
Chapter 15
Solution of the Cauchy Problem for Generalized
Euler-Poisson-Darboux Equation by the Method
of Fractional Integrals

A.K. Urinov and S.T. Karimov

Abstract In this work the singular Cauchy problem for the multi-dimensional
Euler-Poisson-Darboux equation with spectral parameter has been investigated with
the help of the generalized Erdelyi-Kober fractional operator. Solution of the con-
sidered problem is found in explicit form for various values of the parameter p of
the equation.

Mathematics Subject Classification 35L10 · 35Q05 · 26A33

15.1 Introduction

For the first time the equation

uxy − α

x − y
ux + β

x − y
uy + γ

(x − y)2
u = 0, (1)

where α,β, γ = const, was obtained by Euler [1] in connection with the study of the
air flow in pipes of different cross sections and the vibrations of strings of variable
thickness. He gave a solution of this equation for α = β = m, γ = n (m, n are
natural numbers).

The same equation, but in another form

E−
q,p(u) ≡ uxx − uyy − 2q

y
ux − 2p

y
uy = 0, (2)

where q,p = const, was solved by Poisson [2] for q = 0. He found a hyperbolic
analogue of the representation of solution for this equation. In the same work he
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considered the equation

Lp(u) ≡
n∑

k=1

∂2u

∂x2
k

− ∂2u

∂t2
− 2p

t

∂u

∂t
= 0, (3)

with n = 3, p = 1.
The general solution of (1) with α = β was found by Riemann [3]. He con-

structed the solution of the Cauchy problem with the help of auxiliary function
using the method which is now called after him.

Much later, (2) with q = 0, 0 < p < 1 appeared in the monograph by Darboux
[4] in connection with studying curvature of surfaces, where it was called the Euler-
Poisson equation. Subsequently, many authors began to cite equations of the forms
(1), (2), (3) and their elliptic analogs, as the equations of Euler-Poisson-Darboux.

After the publication of the first issue of the book by Tricomi [5], where the prob-
lem for mixed elliptic-hyperbolic equation yuxx + uyy = 0, later called as Tricomi
equation, was formulated and investigated, the interest in such equations greatly in-
creased. When studying this problem the key role is played by the equation of the
form (2) and

E+
q,p(u) ≡ uxx + uyy + 2q

y
ux + 2p

y
uy = 0, (4)

where q = 0, p = (1/6).
More bibliography in this direction can be found in the monographs by Bitsadze

[6] and Smirnov [7].
The theory of equations with singular coefficients is directly connected to the the-

ory of equation degenerating on the boundary. Using a change of variables, a wide
class of degenerate equations can be reduced to equations with singular coefficients.
For instance, the equation with degeneration of type and order,

ym
n∑

k=1

∂2u

∂x2
k

− yk ∂2u

∂y2
− αyk−1 ∂u

∂y
− λ2yku = 0

by the change of variables t = 2
m−k−2y(m−k+2)/2 can be reduced to the equation

Lλ
p(u) ≡

n∑

k=1

∂2u

∂x2
k

− ∂2u

∂t2
− 2p

t

∂u

∂t
− λ2u = 0. (5)

The main role in creating the theory of Euler-Poisson-Darboux equations was
played by works of Weinstein [8–11]. In these works Weinstein investigated
the Cauchy problem for (3) with various values of the parameter p, with half-
homogeneous initial conditions

u(x,0) = τ(x), ut (x,0) = 0, x ∈ Rn, (6)

and found its solution in an explicit form.
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There he showed also the matching formulae of the form

E+
q,p

(
y1−2pu

) = y1−2pE+
q,1−p(u), (7)

considering (4) with q = 0, 0 < p < (1/2). Note that the formula of the form (7)
can be found in the work of Darboux [4].

In the work by Young [12] one can find the survey of the investigations of the
singular Cauchy problem {(3), (6)}. In the works of Diaz, Weinberger [13], Blum
[14], the problem {(3), (6)} was studied for various values of the parameter p.

Kapilevich [15] investigated the Cauchy problem with initial conditions

u(x,0) = τ(x), lim
t→+0

t2put (x, t) = ν(x), x ∈ Rn (8)

for (5), when λ �= 0, 0 < p < (1/2) and n = 1,2.
The uniqueness of the solution of the Cauchy problem {(5), (8)} was proved

in the works by Fox [16], Blum [17], Bresters [18]. However, as it was shown by
Bresters [18], the solution is not unique when p < 0.

In the present work, using fractional integrals, we investigate the Cauchy problem
{(5), (8)} for various values of the parameters p ≥ 0 and λ �= 0.

15.2 Generalized Erdelyi-Kober Operator

In the paper [10] Weinstein found a formulae in which the connection of the solution
of (2) for q = 0 with fractional integrals was made for various values of the param-
eter p. This idea was substantially developed in the work of Erdelyi [19–22], who
continued investigations by Weinstein [11], and studied properties of the differential
operator

B(x)
η = x−2η−1 d

dx
x2η+1 d

dx
= d2

dx2
+ 2η + 1

x

d

dx
. (9)

In the work of Erdelyi [22] the apparatus of fractional integration was used for
developing the result by Friedlander and Heins [23], where (2) was considered for
q = 0.

The results of Erdelyi were generalized by Lowndes [24–26], where a general-
ized Erdelyi-Kober operator

Jλ(η,α)f (x) = 2αλ1−αx−2α−2η

×
∫ x

0
t2η+1(x2 − t2)(α−1)/2

Jα−1
(
λ
√

x2 − t2
)
f (t)dt (10)

was introduced and studied. Here η,α,λ ∈ R, such that α > 0, η ≥ −(1/2), and
Jν(z) is the Bessel function of the first kind of order ν [27–29].

Further we need the following properties of the operator (10), which were proved
in [25]:
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1. It is obvious that for λ → 0 the operator (10) coincides with the regular Erdelyi-
Kober operator

Iη,αf (x) = 2x−2(η+α)

Γ (α)

∫ x

0

(
x2 − t2)α−1

t2η+1f (t)dt,

where Γ (α) is Euler’s Gamma function.
2. The following equalities hold true:

Jiλ(η + α,β)Jλ(η,α) = Jλ(η + α,β)Jiλ(η,α) = Iη,α+β,

where i is the imaginary unit, α,β,λ ∈ R.
3. From the latter equality, using the property J0(η,0) = E, where E is unique

operator, one can pre-define the operator Jλ(η,α) for α < 0 in the following
way:

Jλ(η,α)f (x) = x−2(η+α)

(
d

2xdx

)m

x2(η+α+m)Jλ(η,α + m)f (x), (11)

where −m < α < 0, m = 1,2, . . . .
4. From the property 3, the relations for inverse operator

J−1
iλ (η,α) = Jλ(η + α,−α), J−1

λ (η,α) = Jiλ(η + α,−α)

follow.

In the work [26] Lowndes proved the following lemma:

Lemma 1 Let α > 0, f (x) ∈ C2(0, b), b > 0, let the function x2η+1f (x) be inte-
grable in a neighborhood and let x2η+1f ′(x) → 0 as x → 0. Then

J
(x)
λ (η,α)B(x)

η f (x) = (
B

(x)
η+α + λ2)J (x)

λ (η,α)f (x), (12)

where B
(x)
η is the operator of Bessel which is defined by (9).

Using this lemma Lowndes solved the Cauchy problem {(5), (8)} for p = 0.
Further we need the following form of the formula (10):

Jλ(η,α)f (x) = 2x−2(α+η)

Γ (α)

∫ x

0
t2η+1(x2 − t2)α−1

J̄α−1
(
λ
√

x2 − t2
)
f (t)dt, (13)

where J̄ν(z) is the Bessel-Clifford function, which can be written by the Bessel
function as: J̄ν(z) = Γ (ν + 1)(z/2)−νJν(z).
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15.3 Application of the Erdelyi-Kober Operator for Solving the
Cauchy Problem

For the construction of the solution of the problem {(5), (8)}, corresponding to
various values of the parameter p, first we give some properties of the solution of
(5), [9].

We denote by u(x, t;p), w(x, t;p) the solutions of (5) for a given value of p.

1. If u(x, t;1 − p) is a solution of the equation Lλ
1−p(u) = 0, then the function

w(x, t;p) = t1−2pu(x, t;1 − p) will be a solution of the equation Lλ
p(w) =

0 and vice versa, if w(x, t;p) is a solution of the equation Lλ
p(w) = 0, then

u(x, t;1 − p) = t2p−1w(x, t;p) will be a solution of the equation Lλ
1−p(u) = 0.

2. If u(x, t;p) is a solution of the equation Lλ
p(u) = 0, then the function

u(x, t;1 + p) =
(

1

t

∂

∂t

)
u(x, t;p)

will be a solution of the equation Lλ
1+p(u) = 0 and vice versa, if u(x, t;1 + p)

is a solution of the equation Lλ
1+p(u) = 0, then there exists always a solution

u(x, t;p) of the equation Lλ
p(u) = 0.

Now we begin the investigation of the problem {(5), (8)}. Assume that the so-
lution of the problem {(5), (6)} exists. We look for this solution as a generalized
Erdelyi-Kober operator:

u(x, t) = J
(t)
λ (η,α)V (x, t)

= 2t−2(η+α)

Γ (α)

∫ t

0
s2η+1(t2 − s2)α−1

J̄α−1
(
λ
√

t2 − s2
)
V (x, s)ds, (14)

where α,η ∈ R are numbers to be specified later and, moreover, α > 0, η ≥ −(1/2),
V (x, t) is a twice continuously differentiable unknown function.

Substituting (14) into (5) and initial condition (6), and applying Lemma 1 we
find the unknown function V (x, s), so that it satisfies the equation

n∑

k=1

∂2V

∂x2
k

− ∂2V

∂s2
− 2η + 1

s

∂V

∂s
= 0 (15)

and the initial conditions

V (x,0) = k0τ(x), Vs(x,0) = 0,

x ∈ Rn, k0 = Γ (α + η + 1)/Γ (η + 1). (16)

Further, we choose parameters α, η such that the function u(x, t) defined by (14)
satisfies (5) and the initial conditions (8).
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Let η = (n/2) − 1, α = p − (n − 1)/2 and p > (n − 1)/2. Then (15) is trans-
formed to the Darboux equation. It is known from [30] that the solution of the prob-
lem {(15), (16)} in this case is unique and represented by Mn(x, t; τ), which is the
spherical mean of the function τ(x) in the space Rn, by the formula

V (x, s) = k0Mn(x, s; τ)

= k0

ωnsn−1

∫

|ξ−x|=s

τ (ξ)dσξ = k0

ωn

∫

|y|=1
τ(x + sy)dω, (17)

where |ξ − x|2 = ∑n
k=1 (ξk − xk)

2, dω is the area-element of the unit sphere, and
ωn = 2πn/2/Γ (n/2) is the area of its surface.

It is easy to verify that the function Mn(x, s; τ) satisfies the initial conditions

lim
s→0

Mn(x, s; τ) = τ(x), lim
s→0

∂Mn(x, s; τ)

∂s
= 0, x ∈ Rn. (18)

Substituting (17) into the equality (14) we obtain

u(x, t) = Γ (p + 1/2)t1−2p

πn/2Γ (p − (n − 1)/2)

×
∫

|ξ−x|≤t

τ (ξ)
J̄p−(n+1)/2(λ

√
t2 − |ξ − x|2)

[t2 − |ξ − x|2](n+1)/2−p
dξ. (19)

If τ(x) ∈ C2(Rn), then by virtue of Lemma 1, the function (19) will be a regular
solution of (5) satisfying the initial conditions (6).

Note that in the case when p < (n − 1)/2, the function (19) will be the solution
of the problem {(5), (6)}, if one uses the pre-definition of the operator (14) for α < 0
based on (11):

J
(t)
λ (η,α)V (x, t) = t−2(η+α)

(
∂

2t∂t

)m

t2(η+α+m)J
(t)
λ (η,α + m)

= 2t−2(η+α)

Γ (α + m)

(
∂

2t∂t

)m

×
∫ t

0
s2η+1(t2 − s2)α+m−1

Jα+m−1
(
λ
√

t2 − s2
)
V (x, s)ds,

where −m < α < 0, m = 1,2,3 . . . . In this case we choose m to be the smallest
positive integer satisfying the inequality p + m > (n − 1)/2.

Here one can see that the range of the parameter p depends on the dimension
of the space Rn. There is a question: how to find the solution of the considered
problem for any n, if the range of the parameter p is fixed in advance, for instance,
0 < p < 1/2?

In this case we choose the parameter η so that the function u(x, t) which is
defined by (14) satisfies (5) and the initial conditions (6).
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Let η = −1/2, then the parameter α = p and (15) can be transformed to the
n-dimensional wave equation.

In this case the solution of the problem {(15), (16)} for odd n has the form ([30]):

V (x, s) = γ1k0
∂

∂s

(
1

s

∂

∂s

)(n−3)/2(
sn−2Mn(x, s; τ)

)
, (20)

where γ1 = 1/[1 · 3 · · · · · (n − 2)].
Let n = 2m + 1, then the solution (20) has the form

V (x, s) = γ1k0
∂

∂s

(
1

s

∂

∂s

)m−1(
s2m−1M2m+1(x, s; τ)

)
. (21)

The solution of the problem {(15), (16)} for even n can be written as ([30]):

V (x, s) = γ2k0
∂

∂s

(
1

s

∂

∂s

)(n−2)/2(∫ s

0
Mn(x,ρ; τ)

ρn−1dρ√
s2 − ρ2

)
, (22)

where γ2 = 1/[2 · 4 · · · · · (n − 2)].
Let n = 2m, then the solution (22) will have the form

V (x, s) = γ2k0
∂

∂s

(
1

s

∂

∂s

)m−1(∫ s

0
M2m(x,ρ; τ)

ρ2m−1dρ√
s2 − ρ2

)
. (23)

Combining solutions (21) and (23), we obtain

V (x, s) = γ
∂

∂s

(
1

s

∂

∂s

)m−1

T (x, s), (24)

where

γ =
{

γ1k0, n = 2m + 1,

γ2k0, n = 2m,

T (x, s) =
⎧
⎨

⎩
s2m−1M2m+1(x, s; τ), n = 2m + 1,
∫ s

0 M2m(x,ρ; τ)
ρ2m−1dρ√

s2−ρ2
, n = 2m.

Substituting (24) into the formula (14) we have

u(x, t) = 2γ t1−2p

Γ (p)

∫ t

0

J̄p−1(λ
√

t2 − s2)

(t2 − s2)1−p

∂

∂s

(
1

s

∂

∂s

)m−1

T (x, s)ds. (25)

The following lemmas hold true:

Lemma 2 If τ(x) is m times continuously differentiable, then

lim
s→0

(
1

s

∂

∂s

)m−1

T (x, s) = 0, m = 1,2, . . . .
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Proof Considering (17) and (18) we rewrite the function T (x, s) as T (x, s) =
s2m−1T0(x, s), where

T0(x, s) =
⎧
⎨

⎩
M2m+1(x, s; τ), n = 2m + 1,
∫ 1

0 M2m(x, sζ ; τ)
ζ 2m−1dζ√

1−ζ 2
, n = 2m.

Then
(

1

s

∂

∂s

)m−1

T (x, s) = T0(x, s)

(
1

s

∂

∂s

)m−1

s2m−1 + s2m−1
(

1

s

∂

∂s

)m−1

T0(x, s).

Further, considering the equality

(
1

s

∂

∂s

)m−1

s2m−1 = s

m−1∏

k=1

[
2m − (2k − 1)

]
,

(
1

s

∂

∂s

)m−1

T0(x, s) = O
(
s−2m+3),

we obtain ( 1
s

∂
∂s

)m−1T (x, s) = O(s), from which the statement of the Lemma 2
follows. �

Lemma 3 Under the conditions of Lemma 2 the equality

∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)[(

1

s

∂

∂s

)m

T (x, s)

]
sds

=
(

1

t

∂

∂t

)m ∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)
T (x, s)sds (26)

holds true.

Proof We prove this lemma using the method of mathematical induction. First, we
prove that (25) is true for m = 1.

Consider the function

uε(x, t) =
∫ t−ε

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
) ∂

∂s
T (x, s)ds,

where ε is a small enough positive real number.
Applying integration by parts to the latter integral and considering statements of

the Lemma 2, we obtain

uε(x, t) = [
t2 − (t − ε)2]p−1

J̄p−1
(
λ
√

t2 − (t − ε)2
)
T (x, t − ε)

−
∫ t−ε

0

∂

∂s

[(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)]

T (x, s)ds.
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Further, taking into account the following easily checkable equalities

∂

∂s

[(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)] = − s

t

∂

∂t

[(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)]

,

∫ t−ε

0

1

t

∂

∂t

[(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)]

T (x, s)sds

=
(

1

t

∂

∂t

)∫ t−ε

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)
T (x, s)sds

− t − ε

t

[
t2 − (t − ε)2]p−1

J̄p−1
(
λ
√

t2 − (t − ε)2
)
T (x, t − ε),

we have

uε = 1

t

[
t − (t − ε)

]p[
t + (t − ε)

]p−1
J̄p−1

(
λ
√

t2 − (t − ε)2
)
T (x, t − ε)

+
(

1

t

∂

∂t

)∫ t−ε

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)
T (x, s)sds.

From here, by virtue of p > 0, after ε → 0 we get

∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)(1

s

∂

∂s

)
T (x, s)sds

=
(

1

t

∂

∂t

)∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)
T (x, s)sds. (27)

Assume that formula (26) holds for m = k − 1. We prove that it is valid also for
m = k:

∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)(1

s

∂

∂s

)k

T (x, s)sds

=
∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)(1

s

∂

∂s

)k−1[1

s

∂

∂s
T (x, s)

]
sds

=
(

1

t

∂

∂t

)k−1 ∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)[1

s

∂

∂s
T (x, s)

]
sds.

Further, considering (27) we get the statement of Lemma 3. �

Now, applying Lemma 3 to (25) we obtain

u(x, t) = 2γ t1−2p

Γ (p)

(
1

t

∂

∂t

)m ∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)
T (x, s)sds. (28)
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Let n = 2m+ 1. Then, substituting the value of the function T (x, s) into (28) we
deduce

u(x, t) = γ1Γ (p + 1/2)Γ (n/2)

π(n+1)/2Γ (p)
t1−2p

(
1

t

∂

∂t

)(n−1)/2

×
∫

|ξ−x|≤t

τ (ξ)
(
t2 − |x − ξ |2)p−1

J̄p−1
(
λ

√
t2 − |x − ξ |2)dξ. (29)

We now construct a solution of (5) for odd n satisfying the conditions

w(x,0) = 0, lim
t→+0

t2pwt (x, t) = ν(x), x ∈ Rn, (30)

where ν(x) ∈ C[n/2]+1(Rn) is a given function, and [n/2] means the integer part of
the number n/2.

Let function u(x, t;1 − p) be a solution of the equation Lλ
1−p(u) = 0 satisfying

conditions (6). Then by virtue of the property 1 of (5), the function w(x, t;p) =
t1−2pu(x, t;1 − p) will be a solution of the equation Lλ

p(w) = 0, satisfying condi-
tions (30). Further, substituting (1 − 2p)τ(x) to ν(x), we get

w(x, t;p) = t1−2pu(x, t;1 − p)

= γ1Γ [(1/2) − p]Γ (n/2)

π(n+1)/2Γ (1 − p)

(
1

t

∂

∂t

)(n−1)/2

×
∫

|ξ−x|≤t

ν(ξ)
(
t2 − |x − ξ |2)−p

J̄−p

(
λ

√
t2 − |x − ξ |2)dξ. (31)

Thus, if τ(x) ∈ C[n/2]+2(Rn), ν(x) ∈ C[n/2]+1(Rn), then the sum of the functions
(29) and (31) for odd n is a solution of (5), satisfying conditions (8).

Let n = 2m. Then, substituting the value of the function T (x, s) into formula
(28) we obtain

u(x, t) = 2γ2k0t
1−2p

Γ (p)

(
1

t

∂

∂t

)m ∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√

t2 − s2
)

×
{∫ s

0
M2m(x,ρ; τ)

ρ2m−1dρ√
s2 − ρ2

}
sds.

Changing the order of integration by the Dirichlet formula we have

u(x, t) = 2γ2k0t
1−2p

Γ (p)

(
1

t

∂

∂t

)m ∫ t

0
M2m(x,ρ; τ)ρ2m−1dρ

×
∫ t

ρ

(
s2 − ρ2)−(1/2)(

t2 − s2)p−1
J̄p−1

(
λ
√

t2 − s2
)
sds. (32)
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We now evaluate the inner integral. Using the expansion of the Bessel-Clifford
function into a series, and calculating the obtained integral we get

∫ t

ρ

(
s2 − ρ2)−(1/2)(

t2 − s2)p−1
J̄p−1

(
λ
√

t2 − s2
)
sds

= 1

2

Γ (p)Γ (1/2)

Γ [p + (1/2)]
(
t2 − ρ2)p−1/2

J̄p−(1/2)

(
λ

√
t2 − ρ2

)
. (33)

Substituting (33) into (32) we obtain

u(x, t) = γ2

ωn

t1−2p

(
1

t

∂

∂t

)(n/2) ∫

|ξ−x|≤t

τ (ξ)
[
t2 − |ξ − x|2]p−1/2

× J̄p−(1/2)

(
λ

√
t2 − |ξ − x|2)dξ. (34)

Similarly, as in the case when n is odd, for even n we get a solution of the problem
(5), (30) as

w(x, t) = γ2

ωn(1 − 2p)

(
1

t

∂

∂t

)(n/2) ∫

|ξ−x|≤t

ν(ξ)
[
t2 − |ξ − x|2](1/2)−p

× J̄(1/2)−p

(
λ

√
t2 − |ξ − x|2)dξ. (35)

Thus, if τ(x) ∈ C[n/2]+2(Rn), ν(x) ∈ C[n/2]+1(Rn), then the sum of the functions
(34) and (35) for even n will be the solution of (5) satisfying conditions (8).

The formulae (29) and (31) for odd n, and formulae (34) and (35) for even n were
obtained for 0 < p < (1/2). For other values of the parameter p �= (1/2), (3/2), . . . ,
the solution will be defined by the analytic continuation of the operator Jλ(η,α) in
the parameter α = p.

When τ(x) and ν(x) are arbitrary functions, then the sum of the functions (29)
and (31) for odd n, and formulae (34), (35) for even n, respectively, give the general
solution of (5). Assume that p = (1/2). Then these sums contain only one arbitrary
function. Therefore, it is not a general solution of (5) for p = (1/2).

Naturally, it is interesting to find a general solution of (5) for p = (1/2), because
with the help of the general solution for any equation one can find information on
correct initial and boundary problems for this equation.

Let n be odd. Then by virtue of J̄(−1/2)(z) = cos(z) from the formula (29) for
arbitrary ϕ(x) ∈ C[n/2]+2(Rn), it follows that the function u(x, t) defined by the
formula

u(x, t) = γ1Γ (n/2)

π(n+3)/2

(
1

t

∂

∂t

)(n−1)/2

×
∫

|ξ−x|≤t

ϕ(ξ)
cos(λ

√
t2 − |ξ − x|2)√

t2 − |ξ − x|2 dξ (36)
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will be a solution of (5).
In order to construct a second linear-independent solution of (5), we replace in

formulae (29) and (31) the functions τ(x) and ν(x) by an arbitrary function g(x) ∈
C[n/2]+2(Rn) and rewrite it as

u(x, t) = 2Γ [(1/2) + p]√
πΓ (p)

×
∫ 1

0

(
1 − z2)p−1

J̄p−1
(
λt

√
1 − z2

)
Pn(x, tz;g)dz, (37)

w(x, t) = 2Γ [(3/2) − p]t1−2p

√
πΓ (1 − p)(1 − 2p)

×
∫ 1

0

(
1 − z2)−p

J̄−p

(
λt

√
1 − z2

)
Pn(x, tz;g)dz, (38)

where

Pn(x, s;g) = γ1
∂

∂s

(
1

s

∂

∂s

)(n−3)/2(
sn−2Mn

(
x, s;g(x)

))
. (39)

Calculating the derivatives appearing in equality (39) we deduce

Pn(x, s;g) = Mn(x, s;g) + A1s
∂Mn

∂s
+ A2s

2 ∂2Mn

∂s2
+ · · · + Ans

n−3 ∂(n−3)/2Mn

∂s(n−3)/2
,

where Ak (k = 1, n) are some constants.
By virtue of (18), from the latter equality it follows that the function Pn(x, s;g)

satisfies the conditions

lim
s→0

Pn(x, s;g) = g(x), lim
s→0

∂Pn(x, s;g)

∂s
= 0, x ∈ Rn.

It is obvious that the linear combination of the expressions (37) and (38) of the
form

W(x, t) = u(x, t)

1 − 2p
− Γ (1 − p)Γ [(1/2) + p]

Γ [(3/2) − p]Γ (p)
w(x, t)

will be a solution of (5). We rewrite this combination as

W(x, t) = 2Γ [(1/2) + p]√
πΓ (p)

∫ 1

0

(
1 − z2)p−1 1

1 − 2p

× {
J̄p−1

(
λt

√
1 − z2

) − [
t
(
1 − z2)]1−2p

J̄−p

(
λt

√
1 − z2

)}

× Pn(s, tz;g)dz. (40)
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Considering

J̄p−1(λt
√

1 − z2) − [t (1 − z2)]1−2pJ̄−p(λt
√

1 − z2)

1 − 2p

= J̄p−1(λt
√

1 − z2) − J̄−p(λt
√

1 − z2)

1 − 2p

+ 1 − [t (1 − z2)]1−2p

1 − 2p
J̄−p

(
λt

√
1 − z2

)
,

passing to the limit as p → (1/2), and taking into consideration the equalities

lim
p→(1/2)

1 − [t (1 − z2)]1−2p

1 − 2p
J̄−p

(
λt

√
1 − z2

) = − cos
(
λt

√
1 − z2

)
ln

[
t
(
1 − z2)],

lim
p→(1/2)

J̄p−1(λt
√

1 − z2) − J̄−p(λt
√

1 − z2)

1 − 2p
= −B−(1/2)

(
λt

√
1 − z2

)
,

we deduce from (40) that

W1(x, t;g) = lim
p→(1/2)

W(x, t)

= − 2

π

∫ 1

0

{
cos

(
λt

√
1 − z2

)
ln

[
t
(
1 − z2)] + B−(1/2)

(
λt

√
1 − z2

)}

× (
1 − z2)−(1/2)

Pn(x, tz;g)dz. (41)

Here

Bν(σ ) = Γ (ν + 1)

∞∑

k=1

(−1)k(σ/2)2k

k!Γ (ν + k + 1)

[
ψ(ν + 1) − ψ(k + ν + 1)

]
, (42)

and ψ(z) = [Γ ′(z)/Γ (z)] is the logarithmic derivative of the Gamma-function
([27]).

Consequently, in the case p = (1/2) and odd n, the general solution of (5), in
accordance with (36) and (41), has the form

u(x, t) = 2

π

∫ 1

0

(
1 − z2)−(1/2)

cos
(
λt

√
1 − z2

)
Pn

(
x, tz;ϕ(x)

)
dz

− 2

π

∫ 1

0

{
cos

(
λt

√
1 − z2

)
ln

[
t
(
1 − z2)] + B−(1/2)

(
λt

√
1 − z2

)}

× (
1 − z2)−(1/2)

Pn

(
x, tz;g(x)

)
dz, (43)

where Pn(x, s;f ) is the function, defined by (39), and ϕ(x), g(x) are arbitrary
functions from the class of functions C[n/2]+2(Rn).
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Now consider the case when n is even, p = (1/2). In this case one of the solutions
of (5) will be the function:

u(x, t) = γ2

ωn

(
1

t

∂

∂t

)(n/2) ∫

|ξ−x|≤t

ϕ(ξ)J0
(
λ

√
t2 − |ξ − x|2)dξ, (44)

which follows from (34) at p = (1/2), here ϕ(x) ∈ C[n/2]+2(Rn) is an arbitrary
function.

With the aim to find a second linearly-independent solution of (5), we replace
in formulae (34), (35), the functions τ(x) and ν(x) by an arbitrary function g(x) ∈
C[n/2]+2(Rn), and rewrite them as

u(x, t) =
∫ 1

0

[
2J̄p−(1/2)(σ ) − (1 − 2p)J̄p−(3/2)(σ )

]

× Qn(x, tz;g)
(
1 − z2)p−(1/2)

zdz

+
∫ 1

0
J̄p−(1/2)(σ )t

∂Qn(x, tz;g)

∂t

(
1 − z2)p−(1/2)

zdz, (45)

w(x, t) = t1−2p

1 − 2p

∫ 1

0

[
2J̄(1/2)−p(σ ) + (1 − 2p)J̄−p−(1/2)(σ )

]

× Qn(x, tz;g)
(
1 − z2)(1/2)−p

zdz

+ t1−2p

1 − 2p

∫ 1

0
J̄(1/2)−p(σ )t

∂Qn(x, tz;g)

∂t

(
1 − z2)(1/2)−p

zdz, (46)

where σ = λt
√

1 − z2,

Qn(x, s;g) = γ2
∂

∂s

(
1

s

∂

∂s

)(n−2)/2(
sn−2Mn

(
x, s;g(x)

))
. (47)

Calculating all the necessary derivatives in (47) we obtain

Qn(x, s;g) = Mn(x, s;g) + C1s
∂Mn

∂s

+ C2s
2 ∂2Mn

∂s2
+ · · · + Cns

n−2 ∂(n−2)/2Mn

∂s(n−2)/2
,

where Ck (k = 1, n) are some well-defined constants.
By virtue of (18), from the latter equality it follows that the function Qn(x, s;g)

satisfies the conditions

lim
s→0

Qn(x, s;g) = g(x), lim
s→0

∂Qn(x, s;g)

∂s
= 0, x ∈ Rn.
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The following linear combination of the functions (45), (46),

W ∗(x, t) = u(x, t)

1 − 2p
− w(x, t)

=
∫ 1

0

(1 − z2)p−(1/2)

1 − 2p

{
J̄p−(1/2)(σ ) − [

t
(
1 − z2)]1−2p

J̄(1/2)−p(σ )
}

×
[

2Qn(x, tz;g) + t
∂Qn(x, tz;g)

∂t

]
zdz

−
∫ 1

0

{
J̄p−(3/2)(σ ) + [

t
(
1 − z2)]1−2p

J̄−p−(1/2)(σ )
}

× Qn(x, tz;g)
(
1 − z2)p−(1/2)

zdz (48)

will be a solution of (5).
In the equality (48) we pass to the limit as p → (1/2), and we have

W2(x, t;g) = lim
p→(1/2)

W ∗(x, t)

= −
∫ 1

0

{
J0(σ ) ln

[
t
(
1 − z2)] + B0(σ )

}

×
[

2Qn(x, tz;g) + t
∂Qn(x, tz;g)

∂t

]
zdz

− 2
∫ 1

0

{
1 + B∗(σ )

}
Qn(x, tz;g)zdz, (49)

where B0(σ ) is the function defined by (42), σ = λt
√

1 − z2,

B∗(σ ) =
∞∑

k=1

(−1)k(σ/2)2k

k!Γ (k)

{
ψ(1) − ψ(k) + ln

[
t
(
1 − z2)]},

such that B∗(σ ) = O(σ 2[C + lnσ ]), C = const.
Consequently, in the case p = (1/2) and even n, the general solution of (5), in

accordance with (44), (49), has the form

u(x, t) =
∫ 1

0
J0(σ )

[
2Qn(x, tz;ϕ) + t

∂Qn(x, tz;ϕ)

∂t

]
zdz

−
∫ 1

0

{
J0(σ ) ln

[
t
(
1 − z2)] + B0(σ )

}

×
[

2Qn(x, tz;g) + t
∂Qn(x, tz;g)

∂t

]
zdz

− 2
∫ 1

0

{
1 + B∗(σ )

}
Qn(x, tz;g)zdz, (50)
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where Qn(x, s;ϕ) is the function defined by (47), and ϕ(x), g(x) are arbitrary func-
tions from C[n/2]+2(Rn).

From formulae (43) and (50), which give the general solution of (5) for p =
(1/2), it follows that the Cauchy problem for this equation with initial conditions
(8) is not correctly formulated. In this case the initial conditions should be given in
a modified form. Precisely, in the case when n is odd, they should be given in the
form of

lim
t→+0

u(x, t)

(− ln t)
= τ(x), lim

t→+0
t (ln t)2 ∂

∂t

[
u(x, t) − W1(x, t; τ)

(− ln t)

]
= ν(x), (51)

and in the case when n is even, in the form of

lim
t→+0

u(x, t)

(− ln t)
= τ(x), lim

t→+0
t (ln t)2 ∂

∂t

[
u(x, t) − W2(x, t; τ)

(− ln t)

]
= ν(x). (52)

Here W1 and W2 are functions which are defined by (41) and (49), respectively.

Remark Using property 2 of (5) in the case when p = l + (1/2), l = 1,2, . . . , one
can find a formula for a general solution of this equation.
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