
Chapter 14
Differentiability of Inverse Operators

Simon Y. Serovajsky

Abstract The Inverse Function Theorem is a mighty tool of the local nonlinear
analysis. It guarantees the existence of the inverse function and its differentiability.
However the first property is sometimes not used. It is true, for example, for the op-
timal control theory and the inverse problems of mathematical physics. The inverse
operator can be interpreted as a control-state mapping here. Its existence is a corol-
lary of the state equation properties, and the differentiability of the inverse operator
is used for the differentiation of the minimizing functional or the discrepancy. We
establish a differentiability criterion of the inverse operator. Moreover, we prove a
property which can be interpreted as a weak form of the operator differentiability.
The Dirichlet problem for a nonlinear elliptic equation is considered as an example.

Mathematics Subject Classification 58C20 · 46T20 · 35J60 · 49K20

14.1 Introduction

Consider an operator A : V → Y , where V and Y are Banach spaces. Suppose that it
is continuously differentiable at a neighborhood of a point y0 ∈ Y . Denote by A′(y0)

the derivative of the operator A at the point y0. It is well known that the following
result holds (see, for example, [1]).

The Inverse Function Theorem Assume that there exists the continuous inverse
operator A′(y0)

−1. Then there exists an open neighborhood O of the point y0 such
that the set O ′ = A(O) is an open neighborhood of the point v0 = Ay0; more-
over, there exists the continuously differentiable inverse map A−1 : O ′ → O , and its
derivative is defined by the formula

(
A−1)′

(v) = {
A′[A−1(v)

]}−1 ∀v ∈ O ′.

This result has very important applications. It has relationships to the Implicit
Function Theorem [2], Newton–Kantorovich Method [1, 2], Lusternik Smooth
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Manifold Approximation Theorem [3, 4], Brower Fixed Point Theorem [1, 5],
Morse Smooth Function Singularity Lemma [1], Graves Cover Theorem [4], etc.
Extensions of the Inverse Function Theorem to high orders differentiability [6], non-
smooth operators [7–9], multiple-valued maps [1, 7, 10], etc., are also known.

In reality the Inverse Function Theorem involve two different results. These are
the invertibility of the given operator and the differentiability of the corresponding
inverse operator. Sometimes only the second property is important. It is true, for
example, for the extremum theory and the inverse problems theory. In particular,
consider the system described by the equation

Ay = v. (1)

The term v can be interpreted here as a control or an identifiable parameter, and y is
a state function. Suppose that (1) has a unique solution y = y(v) from the space Y

for all values v ∈ V . Then the operator A is invertible. This result can be proved by
some tools which are applicable to the given equation. Therefore, it is not necessary
to use of the Inverse Function Theorem here.

Let U be a convex closed subset of the space V . The state functional is defined
by the formula

I (v) = J (v) + K
[
y(v)

]
,

where J is a functional on the set V , and K is a functional on the set Y . We have
the following optimization control problem.

Problem 1 Minimize the functional I on the set U .

A necessary condition for the minimum of a smooth functional F on a convex
set W at a point v0 is the variational inequality (see [11])

〈
F ′(v0), v − v0

〉 ≥ 0 ∀v ∈ W, (2)

where 〈λ,ϕ〉 is the value of the linear continuous functional λ at the point ϕ.
The functional I is the sum of J and the map v → K[y(v)]. The last mapping is

the superposition of the functional K and the map v → y(v), which is, in fact, the
inverse operator A−1. Then the proof of the differentiability of the given functional
requires the differentiation of the inverse operator. This result can be obtained using
the Inverse Function Theorem.

Lemma 1 Suppose that the operator A has a continuous inverse operator, which is
continuously differentiable at an open neighborhood of the point y0 = y(v0), and
there exists the continuous inverse operator A′(y0)

−1. Then the map y(·) : V → Y

is Gateaux differentiable at the point v0, and its derivative satisfies the formula
〈
μ,y′(v0)h

〉 = 〈
pμ(v0), h

〉 ∀μ ∈ Y ∗, h ∈ V, (3)

where Y ∗ is the adjoint space of Y , and pμ(v0) is the solution of the equation
[
A′(y0)

]∗
pμ(v0) = μ. (4)
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Proof By the Inverse Function Theorem the map y(·) : V → Y is differentiable at
the point v0, and, moreover,

y′(v0) = [
A′(y0)

]−1
.

Then we get

〈
μ,y′(v0)h

〉 = 〈
μ,

[
A′(y0)

]−1
h
〉 = 〈{[

A′(y0)
]−1}∗

μ,h
〉 ∀μ ∈ Y ∗, h ∈ V.

It is known that each linear operator and its adjoint operator are invertible at the
same time (see p. 460 in [2]). Therefore (4) has a unique solution

pμ(v0) = {[
A′(y0)

]−1}∗
μ

from the space V ∗. So the previous formula can be transformed to (4), and the
equality (3) is true. �

Now we can prove the differentiability of the functional I and obtain necessary
conditions of optimality. Let v0 be the solution of the minimization problem for the
functional I on the set U . Define y0 = y(v0).

Lemma 2 Under the conditions of Lemma 1 suppose that the functional J is
Gateaux differentiable at the point v0, and the functional K is Frechet differentiable
at the point y0. Then the control v0 satisfies the variational inequality

〈
J ′(v0) − p0, v − v0

〉 ≥ 0 ∀v ∈ U, (5)

where p0 is a solution of the adjoint equation

[
A′(y0)

]∗
p0 = −K ′(y0). (6)

Proof Using the Composite Function Theorem (see p. 637 in [2]), we obtain that
the Gateaux derivative of the map v → K[y(v)] exists such that

(Ky)′(v0) = K ′(y0)y
′(v0).

By equality (3) we get

〈
(Ky)′(v0), h

〉 = 〈
K ′(y0), y

′(v0)h
〉 = −〈p0, h〉 ∀h ∈ V,

where p0 is the solution of (4) for μ = −K ′(y0). Thus, we obtain the adjoint equa-
tion (6). So the derivative of the map v → K[y(v)] at the point v0 equals to −p0.
Then the functional I has the derivative

I ′(v0) = J ′(v0) − p0

at this point. Using (2), we obtain the variational inequality (5). �
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Thus the Inverse Function Theorem is a good tool for proving the differentiability
of the control-state mapping. This result is the basis for obtaining necessary opti-
mality conditions. Note that we use now the serious assumption of the invertibility
of the operator’s derivative. It is equivalent to the existence of the unique solution
y ∈ Y for the linearized equation

A′(y0)y = v (7)

for all v ∈ V .
Now we have the following questions:

• How large is the class of operators that satisfy the mentioned assumption?
• What is the criterion of the differentiability of the inverse operator at a concrete

point?
• Could we prove the differentiability of the inverse operator without using the

Inverse Function Theorem?
• Could we prove a weaker form of the differentiability of the inverse operator for

obtaining optimality conditions in the case of non-invertibility of the operator’s
derivative?

We will try to answer these questions.

14.2 Criterion for the Differentiability of the Inverse Operator

Consider an operator A : Y → V . Let it be continuous and differentiable at a neigh-
borhood of a point y0 ∈ Y .

Theorem 1 Suppose the existence of an open neighborhood O of the point y0 such
that the set O ′ = A(O) is an open neighborhood of the point v0 = Ay0. Suppose
that there exists the inverse operator A−1 : O ′ → O , and that (7) has not more than
one solution. Then this inverse operator is Gateaux differentiable at v0 if and only
if the derivative A′(y0) is a surjection.

Proof Let the derivative A′(y0) be a surjection. Then it is invertible by the assump-
tions of the theorem. By Banach Inverse Operator Theorem there exists the contin-
uous inverse operator A′(y0)

−1. Therefore, the differentiability of the operator A−1

at the point v0 follows from the Inverse Function Theorem directly.
Suppose now that the operator A−1 has the Gateaux derivative D at y0, and that

the derivative A′(y0) is not a surjection. We get the equality

Ay(v0 + σv) − Ay(v0) = σv

for all v ∈ V and small enough number σ . Dividing it by σ and passing to the limit
as σ → 0, using the Composite Function Theorem and differentiability of A−1, we
get

A′(y0)Dv = v.
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Then there exists a point y = Dv from Y such that A′(y0)y = v. So the derivative
A′(y0) is a surjection. However this conclusion contradicts our assumption. Hence,
the operator A′(y0) is a surjection whenever the inverse operator is differentiable. �

Thus Gateaux differentiability of the inverse operator is equivalent to the follow-
ing property: the operator A′(y0) is a surjection. It is called Lusternik Condition
[4].

Consider as an example the homogeneous Dirichlet Problem for the equation

−Δy + |y|ρy = v (8)

in the n-dimensional bounded set Ω , where ρ > 0. Denote the space

Y = H 1
0 (Ω) ∩ Lq(Ω),

where q = ρ + 2. Using Monotone Operators Theory [12], we obtain that this
boundary problem has the unique solution y ∈ Y for all v from the set V , which
is the adjoint space

Y ∗ = H−1(Ω) + Lq ′(Ω),

where 1/q + 1/q ′ = 1. Denote the operator A : Y → V such that Ay equals to the
left side of the equality (8). The existence of the operator A−1 follows from the
one-valued solvability of the boundary problem. Its differentiability can be obtained
by using the properties of the linearized equation. It is the homogeneous Dirichlet
Problem for the equation

−Δy + (ρ + 1)|y0|ρy = v. (9)

Corollary 1 The solution of the Dirichlet problem for (8) is Gateaux differentiable
with respect to the absolute term at the point v = v0 iff (9) has a solution y ∈ Y for
all v ∈ V .

Indeed, the continuous differentiability of the given operator A is obvious. The
existence of the inverse operator follows from the one-valued solvability of the given
boundary problem. It is obvious that the Dirichlet problem for the linear equation
(9) cannot have two solutions. Then the criterion for the invertibility of the inverse
operator is the Lusternik condition, by Theorem 1.

Now we obtain a criterion for the differentiability of the solution of (8) with
respect to the absolute term on the space V .

Corollary 2 The solution of the Dirichlet problem for (8) is Gateaux differentiable
with respect to the absolute term at an arbitrary point if and only if the embedding
H 1

0 (Ω) ⊂ Lq(Ω) is true.
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Proof Multiply equality (9) by the function y and integrate the result in x ∈ Ω using
the Green formula and the boundary condition. We get

∫

Ω

|∇y|2dx + (ρ + 1)

∫

Ω

|y0|ρy2dx =
∫

Ω

vydx.

We have Y = H 1
0 (Ω) by the given assumption, hence V = H−1(Ω). So the a-priori

estimate of the solution of (9) in the sense of Y for all v ∈ V follows from the
obtained equality. Now we get the one-valued solvability of the linearized equation
by means of the standard theory of elliptic equations (see, for example, [11]). Thus
the differentiability of the solution of (8) with respect to the absolute term at an
arbitrary point follows from Corollary 1.

We prove now that the solution of (8) is not differentiable with respect to its
absolute term, if the mentioned embedding does not hold. Let y0 be a continuous
function from the space Y . Then the left side of the equality (9) is a point of the space
H−1(Ω) for all y ∈ Y . Therefore, the image of the derivative A′(y0) is narrower
than the set V , if the mentioned embedding does not hold. So (9) does not have
any solutions from the space Y for all function v from the difference V \ H−1(Ω).
Therefore, the solution of the homogeneous Dirichlet problem for (8) is not Gateaux
differentiable at the point

v0 = −Δy0 + |y0|ρy0

by Corollary 1. This completes the proof of Corollary 2. �

By Sobolev Theorem the embedding H 1
0 (Ω) ⊂ Lq(Ω) is true if n = 2 or

ρ ≤ 4/(n − 2) for n > 2. Then the solution of (8) is differentiable with respect
to the absolute term for small enough values of the set dimension n and nonlinear-
ity parameter ρ. These characteristics determine a degree of the difficulty for the
given equation. It is clear that the differentiability of the inverse operator (but not
the absence of this property) follows from the Inverse Function Theorem. We will
show soon that there exists another technique for proving this property. It is appli-
cable even in the case of nondifferentiability in the sense of Gateaux. However it is
important, that it satisfies some property which can be interpreted as a weak form
of the differentiability.

The obtained result can be used for the analysis of optimization control problems
for the system described by (8). Consider as an example the functional

I (v) = α

2
‖v‖2∗ + 1

2

∥∥y(v) − yd

∥∥2
,

where α > 0, yd ∈ H−1(Ω), and y(v) is the solution of the Dirichlet problem (8)
for the control v, besides ‖ · ‖ and ‖ · ‖∗ are the norms of the spaces H 1

0 (Ω) and
H−1(Ω). Consider the following optimization problem.

Problem 2 Minimize the functional I on the convex closed subset U of the
space V .
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The solvability of this problem can be proved by a standard method (see, for ex-
ample Chap. 1, Theorem 1.1 in [11]) using the weak continuity of the state function
with respect to the absolute term. Note that the indeterminacy of the functional I on
the complete set U is not an obstacle for the analysis of the optimization problem
[13].

Corollary 3 If H 1
0 (Ω) ⊂ Lq(Ω), then the solution v0 of Problem 2 satisfies the

inequality
∫

Ω

(αΛv0 − p0)(v − v0)dx ≥ 0 ∀v ∈ U, (10)

where Λ is the canonical isomorphism of the spaces H−1(Ω) and H 1
0 (Ω), and p0

is the solution of the homogeneous Dirichlet problem for the equation

−Δp0 + (ρ + 1)|y0|ρp0 = Δy0 − Δyd. (11)

Proof The derivative of the functional J (first term of the minimizing functional) is
defined by the equality

〈
J ′(v0), h

〉 = α(v0, h)∗ ∀h ∈ H−1,

where (·, ·)∗ is the scalar product of the space H−1(Ω). By Riesz theorem there
exists the canonical isomorphism Λ : H−1(Ω) → H 1

0 (Ω). Then we get

J ′(v0) = αΛv0.

The derivative of the functional K (second term of the minimizing functional) is
defined by the equality

〈
K ′(y0), h

〉 = (y0 − yd,h) ∀h ∈ H 1
0 (Ω),

where (·, ·) is the scalar product of the space H 1
0 (Ω). Using Green formula, we

obtain

K ′(y0) = Δyd − Δy0.

The operator A′(y0) is self-adjoint. Then the adjoint equation (6) transforms to (11),
and the variational inequality (5) transforms to (10). This completes the proof of the
corollary. �

14.3 Differentiation of the Inverse Operator

We will try to prove the differentiability of the inverse operator directly without
using of the Inverse function Theorem. Consider again an operator A : V → Y and
a point v0 ∈ V . Suppose the following assumption.

Property 1 The operator A is invertible in a neighborhood O of the point v0.
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Choose a small enough positive number σ such that the point vσ = v0 + σh is in
O for all h ∈ V . Denote by y(v) the value A−1v. Using the equalities Ay(vσ ) = vσ ,
Ay(v0) = v0, we get

Ay(vσ ) − Ay(v0) = σh.

Assume the following property.

Property 2 The operator A is Gateaux differentiable.

By the Mean Value Theorem we obtain

Ay − Ay0 =
{∫ 1

0
A′[y0 + θ(y − y0)

]
dθ

}
(y − y0),

where y0 = y(v0). Then we have

G(vσ )
[
y(vσ ) − y(v0)

] = σh,

where the linear continuous operator G(v) : Y → V is defined by the formula

G(v) =
∫ 1

0
A′{y0 + θ

[
y(v) − y0

]}
dθ

for all v ∈ V . We get
〈
G(vσ )∗λ,

[
y(vσ ) − y(v0)

]
/σ

〉 = 〈λ,h〉 ∀λ ∈ V ∗. (12)

Consider the linear operator equation

G(v)∗pμ(v) = μ. (13)

It transforms to

A′(y0)
∗pμ(v0) = μ (14)

for v = v0. We will use the following assumption.

Property 3 Equation (13) has a unique solution pμ(v) ∈ V ∗ for all μ ∈ Y ∗, v ∈ O .

Defining λ = pμ(vσ ) for small enough σ in (12) we get
〈
μ,

[
y(v0 + σh) − y(v0)

]
/σ

〉 = 〈
pμ(vσ ),h

〉 ∀μ ∈ Y ∗, h ∈ V. (15)

Define

M = {
μ ∈ Y ∗|‖μ‖ = 1

}
.

Property 4 The convergence pμ(vσ ) → pμ(v0) *-weakly in V ∗ uniformly with
respect to μ ∈ M as σ → 0 is true for all v ∈ V .
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Theorem 2 Let us suppose the Properties 1–4. Then the operator A−1 has the
Gateaux derivative D at the point v0 such that

〈μ,Dh〉 = 〈
pμ(v0), h

〉 ∀μ ∈ Y ∗, h ∈ V. (16)

Proof Let the operator D be defined by (16). It is a map from V to Y . Besides it is
linear continuous. Using (15) and (16) we get
∥∥[

y(v0 + σh) − y(v0)
]
/σ − Dh

∥∥
V

= sup
μ∈M

∣∣〈μ,
[
y(v0 + σh) − y(v0)

]
/σ − Dh

〉∣∣

= sup
μ∈M

∣∣〈pμ(vσ ) − pμ(v0), h
〉∣∣

by the definition of the norm. Then we obtain pμ(vσ ) → pμ(v0) *-weakly in V ∗
uniformly with respect to μ ∈ M for all h ∈ V because of Property 4. Passing to the
limit in the last equality as σ → 0, we get the convergence

[
y(v0 + σh) − y(v0)

]
/σ → Dh in V for all h ∈ V.

So the operator D is the Gateaux derivative of the operator A−1 at the point v0. �

Let us explain applications of this result.

Lemma 3 The operator A for (8) satisfies the Properties 1–4 if H 1
0 (Ω) ⊂ Lq(Ω).

Proof Property 1 is the one-valued solvability of (8). The differentiability of the
operator A (Property 2) is obvious, moreover, its derivative is defined by the equality

A′(y)h = −Δh + (ρ + 1)|y|ρh ∀h ∈ Y.

Thus it is necessary to use Properties 3 and 4 and properties of the adjoint equation
(13).

We have

G(v)y =
{∫ 1

0
A′{y0 + θ

[
y(v) − y0

]}
dθ

}
y

= −Δy +
{∫ 1

0

∣∣y0 + θ
[
y(v) − y0

]∣∣ρdθ

}
y

= −Δy + ∣∣y0 + ε
[
y(v) − y0

]∣∣ρy ∀y ∈ Y,

where ε ∈ [0,1]. Define

g(v) = ∣∣y0 + ε
[
y(v) − y0

]∣∣ρ/2
,

so that we get

G(v)y = −Δy + g(v)2y.
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Then we obtain the equality

〈
G(v)∗p,y

〉 = 〈
p,G(v)y

〉 =
∫

Ω

[−Δy + g(v)2y
]
pdx =

∫

Ω

[−Δp + g(v)2p
]
ydx

for all y ∈ Y , p ∈ V ∗, v ∈ V . So we get

G(v)∗p = −Δp + g(v)2p,

and (13) is transformed to

−Δpμ(vσ ) + g(vσ )2pμ(vσ ) = μ. (17)

Multiplying (17) by pμ(vσ ) and integrating in x ∈ Ω we have

∫

Ω

∣∣∇pμ(vσ )
∣∣2

dx +
∫

Ω

∣∣g(vσ )pμ(vσ )
∣∣2

dx =
∫

Ω

μpμ(vσ )dx.

Then we obtain the inequality

∥
∥pμ(vσ )

∥
∥2 + ∥

∥g(vσ )pμ(vσ )
∥
∥2

2 ≤ ‖μ‖∗
∥
∥pμ(vσ )

∥
∥,

where ‖ · ‖p is the norm in Lp(Ω). So we get

∥∥pμ(vσ )
∥∥ ≤ ‖μ‖∗,

∥∥g(vσ )pμ(vσ )
∥∥

2 ≤ ‖μ‖∗. (18)

Then (17) has the unique solution pμ(vσ ) ∈ V ∗ for all μ ∈ Y ∗, h ∈ V , and σ , and
hence Property 3 holds.

The space V is reflexive, so it is sufficient to prove that pμ(vσ ) → pμ(v0) weakly
in V ∗ uniformly with respect to μ as σ → 0 for all h ∈ V . The set {pμ(vσ )} is
bounded in the space H 1

0 (Ω), and the set {g(vσ )pμ(vσ )} is bounded in the space
L2(Ω) uniformly with respect to μ ∈ M for all h ∈ V because of the inequalities
(18). Using the Banach–Alaogly Theorem we get pμ(vσ ) → p weakly in H 1

0 (Ω)

uniformly with respect to μ ∈ M for all h ∈ V . Applying the Rellich–Kondrashov
Theorem we get pμ(vσ ) → p strongly in L2(Ω) and a.e. on Ω . Using the continuity
of the solution of (8) with respect to the absolute term, we obtain y(vσ ) → y(v0) in
H 1

0 (Ω) and a.e. on Ω . Then

∣∣g(vσ )
∣∣2

pμ(vσ ) → (ρ + 1)|y0|ρp a.e. on Ω.

The sets {pμ(vσ )}, {y(vσ )}, and {g(vσ )2/ρ} are uniformly bounded in Lq(Ω). We
have

∥∥g(vσ )2pμ(vσ )
∥∥

q ′ ≤ ∥∥g(vσ )pμ(vσ )
∥∥

2

∥∥g(vσ )
∥∥

2q/ρ

= ∥∥g(vσ )pμ(vσ )
∥∥

2

∥∥y0 + ε
[
y(vσ ) − y0

]∥∥ρ/2
q

.
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So the set {g(vσ )2pμ(vσ )} is uniformly bounded in Lq ′(Ω). Using Lemma 1.3 (see
Chap. 1 in [12]), we get

g(vσ )2pμ(vσ ) → (ρ + 1)|y0|ρp weakly in Lq ′(Ω)

uniformly with respect to μ ∈ M for all h ∈ V .
Let us multiply (16) by a function λ ∈ H 1

0 (Ω). After integration we get

∫

Ω

[−Δpμ(vσ ) + g(vσ )2pμ(vσ )
]
λdx =

∫

Ω

λμdx.

Passing to the limit as σ → 0, we obtain, that the function p = pμ(v0) satisfies the
equation

−Δpμ(v0) + (ρ + 1)|y0|ρpμ(v0) = μ. (19)

Thus pμ(vσ ) → pμ(v0) weakly in H 1
0 (Ω) uniformly with respect to μ ∈ M for all

h ∈ V , notably the Property 4 is true. �

By Lemma 3 the differentiability of the solution of (8) with respect to the absolute
term follows from Theorem 2 if the embedding H 1

0 (Ω) ⊂ Lq(Ω) holds.

Lemma 4 Properties 1–4 follow from the assumptions of the Inverse Function The-
orem.

Proof The existence of the inverse operator is a corollary of the Inverse Function
Theorem. The differentiability of the operator A is the assumption of this theorem.
So our general difficulty is the analysis of (13), namely the justification of Assump-
tions 3 and 4. Equation (13) can be transformed to

G(v0)
∗pμ(vσ ) = A′(y0)

∗pμ(vσ ) = [
G(v0)

∗ − G(vσ )∗
]
pμ(vσ ) + μ.

The derivative A′(y0) is invertible by the Inverse Function Theorem. So its ad-
joint operator is invertible too. Then (13) can be transformed to the equality

pμ(vσ ) = Lμ(σh)pμ(vσ ), (20)

where the map Lμ(σh) : V ∗ → V ∗ is defined by the formula

Lμ(σh)p = [
A′(y0)

∗]−1{[
G(v0)

∗ − G(vσ )∗
]
p + μ

}
.

Using properties of the operator norm we get the inequality

∥∥Lμ(σh)p1 − Lμ(σh)p2
∥∥

V ∗ = ∥∥[
A′(y0)

∗]−1[
G(v0)

∗ − G(vσ )∗
]
(p1 − p2)

∥∥
V ∗

≤ ∥∥[
A′(y0)

∗]−1∥∥∥∥G(v0)
∗ − G(vσ )∗

∥∥‖p1 − p2‖V ∗
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for all p1,p2 ∈ V ∗. Then we obtain

∥∥Lμ(σh)p1 − Lμ(σh)p2
∥∥

V ∗

≤ ∥∥A′(y0)
−1

∥∥∥∥G(v0) − G(vσ )
∥∥‖p1 − p2‖V ∗ ∀p1,p2 ∈ V ∗

because of the equality of the norms for adjoint operators. The operator A−1 is
continuous at the point v0 by the Inverse Function Theorem. Therefore we get the
convergence y(v0 + σh) → y0 in Y as σ → 0 for all h ∈ V . Using the continuous
differentiability of the operator A at the point y0, we get G(vσ ) → G(v0) in the
sense of the corresponding operator norm. The value σ can be chosen small enough
such that

∥∥G(vσ ) − G(v0)
∥∥ ≤ χ

∥∥A′(y0)
−1

∥∥−1
,

where 0 < χ < 1. So we obtain the estimate

∥
∥Lμ(σh)p1 − Lμ(σh)p2

∥
∥

V ∗ ≤ χ‖p1 − p2‖V ∗ ∀p1,p2 ∈ V ∗.

Thus the operator Lμ(σh) is contracting. Then (20) has a unique solution pμ(vσ ) ∈
V ∗ because of the Contracting Mapping Theorem.

We get G(vσ ) → G(v0) as σ → 0. So G(vσ )λ → G(v0)λ in V for all λ ∈ Y .
Using the obtained inequalities, we get

∥
∥pμ(vσ )

∥
∥

V ∗ = ∥
∥Lμ(σh)pμ(vσ )

∥
∥

V ∗

≤ ∥∥[
A′(y0)

∗]−1∥∥∥∥[
G(v0)

∗ − G(vσ )∗
]
pμ(vσ ) + μ

∥∥
Y ∗

≤ ∥∥A′(y0)
−1

∥∥[∥∥G(v0) − G(vσ )
∥∥∥∥pμ(vσ )

∥∥
V ∗ + ‖μ‖Y ∗

]

≤ χ
∥
∥pμ(vσ )

∥
∥

V ∗ + ∥
∥A′(y0)

−1
∥
∥‖μ‖Y ∗ .

So we have

(1 − χ)
∥∥pμ(vσ )

∥∥
V ∗ ≤ ∥∥A′(y0)

−1
∥∥‖μ‖Y ∗ .

Then pμ(vσ ) → p *-weakly in V ∗ for all h ∈ V as σ → 0.
Using inequality (13) we get

〈
pμ(vσ ),G(vσ )λ

〉 = 〈μ,λ〉 ∀λ ∈ Y.

As a consequence {pμ(vσ )} converges *-weakly, and {G(vσ )} converges strongly.
After passing to the limit we have A′(y0)

∗p = μ, and p = pμ(v0). �

Thus the assumptions of Theorem 2 follow from the assumptions of the Inverse
Operator Theorem. However assertions of Theorem 2 may be true if assumptions of
the Inverse Operator Theorem are not satisfied.
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14.4 Extended Differentiation of the Inverse Operator

The solution of (8) is differentiable with respect to the absolute term for small
enough values of the set dimension n and nonlinearity parameter ρ. But it is not dif-
ferentiable for large enough values of these parameters. Suppose n ≥ 3. By Sobolev
Theorem the embedding H 1

0 (Ω) ⊂ Lq(Ω) is true if ρ ≤ 4/(n − 2). It guarantees
the differentiability of the considered inverse operator. However this embedding
fails if the parameter ρ increases. Then the solution of the equation becomes non-
differentiable with respect to the absolute term. It seems to be a strange situation.
Properties of the inverse operator change with a jump at the neighborhood of some
value ρ. The differentiability of the operator disappears after the passage of this
value. This situation seems not likely. We could suppose the existence of a weaker
operator differentiability than the Gateaux derivative. We would like also to de-
termine the extension of the operator derivative because the solvability of our opti-
mization problem was proved for all values of the set dimension and the nonlinearity
parameter.

There exist extensions of classical operator differentiation, for example, subdif-
ferential calculus [14], Clarke derivatives [15], quasidifferential calculus [7]. They
are used also for the resolution of nonsmooth optimization problems. These results
are effective enough for the analysis of operators with nonsmooth terms, for exam-
ple, the absolute value or the maximum of functions. However similar terms are
absent in our case. So we will try to define another form of operator derivatives
extension.

It is known that “the general idea of the differential calculus is a local approx-
imation of a function by a linear function” (see p. 170 in [16]). The differentiation
is a tool of the local approximation of the analyzed object. The desired form of
an operator derivative can be obtained by weakening of topological approximation
properties of the differentiation. Then we get the extended operator derivative (see
[17–19]).

Definition An operator L : V → Y is called (V0, Y0;V1, Y1)-extended differen-
tiable in the sense of Gateaux at the point v0 ∈ V if there exist linear topological
spaces V0, Y0, V1, Y1 with continuous embeddings

V1 ⊂ V0 ⊂ V, Y ⊂ Y0 ⊂ Y1,

and a linear continuous operator D : V0 → Y0 such that

[
L(v0 + σh) − L(v0)

]
/σ → Dh in Y1 for all h ∈ V1

as σ → 0.

It is obvious that the (V ,Y ;V,Y )-derivative is the standard Gateaux derivative.
The following result is known (see Theorem 4 in [18]; Theorem 5.4 in [19]).
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Lemma 5 The operator A−1 for (8) is (V0, Y0;V1, Y1)-extended differentiable in
the sense of Gateaux at an arbitrary point v0 ∈ V , where

Y1 = H 1
0 (Ω), Y0 = Y1 ∩ {

y||y0|ρ/2y ∈ L2(Ω)
}
,

V1 = H−1(Ω), V0 = V1 + {
v|v = |y0|ρ/2ϕ,ϕ ∈ L2(Ω)

}
, y0 = y(v0),

moreover, its derivative D satisfies the equality
∫

Ω

μDhdx =
∫

Ω

pμ(v0)hdx ∀μ ∈ Y ∗
0 , h ∈ V0, (21)

and pμ(v0) is the solution of the homogeneous Dirichlet problem for (19).

Thus the inverse operator for the given example is extended differentiable for
all values of the set dimensions and nonlinearity parameters. Its extended derivative
is transformed to the Gateaux one for small enough values of these characteristics.
However the Gateaux derivative does not exist for its large enough values, notably
in the case of the high enough degree of the difficulty for the problem. Besides
the difference between standard derivative and extended one is determined by this
degree of the difficulty. Thus the inverse operator is extended differentiable without
any constraints. However the extended derivative differs from the classical one after
the augmentation of the parameters that determine the degree of the difficulty for
the problem. Then we obtain the gradual change of the inverse operator properties
after the gradual change of its parameters, although the standard derivatives theory
permits the change with a jump.

We will prove that the obtained result is sufficient for the analysis of the given
optimization problem without any constraints.

Corollary 4 The solution of the minimization problem of the functional I on the set
U for (8) satisfies the variational inequality

∫

Ω

(αΛv0 − p0)(v − v0)dx ≥ 0 ∀v ∈ U1, (22)

where U1 = U ∩ (v0 + V1), and p0 is a solution of (11).

Indeed, if v0 is a solution of the optimization problem, then

I
[
v0 + σ(v − v0)

] − I (v0) ≥ 0 ∀v ∈ U.

Let us choose v ∈ v0 +V1. Passing to the limit and using Lemma 5 after division by
σ we get

∫

Ω

αΛv0(v − v0)dx +
∫

Ω

∇(y0 − yd)∇D(v − v0)dx ≥ 0 ∀v ∈ U1.
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Then the inequality (22) is true.
If H 1

0 (Ω) ⊂ Lq(Ω), then U1 = U , and the variational inequalities (10) and (22)
are equal. Thus necessary conditions of optimality can be obtained without any
assumptions by means of the extended derivatives theory. Optimization problems
for elliptic equations with power nonlinearity without Gateaux differentiability of
the control-state mapping were considered in [18, 19]. But the control space was
narrower, and the state functional was more regular there. This technique was used
for the analysis of optimization problems for others equations in [20].

Note that Lemma 5 uses the technique of the proof of Theorem 2. We can suppose
that it is possible to obtain the extended differentiability of the inverse operator in the
general case. Consider Banach spaces Y , V , a map A : Y → V , and points y0 ∈ Y ,
v0 = Ay0. Let V1 be a Banach subspace of V with a neighborhood O1 of zero. Then
O = v0 + O1 is a neighborhood of v0. We suppose the following assertion.

Property 5 The operator A is invertible on the set O .

Define y(v) = A−1v. We get the equality

Ay(vσ ) − Ay(v0) = σh

for all v ∈ V1 and small enough σ , where vσ = v0 + σh. Let G(v) be the operator
from the proof of Theorem 2. We have

G(vσ )
[
y(vσ ) − y(v0)

] = σh,

so
〈
λ,G(vσ )

[
y(vσ ) − y(v0)

]〉 = σ 〈λ,h〉 ∀λ ∈ V ∗.

Consider Banach spaces V (v) and Y(v) such that the embeddings of the spaces
Y , Y1 and Y(v) to V (v), Y(v) and V , respectively, are continuous for all v ∈ O . Let
the following assumption be true.

Property 6 The operator A is Gateaux differentiable, moreover, there exists the con-
tinuous extension G(v) of the operator G(v) to Y(v) such that its image is a subset
of V (v) for all v ∈ O .

Using the properties y(v) ∈ y0 + Y(v) and V (v)∗ ⊂ V ∗ we get
〈
G(vσ )∗λ,

[
y(vσ ) − y(v0)

]〉 = σ 〈λ,h〉 ∀λ ∈ V ∗. (23)

It is an analogue of (12). Consider the linear operator equation

G(vσ )∗pμ(vσ ) = μ, (24)

which is an analogue of (13). It can be transformed to

A
′
(y0)pμ(v0) = μ
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for v = v0, where A
′
(y0) = G(v0) is the extension of the operator A′(y0) = G(v0)

to the set Y(v0).
Consider Banach space V1 such that the embedding Y(v) ⊂ V1 is continuous and

dense for all v ∈ O . We suppose the following condition.

Property 7 Equation (24) has the unique solution pμ(v) ∈ V (v)∗ for all v ∈ O ,
μ ∈ Y(v)∗.

Defining in (23) λ = pμ(vσ ) for a small enough σ we get

〈
μ,

[
y(v0 + σh) − y(v0)

]
/σ

〉 = 〈
pμ(vσ ),h

〉 ∀μ ∈ Y(vσ )∗, h ∈ V1. (25)

We will use the additional assumption.

Property 8 The convergence pμ(vσ ) → pμ(v0) holds *-weakly in V ∗
1 uniformly

with respect to μ ∈ M as σ → 0 for all h ∈ V1.

The extended differentiability of the inverse operator is guaranteed by the fol-
lowing result.

Theorem 3 Let us suppose the Properties 5–8. Then the operator A−1 has the
(V (v0), Y (v0);V1, Y1)-extended Gateaux derivative D at the point v0 such that

〈μ,Dh〉 = 〈
pμ(v0), h

〉 ∀μ ∈ Y(v0)
∗, h ∈ V (v0). (26)

Proof By (25), (26) we get
〈
μ,

[
y(v0 + σh) − y(v0)

]
/σ − Dh

〉

= 〈
pμ(vσ ) − pμ(v0), h

〉 ∀μ ∈ M,h ∈ V (v1). (27)

Then
∥∥[

y(v0 + σh) − y(v0)
]
/σ − Dh

∥∥
V1

= sup
μ∈M

∣∣〈pμ(vσ ) − pμ(v0), h
〉∣∣.

We have pμ(vσ ) → pμ(v0)*-weakly in V1 uniformly with respect to μ ∈ M for
all h ∈ V1 as σ → 0 by Property 8. Passing to the limit in the last equality we obtain

[
y(v0 + σh) − y(v0)

]
/σ → Dh in Y1

for all h ∈ V1. Thus D is an extended derivative of the inverse operator. �

A result of the extended differentiability of the inverse operator for nonnormal-
ized spaces was obtained in [18].

Let us prove that the assumptions of the Theorem 3 are true for the considered
example.
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Lemma 6 The operator A, which is defined by (8), satisfies the Properties 5–8.

Proof The Property 5 is the solvability of (8) at a neighborhood of the given point.
It is obviously that this assumption is true. The differentiability of the operator A is
clear. The operator G(v) for our case is determined by the equality

G(v)y = −Δy + g(v)2y ∀y ∈ Y,

where

g(v)2 = (ρ + 1)
∣∣y0 + ε

[
y(v) − y(v0)

]∣∣ρ, ε ∈ [0,1].
Let the spaces Y1, V1, Y(v), V (v) be those defined in the proof of Lemma 5. Define
the map G(v) by the equality

G(v)y = −Δy + g(v)2y ∀y ∈ Y(v).

Then Property 6 is true. Reliability of Properties 7 and 8 was obtained in the proof
of Lemma 5. �

Thus extended differentiability of the inverse operator for (8) follows from The-
orem 3.

Lemma 7 the Properties 5–8 follow from the assumptions of the Inverse Function
Theorem.

Indeed, Property 5 is a direct corollary of this theorem. Let us define the spaces
V = V1, Y = Y1. Then we get Y(v) = Y , V (v) = V . So the operator G(v) is equal
to G(v), and Property 6 is trivial. Therefore Properties 7 and 8 are transformed to
Properties 3 and 4. Its validity was proved before.

Thus Theorem 3 is a generalization of the Theorem 2. The obtained results can be
used for other applications if it is necessary to differentiate an inverse operator. For
example the extended differentiable submanifolds of Banach spaces are defined in
[21, 22]. Optimization control problems on differentiable submanifolds are consid-
ered there. Analogical results could be obtained for the implicit operator, including
the case of nonnormalized spaces (see [23]). Banach spaces with extended differ-
entiable operators form a category, and necessary conditions of optimality have a
category interpretation (see [24]).
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