
Chapter 4
Singular Semilinear Elliptic Equations
with Subquadratic Gradient Terms

Marius Ghergu

Abstract We investigate the semilinear elliptic equation −Δu = a(δ(x))g(u) +
f (x,u) + λ|∇u|q in a smooth and bounded domain Ω subject to an homogeneous
Dirichlet boundary condition. Here g is an unbounded decreasing function, a is
positive and continuous, f grows at most linearly at infinity, δ(x) = dist(x, ∂Ω)

and 0 < q ≤ 2. We emphasize the effect of all these terms in the study of existence,
nonexistence and asymptotic behavior of positive solutions.
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4.1 Introduction

We are concerned with semilinear elliptic problems in the form
⎧
⎪⎨

⎪⎩

−Δu = a(δ(x))g(u) + f (x,u) + λ|∇u|q in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1)

where Ω is a smooth and bounded domain in R
N , N ≥ 2, δ(x) = dist(x, ∂Ω), λ ∈R

and 0 < q ≤ 2.
We assume that g ∈ C1(0,∞) is a positive decreasing function and

(g1) limt→0+ g(t) = ∞.

The function f : Ω ×[0,∞) → [0,∞) is Hölder continuous, nondecreasing with
respect to the second variable and f is positive on Ω × (0,∞). The analysis we
develop in this paper concerns the cases where f is either linear or sublinear with
respect to the second variable. This latter case means that f fulfills the hypotheses

(f 1) the mapping (0,∞) � t 	−→ f (x,t)
t

is nonincreasing for all x ∈ Ω ;

(f 2) limt→0+ f (x,t)
t

= ∞ and limt→∞ f (x,t)
t

= 0, uniformly for x ∈ Ω .
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Such singular boundary value problems arise in the context of chemical hetero-
geneous catalysts and chemical catalyst kinetics, in the theory of heat conduction
in electrically conducting materials, singular minimal surfaces, as well as in the
study of non-Newtonian fluids or boundary layer phenomena for viscous fluids (we
refer for more details to [3–5, 8, 10, 11] and the more recent papers [6, 13, 18–
20, 22, 24, 25, 28]). We also point out that, due to the meaning of the unknowns
(concentrations, populations, etc.), only the positive solutions are relevant in most
cases.

The main features of this paper are the presence of the convection term |∇u|q
combined with the singular weight a : (0,∞) → (0,∞) which is assumed to be
nonincreasing and Hölder continuous.

Many papers have been devoted to the case a ≡ 1 and λ = 0 (see [7, 9, 13, 23, 24,
27, 29] and the references therein). One of the first works in the literature dealing
with singular weights in connection with singular nonlinearities is due to Taliaferro
[26]. In [26] the following problem has been considered

{
−y′′ = ϕ(x)y−p in (0,1),

y(0) = y(1) = 0,
(2)

where p > 0 and ϕ(x) is positive and continuous on (0,1). It was proved that prob-
lem (2) has solutions if and only if

∫ 1
0 t (1 − t)ϕ(t)dt < ∞. Later, Agarwal and

O’Regan (Sect. 2 in [1]) studied the more general problem
⎧
⎪⎨

⎪⎩

H ′′(t) = −a(t)g(H(t)) in (0,1),

H > 0 in (0,1),

H(0) = H(1) = 0,

(3)

where g satisfies (g1) and p is positive and continuous on (0,1). It is shown in [1]
that if

∫ 1

0
t (1 − t)a(t)dt < ∞, (4)

then (3) has at least one classical solution. In our framework, p is continuous at
t = 1 so condition (4) reads as

∫ 1

0
ta(t)dt < ∞. (5)

In this paper we prove that the assumption (5) is also necessary for (1) to have
solutions.

4.2 Main Results

We start this section by a nonexistence result in which we prove the necessity of
condition (5).
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Theorem 1 (Nonexistence) Assume
∫ 1

0 ta(t)dt = ∞. Then (1) has no solutions.

We next assume that (5) holds.

Theorem 2 (Sublinear case) Assume (5) and conditions (f 1), (f 2), (g1) hold.

(i) If 0 < a < 1, then problem (1) has at least one solution, for all λ ∈ R;
(ii) If 1 < a ≤ 2, then there exists λ∗ > 0 such that (1) has at least one classical

solution for all −∞ < λ < λ∗ and no solution exists if λ > λ∗.

We shall next focus on the case a = 1. This case was left as an open question
in [14]. We are able here to give a complete answer in the case where Ω is a ball
centered at the origin.

Theorem 3 (Case a = 1) Assume (f 1), (f 2), (5), a = 1 and Ω = BR(0) for some
R > 0. Then the problem (1) has at least one solution for all λ ∈R.

The existence of a solution to (1) is achieved by the sub and super-solution
method. In particular, the super-solution of (1) is expressed in terms of the solution
H to (3). In some particular cases we are able to describe the asymptotic behavior
of solutions near the boundary. This is our next task here.

Let a(t) = t−α , g(t) = t−p , α,p > 0 and consider the following related problem:

⎧
⎪⎨

⎪⎩

−Δu = δ(x)−αu−p + f (x,u) + λ|∇u|q in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(6)

Then we have:

Theorem 4 (Asymptotic behavior) Assume (g1), (f 1), (f 2).

(i) If α ≥ 2, then the problem (6) has no classical solutions.
(ii) If α < 2, then there exists λ∗ ∈ (0,∞] (with λ∗ = ∞ if 0 < a < 1) such that

problem (6) has at least one classical solution u, for all −∞ < λ < λ∗. More-
over, for all 0 < λ < λ∗, there exist 0 < η < 1 and C1,C2 > 0 such that u

satisfies
(ii1) If α + p > 1, then

C1δ(x)(2−α)/(1+p) ≤ u(x) ≤ C2δ(x)(2−α)/(1+p), for all x ∈ Ω; (7)

(ii2) If α + p = 1, then

C1δ(x) ln1/(2−α)

(
1

δ(x)

)

≤ u(x) ≤ C2δ(x) ln1/(2−α)

(
1

δ(x)

)

, (8)

for all x ∈ Ω with δ(x) < η;
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(ii3) If α + p < 1, then

C1δ(x) ≤ u(x) ≤ C2δ(x), for all x ∈ Ω. (9)

We have seen that if a(t) = t−α then (1) has no solutions if α ≥ 2. Motivated by
the results in [12], let us now consider the extremal case a(t) = t−2 lnα(A/t) where
A > diam(Ω) and the corresponding boundary value problem

⎧
⎪⎨

⎪⎩

−Δu = δ(x)−2 lnα( A
δ(x)

)u−p + f (x,u) + λ|∇u|q in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(10)

Theorem 5 (Asymptotic behavior) Assume (g1), (f 1), (f 2).

(i) If α ≥ −1, then problem (10) has no classical solutions.
(ii) If α < −1, then there exists λ∗ ∈ (0,∞] (with λ∗ = ∞ if 0 < a < 1) such that

problem (6) has at least one classical solution u, for all −∞ < λ < λ∗. More-
over, there exist C1,C2 > 0 such that u satisfies

C1 ln(1−α)/(1+p)

(
A

δ(x)

)

≤ u(x) ≤ C2 ln(1−α)/(1+p)

(
A

δ(x)

)

, for all x ∈ Ω. (11)

In the following we study the problem (1) in which we drop out the sublinearity
assumptions (f 1), (f 2) on f but we require in turn that f is linear. More precisely,
we assume that f (x, t) = μt , for some μ > 0. Note that the existence results estab-
lished in Lemma 4 in [24] or [25] do not apply here since the mapping

Ψ (x, t) = a
(
δ(x)

)
g(t) + λt, (x, t) ∈ Ω × (0,∞),

is not defined on ∂Ω × (0,∞).

Theorem 6 (Linear case) Assume (5), (g1), f (x,u) = μu for some μ > 0 and 0 <

a < 1. Then for any λ ≥ 0 problem (1) has solutions if and only if μ < λ1.

4.3 Proof of Theorem 1

The proof of Theorem 1 follows from the following more general result.
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Proposition 1 Assume that
∫ 1

0 ta(t)dt = ∞. Then the inequality boundary value
problem

⎧
⎪⎨

⎪⎩

−Δu + λ|∇u|2 ≥ a(δ(x))g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(12)

has no classical solutions.

Proof Let (λ1, ϕ1) be the first eigenvalue/eigenfunction of −Δ in Ω subject to a
homogeneous Dirichlet boundary condition. It is known that λ1 > 0 and by nor-
malization, one can assume ϕ1 > 0 in Ω . It suffices to prove the result only for
λ > 0. We argue by contradiction and assume that there exists u ∈ C2(Ω) ∩ C(Ω)

a solution of (12). Using (g1), we can find c1 > 0 such u := c1ϕ1 verifies

−Δu + λ|∇u|2 ≤ a
(
δ(x)

)
g(u) in Ω.

Since g is decreasing, we easily obtain

u ≥ u in Ω. (13)

We make in (12) the change of variable v = 1 − e−λu. Therefore

⎧
⎪⎨

⎪⎩

−Δv = λ(1 − v)(λ|∇u|2 − Δu) ≥ λ(1 − v)a(δ(x))g(− ln(1−v)
λ

) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

(14)

In order to avoid the singularities in (14) let us consider the approximated problem

⎧
⎪⎨

⎪⎩

−Δv = λ(1 − v)a(δ(x))g(ε − ln(1−v)
λ

) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

(15)

with 0 < ε < 1. Clearly v is a super-solution of (15). By (13) and the fact that
limt→0+ 1−e−λt

t
= λ > 0, there exists c2 > 0 such that v ≥ c2ϕ1 in Ω . On the other

hand, there exists 0 < c < c2 such that cϕ1 is a sub-solution of (15) and obviously
cϕ1 ≤ v in Ω . Then, by the standard sub- and super-solution method (see, e.g.,
[16, 21]) the problem (15) has a solution vε ∈ C2(Ω) such that

cϕ1 ≤ vε ≤ v in Ω. (16)

Multiplying by ϕ1 in (15) and integrating we find

λ1

∫

Ω

ϕ1vεdx = C

∫

Ω

(1 − vε)ϕ1a
(
δ(x)

)
g

(

ε − ln(1 − vε)

λ

)

dx.
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Using (16) we obtain

M =: λ1

∫

Ω

ϕ1vdx ≥ λ

∫

Ω

(1 − v)ϕ1a
(
δ(x)

)
g

(

− ln(1 − v)

λ

)

dx

≥ C1

∫

Ωδ

ϕ1a
(
δ(x)

)
dx, (17)

where Ωδ ⊃ {x ∈ Ω; δ(x) < δ}, for some δ > 0 sufficiently small. Since ϕ1(x) be-
haves like δ(x) in Ωδ and

∫ 1
0 ta(t)dt = ∞, by (17) we find a contradiction. Hence,

problem (12) has no classical solutions and the proof is now complete. �

4.4 Proof of Theorem 2

The existence part in this result relies on the sub and super-solution method. Basic
to our approach is the following comparison result whose proof may be found in
[15].

Lemma 1 Let Ψ : Ω × (0,+∞) → R be a Hölder continuous function such that
the mapping (0,+∞) � s 	−→ Ψ (x,s)

s
is strictly decreasing for each x ∈ Ω . Assume

that there exist v,w ∈ C2(Ω) ∩ C(Ω) such that

(a) Δw + Ψ (x,w) ≤ 0 ≤ Δv + Ψ (x, v) in Ω ;
(b) v,w > 0 in Ω and v ≤ w on ∂Ω ;
(c) Δv ∈ L1(Ω) or Δw ∈ L1(Ω).

Then v ≤ w in Ω .

We shall divide our arguments into two cases according to the values of λ.
(i) CASE λ > 0. By Lemma 4 in [24] there exists ζ ∈ C2(Ω) such that

⎧
⎪⎨

⎪⎩

−Δζ = f (x, ζ ) in Ω,

ζ > 0 in Ω,

ζ = 0 on ∂Ω.

(18)

Thus, ζ is a sub-solution of (1) provided λ > 0. We focus now on finding a super-
solution uλ of (1) such that ζ ≤ uλ in Ω .

Let H be the solution of (3). Since H is concave, there exists H ′(0+) ∈ (0,∞].
Taking 0 < b < 1 small enough, we can assume that H ′ > 0 in (0, b], so H is
increasing on [0, b]. Multiplying by H ′ in (3) and integrating on [t, b], we find

(
H ′)2

(t) − (
H ′)2

(b) = 2
∫ b

t

a(s)g
(
H(s)

)
H ′(s)ds ≤ 2a(t)

∫ H(b)

H(t)

g(τ )dτ. (19)
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Using the monotonicity of g it follows that

(
H ′)2

(t) ≤ 2H(b)a(t)g
(
H(t)

) + (
H ′)2

(b), for all 0 < t ≤ b. (20)

Hence, there exist C1,C2 > 0 such that

(
H ′)(t) ≤ C1a(t)g

(
H(t)

)
, for all 0 < t ≤ b (21)

and
(
H ′)2

(t) ≤ C2a(t)g
(
H(t)

)
, for all 0 < t ≤ b. (22)

Now we can proceed to construct a super-solution for (1). First, we fix c > 0 such
that

cϕ1 ≤ min
{
b, δ(x)

}
in Ω. (23)

By Hopf’s maximum principle, there exist ω ⊂⊂ Ω and δ > 0 such that

|∇ϕ1| > δ in Ω \ ω. (24)

Moreover, since

lim
δ(x)→0+

{
c2a(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 − 3f
(
x,H(cϕ1)

)} = ∞,

we can assume that

c2a(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 ≥ 3f
(
x,H(cϕ1)

)
in Ω \ ω. (25)

Let M > 1 be such that

Mc2δ2 > 3. (26)

Since H ′(0+) > 0 and 0 < a < 1, we can choose M > 1 such that

M
(cδ)2

C1
H ′(cϕ1) ≥ 3λ

(
McH ′(cϕ1)|∇ϕ1|

)q in Ω \ ω,

where C1 is the constant appearing in (21). By (21), (24) and (26) we derive

Mc2a(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 ≥ 3λ
(
McH ′(cϕ1)|∇ϕ1|

)q in Ω \ ω. (27)

Since g is decreasing and H ′(cϕ1) > 0 in ω, there exists M > 0 such that

Mcλ1ϕ1H
′(cϕ1) ≥ 3a

(
δ(x)

)
g
(
H(cϕ1)

)
in ω. (28)

In the same manner, using (f 2) and the fact that ϕ1 > 0 in ω, we can choose M > 1
large enough such that

Mcλ1ϕ1H
′(cϕ1) ≥ 3λ

(
McH ′(cϕ1)|∇ϕ1|

)q in ω, (29)
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and

Mcλ1ϕ1H
′(cϕ1) ≥ 3f

(
x,MH(cϕ1)

)
in ω. (30)

For M satisfying (26)–(30), we prove that

uλ(x) := MH
(
cϕ1(x)

)
, for all x ∈ Ω, (31)

is a super-solution of (1). We have

−Δuλ = Mc2a(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 + Mcλ1ϕ1H
′(cϕ1) in Ω. (32)

We first show that

Mc2a(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2
≥ a

(
δ(x)

)
g(uλ) + f (x,uλ) + λ|∇uλ|q in Ω \ ω. (33)

Indeed, by (23), (24) and (26) we get

M

3
c2a(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 ≥ a
(
δ(x)

)
g
(
H(cϕ1)

)

≥ a
(
δ(x)

)
g
(
MH(cϕ1)

)

= a
(
δ(x)

)
g(uλ) in Ω \ ω. (34)

The assumption (f 1) and (25) produce

M

3
c2a(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 ≥ Mf
(
x,H(cϕ1)

)

≥ f
(
x,MH(cϕ1)

)

= f (x,uλ) in Ω \ ω. (35)

From (27) we obtain

M

3
c2a(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 ≥ λ
(
McH ′(cϕ1)|∇ϕ1|

)q

= λ|∇uλ|q in Ω \ ω. (36)

Now, relation (33) follows by (34), (35) and (36).
Next we prove that

Mcλ1ϕ1H
′(cϕ1) ≥ a

(
δ(x)

)
g(uλ) + f (x,uλ) + λ|∇uλ|q in ω. (37)

From (28) and (29) we get
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M

3
cλ1ϕ1H

′(cϕ1) ≥ a
(
δ(x)

)
g
(
H(cϕ1)

)

≥ a
(
δ(x)

)
g
(
MH(cϕ1)

)

= a
(
δ(x)

)
g(uλ) in ω (38)

and

M

3
cλ1ϕ1H

′(cϕ1) ≥ λ
(
McH ′(cϕ1)|∇ϕ1|

)q

= λ|∇uλ|q in ω. (39)

Finally, from (30) we derive

M

3
cλ1ϕ1H

′(cϕ1) ≥ f
(
x,MH(cϕ1)

) = f (x,uλ) in ω. (40)

Clearly, relation (37) follows from (38), (39) and (40).
Combining (32) with (33) and (37) we conclude that uλ is a super-solution of (1).

Thus, by Lemma 1 we obtain ζ ≤ uλ in Ω and by sub and super-solution method it
follows that (1) has at least one classical solution for all λ > 0.

CASE λ ≤ 0. We fix ν > 0 and let uν ∈ C2(Ω) ∩ C(Ω) be a solution of (1) for
λ = ν. Then uν is a super-solution of (1) for all λ ≤ 0. Set

m := inf
(x,t)∈Ω×(0,∞)

(
a
(
δ(x)

)
g(t) + f (x, t)

)
.

Since limt→0+ g(t) = ∞ and the mapping (0,∞) � t 	−→ minx∈Ω f (x, t) is posi-
tive and nondecreasing, we deduce that m is a positive real number. Consider the
problem

{
−Δv = m + λ|∇v|q in Ω,

v = 0 on ∂Ω.
(41)

Clearly zero is a sub-solution of (41). Since λ ≤ 0, the solution w of the problem
{

−Δw = m in Ω,

w = 0 on ∂Ω,

is a super-solution of (41). Hence, (41) has at least one solution v ∈ C2(Ω)∩C(Ω).
We claim that v > 0 in Ω . Indeed, if not, we deduce that minx∈Ω v is achieved at
some point x0 ∈ Ω . Then ∇v(x0) = 0 and

−Δv(x0) = m + λ
∣
∣∇v(x0)

∣
∣q = m > 0, contradiction.

Therefore, v > 0 in Ω . It is easy to see that v is sub-solution of (1) and −Δv ≤ m ≤
−Δuν in Ω , which gives v ≤ uν in Ω . Again by the sub and super-solution method
we conclude that (1) has at least one classical solution uλ ∈ C2(Ω) ∩ C(Ω).
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(ii) The proof follows the same steps as above. The only difference is that (27)
and (29) are no more valid for any λ > 0. The main difficulty when dealing with
estimates like (27) is that H ′(cϕ1) may blow-up at the boundary. However, combin-
ing the assumption 1 < a ≤ 2 with (22), we can choose λ > 0 small enough such
that (27) and (29) hold. This implies that the problem (1) has a classical solution
provided λ > 0 is sufficiently small.

Set

A = {
λ > 0; problem (1) has at least one classical solution

}
.

From the above arguments, A is nonempty. Let λ∗ = supA. We first claim that if
λ ∈ A, then (0, λ) ⊆ A. To this aim, let λ1 ∈ A and 0 < λ2 < λ1. If uλ1 is a solution
of (1) with λ = λ1, then uλ1 is a super-solution of (1) with λ = λ2, while ζ defined
in (18) is a sub-solution. Using Lemma 1 once more, we get ζ ≤ uλ1 in Ω so (1) has
at least one classical solution for λ = λ2. This proves the claim. Since λ1 ∈ A was
arbitrary, we conclude that (0, λ∗) ⊂ A.

Next, we prove that λ∗ < ∞. To this aim, we use the following result which is a
consequence of Theorem 2.1 in [2].

Lemma 2 Assume that a > 1. Then there exists a positive number σ̄ such that the
problem

{
−Δv ≥ |∇v|q + σ in Ω,

v = 0 on ∂Ω,
(42)

has no solutions for σ > σ̄ .

Consider λ ∈ A and let uλ be a classical solution of (1). Set v = λ1/(a−1)uλ.
Using our assumption 1 < a ≤ 2, we deduce that v fulfills

{
−Δv ≥ |∇v|q + mλ1/(a−1) in Ω,

v = 0 on ∂Ω.
(43)

According to Lemma 2, we obtain mλ1/(a−1) ≤ σ̄ , that is, λ ≤ ( σ̄
m

)a−1. This means
that λ∗ ≤ ( σ̄

m
)a−1, hence λ∗ is finite. The existence of a solution in the case λ ≤ 0

can be achieved in the same manner as above.
This finishes the proof of Theorem 2.

4.5 Proof of Theorem 3

Let us note first that in our setting problem (1) reads
⎧
⎪⎨

⎪⎩

−Δu = a(R − |x|)g(u) + f (x,u) + λ|∇u| |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

(44)
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The case λ ≤ 0 is the same as in the proof of Theorem 2(i). In what follows,
we assume that λ > 0. Using Theorem 2(i) it is easy to see that there exists u ∈
C2(Ω) ∩ C(Ω) such that

⎧
⎪⎨

⎪⎩

−Δu = a(R − |x|)g(u) |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

It is obvious that u is a sub-solution of (44) for all λ > 0. In order to provide a
super-solution of (44) we consider the problem

⎧
⎪⎨

⎪⎩

−Δu = a(R − |x|)g(u) + 1 + λ|∇u| |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

(45)

We need the following auxiliary result.

Lemma 3 Problem (45) has at least one solution.

Proof We are looking for radially symmetric solution u of (45), that is, u = u(r),
0 ≤ r = |x| ≤ R. In this case, problem (45) becomes

⎧
⎪⎨

⎪⎩

−u′′ − N−1
r

u′(r) = a(R − r)g(u(r)) + 1 + λ|u′(r)| 0 ≤ r < R,

u > 0 0 ≤ r < R,

u(R) = 0.

(46)

This implies

−(
rN−1u′(r)

)′ ≥ 0 for all 0 ≤ r < R,

which yields u′(r) ≤ 0 for all 0 ≤ r < R. Then (46) gives

−
(

u′′ + N − 1

r
u′(r) + λu′(r)

)

= a(R − r)g
(
u(r)

) + 1, 0 ≤ r < R.

We obtain

−(
eλrrN−1u′(r)

)′ = eλrrN−1ψ
(
r, u(r)

)
, 0 ≤ r < R, (47)

where

ψ(r, t) = a(R − r)g(t) + 1, (r, t) ∈ [0,R) × (0,∞).

From (47) we obtain

u(r) = u(0) −
∫ r

0
e−λt t−N+1

∫ t

0
eλssN−1ψ

(
s, u(s)

)
dsdt, 0 ≤ r < R. (48)
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On the other hand, in view of Theorem 2 and using the fact that g is decreasing,
there exists a unique solution w ∈ C2(BR(0)) ∩ C(BR(0)) of the problem

⎧
⎪⎨

⎪⎩

−Δw = a(R − |x|)g(w) + 1 |x| < R,

w > 0 |x| < R,

w = 0 |x| = R.

(49)

Clearly, w is a sub-solution of (45). Due to the uniqueness and to the symmetry of
the domain, w is radially symmetric, so, w = w(r), 0 ≤ r = |x| ≤ R. As above we
get

w(r) = w(0) −
∫ r

0
t−N+1

∫ t

0
sN−1ψ

(
s,w(s)

)
dsdt, 0 ≤ r < R. (50)

We claim that there exists a solution v ∈ C2[0,R) ∩ C[0,R] of (48) such that
v > 0 in [0,R).

Let A = w(0) and define the sequence (vk)k≥1 by
⎧
⎪⎨

⎪⎩

vk(r) = A − ∫ r

0 e−λt t−N+1
∫ t

0 eλssN−1ψ(s, vk−1(s))dsdt,

0 ≤ r < R,k ≥ 1,

v0 = w.

(51)

Note that vk is decreasing in [0,R) for all k ≥ 0. From (50) and (51) we easily check
that v1 ≥ v0 and by induction we deduce vk ≥ vk−1 for all k ≥ 1. Hence

w = v0 ≤ v1 ≤ · · · ≤ vk ≤ · · · ≤ A in BR(0).

Thus, there exists v(r) := limk→∞ vk(r), for all 0 ≤ r < R and v > 0 in [0,R). We
now can pass to the limit in (51) in order to get that v is a solution of (48). By
classical regularity results we also obtain v ∈ C2[0,R) ∩ C[0,R]. This proves the
claim.

We have obtained a super-solution v of (45) such that v ≥ w in BR(0). So, the
problem (45) has at least one solution and the proof of our Lemma is now com-
plete. �

Let u be a solution of the problem (45). For M > 1 we have

−Δ(Mu) = Ma
(
R − |x|)g(u) + M + λ

∣
∣∇(Mu)

∣
∣

≥ a
(
R − |x|)g(Mu) + M + λ

∣
∣∇(Mu)

∣
∣. (52)

Since f is sublinear, we can choose M > 1 such that

M ≥ f
(
x,M|u|∞

)
in BR(0).

Then uλ := Mu satisfies

−Δuλ ≥ a
(
R − |x|)g(uλ) + f (x,uλ) + λ|∇uλ| in BR(0).
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It follows that uλ is a super-solution of (44). Since g is decreasing we easily deduce
u ≤ uλ in BR(0) so, problem (1) has at least one solution.

The proof of Theorem 3 is now complete.

4.6 Proof of Theorem 4 and Theorem 5

Proof of Theorem 4 The existence and nonexistence of a solution to (6) follows
directly from Theorems 1 and 2. We next prove the boundary estimates (7)–(9).

Recall that if
∫ 1

0 ta(t)dt < ∞ and λ belongs to a certain range, then Theorem 2
asserts that (1) has at least one classical solution u satisfying u ≤ MH(cϕ1) in Ω ,
for some M,c > 0. Here H is the solution of

⎧
⎪⎨

⎪⎩

H ′′(t) = −t−αH−p(t), for all 0 < t ≤ b < 1,

H,H ′ > 0 in (0, b],
H(0) = 0.

(53)

With the same idea as in the proof of Theorem 2, we can show that there exists
m > 0 small enough such that v := mH(cϕ1) satisfies

−Δv ≤ δ(x)−αv−p in Ω. (54)

Indeed, we have

−Δv = m
[
c2−α|∇ϕ1|2ϕ−α

1 H−p(cϕ1) + λ1cϕ1H
′(cϕ1)

]
in Ω.

Thus, there exist two positive constants c1, c2 > 0 such that

−Δv ≤ m
[
c1|∇ϕ1|2 + c2ϕ1

]
δ(x)−αH−p(cϕ1) in Ω.

Clearly (54) holds if we choose m > 0 small enough such that m[c1|∇ϕ1|2 +c2ϕ1] <

1 in Ω . Moreover, v is a sub-solution of (6) for all μ > 0 and one can easily see that
v ≤ uμ in Ω . Hence

mH(cϕ1) ≤ u ≤ MH(cϕ1) in Ω. (55)

Now, a careful analysis of (53) together with (55) is used in order to obtain boundary
estimates for the solution of (6). Our estimates complete the results in Theorem 2.1
in [17] since here the potential a(δ(x)) blows-up at the boundary.

(ii1) Remark that

H(t) =
(

(1 + p)2

(2 − α)(α + p − 1)

)1/(1+p)

t(2−α)/(1+p), t > 0,

is a solution of (53) provided α + p > 1. The conclusion in this case follows now
from (55).
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(ii2) Note that in this case problem (53) becomes

⎧
⎪⎨

⎪⎩

H ′′(t) = −t−αHα−1(t), for all 0 < t ≤ b < 1,

H(0) = 0,

H > 0 in (0, b].
(56)

Let w = t ln1/(2−α)( 1
t
), t > 0. Then

−w′′(t) ∼ t−1 ln(α−1)/(2−α)

(
1

t

)

∼ t−αw−p

in a neighborhood of the origin. Now if m > 0 is small enough it follows that w

satisfies −(mw)′′ ≤ t−α(mw)α−1 in (0, b) and mw(b) ≤ H(b). By the maximum
principle we find H ≥ mw in (0, b), that is

H(t) ≥ c1t ln1/(2−α)

(
1

t

)

in (0, b).

Similarly, if M > 1 is large enough we have −(Mw)′′ ≤ t−α(Mw)α−1 in (0, b) and
Mw(b) ≥ H(b). By the maximum principle we find H ≤ Mw in (0, b), that is

H(t) ≤ c2t ln1/(2−α)

(
1

t

)

in (0, b).

Now the desired estimate follows from (55).
(ii3) Using the fact that H ′(0+) ∈ (0,∞] we get the existence of c > 0 such that

H(t) > ct, for all 0 < t ≤ b.

This yields

−H ′′(t) ≤ c−pt−(α+p), for all 0 < t ≤ b.

Since α + p < 1, it follows that H ′(0+) < ∞, that is, H ∈ C1[0, b]. Thus, there
exists c1, c2 > 0 such that

c1t ≤ H(t) ≤ c2t, for all 0 < t ≤ b. (57)

The conclusion in Theorem 4(iii) follows directly from (57) and (55).
This completes the proof of Theorem 4. �

Proof of Theorem 5 This follows in the same way as above. The estimate (11)
follows by using the approach in Theorem 4(ii2) with w(t) = ln(1−α)/(1+p)(A/t).

�
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4.7 Proof of Theorem 6

Fix μ ∈ (0, λ1) and λ ≥ 0. By Theorem 2(i) there exists u ∈ C2(Ω) ∩ C(Ω) a solu-
tion of the problem

⎧
⎪⎨

⎪⎩

−Δu = a(δ(x))g(u) + λ|∇u|q in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Obviously, uλμ := u is a sub-solution of (1). Since μ < λ1, there exists v ∈ C2(Ω)

such that
⎧
⎪⎨

⎪⎩

−Δv = μv + 2 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

Since 0 < a < 1, we can choose M > 0 large enough such that

M > μ|u|∞ and M > λ(M|∇v|)q in Ω.

Then w := Mv satisfies

−Δw ≥ μ(u + w) + λ|∇w|q in Ω.

We claim that uλμ := u + w is a super-solution of (1). Indeed, we have

−Δuλμ ≥ a
(
δ(x)

)
g(u) + λuλμ + λ|∇u|q + λ|∇w|q in Ω. (58)

Using the assumption 0 < a < 1 one can easily deduce

t
q

1 + t
q

2 ≥ (t1 + t2)
q, for all t1, t2 ≥ 0.

Hence

|∇u|q + |∇w|q ≥ (|∇u| + |∇w|)q ≥ ∣
∣∇(u + w)

∣
∣q in Ω. (59)

Combining (58) with (59) we obtain

−Δuλμ ≥ a
(
δ(x)

)
g(uλμ) + μuλμ + λ|∇uλμ|q in Ω.

Hence, (uλμ,uλμ) is an ordered pair of sub and super-solution of (1), so there ex-
ists a classical solution uλμ of (1), provided λ ≥ 0 and 0 < μ < λ1. Assume by
contradiction that there exist μ ≥ λ1 and λ ≥ 0 such that the problem (1) has a
classical solution uλμ. If m = minx∈Ω a(δ(x))g(uλμ) > 0 it follows that uλμ is a
super-solution of

{
−Δu = μu + m in Ω,

u = 0 on ∂Ω.
(60)
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Clearly, zero is a sub-solution of (60), so there exists a classical solution u of (60)
such that u ≤ uλμ in Ω . By maximum principle and elliptic regularity we get u > 0
in Ω and u ∈ C2(Ω). To raise a contradiction, we proceed as in the proof of Theo-
rem 2(ii).

Multiplying by ϕ1 in (60) and then integrating over Ω we find

−
∫

Ω

ϕ1Δu = μ

∫

Ω

uϕ1 + m

∫

Ω

ϕ1.

This implies λ1
∫

Ω
uϕ1 = μ

∫

Ω
uϕ1 + m

∫

Ω
ϕ1, which is a contradiction, since

μ ≥ λ1 and m > 0. The proof of Theorem 6 is now complete.
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