original project of San Sebastiano based on

Labacco’s indications, with the addition of the crypt. Below, the model of probable subsequent

design modifications. Image: author, from Calzona and Volpi Ghirardini (1994)
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Central square 34, (34), 56 2/3

Arm 12, 20, 33 1/3

Portico . . ., 10, 16 2/3

Entrance and apse 4 4/5, 8, 13 1/3

As I will demonstrate presently, this is the system contained in the mathematical

order which governs the design, the logic of which is developed beginning with the

first five natural numbers. For now it suffices to link all the numbers noted by

Labacco in the following scheme of numeric combinations (Fig. 43.7).

At this point I wish to go beyond the mere interpretation of Labacco’s document,

because the church, for better or worse, has actually been constructed. By

Fig. 43.5 Above,

axonometric section of San

Sebastiano based on the

dimensions furnished by

Labacco. Below, numerical

progressions which include

all Labacco’s dimensions,

arranged with respect to

individual elements of the

church. Diagram: author
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comparing the dimensions of the lower church, not present in the drawing, to those

cited by Labacco, it seems that I may legitimately hypothesize that the design

process did not make any leaps. This can be easily verified, because if there exists a

continuity in the design process, dimensions which relate to each other as those

outlined above must be present in the actual construction.

Considering the measures expressed in Mantuan braccia, the crypt is generated
by addition, from the piers with base 2 � 2 and by the space covered by the vault,

with a base of 5 and height of 8 1/3 (Fig. 43.8). The absidioles make up the last

elements which contribute to the form of the interior space, if in a minor way; these

have an opening of base 3 and height 7. The sequence formed takes into

consideration the essential elements, and does not consider those which give rise

to minor proportions.

From the analysis of the crypt and the lower portico, both known to have been

realized while Alberti was alive and able to visit the construction site, I am able to

obtain the sequence:

3, 5, 8 1=3 ðeÞ

of the ratio 3:5, which synthesizes the dimensions of the crypt and other values

which integrate relationship (c) (See Table 43.2).

Indeed, the lower portico is 6 braccia wide and has a half-width of 16 2/3

braccia, values which are justly placed in (c), transforming it from relating only to

the section of the superior portico to a progression which is representative of the

entire pronaos, in that it accounts for all the internal dimensions, with the sole

exception of the half-length of the upper portico, of which I shall speak shortly.

Fig. 43.6

Fig. 43.7
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When Labacco’s data is integrated with the values taken from the actual

construction, the following system of four relationships is obtained:

34, (34), 56 2/3 Square (a)

12, 20,33 1/3 Arm (b)

6, 10, 16 2/3 Portico (c)

3, 5, 8 1/3 Crypt (e)

which is the demonstration that all the dimensions of the interior space of the

church are conceived in groups which are internally ordered with regards to the

ratio 3:5. Further, relationships (b), (c) and (e) relate to each other as 1:2, therefore

representing linear transformations of each other.

The system of relationships discerned may constitute a decent result, but I am

able to enter into an even more detailed analysis. The ratio 1:2 serves to link parts of

the church which are physically distinct, that is, the crypt, portico and arms, and is

also used to double the areas which required a particular length, such as those of the

upper and lower porticos. Indeed, Fig. 43.9 illustrates how the numerical value

which ties together the dimensions of the interior spaces of the porticos is derived,

not from the length, but from the half-length. In particular, the relationships

between the base and the half-length of the vestibule of the upper and lower

floors is modulated by the squares of the numbers 3, 4, and 5, or 9:25 and 9:16.

Fig. 43.8 Section of the modular element which is used additively to form the crypt of San

Sebastiano. Image: author
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That I am able to reach these conclusions is due in great part to Labacco, because

without his drawing,7 in the face of a multitude of uncertainties, I would have been

Table 43.2 Dimensions of San Sebastiano, Mantua, mentioned in the text

Description cm �e br.m. Δcm
Crypt

Side of the base of the cross vault:

Longitudinal direction a242.2vm 6.0

Transversal direction a236.0vm 4.8

Calculated at level of foundations 235.3(1) 1.5 5 +1.8

Height of the cross vault a388.0vm 3.0 8 1/3 �1.1

Width of opening, absidioles a138.6vm 2.6 3 �1.4

Height of absidioles a328.1vm 0.6 7 +1.3

Side of piers, central area a96.1vm 2.9 2 +2.7

Lower portico

Clear width a280.7vm 2.3 6 +0.6

Width between walls a174.7vm 1.8 8 +1.2

Interior length 1,556.3vm 1.8 33 1/3 +0.0

Exterior length (on axis with windows) 1,783.7vp 1.0 38 1/4 –2.2

Upper portico

Base of niches 192.1vm 1.3 4 2/25 +1.6

Height of niches 318.2vm 0.7 6 4/5 +0.7

Clear width of arches 192.1vm 1.3 4 2/25 +1.6

Clear height of arches 318.2vm 0.7 6 4/5 +0.7

Width, central portal (with frame) 317.2vm 1.3 6 4/5 +0.2

Height, central portal (with cornice) 527.5(2) 11 1/3 �1.6

Interior width 469.1(3) 1.9 10 +2.2

Interior length 1,660.0vm 0.0 35 5/9 �0.1

Space over upper portico

Interior width 500.0vv 4.5 10 2/3 +2.0

Interior length 1,659.0vv 4.2 35 5/9 �1.1

All measures were taken manually

�e ¼ max. disparity with respect to vm, or instrument error in the cases of vp and vv

br.m. ¼ theoretic value, Mantuan braccia (1 br.m. ¼ 46.69 cm)

Δcm ¼ difference between real measures and theoretic values (in cm)
aPlastered surfaces (as opposed to stone surfaces)

vm ¼ mean value

vp ¼ point value

vv ¼ value in which errors due to deformation, etc. may occur

(l)Value obtained taking the distance between foundation centrelines, the centrelines of the

pilasters having been shifted (results from 1995 excavations)

(2) Value obtained by reconstructing a missing piece of cornice

(3) Value obtained by adding the plaster thickness of the church wall to the vm

7A similar drawing by Aristotile da Sangallo (Lilla, Museo Wicar, carta F.4) is not equally as

useful, reporting only plan dimensions without indications of heights. However, it does indicate

the width of the openings on either side of the central aperture of the portico, which are not

indicated on Labacco’s drawing.
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able to attest to only a narrow range of relationships. This was the case in S. Andrea

where up to now, beyond the general framework, I have been able to discern with

precision the interrelations of the mathematical progressions which govern the

dimensions of the central and lateral doors of the portico, which correspond in

turn to their physical interrelations.8 This was also the case in San Francesco, where

I discerned the repetition of the same relationships found in San Sebastiano.9 A full

explanation of these cases is beyond the scope of this chapter, the demonstrations

having to take into account various alterations of the original structures. I will say

that one has only to turn from the dimensions which govern the whole to those of

individual elements, such as piers and pilasters, and a whole range of relationships

is revealed, diverse but not difficult to interpret. For example, in San Sebastiano the

Fig. 43.9 Plan of the three

levels of the portico of San

Sebastiano. 9a, (above),
space above the upper

portico; 9b, (centre) upper
portico; 9c, (below), lower
portico. Diagram with

proportional ratios: author

8 There exists a significant relationship here as well, 2: 3, which determines the progressions and

intervals of the diapason, 2:1, linking distant elements. See Volpi Ghirardini (1993).
9 I refer to the ratio 3:5 in combination with 1:2 (not, however, where these ratios have been found

by my predecessors, but rather in the lateral blind arches of the facade).
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relationships between 1 and the odd numbers of the first decade completely define

the interior elevations of the apses of the crypt.10

The above demonstration constitutes a solid base for the study of the Albertian

design method. Indeed, the facts demonstrate: (1) that the dimensions of the various

architectural elements are determined by finite ratios with the unit of measure;

(2) that the numbers which represent the fundamental dimensions are interrelated

by mathematical (but not musical) progressions; (3) that the measurements of

individual dimensions (finitio),11 such as width, length, height or distance

between elements which correspond spatially, create numerically proportionate

triads12; (4) that such proportional triads are themselves proportionately

interrelated; (5) that the relationships between principle measurements appertain

only partially to the set of areas defined in musical terms set out by Alberti.13

In regard to this last point, a consideration is in order to clarify that the definition

recently proposed byMaria Karvouni (1994: 282–291) for the musical relationships

indicated by Alberti is not the only one possible. I may give them a precise univocal

mathematical definition. If under a reference series of cardinal numbers I write the

two series of the relative squares and heteromékeis14:

n 1 2 3 4 5 . . .

n � n 1 4 9 16 25 . . .

n � (n + 1) 2 6 12 20 30 . . .

and I limit myself to considering the squares and the heteromékeis which may be

derived from the first four cardinal numbers,27 as in the following two series:

n � n 1 4 9 16

n � (n + 1) 2 6 12

10All of my surveys shall be deposited in the “Centro di studi Leon Battista Alberti” in the

Accademia Nazionale Virgiliana di Scienze, Lettere e Arti, Mantua.
11 “For us, the outline is a certain correspondence between the lines that define the dimensions; one

dimension being length, another breadth, and the third height” (Alberti 1988: IX.5, p. 305).
12 Ternatim autem universos corporis diametros, ut sic loquar, coadiugabimus numeris his, qui aut
cum ipsis armoniis innati sunt aut sumpti aliunde certa et recta ratione sunt (Alberti 1966b: IX.5,
p. 827).
13 The dimensions of areas suggested by Alberti are subdivided into three groups [(1:1, 2:3, 3:4),

(1:2, 4:9, 9:16) and (1:3, 3:8, 1:4)] which correspond respectively to small, medium and large

areas. The ratio 3:5 is not found in these groups; see Alberti (1988: 306).
14 The term heteromékeis is a combination of two Greek roots, heteros meaning “different” and

mêkos meaning “length.” In his “Introduction to the arithmetic of Nicomachus,” Iamblichus

defined the squares as powers of numbers augmented by their own length, while heteromékeis
are powers of numbers augmented by an unequal length. He writes further of them, “in order to

learn which is the most harmonic and natural coupling of the two types of number, that is, of the

squares and the heteromékeis, which are completely opposite in nature, we need to dispose each of

them in parallel rows starting with their own beginning value, that is, the squares beginning with

1 and the heteromékeis beginning with 2.” See (Iamblichus 1995: 300–302). Nicomachus is

described by Alberti as “the greatest mathematician” (Alberti 1988: IX.10, p. 317).
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I can affirm that the relationships relative to the Albertian areas are defined by all

the possible combinations of the first three squares after unity (which relates to

itself)15 and the first three heteromékeis, with the sole exception of the major ratio

4:1. In other words, the ratios obtained from the squares and heteromekéis of the
first four numbers and contained in the proportions formed of the greater and lesser

of the same, coincide with the dimensions of the Albertian areas: not a single

relationship more, not a single relationship less.

Alberti described how he mentally prefigured his own architecture using

mathematical models, that is, without the instruments necessary for geometrical

layout. As much as 10 years before the opening of an actual construction site, he

describes his soul as intent on the res aedificanda: “I mentally composed and

designed some well-ordered buildings, and set out several orders and numbers of

columns with various capitals and unusual bases in them, and infused them with a

well-balanced and new harmony of cornices and stories.”16 He affirms that, in

ordering his thoughts, “nothing satisfies me more than this, nothing absorbs

me and involves me as totally, as mathematical research and proofs, especially

when I seek to transform them to something useful in daily practice” (Alberti

1966a: 182).

A creative force tends to “fix and stabilize great and inestimable things” (Alberti

1966a: 181). An expressible mathematical order “molds the whole of Nature,”17

and that same nature aims with all its might towards a harmonic perfection. To the

architect falls the task of giving form to an ordered and harmonious complex, which

can achieve those qualities only if it contains inherently the intelligence which

models nature, “the perfect generator of forms.”18 And because no material image

can represent the divine intellect, supreme regulator of the universe,19 to the temple

builder is trusted the difficult choice of meanings and messages to confer on his own

creation; but the choice appears to be mandatory if there is to be reflected in the

sacred building, as in a game of mirrors, the intelligence of the All, Creator and

created, so that the structure and its components, indeed, the very “walls or the

15 “However, if one is not an actual number, but the wellspring of number . . .” (Alberti 1988: IX.6,
p. 307).
16Composj a mente e coedificai qualche compositissimo edificio, e disposivi più ordini e numeri di
colonne con vari capitelli e base inusitate, e collega’vi conveniente e nuova grazia di cornici e
tavolati (Alberti 1966a: 182).
17 “It is our nature to desire the best, and to cling to it with pleasure . . . It has a vast range in which
to exercise itself and bloom—it runs through man’s entire life and government, it molds the whole

of nature” (Alberti 1988: IX.5, p. 302).
18 “The great experts of antiquity . . . have instructed a building is very like an animal, and that

Nature must be imitated when [they] delineate it. . . . not without reason they declared that Nature,
as the perfect generator of forms, should be their model” (Alberti 1988: IX.5, pp. 301–303).
19 “If no object made by hand could achieve this, they thought it better that each, according to his

own powers of imagination, should fashion in his mind an impression of the principal sovereign of

all, divine intelligence” (Alberti 1988: VII.17, p. 242).
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floors of the temple” all have something of philosophy in them.20 Nicholas of Cusa,

a contemporary of Alberti’s, agreeing with his predecessors in this line of thought,

affirms: “because one may approach the divine only through symbols, let us resort

to mathematical signs as most befitting because of their indisputable certainty.”21

To conclude, the detailed analysis of the data from San Sebastiano demonstrates

a design praxis which is mathematically conceived, elaborated on the basis of

interconnected relationships, the fruit of a combinatorial logic of the tightest fit.

With respect to some of the explanations offered by De re aedificatoria, the actual
use of mathematics by Alberti appears more rigorous and complex.

This all leads to the affirmation that the architect’s design method is based on a

mathematical system, regulated by the harmony present in the variety of

relationships evident in nature. Perfect order, harmony, in which number links the

visible to the invisible: mathematical order is not only the order of the divine, but

also the basis for any order that can be achieved in reality.

Translated from the Italian by Kim Williams
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Chapter 44

Leon Battista Alberti and the Art of Building

Salvatore di Pasquale

Galileo and the Science of Construction

The modern science of construction was born in 1638 with the publication of the
Discorsi e dimostrazioni matematiche intorno a due nuove scienze (Two New
Sciences including Centres of Gravity and Force of Percussion) by Galileo

Galilei (1989). This was the last work of the Pisan scientist: composed during the

years of his exile in the villa at Arceri, it was an elaboration of notes from

his lectures given at the University of Padua at a time when he was in contact

with overseers and workers in the shipyard of Venice. The work takes the form

of dialogues between three characters over the course of 4 days, first addressing

questions about the strength of elements of architectural construction or machinery,

and later, the problems of what we today call dynamics. Naturally, today’s modern

science of construction is very different from that of Galileo, thanks to the

contributions of mathematics and physics, just as science is continuing to change

today, similarly influenced by the widespread use of computers.

The novelty of Galileo’s science lay in the formulation of the problem, posed for

the first time as the necessity of knowing what loads result in the breaking of a beam

or a column before these elements are put in place, so that there exists a reasonable

certainty as to the possible causes of structural failures.

It is important to note that this program—as yet limited to very simple elements

of architectural composition—required a prior knowledge of the mechanical

properties of construction materials and the formulation of hypotheses relative to
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pp. 113–125 in Nexus II: Architecture and Mathematics, ed. Kim Williams, Fucecchio

(Florence): Edizioni dell’Erba, 1998.

Salvatore di Pasquale (1931–2004).

K. Williams and M.J. Ostwald (eds.), Architecture and Mathematics from Antiquity to
the Future, DOI 10.1007/978-3-319-00137-1_44,
© Springer International Publishing Switzerland 2015

663



the mathematical modelling of those elements, in order to obtain results that were

independent of variations in form:

. . . thus, knowing the strength of a small nail or a small dowel of wood or any other

material, I can demonstrate my knowledge of the strength of all the nails, of all the posts, of

all iron chains, of all beams, lintels, antennae, masts, in short, of all solids of any material,

except in the presence of accidental impediments such as knots, termites, etc.1

Galileo formulates the first hypotheses on mechanical proofs, prefiguring what

would become, two centuries later, the primary reference, when the definite results

were exhibited by J.L. Navier in 1823 in a celebrated course given at the École des

ponts et chaussees; another 50 years were to pass before the development of a

theory for rigidly-connected post and beam structures and much more complicated

structures, such as vaults and domes.

In any case, three points are to be noted: (1) the final layout of Two New
Sciences, like that of the Paduan notes, took place at a time when the two largest

cupolas ever constructed dominated the skylines of Florence and Rome; (2) the

science of construction had already produced some well-known failures2; (3) some

mechanical devices designed and built at a small scale were known not to have

worked when ultimately realized.

Galileo takes these negative experiences as a point of departure, explaining

why they didn’t work and exhibiting his new science. He organizes Two New
Sciences around the three characters who represent the spirit of the theses being

compared: Salviati expresses reason based on experience; Semplicio represents

Artistotelian memory; Sagredo is the attentive observer comparing the factual

evidence with theoretical knowledge. The confrontation takes place in the

Venetian shipyards, where the actions of workers and masters were continually

put to the test: the launching of ships, works for lifting and moving weights,

cords for pulling, levers and winches used according to a logic that appears

natural and harmonic. The harmony, however, doesn’t correspond to Sagredo’s

expectations; to the contrary, he has to admit that actual facts and experiences

put his theory in jeopardy. In all probability, the characters of Two New Sciences
don’t represent a single person, but rather the thoughts expressed by those

engaged in creating architecture and theorizing about its methodological

foundations.

1 “. . . sicchè, conosciuta la resistenza di un picciol chiodo, o di una piccola caviglia di legno o di

qualsivoglia altra materia, io potrò dimostrativamente sapere le resistenze di tutti i chiodi, di tutti i

pali, di tutte le catene di ferro, di tutte le travi, travicelli, antenne, alberi, ed in somma di tutti i

solidi di qualsivoglia materia, rimossi però gl’impedimenti accidentari di nodo, tarli, ecc.”

(Galileo 1990: XVI 241–242).
2 In the Veneto, the collapse of the vault of J. Sansovino’s Marciana library at the end of 1545 was

still vividly remembered.
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The Use of Proportions

Galileo explicitly criticized the current practice of using small scale models to

design buildings and machines, because he believed that they could provide only

mechanical information, regardless of scale. The only specific reference to this

practice appears in Palladio’s Quattro libri dell’architettura, in which, after clearly
stating in the initial pages that the drawings of constructions he proposed had to be

studied according to the unit of measure indicated and their proportions respected,

Palladio describes four wooden bridges, adding, “The bridges in these four manners

can be constructed as long as necessity requires, by enlarging their parts in

proportion.”3 It is difficult to believe that Palladio stood by this statement

because the unsuitability of models for this purpose was commonly known; the

failure of a model to indicate the real dimensions of an imagined object must have

been known to him, because it had already been pointed out by Vitruvius in De
Architettura, to which Palladio continually refers, as does Alberti in his De Re

Aedificatoria. Most probably the statement derives from the fact that he was neither

an inventor nor a machine builder (that is, of instruments and devices in which the

friction between moving parts plays a determining role), nor did he construct

architecture of a dimension that would have demonstrated the inconsistency of

this claim. Daniele Barbaro, however, with whom Palladio collaborated on a

version of De Architettura, attributed failures of structures enlarged from models

to imperfections in the materials, suggesting that in a perfect world such defects

wouldn’t exist.4 But he indisputably indicates the model as an instrument which can

furnish information necessary for evaluating conformity to aesthetic standards,

determining the number, dimension and type of all parts, and therefore the

evaluation of the expense of construction and the technical methods best employed.

A little more than a hundred years later, academic Filippo Baldinucci would

define the model in his Vocabolario Toscano and describe its use in an

unequivocally pre-Galilean vision that testifies to the difficulties arising out of the

diffusion of the new science:

[a model is] a thing that the sculptor or architect makes to present the work to be built; thus

the model is sometimes small, sometimes life-size. Models are made of various materials,

according to the professors’ taste and according to need, that is, of wood, of wax, of clay, of

plaster, and others. This is the first and main labour of all the projects, through which the

artist arrives at the most beautiful and most perfect. It serves the architect to determine the

lengths, widths, heights and bulk; the number, expanse, type and quality of all elements, as

3 “I ponti di queste quattro maniere si potranno far lunghi quanto richiederà il bisogno, facendo

maggiori tutte le parti loro a proporzione” (Palladio 1968: III, 18).
4 “O quanto deve essere avvertito lo Architetto non solamente rispetto alia forma et ragione che

nello animo et mente sua con modi artificiosi rivolge, ma quanto alla materia, i cui difetti sono

infiniti, i rimedi pochi et difficili et alcuna fiata niuno, o di niun valore, però è bene che Vitruvio ci

propone le maniere difettose, acciochè per lo contrario ci potiamo guardare dagli errori” (Vitruvius

1987: 128–129).
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they should be so that the fabrication is perfect; and also to determine the different trades

necessary to carry out the work, and to determine the expenses of accomplishing the work.5

The term “bulk” is to be understood as a relation between two of the three

dimensions that determine the resistance of beams and columns. It wasn’t possible

for Baldinucci to go further because the concept of bulk could be stated precisely

only after Leonard Euler exactly defined its opposite, slenderness; definite results

were achieved only after decades in which experimental results were correlated

with hypothetical models. Not all of the Galilean theory was made clear by the Two
New Sciences, as Descartes critically observed, because of the continual departure

from the main argument in order to propose applications of the new science to dogs,

whales, ants, ships and giants. When Antonio de Ville, an engineer and military

architect who was responsible for the fortifications of Mantua for a 2-year period in

the seventeenth century, asked about a bridge to be built over a river of a given

width, Galileo responded,

In order to better declare myself, I take your example of a bridge to span a large trench, say

20 feet, which is powerful enough to support and carry a 1000-pound weight, and not more:

try now to see if another bridge spanning a width four times as great and made of the very

same material, but with all its members enlarged in a quadruple proportion, will support a

weight of 4000 pounds. I say no, and not only that, but I say it might also happen that it can’t

even support itself but will collapse of its own weight.6

Undoubtedly this passage perfectly clarities the operative objects of the new

science, but not having inserted them explicitly in the text, as he certainly should

have, he forces the reader to reflect on the comprehensive objects that he set out to

reach, objects that cannot and should not be limited to architectural or engineering

applications, but rather reflect on the manifestations of nature and the lessons it

teaches. Thus the force with which emerges Galileo’s subtle comparison between a

man of normal dimensions and Hercules, and between Hercules and a colossus: it

isn’t possible that nature, with respect for the rules gleaned from common

experience, created beings capable of acting in such a different way without in

someway mutating their physical aspect, transforming them into monsters. It is

5 “. . .quella cosa che fa lo Scultore o Architetto, per esemplare o mostra di ciò che dee porsi nell’

opera da farsi; poichè il modello alcuna volta è minore, alcuna altra è della stessa grandezza.

Fannosi i modelli di varie materie, a gusto de’ Professori, e secondo il bisogno; cioè di legname, di

cera, di terra, di stucco, o d’altro. È il modello prima, e principal fatica di tutta l’ opera, e essendo

che in essa guastando, e raccomandando, arriva l’Artefice al più bello e al piu perfetto. Serve agli

Architetti per istabilire le lunghezze, larghezze, altezze e grossezze: il numero, l’ ampiezza, la

specie, e la qualità di tutte le cose, come debbono essere; acciò la fabbrica sia perfetta: ed ancora

per deliberare sopra le maestranze diverse, delle quali si deve valere nel condurre l’edificio,

siccome per ritrovare la spesa che debba farsi in esso” (Baldinucci 1681).
6 “E per meglio dichiararmi seco, piglio il suo medesimo esempio di un ponte per passare un fosso

largo, V. gr., venti piedi, il quale si trovi riuscito esser potente a sostenere e dare il transito a peso di

mille libbre, e non più: cercasi ora se per passare un fosso largo quattro volte tanto, un altro ponte,

contesto del medesimo legname, ma in tutti i suoi membri accresciuto in quadrupla proporzione,

tanto in lunghezza quanto in larghezza ed altezza, sarà potente a reggere il peso di 4000 libbre.

Dove io dico di no; e talmente dico di no che potrebbe anco accadere che è non potesse regger sè

stesso, ma anche il peso proprio lo fiaccasse” (Galileo 1990: XVI 241–242).
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evident that no one has ever seen Hercules or giants and colossi, nor can one

reasonably believe that Galileo saw them. But the problem of identifying the

subject to whom the message of the new science is addressed remains unsolved,

because of the insistence with which Galileo generalizes the problem so that it

addresses not only architecture but ship building and machinery as well. One have

addressed this in a recent work in which I formulated some hypotheses as to reading

and interpretation of Galileo’s text that are coherent with the environment in which

the ideas matured; here I can add some considerations that have been suggested to

me by a rereading of three texts by Alberti and that, to my mind, seem to relate

clearly to the new science of Galileo, even while not containing any direct reference.

Leon Battista Alberti

According to Alberti’s biographer Girolamo Mancini, “Battista wrote the book on

sculpture and on painting, but never used the scalpel and brush to his own glory;

instead he wrote on the art of building”.7 In contrast, in the dedication to Lorenzo

dei Medici in De Re Aedificatoria, Angelo Poliziano presents Alberti as “the man

from whom neither the most hidden knowledge nor the most arduous disciplines

escapes . . . he is also reputed an excellent painter and sculptor. Further, he was

expert in all these arts at once as few are in any single art.” The fact that no painting

or sculpture of Alberti’s has come down to us mitigates Poliziano’s praise

somewhat, but takes away nothing from his synthetic description of an admirable

man of multiple activities.

It is with good reason that G.C. Argan, P. Sanpaolesi, C.L. Ragghianti and

F. Borsi have all underlined the importance of investigating the relationship

between Alberti and Filippo Brunelleschi. In particular, S. Rossi, taking as a

point of departure Pevsner’s work on the birth of the academies of art in Europe

(Pevsner 1982), recognized in the well-known episode of the strike of the workers

on the Florentine cupola an important affirmation of the architect as the recognized

creator and master of the work; he argues that Alberti was the first, after Cennini, to

have consciously and deliberately used design as a means of elevating the artist’s

situation above that of the craftsman.

While agreeing completely with Rossi, I would like to clarify the relationship,

which Alberti had clearly in mind, that exists between the point at which the straight

lines that proportionally relates pairs of corresponding points of two similar objects

must converge, and the point from which depart the visual rays, “the cusp, that is,

the point of the pyramid that is within the eye there where the angle of the quantity

is” (Alberti 1975: 1, 7, 20). This passage is of the utmost importance in Albertian

thought because the understanding that everything can be determined by the

7 “Battista dettò i libri della statua e della pittura, ma non riuscı̀ ad adoperare con gloria lo scalpello

e i pennelli; invece scrisse sull’arte di edificare. . .” (Mancini 1882: 365).
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prospective representation of a regulating system of points, such as a

three-dimensional Cartesian grid, paves the way for the mathematic

representation of space and of the objects within it; in order, however, that its

legitimacy be established, it is derived directly from the fifth book of Euclid’s

Elements, supported by the theory of proportions. Alberti’s use of mathematics is

related to the central problem of composition, whether pictorial, sculptural or

architectural: to the relationship both between the parts and between the parts and

the whole, so that the result is a general harmony. The analogy to music isn’t limited

to the discernment of certain pleasing sounds, but is mathematically demonstrated

by the existence of precise mathematical ratios between the length of chords. This is

not the place to go into these ideas, but I permit myself to point out some questions

that may not be generally noted and that may inspire further research.

The Galilean critique of the practice of using models is directed at those who

were convinced as to the usefulness of models, whether architectural or sculptural,

that faithfully reproduced form without paying attention to the differences between

the materials used in the model and those used in the actual object. Alberti

strenuously defended the use of models; he was the first after Vitruvius to list

their advantages (as did Baldinucci) while, however, specifically excluding their

use as instruments for determining the strength of a structure or any of its parts. He

declares,

nor has this Design any thing that makes it in its Nature inseparable fromMatter; for we see

that the same Design is in a Multitude of Buildings, which have all the same Form, and are

exactly alike as to the Situation of their Parts and the Disposition of their Lines and Angles;

and we can in our Thought and Imagination contrive perfect Forms of Buildings entirely

separate from Matter, by settling and regulating in a certain Order, the Disposition and

Conjunction of the Lines and Angles. Which being granted, we shall call the design a firm

and graceful pre-ordering of the Lines and Angles conceived in the Mind, and contrived by

an ingenious Artist (Alberti 1755: I, 1.1–2).

Alberti expresses the concept that the design is fixed in the mind that elaborates

it; its form is invariable because it is independent from the material in which it is to

be realized.

In actual practice, of course, things are not exactly as Alberti presents them,

because forms are determined by numbers and dimensions; one cannot simply

ignore the importance of the factor of the weight, except perhaps during the

initial formulation of the problem, and only then as long as the scale of the model

is not too small with respect to the object to be realized. On the other hand, is it very

probable that Alberti was codifying a design practice used in medieval workshops

where models, due to their particular architectonic forms, were used to resolve

problems of stability, if not of strength. As we shall see shortly, the model of

Brunelleschi’s design for the Florentine cupola appears to have served this purpose.

Stability and strength contribute equally to the maintenance of a pre-established

form and the capacity to resist loads without cracking, constituting even today proof

of the validity of a design. Even if in modern mechanics the loss of strength can be

viewed as a part of the problem of stability, here we should distinguish the two

concepts. Strength and stability are necessary for every structure, but are not
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necessarily of equal value, in the sense that in any given structure one or the other

might be more important. For example, in a Gothic structure, the problem of

stability was dominant; in a Roman structure, strength was of the essence.

Elements of Roman structure might not be sufficiently strong and crack, without,

however, collapsing; a Gothic structure might collapse without necessarily

breaking its individual elements (unless they were broken by the fall itself).

Today failures of strength can be verified in antique structures for the very reason

of their not collapsing, as cracks in the principal beams of many Greek and Roman

temples testify, or as in the two great domes of Florence and Rome. In contrast,

failures in stability are not often to be found, because they are recorded only in

half-forgotten writings seldom consulted by scholars.

Alberti and the Diffinitore

If the following argument could be proven, as I believe, Alberti would have had

excellent reasons for maintaining that one could ignore material properties in the

design of a structure. Brunelleschi’s model for the cupola remained in place at the

foot of Giotto’s bell tower until the first months of 1430 when it was decided to

demolish it because it was no longer relevant and because it was so large that it

encouraged improper night-time use. If Alberti had seen it, probably he would have

had other, more concrete and less idealistic, reasons for writing what he did.

One may recall Alberti’s Florentine sojourn in 1434 when he was in the service

of Pope Eugene IV. Although some scholars lean towards a later dating for De
statua, I tend to accept the hypothesis that springs from a direct reading of the small

treatise in which Alberti, on the first page, states that he will treat painting in a later

moment; since De pictura is indisputably dated between 1434 and 1436, it follows

that De statua preceded De pictura. Many scholars from the period of Florentine

humanism are also of this opinion, including Mancini, Alberti’s biographer. I

myself believe this for a reason closely related to Alberti’s direct knowledge of

the irregularity of the octagon with which Brunelleschi had to contend.

I think it will surprise most readers to learn that the octagon upon which the

Florentine cupola is based is very irregular; the lengths of its sides, measured at the

last catwalk on the cupola’s intrados, varies between 16.98 and 17.60 m, with an

average length of 17.32 m. These irregularities had incredible consequences for the

builders of the extremely complicated mechanism, that is, the two cupolas and the

skeleton structure connecting them, a skeleton which varies greatly in height

according to Brunelleschi’s design as well as at various ideal levels in horizontal

section that result in irregular octagons which are increasingly smaller the higher

one goes. A construction project of this complexity could be guided only by one

who knew perfectly how to instruct the workers. As Manetti points out,

Brunelleschi completely described each step to be executed; when he was absent,

work came to a halt (Manetti 1976). Where did Filippo get his dimensions? Though

no numerical nor geometric procedure could work because of the enormous
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difficulties posed by the irregularity of the octagon, a model constructed with the

same irregularities might have enormously simplified the problem. It would have

been no more and no less than a small sculpture to be replicated at a much larger

scale. A diffinitore, the instrument Alberti described for sculpting a statue that

exactly corresponded to a predetermined model, would have served honourably for

measuring cylindrical-polar coordinates from points on the model so that they could

be recorded in a notebook and later transferred to the construction site (Fig. 44.1).

We don’t know much as to these practical contrivances; it is possible that Alberti

had seen something like the tool he describes in De statua, perhaps even in

Brunelleschi’s workshop, a tool that could be used to measure the distances

between two points on a model so that they could be transferred to reality using

only a simple change of scale. This distance corresponds to the modulus of a

vectorial length which, while changing scales, maintains the direction; this is the

rational foundation for the use of a model when the independence from materials of

model and actual object is postulated, as by Alberti. It is notable that Alberti speaks

Fig. 44.1 The diffinitore.
Image: from De statua,
Cosimo Bartoli, ed. Venice,

1565
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of it in De statua, using as an example the continuous proportions established by

corresponding parts of the bodies of Evander, Hercules and a giant to explain when

and how classes of size can be defined as proportional. He uses the same example in

De pictura.8

I believe that thinking of the influence of Brunelleschi in the design of a

measuring device has a different value than that attributed to the invention of

perspective that is the principal argument of De pictura, notoriously attributed

mostly to Brunelleschi. The problem lies, in fact, in the leap in quality made by

Alberti in theorizing about the operations of workshops, and his giving them a

precise theoretical and logical structure; in other words, it seems to me that this

constitutes the background against which the practical and concrete issues may be

examined, constituting the theoretical basis of a discipline. Alberti is much more

specific in this regard because he holds that to the things he had written must be

attached the thoughts of the philosophers.9 It is obvious that these are the same

themes that Galileo uses to challenge the theory that Alberti elaborated.

A Reevaluation of Alberti and the Science of Construction

I believe it is necessary to restore to Alberti the dimensions of scientist and

technician that some scholars of his work have recently obscured, especially with

regard for the law of the lever given by Alberti. In the preface to Ludi Matematici,
Ludovico Geymonat (1980) issued clear warnings as to the absolute necessity of

giving works such as Alberti’s their full due, because they contain ideas and

instruction displayed with a clarity possessed only by those with a full command

of the subject. The law of the lever, which Alberti gives in De Re Aedificatoria, VI,
7, is completely different from that with which we are familiar and is derived

directly from the theory of Archimedes, which was not relative to inclined forces

applied to the lever, but rather to a most particular class of weights represented by

parallel vectors. Given this restriction, the practical procedure suggested by Alberti

is rigorously exact, and was in fact followed up until the end of the nineteenth

8 “Ma noi, per fare piu chiaro il nostro dire, parleremo in questo più largo. Conviensi intendere qui

che cosa sia proporzionale. Diconsi proporzionali quelli triangoli quali con suo lati e angoli

abbiano fra sè un ragione che, se un lato di questo triangoio sarà in lunghezza due volte pù che

la base e l’altro tre, ogni triangolo simile, o sia maggiore o minore, avendo una medesima

convenienza alla sua base, sarà a quello proporzionale; imperò che quale ragione sta da parte a

parte nel minore triangolo, quella ancora sta medesima nel maggiore. Adunque tutti i triangoli cosı̀

fatti saranno fra sè proporzionali” (Alberti 1975: 1, 14).
9 “. . .se il cielò, le stelle, il mare e i monti, e tutti gli animali e tutti i corpi divenissero cosı̀ volendo

Iddiò la metà minori, sarebbe che a noi nulla parrebbe da parte alcuna diminuita. Imperò che

grande, picciolo, lungo, brieve, alto, basso, largo, stretto, chiaro, scuro, luminoso, tenebroso, e

ogni simile cosa, quale può essere e non essere agiunta alle cose, però quelle sogliono i filosofi

appellarle accidenti, sono sı̀ fatte che ogni loro cognizione si fa per comparazione. . .” (Alberti

1975: I, 18).
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century. Even critics not eager to review Mach’s critiques on the postulates upon

which Archimedes based his demonstration have to re-examine their own positions.

Vagnetti’s attitude is cautious when he declares “the long and intense cultural

formation of Alberti does not allow the exclusion of some direct or indirect

knowledge of texts then circulating in manuscript form or of an undoubtedly rich

oral tradition, with which he could have come into contact during his numerous

travels or in the very halls he frequented in Padua and Bologna” (Vagnetti 1972:

183). Geymonat also emphasizes the importance of not ignoring possible ties

between the various manifestations of Albertian culture, from literary works to

the composition of treatises on Sculpture, Painting and Architecture. P.L. Panza

(1994) has adopted this approach by comparing these three treatises with Alberti’s

literary texts. However, I think there are some remaining grey areas where his train

of thought seeks to unite the theoretical foundations of the three arts, probably

because this kind of analysis would have required the use of texts about the history

of the theories put forth and developed by the art of construction, before this

became a science of construction. Yet I seem to find some germs of this kind of

thought expressed by Panofsky, Pevsner and Garin, who intuited something but

lacked any possibility of pushing beyond due to the total lack of texts written by a

construction technician or by a scholar of the theories upon which the relative

knowledge was organized. The fact is that, as far as I know, those who sought to set

down this history have taken Galileo as a point of departure, believing that before

the Pisan no science was possible. I am not so sure I can state categorically what I

believe, but I think that not even terms such as science, art and technique have

conveyed the same meaning through the centuries, but rather they have evolved in

relationship to their usages and to the particular contexts in which they were used.

Without going too far back in time, it is possible to affirm the direct descendance of

our culture from the Enlightenment and that the actual organization of knowledge

was already at that time characterized by a clear distinction between Art and

Science, assigning to Technique the role of realizing the ideas expressed by the

first two. In any case, for some decades the boundaries between respective

territories have been the object of critical revision aimed at establishing some

kind of unity under the common denominator of knowledge.

In this light, the work of Alberti, especially his treatises on the three arts, lends

itself to multiple but related analyses which avoid the kind of limiting approaches

which betray the spirit of Alberti’s work: the unity of knowledge was, in fact, a

fundamental principle of humanism. The art of construction as formulated by

Alberti is, and could not be other than, the enumeration of codified rules arising

out of practice and tested in structural projects that demonstrated their validity by

defying the centuries. The scientific demonstration of the validity of Alberti’s

theories found an instrument of confirmation in the theory of proportion; the

accusations against its validity, in few but significant cases, had to wait until

failure provided contrary evidence. This is not unlike what occurs in our own

age: disasters are occasionally produced by theories that official science holds to

be valid.

Translated from the Italian by Kim Williams
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Chapter 45

Verrocchio’s Tombslab for Cosimo de’

Medici: Designing with a Mathematical

Vocabulary

Kim Williams

Introduction

The tombslab by Verrocchio commemorating Cosimo de’ Medici, patriarch of the

wealthiest of Florentine families, is a relatively small memorial marker laid in the

floor of the crossing in the basilica of San Lorenzo in Florence (Fig. 45.1). In spite

of its size, it contains interesting lessons on the rich relationships between

mathematics and design. Forentine sculptor Andrea del Verrocchio (ca. 1435–

1488) was one of the best known artists in Florence at the time, and his workshop

was a breeding ground for master artists such as Leonardo da Vinci and Pietro

Perugino (Adomo 1991; Bule et al. 1992). As a basis for his composition,

Verrocchio used a vocabulary of geometrical figures. The centrepoint in the

composition plays a dual role, organizing the figures of the composition and

relating the tombslab as a whole to the particular architectural setting in which it

was placed. Further, the figures relate to each other through a system of proportions

derived from the Pythagorean musical scale. The symbolism of the tombslab is

derived from all of these elements: the sacred significance attached to the figures is

reinforced by the colours used in the composition, the proportional relationships,

and the position of the tombslab in space.

Cosimo de’ Medici died in 1464. The tombslab which Verrocchio designed to

commemorate him was laid in San Lorenzo in 1467. The slab appears in the

pavement in the centre of the crossing; Cosimo’s remains are buried in the

ground in the crypt below (Baldini and Nardini 1984; Burns 1979). The actual
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tomb and the tombslab are connected by a massive pier in the crypt. The central

element in the composition of the tombslab is a rectangle of red porphyry.

Elongated half-circles are placed on each side of the rectangle. In the top and

bottom half-circles are inscription panels1; in those on either side are green

porphyry mandorle. This inner composition is circumscribed by a circle, which is

itself circumscribed by a square. In the interstices between the half-circles and the

outer circle are small green porphyry roundels. All the geometrical figures are

outlined in white marble. An outer square of black marble frames the whole

composition. Bronze shields with the Medici symbol, palle or balls, in red

porphyry, appear in the interstices between the circle and the outer square.2

Centred on three of the four sides of the outer square are small, square, bronze

grilles which provide light for the crypt below. The fourth grille was apparently

obliterated when the altar was redesigned in the 1600s3 (Fig. 45.2).

The tombslab has most intrigued those interested in Renaissance tomb design

because it is so different from the kind of tomb markers found at the time (Clearfield

1981). It is devoid of any figural representation of the deceased, for example, such

Fig. 45.1 Verrocchio’s tombslab for Cosimo de’ Medici in San Lorenzo. Drawing: author

1 The inscriptions read, “Here lies Cosimo de’ Medici. Publicly declared Father of his Country”

and “Lived 75 years, 3 months, and 20 days.”
2 The shields may be a later addition.
3 In addition to obliterating the fourth grille, the present altar step shaves about 1 cm off the

tombslab’s upper edge.
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as a bust or portrait. In addition, there are no readily recognized Christian symbols

used in the marker. Although Cosimo was the wealthiest and most influential

Florentine of his time, his marker is simple to the point of austerity. The

simplicity of his tomb marker is unabated in spite of the rich materials used. In

part, the restraint demonstrated by the design may be due to the personality of

Cosimo: he was known to have avoided overt displays of his wealth and position.

To understand fully the significance of the tombslab, however, it is necessary to

study the geometrical figures which appear in the composition. My conclusion

is that the slab, far from being a terse pagan marker, professes a belief in a

divinely-created cosmos. We will first examine the use of the figures as carriers

of sacred ideas, and then examine the intriguing relationships suggested by the

proportions of the figures.

The Forms of the Tombslab

Verrocchio used five distinct geometrical figures in his composition. These were

references to philosophical ideas and readily understood as such by those who were

familiar with the neo-Platonic philosophy popular in fifteenth century Florence. In

the centre of the panel is a rectangle of red porphyry. The rectangle measures some

92 cm in width and 122 cm in length, with a diagonal of 152.5 cm (see Fig. 45.2 for

Fig. 45.2 Survey of the tombslab with the key dimensions (all dimensions are in centimetres).

Drawing: author
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exact dimensions).4 The relationship between these dimensions becomes somewhat

clearer when they are converted into fifteenth century Florentine units of measure:

the rectangle measures 31 soldi in width by 41 soldi in length, with a diagonal equal

to some 51 soldi.5 In other words, the rectangle is formed of two right triangles

whose sides relate to each other in the ratio of 3:4:5. I believe that the significance

of the 3:4 rectangle in Verrocchio’s design is linked to that of the triangles of which

it is formed. Triangles in general, as the first plane figures, have always been given

special significance. A triangle is formed by three points; Pythagoreans considered

three the first “real” number and, therefore, divine. Plato gave a cosmic symbolism

to triangles, writing in the Timaeus that the world is composed of triangles (Plato

1961: 53c–e). The 3:4:5 triangle, sometimes called an “Egyptian triangle” because

it was studied and used by the Egyptians, notably in the Pyramid of Cheops, and

sometimes called the “Pythagorean triangle” because it provides a ready proof for

the Pythagorean formula a2 + b2 ¼ c2, has a special place among triangles. It is the

only triangle whose sides form an arithmetic series. In addition, the sum of the

lengths of the sides, 3 + 4 + 5, is 12, a particularly significant number. A circle

divided into 12 equal segments symbolized the division of the heavens into

12 zodiacal regions. If one imagines the circumference of this circle as a line,

then the line can be opened and refolded to form the 3:4:5 triangle (Fig. 45.3).

Further, the proportions of the 3:4:5 triangle are related mathematically to the value

for the musical whole tone (the mathematics of this proportion will be explained in

detail in the next section.) For Neo-Platonists, the musical whole tone was a divine

value, symbolic of the Creator, in that it is a number which cannot be divided evenly

into two, and is therefore eternal and unchanging.

Thus, the symbolism of the 3:4 centre rectangle, composed of two 3:4:5

triangles, is informed by their symbolizing the cosmos, or creation, as well as

their symbolizing the Creator.

The overlapping ovals created by the addition of half-circles to all sides of the

rectangle form what is known as a “Solomon’s knot.” The “knot” has neither

beginning nor end, and is therefore symbolic of immortality and eternity.

“Solomon’s knot” is an ancient pavement motif, and was commonly used in the

fifteenth century as a decorative motif. Leonardo da Vinci used it as the basis of a

design for a centrally planned church.6 It was probably used by Verrocchio with

much the same intention as it was by Leonardo: to underline the sacred nature of the

design by imparting to it the symbolism of immortality and eternity carried by the

motif. What differs between Verrocchio’s “knot” and that of Leonardo is the

4My analysis of the tombslab is based on my own survey. Because accuracy of the values used is

critical to the accuracy of the analysis, I follow the recommendations of Howard Saalman (1979),

taking each measurement three times and using the average value of the three as the working value.

These are the values which appear in Fig. 45.2.
5 A Florentine braccio was the unit of measure used at the time the tombslab was constructed.

1 braccio ¼ 58.4 cm. It was subdivided into 12 crazie (1 crazia ¼ 4.95 cm) or 20 soldi

(1 soldo ¼ 2.92 mm); each soldo was further subdivided into 20 denari; see Zervas (1979).
6 For an illustration of Leonardo’s design, see Pevsner (1972: 202, Fig. 143).
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proportions of the centre, Verrocchio having used the 3:4 rectangle while Leonardo

used a square.

On either side of the central rectangle, in the interstices of the “Solomon’s knot,”

appear two mandorle. The mandorla (“almond” in Italian) is also known as a

vesica, or a vesica pisces (“fish bladder” in Greek.) The vesica is the fish-shaped

symbol for Christ, and is linked to the celebration of the Eucharist. This sacrament

had a great importance for Cosimo de’ Medici: he had expressly requested that his

tomb be located at the foot of the altar, so as to symbolize his being present at the

celebration of the Eucharist. The vesica also represents a zone of intersection

between two intersecting circles, one representing the heavens and the other

representing earth (in neo-Platonic symbolism the two circles would represent the

world of “being” and the world of “becoming”). The vesica itself, the intersection,

is symbolic of the mediator between the two. For Christians, the mediator is Christ,

who was both God and man.

The circle-in-a-square circumscribes the “Solomon’s knot.” We find references

to these two shapes in Plato’s Timaeus (1961: 54d–55c). The cube and the sphere

represented for Plato the earth and the universe respectively, and the

two-dimensional forms of square and circle have analogous meanings. As did the

geometrical problem of squaring the circle, the circle-in-a-square graphically

symbolized the perfecting of the imperfect. It was also a symbol for the cosmos.

Finally, it is important to consider the role of the centre point in the tombslab.

Geometrically, a point lacks dimension, possessing only the characteristic of

position. In Verrocchio’s composition, the centre point serves a fundamental

role in organizing the design, and so is an integral part of Verrocchio’s language

of form. As a reference for both the crossing of the basilica and of the tombslab, it

also contributes significantly to the symbolism of the tombslab. The fact that the

tombslab appears in a pavement (rather than on a wall, for instance) introduces

the element of living man into the composition, by involving not only the deceased

commemorated by the slab, but the spectator as well, who, in order to view

the memorial, is drawn into the centre of the crossing. The space of the crossing

had become increasingly significant in fifteenth century Italian architecture,

supplanting the presbytery as the most sacred location within the church.

Considering the symbolic content of the design, it is my conclusion that, if the

symbolism of the design of Cosimo’s marker makes reference to the order of

the cosmos, its placement in the centre of the crossing is symbolic of man’s

Fig. 45.3 A circle divided
into 12 segments may be

opened and recomposed

into a 3:4:5 triangle.
Drawing: author
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central position in that cosmos. This attitude towards man is predominant in

fifteenth century humanism.

The colours of the materials used in the tombslab reiterate the symbolism

attached to the figures. The red porphyry used for the central rectangle is

symbolic of divinity, and also carried connotations of royalty. The colour used

for the central rectangle, then, underlines the reference made to the Creator through

the 3:4:5 proportions, and may refer to the sovereignty of Cosimo de’ Medici as

well. In addition, purple was, and is today, a liturgical colour representing sorrow

and penitence, used as the colour for Advent and Lent by the Roman Catholic

church, and as such is an appropriate colour for a tomb marker. The green porphyry

used for the vesica shapes refers to resurrection and immortality. As a liturgical

colour green symbolizes the predominance of life over death, as the green of new

leaves symbolizes winter vanquished by spring. Thus green is apt as a colour for the

vesica, a shape representing Christ. White is a conventional colour for purity and

therefore holiness. The white used to outline the forms of the tombslab alludes to

the sacred nature of the message of the memorial.

In terms of the geometrical figures which appear in the design, and the colours in

which they are presented, the symbolism of the tombslab is far from pagan. Instead,

it is evocative of an indivisible, eternal sovereign Creator of the universe; of the

Christ, mediator between heaven and earth, present in the Eucharist; of the desire

that the terrestrial achieve the perfection of the celestial.

The Proportions of the Tombslab

Analysis of the panel in terms of abstract geometry presents some difficulties.

Geometrical figures are bounded by lines; lines have length but no width. The

lines in the tombslab have both length and width. Thus it is not always clear which

of the dimensions are to be considered. However, it is clear that the proportions of

the forms are interrelated, and this is particularly important with regards to a study

of pattern, because the resulting order in the composition integrates the forms. I

believe that mathematical proportions related to the musical scale predominate in

the composition (as opposed to a system of proportions based on an irrational such

as √2, ϕ, or π, though irrational proportions can be found in the composition, as we

shall see presently).7 The use of musical proportions implies a “harmonic”

treatment of the elements of the composition, and they are found quite frequently

in the proportions of elements in Renaissance architecture.

Let us note some of the proportional relationships (please refer to Fig. 45.2). The

diameter of the outer circle is equal to twice the long side of the 3:4 rectangle plus

7 The musical proportions are very closely related to systems of proportion based upon irrational

values, so that the use of one does not necessarily preclude the other.
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the short side (121.73 + 91.92 + 121.73 ¼ 335.38, a deviation from 336.78 of

0.4 %). The width of the tombslab vesica is one-third the diagonal of the 3:4

rectangle (152.5 � 3 ¼ 50.83, a 0.9 % deviation from the actual 51.27). The

outer diameter of the small roundels tangent to the “Solomon’s knot” is equal to

the diagonal of the rectangle. The width of the strips which outline the figures is

equal to one quarter of the width of the vesica (51.27 � 4 ¼ 12.82, a 0.4 %

deviation from 12.77). It is also equal to one-twelfth of the diagonal of the 3:4

rectangle (152.5 � 12 ¼ 12.71, a 0.5 % deviation from 12.77). The outer diameter

of the roundels is equal to one-third of the diagonal of the 3:4 rectangle (152.5 �
3 ¼ 50.83, a 1.6 % deviation from 50.0). The outer diameter of the roundels is also

equal to two-thirds of the outer width of the vesica (74.87 � 2/3 ¼ 49.91, a 0.2 %

deviation from 50.0). The doubled border is equal to one-half of the width of the

vesica (51.27� 2 ¼ 25.63, a 1.3 % deviation from 25.3, and a 2.8 % deviation from

26.37). We are seeing, then, proportions of 1:2, 1:3, 1:4, 2:3 and 3:4. The diagonal

of the rectangle appears to be a key dimension for generating the others.

A search for a geometrical method by which to describe the tombslab has led me

to recognize that the composition is based upon three squares ad quadratum,
the innermost of which is subdivided into modules with musical proportions by

extensions of the 3:4 rectangle (Fig. 45.4). The corners of the outermost square

come very close to falling exactly on the centrepoints of the grilles (deviating by

only l.5 %).

In an ad quadratum composition the √2 figures prominently, and it is worthwhile

to point out that it is found in other elements of the tombslab. For instance, we noted

that while Verrocchio and Leonardo both used the “Solomon’s knot,” Verrocchio

departed from the norm by placing a 3:4 rectangle in the centre instead of a square.

A similar variation is found in his use of the vesica. The classic vesica is formed by

two overlapping circles; the circumference of each circle passes through the centre

of the other. The width of the vesica created is equal to the radius, or one-half of the
diameter, of the circles which overlap to create it. It can be circumscribed by a

rectangle of proportions 1:√3. Another way to think of it is as being based upon two
equilateral triangles. In contrast, the tombslab vesica may be circumscribed by a

rectangle of proportions 1:√2, and the width of the vesica is three-quarters of the

diameter of the circles which overlap to create it. It may be thought of as based upon

two triangles with sides in the ratios of l:√2:3 (Fig. 45.5).

While no documentation exists of the tombslab which would shed light on

Verrocchio’s actual process for its composition, it is likely that some kind of

comprehensive system was used to generate the dimensions of the geometrical

figures within the composition. I have been unable in my own work so far to solve

the mystery, but two separate systems developed by others are particularly

suggestive, and each involves the 3:4:5 triangle. Let us consider first an

examination by Jay Kappraff of the geometry of that triangle, which reveals the

relationship between that triangle and the Pythagorean musical scale:

Let the triangle ABC (Fig. 45.6) have lengths in the ratio: L1:L2:L3 ¼ 3:4:5. It follows from

trigonometry that the angle bisector of angle A cuts the opposite side L1 in a length a ¼ L2/3,

while the angle bisector of angle B cuts its opposite side L2 in b ¼ L1/2. In other words,
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tan A/2 ¼ 1/3 and tan B/2 ¼ 1/2. These two fractions have special significance in terms of

the Pythagorean musical scale. They form the basis of the Pythagorean tetrachord: 1:1, 1:2,

1:3, and 2:3, respectively the unison, octave, fifth above an octave, and the fifth. Now it

follows that 2a:3b:c ¼ 3:4:5. From this it follows that a/b ¼ 8/9, the ratio of a whole tone in

the Pythagorean scale (Kapraff 1993: 10).

Dr. Kappraff’s study provides one important way to begin to understand just how

integrated the dimensions of the tombslab are. This system would provide a

justification for the “Solomon’s knot” being based upon a 3:4 rectangle rather

than a square, and has the further advantage of providing a means of generating

both the dimensions of the figures in the tombslab and the resulting musical

proportions between them.

Another very interesting geometrical system with regards to the tombslab is the

“New Jerusalem” geometry, proposed by John Michell (1988; Kappraff 1991: 4–6)

(Fig. 45.7). The point of coincidence between this system and the Verrocchio

tombslab lies in the use of the relationships between the 3, 4, 5 and the 11. In the

tombslab, each of the three sides of the triangle relate to the diameter of the circle as

parts of 11, that is to say, that the three sides of the triangles are related to the

diameter of the circle in the following ratios:

4:5 3:5

3:4

8:5
4:5 3:5

4:5
8:5

4:5

Fig. 45.4 A geometric analysis of the proportions of the tombslab. Drawing: author
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91:92

336:73
::

3

11
;
121:73

336:73
::

4

11
;
152:50

336:73
::

5

11
:

I have been particularly interested in these proportions because they are found in

two other contexts within the basilica of San Lorenzo. First, Filippo Brunelleschi,

architect of the basilica, based his plan for the basilica on a module which measures

11 braccia to a side. This module is sometimes described in literature on

Brunelleschi as a square with a circle inscribed in it. Second, Vasari’s pavement

design for Michelangelo’s New Sacristy in the basilica features a checkerboard

design in which the floor plane is subdivided into fields of proportions 3:11, 4:11,

5:11, and 11:11. Turning now to Michell’s geometric construction, we see it is

based upon a square, the side of which measures 11 units and is created by the

addition of two 3:4:5 triangles to a 3 � 3 square. One of Michell’s claims for the

geometric construction is that a circle which passes through the centre points of the

four lateral squares has a circumference equal to the perimeter of the 11 � 11

square, effectively squaring the circle. Some of the similarities between the New

Jerusalem construction and the tombslab design are striking, in that we have a circle

inscribed in a square, with four smaller squares on each side (analogous to the

grilles in the tombslab design) and the recurrent theme of the 3, 4, 5 and

Fig. 45.5 The proportions

of the tombslab vesica.
Drawing: author
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Fig. 45.6 The 3:4:5

triangle is related to the

musical 8:9 whole tone.

Drawing: author
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Fig. 45.7 John Michell’s

“New Jerusalem” geometry,

an approximate method for

squaring the circle.
Drawing: author
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11 proportions. But extension of the 3 � 3 squares centred on the sides of the New

Jerusalem construction won’t account for the placement of the 3 � 4 rectangle in

the tombslab design, nor am I able to find the generation of the musical proportions

within the system.

It may not be possible to develop a system which accounts for all of the

properties of Cosimo’s funerary marker. At any rate it is clear that mathematics

played a major part in Verrocchio’s creative process, resulting in a beauty that

mathematicians are most apt to appreciate.

Acknowledgments I am indebted to Jay Kappraff for sharing his unpublished paper with me. All

images in this chapter are by the author.
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Chapter 46

A New Geometric Analysis of the Pazzi

Chapel in Santa Croce, Florence

Mark A. Reynolds

O king, through the country there are royal
roads, and roads for common citizens,
but in geometry, there is but one road for all

Manaechmus to King Alexander

Introduction

Without original drawings or documented evidence, it is difficult to know with

confidence what numbers, measures, and geometric systems have been used in any

work of art, architecture, or design. In the Pazzi Chapel, these problems are

compounded by the long period of time that transpired in completing the building

[construction lasted from 1429 to 1461, and the Chapel was finally finished in 1478

(Fanelli 1980: 3)], and the possibility that there was more than one architect. It is

difficult to be sensitive to the artist’s or architect’s intentions when analysing a

work, and to remain objective about these findings. If the geometer does not have

command of both the measures and the number relationships—ratios, proportioning

and geometric constructions—any sensitivity to the intentions of the creator will

remain suspect. There is also the difficulty of knowing with certainty if the builders,

tradesmen and labourers were able to carry out the designer’s intentions, for many

of them had little or no formal education in reading and reckoning. At times, these

intentions and goals can be better understood within the context of the artist’s or

architect’s other works, what systems of number and geometry were in use or
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known at the time, and through the analyst’s knowledge of the subject which is

sometimes called “harmonic deconstruction”, i.e. geometric analysis. I would like

to lay some groundwork regarding my approach to these issues. I find it best to

begin, appropriately, with the ground plans of the main hall and the altar space.

Basic Measurements

For this analysis, the measurements of the floor plan and altar space plan were

accomplished using a surveyor’s tape measure, and a carpenter’s metal tape

measure, in feet and inches.1 Three separate measurements were taken: along the

central longitudinal axis, running roughly north to south and perpendicular to the

longitudinal axis of the Basilica of S. Croce; both floor/wall intersections to the left

and right of this longitudinal axis and parallel to it. These calculations were then

averaged. This procedure was repeated with the transverse axis and also in the altar

space. These measurements were taken from a quarter to an eighth inch

fractionally, and calculated from a thousandth to a ten thousandth place decimally.

There were slight discrepancies throughout the floor measurements. Some of the

coccio pesto and pietra serena patterning on the floor was a bit irregular. However,
throughout our measurements, I could see that the labourers made adjustments in

order to preserve the measurements of the perimeter of the floor. The joints between

bands and rectangles were fairly uniform and the irregularities did not affect the

overall ratio of length to width. I was actually pleased and surprised to see the

amount of uniformity and care in craftsmanship that I observed throughout the

chapel.

It is significant to note that the chapel has benches around the perimeter of the

floor, which prevent the floor from touching the walls. This fact yields two different

ratios, the benches being uniform around the floor perimeter. I have calculated the

ratios for both relationships—with and without—the benches.

The longitudinal and transverse axes were measured first, for it is these two axes

that determine the ratio of the plan. Most often, in geometric analysis, the floor plan

is the critical and primary measure in the structure because it is here that the

geometric analysis takes root. These perimeter benches are very nearly a

Florentine braccia2 in both height and in depth, averaging 23.825 in. This

measurement doubles because there are benches on opposite sides, both on the

NS axis as well as the EW axis. In my opinion, when laying out the rectangular plan

of the floor, the builder took the measures to the walls, with the benches as part of

1Although I indicate the type of measuring systems employed, I suggest that the numbers be

viewed as units, and not inches, centimetres or braccia. Conversions are not necessary for an

analysis.
2 A braccio is an Italian measurement used in the Renaissance. It varied from city to city, with the

Florentine braccio being the longest. It is about 0.5836. . .m, or 22.7968. . .inches.
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the included ratio of the floor’s dimensions.3 In the Pazzi plan, as we shall see, the

architect’s approach to the design was to place the benches at very nearly the

Florentine braccio so that the floor plan inside the benches would be in the √3
system.

The Floor Plan of the Main Chapel Hall

The following measurements are found in the main space of the chapel:

Longitudinal Axis:

a) to the walls: av. 59.96975. . . ft.
b) to the benches: av. 55.99895. . . ft.

Transversal Axis:

a) to the walls: av. 36.02065. . . ft.
b) to the benches: av. 32.0498. . . ft.

The two floor plan ratios are:

a) To the walls: 1.66487. . . to 1

b) To the benches: 1.74724. . . to 1

These two ratios approximate ratios known and used during the Middle Ages and

the Early Renaissance as part of a geometric heritage from the ancients. The first is

3:5, two of the numbers in the Fibonacci Sequence,4 and the first two in this

sequence where the golden section first appears, to the tenth place: 1.6. . . The
percent deviation is: +0.877. . . % high. The second ratio is √3 ¼ 1.732. . .; this is
the geometric system that contains the equilateral triangle, the hexagon, and the

dodecagon. The √3 system can be seen clearly in the rib and sail design of the

cupola, and in the bevel of the altar steps. We will find this same system in other

parts of the chapel, on the elevation and the plan. The percent deviation here is

�0.107. . . % low.

3 I have always contended that the geometric calculations be done on the inside, not outside, of the

geometric figure. Thickness of walls does not seem to me to be relevant to the ratio that is seen and

experienced. It seems a trivial thing at first, but the ratios derived from the two rectangles are

substantially different. The only time equal thicknesses are generated is in the mitred 45� angle.
4 Keep in mind that Fibonacci, or, Leonardo of Pisa, had just brought to light his summation

sequence, and surely it was known in Florence at this time. The other importance to the 3 to 5 ratio

is that it was a part of Pythagorean music theory, the major sixth, and later utilized in Palladio’s

‘Mystic Seven’ ratios to be used in the geometric planning for architecture. It is possible the

architect of the Pazzi Chapel may have been making a reference to the 6 days of Creation.
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The Floor Plan of the Altar Space

As I measured the chapel, I recalled the opinions of those who have said that there is

no golden section ratio in the chapel, or that, because no golden section relationship

could be found in the chapel, there was no geometric system at all!5 The golden

section may not be the epitome of all proportioning, but we still must concede its

use if we find it. As we have seen, the measure of the floor plan was in the 3:5

measure of the walls and did not yield the ф ratio. This was not to be the case with

the altar space. It seemed logical to me, as a geometer, that if this particular

relationship were to exist in the chapel, it would be in the floor plan of the main

hall or the floor plan of the altar. My hunch proved to be correct; however, ф
showed up in an arcane geometric construction. I say arcane because it is not a

commonly known ratio or geometric construction. It is (Fig. 46.9):

ffiffiffi
5

p
� 2 ¼ 1:1180339 . . . to 1

This is the compound rectangle6 that is composed of the double square and the

golden section rectangle. It is the direct development of a line segment divided into

mean and extreme ratio using the diagonal of the double square.7 An additional

construction that will also yield this 1.118. . . to 1 ratio is the double √5. The
tangency will be on the long sides of the rectangles.

Here then are the measures:

– The altar space width: 16.354 ft. ¼ 196.25 in.

– The altar space depth: 18.25 ft. ¼ 219 in.

– The ratio of depth to width: 219 in. �196.25 in. ¼ 1.1159. . . to 1

– The percent deviation from the 1.118. . . (√5 � 2) ratio is: �0.1896. . .% low.

The Altar

Table 46.1 shows the calculation, ratios and percentage deviations for dimensions

of the altar space. These ratios and percent deviations are taken with the comparison

to the ideal, which is the double square, √4:l (or 2:1) ratio in the plan and elevation.
The side, sectional, view would then ideally be a square. In substance, the height of

the altar is 2.25 in. higher than it is deep.

5 In particular, see (Guillaume 1990).
6 See (Hambidge 1967) for a detailed explanation on the subject of simple and compound

rectangles.
7 This construction can be found in several classical and modern sources (among them, Dürer and

Hambidge). One of the best uses I have seen is the underlying grid work for The Resurrection of
Christ, by Piero della Francesca (in Borgo San Sepolcro, Palazzo Communale).

690 M.A. Reynolds



The Front Elevation

The elevation of the chapel was measured using laser technology, with the stadio
totale laser. The survey was carried out with the help of geometer Pino Adamo and

architect Kim Williams; the data obtained was given to Professor Paul Calter, who

crunched and reckoned the numerical data for me to put into the geometric system.

It is important to note here that the laser calculations are in the metric system, and

these calculations were not converted into feet and inches. My approach to analysis

allows me to calculate, measure, and construct with whatever system I have been

given. Simply stated, a circle will be a circle regardless of the type of units of

measure used for its radius.

From Paul Calter’s calculations based on the theodolite measures, we were able

to find the following information:

• Height of the chapel, from the ground plane to the intersection of the ball and

cross,8 at the top of the lantern, along the central vertical axis: 27.969 m.

• Width of the chapel, along the base and at the intersection of the cornice and

wall: 17.348 m.

• Ratio of height to width: 27.969 m �17.348 ¼ 1.61223. . .

The golden section ratio is ф ¼ 1.6180339. . .:1. So then, the percent deviation

of the height to width ratio from ф is�0.3599. . .% low. Occasionally, one finds the

geometric techniques of ad triangulum (“from the triangle”), and ad quadratum
(“from the square”) being used in a plan, an elevation9 or some other primary

element of a building. I wanted to see if these constructions were employed in the

Pazzi Chapel. I compared our laser measures to the elevation drawings drafted by

Cabassi and Tani (1992) and found them to be very nearly identical.10 Their

drawing is indispensable because the portico, believed to be a later addition, has

made the original façade impossible to see.11 By using their survey drawing of the

Table 46.1 Key altar dimensions (in inches)

Dimension Ratio % Deviation

Height 39.5 (plan) W:D ¼ 75.5 � 37.25 ¼ 2.2068....:1 +1.34 % high from 2:1

Width: 75.5 (elevation) W:H ¼ 75.5 � 39.5 ¼ 1.9114....:1 �4.435 % low from 2:1

Depth: 37.25 (section) H:D ¼ 39.5 � 37.25 ¼ 1.0604. . .:1 +6.04 % high from 1:1

8 It is thought-provoking to think about the possibility that the original cross on top of the ball

would have taken the elevation from the golden section up to the √3 measure!
9 In 1402, Jean Mignot attempted to settle the debate over the primacy of using a square or a

triangle in the elevation of the Milan Cathedral. Mignot declared the triangle to be superior.
10 As samples, I compared the ratios of the door, a window, and the height to width ratio of chapel

façade.
11 In the Cabassi/Tani drawing, one can still see the original circular oculus that was built into the

original façade, and now sealed with mortar and brick.
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original wall, I was able to show the geometry of the square and the equilateral

triangle unencumbered by the portico’s overlapping architectural elements.

Both construction systems use the rotation of the chapel’s base width. For ad
quadratum, the base is rotated to the vertical positions on the left and right sides,

and perpendicular to the base. In the case of ad triangulum, the apex of the

equilateral triangle will be marked where the rotation of the base width towards

vertical cuts through the vertical mid-line axis, at 0.866. . . or, √3 � 2, of the height

of the square when the side of this square is 1.

In Fig. 46.13, the system of ad quadratum is shown. The basic armature of the

square is shown with the two diagonals, AM and KZ, and its midlines, NG and

PR. All eight half-diagonals are added. With this armature, the fractional parts of

1 assigned to the side of the square can now be located. These fractional parts, 1/2,

1/3, 1/4, 1/5, 1/6 . . ., etc., are also a harmonic progression, and can be generated

within the grid of the square using only the diagonals and half-diagonals. These

fractional parts are indicated. On the left side of the façade, note that K is generating

many diagonal types—for example, a thirds diagonal or a fifths diagonal—that

yield the fractional/harmonic segments.12 In the analysis, it can be seen that the

architect took advantage of these fractional/harmonic parts to compose some of the

key elements in the façade. For example, the fifths (notated f1 and f2) give the

altar’s width, and the number five is associated with the five wounds of Christ. The

widths of the pilasters are generated by using 1/5 and 1/6. The tops of the four

windows are on thirds, and the bottoms on tenths. The medallion above the door is

in the centre of the square.

In Fig. 46.12, the ad triangulum portion of the elevation is shown. Some scholars

may argue that the two systems are incommensurable, and I sometimes concur with

this point of view. However, in this particular building, there are a few elements

generated within the triangular grid work that have not been generated from the

square; others result from the two working in concert. I have found that many of the

better architects of the time integrated both systems into one cohesive whole. The

combination of the two as one grid provides a powerful design tool and a unique

structure to work with, as well.

Some of the findings from Paul Calter’s calculation of the coordinates points, in

addition to the height to width ratio mentioned above, are:

• The drum’s ratio, height to width, is, 11.814 � 3.003 ¼ 3.934. . . to 1. This ratio
is nearly √16:1 (4:1), the quadruple square. The percentage of deviation is:

–1.6483. . .% low. The 4:1 ratio is one of the proportions used in rendering the

male figure, where the figure is 8 heads tall by 2 heads wide at the shoulders, i.e.,

4 shoulder widths tall by 1 shoulder width wide.

• The elevation, to ad triangulum, 0.866. . . of the width, is ideally 15.0238; in the
Cabassi/Tani elevation, ad triangulum cuts the base of the cornice. In the

12 This geometric function will yield all fractional parts, including sevenths, elevenths, thirteenths,
and so on.
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elevation analysis, the base of the cornice is at 15.948. The percent of deviation

is 6.151 % high.

• The front doors to the chapel are nearly the same as the altar, that is, �2: 1.

(Remember, the altar is 2.0268 to 1 in the plan view).

This last ratio is an example of what I originally referred to, namely it is possible

to find two solutions to the interpretation of the ratios. The doors are: height

(averaged L and R) to width: 4.9505:2.41. The ratio then is: 2.054149:1.

So, we have two choices:

Choice 1 :
ffiffiffi
4

p
: l or 2 : 1ð Þ

2:05414� 2 ¼ 0:054149
0:054149� 2 ¼ 0:02707
a 2:70745 % high deviation

Choice 2 :
ffip
or 2:05817 : 1ð Þ

2:05414� 2 ¼ 0:054149
2:05414� 2:05817 ¼ �0:00402

�0:00402� 2:05817 ¼ �0:0019532
a� 0:19575 % low deviation

Which of the two figures is correct? Because the altar is approximately a double

square in plan and elevation (and approximately a double cube in three

dimensions), may we assume that there is a symbolic connection between the two

elements—doorway and altar? Scriptural texts contain references to the double

square and cube. On the other hand, because the builder appears to have used an

uncommon ratio involving the golden section, √5 � 2, can it be assumed that he

would also know another, ϕ√ϕ ¼ 2.058. . .? By the early 1400s, the golden section

had been a staple for artists and builders since the Middle Ages (Bouleau 1963:

Chaps. III–IV). Would these ratios be in the builder’s toolbox? In this situation, I

would have to say that the doors were intended to be a double square. It would make

sense to think that the ratio was in the double square because of its spiritual

significance. Entering the chapel and sharing in the sacrifice at the altar may have

been linked in the architect’s intentions. It certainly suggests further research and

investigation.

Details and Figures for the Geometric Analysis

The Floor Plan

a) Figure 46.1: Floor plan with the walls, benches and altar space delineated to a

simple line drawing.

b) Figure 46.2: Floor plan with Observer 1 (Ol) on the threshold of the chapel floor,

and Observer 2 (02) along the inside edge that is marked by the line designating
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Fig. 46.1 Floor plan 1.

Drawing: author

Fig. 46.2 Floor plan 2. Drawing: author
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the bench fronts. A 60� “Cone/Pyramid of Vision”13 as introduced to Masaccio

by Brunelleschi for The Holy Trinity painting in Santa Maria Novella, Florence.

The lines O1G and O1N, as well as all other lines drawn from the Observer, O,

represent lines of sight (named here LOS) from the eye of the Observer. At G

and N, the LOS are intercepted by the benches to designate the light bands of

stone that crisscross the floor. Points 02P1 and 02P2 from the second Observer

mark the other sides of the bands. Note that if 01 is used that the LOS, 01P3, is

intercepted by the wall, not the bench, but will still yield the same band edge.

c) Figure 46.3: The Vesica Piscis and the √3 � 2 rectangle,14 AKMZ. The AKMZ

rectangle contains two √3 rectangles, tangent on their long sides. A third √3

Fig. 46.3 Floor plan 3a. Drawing: author

13 It is important here to note that the 60� cone of vision used by the perspectivists of the time

equates directly with the use of the ad triangulum (from the [equilateral] triangle) system.
14 That is, the double √3 rectangle, and is either the 0.886. . . or the 1.154. . . ratio, depending on

whether the long side or short side of the rectangle is used as 1, or unity.
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rectangle, BLGN, frames the Vesica and generates the centre lines of the two

bands in the centre of the floor. APZ and KRM are both equilateral triangles. The

entire √3 system is contained within the inner rectangle, VWXY, which is

formed by the benches, and is itself a √3 rectangle. Points Q and V, where two

of the octagonal medallions are located appear to be located on the extended

lines of AP and ZP.15 The lines Lb and Gc are part of the two diagonals, LN and

GB, and are 60�. It can be seen that three of the bevels of the altar steps are not at
60�. My measures found that the angles ranged from about 56� to 58.5�.
However, one of the four was 60�. Here is a prime example of sensing intentions
of the builder. With the number of findings in the analysis, where ad triangulum,
equilateral triangles and √3 systems have been used, my surmise is that the

intention was to cut these steps at that angle, but for whatever reasons, the three

others are close. It certainly isn’t obvious in situ, and it could well be that it

passed muster without any authority noticing, or perhaps, even caring.

d) Figure 46.4: This plan is closely related to FP 3a, and shows the second option

for the Observer, O2. By placing the Observer back from O1, the observer now

Fig. 46.4 Floor plan 3b. Drawing: author

15 I did not measure or triangulate these two points, so please note that I am only speculating on

this. At the same time, I would not be surprised if this were indeed the case.
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has a somewhat wider 60� cone, as can be seen at points K and M. This makes

the double √3 rectangle slightly larger, and, consequently, the rectangle,

VWXY, aligns with the walls, and not the benches. Rectangle VWXY is not a

√
R
3 rectangle, but is instead approximately a 3 to 5 ratio.16 Note that lines AP

and PZ cut the benches at points t1 through t4, and provide the outer edges of the

outer two bands on the floor.

e) Figure 46.5: ad triangulum generated by the rabattment of length KR, along the

line of the benches. The two lines, KM and RM intersect at apex, M. In the

celebration of the Roman Catholic Mass, this point, M, is the area where the

Monstrance, which holds the Eucharist, is placed during Mass. Circle Oc, drawn
tangent to triangle KMR, represents the cupola.

f) Figure 46.6: The ad quadratum system. This drawing contains circle Oc, and a

second circle n; these circles generate the Vesica Piscis. It is not needed for ad
quadratum work, but it is placed here to show the placement of the centre of the

longitudinal band at v1 and v2, the band closest to the altar. Circle n also acts as a

Fig. 46.5 Floor plan 4. Drawing: author

16 The walls would have to be placed at points q2 and q3 in order to be a √3.
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device that links the centre of the chapel floor to the band that frames the altar

itself. The master square, AKMZ, has been divided into fractional parts,

including fifths at f1 and f2.17 It is appropriate then to use these fifths to delineate

the width of the altar at pa11 and pa12. These two points are harmonically joined

where the two diagonals, pa3S and pa4J, cut these fifths. Additionally, points

pa11 and pa12 mark the front corners of the altar itself, and are placed by their

intersection with the diagonals of a second ad quadratum system. This second

system of ad quadratum, generated in the altar space, starts at points pa3 and

pa4, and the 45� diagonal lines are drawn to points J and S, where they intercept

the longitudinal axis at the northern and southern walls.

g) Figure 46.7: This last plan drawing is a theory based on other plan drawings,

most notably the omnipresent Stegmann and Geymuller (SG) plan drawing and

Fig. 46.6 Floor plan 5. Drawing: author

17 The number five is synonymous with the five wounds of Christ in the Catholic faith. It would be

appropriate to use these fifths to delineate the altar width, as the altar is where the celebrations of

Christ’s Resurrection take place.
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others that borrowed from them. I have not measured the lantern, drum and

cupola, so I cannot say with certainty if the following is true. I would welcome

the opportunity to either do the survey or have someone send the accurate

measures to me. The SG drawing indicates that the ratio of lantern diameter to

cupola diameter is 1 to 10. Again, this would make sense if one notes that there

are 10 beads to 1, with 5 decades in all, to the rosary used in prayer. If this 10 to

1 ratio is in fact true, then it can be seen that when lines of sight are drawn from

the Observer to the corners of the band that surrounds the altar, the LOS

intercept the longitudinal axis at this ratio. If the technique of LOS was used,

then this 10 to 1 ratio can be generated in this manner.

Fig. 46.7 Floor plan 6. Drawing: author

46 A New Geometric Analysis of the Pazzi Chapel in Santa Croce, Florence 699



The Altar Space

a) Figure 46.8: Line drawing of the altar space area. The plan drawings that I’ve

analysed indicate that this space is square, and it is not. The altar itself is a

double cube, and the priest’s floor in front of the altar is a double square. As a

plan view, these two elements will be a square. The bands around the altar and

priest’s floor are also in a square format. However, the total space around these

items is not a square. There is an intarsia-like stone geometric pattern across the

front of the altar between the altar and the chapel hall. It can also be seen that the

eight octagonal star medallions are not equidistant from one another. The three

in front and back are closer to each other than the ones to the left and right as the

altar is faced. The eye can easily be tricked here, as the medallions to the left and

Fig. 46.8 Altar space 1. Drawing: author
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right are foreshortened, and appear as though they are all equal. The geometric

band in front of the altar is responsible for the non-square floor plan. Drawing

Altar Space 2 will discuss this rectangle.

b) Figure 46.9: This rectangle is in fact the “1.1180339. . .”, a ratio that combines

the double square and the golden section rectangle; or, if you prefer, two √5
rectangles, tangent on their long sides. It is certainly not a ratio that many

scholars and surveyors are aware of, but, at the same time, it is known to

some of us working in the fields of geometry and geometric analysis.

c) Figure 46.10: Another way of looking at the “1.118. . .” is to see that it is really a
part of the construction for the golden section rectangle. In this drawing, it can

be seen that the bottom part of the square, a double square in its own right, is

half, or 0.5, of the square. Subtracting 0.5 from the golden section, 1.618. . .
equals, 1.118. . ..

d) Figure 46.11: Several years ago, I made an extraordinary discovery while

working with the 1.118. The golden section is generated from the double square

and its diagonal. Instead of stopping at the golden cut, continue around to

construct the golden section rectangle. During its rotation, it passes through

the midline of the double square extended. At this juncture, the equilateral

triangle is generated! This rectangle is quite rich as a compound rectangle,

including the double square, the golden section, two √5 rectangles, and the

equilateral triangle.

Fig. 46.9 Altar space 2.

Drawing: author
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The Front Elevation

a) Figure 46.12: The ad triangulum system applied to the façade.

b) Figure 46.13: The ad quadratum system applied to the façade. These first two

drawings were constructed over a line drawing of the elevation using the survey

drawing done by Cabassi and Tani. The drawing from Cabassi and Tani was

used for its valuable information concerning the oculus and the original portion

of the façade that is attributed to Brunelleschi. The drawings and the harmonic

deconstructions speak for themselves.

c) Figure 46.14: This line drawing is a measured line elevation (1 cm ¼ l m,

although the measuring system can be converted to units of any measure)

using the information obtained with the stadio totale, and shows the relative

Fig. 46.10 Altar space 2a.

Drawing: author
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magnitudes given by Paul Calter’s figures obtained from the measurements done

in January 1999 by Kim Williams and Pino Adamo.

The drawing is both convenient and accurate, and it is easy to see the

relationships without the “clutter” of the object. For me, the most significant

relationship is the height to width ratio, which yields, by 0.006. . ., very nearly the

golden section. This is a complex drawing that combines both master grids of ad
triangulum and ad quadratum with the 1.118. . . rectangle of the altar space plan.

From this triple compound rectangle, it can be seen that almost every major facet of

the elevation is included within the geometry, as there area significant number of

eyes (where two or more lines cross) within the grid that align with many of the key

elements of the façade. It is an important drawing in that it utilizes all the major

systems used in the plans of the floor and altar.

Conclusions

The Pazzi Chapel has long been the subject of speculation concerning its builder or

builders, the limitations of its construction within the Santa Croce complex, and,

most importantly, the geometric systems that are or are not present in the building.

Fig. 46.11 Altar space 3.

Drawing: author
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Correct analysis is a difficult task, although it may appear to be an easy one, given

the proportioning that is seen and the number of theories that abound on the subject

from the annals of art and architectural history. For me, the procedure is always to

erase preconceived notions18 and to approach the work to be analysed as if it were a

secret treasure. The goal is to find the geometry within. Find it I did, and, although

not surprising, I also found it quite pleasing to behold the variety of geometric

systems handled with the deftness of an architectural master.

The Pazzi Chapel is based on the square and its three major divisions: rational

whole numbers and fractional parts; square roots and irrationals; the special case of

Fig. 46.12 Front elevation 1. Drawing: author

18 At the top of the list is: avoid any attempts at converting from one system to another. It is foolish

at best, and a disaster for sure. Understand that all systems have units and a unity that they are

based on. All systems work easily when doing geometric analysis. Grid work (structure) and

composition come from the circle, square, and the triangle. Know the workings of these and know

all that is in the geometry.
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the irrational, the golden section ‘family’. The builder also used the square’s

relationship to the circle and to the equilateral triangle. These three elements

exist as the one unifying force in the architecture of the chapel. The artistry was

in the integration of these three geometric systems.

It is my hope and intention that the geometric analysis and the drawings based on

the measures clearly define for the reader what I have been fortunate to find. I

believe that I have found a few geometric relationships that may have evaded

others’ notice. The human need for order leads to the search for the best and most

beautiful ways that it can be achieved. Our tools include geometry and geometric

analysis. As we move into a new millennium, we must remember to keep attuned to

our collective history. With the state of our technology, there may be a temptation

not to.

Fig. 46.13 Front elevation 2. Drawing: author
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Chapter 47

Muqarnas: Construction and Reconstruction

Yvonne Dold-Samplonius and Silvia L. Harmsen

Introduction

Muqarnas is the Arabic word for stalactite vault, an architectural ornament

developed around the middle of the tenth century in north eastern Iran and almost

simultaneously, but apparently independently, in central North Africa. A muqarnas

is a three-dimensional architectural decoration composed of niche-like elements

arranged in tiers.1 In Fig. 47.1 we see an example of an Il Khanid (1256–1336)

muqarnas vault: the entrance portal of the shrine of the Holy Bāyazı̄d at Bastām, in

Iran (Pope 1939: 1102).

The two-dimensional projection, or ground plan, of this vault is shown in

Fig. 47.6. Like all ground plans, it consists of a small variety of simple

geometrical elements.

The first definition of muqarnas is given by the Timurid astronomer and

mathematician Ghiyāth al-Dı̄n al-Kāshı̄, who ranks among the greatest

mathematicians and astronomers in the Islamic world. He was a master calculator

of extraordinary ability. His wide application of iterative algorithms, and his sure

touch in laying out a computation so that he controlled the maximum error and

maintained a running check at all stages, earn him credit as the first modern

mathematician. When Ulugh Beg decided to construct the observatory, he invited

First published as: Yvonne Dold-Samplonius and Silvia Harmsen, “Muqarnas, Construction and

Reconstruction”. Pp. 69–77 in Nexus V: Architecture and Mathematics, Kim Williams and

Francisco Delgado Cepeda, eds. Fucecchio (Florence): Kim Williams Books, 2004.

1 For a short introduction, see (Dold-Samplonius 2003).
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al-Kāshı̄ to his court, some time after 1416. Al-Kāshı̄ died outside the Samarqand

and observatory in June 1429, probably murdered on the command of Ulugh Beg.

Two years earlier he had finished the Key of Arithmetic, one of his major works, a

veritable encyclopedia of mathematical knowledge. The work is intended for

everyday use, as al-Kāshı̄ remarks: “I redacted this book and collected in it all

that is needed for him who calculates carefully, avoiding tedious length and

annoying brevity.” By far the most extensive book is Book IV, On
Measurements. In the last chapter al-Kāshı̄ approximates the surface area of a

muqarnas and gives the following definition:

The muqarnas is a ceiling like a staircase with facets and a flat roof. Every facet intersects

the adjacent one at either a right angle, or half a right angle, or their sum, or another

combination of these two. The two facets can be thought of as standing on a plane parallel

to the horizon. Above them is built either a flat surface, not parallel to the horizon, or two

surfaces, either flat or curved, that constitute their roof. Both facets together with their roof

are called one cell. Adjacent cells, which have their bases on one and the same surface

parallel to the horizon, are called one tier (Dold 1992: 202).

This last chapter, “Measuring Structures and Buildings”, is really written for

practical purposes: “The specialists merely spoke about this measuring for the arch

and the vault and besides that it was not thought necessary. But I present it among

the necessities together with the rest, because it is more often required in measuring

buildings than in the rest.” Al-Kāshı̄ uses geometry as a tool for his calculations, not

for constructions. Besides computing the surface area and volume of arches, vaults,

and qubbas (cupolas), al-Kāshı̄ establishes here approximate values for such a

Fig. 47.1 Entrance portal of the shrine at Bastām, Iran. Drawing: authors
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muqarnas surface. He is able to do so, because, although a muqarnas is a complex

architectural structure, it is based on relatively simple geometrical elements, as we

shall explain below.

Elements of a Muqarnas

The elements of a muqarnas consist of cells and intermediate elements connecting

the roofs of two adjacent cells. For a better understanding of the construction of an

element, the component parts are shown in Figs. 47.2 and 47.3.

In this Chapter we talk about the design, plane projection and ground plan of a

muqarnas. All muqarnas have been designed from a ground plan but most ground

plans are now lost. All existing muqarnas have a plane projection which, however,

when the muqarnas has partly collapsed, is only partial.

As al-Kāshı̄ explains, the elements stand on simple geometrical figures. This

means that the plane projection of an element, or the view from underneath, consists

of simple geometrical forms, which al-Kāshı̄ identifies as squares, rhombuses,

half-rhombuses, almonds (deltoids), “small bipeds,” “jugs,” “large bipeds,” and

“barley-kernels” (which only occur on the upper tier).

In his treatise al-Kāshı̄ shows the plane projection of common elements

consisting of simple geometrical forms (Fig. 47.4). These are from left to right: a

rhombus and a square, with underneath a “barley-kernel,” a “biped”, and its

complement to a rhombus, an “almond.” Other elements like half-squares (cut

along the diagonal), half-rhombuses (isosceles triangles with the shorter diagonal

Fig. 47.2 A muqarnas cell standing on a square (left) and an intermediate element standing on a

“biped” (right). A cell consists of two facets, or vertical sides (f), plus their roof (r). The roof (r) is a

surface, not parallel to the horizon, or two joined surfaces, either flat or curved. An intermediate

element is a surface, or two joint surfaces, connecting the roofs of two adjacent cells. The curve
(c) is where the cells and elements are put together. The module (m) is defined as the measure of

the base of the largest facet, that is, the side of the square; it is the measure-unit of the muqarnas. A

tier is a row of cells, with their bases on the same plane surface parallel to the horizon. Rendering:

authors
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of the rhombus as their base), rectangles, and the “jug” with its complement the

“large biped” are only described by al-Kāshı̄ and not drawn.

Figure 47.4 is a reproduction of the oldest extant copy of al-Kāshı̄’s manuscript

Key of Arithmetic, today conserved in the Malek Library in Tehran (ms. 3180/1). It

was copied in the year 1427, the same year in which al-Kāshı̄ finished his

manuscript, by al-Kāshı̄’s companion Mo’ı̄n al-Dı̄n al-Kāshı̄, who went with

al-Kāshı̄ from Kashan to Samarqand around 1420.

With the exception of the intricate Shı̄rāzı̄2 muqarnas, the two-dimensional

projection of a muqarnas vault consists of a small amount of simple geometrical

elements.

Fig. 47.3 Part of one tier consisting of five cells and three intermediate elements. Rendering:

authors

Fig. 47.4 The plane projections of the cells, as given by al-Kāshı̄ in his Key of Arithmetic. Malek

Library in Tehran, ms. 3180/1

2 In Timur’s time, when building activity exploded, local constructors could manage the simpler

buildings. But for the special and more artistic monuments, architects and artisans were imported

from the conquered lands, first Khwārizm, then Tabrı̄z and Shı̄rāz, and finally India and Syria. It is

known that Timur brought in architects from Shı̄rāz in 1388 and 1393, and that many migrated of
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Fitting the Elements

In order to fit together, the muqarnas elements have to be constructed according to

the same unit of measure (module) and the curves, on the sides of the elements,

have to be the same. This curve (Fig. 47.5) is described by al-Kāshı̄ as the “Method

of the Masons”, indicating that it is taken from building practice. Al-Kāshı̄’s

construction is carefully executed by means of circles, an angle of 30� and exact

ratios (Dold-Samplonius, Yvonne 1992–1993: 221–222). In present-day Fez,

Morocco, artisans still use more or less the same curve, with the same

proportions, drawing it freehand on the wooden beams for their muqarnas

construction (Dold-Samplonius 1996). The design of the elements found at

Takht-i Sulaiman also follows approximately this same curve.

Some muqarnas are composed of cells with flat roofs, as we have seen in

al-Kāshı̄’s definition. In this case we have to fit the facets, or walls, of the cells

and construct the flat roofs of the cells above. In this case the normal height of the

facets equals the module.

Fig. 47.5 Curve described

by al-Kāshı̄ in his Key of
Arithmetic. Malek library in

Tehran, ms. 3180/1

their own free will. The names of several Shı̄rāz architects have been transmitted, the most famous

being Qawām al-Dı̄n b. Zayn al-Dı̄n al- Shı̄rāzı̄, the only active builder whose surviving structures

display a distinctive architectural style. This might well be the reason why the type of muqarnas

constructed with many variations, “innumerable possibilities” as al-Kāshı̄ explains, was called

Shı̄rāzı̄.
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Muqarnas Design

The earliest known example of a muqarnas ground plan, is an Il Khanid 50 cm.

stucco plate from ca. 1270 showing the projection of a quarter muqarnas vault

found at the Takht-i Sulaiman, Iran (Harb 1978). There are no known Islamic

architectural working drawings from the pre-Mongol era, although we find

occasional textual references to plans. After the Mongol conquest of Iran and

Central Asia, an abundance of locally produced, inexpensive paper appears to

have particularly encouraged architectural drawings on this medium. Rag paper

had been introduced to Samarqand by Chinese prisoners of war in 751, and because

it was much cheaper than papyrus and parchment, its use had spread throughout the

Islamic world after the tenth century. It was not, however, until the Mongols arrived

in the 1220s that an extensive paper industry developed in Tabriz and other Iranian

towns under Chinese influence. Its extensive use had become essential due to the

increasing elaboration of geometric design. Fourteenth-century sources frequently

mention architectural drawings produced on either clay tablets or paper. Necipoğlu

(1995) describes a late fifteenth-century or early sixteenth-century scroll, now

preserved at the Topkapi Museum, Istanbul, which was most likely compiled

somewhere in western or central Iran, probably in Tabriz. What we find in the

Topkapi scroll, a pattern book from the workshop of a master builder, are patterns to

be used for ornaments and as ground plans for muqarnas. The scroll is a high-level

design book for architects, builders, and artisans. The Topkapi scroll is the

best-preserved example of its kind, with far-reaching implications for the theory

and practice of geometric design in Islamic architecture and ornament.

Up until Necipoğlu’s discovery of the Topkapi scroll, the earliest known

examples of such architectural drawings were a collection of fragmentary

post-Timurid design scrolls of sixteenth-century Samarqand paper, preserved at

the Uzbek Academy of Sciences in Tashkent. These scrolls almost certainly reflect

the sophisticated Timurid drafting methods of the fifteenth century. In 1876,

English architect C. Purdon Clarke brought back from Tehran some scrolls and

working drawings from the eighteenth and the nineteenth centuries that he had

collected following the death of the official state architect, Mirza Akbar; these are

now preserved in the Victoria and Albert Museum, London. In 1981, similar

material, still in the hands of the master-artisan, was examined by W.K. Chorbaki

in two Arab towns (Necipoğlu 1995: 14–15). These scrolls were not only the basic

reference manual but also served as a design book. What is evident is that there

exists a continuous tradition, from the thirteenth century Takht-i Sulaiman plate to

the muqarnas designs still in use in the modern Islamic world.

A few years ago we visited a workshop at Fez, Morocco, where the artisans used

a construction plan for a muqarnas on a 1-1 base. The pieces cut out for constructing

the muqarnas could actually be put on the draft such that the cross section of the

element, that is, the cross section of the wooden beam, exactly matched the figure
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on the draft.3 As in the Il Khanid period, 700 years earlier, the plane projection of

the elements in the Moroccan plan consists of simple geometrical figures: squares,

half-squares, rhombuses, half-rhombuses, rectangles, “almonds,” “bipeds” (to use

al-Kāshı̄’s terms). Wilber (1955: 73) relates how, at Isfahān, he watched an elderly

workman repairing a badly damaged stalactite half-dome of the Şafavid period. On

the floor below the damaged elements he had prepared a bed of white plaster, and on

this surface he was engaged in incising a half plan of the original stalactite system.

The Timurid scrolls show a decisive switch to the far more complex radial

muqarnas, with an increasing variety of polygons and star polygons. The Akbar

scrolls are also more elaborate than the twentieth-century Fez drawings. Despite

their simplicity, however, the more recent scrolls testify to a relatively unbroken

tradition of architectural practice in central Asia from at least the Timurid period

onward. The standard patterns compiled in modern Moroccan sketchbooks indicate

that the master who drew them repeated inherited formulas rather than inventing

new ones.

Figure 47.1 shows part of the entrance portal of the shrine of the Holy Bāyazı̄d at

Bastām, Iran, the whole structure of which, apart from a few Seljuk remains, was

constructed in the Il Khanid period. Figure 47.6 shows the plane projection

corresponding with that muqarnas structure. The structure is mirrored along the

center line. When we look at the right side in the middle, we see three “jugs”

connected by two small “bipeds” (outlined in a dark line). This correlates with the

second row from below on the left in Fig. 47.1 (Dold-Samplonius 1996: 67–71).

When we study the correlation between the two-dimensional muqarnas ground

plan and the three-dimensional muqarnas structure, the question arises: Is this

correlation unique? To answer this question we have to take into account two

important points:

First, if the height of the muqarnas elements remains the same throughout the

whole structure, the structure will be a steep muqarnas, like the Seljuk examples in

Anatolia. Hence, when the muqarnas structure has to be inserted into an existing

vault, we have to adapt the height of the facets of the elements. In other words,

when we want to construct a muqarnas in a vault that is not very steeply pointed, the

height of the facets of the elements has to decrease on the higher tiers in such a way

that they will fit into the vault. As the height of the facets approaches zero, the

remaining part of the vault, that is, the part above the last tier, can then be finished in

several ways. In some vaults the original brickwork is left visible; in others the

ceiling is plastered and ornamented by painting, or by applying barley-kernels

(Fig. 47.4, second row on the left) or by using a combination of these two.

In the Topkapi Scroll we have seen elements based on a semi-regular hexagon on

the uppermost tier as in the designs 108/109/110 (Necipoğlu 1995: 344–345). The

two sides of the hexagon pointing towards the center of the vault equal the module,

whereas the other four sides equal the shorter side of the “biped.” The hexagon can

3 Such a plan, used to construct a muqarnas in present-day Fez, is discussed in (Dold-Samplonius

1996: 71).
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be mirrored along the diagonal pointing towards the center of the vault. These

elements might well be a badly drawn double “almond” or, maybe, a new element

described by al-Kāshı̄. In these cases also the highest and central part of the vault

still has to be decorated.

Second, some designs are sketchy and not worked out in much detail. In the

Topkapi Scroll we find several rough designs, for instance designs 96 and

104 (Necipoğlu 1995: 338, 342), where the artist has worked out a small part into

detail, probably to avoid confusion. The Timurid Topkapi scroll ranks among the

oldest extant designs, but in modern Moroccan designs as well, as seen in the

ground plans from Fez, the artist tends to help the artisans by including signs and

letters for the required elements in the design.

Based upon the above evidence, we think that the artists and artisans, even while

using a standard design from a pattern book, still have some, although restricted,

freedom during the construction process. This freedom is necessary when

difficulties arise due to irregularities in the building. The artisans repeated endless

variations based on old geometric formulas, slightly modifying them by trial and

error. For these artists, the muqarnas was, and in a way still is, part of their daily life

and culture. For us, outsiders, muqarnas is beautiful geometric art to be studied and

admired. We can understand its composition and discover intriguing details but

muqarnas forms no part of our cultural identity.

Reconstruction of Muqarnas

There are several interesting questions connected to the principles of constructing

muqarnas. While questions about structural integrity and esthetic merit belong to

the area of architecture or archaeology, the distinctive properties of a muqarnas

design or ground plan are the basis of research to analyze mathematically the

Fig. 47.6 Plane projection of the entrance portal of the shrine at Bastām, Iran. Image: author, after

Harb (1978: 47)
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geometry of muqarnas. Mathematics can help us to decide what the corresponding

muqarnas element is for every geometric form in the ground plan, in which tier this

element appears, and its orientation.

As many element combinations appear more than once, we are constructing a

database of known muqarnas, sorted by period and by region. An algorithm for

rebuilding a muqarnas should first calculate which interpretations fit

mathematically. Next, these possibile interpretations have to be filtered by

comparing them with muqarnas of the same time period and region. The results

of the mathematical analysis, together with these two style properties, will then

provide the information for building a computer graphics representation of the

muqarnas. Having such a tool for computer reconstructions will permit us to

make suggestions for reconstructing muqarnas for which only the design is

known. If we are dealing with a muqarnas which is partially collapsed, we can

make suggestions for reconstruction by calculating which element combinations

would fit in the collapsed part of the muqarnas.

An example of a computer representation is given in Fig. 47.7, which shows a

computer generated muqarnas vault. The ground plan used for our computer

representation is the plane projection of an existing vault. The original vault,

bearing the date 1309, is above a niche in the sublevel of the north iwan (a roofed

or vaulted rectangular room open at one end) in the Friday Mosque at Natanz, Iran.

Natanz, a small mountain village on the eastern road between Isfahan, Kashan, and

Fig. 47.7 Computer

representation of a vault in

the friday mosque at

Natanz, Iran. Rendering:

authors
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Qumm, is the site of a famous complex of structures from the Il Khanid period. By

comparing our computer representation with the existing vault we can control

whether our system functions.

We have developed a video entitled Magic of Muqarnas (Dold-Samplonius

et al. 2005) which gives an overview of different muqarnas styles. This video

explains the construction and reconstruction of muqarnas and also shows our

realizations of computer generated muqarnas.
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Al-Kāshı̄, Ghiyāth al-Dı̄n, 13, 18, 709–713
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Mitrović, Branko, 78, 568

Monge, Gaspard de, 90

Montesinos-Amilibia, J. M., 424

Monuments and Memorials

Ales Stena (Ale’s Stones), 405, 417

Arch of Constantine, 635, 636, 640,

642, 643

Gunbad-i-Kabud (Blue Tomb, Iran), 593,

595, 596, 599, 600

Pantheon (Rome), 12, 83, 84, 215–226

Trajan’s Column (Rome), 217, 612, 613

Mosques

Blue Mosque in Istanbul, 606

Friday mosque of Isfahan, 478
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Measures (Sèvres), 254

Salk Institute for Biological Studies

(La Jolla, USA), 51

Storey Hall (Melbourne, Australia), 51

Schroeder, Eric, 478

Schumacher, Patrik, 50

Scully, Vincent, 165, 167, 170

Seleukos of Seleukia, 223

Senusert I, 97

Senwosret I, 97

Serlio, Sebastiano, 90, 198, 199, 560, 561

Sesostris I, 97, 98, 110

Sezgin, Fuat, 430
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