
Chapter 12
A Note on a Class of Conservative, Well-Posed
Linear Control Systems

Rainer Picard, Sascha Trostorff, and Marcus Waurick

Abstract We discuss a class of linear control problems in a Hilbert space setting.
The aim is to show that these control problems fit in a particular class of evolution-
ary equations such that the discussion of well-posedness becomes easily accessible.
Furthermore, we study the notion of conservativity. For this purpose we require ad-
ditional regularity properties of the solution operator in order to allow point-wise
evaluations of the solution. We exemplify our findings by a system with unbounded
control and observation operators.

Mathematics Subject Classification (2010) 93C05 · 93C20 · 93C25

12.1 Introduction

Abstract linear control systems are commonly described by a system of equations
of the form

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), t ∈R>0,

with appropriate linear operators A, B , C and D and ẋ denoting the time derivative
of x in Newton’s notation, linking the time development of state x, control u and
observation y. The first equation is called state differential equation and the second
one observation equation. The system is formally completed by an initial condition
prescribing x(0+) = x(0) for the state trajectory x. As a matter of convenience we
will consider this system on the whole real time-line R in which case the initial data
x(0) turns into a Dirac-δ-source at time 0. Writing ∂0 for time differentiation on the
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full time-line this yields

∂0x = Ax + Bu + δ ⊗ x(0), y = Cx + Du on R.

We may formally re-write this into a single block operator matrix equation as

(
∂0

(
1 0
0 0

)
+
(

0 0
−C 1

)
+
(

A 0
0 0

))(
x

y

)
=
(

1 B

0 D

)(
δ ⊗ x(0)

u

)
, (1)

which brings our linear control system into the realm of a problem class discussed
in [8, 9]. In a suitable setting ∂0 can be established as a normal operator with con-
tinuous inverse so that for continuous linear operators (A,B,C,D) the solution
theory is little more than matrix algebra. If (A,B,C,D) contains unbounded lin-
ear operators matters are more complicated. If only A is unbounded but such that
∂0 + A is invertible the solution theory can be largely salvaged. A common instru-
ment here is to express (∂0 +A)−1 in terms of a semi-group generated by A. Matters
become exceedingly complicated if also other operators in the list (A,B,C,D) are
also permitted to be unbounded (see [4, 6, 7] for a survey, also [14]). The answer
of questions concerning for example well-posedness along this line of reasoning
may be quite involved. The classical approach to well-posedness is the concept of
so-called admissible control and observation operators, using the theory of strongly
continuous semigroups, see for instance [1, 2, 11–13, 15] and [3] for a survey.

Here we want to give a more elementary approach to this issue, by changing the
perspective to the above type of space-time operators, which in effect by-passes C0-
semi-groups as a solution tool and at the same time enlarges the class of accessible
control problems considerably. On the other hand, we use elementary C0-semigroup
theory as a tool for discussing regularity issues.

We shall consider systems of the general form

(∂0M0 + M1 +A)

(
x

y

)
= J

(
f

u

)
,

M0 : X ⊕ Y → X ⊕ Y , M1 : X ⊕ Y → X ⊕ Y continuous linear operators, A :
D(A) ⊆ X ⊕ Y → X ⊕ Y a closed and densely defined operator. Mostly we shall
assume that J : F ⊕ U �→ X ⊕ Y is such that

J =
(

E B

0 D

)

with B : U → X, D : U → Y , E : F → X continuous linear operators. Here X, Y ,
F , U are Hilbert spaces referred to as state, observation, data and control spaces,
respectively.

There is little harm in assuming X = F and U = Y and we shall do so.
As the space to model time-dependence we consider the weighted L2-space

H�,0(R), � ∈R>0, generated by the completion of
◦
C∞(R) with respect to the inner
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product 〈·|·〉�,0

(ϕ,ψ) �→
∫
R

ϕ(t)∗ψ(t) exp(−2�t)dt.

The associated norm will be denoted by | · |�,0. The time-derivative ∂0 can be lifted
canonically to corresponding Hilbert-space-valued generalized functions making ∂0
a normal operator in the resulting Hilbert space H�,0(R,H), where H is an arbitrary
Hilbert space. Thus the linear control system under consideration is a quaternary
relation of the form

CM0,M1,A,J =
{
(x, y, f,u)

∣∣∣(∂0M0 + M1 +A)

(
x

y

)
= J

(
f

u

)}

in spaces derived from this consideration. We say CM0,M1,A,J is well-posed, if
CM0,M1,A,J considered as the associated binary relation

{(
(x, y), (f,u)

)∣∣∣(∂0M0 + M1 +A)

(
x

y

)
= J

(
f

u

)}

induces for all sufficiently large � ∈ R>0 a continuous linear mapping in a suitable
Hilbert space setting linking a solution (x, y) with any given (f,u). Of course we
would want the solution operator (∂0M0 + M1 + A)−1J also to be causal in the
intuitive sense. If there is no danger of confusion and the coefficient operators M0,
M1, A, J are clear from the context, we simply write C for CM0,M1,A,J .

Another extract of our current linear control system C is frequently of particular
interest. It is the so-called transfer relation Tf which is given for a fixed f by

Tf :=
{

(u, y)

∣∣∣∨
x

(∂0M0 + M1 +A)

(
x

y

)
= J

(
f

u

)}
.

For a well-posed linear control system this is just reading off the second block com-
ponent of the solution and yields that Tf is a mapping, the transfer mapping. Fre-
quently, one prefers to consider the unitarily equivalent operator

L�TfL∗
�,

where L� is the unitary Fourier-Laplace transformation (see Sect. 12.2), as the trans-
fer mapping.

We also address a question approached in [15], namely conservativity of a linear
control system. In [15] this notion was defined by means of a certain energy balance
equality, that should be fulfilled by state, observation and control.

By considering abstract control system in the above sense we shall show that
for reasonable state differential equations it is always possible to construct an ob-
servation equation, which leads to a conservative linear control system. Moreover,
although in [15] unbounded control and observation operators were considered, we
shall see that in the generalized form such system are reduced to the bounded oper-
ator case (with A being the only unbounded linear operator involved).
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12.2 Setting

The particular time-derivative defined as a normal and invertible operator in the ex-
ponentially weighted space H�,0(R) := L2(R, exp(−2�x)dx) (for some � ∈ R>0)
is given in various articles of the authors of this paper. The core issues are discussed
in [5]. We state the basic facts as follows. Let � ∈ R>0. We define ∂0 as the closure
of the operator

◦
C∞(R) ⊆ H�,0(R) → H�,0(R) : f �→ f ′, where

◦
C∞(R) denotes the

space of infinitely often differentiable functions with compact support. It can be
shown that ∂−1

0 ∈ L(H�,0(R),H�,0(R)) and ‖∂−1
0 ‖ ≤ 1/�.

It is well-known that there is an explicit spectral representation as a multiplica-
tion operator of the one-dimensional derivative on the real line, which is given by the
unitary Fourier transformation F : L2(R) → L2(R). An analogous representation
can be found for ∂0: Denote by m the multiplication-by-argument-operator in L2(R)

with natural domain and exp(−�m) : H�,0(R) → L2(R) : f �→ exp(−�(·))f (·).
Then we have the following unitary representation of ∂0:

L∗
�(im + �)L� = ∂0

with the unitary Fourier-Laplace transformation L� := F exp(−�m). This formula
can canonically be lifted to the Hilbert-space-valued case. Moreover, the latter
unitary representation results in a functional calculus for ∂−1

0 . More precisely, let
r > 1

2�
and H be a Hilbert space. Let M : B(r, r) → L(H) be an element of the

Hardy space H∞(B(r, r),L(H)) of bounded and analytic functions defined on the
open ball B(r, r) ⊆ C with values in L(H), the set of continuous linear operators
within H . Define

M
(
∂−1

0

) := L∗
�M

(
1

im + �

)
L�,

where M( 1
im+�

)φ(t) := M( 1
it+�

)φ(t) for all φ ∈ ◦
C∞(R,H) and t ∈ R. It is easy

to see that M(∂−1
0 ) ∈ L(H�,0(R,H)) and ∂−1

0 M(∂−1
0 ) = M(∂−1

0 )∂−1
0 . As it was

already mentioned in [5], for h > 0 the time-shift τ−h defined as τ−hf := f (·−h) or
the convolution with a L1(R)-function supported on the positive reals yield analytic
and bounded functions of ∂−1

0 in the above sense.
In the following we shall also make use of the concept of Sobolev lattices, which

are related to abstract distribution spaces associated with particular (unbounded)
operators in a Hilbert space. The whole set-up is described in [10]. We sketch it as
follows. Let C, D be densely defined, closed, linear operators in a Hilbert space H .
Furthermore, assume that 0 ∈ �(C) ∩ �(D) and C−1D−1 = D−1C−1. For k,n ∈ Z

the Hilbert space Hk,n(C,D) is defined as the completion of D(C|k|) ∩ D(D|n|)
with respect to the (well-defined) inner product (φ,ψ) �→ 〈CkDnφ,CkDnψ〉. The
family (Hk,n(C,D))(k,n)∈Z2 is called Sobolev lattice associated with (C,D). One
can show that for k1, n1 ∈ Z with k1 ≤ k and n1 ≤ n we have dense and continuous
embeddings

Hk,n(C,D) ↪→ Hk1,n1(C,D).
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The latter relation justifies the term “lattice”. Indeed, (Hk,n(C,D))(k,n)∈Z2 is a lat-
tice with respect to the order relation ↪→, which is isomorphic to Z

2 endowed with
component-wise order.

Moreover, by continuous extension, we have unitary operators

Ck2Dn2 : Hk,n(C,D) → Hk−k2,n−n2(C,D)

for all n2, k2 ∈ Z. It should be mentioned that any continuous linear operator B :
H → H , which commutes with C−1 ∈ L(H), has a unique continuous extension
(restriction) to Hk,0(C,D). We shall use the construction of Sobolev lattices in the
aforementioned situation of linear control systems. For the special case that D is
the identity on H , we will write Hk(C) := Hk,n(C,D). Moreover, given a densely
defined, closed linear operator A : D(A) ⊆ H → H with non-empty resolvent set
�(A). Then, for � ∈R>0 and λ ∈ �(A), we define

H�,k

(
R,Hn(A− λ)

) := Hk,n(∂0,A− λ).

If it is clear from the context, which operator A is under consideration, we shall also
write H�,k(R,Hn) for short. Clearly, the latter set does not depend on the particular
choice of λ ∈ �(A). As another short-hand notation we also define

H�,∞(R,Hn) :=
⋂
k∈N

H�,k(R,Hn).

12.3 Solution Theory for Abstract Linear Control Systems

We summarize the core issues of the solution theory used in this paper. In the whole
section, we make the following assumptions. Let X and Y be Hilbert spaces and
define H := X ⊕ Y . Moreover, let M0 : H → H, M1 : H → H, J : H → H be
continuous linear operators and let A : D(A) ⊆ H → H be a closed linear operator.
We assume that

• M0 is selfadjoint, non-negative and strictly positive on its range, whereas
• ReM1 :H → H is strictly positive on the null space of M0.

To simplify matters, we shall also assume that

• A is skew-selfadjoint in H, which is a standard case for most problems.

We will use the extension of these operators to the Hilbert space of H-valued
H�,0(R) functions. From the 3 aforementioned properties, it is easy to see that
the following lemma holds. For a set S ⊆ R, we denote by χS(m0) the truncation
operator, mapping a function f : R → H to the truncated one: χS(m0)f := (t �→
χS(t)f (t)).
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Lemma 1 There is a constant β0 ∈R>0 such that for all ξ ∈ D(A)∩D(∂0) and all
sufficiently large � ∈R>0

Re
〈
χ
R<0

(m0)ξ |(∂0M0 + M1 +A)ξ
〉
�,0,0 ≥ β0

〈
χ
R<0

(m0)ξ |ξ 〉
�,0,0. (++a)

It follows

Re
〈
ξ |(∂0M0 + M1 +A)ξ

〉
�,0,0 ≥ β0〈ξ |ξ 〉�,0,0. (++b)

The proof can be found in Chap. 7 in [10]. It is remarkable that the core of
the proof of the solution theory only relies on the positive definiteness as stated in
Lemma 1 and the explicit spectral representation of ∂0.

Theorem 1 For every sufficiently large � ∈ R>0 and every
(

f
u

) ∈ H�,0(R,X ⊕ Y)

there is a unique solution
( x

y

) ∈ H�,0(R,X ⊕ Y) of the problem

(∂0M0 + M1 +A)

(
x

y

)
= J

(
f

u

)
.

Moreover, the solution depends continuously on the data in H�,0(R,X ⊕Y) and the
solution operator (∂0M0 + M1 +A)−1J is causal in the sense that

χ
R<a

(m0)(∂0M0 + M1 +A)−1J

= χ
R<a

(m0)(∂0M0 + M1 +A)−1Jχ
R<a

(m0)

for all a ∈ R.

Remark 1 The assumptions on the operators A, M1 and M0 are sharp in the sense
that we can easily construct ill-posed systems, if one of the assumptions fails. For
instance consider the system

(
∂0

(
1 0
0 0

)
+
(

0 0
0 −1

)
+
(

0 −C∗
C 0

))(
u

v

)
=
(

f

0

)
,

where C is an unbounded, closed and densely defined linear operator. Now ReM1 =( 0 0
0 −1

)
is not strictly positive definite on the kernel of M0 = ( 1 0

0 0

)
. Substituting the

second equation v = Cu into the first yields
(
∂0 − C∗C

)
u = f,

which is an abstract heat equation with time reversed and well-known to be ill-
posed as a forward causal equation. Even in the ode case, i.e. for C = 0, taking now
M1 = ( 0 1

1 0

)
and considering the resulting system

(
∂0

(
1 0
0 0

)
+
(

0 1
1 0

))(
u

v

)
=
(

f

g

)



12 A Note on a Class of Conservative, Well-Posed Linear Control Systems 267

would yield

u = g,

∂0u + v = f,

which can only have a solution u,v ∈ H�,0(R,H) if g = u = ∂−1
0 (f − v) ∈

H�,1(R,H) and not for general data f,g ∈ H�,0(R,H).

Using the Sobolev lattice (H�,k(R,Hn))(k,n)∈Z2 , we shall extend the operators
∂0, M0, M1, A to H�,−∞(R,H−1) :=⋃

k∈Z H�,k(R,H−1). This has the effect that
we do not need to write the closure bar anymore. However, this has the consequence
that, whereas the equation

(∂0M0 + M1 +A)

(
x

y

)
= J

(
f

u

)

holds in H�,0(R,X ⊕ Y), the equation

∂0M0

(
x

y

)
+ M1

(
x

y

)
+A

(
x

y

)
= J

(
f

u

)

only holds in H�,−1(R,H−1). This line of reasoning also yields that
( x

y

) ∈
H�,−1(R,H1). We will use this observation in the forthcoming sections. To incorpo-
rate non-vanishing initial data we record the following corollary, where we use the
continuous extension of the solution operator—a particular bounded and analytic
function of ∂−1

0 (cf. Sect. 12.2)—to the space H�,−1(R,H).

Corollary 1 For every sufficiently large � ∈ R>0 and every
(

f
u

) ∈ H�,0(R,X ⊕ Y)

and
(

x(0)

y(0)

) ∈ M0[X ⊕ Y ] there is a unique solution
( x

y

) ∈ H�,−1(R,X ⊕ Y) of the

problem

(∂0M0 + M1 +A)

(
x

y

)
= J

(
f

u

)
+ δ ⊗ M0

(
x(0)

y(0)

)
. (2)

The solution depends continuously on the data in H�,−1(R,X ⊕ Y).

Proof The existence result follows by applying the previous theorem to

(∂0M0 + M1 +A)

(
ξ

η

)
= J

(
∂−1

0 f

∂−1
0 u

)
+ χ

R>0
⊗ M0

(
x(0)

y(0)

)

and then differentiating and letting(
x

y

)
:= ∂0

(
ξ

η

)
.

The uniqueness and continuous dependence part follows conversely by applying
∂−1

0 to (2) and using the uniqueness and continuous dependence result of Theo-
rem 1. �
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12.4 Regularity

In this section we discuss regularity issues. The method is based on “see-saw”-type
arguments and relies on the Sobolev lattice associated with (∂0,A+ 1), i.e.,

(
H�,s(R,Hk)

)
(s,k)∈Z2 .

Our main focus will be initial value problems. We need the following definition.

Definition 1 Let CM0,M1,A,J be a well-posed1 linear control system. If

P0
(
(∂0M0 + M1 +A)−1δ ⊗ M0 − χ

R>0
⊗ P0

)[U] ⊆ H�,1(R,H)

for some subspace U ⊆ D(A), which is dense in H, then we call CM0,M1,A,J a
globally regularizing linear control system. If for all T ∈R we have

χ
R<T

(m0)P0
(
(∂0M0 + M1 +A)−1δ ⊗ M0 − χ

R>0
⊗ P0

)[U]
⊆ χ

R<T
(m0)

[
H�,1(R,H)

]

we call CM0,M1,A,J a locally regularizing linear control system. Here P0 := π∗
0 π0,

where π0 denotes the orthogonal projector onto M0[H].

Obviously, the regularizing property is independent of J . For locally regulariz-
ing linear control systems we have according to the Sobolev embedding property
(cf. Lemma 3.1.59 in [10]) point-wise evaluation as a continuous operation and we
can define, what it means for such a system to be conservative. In the forthcoming
sections, we deal with a system studied in [15]. This system may be rewritten into a
first order system such that the above theory becomes applicable. Moreover, it can
be shown that the respective system is a special case of the system occurring in the
next theorem, for which the notion of conservativity can be established.

Theorem 2 Let CM0,M1,A,J be a linear control system with

M0 =
(

M00 0
0 0

)
, M1 =

(
M11 0

αR−1π1 α

)
,

A =
(

A 0
0 0

)
, J =

(
0 2Re(M11)π

∗
1 R

0 α

)
,

1In this case
(
(∂0M0 + M1 +A)−1δ ⊗ M0

) : H → H�,−1(R,H).

z �→ (∂0M0 + M1 +A)−1δ ⊗ M0z

is a continuous linear operator.
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where M00 ∈ L(X) is selfadjoint and strictly positive definite on M00[X], M11 ∈
L(X) with (ReM11) ≥ 0 and ReM11 is strictly positive definite on [{0}]M00, U1 :=
(ReM11)[X], R : U1 → U1 is a continuous linear bijection, π1 : X → U1 is the
orthogonal projector, A is a skew-selfadjoint operator on X and α ∈ R \ {0}, is such
that

4
∥∥(√(ReM11)|[{0}]M00

)−1∥∥−2∥∥R−1
∥∥−2

> α > 0.

Then CM0,M1,A,J is well-posed. Let U0 := M00[X] and π0 : X → U0, P0 := π∗
0 π0

the corresponding orthogonal projections. Assume in addition that CM0,M1,A,J is
locally regularizing. Then CM0,M1,A,J is conservative in the sense of [15], i.e., the
solution

( x
y

)
of

(∂0M0 + M1 +A)

(
x

y

)
= J

(
0
u

)
+ δ ⊗

(
M00x

(0)

0

)

for the initial data x(0) and control u gives rise to mappings

�T :
(√

M00 0
0

√
2ReM11R

)(
P0x

(0)

χ
R<T

(m0)u

)

�→
(√

M00 0
0

√
2ReM11R

)(
P0x(T )

χ
R<T

(m0)y

)
,

which are densely defined isometries on U0 ⊕ L2(R>0,U1) for all T ∈R≥0.

Remark 2 In the setting of the theorem above, the state space is given by H =
X ⊕ U1. Furthermore we shall note here that for the definition of conservativity the
parameter α ∈R \ {0} is irrelevant. However, it is used to adjust for the assumptions
of our above solution theory.

Proof of Theorem 2 At first we show well-posedness of CM0,M1,A,J . We need to
consider the positive definiteness of

ReM1 =
(

ReM11
1
2απ∗

1 (R−1)∗
1
2αR−1π1 α

)

on [{0}]M0 = [{0}]M00 ⊕ U1. Let z ⊕ y ∈ [{0}]M00 ⊕ U1. For ε > 0, we compute

〈
ReM1(z ⊕ y)|z ⊕ y

〉 = 〈z|ReM11z〉 + 〈
z|απ∗

1

(
R−1)∗y〉+ α〈y|y〉

≥ 〈
√
ReM11z|

√
ReM11z〉 − 1

2ε
|z|2

− ε

2
α2
∣∣π∗

1

(
R−1)∗y∣∣2 + α〈y|y〉
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≥
(

1 − 1

2ε

∥∥(√(ReM11)|[{0}]M00

)−1∥∥2
)

|√ReM11z|2

+ α

(
1 − ε

2
α
∥∥R−1

∥∥2
)

|y|2.

From the first term of the right-hand side of the latter inequality it follows that ε has
to be chosen such that

1

ε
< 2

∥∥(√(ReM11)|[{0}]M00

)−1∥∥−2

holds. From the second term, we read off that

1 − ε

2
α
∥∥R−1

∥∥2
> 0

should hold. Thus, we want ε to satisfy in addition

1

ε
>

α

2

∥∥R−1
∥∥2

.

The condition on α ensures that the interval
]
α

2

∥∥R−1
∥∥2

,2
∥∥(√(ReM11)|[{0}]M00

)−1∥∥−2
[

is not empty. Employing Theorem 1, we conclude that the abstract linear control
system C is well-posed. Assume now that C is locally regularizing. Due to the block
structure of the operator matrices M0, M1, A and J there exists a subspace U ⊆
D(A), dense in X, such that for x(0) ∈ U , we have

χR<T
(m0)

(
P0 0
0 0

)(
(∂0M0 + M1 +A)−1δ ⊗ M0 − χR>0 ⊗

(
P0 0
0 0

))(
x(0)

0

)

∈ χR<T
(m0)

[
H�,1(R,H)

]

for all T ∈ R. Let x(0) ∈ U and u ∈ H�,1(R≥0,U1). Our general solution theory
yields the unique existence of (x, y) ∈ H�,−1(R,X ⊕ U1) of the problem

(
∂0

(
M00 0

0 0

)
+
(

M11 0
αR−1π1 α

)
+
(

A 0
0 0

))(
x

y

)

=
(

0 2Re(M11)π
∗
1 R

0 α

)(
0
u

)
+
(

δ ⊗ M00x
(0)

0

)
,

where suppx ⊆ R≥0 and suppy ⊆ R≥0 due to the causality of the solution operator.
This leads to
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(
P0 0
0 0

)(
x

y

)
− χR>0 ⊗

(
P0 0
0 0

)(
x(0)

0

)

=
(

P0 0
0 0

)
(∂0M0 + M1 +A)−1

(
0 2Re(M11)π

∗
1 R

0 α

)(
0
u

)

+
(

P0 0
0 0

)
(∂0M0 + M1 +A)−1

(
δ ⊗ M00x

(0)

0

)

− χR>0 ⊗
(

P0 0
0 0

)(
x(0)

0

)
.

Since (∂0M0 + M1 +A)−1 leaves H�,1(R,H) invariant, we read off that

χR<T
(m0)

((
P0 0
0 0

)(
x

y

)
− χR>0 ⊗

(
P0 0
0 0

)(
x(0)

0

))

∈ χR<T
(m0)

[
H�,1(R,H)

]

holds for all T ∈R. We fix T ∈ R>0 for the rest of the proof. Let ϕ ∈ C∞(R) be such
that ϕ = 1 on R<T +1 and ϕ = 0 on R>T +2. Using the Sobolev lattice associated
with (∂0,A+ 1) we get that

(
ϕ(m0) 0

0 1

)
(∂0M0 + M1 +A)

(
x

y

)
=

(
ϕ(m0) 0

0 1

)(
0 2Re(M11)π

∗
1 R

0 α

)(
0
u

)

+
(

ϕ(0)δ ⊗ M00x
(0)

0

)
,

which implies

(∂0M0 + M1 +A)

(
ϕ(m0) 0

0 1

)(
x

y

)
(3)

=
(

ϕ(m0) 0
0 1

)(
0 2Re(M11)π

∗
1 R

0 α

)(
0
u

)

+
(

ϕ(0)δ ⊗ M00x
(0)

0

)
+
(

M00ϕ
′(m0) 0

0 0

)(
x

y

)

=
(

ϕ(m0)2Re(M11)π
∗
1 Ru

αu

)
+
(

δ ⊗ M00x
(0)

0

)

+
(

M00ϕ
′(m0)x

0

)
. (4)

Define xϕ := ϕ(m0)x. Employing the local regularizing property and using that
M00ϕ

′(m0)x ∈ H�,1(R,X), we deduce that P0xϕ − χR>0 ⊗ P0x
(0) ∈ H�,1(R,X).
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Moreover, from

(∂0M0 + M1 +A)

(
xϕ

y

)

=
(

∂0M0

(
xϕ

y

)
+ M1

(
xϕ

y

)
+A

(
xϕ

y

))

=
(

ϕ(m0)2Re(M11)π
∗
1 Ru

αu

)
+
(

δ ⊗ M00x
(0)

0

)
+
(

M00ϕ
′(m0)x

0

)

it follows that

∂0M0

((
xϕ

y

)
− χR>0 ⊗

(
x(0)

0

))
+ M1

((
xϕ

y

)
− χR>0 ⊗

(
x(0)

0

))

+A
((

xϕ

y

)
− χR>0 ⊗

(
x(0)

0

))
(5)

=
(

ϕ(m0)2Re(M11)π
∗
1 Ru

αu

)
−
(

χR>0 ⊗ Ax(0)

0

)

− χR>0 ⊗ M1

(
x(0)

0

)
+
(

M00ϕ
′(m0)x

0

)
, (6)

where equality holds in H�,−1(R,H−1). However, since the right-hand of the lat-
ter equation lies in H�,0(R,H0) we get xϕ − χR>0 ⊗ x(0) ∈ H�,0(R,X) and since

P0xϕ − χR>0 ⊗ P0x
(0) ∈ H�,1(R,X), we deduce that

( xϕ

y

) − χR>0 ⊗ (
x(0)

0

) ∈
H�,0(R,H1). In particular, this yields xϕ ∈ H�,0(R,H1(A + 1)). We read off the
first row equation of (5):

∂0M00
(
xϕ − χR>0 ⊗ x(0)

)+ M11
(
xϕ − χR>0 ⊗ x(0)

)+ A
(
xϕ − χR>0 ⊗ x(0)

)
= 2Re(M11)π

∗
1 Rϕ(m0)u − M11

(
χR>0 ⊗ x(0)

)− χR>0 ⊗ Ax(0) + M00ϕ
′(m0)x.

Thus, we get that

∂0M00
(
xϕ − χR>0 ⊗ x(0)

)+ M11xϕ + Axϕ

= 2Re(M11)π
∗
1 Rϕ(m0)u + M00ϕ

′(m0)x,

with equality in H0(A + 1) pointwise almost everywhere. Multiplying by 〈·|xϕ〉X ,
taking real-parts and using Re〈Axϕ(s)|xϕ(s)〉 = 0 for almost every s ∈]0, T [, we
deduce that for almost every t ∈]0, T [ it holds

Re
〈
∂0M00

(
xϕ − χR>0 ⊗ x(0)

)
(t)|xϕ(t)

〉+ 〈
ReM11xϕ(t)|xϕ(t)

〉
= Re

〈
2Re(M11)π

∗
1 Ru(t)|xϕ(t)

〉
.
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We let μ00 := π0M00π
∗
0 , μ11 := π1(Re(M11))π

∗
1 . Thus, for almost every t ∈]0, T [

it holds

Re
〈
∂0
(
μ00

(
π0xϕ − χR>0 ⊗ π0x

(0)
))

(t)|π0xϕ(t)
〉+ 〈

μ11π1xϕ(t)|π1xϕ(t)
〉

= Re
〈
2μ11Ru(t)|π1xϕ(t)

〉
.

Hence, we conclude that for almost every t ∈]0, T [:
1

2

(
s �→ 〈

μ00
(
π0xϕ − χR>0 ⊗ π0x

(0)
)
(s)|(π0xϕ − χR>0 ⊗ π0x

(0)
)
(s)

〉)′
(t)

= −Re
〈
∂0
(
μ00

(
π0xϕ − χR>0 ⊗ π0x

(0)
))

(t)|χR>0 ⊗ π0x
(0)(t)

〉
− 〈

μ11π1xϕ(t)|π1xϕ(t)
〉+Re

〈
2μ11Ru(t)|π1xϕ(t)

〉
. (7)

The second row equation of (5) gives

αR−1π1xϕ + αy = αu.

Hence,

π1xϕ = R(u − y).

Since xϕ(t) = x(t) for all t ∈]0, T [, the latter equation put into (7) gives

1

2

(
s �→ 〈

μ00
(
π0x − χR>0 ⊗ π0x

(0)
)
(s)|(π0x − χR>0 ⊗ π0x

(0)
)
(s)

〉)′
(t)

= −Re
〈
∂0
(
μ00

(
π0x − χR>0 ⊗ π0x

(0)
))

(t)|χR>0 ⊗ π0x
(0)(t)

〉
− 〈

μ11R(u − y)(t)|R(u − y)(t)
〉+Re

〈
2μ11Ru(t)|R(u − y)(t)

〉
= −Re

〈
∂0
(
μ00

(
π0x − χR>0 ⊗ π0x

(0)
))

(t)|χR>0 ⊗ π0x
(0)(t)

〉
− 〈

μ11Ry(t)|Ry(t)
〉+ 〈

μ11Ru(t)|Ru(t)
〉
.

We integrate the latter equation over ]0, T [. We conclude that

1

2

〈
μ00

(
π0x − χR>0 ⊗ π0x

(0)
)
(T )|(π0x − χR>0 ⊗ π0x

(0)
)
(T )

〉

= −Re
〈
μ00

(
π0x − χR>0 ⊗ π0x

(0)
)
(T )|π0x

(0)
〉

−
∫ T

0

〈
μ11Ry(t)|Ry(t)

〉
dt +

∫ T

0

〈
μ11Ru(t)|Ru(t)

〉
dt.

Thus, we get that

1

2

〈
μ00π0x(T )|π0x(T )

〉+
∫ T

0

〈
μ11Ry(t)|Ry(t)

〉
dt

= 1

2

〈
μ00π0x

(0)|π0x
(0)
〉+

∫ T

0

〈
μ11Ru(t)|Ru(t)

〉
dt.
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This shows the conservativity of C. �

Example 1 The heat equation yields a conservative, linear control system. With
G : D(G) ⊆ H0 → H1 closed and densely defined we consider the heat equation in
the abstract form (

∂0 + G∗G
)
θ = −G∗u,

which is equivalent to

(
∂0

(
1 0
0 0

)
+
(

0 0
0 1

)
+
(

0 G∗
−G 0

))(
θ

q

)
=
(

0
u

)
.

We have X = H0 ⊕ H1 and Y = U = H1. Following the above construction we use

2q + y = u

with R = 1
2 as observation equation. So, we get

((
∂0
( 1 0

0 0

)+ ( 0 0
0 1

)+ ( 0 G∗
−G 0

)) ( 0
0

)
(0 2) 1

)(( θ
q

)
y

)
=
(( 0

u

)
u

)
.

For α �= 0 we have equivalently

((
∂0
( 1 0

0 0

)+ ( 0 0
0 1

)+ ( 0 G∗
−G 0

)) ( 0
0

)
(0 2α) α

)(( θ
q

)
y

)
=
(( 0

u

)
αu

)
,

where we choose α suitably to make

Re

(
1 0

2α α

)
=
(

1 α

α α

)

strictly positive on H1 ⊕ H1. This is the case if

0 < α < 1.

This makes the example system

((
∂0
( 1 0

0 0

)+ ( 0 0
0 1

)+ ( 0 G∗
−G 0

)) ( 0
0

)
(0 1) 1

2

)(( θ
q

)
y

)

=
(( 0

u

)
1
2u

)
+ δ ⊗

((
θ(0)

0

)
0

)
(8)

a well-posed and at least formally conservative system. It remains to establish the
required regularity. To this end put u = 0 and let θ(0) ∈ D(G∗G) in (8). We compute
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θ = (
∂0 + G∗G

)−1
δ ⊗ θ(0)

θ − χ
R>0

⊗ θ(0) = ((
∂0 + G∗G

)−1
δ ⊗ θ(0) − χ

R>0
⊗ θ(0)

)

= −(
∂0 + G∗G

)−1(
χ
R>0

⊗ G∗Gθ(0)
)
.

This shows that the system is globally regularizing. Indeed, for φ := χ
R>0

⊗
G∗Gθ(0) we estimate

∣∣(∂0 + G∗G
)−1

φ
∣∣2
�,1,0 = ∣∣∂0

(
∂0 + G∗G

)−1
φ
∣∣2
�,0,0

= ∣∣∂0
(
∂0 + |G|2)−1

φ
∣∣2
�,0,0

= ∣∣φ − |G|2(∂0 + |G|2)−1
φ
∣∣2
�,0,0

≤ 2|φ|2�,0,0.

Thus, θ − χ
R>0

⊗ θ(0) ∈ H�,1(R,H0).

12.5 The Tucsnak-Weiss System

12.5.1 A First Order Formulation

Tucsnak and Weiss suggested the following particular system class, [15], describing
a class of linear wave phenomena. In this reference, it is assumed that H := X = F ,
Y = U , E = 1 and D = 1. Let A0 : D(A0) ⊆ H → H be a selfadjoint posi-
tive operator. The observation operator C is an unbounded, closed linear opera-
tor

C : H1(
√

A0 + i) ⊆ H0(
√

A0 + i) → U.

Then

C0 : H1(
√

A0 + i) → U

x �→ Cx

is a continuous linear operator, according to the Closed Graph Theorem. The
control operator B is now given as the dual operator C�

0 of C0, where U and
U∗ as well as H1(

√
A0 + i)∗ and H−1(

√
A0 + i) are identified so that we have

C�
0 : U → H−1(

√
A0 + i). It is

C∗ ⊆ C�
0 .

The system considered in [15] is formally
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∂2
0 z + A0z + 1

2
C�

0 C0∂0z = C�
0 u,

C∂0z + y = u

(C observation operator, C�
0 control operator) on R>0 for a given function u ∈

H�,0(R,U). We shall instead consider the first order system

⎛
⎝∂0

⎛
⎝ 1 ( 0 0 ) 0( 0

0

) ( 1 0
0 0

) ( 0
0

)
0 ( 0 0 ) 0

⎞
⎠+

⎛
⎝ 0 ( 0 0 ) 0( 0

0

) ( 0 0
0 1

) ( 0
0

)
0 ( 0

√
2 ) 1

⎞
⎠

+
⎛
⎝ 0 DIV 0
GRAD

( 0 0
0 0

) ( 0
0

)
0 ( 0 0 ) 0

⎞
⎠
⎞
⎠
⎛
⎝ v(

ζ
w

)
y

⎞
⎠

=
⎛
⎝ 0( 0

−√
2u

)
−u

⎞
⎠+ δ ⊗

⎛
⎜⎝

z(1)(√
A0z

(0)

0

)
0

⎞
⎟⎠ (9)

with

GRAD :=
(

−√
A0

− 1√
2
C

)
: H1(

√
A0 + i) ⊆ H0(

√
A0 + i) → H0(

√
A0 + i) ⊕ U

and DIV := −(GRAD)∗. Thus the whole systems acts in the space

H�,0
(
R,H0(

√
A0 + i) ⊕ (

H0(
√

A0 + i) ⊕ U
)⊕ U

)
.

Here

z(0) ∈ H1(
√

A0 + i), z(1) ∈ H0(
√

A0 + i)

are the implementation of the initial data. Our first observation is that this system is
a linear control system in a simple case:

•

A :=
⎛
⎝ 0 DIV 0
GRAD

( 0 0
0 0

) ( 0
0

)
0 ( 0 0 ) 0

⎞
⎠

is skew-selfadjoint,
• M0 is the orthogonal projector onto H0(

√
A0 + i) ⊕ (H0(

√
A0 + i) ⊕ {0}) ⊕ {0},

•

ReM1 =
⎛
⎜⎝

0 ( 0 0 ) 0( 0
0

) ( 0 0
0 1

) ( 0
1√
2

)
0 ( 0 1√

2 ) 1

⎞
⎟⎠

is strictly positive on the null space {0} ⊕ ({0} ⊕ U) ⊕ U of M0.



12 A Note on a Class of Conservative, Well-Posed Linear Control Systems 277

Thus, well-posedness in the above sense is clear. We will show that this system is
the appropriate interpretation of the original system. As a first step we compute the
adjoint of GRAD explicitly.

Lemma 2 Assume 0 ∈ �(A0). Then

DIV ⊆
(√

A0
1√
2
C�

0

)
: H0(

√
A0 + i) ⊕ U → H−1(

√
A0 + i)

(
ζ

w

)
�→√

A0ζ + 1√
2
C�

0 w

and

D(DIV) =
{(

ζ

w

)
∈ H0(

√
A0 + i) ⊕ U

∣∣∣ (√A0
1√
2
C�

0

)(
ζ

w

)
∈ H0(

√
A0 + i)

}
.

Proof We consider

D̃IV : D(D̃IV) ⊆ H0(
√

A0 + i) ⊕ U → H0(
√

A0 + i)(
ζ

w

)
�→

(√
A0

1√
2
C�

0

)(
ζ

w

)

with D(D̃IV) being the set
{(

ζ

w

)
∈ H0(

√
A0 + i) ⊕ U

∣∣∣ (√A0
1√
2
C�

0

)(
ζ

w

)
∈ H0(

√
A0 + i)

}
.

We want to show that

D̃IV = DIV

and we shall do so by showing that

D̃IV
∗ = −GRAD.

Clearly,
(√

A0
1√
2
C∗) : H1(

√
A0 + i) ⊕ D

(
C∗)⊆ H0(

√
A0 + i) ⊕ U → H0(

√
A0 + i)

⊆ D̃IV ⊆
(√

A0
1√
2
C�

0

)
: H0(

√
A0 + i) ⊕ U → H−1(

√
A0 + i)

and hence D̃IV is densely defined. So let v ∈ D(D̃IV
∗
). Then for some

( f
g

) ∈
H0(

√
A0 + i) ⊕ U we have

∧
(

ζ
w

)
∈D(D̃IV)

〈
D̃IV

(
ζ

w

)∣∣∣v
〉
H0(

√
A0+i)

=
〈(

ζ

w

)∣∣∣
(

f

g

)〉
H0(

√
A0+i)⊕U

.



278 R. Picard et al.

It follows by testing with elements in H1(
√

A0 + i) ⊕ {0} ⊆ D(D̃IV) that

∧
ζ∈H1(

√
A0+i)

〈√A0ζ |v〉H0(
√

A0+i) = 〈ζ |f 〉H0(
√

A0+i),

which implies

v ∈ D(
√

A0)

and √
A0v = f.

Let now w ∈ U be arbitrary. Then with ζ = − 1√
2

√
A0

−1
C�

0 w we get2

0 =
〈
D̃IV

(
ζ

w

)∣∣∣v
〉
H0(

√
A0+i)

=
〈(− 1√

2

√
A0

−1
C�

0 w

w

)∣∣∣
(√

A0v

g

)〉
H0(

√
A0+i)⊕U

=
〈
− 1√

2

√
A0

−1
C�

0 w

∣∣∣√A0v

〉
H0(

√
A0+i)

+ 〈w|g〉U

=
〈
− 1√

2
C�

0 w

∣∣∣v
〉
H0(

√
A0+i)

+ 〈w|g〉U

=
〈
− 1√

2
w

∣∣∣C0v

〉
U

+ 〈w|g〉U .

This implies

1√
2
Cv = g

and thus, we have

D̃IV
∗
v =

(√
A0v

1√
2
Cv

)
= −GRADv,

i.e.

D̃IV
∗ ⊆ −GRAD.

2Note that in the fourth equality 〈·|·〉H0(
√

A0+i) is used not as the inner product in H0(
√

A0 + i) but

as its continuous extension to the duality pairing between H−1(
√

A0 + i) and H1(
√

A0 + i). This
will be utilized throughout without explicit mention.
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Moreover, let now v ∈ D(GRAD). Then for all
(

ζ
w

) ∈ D(D̃IV)

〈
D̃IV

(
ζ

w

)∣∣∣v
〉
H0(

√
A0+i)

+
〈(

ζ

w

)∣∣∣GRADv

〉
H0(

√
A0+i)⊕U

=
〈√

A0ζ + 1√
2
C�

0 w

∣∣∣v
〉
H0(

√
A0+i)

−
〈(

ζ

w

)∣∣∣
(√

A0v
1√
2
Cv

)〉
H0(

√
A0+i)⊕U

=
〈√

A0ζ + 1√
2
C�

0 w

∣∣∣v
〉
H0(

√
A0+i)

−
〈

1√
2
C�

0 w

∣∣∣v
〉
H0(

√
A0+i)

− 〈ζ |√A0v〉H0(
√

A0+i)

=
〈√

A0ζ + 1√
2
C�

0 w

∣∣∣v
〉
H0(

√
A0+i)

−
〈√

A0ζ + 1√
2
C�

0 w

∣∣∣v
〉
H0(

√
A0+i)

= 0,

from which we see that

−GRAD⊆ D̃IV
∗
.

Thus, we have shown that

D̃IV = −GRAD
∗ = DIV. �

Noting that the solution ⎛
⎝ v(

ζ
w

)
y

⎞
⎠

of (9) is in H�,−1(R,H0) ∩ H�,−2(R,H1), by the results of Sect. 12.3, we
can read (9) line by line under the assumption that 0 ∈ �(A0) and we ob-
tain

∂0v +√
A0ζ + 1√

2
C�

0 w = δ ⊗ z(1)

∂0ζ −√
A0v = δ ⊗√

A0z
(0)

w − 1√
2
Cv = −√

2u

√
2w + y = −u.

Since v, ζ ∈ H�,−1(R,H0(
√

A0 + i)) and y,w ∈ H�,−1(R,U), we see that the first
equation holds in H�,−2(R,H−1(

√
A0 + i)). Since also v ∈ H�,−2(R,H1(

√
A0 + i))

and z(0) ∈ H1(
√

A0 + i), the second equation holds in H�,−2(R,H0(
√

A0 + i)) and
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the third one in H�,−2(R,U). If we let z := √
A0

−1
ζ ∈ H�,−1(R,H1(

√
A0 + i)) ∩

H�,0(R,H−1(
√

A0 + i)) then ∂0z = v + δ ⊗ z(0) and

∂2
0z + A0z + 1√

2
C�

0 w = δ ⊗ z(1) + ∂0δ ⊗ z(0)

w − 1√
2
Cv = −√

2u

√
2w + y = −u.

Thus, eliminating w we get

∂2
0 z + A0z + 1

2
C�

0

(
C
(
∂0z − δ ⊗ z(0)

)− 2u
)= δ ⊗ z(1) + ∂0δ ⊗ z(0)

y = u − C
(
∂0z − δ ⊗ z(0)

)
,

or

∂2
0 z + A0z + 1

2
C�

0 C∂0z = C�
0 u + δ ⊗ z(1) + ∂0δ ⊗ z(0) + 1

2
δ ⊗ C�

0 Cz(0)

y = u − C∂0z + δ ⊗ Cz(0),

which is on R>0 formally the equation we started out with. Here the first equality
holds in H�,−2(R,H−1(

√
A0 + i)) and the second one in H�,−2(R,U).

12.5.2 The Tucsnak-Weiss System as a Conservative Linear
Control System

In this section we want to prove that the system considered in the previous part is
conservative as it was formulated in Theorem 2 under appropriate assumptions on
the initial values z(0), z(1). In order to formulate pointwise evaluations of the solu-
tion, we have to inspect regularity properties for the system. Since the regularization
property does not depend on u we may set u = 0. By assuming 0 ∈ �(A0) we arrive
at the equations

∂0v +√
A0ζ + 1√

2
C�

0 w = δ ⊗ z(1)

∂0ζ −√
A0v = δ ⊗√

A0z
(0)

w − 1√
2
Cv = 0

√
2w + y = 0
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and re-assemble them in a different way. As was already pointed out, the first
equation holds in the space H�,−2(R,H−1(

√
A0 + i)) and the second one in

H�,−2(R,H0(
√

A0 + i)), while both the third and fourth one hold in H�,−2(R,U).
Using the third equation to eliminate w in the first one, we get the following system

∂0v +√
A0ζ + 1

2
C�

0 C0v = δ ⊗ z(1),

∂0ζ −√
A0v = δ ⊗√

A0z
(0).

Rewriting this in an operator-matrix form we get

∂0

(
ζ

v

)
+
(

0 −√
A0√

A0
1
2C�

0 C0

)(
ζ

v

)
= δ ⊗

(√
A0z

(0)

z(1)

)
(10)

as an equation in H�,−2(R,H0(
√

A0 + i)⊕H−1(
√

A0 + i)). We define the following
linear operator

A : D(A) ⊆ H0(
√

A0 + i)2 → H0(
√

A0 + i)2,

where the domain of A, D(A), is the set
{
(ζ, v) ∈ H0(

√
A0 + i)2

∣∣∣v ∈ H1(
√

A0 + i),
√

A0ζ + 1

2
C�

0 C0v ∈ H0(
√

A0 + i)

}

and

A

(
ζ

v

)
:=

(
0 −√

A0√
A0

1
2C�

0 C0

)(
ζ

v

)
.

The density of the domain of A follows by arguing analogously to the proof of
Lemma 2.

Lemma 3 The operator A is closed and continuously invertible. Furthermore the
following holds

Re

〈(
ζ

v

)∣∣∣A
(

ζ

v

)〉
H0(A)

= 1

2

〈(
0 C0

)(ζ

v

)∣∣∣ (0 C0
)(ζ

v

)〉
U

≥ 0

and

Re

〈(
r

s

)∣∣∣A∗
(

r

s

)〉
H0(A)

= 1

2

〈(
0 C0

)(r

s

)∣∣∣ (0 C0
)(r

s

)〉
U

≥ 0

for all
(

ζ
v

) ∈ D(A),
( r

s

) ∈ D(A∗).

Proof The operator A is a restriction of the bounded linear operator
(

0 −√
A0√

A0
1
2C�

0 C0

)
: H0(

√
A0 + i)⊕H1(

√
A0 + i) → H0(

√
A0 + i)⊕H−1(

√
A0 + i).
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An easy computation shows that its inverse is given by

(
1
2A

−1/2
0 C�

0 C0A
−1/2
0 A

−1/2
0

−A
−1/2
0 0

)
: H0(

√
A0 + i) ⊕ H−1(

√
A0 + i)

→ H0(
√

A0 + i) ⊕ H1(
√

A0 + i),

which is again bounded. If we consider the restriction

H0(
√

A0 + i)2 → H0(
√

A0 + i)2

(
r

s

)
�→

(
1
2A

−1/2
0 C�

0 C0A
−1/2
0 A

−1/2
0

−A
−1/2
0 0

)(
r

s

)
,

we again obtain a bounded linear operator, whose range is a subset of D(A). Hence
it is the inverse of A and thus A−1 is a bounded linear operator, which shows that A

is closed with 0 ∈ �(A). For z, v ∈ H0(
√

A0 + i) we compute

〈
A

−1/2
0 C�

0 C0A
−1/2
0 z|v〉

H0(
√

A0+i) = 〈
C�

0 C0A
−1/2
0 z|A−1/2

0 v
〉
H0(

√
A0+i)

= 〈
C0A

−1/2
0 z|C0A

−1/2
0 v

〉
U

= 〈
A

−1/2
0 z|C�

0 C0A
−1/2
0 v

〉
H0(

√
A0+i)

= 〈
z|A−1/2

0 C�
0 C0A

−1/2
0 v

〉
H0(

√
A0+i),

proving that A
−1/2
0 C�

0 C0A
−1/2
0 is self-adjoint. Thus, we obtain

(
A∗)−1 = (

A−1)∗

=
(

1
2A

−1/2
0 C�

0 C0A
−1/2
0 −A

−1/2
0

A
−1/2
0 0

)
: H0(

√
A0 + i)2

→ H0(
√

A0 + i)2

and so the operator (A∗)−1 is a restriction of the operator

(
1
2A

−1/2
0 C�

0 C0A
−1/2
0 −A

−1/2
0

A
−1/2
0 0

)
: H0(

√
A0 + i) ⊕ H−1(

√
A0 + i)

→ H0(
√

A0 + i) ⊕ H1(
√

A0 + i).
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Using this, we get that

A∗ ⊆
(

1
2A

−1/2
0 C�

0 C0A
−1/2
0 −A

−1/2
0

A
−1/2
0 0

)−1

=
(

0 A
−1/2
0

−A
−1/2
0

1
2C�

0 C0

)
: H0(

√
A0 + i) ⊕ H1(

√
A0 + i)

→ H0(
√

A0 + i) ⊕ H−1(
√

A0 + i).

Now we are able to show the two asserted equalities. For (ζ, v) ∈ D(A) we have

Re

〈(
ζ

v

)∣∣∣A
(

ζ

v

)〉
H0(

√
A0+i)2

= Re

〈(
ζ

v

)∣∣∣
(

0 −√
A0√

A0
1
2C�

0 C0

)(
ζ

v

)〉
H0(

√
A0+i)2

= Re

〈
v

∣∣∣√A0ζ + 1

2

(
C�

0 C0
)
v

〉
H0(

√
A0+i)

+Re〈ζ |√A0v〉H0(
√

A0+i)

= Re

〈
v

∣∣∣1
2

(
C�

0 C0
)
v

〉
H0(

√
A0+i)

= 1

2
Re〈C0v|C0v〉U

= 1

2

〈(
0 C0

)(ζ

v

)∣∣∣ (0 C0
)(ζ

v

)〉
U

.

Analogously we get for (r, s) ∈ D(A∗)

Re

〈(
r

s

)∣∣∣A∗
(

r

s

)〉
H0(

√
A0+i)2

= Re

〈(
r

s

)∣∣∣
(

0
√

A0

−√
A0

1
2C�

0 C0

)(
r

s

)〉
H0(

√
A0+i)2

= Re〈r|√A0s〉H0(
√

A0+i) −Re

〈
s

∣∣∣√A0r − 1

2

(
C�

0 C0
)
s

〉
H0(

√
A0+i)

= Re

〈
s

∣∣∣1
2

(
C�

0 C0
)
s

〉
H0(

√
A0+i)

= 1

2
Re〈C0s|C0s〉U

= 1

2

〈(
0 C0

)(r

s

)∣∣∣ (0 C0
)(r

s

)〉
U

. �
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Remark 3

1. Lemma 3 especially implies that A and A∗ are monotone or accretive operators.
Hence −A is a generator of a contraction semigroup. Furthermore (∂0 + A)−1

and (∂∗
0 + A∗)−1 are bounded linear operators on H�,0(R,H0(A)) and can be

extended to bounded operators on the associated spaces H�,k(R,Hs(A)) and
H�,k(R,Hs(A

∗)) respectively, where k, s ∈ Z.
2. From the equalities we also read off that

(
0 C0

)
(∂0 + A)−1 : H�,1

(
R,H1(A)

)⊆ H�,0
(
R,H0(A)

)→ H�,0(R,U)

is continuous, since for u ∈ H�,1(R,H1(A)) we estimate

Re
〈
(it + � + A)u(t)|u(t)

〉
H0(A)

= �
∣∣u(t)

∣∣2
H0(A)

+ ∣∣(0 C0
)
u(t)

∣∣2
U

≥ ∣∣(0 C0
)
u(t)

∣∣2
U

for every t ∈ R and from this we derive the stated continuity. Analogously we
get

(
0 C0

) (
∂∗

0 + A∗)−1 : H�,1
(
R,H1

(
A∗))⊆ H�,0

(
R,H0

(
A∗))→ H�,0(R,U)

is continuous. Thus we can extend these operators continuously to H�,k(R,

H0(A)) and H�,k(R,H0(A
∗)) respectively taking values in H�,k(R,U) for all

k ∈ Z. From this it is possible to derive the continuity of the composition oper-
ator (∂0 + A)−1

( 0
C�

0

)
as a mapping from H�,k(R,U) to H�,k(R,H0(A)), which

in the terminology of [15] means that C�
0 is admissible. However, in our setting

this property is not needed.

Recall that our equation (10) is valid in H�,−2(R,H0(
√

A0 + i) ⊕ H−1(
√

A0 + i)).
We show now that this implies the validity in H�,−2(R,H−1(A)).

Lemma 4 The Sobolev-chains of
√

A0 and A∗ are related by

H1
(
A∗) ↪→ H0(

√
A0 + i) ⊕ H1(

√
A0 + i).

Proof Since

(A∗)−1 ⊆
(

1
2A

−1/2
0 C�

0 C0A
−1/2
0 −A

−1/2
0

A
−1/2
0 0

)

we conclude that the inclusion H1(A
∗) ⊆ H0(

√
A0 + i) ⊕ H1(

√
A0 ⊕ i) holds. The

Hilbert spaces H0(
√

A0 + i)⊕H1(
√

A0 + i) and H1(A
∗) are both continuously em-

bedded in H0(
√

A0 + i) ⊕ H0(
√

A0 + i) = H0(A
∗) and hence the assertion follows

by the Closed Graph Theorem. �
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Remark 4 As a direct consequence of Lemma 4 we get

H0(
√

A0 + i) ⊕ H−1(
√

A0 + i) ↪→ H−1(A)

since H−1(A) is unitary equivalent to the dual space H1(A
∗)∗.

With this we conclude that the equation

∂0

(
ζ

v

)
+ A

(
ζ

v

)
= δ ⊗

(√
A0z

(0)

z(1)

)

holds in H�,−2(R,H−1(A)). From this we get

(
ζ

v

)
− χR>0 ⊗

(√
A0z

(0)

z(1)

)
= (∂0 + A)−1

(
χR>0 ⊗ A

(√
A0z

(0)

z(1)

))
.

If we assume that
(√

A0z
(0)

z(1)

) ∈ D(A), we get, since −A is the generator of a C0-

semigroup, that (∂0 + A)−1
(
χR>0 ⊗ A

(√
A0z

(0)

z(1)

)) ∈ H�,1(R,H0(A)), by employing

semigroup theory as a regularity result. This shows that the system (9) is globally
regularizing with U := D(A). Thus Theorem 2 is applicable and we can show the
conservativity of the system. We summarize our findings of this section in the fol-
lowing theorem.

Theorem 3 The system (9) is well-posed. If 0 ∈ �(A0) it is globally regularizing
and conservative in the sense of Theorem 2.

Proof The well-posedness was shown in Sect. 12.5.1 and the regularity was proved
above. By comparing the system (9) and the setting in Theorem 2 we see that the
conservativity follows with R = 1√

2
and α = 1. �

12.6 Main Observations

In this note, we gave a unified approach to a large class of infinite-dimensional
control systems. This perspective enabled us, assuming mild regularizing properties
of the solution operator, to construct observation equations such that the respective
control systems become conservative in the sense of [15]. Moreover, we studied
a particular linear control system, which models wave phenomena and consists of
unbounded control and observation operators. It turned out that this system may
be rewritten into a form introduced in [8], such that the solution theory becomes
easily accessible and unbounded control and observation need not to be treated.
Surprisingly enough, the system studied in [15] corresponds to the skew-selfadjoint
operator case, which might be a rather special one at first glance.
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