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Preface

The present volume is a collection of papers devoted to several topics in the theory
of evolution equations. It originates from lectures given at the session devoted to
partial differential equations at the 8th ISAAC Congress held in the period 22–27
August 2011 at the Peoples’ Friendship University in Moscow, Russia. At the same
time, it also includes papers originating from the ISAAC (International Society for
Analysis, its Applications and Computation) Special Interest Group in Partial Dif-
ferential Equations.

The papers collected in this volume are authored by participants of that meeting
and by members of the special interest group. They focus on different aspects of the
current research and are, in particular, centred around

• hyperbolic partial differential equations,
• p-evolution equations,
• boundary value problems,
• related optimisation problems,
• and non-linear aspects.

The aim of this volume is two-fold. On one hand it shall give an overview on a va-
riety of problems in the field and, therefore, can serve as an introduction to some
of the current research on different topics related to hyperbolic partial differential
equations. On the other hand, all the papers are either full research papers present-
ing new results or surveys giving a broader overview of particular areas, thus also
contributing to the advances in the area.

Michael Reissig
Michael Ruzhansky

Freiberg, Germany
London, United Kingdom
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Chapter 1
Global Existence and Energy Decay of Solutions
for a Nondissipative Wave Equation
with a Time-Varying Delay Term

Abbes Benaissa and Salim A. Messaoudi

Abstract We consider the energy decay for a nondissipative wave equation in a
bounded domain with a time-varying delay term in the internal feedback. We use
an approach introduced by Guesmia which leads to decay estimates (known in the
dissipative case) when the integral inequalities method due to Haraux-Komornik
(Haraux in Nonlinear Partial Differential Equations and Their Applications. Collège
de France seminar, Vol. VII (Paris, 1983–1984), pp. 161–179, 1985; Komornik in
Exact Controllability and Stabilization: The Multiplier Method, 1994) cannot be
applied due to the lack of dissipativity. First, we study the stability of a nonlinear
wave equation of the form

utt (x, t)−Δxu(x, t)+μ1σ(t)ut (x, t)+μ2σ(t)ut
(
x, t − τ(t)

)

+ θ(t)h
(∇xu(x, t)

)= 0

in a bounded domain. We consider the general case with a nonlinear function h sat-
isfying a smallness condition and obtain the decay of solutions under a relation be-
tween the weight of the delay term in the feedback and the weight of the term with-
out delay. We impose no control on the sign of the derivative of the energy related to
the above equation. In the second case we take θ ≡ const and h(∇u)= −∇Φ · ∇u.
We prove an exponential decay result of the energy without any smallness condition
on Φ.
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2 A. Benaissa and S.A. Messaoudi

1.1 Introduction

In this paper we investigate the decay properties of solutions for the initial boundary
value problem for the nonlinear wave equation of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt (x, t)−Δxu(x, t)+μ1σ(t)ut (x, t)

+μ2σ(t)ut (x, t − τ(t))+ θ(t)h(∇xu(x, t))= 0 in Ω×]0,+∞[,
u(x, t)= 0 on Γ×]0,+∞[,
u(x,0)= u0(x), ut (x,0)= u1(x) on Ω,
u′(x, t − τ(0))= f0(x, t − τ(0)) on Ω×]0, τ (0)[,

(P )

where Ω is a bounded domain in R
n, n ∈ N

∗, with a smooth boundary ∂Ω = Γ ,
τ > 0 is a time delay, μ1 and μ2 are positive real numbers, and the initial data
(u0, u1, f0) belong to a suitable function space.

When h ≡ 0, it is well known that, in absence of delay (μ2 = 0), the energy
of problem (P ) is exponentially decaying to zero. See, for instance, [4, 5, 11, 12]
and [15]. On the contrary, if μ1 = 0 and μ2 > 0, that is, there exits only the delay
part in the internal, the system (P ) becomes unstable (see, for instance [6]). In recent
years, the PDEs with time delay effects have become an active area of research since
they arise in many practical problems (see, for example, [1, 20]). In [6], the authors
showed that a small delay in a boundary control could turn a well-behave hyperbolic
system into a wild one and, therefore, delay becomes a source of instability. To
stabilize a hyperbolic system involving input delay terms, additional control terms
will be necessary (see [16, 17, 21]). For instance, in [16] the authors studied the
wave equation with a linear internal damping term with constant delay (σ(t) ≡ 1,
τ(t)= const in the problem (P )) and determined suitable relations between μ1 and
μ2, for which the stability or alternatively instability takes place. More precisely,
they showed that the energy is exponentially stable if μ2 <μ1 and they also found
a sequence of delays for which the corresponding solution of (P ) will be instable
if μ2 ≥ μ1. The main approach used in [16] is an observability inequality obtained
with a Carleman estimate. The same results were obtained if both the damping and
the delay are acting on the boundary. We also recall the result by Xu, Yung and Li
[21], where the authors proved a result similar to the one in [16] for the one-space
dimension by adopting the spectral analysis approach.

The case of time-varying delay in the wave equation has been studied recently by
Nicaise, Valein and Fridman [18] in one-space dimension (σ(t)≡ 1 in the problem
(P )). They proved an exponential stability result under the condition

μ2 <
√

1 − dμ1,

where the function τ satisfies

τ ′(t)≤ d, ∀t > 0

for a constant d < 1.
In [19], Nicaise, Pignotti and Valein extended the above result to higher space

dimensions and established an exponential decay.
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When h �≡ 0, in the case μ2 = 0, very little is known in the literature (see [2, 3, 7–
9]). In [7], Guesmia established well posedness and energy decay estimates in the
case of constant coefficients (σ ≡ 1 and θ ≡ 1). He used a new approach based on a
combination of some ideas given in his paper [8] and the multiplier method. In [2],
the authors proved the same result in the case of an unbounded domain and variable
coefficients.

We note here that the gradient-like nonlinear term h(∇u) makes the problem
more delicate, because the system may not be dissipative.

Our purpose in this paper is to give an energy decay estimate of the solution of
the problem (P ) in the case when h is nonlinear and linear in the presence of a time-
varying delay term in the feedback. We use the ideas given by Guesmia in [7–9] and
the multiplier technique to prove our result.

1.2 Preliminaries and Main Results

First assume the following hypotheses:

(H1) σ, θ :R+ →]0,+∞[ are non increasing functions of class C1(R+) satisfying

∫ +∞

0
σ(τ)dτ = +∞, (1)

∣∣σ ′(t)
∣∣≤ cσ (t), (2)

∣∣θ ′(t)
∣∣≤ cθ(t), (3)

θ(t)≤ cσ (t). (4)

(H2) τ is a function such that

τ ∈W 2,∞([0, T ]), ∀T > 0, (5)

0< τ0 ≤ τ(t)≤ τ1, ∀t > 0, (6)

τ ′(t)≤ d < 1, ∀t > 0, (7)

where τ0 and τ1 are two positive constants.
(H3)

μ2 <
√

1 − dμ1. (8)

(H4) h : Rn → R is a C1 function such that ∇h is bounded and there exists β > 0
such that

∣∣h(ζ )
∣∣≤ β|ζ |, ∀ζ ∈ R

n. (9)

We introduce, as in [16], the new variable

z(x,ρ, t)= ut
(
x, t − τ(t)ρ

)
, x ∈Ω,ρ ∈ (0,1), t > 0. (10)
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Then, we have

τ(t)zt (x, ρ, t)+
(
1 − τ ′(t)ρ

)
zρ(x,ρ, t)= 0, in Ω × (0,1)× (0,+∞). (11)

Therefore, problem (P ) is equivalent to:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt (x, t)−Δxu(x, t)+μ1σ(t)ut (x, t)

+μ2σ(t)z(x,1, t)+ θ(t)h(∇xu(x, t))= 0, x ∈Ω, t > 0,
τ (t)zt (x, ρ, t)+ (1 − τ ′(t)ρ)zρ(x,ρ, t)= 0, x ∈Ω,ρ ∈ (0,1), t > 0,
u(x, t)= 0, x ∈ ∂Ω, t > 0,
z(x,0, t)= ut (x, t) x ∈Ω, t > 0,
u(x,0)= u0(x), ut (x,0)= u1(x) x ∈Ω,
z(x,ρ,0)= f0(x,−τ(0)ρ) x ∈Ω,ρ ∈ (0,1).

(12)

Let ξ̄ be a positive constant such that

μ2√
1 − d

< ξ̄ < 2μ1 − μ2√
1 − d

. (13)

We define the energy of the solution by:

E(t)= 1

2

∥∥ut (t)
∥∥2

2 + 1

2

∥∥∇xu(t)
∥∥2

2 + ξ(t)τ (t)

2

∫

Ω

∫ 1

0
z2(x,ρ, t)dρdx, (14)

where

ξ(t)= ξ̄σ (t).

We have the following theorem.

Theorem 1 Let (u0, u1, f0) ∈ (H 2(Ω) ∩ H 1
0 (Ω)) × H 1

0 (Ω) × H 1
0 (Ω;H 1(0,1))

satisfy the compatibility condition

f0(·,0)= u1.

Assume that the hypotheses (H1)–(H4) hold with β small enough. Then problem (P )
admits a unique weak solution

u ∈ L∞
loc

((−τ(0),∞);H 2(Ω)∩H 1
0 (Ω)

)
,

ut ∈ L∞
loc

((−τ(0),∞);H 1
0 (Ω)

)
, utt ∈ L∞

loc

((−τ(0),∞);L2(Ω)
)
.

Moreover, the energy satisfies for t ≥ 0

E(t)≤ E(0)

ω(0)
ω
(
h(t)

)
eλ̃(t)−λ̃(h(t))e−

∫ h(t)
0 ω(τ)dτ , (15)

where

λ(t)= 2β
θ ◦ σ̃−1

σ ◦ σ̃−1
and σ̃ (t)=

∫ t

0
σ(τ)dτ.
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Next, we consider the case where θ ≡ 1 and h(∇u)= −∇Φ · ∇u, where

Φ ∈W 1,∞(Ω).

Let EΦ(t) be the energy associated to the solution of problem (P ):

E(t)=EΦ(t)

= 1

2

∥
∥eΦ/2ut (t)

∥
∥2

2 + 1

2

∥
∥eΦ/2∇xu(t)

∥
∥2

2

+ ξ(t)τ (t)

2

∫

Ω

∫ 1

0
eΦz2(x,ρ, t)dxdρ. (16)

Theorem 2 Let (u0, u1, f0) ∈H 1
0 (Ω)×L2(Ω)×L2(Ω × (0,1)) satisfy the com-

patibility condition

f0(·,0)= u1.

Then problem (P ) admits a unique weak solution

u(t) ∈ C([−τ(0),∞);H 1(Ω)
)∩C1([−τ(0),∞);L2(Ω)

)
.

In addition, we have the following decay estimate:

E(t)≤ cE(0)e−ωσ̃ (t), ∀t ≥ 0, (17)

while c and ω are positive constants, independent of the initial data.

Lemma 1 Let (u, z) be a solution to the problem (12). Then, the energy functional
defined by (14) satisfies

E′(t) ≤ −σ(t)
(
μ1 − ξ̄

2
− μ2

2
√

1 − d

)
‖ut‖2

2

− σ(t)

(
ξ̄ (1 − τ ′(t))

2
− μ2

√
1 − d

2

)∫

Ω

z2(x,1, t)dx

− θ(t)

∫

Ω

ut (x, t)h(∇xu)dx
≤ 2βθ(t)E(t). (18)

Proof Multiplying the first equation in (12) by ut , integrating over Ω and using
integration by parts, we get

1

2

d

dt

(‖ut‖2
2 + ‖∇xu‖2

2

)+μ1σ(t)‖ut‖2
2 +μ2σ(t)

∫

Ω

z(x,1, t)ut (x, t)dx

+ θ(t)

∫

Ω

u′(t)h(∇xu)dx = 0. (19)
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We multiply the second equation in (12) by ξ(t)z and integrate over Ω × (0,1) to
obtain:

ξ(t)τ (t)

∫

Ω

∫ 1

0
zt z(x,ρ, t)dρdx

= −ξ(t)
2

∫

Ω

∫ 1

0

(
1 − τ ′(t)ρ

) ∂
∂ρ

(
z(x,ρ, t)

)2
dρdx. (20)

Consequently,

d

dt

(
ξ(t)τ (t)

2

∫

Ω

∫ 1

0
z2(x,ρ, t)dρdx

)

= −ξ(t)
2

∫ 1

0

∫

Ω

∂

∂ρ

((
1 − τ ′(t)ρ

)
z2(x,ρ, t)

)
dρdx

+ ξ ′(t)τ (t)
2

∫ 1

0

∫

Ω

z2(x,ρ, t)dxdρ

= ξ(t)

2

∫

Ω

(
z2(x,0, t)− z2(x,1, t)

)
dx + ξ(t)τ ′(t)

2

∫

Ω

z2(x,1, t)dx

+ ξ ′(t)τ (t)
2

∫ 1

0

∫

Ω

z2(x,ρ, t)dxdρ. (21)

From (14), (19) and (21) we obtain

E′(t) ≤ −σ(t)
(
μ1 − ξ̄

2

)
‖ut‖2

2 − σ(t)

(
ξ̄ (1 − τ ′(t))

2

)∫

Ω

z2(x,1, t)dx

−μ2σ(t)

∫

Ω

z(x,1, t)ut (x, t)dx − θ(t)

∫

Ω

ut (x, t)h(∇xu)dx. (22)

Due to Young’s inequality, we have

μ2

∫

Ω

z(x,1, t)ut (x, t)dx ≤ μ2

2
√

1 − d
‖ut‖2

2 + μ2
√

1 − d

2

∫

Ω

z2(x,1, t)dx. (23)

Inserting (23) into (22) we obtain

E′(t) ≤ −σ(t)
(
μ1 − ξ̄

2
− μ2

2
√

1 − d

)
‖ut‖2

2

− σ(t)

(
ξ̄ (1 − τ ′(t))

2
− μ2

√
1 − d

2

)∫

Ω

z2(x,1, t)dx

− θ(t)

∫

Ω

ut (x, t)h(∇xu)dx. (24)
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From (9), the definition of E(t) and the Cauchy-Schwarz inequality we obtain
∣∣∣∣

∫

Ω

ut (x, t)h(∇xu)dx
∣∣∣∣≤ β‖ut‖2‖∇xu‖2 ≤ 2βE(t). (25)

Inserting (25) into (24), we obtain

E′(t) ≤ −σ(t)
(
μ1 − ξ̄

2
− μ2

2
√

1 − d

)
‖ut‖2

2

− σ(t)

(
ξ̄ (1 − τ ′(t))

2
− μ2

√
1 − d

2

)∫

Ω

z2(x,1, t)dx + 2βθ(t)E(t).

Then, by using (13) and (7), our assertion holds. �

1.3 Global Existence

Throughout this section we assume u0 ∈ H 2(Ω) ∩H 1
0 (Ω) and u1 ∈H 1

0 (Ω), f0 ∈
L2(Ω;H 1(0,1)).

We employ the Galerkin method to construct a global solution. Let T > 0 be fixed
and denote by Vk the space generated by {w1,w2, . . . ,wk}, where the set {wk, k ∈
N} is a basis of H 2(Ω)∩H 1

0 (Ω).
Now, we define for 1 ≤ j ≤ k the sequence φj (x,ρ) as follows:

φj (x,0)=wj .

Then, we may extend φj (x,0) by φj (x,ρ) over L2(Ω × (0,1)) such that (φj )j
form a basis of L2(Ω;H 1(0,1)) and denote by Zk the space generated by
{φ1, φ2, . . . , φk}.

We construct approximate solutions (uk, zk) (k = 1,2,3, . . .) in the form

uk(t)=
k∑

j=1

gjk(t)wj ,

zk(t)=
k∑

j=1

hjk(t)φj ,

where gjk and hjk (j = 1,2, . . . ,m) are determined by the following ordinary dif-
ferential equations:
⎧
⎪⎪⎨

⎪⎪⎩

(u′′
k(t),wj )+ (∇xuk(t),∇xwj )+μ1σ(t)(u

′
k,wj )+μ2σ(t)(zk(·,1),wj )

+ θ(t)(h(∇xuk),wj )= 0,
1 ≤ j ≤ k,

zk(x,0, t)= u′
k(x, t),

(26)
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uk(0)= u0k =
k∑

j=1

(u0,wj )wj → u0 in H 2(Ω)∩H 1
0 (Ω) as k→ +∞, (27)

u′
k(0)= u1k =

k∑

j=1

(u1,wj )wj → u1 in H 1
0 (Ω) as k→ +∞ (28)

and
{
(τ (t)zkt + (1 − τ ′(t)ρ)zkρ,φj )= 0,
1 ≤ j ≤ k,

(29)

zk(ρ,0)= z0k =
k∑

j=1

(f0, φj )φj → f0 in L2(Ω;H 1(0,1)
)

as k→ +∞. (30)

By virtue of the theory of ordinary differential equations, the system (26)–(30) has
a unique local solution which is extended to a maximal interval [0, Tk[ (with 0 <
Tk ≤ +∞) by Zorn lemma since the nonlinear terms in (26) are locally Lipschitz
continuous. Note that uk(t) is of class C2.

In the next step, we obtain a priori estimates for the solution of the system (26)–
(30), so that it can be extended beyond [0, Tk[ to obtain a single solution defined for
all t > 0.

We will utilize a standard compactness argument for the limiting procedure and
it suffices to derive some a priori estimates for (uk, zk).

The First Estimate Since the sequences u0k , u1k and z0k converge, then from
(18) we can find a positive constant C independent of k such that

Ek(t)+ a1

∫ t

0
σ(s)

∥∥u′
k

∥∥2
2ds + a2

∫ t

0
σ(s)

∥∥zk(x,1, t)
∥∥2

2ds ≤ CEk(0)e
CT , (31)

where

Ek(t)= 1

2

∥∥u′
k(t)

∥∥2
2 + 1

2

∥∥∇xuk(t)
∥∥2

2 + ξ(t)τ (t)

2

∫

Ω

∫ 1

0
z2
k(x,ρ, t)dρdx,

a1 = μ1 − ξ̄

2
− μ2

2
√

1 − d
and a2 = ξ̄ (1 − d)

2
− μ2

√
1 − d

2
.

These estimates imply that the solution (uk, zk) exists globally in [0,+∞[.
Estimate (31) yields

(uk) is bounded in L∞
loc

(
0,∞;H 1

0 (Ω)
)
, (32)

(
u′
k

)
is bounded in L∞

loc

(
0,∞;L2(Ω)

)
, (33)

(
σ(t)u′2

k(t)
)

is bounded in L1(Ω × (0, T )
)
, (34)
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(
σ(t)z2

k(x,ρ, t)
)

is bounded in L∞
loc

(
0,∞;L1(Ω × (0,1)

))
, (35)

(
σ(t)z2

k(x,1, t)
)

is bounded in L1(Ω × (0, T )
)
. (36)

The Second Estimate We first estimate u′′
k(0). Replacingwj by u′′

k(t) in (26) and
taking t = 0, we obtain:

∥∥u′′
k(0)

∥∥
2 ≤ ‖Δxu0k‖2 +μ1σ(0)‖u1k‖2 +μ2σ(0)‖z0k‖2 + βθ(0)‖∇xu0k‖2

≤ ‖Δxu0‖2 +μ1σ(0)‖u1‖2 +μ2σ(0)‖z0‖2 + βθ(0)‖∇xu0‖2

≤ C.

Differentiating (26) with respect to t , we get
(
u′′′
k (t)+Δxu

′
k(t)+μ1σ(t)u

′′
k(t)+μ1σ

′(t)u′
k +μ2σ(t)z

′
k +μ2σ

′(t)zk
+ θ(t)∇xu′

kh
′(∇xuk)+ θ ′(t)h(∇xuk),wj

)= 0.

Multiplying by g′′
jk(t), summing over j from 1 to k, it follows that

1

2

d

dt

(∥∥u′′
k(x, t)

∥∥2
2 + ∥∥∇xu′

k(t)
∥∥2

2

)

+μ1σ(t)

∫

Ω

u′′2
k (x, t)dx +μ1σ

′(t)
∫

Ω

u′′
k(x, t)u

′
k(x, t)dx

+μ2σ(t)

∫

Ω

u′′
k(x, t)z

′
k(x,1, t)dx +μ2σ

′(t)
∫

Ω

u′′
k(x, t)zk(x,1, t)dx

+ θ(t)

∫

Ω

u′′
k(x, t)∇xu′

k(x, t)h
′(∇xuk)dx +

∫

Ω

u′′
k(t)θ

′(t)h(∇xuk)dx
= 0. (37)

Differentiating (29) with respect to t , we get
((

τ(t)

1 − τ ′(t)ρ

)′
z′k + τ(t)

1 − τ ′(t)ρ
z′′k (t)+

∂

∂ρ
z′k, φj

)
= 0.

Multiplying by h′
jk(t), summing over j from 1 to k, it follows that

(
τ(t)

1 − τ ′(t)ρ

)′∥∥z′k(t)
∥∥2

2 + 1

2

τ(t)

1 − τ ′(t)ρ
d

dt

∥∥z′k(t)
∥∥2

2 + 1

2

d

dρ

∥∥z′k(t)
∥∥2

2 = 0. (38)

Then, we have

1

2

(
τ(t)

1 − τ ′(t)ρ

)′∥∥z′k(t)
∥∥2

2 + 1

2

d

dt

(
τ(t)

1 − τ ′(t)ρ
∥∥z′k(t)

∥∥2
2

)

+ 1

2

d

dρ

∥∥z′k(t)
∥∥2

2 = 0. (39)
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Taking the sum of (37) and (39), we obtain that

1

2

d

dt

(∥∥u′′
k(t)

∥∥2
2 + ∥∥∇xu′

k(t)
∥∥2

2 +
∫ 1

0

τ(t)

1 − τ ′(t)ρ
∥∥z′k(x,ρ, t)

∥∥2
L2(Ω)

dρ

)

+μ1σ(t)

∫

Ω

u′′2
k (x, t)dx + 1

2

∫

Ω

∣∣z′k(x,1, t)
∣∣2dx

= −1

2

∫ 1

0

(
τ(t)

1 − τ ′(t)ρ

)′∥∥z′k(x,ρ, t)
∥∥2

2dρ −μ2σ(t)

∫

Ω

u′′
k(x, t)z

′
k(x,1, t)dx

−μ1σ
′(t)

∫

Ω

u′′
k(x, t)u

′
k(x, t)dx −μ2σ

′(t)
∫

Ω

u′′
k(x, t)zk(x,1, t)dx

+ 1

2

∥∥u′′
k(x, t)

∥∥2
2

− θ(t)

∫

Ω

u′′
k(x, t)∇xu′

k(x, t)h
′(∇xuk)dx − θ ′(t)

∫

Ω

u′′
k(x, t)h(∇xuk)dx.

Using (H2), (H4), Cauchy-Schwarz and Young’s inequalities, we obtain

1

2

d

dt

(∥∥u′′
k(t)

∥∥2
2 + ∥∥∇xu′

k(t)
∥∥2

2 +
∫ 1

0

τ(t)

1 − τ ′(t)ρ
∥∥z′k(x,ρ, t)

∥∥2
L2(Ω)

dρ

)

+μ1σ(t)

∫

Ω

u′′2
k(t)dx + c

∫

Ω

∣∣z′k(x,1, t)
∣∣2dx

≤ c′
∥∥u′′

k(t)
∥∥2

2 + c′′
∫ 1

0

τ(t)

1 − τ ′(t)ρ
∥∥z′k(x,ρ, t)

∥∥2
L2(Ω)

dρ

+ c
∣
∣σ ′(t)

∣
∣
∥
∥u′

k(t)
∥
∥2

2 + ∣
∣σ ′(t)

∣
∣
∥
∥zk(x,1, t)

∥
∥2

2 + c
∥
∥∇xu′

k(t)
∥
∥2

2 + c
∥
∥∇xuk(t)

∥
∥2

2

≤ c′
∥∥u′′

k(t)
∥∥2

2 + c′′
∫ 1

0

τ(t)

1 − τ ′(t)ρ
∥∥z′k(x,ρ, t)

∥∥2
L2(Ω)

dρ

+ c
∣∣σ(t)

∣∣∥∥u′
k(t)

∥∥2
2 + ∣∣σ(t)

∣∣∥∥zk(x,1, t)
∥∥2

2 + c
∥∥∇xu′

k(t)
∥∥2

2 + c
∥∥∇xuk(t)

∥∥2
2.

Integrating the last inequality over (0, t) and using (31), we get

(∥∥u′′
k(t)

∥∥2
2 + ∥∥∇xu′

k(t)
∥∥2

2 +
∫ 1

0

τ(t)

1 − τ ′(t)ρ
∥∥z′k(x,ρ, t)

∥∥2
L2(Ω)

dρ

)

≤
(∥∥u′′

k(0)
∥∥2

2 + ∥∥∇xu′
k(0)

∥∥2
2

+
∫ 1

0

τ(0)

1 − τ ′(0)ρ
∥
∥z′k(x,ρ,0)

∥
∥2
L2(Ω)

dρ + (
cT + c′

)
ecT

)

+ c

∫ t

0

(∥∥u′′
k(s)

∥∥2
2 + ∥∥∇xu′

k(s)
∥∥2

2 +
∫ 1

0

τ(s)

1 − τ ′(s)ρ
∥∥z′k(x,ρ, s)

∥∥2
L2(Ω)

dρ

)
ds.
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Using Gronwall’s lemma, we deduce that

∥∥u′′
k(t)

∥∥2
2 + ∥∥∇xu′

k(t)
∥∥2

2 +
∫ 1

0

τ(t)

1 − τ ′(t)ρ
∥∥z′k(x,ρ, t)

∥∥2
L2(Ω)

dρ

≤ ecT
(∥∥u′′

k(0)
∥∥2

2 + ∥∥∇xu′
k(0)

∥∥2
2

+
∫ 1

0

τ(0)

1 − τ ′(0)ρ
∥
∥z′k(x,ρ,0)

∥
∥2
L2(Ω)

dρ + (
cT + c′

)
ecT

)

for all t ∈R
+, therefore, we conclude that

(
u′′
k

)
is bounded in L∞

loc

(
0,∞;L2(Ω)

)
, (40)

(
u′
k

)
is bounded in L∞

loc

(
0,∞;H 1

0 (Ω)
)
, (41)

(
τ(t)z′k

)
is bounded in L∞

loc

(
0,∞;L2(Ω × (0,1)

))
. (42)

1.3.1 Analysis of the Nonlinear Term

From the assumption (9) we obtain
∫

Ω

∣∣h
(∇xuk(t)

)∣∣2dx ≤ β

∫

Ω

∣∣∇xuk(t)
∣∣2dx ≤ C′,

where C′ is a positive constant and, consequently, we conclude that

h
(∇xuk(t)

)
is bounded in L2(0, T ;L2(Ω)

)
. (43)

Applying Dunford-Pettis theorem, we deduce from (32), (33), (34), (35), (36), (40),
(41), (42) and (43), replacing the sequence uk with a subsequence, if necessary, that

uk → u weak-star in L∞
loc

(
0,∞;H 2(Ω)∩H 1

0 (Ω)
)
, (44)

u′
k → u′ weak-star in L∞

loc

(
0,∞;H 1

0 (Ω)
)
,

u′′
k → u′′ weak-star in L∞

loc

(
0,∞;L2(Ω)

)
, (45)

u′
k → χ weak in L2(Ω × (0, T );σ ),

zk → z weak-star in L∞
loc

(
0,∞;H 1

0

(
Ω;L2(0,1)

))
,

F
(∇xuk(t)

)→ ζ weak-star in L∞
loc

(
0,∞;L2(Ω)

)
, (46)

z′k → z′ weak-star in L∞
loc

(
0,∞;L2(Ω × (0,1)

))
, (47)

zk(x,1, t)→ψ weak in L2(Ω × (0, T );σ )
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for suitable functions u ∈ L∞(0, T ;H 2(Ω) ∩ H 1
0 (Ω)), z ∈ L∞(0, T ;L2(Ω ×

(0,1))), χ ∈ L2(Ω × (0, T );σ), ψ ∈ L2(Ω × (0, T );σ), ζ ∈ L∞(0, T ;L2(Ω)),
for all T ≥ 0. (L2(Ω × (0, T );σ) is the space of square-integrable functions with
weight σ .) We have to show that u is a solution of (P ).

From (41) we have that (u′
k) is bounded in L∞(0, T ;H 1

0 (Ω)). Then (u′
k) is

bounded in L2(0, T ;H 1
0 (Ω)). Since (u′′

k ) is bounded in L∞(0, T ;L2(Ω)), then
(u′′
k) is bounded in L2(0, T ;L2(Ω)). Consequently, (u′

k) is bounded in H 1(Ω ×
(0, T )).

Since the embedding H 1(Ω × (0, T )) ↪→ L2(Ω × (0, T )) is compact, using
Aubin-Lions theorem [13], we can extract a subsequence (uς ) of (uk) such that

∂

∂t
uς → ∂

∂t
u strongly in L2(Ω × (0, T )

)
. (48)

Therefore
∂

∂t
uς → ∂

∂t
u strongly and a.e. in Ω × (0, T ). (49)

Similarly we obtain

zς → z strongly in L2(Ω × (0,1)× (0, T )
)

(50)

and

zς → z strongly and a.e. in Ω × (0,1)× (0, T ). (51)

It follows at once, from (44), (45), (46), (47), (48) and (50), that for each fixed
v ∈ L2(0, T ;L2(Ω)) and w ∈ L2(0, T ;L2(Ω)× (0,1))

∫ T

0

∫

Ω

(
∂2

∂t2
uς −Δxuς +μ1σ(t)

∂

∂t
uς +μ2σ(t)zς + h(∇xuς )

)
vdxdt

→
∫ T

0

∫

Ω

(
utt −Δxu+μ1σ(t)ut +μ2σ(t)z+ ζ

)
vdxdt, (52)

∫ T

0

∫ 1

0

∫

Ω

(
τ(t)

∂

∂t
zς + (

1 − τ ′(t)ρ
) ∂
∂ρ
zς

)
wdxdρdt

→
∫ T

0

∫ 1

0

∫

Ω

(
τ(t)zt +

(
1 − τ ′(t)ρ

) ∂
∂ρ
z

)
wdxdρdt (53)

as ς → +∞.
On the other hand, multiplying the approximate problem (26)–(29) by gjk and

hjk and summing over j from 1 to k and integrating the result over [0, T ], we infer

∫ T

0

(
∂2

∂t2
uς ,uς

)
dt +

∫ T

0
|∇xuς |2dt +μ1

∫ T

0
σ(t)

(
∂

∂t
uς ,uς

)
dt

+μ2

∫ T

0
σ(t)(zς , uς )dt +

∫ T

0
θ(t)h(∇xuς ,uς )dt = 0, (54)
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∫ T

0
τ(t)

(
∂

∂t
zς , zς

)
dt +

∫ T

0

(
1 − τ ′(t)ρ

)( ∂

∂ρ
zς , zς

)
dt = 0. (55)

Considering (48) and (50), we are able to pass to the limit in (54) and (55), observing
the weak convergence related to this identity. More precisely, we obtain

lim
ς→∞

∫ T

0
‖∇xuς‖2dt = −

∫ T

0
(utt , u)dt −μ1

∫ T

0
σ(t)(ut , u)dt

−μ2

∫ T

0
σ(t)(z, u)dt −

∫ T

0
θ(t)(ζ, u)dt, (56)

∫ T

0
τ(t)(zt , z)dt +

∫ T

0

(
1 − τ ′(t)ρ

)
(
∂

∂ρ
z, z

)
dt = 0. (57)

Recalling (52) and (53), we easily see that

lim
ς→∞

∫ T

0
‖∇xuς‖2dt =

∫ T

0
‖∇xu‖2dt. (58)

Now, taking into account that
∫ T

0
‖∇xuς − ∇xu‖2dt =

∫ T

0
‖∇xuς‖2dt −

∫ T

0
(∇xuς ,∇xu)dt +

∫ T

0
‖∇xu‖2dt,

we obtain

∇xuς → ∇xu in L2(0, T ;L2(Ω)
)

and consequently

∇xuς → ∇xu a.e. in Q. (59)

From (59), we get

h(∇xuς )→ h(∇xu) a.e. in Q. (60)

From (43), (46) and (60), we get

h(∇xuς )⇀ h(∇xu) weakly in L2(0, T ;L2(Ω)
)
.

Therefore,
∫ T

0

∫

Ω

(
utt −Δxu+μ1σ(t)ut +μ2σ(t)z+ h(∇xu)

)
vdxdt = 0,

v ∈ L2(0, T ;L2(Ω)
)
,

∫ T

0

∫ 1

0

∫

Ω

(
τ(t)ut +

(
1 − τ ′(t)ρ

) ∂
∂ρ
z

)
wdxdρdt = 0,

w ∈ L2(0, T ;L2(Ω)× (0,1)
)
.

Thus the problem (P ) admits a global weak solution u.
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1.4 Asymptotic Behavior

From now on, we denote by c various positive constants which may be different at
different occurrences. We multiply the first equation of (12) by φ′Equ, where φ is
a bounded function satisfying all the hypotheses of Lemma 4. We obtain

0 =
∫ T

S

Eqφ′
∫

Ω

u
(
utt −Δu+μ1σ(t)ut +μ2σ(t)z(x,1, t)+ θ(t)h(∇xu)

)
dxdt

=
[
Eqφ′

∫

Ω

uutdx

]T

S

−
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′)

∫

Ω

uutdxdt

− 2
∫ T

S

Eqφ′
∫

Ω

u′2dxdt +
∫ T

S

Eqφ′
∫

Ω

(
u2
t + |∇u|2)dxdt

+μ1

∫ T

S

Eqφ′σ(t)
∫

Ω

uutdxdt +μ2

∫ T

S

Eqφ′σ(t)
∫

Ω

uz(x,1, t)dxdt

+
∫ T

S

Eqφ′θ(t)
∫

Ω

uh(∇xu)dxdt.

Similarly, we multiply the second equation of (12) by Eqφ′ξ(t)e−2τρz(x,ρ, t) and
get

0 =
∫ T

S

Eqφ′
∫

Ω

∫ 1

0
e−2τρξ(t)z

(
τzt +

(
1 − τ ′(t)ρ

)
zρ
)
dxdρdt

=
[

1

2
Eqφ′ξ(t)τ (t)

∫

Ω

∫ 1

0
τe−2τ(t)ρz2dxdρ

]T

S

− 1

2

∫ T

S

∫

Ω

∫ 1

0

(
Eqφ′ξ(t)τ (t)e−2τρ)′z2dxdρdt

+
∫ T

S

Eqφ′
∫

Ω

∫ 1

0
ξ(t)

(
1

2

∂

∂ρ

(
e−2τ(t)ρ(1 − τ ′(t)ρ

)
z2)

+ τ(t)
(
1 − τ ′(t)ρ

)
e−2τρz2 + 1

2
τ ′(t)e−2τρz2

)
dxdρdt

=
[

1

2
Eqφ′ξ(t)τ (t)

∫

Ω

∫ 1

0
τe−2τ(t)ρz2dxdρ

]T

S

− 1

2

∫ T

S

(
Eqφ′ξ(t)

)′
τ(t)

∫

Ω

∫ 1

0
e−2τρz2dxdρdt

+ 1

2

∫ T

S

Eqφ′ξ(t)
∫

Ω

(
e−2τ(t)(1 − τ ′(t)

)
z2(x,1, t)− z2(x,0, t)

)
dxdt

+
∫ T

S

Eqφ′ξ(t)τ (t)
∫ 1

0

∫

Ω

e−2τρz2dxdρdt.
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Taking their sum, we obtain

A

∫ T

S

Eq+1φ′dt

≤ −
[
Eqφ′

∫

Ω

uutdx

]T

S

+
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′)

∫

Ω

uutdxdt

+ 2
∫ T

S

Eqφ′
∫

Ω

u2
t dxdt −μ1

∫ T

S

Eqφ′σ(t)
∫

Ω

uutdxdt

−μ2

∫ T

S

Eqφ′σ(t)
∫

Ω

uz(x,1, t)dxdt −
∫ T

S

Eqφ′θ(t)
∫

Ω

uh(∇xu)dxdt

−
[

1

2
Eqφ′ξ(t)τ (t)

∫

Ω

∫ 1

0
e−2τ(t)ρz2dxdρ

]T

S

+ 1

2

∫ T

S

(
Eqφ′ξ(t)

)′
τ(t)

∫

Ω

∫ 1

0
e−2τρz2dxdρdt

− 1

2

∫ T

S

Eqφ′ξ(t)
∫

Ω

(
e−2τ(t)(1 − τ ′(t)

)
z2(x,1, t)− z2(x,0, t)

)
dxdt, (61)

where A= 2 min{1, e−2τ1}. Using the Cauchy-Schwarz and Poincaré’s inequalities
and the definition of E and assuming that φ′ is a bounded non-negative function on
R

+, we get
∣∣∣
∣E

q(t)φ′
∫

Ω

uu′dx
∣∣∣
∣≤ cE(t)q+1.

By recalling (18), we have
∣∣∣∣qE

′Eq−1φ′
∫

Ω

uutdx

∣∣∣∣

≤ cEq(t)
∣∣E′(t)

∣∣

≤ cEq(t)

(∣∣∣∣E
′ + θ(t)

∫

Ω

ut (t)h(∇xu)dx
∣∣∣∣+ θ(t)

∣∣∣∣

∫

Ω

ut (t)h(∇xu)dx
∣∣∣∣

)

= cEq(t)

(
−E′ − θ(t)

∫

Ω

ut (t)h(∇xu)dx + θ(t)

∣∣∣∣

∫

Ω

ut (t)h(∇xu)dx
∣∣∣∣

)

≤ cEq(t)
(−E′(t)+ cβθ(t)E(t)

)

and
∫ T

S

Eqφ′
∫

Ω

u2
t dxdt ≤

∫ T

S

Eqφ′ 1

σ(t)

∫

Ω

σ(t)u2
t dxdt

≤
∫ T

S

Eqφ′ 1

σ(t)

(
−E′ − θ(t)

∫

Ω

uth(∇xu)dx
)
dt. (62)
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Define

φ(t)=
∫ t

0
σ(τ)dτ. (63)

It is clear that φ is a non-decreasing function of class C1 on R
+. Then, hypothesis

(1) ensures that

φ(t)→ +∞ as t → +∞. (64)

So, we deduce, from (62), that

∫ T

S

Eqφ′
∫

Ω

u2
t dxdt ≤ c

∫ T

S

Eq
(−E′)dt + c

∫ T

S

Eqθ(t)

∫

Ω

|ut |
∣∣h(∇xu)

∣∣dx

≤ cEq+1(S)+ cβ

∫ T

S

Eq+1θ(t)dt (65)

and from (65) and (4) that

∫ T

S

Eqφ′
∫

Ω

u2
t dxdt ≤ cEq+1(S)+ cβ

∫ T

S

Eq+1φ′(t)dt. (66)

By the hypothesis (H1), Young’s and Poincaré’s inequality and (66), we have

∣∣∣
∣

∫ T

S

Eqφ′′
∫

Ω

uutdxdt

∣∣∣
∣

≤
∫ T

S

Eq
∣∣φ′′∣∣‖u‖2‖ut‖2dt

≤ ε′
∫ T

S

Eq
∣
∣φ′′∣∣‖u‖2

2dt + c
(
ε′
)∫ T

S

Eq
∣
∣φ′′∣∣∥∥u′∥∥2

2dt

≤ ε′c∗
∫ T

S

Eqφ′‖∇xu‖2
2dt + c

(
ε′
)∫ T

S

Eqφ′‖ut‖2
2dt

≤ cc
(
ε′
)
Eq+1(S)+ (

ε′c∗ + cc
(
ε′
)
β
)∫ T

S

Eq+1φ′dt,
∣∣∣∣

∫ T

S

Eqφ′
∫

Ω

uutdxdt

∣∣∣∣

≤ c

∫ T

S

Eqφ′‖u‖2‖ut‖2dt

≤ cε′
∫ T

S

Eqφ′‖u‖2
2dt + c

(
ε′
)∫ T

S

Eqφ′‖ut‖2
2dt (67)

≤ ε′c∗
∫ T

S

Eqφ′‖∇xu‖2
2dt + c

(
ε′
)∫ T

S

Eqφ′‖ut‖2
2dt
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≤ cc
(
ε′
)
Eq+1(S)+ (

ε′c∗ + cc
(
ε′
)
β
)∫ T

S

Eq+1φ′dt,
∣∣∣∣

∫ T

S

Eqφ′θ(t)
∫

Ω

uh(∇xu)dxdt
∣∣∣∣

≤ cβ

∫ T

S

Eq+1φ′dt,

−
[
Eqφ′ξ(t)τ (t)

∫

Ω

∫ 1

0
e−2τ(t)ρz2dxdρ

]T

S

=Eq(S)φ′(S)ξ(S)τ (S)
∫

Ω

∫ 1

0
e−2τ(S)ρz2(x,ρ,S)dxdρ

−Eq(T )φ′(T )σ (T )ξ(T )τ(T )
∫

Ω

∫ 1

0
e−2τ(T )ρz2(x,ρ,T )dxdρ

≤ CEq+1(S)+C′Eq+1(T ).

Recalling that ξ ′ ≤ 0 and the definition of E we have

∫ T

S

(
Eqφ′ξ(t)

)′
τ(t)

∫

Ω

∫ 1

0
e−2τ(t)ρz2dxdρdt

≤
∫ T

S

(
Eqφ′)′ξ(t)τ (t)

∫

Ω

∫ 1

0
e−2τ(t)ρz2dxdρdt

≤ c

∫ T

S

Eq
∣
∣E′∣∣φ′dt

≤ c

∫ T

S

Eqφ′(−E′(t)+ cβθ(t)E(t)
)
dt

≤ cEq+1(S)+ cβ

∫ T

S

Eq+1φ′dt,

∫ T

S

Eqφ′ξ(t)
∫

Ω

e−2τ (1 − τ ′(t)
)
z2(x,1, t)dxdt

≤ c

∫ T

S

Eqφ′
∫ T

S

Eqφ′ 1

σ(t)

∫

Ω

σ(t)z2(x,1, t)dxdt

≤ c

∫ T

S

Eqφ′ 1

σ(t)

(
−E′ − θ(t)

∫

Ω

uth(∇xu)dx
)
dt

≤ cEq+1(S)+ cβ

∫ T

S

Eq+1φ′dt,
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∫ T

S

Eqφ′ξ(t)
∫

Ω

z2(x,0, t)dxdt

=
∫ T

S

Eqφ′
∫

Ω

u2
t (x, t)dxdt

≤ cEq+1(S)+ cβ

∫ T

S

Eq+1φ′dt,

where we have also used the Cauchy-Schwarz inequality. Combining these esti-
mates and choosing ε′, β sufficiently small, we conclude from (61) that

∫ T

S

Eq+1φ′dt ≤ CEq+1(S)+C′Eq+1(T ),

E′(t) ≤ 2βθ(t)E(t).

Let E1 =E ◦ φ−1 (note that φ−1 is a bijection from R
+ to R

+). Then

∫ T

S

E
q+1
1 dt ≤ CE

q+1
1 (S)+C′Eq+1

1 (T ),

E′
1(t) ≤ λ(t)E1(t),

where

λ(t)= 2β
θ ◦ φ−1

φ′ ◦ φ−1
.

We obtain (15) and (17), where λ̃(t)= ∫ t
0 λ(τ)dτ and ω= 1

a
such that

a(s)= a1(s)+ a2(s)(d(s))
p(s)+ a3(s)(d(s))

r (s)

1 − a3(r + 1) supt≥0{λ(t)}
,

where a1(s)= const, a2(s)= const, a3(s)= const and q = 0.
This ends the proof of Theorem 1. �

Proof of Theorem 2

Lemma 2 Let (u, z) be a solution to the problem (12). Then, the energy functional
defined by (16) satisfies

E′(t) ≤ −σ(t)
(
μ1 − ξ̄

2
− μ2

2
√

1 − d

)∥∥eΦ/2u′∥∥2
2

− σ(t)

(
ξ̄ (1 − τ ′(t))

2
− μ2

√
1 − d

2

)∫

Ω

eΦz2(x,1, t)dx

≤ 0. (68)
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For the proof of Lemma 2 we follow the same steps as in the proof of Lemma 1.
Now, we shall derive the decay estimate for the solutions of (P ). We also denote

here by c various positive constants which may be different at different occurrences.
We multiply the first equation of (12) by φ′EqeΦu and obtain

0 =
∫ T

S

Eqφ′
∫

Ω

eΦu
(
utt −Δu+μ1σ(t)ut +μ2σ(t)z(x,1, t)− ∇Φ∇u)dxdt

=
[
Eqφ′

∫

Ω

eΦuutdx

]T

S

−
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′)

∫

Ω

eΦuutdxdt

− 2
∫ T

S

Eqφ′
∫

Ω

eΦu2
t dxdt +

∫ T

S

Eqφ′
∫

Ω

eΦ
(
u2
t + |∇u|2)dxdt

+μ1

∫ T

S

Eqφ′
∫

Ω

eΦuutdxdt +μ2

∫ T

S

Eqφ′
∫

Ω

eΦuz(x,1, t)dxdt.

Similarly, we multiply the second equation of (12) by Eqφ′ξ(t)e−2τρeΦz(x,ρ, t)

and get

0 =
∫ T

S

Eqφ′ξ(t)
∫

Ω

∫ 1

0
eΦe−2τρz

(
τz′ + (

1 − τ ′(t)ρ
)
zρ
)
dxdρdt

=
[

1

2
Eqφ′ξ(t)τ (t)

∫

Ω

∫ 1

0
e−2τ(t)ρeΦz2dxdρ

]T

S

− 1

2

∫ T

S

∫

Ω

∫ 1

0

(
Eqφ′ξ(t)τ (t)e−2τρ)′eΦz2dxdρdt

+
∫ T

S

Eqφ′ξ(t)
∫

Ω

∫ 1

0
eΦ

(
1

2

∂

∂ρ

(
e−2τ(t)ρ(1 − τ ′(t)ρ

)
z2)

+ τ(t)
(
1 − τ ′(t)ρ

)
e−2τρz2 + 1

2
τ ′(t)e−2τρz2

)
dxdρdt

=
[

1

2
Eqφ′ξ(t)τ (t)

∫

Ω

∫ 1

0
eΦe−2τ(t)ρz2dxdρ

]T

S

− 1

2

∫ T

S

(
Eqφ′ξ(t)

)′
τ(t)

∫

Ω

∫ 1

0
e−2τρeΦz2dxdρdt

+ 1

2

∫ T

S

Eqφ′ξ(t)
∫

Ω

eΦ
(
e−2τ(t)(1 − τ ′(t)

)
z2(x,1, t)− z2(x,0, t)

)
dxdt

+
∫ T

S

Eqφ′ξ(t)τ (t)
∫ 1

0

∫

Ω

e−2τρeΦz2dxdρdt.
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Taking their sum, we obtain

A

∫ T

S

Eq+1φ′dt

≤ −
[
Eqφ′

∫

Ω

eΦuutdx

]T

S

+
∫ T

S

(
qE′Eq−1φ′ +Eqφ′′)

∫

Ω

eΦuutdxdt

+ 2
∫ T

S

Eqφ′
∫

Ω

eΦu2
t dxdt −μ1

∫ T

S

Eqφ′
∫

Ω

eΦuutdxdt

−μ2

∫ T

S

Eqφ′
∫

Ω

eΦuz(x,1, t)dxdt

−
[

1

2
Eqφ′ξ(t)τ (t)

∫

Ω

∫ 1

0
e−2τ(t)ρeΦz2dxdρ

]T

S

+ 1

2

∫ T

S

(
Eqφ′ξ(t)

)′
τ(t)

∫

Ω

∫ 1

0
e−2τρeΦz2dxdρdt

− 1

2

∫ T

S

Eqφ′ξ(t)
∫

Ω

eΦ
(
e−2τ(t)(1 − τ ′(t)

)
z2(x,1, t)− z2(x,0, t)

)
dxdt,

(69)

where A = 2 min{1,2τe−2τ /ξ}. Since E is non-increasing and taking φ′ to be
bounded and non-negative on R

+ (and we denote by μ its supremum), we find
that

−
[
Eqφ′

∫

Ω

eΦuutdx

]T

S

=Eq(S)φ′(S)
∫

Ω

eΦu(S)ut (S)dx −Eq(T )φ′(T )
∫

Ω

eΦu(T )ut (T )dx

≤ CEq+1(S),
∣∣∣∣

∫ T

S

(
qE′Eq−1φ′ +Eqφ′′)

∫

Ω

eΦuutdxdt

∣∣∣∣

≤ cμ

∫ T

S

(−E′)Eqdt + c′
∫ T

S

Eq+1(−φ′′)dt

≤ cEq+1(S),
∣∣∣∣
1

2
Eqφ′ξ(t)τ (t)

∫

Ω

∫ 1

0
e−2τ(t)ρeΦz2dxdρ

∣∣∣∣≤ cμE(S)q+1 ∀t ≥ S,

∫ T

S

(
Eqφ′ξ(t)

)′
τ(t)

∫

Ω

∫ 1

0
e−2τρeΦz2dxdρdt ≤ 0,
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where we have also used the Cauchy-Schwarz inequality. Combining these esti-
mates we conclude from (69) that

A

∫ T

S

Eq+1φ′dt

≤ 2
∫ T

S

Eqφ′
∫

Ω

eΦu2
t dxdt −μ2

∫ T

S

Eqφ′
∫

Ω

eΦuz(x,1, t)dxdt

−μ1

∫ T

S

Eqφ′
∫

Ω

eΦuutdxdt + 1

2

∫ T

S

Eqφ′ξ(t)
∫

Ω

eΦz2(x,0, t)dxdt

− 1

2

∫ T

S

Eqφ′ξ(t)
∫

Ω

eΦe−2τ(t)(1 − τ ′(t)
)
z2(x,1, t)dxdt. (70)

Now, we estimate the terms of the right-hand side of (70) in order to apply the results
of Lemma 4.

Define

φ(t)=
∫ t

0
σ(s)ds.

It is clear that φ is a non-decreasing function of class C2 on R
+. Hypothesis (1)

ensures that

φ(t)→ +∞ as t → +∞. (71)

Using the Cauchy-Schwarz and Poincaré’s inequalities and the energy inequality
from Lemma 2 we get

∫ T

S

Eqφ′
∫

Ω

eΦu2
t dxdt ≤ c

∫ T

S

Eqφ′
(−E′

σ(t)

)
dt

≤ cEq+1(S),

∫ T

S

Eqφ′ξ(t)
∫

Ω

eΦe−2τ(t)(1 − τ ′(t)
)
z2(x,1, t)dxdt ≤ c

∫ T

S

Eqφ′
(−E′

σ(t)

)
dt

≤ cEq+1(S),

1

2

∫ T

S

Eqφ′ξ(t)
∫

Ω

eΦz2(x,0, t)dxdt = 1

2

∫ T

S

Eqφ′ξ(t)
∫

Ω

eΦu′2dxdt

≤ cEq+1(S),

∫ T

S

Eqφ′
∫

Ω

eΦuutdxdt

≤ ε

∫ T

S

Eqφ′
∫

Ω

eΦu2dxdt + c(ε)

∫ T

S

Eqφ′
∫

Ω

eΦu2
t dxdt
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≤ εc

∫

Ω

Eq+1φ′dt + c(ε)

∫ T

S

Eqφ′
∫

Ω

eΦu2
t dxdt

≤ εc

∫

Ω

Eq+1φ′dt + c(ε)

∫ T

S

Eq
(−E′)dt

≤ εc

∫

Ω

Eq+1φ′dt + c(ε)E(S)q+1, (72)

and
∫ T

S

Eqφ′
∫

Ω

eΦuz(x,1, t)dxdt

≤ ε1

∫ T

S

Eqφ′
∫

Ω

eΦu2dxdt + c(ε1)

∫ T

S

Eqφ′
∫

Ω

eΦz(x,1, t)2dxdt

≤ ε1c

∫

Rn

Eq+1φ′dt + c(ε1)

∫ T

S

Eqφ′
∫

Ω

eΦz(x,1, t)2dxdt

≤ ε1c

∫

Ω

Eq+1φ′dt + c(ε1)

∫ T

S

Eq
(−E′)dt

≤ ε1c

∫

Ω

Eq+1φ′dt + cEq+1(S). (73)

Choosing ε and ε1 small enough, we deduce from (70), (72) and (73) that

∫ T

S

Eq+1φ′dt ≤ cEq+1(S),

where c is a positive constant independent of E(0). Hence, we deduce from
Lemma 4 that

E(t)≤ cE(0)e−ωσ̃ (t), t ≥ 0.

This ends the proof of Theorem 2. �
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Appendix

We now state some lemmas that we previously used (see proofs in [8, 14]).

Lemma 3 (Sobolev-Poincaré’s inequality) Let q be a number with 2 ≤ q < +∞
(n = 1,2) or 2 ≤ q ≤ 2n/(n− 2) (n ≥ 3). Then there is a constant c∗ = c∗(Ω,q)
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such that

‖u‖q ≤ c∗‖∇u‖2 for u ∈H 1
0 (Ω).

Lemma 4 ([14]) Let E : R+ →R+ be a non increasing function and φ :R+ →R+
be an increasing C1 function such that

φ(0)= 0 and φ(t)→ +∞ as t → +∞.

Assume that there exist σ ≥ 0 and ω > 0 such that
∫ +∞

S

E1+σ (t)φ′(t)dt ≤ 1

ω
Eσ (0)E(S), 0 ≤ S <+∞. (74)

Then

E(t)≤E(0)

(
1 + σ

1 +ωσφ(t)

)1/σ

∀t ≥ 0, if σ > 0, (75)

E(t)≤ cE(0)e1−ωφ(t) ∀t ≥ 0, if σ = 0. (76)

In order to state the last lemma, we follow [8, 9] to introduce the function h :
R

+ →R
+. Let r be a non-negative real number, α a strictly positive real number, ω :

R
+ → R

+∗ and λ : R+ → R
+ two continuous functions. We set λ̃(t)= ∫ t

0 λ(τ)dτ

and find
∫ +∞

0
e(r+1)λ̃(t)dt = +∞. (77)

For fixed s ∈R
+, we define the function Is :R+ → R by

Is(t)=
(
ω(s)

)r+1
∫ t

s

e(r+1)λ̃(τ )dτ − e(r+1)λ̃(s)
((
αω(0)

)r + r

∫ s

0

(
ω(τ)

)r+1
dτ

)
.

We have: Is ∈ C1(R+), I ′
s(t)= (ω(s))r+1e(r+1)λ̃(t) > 0,

Is(0)=
(
ω(s)

)r+1
∫ 0

s

e(r+1)λ̃(τ )dτ

− e(r+1)λ̃(s)
((
αω(0)

)r + r

∫ s

0

(
ω(τ)

)r+1
dτ

)
< 0

and from (77) limt→+∞ Is(t)= +∞. Therefore Is has a unique root in R
+∗ which

will be noted g(s) whence we define g : R+ →R
+∗ by

Is
(
g(s)

)= 0, ∀s ≥ 0. (78)

On the other hand, g is continuous due to the continuity of ω. Also we have

Is(s)= −e(r+1)λ̃(s)
((
αω(0)

)r + r

∫ s

0

(
ω(τ)

)r+1
dτ

)
< 0,



24 A. Benaissa and S.A. Messaoudi

hence g(s) > s, and lims→+∞ g(s) = +∞. Therefore, g is surjective from R
+ to

[g(0),+∞[. Now let t ∈]g(0),+∞[ be fixed. We define the function Jt : [0, t] →
R

+ by

Jt (s)=
(∫ t

s

eλ̃(τ )dτ

)
e
∫ s

0 ω(τ)dτ if r = 0,

Jt (s)=
(∫ t

s

e(r+1)λ̃(τ )dτ

)((
αω(0)

)r + r

∫ s

0

(
ω(τ)

)r+1
dτ

)1/r

if r > 0.

The function Jt is positive and differentiable on [0, t] and we have:

J ′
t (s)= Is(t)e

∫ s
0 ω(τ)dτ if r = 0,

J ′
t (s)= Is(t)

((
αω(0)

)r + r

∫ s

0

(
ω(τ)

)r+1
dτ

)1/r−1

if r > 0.

Since J ′
t (s) has the same sign as Is(t), then J ′

t > 0 holds on the right of 0 (because
t > g(0)) and on the left of 0 (because g(s) > s). Then Jt has a maximum on [0, t]
at least in one point s0 ∈]0, t[ satisfying Is0(t)= 0, hence s0 ∈ g−1({t}).

Now, we define the function h :R+ → R
+ by:

h(t)=
{

0 if t ∈ [0, g(0)],
maxg−1({t}) if t ∈]g(0),+∞]. (79)

We have, for all t > g(0) : h(t) ∈ g−1({t}) and Ih(t)(t)= 0.
If ω is a constant, then g is an increasing function (it suffices to derive the equality

(78)) and in this case

h(t)=

⎧
⎪⎪⎨

⎪⎪⎩

0 if t ∈
[

0,D−1
(
αr

ω

)]
,

g−1({t})=K−1(D(t)
)

if t ∈
]
D−1

(
αr

ω

)
,+∞

]
,

where K and D are two functions defined on R
+ by

K(t)=D(t)+ e(r+1)λ̃(t)
(
rt + αr

ω

)
, D(t)=

∫ t

0
e(r+1)λ̃(τ )dτ.

Lemma 5 ([8]) Let E : R+ → R+ be a differentiable function, λ ∈ R
+, a3 ∈ R

+,
a1, a2 : R+ → R

+∗ = (0,+∞) and λ : R+ → R
+ three continuous functions. As-

sume that there exist r,p ≥ 0 such that

a3(r + 1) sup
t≥0

{
λ(t)

}
< 1
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and for all 0 ≤ s ≤ T <+∞
{∫ T

s
Er+1(t)dt ≤ a1E(s)+ a2E

p+1(s)+ a3E
r+1(T ), ∀0 ≤ s ≤ T ,

E′(t)≤ λ(t)E(t), ∀t ≥ 0.
(80)

Then E satisfies the following estimate:

E(t)≤ E(0)

ω(0)
ω
(
h(t)

)
eλ̃(t)−λ̃(h(t))e−

∫ h(t)
0 ω(τ)dτ if r = 0, (81)

E(t)≤ ω
(
h(t)

)
eλ̃(t)−λ̃(h(t))

×
((

E(0)

ω(0)

)r
+ r

∫ h(t)

0

(
ω(τ)

)r+1
dτ

)−1/r

if r > 0, (82)

where λ̃(t)= ∫ t
0 λ(τ)dτ , h is defined by (79) with α = 1

E(0) and ω= 1
a

such that

a(s)= a1(s)+ a2(s)(d(s))
p + a3(s)(d(s))

r

1 − a3(r + 1) supt≥0{λ(t)}
(83)

with

d(s)= min

{
E(0)eλ̃(s),

(
b(0)E(0)

f0(s)

)1/(r+1)}
,

f0(s)= e−(r+1)λ̃(s)
∫ s

0
e(r+1)λ̃(τ )dτ

and

b(s)= a1(s)+ a2(s)E
p(s)+ a3(s)E

r(s)

1 − a3(r + 1) supt≥0{λ(t)}
, ∀s ≥ 0.
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Chapter 2
Non-uniqueness and Uniqueness in the Cauchy
Problem of Elliptic and Backward-Parabolic
Equations

Daniele Del Santo and Christian P. Jäh

Abstract In this paper we consider the non-uniqueness and the uniqueness property
for the solutions to the Cauchy problem for the operators

Eu= ∂2
t u+

n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)+ β(t, x)∂tu+
n∑

m=1

bm(t, x)∂xmu+ c(t, x)u

and

Pu= ∂tu+
n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)+
n∑

m=1

bm(t, x)∂xmu+ c(t, x)u,

where
∑n

k,l=1 akl(t, x)ξkξl |ξ |−2 ≥ a0 > 0. We study non-uniqueness and unique-
ness in dependence of global and local regularity properties of the coefficients of
the principal part. The global regularity will be ruled by the modulus of continuity
of akl on [0, T ] while the local regularity will concern a bound on |∂takl(t, x)| on
every interval [ε,T ] ⊆ (0, T ]. By suitable counterexamples we show that our con-
ditions seem to be sharp in many cases and we compare our statements with known
results in the theory of hyperbolic Cauchy problems. We make also some remarks
on continuous dependence for P .
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2.1 Introduction

In this paper we collect some results on non-uniqueness and uniqueness for the
solutions to the Cauchy problem for elliptic and backward-parabolic operators.

The subject of uniqueness and non-uniqueness in the Cauchy problem has a fairly
long history and, from the pioneering works of Carleman [4] up to today, a huge
number of results have been obtained and many different aspects of this topic have
been developed (see e.g. [45] for a not so recent bibliography).

Here we are interested in two restricted classes of differential operators, precisely
second order elliptic operators of the type

Eu= ∂2
t u+

n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)+ β(t, x)∂tu+
n∑

m=1

bm(t, x)∂xmu+ c(t, x)u

and backward-parabolic operators of the type

Pu= ∂tu+
n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)+
n∑

m=1

bm(t, x)∂xmu+ c(t, x)u.

In both cases we will suppose that
∑n

k,l=1 akl(t, x)ξkξl ≥ a0|ξ |2, with a0 > 0.
We say that E or P have the uniqueness property (in the space X, with respect

to the oriented surface {t ≥ 0}, in the point 0) if for every function u ∈X, from the
fact that u is a solution to Eu= 0 or Pu= 0 with supp(u)⊆ {t ≥ 0}, it follows that
u= 0 in a neighborhood of 0.

In turn, by non-uniqueness for E or P we mean that we are able to find a non-zero
solution u ∈X to Eu= 0 or Pu= 0 such that 0 ∈ supp(u)⊆ {t ≥ 0}.

Our aim is to study the connections between the properties of non-uniqueness
and uniqueness with the regularity of the coefficients of the principal part of the op-
erators under consideration. The results of Hörmander [26, 27] and J.-L. Lions and
Malgrange [34] guarantee that Lipschitz regularity for akl is sufficient for unique-
ness for E and P respectively, while the counterexample of Pliš [39] and some easy
modifications of it (see for instance [19]) show that non-uniqueness can occur for
some particular E and P having akl ∈⋂

0<α<1C
α .

The investigation we want to develop will be in the narrow interval between these
two bounds and the regularity of the coefficients will be measured from two points
of view: using the notion modulus of continuity (we will call it global regularity
property) and controlling the oscillation of the coefficients (this will be called local
regularity property).

The idea to control the oscillations of the coefficients of the principal part orig-
inates from the technique of construction of all of the known counterexamples to
uniqueness. In all these constructions the uniqueness property is destroyed by suffi-
ciently fast oscillations of the principal part coefficients around a single point. Away
from this point the coefficients are smooth. Hence it is natural to think that a bound
on the oscillations of the coefficients might restore the uniqueness property.
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In the case of the hyperbolic Cauchy problem, the interaction of global and lo-
cal regularity conditions have been extensively studied with respect to the well-
posedness of the problem. The Cauchy problem for elliptic and backward-parabolic
operators is severally ill-posed but, anyhow, besides this difference, we would like
to compare briefly the conditions for uniqueness and non-uniqueness for elliptic and
backward-parabolic to those for well-posedness in the hyperbolic theory.

Considering the hyperbolic Cauchy problem
{
Lu= ∂2

t u− a(t)∂2
xu= 0

u(0, x)= u0(x), ut (0, x)= u1(x),
(1)

where a(t)≥ a0 > 0, it is well known (see e.g. Chap. IX in [28]) that (1) isC∞-well-
posed if one supposes a ∈ Lip[0, T ]. In [10] the Cauchy problem (1) was studied
under the condition

sup
0<|t−s|<1
t,s∈[0,T ]

|a(t)− a(s)|
|t − s|| log(|t − s|)| ≤ C <+∞ (2)

and (2) was proved to be sufficient for C∞-well-posedness with the so called loss
of derivatives (this means that there is a shifting between the Sobolev norms in the
energy estimates for L, see [32] for a detailed explanation of this phenomenon).
Condition (2) means that a is globally regular with respect to the Log-Lipschitz
modulus of continuity, for short a ∈ LogLip[0, T ]. A counterexample in [9] shows
that one cannot weaken this condition without further assumptions (see also [42] for
a recent interesting improvement of [10]).

A second possibility to weaken the Lipschitz property of a in (1) goes back to
[12] where the notion of local regularity was first explicitly introduced (see also
[43]). Precisely in [12] the coefficient a was in C0[0, T ] ∩C1(0, T ] with

sup
t∈[0,T ]

∣∣ta′(t)
∣∣≤ C <+∞. (3)

Under this hypothesis there is again the C∞-well-posedness with loss of derivatives
and some counterexamples similar to those of [9] show that this assumption can be
considered optimal.

Supposing more regularity for a away from t = 0, some other interesting results
have been obtained. It has been proved (see e.g. [25, 43]) that one gets C∞-well-
posedness without loss of derivatives under the condition a ∈ C0[0, T ]∩C1(0, T ]∩
C2(0, T ] with

sup
t∈[0,T ]

∣∣ta′(t)
∣∣+ ∣∣t2a′′(t)

∣∣≤ C <+∞,

while the hypothesis (see [13]) for the same result with loss of derivatives is

sup
t∈[0,T ]

∣∣(t log(t)
)
a′(t)

∣∣+ ∣∣(t log(t)
)2
a′′(t)

∣∣≤ C <+∞.
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A list of counterexamples shows that these results are sharp and, at the present, even
if it should be reasonable that supposing more regularity on a (e.g. a is in Cm(0, T ]
for m≥ 3) some different and weaker conditions on derivatives of a should ensure
C∞-well-posedness, only the C2-theory has been developed.

The effect that one can weaken the assumption on a′ by a logarithm by assuming
a condition on a′′ is called the Log-effect. This is connected to the classification of
oscillations introduced by Reissig and Yagdjian in [40] and also studied for other
types of operators, as p-evolution operators in [5]. The reader may also consult [44]
for more on the matter and related questions.

In [12, 22, 32] the authors have studied the possible couplings between the global
regularity and the local regularity. They have, for example, proved that a coeffi-
cient with a modulus of continuity f (s)= s

μ(s)
η(s)

, worse than Log-Lipschitz, needs a

control of oscillations precisely by −C d
dt
μ(η−1(t)) to guarantee well-posedness in

some scales of Sobolev spaces. For further information we refer to the cited papers
and the references therein.

Finally we refer to [30] for a more exhaustive comparison of the hyperbolic the-
ory to the elliptic and backward parabolic theory with respect to the question of
uniqueness in the Cauchy problem.

The paper is organized as follows; in Sect. 2.2 we state several non-uniqueness
theorems for E and P modeled on the well-known Pliš example in [39]. We will
state theorems with global and local assumptions on the principal part coefficients
and we will give an example of non-uniqueness for coefficients with non-Osgood
global regularity and a certain control of the oscillations, similar to the one in [32]
for hyperbolic operators.

The non-uniqueness theorems under local conditions on the principal part co-
efficients will show that the Log-effect does not appear in the case of elliptic
and backward-parabolic operators, i.e. it is not possible to weaken the condition
supt∈[0,T ] |ta′(t)| ≤ C by adding a condition on the second derivative. Hence, un-
der local conditions only C1-theory is interesting for the uniqueness of the Cauchy
problem for our operators.

At the end of the section we give an outline of the construction of those coun-
terexamples with the various changes according to the different types of conditions.

Section 2.3 contains the uniqueness counterpart to Sect. 2.2. In the first sub-part
of this section we recall some important results about the uniqueness in the Cauchy
problem for E and P under global regularity conditions.

The next part contains the statement and the proof of a uniqueness result for E
and P under a local condition like (3) with a smallness condition on the constant. We
also note how one can slightly weaken this smallness condition if one restricts the
uniqueness results to solutions in certain Gevrey classes, where the Gevrey-index
depends on the size of the constant.

In the third sub-section of this section we state some uniqueness theorems
for P under the assumption

∑n
k,l=1 akl(t, x)ξkξl |ξ |−2 ≥ 0. They complement in

some sense the results under local conditions in the case of degenerate backward-
parabolicity. The corresponding theorems for degenerate elliptic operators are
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Table 2.1 Comparison between hyperbolic and elliptic/backward-parabolic operators with respect
to uniqueness in the Cauchy problem

Hyperbolic theory Elliptic/backward-parabolic theory

μ(s)= s1−α , α ∈ (0,1)
|a′(t)| ≤ Ct−(1/2)(1+1/α) |a′(t)| ≤ Ct−1

|a′′(t)| ≤Ct−(1+1/α) |a(k)(t)| ≤ Ct−((k−1)(1/α)+k), for all k ≥ 1

⇒ In the elliptic/backward-parabolic theory only C1-theory is interesting

Log-effect

|a′(t)| ≤ C 1
t

log( 1
t
) No Log-effect

|a′′(t)| ≤C 1
t2
(log( 1

t
))2

Constant in the estimate of a′

C ∈ R>0 Cell ∈ (0,2a0) and Cbp ∈ (0, a0)

proved in [6, 7, 11, 36]. The last part of this section is devoted to some open prob-
lems and an out-view to possible further developments.

Table 2.1 summarizes very shortly the main differences between the hyperbolic
and the elliptic/backward-parabolic operators concerning uniqueness in the Cauchy
problem which are proved in Sects. 2.2 and 2.3.

The first part of the table shows that for elliptic and backward-parabolic operators
the additional assumption of Hölder regularity for the principal part coefficients
brings nothing with respect to the allowed oscillations of the coefficient in contrast
to the hyperbolic theory. For this see Sect. 2.2.2. Besides the Log-effect, for which
the reader finds a more detailed discussion in Sect. 2.2.2, it illustrates that only in
the elliptic and backward-parabolic regime appears a restriction on the size of the
constant in the control of the oscillations, see also Sects. 2.2.2 and 2.3.1.

In the last section of the present work we summarize some results about contin-
uous dependence of solutions to P and E on the Cauchy data in the sense of John
(see [31]). These results are only concerned with global regularity.

2.1.1 Modulus of Continuity and Related Oscillation Conditions

In this section we state some definitions which we need in the subsequent sections.

Definition 1.1 (Modulus of continuity, Cμ) We call a continuous, concave, in-
creasing function μ : [0, s0] → [0,1], s0 > 0, a modulus of continuity. A function
f ∈ C0(Q), Q⊆ R

n belongs to Cμ(Q) iff

∃C > 0 : sup
0<|x−y|≤s0
x,y∈Q

|f (x)− f (y)|
μ(|x − y|) ≤ C <+∞.
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The next definition introduces the notion of the Osgood condition. The Osgood
condition first appeared in [38] where Osgood studied the uniqueness of solutions
of ordinary differential equations without the Lipschitz condition.

Definition 1.2 Osgood condition A modulus of continuity is said to satisfy the Os-
good condition if there exists an s0 > 0 such that

∫ s0

0

ds

μ(s)
= +∞. (4)

If there exist an s0 > 0 such that condition (4) fails to hold we will call μ a non-
Osgood modulus of continuity.

For the sake of brevity we introduce some symbols for moduli of continuity
which we are going to use in the subsequent part:

Log−1 : μ(s)=
(

log

(
1

s

))−1

,

Cα : μ(s)= sα, α ∈ (0,1),
Lip : μ(s)= s,

Log1+ε Lip : μ(s)= s

(
log

(
1

s

))1+ε
,

Log[m,1+ε] Lip : μ(s)= s

(
m−1∏

i=1

log[i]
(

1

s

))(
log[m]

(
1

s

))1+ε
.

We define log[i](s) := log(log[i−1](s)) with log[1](s) = log(s). The last three lines
of the list above are, with ε = 0, examples for Osgood moduli of continuity. If one
takes ε > 0 they are examples for non-Osgood moduli of continuity.

Definition 1.3 (Osgood distance function) For a non-Osgood modulus of continuity
μ we associate a function

η(t) :=
∫ t

0

ds

μ(s)
. (5)

Remark 1.1 The function η measures essentially how far the modulus of continuity
is from an Osgood modulus of continuity. The velocity of the function η(t) going to
0 for t → 0+ carries this information. The slower this function converges to 0 the
closer is μ to an Osgood modulus of continuity.

Remark 1.2 Another way to illustrate how the function η, defined by (5) for a non-
Osgood modulus of continuity, measures the difference between μ and an Osgood
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modulus of continuity is to say that σ(s) := μ(s)η(s) is an Osgood modulus of
continuity. This can be seen as follows:

∫ s0

0

ds

σ (s)
= lim
ε→0+

∫ s0

ε

ds

μ(s)η(s)
= lim
ε→0+

∫ s0

ε

η′(s)
η(s)

ds

= lim
ε→0+

(
log

(
η(s0)

)+ log

(
1

η(ε)

))
= +∞,

where we have used the fact that η′(t)= 1
μ(t)

for t > 0.

Throughout the paper we denote all C∞(Q) functions bounded with all their
derivatives by B∞(Q). A function defined on the n-dimensional torus T

n will as
usual be considered as a periodic function on R

n.

2.2 Non-uniqueness

In this section we state some counterexamples to uniqueness in the Cauchy problem
for elliptic and backward-parabolic operators. Actually we will state them just for
elliptic operators but they are literally also true if one replaces the elliptic by a
backward-parabolic operator. In the last part of this section we will show the general
scheme how to construct such counterexamples of Pliš-type.

The counterexamples will also show that the so-called Log-effect, known from
the hyperbolic theory or the theory of p-evolution operators, does not occur in the
Cauchy problem for elliptic and backward-parabolic operators.

2.2.1 Non-uniqueness Under Global Conditions

The first counterexample to uniqueness in the Cauchy problem for elliptic operators
was presented by Pliš in [39] and it came along as quite a surprise. It shows that cer-
tain amount of global regularity is necessary for the uniqueness in the Cauchy prob-
lem for elliptic operators (and apparently also for backward-parabolic operators), at
least if one regards the problem in more than two dimensions. In two dimensions
the situation is different. For more information on this matter the reader may consult
[3, 45] and the references therein.

The original result of Pliš is

Theorem 2.1 (Theorem 1 in [39]) There exist five real-valued functions u, a, f , g,
h such that the PDE

Eu = ∂2u

∂t2
+ ∂2u

∂x2
+ a(t)

∂2u

∂y2
+ f (t, x, y)

∂u

∂x
+ g(t, x, y)

∂u

∂y
+ h(t, x, y)u

= 0 (6)



34 D. Del Santo and C.P. Jäh

is satisfied on R
3. Furthermore, the solution u vanishes identically for t ≥ 0 but

does not vanish identically in any neighborhood of t = 0. The coefficient a satisfies
1
2 ≤ a(t)≤ 3

2 belongs to C∞(R \ {0}) ∩⋂
0<α<1C

α(R) and the functions u, f , g,
and h belong to B∞(R3).

Remark 2.1 In [39] Pliš proved in fact a little more than he claimed. The coefficient
a which he constructed in his proof is not just in

⋂
0<α<1C

α(R) but in Log2Lip(R).
Additionally the first derivative of a satisfies the bound |t2a′(t)| ≤ C for t < 0 and
some C > 0.

Later Tarama proved in [41] local uniqueness for elliptic operators whose prin-
cipal coefficients are not Lipschitz-continuous (see Sect. 2.3.1). In fact they have
a modulus of continuity μ satisfying the Osgood condition (see Definition 1.2).
A counterexample in [15] shows that this condition cannot be weakened from the
point of view of global regularity. Precisely it states:

Theorem 2.2 (Theorem 2 in [15]) Let μ be a non-Osgood modulus of continuity.
Then there exist five real-valued functions u, a, f , g, h such that the PDE

Eu= ∂2u

∂t2
+ ∂2u

∂x2
+ a(t)

∂2u

∂y2
+ f (t, x, y)

∂u

∂x
+ g(t, x, y)

∂u

∂y
+ h(t, x, y)u= 0

is satisfied on R
3. Furthermore, the solution u vanishes for t ≥ 0 but does not vanish

identically in any neighborhood of t = 0. The coefficient a satisfies 1 ≤ a(t) ≤ 2,
belongs to Cμ(R)∩C∞(R \ {0}) and the functions u, f , g and h belong to B∞(R).

2.2.2 Non-uniqueness Under Local Conditions

In this section we state a non-uniqueness example under a local condition on the
derivatives of the principal part coefficients. This is given by

Theorem 2.3 There exist five real-valued functions u, a, f , g, h such that the PDE

Eu= ∂2u

∂t2
+ ∂2u

∂x2
+ a(t)

∂2u

∂y2
+ f (t, x, y)

∂u

∂x
+ g(t, x, y)

∂u

∂y
+ h(t, x, y)u= 0

is satisfied on R
3. Furthermore, the solution u vanishes for t ≥ 0 but does not vanish

identically in any neighborhood of t = 0. The coefficient a satisfies 1 ≤ a(t) ≤ 2,
belongs to C0(R)∩C∞(R \ {0}) and satisfies

∀k ≥ 1 ∃Ck > 0 :
∣∣∣∣
dka

dtk
(t)

∣∣∣∣≤ Ck|t |−k ∀t < 0.

The functions u, f , g, and h belong to B∞(R3).
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Remark 2.2 From Theorem 2.3 we detect some interesting differences between the
elliptic and backward-parabolic case on one side and the hyperbolic case on the
other side.

Firstly in the hyperbolic case a control of the type Ct−1 on the first time-
derivatives of the coefficients second order terms gives the well-posedness (see
[12]). Here if the constant in front of t−1 is sufficiently large we can construct a
counterexample to uniqueness (see the Theorems 3.5 and 3.6 for an estimate of this
constant).

Secondly in the hyperbolic case a control of the type C1t
−1 log(t−1) on the first

time-derivatives of the second order terms and of Ct−2(log(t−1))2 on the second
time-derivatives ensure the well-posedness (it is the so called log-effect, see [13,
25]). Here we can construct a counterexample to uniqueness with a control of C1t

−1

and C2t
−2 respectively. So we cannot hope for a Log-effect, and it is not only a

matter of the choice of the constants.

2.2.3 Non-uniqueness Under a Mixed Condition

The result we are going to state in this section mixes the two kinds of conditions we
have focused on in the last two sections. The interesting point is how the regularity
and the oscillations interact. See also Sect. 2.3.4 for further explanations and the
discussion of a uniqueness counterpart for this theorem.

Theorem 2.4 Let μ be a non-Osgood modulus of continuity. Then there exist five
real-valued functions u, a, f , g, h such that the PDE

Eu= ∂2u

∂t2
+ ∂2u

∂x2
+ a(t)

∂2u

∂y2
= f (t, x, y)

∂u

∂x
+ g(t, x, y)

∂u

∂y
+ h(t, x, y)u= 0

is satisfied on R
3. Furthermore, the solution u vanishes identically for t ≥ 0 but

does not vanish identically in any neighborhood of t = 0. The coefficient a satisfies
1
2 ≤ a(t)≤ 3

2 , belongs to Cμ(R)∩C∞(R \ {0}) and satisfies

∀k ≥ 1 ∃Ck > 0 :
∣∣∣∣
dka

dtk
(t)

∣∣∣∣≤ Ck
(μ(η−1(|t |)))k
(η−1(|t |))2k−1

∀t < 0, (7)

where η is the Osgood distance function (5). The functions u, f , g and h belong to
B∞(R3).

Remark 2.3 Formula (7) gives for all moduli of continuity defining spaces beneath⋂
0<α<1C

α just the control t−1 for the first derivative. Hence, to think about a
possible positive result with a weaker control on a′ we need more regularity. The
Theorems 3.5 and 3.6 show, as a counterpart to Theorem 2.3, that a control of t−1

ensures uniqueness without any additional regularity if the constant in the estimate
is sufficiently small.
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Table 2.2 Some examples of oscillation conditions related to moduli of continuity

a ∈ |a′(t)| � |a(k)(t)| �

C0 t−1 t−k

Log−1 t−1 t−(2k−1)

Cα t−1 t−((k(2−α)−1)/(1−α))

Log1+εLip t−(1+1/ε) t−k(1+1/ε)(exp(t−1/ε))k−1

Log[m,1+ε]Lip t−k(1+1/ε)∏m−1
i=1 exp[i](t−1/ε) t−(1+1/ε)(

∏m−1
i=1 exp[i](t−1/ε)k)

× (exp[m](t−1/ε))k−1

Table 2.2 shows some moduli of continuity and the associated control of oscilla-
tions: α ∈ (0,1), ε > 0

2.2.4 Scheme of the Construction of the Counterexamples

In this section we present the scheme how to construct an operator

Eu = ∂2

∂t2
u+ ∂2

∂x2
u+ a(t)

∂2

∂y2
u+ f (t, x, y)

∂

∂x
u+ g(t, x, y)

∂

∂y
u+ c(t, x, y)u

= 0 (8)

with the properties stated in the theorems of the last three sections. We will not
present every detail and the reader may consult the original paper of Pliš [39] or [30].

Step 1: Auxiliary Functions and Sequences Let A(x), B(x), C(x), and J (x) be
elements of B∞(R) with the following properties:

A(x) = 1 for x ≤ 1

5
, A(x)= 0 for x ≥ 1

4
,

B(x) = 0 for x ≤ 0 or x ≥ 1, B(x)= 1 for
1

6
≤ x ≤ 1

2
,

C(x) = 0 for x ≤ 1

4
, C(x)= 1 for x ≥ 1

3
,

J (x) = −2 for x ≤ 1

6
or x ≥ 1

2
, J (x)= 2

1

5
≤ x ≤ 1

3
.

In order to control the behavior of the solution and the coefficients of (8) we need
two sequences (an)n and (zn)n with the properties

−1 < an < an+1 for all n≥ 1, lim
n→+∞an = 0,

1 < zn < zn+1 for all n≥ 1, lim
n→+∞ zn = +∞.
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Furthermore, we define rn := an+1 − an, q1 := 0, qn :=∑n
k=2 zkrk−1 for all n≥ 2,

and pn := (zn+1 − zn)rn, where we suppose pn > 1 for all n ≥ 1. We transport
the behavior of our auxiliary functions to the intervals [an, an+1] where we shall
construct our solution and the coefficients. We introduce

An(t) = A

(
t − an+1

rn

)
, Bn(t)= B

(
t − an+1

rn

)
, Cn(t)= C

(
t − an+1

rn

)
,

Jn(t) = J

(
t − an+1

rn

)
, n≥ 1.

Step 2: Construction of a Solution u on [an,an+1] We define the auxiliary
functions

vn(t, x)= exp
(−qn − zn(t − an+1)

)
cos(znx),

wn(t, y)= exp
(−qn − zn(t − an+1)+ Jn(t)pn

)
cos(zny)

(9)

which are solutions of utt + uxx + a(t)uyy = 0 with a suitable coefficient a, which
will be determined in Step 3 of the proof. To construct a solution of (8) we define

u(t, x, y)=

⎧
⎪⎨

⎪⎩

v1(t, x) : t < a1,

An(t)vn(t, x)+Bn(t)wn(t, y)+Cn(t)vn+1(t, x) : t ∈ [an, an+1],
0 : t ≥ 0.

This function is obviously in B∞(R3 \ {0}). For u to be in C∞(R3) the condition

∀α,β, γ ∈N : ∣∣∂αt ∂βx ∂γy u(t, x, y)
∣
∣ t→0+−→ 0

is necessary and sufficient. This will be implied by the condition

lim
n→∞ exp(−qn + 2pn)z

α
n+1p

β
n r

−γ
n = 0 ∀α,β, γ ∈ N. (10)

Step 3: Construction of a Suitable a(t) We denote Ẽu= ∂2
t u+ ∂2

xu+ a(t)∂yu

and we get from (9) that Ẽvn = 0 for all n≥ 1. In order to get Ẽwn = 0 on [an, an+1]
for n≥ 1 we have to set

a(t)=

⎧
⎪⎨

⎪⎩

1 : t < a1 or t ≥ 0,

1 − 2J ′
n(t)pnz

−1
n + [J ′

n(t)]2p2
nz

−2
n

+ J ′′
n (t)pnz

−2
n : t ∈ [an, an+1]

(11)

The condition

sup
n∈N

(
pnr

−1
n z−1

n + p2
nr

−2
n z−2

n

)≤ 1

2(‖J ′‖L∞ + ‖J ′′‖L∞)
(12)

ensures that E is elliptic and that 1 ≤ a(t)≤ 2.
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Step 4: The Regularity of a(t) Global regularity: In this step of the construction
we show how one ensures that a has the modulus of continuity μ. By the mean value
theorem we have to control |a′(t)| globally. From (11) we get on [an, an+1]:

a′(t)= −2J ′′
n (t)pnz

−1
n + 2J ′

n(t)J
′′
n (t)p

2
nz

−2
n + J ′′′

n (t)pnz
−2
n

which we can estimate as

∣∣a′(t)
∣∣� r−2

n pnz
−1
n + r−3

n p2
nz

−2
n + r−3

n pnz
−2
n � r−2

n pnz
−1
n + r−3

n p2
nz

−2
n .

In order to get the μ-continuity for a we need |a′(t)| � μ(rn)
rn

on [an, an+1] because
in this case we will be able to establish the inequality

∣∣a(s)− a(t)
∣∣� μ(rn)

rn
|t − s| � μ

(|t − s|) ∀s, t ∈ [an, an+1],

where we use |t− s| ≤ rn for s, t ∈ [an, an+1] and the fact that σ �→ μ(σ)
σ

is decreas-
ing. This will be implied by the condition

sup
n∈N

r−1
n pnz

−1
n

μ(rn)
≤ C <+∞. (13)

Local regularity: Here we want to control the oscillations of a near t = 0 like
in Theorem 2.3. First we derive from (11) an estimate for the behavior of the k-th
derivative of a:

∣∣a(k)(t)
∣∣� pn

rk+1
n zn

+ pn

rk+2
n z2

n

+ k
p2
n

rk+2
n z2

n

� pn

rk+1
n zn

+ k
p2
n

rk+2
n z2

n

.

It is enough to analyze the term pnr
−(k+1)
n z−1

n . The other term has a better behavior
and can be handled in the same way. Our goal is now to ensure that a relation like

∣∣F(t)a′(t)
∣∣= O(1) (t → 0−) (14)

holds for a certain function F . In order to do that, we have to express t in terms of
our sequences. By the definition of our intervals, we can conclude that

t ∼ −
+∞∑

k=n
rk.

Now condition (14) reads as follows

sup
n∈N

(

F

(

−
+∞∑

k=n
rk

)
pn

rk+1
n zn

)

≤ C <+∞, ∀k ≥ 1. (15)
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Remark 2.4 For Theorem 2.3 we have to take F(t) = |t |k and we have to find se-
quences such that

sup
n∈N

(+∞∑

j=n
rj

)k
pn

rk+1
n zn

≤ C <+∞, ∀k ≥ 1.

Remark 2.5 For Theorem 2.4 we have to take F(t) = (η−1(t))2k−1

(μ(η−1(|t |)))k with η(t) :=
∫ t

0
ds
μ(s)

and we have to find sequences such that

sup
n∈N

(η−1(tn))
2k−1

(μ(η−1(tn)))k

pn

rk+1
n zn

≤ C <+∞, ∀k ≥ 1, (16)

where tn :=∑+∞
j=n rj .

Step 5: Definition of Lower-Order Coefficients As lower order coefficients we
define

f (t, x, y) := − Ẽu
u2 + (∂xu)2 + (∂yu)2

∂

∂x
u,

g(t, x, y) := − Ẽu
u2 + (∂xu)2 + (∂yu)2

∂

∂y
u,

h(t, x, y) := − Ẽu
u2 + (∂xu)2 + (∂yu)2

u.

This coefficients will belong to C∞(R3) if

∀α,β, γ ∈N : lim
n→+∞ exp(−pn)zαn+1p

β
n r

−γ
n = 0. (17)

To finish the construction we give examples of sequences which fulfill the con-
ditions (10), (12), (17) and (13) and/or (15) for a sufficiently large j :

• Pliš example: an := (log(n+ j))−1, zn := (n+ j)3,
• Non-Osgood regularity: an :=∑+∞

l=n ((l + j)2μ( 1
(l+j) ))

−1, zn := (n+ j)3,

• Oscillation control: rn := ρ−(n+j), zn := ρ(n+j)(n+ j) log(n+ j),
• Mixing situation: an :=∑+∞

l=n ((l + j)2μ( 1
(l+j) ))

−1, zn := (n+ j)3.

With the choice of these sequences the construction of the counterexample is
finished. As already mentioned the same construction (with small changes) also
work for backward-parabolic operators, see [19, 30].

Remark 2.6 To prove (16) in the mixing situation it is essential to use the relation
tn :=∑+∞

j=n rj ∼ η( 1
n
). This reflects precisely the non-Osgood condition.
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2.3 Uniqueness

In this section we present some complementary theorems to the theorems of
Sect. 2.2. The history of uniqueness in the Cauchy problem for elliptic equations
is fairly long and we attempt by no means to give a survey about this development.
Here we focus on theorems which are more or less direct complements of our non-
uniqueness theorems.

2.3.1 Uniqueness Under Global Conditions

First, we state results which are counterparts to the results in Sect. 2.2.1. The theo-
rems, as proved in the original papers, hold mostly for more general solutions than
stated here. But for our purpose the formulations presented here are sufficient.

In [26, 27] Hörmander has deeply investigated the question of uniqueness for the
Cauchy problem for partial differential operators. One of the results is the unique-
ness for solutions to elliptic operators with Lipschitz continuous coefficients in the
principal part. It can be stated as

Theorem 3.1 Suppose that akl ∈ Lip([0, T ]×R
n) and β,bm, c ∈ L∞([0, T ]×R

n).
Then E has the C∞-uniqueness property.

In [41] Tarama proved that uniqueness in the Cauchy problem for elliptic op-
erators still holds true if one weakens the Lipschitz-condition on the principal
part coefficients and replaces it with the Osgood-condition. As the counterexam-
ples of Sect. 2.2.1 show, this cannot be weakened without further assumptions.
We remark again that the result of Pliš is in fact a result about the sharpness
of the Osgood condition (see Remark 2.1). The result of Tarama can be stated
as

Theorem 3.2 (Theorem 1.2 in [41]) Suppose that akl ∈ Cμ([0, T ] × R
n) with an

Osgood modulus of continuity μ; suppose β,bm, c ∈ L∞([0, T ] ×R
n). Then E has

the C∞-uniqueness property.

Remark 3.1 In comparison to the hyperbolic theory it is unknown weather the Os-
good condition is sufficient for the uniqueness of the Cauchy problem or not. How-
ever, a counterexample to uniqueness in [8] shows at least that one cannot consider
coefficients with regularity beneath the Osgood condition.

Similar results to Theorems 3.1 and 3.2 have been proved for the backward
parabolic operator P . The first paper in this direction was perhaps [34] where J.-L.
Lions and Malgrange proved uniqueness for the solutions of the Cauchy problem for
P under the condition that the principal part coefficients Lipschitz-continuous with
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respect to t and L∞ with respect to x. Similar results can be found in [1, 2, 23, 35].
The result of J.-L. Lions and Malgrange can be stated as

Theorem 3.3 Suppose, for P , that akl ∈ Lip([0, T ],L∞(Rn)); suppose β,bm, c ∈
L∞([0, T ] ×R

n). Then, P has the H-uniqueness property, where

H :=H 1([0, T ],L2(
R
n
))∩L2([0, T ],H 2(

R
n
))
. (18)

In [16, 19, 21] Del Santo and Prizzi proved that one can weaken the Lipschitz-
regularity at least in the time variable to an Osgood modulus of continuity.

Theorem 3.4 (Theorem 1 in [19]) Let μ be a Osgood modulus of continuity, sup-
pose that the coefficients akl ∈ Cμ([0, T ],Lip(Rn)) and bm, c ∈ L∞([0, T ] × R

n).
Then P has the H-uniqueness property, where H is defined by (18).

Recently in [17] the uniqueness has been proved under a regularity in x which is
below Lipschitz and the modulus of continuity in x is connected with the modulus
of continuity in time.

2.3.2 Uniqueness Under Local Conditions

In this section we will prove uniqueness results for backward-parabolic and elliptic
operators under a local condition as a counterpart to Sect. 2.2.2. We will not give
all the details of the proofs. We perform some of the calculations for the backward-
parabolic operators and the proofs for the elliptic case follow exactly the same lines.
Furthermore, to be as close to the counterexamples as possible, we will state the
theorems mainly for solutions which are periodic in x. We consider the operators

Eu = ∂2
t u+

n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)

+ β(t, x)∂tu+
n∑

m=1

bm(t, x)∂xmu+ c(t, x)u (19)

and

Pu= ∂tu+
n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)+
n∑

m=1

bm(t, x)∂xmu+ c(t, x)u (20)

under the following assumptions:
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(A1) For all k, l = 1, . . . , n one has akl(t, x)= alk(t, x).
(A2) There exist a constant a0 such that

n∑

k,l=1

akl(t, x)
ξkξl

|ξ |2 ≥ a0 > 0 ∀(t, x, ξ) ∈ [0, T ] ×R
n ×R

n \ {0}.

(A3) Let akl = akl(t, x) ∈ C0([0, T ],L∞(Rn))∩C1((0, T ],L∞(Rn)) and

∃C ∈ (0, a0) :
∣∣
∣∣∣

n∑

k,l=1

∂

∂t
akl(t, x)

ξkξl

|ξ |2
∣∣
∣∣∣
≤ C

t

∀(t, x, ξ) ∈ (0, T ] ×R
n ×R

n \ {0}.

(A4) Let bk , β and c belong to L∞([0, T ] ×R
n,C) for all k = 1, . . . , n.

Remark 3.2 For the Cauchy problem for the elliptic operator E the constant C in
(A3) can be chosen from the interval (0,2a0). The conclusions of Theorem 3.5 and
Theorem 3.6 are the same.

Remark 3.3 The restriction on the size of the constant in (A3) is unavoidable as
long as uniqueness in C∞ classes is concerned. A simple computation in the coun-
terexample in Sect. 2.2.2 shows that the size is sharp.

Even if the uniqueness results will be stated for C∞ solutions, the important
property to be satisfied by the solutions under consideration is that for all N ∈ N

it holds that limt→0+ t−N |u(t, x)| = 0 for all x ∈ T
n (or Rn) or similar conditions

expressed in an integral form.
We set

Hper :=
{
u ∈ C∞([0, T ],C∞(

T
n
)) : ∀N ∈ N : lim

t→0+ t
−N ∣∣u(t, x)

∣∣= 0 ∀x ∈ T
n
}
,

where T
n denotes the n dimensional torus [0,2π]n. Furthermore, we define

H :=
{
u ∈ C∞([0, T ],C∞(

R
n
)) : ∀N ∈N : lim

t→0+ t
−N ∣∣u(t, x)

∣∣= 0 ∀x ∈R
n
}
.

With this preparations we state

Theorem 3.5 (Periodic case) Let P be the operator defined by (20), assume (A1)–
(A4) and, moreover, assume that the coefficients akl are periodic in x. Then P has
the Hper -uniqueness property.

Theorem 3.6 (Non-periodic case) Let P be the operator defined by (20) and as-
sume (A1)–(A4). Then P has the H-compact uniqueness property, i.e. if u ∈ H,
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supp(u) ⊆ {t ≥ 0}, supp(u) ∩ ({0} × R
n) = {(0,0)} and Pu = 0 on [0, T ] × R

n,
then u≡ 0 on [0, T ] ×R

n.

Both theorems follow from an appropriate Carleman estimate. The arguments are
quite standard and we refer the reader to [45] and [30] for more details. We state the
Carleman estimate only for the periodic case. The changes for the general case are
easy.

Theorem 3.7 Suppose the assumptions (A1)–(A3) and that the coefficients akl are
periodic in x. Then there exist positive constants C,γ0 > 0 and σ ∈ (0, 1

2 ) such that

∫ T/2

0
t2(σ−γ )

∥∥
∥∥∥
∂tu+

n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)
∥∥
∥∥∥

2

L2(Tn)

dt

≥ C

(

γ

∫ T/2

0
t2(σ−γ−1)‖u‖2

L2(Tn)
dt +

n∑

i=1

∫ T/2

0
t2(σ−γ−1/2)‖∂xi u‖2

L2(Tn)
dt

)

(21)

holds for all u ∈Hper with supp(u)⊆ [0, T /2] ×R
n and for all γ ≥ γ0.

Proof To prove the Carleman estimate we put u(t, x)= tγ v(t, x) and we obtain

ut (t, x)= γ tγ−1v(t, x)+ tγ vt (t, x).

This leads to the new equation

Pγ v = vt +
n∑

k,l=1

∂xk
(
akl(t, x)∂xl v

)+ γ t−1v. (22)

To be able to control some sign during our calculations we need to introduce an
auxiliary weight. We multiply the operator Pγ by tσ , where σ > 0 will be specified
later, and take L2-norms. We get

∫ T/2

0
t2σ‖Pγ v‖2

L2(Tn)
dt =

∫ T/2

0
t2σ

∥∥∥∥∥

n∑

k,l=1

∂xi
(
akl(t, x)∂xl v

)+ γ t−1v

∥∥∥∥∥

2

L2(Tn)

dt

+ 2 Re
∫ T/2

0

〈

vt |t2σ
n∑

k,l=1

∂xk
(
akl(t, x)∂xl v

)
〉

L2(Tn)

dt

+ 2 Re
∫ T/2

0

〈
vt |t2σ−1v

〉
L2(Tn)

.
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By integration by parts we obtain

2 Re
∫ T/2

0

〈
vt |t2σ−1v

〉
L2(Tn)

= γ (1 − 2σ)
∫ T/2

0
t2(γ−σ)‖v‖2

L2(Tn)
dt.

Here, in order to ensure the positivity of this term, we put, for an ε > 0, σ := 1
2 −

ε > 0. Again by integration by parts we obtain

2 Re
∫ T/2

0

〈

vt |t2σ
n∑

k,l=1

∂xk
(
akl(t, x)∂xl v

)
〉

L2(Tn)

dt

=
n∑

k,l=1

∫ T/2

0
t2σ−1〈∂xk v|

(
2σakl(t, x)+ t∂t akl(t, x)

)
∂xl v

〉
L2(Tn)

. (23)

To get this integral we approximate the left hand side of (23) by

2 Re
∫ T/2

δ

〈

vt |t2σ
n∑

k,l=1

∂xk
(
akl(t, x)∂xl v

)
〉

L2(Tn)

dt, (24)

integrate by parts and take the limit δ → 0+. The boundary terms vanish since
v ∈Hper and supp(v)⊆ [0, T ]×R

n. Using (A2), (A3) and choosing ε small enough
there exist a C > 0 such that

n∑

k,l=1

∫ T/2

0
t2σ−1〈∂xk v|

(
2σakl(t, x)+ t∂t akl(t, x)

)
∂xl v

〉
L2(Tn)

≥ C

n∑

k,l=1

∫ T/2

0
t2σ−1〈∂xk v|∂xl v〉L2(Tn)dt.

From that we get

∫ T/2

0
t2σ‖Pγ v‖2

L2(Tn)
dt ≥ γ (1 − 2σ)

∫ T/2

0
t2(γ−σ)‖v‖2

L2(Tn)
dt

+C

n∑

k,l=1

∫ T/2

0
t2σ−1〈∂xk v|∂xl v〉L2(Tn)dt

from which we, going back to u, reach estimate (21). �

For elliptic operators E the Carleman estimate is essentially the same. One gets
just one term more to control also lower order derivatives in t . The precise statement
is
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Theorem 3.8 Suppose assumptions (A1)–(A3). Then there exist positive constants
C, γ0 > 0 and σ ∈ (0,1) such that

∫ T/2

0
t2(σ−γ )

∥∥∥∥∥
∂2
t u+

n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)
∥∥∥∥∥
L2(Tn)

≥ Cγ

(
n∑

i=1

∫ T/2

0
t2(σ−γ−1)‖∂xi u‖2

L2(Tn)
dt +

∫ T/2

0
γ t2(σ−γ−1)‖∂tu‖2

L2(Tn)
dt

+
∫ T/2

0
γ 2t2(σ−γ−1)‖u‖2

L2(Tn)
dt

)

holds for all u ∈Hper with supp(u)⊆ [0, T /2] ×R
n and all γ ≥ γ0.

As already remarked one cannot weaken the assumption on the constant in os-
cillation control condition (A3). To use a bigger constant there we have to shrink
the space (with respect to t) in which we are proving uniqueness. It turns out that
Gevrey spaces provide us the possibility to weaken condition (A3) with respect to
the constant C. First, we introduce the Gevrey spaces under consideration.

For all s ≥ 1 we define γ (s)t to be the space of all C∞((−∞, T ],C∞(Rn))-
functions u with supp(u) ⊆ [0, T ] × R

n which are in the Gevrey class of index s
with respect to t , uniformly in x. This means u ∈ γ (s)t if and only if for all compact
subsets K ⊆ (−∞, T ] × R

n and for all multi-indices α ∈ N
n
0, there exist positive

constants C = C(u,α,K) and M =M(u,α,K) such that, for all k ∈N0

sup
(t,x)∈K

∣∣∂αx ∂
k
t u(t, x)

∣∣≤ CMk(k!)s

holds true.
With this we define the spaces

H(s)
per := γ

(s)
t ∩C0((−∞, T ],C∞(

T
n
))

and

H(s) := γ
(s)
t

for which we are going to state the uniqueness theorems.
With this preparations we can state our new local condition

(A3α) Let akl = akl(t, x) ∈ C0([0, T ],L∞(Rn))∩C1((0, T ],L∞(Rn)), α > 0 and

∃C ∈ (
0, (1 + 2α)a0

) :
∣
∣∣∣∣

n∑

k,l=1

∂

∂t
akl(t, x)

ξkξl

|ξ |2
∣
∣∣∣∣
≤ C

t
.

for all (t, x, ξ) ∈ (0, T ] ×R
n ×R

n \ {0}.
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Theorem 3.9 (Periodic case) Let P be the operator defined by (20), assume (A1),
(A2), (A3α), (A4) with an α > 0 and, moreover, that the coefficients akl are periodic
in x. Then P has the H(s)

per -uniqueness property for s < 1 + 1
α

.

It also holds

Theorem 3.10 (Non-periodic case) Let P be the operator defined by (20), assume
(A1), (A2), (A3α), (A4) with an α > 0. Then P has the H(s)-compact uniqueness
property for s < 1 + 1

α
, i.e. if u ∈ H(s), supp(u) ⊆ [0, T ] × R

n, supp(u) ∩ ({0} ×
R
n)= {(0,0)} and Pu= 0 on [0, T ] ×R

n, then u≡ 0 on [0, T ] ×R
n.

Both theorems follow again from a suitable Carleman estimate and as in the
former case we state the estimate just for the periodic case. To obtain a suitable
Carleman estimate for our uniqueness result in the Gevrey frame we need to use a
weight function which is connected with the way of going to zero for such functions.
From Lemma 2 of [33] we know, that we can write every u ∈H(s)

per as a product of a
function v ∈ C∞

0 ((−∞, T ],C∞(Tn)) with supp(u)⊆ [0, T ] ×R
n and the function

exp(−γ t−α), where s and α satisfy the relation s < 1 + 1
α

.
With this we can state

Theorem 3.11 Suppose assumptions (A1), (A2), (A3α) with an α > 0 and assume,
moreover, that the coefficients akl are periodic in x. Then there exist constants C,
γ0 and σ ∈ (0, 1

2 (α + 1)) such that

∫ T/2

0
t2σ e2γ t−α

∥∥∥∥∥
∂tu+

n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)
∥∥∥∥∥

2

L2(Tn)

dt

≥ C

(

γ

∫ T/2

0
t2σ−α−2e2γ t−α‖w‖2

L2(Tn)
dt

+
n∑

m=1

∫ T/2

0
t2σ e2γ t−α‖∂xmu‖2

L2(Tn)
dt

)

holds for all γ ≥ γ0 and u ∈H(s)
per with supp(u)⊆ [0, T /2] ×R

n and s < 1 + 1
α

.

In the elliptic case the same result as stated in Theorems 3.9 and 3.10 hold true.
The constant C in the oscillation condition (A3α) can be chosen from the interval
(0,2(1 + α)a0). The Carleman estimate has again one term more and we state it for
the sake of completeness.

Theorem 3.12 Suppose assumptions (A1), (A2), (A3α) with an α > 0 and that the
principal part coefficients akl are periodic in x. Then there exist constants C, γ0 > 0
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and σ ∈ (0, 3
2 (α + 1)) such that

∫ T/2

0
t2σ e2γ t−α

∥∥∥∥∥
∂2
t u+

n∑

k,l=1

∂xk
(
akl(t, x)∂xl u

)
∥∥∥∥∥

2

L2(Tn)

dt

≥ C

(

γ 3
∫ T/2

0
t2σ−3α−4e2γ t−α‖u‖2

L2(Tn)
dt

+ γ 2
∫ T/2

0
t2σ−2α−2e2γ t−α‖∂tu‖2

L2(Tn)
dt

+ γ

n∑

i=1

∫ T/2

0
t2σ−α−1e2γ t−α‖∂xi u‖2

L2(Tn)
dt

)

holds for all γ ≥ γ0 and u ∈H(s) with supp(u)⊆ [0, T /2] ×R
n and s < 1 + 1

α
.

2.3.3 Degenerate Operators and Local Conditions

In this section we would like to complement the results of the last two sections with
some results about degenerate elliptic and backward-parabolic operators. Since,
global regularity does in general not help to ensure uniqueness, which may fail even
for C∞ coefficients (see [11, 14]) we ask about the situation for local conditions.

This section gives an overview about results which seem to be new in the litera-
ture, as far as backward-parabolic operators are concerned. The proofs follow very
closely the lines of the corresponding results for elliptic operators in [7, 11, 36] and
therefore we omit them here. We refer also to [30]. We suppose the assumptions
(A1) and (A4) and we replace condition (A2) by

(A2′) For the principal part coefficients of E and P holds

n∑

k,l=1

akl(t, x)ξkξl ≥ 0 ∀ξ ∈R
n.

In [36] Nirenberg proved compact uniqueness for C2-solutions of degenerate
elliptic operators whose coefficients satisfy the Oleinik condition from [37]. Similar
to his approach one can prove compact uniqueness for C1,2

t,x -solutions of degenerate
backward-parabolic operators:

Theorem 3.13 Suppose assumptions (A1), (A2′) and that there existC′,C > 0 such
that

n∑

k,l=1

(
C′akl(t, x)+ ∂takl(t, x)

)
ξkξl ≥ C

∣∣∣
∣∣

n∑

m=1

bm(t, x)ξm

∣∣∣
∣∣

2
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holds. Then the operator P has the H-compact uniqueness property.

Inspired by the work of Nirenberg, Colombini and Del Santo have investigated
this kind of condition further and have proved several (compact) uniqueness the-
orems for C∞ and Gevrey solutions of the Cauchy problem for degenerate ellip-
tic operators. As already mentioned we want to state similar results for backward-
parabolic operators.

Theorem 3.14 Suppose there exist an ε > 0 and a C > 0 such that

n∑

k,l=1

(
(1 − ε)akl(t, x)+ t∂t akl(t, x)

)
ξkξl ≥ Ct2

∣∣∣
∣∣

n∑

m=1

bm(t, x)ξm

∣∣∣
∣∣

2

for all (t, x) ∈ [0, T ] ×R
n and for all ξ ∈R

n. Then the backward-parabolic opera-
tor P has the C1,2

t,x -compact uniqueness property.

Using Gevrey solutions the last condition can we weakened, analogue to Theo-
rem 3.10.

Theorem 3.15 Let s > 1. Suppose there exist an ε > 0 and C > 0 such that

n∑

k,l=1

((
s

1 − s
− ε

)
akl(t, x)+ t∂t akl(t, x)

)
ξkξl ≥ Ct2+s/(s−1)

∣∣∣∣
∣

n∑

m=1

bm(t, x)ξm

∣∣∣∣
∣

2

for all (t, x) ∈ [0, T ] ×R
n and for all ξ ∈R

n. Then the backward-parabolic opera-
tor P has the H(s)-compact uniqueness property.

2.3.4 Open Problems and Further Developments

Here we would like to sketch briefly some open questions and possible further de-
velopments. Unfortunately we have no counterpart to Theorem 2.4. We expect that
one can prove uniqueness in this situation if one chooses a constant in the oscillation
control condition which is sufficiently small. Such a result would be analogous (of
course only concerned about uniqueness) to those in [32] and [22].

Conjecture 2.3.1 Suppose that the principal part coefficients of E or P are in
Cμ([0, T ],R) ∩ C1((0, T ],R) with a non-Osgood modulus of continuity μ. Fur-
thermore, we suppose

∣∣∣
∣∣

n∑

k,l=1

∂

∂t
akl(t)

ξkξl

|ξ |2
∣∣∣
∣∣
≤ C

μ(η−1(t))

η−1(t)
∀(t, x, ξ) ∈ (0, T ] ×R

n ×R
n \ {0}
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holds for a sufficiently small C > 0, where η(t) := ∫ t
0

ds
μ(s)

. Then the operators P
and E have the H-compact uniqueness property.

If this can be proved one can expect a similar result for degenerate operators
under a condition like

n∑

k,l=1

(
Cakl(t)+ η−1(t)

μ(η−1(t))
∂takl(t)

)
ξkξl ≥Kfμ(t)

∣∣∣∣∣

n∑

m=1

bm(t, x)ξm

∣∣∣∣∣

2

for a sufficiently small constant C > 0. In both cases one might also consider x-
dependent coefficients.

It is clear that then similar improvements as described before can be expected if
one considers Gevrey classes.

2.4 Continuous Dependence for Backward-Parabolic Operators

Since the Cauchy problem for elliptic and backward-parabolic operators is severely
ill-posed one cannot expect the usual stability properties. However, for applications
it is important to have some quantitative information about the nature of the depen-
dency of solution on the Cauchy data. In his celebrated paper Continuous depen-
dence on data for solutions of partial differential equations with a prescribed bound
[31] John attempted this problem and introduced the notion of a well-behaved prob-
lem. In the notion of John a problem is well-behaved if only a fixed percentage of
the significant digits need be lost in determining the solution from the data. To be
a little bit more precise, that means that the solution in a space H depends Hölder
continuously on the data in some space K, provided they satisfy a prescribed bound.

In [1] Agmon and Nirenberg proved well-behavedness of the Cauchy problem
for P in the space

H := C0([0, T ],L2(
R
n
))∩C0([0, T ),H 1(

R
n
))∩C1([0, T ),L2(

R
n
))

with data in L2(Rn). They assumed the coefficients to be Lip with respect to t and
L∞(Rn)with respect to x. At about the same time Glagoleva obtained in [24] almost
the same result by a different technique and time-independent coefficients. In [29]
Hurd developed the technique of Glagoleva further to cover also the case where
the coefficients also depend Lipschitz continuously on time. This result has been
partially improved by Del Santo and Prizzi in [20]. They considered the operator P
with coefficients depending Log-Lipschitz continuously on time. But, due to some
technical difficulties arising from a commutator estimate, they had to require C2-
regularity in x. The result they got can be summarized as follows: For every T ′ ∈
(0, T ) and D > 0 there exist M,N,ρ > 0 and δ ∈ (0,1) such that if u ∈ H is a
solution of Pu= 0 on [0, T ]×R

n with ‖u(0, ·)‖L2(Rn) ≤ ρ and ‖u(t, ·)‖L2(Rn) ≤D
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on [0, T ], then

sup
t∈[0,T ′]

∥∥u(t, ·)∥∥2
L2(Rn)

≤M exp
(−N ∣∣log

(∥∥u(0, ·)∥∥
L2(Rn)

)∣∣δ).

As one sees this dependence is weaker than Hölder continuous dependence. A coun-
terexample in [20] shows that this result is sharp in the sense that one can in gen-
eral not expect Hölder continuous dependence if the coefficients depend only Log-
Lipschitz continuously on time.

The C2 regularity with respect to x has recently been removed by use of Bony’s
paraproduct and could be replaced by Lipschitz continuity which is more natural in
this context (see [18]).
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Chapter 3
On Internal Regularity of Solutions to the Initial
Value Problem for the Zakharov–Kuznetsov
Equation

A.V. Faminskii and A.P. Antonova

Abstract The initial value problem is considered for the Zakharov–Kuznetsov
equation in two spatial dimensions, which generalizes the Korteweg–de Vries equa-
tion for description of wave propagation in dispersive media on the plane. An initial
function is assumed to be irregular, namely, from the spaces L2 or H 1. Results on
gain of internal regularity for corresponding weak solutions depending on the decay
rate of the initial function at infinity are established. Existence of both Sobolev and
continuous derivatives of any prescribed order is proved. One of important items
of the study is the investigation of the fundamental solution to the corresponding
linearized equation. The obtained properties are to some extent similar to the ones
of the Airy function.

Mathematics Subject Classification 35Q53 · 35B65

3.1 Introduction. Description of Main Results

The initial value problem for the Zakharov–Kuznetsov equation

ut + uxxx + uxyy + uux = f (t, x, y) (1)

(u= u(t, x, y)) with an initial condition

u|t=0 = u0(x, y) (2)

is considered in a layerΠT = {(t, x, y) : 0< t < T, (x, y) ∈ R
2} (T > 0—arbitrary)

and internal regularity of its solutions is studied.
The equation of type (1) was derived in [14] for the description of propagation

of nonlinear ion-acoustic waves in plasma placed in a magnetic field. Further this
equation was named Zakharov–Kuznetsov equation. Equation (1) is one of the vari-
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ants of the (2 + 1)-dimensional generalizations of the Korteweg–de Vries equation
(KdV) ut + uxxx + uux = 0.

Equation (1) (for f ≡ 0) possesses two conservation laws
∫∫

u2dxdy ≡ const,
∫∫ (

u2
x + u2

y − 1

3
u3
)
dxdy ≡ const. (3)

In [4] with the use of these equalities global well-posedness of the problem
(1), (2) was established for the initial function from Hm(R2) and the right-hand
side from L1(0, T ;Hm(R2)), m—natural, in a certain special functional class
Km(0, T )⊂ C([0, T ];Hm(R2)). In the case m= 1 this class is the following one:

K1(0, T ) = {
u ∈ C([0, T ];H 1(

R
2)), uxx, uxy, uyy ∈ L∞

(
R
x;L2

(
(0, T )×R

y
))
,

u ∈ L3
(
0, T ;W 1∞

(
R

2)), u ∈ L2
(
R
x;L∞

(
(0, T )×R

y
))}
.

Previously similar function classes for the KdV equation were introduced in [8].
Note that for less regular data u0 ∈ L2(R

2), f ∈ L1(0, T ;L2(R
2)) existence of

global solutions to the considered problem from the space L∞(0, T ;L2(R
2)) fol-

lows from results of [3]. These solutions also possess additional smoothness in com-
parison with the initial data:

sup
x0∈R

∫ T

0

∫ x0+1

x0

∫

R

(
u2
x + u2

y

)
dydxdt <+∞.

Moreover, if the initial data and the right-hand side as x → +∞ satisfy additional
decay assumptions (1+x)αu0 ∈ L2(R

2+), (1+x)αf ∈ L1(0, T ;L2(R
2+)) for certain

α > 0, then

(1 + x)αu ∈ L∞
(
0, T ;L2

(
R

2+
))
,

(4)
(1 + x)α−1/2

(|ux | + |uy |
) ∈ L2

(
(0, T )×R

2+
)

(here and further R2+ = {(x, y) : x > 0} = R+ × R). An analog of the first of con-
servation laws (3) was used to obtain these results. However, uniqueness of such
solutions was not established.

In [9] and [2] the gain of internal regularity of weak solutions with respect
to the decay rate of irregular initial function u0(x) as x → +∞ was found for
the initial value problem for the KdV equation. In particular, it was shown that if
u0 ∈ L2(R) and xαu0 ∈ L2(R+) for certain α > 0 then the corresponding solution
u(t, x) possessed generalized (in the Sobolev sense) derivatives ∂nx u for n≤ 2α+ 1.
For n < 2α − 1/2 these derivatives were continuous. If, additionally, u′

0 had the
same properties as the initial function itself, then the orders of all aforementioned
derivatives could be enlarged by one.

In [7] a result of internal regularity for weak solutions to the initial value prob-
lem for the KdV equation was obtained in the case of initial functions from L2(R)

decaying exponentially at +∞. The solutions became infinitely smooth for t > 0.
The first result on internal regularity of solutions to the initial value problem

for the Zakharov–Kuznetsov equation was established in [10] (in fact, more gen-
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eral equations of the third order on the plane were considered). There the result on
the gain of regularity was obtained for solutions having a priori generalized spatial
derivatives up to the sixth order from the space L2(R

2) with a certain spatial weight
as x → +∞. Existence of such solutions was proved only locally in time for initial
functions from the space H 6(R2) with a corresponding weight.

In the present paper for problem (1), (2) the results similar to the ones for KdV
from [9] and [2] are established. Solutions are considered for initial functions from
the spaces L2(R

2) and H 1(R2) with a certain power weight as x → +∞. In order
to present the main results we introduce the following notations.

Let ν = (k, n) be a integer-valued multi-index, |ν| = k + n, define Dν =
∂ |ν|/∂xk∂yn. Let Lp = Lp(R

2).
For α ≥ 0 we define the following function spaces

Lα2 = Lα2
(
R

2)= {
φ ∈ L2

(
R

2) : (1 + x)αφ ∈ L2
(
R

2+
)}
,

H 1,α =H 1,α(
R

2)= {
φ ∈H 1(

R
2) : φ,φx,φy ∈ Lα2

(
R

2)}

with natural norms.

Theorem 1 Let u0 ∈ Lα2 , f ∈ L1(0, T ;Lα2 ) for a certain α ≥ 1/2 and, in addition,

there exists a natural m ≤ 2α such that Dνf ∈ L1(0, T ;Lα−|ν|/2
2 ) for 1 ≤ |ν| ≤m

and also if m= 2 then α > 1. Then there exists a solution u(t, x, y) to problem (1),
(2) from the space L∞(0, T ;Lα2 ) possessing in ΠT generalized (Sobolev) deriva-
tives Dνu of the orders |ν| ≤m+ 1. Moreover, for all δ ∈ (0, T ) and x0 ∈ R

(x − x0 + 1)α−|ν|/2Dνu ∈ L∞
(
δ, T ;L2

(
(x0,+∞)×R

))
, 1 ≤ |ν| ≤m; (5)

Dνu ∈ L2
(
(δ, T )× (x1, x1 + 1)×R

) ∀x1 ≥ x0, |ν| =m+ 1; (6)

and, if m< 2α, then for |ν| =m+ 1

(x − x1 + 1)α−(m+1)/2Dνu ∈ L2
(
(δ, T )× (x1,+∞)×R

) ∀x1 ≥ x0, (7)

where in the last two cases the norms are estimated uniformly with respect to x1.

Theorem 2 Let u0 ∈H 1,α , f ∈ L1(0, T ;H 1,α) for a certain α > 0. Then the solu-
tion u(t, x, y) to problem (1), (2) from the space K1(0, T ) also belongs to the space
L∞(0, T ;H 1,α) and if |ν| = 2 then for all x0 ∈R

(x − x1 + 1)α−1/2Dνu ∈ L2
(
(0, T )× (x1,+∞)×R

) ∀x1 ≥ x0, (8)

where the norm is estimated uniformly with respect to x1.

Remark 1 If α ≥ 1/2, then (8) is equivalent to the property (x + 1)α−1/2Dνu ∈
L2((0, T )×R

2+).

Theorem 3 Let the hypothesis of Theorem 2 be satisfied for α ≥ 1/2 and, in addi-
tion, there exists a natural m ∈ [2,2α+ 1] such that Dνf ∈ L1(0, T ;Lα−|ν|/2+1/2

2 )
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for 2 ≤ |ν| ≤ m. Then the solution u(t, x, y) to problem (1), (2) from the space
K1(0, T ) possesses in ΠT generalized (Sobolev) derivatives Dνu of the orders
|ν| ≤m+ 1. Moreover, for all δ ∈ (0, T ) and x0 ∈R

(x − x0 + 1)α−|ν|/2+1/2Dνu ∈ L∞
(
δ, T ;L2

(
(x0,+∞)×R

))
,

2 ≤ |ν| ≤m; (9)

Dνu ∈ L2
(
(δ, T )× (x1, x1 + 1)×R

) ∀x1 ≥ x0, |ν| =m+ 1; (10)

and, if m< 2α + 1, then for |ν| =m+ 1

(x − x1 + 1)α−m/2Dνu ∈ L2
(
(δ, T )× (x1,+∞)×R

) ∀x1 ≥ x0, (11)

where in the last two cases the norms are estimated uniformly with respect to x1.

Remark 2 Since with the use of (1) itself the time derivative of the solution can be
expressed via the spatial derivatives then under additional assumptions on smooth-
ness of the function f with respect to t the solution itself also possesses correspond-
ing time smoothness.

These results are completely similar to the ones obtained in [2] for KdV (of
course, without taking into account y).

Note also that properties (8)–(11) are similar to the ones established in [10] with
the only difference that in the latter the original space H 1,α is substituted by H 6,α

defined in a similar way.
The proof of properties (5)–(11) is performed in Sect. 3.2. It is based on integral

estimates and develops the methods of [9] and [2] for the two-dimensional case.
In [9] and [2] the idea of the inversion of the linear part of the KdV equation and

the application of properties of the fundamental solution to the operator ∂t + ∂3
xxx

is used to prove continuity of derivatives of the considered solutions to KdV it-
self. This fundamental solution is well-known and can be expressed via the Airy
function.

In contrast to KdV the linearized Zakharov–Kuznetsov equation is considerably
less studied. In Sect. 3.3 of the present paper properties of the fundamental solution
to the operator ∂t + ∂3

xxx + ∂3
xyy are investigated. The obtained estimates are used

further in Sect. 3.4 but also have their own significance.
In Sect. 3.4 the following results on continuity of derivatives of considered solu-

tions to the Zakharov–Kuznetsov equation are established.

Theorem 4 Let u0 ∈ Lα2 , f ∈ L∞(0, T ;Lα2 ) for a certain α > 3/4 and Dνf ∈
L∞(0, T ;Lα−|ν|/2

2 ) for a certain natural m< 2α − 1/2 and all 1 ≤ |ν| ≤m. Then
there exists a solution u(t, x, y) to problem (1), (2) from the space L∞(0, T ;Lα2 )
satisfying (4)–(7), continuous inΠT (possibly, after modification on a set of measure
zero) and possessing in ΠT continuous derivatives Dνu for |ν| ≤m− 1. Moreover,
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for all δ ∈ (0, T ) and x0 ∈ R

sup
t∈[δ,T ],x≥x0

∣
∣Dνu(t, x, y)

∣
∣<∞, 0 ≤ |ν| ≤m− 1. (12)

Theorem 5 Let u0 ∈H 1,α , f ∈ L∞(0, T ;H 1,α) for a certain α > 3/4 and Dνf ∈
L∞(0, T ;Lα−|ν|/2+1/2

2 ) for a certain natural 2 ≤m< 2α+1/2 and all 2 ≤ |ν| ≤m.
Then the solution u(t, x, y) to problem (1), (2) from the space K1(0, T ) is continu-
ous in ΠT (possibly, after modification on a set of measure zero) and possesses in
ΠT continuous derivatives Dνu for |ν| ≤ m− 1. Moreover, for all δ ∈ (0, T ) and
x0 ∈R inequality (12) holds.

Further we use the following auxiliary functions. Let η(x) be a certain “cut-off”
function, namely, η is an infinitely smooth non-decreasing on R function such that
η(x)≡ 0 for x ≤ 0, η(x)≡ 1 for x ≥ 1, η(x)+ η(1 − x)≡ 1.

Define a weight function ρα,β(x), α ≥ 0, β > 0, in the following way: ρα,β ∈
C∞(R) is an increasing function such that ρα,β(x) ≡ eβx for x ≤ −1, ρα,β(x) ≡
(1 + x)α if α > 0 and ρ0,β(x) ≡ 2 − (1 + x)−1/2 for x ≥ 0, ρ′

α,β(x) > 0 for

−1< x < 0. Note that ρ′
α,β(x)≤ c(α,β)ρα,β(x), |ρ(k)α,β(x)| ≤ c(k,α,β)ρ′

α,β(x) for
all x ∈ R and natural k ≥ 2.

Further we use the following interpolation inequality succeeding from [3]. Let
ψ0(x, y), ψ1(x, y) be two positive infinitely smooth on R

2 functions such that ψ0 ≤
cψ1, |Dνψj | ≤ c(ν)ψj for all multi-indexes ν, j = 0 or 1, and w be a function such

that wxψ
1/2
0 ,wyψ

1/2
0 ,wψ

1/2
1 ∈ L2(R

2). Then for q ∈ [2,+∞)

∥∥wψs0ψ
1/2−s
1

∥∥
Lq

≤ c(q)
∥∥(|wx | + |wy |

)
ψ

1/2
0

∥∥2s
L2

∥∥wψ1/2
1

∥∥1−2s
L2

+ c(q)
∥∥wψ1/2

1

∥∥
L2
, (13)

where s = 1/2 − 1/q .
As a rule further we omit limits of integration in the integrals over the whole

plane R
2.

3.2 Sobolev Derivatives

We obtain estimates on solutions to problem (1)–(2) under both smooth initial data
and right-hand side of the equation but depending only on norms of these functions
contained in the hypotheses of Theorems 1–3. In the consequent six lemmas we as-
sume that u0 ∈ C∞

0 (R
2) and f ∈ C∞

0 (ΠT ). Then it follows from [4] that there exists

a solution u(t, x, y) to the considered problem such that ∂jt u ∈ C([0, T ];Hm(R2))

for all non-negative integers j and m. Moreover, for such a solution one can apply
the results of [10] and then ∂jt D

νu ∈ C([0, T ];Lα2 ) for all α > 0.
First establish estimates on the solution depending on the norms of u0 and f in

the space Lα2 .
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Lemma 1 Let α > 0. Then for any β > 0 and x0 ∈R

sup
0≤t≤T

∫∫

R2
u2ρ2α,β(x − x0)dxdy

+ sup
x1≥x0

∫ T

0

∫∫

R2

(
u2
x + u2

y

)
ρ′

2α,β(x − x1)dxdydt ≤ c, (14)

where the constant c depends on T , α, β , x0, ‖u0‖Lα2 , ‖f ‖L1(0,T ;Lα2 ).

Proof This estimate succeeds from [3] and it is an analog to (4). We present here
the sketch of its proof for completeness.

First of all multiplying equality (1) by 2u(t, x, y) and integrating we obtain sim-
ilarly to the first of the conservation laws (3) that

sup
0≤t≤T

∥∥u(t, ·, ·)∥∥
L2

≤ ‖u0‖L2 + ‖f ‖L1(0,T ;L2). (15)

Let ρ(x) ≡ ρ2α,β(x − x1). Multiplying (1) by 2u(t, x, y)ρ(x) and integrating
over R2 we derive the equality

d

dt

∫∫
u2ρdxdy +

∫∫ (
3u2

x + u2
y

)
ρ′dxdy −

∫∫
u2ρ′′′dxdy − 2

3

∫∫
u3ρ′dxdy

= 2
∫∫

f uρdxdy. (16)

Taking into account the already obtained estimate (15) and interpolation inequality
(13) (where ψ0 =ψ1 ≡ ρ′) we deduce that

∣∣∣∣

∫∫
u3ρ′dxdy

∣∣∣∣ ≤
(∫∫

u2dxdy

)1/2(∫∫
u4(ρ′)2

dxdy

)1/2

≤ c

(∫∫ (
u2
x + u2

y

)
ρ′dxdy

)1/2(∫∫
u2ρdxdy

)1/2

+ c

∫∫
u2ρdxdy, (17)

whence the desired estimate follows. �

Lemma 2 Let α ≥ 1/2. Then for all β > 0, δ ∈ (0, T ), x0 ∈R if |ν| = 1 then

sup
δ≤t≤T

∫∫

R2

(
Dνu

)2
ρ2α−|ν|,β(x − x0)dxdy

+ sup
x1≥x0

∫ T

δ

∫∫

R2

((
Dνux

)2 + (
Dνuy

)2)
ρ′

2α−|ν|,β(x − x1)dxdydt ≤ c,(18)

where the constant on the right-hand side depends on T , α, β , δ, x0, ‖u0‖Lα2 ,
‖f ‖L1(0,T ;Lα2 ) and ‖Dνf ‖

L1(0,T ;Lα−|ν|/2
2 )

for |ν| = 1.
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Proof Let ϕ(t)≡ η(2t/δ− 1), ρ(x)≡ ρ2α−1,β(x − x1).
Multiply equality (1) by −2((uxρ(x))x + uyyρ(x))ϕ(t) and integrate over R2,

then

d

dt

∫∫ (
u2
x + u2

y

)
ρϕdxdy +

∫∫ (
3u2

xx + 4u2
xy + u2

yy

)
ρ′ϕdxdy

−
∫∫ (

u2
x + u2

y

)
ρ′′′ϕdxdy −

∫∫ (
u2
x + u2

y

)
ρϕ′dxdy

+
∫∫ (

uxρ − uρ′)(u2
x + u2

y

)
ϕdxdy

= 2
∫∫

(fxux + fyuy)ρϕdxdy. (19)

Next, multiply (1) by −u2(t, x, y)ρ(x)ϕ(t) and integrate over R2, then

− d

dt

∫∫
u3

3
ρϕdxdy + 1

3

∫∫
u3ρϕ′dxdy

−
∫∫

ux
(
u2
x + u2

y

)
ρϕdxdy −

∫∫
u
(
3u2

x + u2
y

)
ρ′ϕdxdy

+ 1

3

∫∫
u3ρ′′′ϕdxdy + 1

4

∫∫
u4ρ′ϕdxdy

= −
∫∫

f u2ρϕdxdy.

Adding this equality and (19) we find that

d

dt

∫∫ (
u2
x + u2

y − u3

3

)
ρϕdxdy −

∫∫ (
u2
x + u2

y − u3

3

)
ρϕ′dxdy

+
∫∫ (

3u2
xx + 4u2

xy + u2
yy

)
ρ′ϕdxdy −

∫∫ (
u2
x + u2

y

)
ρ′′′ϕdxdy

−
∫∫

u
(
4u2

x + 2u2
y

)
ρ′ϕdxdy + 1

3

∫∫
u3ρ′′′ϕdxdy + 1

4

∫∫
u4ρ′ϕdxdy

=
∫∫ (

2fxux + 2fyuy − f u2)ρϕdxdy. (20)

Here, similarly to (17),

∣∣∣∣

∫∫
u3ρϕdxdy

∣∣∣∣

≤ c

(∫∫ (
u2
x + u2

y

)
ρϕdxdy

)1/2(∫∫
u2ρϕdxdy

)1/2

+ c

∫∫
u2ρϕdxdy.
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Also similarly to (17) for |ν| = 1

∣∣∣∣

∫∫
u
(
Dνu

)2
ρ′ϕdxdy

∣∣∣∣

≤
(∫∫

u2dxdy

)1/2(∫∫ (
Dνu

)4(
ρ′)2

ϕ2dxdy

)1/2

≤ c

(∫∫ ((
Dνux

)2 + (
Dνuy

)2)
ρ′ϕdxdy

)1/2(∫∫ (
Dνu

)2
ρϕdxdy

)1/2

+ c

∫∫ (
Dνu

)2
ρϕdxdy.

Finally, note that ρ2α−1,β ∼ ρ′
2α,β , therefore, by virtue of (14)

∫ T

0

∫∫ (
u2
x + u2

y − u3

3

)
ρϕ′dxdydt ≤ c.

Then equality (20) yields the desired inequality. �

Remark 3 Evidently, equality (20) is an analog to the second conservation law (3).

Lemma 3 Let α > 1. Then for any β > 0, δ ∈ (0, T ), x0 ∈ R inequality (18) holds
for |ν| = 2, where the constant on the right-hand side depends on T , α, β , δ, x0,
‖u0‖Lα2 and ‖Dνf ‖

L1(0,T ;Lα−|ν|/2
2 )

for |ν| ≤ 2.

Proof Let ϕ(t) ≡ η(2t/δ − 1), ρ(x) ≡ ρ2α−2,β(x − x1). For any multi-index ν,
|ν| = 2, multiply equality (1) by 2Dν(Dνuρ)ϕ and integrate over R2, then

d

dt

∫∫ (
Dνu

)2
ρϕdxdy −

∫∫ (
Dνu

)2
ρϕ′dxdy

+
∫∫ (

3
(
Dνux

)2 + (
Dνuy

)2)
ρ′ϕdxdy −

∫∫ (
Dνu

)2
ρ′′′ϕdxdy

+ 2
∫∫

Dν(uux)D
νuρϕdxdy

= 2
∫∫

DνfDνuρϕdxdy. (21)

Since ρ2α−2,β ∼ ρ′
2α−1,β by virtue of (18)

∫ T

0

∫∫ (
Dνu

)2
ρϕ′dxdydt ≤ c. (22)
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In order to estimate the integral of the nonlinear term note that

2
∫∫

uDνuxD
νuρϕdxdy = −

∫∫ (
uxρ + uρ′)(Dνu

)2
ϕdxdy. (23)

Therefore in fact, one must estimate an integral of Dν1uDν2uDνuρϕ, where
|ν1| ≤ 1, |ν2| = 2. Note that 2α− 2< (α− 3/4)+ (α− 1)+ (α− 5/4) since α > 1
and thus
∣∣∣∣

∫∫
Dν1uDν2uDνuρϕdxdy

∣∣∣∣

≤
(∫∫ (

Dν1u
)4
ρ2

2α−3/2,β/2ϕdxdy

)1/4(∫∫ (
Dν2u

)2
ρ2α−2,β/2ϕ

1/2dxdy

)1/2

×
(∫∫ (

Dνu
)4
ρ′ρϕ2dxdy

)1/4

. (24)

Applying the interpolation inequality (13) (where ψ0 ≡ ρ′
2α−j,β/2, ψ1 ≡ ρ2α−j,β/2,

j = 1 or 2) we find that
∫∫ (

Dν1u
)4
ρ2

2α−3/2,β/2ϕdxdy

∼
∫∫ (

Dν1u
)4
ρ′

2α−1,β/2ρ2α−1,β/2ϕdxdy

≤ c

∫∫ ((
Dν1ux

)2 + (
Dν1uy

)2)
ρ′

2α−1,β/2ϕ
1/2dxdy

×
∫∫ (

Dν1u
)2
ρ2α−1,β/2ϕ

1/2dxdy

(25)

+ c

(∫∫ (
Dν1u

)2
ρ2α−1,β/2ϕ

1/2dxdy

)2

,

∫∫ (
Dνu

)4
ρ′ρϕ2dxdy

≤ c

∫∫ ((
Dνux

)2 + (
Dνuy

)2)
ρ′ϕdxdy

∫∫ (
Dνu

)2
ρϕdxdy

+ c

(∫∫ (
Dνu

)2
ρϕdxdy

)2

.

Finally, using the already established estimates (14) and (18) we derive that
∣
∣∣∣

∫∫
Dν1uDν2uDνuρϕdxdy

∣
∣∣∣

≤ ε

∫∫ [((
Dνux

)2 + (
Dνuy

)2)
ρ′ + (

Dνu
)2
ρ
]
ϕdxdy
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+ c(ε)

∫∫ [((
Dν1ux

)2 + (
Dν1uy

)2)
ρ′

2α−1,β/2

+ (
Dν1u

)2
ρ2α−1,β/2

]
ϕ1/2dxdy

×
∫∫ (

Dν1u
)2
ρ2α−1,β/2ϕ

1/2dxdy

∫∫ (
Dνu

)2
ρ2α−2,βϕdxdy

+ c(ε)

∫∫ (
Dν2u

)2
ρ′

2α−1,β/2ϕ
1/2dxdy

≤ ε

∫∫ ((
Dνux

)2 + (
Dνuy

)2)
ρ′ϕdxdy

+ γ (t)

(∫∫ (
Dνu

)2
ρϕdxdy + 1

)
, (26)

where ‖γ ‖L1(0,T ) ≤ c and ε > 0 can be chosen arbitrarily small. Therefore, equality
(21) yields the desired estimate. �

Lemma 4 Let α ≥ 3/2, 3 ≤ m ≤ 2α. Then for any β > 0, δ ∈ (0, T ), x0 ∈ R in-
equality (18) holds for 3 ≤ |ν| ≤m, where the constant on the right-hand side de-
pends on T , α, β , δ, x0, ‖u0‖Lα2 and ‖Dνf ‖

L1(0,T ;Lα−|ν|/2
2 )

for |ν| ≤m.

Proof Use the induction on l = |ν|.
By virtue of the induction argument for any β > 0, δ ∈ (0, T ) and x0 ∈ R for

|ν| ≤ l ≤m uniformly with respect to x1 ≥ x0

∫ T

δ/2

∫∫ (
Dνu

)2
ρ2α−l,β(x − x1)dxdydt ≤ c, (27)

since 2α − l + 1> 0 and therefore ρ2α−l,β ∼ ρ′
2α−(l−1),β .

Let ϕ(t)≡ η(2t/δ − 1), ρ(x)≡ ρ2α−l,β(x − x1). For any multi-index ν, |ν| = l,
multiplying (1) by 2(−1)lDν(Dνuρ)ϕ and integrating over R2 we derive equality
(21).

By virtue of (27)
∫ T

0

∫∫ (
Dνu

)2
ρϕ′dxdydt ≤ c.

In order to estimate the integral of the nonlinear term consider items of the type

∫∫
Dν1uDν2uxD

νuρϕdxdy,

where ν1 + ν2 = ν. For |ν1| = 0 (then ν2 = ν) repeat argument (23).
Similarly to the proof of the preceding lemma consider the integral of Dν1u×

Dν2uDνuρϕ, where |ν1| ≤ 1, |ν2| = l. Note that 2α − l < (α − 3/4)+ (α − l/2)+
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(α − l/2 − 1/4) since α ≥ 3/2 and as in (24)

∣∣∣∣

∫∫
Dν1uDν2uDνuρϕdxdy

∣∣∣∣

≤
(∫∫ (

Dν1u
)4
ρ2

2α−3/2,β/2ϕdxdy

)1/4

×
(∫∫ (

Dν2u
)2
ρ2α−l,β/2ϕ1/2dxdy

)1/2(∫∫ (
Dνu

)4
ρ′ρϕ2dxdy

)1/4

.

Here
∫∫ (

Dν1u
)4
ρ2

2α−3/2,β/2ϕdxdy

∼
∫∫ (

Dν1u
)4
ρ2α−2,β/2ρ2α−1,β/2ϕdxdy

≤ c

∫∫ ((
Dν1ux

)2 + (
Dν1uy

)2)
ρ2α−2,β/2ϕ

1/2dxdy

×
∫∫ (

Dν1u
)2
ρ2α−1,β/2ϕ

1/2dxdy

+
(∫∫ (

Dν1u
)2
ρ2α−1,β/2ϕ

1/2dxdy

)2

.

Similarly to (25), (26) by virtue of the already obtained inequality (18) for |ν| = 2
we find that

∣∣∣∣

∫∫
Dν1uDν2uDνuρϕdxdy

∣∣∣∣ ≤ ε

∫∫ ((
Dνux

)2 + (
Dνuy

)2)
ρ′ϕdxdy

+ c(ε)

∫∫ (
Dνu

)2
ρϕdxdy + γ (t),

where ‖γ ‖L1(0,T ) ≤ c and ε > 0 can be chosen arbitrarily small.
Now let |ν1| ≤ l − 1, |ν2| ≤ l − 2, then

∣∣∣∣

∫∫
Dν1uDν2uxD

νuρϕdxdy

∣∣∣∣

≤
(∫∫ (

Dν1uDν2ux
)2
ρϕdxdy

)1/2(∫∫ (
Dνu

)2
ρϕdxdy

)1/2

. (28)

Note that

ρ2α−l,β(x)≤ cρ2
2α−l,β/2(x). (29)
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Again applying the interpolation inequality (13) we derive that

(∫∫ (
Dν1uDν2ux

)2
ρϕdxdy

)1/2

≤ c
∑

|ν|≤l−1

(∫∫ (
Dνu

)4
ρ2

2α−l,β/2ϕdxdy
)1/2

≤ c1

∑

|ν|≤l

∫∫ (
Dνu

)2
ρ2α−l,β/2ϕ1/2dxdy. (30)

With the use of (27) we finish the proof. �

In [3] weak solutions are constructed as limits of solutions to “smooth” problems.
Therefore, Theorem 1 succeeds from Lemmas 1–4.

Now we turn to estimates of solutions depending on norms of u0 and f in the
spaces H 1,α . Note that by virtue of the results from [4] the norms of the function
u ∈ K1(0, T ) in the spaces C([0, T ];H 1(R2)) and L3(0, T ;W 1∞(R2)) are already
estimated in an appropriate way. Then all the consequent estimates can be obtained
considerably easier.

Lemma 5 Let α > 0. Then for any β > 0 and x0 ∈R for |ν| = 1

sup
0≤t≤T

∫∫

R2

(
Dνu

)2
ρ2α,β(x − x0)dxdy

+ sup
x1≥x0

∫ T

0

∫∫

R2

((
Dνux

)2 + (
Dνuy

)2)
ρ′

2α,β(x − x1)dxdydt ≤ c, (31)

where the constant c depends on T , α, β , x0, ‖u0‖H 1,α , ‖f ‖L1(0,T ;H 1,α).

Proof Use equality (19) for ϕ ≡ 1. Since

∣∣∣∣

∫∫ (
uxρ − uρ′)(u2

x + u2
y

)
dxdy

∣∣∣∣

≤ c sup
(x,y)∈R2

(|ux | + |u|)
∫∫ (

u2
x + u2

y

)
ρdxdy,

where the norm of sup in the space L1(0, T ) can be estimated in an appropriate way
by virtue of the estimate of the solution in the space L3(0, T ;W 1∞(R2)), equality
(19) provides (31). �

Remark 4 In the proof of the preceding lemma the second conservation law (3) is
formally not used, but it is used in [4] for the proof of global estimates of solutions
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to the initial value problem for Zakharov–Kuznetsov equation, in particular, in the
space K1(0, T ).

Lemma 6 Let α ≥ 1/2, 2 ≤m≤ 2α + 1. Then for any β > 0, δ ∈ (0, T ), x0 ∈ R if
2 ≤ |ν| ≤m

sup
δ≤t≤T

∫∫

R2

(
Dνu

)2
ρ2α−|ν|+1,β(x − x0)dxdy

+ sup
x1≥x0

∫ T

δ

∫∫

R2

((
Dνux

)2 + (
Dνuy

)2)
ρ′

2α−|ν|+1,β(x − x1)dxdydt ≤ c,

(32)

where the constant on the right-hand side of the inequality depends on T , α, β , δ,
x0, ‖u0‖H 1,α , ‖f ‖L1(0,T ;H 1,α) and ‖Dνf ‖

L1(0,T ;Lα−|ν|/2+1/2
2 )

for 2 ≤ |ν| ≤m.

Proof Use the induction on l = |ν|.
By virtue of the induction argument for any β > 0, δ ∈ (0, T ) and x0 ∈ R for

|ν| ≤ l ≤m uniformly with respect to x1 ≥ x0

∫ T

δ/2

∫∫ (
Dνu

)2
ρ2α−l+1,β(x − x1)dxdydt ≤ c, (33)

since 2α − l + 2 ≥ 1 and therefore ρ2α−l+1,β ∼ ρ′
2α−(l−1)+1,β .

Let ϕ(t)≡ η(2t/δ − 1), ρ(x)≡ ρ2α−l+1,β(x − x1). As in the proof of Lemma 4
consider equality (21) for |ν| = l. By virtue of (33)

∫ T

0

∫∫ (
Dνu

)2
ρϕ′dxdydt ≤ c.

In order to estimate the integral of the nonlinear term consider items of the type

∫∫
Dν1uDν2uxD

νuρϕdxdy,

where ν1 + ν2 = ν. If |ν1| = 0 then ν2 = ν and we repeat argument (23). Thus, for
|ν1| = 0, |ν1| = 1 and |ν2| = 0 the absolute value of the corresponding integral does
not exceed

c sup
(x,y)∈R2

(|ux | + |uy | + |u|)
∑

|ν|=l

∫∫ (
Dνu

)2
ρϕdxdy.

Now let |ν1| ≤ l − 1, |ν2| ≤ l − 2. Write down inequality (28). Similarly to (29)

ρ2α−l+1,β(x)≤ cρ2
2α−l+1,β/2(x),
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and, similarly to (30),

(∫∫ (
Dν1uDν2ux

)2
ρϕdxdy

)1/2

≤ c
∑

|ν|≤l−1

(∫∫ (
Dνu

)4
ρ2

2α−l+1,β/2ϕdxdy

)1/2

≤ c1

∑

|ν|≤l

∫∫ (
Dνu

)2
ρ2α−l+1,β/2ϕ

1/2dxdy.

The end of the proof is the same as for Lemma 4. �

By virtue of well-posedness of the considered problem in the space K1(0, T )
Theorems 2 and 3 follow from Lemmas 5 and 6.

3.3 Fundamental Solution to the Linearized Equation

The fundamental solutions to the operator ∂t + ∂3
xxx + ∂3

xyy is evidently given by the
formula

G(t, x, y)= θ(t)F−1[eit (ξ
3
1 +ξ1ξ

2
2 )
]≡ θ(t)

t2/3
S

(
x

t1/3
,
y

t1/3

)
, (34)

where

S(x, y)≡ F−1[ei(ξ
3
1 +ξ1ξ

2
2 )
]

(see, for example, pp. 200–201 in [13]) and θ is the Heaviside function. The study
of the function S was begun in [4], where it was proved that this function existed
and was bounded on R

2. Besides that, in that paper the following representation was
derived:

S(x, y)= 1

4π3/2

∫

R

|ξ |−1/2ei(ξ
3+ξx−y2/(4ξ)+(π/4) sign ξ)dξ. (35)

In fact, in the proof of (35) the inverse Fourier transform is applied, firstly with
respect to y and then with respect to x. In the consequent lemma for an alternative
representation of the function S the order is changed to the opposite one.

Lemma 7 The function S(x, y) is infinitely differentiable on R
2, in any point it

satisfies the equation

3Sxx + Syy − xS = 0, (36)

and is represented in the form

S(x, y)= F−1
y

[
A
(
x + ξ2)](y)= 1

2π

∫

R

eiξyA
(
x + ξ2)dξ, (37)
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where A(x)≡ F−1[eiξ3 ](x) is the Airy function. Moreover, for any x ∈ R and inte-
ger k ≥ 0 the derivative ∂kxS(x, y) belongs to the Schwartz space S(R) with respect
to y and there exists a constant c0 > 0 such that for any x0 ∈ R, integer m≥ 0 and
multi-index ν

(
1 + |y|)m∣∣DνS(x, y)

∣∣≤ c
(
m, |ν|, x0

)
e−c0(x−x0)

3/2 ∀x ≥ x0,∀y ∈R. (38)

Proof Properties of the Airy function are well-known (see, for example, pp. 184–
186 in [6]). In particular, the function A(x) is infinitely differentiable and
|A(n)(x)| ≤ c(n)e−c0x

3/2
if x ≥ 0 for any integer n ≥ 0 and with certain positive

constants c(n) and c0. Then for any x0 ∈R it holds |A(n)(x)| ≤ c(n, x0)e
−c0(x−x0)

3/2

if x ≥ x0 and, therefore,

∣
∣A(n)

(
x + ξ2)∣∣≤ c(n, x0)e

−c0|ξ |3e−c0(x−x0)
3/2 ∀x ≥ x0.

It is easy to see that

∂nξ A
(
x + ξ2)=

∑

0≤n1,n2≤n
cn1,n2ξ

n1A(n2)
(
x + ξ2),

and so for any integer k,n,m≥ 0 if x ≥ x0

(
1 + |ξ |)m∣∣∂kx ∂nξ A

(
x + ξ2)∣∣≤ c(k,n,m,x0)e

−c0(x−x0)
3/2
. (39)

Therefore, the function ∂kxA(x+ξ2) belongs to the space S(R)with respect to ξ . The
properties of the Fourier transform provide that the function F−1

y [∂kxA(x+ ξ2)] also
belongs to S(R) with respect to y. In addition, since S(x, y) =
F−1
y [F−1

x [ei(ξ3
1 +ξ1ξ

2
2 )]](x, y) applying inequality (39) we obtain formula (37) and

inequality (38). Moreover, since the Airy function satisfies the equation 3A′′(x)−
xA(x)= 0 equality (37) provides (36). �

Remark 5 Previously in [5] it was proved that S ∈ S(R
2
+) (restriction of the space

S(R2) on R
2
+; in fact, in that paper a more general case was considered). Lemma 7

refines this result.

The next lemma refines behavior of the function S as x → −∞.

Lemma 8 For any r ∈ [0,2/3] and integer n ∈ [0,2]
∣∣∂nx S(x, y)

∣∣≤ c(r)
(
1 + |y|)−r(1 + |x|)r+n/2−1/4 ∀x ≤ 0,∀y ∈R. (40)

Proof By virtue of the previous lemma without loss of generality one can assume
that x ≤ −1. Let

ϕ(ξ)≡ ξx + ξ3 − y2

4ξ
, ψn(ξ)≡ (−iξ)n−1/2,
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where the branch of the root
√
z is defined in the domain C \ (−∞;0] and

√
z =

r1/2eiϕ/2 for z= reiϕ , −π < ϕ < π ,

In(x, y)≡
∫

R

ψn(ξ)e
iϕ(ξ)dξ.

Equality (35) implies that S(x, y)≡ cI0(x, y). It is easy to see that

ϕ′(ξ) = x + 3ξ2 + y2

4ξ2
, ϕ′′(ξ)= 6ξ − y2

2ξ3
,

(41)

ϕ′′′(ξ) = 6 + 3y2

2ξ4
≥ c|y|3r |ξ |−6r

for r ∈ [0,2/3].
In order to estimate In we divide the real line into several parts. First consider

Ω1 = {ξ : ξ2 ≥ |x|/2}. Then

ϕ′(ξ)≥ x2 + 4ξ4 + 2y2

8ξ2
(42)

ant integrating by parts twice we derive that
∣∣∣∣

∫

Ω1

ψne
iϕdξ

∣∣∣∣ ≤
(∣∣∣∣
ψn

ϕ′

∣∣∣∣+
∣∣∣∣
ψ ′
n

(ϕ′)2

∣∣∣∣+
∣∣∣∣
ψnϕ

′′

(ϕ′)3

∣∣∣∣

)∣∣∣∣|ξ |=|x/2|1/2

+
∫

Ω1

(∣∣∣
∣
ψ ′′
n

(ϕ′)2

∣∣∣
∣+ 3

∣∣∣
∣
ψ ′
nϕ

′′

(ϕ′)3

∣∣∣
∣+

∣∣∣
∣
ψnϕ

′′′

(ϕ′)3

∣∣∣
∣+ 3

∣∣∣
∣
ψn(ϕ

′′)2

(ϕ′)4

∣∣∣
∣

)
dξ.

(43)

Since n < 5/2 and

∣∣ϕ′′(ξ)
∣∣≤ c

ξ4 + y2

|ξ |3 ,
∣∣ϕ′′′(ξ)

∣∣≤ c
ξ4 + y2

ξ4
, (44)

inequalities (42)–(44) yield that

∣∣∣∣

∫

Ω1

ψne
iϕdξ

∣∣∣∣ ≤ c
|x|n/2+3/4

x2 + y2
+ c

∫

R

|ξ |n+3/2

(ξ4 + x2 + y2)2
dξ

≤ c
|x|n/2+3/4

x2 + y2
+ c1

(
x2 + y2)n/4−11/8

≤ c2
(
1 + |y|)−r(1 + |x|)r+n/2−5/4

. (45)

In particular, note that the performed argument provides that the integrals In
converge uniformly in the neighborhood of any considered point (x, y) and so
∂nx S(x, y)= (−1)ncIn(x, y).
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In order to estimate the remaining part of the integral In we consider separately
two cases.

(1) First, let y2 ≥ x2/4. In this case estimate (40) for all y is sufficient to prove
only for r = 0 while for r > 0 assume that |y| ≥ 1.

Let Ω2 = {ξ : |x|/32 ≤ ξ2 ≤ |x|/2}, Ω3 = {ξ : ξ2 ≤ |x|/32}.
Further we use the classical van der Corput lemma (see pp. 309–312 in [12]).

Lemma 9 Let I be a certain interval on R, k ≥ 2, ϕ ∈ Ck(I ) be a real-valued func-
tion. Assume that there exists λ > 0 such that |ϕ(k)(x)| ≥ λ for any x ∈ I . Let a func-
tion ψ be such that ψ ∈ L∞(I ), ψ ′ ∈ L1(I ). Then if the integral

∫
I
eiϕ(x)ψ(x)dx

converges there exists a constant c(k) > 0 independent of I such that
∣∣∣∣

∫

I

eiϕ(x)ψ(x)dx

∣∣∣∣≤ c(k)λ−1/k(‖ψ‖L∞(I ) +
∥∥ψ ′∥∥

L1(I )

)
.

Apply van der Corput lemma on the set Ω2 for k = 3. Then (41) implies that
|ϕ′′′(ξ)| ≥ c|y|3r |x|−3r and, therefore,

∣∣∣∣

∫

Ω2

ψne
iϕdξ

∣∣∣∣ ≤ c|y|−r |x|r sup
ξ∈Ω2

|ξ |n−1/2

≤ c1
(
1 + |y|)−r(1 + |x|)r+|n|/2−1/4

. (46)

Next, it is easy to see that on the set Ω3

ϕ′(ξ)≥ 3ξ2 + 4xξ2 + x2/8

4ξ2
+ y2

8ξ2
≥ 3ξ2 + y2

8ξ2
≥ 192ξ4 + 4y2 + x2

64ξ2
,

that is, the analog of inequality (42) holds. Therefore, similarly to (43)–(45) one can
obtain for Ω3 the same estimate as for Ω1.

(2) Now, let y2 ≤ x2/4. Obviously, in this case it is sufficient to prove estimate
(40) for r = 0. Let y2 = px2, 0 ≤ p ≤ 1/4. Define

Ω4 =
{
ξ : |x|

6
≤ ξ2 ≤ |x|

2

}
, Ω5 =

{
ξ : p

2
|x| ≤ ξ2 ≤ |x|

6

}
,

Ω6 =
{
ξ : ξ2 ≤ p

2
|x|

}
.

Then the estimate for Ω4 is the same as (46) for r = 0.
Consider Ω5. We show that ϕ′(ξ) < 0 and |ϕ′(ξ)| ≥ |x|/8 for ξ ∈ Ω5. In fact,

ϕ′(±√
p|x|/2)= ϕ′(±√|x|/6)= |x|(3p− 1)/2 ≤ −|x|/8. Moreover, ϕ′′(ξ)= 0 if

ξ = ± 4
√
p/12|x|1/2 and ϕ′(± 4

√
p/12|x|1/2)= |x|(√3p− 1)≤ −|x|/8.

Since

∣∣ϕ′′(ξ)
∣∣≤ 6|ξ | + px2

2|ξ |3 ≤ 6|ξ | + |x|
|ξ | ,
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integrating by parts we derive that
∣∣∣∣

∫

Ω5

ψne
iϕdξ

∣∣∣∣ ≤
∫

|ξ |≤|x|−1/2
|ξ |n−1/2dξ +

∣∣∣∣

∫

Ω5\{|ξ |≤|x|−1/2}
ψne

iϕdξ

∣∣∣∣

≤ c|x|−n/2−1/4 + sup
ξ∈Ω5\{|ξ |≤|x|−1/2}

∣∣∣∣
ψn

ϕ′

∣∣∣∣

+
∫

Ω5\{|ξ |≤|x|−1/2}

(∣∣
∣∣
ψ ′
n

ϕ′

∣∣
∣∣+

∣∣
∣∣
ψnϕ

′′

(ϕ′)2

∣∣
∣∣

)
dξ

≤ c|x|−n/2−1/4 + c

|x| sup
|x|−1/2≤|ξ |≤√|x|/6

|ξ |n−1/2

+ c

|x|
∫ √|x|/6

|x|−1/2
|ξ |n−3/2dξ + c

x2

∫ √|x|/6

0
|ξ |n+1/2dξ

≤ c1|x|n/2−1/4.

Finally, consider Ω6. Note that the function ϕ′′(ξ) increases on R+,
ϕ′′(

√
p|x|/2)= √

2/p(3p− 1)|x|1/2 < 0, therefore,

inf
ξ∈Ω6,ξ>0

∣∣ϕ′′(ξ)
∣∣= ∣∣ϕ′′(√p|x|/2)∣∣=

√
2

p
(1 − 3p)|x|1/2 ≥ |x|1/2/√2.

The case ξ < 0 is similar. Applying van der Corput lemma for k = 2 we find that
∣∣∣∣

∫

Ω6∩{|ξ |≥1}
ψne

iϕdξ

∣∣∣∣ ≤ c
(

inf
ξ∈Ω6

∣∣ϕ′′(ξ)
∣∣
)−1/2

sup
1≤|ξ |≤√|x|/8

|ξ |n−1/2

≤ c1|x|n/2−1/4.

Now let |ξ | ≤ 1. Then if p|x| ≥ 2 since |x| ≥ 2/p ≥ 8

inf
ξ∈Ω6,|ξ |≤1

∣∣ϕ′′(ξ)
∣∣= ∣∣ϕ′′(1)

∣∣= px2

2
− 6 ≥ |x|

4
,

while if p|x| ≤ 2 then 2/p ≥ |x| and also

inf
ξ∈Ω6,|ξ |≤1

∣∣ϕ′′(ξ)
∣∣= ∣∣ϕ′′(√p|x|/2)∣∣=

√
2

p
(1 − 3p)|x|1/2 ≥ |x|

4
.

Thus, application of van der Corput lemma for k = 2 yields that
∣∣∣∣

∫

Ω6

ψne
iϕdξ

∣∣∣∣ ≤
∫

|ξ |≤|x|−1/2
|ξ |n−1/2dξ +

∣∣∣∣

∫

Ω6∩{|x|−1/2≤|ξ |≤1}
ψne

iϕdξ

∣∣∣∣

≤ c|x|−1/4. �
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Remark 6 The fundamental solution to the operator ∂t + ∂3
xxx is the function

θ(t)t−1/3A(x/t1/3), where A is the aforementioned Airy function. The asymptotic
behavior at infinity of this function is well-known: A(x) ∼ c−|x|−1/4 sin(2|x|3/2/
33/2 + φ) as x → −∞, A(x) ∼ c+x−1/4 exp(−2x3/2/33/2) as x → +∞ (see, for
example, pp. 184–186 in [6]). Therefore, we can conclude that the estimates (38)
and (40) are sharp.

Corollary 1 For any r ∈ [0,2/3] and natural n≤ 2

∣∣∂ny S(x, y)
∣∣≤ c(r)

(
1 + |y|)−r(1 + |x|)r+n/2−1/4 ∀x ≤ 0,∀y ∈R. (47)

Proof For n = 2 this estimate follows evidently from (40) and equality (36). For
n= 1 apply the interpolation inequality

max|y|≥y0
S2
y(x, y)≤ 8 max|y|≥y0

∣∣S(x, y)
∣∣ · max|y|≥y0

∣∣Syy(x, y)
∣∣

(see, for example, p. 237 in [1]), which together with the non-increasing behavior
of the function (1 + |y|)−r signy yields the desired result. �

Lemma 10 The function S(x, y) satisfies in any point of the plane R
2 the equation

2Sxy − yS = 0. (48)

Proof As in the previous lemma we use representation (35). Then for all points
(x, y) if n ∈ [0,2]

∂nx S(x, y)=
1

4π3/2

∫

R

(−iξ)−1/2(iξ)nei(ξ
3+ξx−y2/(4ξ))dξ, (49)

where the integrals on the right-hand side converge uniformly in a neighborhood of
any point. In the proof of Lemma 8 it was obtained for x ≤ −1. In the case x >−1
note that ϕ′(ξ) ≥ ξ2 + 1 for ξ2 ≥ 1 (we use the same notation ϕ and ψn as in the
proof of Lemma 8) and thus after integration by parts we find that

∣∣∣∣

∫

|ξ |≥N
ψne

iϕdξ

∣∣∣∣≤
∣∣∣∣
ψn

ϕ′

∣∣∣∣|ξ |=N

∣∣∣∣+
∫

|ξ |≥N

(∣∣∣∣
ψ ′
n

ϕ′

∣∣∣∣+
∣∣∣∣
ψnϕ

′′

(ϕ′)2

∣∣∣∣

)
dξ,

whence the desired uniform convergence succeeds. Therefore,

Sxy(x, y) = 1

4π3/2

∫

R

(−iξ)−1/2(iξ)ei(ξ
3+ξx−y2/(4ξ))

(
−2iy

4ξ

)
dξ

= y

2
S(x, y). �

Remark 7 Using both already established estimates (40), (47) and equalities (36),
(48) one can easily estimate derivatives of the function S of any order for x ≤ 0. For
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example, (48) yields that for r ∈ [0,2/3]
|Sxy | ≤ c(r)

(
1 + |y|)1−r(

1 + |x|)r−1/4
,

|Sxxy |, |Sxyy | ≤ c(r)
(
1 + |y|)1−r(

1 + |x|)r+1/4
,

and then with the use of (36) we find that

|Sxxx |, |Syyy | ≤ c(r)
(
1 + |y|)1−r(1 + |x|)r+1/4 + c(r)

(
1 + |y|)−r(1 + |x|)r+5/4

.

The defect of these estimates is their unboundedness as y → ∞.

Remark 8 In [11] on the basis of the method from [4] it was established that the
fractional derivative with respect to x of the function S was bounded on R

2, namely,
it was proved that if

Dε+iβ
x S(x, y)≡ F−1[|ξ1|ε+iβei(ξ3

1 +ξ1ξ
2
2 )
]
,

then for 0 ≤ ε < 1/2, β ∈R

∣∣Dε+iβ
x S(x, y)

∣∣≤ c.

Using the argument of the present paper one can easily establish this property for
ε = 1/2 also. In fact, similarly to (35)

D
1/2+iβ
x S(x, y)= 1

4π3/2

∫

R

|ξ |iβei(ξ3+ξx−y2/(4ξ)+(π/4) sign ξ)dξ.

Obviously, in order to estimate this integral it is sufficient to assume that |ξ | ≥ 1.
Then for x ≤ −1 the argument repeats the one from Lemma 8 (for r = 0), while
for x > −1 it is sufficient to note that ϕ′(ξ) ≥ ξ2 + (4ξ4 + y2)/(4ξ2) and argue
similarly to (43)–(45).

3.4 Continuous Derivatives

Theorems 4 and 5 succeed from the following lemma.

Lemma 11 Let Dν0f ∈ L∞(0, T ;Lα2 ) for a certain α > 3/4 and multi-index ν0.
Assume that a function u(t, x, y) ∈ L∞(0, T ;Lα2 ) satisfies (1) in the layer ΠT (pos-
sibly, in the weak sense) and possesses inΠT Sobolev derivativesDνu for |ν| ≤ |ν0|
and Dν0ux , where for any δ ∈ (0, T ), x0 ∈R

(x − x0 + 1)αDν0u ∈ L∞
(
δ, T ;L2

(
(x0,+∞)×R

))
,

Dν0ux,D
νu ∈ L∞

(
δ, T ;L2

(
(x0,+∞)×R

))
, |ν| ≤ |ν0|.

Then the derivative Dν0u is continuous in ΠT and bounded on any set of the type
[δ, T ] × [x0,+∞)×R.
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Proof Let ϕ(t)≡ η(2t/δ− 1), ψ(x)≡ η(x−x0 + 2). Then w(t, x, y)≡Dν0u(t, x,

y)ϕ(t)ψ(x) is a solution (generally speaking, in the sense of distributions) in the
layer ΠT to the linear initial value problem

wt +wxxx +wxyy =Dν0f ϕψ −Dν0(uux)ϕψ +Dν0uϕ′ψ

+ 3Dν0uxxϕψ
′ + 3Dν0uxϕψ

′′ +Dν0uϕψ ′′′ +Dν0uyyϕψ
′

≡ F(t, x, y), (50)

w|t=0 = 0. (51)

With the use of the fundamental solution to the operator ∂t + ∂3
xxx + ∂3

xyy (see (34))
we write the function w in the form

w(t, x, y)=
∫ t

0

∫∫
G(t − τ, x − ξ, y − ζ )F (τ, ξ, ζ )dζdξdτ. (52)

Let δ ≤ t ≤ T , x ≥ x0. Then w(t, x, y) = Dν0u(t, x, y). Let us estimate the right-
hand side of equality (52). First consider the integral of Dν0f ϕψ . By virtue of (38)
and (40)

∫ t

δ/2

∫ +∞

x0−2

∫

R

∣∣G(t − τ, x − ξ, y − ζ )Dν0f (τ, ξ, ζ )
∣∣dζdξdτ

≤ c

∫ t

δ/2

1

(t − τ)2/3

(∫ x

x0−2

∫

R

e−c0(x−ξ)3/2T −1/2 |Dν0f (τ, ξ, ζ )|
(1 + |ζ − y|) dζdξ

+ 1

(t − τ)(1+ε)/12

∫ +∞

x

∫

R

(1 + ξ − x)3/4+ε/2|Dν0f (τ, ξ, ζ )|
(1 + |ζ − y|)(2+ε)/4(1 + ξ − x)(2+ε)/4 dζdξ

)
dτ

≤ c1 ess supτ∈(δ/2,T )
(∫ +∞

x0−2

∫

R

(3 + ξ − x0)
3/2+ε(Dν0f (τ, ξ, ζ )

)2
dζdξ

)1/2

<∞.

The integral of Dν0uϕ′ψ is estimated in a similar way. Next, Dν0(uux)ϕψ ∈
L∞(0, T ;L1(R

2)) and by virtue of the boundedness of the function S on the whole
plane R

2

∫ t

δ/2

∫ +∞

x0−2

∫

R

∣∣G(t − τ, x − ξ, y − ζ )Dν0(uuξ )
∣∣dζdξdτ

≤ c

∫ t

δ/2

1

(t − τ)2/3

∫ +∞

x0−2

∫

R

∣∣Dν0(uuξ )
∣∣dζdξdτ <∞.

Finally, since suppψ ′ ⊂ [x0 − 2, x0 − 1] by virtue of (38)
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∣∣∣∣

∫ t

δ/2

∫ +∞

x0−2

∫

R

G(t − τ, x − ξ, y − ζ )

× (
3Dν0uξξψ

′ + 3Dν0uξψ
′′ +Dν0uψ ′′′ +Dν0uζζψ

′)ϕdζdξdτ
∣∣∣∣

=
∣∣∣∣

∫ t

δ/2

∫ x0−1

x0−2

∫

R

(
3
(
Gψ ′)

ξξ
− 3

(
Gψ ′′)

ξ
+Gψ ′′′ +Gζζψ

′)Dν0uϕdζdξdτ

∣∣∣∣

≤ c

∫ t

δ/2

∫ x0−1

x0−2

∫

R

e−c0(t−τ)−1/2

(t − τ)4/3(1 + |ζ − y|)
∣∣Dν0u

∣∣dζdξdτ <∞.

It is easy to see that by a similar argument one can prove uniform convergence of the
integral on the right-hand side of (52) in a neighborhood of any point (t, x, y) ∈ΠT
and, consequently, its continuity.

Finally, note that for the justification of the performed argument one can first
assume that the function F is smooth (it can be obtained, for example, via the av-
eraging procedure) and then pass to the limit (in more details for the KdV equation
such an argument can be found, for example, in [2]). �
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Chapter 4
Singular Semilinear Elliptic Equations
with Subquadratic Gradient Terms

Marius Ghergu

Abstract We investigate the semilinear elliptic equation −Δu = a(δ(x))g(u) +
f (x,u)+ λ|∇u|q in a smooth and bounded domain Ω subject to an homogeneous
Dirichlet boundary condition. Here g is an unbounded decreasing function, a is
positive and continuous, f grows at most linearly at infinity, δ(x) = dist(x, ∂Ω)
and 0< q ≤ 2. We emphasize the effect of all these terms in the study of existence,
nonexistence and asymptotic behavior of positive solutions.

Mathematics Subject Classification 35J15 · 35J75

4.1 Introduction

We are concerned with semilinear elliptic problems in the form
⎧
⎪⎨

⎪⎩

−Δu= a(δ(x))g(u)+ f (x,u)+ λ|∇u|q in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(1)

whereΩ is a smooth and bounded domain in R
N ,N ≥ 2, δ(x)= dist(x, ∂Ω), λ ∈R

and 0< q ≤ 2.
We assume that g ∈ C1(0,∞) is a positive decreasing function and

(g1) limt→0+ g(t)= ∞.

The function f :Ω×[0,∞)→ [0,∞) is Hölder continuous, nondecreasing with
respect to the second variable and f is positive on Ω × (0,∞). The analysis we
develop in this paper concerns the cases where f is either linear or sublinear with
respect to the second variable. This latter case means that f fulfills the hypotheses

(f 1) the mapping (0,∞) � t �−→ f (x,t)
t

is nonincreasing for all x ∈Ω ;

(f 2) limt→0+ f (x,t)
t

= ∞ and limt→∞ f (x,t)
t

= 0, uniformly for x ∈Ω .
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Such singular boundary value problems arise in the context of chemical hetero-
geneous catalysts and chemical catalyst kinetics, in the theory of heat conduction
in electrically conducting materials, singular minimal surfaces, as well as in the
study of non-Newtonian fluids or boundary layer phenomena for viscous fluids (we
refer for more details to [3–5, 8, 10, 11] and the more recent papers [6, 13, 18–
20, 22, 24, 25, 28]). We also point out that, due to the meaning of the unknowns
(concentrations, populations, etc.), only the positive solutions are relevant in most
cases.

The main features of this paper are the presence of the convection term |∇u|q
combined with the singular weight a : (0,∞) → (0,∞) which is assumed to be
nonincreasing and Hölder continuous.

Many papers have been devoted to the case a ≡ 1 and λ= 0 (see [7, 9, 13, 23, 24,
27, 29] and the references therein). One of the first works in the literature dealing
with singular weights in connection with singular nonlinearities is due to Taliaferro
[26]. In [26] the following problem has been considered

{
−y′′ = ϕ(x)y−p in (0,1),

y(0)= y(1)= 0,
(2)

where p > 0 and ϕ(x) is positive and continuous on (0,1). It was proved that prob-
lem (2) has solutions if and only if

∫ 1
0 t (1 − t)ϕ(t)dt < ∞. Later, Agarwal and

O’Regan (Sect. 2 in [1]) studied the more general problem
⎧
⎪⎨

⎪⎩

H ′′(t)= −a(t)g(H(t)) in (0,1),

H > 0 in (0,1),

H(0)=H(1)= 0,

(3)

where g satisfies (g1) and p is positive and continuous on (0,1). It is shown in [1]
that if

∫ 1

0
t (1 − t)a(t)dt <∞, (4)

then (3) has at least one classical solution. In our framework, p is continuous at
t = 1 so condition (4) reads as

∫ 1

0
ta(t)dt <∞. (5)

In this paper we prove that the assumption (5) is also necessary for (1) to have
solutions.

4.2 Main Results

We start this section by a nonexistence result in which we prove the necessity of
condition (5).
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Theorem 1 (Nonexistence) Assume
∫ 1

0 ta(t)dt = ∞. Then (1) has no solutions.

We next assume that (5) holds.

Theorem 2 (Sublinear case) Assume (5) and conditions (f 1), (f 2), (g1) hold.

(i) If 0< a < 1, then problem (1) has at least one solution, for all λ ∈ R;
(ii) If 1 < a ≤ 2, then there exists λ∗ > 0 such that (1) has at least one classical

solution for all −∞< λ< λ∗ and no solution exists if λ > λ∗.

We shall next focus on the case a = 1. This case was left as an open question
in [14]. We are able here to give a complete answer in the case where Ω is a ball
centered at the origin.

Theorem 3 (Case a = 1) Assume (f 1), (f 2), (5), a = 1 and Ω = BR(0) for some
R > 0. Then the problem (1) has at least one solution for all λ ∈R.

The existence of a solution to (1) is achieved by the sub and super-solution
method. In particular, the super-solution of (1) is expressed in terms of the solution
H to (3). In some particular cases we are able to describe the asymptotic behavior
of solutions near the boundary. This is our next task here.

Let a(t)= t−α , g(t)= t−p , α,p > 0 and consider the following related problem:

⎧
⎪⎨

⎪⎩

−Δu= δ(x)−αu−p + f (x,u)+ λ|∇u|q in Ω,

u > 0 in Ω,

u= 0 on ∂Ω.

(6)

Then we have:

Theorem 4 (Asymptotic behavior) Assume (g1), (f 1), (f 2).

(i) If α ≥ 2, then the problem (6) has no classical solutions.
(ii) If α < 2, then there exists λ∗ ∈ (0,∞] (with λ∗ = ∞ if 0 < a < 1) such that

problem (6) has at least one classical solution u, for all −∞< λ < λ∗. More-
over, for all 0 < λ < λ∗, there exist 0 < η < 1 and C1,C2 > 0 such that u
satisfies
(ii1) If α + p > 1, then

C1δ(x)
(2−α)/(1+p) ≤ u(x)≤ C2δ(x)

(2−α)/(1+p), for all x ∈Ω; (7)

(ii2) If α + p = 1, then

C1δ(x) ln1/(2−α)
(

1

δ(x)

)
≤ u(x)≤ C2δ(x) ln1/(2−α)

(
1

δ(x)

)
, (8)

for all x ∈Ω with δ(x) < η;
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(ii3) If α + p < 1, then

C1δ(x)≤ u(x)≤ C2δ(x), for all x ∈Ω. (9)

We have seen that if a(t)= t−α then (1) has no solutions if α ≥ 2. Motivated by
the results in [12], let us now consider the extremal case a(t)= t−2 lnα(A/t) where
A> diam(Ω) and the corresponding boundary value problem

⎧
⎪⎨

⎪⎩

−Δu= δ(x)−2 lnα( A
δ(x)

)u−p + f (x,u)+ λ|∇u|q in Ω,

u > 0 in Ω,

u= 0 on ∂Ω.

(10)

Theorem 5 (Asymptotic behavior) Assume (g1), (f 1), (f 2).

(i) If α ≥ −1, then problem (10) has no classical solutions.
(ii) If α <−1, then there exists λ∗ ∈ (0,∞] (with λ∗ = ∞ if 0< a < 1) such that

problem (6) has at least one classical solution u, for all −∞< λ < λ∗. More-
over, there exist C1,C2 > 0 such that u satisfies

C1 ln(1−α)/(1+p)
(
A

δ(x)

)

≤ u(x)≤ C2 ln(1−α)/(1+p)
(
A

δ(x)

)
, for all x ∈Ω. (11)

In the following we study the problem (1) in which we drop out the sublinearity
assumptions (f 1), (f 2) on f but we require in turn that f is linear. More precisely,
we assume that f (x, t)= μt , for some μ> 0. Note that the existence results estab-
lished in Lemma 4 in [24] or [25] do not apply here since the mapping

Ψ (x, t)= a
(
δ(x)

)
g(t)+ λt, (x, t) ∈Ω × (0,∞),

is not defined on ∂Ω × (0,∞).

Theorem 6 (Linear case) Assume (5), (g1), f (x,u)= μu for some μ> 0 and 0<
a < 1. Then for any λ≥ 0 problem (1) has solutions if and only if μ< λ1.

4.3 Proof of Theorem 1

The proof of Theorem 1 follows from the following more general result.
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Proposition 1 Assume that
∫ 1

0 ta(t)dt = ∞. Then the inequality boundary value
problem

⎧
⎪⎨

⎪⎩

−Δu+ λ|∇u|2 ≥ a(δ(x))g(u) in Ω,

u > 0 in Ω,

u= 0 on ∂Ω,

(12)

has no classical solutions.

Proof Let (λ1, ϕ1) be the first eigenvalue/eigenfunction of −Δ in Ω subject to a
homogeneous Dirichlet boundary condition. It is known that λ1 > 0 and by nor-
malization, one can assume ϕ1 > 0 in Ω . It suffices to prove the result only for
λ > 0. We argue by contradiction and assume that there exists u ∈ C2(Ω) ∩ C(Ω)
a solution of (12). Using (g1), we can find c1 > 0 such u := c1ϕ1 verifies

−Δu+ λ|∇u|2 ≤ a
(
δ(x)

)
g(u) in Ω.

Since g is decreasing, we easily obtain

u≥ u in Ω. (13)

We make in (12) the change of variable v = 1 − e−λu. Therefore

⎧
⎪⎨

⎪⎩

−Δv = λ(1 − v)(λ|∇u|2 −Δu)≥ λ(1 − v)a(δ(x))g(− ln(1−v)
λ

) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

(14)

In order to avoid the singularities in (14) let us consider the approximated problem

⎧
⎪⎨

⎪⎩

−Δv = λ(1 − v)a(δ(x))g(ε− ln(1−v)
λ

) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

(15)

with 0 < ε < 1. Clearly v is a super-solution of (15). By (13) and the fact that
limt→0+ 1−e−λt

t
= λ > 0, there exists c2 > 0 such that v ≥ c2ϕ1 in Ω . On the other

hand, there exists 0< c < c2 such that cϕ1 is a sub-solution of (15) and obviously
cϕ1 ≤ v in Ω . Then, by the standard sub- and super-solution method (see, e.g.,
[16, 21]) the problem (15) has a solution vε ∈ C2(Ω) such that

cϕ1 ≤ vε ≤ v in Ω. (16)

Multiplying by ϕ1 in (15) and integrating we find

λ1

∫

Ω

ϕ1vεdx = C

∫

Ω

(1 − vε)ϕ1a
(
δ(x)

)
g

(
ε− ln(1 − vε)

λ

)
dx.
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Using (16) we obtain

M =: λ1

∫

Ω

ϕ1vdx ≥ λ

∫

Ω

(1 − v)ϕ1a
(
δ(x)

)
g

(
− ln(1 − v)

λ

)
dx

≥ C1

∫

Ωδ

ϕ1a
(
δ(x)

)
dx, (17)

where Ωδ ⊃ {x ∈Ω; δ(x) < δ}, for some δ > 0 sufficiently small. Since ϕ1(x) be-
haves like δ(x) in Ωδ and

∫ 1
0 ta(t)dt = ∞, by (17) we find a contradiction. Hence,

problem (12) has no classical solutions and the proof is now complete. �

4.4 Proof of Theorem 2

The existence part in this result relies on the sub and super-solution method. Basic
to our approach is the following comparison result whose proof may be found in
[15].

Lemma 1 Let Ψ :Ω × (0,+∞)→ R be a Hölder continuous function such that
the mapping (0,+∞) � s �−→ Ψ (x,s)

s
is strictly decreasing for each x ∈Ω . Assume

that there exist v,w ∈ C2(Ω)∩C(Ω) such that

(a) Δw+Ψ (x,w)≤ 0 ≤Δv +Ψ (x, v) in Ω ;
(b) v,w > 0 in Ω and v ≤w on ∂Ω ;
(c) Δv ∈ L1(Ω) or Δw ∈ L1(Ω).

Then v ≤w in Ω .

We shall divide our arguments into two cases according to the values of λ.
(i) CASE λ > 0. By Lemma 4 in [24] there exists ζ ∈ C2(Ω) such that

⎧
⎪⎨

⎪⎩

−Δζ = f (x, ζ ) in Ω,

ζ > 0 in Ω,

ζ = 0 on ∂Ω.

(18)

Thus, ζ is a sub-solution of (1) provided λ > 0. We focus now on finding a super-
solution uλ of (1) such that ζ ≤ uλ in Ω .

Let H be the solution of (3). Since H is concave, there exists H ′(0+) ∈ (0,∞].
Taking 0 < b < 1 small enough, we can assume that H ′ > 0 in (0, b], so H is
increasing on [0, b]. Multiplying by H ′ in (3) and integrating on [t, b], we find

(
H ′)2

(t)− (
H ′)2

(b)= 2
∫ b

t

a(s)g
(
H(s)

)
H ′(s)ds ≤ 2a(t)

∫ H(b)

H(t)

g(τ )dτ. (19)
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Using the monotonicity of g it follows that

(
H ′)2

(t)≤ 2H(b)a(t)g
(
H(t)

)+ (
H ′)2

(b), for all 0< t ≤ b. (20)

Hence, there exist C1,C2 > 0 such that

(
H ′)(t)≤ C1a(t)g

(
H(t)

)
, for all 0< t ≤ b (21)

and
(
H ′)2

(t)≤ C2a(t)g
(
H(t)

)
, for all 0< t ≤ b. (22)

Now we can proceed to construct a super-solution for (1). First, we fix c > 0 such
that

cϕ1 ≤ min
{
b, δ(x)

}
in Ω. (23)

By Hopf’s maximum principle, there exist ω⊂⊂Ω and δ > 0 such that

|∇ϕ1|> δ in Ω \ω. (24)

Moreover, since

lim
δ(x)→0+

{
c2a(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 − 3f
(
x,H(cϕ1)

)}= ∞,

we can assume that

c2a(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 ≥ 3f
(
x,H(cϕ1)

)
in Ω \ω. (25)

Let M > 1 be such that

Mc2δ2 > 3. (26)

Since H ′(0+) > 0 and 0< a < 1, we can choose M > 1 such that

M
(cδ)2

C1
H ′(cϕ1)≥ 3λ

(
McH ′(cϕ1)|∇ϕ1|

)q in Ω \ω,

where C1 is the constant appearing in (21). By (21), (24) and (26) we derive

Mc2a(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 ≥ 3λ
(
McH ′(cϕ1)|∇ϕ1|

)q in Ω \ω. (27)

Since g is decreasing and H ′(cϕ1) > 0 in ω, there exists M > 0 such that

Mcλ1ϕ1H
′(cϕ1)≥ 3a

(
δ(x)

)
g
(
H(cϕ1)

)
in ω. (28)

In the same manner, using (f 2) and the fact that ϕ1 > 0 in ω, we can choose M > 1
large enough such that

Mcλ1ϕ1H
′(cϕ1)≥ 3λ

(
McH ′(cϕ1)|∇ϕ1|

)q in ω, (29)
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and

Mcλ1ϕ1H
′(cϕ1)≥ 3f

(
x,MH(cϕ1)

)
in ω. (30)

For M satisfying (26)–(30), we prove that

uλ(x) :=MH
(
cϕ1(x)

)
, for all x ∈Ω, (31)

is a super-solution of (1). We have

−Δuλ =Mc2a(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2 +Mcλ1ϕ1H
′(cϕ1) in Ω. (32)

We first show that

Mc2a(cϕ1)g
(
H(cϕ1)

)|∇ϕ1|2
≥ a

(
δ(x)

)
g(uλ)+ f (x,uλ)+ λ|∇uλ|q in Ω \ω. (33)

Indeed, by (23), (24) and (26) we get

M

3
c2a(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 ≥ a
(
δ(x)

)
g
(
H(cϕ1)

)

≥ a
(
δ(x)

)
g
(
MH(cϕ1)

)

= a
(
δ(x)

)
g(uλ) in Ω \ω. (34)

The assumption (f 1) and (25) produce

M

3
c2a(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 ≥Mf
(
x,H(cϕ1)

)

≥ f
(
x,MH(cϕ1)

)

= f (x,uλ) in Ω \ω. (35)

From (27) we obtain

M

3
c2a(cϕ1)g

(
H(cϕ1)

)|∇ϕ1|2 ≥ λ
(
McH ′(cϕ1)|∇ϕ1|

)q

= λ|∇uλ|q in Ω \ω. (36)

Now, relation (33) follows by (34), (35) and (36).
Next we prove that

Mcλ1ϕ1H
′(cϕ1)≥ a

(
δ(x)

)
g(uλ)+ f (x,uλ)+ λ|∇uλ|q in ω. (37)

From (28) and (29) we get
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M

3
cλ1ϕ1H

′(cϕ1) ≥ a
(
δ(x)

)
g
(
H(cϕ1)

)

≥ a
(
δ(x)

)
g
(
MH(cϕ1)

)

= a
(
δ(x)

)
g(uλ) in ω (38)

and

M

3
cλ1ϕ1H

′(cϕ1) ≥ λ
(
McH ′(cϕ1)|∇ϕ1|

)q

= λ|∇uλ|q in ω. (39)

Finally, from (30) we derive

M

3
cλ1ϕ1H

′(cϕ1)≥ f
(
x,MH(cϕ1)

)= f (x,uλ) in ω. (40)

Clearly, relation (37) follows from (38), (39) and (40).
Combining (32) with (33) and (37) we conclude that uλ is a super-solution of (1).

Thus, by Lemma 1 we obtain ζ ≤ uλ in Ω and by sub and super-solution method it
follows that (1) has at least one classical solution for all λ > 0.

CASE λ ≤ 0. We fix ν > 0 and let uν ∈ C2(Ω) ∩ C(Ω) be a solution of (1) for
λ= ν. Then uν is a super-solution of (1) for all λ≤ 0. Set

m := inf
(x,t)∈Ω×(0,∞)

(
a
(
δ(x)

)
g(t)+ f (x, t)

)
.

Since limt→0+ g(t) = ∞ and the mapping (0,∞) � t �−→ minx∈Ω f (x, t) is posi-
tive and nondecreasing, we deduce that m is a positive real number. Consider the
problem

{
−Δv =m+ λ|∇v|q in Ω,

v = 0 on ∂Ω.
(41)

Clearly zero is a sub-solution of (41). Since λ≤ 0, the solution w of the problem
{

−Δw =m in Ω,

w = 0 on ∂Ω,

is a super-solution of (41). Hence, (41) has at least one solution v ∈ C2(Ω)∩C(Ω).
We claim that v > 0 in Ω . Indeed, if not, we deduce that minx∈Ω v is achieved at
some point x0 ∈Ω . Then ∇v(x0)= 0 and

−Δv(x0)=m+ λ
∣∣∇v(x0)

∣∣q =m> 0, contradiction.

Therefore, v > 0 in Ω . It is easy to see that v is sub-solution of (1) and −Δv ≤m≤
−Δuν in Ω , which gives v ≤ uν in Ω . Again by the sub and super-solution method
we conclude that (1) has at least one classical solution uλ ∈ C2(Ω)∩C(Ω).
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(ii) The proof follows the same steps as above. The only difference is that (27)
and (29) are no more valid for any λ > 0. The main difficulty when dealing with
estimates like (27) is that H ′(cϕ1) may blow-up at the boundary. However, combin-
ing the assumption 1 < a ≤ 2 with (22), we can choose λ > 0 small enough such
that (27) and (29) hold. This implies that the problem (1) has a classical solution
provided λ > 0 is sufficiently small.

Set

A= {
λ > 0; problem (1) has at least one classical solution

}
.

From the above arguments, A is nonempty. Let λ∗ = supA. We first claim that if
λ ∈A, then (0, λ)⊆A. To this aim, let λ1 ∈A and 0< λ2 < λ1. If uλ1 is a solution
of (1) with λ= λ1, then uλ1 is a super-solution of (1) with λ= λ2, while ζ defined
in (18) is a sub-solution. Using Lemma 1 once more, we get ζ ≤ uλ1 inΩ so (1) has
at least one classical solution for λ= λ2. This proves the claim. Since λ1 ∈ A was
arbitrary, we conclude that (0, λ∗)⊂A.

Next, we prove that λ∗ <∞. To this aim, we use the following result which is a
consequence of Theorem 2.1 in [2].

Lemma 2 Assume that a > 1. Then there exists a positive number σ̄ such that the
problem

{
−Δv ≥ |∇v|q + σ in Ω,

v = 0 on ∂Ω,
(42)

has no solutions for σ > σ̄ .

Consider λ ∈ A and let uλ be a classical solution of (1). Set v = λ1/(a−1)uλ.
Using our assumption 1< a ≤ 2, we deduce that v fulfills

{
−Δv ≥ |∇v|q +mλ1/(a−1) in Ω,

v = 0 on ∂Ω.
(43)

According to Lemma 2, we obtain mλ1/(a−1) ≤ σ̄ , that is, λ≤ ( σ̄
m
)a−1. This means

that λ∗ ≤ ( σ̄
m
)a−1, hence λ∗ is finite. The existence of a solution in the case λ ≤ 0

can be achieved in the same manner as above.
This finishes the proof of Theorem 2.

4.5 Proof of Theorem 3

Let us note first that in our setting problem (1) reads
⎧
⎪⎨

⎪⎩

−Δu= a(R− |x|)g(u)+ f (x,u)+ λ|∇u| |x|<R,
u > 0 |x|<R,
u= 0 |x| =R.

(44)
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The case λ ≤ 0 is the same as in the proof of Theorem 2(i). In what follows,
we assume that λ > 0. Using Theorem 2(i) it is easy to see that there exists u ∈
C2(Ω)∩C(Ω) such that

⎧
⎪⎨

⎪⎩

−Δu= a(R − |x|)g(u) |x|<R,
u > 0 |x|<R,
u= 0 |x| =R.

It is obvious that u is a sub-solution of (44) for all λ > 0. In order to provide a
super-solution of (44) we consider the problem

⎧
⎪⎨

⎪⎩

−Δu= a(R − |x|)g(u)+ 1 + λ|∇u| |x|<R,
u > 0 |x|<R,
u= 0 |x| =R.

(45)

We need the following auxiliary result.

Lemma 3 Problem (45) has at least one solution.

Proof We are looking for radially symmetric solution u of (45), that is, u = u(r),
0 ≤ r = |x| ≤R. In this case, problem (45) becomes

⎧
⎪⎨

⎪⎩

−u′′ − N−1
r
u′(r)= a(R − r)g(u(r))+ 1 + λ|u′(r)| 0 ≤ r < R,

u > 0 0 ≤ r < R,

u(R)= 0.

(46)

This implies

−(
rN−1u′(r)

)′ ≥ 0 for all 0 ≤ r < R,

which yields u′(r)≤ 0 for all 0 ≤ r < R. Then (46) gives

−
(
u′′ + N − 1

r
u′(r)+ λu′(r)

)
= a(R− r)g

(
u(r)

)+ 1, 0 ≤ r < R.

We obtain

−(
eλrrN−1u′(r)

)′ = eλrrN−1ψ
(
r, u(r)

)
, 0 ≤ r < R, (47)

where

ψ(r, t)= a(R − r)g(t)+ 1, (r, t) ∈ [0,R)× (0,∞).

From (47) we obtain

u(r)= u(0)−
∫ r

0
e−λt t−N+1

∫ t

0
eλssN−1ψ

(
s, u(s)

)
dsdt, 0 ≤ r < R. (48)
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On the other hand, in view of Theorem 2 and using the fact that g is decreasing,
there exists a unique solution w ∈ C2(BR(0))∩C(BR(0)) of the problem

⎧
⎪⎨

⎪⎩

−Δw = a(R− |x|)g(w)+ 1 |x|<R,
w > 0 |x|<R,
w = 0 |x| =R.

(49)

Clearly, w is a sub-solution of (45). Due to the uniqueness and to the symmetry of
the domain, w is radially symmetric, so, w = w(r), 0 ≤ r = |x| ≤ R. As above we
get

w(r)=w(0)−
∫ r

0
t−N+1

∫ t

0
sN−1ψ

(
s,w(s)

)
dsdt, 0 ≤ r < R. (50)

We claim that there exists a solution v ∈ C2[0,R) ∩ C[0,R] of (48) such that
v > 0 in [0,R).

Let A=w(0) and define the sequence (vk)k≥1 by
⎧
⎪⎨

⎪⎩

vk(r)=A− ∫ r
0 e

−λt t−N+1
∫ t

0 e
λssN−1ψ(s, vk−1(s))dsdt,

0 ≤ r < R,k ≥ 1,

v0 =w.

(51)

Note that vk is decreasing in [0,R) for all k ≥ 0. From (50) and (51) we easily check
that v1 ≥ v0 and by induction we deduce vk ≥ vk−1 for all k ≥ 1. Hence

w = v0 ≤ v1 ≤ · · · ≤ vk ≤ · · · ≤A in BR(0).

Thus, there exists v(r) := limk→∞ vk(r), for all 0 ≤ r < R and v > 0 in [0,R). We
now can pass to the limit in (51) in order to get that v is a solution of (48). By
classical regularity results we also obtain v ∈ C2[0,R) ∩ C[0,R]. This proves the
claim.

We have obtained a super-solution v of (45) such that v ≥ w in BR(0). So, the
problem (45) has at least one solution and the proof of our Lemma is now com-
plete. �

Let u be a solution of the problem (45). For M > 1 we have

−Δ(Mu) =Ma
(
R − |x|)g(u)+M + λ

∣∣∇(Mu)∣∣
≥ a

(
R − |x|)g(Mu)+M + λ

∣
∣∇(Mu)∣∣. (52)

Since f is sublinear, we can choose M > 1 such that

M ≥ f
(
x,M|u|∞

)
in BR(0).

Then uλ :=Mu satisfies

−Δuλ ≥ a
(
R − |x|)g(uλ)+ f (x,uλ)+ λ|∇uλ| in BR(0).
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It follows that uλ is a super-solution of (44). Since g is decreasing we easily deduce
u≤ uλ in BR(0) so, problem (1) has at least one solution.

The proof of Theorem 3 is now complete.

4.6 Proof of Theorem 4 and Theorem 5

Proof of Theorem 4 The existence and nonexistence of a solution to (6) follows
directly from Theorems 1 and 2. We next prove the boundary estimates (7)–(9).

Recall that if
∫ 1

0 ta(t)dt <∞ and λ belongs to a certain range, then Theorem 2
asserts that (1) has at least one classical solution u satisfying u ≤MH(cϕ1) in Ω ,
for some M,c > 0. Here H is the solution of

⎧
⎪⎨

⎪⎩

H ′′(t)= −t−αH−p(t), for all 0< t ≤ b < 1,

H,H ′ > 0 in (0, b],
H(0)= 0.

(53)

With the same idea as in the proof of Theorem 2, we can show that there exists
m> 0 small enough such that v :=mH(cϕ1) satisfies

−Δv ≤ δ(x)−αv−p in Ω. (54)

Indeed, we have

−Δv =m
[
c2−α|∇ϕ1|2ϕ−α

1 H−p(cϕ1)+ λ1cϕ1H
′(cϕ1)

]
in Ω.

Thus, there exist two positive constants c1, c2 > 0 such that

−Δv ≤m
[
c1|∇ϕ1|2 + c2ϕ1

]
δ(x)−αH−p(cϕ1) in Ω.

Clearly (54) holds if we choosem> 0 small enough such thatm[c1|∇ϕ1|2 +c2ϕ1]<
1 in Ω . Moreover, v is a sub-solution of (6) for all μ> 0 and one can easily see that
v ≤ uμ in Ω . Hence

mH(cϕ1)≤ u≤MH(cϕ1) in Ω. (55)

Now, a careful analysis of (53) together with (55) is used in order to obtain boundary
estimates for the solution of (6). Our estimates complete the results in Theorem 2.1
in [17] since here the potential a(δ(x)) blows-up at the boundary.

(ii1) Remark that

H(t)=
(

(1 + p)2

(2 − α)(α + p− 1)

)1/(1+p)
t(2−α)/(1+p), t > 0,

is a solution of (53) provided α + p > 1. The conclusion in this case follows now
from (55).
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(ii2) Note that in this case problem (53) becomes

⎧
⎪⎨

⎪⎩

H ′′(t)= −t−αHα−1(t), for all 0< t ≤ b < 1,

H(0)= 0,

H > 0 in (0, b].
(56)

Let w = t ln1/(2−α)( 1
t
), t > 0. Then

−w′′(t)∼ t−1 ln(α−1)/(2−α)
(

1

t

)
∼ t−αw−p

in a neighborhood of the origin. Now if m > 0 is small enough it follows that w
satisfies −(mw)′′ ≤ t−α(mw)α−1 in (0, b) and mw(b) ≤ H(b). By the maximum
principle we find H ≥mw in (0, b), that is

H(t)≥ c1t ln1/(2−α)
(

1

t

)
in (0, b).

Similarly, if M > 1 is large enough we have −(Mw)′′ ≤ t−α(Mw)α−1 in (0, b) and
Mw(b)≥H(b). By the maximum principle we find H ≤Mw in (0, b), that is

H(t)≤ c2t ln1/(2−α)
(

1

t

)
in (0, b).

Now the desired estimate follows from (55).
(ii3) Using the fact that H ′(0+) ∈ (0,∞] we get the existence of c > 0 such that

H(t) > ct, for all 0< t ≤ b.

This yields

−H ′′(t)≤ c−pt−(α+p), for all 0< t ≤ b.

Since α + p < 1, it follows that H ′(0+) < ∞, that is, H ∈ C1[0, b]. Thus, there
exists c1, c2 > 0 such that

c1t ≤H(t)≤ c2t, for all 0< t ≤ b. (57)

The conclusion in Theorem 4(iii) follows directly from (57) and (55).
This completes the proof of Theorem 4. �

Proof of Theorem 5 This follows in the same way as above. The estimate (11)
follows by using the approach in Theorem 4(ii2) with w(t) = ln(1−α)/(1+p)(A/t).

�
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4.7 Proof of Theorem 6

Fix μ ∈ (0, λ1) and λ≥ 0. By Theorem 2(i) there exists u ∈ C2(Ω)∩C(Ω) a solu-
tion of the problem

⎧
⎪⎨

⎪⎩

−Δu= a(δ(x))g(u)+ λ|∇u|q in Ω,

u > 0 in Ω,

u= 0 on ∂Ω.

Obviously, uλμ := u is a sub-solution of (1). Since μ< λ1, there exists v ∈ C2(Ω)

such that
⎧
⎪⎨

⎪⎩

−Δv = μv+ 2 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

Since 0< a < 1, we can choose M > 0 large enough such that

M >μ|u|∞ and M >λ(M|∇v|)q in Ω.

Then w :=Mv satisfies

−Δw ≥ μ(u+w)+ λ|∇w|q in Ω.

We claim that uλμ := u+w is a super-solution of (1). Indeed, we have

−Δuλμ ≥ a
(
δ(x)

)
g(u)+ λuλμ + λ|∇u|q + λ|∇w|q in Ω. (58)

Using the assumption 0< a < 1 one can easily deduce

t
q

1 + t
q

2 ≥ (t1 + t2)
q, for all t1, t2 ≥ 0.

Hence

|∇u|q + |∇w|q ≥ (|∇u| + |∇w|)q ≥ ∣∣∇(u+w)
∣∣q in Ω. (59)

Combining (58) with (59) we obtain

−Δuλμ ≥ a
(
δ(x)

)
g(uλμ)+μuλμ + λ|∇uλμ|q in Ω.

Hence, (uλμ,uλμ) is an ordered pair of sub and super-solution of (1), so there ex-
ists a classical solution uλμ of (1), provided λ ≥ 0 and 0 < μ < λ1. Assume by
contradiction that there exist μ ≥ λ1 and λ ≥ 0 such that the problem (1) has a
classical solution uλμ. If m = minx∈Ω a(δ(x))g(uλμ) > 0 it follows that uλμ is a
super-solution of

{
−Δu= μu+m in Ω,

u= 0 on ∂Ω.
(60)
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Clearly, zero is a sub-solution of (60), so there exists a classical solution u of (60)
such that u≤ uλμ in Ω . By maximum principle and elliptic regularity we get u > 0
in Ω and u ∈ C2(Ω). To raise a contradiction, we proceed as in the proof of Theo-
rem 2(ii).

Multiplying by ϕ1 in (60) and then integrating over Ω we find

−
∫

Ω

ϕ1Δu= μ

∫

Ω

uϕ1 +m

∫

Ω

ϕ1.

This implies λ1
∫
Ω
uϕ1 = μ

∫
Ω
uϕ1 + m

∫
Ω
ϕ1, which is a contradiction, since

μ≥ λ1 and m> 0. The proof of Theorem 6 is now complete.
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6. Cîrstea, F.C., Ghergu, M., Rădulescu, V.: Combined effects of asymptotically linear and sin-
gular nonlinearities in bifurcation problems of Lane-Emden-Fowler type. J. Math. Pures Appl.
84, 493–508 (2005)

7. Coclite, M.M., Palmieri, G.: On a singular nonlinear Dirichlet problem. Commun. Partial Dif-
fer. Equ. 14, 1315–1327 (1989)

8. Cohen, D.S., Keller, H.B.: Some positive problems suggested by nonlinear heat generators.
J. Math. Mech. 16, 1361–1376 (1967)

9. Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlin-
earity. Commun. Partial Differ. Equ. 2, 193–222 (1977)

10. Díaz, J.I.: Nonlinear Partial Differential Equations and Free Boundaries. Vol. I: Elliptic Equa-
tions. Research Notes in Mathematics, vol. 106. Pitman, Boston (1985)

11. Díaz, J.I., Morel, J.M., Oswald, L.: An elliptic equation with singular nonlinearity. Commun.
Partial Differ. Equ. 12, 1333–1344 (1987)

12. Ghergu, M.: Lane-Emden systems with negative exponents. J. Funct. Anal. 258, 3295–3318
(2010)
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Chapter 5
On the Parabolic Regime of a Hyperbolic
Equation with Weak Dissipation: The Coercive
Case

Marina Ghisi and Massimo Gobbino

Abstract We consider a family of Kirchhoff equations with a small parameter ε in
front of the second-order time-derivative, and a dissipation term with a coefficient
which tends to 0 as t → +∞.

It is well-known that, when the decay of the coefficient is slow enough, solutions
behave as solutions of the corresponding parabolic equation, and in particular they
decay to 0 as t → +∞.

In this paper we consider the nondegenerate and coercive case, and we prove opti-
mal decay estimates for the hyperbolic problem, and optimal decay-error estimates
for the difference between solutions of the hyperbolic and the parabolic problem.
These estimates show a quite surprising fact: in the coercive case the analogy be-
tween parabolic equations and dissipative hyperbolic equations is weaker than in
the noncoercive case.

This is actually a result for the corresponding linear equations with time-
dependent coefficients. The nonlinear term comes into play only in the last step
of the proof.
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5.1 Introduction

Let H be a real Hilbert space. For every x and y in H , |x| denotes the norm of
x, and 〈x, y〉 denotes the scalar product of x and y. Let A be a self-adjoint linear
operator on H with dense domain D(A). We assume that A is nonnegative, namely
〈Ax,x〉 ≥ 0 for every x ∈D(A), so that for every α ≥ 0 the power Aαx is defined
provided that x lies in a suitable domain D(Aα).
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We consider the Cauchy problem

εu′′
ε (t)+

1

(1 + t)p
u′
ε(t)+m

(∣∣A1/2uε(t)
∣∣2)Auε(t)= 0 ∀t ≥ 0, (1.1)

uε(0)= u0, u′
ε(0)= u1, (1.2)

where ε > 0 and p ≥ 0 are real parameters, m : [0,+∞)→ (0,+∞) is a locally
Lipschitz continuous function, and (u0, u1) ∈D(A)×D(A1/2).

The singular perturbation problem in its generality consists in proving the con-
vergence of solutions of (1.1), (1.2) to solutions of the first order problem

1

(1 + t)p
u′(t)+m

(∣∣A1/2u(t)
∣∣2)Au(t)= 0 ∀t ≥ 0, (1.3)

u(0)= u0, (1.4)

obtained setting formally ε = 0 in (1.1), and omitting the second initial condition in
(1.2).

Several cases have been considered in the last 30 years, depending on the nonlin-
earity (degenerate or nondegenerate), on the dissipative term (constant dissipation
p = 0 or weak dissipation p > 0), and on the operator A (coercive or noncoercive).
The main research lines concern global existence for the parabolic and the hyper-
bolic problem (at least when ε is small enough), decay estimates on u(t), uε(t), and
uε(t)− u(t) as t → +∞, error estimates on the difference as ε → 0+, and decay-
error estimates, namely estimates describing in the same time the behavior of the
difference uε(t)− u(t) as t → +∞ and ε → 0+. The interested reader is referred
to the survey [5], or to the more recent papers [2, 7, 8].

In this paper we focus on the case where the equation is nondegenerate, namely

inf
{
m(σ) : σ ≥ 0

}=: μ> 0, (1.5)

and the operator is coercive, namely

inf
{〈Au,u〉 : u ∈D(A), |u| = 1

}=: ν > 0. (1.6)

Concerning the parabolic problem, it is well-known that it admits a global solu-
tion for every p ≥ 0, and every u0 ∈D(A) (and even for less regular data and more
general nonlinearities, see [9]).

As for the hyperbolic problem, things are different depending on p. Let us be-
gin with the linear equation in which m(σ) is a positive constant. In this case, T.
Yamazaki [14] and J. Wirth [13] proved two complementary results, which can be
outlined as follows.

• When p > 1, the dissipative term is too weak, and solutions of (1.1), (1.2) be-
have as solutions of the same equation without the dissipative term. In particular,
solutions do not decay to 0. This is the hyperbolic regime.
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• When p < 1, inertia is negligible, and solutions of (1.1), (1.2) behave as solutions
of (1.3), (1.4). In particular, they decay to 0. This is the parabolic regime, with
the so-called effective dissipation.

• When p = 1, the dissipation is still effective (namely the integral of the coefficient
diverges), but according to [13] “the parabolic asymptotics changes to a wave
type asymptotics”. In any case, solutions keep on going to 0, at least when ε is
small enough, and for this reason the case p = 1 eventually falls in the parabolic
regime.

These results have been extended to Kirchhoff equation by H. Hashimoto and T.
Yamazaki [10], T. Yamazaki [15, 16] and the authors [6], in the following sense.

• When p ∈ [0,1], problem (1.1), (1.2) has a unique global solution provided that
ε is small enough, and this solution decays to 0 as t → +∞. This is the parabolic
regime.

• When p > 1, existence of global solutions to (1.1), (1.2) is known only for
special initial data or special operators, the same ones for which global exis-
tence is known in the nondissipative case. Global existence for every (u0, u1) ∈
D(A)×D(A1/2), even for ε small enough, is still an open problem, exactly as in
the nondissipative case. In any case, nontrivial global solutions, if they exist, can
not decay to 0 as t → +∞. This is the hyperbolic regime.

All the results quoted above do not depend on the coerciveness of A, namely they
are true also when ν = 0.

Several estimates on solutions have been proved in the literature, once again
without assumption (1.6). The prototype of decay estimates is that

∣∣A1/2u(t)
∣∣2 ≤ C

(1 + t)1+p and
∣∣A1/2uε(t)

∣∣2 ≤ C

(1 + t)1+p

for every t ≥ 0, where the constant C is independent of ε and of course also of t . As
a consequence, we have also that

∣∣A1/2(uε(t)− u(t)
)∣∣2 ≤ C

(1 + t)1+p ∀t ≥ 0. (1.7)

The prototype of error estimates is that for initial data (u0, u1) ∈ D(A3/2) ×
D(A1/2) one has that

∣∣A1/2(uε(t)− u(t)
)∣∣2 ≤ Cε2 ∀t ≥ 0, (1.8)

where the constant C is once again independent of ε and t (global-in-time error es-
timates). It is well-known that ε2 is the best possible convergence rate (even when
looking for local-in-time error estimates), and that D(A3/2)×D(A1/2) is the mini-
mal requirement on initial data which guarantees this rate (even in the case of linear
equations). We refer to [1, 3, 4] for these aspects.
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The prototype of decay-error estimates is that for initial data (u0, u1) ∈
D(A3/2)×D(A1/2) one has that

∣∣A1/2(uε(t)− u(t)
)∣∣2 ≤ C

ε2

(1 + t)1+p ∀t ≥ 0. (1.9)

We point out in particular that, according to these estimates, solutions of the
hyperbolic problem decay with the same rate of solutions of the parabolic problem.
Moreover, in the decay-error estimates (1.9) we have the same convergence rate
of the error estimates (1.8), and the same decay rate of the decay estimates (1.7).
Finally, all these results hold true without coerciveness assumptions on A, and for
these general operators it turns out that decay rates are optimal.

When the operator A is coercive, better decay rates are expected. For example, it
is easy to see that solutions of the parabolic problem satisfy

∣∣A1/2u(t)
∣∣2 ≤ Ce−α(1+t)1+p ∀t ≥ 0 (1.10)

for a suitable α > 0, depending on μ, ν, and p (see Theorem 2.1).
Therefore, the analogy with the noncoercive case could lead to guess that also

solutions of the hyperbolic problem should decay with the same exponential rate,
and the same rate should also appear in the decay-error estimates.

In this paper we show that this is not the case, because solutions of the hyperbolic
problem decay to 0 with a different, slower rate. Indeed we prove (see Theorem 2.2)
that

∣∣A1/2uε(t)
∣∣2 ≤ Ce−α(1+t)1−p ∀t ≥ 0 (1.11)

if p ∈ [0,1), and

∣∣A1/2uε(t)
∣∣2 ≤ C

(1 + t)α
∀t ≥ 0

if p = 1, where α < 2μν if p = 0, and α is any (positive) real number if p ∈ (0,1]
(now the constant C depends also on α). These rates are optimal, in the sense that
every nonzero solution does not satisfy an estimate such as (1.11) with an exponent
larger than (1 − p) (see Theorem 2.4). The same slower rates appear also in the
decay-error estimates (see Theorem 2.3), and of course they are optimal also in this
case.

We have thus shown an essential difference between the coercive and the non-
coercive case. In the noncoercive case, solutions of the hyperbolic problem mimic
the behavior of solutions of the parabolic problem for every p ∈ [0,1]. In the coer-
cive case, this is true only for p = 0, when the exponent (1 + p) in (1.10) and the
exponent (1 − p) in (1.11) coincide. On the contrary, for every p ∈ (0,1] there is a
spread between exponents in the decay rates of u(t) and uε(t), and this spread be-
comes larger and larger as p approaches 1. As a consequence, from the point of view
of decay rates, (1.3) is a good approximation of (1.1) for ε small in the noncoercive
case, but not in the coercive case (see also Sect. 5.2.3).
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In both cases (coercive and noncoercive), the parabolic problem and the hyper-
bolic problem take different paths when p > 1: solutions of the parabolic problem
keep on decaying according to (1.10), hence faster and faster as p grows, while so-
lutions of the hyperbolic problem do not decay to 0 any more (provided that they
globally exist).

All our proofs are based on linear arguments. To this end, we first linearize (1.1)
and (1.3). We obtain the following equations

εu′′
ε (t)+

1

(1 + t)p
u′
ε(t)+ cε(t)Auε(t)= 0 ∀t ≥ 0, (1.12)

1

(1 + t)p
u′(t)+ c(t)Au(t)= 0 ∀t ≥ 0, (1.13)

with time-dependent coefficients cε : [0,+∞) → (0,+∞) and c : [0,+∞) →
(0,+∞).

Then we prove decay and decay-error estimates for solutions of these linear equa-
tions, under suitable assumptions on the coefficients. This is the core of the paper.

Finally, we just observe that the coefficients cε(t) and c(t) coming from the non-
linear terms in (1.1) and (1.3) satisfy the assumptions required by the linear theory.
Fortunately, these assumptions are quite weak, and follow easily from previous lit-
erature on the noncoercive case.

This paper is organized as follows. In Sect. 5.2.1 we recall the previous results
and estimates needed throughout this paper. In Sect. 5.2.2 we state our main results
for Kirchhoff equations. In Sect. 5.2.3 we present a heuristic argument leading to
our decay rates. In Sect. 5.2.4 we state our results for linear equations with time-
dependent coefficients. In Sect. 5.3 we collect all proofs.

5.2 Statements

5.2.1 Previous Works

The theory of nondegenerate Kirchhoff equations with weak dissipation has been
developed in [6, 15, 16]. In the following statement we collect the existence results,
and some decay and error estimates. We limit ourselves to the results which are
needed in the sequel, and for this reason Theorem A below does not represent the
full state of the art, especially for decay-error estimates. The interested reader is
referred to Sect. 5 of [5] for further (and more refined) estimates and references.

Theorem A Let H be a Hilbert space, let A be a self-adjoint nonnegative operator
onH with dense domainD(A) (no coercivity assumption on A), letm : [0,+∞)→
(0,+∞) be a locally Lipschitz continuous function satisfying the nondegeneracy
condition (1.5), and let (u0, u1) ∈D(A)×D(A1/2).
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Then we have the following conclusions.

(1) (Parabolic problem) For every p ≥ 0, problem (1.3), (1.4) has a unique global
solution

u ∈ C1([0,+∞);H )∩C0([0,+∞);D(A)). (2.1)

Moreover u ∈ C1((0,+∞);D(Aα)) for every α ≥ 0 (and more generally u
is of class Ck+1 when m(σ) is of class Ck), and there exists a constant C such
that

(1 + t)2
∣
∣u′(t)

∣
∣2 + (1 + t)1+p∣∣A1/2u(t)

∣
∣2

+ (1 + t)2(1+p)∣∣Au(t)
∣∣2 ≤ C ∀t ≥ 0. (2.2)

(2) (Hyperbolic problem) For every p ∈ [0,1], there exists ε0 > 0 such that, for
every ε ∈ (0, ε0), problem (1.1), (1.2) has a unique global solution

uε ∈ C2([0,+∞);H )∩C1([0,+∞);D(A1/2))∩C0([0,+∞);D(A)).
(2.3)

Moreover, there exists a constant C such that for every ε ∈ (0, ε0) we have
that

(1 + t)2
∣∣u′
ε(t)

∣∣2 + (1 + t)1+p∣∣A1/2uε(t)
∣∣2

+ (1 + t)2(1+p)∣∣Auε(t)
∣
∣2 ≤ C ∀t ≥ 0. (2.4)

(3) (Singular perturbation) If p ∈ [0,1], and (u0, u1) ∈ D(A3/2)×D(A1/2), then
there exist ε1 ∈ (0, ε0) and C such that, for every ε ∈ (0, ε1) we have that

∣
∣A1/2(uε(t)− u(t)

)∣∣2 ≤ Cε2 ∀t ≥ 0. (2.5)

5.2.2 Main Results

In this section we state the main results of this paper. The first one concerns decay
estimates for solutions of the parabolic problem.

Theorem 2.1 (Parabolic equation) Let H be a Hilbert space, and let A be a self-
adjoint operator on H with dense domain D(A). Let u0 ∈D(A), let p ≥ 0, and let
m : [0,+∞)→ (0,+∞) be a locally Lipschitz continuous function.

Let us assume that the nondegeneracy and coerciveness assumptions (1.5) and
(1.6) are satisfied.
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Then problem (1.3), (1.4) has a unique global solution u(t) with the regularity
prescribed in statement (1) of Theorem A, and there exists a constant C such that

∣∣u(t)
∣∣2 + ∣∣A1/2u(t)

∣∣2 + ∣∣Au(t)
∣∣2 + |u′(t)|2

(1 + t)2p
≤ C exp

(
− 2μν

1 + p
(1 + t)1+p

)

(2.6)

for every t ≥ 0.

The second result concerns decay estimates for solutions of the hyperbolic prob-
lem.

Theorem 2.2 (Hyperbolic equation) Let H be a Hilbert space, and let A be a self-
adjoint operator on H with dense domain D(A). Let (u0, u1) ∈D(A)×D(A1/2),
let p ∈ [0,1], and let m : [0,+∞) → (0,+∞) be a locally Lipschitz continuous
function.

Let us assume that the nondegeneracy and coerciveness assumptions (1.5) and
(1.6) are satisfied.

Then there exists ε0 > 0 such that, for every ε ∈ (0, ε0), problem (1.1), (1.2) has
a unique global solution uε(t) with the regularity prescribed by (2.3).

Moreover the function

Γε(t) :=
∣∣uε(t)

∣∣2 + ∣∣A1/2uε(t)
∣∣2 + ∣∣Auε(t)

∣∣2 + ∣∣u′
ε(t)

∣∣2 + ε
∣∣A1/2u′

ε(t)
∣∣2 (2.7)

satisfies the following decay estimates.

• Case p = 0. For every β < 2μν, there exist ε1 ∈ (0, ε0] and C such that

Γε(t)≤ Ce−βt ∀t ≥ 0,∀ε ∈ (0, ε1). (2.8)

• Case p ∈ (0,1). For every β > 0, there exist ε1 ∈ (0, ε0] and C such that

Γε(t)≤ Ce−β(1+t)1−p ∀t ≥ 0,∀ε ∈ (0, ε1). (2.9)

• Case p = 1. For every β > 0, there exist ε1 ∈ (0, ε0] and C such that

Γε(t)≤ C

(1 + t)β
∀t ≥ 0,∀ε ∈ (0, ε1). (2.10)

Of course the constants C and ε1 in (2.8) through (2.10) depend also on β .
The third step concerns the singular perturbation problem. Following the ap-

proach introduced in [11] in the linear case, we define the corrector θε(t) as the
solution of the second order linear ordinary differential equation

εθ ′′
ε (t)+

1

(1 + t)p
θ ′
ε(t)= 0 ∀t ≥ 0, (2.11)
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with initial data

θε(0)= 0, θ ′
ε(0)= u1 +m

(∣∣A1/2u0
∣∣2)Au0 =: θ0.

Since θ0 = u′
ε(0) − u′(0), this corrector keeps into account the boundary layer

due to the loss of one initial condition.
We can now define rε(t) and ρε(t) in such a way that

uε(t)= u(t)+ θε(t)+ rε(t)= u(t)+ ρε(t) ∀t ≥ 0.

With these notations, the singular perturbation problem consists in proving that
rε(t)→ 0 or ρε(t)→ 0 in some sense as ε → 0+. We recall that the two remain-
ders play different roles. In particular, rε(t) is well suited for estimating derivatives,
while ρε(t) is used in estimates without derivatives. This distinction is essential. In-
deed it is not possible to prove decay-error estimates on Aαrε(t) because it does not
decay to 0 as t → +∞ (indeed uε(t) and u(t) tend to 0, while the corrector θε(t)
does not), and it is not possible to prove decay-error estimates on Aαρ′

ε(t) because
in general for t = 0 it does not tend to 0 as ε → 0+ (due to the loss of one initial
condition).

We are now ready to state our decay-error estimates.

Theorem 2.3 (Singular perturbation) Let H be a Hilbert space, and let A be a self-
adjoint operator on H with dense domain D(A). Let (u0, u1) ∈D(A)×D(A1/2),
let p ∈ [0,1], and let m : [0,+∞) → (0,+∞) be a locally Lipschitz continuous
function.

Let us assume that the nondegeneracy and coerciveness assumptions (1.5) and
(1.6) are satisfied, and let u(t), ε0, uε(t), rε(t), ρε(t) be as above.

Let us consider the functions

Γr,ε(t) :=
∣∣ρε(t)

∣∣2 + ∣∣A1/2ρε(t)
∣∣2 + ε

∣∣r ′ε(t)
∣∣2,

Γc,ε(t) :=
∣∣ρε(t)

∣∣2 + ∣∣A1/2ρε(t)
∣∣2 + ∣∣Aρε(t)

∣∣2 + ∣∣r ′ε(t)
∣∣2 + ε

∣∣A1/2r ′ε(t)
∣∣2,

where indices c and r stay for “complete”, and “reduced”, respectively.

(1) If in addition (u0, u1) ∈D(A3/2)×D(A1/2), then we have the following decay-
error estimates.

• Case p = 0. For every β < 2μν, there exist ε1 ∈ (0, ε0] and C such that

Γr,ε(t)≤ Cε2e−βt ∀t ≥ 0,∀ε ∈ (0, ε1). (2.12)

• Case p ∈ (0,1). For every β > 0, there exist ε1 ∈ (0, ε0] and C such that

Γr,ε(t)≤ Cε2e−β(1+t)1−p ∀t ≥ 0,∀ε ∈ (0, ε1). (2.13)

• Case p = 1. For every β > 0, there exist ε1 ∈ (0, ε0] and C such that

Γr,ε(t)≤ Cε2

(1 + t)β
∀t ≥ 0,∀ε ∈ (0, ε1). (2.14)



5 Hyperbolic Equation with Weak Dissipation: Coercive Case 101

(2) If in addition (u0, u1) ∈ D(A2) × D(A), then we have the same decay-error
estimates with Γc,ε(t) instead of Γr,ε(t).

As in Theorem 2.2 above, the constants C and ε1 in (2.12) through (2.14) depend
also on β . We point out that in these estimates we have the same convergence rate
as in (2.5), and the same decay rates as in (2.8) through (2.10).

The last result we state, together with Remarks 2.5 and 2.6 below, clarifies the
optimality of the decay rates of Theorem 2.2, hence also of Theorem 2.3.

Theorem 2.4 (Optimality of decay rates) Let H,A,p ∈ [0,1], m : [0,+∞) →
(0,+∞), and (u0, u1) ∈ D(A) × D(A1/2) be as in Theorem 2.2. Let ε > 0, and
let uε(t) be the solution to problem (1.1), (1.2).

Let Φ : [0,+∞)→ (0,+∞) be a function of class C1 such that

lim
t→+∞(1 + t)p

Φ ′(t)
Φ(t)

= −∞. (2.15)

If (u0, u1) �= (0,0), then

lim
t→+∞

(
ε
∣∣u′
ε(t)

∣∣2 + ∣∣A1/2uε(t)
∣∣2) 1

Φ(t)
= +∞. (2.16)

Remark 2.5 When p > 0, Theorem 2.4 is exactly the counterpart of Theorem 2.2.
Indeed let us consider any Φ : [0,+∞)→ [0,+∞), and let Γε(t) be defined as in
(2.7). If (2.15) is satisfied, then we can not expect that Γε(t) ≤ CΦ(t) because of
(2.16). On the contrary, if

(1 + t)p
Φ ′(t)
Φ(t)

≥ −β >−∞,

then Φ(t) ≥ Ce−β(1−p)−1(1+t)1−p
if p ∈ (0,1), and Φ(t) ≥ C(1 + t)−β if p = 1,

and in both cases Theorem 2.2 guarantees that Γε(t)≤ CΦ(t).
Note in particular that the function Φ(t) := e−β(1+t)δ satisfies (2.15) if and only

if δ > 1 − p, which means that (1 − p) is the larger exponent for which (2.9) holds
true.

Remark 2.6 When p = 0, estimate (2.8) can not be true when β > 2μν. This can be
easily seen by considering the explicit solutions of the ordinary differential equation

εy′′(t)+ y′(t)+μνy(t)= 0, (2.17)

which is just the particular case of (1.1) where H = R, A is ν times the identity, and
m(σ)≡ μ is a constant.

On the other hand, solutions of (2.17) satisfy (2.8) also with β = 2μν. We suspect
that this could be true in general, but for the time being we have no proof.

Open Problem 2.7 Is (2.8) true also in the case β = 2μν?
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5.2.3 Heuristics

According to Theorem 2.1, solutions of the parabolic problem decay as solutions of
the ordinary differential equation

1

(1 + t)p
y′(t)+μνy(t)= 0. (2.18)

This is hardly surprising, since (2.18) is just the special case of (1.3) correspond-
ing to H = R, A equal to ν times the identity, and m(σ)≡ μ.

Analogously, it is reasonable to expect solutions of the hyperbolic problem to
decay as solutions of the ordinary differential equation

εy′′
ε (t)+

1

(1 + t)p
y′
ε(t)+μνyε(t)= 0. (2.19)

A reasonable ansatz for these solutions is that asymptotically they are the product
of an oscillatory term vε(t), and a decaying term λε(t). Plugging yε(t)= λε(t) ·vε(t)
into (2.19), we obtain that

(
εv′′
ε +μνvε

)
λε +

(
2ελ′

ε + λε

(1 + t)p

)
v′
ε +

(
ελ′′
ε + λ′

ε

(1 + t)p

)
vε = 0.

A reasonable guess is now that the coefficient of λε(t) in the first term is almost
0, as well as the coefficient of v′

ε(t) in the second term.
The first condition is that εv′′

ε (t)+μνvε(t)∼ 0, namely

vε(t)∼ sin

(√
μν

ε
t

)
,

which yields the same oscillations of the undamped equation.
The second condition is that

2ελ′
ε(t)+

λε(t)

(1 + t)p
∼ 0, (2.20)

and for every p ∈ (0,1] this yields a decay rate which is compatible both with The-
orem 2.2 and with Theorem 2.4.

We do not know if similar asymptotics have been rigorously justified in the
literature (see [13] for the case p = 1). Nevertheless, this non-rigorous argument
suggests that actually there is no sharp break between parabolic and hyperbolic
regimes. For p ≤ 1, the hyperbolic nature survives in the oscillatory behavior of
vε(t), but it is hidden by the damping imposed by (2.20). When p > 1, solutions
of (2.20) tend to a positive constant, and the hyperbolic nature emerges undis-
puted.

We conclude by pointing out once again that this analysis applies to the nonde-
generate coercive case. Things are quite different both in the nondegenerate nonco-
ercive case (see [6, 12–15]), and in the degenerate coercive case (see [7, 8]).
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5.2.4 Linearization

Proofs of our main results are based on the analysis of the linear equations (1.12)
and (1.13). We assume that the coefficient c : [0,+∞)→ (0,+∞) is of class C1,
and satisfies the following estimates

c(t)≥ μ> 0 ∀t ≥ 0, (2.21)

c(t)≤M1 ∀t ≥ 0, (2.22)
∣∣c′(t)

∣∣≤M2 ∀t ≥ 0. (2.23)

Similarly, we assume that cε : [0,+∞)→ (0,+∞), with ε ∈ (0, ε0), is a family
of coefficients of class C1 satisfying the following estimates

cε(t)≥ μ> 0 ∀t ≥ 0,∀ε ∈ (0, ε0), (2.24)

cε(t)≤M3 ∀t ≥ 0,∀ε ∈ (0, ε0), (2.25)

∣∣c′ε(t)
∣∣≤ M4

(1 + t)p
∀t ≥ 0,∀ε ∈ (0, ε0). (2.26)

When considering the singular perturbation, we also assume that

∣∣cε(t)− c(t)
∣∣≤M5ε ∀t ≥ 0,∀ε ∈ (0, ε0), (2.27)

and we define the corrector θε(t) as the solution of (2.11) with initial data

θε(0)= 0, θ ′
ε(0)= u1 + c(0)Au0 =: θ0. (2.28)

The following results are the linear counterparts of Theorems 2.1 through 2.4.
All of them can be extended to Lipschitz continuous coefficients through a straight-
forward approximation argument.

Theorem 2.8 (Linear parabolic equation) Let H,A,p ≥ 0, and u0 ∈D(A) be as in
Theorem 2.1. Let c : [0,+∞)→ (0,+∞) be a continuous function satisfying (2.21)
and (2.22).

Then problem (1.13), (1.4) has a unique global solution u(t) with the regularity
prescribed by (2.1), and this solution satisfies (2.6).

Theorem 2.9 (Linear hyperbolic equation) Let H,A,p ∈ [0,1], and (u0, u1) ∈
D(A)×D(A1/2) be as in Theorem 2.2, and let ε0 > 0. Let cε : [0,+∞)→ (0,+∞),
with ε ∈ (0, ε0), be a family of coefficients of class C1 satisfying (2.24) through
(2.26).

Then, for every ε ∈ (0, ε0), problem (1.12), (1.2) has a unique global solution
uε(t) with the regularity prescribed by (2.3), and this solution satisfies the same
decay estimates stated in Theorem 2.2, depending on the values of p.
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Theorem 2.10 (Linear singular perturbation) Let H,A,p ∈ [0,1], (u0, u1), ε0,
c(t), u(t), cε(t), uε(t) be as in Theorems 2.8 and 2.9.

Let us assume that also (2.23) and (2.27) hold true, and let rε(t) and ρε(t) be
defined as usual (keeping in mind that the corrector now satisfies (2.11) and (2.28)).

Then rε(t) and ρε(t) satisfy the decay-error estimates of statements (1) and (2)
of Theorem 2.3, depending on the further regularity of (u0, u1), and on the values
of p.

Theorem 2.11 (Linear hyperbolic equation: optimality) Let H,A,p ∈ [0,1], and
(u0, u1) ∈ D(A)×D(A1/2) be as in Theorem 2.2. Let ε > 0, and let uε(t) be the
solution to problem (1.12), (1.2) with a coefficient cε : [0,+∞)→ (0,+∞) of class
C1 satisfying (2.24) through (2.26).

If (u0, u1) �= (0,0), then (2.16) holds true for every function Φ : [0,+∞) →
(0,+∞) of class C1 satisfying (2.15).

5.3 Proofs

5.3.1 Proof of Theorem 2.8

We prove a more general result, with some further estimates needed when dealing
with the singular perturbation problem. These estimates easily imply (2.6). Indeed,
estimate (3.2) with k = 0,1,2 allows to control the first three terms in the left-hand
side of (2.6). Thanks to (1.13), the estimate for |u′(t)| follows from the boundedness
of c(t) and the estimate on |Au(t)|.
Proposition 3.1 Let H , A, and c(t) be as in Theorem 2.8. Let us set

γ := 2μν

1 + p
, Ψα,p(t) := exp

(−α[(1 + t)1+p − 1
])
. (3.1)

Then we have the following estimates.

(1) If u0 ∈D(Ak/2) for some k ∈ N, then

∣∣Ak/2u(t)
∣∣2 ≤ ∣∣Ak/2u0

∣∣2Ψγ,p(t) ∀t ≥ 0. (3.2)

Moreover, for every α < γ we have that

∫ +∞

0

|A(k+1)/2u(t)|2
Ψα,p(t)

dt ≤
(

2μ− α(1 + p)

ν

)−1∣∣Ak/2u0
∣∣2. (3.3)

(2) If u0 ∈ D(A3/2), and c(t) is of class C1 and satisfies (2.23), then for every
α < γ there exists a constant C (depending also on α) such that

∫ +∞

0

|u′′(t)|2
Ψα,p(t)

dt ≤ C. (3.4)
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(3) If u0 ∈ D(A2), and c(t) is of class C1 and satisfies (2.23), then there exists a
constant C such that

∣∣u′′(t)
∣∣2 ≤ C(1 + t)4pΨγ,p(t) ∀t ≥ 0. (3.5)

Moreover, for every α < γ , there exists a constant C (depending also on α)
such that

∫ +∞

0

|A1/2u′′(t)|2
Ψα,p(t)

dt ≤ C. (3.6)

Proof Let us set Ek(t) := |Ak/2u(t)|2. From (1.13), (1.6), and (2.21), we have that

E′
k(t) = 2

〈
A(k+1)/2u(t),A(k−1)/2u′(t)

〉= −2c(t)(1 + t)p
∣∣A(k+1)/2u(t)

∣∣2

≤ −2c(t)(1 + t)p · ν∣∣Ak/2u(t)∣∣2 ≤ −2μν(1 + t)pEk(t).

Integrating this differential inequality, we obtain (3.2).
Moreover we have that

d

dt

[
Ek(t)

Ψα,p(t)

]
= E′

k(t)

Ψα,p(t)
+ α(1 + p)(1 + t)p

|Ak/2u(t)|2
Ψα,p(t)

≤ −2μ(1 + t)p
|A(k+1)/2u(t)|2

Ψα,p(t)

+ α(1 + p)

ν
(1 + t)p

|A(k+1)/2u(t)|2
Ψα,p(t)

,

hence
(

2μ− α(1 + p)

ν

)∫ t

0
(1 + s)p

|A(k+1)/2u(s)|2
Ψα,p(s)

ds + Ek(t)

Ψα,p(t)
≤Ek(0) ∀t ≥ 0,

which easily implies (3.3).
Let us prove the estimates on the second derivative. From (1.13) we obtain that

u′′(t)= −p(1 + t)p−1c(t)Au(t)− (1 + t)pc′(t)Au(t)+ (1 + t)2pc2(t)A2u(t).

Therefore, from (2.22) and (2.23), it follows that

∣
∣u′′(t)

∣
∣2 ≤ k1(1 + t)2p

∣
∣Au(t)

∣
∣2 + k2(1 + t)4p

∣
∣A2u(t)

∣
∣2. (3.7)

If u0 ∈D(A2), then (3.5) follows from (3.2) with k = 2 and k = 4.
In order to prove the integral estimates on u′′(t), let us choose η such that α <

α + η < γ . Since Ψα+η,p(t)= Ψα,p(t) ·Ψη,p(t), and since

sup
t≥0

{
Ψη,p(t)(1 + t)4p

}
<+∞,
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from (3.7) it follows that

|u′′(t)|2
Ψα,p(t)

≤ (1 + t)4pΨη,p(t) · k1|Au(t)|2 + k2|A2u(t)|2
Ψα,p(t) ·Ψη,p(t) ≤ k3

|Au(t)|2 + |A2u(t)|2
Ψα+η,p(t)

.

From (3.3) with k = 1 and k = 3 we conclude that

∫ +∞

0

|u′′(t)|2
Ψα,p(t)

dt ≤ k3

∫ +∞

0

|Au(t)|2 + |A2u(t)|2
Ψα+η,p(t)

dt ≤ k4

for a suitable k4 depending also on η. This proves (3.4).
The proof of (3.6) is completely analogous. �

5.3.2 Comparison Results for ODEs

In this subsection we prove estimates for solutions of three ordinary differential
equations needed in the sequel. To begin with, for every β > 0 and every p ≥ 0 we
define Φβ,p : [0,+∞)→ (0,+∞) as the solution of the Cauchy problem

Φ ′
β,p(t)= − β

(1 + t)p
Φβ,p(t) ∀t ≥ 0, (3.8)

Φβ,p(0)= 1. (3.9)

We point out that solutions of this problem decay as the right-hand sides of (2.8)
through (2.10), depending on the values of p. This is the reason why we are going to
exploit Φβ,p(t) several times in the proofs of our decay and decay-error estimates.

Lemma 3.2 Let β > 0 and p ≥ 0 be real numbers, and let Φβ,p(t) be the solution
of the Cauchy problem (3.8), (3.9).

Let ε andK be positive constants, with 2εβ ≤ 1, and letG : [0,+∞)→ [0,+∞)

be a function of class C1 such that

G′(t)≤ −1

ε

1

(1 + t)p
G(t)+ K

ε
(1 + t)pΦβ,p(t) ∀t ≥ 0. (3.10)

Then we have that

G(t)≤ (
2K +G(0)

)
(1 + t)2pΦβ,p(t) ∀t ≥ 0. (3.11)

Proof Let us consider the differential equation

y′(t)= −1

ε

1

(1 + t)p
y(t)+ K

ε
(1 + t)pΦβ,p(t) ∀t ≥ 0. (3.12)
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Assumption (3.10) says that G(t) is a subsolution of (3.12). Let z(t) denote the
right-hand side of (3.11). We claim that z(t) is a supersolution of (3.12). Indeed a
simple computation shows that

z′(t) = 2p
(
2K +G(0)

)
(1 + t)2p−1Φβ,p(t)+

(
2K +G(0)

)
(1 + t)2pΦ ′

β,p(t)

≥ −β(2K +G(0)
)
(1 + t)pΦβ,p(t)

≥ −1

ε

(
K +G(0)

)
(1 + t)pΦβ,p(t)

= −1

ε

1

(1 + t)p
z(t)+ K

ε
(1 + t)pΦβ,p(t),

where in the second inequality we exploited that 2εβ ≤ 1, and 2G(0)≥G(0).
Since G(0)≤ z(0), estimate (3.11) follows from the standard comparison princi-

ple between subsolutions and supersolutions. �

Lemma 3.3 Let ψ1 : [0,+∞) → [0,+∞) and ψ2 : [0,+∞) → [0,+∞) be two
continuous functions such that

K1 :=
∫ +∞

0
ψ1(t)dt <+∞, K2 :=

∫ +∞

0
ψ2(t)dt <+∞.

Let E : [0,+∞)→ [0,+∞) be a function of class C1 such that E(0)= 0, and

E′(t)≤ψ1(t)
√
E(t)+ψ2(t) ∀t ≥ 0.

Then we have that

E(t)≤K2
1 + 2K2 ∀t ≥ 0. (3.13)

Proof Let us fix any T > 0. For every t ∈ [0, T ] we have that

E′(t)≤ψ1(t) ·
(

sup
s∈[0,T ]

E(s)
)1/2 +ψ2(t).

Since E(0)= 0, an easy integration gives that

E(t)≤
(

sup
s∈[0,T ]

E(s)
)1/2

∫ t

0
ψ1(s)ds +

∫ t

0
ψ2(s)ds ≤K1

(
sup

s∈[0,T ]
E(s)

)1/2 +K2

for every t ∈ [0, T ]. Taking the supremum of the left-hand side as t ∈ [0, T ], we
obtain that

sup
s∈[0,T ]

E(s)≤K1

(
sup

s∈[0,T ]
E(s)

)1/2 +K2 ≤ 1

2
K2

1 + 1

2

(
sup

s∈[0,T ]
E(s)

)
+K2,
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hence

sup
s∈[0,T ]

E(s)≤K2
1 + 2K2,

and in particular E(T )≤K2
1 + 2K2. Since T is arbitrary, (3.13) is proved. �

Lemma 3.4 Let β > 0 and p ≥ 0 be real numbers, and let Φβ,p(t) be the solution
of the Cauchy problem (3.8), (3.9).

Let ψ : [0,+∞)→ [0,+∞) be a continuous function such that
∫ +∞

0

ψ(s)

Φβ,p(s)
ds <+∞.

Let T > 0, and let F : [T ,+∞)→ [0,+∞) be a function of class C1 such that

F ′(t)≤ − β

(1 + t)p
F (t)+ψ(t) ∀t ≥ T . (3.14)

Then we have that

F(t)≤
(

F(T )

Φβ,p(T )
+
∫ +∞

0

ψ(s)

Φβ,p(s)
ds

)
·Φβ,p(t) ∀t ≥ T . (3.15)

Proof Let us consider the differential equation

y′(t)= − β

(1 + t)p
y(t)+ψ(t) ∀t ≥ 0. (3.16)

Assumption (3.14) says that F(t) is a subsolution of (3.16) for t ≥ T . On the
other hand, it is easy to see that

z(t) :=
(

F(T )

Φβ,p(T )
+
∫ t

T

ψ(s)

Φβ,p(s)
ds

)
·Φβ,p(t)

is a solution of (3.16) for t ≥ T . Since F(T )= z(T ), the standard comparison prin-
ciple between subsolutions and supersolutions implies that F(t) ≤ z(t) for every
t ≥ T , which in turn implies (3.15). �

5.3.3 Proof of Theorem 2.9

Let us describe the strategy of the proof before entering into details. Let us take any
admissible value β , which means any β ∈ (0,2μν) if p = 0, and any β > 0 if p > 0.
Let Φβ,p(t) be the solution of the Cauchy problem (3.8), (3.9).

Estimates (2.8) through (2.10) are equivalent to showing that

Γε(t)≤ k1Φβ,p(t) ∀t ≥ 0 (3.17)

for the admissible values of β .
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Let μ be the constant in (2.24), and let us choose δ and T in such a way that

δ := 2(β + 1)ν

2μν − β
, T := 0 (3.18)

if p = 0 (note that δ > 0), and

δ := β + 2

μ
, (1 + T )2p ≥ δβ

2ν
(3.19)

if p > 0. For every ε ∈ (0, ε0), we consider the energies

Eε(t) := ε|u′
ε(t)|2
cε(t)

+ ∣∣A1/2uε(t)
∣∣2, (3.20)

Fε(t) := ε|u′
ε(t)|2
cε(t)

+ ∣∣A1/2uε(t)
∣∣2 + εδ

(1 + t)p

〈
u′
ε(t), uε(t)

〉

+ δ

2

1

(1 + t)2p

∣∣uε(t)
∣∣2. (3.21)

We claim that there exist ε2 ∈ (0, ε0), and positive constants k2, . . . , k5, such that

k2
(
ε
∣∣u′
ε(t)

∣∣2 + ∣∣A1/2uε(t)
∣∣2)≤Eε(t)≤ k3

(
ε
∣∣u′
ε(t)

∣∣2 + ∣∣A1/2uε(t)
∣∣2), (3.22)

k4
(
ε
∣∣u′
ε(t)

∣∣2 + ∣∣A1/2uε(t)
∣∣2)≤ Fε(t)≤ k5

(
ε
∣∣u′
ε(t)

∣∣2 + ∣∣A1/2uε(t)
∣∣2) (3.23)

for every t ≥ 0 and every ε ∈ (0, ε2). Moreover we claim that

E′
ε(t)≤ 0 ∀t ≥ 0,∀ε ∈ (0, ε2), (3.24)

F ′
ε(t)≤ − β

(1 + t)p
Fε(t) ∀t ≥ T ,∀ε ∈ (0, ε2). (3.25)

Let us assume that we have proved these claims. Thanks to (3.24), and to the
estimate from below in (3.22), we have that

ε
∣∣u′
ε(t)

∣∣2 + ∣∣A1/2uε(t)
∣∣2 ≤ 1

k2
Eε(t)≤ 1

k2
Eε(0)≤ k6

for every t ≥ 0. Since Φβ,p(t) is decreasing, this implies that

ε
∣∣u′
ε(t)

∣∣2 + ∣∣A1/2uε(t)
∣∣2 ≤ k6

Φβ,p(T )
·Φβ,p(t)= k7Φβ,p(t) ∀t ∈ [0, T ]. (3.26)

For t ≥ T , we exploit (3.25). First of all, from (3.26) with t = T , and the estimate
from above in (3.23), we have that

Fε(T )≤ k5
(
ε
∣∣u′
ε(T )

∣∣2 + ∣∣A1/2uε(T )
∣∣2)≤ k8Φβ,p(T ).
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Therefore, from Lemma 3.4 applied with ψ(t) ≡ 0, we deduce that Fε(t) ≤
k8Φβ,p(t) for every t ≥ T . Exploiting this inequality, the estimate from below in
(3.23), and (3.26), we conclude that

ε
∣
∣u′
ε(t)

∣
∣2 + ∣

∣A1/2uε(t)
∣
∣2 ≤ k9Φβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε2). (3.27)

Since the operator is coercive, this estimate on |A1/2uε(t)|2 yields an analogous
estimate on |uε(t)|2.

Up to now, we only assumed that (u0, u1) ∈D(A1/2)×H . Let us assume now
that (u0, u1) ∈D(A)×D(A1/2). Since (1.12) is linear, estimate (3.27) can be ap-
plied to A1/2uε(t), which is once again a solution to (1.12). We thus obtain that

ε
∣∣A1/2u′

ε(t)
∣∣2 + ∣∣Auε(t)

∣∣2 ≤ k10Φβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε2). (3.28)

It remains to prove the ε-independent estimate on |u′
ε(t)|2. To this end, we set

Gε(t) :=
∣∣u′
ε(t)

∣∣2, (3.29)

and we claim that

G′
ε(t)≤ −1

ε

1

(1 + t)p
Gε(t)+ k11

ε
(1 + t)pΦβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε2). (3.30)

If we prove the claim, then from Lemma 3.2 if follows that

∣∣u′
ε(t)

∣∣2 =Gε(t)≤ k12(1 + t)2pΦβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε2). (3.31)

What we actually need is the same estimate without the factor (1+ t)2p . If p = 0,
there is nothing to do. If p > 0, we take β ′ = β + 2, and from (3.31) we obtain that

∣∣u′
ε(t)

∣∣2 =Gε(t)≤ k13(1 + t)2pΦβ ′,p(t) ∀t ≥ 0,∀ε ∈ (0, ε1),

of course with new positive constants k13 and ε1 ≤ ε2, depending also on β ′.
Finally, our choice of β ′ guarantees that

(1 + t)2pΦβ ′,p(t)≤ k14Φβ,p(t) ∀t ≥ 0

for a suitable k14 depending on p, β , β ′ (this inequality can be easily proved ex-
ploiting the explicit formulae for Φβ,p(t) and Φβ ′,p(t), and the fact that p ≤ 1).
This completes the proof of (3.17) for every ε ∈ (0, ε1).

So we are left to proving (3.22) through (3.25), and (3.30).

Equivalence Between Energies Due to (2.24) and (2.25), estimate (3.22) holds
true with

k2 := min

{
1

M3
,1

}
, k3 := max

{
1

μ
,1

}
.
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In order to prove (3.23), let us estimate separately the four terms in (3.21). Due
to (2.24) and (2.25), we have that

ε|u′
ε(t)|2
M3

≤ ε|u′
ε(t)|2
cε(t)

≤ ε|u′
ε(t)|2
μ

.

Due to (1.6) we have that

0 ≤ δ

2

1

(1 + t)2p

∣∣uε(t)
∣∣2 ≤ δ

2

∣∣uε(t)
∣∣2 ≤ δ

2ν

∣∣A1/2uε(t)
∣∣2.

Applying once again (1.6), and the inequality between arithmetic and geometric
mean, we obtain that

ε|u′
ε(t)|2

2M3
+ 1

2

∣∣A1/2uε(t)
∣∣2 ≥ ε|u′

ε(t)|2
2M3

+ ν

2

∣∣uε(t)
∣∣2 ≥

√
εν

M3
· ∣∣u′

ε(t)
∣∣ · ∣∣uε(t)

∣∣.

If ε is small enough, this implies that

ε|u′
ε(t)|2

2M3
+ 1

2

∣∣A1/2uε(t)
∣∣2 ≥ εδ

(1 + t)2p

∣∣〈u′
ε(t), uε(t)

〉∣∣.

From all these estimates, we easily obtain that

Fε(t)≥ ε|u′
ε(t)|2

2M3
+ 1

2

∣∣A1/2uε(t)
∣∣2,

and

Fε(t) ≤ ε|u′
ε(t)|2
μ

+ ∣∣A1/2uε(t)
∣∣2 + δ

2ν

∣∣A1/2uε(t)
∣∣2

+ ε|u′
ε(t)|2

2M3
+ 1

2

∣∣A1/2uε(t)
∣∣2,

from which (3.23) follows with

k4 := min

{
1

2M3
,

1

2

}
, k5 := max

{
1

μ
+ 1

2M3
,

3

2
+ δ

2ν

}
.

Differential Inequality for Eε The time-derivative of (3.20) is

E′
ε(t)= − 1

(1 + t)p

|u′
ε(t)|2
cε(t)

(
2 + ε

c′ε(t)(1 + t)p

cε(t)

)
.

From (2.24) and (2.26) we have that

ε
|c′ε(t)|(1 + t)p

cε(t)
≤ M4

μ
ε,

so that E′
ε(t) ≤ 0 for every t ≥ 0, provided that ε is small enough. This proves

(3.24).
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Differential Inequality for Fε The time-derivative of (3.21) is

F ′
ε(t) = − 1

(1 + t)p

|u′
ε(t)|2
cε(t)

(
2 + ε

c′ε(t)(1 + t)p

cε(t)
− εδcε(t)

)

− δcε(t)

(1 + t)p

∣∣A1/2uε(t)
∣∣2 − δp

|uε(t)|2
(1 + t)2p+1

− εδp

(1 + t)1+p
〈
u′
ε(t), uε(t)

〉

Therefore (3.25) holds true if and only if

|u′
ε(t)|2
cε(t)

(
2 + ε

c′ε(t)(1 + t)p

cε(t)
− εδcε(t)− εβ

)

+ (
δcε(t)− β

)∣∣A1/2uε(t)
∣∣2

+
(

δp

(1 + t)1+p − δβ

2

1

(1 + t)2p

)∣
∣uε(t)

∣
∣2

+
(
εδp

1 + t
− εδβ

(1 + t)p

)〈
u′
ε(t), uε(t)

〉≥ 0 (3.32)

holds true for every t ≥ T , and every ε small enough.
Let S1, . . . , S4 denote the four terms in (3.32). Due to (2.24) through (2.26), for

every small enough ε we have that

ε
|c′ε(t)|(1 + t)p

cε(t)
≤ M4

μ
ε ≤ 1

3
, εδcε(t)≤ εδM3 ≤ 1

3
, εβ ≤ 1

3
,

hence

S1 ≥ |u′
ε(t)|2
cε(t)

≥ 1

M3

∣∣u′
ε(t)

∣∣2. (3.33)

Since δμ≥ β , from (1.6) we have that

S2 + S3 ≥ (δμ− β)
∣∣A1/2uε(t)

∣∣2 − δβ

2

1

(1 + t)2p

∣∣uε(t)
∣∣2

≥
[
(δμ− β)ν − δβ

2

1

(1 + T )2p

]∣∣uε(t)
∣∣2

for every t ≥ T . Due to the choices (3.18) and (3.19), in both cases the term in
brackets is greater than or equal to ν, hence S2 + S3 ≥ ν|uε(t)|2 for every t ≥ T .
Adding this inequality to (3.33), and applying the inequality between arithmetic and
geometric mean, we deduce that

S1 + S2 + S3 ≥ 1

M3

∣∣u′
ε(t)

∣∣2 + ν
∣∣uε(t)

∣∣2 ≥ 2
√
ν

M3
· ∣∣u′

ε(t)
∣∣ · ∣∣uε(t)

∣∣.
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As a consequence, if ε is small enough and t ≥ T , we have that

S1 + S2 + S3 ≥ εδ(1 + β)
∣∣u′
ε(t)

∣∣ · ∣∣uε(t)
∣∣

≥
(
εδp

1 + t
+ εδβ

(1 + t)p

)∣∣u′
ε(t)

∣∣ · ∣∣uε(t)
∣∣≥ |S4|,

which proves (3.32), hence also (3.25).

Differential Inequality for Gε The time-derivative of (3.29) is

G′
ε(t)= −2

ε

1

(1 + t)p

∣∣u′
ε(t)

∣∣2 − 2

ε
cε(t)

〈
Auε(t), u

′
ε(t)

〉
.

From (2.25) we have that

−2cε(t)
〈
Auε(t), u

′
ε(t)

〉≤ 2M3
∣∣u′
ε(t)

∣∣ ·∣∣Auε(t)
∣∣≤ |u′

ε(t)|2
(1 + t)p

+M2
3 (1+ t)p∣∣Auε(t)

∣∣2,

hence

G′
ε(t)≤ −1

ε

1

(1 + t)p
Gε(t)+ M2

3

ε
(1 + t)p

∣∣Auε(t)
∣∣2.

At this point (3.30) follows from (3.28).
The proof of Theorem 2.9 is thus complete.

5.3.4 Singular Perturbation: Preliminary Estimates

In this subsection we begin the analysis of the singular perturbation problem in the
linear setting. If we set

gε(t) := −(
cε(t)− c(t)

)
Au(t)− εu′′(t), (3.34)

we have that rε(t) and ρε(t) satisfy

εr ′′ε (t)+
1

(1 + t)p
r ′ε(t)+ cε(t)Aρε(t)= gε(t), (3.35)

and

ρε(0)= 0, r ′ε(0)= 0.

In the next two results we prove estimates on gε(t) and on the corrector θε(t).

Lemma 3.5 Let us consider the same assumptions of Theorem 2.10. Let gε(t) be
defined according to (3.34). LetΦβ,p(t) be the solution of the Cauchy problem (3.8),
(3.9), with β > 0 if p > 0, and 0< β < 2μν if p = 0.

Then we have the following estimates.
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(1) If u0 ∈D(A3/2), then there exists a constant C such that

∫ +∞

0

(1 + t)p

Φβ,p(t)
· ∣∣gε(t)

∣∣2dt ≤ Cε2 ∀ε ∈ (0, ε0). (3.36)

(2) If in addition we have that u0 ∈D(A2), then there exists a constant C such that
∫ +∞

0

(1 + t)p

Φβ,p(t)
· ∣∣A1/2gε(t)

∣∣2dt ≤ Cε2 ∀ε ∈ (0, ε0), (3.37)

∣∣gε(t)
∣∣2 ≤ Cε2Φβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε0). (3.38)

Proof From (3.34) and (2.27) we have that

∣∣gε(t)
∣∣2 ≤ k1ε

2
∣∣Au(t)

∣∣2 + 2ε2
∣∣u′′(t)

∣∣2.

We can estimate |Au(t)|2 and |u′′(t)|2, or their integrals, by means of Proposi-
tion 3.1. To this end, let us consider the function Ψα,p(t) defined in (3.1). We claim
that, for every admissible value of p and β , there exists α > 0 for which Proposi-
tion 3.1 applies, and such that

(1 + t)p

Φβ,p(t)
≤ k2

Ψα,p(t)
∀t ≥ 0. (3.39)

Indeed it is enough to take α = β if p = 0 (in which case there is basically
nothing to prove), and any α ∈ (0, γ ) if p > 0 (because in this case Ψα,p(t) has an
exponential decay rate which is faster than the decay rate of Φβ,p(t)). Thus we have
that

∫ +∞

0

(1 + t)p

Φβ,p(t)
· ∣∣gε(t)

∣∣2dt ≤ k3ε
2
(∫ +∞

0

|Au(t)|2
Ψα,p(t)

dt +
∫ +∞

0

|u′′(t)|2
Ψα,p(t)

dt

)
,

so that (3.36) follows from (3.3) with k = 1, and (3.4).
The proof of (3.37) is analogous: we just exploit (3.3) with k = 2, and (3.6)

instead of (3.4).
It remains to prove (3.38). Let γ be the constant defined in (3.1). Then, in analogy

with (3.39), we have that

(1 + t)4p

Φβ,p(t)
≤ k4

Ψγ,p(t)
∀t ≥ 0,

hence

|gε(t)|2
Φβ,p(t)

= (1 + t)4p

Φβ,p(t)
· ∣∣gε(t)

∣∣2 · 1

(1 + t)4p
≤ k4

|gε(t)|2
Ψγ,p(t)

· 1

(1 + t)4p

≤ k5ε
2 |Au(t)|2
Ψγ,p(t)

+ k6ε
2 |u′′(t)|2
Ψγ,p(t)

· 1

(1 + t)4p
.
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At this point (3.38) follows from (3.2) with k = 2, and (3.5). �

Lemma 3.6 Let us consider the same assumptions of Theorem 2.10. Let θε(t) be
the solution of the Cauchy problem (2.11), (2.28). Let Φβ,p(t) be the solution of the
Cauchy problem (3.8), (3.9).

Let us assume that 4ε0 ≤ 1, 2ε0β ≤ 1, and that θ0 ∈D(A(k+1)/2) for some k ∈N.
Then there exists a constant C such that for every ε ∈ (0, ε0) we have that

∫ +∞

0

1

Φβ,p(t)
· (∣∣Ak/2θ ′

ε(t)
∣∣+ ∣∣Ak/2θ ′

ε(t)
∣∣2 + ∣∣A(k+1)/2θ ′

ε(t)
∣∣)dt ≤ Cε. (3.40)

Proof Let zε(t) be the solution of equation

εz′ε(t)+
1

(1 + t)p
zε(t)= 0 ∀t ≥ 0, (3.41)

with initial condition zε(0)= 1. It is easy to see that θ ′
ε(t)= θ0zε(t).

Since 0 ≤ zε(t) ≤ 1 for every t ≥ 0, we have also that z2
ε(t) ≤ zε(t). Therefore,

(3.40) is proved if we show that

∫ +∞

0

zε(t)

Φβ,p(t)
dt ≤ 4ε. (3.42)

Let us set wε(t) := zε(t) · [Φβ,p(t)]−1. From (3.41) and (3.8), it turns out that
wε(t) is the solution of the ordinary differential equation

w′
ε(t)= −

(
1

ε
− β

)
1

(1 + t)p
wε(t) ∀t ≥ 0, (3.43)

with initial datum wε(0)= 1. On the other hand, when 2εβ ≤ 1, it is easy to show
that yε(t) := (1 + t)−1/(2ε) is a supersolution of (3.43). Indeed we have that

y′
ε(t)= − 1

2ε

yε(t)

1 + t
≥ − 1

2ε

yε(t)

(1 + t)p
≥ −

(
1

ε
− β

)
yε(t)

(1 + t)p
.

Since yε(0)=wε(0), the standard comparison principle gives that wε(t)≤ yε(t)

for every t ≥ 0. Since 4ε ≤ 1, it follows that

∫ +∞

0
wε(t)dt ≤

∫ +∞

0

1

(1 + t)1/(2ε)
dt = 2ε

1 − 2ε
≤ 4ε.

This completes the proof of (3.42), hence also the proof of (3.40). �
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5.3.5 Proof of Theorem 2.10

Let us describe the strategy of the proof, which is similar to Theorem 2.9. Let us
take any admissible value β , which means any β ∈ (0,2μν) if p = 0, and any β > 0
if p > 0. Let Φβ,p(t) be the solution of the Cauchy problem (3.8), (3.9).

The conclusions of statement (1) of Theorem 2.10 are equivalent to showing that

Γr,ε(t)≤ k1Φβ,p(t) ∀t ≥ 0 (3.44)

for the admissible values of β .
Let μ be the constant in (2.24), and let us choose δ, σ , T in such a way that

δ := 4(β + 1)ν

2μν − β
, σ := μν − β

2
, T := 0 (3.45)

if p = 0 (note that δ > 0), and

δ := β + 2

μ
, σ := 1, (1 + T )2p ≥ δ

2ν
(β + σ) (3.46)

if p > 0.
For every ε ∈ (0, ε0), we consider the energies

Eε(t) := ε|r ′ε(t)|2
cε(t)

+ ∣∣A1/2ρε(t)
∣∣2, (3.47)

Fε(t) := ε|r ′ε(t)|2
cε(t)

+ ∣∣A1/2ρε(t)
∣∣2 + εδ

(1 + t)p

〈
r ′ε(t), ρε(t)

〉

+ δ

2

1

(1 + t)2p

∣∣ρε(t)
∣∣2. (3.48)

The arguments used in the proof of (3.22) and (3.23) can be adapted word-by-
word to the energies Eε(t) and Fε(t). We obtain that there exist positive constants
k2, . . . , k5 such that

k2
(
ε
∣∣r ′ε(t)

∣∣2 + ∣∣A1/2ρε(t)
∣∣2)≤ Eε(t)≤ k3

(
ε
∣∣r ′ε(t)

∣∣2 + ∣∣A1/2ρε(t)
∣∣2), (3.49)

k4
(
ε
∣∣r ′ε(t)

∣∣2 + ∣∣A1/2ρε(t)
∣∣2)≤Fε(t)≤ k5

(
ε
∣∣r ′ε(t)

∣∣2 + ∣∣A1/2ρε(t)
∣∣2) (3.50)

for every t ≥ 0, provided that ε is small enough.
Moreover, we claim that there exists ε2 ∈ (0, ε0) such that

E ′
ε(t)≤ψ1,ε(t)

√
Eε(t)+ψ2,ε(t) ∀t ≥ 0,∀ε ∈ (0, ε2), (3.51)

F ′
ε(t)≤ − β

(1 + t)p
Fε(t)+ψ3,ε(t) ∀t ≥ T ,∀ε ∈ (0, ε2), (3.52)
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where the functions ψi,ε(t) (with i = 1,2,3) are nonnegative continuous functions
depending on A1/2θ ′

ε(t) and gε(t), and such that

∫ +∞

0
ψ1,ε(t)dt ≤ k6ε,

∫ +∞

0
ψ2,ε(t)dt ≤ k7ε

2, (3.53)

∫ +∞

0

ψ3,ε(t)

Φβ,p(t)
dt ≤ k8ε

2. (3.54)

Let us assume that we have proved these claims. Thanks to (3.51) and (3.53), we
can apply Lemma 3.3 to the function Eε(t) (note that now Eε(0) = 0). We obtain
that

Eε(t)≤ k9ε
2 ∀t ≥ 0. (3.55)

Due to the estimate from below in (3.49), this implies that

ε
∣∣r ′ε(t)

∣∣2 + ∣∣A1/2ρε(t)
∣∣2 ≤ 1

k2
Eε(t)≤ k10ε

2

for every t ≥ 0. Since Φβ,p(t) is decreasing, we can conclude that

ε
∣∣r ′ε(t)

∣∣2 + ∣∣A1/2ρε(t)
∣∣2 ≤ k10ε

2

Φβ,p(T )
·Φβ,p(t)= k11ε

2Φβ,p(t) ∀t ∈ [0, T ].

(3.56)

For t ≥ T , we exploit (3.52). First of all, from (3.56) with t = T , and the estimate
from above in (3.50), we have that

Fε(T )≤ k5
(
ε
∣∣r ′ε(T )

∣∣2 + ∣∣A1/2ρε(T )
∣∣2)≤ k12ε

2Φβ,p(T ).

Due to (3.52) and (3.54), we can apply Lemma 3.4 to the function Fε(t). We
obtain that Fε(t) ≤ k13ε

2Φβ,p(t) for every t ≥ T . Exploiting this inequality, the
estimate from below in (3.50), and (3.56), we conclude that

ε
∣
∣r ′ε(t)

∣
∣2 + ∣

∣A1/2ρε(t)
∣
∣2 ≤ k14ε

2Φβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε2).

Since the operator is coercive, this estimate on |A1/2ρε(t)|2 yields an analogous
estimate on |ρε(t)|2. This completes the proof of (3.44), hence of statement (1), for
initial data (u0, u1) ∈D(A3/2)×D(A1/2), the regularity of data being required in
the verification of (3.53) and (3.54).

Let us proceed now to statement (2), where it is assumed that (u0, u1) ∈D(A2)×
D(A), and it is required to prove in addition that

ε
∣∣A1/2r ′ε(t)

∣∣2 + ∣∣Aρε(t)
∣∣2 + ∣∣r ′ε(t)

∣∣2 ≤ k15ε
2Φβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε1)

for some ε1 ∈ (0, ε2]. Due to the linearity of (3.35), an analogous identity holds true
with A1/2ρε(t), A1/2rε(t), and A1/2gε(t) instead of ρε(t), rε(t), and gε(t), respec-
tively. So we can repeat the arguments used so far, paying attention to verifying
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(3.53) and (3.54) also for the new functions ψε,i(t), which now depend on Aθ ′
ε(t)

and A1/2gε(t). We end up with

ε
∣∣A1/2r ′ε(t)

∣∣2 + ∣∣Aρε(t)
∣∣2 ≤ k16ε

2Φβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε2). (3.57)

It remains to prove the ε-independent estimate on r ′ε(t). To this end, we set

Gε(t) :=
∣∣r ′ε(t)

∣∣2, (3.58)

and we claim that

G′
ε(t)≤ −1

ε

1

(1 + t)p
Gε(t)+ 1

ε
(1 + t)p · k17ε

2Φβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε2).

(3.59)

If we prove the claim, then from Lemma 3.2 it follows that (note that now
Gε(0)= 0)

∣∣r ′ε(t)
∣∣2 = Gε(t)≤ k18ε

2(1 + t)2pΦβ,p(t) ∀t ≥ 0,∀ε ∈ (0, ε2).

Finally, when p > 0, we can get free of the factor (1+ t)2p exactly as in the proof
of Theorem 2.9, possibly changing ε2 with some smaller ε1.

So we are left to proving (3.51) through (3.54), both in the case of initial data
(u0, u1) ∈D(A3/2)×D(A1/2), and in the case (u0, u1) ∈D(A2)×D(A), and (3.59)
in the second case.

Differential Inequality for Eε The time-derivative of (3.47) is

E ′
ε(t) = − 1

(1 + t)p

|r ′ε(t)|2
cε(t)

(
2 + ε

c′ε(t)(1 + t)p

cε(t)

)

+ 2

cε(t)

〈
r ′ε(t), gε(t)

〉+ 2
〈
Aρε(t), θ

′
ε(t)

〉
. (3.60)

By standard inequalities we have that

2
〈
Aρε(t), θ

′
ε(t)

〉≤ 2
∣
∣A1/2θ ′

ε(t)
∣
∣ · ∣∣A1/2ρε(t)

∣
∣≤ 2

∣
∣A1/2θ ′

ε(t)
∣
∣
√
Eε(t),

2

cε(t)

〈
r ′ε(t), gε(t)

〉≤ 1

(1 + t)p

|r ′ε(t)|2
cε(t)

+ 1

cε(t)
(1 + t)p

∣∣gε(t)
∣∣2.

Plugging these estimates into (3.60), when ε is small enough we obtain that

E ′
ε(t)≤ 2

∣∣A1/2θ ′
ε(t)

∣∣
√
Eε(t)+ 1

μ
(1 + t)p

∣∣gε(t)
∣∣2,

which is exactly (3.51) with

ψ1,ε(t) := 2
∣∣A1/2θ ′

ε(t)
∣∣, ψ2,ε(t) := 1

μ
(1 + t)p

∣∣gε(t)
∣∣2.
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When (u0, u1) ∈D(A3/2)×D(A1/2), we have that θ0 ∈D(A1/2), hence (3.53)
follows from (3.40) with k = 0, and (3.36).

When (u0, u1) ∈ D(A2)×D(A), we have that θ0 ∈ D(A), and we need (3.53)
with ψ1,ε(t) := 2|Aθ ′

ε(t)|, and ψ2,ε(t) := μ−1(1 + t)p|A1/2gε(t)|2. Due to the reg-
ularity of θ0, estimate (3.53) follows in this case from (3.40) with k = 1, and (3.37).

Differential Inequality for Fε The time-derivative of (3.48) is

F ′
ε(t) = − 1

(1 + t)p

|r ′ε(t)|2
cε(t)

(
2 + ε

c′ε(t)(1 + t)p

cε(t)
− εδcε(t)

)

− δcε(t)

(1 + t)p

∣∣A1/2ρε(t)
∣∣2 − δp

|ρε(t)|2
(1 + t)2p+1

− εδp

(1 + t)1+p
〈
r ′ε(t), ρε(t)

〉

+ εδ

(1 + t)p

〈
r ′ε(t), θ ′

ε(t)
〉+ 2

〈
A1/2ρε(t),A

1/2θ ′
ε(t)

〉+ δ
〈ρε(t), θ ′

ε(t)〉
(1 + t)2p

+ 2

cε(t)

〈
r ′ε(t), gε(t)

〉+ δ

(1 + t)p

〈
ρε(t), gε(t)

〉

= I1 + . . .+ I9. (3.61)

Let us estimate some of the terms. Clearly we have that I3 ≤ 0. From (3.55) we
have that

I6 ≤ 2
∣∣A1/2ρε(t)

∣∣ · ∣∣A1/2θ ′
ε(t)

∣∣≤ k19ε
∣∣A1/2θ ′

ε(t)
∣∣,

I7 ≤ δ

(1 + t)2p

∣∣ρε(t)
∣∣ · ∣∣θ ′

ε(t)
∣∣≤ δ

(1 + t)2p

1√
ν

∣∣A1/2ρε(t)
∣∣ · ∣∣θ ′

ε(t)
∣∣≤ k20ε

∣∣θ ′
ε(t)

∣∣.

From standard inequalities we have that

I5 ≤ εδ

(1 + t)p

∣∣r ′ε(t)
∣∣ · ∣∣θ ′

ε(t)
∣∣≤ εδ

2

1

(1 + t)p

|r ′ε(t)|2
cε(t)

+ εδ

2

cε(t)

(1 + t)p

∣∣θ ′
ε(t)

∣∣2,

I8 ≤ 2

cε(t)

∣∣r ′ε(t)
∣∣ · ∣∣gε(t)

∣∣≤ 1

2

1

(1 + t)p

|r ′ε(t)|2
cε(t)

+ 2

cε(t)
(1 + t)p

∣∣gε(t)
∣∣2,

I9 ≤ δ

(1 + t)p

∣∣ρε(t)
∣∣ · ∣∣gε(t)

∣∣≤ δσ

2

1

(1 + t)3p

∣∣ρε(t)
∣∣2 + δ

2σ
(1 + t)p

∣∣gε(t)
∣∣2.

Plugging all these estimates into (3.61), and recalling once more assumptions
(2.24) through (2.26), we obtain that

F ′
ε(t) ≤ − 1

(1 + t)p

|r ′ε(t)|2
cε(t)

(
3

2
+ ε

c′ε(t)(1 + t)p

cε(t)
− εδcε(t)− εδ

2

)

− δcε(t)

(1 + t)p

∣
∣A1/2ρε(t)

∣
∣2 + δσ

2

1

(1 + t)3p

∣
∣ρε(t)

∣
∣2
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− εδp

(1 + t)1+p
〈
r ′ε(t), ρε(t)

〉

+ k21ε
(∣∣θ ′

ε(t)
∣∣+ ∣∣θ ′

ε(t)
∣∣2 + ∣∣A1/2θ ′

ε(t)
∣∣)+ k22(1 + t)p

∣∣gε(t)
∣∣2.

(3.62)

Let ψ3,ε(t) denote the sum of the two terms of the last line. Then (3.52) is proved
if we show that the sum of the terms in the first two lines is less than or equal to
−β(1 + t)−pFε(t) for every t ≥ T . In turn, this is equivalent to showing that

|r ′ε(t)|2
cε(t)

(
3

2
+ ε

c′ε(t)(1 + t)p

cε(t)
− εδcε(t)− εδ

2
− εβ

)
+ (

δcε(t)− β
)∣∣A1/2ρε(t)

∣∣2

− δ(σ + β)

2

|ρε(t)|2
(1 + t)2p

+
(
εδp

1 + t
− εδβ

(1 + t)p

)〈
r ′ε(t), ρε(t)

〉≥ 0 (3.63)

holds true for every t ≥ T .
Let S1, . . . , S4 denote the four terms in (3.63), which we estimate as in the proof

of Theorem 2.9. From the smallness of ε we have that

S1 ≥ |r ′ε(t)|2
cε(t)

≥ 1

M3

∣∣r ′ε(t)
∣∣2. (3.64)

Since δμ≥ β , from (1.6) we have that

S2 + S3 ≥ (δμ− β)
∣∣A1/2ρε(t)

∣∣2 − δ(σ + β)

2

1

(1 + t)2p

∣∣ρε(t)
∣∣2

≥
[
(δμ− β)ν − δ(σ + β)

2

1

(1 + T )2p

]∣∣ρε(t)
∣∣2

for every t ≥ T . Due to the choices (3.45) and (3.46), in both cases the term in
brackets is greater than or equal to ν, hence S2 + S3 ≥ ν|ρε(t)|2 for every t ≥ T .
Now we add this inequality to (3.64), and we apply the inequality between arith-
metic and geometric mean, as in the proof of Theorem 2.9. If ε is small enough we
obtain that

S1 + S2 + S3 ≥ 1

M3

∣∣r ′ε(t)
∣∣2 + ν

∣∣ρε(t)
∣∣2 ≥ 2

√
ν

M3
· ∣∣r ′ε(t)

∣∣ · ∣∣ρε(t)
∣∣

≥ εδ(1 + β)
∣∣r ′ε(t)

∣∣ · ∣∣ρε(t)
∣∣

≥
(
εδp

1 + t
+ εδβ

(1 + t)p

)∣∣r ′ε(t)
∣∣ · ∣∣ρε(t)

∣∣≥ |S4|,

which proves (3.63), hence also (3.52). It remains to prove (3.54), with ψ3,ε(t) equal
to the sum of the two terms in the last line of (3.62).

When (u0, u1) ∈D(A3/2)×D(A1/2), we have that θ0 ∈D(A1/2), hence (3.54)
follows from (3.40) with k = 0, and (3.36).
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When (u0, u1) ∈ D(A2)×D(A), we have that θ0 ∈ D(A), and we need (3.54)
with

ψ3,ε(t) := k23ε
(∣∣A1/2θ ′

ε(t)
∣∣+ ∣∣A1/2θ ′

ε(t)
∣∣2 + ∣∣Aθ ′

ε(t)
∣∣)+ k24(1 + t)p

∣∣A1/2gε(t)
∣∣2.

Due to the regularity of θ0, estimate (3.54) follows in this case from (3.40) with
k = 1, and (3.37).

Differential Inequality for Gε The time-derivative of (3.58) is

G′
ε(t)= −2

ε

1

(1 + t)p

∣∣r ′ε(t)
∣∣2 − 2

ε
cε(t)

〈
Aρε(t), r

′
ε(t)

〉+ 2

ε

〈
gε(t), r

′
ε(t)

〉
.

From standard inequalities we have that

−2

ε
cε(t)

〈
Aρε(t), r

′
ε(t)

〉≤ 1

2ε

1

(1 + t)p

∣∣r ′ε(t)
∣∣2 + k25

ε
(1 + t)p

∣∣Aρε(t)
∣∣2,

2

ε

〈
gε(t), r

′
ε(t)

〉≤ 1

2ε

1

(1 + t)p

∣∣r ′ε(t)
∣∣2 + 2

ε
(1 + t)p

∣∣gε(t)
∣∣2,

hence

G′
ε(t)≤ −1

ε

1

(1 + t)p

∣∣r ′ε(t)
∣∣2 + k25

ε
(1 + t)p

∣∣Aρε(t)
∣∣2 + 2

ε
(1 + t)p

∣∣gε(t)
∣∣2.

At this point (3.59) follows from (3.57) and (3.38). This completes the proof of
Theorem 2.10.

5.3.6 Proof of Theorem 2.11

Let us set

Hε(t) :=
(
ε
|u′
ε(t)|2
cε(t)

+ ∣
∣A1/2uε(t)

∣
∣2
)

1

Φ(t)
∀t ≥ 0.

Due to (2.24) and (2.25), proving (2.16) is equivalent to showing that Hε(t)→
+∞ as t → +∞. Since (u0, u1) �= (0,0), the solution is nontrivial in the sense that
Hε(t) > 0 for every t ≥ 0. Moreover we have that

H ′
ε(t) = 1

(1 + t)p

1

Φ(t)

ε|u′
ε(t)|2
cε(t)

(
−Φ

′(t)
Φ(t)

(1 + t)p − 2

ε
− c′ε(t)(1 + t)p

cε(t)

)

+ 1

(1 + t)p

1

Φ(t)

∣∣A1/2uε(t)
∣∣2
(

−Φ
′(t)

Φ(t)
(1 + t)p

)
.
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As usual, we have that

|c′ε(t)|(1 + t)p

cε(t)
≤ M4

μ
.

Therefore, assumption (2.15) implies the existence of T > 0 (depending on ε,
but this is not important) such that

−Φ
′(t)

Φ(t)
(1 + t)p − 2

ε
− c′ε(t)(1 + t)p

cε(t)
≥ 1 and −Φ

′(t)
Φ(t)

(1 + t)p ≥ 1

for every t ≥ T , hence

H ′
ε(t)≥

1

(1 + t)p
Hε(t) ∀t ≥ T .

Since Hε(T ) > 0, and p ≤ 1, this differential inequality implies that Hε(t) →
+∞ as t → +∞.

5.3.7 Proof of Theorems 2.1, 2.2, 2.3, 2.4

The existence of solutions to (1.3), (1.4), and (1.1), (1.2) follows from Theorem A.
Let us set now

c(t) :=m
(∣∣A1/2u(t)

∣∣2), cε(t) :=m
(∣∣A1/2uε(t)

∣∣2).

With a standard approximation procedure, we can assume that m(σ) is of class
C1, and not just locally Lipschitz continuous. As a consequence, also c(t) and cε(t)
are of class C1. If we show that c(t) and cε(t) satisfy (2.21) through (2.27), then all
conclusions of Theorems 2.1 through 2.4 follow from the corresponding conclusions
of Theorems 2.8 through 2.11.

Assumptions (2.21) and (2.24) follow from (1.5).
Assumptions (2.22) and (2.25) follow from the fact that both |A1/2u(t)|2 and

|A1/2uε(t)|2 are bounded because of (2.2) and (2.4), respectively.
Since

c′(t)= 2m′(∣∣A1/2u(t)
∣∣2)〈Au(t), u′(t)

〉
,

assumption (2.23) follows from the boundedness of |u′(t)|, |A1/2u(t)|, and |Au(t)|,
resulting from (2.2).

Similarly, we have that

c′ε(t)= 2m′(∣∣A1/2uε(t)
∣∣2)〈Auε(t), u′

ε(t)
〉
,

and therefore estimate (2.4) implies that

∣
∣c′ε(t)

∣
∣≤ k1

∣
∣Auε(t)

∣
∣ · ∣∣u′

ε(t)
∣
∣≤ k2

1

(1 + t)1+p · 1

1 + t
≤ k2

(1 + t)p
,
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which is exactly (2.26).
It remains to prove (2.27). To this end, we first remark that

∣∣∣∣A1/2uε(t)
∣∣2 − ∣∣A1/2u(t)

∣∣2∣∣ = ∣∣〈A1/2(uε(t)+ u(t)
)
,A1/2(uε(t)− u(t)

)〉∣∣

≤ (∣∣A1/2uε(t)
∣∣+ ∣∣A1/2u(t)

∣∣) · ∣∣A1/2ρε(t)
∣∣.

Now |A1/2uε(t)| and |A1/2u(t)| are bounded because of (2.2) and (2.4), and
|A1/2ρε(t)| can be estimated by means of (2.5). Since m(σ) is (locally) Lipschitz
continuous, we obtain that

∣∣cε(t)− c(t)
∣∣≤ k3

∣∣∣∣A1/2uε(t)
∣∣2 − ∣∣A1/2u(t)

∣∣2∣∣≤ k4ε,

which is exactly (2.27).
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Chapter 6
H∞ Well-Posedness for Degenerate p-Evolution
Models of Higher Order with Time-Dependent
Coefficients

Torsten Herrmann, Michael Reissig, and Karen Yagdjian

Abstract In this paper we deal with time dependent p-evolution Cauchy problems.
The differential operators have characteristics of variable multiplicity. We consider
a degeneracy only in t = 0. We shall prove a well-posedness result in the scale of
Sobolev spaces using a C1-approach. In this way we will proveH∞ well-posedness
with an (at most) finite loss of regularity.

Mathematics Subject Classification 35J10 · 35Q41

6.1 Introduction

In this paper we are interested in well-posedness results in Sobolev spaces for
p-evolution Cauchy problems. Starting point of our considerations is the mono-
graph [11]. The author gives a well-posedness result for the Cauchy problem for
1-evolution (hyperbolic) equation

Dl
tu−

∑

0≤j+k≤l
j<l

aj,k(t, x)D
k
xD

j
t u= 0,

Dm
t u(0, x)= um(x) for m= 0, . . . , l − 1 and l ≥ 2.

(1)

For analytic functions aj,k(t, x) the Cauchy problem is H∞ well-posed. In other
words, for data um ∈ Hs with m = 0, . . . , l − 1 there exists a unique solution
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u ∈ C([0, T ],H s−s0)∩C1([0, T ],H s−s0−p)∩ . . .∩Cl−1([0, T ],H s−s0−(l−1)p) for
some s, s0 and T > 0. Cauchy problem (1) is a special case of the Cauchy problem
for the p-evolution equation introduced by Petrowsky, see [13]. It can be written as
follows:

Dl
tu−

∑

j+k/p=l
j<l

aj,k(t)D
k
xD

j
t u−

∑

0≤j+k/p<l
aj,k(t, x)D

k
xD

j
t u= 0,

Dm
t u(0, x)= um(x) for m= 0, . . . , l − 1 and l ≥ 2.

(2)

For this Cauchy problem there exist only a few results about well-posedness in
scales of Sobolev spaces. But as stated in [11] the Cauchy problem is no longer
of Cauchy-Kovalevskaya type. In [3] the authors proved H∞ well-posedness for
Cauchy problem (2) with l = 2 and p = 2 and for complex coefficients. They had to
assume some conditions on the coefficients aj,k(t, x). At the moment it is important
that they had to pose decay conditions on the imaginary part of aj,k(t, x) as x tends
to infinity. Furthermore, they posed decay conditions on the derivatives of some of
the real parts of aj,k(t, x). In this paper we do not have such decay conditions for
the coefficients in the spatial variables. So we want to consider Cauchy problem
(2) with real coefficients. Now also from [5] we see that we have to pose decay
conditions with respect to x for some t or x-derivatives of the coefficients aj,k(t, x)
even if they are real. In this paper we are not interested to take into consideration
this effect. For this reason we will restrict ourselves to the Cauchy problem

Dl
tu−

∑

0≤j+k/p≤l
j<l

aj,k(t)D
k
xD

j
t u= 0,

Dm
t u(0, x)= um(x) for m= 0, . . . , l − 1 and l ≥ 2

(3)

with real-valued time dependent coefficients in the ‘extended principle part’, see (5).
For a statement about well-posedness we need a certain regularity of the coefficients
and, furthermore, separated characteristic roots. Our goal is to consider coefficients
which vanish at t = 0. So the roots can only be expected to be separated on (0, T ].
We will use the so-called C1-approach and pose assumptions on the coefficients and
their first derivatives to prove H∞ well-posedness. This is an at most finite loss of
derivatives in scales of Sobolev spaces. We are going to prove a statement of the
following type.

“We consider Cauchy problem (3) under assumptions on the coefficients aj,k =
aj,k(t) and their first derivatives. Furthermore, we pose assumptions on the charac-
teristic roots of the problem. Then for initial data um with m= 0, . . . , l− 1 given in
certain scales of Sobolev spaces there exists in some evolution spaces a unique so-
lution u of (3). The solution has an (at most) finite loss of derivatives in comparison
with the given regularity of the data (see Theorem 1).”
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6.2 General Notation and Main Theorem

In this section we will give the precise assumptions we need to prove our main
result. Different parts of the operator given in (2) will play a different role. In order
to emphasize this distinction for the special case (3) we split the coefficients into the
following three groups.

The principal part in the sense of Petrowsky of the p-evolution operator for (3)
is given by

Dl
t −

∑

j+k/p=l
j<l

aj,k(t)D
k
xD

j
t . (4)

The extended principal part for (3) is given by

Dl
t −

∑

l−1<j+k/p≤l
j<l

aj,k(t)D
k
xD

j
t (5)

and, finally, the terms of lower order for (3) are given by

−
∑

0≤j+k/p≤l−1

aj,k(t)D
k
xD

j
t . (6)

Furthermore, the terms of Levi condition for (3) are given by

−
∑

j≤l−1

aj,(l−1−j)p(t)D(l−1−j)p
x D

j
t . (7)

Remark 1 Due to the Lax-Mizohata condition for H∞ well-posedness for p-
evolution equations from [12] the coefficients of the principal part in the sense of
Petrowsky have to be real. If we restrict ourselves to time-dependent coefficients,
then also the coefficients of the extended principle part have to be real. If we would
assume complex-valued coefficients, then we need some decay behavior in x for the
imaginary parts. Our assumptions for the coefficients of the extended principal part
guarantee a dominance condition (see Lemma 2). The coefficients of the terms of
lower order are allowed to be complex-valued.

To get a better feeling for this classification we introduce Table 6.1.
In the following we pose assumptions for the coefficients of our starting equation.

We introduce the shape function λ(t), which satisfies the assumptions

λ(0)= 0, λ′(t) > 0 for t > 0,

d0
λ(t)

Λ(t)
≤ λ′(t)
λ(t)

≤ d1
λ(t)

Λ(t)
, 0< d0.

(8)

As mentioned before we can see that our strategy is to assume only a degeneracy
in t = 0. Let us give some examples. A shape function of finite degeneracy is given
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Table 6.1 Classification of coefficients

a0,lp a0,lp−1 . . . a0,(l−1)p+1 a0,(l−1)p a0,(l−1)p−1 . . . a0,0

a1,(l−1)p a1,(l−1)p−1 . . . a1,(l−2)p+1 a1,(l−2)p a1,(l−2)p−1 . . . a1,0

a2,(l−2)p
. . .

.

.

.

al−2,lp al−2,2p−1 . . . al−2,p+1 al−2,p al−2,p−1 . . . al−2,0

al−1,lp al−1,p−1 . . . al−1,1 al−1,0

Petrowsky
principal part

Terms of
Levi size

Extended principal part Lower order terms

Real coefficients Complex coefficients

by λ(t) = tβ with β > 0. An example for infinite or exponential type degeneracy
is given by λ(t) = t−2 exp(−t−1) and for super exponential type degeneracy by

λ(t)= exp(− exp[n](1)/(t))
t2

∏n
k=1 exp[k] 1

t
. For a logarithmic type degeneracy we do not

have any example which satisfies (8). With these examples for the degeneracy in
t = 0 in mind we want to formulate assumptions on the roots of the principal part
in the sense of Petrowsky. The roots are defined as solutions of the characteristic
equation

τ̂ l −
∑

j+k/p=l
j<l

aj,k(t)ξ
kτ̂ j = 0. (9)

We assume that the roots are real and, furthermore, that they satisfy the following
conditions:

separation condition: ∣∣̂τi(t, ξ)− τ̂j (t, ξ)
∣∣≥ Cλ(t)|ξ |p for i �= j,

control of oscillations: ∣∣Dm
t D

k
ξ τ̂j (t, ξ)

∣∣≤ Cmλ(t)|ξ |p−k
(
λ(t)

Λ(t)

)m
,

(10)

for all (t, ξ) ∈ (0, T ] ×R with i, j = 1,2, . . . , l, k ∈ N and m= 0,1, where Λ(t)=∫ t
0 λ(t)dt andΛ(t) < 1. In the following statement we are only interested to describe

the oscillation condition by the coefficients of the operator.

Lemma 1 The conditions (10) are equivalent to the following behavior of the coef-
ficients of the principal part in the sense of Petrowsky:

separation condition: ∣∣̂τi(t, ξ)− τ̂j (t, ξ)
∣∣≥ Cλ(t)|ξ |p for i �= j,

control of oscillations: ∣
∣Dm

t aj,p(l−j)(t)
∣
∣≤ Cmλ(t)

l−j
(
λ(t)

Λ(t)

)m (11)

for m= 0,1.
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Proof Using Vieta’s formulas we get the following:

Dm
t D

β
ξ

∑

i1<...<il−j
τ̂i1(t, ξ) . . . τ̂il−j (t, ξ)= (−1)jDm

t D
β
ξ aj,k(t)ξ

k

for k = p(l− j) and j = 0, . . . , l− 1. This already yields the control of oscillations
of (11) if we assume (10). To prove the other direction of the statement we get the
following system from Vieta’s formulas:

⎛

⎜⎜⎜
⎝

1 . . . 1∑
j �=1 τ̂j . . .

∑
j �=l τ̂j

...
...

...∏
j �=1 τ̂j . . .

∏
j �=l τ̂j

⎞

⎟⎟⎟
⎠

︸ ︷︷ ︸
=:A

⎛

⎜⎜⎜
⎝

Dt τ̂1(t, ξ)

Dt τ̂2(t, ξ)
...

Dt τ̂l(t, ξ)

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

(−1)l−1Dtal−1,p(t)ξ
p

(−1)l−2Dtal−2,2p(t)ξ
2p

...

Dta0,lp(t)ξ
lp

⎞

⎟⎟⎟
⎠
.

This can be solved for the derivatives Dt τ̂k of the roots of the principal symbol in
the sense of Petrowsky if the matrix A is invertible. The determinant of the matrix
is given by

detA=
∏

k<j

(̂τk − τ̂j ).

Due to the separation condition the matrix is invertible and we can control the os-
cillations of (10) from the assumptions (11). This completes our proof. �

For all coefficients we assume

∣∣aj,k(t)
∣∣≤ Cλ(t)l−j

( | logΛ(t)|
Λ(t)

)l−j−k/p
. (12)

This coincides with the behavior of the coefficients of the principal part in the sense
of Petrowsky coming from the assumptions on the roots. For the coefficients of
the extended principal part and for the real part of the coefficients of Levi size we
assume additionally

∣∣Dtaj,k(t)
∣∣≤ Cλ(t)l−j

( | logΛ(t)|
Λ(t)

)l−j−k/p(
λ(t)

Λ(t)

)
. (13)

For some of the coefficients of the lower order terms we need additional assump-
tions.

• For aj,0(t) with 0 ≤ j < l we assume

aj,0(t) ∈ L1(0, T ). (14)

• For aj,k(t) with l − 1 − j − k
p

≥ d0(l − 1 − j) and k �= 0 we assume

aj,k(t) ∈ B[0, T ]. (15)
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The space B[0, T ] is the space of all bounded functions on [0, T ].
• For the terms of Levi size we assume the Levi conditions

∣∣�al−1−k/p,k(t)
∣∣≤ Cλ(t)k/p

(
λ(t)

Λ(t)

)
. (16)

Remark 2 We want to remark that our goal is to assume d0 > 0. If we would assume
d0 >

l−1
l

as in [14] instead, then we can omit assumptions (14) and (15). But, as a
consequence, this narrows the set of admissible shape functions.

Theorem 1 Let us consider the Cauchy problem (3) under the assumptions (8)
and (10) to (16). Then there exists non-negative constants s0 and C such that
for all initial data um ∈ Hs−mp(R), m = 0, . . . , l − 1 there is a unique solution
u ∈ C([0, T ],H s−s0(R)) ∩ C1([0, T ],H s−s0−p(R)) ∩ . . . ∩ Cl−1([0, T ],
H s−s0−(l−1)p(R)). An a priori estimate is given by

∥∥Dm
t u(t, ·)

∥∥
Hs−s0−mp ≤ C

(‖u0‖Hs + . . .+ ‖ul−1‖Hs−(l−1)p

)

for m= 0, . . . , l − 1.

Remark 3 Let us give some comments to the assumptions (12) to (16). One can only
understand assumption (12) together with assumption (14) and (15). For the real
parts of Levi size coefficients we can allow an additional logΛ(t) term in opposite
to the imaginary parts. This was already observed in [14], where among other things
the conditions (12), (13) and (16) are proposed for p = 1.

The model equation with l = p = 2 was studied in [1] for a finite degeneracy.
Our conditions (12), (13) and (16) are in line with the assumptions which are used
there apart from the fact that no logΛ(t) term is allowed.

Remark 4 We have an at most finite loss of derivatives but we can not expect op-
timality of the statement. The at most difference of regularity between the initial
data and the solution is given by s0. This yields H∞ well-posedness. Using the C1-
approach implies an at most finite loss of derivatives but it does not explain if the
loss really appears. In opposite, if we apply C2-approach, then we are able to study
the precise loss of regularity and to show its optimality [7].

6.3 Proof

We can apply partial Fourier transformation and get an ordinary differential equation
with parameter ξ . We divide the extended phase space into a pseudo-differential and
an evolution zone. Then, we consider in each one different micro-energies. The goal
is to get a priori estimates for the micro-energies in each zone. Our techniques to
get these estimates differ from the pseudo-differential to the evolution zone.
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6.3.1 First Step of the Proof

At first we apply the partial Fourier transform with respect to x and obtain

Dl
t v(t, ξ)−

∑

0≤j+k/p≤l
j<l

aj,k(t)ξ
kD

j
t v = 0,

with v = Fx→ξ (u), vm = Fx→ξ (um) for m= 0, . . . , l − 1.

(17)

6.3.2 Symbol Classes and Zones

By analogy with [14] we introduce the following zones:

Definition 1 (Zones) We divide the extended phase space into two zones. We need
the pseudo-differential zone Zpd(M,N) and the Zevo(M,N). They are defined as
follows:

Zpd(M,N) = {
(t, ξ) ∈ [0, T ] × {|ξ | ≥M > 1

} :Λ(t)|ξ |p ≤N
∣∣logΛ(t)

∣∣},

Zevo(M,N) = {
(t, ξ) ∈ [0, T ] × {|ξ | ≥M > 1

} :Λ(t)|ξ |p ≥N
∣∣logΛ(t)

∣∣}.

And accordingly, we define tξ to be the solution of Λ(t)|ξ |p =N | logΛ(t)|.
Definition 2 (Symbols in Zevo(M,N)) By Sn{l1, l2, l3, l4} we denote the class of
all amplitudes a = a(t, ξ) ∈ C(Zevo(M,N)) satisfying for all k, j ∈ N with j ≤ n

the estimates

∣∣Dj
t D

k
ξ a(t, ξ)

∣∣≤ Cj,k|ξ |pl1−kλ(t)l2
(
λ(t)

Λ(t)

)l3+j( log(1/Λ(t))

Λ(t)

)l4
.

These symbol classes satisfy the following properties:

a ∈ Sn{l1, l2, l3, l4} →Dk
ξ a ∈ Sn

{
l1 − k

p
, l2, l3, l4

}
,

a ∈ Sn{l1, l2, l3, l4} →Dk
t a ∈ Sn−k{l1, l2, l3 + k, l4} if k ≤ n,

a ∈ Sn{l1, l2, l3, l4}, ã ∈ Sñ{̃l1, l̃2, l̃3, l̃4}
→ a · ã ∈ Smin(n,̃n){l1 + l̃1, l2 + l̃2, l3 + l̃3, l4 + l̃4},

and generate symbol hierarchies

Sn{l1, l2, l3, l4} ⊂ Sn−1{l1, l2, l3, l4},
Sn{l1, l2, l3 + k, l4} ⊂ Sn{l1, l2 + k, l3, l4 + k} for k ≥ 0,

Sn{l1, l2, l3, l4} ⊂ Sn{l1 + k, l2, l3, l4 − k} for k ≥ 0.
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Our strategy is to have a dominance condition for the extended principal part,
that is, the principal part in the sense of Petrowsky dominates the other terms of the
extended principal part. By assumption (12) and the definition of zones we have the
following lemma.

Lemma 2 (Dominance condition) For all (t, ξ) ∈ Zevo(M,N) it holds

∣∣aj,k(t)
∣∣|ξ |k ≤ C

Nl−j−k/p λ(t)
l−j |ξ |p(l−j). (18)

Proof We use the first inequality of assumption (12) and the definition of the evo-
lution zone. It holds:

∣
∣aj,k(t)

∣
∣|ξ |k ≤ Cλ(t)l−j

( | log(1/Λ(t))|
Λ(t)

)l−j−k/p
|ξ |k

≤ Cλ(t)l−j |ξ |p(l−j)
( | log(1/Λ(t))|

Λ(t)

)l−j−k/p 1

|ξ |−k+p(l−j)

≤ Cλ(t)l−j |ξ |p(l−j) 1

Nl−j−k/p . (19)

This yields the desired statement. �

Remark 5 The last line of the estimate shows that the coefficients of the extended
principal part, which do not belong to the principal part in the sense of Petrowsky are
always small in comparison to the used estimate of the coefficients of the principal
part in the sense of Petrowsky. This holds true because the exponent of the large
constant N in (19) disappears for the coefficients of the principal part in the sense
of Petrowsky and this yields together with assumption (10) the dominance of those
terms.

6.3.3 Treatment in the Pseudo-differential Zone

In the pseudo-differential zone we define the micro-energy

V (t, ξ)= (
ρ(t, ξ)l−1v,ρ(t, ξ)l−2Dtv, . . . ,D

l−1
t v

)T
.

The choice of ρ(t, ξ) is important for our calculus, see [14]. There are different ways
to do this. Sometimes authors propose micro-energies which depend only on ξ . But
we are interested to study general degeneracies (of finite or infinite order). For this
reason we follow [14] and introduce

ρ(t, ξ) := l

√

1 + λ(t)l

Λ(t)α

(
log

1

Λ(t)

)α
|ξ |p(l−α) (20)
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for a suitable positive α. This α is connected to the minimal speed of degeneracy
given by d0. We introduce the notation αj,k := l

l−1−j−k/p
l−1−j and with this

αj∗,k∗ = max

{
αj,k with

αj,k

l
< d0

}
for j < l − 1.

Now we define

α := ld0 − ε with ε <min

{
ld0, ld0 − αj∗,k∗ ,

1

1 + l2

}
. (21)

In (20) we use log 1
Λ(t)

. This is always positive in the pseudo-differential zone for
|ξ | large. And for the proof of our regularity statement we need only to consider |ξ |
large (see Definition 1).

Remark 6 In the 1-evolution (hyperbolic) case with a minimal speed of finite de-
generacy determined by d0 >

l−1
l

, so the shape function is tβ with β > l − 1, it is
sufficient to choose α = (l − 1)d0.

In the next lemma we state all the properties of ρ(t, ξ) that we will use in this
section.

Lemma 3 We have the following properties for the weight ρ(t, ξ) for t ∈ [0, tξ ]:

1 ≤ ρ(t, ξ)≤ C|ξ |p, ρ(0, ξ)= 1,
∫ t

0
ρ(τ, ξ)dτ ≤ C

(
1 + log |ξ |),

logρ(tξ , ξ)≤ C log |ξ |,
and for ∂t ρ(t,ξ)

ρ(t,ξ)
it holds

∂tρ(t, ξ)

ρ(t, ξ)
≥ 0 and

∫ t

0

∂τ ρ(τ, ξ)

ρ(τ, ξ)
dτ ≤ C log |ξ |

provided that M and N are large.

Proof At first we need the non-negativity of ∂t ρ(t,ξ)
ρ(t,ξ)

. It holds:

∂tρ(t, ξ)

ρ(t, ξ)
= 1

l

((
l
λ′(t)λ(t)l−1

Λ(t)α

(
log

1

Λ(t)

)α

− α
λ(t)l+1

Λ(t)α+1

((
log

1

Λ(t)

)α
+
(

log
1

Λ(t)

)α−1))

/(
|ξ |−p(l−α) + λ(t)l

Λ(t)α

(
log

1

Λ(t)

)α))

and this is non-negative if the following condition holds:
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d0 − α

l
− α

l

(
log

1

Λ(t)

)−1

≥ 0 → d0 ≥ α+ ε

l
→ d0 >

α

l
, (22)

respectively. For |ξ | large log 1
Λ(t)

is larger than α
ε

for an arbitrary small ε > 0 and
T ≤ T0(α, ε) in the pseudo-differential zone. So estimate (22) holds true for our
choice of α. The non-negativity of ∂t ρ(t,ξ)

ρ(t,ξ)
together with the positivity of ρ(t, ξ)

yields the monotonicity of ρ(t, ξ). Furthermore, we get

lim
t→0+ρ(t, ξ) = lim

t→0+
l

√

1 + λ(t)l

Λ(t)α

(
log

1

Λ(t)

)α
|ξ |p(l−α)

= lim
t→0+

l

√

1 + λ(t)l

Λ(t)ld0−ε

(
log

1

Λ(t)

)ld0−ε
|ξ |p(l−ld0+ε).

For the finite degenerate case λ(t)= tβ we have

lim
t→0+

λ(t)l

Λ(t)ld0−ε

(
log

1

Λ(t)

)ld0−ε
= 0

with d0 = β
β+1 which brings limt→0+ tν = 0 with a suitable ν > 0. For the infinite

degenerate case λ(t)l

Λ(t)ld0−ε yields a term which tends to zero of infinite order for any

d0 < 1. This brings ρ(0, ξ)= 1 for both cases.
With this we can estimate as follows:

1 ≤ ρ(t, ξ)≤ ρ(tξ , ξ)≤ l

√

1 + λ(tξ )|ξ |pl
(

log(1/Λ(tξ ))

Λ(tξ )|ξ |p
)α

≤ CN |ξ |p.

For the integrals we get
∫ t

0

∂tρ(τ, ξ)

ρ(τ, ξ)
dτ ≤ C logρ(τ, ξ)|t0 ≤ C logρ(tξ , ξ)≤ CN log |ξ | (23)

and
∫ t

0
ρ(τ, ξ)dτ ≤ C

(∫ t

0
dτ +

∫ t

0

λ(t)

Λ(t)α/l

(
log

1

Λ(t)

)α/l
|ξ |p((l−α)/l)

)

≤ C

(
T +Λ(tξ )

(l−α)/l
(

log
1

Λ(tξ )

)α/l
|ξ |p((l−α)/l)

)

≤ C

(
1 +

(
log

1

Λ(tξ )

)α/l(
N log

1

Λ(tξ )

)(l−α)/l)

≤ CN

(
1 + log

1

Λ(tξ )

)
≤ CN

(
1 + log |ξ |). (24)

This completes the proof of Lemma 3. �
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Lemma 4 For all (t, ξ) ∈ Zpd(M,N) it holds

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|v(t, ξ)| � ρ(t, ξ)−l+1|ξ |Cpd (|v0(ξ)| + . . .+ |vl−1(ξ)|),
|Dtv(t, ξ)| � ρ(t, ξ)−l+2|ξ |Cpd (|v0(ξ)| + . . .+ |vl−1(ξ)|),
. . .

|Dl−1
t v(t, ξ)| � |ξ |Cpd (|v0(ξ)| + . . .+ |vl−1(ξ)|).

Proof Using the micro-energy in the pseudo-differential zone for our Fourier trans-
formed Cauchy problem (17) this leads to the system of first order DtV =A(t, ξ)V

with

A(t, ξ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

(l − 1)Dtρ(t,ξ)
ρ(t,ξ)

ρ(t, ξ) 0

0 (l − 2)Dtρ(t,ξ)
ρ(t,ξ)

ρ(t, ξ)

...
. . .

0 . . . 0
0 . . . 0

∑
0≤k/p≤l a0,k(t)ξ

k

ρ(t,ξ)l−1

∑
0≤k/p≤l−1 a1,k(t)ξ

k

ρ(t,ξ)l−2

0 . . . 0
0 . . . 0
. . .

...

2Dtρ(t,ξ)
ρ(t,ξ)

ρ(t, ξ) 0

0 Dtρ(t,ξ)
ρ(t,ξ)

ρ(t, ξ)

. . .
∑

0≤k/p≤1 al−1,k(t)ξ
k

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

We are interested in the fundamental solutionE =E(t, s, ξ) to the systemDtV −
AV = 0, that is, the solution of

DtE −AE = 0, E(s, s, ξ)= I, thus V (t, ξ)=E(t,0, ξ)V (0, ξ).

The matrix E(t, s, ξ) can be estimated by

∥∥E(t, s, ξ)
∥∥≤ exp

(∫ t

0

∥∥A(τ, ξ)
∥∥dτ

)
, 0 ≤ s ≤ t ≤ tξ . (25)

Due to Lemma 3 we can estimate ‖A(t, ξ)‖ in the following way:

∥∥A(t, ξ)
∥∥� ∂tρ(t, ξ)

ρ(t, ξ)
+ ρ(t, ξ)+

∑

0≤j+k/p≤l
j<l

|aj,k(t)||ξ |k
ρ(t, ξ)l−1−j . (26)

The integrals of ρ(t, ξ) and ∂t ρ(t,ξ)
ρ(t,ξ)

over [0, t], t ≤ tξ , are discussed in Lemma 3.

Left is the estimate of
∫ t

0
|aj,k(τ )||ξ |k
ρ(τ,ξ)l−1−j dτ . It depends on the structure of aj,k(t). We
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begin with aj,0(t). Using condition (14) we can estimate

∫ t

0

|aj,0(τ )|
ρ(τ, ξ)l−1−j dτ ≤

∫ t

0

∣
∣aj,0(τ )

∣
∣dτ ≤ C.

For the terms aj,k(t) with l − 1 − j − k
p

≥ d0(l − 1 − j) we introduce another sub-
zone to distinguish which part of ρ(t, ξ) is dominant. Here we want to remember
that only a shape function λ(t) = tβ with finite degeneracy has to be considered,
because for flat degeneracies, this assumption is meaningless. Let tξ,1 solve

1 = λ(t)l

Λ(t)α

(
log

1

Λ(t)

)α
|ξ |p(l−α),

where α is the same as in (20). Then 0 ≤ tξ,1 ≤ tξ for |ξ | large. This follows from
the following calculations:

1 = λ(tξ,1)
l

Λ(tξ,1)α

(
log

1

Λ(tξ,1)

)α
|ξ |p(l−α), Λ(tξ )|ξ |p =N log

1

Λ(tξ )
,

tξ,1 = |ξ |−p/(β−α/(l−α))
(

log
1

Λ(tξ,1)

)−α/(lβ−α(β+1))

︸ ︷︷ ︸
<1

,

tξ = |ξ |−p/(β+1) N1/(β+1)
(

log
1

Λ(tξ )

)1/(β+1)

︸ ︷︷ ︸
>1

.

The definition of tξ,1 yields that for 0 ≤ t ≤ tξ,1 the number 1 is dominant in the def-

inition of ρ(t, ξ) whereas for tξ,1 ≤ t ≤ tξ the second part λ(t)l

Λ(t)α
(log 1

Λ(t)
)α|ξ |p(l−α)

is dominant. With this it holds

∫ t

0

|aj,k(τ )||ξ |k
ρ(τ, ξ)l−1−j dτ =

∫ tξ,1

0

|aj,k(τ )||ξ |k
ρ(τ, ξ)l−1−j dτ +

∫ t

tξ,1

|aj,k(τ )||ξ |k
ρ(τ, ξ)l−1−j dτ.

As remarked before, we only have to consider the case of finite degeneracy. For
λ(t) = tβ we get d0 = β

β+1 . Now we consider the first integral on the right-hand
side. With assumption (15) it holds

∫ tξ,1

0

|aj,k(τ )||ξ |k
ρ(t, ξ)l−1−j dτ ≤ C

∫ tξ,1

0
|ξ |kdτ = Ctξ,1|ξ |k

≤ Ctξ,1

(
λ(tξ,1)

l

Λ(tξ,1)α

(
log

1

Λ(tξ,1)

)α)−k/(p(l−α))
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and with α = l
β
β+1 − ε we get

∫ tξ,1

0

|aj,k(τ )||ξ |k
ρ(t, ξ)l−1−j dτ ≤ Ct

(pl−pα−βkl+(β+1)kα)/(p(l−α))
ξ,1

(
log |ξ |)−αk/(p(l−α)).

Now with ε < 1
1+l2 , see (21), the exponent of tξ,1 is positive. Because of the negative

exponent of log |ξ | it holds

∫ tξ,1

0

|aj,k(τ )||ξ |k
ρ(t, ξ)l−1−j dτ ≤ C.

For the second integral we get

∫ tξ

tξ,1

|aj,k(τ )||ξ |k
ρ(τ, ξ)l−1−j dτ ≤ C

∫ tξ

tξ,1

|aj,k(τ )||ξ |k
((λ(τ )l/Λ(τ)α)(log(1/Λ(τ)))α)l−1−j/(l) dτ

and for d0 = β
β+1 it holds

= C

∫ tξ

tξ,1

τ (β+1)(α(l−1−j)/ l)−β(l−1−j)
(

log
1

τ

)−α((l−1−j)/ l)
|ξ |k−p((l−α)(l−1−j)/ l)dτ

≤ Ct
1+(β+1)(α(l−1−j)/ l)−β(l−1−j)
ξ

(
log

1

tξ,1

)−α((l−1−j)/ l)
|ξ |k−p((l−α)(l−1−j)/ l)

≤ Ct
1+(β+1)(α(l−1−j)/ l)−β(l−1−j)−k((β+1)/p)+(β+1)(l−α)(l−1−j)/ l
ξ

× (
log |ξ |)−α((l−1−j)/ l)+k/p−(l−α)(l−1−j)/ l

≤ Ct
l−j−(k/p)(β+1)
ξ

(
log |ξ |)k/p−l+1+j

≤ Ct
l−j−(k/p)(β+1)
ξ log |ξ |.

This gives an estimate for an at most finite loss of derivatives if the exponent of tξ
is non negative. So, we have to guarantee

l − j − k

p
(β + 1)≥ 0

which is always satisfied for aj,k(t) with d0(l − 1 − j) ≤ l − 1 − j − k
p

. Conse-
quently, we have shown that

∫ t

0

|aj,k(τ )||ξ |k
ρ(τ, ξ)l−1−j dτ ≤ C

(
1 + log |ξ |) (27)

for all 0 ≤ t ≤ tξ and all coefficients aj,k(t) with d0(l−1− j)≤ l−1− j − k
p

. This
completes the explanations for the part of lower order terms satisfying assumption
(15). Left is the procedure for the other part. We need to estimate
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∫ t

0

|aj,k(τ )||ξ |k
ρ(τ, ξ)l−1−j dτ ≤ C

(
1 + log |ξ |) (28)

by using assumption (12). We can estimate as follows:

|aj,k(t)||ξ |k
ρ(t, ξ)l−1−j ≤ C

λ(t)l−j (log(1/Λ(t))/Λ(t))l−j−k/p|ξ |k
(1 + (λ(t)l/Λ(t)α)(log(1/Λ(t)))α|ξ |p(l−α))(l−1−j)/ l

≤ C
λ(t)l−j−(l−1−j)

Λ(t)−α(l−1−j)/ l+l−j−k/p

(
log

1

Λ(t)

)l−j−k/p−α((l−1−j)/ l)

× |ξ |k−p(l−α)(l−1−j)/ l

≤ C
λ(t)

Λ(t)l−j−k/p−α+α/l+αj/l

(
log

1

Λ(t)

)l−j−k/p−α+α/l+αj/l

× |ξ |k−pl+p+pj+αp−αp/l−αjp/l, (29)

which leads to
∫ t

0

|aj,k(τ )||ξ |k
ρ(τ, ξ)l−1−j dτ ≤ Λ(t)1−l+j+k/p+α(1−1/l−j/ l)|ξ |p(1−l+j+k/p+α(1−1/l−j/ l))

×
(

log
1

Λ(t)

)l−j−k/p−α(1−1/l−j/ l)

≤ CN
(
log |ξ |) (30)

for all 0 ≤ t ≤ tξ by using the definition of the pseudo-differential zone. The last
step only holds true for 1 − l + j + k

p
+ α(1 − 1

l
− j

l
) ≥ 0. With our definition of

α and ε < ld0 − αj∗,k∗ , see (21), the condition is always satisfied. So we obtain an
estimate for (25)

∥∥E(t, s, ξ)
∥∥ ≤ exp

(∫ t

0

∥∥A(τ, ξ)
∥∥dτ

)

� exp

(
C

(∫ t

0

∂tρ(τ, ξ)

ρ(τ, ξ)
dτ +

∫ t

0
ρ(τ, ξ)dτ

+
∫ t

0

∑

j+k/p≤l
j<l

∣∣
∣∣
aj,k(τ )ξ

k

ρ(τ, ξ)l−1−j

∣∣
∣∣dτ

))

� exp
(
C
(
1 + log |ξ |)).

We complete the proof by using our fundamental solution E

V (t, ξ) = E(t,0, ξ)V (0, ξ),

ρ(t, ξ)l−1
∣∣v(t, ξ)

∣∣ � exp
(
C
(
1 + log |ξ |))(∣∣v0(ξ)

∣∣+ ∣∣v1(ξ)
∣∣+ . . .+ ∣∣vl−1(ξ)

∣∣),
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ρ(t, ξ)l−2
∣∣Dtv(t, ξ)

∣∣ � exp
(
C
(
1 + log |ξ |))(∣∣v0(ξ)

∣∣+ ∣∣v1(ξ)
∣∣+ . . .+ ∣∣vl−1(ξ)

∣∣),

. . .
∣∣Dl−1

t v(t, ξ)
∣∣ � exp

(
C
(
1 + log |ξ |))(∣∣v0(ξ)

∣∣+ ∣∣v1(ξ)
∣∣+ . . .+ ∣∣vl−1(ξ)

∣∣).

Here we used ρ(0, ξ)= 1. In this way the proof of Lemma 4 is completed. �

6.3.4 Treatment in the Evolution Zone

In the evolution zone Zevo(M,N) we define the micro-energy

V = ((
λ(t)|ξ |p)l−1

v,
(
λ(t)|ξ |p)l−2

Dtv, . . . ,D
l−1
t v

)T
.

Lemma 5 For all (t, ξ) ∈ Zevo(M,N) it holds

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ(t)|ξ |p)l−1|v(t, ξ)|
� exp(C(1 + log |ξ |))(∑l

j=1(λ(tξ )|ξ |p)l−j |Dj−1
t v(tξ , ξ)|),

(λ(t)|ξ |p)l−2|Dtv(t, ξ)|
� exp(C(1 + log |ξ |))(∑l

j=1(λ(tξ )|ξ |p)l−j |Dj−1
t v(tξ , ξ)|),

. . .

|Dl−1
t v(t, ξ)| � exp(C(1 + log |ξ |))(∑l

j=1(λ(tξ )|ξ |p)l−j |Dj−1
t v(tξ , ξ)|).

Proof First we want to consider the roots of the symbol containing the transformed
extended principal part together with the real part of the terms of Levi size. They
are given as the solutions to the characteristic equation

τ l −
∑

l−1≤j+k/p≤l
j<l

�aj,k(t)ξkτ j = 0. (31)

The following proposition shows how the roots of (31) inherit the properties for
the roots of (9).

Proposition 1 We consider the roots τ1, . . . , τl of (31). With assumption (10) for the
roots of the principal part in the sense of Petrowsky and with the definition of the
zone we get real roots satisfying

∣∣τi(t, ξ)− τj (t, ξ)
∣∣≥ Cλ(t)|ξ |p for i �= j,

∣∣Dm
t D

k
ξ τj (t, ξ)

∣∣≤ Cmλ(t)|ξ |p−k
(
λ(t)

Λ(t)

)m
,

(32)

for all (t, ξ) ∈Zevo(M,N) and for i, j = 1,2, . . . , l, k ∈N and m= 0,1.
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Proof We rewrite the assumption for the coefficients in the following way:

aj,k(t)= λ(t)l−j
(

log(1/Λ(t))

Λ(t)

)l−j−k/p
ãj,k(t)

with ãj,k(t) ∈ B(0, T ]. We apply the transformation τ = λ(t)ξpz. The transforma-
tion yields

zl −
∑

j+k/p=l
j<l

ãj,k(t)z
j −

∑

l−1≤j+k/p<l
j<l

�ãj,k(t)
(

log(1/Λ(t))

Λ(t)ξp

)l−j−k/p
zj = 0.

(33)

If we consider the transformation τ̂ = λ(t)ξpẑ for (9) we obtain

ẑl −
∑

j+k/p=l
j<l

ãj,k(t )̂z
j = 0 (34)

and from assumption (10) we know that equation (34) has real and distinct roots. It
holds

∣∣̂zi(t, ξ)− ẑj (t, ξ)
∣∣≥ C for i �= j, (t, ξ) ∈ [0, T ] × (

R \ {0}).

Equation (33) is a perturbed equation (34), so the roots τ1, . . . , τl are in a small
neighborhood of the respective roots τ̂1, . . . , τ̂l if the perturbation is sufficiently
small. We know that the coefficients of the extended principal part are real. This
and the distinctness of the roots τ̂1, . . . , τ̂l yields that roots z1, . . . , zl are real and
distinct, because the smallness of the real perturbations is given by

∣∣�ãj,k(t)
∣∣
(

log(1/Λ(t))

Λ(t)ξp

)l−j−k/p
≤ 1

C∗(N)
with C∗(N)→ ∞ for N → ∞.

And this holds true for any sufficiently large constant N in the definition of the
zones. Backward transformation yields the first statement of the proposition. Fur-
thermore, due to Vieta’s formulas we have

∣∣∣
∣∣
Dm
t D

β
ξ

∑

i1<...<il−j
τi1(t, ξ) . . . τil−j (t, ξ)

∣∣∣
∣∣
= ∣
∣Dm

t D
β
ξ aj,k(t)ξ

k
∣
∣

≤ Cmλ(t)
l−j |ξ |k−β

(
λ(t)

Λ(t)

)m

for k = p(l − j) and j = 0, . . . , l − 1.
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So we know that the roots of the extended principal part satisfy Proposition 1.
�

Using the micro-energy in the evolution zone for our Fourier transformed Cauchy
problem (17) this leads to the system of first order DtV =A(t, ξ)V with

A(t, ξ) :=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

(l−1)
i

λ′(t)
λ(t)

λ(t)|ξ |p 0

0 (l−2)
i

λ′(t)
λ(t)

λ(t)|ξ |p
...

. . .

0 . . . 0
0 . . . 0

∑
0≤k/p≤l a0,k(t)ξ

k

(λ(t)|ξ |p)l−1

∑
0≤k/p≤l−1 a1,k(t)ξ

k

(λ(t)|ξ |p)l−2

0 . . . 0
0 . . . 0
. . .

...
2
i
λ′(t)
λ(t)

λ(t)|ξ |p 0

0 1
i
λ′(t)
λ(t)

λ(t)|ξ |p
. . .

∑
0≤k/p≤1 al−1,k(t)ξ

k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Now we split matrix A(t, ξ) into several parts. We introduce

A1(t, ξ) :=

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0 λ(t)|ξ |p
...

. . .

0 . . . 0
0 . . . 0

∑
l−1≤k/p≤l �a0,k(t)ξ

k

(λ(t)|ξ |p)l−1

∑
l−2≤k/p≤l−1 �a1,k(t)ξ

k

(λ(t)|ξ |p)l−2

0

λ(t)|ξ |p
0 λ(t)|ξ |p
. . .

∑
0≤k/p≤1 �al−1,k(t)ξ

k

⎞

⎟⎟⎟⎟
⎠
,

A2(t, ξ) :=

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

(l−1)
i

λ′(t)
λ(t)

0 0 0 . . . 0

0 (l−2)
i

λ′(t)
λ(t)

0 0 . . . 0
...

. . .
. . .

...

0 . . . 0 2
i
λ′(t)
λ(t)

0 0

0 . . . 0 0 1
i
λ′(t)
λ(t)

0
0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

,
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A3(t, ξ) :=

⎛

⎜⎜⎜⎜
⎝

0 0
...

0 0
�a0,p(l−1)(t)ξ

p(l−1)+∑
k/p<l−1 a0,k(t)ξ

k

(λ(t)|ξ |p)l−1

�a1,p(l−2)(t)ξ
p(l−2)+∑

k/p<l−2 a1,k(t)ξ
k

(λ(t)|ξ |p)l−2

. . . 0
...

. . . 0

. . . �al−1,0(t)

⎞

⎟⎟⎟
⎠
.

We are interested in the symbol classes for A2(t, ξ) and A3(t, ξ). It is obvious
that A2(t, ξ) ∈ S0{0,0,1,0} and for A3(t, ξ) the assumptions (12) and (16) and
straight forward calculations yield A3(t, ξ) ∈ S0{0,0,0,0} + S0{− 1

p
,1,0,1 + 1

p
}.

Remark 7 Let us come back to the assumptions (12) and (16) for the terms of Levi
size. The real parts are included in the matrix A1, this allows a logΛ(t) term. The
imaginary parts are included in the matrix A3. To stay in the correct symbol classes
we are not able to allow a logΛ(t) term for the imaginary parts.

Using the system τ1
λ(t)|ξ |p , . . . ,

τl
λ(t)|ξ |p we form the Vandermonde matrix

M(t, ξ) :=

⎛

⎜⎜⎜⎜
⎝

1 1 . . . 1
τ1(t,ξ)
λ(t)|ξ |p

τ2(t,ξ)
λ(t)|ξ |p . . .

τl (t,ξ)
λ(t)|ξ |p

...
...

...
...

(
τ1(t,ξ)
λ(t)|ξ |p )

l−1 (
τ2(t,ξ)
λ(t)|ξ |p )

l−1 . . . (
τl (t,ξ)
λ(t)|ξ |p )

l−1

⎞

⎟⎟⎟⎟
⎠

and apply the transformation V :=M(t, ξ)V1 to our system

DtV =A1V +A2V +A3V. (35)

The matrix M is chosen as a diagonalizer of A1. The determinant of M is given by

det
(
M(t, ξ)

)=
∏

1≤i<j≤n

τj (t, ξ)− τi(t, ξ)

λ(t)|ξ |p .

Because of the separation condition from (32) the determinant of M(t, ξ) satisfies
|det(M(t, ξ))| ≥ C > 0 and so the inverse matrix M−1(t, ξ) exists for all (t, ξ) ∈
Zevo(M,N).

Lemma 6 After the first step of diagonalization we obtain from system (35) the new
system

DtV1 =DV1 +RV1, V1(tξ , ξ)= V1,0(ξ) :=M−1V (tξ , ξ) (36)



6 H∞ Well-Posedness for Degenerate p-Evolution Models of Higher Order 143

with a diagonal matrix

D =D(t, ξ)=
⎛

⎜
⎝

τ1(t, ξ) 0
. . .

0 τl(t, ξ)

⎞

⎟
⎠

and a matrix

R =R(t, ξ) ∈ S0{0,0,0,0} + S0{0,0,1,0} + S0

{
− 1

p
,1,0,1 + 1

p

}
. (37)

Proof System (35) transforms to

DtV1 =M−1A1MV1 +M−1A2MV1 +M−1A3MV1 −M−1(DtM)V1 (38)

with the diagonal matrix D =M−1A1M . The matrix R is defined by

R :=M−1A2M −M−1(DtM)+M−1A3M.

For the entries of M it holds

∣∣∣∣

(
τk(t, ξ)

λ(t)|ξ |p
)j ∣∣∣∣≤ C

for j = 0, . . . , l − 1 and k = 1, . . . , l. With this M(t, ξ) and its inverse M−1(t, ξ) ∈
S0{0,0,0,0}. So the calculus of the symbol classes yields the statement of the
lemma. �

The function

E2(t, r, ξ) :=

⎛

⎜⎜
⎝

ei
∫ t
r τ1(s,ξ)ds 0

. . .

0 ei
∫ t
r τl (s,ξ)ds

⎞

⎟⎟
⎠

solves the Cauchy problem (Dt −D)E(t, r, ξ)= 0,E(r, r, ξ)= I . It holds for r ≥ tξ

∥∥E2(t, r, ξ)
∥∥≤ max

k=1,...,l

∣∣∣∣
∣
exp

(

i

∫ t

r

l∑

k=1

τk(s, ξ)ds

)∣∣∣∣
∣
= 1,

because the roots of (31) are all real. Here we feel the dispersive character of our
Cauchy problem and the dominance condition from Lemma 2. We define the matrix-
valued function H =H(t, r, ξ) with t, r ≥ tξ :

H(t, r, ξ) :=E2(r, t, ξ)R(t, ξ)E2(t, r, ξ).
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Because E2(r, t, ξ) = E−1
2 (t, r, ξ), ‖E2(r, t, ξ)‖ = ‖E−1

2 (t, r, ξ)‖ = 1, and due to
(37) the following estimate holds:

∥∥H(t, r, ξ)
∥∥≤ C +C

λ(t)

Λ(t)
+C

λ(t)

Λ(t)1+1/p|ξ |
(

log
1

Λ(t)

)1+1/p

. (39)

We will consider log 1
Λ(t)

to be positive for all t ≤ T , because we are only interested
in times close to the degeneracy t = 0. Now

V1(t, ξ) :=E2(t, tξ , ξ)Q(t, tξ , ξ)V1,0(ξ)

solves (36) if DtQ=H(t, r, ξ)Q. This follows from

Dt(E2Q)−DE2Q−RE2Q = 0,

(DtE2)Q−DE2Q︸ ︷︷ ︸
=0

+E2DtQ = RE2Q.

Knowing that H(t, r, ξ) can be estimated by (39) we are able to estimate Q =
Q(t, r, ξ). We see that

∫ t

tξ

∥∥H(s, tξ , ξ)
∥∥ds �

∫ t

tξ

1 + λ(s)

Λ(s)
+ λ(s)

Λ(s)1+1/p|ξ |
(

log
1

Λ(s)

)1+1/p

ds

� 1|ttξ + log
1

Λ(s)

∣∣∣
∣

tξ

t

−Λ(s)−1/p
(

log
1

Λ(s)

)1+1/p

|ξ |−1
∣∣∣
∣

t

tξ

≤ C

(
1 + log

1

Λ(tξ )

)
≤ Cevo log |ξ |. (40)

This leads to

∥∥Q(t, tξ , ξ)
∥∥� exp

(
C

(
1 + log

1

Λ(tξ )

))
≤ C|ξ |Cevo .

Now we will estimate |V1(t, ξ)| and with the backward transformation we obtain an
estimate for |V (t, ξ)|:

V1(t, ξ) = E2(t, tξ , ξ)Q(t, tξ , ξ)V1,0(ξ),

∣∣V1(t, ξ)
∣∣ ≤ C exp

(
C

(
1 + log

1

Λ(tξ )

))∣∣V1,0(ξ)
∣∣,

∣∣V (t, ξ)
∣∣ = ∣∣M(t, ξ)V1(t, ξ)

∣∣

≤ C exp

(
C

(
1 + log

1

Λ(tξ )

))∣∣M−1(tξ , ξ)V (tξ , ξ)
∣∣

≤ C exp

(
C

(
1 + log

1

Λ(tξ )

))∣∣V (tξ , ξ)
∣∣.
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Summarizing we arrive in the evolution zone at the following estimates:
∣∣V (t, ξ)

∣∣≤C|ξ |Cevo
∣∣V (tξ , ξ)

∣∣,

(
λ(t)|ξ |p)l−1∣∣v(t, ξ)

∣∣≤C|ξ |Cevo

(
l∑

j=1

(
λ(tξ )|ξ |p

)l−j ∣∣Dj−1
t v(tξ , ξ)

∣∣
)

,

. . .

∣∣Dl−1
t v(t, ξ)

∣∣≤C|ξ |Cevo

(
l∑

j=1

(
λ(tξ )|ξ |p

)l−j ∣∣Dj−1
t v(tξ , ξ)

∣∣
)

.

(41)

With this Lemma 5 is proved. �

6.3.5 Verification

Now we want to use the estimates of both zones to get an estimate for an arbitrary
t ∈ [0, T ]. For t ≤ tξ we get an estimate in the pseudo-differential zone. Using the
initial conditions we obtain

∣∣Dm
t v(t, ξ)

∣∣ ≤ Cρ(t, ξ)−l+1+m exp
(
C
(
1 + log |ξ |))

× (∣∣v0(ξ)
∣∣+ . . .+ ∣∣vl−1(ξ)

∣∣) (42)

for m= 0, . . . , l− 1. In the case t ≥ tξ we use the estimates from the evolution zone
∣
∣Dm

t v(t, ξ)
∣
∣

≤ C
(
λ(t)|ξ |p)−l+m+1 exp

(
C
(
1 + log |ξ |))

×
(

l∑

j=1

(
λ(tξ )|ξ |p

)l−j ∣∣Dj−1
t v(tξ , ξ)

∣∣
)

≤ C
(
λ(t)|ξ |p)−l+m+1 exp

(
C
(
1 + log |ξ |))

×
(

l∑

j=1

(
λ(tξ )|ξ |p

)l−j
ρ(tξ , ξ)

−l+j (∣∣v0(ξ)
∣∣+ . . .+ ∣∣vl−1(ξ)

∣∣)
)

(43)

for m = 0, . . . , l − 1. Now we use that ρ(t, ξ) is larger 1 and the monotonicity of
λ(t). So it holds

∣∣Dm
t v(t, ξ)

∣∣ ≤ C exp
(
C
(
1 + log |ξ |))

×
l∑

j=1

(λ(tξ )|ξ |p)l−j
(λ(tξ )|ξ |p)l−m−1

(∣∣v0(ξ)
∣∣+ . . .+ ∣∣vl−1(ξ)

∣∣)
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≤ C|ξ |s0−(l−1)p (λ(tξ )|ξ |p)l−1

(λ(tξ )|ξ |p)l−m−1

(∣∣v0(ξ)
∣∣+ . . .+ ∣∣vl−1(ξ)

∣∣)

≤ C|ξ |s0−(l−1)p(λ(tξ )|ξ |p
)m(∣∣v0(ξ)

∣∣+ . . .+ ∣∣vl−1(ξ)
∣∣)

≤ C|ξ |s0−(l−1)p+mp(∣∣v0(ξ)
∣∣+ . . .+ ∣∣vl−1(ξ)

∣∣)

≤ C|ξ |s0+mp(|ξ |−(l−1)p
∣∣v0(ξ)

∣∣+ . . .+ |ξ |−(l−1)p
∣∣vl−1(ξ)

∣∣)

≤ C|ξ |s0+mp(∣∣v0(ξ)
∣∣+ . . .+ |ξ |−(l−1)p

∣∣vl−1(ξ)
∣∣)

for m= 0, . . . , l − 1 and a constant s0 which gives an (at most) finite loss of regu-
larity. So our solution Dm

t u(t, ·) is in Hs−s0−mp(R) if and only if
∫

R

∣∣Dm
t v(t, ξ)

∣∣2|ξ |2(s−s0−mp)dξ <∞.

It holds
∫

R

∣∣Dm
t v(t, ξ)

∣∣2|ξ |2(s−s0−mp)dξ

�
∫

R

|ξ |2s(∣∣v0(ξ)
∣∣2 + . . .+ |ξ |−2(l−1)p

∣∣vl−1(ξ)
∣∣2)dξ <∞

by taking account of the regularity of the data. The continuity of solutions and their
derivatives with respect to t follows from the continuity of V = V (t, ξ) with respect
to t in suitable function spaces in the phase space. This completes the proof of
Theorem 1.

6.4 Outlook

This last section gives an outlook about further research and open problems.

6.4.1 About Optimality—C1-Theory

One could pose the question, whether the assumptions on the degeneracy or the as-
sumptions on the behavior of coefficients of the extended principal part near to t = 0
or on their oscillating behavior are sharp. Whether a loss really appears, whether this
result is optimal. But there is not much to say about optimality results in C1-theory.
There are no results to prove the sharpness of the assumptions and there are no ex-
amples that show that this loss really appears. The control of the first derivative in t
allows us to diagonalize the Fourier transformed system once. This yields a diagonal
part and a remainder. But this remainder belongs to a symbol class which does not
allow to apply methods for proving optimality. Another approach to show optimality
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for the C1-theory is the a priori knowledge of reflection points or maximum points
to get some kind of classification of oscillations. This is an attempt by Prof. Hi-
rosawa from Yamaguchi University ([8], unpublished notes). For the x-dependent
case there are no results about the sharpness of the decay rates for a p-evolution
Cauchy problem. In [10] sharpness for decay rates has only been shown for the
Cauchy problem to Schrödinger equations with time-independent coefficients of the
form

i∂tu+ ∂2
xu− a(x)∂xu= 0, u(0, x)= u0(x). (44)

An open problem that might be attackable is the sharpness of the decay rates using
the ideas of the mentioned paper.

6.4.2 About Optimality—C2-theory

The advantage of a C2-theory would be that we can diagonalize twice so that we
get a remainder which is better in some hierarchies of symbol classes. A paper
about C2-theory for the p-evolution Cauchy problem of second order in Dt is in
preparation, see [6] and [7].

6.4.3 About x-Dependence—C1-Theory

Here we want to consider the p-evolution Cauchy problem (2), where the coeffi-
cients aj,k may depend on space and time. The first thing we can do is to try to
include x-dependence in a way that we can generalize the result for the pure time-
dependent model without the need of more assumptions on the coefficients except
the boundedness of the coefficients and of its derivatives with respect to the spa-
tial variable. This is only possible for the coefficients aj,k of the extended principal
part with the lowest order j + k

p
= l − 1 + 1

p
and for the terms of lower order. We

consider the p-evolution Cauchy problem of higher order in Dt with coefficients
depending on space and time as follows:

Dl
tu−

∑

l−1+1/p<j+k/p≤l
j<l

aj,k(t)D
k
xD

j
t u

−
∑

0≤j+k/p≤l−1+1/p

aj,k(t, x)D
k
xD

j
t u= 0, (45)

Dm
t u(0, x)= um for m= 0, . . . , l − 1 and l ≥ 2.

All coefficients are real and in B∞(R) with respect to x.
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Theorem 2 Let us consider the Cauchy problem (45) under the assumptions (8)
and (10) to (16). For initial data um ∈ Hs−mp(R), m = 0, . . . , l − 1, there ex-
ists a non-negative constant s0 and a unique solution u ∈ C([0, T ],H s−s0(R)) ∩
C1([0, T ],H s−s0−p(R)) ∩ . . . ∩ Cl−1([0, T ],H s−s0−(l−1)p(R)). An a priori esti-
mate for the solution is given by

∥∥Dm
t u(t, ·)

∥∥
Hs−s0−mp ≤ C

(‖u0‖Hs + . . .+ ‖ul−1‖Hs−(l−1)p

)

for m= 0, . . . , l − 1.

Remark 8 It is important to understand that the only difference in the Theorems 1
and 2 is the x-dependence of some coefficients, but this brings a complete change
in the proof. We can not use the partial Fourier transformation with respect to x. We
need cut-off functions techniques which help to localize the considerations to the
needed zones. Moreover, we should apply methods basing on a pseudo-differential
calculus.

If we include decay conditions of the coefficients with respect to x, then we can
consider x-dependence for almost all coefficients. We can consider

Dl
tu−

∑

j+k/p=l
j<l

aj,k(t)D
k
xD

j
t u−

∑

0≤j+k/p≤l−1/p

aj,k(t, x)D
k
xD

j
t u= 0,

Dm
t u(0, x)= um(x) for m= 0, . . . , l − 1 and l ≥ 2.

(46)

We propose the following decay conditions which are related to the conditions
in [2]:

∣∣Dxaj,(l−j)p−k(t, x)
∣∣≤ Cλ(t)l−j 〈x〉−(p−k−1)/(p−1),

∣∣Dβ
x aj,(l−j)p−k(t, x)

∣∣≤ Cλ(t)l−j 〈x〉−(p−k−[β/2])/(p−1)
(47)

for 2 ≤ β < 2(p− k), j = 0, . . . , l − 1 and k = 1, . . . , p− 2.

Hypothesis Let us consider the Cauchy problem (46) under the assumptions (8),
(10) to (16) and (47). For initial data um ∈ Hs−mp(R), m = 0, . . . , l − 1 there ex-
ists a non-negative constant s0 and a unique solution u ∈ C([0, T ],H s−s0(R)) ∩
C1([0, T ],H s−s0−p(R)) ∩ . . . ∩ Cl−1([0, T ],H s−s0−(l−1)p(R)). An a priori esti-
mate for the solution is given by

∥∥Dm
t u(t, ·)

∥∥
Hs−s0−mp ≤ C

(‖u0‖Hs + . . .+ ‖ul−1‖Hs−(l−1)p

)

for m= 0, . . . , l − 1.

Remark 9 We can also extend the calculus to Cauchy problem (46) with complex-
valued coefficients depending on t and x. For the theorem to hold we need a decay
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for the imaginary part. We would propose the following assumptions:

∣∣�aj,(l−j)p−k(t, x)
∣∣≤ Cλ(t)l−j 〈x〉−(p−k)/(p−1) (48)

for j = 0, . . . , l − 1 and k = 2, . . . , p − 1. Furthermore we pose an assumption for
the imaginary part of aj,(l−j)p−1 in the following way:

∣∣�aj,(l−j)p−1(t, x)
∣∣≤ Cλ(t)l−j g

(〈x〉), (49)

where the function g = g(s) ∈ L1(R+)∩C[0,∞) is a strictly decreasing function.

For a better understanding of the influence coming from the imaginary parts of
the coefficients see [4].

6.4.4 About x-Dependence—C2-Theory

If we merge the last results we can get a result for a Cauchy problem similar to (46).
We want to propose a hypothesis for the following Cauchy problem:

Dl
tu− λ(t)lb(t)lD

lp
x u−

∑

0≤j+k/p≤l−1/p

aj,k(t, x)D
k
xD

j
t u= 0,

Dm
t u(0, x)= um(x) for m= 0, . . . , l − 1 and l ≥ 2.

(50)

We have a special choice for the principal part in the sense of Petrowsky due to the
interactions in the principal part in the sense of Petrowsky shown in [9] for a strictly
hyperbolic problem. The coefficients aj,k(t, x) are considered to be complex. We
consider a shape function λ(t) which satisfies

λ(0)= 0, λ′(t) > 0 for t > 0,

d0
λ(t)

Λ(t)
≤ λ′(t)
λ(t)

≤ d1
λ(t)

Λ(t)
, d0 >

l − 1

l
, (51)

∣∣D2
t λ(t)

∣∣≤ d2λ(t)

(
λ(t)

Λ(t)

)2

.

The function b(t) describes the oscillating behavior of the coefficient and we assume

c0 := inf
t∈(0,T ]b(t)≤ b(t)≤ c1 := sup

t∈(0,T ]
b(t), t ∈ (0, T ], c0, c1 > 0,

∣∣Dm
t b(t)

∣∣≤ C

(
λ(t)

Λ(t)
ν(t)

)m
, m= 1,2.

(52)
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For the coefficients we pose the assumptions

∣∣Dm
t aj,k(t, x)

∣∣≤ Cmλ(t)
l−j

(
ν(t)

Λ(t)

)l−j−k/p(
λ(t)

Λ(t)
ν(t)

)m
(53)

for m= 0,1,2. For the terms of Levi size we need the additional Levi conditions

∣∣Dm
t �al−1−k/p,k(t)

∣∣≤ Cmλ(t)
k/p

(
λ(t)

Λ(t)
ν(t)

)m+1

(54)

for m= 0,1,2. In some of the assumptions we used a function ν = ν(t), which is a
positive and strictly decreasing function. Furthermore, for the function ν(t) we need
the assumption

λ(t)

Λ(t)
ν(t)� −ν′(t). (55)

Furthermore, we propose decay conditions

∣∣Dm
t Dxaj,(l−j)p−k(t, x)

∣∣ ≤ Cλ(t)l−j 〈x〉−(p−k−1)/(p−1), (56)
∣∣Dm

t D
β
x aj,(l−j)p−k(t, x)

∣∣ ≤ Cλ(t)l−j 〈x〉−(p−k−[β/2])/(p−1) (57)

for 2 ≤ β < 2(p− k), j = 0, . . . , l − 1, k = 1, . . . , p− 2, m= 0,1 and

∣∣Dm
t �aj,(l−j)p−k(t, x)

∣∣ ≤ Cλ(t)l−j 〈x〉−(p−k)/(p−1), (58)
∣∣Dm

t �aj,(l−j)p−1(t, x)
∣∣ ≤ Cλ(t)l−j g

(〈x〉) (59)

for j = 0, . . . , l − 1, k = 2, . . . , p − 1, m = 0,1, where the function g = g(s) ∈
L1(R+)∩C[0,∞) is a strictly decreasing function.

Hypothesis Let us consider the Cauchy problem (50) under the assumptions (51)
to (59). For initial data u0 ∈ Hs and um, m = 1, . . . , l − 1 in appropriate spaces,
then there exists a unique solution u= u(t, x) with the properties

u(t, ·) ∈ exp

(
Cν

((
Λ

ν

)(−1)(
N

〈Dx〉p
)))

Hs(R),

where N is a suitable positive constant. The loss of regularity of the solution is
described by

exp

(
Cν

((
Λ

ν

)(−1)(
N

〈Dx〉p
)))

.
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Chapter 7
On the Global Solvability for Semilinear Wave
Equations with Smooth Time Dependent
Propagation Speeds

Fumihiko Hirosawa, Takuhiro Inooka, and Trieu Duong Pham

Abstract In this paper we consider the global existence of a solution with small
data to the Cauchy problem for the semilinear wave equations with time dependent
coefficient:

utt − a(t)2Δu= u2
t − a(t)2|∇u|2.

We are particularly interested in the effects of the smoothness to the coefficients in
the sense of Cm and the Gevrey classes, and the main theorems are natural general-
ization of the previous results for less smoothness of coefficients.

Mathematics Subject Classification 35L70 · 35B40

7.1 Introduction

The main purpose of this paper is to prove some results for the existence of the
global solutions to the Cauchy problem for the semilinear wave equations with vari-
able propagation speed:

(
∂2
t − a(t)2Δ

)
u= F(t, ∂tu,∇u), (1)

where Δ= ∑n
j=1 ∂

2
xj

and ∇ = (∂x1 , . . . , ∂xn). There are a lot of papers which con-
sider the global existence and non-existence of the solution to the following Cauchy
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problem of semi-linear wave equations:
(
∂2
t −Δ

)
u= F(∂tu,∇u), (2)

for instance [3, 8, 9] and references therein. The wave equation with time dependent
propagation speed:

(
∂2
t − a(t)2Δ

)
w = 0 (3)

has been studied as a linearized model of the Kirchhoff equation, which describes
the vibration of an elastic string (see [13]). On the other hand, (3) has been stud-
ied of interest in themselves for the possibility of arising a singular behavior of
the solution from non-constant propagation speed. Indeed, the natural properties to
the wave equations with constant propagation speed such as energy conservation,
well-posedness and Lp-Lq decay estimates are not always true for time dependent
propagation speed (see [1, 11] and [12]). Generally, the problems of global exis-
tence of the solution to the non-linear equations are deeply related to the properties
of the solutions to the linear equations. Consequently, it is expected that not all the
results for the global existence of (2) cannot be naturally generalized to the problem
for (1).

The following Cauchy problem of a special semi-linear model with a time de-
pendent coefficient was studied in [14] and [15]:

{
(∂2
t − a(t)2Δ)u= (∂tu)

2 − a(t)2|∇u|2, (t, x) ∈ (0,∞)×R
n,

u(0, x)= u0(x), (∂tu)(0, x)= u1(x), x ∈ R
n,

(4)

where u is real valued and u0, u1 ∈ C∞
0 (R

n). Equation (4) can be reduced to the
linear equation (3) by Nirenberg’s transformation

w(t, x)= 1 − exp
(−u(t, x)),

and thus the influence of the time dependent coefficient on properties of the non-
linear models can be understood. In this paper we restrict ourselves our considera-
tion into the Cauchy problem (4). Here we briefly introduce the previous results for
the global solvability of (4). It is studied in [15] that if n≥ 2 and a(t) is a positive,
non-constant and periodic function, then (4) has no global solution for any small
initial data. On the other hand, if a(t) is given by

a(t)= b(t) exp
(
tα
)

(5)

for

α >
1

2
, (6)

where b(t) ∈ C2(R) is a positive periodic function, then (4) has a global solution for
small data. In particular, if b(t) is a constant, then the global solvability of (4) is valid
for any α > 0. We see from these facts that oscillations of the coefficients might
have a bad influence on the global solvability. On the other hand, the increasing
property is possible to conclude the global solvability against the oscillations of
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the coefficient. Indeed, if we restrict ourselves that a(t) is decomposed into the
increasing part λ(t) and the oscillating part b(t) by

a(t)= λ(t)b(t), (7)

where λ(t) is a positive increasing function, and b(t) satisfies

b0 ≤ b(t)≤ b1

for some positive constants b0 and b1, then the condition (6) in (5) for the global
solvability can be generalized as follows:

Theorem 1 ([2, 15]) Let n≥ 2 and a(t) ∈ C2([0,∞)) be represented by (7). If λ(t)
and b(t) satisfy

∣∣λ(k)(t)
∣∣≤ Ckλ(t)

(
λ(t)

Λ(t)

)k
(8)

and

∣∣b(k)(t)
∣∣≤ Ck

(
λ(t)

Λ(t)

(
logΛ(t)

)β
)k

(9)

for t ≥ 1, k = 1,2 and β < 1, where

Λ(t)=
∫ t

0
λ(τ)dτ,

and Ck are positive constants, then (4) has a global solution for small data. If n= 1,
then the same conclusion is valid for β = 0 under the additional assumption

∫ 1

0
Λ−1

(
1

r

)
dr <∞.

Remark 1 If n is large enough, then the conclusion of Theorem 1 is valid for β = 1
(see [15]).

Remark 2 We come to the condition (6) by applying Theorem 1 for a C2 periodic
function b(t), λ(t)= exp(tα) and Λ(t)≈ t1−αλ(t) as t → ∞, where f ≈ g denotes
that for positive functions f and g there exists a constant C > 1 such that C−1f ≤
g ≤ Cf . We are interested in the asymptotic behavior as t → ∞, hence all the
assumptions from below are implicitly supposed that t is large enough.

Remark 3 For n= 1 the optimality of the assumption (9) with β = 0 for the global
solvability with small data to (4) is proved in [2].

Remark 4 We shall denote universal positive constants by C and Ck with k =
0,1, . . . without making any confusion.
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If k = 1, then (9) is a restriction to the oscillating speed of b(t) with the parame-
ter β . In the previous research for the linear equation (3) and the non-linear equation
(4) with a(t)= λ(t)b(t), it is known that β = 0 and β = 1 are critical numbers for
the behavior of the solutions; for instance the properties of the well-posedness, the
energy estimates and the Lp-Lq decay estimates are changed at β = 0 or β = 1 (see
[4, 11] and [12], for instance). For this reason if β = 0, 0< β < 1 or β = 1 in (9) we
say that b(t) has very slow oscillation, slow oscillation, or fast oscillation respec-
tively. Thus the classification of the properties to the coefficients by (9) seems to be
reasonable. However, Theorem 1 doesn’t describe any effect from further smooth-
ness of the coefficients than C2.

The assumptions of Theorem 1 are described by essentially two properties of the
coefficient: increasing and oscillating behaviors; the first, and the second ones have
a good, and a bad influence for the stability of the solution. In the following we
denote the increasing behavior of a(t) by λ(t), which satisfies

λ(t) ∈ C1([0,∞)
)
, λ′(t)≥ 0, λ(0) > 0 (10)

and

C0λ(t)≤ a(t)≤ C1λ(t). (11)

Then we can prove the same conclusion of Theorem 1 replacing the assumptions (8)
and (9) by

∣∣a(k)(t)
∣∣≤ Ckλ(t)

(
λ(t)

Λ(t)

(
logΛ(t)

)β
)k

(12)

for k = 1,2. Then we introduce a new condition which describes the gap between
the oscillating coefficient a(t) and the monotone increasing behavior λ(t) as fol-
lows:

∫ t

0

∣∣a(τ)− λ(τ)
∣∣dτ =Θ(t)= o

(
Λ(t)

)
(t → ∞). (13)

Indeed, the condition (13) is introduced in [7] to bring a benefit of further smooth-
ness of the coefficient. Then one of our main theorems is represented as follows:

Theorem 2 Let m ≥ 2 and a(t) ∈ Cm([0,∞)). If there exists λ(t) satisfying (10),
(11), (13) and

∫ 1

0
rn−1Λ−1

(
1

r

)
dr <∞ (14)

such that

Λ(t)ε0 =O
(
Θ(t)

)
(t → ∞) (15)

for a positive constant ε0, and

∣∣a(k)(t)
∣∣≤ Ckλ(t)

(
λ(t)

Θ(t)

(
Θ(t)

Λ(t)

)1/m(
logΛ(t)

)β
)k
, k = 1, . . . ,m (16)
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for β = 0 if n= 1, and β < 1 if n≥ 2 respectively, then (4) has a global solution for
small data.

Remark 5 If m = 2, then a corresponding result of Theorem 2 is proved in [2]. In
contrast with it Theorem 2 shows that further regularity of the coefficient, that is,
m≥ 3, contributes for the global solvability of (4) with faster oscillating coefficient.

Remark 6 The assumption (14) is trivial if n≥ 2. Indeed, noting Λ(t)≥ λ(0)t , we
have

∫ 1

0
rn−1Λ−1

(
1

r

)
dr ≤ 1

λ(0)

∫ 1

0
rn−2dr <∞.

Remark 7 The condition Θ(t) =O(Λ(t)) is trivially satisfied. Then the condition
(16) corresponds to (12) without the assumption (13). Consequently, Theorem 2 is
a generalization of Theorem 1.

Remark 8 The conditions of (16) are weaker than (12) for k = 1,2. This means that
under the additional assumption (13) the global solvability of (4) can be valid for
faster oscillating coefficient.

Here we introduce an example of a(t) that the global solvability can be proved
by using our theorem but not by the previous results. Let n ≥ 2. For real numbers
0< α ≤ 1 and γ > 0 we define a(t)= λ(t)b(t) as follows:

λ(t)= exp
(
tα
)
, α > 0,

and

b(t)=
{
p(t) t ∈ Ij = [j1/α, j1/α + 1],
1 t ∈ [0,∞) \⋃∞

j=1 Ij ,

where p(t) ∈ Cm([0,∞)) is a positive and 1-periodic function satisfying p(0)= 1
and p(k)(t)≡ 0 near t = 0 for k = 1, . . . ,m. Then, noting |b(k)| ≤ Ck and |λ(k)(t)| ≤
Ckλ(t)t

−k(1−α) we have
∣∣a(k)(t)

∣∣≤ Ckλ(t).

On the other hand, for t ∈ [j1/α, (j + 1)1/α] we have

∫ t

0

∣∣a(τ)− λ(τ)
∣∣dτ ≈

j∑

k=1

∫ k1/α+1

k1/α
eτ

α

dτ ≈
j∑

k=1

ek ≈ ej = et
α = λ(t).

Hence, we see that Θ(t) ≈ λ(t) and Θ(t) = o(Λ(t)) = o(t1−αλ(t)). Noting
logΛ(t)≈ logλ(t)= tα , the conditions (12), and (16) with β < 1 are given by

α >

{
α0 := 1

2 from (12),

αm := 1
m+1 from (16).



158 F. Hirosawa et al.

Then we observe that α1 = α0, αm is monotone decreasing with respect to m, and
limm→∞ αm = 0; thus we can conclude the global solvability of (4) for less increas-
ing coefficients as m is larger. Generally, the conditions (16) are weaker than (12)
for k = 1,2 as m is larger.

By (13) and (15) we have

logΛ(τ)= log(Λ(t)/Θ(t))

1 − logΘ(t)/logΛ(t)
≤ 2 log

Λ(t)

Θ(t)

for any large t . Therefore, for any γ̃ > γ > 0 there exists a positive constant C such
that

(
Θ(t)

Λ(t)

)γ̃ (
logΛ(t)

)β ≤ C

(
Θ(t)

Λ(t)

)γ
.

Consequently, the following corollary immediately follows from Theorem 2:

Corollary 1 Let a(t) ∈ C∞([0,∞)). If there exist a positive constant γ and a func-
tion λ(t) satisfying (10), (11), (13), (14), (15) and

∣∣a(k)(t)
∣∣≤ Ckλ(t)

(
λ(t)

Θ(t)

(
Θ(t)

Λ(t)

)β)k
, k ∈N (17)

for β = 0 if n= 1, and β < 1 if n≥ 2 respectively, then (4) has a global solution for
small data.

Remark 9 The optimality of the assumption (16) for each fixed m is an open prob-
lem. Incidentally, for a(t) ∈ C∞([0,∞)) the counter example in [6] implies that the
global solvability of (4) is not valid if we change the assumption to β of (17) into
β < 0.

Now we come to the following new critical order of a(k)(t) as m→ ∞ for the
global solvability:

∣∣a(k)(t)
∣∣≤ Ckλ(t)

(
λ(t)

Θ(t)

)k
, k ∈ N.

Actually, Corollary 1 does not give us any answer about the asymptotic as m→ ∞
for general C∞ functions a(t). However, if we introduce the Gevrey class as a sub-
class of C∞-class, then we have the following theorem, which is a refinement of
Corollary 1:

Theorem 3 Let a(t) ∈ C∞([0,∞)) and ν ≥ 1. If there exist a positive constant ρ0
and a function λ(t) satisfying (10), (11), (13), (14), (15) and

∣∣a(k)(t)
∣∣≤ k!νλ(t)

(
ρ0
λ(t)

Θ(t)

(
log

Λ(t)

Θ(t)

)−ν(
logΛ(t)

)β
)k
, k ∈ N (18)
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for β = 0 if n= 1, and β < 1 if n≥ 2 respectively, then (4) has a global solution for
small data.

Remark 10 If f (t) ∈ C∞([0,∞)) satisfies |f (k)(t)| ≤ ρkk!ν for any k ∈ N with real
numbers ρ > 0 and ν > 0, then we say that f belong to the Gevrey class of order ν.
In particular, if the estimates hold for ν = 1, then f is a real analytic function.

Let us introduce an example for a coefficient a(t) that the global solvabil-
ity can be proved by using Theorem 3 but not Corollary 1. Let κ > 1, r > 1,
λ(t)= exp((log t)κ ) for t ≥ 1 and b(t) is defined by

b(t)=
{
p(t) t ∈ Ij = [rj , rj + 1],
1 t ∈ [0,∞) \⋃∞

j=1 Ij ,

where p(t) ∈ C∞([0,∞)) is a positive and 1-periodic function satisfying p(0)= 1,
p(k)(t) ≡ 0 near t = 0 for k ∈ N and |p(k)(t)| ≤ ρkk!ν on [0,1]. Then we see that
there exists a positive constant ρ0 such that

∣∣a(k)(t)
∣∣≤ ρk0k!νλ(t).

On the other hand, for t ∈ [rj , rj+1] we have

∫ t

0

∣∣a(τ)− λ(τ)
∣∣dτ ≈

j∑

k=1

∫ rj+1

rj
exp

(
(log τ)κ

)
dτ ≈

j∑

k=1

exp
((

log rk
)κ)

≈ j1−κ exp
((

log rj
)κ)≈ (log t)1−κλ(t),

hence, we have Θ(t) ≈ (log t)1−κλ(t) and Θ(t) = o(Λ(t)) = o(t (log t)1−κλ(t)).
Noting logΛ(t)≈ (log t)κ , the conditions (18) with β < 1 is given by

κ >
ν + 1

2
.

Thus we observe that the increasing order λ(t) describing by κ is smaller for smaller
ν, and the limit case is of polynomial order.

7.2 Proof of Theorem 2

7.2.1 Division of the Phase Space

Letw(t, x) be the solution to the following linear Cauchy problem, which is reduced
from (4) by Nirenberg’s transformation:

{
(∂2
t − a(t)2Δ)w = 0, (t, x) ∈ (0,∞)×R

n,

w(0, x)=w0(x), (∂tw)(0, x)=w1(x), x ∈R
n.

(19)
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If the solution to the linear problem (19) satisfies

sup
(t,ξ)∈[0,∞)×Rn

{∣∣w(t, x)
∣∣}≤ C

(∥∥〈D〉sw0(·)
∥∥
L1 + ∥∥〈D〉s−1w1(·)

∥∥
L1

)
(20)

for some s > 1, where 〈ξ 〉 = √
1 + |ξ |2 for ξ ∈ R

n and D = −i∇ , then the global
solvability of (4) for small data u0, u1 ∈ C∞

0 (R
n) is immediately concluded.

Let us define v(t, ξ) = ŵ(t, ξ), where ŵ(t, ξ) denotes the partial Fourier trans-
formation of w(t, x) with respect to x ∈ R

n. Then (19) is reduced to the following
Cauchy problem for v(t, ξ):

{
(∂2
t + a(t)2|ξ |2)v = 0, (t, ξ) ∈ (0,∞)×R

n,

v(0, ξ)= v0(ξ), (∂tv)(0, ξ)= v1(ξ), ξ ∈ R
n.

(21)

By the assumption (15) we see thatΘ(t)+Λ(t)ε is strictly increasing andΘ(t)+
Λ(t)ε ≈Θ(t) for any ε ≤ ε0. Therefore, we can suppose thatΘ(t)+Λ(t)ε is strictly
increasing to regard Θ(t) as Θ(t)+Λ(t)ε from now on.

Let N and T0 be large constants. We define the constant d by

d = N(logΛ(T0))
β

Θ(T0)
. (22)

Here we note that d can be arbitrarily small if T0 is large enough by (15). For |ξ |< d
we define τ0 = τ0(ξ), and t0 = t0(ξ) implicitly by

τ0λ(τ0)|ξ | =N, (23)

and

Θ(t0)|ξ | =N
(
logΛ(t0)

)β
,

respectively.
Here we note that t0(ξ)≥ t0(ξ)||ξ |=d = T0. Then we have the following lemma:

Lemma 1 There exists a positive constant C such that

1<
t0(ξ)

τ0(ξ)
≤ C

for any |ξ | ≤ d .

Proof Since λ(t) is monotone increasing we have

Λ(τ0)

Λ(t0)
≤ τ0λ(τ0)

Λ(t0)
= Θ(t0)(logΛ(t0))−β

Λ(t0)
≤ Θ(t0)

Λ(t0)
→ 0 (t0 → ∞),

it follows that τ0 < t0. �
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We shall estimate the solution of (21) independently in the following four zones
of the phase space:

• the pseudo-differential zone ZΨ :

ZΨ = {
(t, ξ) ∈ [0,∞)×R

n;0 ≤ t ≤ τ0(ξ), |ξ | ≤ d
};

• the stabilized zone ZS :

ZS = {
(t, ξ) ∈ [0,∞)×R

n; τ0(ξ)≤ t ≤ t0(ξ), |ξ | ≤ d
};

• the zone in finite time ZF :

ZF = {
(t, ξ) ∈ [0,∞)×R

n;0 ≤ t ≤ T0, |ξ | ≥ d
};

• the hyperbolic zone ZH :

ZH = {
(t, ξ) ∈ [0,∞)×R

n; t ≥ max
{
T0, t0(ξ)

}}
.

7.2.2 Estimates in ZΨ , ZS and ZF

Let (t, ξ) ∈ZΨ . We define the energy E0(t, ξ) by

E0(t, ξ)= 1

2

(
λ(τ0)

2|ξ |2∣∣v(t, ξ)∣∣2 + ∣∣vt (t, ξ)
∣∣2).

Differentiating E0(t, ξ) with respect to t and using (11) we have

∂tE0(t, ξ)=
(
λ(τ0)

2 − a(t)2
)|ξ |2�{vvt } ≤ Cλ(τ0)|ξ |E0(t, ξ).

It follows from Gronwall’s inequality and (23) that

E0(t, ξ)≤ exp
(
Cτ0λ(τ0)|ξ |

)
E0(0, ξ)= eCNE0(0, ξ). (24)

Let (t, ξ) ∈ZS . We define the energy E1(t, ξ) by

E1(t, ξ)= 1

2

(
λ(t)2|ξ |2∣∣v(t, ξ)∣∣2 + ∣∣vt (t, ξ)

∣∣2).

Differentiating E1(t, ξ) with respect to t and using (11) we have

∂tE1(t, ξ) = (
λ(t)2 − a(t)2

)|ξ |2�{vvt } + λ′(t)λ(t)|ξ |2∣∣v(t, ξ)∣∣2

≤
(
C
∣∣λ(t)− a(t)

∣∣|ξ | + 2λ′(t)
λ(t)

)
E1(t, ξ).
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Let n≥ 2. By Gronwall’s inequality we have

E1(t, ξ) ≤ exp

(∫ t

τ0

2λ′(τ )
λ(τ)

dτ +C|ξ |
∫ t

τ0

∣∣a(τ)− λ(τ)
∣∣dτ

)
E1(τ0, ξ)

≤ λ(t)2

λ(τ0)2
exp

(
CΘ(t)|ξ |)E1(τ0, ξ)

≤ λ(t)2

λ(τ0)2
exp

(
CN

(
logΛ(t0)

)β)E1(τ0, ξ)

= λ(t)2

λ(τ0)2
Λ(t0)

CN/(logΛ(t0))1−βE1(τ0, ξ).

Therefore, for any small positive number κ we have

E1(t, ξ)≤ λ(t)2

λ(τ0)2
Λ(t0)

κE0(τ0, ξ) (25)

by choosing T0 large enough. If n = 1, then the estimate (25) with κ = 0 is trivial
since β = 0.

Let (t, ξ) ∈ZF . We define the energy E(t, ξ) by

E(t, ξ)= 1

2

(
a(t)2|ξ |2∣∣v(t, ξ)∣∣2 + ∣∣vt (t, ξ)

∣∣2).

Differentiating E(t, ξ) with respect to t we have

∂tE(t, ξ)= a′(t)a(t)|ξ |2|v|2 ≤ 2|a′(t)|
a(t)

E(t, ξ).

By Gronwall’s inequality we have

E(t, ξ)≤ exp

(
2T0 max

0≤t≤T0

{ |a′(t)|
a(t)

})
E(0, ξ). (26)

Summarizing the estimates (24), (25) and (26), and using (11) we have the fol-
lowing lemma:

Lemma 2 Let n≥ 2. For any positive small constant κ there exist positive constants
N , T0 and C such that the following estimates hold:

E0(t, ξ)≤ CE0(0, ξ), (t, ξ) ∈ ZΨ , (27)

and

E(t, ξ)≤
{
C

λ(t)2

λ(τ0)
2Λ(t0)

κE0(0, ξ), (t, ξ) ∈ ZS,
CE(0, ξ), (t, ξ) ∈ ZF .

(28)

If n= 1, then (27) and (28) hold with κ = 0.
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7.2.3 Estimate in ZH

Let (t, ξ) ∈ZH . We reduce the equation of (21) to the following first order system:

∂tV1 =A1V1, (29)

where

V1 =
(
vt + ia(t)|ξ |v
vt − ia(t)|ξ |v

)
, A1 =

(
φ1 b1

b1 φ1

)
,

b1 = b1 = − a′(t)
2a(t)

and φ1 = a′(t)
2a(t)

+ ia(t)|ξ |.

Here we note that
∣∣V1(t, ξ)

∣∣2 = 2E(t, ξ).

Let us denote the eigenvalues, and the corresponding eigenvectors of A1 by λ1±,
and Θ1± respectively, then we have

λ1± = φ1� ± i
√
φ2

1� − |b1|2, Θ1+ =
(

1
θ1

)
, Θ1− =

(
θ1
1

)
,

where �{φ1} = φ1�, �{φ1} = φ1� and

θ1 = λ1+ − φ1

b1
.

Let us denote λ1 = λ1+ and M1 = (Θ1+ Θ1−). If |θ1| is small, then detM1 > 0, it
follows that A1 is diagonalized as follows:

M−1
1 A1M1 =

(
λ1 0
0 λ1

)
.

Here we introduce symbol classes in ZH for the convenience of the next step
of the proof. For integers p ≥ 0, q and r the symbol class S(p){q, r} is the set of
functions satisfying

∣∣∂kt f (t, ξ)
∣∣≤ Ck

(
λ(t)|ξ |)q

(
λ(t)

Θ(t)

(
Θ(t)

Λ(t)

)1/m(
logΛ(t)

)β
)r+k

(30)

for k = 0, . . . , p in ZH . Moreover, we denote the general functions of the symbol
class S(p){q, r} by σ (p){q, r} = σ (p){q, r}(t, ξ) for convenience. This definition of
the symbol class generates the following usual algebraic properties and a hierarchy
of symbols in ZH :

Lemma 3 The following properties are valid:

(i) Let p ≥ 1. If f ∈ S(p){q, r}, then f ∈ S(p−1){q, r} and ∂tf ∈ S(p−1){q, r + 1}.
(ii) If f1 ∈ S(p){q1, r1} and f2 ∈ S(p){q2, r2}, then f1f2 ∈ S(p){q1 + q2, r1 + r2}.
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(iii) If f ∈ S(p){q, r}, then f ∈ S(p){q + 1, r − 1}.
(iv) b1 ∈ S(m−1){0,1}, 1/φ1� ∈ S(m){−1,0} and θ1 ∈ S(m−1){−1,1}.

Proof (i) and (ii) are trivial from the definition of the symbol class. Let f (t, ξ) ∈
S(p){q + 1, r − 1}. By (13) and the definition of t0(ξ) we have

∣∣∂kt f (t, ξ)
∣∣ ≤ Ck

(
λ(t)|ξ |)q

(
λ(t)

Θ(t)

(
Θ(t)

Λ(t)

)1/m(
logΛ(t)

)β
)r+k

≤ CkN
−1(λ(t)|ξ |)q+1

(
λ(t)

Θ(t)

(
logΛ(t)

)β
)−1

×
(
λ(t)

Θ(t)

(
Θ(t)

Λ(t)

)1/m(
logΛ(t)

)β
)r+k

≤ CkN
−1(λ(t)|ξ |)q+1

(
λ(t)

Θ(t)

(
Θ(t)

Λ(t)

)1/m(
logΛ(t)

)β
)r−1+k

in ZH for k = 0, . . . , p. It follows that f (t, ξ) ∈ S(p){q + 1, r − 1}; thus (iii) is
proved. The first two properties of (iv) are trivial by (11) and (16). By (ii) we have
(|b1|/φ1�)2 ∈ S(m−1){−2,2}. Hence, we have

( |b1|
φ1�

)2

≤ C
(
λ(t)|ξ |)−2

(
λ(t)

Θ(t)

(
Θ(t)

Λ(t)

)1/m(
logΛ(t)

)β
)2

≤ CN−2
(
Θ(t)

Λ(t)

)2/m

≤ CN−2.

Noting φ1� > 0 and the representation
√

1 − δ = 1 − δ/2 + Q(δ)δ2 for |δ| < 1,
where

Q(δ)=
∞∑

l=0

( 1
2

l + 2

)
(−δ)l =O(1),

we have

θ1 = iφ1�
b1

(√

1 −
( |b1|
φ1�

)2

− 1

)

= iφ1�
b1

(
−1

2

( |b1|
φ1�

)2

+Q

(( |b1|
φ1�

)2)( |b1|
φ1�

)4)

= − ib1

2φ1�
+ iQ

(( |b1|
φ1�

)2)
b1|b1|2
φ3

1�
∈ S(m−1){−1,1}.

�

By the diagonalizer M1 of A1, (29) is reduced to the following system,

∂tV2 =A2V2,
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where

V2 =M−1
1 V1, A2 =

(
λ1 0
0 λ1

)
−M−1

1 (∂tM1)=
(
φ2 b2

b2 φ2

)
,

b2 = − (θ1)t

1 − |θ1|2 and φ2 = λ1 + θ1(θ1)t

1 − |θ1|2 .

Actually, M1 is a diagonalizer of A1, but not of A1 − I∂t . However, we observe
that b1 ∈ S(m−1){0,1} and b2 ∈ S(m−2){−1,2}; thus M1 can be a diagonalizer of
A1 − I∂t modulo S(m−2){0,1}. Moreover, the matrix A2 has the same structure as
A1; this means that we can continue the same diagonalization procedure to A2.
Indeed, we have the following lemma to carry out further steps of diagonalization
procedure, which is called the refined diagonalization procedure introduced in [5]
(see also [10]).

Lemma 4 Let k be a positive integer satisfying k <m. Suppose that Ak is given by

Ak =
(
φk bk
bk φk

)
,

and λk is an eigenvalue of Ak . If bk ∈ S(m−k){−k + 1, k}, 1/φ�k ∈ S(m−k){−1,0}
and φ�k > 0, then the matrix Mk which is defined by

Mk =
(

1 θk
θk 1

)
, θk = λk − φk

bk
,

is a diagonalizer of Ak − ∂t I modulo S(m−k−1){−k + 1, k}, where φk� = �{φk}
and φk� = �{φk}. More precisely, denoting Ak+1 = M−1

k (Ak − ∂t I )Mk , Ak+1 is
represented as follows:

Ak+1 =
(
φk+1 bk+1

bk+1 φk+1

)
,

where

bk+1 = − (θk)t

1 − |θk|2 ∈ S(m−k−1){−k, k + 1}, (31)

�{φk+1} = φ(k+1)� = φk� − ∂t log(1 − |θk|2)
2

(32)

and

�{φk+1} = φ(k+1)� =
√
φ2
k� − |bk|2 − �{θkbk+1}. (33)

Proof By the same argument as in the proof of Lemma 3(iv) we have (|bk|/φk�)2 ∈
S(m−k){−2k,2k}, it follows that (|bk|/φk�)2 ≤ CN−2k . Noting the representations

λk = φk� + i
√
φ2
k� − |bk|2
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and

θk = − ibk
2φk�

+ iQ

(( |bk|
φk�

)2)
bk|bk|2
φ3
k�

∈ S(m−k){−2k,2k},

we see that detMk > 0 uniformly in ZH . By direct calculations we have the repre-
sentations (31), (32) and (33). Moreover, noting

1

1 − |θk|2 = 1 +
∞∑

j=1

|θk|2 = 1 + σ (m−k){−2k,2k},

we have bk+1 ∈ S(m−k−1){−k, k+ 1}. By the representation (33) we have

φ(k+1)� = φk� + σ (m−k−1){−2k+ 1,2k}.

Therefore, we have

1

φ(k+1)�
= 1

φk�

(

1 +
∞∑

j=1

(
−σ

(m−k−1){−2k+ 1,2k}
φk�

)2
)

= 1

φk�
(
1 + σ (m−k−1){−2k,2k}),

it follows that 1/φ(k+1)� ∈ S(m−k−1){−1,0}. �

Actually Lemma 4 can be applied successively to A1 till k = m − 1; thus we
finally arrive at the following system:

∂tVm =AmVm,

where

Vm =M−1
m−1 · · ·M−1

1 V1, Am =
(
φm bm
bm φm

)
,

φm� = 1

2
∂t log

(
a(t)

∏m−1
k=1 (1 − |θk|2)

)
, φm� = a(t)|ξ | + σ (0){−1,2}

and

bm ∈ S(0){−m+ 1,m}.
Differentiating |Vm(t, ξ)|2 with respect to t we have

∂t |Vm|2 = 2�(AmVm,Vm)C2 = 2φm�|Vm|2 + 4�{bmVm,1Vm,2}
≤ 2

(
φm� + |bm|)|Vm|2.
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Denoting T = max{t0, T0}, by Gronwall’s inequality we have

∣∣Vm(t, ξ)
∣∣2 ≤ exp

(
2
∫ t

T

(
φm�(τ, ξ)+

∣∣bm(τ, ξ)
∣∣)dτ

)∣∣Vm(T , ξ)
∣∣2

= a(t)

a(T )

m−1∏

k=1

(
1 − |θk(T , ξ)|2
1 − |θk(t, ξ)|2

)
exp

(
2
∫ t

T

∣∣bm(τ, ξ)
∣∣dτ

)∣∣Vm(T , ξ)
∣∣2.

Here we note that the estimate |θk| ≤ 1/2 holds in ZH for k = 1, . . . ,m − 1, it
follows that the diagonalizer M1, . . . ,Mm−1 are uniformly bounded. Consequently,
we have the following equivalence:

∣∣Vm(t, ξ)
∣∣2 ≈ ∣∣V1(t, ξ)

∣∣2 ≈ E(t, ξ) in ZH .

Therefore, noting (11) we have the following estimate in ZH :

E(t, ξ)≤ C
λ(t)

λ(T )
exp

(
2
∫ t

T

∣∣bm(τ, ξ)
∣∣dτ

)
E(T , ξ).

If |ξ | ≤ d , that is, T = t0, then by (15) we have

exp

(∫ t

t0

∣∣bm(τ, ξ)
∣∣dτ

)

≤ exp

(
Ck|ξ |−m+1

∫ t

t0

λ(τ)

Λ(τ)
Θ(τ)−m+1(logΛ(τ)

)mβ
dτ

)

≤ exp

(
Ck|ξ |−m+1Λ(t0)

ε0/2Θ(t0)
−m+1(logΛ(t0)

)mβ
∫ t

t0

λ(τ)

Λ(τ)1+ε0/2
dτ

)

≤ exp

(
2Ck
ε0

|ξ |−m+1Θ(t0)
−m+1(logΛ(t0)

)mβ
)

= exp

(
2Ck

ε0Nm−1

(
logΛ(t0)

)β
)
.

It follows that

exp

(∫ t

t0

∣∣bm(τ, ξ)
∣∣dτ

)
≤Λ(t0)

C/(logΛ(t0))1−β

for n≥ 2. Consequently, we have

E(t, ξ)≤ C
λ(t)

λ(t0)
Λ(t0)

κE(t0, ξ), (34)

where κ is an arbitrary small positive constant for n ≥ 2, and κ = 0 for n = 1 by
choosing T0 large enough. On the other hand, if |ξ | ≥ d , that is, T = T0, then we
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have

E(t, ξ) ≤ C
λ(t)

λ(T0)
exp

(
Ck

2ε0
d−m+1 (logΛ(T0))

mβ

Θ(T0)m−1

)
E(T0, ξ)

≤ Cλ(t)E(T0, ξ). (35)

Collecting the estimates of Lemma 2, (34) and (35) we have the following
lemma:

Lemma 5 Let n≥ 2. For any positive small constant κ there exist positive constants
N , T0 and C such that the following estimates hold:

E(t, ξ)≤
{
C

λ(t)2

λ(τ0)
2Λ(t0)

2κE0(t0, ξ) for (t, ξ) ∈ {(t, ξ) ∈ ZH ∪ZS; |ξ | ≤ d},
Cλ(t)E(0, ξ) for (t, ξ) ∈ {(t, ξ) ∈ [0,∞)×R

n; |ξ | ≥ d},
(36)

and

E0(t, ξ)≤ CE0(0, ξ) for (t, ξ) ∈ZΨ . (37)

If n= 1, then (36) and (37) hold for κ = 0.

7.2.4 Completion of the Proof

By Lemma 5 we have the following estimates:

∣∣v(t, ξ)
∣∣≤ CΛ(t0)

κ
(∣∣v0(ξ)

∣∣+ τ0
∣∣v1(ξ)

∣∣) (38)

for (t, ξ) ∈ {(t, ξ) ∈ [0,∞)×R
n; |ξ | ≤ d}, and

∣∣v(t, ξ)
∣∣≤ C

(∣∣v0(ξ)
∣∣+ |ξ |−1

∣∣v1(ξ)
∣∣) (39)

for (t, ξ) ∈ {(t, ξ) ∈ [0,∞)×R
n; |ξ | ≥ d}. Noting the inequalities:

∣∣w(t, x)
∣∣= (2π)−n/2

∣
∣∣∣

∫

Rn

eix·ξ v(t, ξ)dξ
∣
∣∣∣≤ C

∥∥v(t, ·)∥∥
L1

and

∣∣〈ξ 〉sv0(ξ)
∣∣+ ∣∣〈ξ 〉s−1v1(ξ)

∣∣≤ C
(∥∥〈D〉sw0(·)

∥∥
L1 + ∥∥〈D〉s−1w1(·)

∥∥
L1

)
,

we see that the estimate (20) is concluded if we prove the following inequality:

∥∥v(t, ·)∥∥
L1 ≤ C

(〈ξ 〉s∣∣v0(ξ)
∣∣+ 〈ξ 〉s−1

∣∣v1(ξ)
∣∣). (40)
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Lemma 6 If a(t) satisfies all the assumptions of Theorem 2, then the estimate (40)
is established.

Proof By (39) we have the following estimates for |ξ | ≥ d and s > n:

∫

|ξ |≥d
∣∣v(t, ξ)

∣∣dξ ≤ C

(∫

|ξ |≥d
∣∣v0(ξ)

∣∣dξ +
∫

|ξ |≥d
|ξ |−1

∣∣v1(ξ)
∣∣dξ

)

≤ C sup
|ξ |≥d

{〈ξ 〉s∣∣v0(ξ)
∣∣+ 〈ξ 〉s−1

∣∣v1(ξ)
∣∣}
∫

|ξ |≥d
〈ξ 〉−sdξ

≤ C sup
|ξ |≥d

{〈ξ 〉s∣∣v0(ξ)
∣∣+ 〈ξ 〉s−1

∣∣v1(ξ)
∣∣}.

On the other hand, for |ξ | ≤ d and n≥ 2, noting

|ξ |−1 = Θ(t0)

N(logΛ(t0))β
≥ CΛ(t0)

ε0/2

and

|ξ |−1 =N−1τ0λ(τ0)≥N−1λ(0)τ0,

we have
∫

|ξ |≤d
Λ
(
t0(ξ)

)κ
τ0(ξ)dξ ≤ C

∫

|ξ |≤d
|ξ |−2κ/ε0−1dξ <∞

by choosing κ satisfying κ < ε0(n−1)/2. For n= 1 noting κ = 0 andN ≥Λ(τ0)|ξ |
we have

∫

|ξ |<d
Λ
(
t0(ξ)

)κ
τ0(ξ)dξ ≤ 2

∫ 1

0
Λ−1

(
N

r

)
dr <∞

by (14). Therefore, by (38) we obtain

∫

|ξ |≤d
∣∣v(t, ξ)

∣∣dξ ≤ C sup
|ξ |≤d

{∣∣v0(ξ)
∣∣+ ∣∣v1(ξ)

∣∣}
∫

|ξ |≤d
Λ
(
t0(ξ)

)κ
τ0(ξ)dξ

≤ C sup
|ξ |≤d

{∣∣v0(ξ)
∣∣+ ∣∣v1(ξ)

∣∣}

≤ C sup
|ξ |≤d

{〈ξ 〉s∣∣v0(ξ)
∣∣+ 〈ξ 〉s−1

∣∣v1(ξ)
∣∣}.

Thus the estimate (40) is proved. �
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7.3 Proof of Theorem 3

7.3.1 Division of the Hyperbolic Zone

The estimates of Lemma 2 are proved without any difference from Theorem 2; thus
we shall prove corresponding estimates in ZH .

For a large constant N andm ∈ N we define tm = tm(ξ) ∈ [0,∞)×R
n implicitly

by

Θ(tm)

(
log

Λ(tm)

Θ(tm)

)ν
|ξ | =N(m+ 1)ν

(
logΛ(tm)

)β
. (41)

Then we define the subzones ZH,m of ZH by

ZH,m = {
(t, ξ) ∈ZH ; tm−1(ξ)≤ t ≤ tm(ξ)

}
.

Here we note that the following lemma is valid:

Lemma 7 If tm and tm+1 exist for a given ξ ∈ R
n, then we have tm < tm+1. More-

over, there exists m0 ∈ N satisfying m0 ≥ 2 such that t0 < tm0 .

Proof We note that Θ(t)(logΛ(t))−β is monotone increasing for any large t . By
(41) we have

Θ(tm+1)(log(Λ(tm+1)/Θ(tm+1)))
ν(logΛ(tm+1))

−β

Θ(tm)(log(Λ(tm)/Θ(tm)))ν(logΛ(tm))−β
=
(
m+ 2

m+ 1

)ν
> 1.

Here Θ(t)(log(Λ(t)/Θ(t)))ν(logΛ(t))−β is monotone increasing for any large t , it
follows that tm < tm+1. If tm ≤ t0 holds for any m ∈ N, then we have

N

|ξ | = Θ(t0)

(logΛ(t0))β
= Θ(tm)(log(Λ(tm)/Θ(tm)))ν

(m+ 1)ν(logΛ(tm))β

<
Θ(t0)(log(Λ(t0)/Θ(t0)))ν

(m+ 1)ν(logΛ(t0))β
≤ Θ(t0)

(logΛ(t0))β

for (m + 1)ν ≥ (log(Λ(t0)/Θ(t0)))ν ; however, the inequality is not true because
lim|ξ |→0 log(Λ(t0(ξ))/(Θ(t0(ξ)))) = ∞. Therefore, there exists m0 ∈ N such that
t0 < tm0 . On the other hand, noting the estimate

N

|ξ | = Θ(t0)

(logΛ(t0))β
= Θ(t1)(log(Λ(t1)/Θ(t1)))ν

2ν(logΛ(t1))β
≥ Θ(t1)

(logΛ(t1))β
,

we have t1 ≤ t0, and thus m0 ≥ 2. Actually, m0 can be large under the choice of the
large constant T0. �

In the following we denote to a given ξ ∈ R
n by m0 =m0(ξ) the term

m0(ξ)= min
{
m ∈ N; t0(ξ) < tm(ξ)

}
.
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7.3.2 Gevrey Symbol Class in ZH,k

We have introduced the symbol class S(p){q, r} for the proof of Theorem 2; how-
ever it is not sufficient for the proof of Theorem 3. In the proof of Theorem 3 we
have to derive a benefit of the properties of the Gevrey functions, which is rep-
resented by the order of the constants Ck of (30) as k → ∞. Therefore, the new
symbol class for the Gevrey functions has to be more precise as follows. Let us fix
a positive integer m. For integers p, q and r satisfying 0 ≤ p ≤m, and positive real
numbers K , ρ and N the symbol class S(p){q, r;K,ρ,N} is the set of functions
satisfying

∣∣∂kt f (t, ξ)
∣∣≤K

(r + k)!ν
(r + k+ 1)2

(
λ(t)|ξ |)q

(
ρ
λ(t)

Θ(t)

(
log

Λ(t)

Θ(t)

)−ν(
logΛ(t)

)β
)r+k

for k = 0, . . . , p in ZH,m. Here we use the notations

S(p){q, r;K,ρ,N} = S{q, r;K,ρ,N} = S{q, r;K}
without any confusion. Then we have the following properties corresponding to
Lemma 3:

Lemma 8 Let us denote η= max{4π2/3,3νρ}. The following properties are valid:

(i) If f ∈ S(p){q, r;K} and p ≥ 1, then ∂tf ∈ S(p−1){q, r + 1;K}.
(ii) If f1 ∈ S{q, r;K1} and f2 ∈ S{q, r;K2}, then f1 + f2 ∈ S{q, r;K1 +K2}.

(iii) If f1 ∈ S{q1, r1;K1} and f2 ∈ S{q2, r2;K2}, then f1f2 ∈ S{q1 + q2, r1 +
r2;ηK1K2}.

(iv) If f ∈ S(m){q, r;K}, then for l ≥ 1, r ≤ 2m, q + l ≤ 0 and r − l ≥ 0 we have
f ∈ S(m){q + l, r − l;K(ηN−1)l}.

Proof Let (t, ξ) ∈ ZH,m, and denote that

μ(t)= 1

Θ(t)

(
log

Λ(t)

Θ(t)

)−ν(
logΛ(t)

)β
.

(i) and (ii) are trivial from the definition of the symbol classes.
(iii): Let k ∈ N and assume that r1 ≤ r2 without loss of generality. By Leibniz

rule we have

∣∣∂kt (f1f2)
∣∣

≤K1K2
(
λ(t)|ξ |)q1+q2

(
ρλ(t)μ(t)

)r1+r2+k

×
k∑

l=0

(
k

l

)
(r1 + l)!ν
(r1 + l + 1)2

(r2 + k − l)!ν
(r2 + k− l + 1)2
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=K1K2
(r1 + r2 + k)!ν
(r1 + r2 + k+ 1)2

(
λ(t)|ξ |)q1+q2

(
ρλ(t)μ(t)

)r1+r2+k

×
k∑

l=0

(
k

l

)(
(r1 + l)!(r2 + k − l)!

(r1 + r2 + k)!
)ν(

r1 + r2 + k+ 1

(r1 + l + 1)(r2 + k− l + 1)

)2

.

Then noting

(
k

l

)(
(r1 + l)!(r2 + k − l)!

(r1 + r2 + k)!
)ν

≤
(

k!
l!(k− l)!

)1−ν
≤ 1

and

k∑

l=0

(
r1 + r2 + k + 1

(r1 + l + 1)(r2 + k− l + 1)

)2

≤ 2

(
2r2 + k+ 1

r2 + [(k + 1)/2] + 1

)2 [k/2]∑

l=0

1

(l + 1)2

≤ 8
∞∑

l=1

1

l2
= 4π2

3
,

where [·] denotes Gaussian symbol, we have (iii).
(iv): Noting |ξ | ≥Nmνμ(t) for (t, ξ) ∈ ZH,m we have

∣∣∂kt f
∣∣ ≤ K

(k + r)!ν
(k + r + 1)2

(
λ(t)|ξ |)q(ρλ(t)μ(t))k+r

= K(k + r)!ν
(k + r − l)!ν

(
ρμ(t)

|ξ |
)l(

k + r − l + 1

k + r + 1

)2
(k + r − l)!ν
(k + r − l + 1)2

× (
λ(t)|ξ |)q+l(ρλ(t)μ(t))k+r−l

≤ K

(
3νρ

N

)l
(k + r − l)!ν
(k + r − l + 1)2

(
λ(t)|ξ |)q+l(ρλ(t)μ(t))k+r−l

for k ≤m. �

Let us denote the general functions of the symbol class S(p){q, r;K,ρ,N} by
σ (p){q, r;K,ρ,N}(t, ξ) = σ (p){q, r;K,ρ,N}. Then for any f ∈ S(p){q, r;K,ρ,
N} we denote

f � σ (p){q, r;K,ρ,N}.
Moreover, we denote σ (p){q, r;K,ρ,N} = σ {q, r;K}, σ {q, r;1} = σ {q, r} and
thus σ {q, r;K} =Kσ {q, r} for convenience. Indeed, the properties of Lemma 8(iii)
and (iv) are represented as follows:

Lemma 9 Lemma 8(iii) and (iv) are represented as follows:
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(iii′) If f1 ∈ S{q1, r1;K1} and f2 ∈ S{q2, r2;K2}, then

f1f2 � σ {q1, r1;K1}σ {q2, r2;K2} � σ {q1 + q2, r1 + r2;ηK1K2}
= ηK1K2σ {q1 + q2, r1 + r2}.

(iv′) If f ∈ S(m){q, r;K}, then for l ≥ 1, r ≤ 2m, q + l ≤ 0 and r − l ≥ 0 we have

f � σ
{
q + l, r − l;K(ηN−1)l}=K

(
η

N

)l
σ {q + l, r − l}.

Moreover, we have the following properties:

Lemma 10 The following properties are valid:

(v) 1 � σ {0,0}.
(vi) For l ∈ N we have σ {q, r;K}l � σ {lq, lr;ηl−1Kl}.

(vii) If f ∈ S{0,0;K} with K ≤ 1/(2η), then 1/(1 − f )� 1 + 2Kσ {0,0}.
(viii) If f ∈ S{−q, q;K} for q ≥ 1, then there exists g ∈ S{0,0;2} such that

1 −√
1 − f = fg

for N ≥ η(K +Kη)1/q .

Proof (v) and (vi) are trivial.
(vii): By Lemma 9(iii′) we have

1

1 − f
= 1 +

∞∑

l=1

f l � 1 +
∞∑

l=1

(
Kσ {0,0})l � 1 + η−1

∞∑

l=1

(Kη)lσ {0,0}

= 1 + K

1 −Kη
σ {0,0}� 1 + 2Kσ {0,0}.

(viii): By Lemma 9(iv′) we see that f �K(ηN−1)qσ {0,0}. Noting
∣∣( 1

2
l

)∣∣≤ 1 for
any positive integer l we have

∞∑

l=1

( 1
2
l

)
(−f )l−1 �

∞∑

l=1

(
KηqN−qσ {0,0})l−1

�
(

1 + η−1
∞∑

l=1

(
Kηq+1N−q)l

)

σ {0,0} ≤ 2σ {0,0}.

Therefore, noting the representation

1 −√
1 − f = f

∞∑

l=1

( 1
2
l

)
(−f )l−1,

we conclude the proof. �
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Let us choose ρ̃0 > ρ0 satisfying supk≥1{(k + 1)2(ρ0/ρ̃0)
k} ≤ 1, where ρ0 is the

constant of (18). Then we see that

∣
∣a(k)(t)

∣
∣ ≤ (k + 1)2

(
ρ0

ρ̃0

)k
k!ν

(k + 1)2
λ(t)

(
ρ̃0λ(t)μ(t)

)k

≤ k!ν
(k + 1)2

λ(t)
(
ρ̃0λ(t)μ(t)

)k

for k ∈ N, it follows that a(t)|ξ | ∈ S{1,0;max{1,C0}, ρ̃0,N}. Moreover, there exist
constants γ1 ≥ max{1,C0} and ρ1 > ρ̃0 such that

1

a(t)|ξ | = 1

φ1�
∈ S{−1,0;γ1, ρ1,N}. (42)

Indeed, if we assume that
∣∣∣∣∂
j
t

1

a(t)|ξ |
∣∣∣∣≤ γ1

j !ν
(j + 1)2

(
λ(t)|ξ |)−1(

ρ1λ(t)μ(t)
)j

(43)

for any j = 1, . . . , k, then by the equality

0 = ∂k+1
t

(
a(t)

1

a(t)

)
= a(t)∂k+1

t

1

a(t)
+

k∑

j=0

(
k + 1

j

)(
∂
k+1−j
t a(t)

)(
∂
j
t

1

a(t)

)
,

we have
∣
∣∣∣∂
k+1
t

1

a(t)|ξ |
∣
∣∣∣ ≤ γ1

C0

(
λ(t)|ξ |)−1(

λ(t)μ(t)
)k+1

×
k∑

j=0

(
k+ 1

j

)
ρ̃
k+1−j
0 ρ

j

1
(k + 1 − j)!ν
(k − j + 2)2

j !ν
(j + 1)2

≤ 4π2ρ̃0

3C0ρ1
γ1
(
λ(t)|ξ |)−1(

ρ1λ(t)μ(t)
)k+1

≤ γ1
(
λ(t)|ξ |)−1(

ρ1λ(t)μ(t)
)k+1

for ρ1 ≥ 4π2ρ̃0/(3C0). Thus (43) is valid for any j ≥ 0.
We can suppose that the diagonalization procedure in ZH for the proof of The-

orem 2 is also applicable if we replace the assumption (16) in (18) for any fixed
m ∈ N. Then we have the following lemma corresponding to the properties of
Lemma 4, which is crucial for the proof of Theorem 3:

Lemma 11 Let m ∈ N and (t, ξ) ∈ ZH,m. There exist positive constants γ and
N depending only on ν and ρ0 such that bj ∈ S{−j + 1, j ;γ j , ρ1,N} for j =
1, . . . ,m, and θj ∈ S{−j, j ;γ j , ρ1,N} for j = 1, . . . ,m− 1.
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For the preparation to prove Lemma 11 we introduce the following lemma:

Lemma 12 If bj ∈ S{−j + 1, j ;γ j , ρ1,N} and θj ∈ S{−j, j ;γ j , ρ1,N} for j =
1, . . . , k, then there exists a positive constant N independent of k such that bk+1 ∈
S{−k, k + 1;2ηγ k,ρ1,N} and φ1�/φ(k+1)� − 1 ∈ S{0,0;1, ρ1,N} for γ ≥ γ1,
where η= max{4π2/3,3νρ1}.

Proof Let N ≥ √
2η2γ . It follows that η(ηγ /N)2k ≤ 1/(2η). Noting

|θk|2 � σ
{−2k,2k;ηγ 2k}� σ

{
0,0;η(ηγ /N)2k},

by Lemma 10(vii) we have

1

1 − |θk|2 � 1 + 2η

(
ηγ

N

)2k

σ {0,0}� 1 + 1

η
σ {0,0}� 2σ {0,0}.

Therefore, using Lemma 8(i) and the representation

bk+1 = − (θk)t

1 − |θk|2 ,

we have bk+1 � σ {−k, k + 1;γ k}σ {0,0;2} � σ {−k, k + 1;2ηγ k}. Moreover, we
have

�{θk(θk)t }
1 − |θk|2 = −�{θkbk+1}� σ

{−2k,2k+ 1;2η2γ 2k}.

Noting 1/(1 + |θj |2)� σ {0,0;2} we see that

|bj |2
φ2
j�

=
(

2|θj |
1 + |θj |2

)2

� σ
{−2j,2j ;16η3γ 2j}.

Therefore, for N ≥ 4η2γ (η + η2)1/2, which ensures N ≥ η(K1 + K1η)
1/2j with

K1 = 16η3γ 2j , there exists gj ∈ S{0,0;2} such that

−1 +
√

1 − |bj |2
φ2
j�

= −|bj |2
φ2
j�
gj � σ

{−2j,2j ;32η3γ 2j}

by Lemma 10(viii). Let us define

pj = −1 +
√

1 − |bj |2
φ2
j�

and qj = −�{θj bj+1}
φ1�

.

Then denoting K2 = max{32η5γ 2,2η6γ 3} we have

pj �
(
ηγ

N

)2j

σ
{
0,0;32η3}�

(
K2

N

)j
σ {0,0}
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and

qj � σ
{−2j − 1,2j + 1;2η3γ1γ

2j}� 2η4γ

N

(
ηγ

N

)2j

σ {0,0}

�
(
K2

N

)j
σ {0,0}.

We can suppose that φj� > 0 for any j = 1, . . . , k. Recalling the representations

φ(j+1)� =
√
φ2
j� − |bj |2 − �{θjbj+1}

for any j ≥ 1 we have

φ(k+1)� = φ1�ψk,

where

ψk =
k∏

l=1

(1 + pl)+
k−1∑

j=1

qj

k∏

l=j+1

(1 + pl)+ qk.

Denoting σ {0,0} = σ and K2/N = δ, for ηδ ≤ 1/2 we have

ψk �
(

1 +
k∑

j=1

δjσ

)
k∏

j=1

(
1 + δjσ

)
�
(

1 +
k∑

j=1

δjσ

)(

1 +
∞∑

j=1

(δσ )j

)2

�
(

1 +
k∑

j=1

δjσ

)(

1 +
∞∑

j=1

(ηδ)j σ

)2

�
(

1 + ηδ

1 − ηδ
σ

)3

� (1 + 2ηδσ)3 = 1 + 6ηδσ + 12η2δ2σ 2 + 8η3δ3σ 3

� 1 + δ
(
6η+ 12η3δ2 + 8η5δ3)σ � 1 + δ

(
9η+ η2)σ.

Consequently, for δ ≤ 1/(2η(9η+ η2)) we have

φ1�
φ(k+1)�

− 1 = 1 −ψk

ψk
=

∞∑

j=1

(1 −ψk)
j �

∞∑

j=1

(
1

2η
σ

)j
�

∞∑

j=1

(
1

2

)j
σ = σ.

Thus the proof is concluded. �

Proof of Lemma 11 By Lemma 9(iii′) and (42) we have

b1 = −∂ta(t)|ξ |
2a(t)|ξ | � σ

{
0,1; ηγ1

2

}

and
( |b1|
φ1�

)2

� σ {−2,2;K2},
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whereK2 = η5γ 4
1 /4. By using Lemma 10(viii), there exists g1 ∈ S{0,0;2} such that

θ1 = iφ1�
b1

(√

1 −
( |b1|
φ1�

)2

− 1

)
= iφ1�

b1

( |b1|
φ1�

)2

g1 = ib1

φ1�
g1

� σ
{−1,1;η3γ 2

1

}

for N ≥ η(K2 + K2η)
1/2. Therefore, for γ ≥ η3γ 2

1 we have b1 ∈ S{0,1;γ } and
θ1 ∈ S{−1.1;γ }. Let us suppose that bj ∈ S{−j + 1, j ;γ j } and θj ∈ S{−j, j ;γ j }
for any j = 1, . . . , k. By Lemma 12 we have

bk+1 ∈ S{−k, k+ 1;2ηγ k
}
,

bk+1

φ(k+1)�
= bk+1

φ1�
(
1 + σ {0,0})� σ

{−k − 1, k+ 1;4η3γ1γ
k
}
,

and thus
( |bk+1|
φ(k+1)�

)2

� σ
{−2(k+ 1),2(k + 1);Kk+1

}
,

where Kk+1 = 16η7γ 2
1 γ

2k . Therefore, by Lemma 10(viii), there exists gk+1 ∈
S{0,0;2} such that

θk+1 = iφ(k+1)�
bk+1

(√

1 −
( |bk+1|
φ(k+1)�

)2

− 1

)

= iφ(k+1)�
bk+1

( |bk+1|
φ(k+1)�

)2

gk+1 = ibk+1

φ(k+1)�
gk+1

� σ
{−k − 1, k+ 1;8η4γ1γ

k
}

for N ≥ 4η3γ , which ensures N ≥ η(Kk+1 +Kk+1η)
1/2(k+1). Therefore, choosing

the constant γ by

γ = max
{
γ1, η

3γ1,2η,8η
4γ1

}= 8η4γ1,

we have

bk+1 ∈ S{−k, k+ 1, γ k+1} and θk+1 ∈ S{−k− 1, k + 1, γ k+1}

for sufficiently large N as we chosen above. Here we remark that all the above
choices for N depend only on ν, γ1 and ρ1, here γ1 and ρ1 are determined by ρ0 of
(18). �
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7.3.3 Uniform Estimate in ZH,k

Let us fix ξ ∈ {ξ ∈R
n; |ξ | ≤ d} and t > t0(ξ). Then there existm0,m ∈ N satisfying

2 ≤m0 ≤m such that tm0−1 < t0 ≤ tm0 and tm−1 < t ≤ tm; thus (t, ξ) ∈ ZH,m. We
denote

βj = βj (ξ)=
∫ tj

tj−1

∣∣bj (τ, ξ)
∣∣dτ

for k =m0, . . . ,m. By the definition of Vj (t)= Vj (t, ξ) we have

∣∣Vj (t)
∣∣2 = 1

(1 − |θj−1(t)|2)2

× ((
1 + ∣∣θj−1(t)

∣∣2)∣∣Vj−1(t)
∣∣2 − 4�{θj−1(t)Vj−1,1(t)Vj−1,2(t)

})

� 1

(1 ∓ |θj−1(t)|)2
∣∣Vj−1(t)

∣∣2

for any j ≥ 2. Then, by the same way for the proof of Theorem 2 we have

∣∣Vm(t)
∣∣2 ≤ eβm

a(t)

a(tm−1)

(1 + |θm−1(tm−1)|)
(1 − |θm−1(tm−1)|)

∏m−2
k=1 (1 − |θk(tm−1)|2)
∏m−1
k=1 (1 − |θk(t)|2)

× ∣∣Vm−1(tm−1)
∣∣2,

∣∣Vj (tj )
∣∣2 ≤ eβj

a(tj )

a(tj−1)

∏j−1
k=1(1 − |θk(tj−1)|2)
∏j−1
k=1(1 − |θk(tj )|2)

∣∣Vj (tj−1, ξ)
∣∣2

≤ eβj
a(tj )

a(tj−1)

(1 + |θj−1(tj−1)|)
(1 − |θj−1(tj−1)|)

∏j−2
k=1(1 − |θk(tj−1)|2)
∏j−1
k=1(1 − |θk(tj )|2)

∣∣Vj−1(tj−1)
∣∣2

for j =m0 + 1, . . . ,m− 1,

∣∣Vm0(tm0)
∣∣2 ≤ eβm0

a(tm0)

a(t0)

(1 + |θm0−1(t0)|)
(1 − |θm0−1(t0)|)

∏m0−2
k=1 (1 − |θk(t0)|2)

∏m0−1
k=1 (1 − |θk(tm0)|2)

∣∣Vm0−1(t0)
∣∣2

≤ eβm0
a(tm0)

a(t0)

(1 + |θm0−1(t0)|)
(1 − |θm0−1(t0)|)

∏m0−2
k=1 (1 − |θk(t0)|2)

∏m0−1
k=1 (1 − |θk(tm0)|2)

× 1
∏m0−2
k=1 (1 − |θk(t0)|)2

∣∣V1(t0)
∣∣2

and
∣
∣Vm(t)

∣
∣2 ≥ 1

∏m−1
k=1 (1 + |θk(t)|)2

∣
∣V1(t)

∣
∣2.
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It follows that

∣∣Vm(t)
∣∣2 ≤ exp

(
m∑

k=m0

βk

)
a(t)

a(t0)

(1 + |θm0−1(t0)|)
(1 − |θm0−1(t0)|)

∏m−1
k=m0

(1 + |θk(tk)|)
∏m−1
k=m0

(1 − |θk(tk)|)

×
∏m0−2
k=1 (1 − |θk(t0)|2)

∏m−1
k=1 (1 − |θk(t)|2)

1
∏m0−2
k=1 (1 − |θk(t0)|)2

∣∣V1(t0)
∣∣2

= exp

(
m∑

k=m0

βk

)
a(t)

a(t0)

∏m−1
k=m0

(1 + |θk(tk)|)
∏m−1
k=m0

(1 − |θk(tk)|)

∏m0−1
k=1 (1 + |θk(t0)|)

∏m−1
k=1 (1 − |θk(t)|2)

× 1
∏m0−1
k=1 (1 − |θk(t0)|)

∣∣V1(t0)
∣∣2,

and thus

∣∣V1(t)
∣∣2 ≤ exp

(
m∑

k=m0

βk

)
a(t)

a(t0)

∏m−1
k=m0

(1 + |θk(tk)|)
∏m−1
k=m0

(1 − |θk(tk)|)

∏m0−1
k=1 (1 + |θk(t0)|)

∏m−1
k=1 (1 − |θk(t)|)

×
∏m−1
k=1 (1 + |θk(t)|)

∏m0−1
k=1 (1 − |θk(t0)|)

∣∣V1(t0)
∣∣2.

By Lemma 11 we have |θk(t)| ≤ 2−k forN ≥ 2ηγ . Moreover, we have the following
lemma:

Lemma 13 Let m ∈ N and ξ ∈ R
n \ {0} satisfying 0 < |ξ | ≤ d . If bk(τ, ξ) ∈

S{−k + 1, k;γ k, ρ1,N} for k = m0, . . . ,m, then there exists a positive constant
C independent of m such that

m∑

k=m0

∫ tk

tk−1

bk(τ, ξ)dτ ≤ C.

Proof For the positive constant ε0 from (15) we can assume that ε0m0 > 1 by choos-
ing T0 from (22) large enough. Here we note thatΛ(t)ε0μ(t) is monotone decreasing
for t ≥ tm0−1. Therefore, we have

m∑

k=m0

βk ≤
m∑

k=m0

k!ν
(k + 1)2

|ξ |−k+1(γρ1)
k

∫ tk

tk−1

λ(τ)

Λ(τ)ε0k

(
Λ(τ)ε0μ(τ)

)k
dτ

≤
m∑

k=m0

k!ν
(k + 1)2

|ξ |−k+1(γρ1)
k
(
Λ(tk−1)

ε0μ(tk−1)
)k
∫ tk

tk−1

λ(τ)

Λ(τ)ε0k
dτ
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= N

m∑

k=m0

(
k!ν
kk

)ν
kν

(k + 1)2

(
γρ1

N

)k
Λ(tk−1)

ε0μ(tk−1)

∫ tk

tk−1

λ(τ)

Λ(τ)ε0k
dτ

≤ N

ε0m0 − 1

m∑

k=m0

(
k!ν
kk

)ν
kν

(k + 1)2

(
γρ1

N

)k
Λ(tk−1)μ(tk−1).

Here we note that the following inequalities hold for k ≥m0:

kν

Θ(tk−1)

(
log

Λ(tk−1)

Θ(tk−1)

)−ν(
logΛ(tk−1)

)β

= |ξ |
N

= (logΛ(t0))β

Θ(t0)
≥ (logΛ(tk−1))

β

Θ(tk−1)
,

it follows that

ek ≥ Λ(tk−1)

Θ(tk−1)
.

Hence, we have

m∑

k=m0

βk ≤ N

ε0m0 − 1

m∑

k=m0

(
k!ν
kk

)ν
kν

(k + 1)2

(
eρ1

N

)k
≤ C

for N > eγρ1. �

Consequently, noting the estimates

∏m−1
k=m0

(1 + |θk(tk)|)
∏m−1
k=m0

(1 − |θk(tk)|)

∏m0−1
k=1 (1 + |θk(t0)|)

∏m−1
k=1 (1 − |θk(t)|)

∏m−1
k=1 (1 + |θk(t)|)

∏m0−1
k=1 (1 − |θk(t0)|)

≤
( ∞∏

k=1

1 + 2−k

1 − 2−k

)2

≤ exp

(

2
∞∑

k=1

2−k

1 − 2−k

)

≤ e4,

we obtain the following estimates in ZH :

∣∣V1(t)
∣∣2 ≤ eC

a(t)

a(t0)

( ∞∏

k=1

1 + 2−k

1 − 2−k

)2
∣∣V1(t0)

∣∣2 ≤ eC+4 a(t)

a(t0)

∣∣V1(t0)
∣∣2,

which is a corresponding estimate to the estimate (34) with κ = 0. Thus we can
conclude the proof by the same way as in the proof of Theorem 2.
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Chapter 8
Filippov Solutions to Systems of Ordinary
Differential Equations with Delta Function
Terms as Summands

Uladzimir Hrusheuski

Abstract This paper is devoted to the investigation of the Cauchy problem for the
system of ordinary differential equations

ẏ(t)= f
(
t, y(t)

)+Aδ(s)(t), y(−1)= y0 ∈R
n, (1)

with a vector containing derivatives of the delta function and a possibly discontin-
uous function f : [−1, T0] × R

n → R
n, T0 > 0, and a constant matrix A on the

right-hand side. In our approach, the components of δ(s) are replaced by derivatives
of different δ-sequences and the limiting behavior of approximating solutions is ex-
amined. Filippov’s notion of solution to a differential equation with discontinuous
right-hand side is used.

Mathematics Subject Classification Primary 34A36 · 34A37 · 34A60 · 46T30 ·
Secondary 34A26

8.1 Introduction

The present paper was deeply influenced by the article [11] and it is a natural con-
tinuation of the work started there, where the scalar problem (1) with a continuous
nonlinearity f (t, y) was considered. The authors of paper [11] replaced the delta
functions by δ-sequences and examined under what conditions a limiting solution
exists. It was also noted there that some peculiarities arise in the multidimensional
case.

In this article, we will consider problem (1) in the light of the theory of differen-
tial equations with discontinuous right-hand sides which has been being developed
during the past decades (see [3]) and, due to increased demand in applied problems,
it is attracting even more interest nowadays. More precisely, we ask ourselves the
same question about the existence of a limiting solution but for problem (1) with
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a right-hand side f discontinuous in (t, y) and in the multidimensional case. All so-
lutions to differential equations with discontinuous right-hand sides are understood
in the sense of Filippov [3]. We will also employ different δ-sequences to replace
the components of δ(t).

A substantiation of the relevance of the subject as well as a survey of papers
and monographs on differential equations with distributions, particularly with dis-
tributions as additive terms, are given in [11], therefore we do not duplicate it here.
The only details we would like to add is to mention the monographs [13] and [16],
and say some words about the theory of differential equations with distributions and
discontinuous nonlinearitites.

In general, the study of this subject goes back to the problem of multiplication
of distributions (see [12]) and, currently, it is being successfully examined mainly
in the framework of the theory of new generalized functions [2, 4] currently. An
investigation of scalar autonomous differential equations with products of distribu-
tions and functions f having a finite number of jumps was done in [9, 10]. Scalar
nonautonomous problems with products of distributions and a function f discon-
tinuous on a C1-curve was considered in [5]. The case of systems was investigated
in [6]. It should be emphasized that the associated (limiting) solutions in the form
of sliding modes [15] were not ignored in these articles. We do not face the product
problem here since distributions are entering in the right-hand side additively and
sliding mode limiting solutions are admissible.

The paper can be divided into two parts. In the first part, it is proved that when the
arbitrary piecewise continuous function f (t, y) is sublinear of order r < 1/‖s‖∞,
s ∈ N

n with respect to the variable y, uniformly with respect to the variable t , the
limiting solution exists and its non-distribution part is a continuous function on
[−1, T0]. In the second part, we, firstly, determine a class of piecewise continuous
functions f we will work with, namely, piecewise Lipschitz continuous functions
which are discontinuous at a finite number of relatively simple hypersurfaces. It will
be shown that the Filippov set-valued maps Ff of functions f from this class sat-
isfy a global Lipschitz-like condition which implies linear growth of Ff but does
not coincide with the classical Lipschitz condition for set-valued maps. Then the re-
sults on existence of limiting solutions for problems with such right-hand sides are
formulated. Both the cases of bounded and unbounded sets of discontinuities are
considered. It is shown that in both cases the non-distribution part of the limiting
solution is discontinuous at t = 0 and the values of the jumps are obtained.

8.2 Preliminaries

Let ∂G, G and μk(G) be the boundary, closure and Lebesgue measure of the
(Lebesgue measurable) set G ⊂ R

k , k = 1, n+ 1, n ∈ N, respectively; B + F :=
{b + η|b ∈ B,η ∈ F }, B,F ⊂ R

n; [x, y] := {p ∈ R
n|p = (1 − θ)x + θy, θ ∈

[0,1] ⊂ R}, x, y ∈ R
n; Gt0 = Gt=t0 := {y ∈ R

n|(t0, y) ∈ G ⊂ R
n+1}; ‖y‖ =√∑n

i=1 y
2
i , ‖y‖∞ = maxi=1,n |yi |, y = (y1, . . . , yn) ∈ R

n; ‖A‖ = maxi,j=1,n |aij |,
A= [aij ]i,j=1,n ∈R

n×n.
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In the sequel, the symbol % means the disjoint union, a domain is a connected
open set, P is the hyperplane t = const in the space R

n+1 of the variables (t, x),
D0 = [−1, T0], T0 > 0, Dk =D0 ×R

k , C(Dk) is the set of all continuous functions
on Dk , k = 1, n and B(Rn) is the power set of Rn.

For self-sufficiency reason let us recall the following definitions which will be
used in the sequel.

Definition 1 A function f :Dn → R
n is called piecewise continuous (see [3]) if for

any bounded domain G⊂Dn there exist domains Gi , i = 1,m, m ∈N such that

G=G1 % . . . %Gm %Mf ,

Mf = ∂G1 ∪ . . .∪ ∂Gm, μn+1(Mf )= 0,

f is continuous in Gi and can be continuously extended to ∂Gi .

Definition 2 A function f :Dn → R
n, (t, y) �→ f (t, y) is called sublinear of order

r ∈ [0,1) (and of linear growth when r = 1) with respect to the variable y, uniformly
with respect to the variable t if the following condition holds

∃C > 0 : ∀(t, y) ∈Dn : ∥∥f (t, y)∥∥≤ C
(
1 + ‖y‖r).

Definition 3 A set-valued map F : Dn → B(Rn), (t, y) �→ F(t, y) is called up-
per semicontinuous (see [1]) at (t0, y0) ∈ Dn if for any open V ⊂ R

n such that
F(t0, y0)⊂ V there exists a neighborhood U of (t0, y0) such that

⋃

(t,y)∈U∩Dn
F (t, y)⊂ V.

We say that F is upper semicontinuous if it is so at every point of Dn. In the sequel,
we will also write F :Dn → R

n, simply saying that it is a set-valued map.

Definition 4 A set-valued map F :Dn → R
n will be called sublinear of order r ∈

[0,1) (and of linear growth when r = 1) with respect to the variable y, uniformly
with respect to the variable t if the following condition holds

∃C > 0 : ∀(t, y) ∈Dn,∀η ∈ F(t, y) : ‖η‖ ≤ C
(
1 + ‖y‖r).

Definition 5 An n-dimensional continuous hypersurface Ψn in Dn is called rela-
tively simple of order N ∈ N if for μ1-almost all t ∈ D0 it holds that ∀x, y ∈ Dt

n

there exists a decomposition

[x, y] = [x,p1) % [p1,p2) % . . . % [pN̄ , y], N̄ ≤N, (2)

where the interior of each interval in the decomposition (2) consists either of points
of Ψ t

n or points of Dt
n\Ψ t

n . The class of all relatively simple hypersurfaces of order
N ∈ N will be denoted by the symbol RSN .
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Example 1 Let Ψ 1
2 and Ψ 2

2 be defined by equations y2
1 + y2

2 = 1 and b1y1 + b2y2 =
0, b1, b2 ∈ R, t ∈D0 respectively. Then Ψ 1

2 and Ψ 2
2 are relatively simple hypersur-

faces of orders 2 and 1, respectively.

Example 2 Let Ψ2 be defined by equation

y2 =
{
y1 sin(1/y1), y1 ∈ R\{0},
0, y1 = 0,

t ∈D0. Then ∀N ∈ N : Ψ2 /∈ RSN . Indeed, fix any t ∈D0 and take x = (−1,0) and
y = (1,0). Then the segment [x, y] cannot be represented in the form (2) since Ψ2
intersects it in an infinite number of points.

In the sequel, we will say that a hypersurface Ψn in Dn is called bounded with
respect to the variable yi , i ∈ {1, . . . , n} if ∃κ > 0 : Ψn ⊂Di−1 × [−κ, κ] ×R

n−i .
Finally, let us recall several facts from the theory of differential equations with

discontinuous right-hand sides.

Definition 6 We will say that the domain of continuityGi of a piecewise continuous
function f satisfies condition Γ if for μ1-almost all t ∈D0 it holds that

(∂Gi)
t = ∂Gti .

Definition 7 An absolutely continuous function y(t) defined on [b1, b2] ⊂ R is
called a Filippov solution to the equation

ẏ(t)= f
(
t, y(t)

)
(3)

with the piecewise continuous function f :Dn → R
n on the interval [b1, b2] if it is

a solution to the differential inclusion

ẏ(t) ∈ Ff
(
t, y(t)

)
, (4)

i.e. if it satisfies (4) for μ1-almost all t ∈ [b1, b2]. The set-valued map Ff is called
the Filippov set-valued map of the function f and is defined in the following way:
Ff (t, y) is the smallest convex set containing the accumulation points f (t, y∗) as
y∗ → y, y∗ /∈Mt

f .

Remark 1 It should be emphasized that the Filippov set-valued map Ff may be not
defined for all t ∈D0 but only for μ1-almost all t ∈D0. Indeed, since μn+1(Mf )=
0 it holds that μn(Mt

f )= 0 for μ1-almost all t ∈D0.

Example 3 Let the function f :D2 → R
2 be discontinuous at the set

Mf = Ψ 1
2 %Ψ 2

2 %Ψ 3
2 ,
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where Ψ 1
2 = [−1,0) × R × {0}, Ψ 2

2 = {0} × R × [0,1], Ψ 3
2 = (0, T0] × R × {1}.

Then the map Ff is not defined on the strip {0} × R × (0,1) since all these points
are unreachable from {0}×R×((−∞,0)%(1,+∞)). Moreover,μ2(M

t=0
f )= +∞.

8.3 Statement of the Problem

We consider the system of scalar ordinary differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẏ1(t)= f1(t, y
1(t), . . . , yn(t))+ α1δ

(s1)
1 (t),

ẏ2(t)= f2(t, y
1(t), . . . , yn(t))+ α2δ

(s2)
2 (t),

. . .

ẏn(t)= fn(t, y
1(t), . . . , yn(t))+ αnδ

(sn)
n (t),

(5)

with initial data yi(−1)= y0
i , i = 1, n or, in vector notation,

ẏ(t)= f
(
t, y(t)

)+Aδ(s)(t), y(−1)= y0,

where f : Dn → R
n is a piecewise continuous function, A = diag(α1, . . . , αn),

δ(s)(t)= (δ
(s1)
1 (t), . . . , δ

(sn)
n (t))T , δ(si )i (t) denotes the si -order derivative of the Dirac

delta function δi(t), i = 1, n, s = (s1, . . . , sn) ∈ N
n, y0 = (y0

1 , . . . , y
0
n)
T ∈ R

n,
α = (α1, . . . , αn)

T ∈R
n.

We distinguish exemplars δi(t), i = 1, n of the Dirac delta function because
we are going to investigate the limiting behavior of the Filippov solution yε(t) =
(y1
ε (t), . . . , y

n
ε (t)) to the problem (5) as ε → 0 when δi(t), i = 1, n are replaced

by different δ-sequences φiε(t) = (1/ε)φi(t/ε), ε ∈ (0,1], where φi ∈ C∞(R),
suppφi = [−a, b], ∫ b−a φi(t)dt = 1, μ1({t ∈ [−a, b]|φi(t) = 0}) = 0, i = 1, n,
a, b > 0.

In the sequel we will use the notations

φ(t) := (
φ1(t), . . . , φn(t)

)T
, φε(t) :=

(
φ1
ε (t), . . . , φ

n
ε (t)

)T
,

the vector of derivatives of the functions φiε will be denoted by the symbol

φ(s)ε (t) := ((
φ1
ε

)(s1)(t), . . . ,
(
φnε
)(sn)(t)

)T
,

and in the case si = 1, i = 1, nwe will use the notation φ̇ε(t) := (φ̇1
ε (t), . . . , φ̇

n
ε (t))

T .
We will also need the following assumptions.

Assumption A Equation (3) with the piecewise continuous function f has at most
one Filippov solution on D0 for any initial data y(−1)= y0 ∈R

n.

Assumption B Equation (3) with the piecewise continuous function f has at most
one Filippov solution on [0, T0] for any initial data y(0)= y00 ∈R

n.
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8.4 Main Results

Theorem 1 Let f (t, y) : Dn → R
n be a piecewise continuous function, such that

each subdomain of continuity satisfies condition Γ , and sublinear of order r ∈ [0,1)
with respect to the variable y, uniformly with respect to the variable t . Suppose that
Assumption A is made and ‖s‖∞ < 1/r (i.e. s is arbitrary if f is bounded). Then
the Filippov solutions yε(t) to the equation

ẏε(t)= f
(
t, yε(t)

)+Aφ(s)ε (t), yε(−1)= y0, (6)

converge to y(t)= y(t)+Aδ(s−1)(t) in D′(D0), where y(t) is the Filippov solution
to the problem

ẏ(t)= f
(
t, y(t)

)
, y(−1)= y0. (7)

on D0 and s − 1 := (s1 − 1, . . . , sn − 1).

Remark 2 Due to the existence theorem Chap. 2, Sect. 7, Theorem 1 in [3], the
Cauchy problem (7) with piecewise continuous right-hand side, each of whose do-
mains of continuity satisfies condition Γ , has a local solution. However, one can
show that, due to the sublinearity of the function f , any global Filippov solution
y(t) to the problem (7) in the case of its existence does not leave the compact set
D0 × B,B = {y|‖y‖ ≤ C(1 + ‖y0‖r )}. Therefore, the existence of a solution on
the whole segment D0 is guaranteed by the extension theorem Chap. 2, Sect. 7,
Theorem 2 in [3]. Assumption A guarantees the uniqueness of this solution.

Remark 3 The function gε(t, y)= f (t, y)+Aφ(s)ε (t), as ε is fixed, is also piecewise
continuous with Mg =Mf . Therefore, each subdomain of continuity of gε satisfies
condition Γ . Moreover, gε(t, y) is sublinear of the same order r with respect to the
variable y, uniformly with respect to the variable t . Reasoning by analogy we get
the existence of a Filippov solution to problem (6) on the whole segment D0, but it
can be nonunique. Theorem 1 states that the limit of yε(t) does not depend on the
choice of solution to problem (6) as ε is fixed.

Lemma 1 Suppose that the conditions of Theorem 1 hold. Then ∃C > 0 such that
for μ1-almost all t ∈ D0 it holds that ∀y ∈ Dt

n and ∀η ∈ Ff (t, y) the following
inequality holds

‖η‖ ≤ C
(
1 + ‖y‖r), (8)

where Ff is the Filippov set-valued map of the function f .

Proof Fix t ∈ D0 such that the map Ff is defined for all y ∈ Dt
n (see Remark 1).

Then fix y ∈Dt
n and η ∈ Ff (t, y). If (t, y) is a point of continuity of the function f ,

then η = f (t, y)= Ff (t, y) and inequality (8) holds automatically. If (t, y) ∈Mf ,
then by the definition of a piecewise continuous function there exist not more than
a finite number m of domains Gi , i = 1,m such that y ∈ ∂Gti .
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Let f
i

be the continuous extension of the function f from Gi to Gi , i = 1,m.
Then taking the limit in the inequality ‖f (t, y∗)‖ ≤ C(1 + ‖y∗‖r ) as y∗ → y,
y∗ ∈Gti , we get

∥∥f
i
(t, y)

∥∥≤ C
(
1 + ‖y‖r), i = 1,m.

Since the least convex set containing a finite collection of points in R
n is the set

of all convex combination of these points and it is closed we have

‖η‖ ≤
m∑

i=1

βi
∥
∥f

i
(t, y)

∥
∥≤ C

(
1 + ‖y‖r),

m∑

i=1

βi = 1.
�

Proof of Theorem 1 By Definition 7, the Filippov solution to the problem (6) is
defined as a solution to the problem

ẏε(t) ∈ Fgε
(
t, yε(t)

)
, yε(−1)= y0. (9)

Fix an arbitrary point (t, y) ∈Mf and let giε be the continuous extension of the
function gε from Gi to Gi , i = 1,m. Then we have

giε(t, y)= f
i
(t, y)+Aφ(s)ε (t), i = 1,m,

and, consequently,

Fgε (t, y) =
{

η|η=
m∑

i=1

β
η
i g

i
ε(t, y),

m∑

i=1

β
η
i = 1

}

=
{

η|η=
m∑

i=1

β
η
i f

i
(t, y)+Aφ(s)ε (t),

m∑

i=1

β
η
i = 1

}

= Ff (t, y)+Aφ(s)ε (t).

Therefore, we can rewrite problem (9) in the form

ẏε(t) ∈ Ff
(
t, yε(t)

)+Aφ(s)ε (t), yε(−1)= y0. (10)

Any solution to problem (10) can be represented as a sum yε(t) = xε(t) +
Aφ

(s−1)
ε (t), where xε(t) is a solution of the problem

ẋε(t) ∈ Ff
(
t, xε(t)+Aφ(s−1)

ε (t)
)
, xε(−1)= y0. (11)

At the same time the differential inclusion (11) is equivalent to the integral equation

xε(t)= y0 +
∫ t

−1
ηε(u)du,

where ηε(u) ∈ Ff (u, xε(u)+Aφ
(s−1)
ε (u)) for μ1-almost all u ∈D0.
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The initial data in (10) and (11) are the same due to the fact that supp(φiε)
(si )(t)⊆

[−aε, bε], i = 1, n. By the same reason any solution xε(t) to (11) is equal to y(t)
for t ∈ [−1,−aε], in particular xε(−aε)= y(−aε). Moreover, by the continuity of
the Filippov solution y(t) we have x0ε := y(−aε)→ y(0) as ε→ 0. However, this
does not imply that xε(0)→ y(0) uniformly with respect to the choice of xε(·) as
ε→ 0, though it will be shown below.

Fix ε and let t ∈ [−aε, bε], dε = aε+bε and xε(·) is any solution to the problem
(11). Then we have

∥∥xε(t)− x0ε
∥∥ ≤

∫ t

−aε
∥∥ηε(u)

∥∥du≤ C

∫ t

−aε
(
1 + ∥∥xε(u)+Aφ(s−1)

ε (u)
∥∥r)du

= Cdε +C

∫ t

−aε
∥∥xε(u)+Aφ(s−1)

ε (u)− x0ε + x0ε
∥∥rdu

≤ Cdε
(
1 + ‖x0ε‖r

)+C‖A‖r
∫ bε

−aε
∥∥φ(s−1)

ε (u)
∥∥rdu

+C

∫ t

−aε
∥∥xε(u)− x0ε

∥∥rdu≤ Cdε
(
1 + ‖x0ε‖r

)

+C‖A‖rε1−r‖s‖∞
∫ b

−a
∥∥φ(s−1)(u)

∥∥rdu

+C

∫ t

−aε
∥∥xε(u)− x0ε

∥∥rdu. (12)

Since ‖u‖r ≤ max{1,‖u‖}, we get that

∥∥xε(t)− x0ε
∥∥ ≤ Cdε

(
1 + ‖x0ε‖r

)

+C‖A‖rε1−r‖s‖∞
∫ b

−a
∥∥φ(s−1)(u)

∥∥rdu

+C

∫ t

−aε
max

{
1,
∥∥xε(u)− x0ε

∥∥}du.

Adding 1 to the right-hand side of the inequality, we get that

max
{
1,
∥∥xε(t)− x0ε

∥∥} ≤ 1 +Cdε
(
1 + ‖x0ε‖r

)

+C‖A‖rε1−r‖s‖∞
∫ b

−a
∥
∥φ(s−1)(u)

∥
∥rdu

+C

∫ t

−aε
max

{
1,
∥∥xε(u)− x0ε

∥∥}du.
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Applying Gronwall’s inequality we get

max
{
1,
∥
∥xε(t)− x0ε

∥
∥} ≤

(
1 +Cdε

(
1 + ‖x0ε‖r

)

+C‖A‖rε1−r‖s‖∞
∫ b

−a
∥
∥φ(s−1)(u)

∥
∥rdu

)
eCdε ,

which implies

∥
∥xε(t)− x0ε

∥
∥ ≤

(
1 +Cdε

(
1 + ‖x0ε‖r

)

+C‖A‖rε1−r‖s‖∞
∫ b

−a
∥∥φ(s−1)(u)

∥∥rdu
)
eCdε . (13)

Since Cdε(1 + ‖x0ε‖r ) → 0 and C‖A‖rε1−r‖s‖∞
∫ b
−a ‖φ(s−1)(u)‖rdu → 0 as

well as eCdε → 1 as ε→ 0 we have for all ε < ε0

∥∥xε(t)− x0ε
∥∥≤ 2, t ∈ [−aε, bε], (14)

where xε(·) is any solution to the problem (11).
Finally, substituting estimate (14) into inequality (12) we get

∥∥xε(t)− x0ε
∥∥ ≤ Cdε

(
1 + 2r + ‖x0ε‖r

)

+C‖A‖rε1−r‖s‖∞
∫ b

−a
∥∥φ(s−1)(u)

∥∥rdu

→ 0 as ε→ 0

uniformly with respect to the choice of xε(·). Particularly, xε(0) → y(0) and
xε(bε)→ y(0) uniformly with respect to the choice of xε(·) as ε→ 0.

Now, we prove that (xε(t))ε∈(0,1] converges pointwise with respect to t and uni-
formly with respect to the choice of xε(·) to the solution y(t) to problem (7) on
(0, T0] as ε → 0, i.e., ∀t > 0 ∀& > 0 ∃ε1(t,&) > 0 such that ∀ε ∈ (0, ε1) it holds
that ‖xε(t)− y(t)‖<& for any solution xε(·) to problem (11).

Fix an arbitrary t > 0 and & > 0. Since the set-valued map F(u,y + A×
φ
(s−1)
ε (u)) = F(u,y) for u ≥ bε, ε ∈ (0,1], each solution xε(·) to problem (11),

when ε is fixed, can be represented on [bε,T0] as a solution zε(·) to the problem

żε(u) ∈ Ff
(
u, zε(u)

)
, zε(bε)= xε(bε). (15)

Therefore, xε(t)= zε(t) for all ε such that bε ≤ t . At the same time y(u)= y(u),
u ∈ [0, T0], where y(·) is the unique solution to the problem

ẏ(u) ∈ Ff
(
u,y(u)

)
, y(0)= y(0). (16)
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By the theorem on the continuous dependence of solutions to problem (16) on
initial data Chap. 2, Sect. 8, Theorem 1 in [3] there exists γ > 0 such that the in-
equalities

∥∥xε(bε)− y(0)
∥∥≤ γ, bε ≤ γ,

imply the inequality
∥∥zε(t)− y(t)

∥∥<&,
where zε(·) is any of the solutions to the problem (15) on [0, T0]. Note that xε(u) is
not necessarily equal to zε(u) for u ∈ [0, bε). Setting

ε1 := sup
{
ε : ε ≤ min{t/b, γ /b},∥∥xε(bε)− y(0)

∥∥< γ
}
,

we get that ∀t ∈D0 : xε(t)→ y(t) as ε→ 0.
Reasoning in the same way as the estimate (14) was obtained one can show that

for all ε ∈ (0,1], any solution xε(t) to (11) does not go out of some compact set.
Therefore, it follows from Lebesgue’s dominated convergence theorem that xε(t)→
y(t) as ε→ 0 in D′(D0). �

Theorem 2 Let the following conditions hold:

(1) the function f :Dn → R
n is piecewise continuous, the set Mf has the form

Mf = Ψ 1
n ∪ . . .∪Ψ q

n , (17)

where the hypersurfaces Ψ i
n ∈ RSNi , i = 1, q , q ∈ N are bounded and each do-

main of continuity Gi , i = 1,m, m ∈ N of the function f satisfies condition Γ .
Moreover, let Assumptions A and B hold;

(2) the function f is Lipschitz with respect to y in each domain of continuity, i.e.
∀Gi , i = 1,m, ∃Ci > 0 such that for μ1-almost all t ∈ {t |P ∩ Gi �= ∅} the
following condition holds:

∀x ∈Gti,∀y ∈Gti :
∥∥f (t, x)− f (t, y)

∥∥≤ Ci‖x − y‖;

(3) αij �= 0 for all j = 1, τ , where τ ∈ {1,2, . . . , n} and for each w = (w1, . . . ,

wτ ) ∈ {−1,1}τ there exists the limit

M
iς ,(i1,...,iτ )

k,(w1,...,wτ )
:= lim

t→0
ŷi1 →w1·∞

...

ŷiτ →wτ ·∞

fk(t, ŷ1, . . . , ŷiς , . . . , ŷn)

ŷiς
, k = 1, n,

for some iς = iς (w, k), ς ∈ {1,2, . . . , τ }, where fk is the k-th component of the
function f and ŷi = yi if αi �= 0 and ŷi = 0 otherwise, i = 1, n.
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Then the Filippov solutions yε(t) to the equations

ẏε(t)= f
(
t, yε(t)

)+Aφ̇ε(t), ε ∈ (0,1], (18)

with initial data yε(−1) = y0 converge to y(t) = y(t)+ Aδ(t), where y restricted
to [−1,0) is the Filippov solution to the equation

ẏ(t)= f
(
t, y(t)

)
, (19)

with initial data y(−1) = y0, and y restricted to (0, T ] is the Filippov solution to
(19) with initial data y(0)= y(0)+ β , β = (β1, . . . , βn) on (0, T ], where

βk =
∑

w∈{−1,1}τ
αiς (w,k)M

iς (w,k),(i1,...,iτ )

k,(sign(αi1 )·w1,...,sign(αiτ )·wτ )
∫ b

−a
φ
iς (w,k)
w (u)du,

φ
iς (w,k)
w (u)=

{
φiς (w,k)(u), u ∈⋂τ

j=1A
j
w,

0, u /∈⋂τ
j=1A

j
w,

Ajw :=
{

{u|φij (u) > 0}, wj = 1,

{u|φij (u) < 0}, wj = −1.

Remark 4 It is worth emphasizing that a piecewise continuous function in the sense
of Definition 1 can have an infinite number m of domains of continuity. However,
for a piecewise continuous function with bounded set Mf of the form (17) it holds
thatm<∞. Indeed, boundedness of the setMf implies the existence of a rectangle
Ω = D0 × [−κ, κ]n, κ > 0 outside of which there are no discontinuities of the
function f . At the same time, by the definition of a piecewise continuous function,
there is a finite number of domains of continuity of the function f in Ω .

However, the number of domains of continuity of the function f does not depend
on the number of the hypersurfaces Ψ i

n as the following example illustrates.

Example 4 Let the function f : D1 → R be discontinuous on the two curves y =
sin πm

T0+1 (t + 1) and y = − sin πm
T0+1 (t + 1). Then f hasm+ 2 domains of continuity.

Remark 5 It will be shown below that under the assumptions of Theorem 2 the set-
valued function Ff has linear growth with respect to the variable y, uniformly with
respect to the variable t . Therefore, reasoning by analogy as in Remarks 2 and 3 we
get that problem (18) has a solution on the whole segment D0 and (19) with initial
data y(−1)= y0 and y(0)= y(0)+ β has solutions on the whole segments [−1,0]
and [0, T0] respectively. Moreover, both solutions are unique. As above, Theorem 2
states that the limit of yε(t) does not depend on the choice of solution to problem
(18) as ε is fixed.

An example illuminating the conditions of Theorem 2 will be given after its
proof.
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Lemma 2 Suppose the function f : Dn → R
n satisfies conditions (1)–(2) of The-

orem 2. Then ∃C > 0 such that for μ1-almost all t ∈D0 it holds that ∀x, y ∈Dt
n,

∀η ∈ Ff (t, x), ∀v ∈ Ff (t, y) the following inequality holds

‖η− v‖ ≤ C
(
1 + ‖x − y‖), (20)

where Ff is the Filippov set-valued map of the function f .

Proof Let L := maxi=1,m Ci and N :=∑q

i=1Ni , where Ci is the Lipschitz constant

inGi andNi is the order of the relative simplicity of the hypersurface Ψ i
n . Fix t ∈D0

such that the map Ff is defined for all y ∈ Dt
n (see Remark 1), representation (2)

holds for all hypersurfaces Ψ i
n , i = 1, q and the Lipschitz inequality holds for all

Gi such that P ∩Gi �= ∅. Then fix x, y ∈Dt
n, η ∈ Ff (t, x), v ∈ Ff (t, y). Then the

relative simplicity of each Ψ i
n implies

[x, y] = [
x,p1

1

) % [
p1

1,p
1
2

) % . . . % [
p1
N̄1
, y
]
, N̄1 ≤N1,

. . .

[x, y] = [
x,p

q

1

) % [
p
q

1 ,p
q

2

) % . . . % [
p
q

N̄q
, y
]
, N̄q ≤Nq.

Renumbering all points plk , l = 1, q , k = 1, N̄l in ascending order we get the
decomposition

[x, y] = [x,p1) % [p1,p2) % . . . % [pN̄ , y], N̄ ≤
q∑

i=1

N̄i ≤N, (21)

that implies ‖x − y‖ =∑N̄
l=0 ‖pl − pl+1‖, where p0 := x, pN̄+1 := y.

Since Gi ∩Ω , i = 1,m is compact, we have

K := max
i=1,m

sup
(t,y)∈Gi∩Ω

∥
∥f

i
(t, y)

∥
∥<∞.

Denote

f (t,pl+) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lim
p∗→pl

p∗∈[pl,pl+1]
f (t,p∗), if ∃Gi : (pl,pl+1)⊂Gti,

lim
p∗→pl

p∗∈Gti
pl ,pl+1∈∂Gti

f (t,p∗), if (pl,pl+1)⊂Mt
f , l = 0, N̄,

f (t,pl−) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lim
p∗→pl

p∗∈[pl−1,pl ]
f (t,p∗), if ∃Gi : (pl−1,pl)⊂Gti,

lim
p∗→pl

p∗∈Gti
pl ,pl−1∈∂Gti

f (t,p∗), if (pl−1,pl)⊂Mt
f , l = 1, N̄ + 1,
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and

f (t,pN̄+1+) := v, f (t,p0−) := η.

It should be emphasized that in the case (pl,pl+1) ⊂ Gti the inequality
‖f (t,pl+) − f (t,pl+1−)‖ ≤ Ci‖pl − pl+1‖ holds due to condition (2) of The-
orem 2. If (pl,pl+1)⊂Mt

f and there exist Gi such that pl,pl+1 ∈ ∂Gti , then again
the inequality ‖f (t,pl+)− f (t,pl+1−)‖ ≤ Ci‖pl −pl+1‖ holds. It should be em-
phasized that several domains Gi can exist such that pl,pl+1 ∈ ∂Gti . Therefore,
when doing the calculation of f (t,pl+1−), one has to take the same Gi as was
taken for f (t,pl+) in the previous step. In the case when (pl,pl+1) ⊂ Mt

f and
there is no such Gi that pl,pl+1 ∈ ∂Gti , we always can split the segment [pl,pl+1]
into a finite number of parts in the way that for both endpoints of any segment of
the partition there exists Gi such that these endpoints belong to ∂Gti .

It is worth noting also that if (t, x) (or (t, y)) is a point of continuity then
η= f (t,p0+) (and respectively v = f (t,pN̄+1−)). Otherwise ‖η‖ ≤K (‖v‖ ≤K)
since η and v are convex combinations of the limiting values of the function f , each
of which is less or equal to K .

Thus, we have

‖η− v‖ ≤ ∥∥η− f (t,p0+)
∥∥+ ∥∥f (t,p0+)− f (t,p1−)

∥∥

+ ∥∥f (t,p1−)− f (t,p2+)
∥∥+ . . .+ ∥∥f (t,pN̄+)− f (t,pN̄+1−)

∥∥

+ ∥∥f (t,pN̄+1−)− v
∥∥

≤
N̄∑

k=0

L‖pk − pk+1‖ +
N̄+1∑

l=0

∥∥f (t,pl+)
∥∥+

N̄+1∑

l=0

∥∥f (t,pl−)
∥∥

≤ L‖x − y‖ + 2K(N + 2).

Thus, the inequality (20) holds with the constant C = max{L,2K(N + 2)}. �

Lemma 3 Let f : Dn → R
n be a piecewise continuous function, each of whose

domains of continuity satisfies condition Γ , and Ff be the Filippov set-valued map
of f . Then for all ε ∈ (0,1] there exists a μ1-integrable function vε(t) such that for
μ1-almost all t ∈ [−aε, bε] it holds that

vε(t) ∈Hε(t),
where Hε(t) := Ff (t,Aφε(t)).

Proof It is a well known fact (see Chap. 2, Sect. 6, Lemma 3 in [3]) that the Fil-
ippov set-valued map Ff (t, y) is upper semicontinuous with respect to the vari-
able y. Moreover, due to condition Γ there exists a set-valued map F 0

f (t, y) such

that Ff (t, y) = F 0
f (t, y) for μ1-almost all t ∈ D0 and F 0

f (t, y) is upper semicon-
tinuous with respect to the variables (t, y) (see Chap. 2, Sect. 6, Lemma 4 in [3]).
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From its definition one can see that the set-valued map Hε(t) is upper semicontin-
uous in t and, consequently (see [7]), has a Borel selection v (see [8, 14]). Since
F 0
f is semicontinuous in (t, y), it is bounded (see Chap. 2, Sect. 5, Lemma 15 in

[3]) on the compact set containing the graph of Aφε(t). Therefore, the selection v is
bounded and, consequently, μ1-integrable. �

Corollary 1 The differential inclusion

żε(t) ∈ Ff
(
t,Aφε(t)

)
, zε(−aε)= x0ε, (22)

has a solution on the segment [−aε, bε], but it can be nonunique.

Proof of Theorem 2 It follows from inequality (20) that the set-valued function Ff
has linear growth with respect to the variable y, uniformly with respect to the vari-
able t . Therefore, estimate (13) transforms into the estimate

∥∥xε(t)− x0ε
∥∥ ≤

(
1 +Cdε

(
1 + ‖x0ε‖

)+C‖A‖
∫ b

−a
∥∥φ(u)

∥∥du
)
eCdε

=: λε, t ∈ [−aε, bε], (23)

which holds for all ε ∈ (0,1] and all solutions xε(·) to problem (11).
We estimate the difference between any two solutions to problem

ẋε(t) ∈ Ff
(
t, xε(t)+Aφε(t)

)
, xε(−aε)= x0ε,

and to the problem

żε(t) ∈ Ff
(
t,Aφε(t)

)
, zε(−aε)= x0ε.

It holds that

∥∥xε(t)− zε(t)
∥∥≤

∫ t

−aε
∥∥ηε(u)− vε(u)

∥∥du,

where ηε(u) ∈ Ff (u, xε(u) + Aφε(u)), vε(u) ∈ Ff (u,Aφε(u)) for μ1-almost all
u ∈ [−aε, bε].

Using inequalities (20) and (23) we have

∥∥xε(t)− zε(t)
∥∥ ≤ C

∫ t

−aε
(
1 + ∥∥xε(u)

∥∥)du

= C

∫ t

−aε
(
1 + ∥∥xε(u)− x0ε + x0ε

∥∥)du≤ Cdε
(
1 + λε + ‖x0ε‖

)
.

Consequently, xε(bε)− zε(bε)→ 0 uniformly with respect to the choice of xε(·)
and zε(·) as ε→ 0.
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For each ε ∈ (0,1] we choose any solution zε(·) to problem (22) and determine
the jump of the limiting solution. Define the sets

Ajw :=
{

{u|φij (u) > 0}, wj = 1,

{u|φij (u) < 0}, wj = −1,
j = 1, τ ,

Aw :=
τ⋂

j=1

Ajw.

Then ignoring the sets where at least one of the function φij (u) equals to zero
we have

zkε(bε) = xk0ε +
∫ bε

−aε
vkε (u)du= xk0ε + ε

∫ b

−a
vkε (εξ)dξ

= xk0ε +
∑

w∈{−1,1}τ
αiς (w)

∫

[−a,b]∩Aw
vkε (εξ)

αiς (w)ε
−1φiς (w)(ξ)

φiς (w)(ξ)dξ,

where vε(εξ)= (v1
ε (εξ), . . . , v

n
ε (εξ)) ∈ Ff (εξ, ε−1Aφ(ξ)).

For fixed ξ ∈Aw and sufficiently small ε we have

Ff
(
εξ, ε−1Aφ(ξ)

)= f
(
εξ, ε−1Aφ(ξ)

)= vε(εξ).

Consequently,

vk(εξ)

αiς (w)ε
−1φiς (w)(ξ)

φiς (w)(ξ)→M
iς (w),(i1,...,iτ )

k,(sign(αi1 )·w1,...,sign(αiτ )·wτ )φ
iς (w)(ξ)

as ε→ 0.
At the same time
∣∣
∣∣

vk(εξ)

αiς (w)ε
−1φiς (w)(ξ)

φiς (w)(ξ)

∣∣
∣∣ ≤ ε

|αiς (w)|
∣
∣vk(εξ)

∣
∣

≤ Cε

minj=1,τ |αij |
(
1 + ε−1

∥
∥Aφ(ξ)

∥
∥)

≤ C

minj=1,τ |αij |
(

1 + ‖A‖ max
ξ∈[−a,b]

∥∥φ(ξ)
∥∥
)
.

Let

φ
iς (w)
w (ξ) :=

{
φiς (w)(ξ), ξ ∈ [−a, b] ∩Aw,
0, ξ /∈ [−a, b] ∩Aw.

Then an application of Lebesgue’s dominated convergence theorem finishes the
proof. �
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To illustrate the conditions of Theorem 2, we discuss the following

Example 5 Let be T0 = 3, n= 2, y0 = (0,0)T , α1 = 0, α2 �= 0,

f1(t, y1, y2)=H
(
|y2| −

√
4 − t2 − y2

1

)
,

f2(t, y1, y2)=H

(√
1

4
− t2 − y2

1 − |y2|
)
,

where H(·) is the Heaviside function. Then

Ψ 1
2 : t2 + y2

1 + y2
2 = 4, Ψ 2

2 : t2 + y2
1 + y2

2 = 1

4
,

N1 =N2 = 2 and, consequently, q = 2, m= 3.
Since there is only one coefficient α2 �= 0, we have τ = 1, ij = i1 = 2, w ∈

{(−1,−1), (−1,1), (1,−1), (1,1)}, ŷ1 = 0, ŷ2 = y2, iς = i1 = 2.
Therefore,

M
2,(2)
1,(−1,±1) =M

2,(2)
1,(1,±1) = lim

t→0
y2→±∞

f1(t,0, y2)

y2
= lim
y2→±∞

1

y2
= 0,

M
2,(2)
2,(−1,±1) =M

2,(2)
2,(1,±1) = lim

t→0
y2→±∞

f2(t,0, y2)

y2
= lim
y2→±∞

0

y2
= 0.

Solving the equations (3) with initial value y0 = (0,0)T in the domains of conti-
nuity of the function f , one can get that the function

y(t)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(0,0)T , t ∈ [−1,− 1
2 ],

(0, t + 1
2 )
T , t ∈ [− 1

2 ,0],
(0, 1

2 )
T , t ∈ [0,

√
15
2 ],

(t −
√

15
2 , 1

2 )
T , t ∈ [

√
15
2 ,3]

is the unique Filippov solution on D0. Therefore Assumption A holds. Moreover, it
is immediate to see that Assumption B holds as well. Thus, the non-distribution part
of the limiting solution does not have a jump in this case.

Remark 6 The assumption

μ1
({
t ∈ [−a, b]|φi(t)= 0

})= 0, i = 1, n,

can be replaced with the requirement that additional limits as in condition (3) of
Theorem 2 have to exist.

The Theorem 2 can be easily modified to the case of an unbounded set Mf .
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Theorem 3 Assume that

(1) the function f : Dn → R
n is piecewise continuous having a finite number of

domains of continuity and the set Mf has the form

Mf = Ψ 1
n ∪ . . .∪Ψ q

n , (24)

where hypersurfaces Ψ i
n ∈ RSNi , i = 1, q , q ∈ N, given by equalities ψi(t, y1,

. . . , yn) = 0, are bounded at least with respect to one of the variables yj , j ∈
{1, . . . , n} and each domain of continuity of the function f satisfies condition Γ .
Moreover, let Assumptions A and B be made;

(2) the functions

Ki : Ψi →R
n, (t, y) �→ max

j :y∈∂Gtj
lim
y∗→y

y∗∈Gtj

∥
∥f

(
t, y∗)∥∥, i = 1, q

are bounded.

Further, suppose that the conditions (2)–(3) of Theorem 2 hold. Then the asser-
tion of Theorem 2 remains valid.

Lemma 4 Suppose the function f :Dn → R
n satisfies conditions (1)–(2) of Theo-

rem 3 and condition (2) of Theorem 2. Then the statement of the Lemma 2 remains
valid.

Proof The proof of Lemma 1 remains the same if one replaces the constant K by
K̄ , where K̄ is the maximal constant among all constants bounding the functions
Ki , i = 1, q . �

Proof of the Theorem 3 The proof of the Theorem 3 remains the same but with
application of Lemma 4 instead of Lemma 2. �
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Chapter 9
Resolvent Estimates and Scattering Problems
for Schrödinger, Klein-Gordon and Wave
Equations

Kiyoshi Mochizuki

Abstract We survey some basic problems of Schrödinger, Klein-Gordon and wave
equations in the framework of general scattering theory. The following topics are
treated under suitable decay and/or smallness conditions on the perturbation term:
Growth estimates of generalized eigenfunctions, Resolvent estimates, Scattering di-
rect and inverse problems, Smoothing properties and Strichartz estimates. Due to
our formulation of the weighted energy method, some topics are naturally extended
to time-dependent and/or non-selfadjoint perturbations.

Mathematics Subject Classification 81Q10 · 81Uxx · 35R30

9.1 Introduction

This article will summarize with some addendum and modification the following
four papers which remain to the author as a personal history of participation in
ISAAC: [13] (August 2001, Berlin), [14] (July 2005, Catania), [15] (August 2007,
Ankara), [16] (July 2009, London).

In the first 3 sections we deal with the selfadjointness, growth estimates, the prin-
ciple of limiting absorption, spectral representations, and the existence and com-
pleteness of the Møller wave operators for magnetic Schrödinger operators with
singular, short range potentials. A most important ingredient for these problems is
the growth estimate of the generalized eigenfunctions. As in the previous results the
proof is given by formulating a differential inequality for a functional of solutions.
The functional is adopted in [14] to include an approximate phase of the operator.
Then the principle of limiting absorption yields directly the estimates. In Sect. 9.5 an
inverse scattering problem of [13] is generalized to wave equations with both “dissi-
pation” and potential terms. We give a reconstruction procedure of both coefficients
from the scattering amplitude with a fixed energy.

Smoothing properties for magnetic Schrödinger operators are treated in Sect. 9.6
based on the uniform resolvent estimates. As it is seen in [16], smallness con-
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ditions are required on the perturbation terms for these purposes. The smoothing
properties are used in Sect. 9.8 and Sect. 9.9 to treat scattering and Strichartz esti-
mates, respectively, for Schrödinger, Klein-Gordon and wave equations under time
dependent small perturbations. In [15] we did not enter into the Strichartz estimates
and excluded to treat Klein-Gordon equations there. Moreover, in Sect. 9.7 decay-
nondecay properties of solutions in L2 are illustrated to dissipative Schrödinger
evolution equations.

9.2 Selfadjointness of Magnetic Schrödinger Operators

Let Ω be an exterior domain in Rn with smooth compact boundary ∂Ω (the case
Ω = Rn is not excluded). We consider in Ω the Schrödinger operator

Lu= −
n∑

j=1

{
∂j + ibj (x)

}2
u+ c(x)u, (1)

where x = (x1, . . . , xn) ∈ Rn, ∂j = ∂/∂xj , i = √−1, bj (x) are real valued C1-
functions of x ∈ Rn and c(x) is a real valued continuous function of x ∈ Rn\{0}.
b(x)= (b1(x), . . . , bn(x)) represents a magnetic potential. Thus the magnetic field
is defined by its rotation ∇ × b(x). As it is seen in (A1), the external potential c(x)
may have a singularity like O(|x|−2) at x = 0 when Ω = Rn.

In the following we put ∇b = ∇ + b(x), Δb = ∇b · ∇b , r = |x|, x̃ = x/r and
∂r = x̃ ·∇ . The inner product and norm of the Hilbert space L2 = L2(Ω) are defined
by

(f, g)=
∫
f (x)g(x)dx and ‖f ‖ =√

(f,f ).

Here we specify by
∫
dx the integration over Ω . For a function μ = μ(r) > 0 let

L2
μ be the weighted L2-space with norm ‖f ‖2

μ = ∫
μ(r)|f (x)|2dx <∞.

We assume

∃c∞(x) ∈ L∞ such that c(x)− c∞(x)≥ β

r2
with β >− (n− 2)2

4
. (A1)

Theorem 1 Under (A1) let L be defined by
{
Lu= −Δbu+ c(x)u for u ∈D(L),
D(L)= {u ∈ L2 ∩H 2

loc(Ω\{0}); (−Δb + c)u, r−1u ∈ L2, u|∂Ω = 0}. (2)

Then it gives a lower semibounded selfadjoint operator in L2.

To show that (2) determines the Friedrichs extension of the operator (1) initially
defined on C∞

0 (Ω\{0}), the following lemma plays a crucial role (cf. Kalf et al. [8]
where is treated the case b(x)≡ 0).
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Lemma 1

(i) If u ∈ D(L), then we have ∇bu ∈ [L2]n.
(ii) (the Hardy inequality) If ∇bu ∈ [L2]n, then

∫
(n− 2)2

4r2
|u|2dx ≤

∫
|x̃ · ∇bu|2dx.

The essential spectrum σe(L) of L is included in the half line [0,∞) if c(x)→ 0
as |x| → ∞. To investigate further properties of the essential spectrum we prepare
a quadratic identity for solutions u to the Schrödinger equation

−Δbu+ c(x)u− κ2u= f (x), (3)

where κ ∈Π± = {κ ∈ C;±Reκ > 0, Imκ ≥ 0} and f ∈ L2.
We put v = e−iκr r(n−1)/2eσ(r)u, g = e−iκr r(n−1)/2eσ(r)f and rewrite (3) as fol-

lows:

−∇b · ∇bv +
(

−2iκ + n− 1

r
+ 2σ ′

)
x̃ · ∇bv

+
(
c+ (n− 1)(n− 3)

4r2
+ σ ′′ − σ ′2 + 2iκσ ′

)
v = g.

Multiply by φx̃ · ∇bv, where φ = φ(r)= e−2 Imκr r−n+1ϕ(r), this equation and in-
tegrate the real part over BR,t , where for 0< s < t we put Bs,t = {x; s < |x|< t},
Bt = {x; |x|< t}, B ′

t = Rn\Bt and St = {x; |x| = t}. Then noting

∇bv = e−iκr r(n−1)/2
{
∇b

(
eσ u

)+ x̃

(
n− 1

2r
− iκ

)(
eσ u

)}
,

φ′(r)= φ(r)

(
−2 Imκ − n− 1

r
+ ϕ′

ϕ

)
,

we obtain (cf., [12] or [16])

Proposition 1 Let ϕ = ϕ(r) and σ = σ(r) be a smooth nonnegative function of
r > 0. Put uσ = eσ u, fσ = eσ f and

θσ = θσ (x, κ)= ∇buσ + x̃

(
n− 1

2r
− iκ

)
uσ .

Then
[∫

St

−
∫

SR

]
ϕ

{
−|x̃ · θσ |2 + 1

2
|θσ |2

}
dS +

∫

BR,t

ϕ

{(
ϕ′

ϕ
− 1

r

)
|x̃ · θb|2

+
(

Imκ − ϕ′

2ϕ
+ 1

r

)
|θσ |2 + 2σ ′|x̃ · θσ |2 + ReJσ (x, κ)

+ Re
[(
σ ′′ − σ ′2 + 2iκσ ′)uσ x̃ · θσ

]}
dx = Re

∫

BR,t

ϕfσ x̃ · θσ dx; (4)
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Jσ (x, κ)= −(x̃ × θσ ) · (∇ × ib)uσ +
(
c+ (n− 1)(n− 3)

4r2

)
uσ x̃ · θσ . (5)

The main calculation is in the equality

−∇b · ∇bvφx̃ · ∇bv = −∇ · {∇bvφx̃ · ∇bv} + (∇φ · ∇bv)x̃ · ∇bv
+ φ∇bv · ∇b(x̃ · ∇bv).

The last term of the right applied by

(∂j + ibj )
{
x̃k(∂k + ibk)v

} = x̃k∂k
{
(∂j + ibj )v

}

+ δjk − x̃j x̃k

r
(∂k + ibk)v + ix̃k(∂j bk − ∂kbj )v

brings the term

−iϕ
n∑

j=1

θσj

n∑

k=1

x̃k{∂j bk − ∂kbj }uσ = −ϕ(x̃ × θσ ) · (∇ × ib)uσ .

9.3 Growth Estimate of Generalized Eigenfunctions and
Principle of Limiting Absorption

First consider the homogeneous equation

−Δbu+ c(x)u− λu= 0, λ > 0, (6)

with b(x) and c(x) satisfying the additional condition

max
{∣∣∇ × b(x)

∣∣,
∣∣c(x)

∣∣}≤ μ(r), r = |x|> ∃R0, (A2)

where μ = μ(r) is a smooth, positive, non-increasing L1-function of r ∈ R+ =
(0,∞).

Theorem 2 Under (A1), (A2) let u ∈H 2
loc(Ω\{0}) solve (6). If the support of u is

not compact, then

lim inf
t→∞

∫

St

∣∣x̃ · θ(x,±√
λ)
∣∣2dS �= 0,

where θ(x, κ)= ∇bu+ x̃( n−1
2r − iκ)u for κ ∈ C.

If we additionally require the following condition (A3), then the unique continu-
ation property is applicable to show the non-existence of positive eigenvalues of L
from this theorem. The condition (A3) reads as follows:

∇bj (x)(j = 1, . . . , n) and c(x) are locally Hölder continuous. (A3)
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The following identities are used to show Theorem 2.

Lemma 2 Let u be a solution of the homogeneous equation (6). Then for each λ > 0
and r > 0 we have

Im

[∫

Sr

(x̃ · ∇buσ )uσ dS
]

= 0,

∫

Sr

{∣∣∣∣x̃ · ∇buσ + n− 1

2r
uσ

∣∣∣∣

2

+ λ|uσ |2
}
dS =

∫

Sr

∣∣x̃ · θσ (x,±
√
λ)
∣∣2dS.

We define

F(r)= 1

2

∫

Sr

{
2|x̃ · θ |2 − |θ |2}dS,

Fσ,τ = 1

2

∫

Sr

{
2|x̃ · θσ |2 − |θσ |2 + (

σ ′2 − τ
)|uσ |2}dS,

where τ = τ(r) is another weight function. The proof of Theorem 2 is divided into
two parts. The identity (4) with κ2 = λ, f ≡ 0, σ = 0 and ϕ ≡ 1 is used if there
exists a sequence rk → ∞ such that F(rk) > 0. On the other hand, if F(r) ≤ 0 for
r ≥ R1 (≥ R0) and u does not have a compact support, we use (4) choosing ϕ = r

and

σ(r)= m

1 − ε
r1−ε (m≥ 1,1/3< ε < 1/2), τ (r)= r−2ε log r.

In the following we choose the weight function μ(r) to satisfy also

∫ ∞

r

μ(s)ds ≥ rμ(r) for r ≥R0. (7)

Typical examples areC(1+r)−1−δ ,C(1+r)−1[log(1+r)]−1−δ (C > 0, 0< δ < 1).
These examples also satisfy (32) which is given later in Sect. 9.7.

We put ϕ1(r)= (
∫∞
r
μ(s)ds)−1. Then ϕ′

1(r)= μ(r)ϕ1(r)
2. So μϕ1 and, hence,

ϕ′
1 = μϕ2

1 are not in L1(R+). Moreover,

ϕ′
1(s)

ϕ1(s)
= μ(r)ϕ1(r)≤ 1

r
for r ≥R0.

Lemma 3 Let u= R(κ2)f with κ ∈K± and f ∈ L2
μ−1

1
. Then ∃R5 ≥ R0 and C =

C(K±,R5) > 0 such that for R ≥R5,

‖θ‖2
ϕ′

1,B
′
R

≤ C
{‖u‖2

μ + ‖f ‖2
μ−1

}
,

a‖u‖2
μ,B ′

R
≤ Cϕ1(R)

−1{‖x̃ · θ‖2
ϕ′

1,B
′
R

+ ‖u‖2
μ + ‖f ‖2

μ−1

}
.
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The first inequality of this lemma is derived from Proposition 1 with σ = 0 and
ϕ = ϕ1. On the other hand, the second inequality is a result of the Gauss formula.

With these inequalities and Theorem 2, the Rellich compactness criterion shows
the following assertion by contradiction.

Theorem 3 Assume (A1), (A2) with μ satisfying also (7) and (A3). Then for any
0< a < b <∞, the resolvent R(κ2) ∈ B(L2

μ−1,L
2
μ) restricted to κ ∈K± = {κ;a ≤

±Reκ ≤ b,0 < Imκ ≤ 1} is continuously extended to K± ∪ [a, b] as an operator
from L2

μ−1 to L2
μ. Thus, the positive spectrum of L is absolutely continuous with

respect to the Lebesgue measure.

Theorem 2 is a real generalization of Rellich [20] (cf. Kato [9]). Theorem 3 states
the principle of limiting absorption, the proof of which is originated by Eidus [3].
A more general oscillating long-range potential is treated in [14] (also Jäger-Rejto
[7]).

9.4 Spectral Representations and Scattering

The Fourier transform f̂ (ξ) = (2π)−n/2
∫
e−ix·ξ f (x)dx determines the spectral

representation of L0. Namely, put

[
F0(σ )f

]
(ω)= σ (n−1)/2f̂ (σω), ω ∈ Sn−1,

[
F ∗

0 (σ )h
]
(x)= σ (n−1)/2(2π)−n/2

∫

Sn−1
eiσx·ωh(ω)dSω, h ∈ L2(Sn−1).

Then [F0f ](σ,ω)= [F0(σ )f ](ω) gives a unitary operator fromL2(Rn) toL2(R+×
Sn−1) and its adjoint F ∗

0 is given by

[
F ∗

0 h
]
(x)=

∫ ∞

0

[
F ∗

0 (σ )h(σ, ·)
]
(x)dσ for h(σ,ω) ∈ L2(R+ × Sn−1).

In this section we require

max
{∣∣b(x)

∣∣,
∣∣∇b(x)∣∣, ∣∣c(x)∣∣}≤ μ(r), r = |x|> ∃R0 > 0. (A4)

The decay condition for b(x) itself is used to compare L with the free Laplacian
−Δ in L2(Rn). Let j (r) be a C∞-function of r > 0 such that j (r) = 0 (r < R0)
and = 1 (r > R0 + 1), and define the operator J : L2(Rn)→ L2 = L2(Ω) and its
adjoint J ∗ by

[Jf ](x)= j (r)f (x), x ∈Ω,
[
J ∗g

]
(x)= j (r)g(x) (x ∈Ω) and = 0

(
x ∈ Rn\Ω)

.
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Let R0(κ
2)= (L0 − κ2)−1. Then we have the following resolvent equation

R
(
κ2)J = {

J −R
(
κ2)V

}
R0

(
κ2), V = LJ − JL0,

J ∗R
(
κ2)=R0

(
κ2){J ∗ − V ∗R

(
κ2)}, V ∗ = J ∗L−L0J

∗.

For each σ ∈ R+ we define

F±(σ )= F0(σ )
{
J ∗ − V ∗R

(
σ 2 ± i0

)}
,

F ∗±(σ )=
{
J −R

(
σ 2 ∓ i0

)
V
}
F ∗

0 (σ ).

Theorem 4 Assume (A1), (A3) and (A4). Then the operator

[F±f ](σ,ω)= [
F(±σ)f ](ω), (σ,ω) ∈ R+ × Sn−1,

is extended to a unitary operator from {I − P }L2 onto L2(R+ × Sn−1):

F ∗±F± = I − P in L2 (completeness),

F±F ∗± = I in L2(R+ × Sn−1) (orthogonality),

where P is the orthogonal projection onto the eigenspace of L.

We define the operators U± and S by

U± = F ∗±F0, S =U∗+U− = F ∗
0 F+F ∗−F0.

Proposition 2 The operators U± : L2(Rn)→ (I −P)L2(Ω) are unitary operators
which intertwine L0 and L:

LU±f =U±L0f, f ∈D(L0).

The operator S is a unitary operator in L2(Rn) which commutes with L0.

Now, let us consider the Schrödinger evolution operators e−itL and e−itL0 . The-
orem 4 implies that for f ∈ (I − P)L2(Ω) and f0 ∈ L2(Rn),

e−itLf = F±e−iσ
2tF±f, e−itL0f0 = F0e

−iσ 2tF0f0.

Theorem 5 Assume (A1), (A3) and (A4). Then the Møller wave operator exists and
coincides with U±:

s − lim
t→±∞ e

itLJ e−itL0 =U±.

Thus, S = U∗+U− defines the Møller scattering operator, which representation is
given in the momentum space L2(R+ × Sn−1) by

F0SF
∗
0 = Î − T̂ , [T̂ f̂ ](σ,ω)= 1

2σ

[
F+(σ )V F ∗

0 f̂ (σ, ·)
]
(ω).
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The kernel of T̂ is called the scattering amplitude.

A survey of the classical stationary approach on short-range scattering is given
above. We can find a detailed description e.g. in Mochizuki [12].

9.5 Inverse Scattering for Small Nonselfadjoint Perturbations of
Wave Equations

We consider the wave equation of the form

wtt + b(x)wt −Δw+ c(x)w = 0, (x, t) ∈ Rn × R, (8)

where n≥ 3 and b(x) and c(x) are real, continuous functions satisfying

∣∣b(x)
∣∣≤ ε0μ(r),

β

r2
< c(x)≤ μ(r) (A5)

with ε0 > 0 (small) and β >− (n−2)2

4 . Here μ(r) is a positive L1-function satisfying
(7).

We rewrite (8) in the form

i∂tu=Λu≡Λ0u+ V u, u= {w,wt };

Λ0 = i

(
0 1
Δ 0

)
and V = −i

(
0 0
c(x) b(x)

)
.

Let HE = Ḣ 1 ×L2 be the Hilbert space with energy norm

‖f ‖2
E = 1

2

{‖∇f1‖2 + ‖f2‖2}, f = {f1, f2}.

The operator Λ0 is selfadjoint in HE , and its spectral representation is determined
by

F0(λ)= 1

2
F0
(|λ|)

(
1 iλ−1

−iλ 1

)
(λ �= 0).

The spectral representation of Λ is then given by

F±(λ)= F0(λ)
{
I − VR(λ± i0)

}
, F (∗)

± (λ)= {
I −R(λ∓ i0)V

}
F∗

0 (λ),

where R(ζ ) is the resolvent of Λ. Since the coefficient b(x) of the nonselfadjoint
part is small, R(ζ ) ∈ B(HE,μ−1,HE,μ) is extended continuously to ζ = λ ± i0
(λ ∈ R\{0}).
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Proposition 3 There exists the strong limit

W± = s − lim
t→±∞ e

itΛe−itΛ0 .

It is expressed as W± = F (∗)
± F0, and defines a bijection in HE . The scattering

operator exists and is given by

S = W−1+ W− = F∗
0F

(∗)−1
+ F (∗)

− F0.

The last assertion gives us F0(I −S)F∗
0 = F+(F (∗)

+ −F (∗)
− ). Thus the scattering

amplitude A(λ) with energy λ �= 0 is expressed as

2πiA(λ)≡ F0(λ)
{
I − S(λ)

}
F∗

0 = πi

2
T̂ (λ)

(
1 iλ−1

−iλ 1

)
,

where T̂ (λ) is the scalar amplitude given by

T̂ (λ)= λ−1F0
(|λ|){1 + q(·, λ)R(λ2 − i0, λ

)}
q(·, λ)F ∗

0

(|λ|)

with R(ζ 2, α)= (−Δ+ c− iαb− ζ 2)−1 and q(x,α)= c− iαb.
The operator T̂ (λ) is an integral operator on Sn−1 with kernel

a
(
λ,ω,ω′) = (2π)−nλn−2

[∫
e−iλ(ω−ω′)·xq(x,λ)dx

+
∫
e−iλω·xq(x,λ)R

(
λ2 − i0, λ

){
q(·, λ)eiλθ ′·}(x)dx

]
. (9)

Our aim is to derive a reconstruction procedure of b(x) and c(x) from the kernel
a(λ,ω,ω′).

The following result is well known as the high energy Born approximation.

Theorem 6 In the case b(x)≡ 0, if we further require c(x) ∈ L1(Rn), then for any
ξ ∈ Rn we can choose ω(λ), ω′(λ) ∈ Sn−1 to satisfy λ{ω(λ)−ω′(λ)} = ξ and

lim
λ→∞(2π)

nλ−n+2a
(
λ,ω(λ),ω′(λ)

)=
∫
e−iξ ·xc(x)dx.

In the case b(x) �≡ 0, however, ‖R(λ2 − i0, λ)‖L2
μ−1 ,L

2
μ

does in general not decay

as |λ| → ∞. To fill up, we restrict b(x), c(x) to exponentially decreasing functions,
and introduce the so called nonphysical Faddeev resolvent ([5]).

Let k ∈ Rn, γ ∈ Sn−1, ε ≥ 0. We simply write ζ 2 = ζ · ζ for ζ ∈ Cn, and both
the resolvent and its kernel by R0(κ

2). Then since

R0
(
(k + iεγ )2

)= (2π)−n
∫

ei(x−y)·ξ

ξ2 − k2 + ε2 − 2iεγ · k dξ,
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choosing γ to satisfy t = γ · k ≥ 0 and putting ξ = η+ tγ , we have

R0
(
(k + iεγ )2

)= (2π)−n
∫

ei(x−y)·(η+tγ )

η2 + 2tγ · η− (k2 − ε2 − t2)− 2iεγ · k dη.

We let ε→ +0 and define the Faddeev unperturbed resolvent depending on γ by

Rγ,0
(
k2, t

)= eitγ ·xGγ,0
(
(k − tγ )2, t

)
e−itγ ·x,

Gγ,0
(
σ 2, t

)= (2π)−n
∫

ei(x−y)·η

η2 + 2tγ · η− σ 2 − i0
dη.

(10)

Lemma 4 (See Isozaki [6]) Let Φγ (t) = χ(γ · θ ≥ t/λ) (defining function of θ ∈
Sn−1). Then

Rγ,0(λ, t)=R0
(
(λ+ i0)2

)− 2πF0(λ)
∗Φγ (t)F0(λ).

Lemma 5 (See Weder [21]) In the expression of Gγ,0(σ 2, t) we replace t by
z ∈ C+. Then

(i) Gγ,0(σ 2, z) is continuous in {|σ |, γ } ∈ R+ × Sn−1 and analytic in z ∈ C+.
(ii) ∀ε0 > 0, ∃C > 0 such that

∥∥Gγ,0
(
σ 2, z

)∥∥
B(L2

μ−1 ,L
2
μ)

≤ C
(|σ | + |z|)−1

for |σ | + |z|> ε0.

For a ∈ R let Ha = {f ; ea|x|f (x) ∈ L2}, and for ε > 0 let Dε = {z ∈
C+; |Re z|< ε/2}.

Lemma 6 (See Eskin-Ralston [4]) There exists an operator Uγ,0(λ2, z) satisfying
the following properties.

(i) ∀δ > 0, ∃ε > 0 such that Uγ,0(λ2, z) ∈ B(Hδ,Hδ−1) is analytic in z ∈Dε .
(ii) As z → t ∈ (−ε/2, ε/2) the operator Uγ,0(λ

2, z) has a boundary value
Gγ,0(λ

2 − t2, t), and Uγ,0(λ2, iτ )=Gγ,0(λ
2 + τ 2, iτ ) for τ > 0.

The perturbed Faddeev resolvent is defined for a.e. t ∈ (−ε/2, ε/2) as follows:

Rγ (λ, t)=
{
I −Rγ,0(λ, t)(c− iλb)

}−1
Rγ,0(λ, t).

Then Uγ (λ, t) = e−itγ ·xRγ (λ, t)eitγ ·x has a unique meromorphic continuation on
Dε and

∥
∥Uγ (λ, iτ )

∥
∥
B(L2

μ,L
2
μ−1 )

≤ C/τ for large τ. (11)

Theorem 7 Assume (A5) and also

b(x), c(x)=O
(
e−δ0|x|) (|x| → ∞)

for some δ0 > 0. (A6)
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Then a(λ,ω,ω′) with a fixed energy λ �= 0 determines uniquely the functions b(x)
and c(x).

Proof In (9) we replace R(λ2 − i0, λ) by the Faddeev resolvent Rγ (λ, t), and define
the kernel of the Faddeev scattering amplitude by

aγ
(
λ, θ, θ ′; t)

= (2π)−nλn−1
[∫

e−iλ(θ−θ ′)·x{λ−1c(x)− ib(x)
}
dx;

+ λ

∫
e−iλθ ·x

{
λ−1c(x)− ib(x)

}

×Rγ (λ, t)
{(
λ−1c− ib

)
eiλθ

′·}(x)dx
]
. (12)

Lemma 1 implies that this expression is rewritten by use of the physical scattering
amplitude (9).

We choose ω,ω′ ∈ Sn−1 to satisfy ω · γ = ω′ · γ = 0 and put

λθ =
√
λ2 − t2ω+ tγ, λθ ′ =

√
λ2 − t2ω′ + tγ .

Then (12) is reduced to

(2π)nλ−n+1aγ
(
λ, θ, θ ′; t)

=
∫
e−i

√
λ2−t2(ω−ω′)·x{λ−1c(x)− ib(x)

}
dx

+ λ

∫
e−i

√
λ2−t2ω·x{λ−1c(x)− ib(x)

}

×Uγ (λ, t)
{(
λ−1c− ib

)
ei

√
λ2−t2ω′·}(x)dx.

The analytic continuation makes it possible to replace t by iτ in this equation. Then
it follows from (11) that

(2π)nλ−n+1aγ
(
λ, θ, θ ′; iτ)(

∫
e−i

√
λ2+τ 2(ω−ω′)·x{λ−1c(x)− ib(x)

}
dx (13)

as τ → ∞. For any ξ ∈ Rn we choose γ,η ∈ Sn−1 to satisfy ξ ·γ = ξ ·η= γ ·η= 0,
and put

ω(τ)= (
1 − |ξ |2/4τ 2)1/2

η+ ξ/2τ, ω′(τ )= (
1 − |ξ |2/4τ 2)1/2

η− ξ/2τ.

Then ω(τ),ω′(τ ) ∈ Sn−1 and

√
λ2 + τ 2

(
ω(τ)−ω′(τ )

)=
√
(λ/τ)2 + 1ξ ( ξ (τ → ∞).
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Thus, from (13) it is concluded that

lim
τ→∞(2π)

nλ−n+1aγ
(
λ, θ(τ ), θ ′(τ ); iτ)=

∫
e−iξ ·x

{
λ−1c(x)− ib(x)

}
dx.

This completes the proof. �

9.6 Uniform Resolvent Estimates and Smoothing Properties

We return to the magnetic Schrödinger operator (1). In the following we restrict
ourselves to the case n≥ 3 and Rn\Ω being empty or starshaped with respect to the
origin x = 0.

Theorem 8

(i) Assume that ∃ε > 0 small such that

max
{∣∣∇ × b(x)

∣∣,
∣∣c(x)

∣∣}≤ ε0r
−2 in Ω. (A7)

Then there exists C1 > 0 such that u=R(κ2)f satisfies
∫

1

r2
|u|2dx ≤ C2

1

∫
r2|f |2dx for each κ ∈Π±.

(ii) Assume that

max
{∣∣∇ × b(x)

∣∣,
∣∣c(x)

∣∣}≤ ε0 min
{
μ(r), r−2} in Ω, (A8)

where μ(r) is a smooth, positive, non-increasing L1-function of r ∈ R+. Then
there exists C2 > 0 such that for each κ ∈Π± it holds

∫ {
μ
(|∇bu|2 + |κu|2)−μ′ n− 1

2r
|u|2

}
dx ≤ C2

2

∫
max

{
μ−1, r2}|f |2dx.

We can choose 0< ε0 < 1/4
√

3 (n= 3), <
√
(n− 1)(n− 3)/8 (n ≥ 4) in (A7)

and (A8) (see [16]).
As a corollary of Theorem 8 we are able to obtain space-time weighted estimates

(smoothing properties) for the Schrödinger, and relativistic Schrödinger evolution
equations

i∂tu+Lu= 0, u(0)= f ∈ L2, (14)

i∂tu+
√
L+m2u= 0 (m≥ 0), u(0)= f ∈ L2. (15)

For an interval I ⊂ R and a Banach space X, we denote by Lpt (I,X) the space
of X-valued Lp-functions of t , and simply write Lpt X for Lp(R,X).
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Theorem 9

(i) Under (A7) we have for h(t) ∈ L2
t L

2
r2 , and f ∈ L2,

∥∥
∥∥

∫ t

0
e−i(t−τ)Lh(τ)dτ

∥∥
∥∥
L2
t L

2
r−2

≤ C1‖h‖L2
t L

2
r2
, (16)

∥∥eitLf
∥∥
L2
t L

2
r−2

≤√
2C1‖f ‖. (17)

(ii) Under (A8) put μ̃(r)= min{r−2,μ(r)}. Then we have for g ∈ L2,

∥∥eit
√
L+m2

g
∥∥
L2
t L

2
μ̃

≤√
mC1 +C2‖g‖. (18)

The above two theorems are the main part of [16].

9.7 Decay-Nondecay Problems for Time Dependent Complex
Potential

Consider the Schrödinger evolution equation in L2(Rn),

i∂tu−Δu+ c1(x, t)u= 0, u(x,0)= f (x), (19)

where c1(x, t)= c(1 + t)−α(1 + r)−β with some c ∈ C and α,β ≥ 0. We denote by
U(t, s) the evolution operator which maps solutions at time s to those at time t .

Theorem 10

(i) (L2 decay) If Im c > 0 and α+ β ≤ 1, then

∥∥u(t)
∥∥2 ≤ ϕ(t)−1{∥∥

√
ϕ(r)f

∥∥2 +C‖f ‖2
H 1

}; ϕ(σ)=
∫ σ

0
(1 + s)−α−βds.

(ii) (L2 nondecay) If Im c ≥ 0 and α + β > 1, then for each f ∈ L2 ∩ Łq with
2n/(n+ α + β) < q < 2n/(n+ 1), ∃s0 > 0 such that for ∀s ≥ s0,

U(t, s)e−isΔf �→ 0 as t → ∞.

(iii) (existence of the scattering states) If c ≥ 0 and α + β
2 > 1, then for any s ≥ 0

and f ∈ L2, ∃f0 ∈ L2 such that

lim
t→∞

∥∥U(t, s)f − e−i(t−s)Δf0
∥∥= 0.

See Mochizuki-Motai [17] for details. Similar properties are also proved for wave
equations (e.g., Mochizuki-Nakazawa [18]).
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Assertions (i) and (iii) are shown by using the equations

1

2

∥∥u(t)
∥∥2 − 1

2
‖f ‖2 +

∫ t

0

∫
Im c1(x, τ )

∣∣u(τ)
∣∣2dxdτ = 0, (20)

and

(
u(t), u0(t)

)− (
u(s), u0(s)

)− i

∫ t

s

(
c1(·, τ )u(τ ), u0(τ )

)
dτ = 0, (21)

where u0(t)= e−tΔf0, respectively. Thus, the same results hold for a more general
equation with free Laplacian −Δ replaced by the magnetic Schrödinger operator L
satisfying (A7). In fact, under the conditions of (iii), c1(x, t) satisfies

∣∣c1(x, t)
∣∣≤ |c|

{
2 − β

2
(1 + t)−2α/(2−β) + β

2
(1 + r)−2

}
.

Here, without loss of generality, we have assumed α + β ≤ 2. Since (1 +
t)−2α/(2−β) ∈ L1(R+), Theorem 9(i) is applied to generalize the result.

On the other hand, (21) does not work well under assumptions on (ii). We have
used in [17] the Lp-estimate

‖u0‖Lp ≤ (
4π |t |)n/p−n/2‖f0‖Lp′ (22)

with 2 ≤ p ≤ ∞ and 1/p+ 1/p′ = 1, to show assertion (ii).

9.8 Scattering for Time Dependent Perturbations

Let H be a Hilbert space with inner product (·, ·) and norm ‖ · ‖, and consider in H
the evolution equation

i∂tu+Λ0u+ V (t)u= 0, u(s)= f ∈ H, (23)

with initial time s ∈ R, where Λ0 is a selfadjoint operator in H with dense domain
D(Λ0) and V (t) is a Λ0-bounded operator which depends continuously on t ∈ R.
Let eitΛ0 be the unitary group in H which represents the solution of the free equation
i∂tu0 +Λ0u0 = 0. Then the perturbed problem (23) reduces to the integral equation

u(t, s)= ei(t−s)Λ0f +
∫ t

s

ei(t−τ)Λ0V (τ)u(τ, s)dτ. (24)

(H1) There exist a Banach space X and C3 > 0 such that

∥∥ei(t−s)Λ0f0
∥∥
L2
t X

≤ C3‖f0‖ for any (s, f0) ∈ R ×H.
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(H2) There exist ε0 > 0 and a nonnegative L1-function η(t) such that
∣∣(V (t)u, v

)∣∣≤ η(t)‖u‖‖v‖ + ε0‖u‖X‖v‖X.
(H3) There exists ε1 > 0 satisfying the following properties: If ε0 < ε1 in (H2),

(24) has a unique solution u(t, s)=U(t, s)f ∈ C(R,H), which also satisfies
∥∥U(t, s)f

∥∥
L2
t X

≤ C4‖f ‖,

where C4 = C4(ε1) > 0 is independent of (s, f ) ∈ R ×H.

Theorem 11 Assume (H1), (H3) with 0< ε0 < ε1. Then we have

(i) {U(t, s)}t,s∈R is a family of uniformly bounded operators in H.
(ii) For every s ∈ R± = {t : ±t > 0}, there exits the strong limit

Z±(s)= s − lim
t→±∞ e

i(−t+s)Λ0U(t, s).

(iii) The operator Z± = Z±(0) satisfies

w− lim
s→±∞Z

±U(0, s)eisΛ0 = I (weak limit).

(iv) If ε0 can be chosen smaller to satisfy C3C4ε0 < 1, then Z± : H −→ H is a
bijection on H. Moreover, the scattering operator S = Z+(Z−)−1 is also a
bijection.

A typical example is the Schrödinger equation

i∂tu+Lu+ c1(x, t)u= 0, u|t=s = f ∈ L2, (25)

where L is the selfadjoint operator in Sect. 9.7 and c1(x, t) is a complex function
satisfying

∣∣c1(x, t)
∣∣≤ η(t)+ ε0r

−2 with small ε0 > 0. (A9)

We choose H = L2(Ω),Λ0 = L, V (t)= c1(s, t) and X = L2
r−2 . Then (H1) with

C3 = √
2C1 and (H2) are obvious from (17) and (A9), respectively. To verify (H3),

put Y(I)= L∞
t (I ;L2)∩L2

t (I ;L2
r−2). Then after using (16) and (A9) we have

Proposition 4 For I+,s = (s, T ) (s < T ≤ ∞) or I−,s = (T , s) (−∞ ≤ T < s) let

Φ±,sv(t)=
∫ t

s

ei(t−τ)Lc1(τ )v(τ )dτ, v(t) ∈ Y(I±,s).

Then we have

‖Φ±,sv‖Y(I±,s ) ≤ C5‖v‖Y(I±,s ), C5 = max
{‖η‖L1(s,t), ε0C1

}
.
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We choose |T − s| so small or |s| so large, and ε1 so small that max{‖η‖L1(s,t),

ε1C1} < 1. Then this lemma guarantees the solvability of (25) in Y(I±,s ) and we
have

∥∥U(t, s)f
∥∥
Y(I±,s ) ≤ C6‖f ‖, C6 = 1 +C3

1 −C5
.

Note that R is covered by a finite number 2N of such I±,s . Then we see that (24)
with s = 0 has a unique global solution satisfying (H3):

∥∥U(t,0)f
∥∥
L∞
t L

2 + ∥∥U(t,0)f
∥∥
L2
t L

2
r−2

≤ C4‖f ‖, C4 = 2
N∑

k=1

Ck6 . (26)

As we see, the inhomogeneous smoothing property (16) plays an important role
to establish the scattering theory for time dependent perturbations. As for Klein-
Gordon equations we have the homogeneous smoothing property (18). However,
it is insufficient to develop the scattering theory. So, we restrict ourselves to the
simpler problem in the whole Rn:

∂2
t w−Δw+m2w+

n∑

j=1

bj (x, t)∂jw+ b0(x, t)∂tw+ c(x, t)w = 0,

w|t=s = f1(x), ∂tw|t=s = f2(x).

(27)

Here m> 0, bj (x, t) (j = 0,1, . . . , n) and c(x, t) are complex functions satisfying

max
{∣∣bj (x, t)

∣∣,m−1
∣∣c(x, t)

∣∣}≤ η(t)+ ε0μ̃(r), μ̃= min
{
μ(r), r−2}. (A10)

Let HE and XE be the spaces with norms

∥
∥{f1, f2}

∥
∥2
E

= 1

2

∫ {|∇f1|2 +m2|f1|2 + |f2|2
}
dx <∞,

‖f ‖2
XE

= 1

2

{‖∇f1‖2
X +m2‖f1‖2

X + ‖f2‖2
X

}
<∞,

where X = L2
μ̃

. Then as an evolution equation in HE , the wave (27) is rewritten to
the integral equation

u(t, s)= ei(t−s)Λ0f +
∫ t

s

ei(t−τ)Λ0V (τ)u(τ, s)dτ, f = {f1, f2} ∈HE;

Λ0 = i

(
0 1

Δ−m2 0

)
and

V (t)= −i
(

0 0
b(x, t) · ∇ + c(x, t) b0(x, t)

)
.

(28)
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For κ ∈ C\R let R0m(κ
2) = (−Δ + m2 − κ2)−1. Then the resolvent of Λ0 is

given by

R0(κ)=
( −κ i

i(Δ−m2) −κ
)
R0m

(
κ2)

and, hence, we have for f,g ∈X′
E the estimate

∣∣(R0(κ)f, g
)
E

∣∣

≤
n∑

j=1

{∥∥κR0m
(
κ2)∂jf1

∥∥
X

+ ∥∥∂jR0m
(
κ2)f2

∥∥
X

}‖∂jg1‖X′

+m2{∥∥κR0m
(
κ2)f1

∥∥
X

+ ∥∥R0m
(
κ2)f2

∥∥
X

}‖g1‖X′

+
{

n∑

j=1

∥∥∂jR0m
(
κ2)∂jf1

∥∥
X

+m2
∥∥R0m

(
κ2)f1

∥∥
X

+ ∥∥κR0m
(
κ2)f2

∥∥
X

}

× ‖g2‖X′ .

Both inequalities of Theorem 8 imply that
∥∥∇R0m

(
κ2)h

∥∥2
X

+ (
1 + ∣∣

√
κ2 −m2

∣∣2)∥∥R0m
(
κ2)h

∥∥2
X

≤ C‖h‖2
X′

for any h ∈ X′ and κ2 in the resolvent set of −Δ + m2. Thus, we conclude the
existence of a suitable C8 > 0 verifying

∣∣(R0(κ)f, g
)
E

∣∣≤ C8‖f ‖X′
E
‖g‖X′

E
, (29)

or equivalently, we obtain the inhomogeneous smoothing property
∥∥∥∥

∫ t

0
ei(t−τ)Λ0h(τ)dτ

∥∥∥∥
L2
t XE

≤ C8‖h‖L2X′
E
.

Then as in the case of the Schrödinger equation, this and the smallness assumption
(A10) show the unique existence of solutions to (27) with s = 0 satisfying

∥∥U(t,0)f
∥∥
L∞
t HE

+ ∥∥U(t,0)f
∥∥
L2
t XE

≤ C9‖f ‖E. (30)

The above treatment is also possible in the mass less case m= 0 if n≥ 4. How-
ever, more general results in exterior domains including the 3-dimensional problem,
are guaranteed if we apply weighted energy methods. We consider in Ω the wave
(27) with m= 0 and the initial-boundary conditions

w|t=s = f1(x), wt |t=s = f2(x), w|∂Ω = 0, (31)

where bj (x, t) (j = 0,1, . . . , n) and c(x, t) are real functions satisfying

max

{∣∣bj (x, t)
∣∣,

2r

n− 2

∣∣c(x, t)
∣∣
}

≤ η(t)+ ε0μ(r). (A11)
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Here μ(r) ∈ L1(R) is chosen to satisfy also

μ(r) > 0, μ′(r)≤ 0, μ′(r)2 ≤ 2μ(r)μ′′(r). (32)

We choose m= 0, μ̃(r)= μ(r) and f1 (the first component) verifying the zero
boundary condition f1|∂Ω = 0 in the definition of HE and XE . Then (A11) and the
following proposition verify (H1), (H2) since the unique existence of solution in
C(R;HE) is evident.

Proposition 5 Under (A11) with sufficiently small ε0 > 0, let u(t)= {w(t),wt (t)}
be the solution of (27) with m= 0 and (31). Then

∥∥u(t)
∥∥
E

≤ C10‖f ‖E,f = {f1, f2},
1

2

∫ t

s

∫

Ω

{
μ
(|∇w|2 +w2

t

)−μ′ n− 1

2r
w2

}
dxdτ ≤ C2

11‖u‖2
E,

where C10 > 0 and C11 > 0 are independent of (s, f ) ∈ R ×HE .

For the proof of Theorem 11 and Proposition 5 see [15]. Schrödinger equations
(19) with c1(x, t) ∈ Lνt Lr (0 < 1/r ≤ 2/n, 1/ν = 1 − n/2r) and the above wave
equations are studied as examples there. But Klein-Gordon equations are not treated
there.

9.9 Strichartz Estimates

In the rest of this article we discuss the so called Strichartz estimates. As we will
see Strichartz estimates of free equations and smoothing properties of perturbed
solutions (i.e., (H3)) lead us to the Strichartz estimates for perturbed equations.

First consider Schrödinger equations in Rn. Let p ≥ 2, q be the admissible ex-
ponents 2

p
+ n

q
= n

2 . Then as it is well known, there exists a constant C > 0 such
that

∥∥e−itΔf (x)
∥∥
L
p
t L

q ≤ C‖f ‖. (33)

More precisely, the end point estimate is given by
∥∥∥∥

∫ t

0
e−i(t−s)Δh(x, s)ds

∥∥∥∥
L2
t L

2n/(n−2),2
≤ C‖h‖L2

t L
2n/(n+2),2, (34)

where Lα,β denote the Lorentz spaces.

Theorem 12 Under (A9) with η(t)≡ 0 let u(t) ∈ C(R;L2) be the solution of (19).
Then for any admissible exponents p and q there exists C > 0 such that

‖u‖Lpt Lq ≤ C‖f ‖ ∀f ∈ L2.
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Proof It follows from (26) that r−1u ∈ L2
t L

2
x , while by assumption rc1(·, t) ∈ Ln,∞.

Then by the Hölder inequality for Lorentz space (see O’Neil [19])

‖c1u‖L2
t L

2n/(n+2),2 ≤ C‖rc1‖Ln,∞
∥∥r−1u

∥∥
L2
t L

2 .

Thus, it follows from (34) and (26) that
∥∥∥∥

∫ t

0
e−i(t−s)Δc1(s)u(s)ds

∥∥∥∥
L2
t L

2n/(n−2),2

≤ C‖c1u‖L2
t L

2n/(n+2),2 ≤ C‖rc1‖Ln,∞
∥∥r−1u

∥∥
L2
t L

2 ≤ C‖f ‖.
This and (34) prove the Strichartz estimate at the end point:

‖u‖L2
t L

2n/(n−2),2 ≤ C‖f ‖.

Interpolation between this and the uniform boundedness of u(t) in L2 (cf. (26))

‖u‖L∞
t L

2 ≤ C‖f ‖
gives the full range of the estimates in Theorem 12. �

Next, the solution w(t) of the Klein-Gordon equation (27) satisfies

w(t)= Ẇ (t)f1 +W(t)f2 +
∫ t

0
W(t − s)

[
V (s)u(s)

]
2ds, (35)

where W(t)= √−Δ+m2−1
sin(t

√−Δ+m2) with m> 0 and
[
V (t)u(t)

]
2 = b0(x, t)wt + b(x, t) · ∇w+ c(x, t)w.

Let p and q be any admissible exponents for Schrödinger equations, and γ = 1
p

+
1
2 − 1

q
. Then the following estimate holds for the free solution (see e.g., D’Ancona-

Fanelli [2]):
∥∥eit

√
−Δ+m2

g
∥∥
L
p
t H

−γ
q

≤ C‖g‖. (36)

The following is the well known Christ-Kiselev lemma ([1]).

Lemma 7 Let X, Y be Banach spaces and let Tf (t) = ∫∞
0 K(t, s)f (s)ds

be a bounded operator from Lα(R;X) to Lβ(R;Y). If α < β , then T̃ f (t) =∫ t
0 K(t, s)f (s)ds is also a bounded operator, and we have ‖T̃ ‖ ≤ C(α,β)‖T ‖.

Theorem 13 Under assumption (A10) with η(t)≡ 0 let w(t) ∈ C1(R;H 1) be the
solution of (35). Then for any Schrödinger admissible exponents p, q satisfying also
p > 2, there exists C > 0 such that

∥∥
√

−Δ+m2w
∥∥
L
p
t L

q + ‖wt‖Lpt Lq ≤ C
{‖f1‖Hγ + ‖f2‖Hγ−1

}
.
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Proof Let h(t) ∈ L2
t L

2
μ̃

. Then it follows from (36) and the above lemma that

∥∥∥∥

∫ t

0
ei(t−s)

√
−Δ+m2

h(s)ds

∥∥∥∥
L
p
t H

−γ
q

≤ C

∥∥∥∥

∫ ∞

0
e−is

√
−Δ+m2

h(s)ds

∥∥∥∥≤ C‖h‖L2
t L

2
μ̃−1
.

In the last inequality we have applied the dual formula of (18) of Theorem 9. Put
h(t)= [V (t)u]2. Then as it is seen in (30)

∥
∥[V (t)u

]
2

∥
∥
L2
t L

2
μ̃−1

≤ C‖f ‖E.

Combining these inequalities and (36) we conclude the assertion. �

Finally, we consider the solution w(t) of the wave equation (27) with 0-boundary
condition requiring Rn\Ω is convex. Let p ≥ 2, q be any admissible exponents for
wave equations satisfying 2

p
+ n−1

q
= n−1

2 (q �= ∞), and γ = 1
p

+ 1
2 − 1

q
. Then the

following estimate is known to hold (see e.g., Metcalfe [11]):

∥
∥eit

√−ΔDg
∥
∥
L
p
t H

−γ
q

≤ C‖g‖. (37)

Theorem 14 Under assumption (A11) with η(t)≡ 0 let w(t) ∈ C1(R; Ḣ 1) be the

solution of (35) withW(t)= √−ΔD−1
sin(t

√−ΔD). Then for any wave admissible
exponents p, q satisfying also p > 2, there exists C > 0 such that

‖√−ΔDw‖Lpt Lq + ‖wt‖Lpt Lq ≤ C
{‖f1‖Ḣ γ + ‖f2‖Ḣ γ−1

}
.

Proof With (37) and the second inequality of Proposition 5 we can follow the above
arguments to obtain

∥∥
∥∥

∫ t

0
ei(t−s)

√−ΔD [V (s)u(s)
]

2ds

∥∥
∥∥
L
p
t (Ḣ

−γ
q )

≤ C
∥∥|∂tw| + |∇w| + r−1|w|∥∥

L2
t L

2
μ

≤ C‖f ‖E. (38)

In the last inequality we have used the Hardy inequality.
Combining (37) and (38) we conclude the assertion. �

Remark The endpoint Strichartz estimates with p = 2 are not proved in Theo-
rems 13 and 14. For these purposes, in place of the use of Christ-Kiselev lemma,
we are necessary to acquire the estimates corresponding to (34) for the Schrödinger
equation.
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Chapter 10
On an Optimal Control Problem for the Wave
Equation in One Space Dimension Controlled
by Third Type Boundary Data

Alexey Nikitin

Abstract In the present paper we study the boundary control by the third boundary
condition on the left end of a string, the right end being fixed. An optimality criterion
based on the minimization of an integral of a linear combination of the control itself
and its antiderivative raised to an arbitrary power p ≥ 1 is established. A method
is developed permitting one to find a control satisfying this optimality criterion and
write it out in the explicit form. The optimal control for p > 1 is proved. Thereby
proposed optimality criterion uniquely determines the optimal solution of boundary
control problem under consideration.

Mathematics Subject Classification 49K20

10.1 Statement of the Boundary Control Problem

In the present paper, we consider the boundary control problem for string vibrations
governed by the wave equation

uxx(x, t)− utt (x, t)= 0. (1)

This control is realized at the end x = 0 by the third boundary condition

ux(0, t)− h · u(0, t)= μ(t),

and the end x = $ is fixed. For an arbitrary time interval T multiple of 4$, the
considered control brings the string from an arbitrary initial state

{
u(x,0)= ϕ(x);ut (x,0)=ψ(x)

}
(2)

to an arbitrary terminal state
{
u(x,T )= ϕ̂(x);ut (x, T )= ψ̂(x)

}
. (3)
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The investigation is performed in terms of a generalized solution of the wave
equation (1) in the class Ŵ 1

p(QT ), where QT is the rectangle [0 ≤ x ≤ $] × [0 ≤
t ≤ T ]. This class was introduced in [1] and is defined as the set of functions
u(x, t) that are continuous in the rectangle QT and have both generalized deriva-
tives ux(x, t), and ut (x, t) in it, and each of these derivatives belongs to the class
Lp(QT ), to the class Lp[0, $] for all t ∈ [0, T ], and to the class Lp[0, T ] for all
x ∈ [0, $].

Necessary conditions for the solution u(x, t) to belong to the class Ŵ 1
p(QT ) are

the following:

The Inclusion Conditions

u(x,0)= ϕ(x) ∈W 1
p[0, $], ut (x,0)=ψ(x) ∈ Lp[0, $], (4)

u(x,T )= ϕ̂(x) ∈W 1
p[0, $], ut (x, T )= ψ̂(x) ∈ Lp[0, $], (5)

μ(t) ∈ Lp[0, T ]. (6)

The Fixing Condition

ϕ($)= 0, ϕ̂($)= 0. (7)

For the further statement of results, we consider the mixed problem for the wave
equation (1) with the initial and boundary conditions

uxx(x, t)− utt (x, t)= 0, (8)

u(x,0)= ϕ(x), ut (x,0)=ψ(x), (9)

ux(0, t)− h · u(0, t)= μ(t), u($, t)= 0, (10)

where the functions ϕ(x), ψ(x), μ(t) belong to the classes (4)–(6) and satisfy the
fixing conditions (7).

Definition 1 A generalized solution of this mixed problem in the class Ŵ 1
p(QT ) is

defined as a function u(x, t) ∈ Ŵ 1
p(QT ), that satisfies the integral identity

∫ $

0

∫ T

0
u(x, t)

[
Φtt (x, t)−Φxx(x, t)

]
dxdt +

∫ T

0
μ(t)Φ(0, t)dt

+
∫ $

0

[
ϕ(x)Φt (x,0)−ψ(x)Φ(x,0)

]
dx = 0, (11)

for an arbitrary function Φ(x, t) in the class C2(QT ) subjected to the conditions

Φx(0, t)− hΦ(0, t)≡ 0, Φ($, t)≡ 0 for 0 ≤ t ≤ T

and

Φ(x,T )≡ 0, Φt (x, T )≡ 0 for 0 ≤ x ≤ $.

The following assertion is a consequence of the results in [2]:
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Proposition 1 For any T > 0 the mixed problem has at most one generalized solu-
tion of the class Ŵ 1

p(QT ).

Definition 2 A solution of the corresponding boundary control problem is defined
as a function μ(t) ∈ Lp[0, T ] for which a generalized solution u(x, t) ∈ Ŵ 1

p(QT ) of
the mixed problem (8)–(10) satisfies the terminal condition (3).

If T > 2$, then this problem has infinitely many solutions. Therefore the task can
be posed to find the optimality criterion which uniquely determines the optimal
solution among them. In the present paper, we formulate an optimality criterion
for the solution of the considered boundary control problem. This criterion is based
on the minimization of the integral of a linear combination of the control itself and
its antiderivative raised to an arbitrary power p ≥ 1.

Let us consider this problem for the time interval T satisfying the condition

T = 4$ · (n + 1), where n= 0,1,2, . . . . (12)

Remark 1 By using the approach in [3], one can consider the investigated problem
for the case of arbitrary time intervals T , which are not necessarily multiples of 4$.

For the statement of the optimization problem, we introduce the function:

Hm(τ)=
{
e−hτ · [L1

2n−m+1(2hτ)+ L1
2n−m(2hτ)

]
,m= 0,2n+ 1

}
, (13)

where L1
k(2hτ)—is a Laguerre polynomial, [4].

Now we introduce the function H(t, τ ) by the relation

H(t, τ )= {
Hm(τ) for 2$m< t ≤ 2$(m+ 1),m= 0,2n+ 1

}
. (14)

We pose the problem of finding among all μ(t) ∈ Lp[0, T ], a function minimiz-
ing the integral

∫ T

0

∣∣∣∣μ(t)− h ·
∫ t

0
H(t, t − ξ)μ(ξ)dξ

∣∣∣∣

p

dt (15)

under the constraints that follow from the validity of arbitrarily posed initial and
terminal conditions.

In the present paper the idea to find required special optimality criterion was
based on utilization of this integral which is modified (up to equivalence) “boundary
energy integral” (see [3, 5, 6]). An analogical functional, which was minimized in
previous papers and can be obtained from the one presented in this work exploited
the Neumann condition (i.e. h= 0) instead of the third boundary condition.

We continue the functions ϕ(x) and ψ(x) in the initial conditions (2) and the
functions ϕ̂(x) and ψ̂(x) in the terminal conditions (3) as odd functions around the
point x = $ from the interval [0, $] to the interval [$,2$]. The fixing conditions (5)
guarantee that the functions thus continued belong to the classes

ϕ(x), ϕ̂(x) ∈W 1
p[0,2$], ψ(x), ψ̂(x) ∈ Lp[0,2$]. (4∗)
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10.2 Preparation for the Optimization

Theorem 1 There exists a solution μ = μ(t) of the considered boundary control
problem satisfying the given optimality criterion, and on each segment

[
2$m,2$(m+ 1)

]
(m= 0,2n+ 1),

it can be represented by the formula

μ(y)= (−1)m+1D(y − 2$m)

2n+ 2
+ h

∫ y

0
Rm(y − t)

(−1)m+1D(t − 2$m)

2n+ 2
dt, (16)

where D(t) is a function represented in closed form and depending only on initial
and terminal conditions of the problem,

Rm(y − t)=
2n−m+2∑

i=0

hi−1(y − t)i−1
(

2n−m+ 2
i

)

1F̃1
(
2n−m+ 1; i;h(y − t)

)
,

(17)

and 1F̃1(a; c; z)—is a degenerate Kummer hypergeometric function,
[7]. If p > 1, then the above-mentioned optimal solution is unique.

Proof Consider the function:

1

2
·
[
ϕ(x + t)+ ϕ(x − t)+

∫ x+t

x−t
ψ(ξ)dξ

]
in &1

ũ(x, t) = 1

2
·
[
ϕ(x + t)+ ϕ(0)+

∫ x+t

0
ψ(ξ)dξ

]
in &2,

0 in &3, (18)

where &1—is the triangle bounded by segments of the lines x − t = 0, x − $ = 0
and t = 0; &2—is the triangle bounded by segments of the lines x − t = 0, x + t −
2$= 0 and x = 0; &3—is the quadrangle bounded by segments of the lines x = 0,
x + t − 2$= 0, x − $= 0 and t − T = 0.

Following [5], one can show that, for all T > 2$, the function (18) is the unique
generalized solution of the mixed problem

ũxx(x, t)− ũt t (x, t)= 0,

ũ(x,0)= ϕ(x), ũt (x,0)=ψ(x),

ũx(0, t)− h · ũ(0, t)= μ̃(t), ũ($, t)= 0,

in the class Ŵ 1
p(QT ), where



10 On an Optimal Control Problem for the Wave Equation 227

μ̃(t) = 1

2

{
ϕ′(t)+ψ(t)− h

[
ϕ(t)+ ϕ(0)+

∫ t

0
ψ(ξ)dξ

]}
, if 0 ≤ t ≤ 2$,

0, if 2$ < t ≤ T .

Let u(x, t) be a generalized solution of the main problem (3), (8)–(10) in the class
Ŵ 1
p(QT ), which is used for the minimization of the integral (15), and let ũ(x, t) be

the constructed solution (18). Then the function

û(x, t)= u(x, t)− ũ(x, t) (19)

is a generalized solution of the mixed problem

ûxx(x, t)− ût t (x, t)= 0, (20)

û(x,0)= 0, ût (x,0)= 0, (21)

ûx(0, t)− h · û(0, t)= μ̂(t), û($, t)= 0, (22)

where

μ̂(t)= μ(t)− μ̃(t). (23)

We use the following closed form [8] of the generalized solution of the mixed
problem (20)–(22):

û(x, t) = −
2n+1∑

k=0

(−1)k ·
∫ t−x−2kl

0
μ̂(ξ)dξ −

2n+2∑

k=1

(−1)k ·
∫ t+x−2kl

0
μ̂(ξ)dξ

+ h ·
2n+1∑

k=0

(−1)k ·
∫ t

0
e−hτL1

k(2hτ)

·
[∫ t−2k$−x−τ

0
μ̂(ξ)dξ −

∫ t−2$(k+1)+x−τ

0
μ̂(ξ)dξ

−
∫ t−2$(k+1)−x−τ

0
μ̂(ξ)dξ +

∫ t−2$(k+2)+x−τ

0
μ̂(ξ)dξ

]
dτ, (24)

where the symbol μ̂(t) stands for the function that coincides with μ̂(t) for t ≥ 0
and is zero for t < 0. Since the function u(x, t) satisfies the terminal condition (3)
and ũ(x, t) satisfies the zero terminal condition, it follows from relation (19) that
the function û(x, t) satisfies the terminal conditions

û(x, T )= ϕ̂(x); ût (x, T )= ψ̂(x). (25)

By using relation (24) and conditions (3) and (25), we establish constraints,
which are necessary and sufficient for the function μ(t) to be a solution of the
boundary control problem.
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We introduce the notation

l1
k(2hτ)= e−hτ · L1

k(2hτ), μ̂k(x)= μ̂(x + 2k$),

and evaluate the derivatives of the function (24):

ûx(x, t) =
2n+1∑

k=0

(−1)k · μ̂−k(t − x)−
2n+2∑

k=1

(−1)k · μ̂−k(t + x)

+ h ·
2n+1∑

k=0

(−1)k ·
∫ t

0
l1
k(2hτ) ·

[−μ̂−k(t − x − τ)

− μ̂−(k+1)
(t + x − τ)+ μ̂−(k+1)

(t − x − τ)+ μ̂−(k+2)
(t + x − τ)

]
dτ,

ût (x, t) = −
2n+1∑

k=0

(−1)k · μ̂−k(t − x)−
2n+2∑

k=1

(−1)k · μ̂−k(t + x)

+ h ·
2n+1∑

k=0

(−1)k ·
∫ t

0
l1
k(2hτ) ·

[
μ̂−k(t − x − τ)

− μ̂−(k+1)
(t + x − τ)− μ̂−(k+1)

(t − x − τ)+ μ̂−(k+2)
(t + x − τ)

]
dτ.

By setting t = T = 4$(n+1) and by using the terminal conditions (25), we obtain

ϕ̂′(x) =
2n+1∑

k=0

(−1)k · μ̂
2n−k+2

(−x)−
2n+2∑

k=1

(−1)k · μ̂
2n−k+2

(x)

+ h ·
2n+1∑

k=0

(−1)k ·
∫ 4$(n+1)

0
l1
k(2hτ) ·

[−μ̂
2n−k+2

(−x − τ)

− μ̂
2n−k+1

(x − τ)+ μ̂
2n−k+1

(−x − τ)+ μ̂
2n−k(x − τ)

]
dτ,

ψ̂(x) = −
2n+1∑

k=0

(−1)k · μ̂
2n−k+2

(−x)−
2n+2∑

k=1

(−1)k · μ̂
2n−k+2

(x)

+ h ·
2n+1∑

k=0

(−1)k ·
∫ 4$(n+1)

0
l1
k(2hτ) ·

[
μ̂

2n−k+2
(−x − τ)

− μ̂
2n−k+1

(x − τ)− μ̂
2n−k+1

(−x − τ)+ μ̂
2n−k(x − τ)

]
dτ.
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The half-sum and half-difference of the last two relations provide constraints for
all x in the interval [0, $]:

1

2

[
ϕ̂′(x)+ ψ̂(x)

] = −
2n+2∑

k=1

(−1)kμ̂
2n−k+2

(x)− h

2n+1∑

k=0

(−1)k

×
∫ T

0
l1
k(2hτ)

[
μ̂

2n−k+1
(x − τ)− μ̂

2n−k(x − τ)
]
dτ, (26)

1

2

[
ϕ̂′(x)− ψ̂(x)

] =
2n+1∑

k=0

(−1)kμ̂
2n−k+2

(−x)− h

2n+1∑

k=0

(−1)k

×
∫ T

0
l1
k(2hτ)

[
μ̂

2n−k+2
(−x − τ)− μ̂

2n−k+1
(−x − τ)

]
dτ.

(27)

Relations (26) and (27) are equalities of elements of the class Lp[0, $]. In ad-
dition, note that if x is replaced by 2$ − x, then, by taking into account the odd
extension of ϕ(x) and ψ(x) around the point x = $, one reduces relation (27) to
(26) expressed for all x in the interval [$,2$]. Consequently, relation (26) should be
treated as an equality of elements of the class Lp[0,2$].

We perform the substitution m= 2n− k+ 2 in the first sum and m= 2n− k+ 1
in the second sum of relation (26):

1

2

[
ϕ̂′(x)+ ψ̂(x)

] = −
2n+1∑

m=0

(−1)mμ̂
m
(x)+ h ·

2n+1∑

m=0

(−1)m ·
∫ T

0
l1
2n−m+1(2hτ)

· [μ̂
m
(x − τ)− μ̂

m−1
(x − τ)

]
dτ. (28)

We rewrite the second sum in relation (28) in the form:

h ·
2n+1∑

m=0

(−1)m ·
∫ T

0
l1
2n−m+1(2hτ) ·

[
μ̂
m
(x − τ)− μ̂

m−1
(x − τ)

]
dτ

= h ·
2n+1∑

m=0

(−1)m ·
∫ T

0
l1
2n−m+1(2hτ) · μ̂m(x − τ)dτ

− h ·
2n∑

m=−1

(−1)m ·
∫ T

0
l1
2n−m(2hτ) · μ̂m(x − τ)dτ.

Since

μ̂
m
(x − τ)≡ 0 for m= −1,
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and

l1
2n−m(2hτ)≡ 0 for m= 2n+ 1,

in the last relation, so

h ·
2n+1∑

m=0

(−1)m ·
∫ T

0
l1
2n−m+1(2hτ) ·

[
μ̂
m
(x − τ)− μ̂

m−1
(x − τ)

]
dτ

= h ·
2n+1∑

m=0

(−1)m ·
∫ T

0

[
l1
2n−m+1(2hτ)+ l1

2n−m(2hτ)
] · μ̂

m
(x − τ)dτ,

it follows that relation (28) can be represented in the form

1

2

[
ϕ̂′(x)+ ψ̂(x)

] = −
2n+1∑

m=0

(−1)mμ̂
m
(x)+ h

2n+1∑

m=0

(−1)m

×
∫ T

0

[
l1
2n−m+1(2hτ)+ l1

2n−m(2hτ)
]
μ̂
m
(x − τ)dτ. (29)

Let us now derive a constraint in terms of μ(x). We use the relation

μ̂m(x)= μm(x)− μ̃m(x),

where

μ̃m(x) = 1

2
·
{
ϕ′(x)+ψ(x)− h ·

[
ϕ(x)+ ϕ(0)+

∫ x

0
ψ(ξ)dξ

]}

= Ã(x), for m= 0,

0, for m= 1,2n+ 1,

let us note that

μ̂
m
(x)= μ̂m(x),

and

μ̂
m
(x − τ) = μ̂m(x − τ), 0 ≤ τ ≤ 2$m+ x,

0, 2$m+ x ≤ τ ≤ T .

We transform the right-hand side of relation (29):

−
2n+1∑

m=0

(−1)m · μ̂m(x)

+ h

2n+1∑

m=0

(−1)m
∫ 2$m+x

0

[
l1
2n−m+1(2hτ)+ l1

2n−m(2hτ)
] · μ̂m(x − τ)dτ
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=
2n+1∑

m=0

(−1)m ·μm(x)+ Ã(x)

+ h

2n+1∑

m=0

(−1)m
∫ 2$m+x

0

[
l1
2n−m+1(2hτ)+ l1

2n−m(2hτ)
] ·μm(x − τ)dτ

− h ·
2n+1∑

m=0

(−1)m
∫ 2$m+x

0

[
l1
2n−m+1(2hτ)+ l1

2n−m(2hτ)
] · Ã(x − τ)dτ.

We set

D(x) = 1

2

[
ϕ̂′(x)+ ψ̂(x)

]− Ã(x)

+ h

2n+1∑

m=0

(−1)m
∫ 2$m+x

0

[
l1
2n−m+1(2hτ)+ l1

2n−m(2hτ)
]
Ã(x − τ)dτ.

(30)

Finally, the constraint (29) can be represented in the form

−
2n+1∑

m=0

(−1)mμm(x)

+ h

2n+1∑

m=0

(−1)m
∫ 2$m+x

0

[
l1
2n−m+1(2hτ)+ l1

2n−m(2hτ)
] ·μm(x − τ)dτ = D(x),

or, by virtue of notation (13), in the form

2n+1∑

m=0

(−1)m
{
μm(x)− h

∫ 2$m+x

0
Hm(τ)μm(x − τ)dτ

}
= −D(x). (31)

Note that this relation is valid in the sense of the class Lp[0,2$].
We have thereby shown that if the function μ(t) is a solution of a boundary

control problem, then it necessarily satisfies condition (31). Conversely, let μ(t)
satisfy condition (31). Then, by performing considerations similar to the above-
performed investigation, we obtain

1

2

[
ûx(x, T )+ ût (x, T )

]

= −
2n+1∑

m=0

(−1)mμm(x)+ Ã(x)
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+ h

2n+1∑

m=0

(−1)m
∫ 2$m+x

0

[
l1
2n−m+1(2hτ)+ l1

2n−m(2hτ)
] ·μm(x − τ)dτ

− h

2n+1∑

m=0

(−1)m
∫ 2$m+x

0

[
l1
2n−m+1(2hτ)+ l1

2n−m(2hτ)
] · Ã(x − τ)dτ,

where û(x, T ), ût (x, T ), ϕ(x), and ψ(x) are extended from the interval [0, $] to
the interval [$,2$] as odd functions around the point x = $. By using this relation,
condition (30), and relation (31), we obtain the relation

ûx(x, T )+ ût (x, T )= ϕ̂′(x)+ ψ̂(x)

which is valid almost everywhere on the interval [0,2$]. Since the functions
ûx(x, T ), ût (x, T ), ϕ̂(x), and ψ̂(x) are continued as odd functions around the point
x = $, we have that the relations

ûx(x, T )+ ût (x, T )= ϕ̂′(x)+ ψ̂(x), ûx(x, T )− ût (x, T )= ϕ̂′(x)− ψ̂(x),

are valid almost everywhere on the interval [0, $]. Consequently, by virtue of (19)
and the relations ũ(x, T )= 0, ũt (x, T )= 0, û($, T )= ϕ̂($)= 0, the terminal condi-
tions (3) are satisfied for the function u(x, t). But the validity of the initial conditions
(2) readily follows from (18), (19) and (24); i.e., the function μ(t) is a solution of
the boundary control problem.

By performing the change of variables {τ = t − ξ} we reduce the integral (15) to
be minimized to the form

∫ T

0

∣∣∣
∣μ(t)− h ·

∫ t

0
H(t, τ )μ(t − τ)dτ

∣∣∣
∣

p

dt. (32)

Note that this integral for the time interval, T given by relation (12), can be
represented in the following form which is more convenient for the optimization:

∫ 2$

0

2n+1∑

m=0

∣∣∣∣(−1)m ·
{
μm(x)− h ·

∫ 2$m+x

0
Hm(τ)μm(x − τ)dτ

}∣∣∣∣

p

dx, (33)

where the variable t is replaced by x.
Therefore, the optimization problem can be reduced to finding the minimum of

the integral (33) with the constraints given by (30), and (31).

10.3 The Optimization Process

Lemma 1 Let N be some fixed positive integer, and let A : (Lp[a, b])N → L1[a, b]
be the operator that takes each function

F(x)= (
f1(x), f2(x), . . . , fN(x)

) ∈ (
Lp[a, b]

)N
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to the sum

AF(x)=
N∑

i=1

∣∣fi(x)
∣∣p ∈ L1[a, b].

Let M be some subset of functions in (Lp[a, b])N . If the pointwise minimum

min
F∈MAF(x)=AF 0(x), x ∈ [a, b],

is attained at a function F 0(x) ∈M , then the minimum of the integral

min
F∈M

∫ b

a

AF(x)dx =
∫ b

a

AF 0(x)dx

is attained at the same function F 0(x).

The assertion of the lemma follows from the fact that the inequality

AF 0(x)≤AF(x)

for all x in the interval [a, b] is valid for an arbitrary function F(x) in the set M ;
therefore,

∫ b

a

AF 0(x)dx ≤
∫ b

a

AF(x)dx

for any function F(x) from the set M .
For brevity of notation, we set

zm = μm(x)− h ·
∫ 2$m+x

0
Hm(τ)μm(x − τ)dτ, m= 0,2n+ 1. (34)

By applying Lemma 1 to the functions zm, we reduce the problem of finding the
minimum of the integral (33) to finding the pointwise minimum of the sum

2n+1∑

m=0

|zm|p (35)

under the condition
2n+1∑

m=0

zm = −D(x). (36)

The above-mentioned minimum can be found with the use of the Lagrange method.
We form the Lagrange function

L(x,λ)=
2n+1∑

m=0

|zm|p + λ ·
[

2n+1∑

m=0

zm + D(x)

]

.
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Let p > 1. We set the derivative of the function L(x,λ) with respect to zm equal to
zero:

p · |zm|p−1 · sgn(zm)+ λ= 0, m= 0,2n+ 1. (37)

Since p > 1 and |zm|p−1 ≥ 0, we have

sgn(zm)= sgn(−λ), m= 0,2n+ 1. (38)

We separately consider two cases, D(x)≤ 0 and D(x) > 0.

• If D(x) ≤ 0, then, by using relations (36) and (38) we obtain zm ≥ 0, m =
0,2n+ 1, λ ≤ 0. Consequently, zm is equal to the same number (− λ

p
)1/(p−1)

for all m= 0,2n+ 1.
• If D(x) > 0, then zm < 0, m = 0,2n+ 1, λ > 0. Therefore, zm is equal to the

same number −( λ
p
)1/(p−1) for all m= 0,2n+ 1.

But then it follows from (36) that

zm = − D(x)
2n+ 2

= z0
m (39)

for all m= 0,2n+ 1. The relations

2n+1∑

m=0

|zm| ≥
∣∣∣∣∣

2n+1∑

m=0

zm

∣∣∣∣∣
= ∣∣D(x)

∣∣=
2n+1∑

m=0

∣∣z0
m

∣∣

imply that, for p = 1, the same set of functions z0
m attains the pointwise minimum

of the sum
∑2n+1

m=0 |zm|p .
Now we write out relation (39) in the original terms:

μm(x)− h

∫ 2$m+x

0
Hm(τ)μm(x − τ)dτ = (−1)m+1D(x)

2n+ 2
,

for 0 ≤ x ≤ 2$;m= 0,2n+ 1. (40)

We denote the number 2$m + x for all m = 0,2n+ 1 by y and perform the sub-
stitution y − τ = ξ in the integrand; then relation (40) acquires the form of the
convolution-type Volterra integral equation of the second kind

μ(y)− h ·
∫ y

0
Hm(y − ξ)μ(ξ)dξ = (−1)m+1D(y − 2$m)

2n+ 2
,

for 2$m≤ y ≤ 2$(m+ 1);m= 0,2n+ 1, (41)

where the equality is valid in the sense of the class Lp[2$m,2$(m + 1)] and the
kernel Hm(y − ξ) is given by (13).
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Such equations are studied with the use of the Laplace transform

Lp(F)=
∫ ∞

0
e−ptF(t)dt,

which reduces a convolution into an ordinary product under some conditions related
with its applicability.

10.4 The Integral Equation Solving

We denote the right side of (41) by f (y) and find a solution to this equation, the
function μ(t) from the class Lp[0, T ].

Applying the direct Laplace transform of (41) we obtain the following algebraic
equation

μ̃(p)− hH̃m(p)μ̃(p)= f̃ (p),

μ̃(p)= f̃ (p)

1 − hH̃m(p)
= f̃ (p)+ hH̃m(p)

1 − hH̃m(p)
f̃ (p).

To find the initial required solution of the integral equation we use the inverse
Laplace transform. We obtain

μ(y)= f (y)+ h

∫ y

0
R(y − t)f (t)dt, 2$m≤ y ≤ 2$(m+ 1),m= 0,2n+ 1,

where

R(y − t) = L−1
p

[
H̃m(p)

1 − hH̃m(p)

]
(y − t),

Hm(τ) = e−ht
[

2n−m+1∑

k=0

(
2n−m+ 2

2n−m+ 1 − k

)
(−2hτ)k

k!

+
2n−m∑

k=0

(
2n−m+ 1
2n−m− k

)
(−2hτ)k

k!

]

,

H̃m(p) =
(
p− h

h+ p

)−m(
2h

(
p− h

h+ p

)m
+ 2p

(
p− h

h+ p

)m
(42)

+ h

(
p− h

h+ p

)2n

− p

(
p− h

h+ p

)2n)/(
2h(h+ p)

)

− (h− p)2(1 − 2h/(h+ p))2n−m

2h(h+ p)2
,

H̃m(p)

1 − hH̃m(p)
= − (h+ p)2((p− h)/(h+ p))m−2n

h(h− p)p
− 1

h
.
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For simplicity, taking account of the inverse Laplace transform of expres-
sion (43), it is represented in the form

H̃m(p)

1 − hH̃m(p)

= − 1

h
+

2n−m+2∑

i=0

h−i−m+2n+1pi−1(p− h)m−2n−1
(−m+ 2n+ 2

i

)
. (43)

The inverse Laplace transform of the function (43) is

R(x)=
−m+2n+2∑

i=0

hi−1xi−1
(−m+ 2n+ 2

i

)

1F̃1(−m+ 2n+ 1; i;hx), (44)

where 1F̃1(a; c; z)—is a degenerate Kummer hypergeometric function, [7],

1F̃1(a; c; z)= Φ(a; c; z)=
∞∑

n=0

(a)n

(c)n

zn

n! .

Consequently, the solution of (41) can be represented as

μ(y)= (−1)m+1D(y − 2$m)

2n+ 2
+ h

∫ y

0
R(y − t)

(−1)m+1D(t − 2$m)

2n+ 2
dt,

2$m≤ y ≤ 2$(m+ 1),m= 0,2n+ 1, (45)

where R(x) is expressed by the formula (44).
For example, when T = 8$, we have

R(x) = 16

315
ehx

(
2h7x7 + 49h6x6 + 462h5x5 + 2100h4x4 + 4830h3x3

+ 5355h2x2 + 2520hx + 315
)+ 1, 0< x < 2$,

16

45
ehx

(
h6x6 + 18h5x5 + 120h4x4 + 360h3x3

+ 495h2x2 + 270hx + 45
)− 1, 2$≤ x < 4$,

4

15
ehx

(
4h5x5 + 50h4x4 + 220h3x3

+ 390h2x2 + 270hx + 45
)+ 1, 4$≤ x < 6$,

4

3
ehx

(
2h4x4 + 16h3x3 + 42h2x2 + 36hx + 9

)− 1, 6$≤ x < 8$.

It is easy to see that for h = 0 the solution of (45) moves in the solution obtained
in [6] in the study of boundary control problems with second boundary condition at
the left end of the string when docked right for T = 8$.
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10.5 The Uniqueness of the Optimal Control

Now we analyze the uniqueness of the optimal solution of the boundary control
problem. We show that if p > 1, then only the set {z0

m} of functions of the class
Lp[0,2$] minimizes the integral (15) under condition (36). Let {zm} be some set of
functions satisfying the constraint (36) and

∫ 2$

0

2n+1∑

m=0

|zm|pdx =
∫ 2$

0

2n+1∑

m=0

∣∣z0
m

∣∣pdx.

By using the linearity of the integral we obtain

∫ 2$

0

[
2n+1∑

m=0

|zm|p −
2n+1∑

m=0

∣∣z0
m

∣∣p
]

dx = 0.

At the same time, since the function set z0
m provides the pointwise minimum of the

sum
∑2n+1

m=0 |zm|p , we have

2n+1∑

m=0

|zm|p −
2n+1∑

m=0

∣∣z0
m

∣∣p ≥ 0.

This implies that

2n+1∑

m=0

|zm|p =
2n+1∑

m=0

∣∣z0
m

∣∣p

almost everywhere on [0,2$].
Suppose that there exists a function set {z1

m} such that

2n+1∑

m=0

∣∣z1
m

∣∣p =
2n+1∑

m=0

∣∣z0
m

∣∣p = s(x)

for almost all x in the interval [0,2$]. Then

[
2n+1∑

m=0

∣∣z1
m

∣∣p
]1/p

=
[

2n+1∑

m=0

∣∣z0
m

∣∣p
]1/p

= s1/p(x). (46)

Since the set {zm} = { 1
2z

0
m + 1

2z
1
m} satisfies condition (36), we have

[
2n+1∑

m=0

∣∣∣∣
1

2
z0
m + 1

2
z1
m

∣∣∣∣

p
]1/p

≥ s1/p(x). (47)
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On the other hand, by using obvious inequalities, the Minkowski inequality,
and relation (46), we obtain

[
2n+1∑

m=0

∣∣∣∣
1

2
z0
m + 1

2
z1
m

∣∣∣∣

p
]1/p

≤ 1

2

[
2n+1∑

m=0

∣∣z0
m

∣∣p
]1/p

+ 1

2

[
2n+1∑

m=0

∣∣z1
m

∣∣p
]1/p

= s1/p(x).

(48)

The relations (47) and (48) are compatible if and only if the sign “≤” in the
Minkowski inequality used in (48) becomes the sign “=”; but it is known that, for
p > 1, this is possible only if

z0
m = c(x)z1

m, m= 0,2n+ 1, c(x) > 0.

By using the last relation and formula (46), we obtain c(x) ≡ 1, i.e., z1
m = z0

m

almost everywhere on [0,2$], m = 0,2n+ 1. Consequently, to prove the desired
uniqueness, it remains to note that the uniqueness of the solution of the integral
equation (39) in the class of functions satisfying the inequality

∣∣μ(t)
∣∣≤Me(M0|x|ω) (M > 0,M0 > 0,ω > 0)

was proved in [9] in a much more general case.
In conclusion, we note that if p = 1, then the set of functions zm minimizing the

integral (15) and satisfying condition (36) is defined non uniquely. One can readily
see that it can be any set {̃zm = −D(x) ·αm(x)}, in which αm(x) are functions, which
are Lebesgue integrable on the interval [0,2π] and such that

αm(x) ∈ Lp[0,2$], αm(x)≥ 0,

m= 0,2n+ 1 and
2n+1∑

m=0

αm(x)= 1, ∀x ∈ [0,2$].

This completes the proof. �
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Chapter 11
Critical Exponent for the Semilinear Wave
Equation with Time or Space Dependent
Damping

Kenji Nishihara

Abstract Since the damped wave equation has the diffusion phenomenon, the crit-
ical exponent is expected to be the same as that for the corresponding diffusive
equation with semilinear term. Therefore, we first remember the basic facts on the
diffusion phenomenon. Then, from this point of view, we can conjecture the critical
exponent for the damped wave equation and state several results. Finally, the small
data global existence of solutions is shown in the supercritical exponent, while no
global existence for some data is done in the critical and subcritical exponents. The
latter part will be applied to the semilinear damped wave equation with quadratically
decaying potential.

Mathematics Subject Classification 35L71 · 35B40 · 35B44

11.1 Introduction

We mainly consider the Cauchy problem for the semilinear wave equation with
time-dependent damping:

{
utt −Δu+ b(t)ut = |u|ρ, (t, x) ∈ R+ × RN

(u,ut )(0, x)= (u0, u1)(x), x ∈ RN,
(P)

where ρ > 1 and b(t)= b0(t + 1)−β with −1< β < 1 and b0 = 1 (WOLG). When

ρ <
N + 2

[N − 2]+ :=
{

∞ N = 1,2,
N+2
N−2 N ≥ 3,

and (u0, u1) ∈ H 1 × L2 are compactly supported, there exists a unique weak so-
lution u ∈ C([0, T ];H 1) ∩ C1([0, T ];L2) for some T > 0, which has the compact
support by the finite propagation property. Our concern is with large time behavior
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of the solution. The main aim in this note is to show that the critical exponent is still

ρF (N) := 1 + 2

N
(Fujita exponent) (1)

even for time-dependent damping. That is, if ρ > ρF (N), then there exists a time-
global solution u(t, x) to (P) for any small data, while, if ρ ≤ ρF (N), then the
solution does not exist time-globally for suitable data. When b(t)≡ 1, our problem
(P) is reduced to

{
utt −Δu+ ut = |u|ρ, (t, x) ∈ R+ × RN

(u,ut )(0, x)= (u0, u1)(x), x ∈ RN,
(DW)

which has the diffusion phenomenon. That is, the solution behaves as t → ∞ like
the solution to the corresponding diffusive equation

{
−Δφ + φt = |φ|ρ, (t, x) ∈ R+ × RN

φ(0, x)= φ0(x), x ∈ RN.
(H)

For (H) with φ0(x)≥ 0, because of the maximum principle, the equation is equiva-
lent to

φt −Δφ = |φ|ρ−1φ, (2)

which is called the Fujita equation, named after his pioneering work [3]. As is
known well, there is a critical exponent, the Fujita exponent, given by (1). When
ρ > ρF (N), there exists a unique and time-global solution φ(t, x) for small data
φ0(x), while, when ρ ≤ ρF (N), the time-local solution φ(t, x) blows up within a
finite time for any small data φ0(x)≥ 0. By the diffusion phenomenon the solution
u(t, x) to (DW) is expected to behave like φ(t, x). In fact, (DW) has been investi-
gated by many authors [5–9, 15–19, 24, 26–28, 34, 39] etc. See also the references
therein. In the results, the Fujita exponent ρF (N) is critical for (DW), too. More
detailed discussions are referred to the survey paper [30]. Based on those results,
we investigate (P) and determine the critical exponent.

In the supercritical exponent case the global existence of solution for small
data will be shown by the weighted energy method. The proof is generally rather
complicated, but the procedure is standard in some sense once we obtain the suit-
able weight. The original development in this direction was done in Todorova and
Yordanov [34]. The proof of blow-up of solution is sometimes difficult. In case
of the space-dependent damping +b(x)ut , instead of +b(t)ut in (P), the blow-up
was shown by Ikehata, Todorova and Yordanov [11] by applying the test function
method, developed by Qi S. Zhang [39] for the constant coefficient damping. To our
problem (P) we apply the same method together with the additional idea. However,
in case of both space- and time-dependent damping, the blow-up is not yet proved.
Therefore, we will focus to derive the blow-up results. Also, we apply the idea to
the semilinear damped wave equation with quadratically decaying potential

utt + ut −Δu+ V (x)u= |u|ρ, (3)
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where V is radial and

V (x)=: V (|x|)∼ ω|x|−2 (ω > 0) as |x| → ∞. (4)

The corresponding parabolic problem

{
φt −Δφ + V (x)φ = |φ|ρ−1φ, (t, x) ∈ R+ × RN

φ(0, x)= φ0(x)≥ 0, x ∈ RN,
(5)

has been investigated by Ishige [13]. Qi S. Zhang [40] emphasized that the potential
has an influence on the critical exponent and obtained the critical exponent depend-
ing on the potential. Ishige [13] covered the case of quadratically decaying potential
and obtained the critical exponent

ρc(N,ω)= 1 + 2

N + α(ω)
, (6)

where

α(ω)= −(N − 2)+√
(N − 2)2 + 4ω

2
> 0, (7)

which is the positive root of

α2 + (N − 2)α −ω= 0. (8)

By the diffusion phenomenon we expect that ρc(N,ω) is still critical for (3). Since
their proofs are based on the maximum principle for the parabolic equation, it will
be worth to obtain the critical exponent for (3).

Our plan of this note is as follows. In Sect. 11.2 we give the model showing the
diffusion phenomenon and analyze the solution of linear damped wave equation.
Similar discussions are done in [30]. In Sect. 11.3 we consider the semilinear prob-
lem (P) due to the analysis in the preceding section, and state the main theorems. In
Sect. 11.4 we treat the weighted energy method in the supercritical exponent case.
In the final section the proof of blow-up is given and the method will be applied to
(3) with (4).

11.2 Model Equation and Diffusion Phenomenon

We first show the model equation showing the diffusion phenomenon.

Model Equation of Heat Conductive Equation (Li [18]) Consider an infinitely
long wire. By q(t, x) denote the heat flow at time t and position x of the wire.
Let the heat be conducted only in the x-direction. When φ(t, x) is the temperature
at (t, x) and its specific heat is normalized to one, the change of temperature in
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[a, b] is d
dt

∫ b
a
φ(t, x)dx. The total flow is q(t, a) − q(t, b) = − ∫ b

a
qx(t, x)dx by

the inflow and outflow at x = a, b, and hence

d

dt

∫ b

a

φ(t, x)dx = −
∫ b

a

qx(t, x)dx, that is, φt + qx = 0. (9)

The heat flow q is proportional to the change of temperature (the coefficient is mi-
nus) by Fourier’s law, that is,

q(t, x)= −κφx(t, x) (κ > 0: coefficient of heat conductivity). (10)

Substituting (9) to (10), we have the simplest one-dimensional linear heat equation

φt − κφxx = 0. (11)

Equation (10) is the usual Fourier’s law. But, if we assume Fourier’s law with time
delay, that is,

q(t + τ, x)= −κφx(t, x) (0< τ ) 1), (12)

then we get

q(t, x)+ τqt (t, x)= −κφx(t, x), (13)

after Taylor’s expansion of q(t + τ, x) at t and neglecting the higher order terms
because of 0< τ ) 1. Differentiating (13) with respect to x and using (9), we arrive
at the 1-D linear damped wave equation

τφtt + φt − κφxx = 0. (14)

When τ → 0+, it is easily conjectured by the derivation that the solution of (14)
approaches to the solution of (11). Note that the propagation speed of (14) is pro-
portional to 1/

√
τ . The scale transformation in (14) means that the coefficient of φtt

is normalized to be one and τ → 0+ corresponds to t → +∞, which implies the
diffusion phenomenon.

There are nonlinear models, too, one of which is the compressible flow through
porous media. The 1-D model is represented in the Lagrangian mass coordinate by

{
vt − ux = 0, (t, x) ∈ R+ × R1

ut + px = −αu (α > 0: constant)
(15)

Here, v (>0) is the specific volume (= 1/ρ, ρ: density), u the velocity, and p the
pressure with the barotropic relation p = p(v). The typical example is p(v)= v−γ
(γ ≥ 1), in which γ = 1 means the isothermal flow and γ > 1 does the isen-
tropic one. The solution (v,u)(t, x) had been conjectured to behave like the solution
(v̄, ū)(t, x) to

{
v̄t − ūx = 0,

p(v̄)x = −αū. (16)
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In fact, Hsiao and Liu [8] showed under suitable conditions that the solution v of
(15) behaves like v̄ of (16). Since v̄ in (16) satisfies quasilinear parabolic equa-
tion and v in (15) does the quasilinear damped wave equation, their result means
the diffusion phenomenon. In this model there are many developments [4, 27] etc.
(Here we only cite them because our interest is in the second order damped wave
equation.)

We now analyze the solution of the Cauchy problem for linear damped wave
equation of second order

{
utt −Δu+ ut = 0, (t, x) ∈ R+ × RN,

(u,ut )(0, x)= (u0, u1)(x), x ∈ RN.
(LDW)

Fortunately, we know the explicit formula of solution ([1]). By v = SN(t)g denote
the solution to

{
vtt −Δv + vt = 0, (t, x) ∈ R+ × RN,

(u,ut )(0, x)= (0, g)(x), x ∈ RN,
(17)

then the solution u to (LDW) is given by

u(t, x)= SN(t)(u0 + u1)+ ∂t
(
SN(t)u0

)
. (18)

Hence, it is necessary to analyze both SN(t)(g) and ∂t (SN(t)g). When N = 1,2,3,

(
S1(t)g

)
(x) = e−t/2

2

∫

|z|≤t
I0

(
1

2

√
t2 − |z|2

)
g(x + z)dz (191)

(
S2(t)g

)
(x) = e−t/2

2π

∫

|z|≤t
cosh (1/2)

√
t2 − |z|2

√
t2 − |z|2 g(x + z)dz (192)

(
S3(t)g

)
(x) = e−t/2

4πt
∂t

∫

|z|≤t
I0

(
1

2

√
t2 − |z|2

)
g(x + z)dz. (193)

Here Iν(y) is the modified Bessel function with the series form

Iν(y)=
∞∑

m=0

1

m!Γ (m+ ν + 1)

(
y

2

)2m+ν
(Γ : Gamma function).

Note that SN(t)g is obtained by the method of descent for the explicit formula of
the wave equation without damping for the dimension N + 1. Here we only analyze
S3(t)g (for SN(t)g, N = 1,2 see [10, 23]). The properties of the modified Bessel
function are the followings.
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Lemma 1 The modified Bessel function Iν (ν ∈ N0) satisfies

I0(0)= 1, I1(y)/y|y=0 = 1/2,

(
I0(y)− 2

y
I1(y)

)
/y2

∣∣∣
∣
y=0

= 1/8,

I ′
0(y)= I1(y), I ′

1(y)= I0(y)− I1(y)/y

and, moreover, the following expansion formula as y → ∞:

Iν(y) = ey√
2πy

(
1 − (ν − 1/2)(ν + 1/2)

2y

+ (ν − 1/2)(ν − 3/2)(ν + 3/2)(ν + 1/2)

2!22y2

− · · · + (−1)k
(ν − 1/2) · · · (ν − (k − 1/2))(ν + (k − 1/2)) · · · (ν + 1/2)

k!2kyk

+O
(
y−k−1)

)
.

By Lemma 1 the terms S3(t)g and ∂t (S3(t)g) are, respectively,

S3(t)g = e−t/2 · t

4π

∫

S2
g(x + tω)dω

+ e−t/2

8π

∫

|z|≤t
I1

(√
t2 − |z|2

2

)
g(x + z)dz
√
t2 − |z|2

=: e−t/2W(t)g + J0(t)g
(
W(t)g: Kirchhoff formula

)

and

∂t
(
S(t)g

) = e−t/2 ·
{(

−1

2
+ t

8

)
W(t)g + ∂t

(
W(t)g

)
}

+
∫

|z|≤t
∂t

[
e−t/2I1(

√
t2 − |z|2/2)

8π
√
t2 − |z|2

]
g(x + z)dz

=: e−t/2W̃ (t)g + J1(t)g.

Hence, by (18) the solution u(t, x) to (LDW) is decomposed as

u(t, x) = [
S(t)(u0 + u1)

]
(x)+ ∂t

[(
S(t)u0

)]
(x)

= e−t/2
{
W(t)(u0 + u1)+ W̃ (t)u0

}+ J0(t)(u0 + u1)+ J1(t)u0.

By Lemma 1 the remainder terms Ji(t)g are estimated as follows.
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Lemma 2 ([28], Lp-Lq estimate in N = 3) For p, q with 1 ≤ q ≤ p ≤ ∞, it holds
that

∥∥J0(t)g
∥∥
Lp

≤ C‖g‖Lq (t + 1)−(3/2)(1/q−1/p), t ≥ 0
∥∥(J0(t)− etΔ

)
g
∥∥
Lp

≤ C‖g‖Lq t−(3/2)(1/q−1/p)−1, t > 0
∥∥J1(t)g

∥∥
Lp

≤ C‖g‖Lq (t + 1)−(3/2)(1/q−1/p)−1, t ≥ 0

where etΔg = ∫
RN G(t, x − y)g(y)dy with the Gauss kernel

G(t, x)= (4πt)−N/2e−|x|2/(4t).

Therefore, the decomposition of solution u(t, x) to (LDW) is symbolically seen
as

u(t, x)= e−t/2
{
W(t)(u0 + u1)+ W̃ (t)u0

}

︸ ︷︷ ︸
wave part decaying fast

+J0(t)(u0 + u1)+ J1(t)u0︸ ︷︷ ︸
diffusive part

. (20)

Thus the solution u to (LDW) behaves like the solution φ to the linear heat equa-
tion with data φ0(x)= (u0 + u1)(x), which implies the diffusion phenomenon. The
decomposition also implies that u(t, x) has the finite propagation property and may
have the singularity, but, u(t, x) has not the smoothing effect nor the maximum prin-
ciple. These observations suggest the methods to treat the damped wave equations,
which are different from the parabolic equations.

11.3 Semilinear Damped Wave Equation

Based on the decomposition (20), we proceed to study the semilinear problems
{
utt −Δu+ ut = f (u), (t, x) ∈ R+ × RN

(u,ut )(0, x)= (u0, u1)(x), x ∈ RN,
(21)

and
{
utt −Δu+ b(t)ut = f (u), (t, x) ∈ R+ × RN

(u,ut )(0, x)= (u0, u1)(x), x ∈ RN,
(22)

compared with the corresponding parabolic problems. Here we assume

(u0, u1) ∈H 1 ×L2 with compact supports (23)

and

f (u)= −|u|ρ−1u or f (u)= +|u|ρ−1u, |u|ρ
(

1< ρ <
N + 2

[N − 2]+
)
. (24)
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Then we have a time-local solution u to (21) or (22). Our interest is in the large-
time behavior. Depending on the semilinear term f (u) the behavior is much dif-
ferent from each other. We have several known results depending on the semilinear
absorbing term f (u)= −|u|ρ−1u or semilinear source term f (u)= +|u|ρ−1u, |u|ρ
for (21). Denoting f ∼ g as t → ∞ when f−g

g
→ 0 as t → ∞, we can sum them

up, roughly speaking, as follows.

Absorbing Semilinear Term If f (u)= −|u|ρ−1u, then there exists a time-global
solution u(t) to (21) for any large data (u0, u1), which satisfies

(i) when ρ > ρF (N) = 1 + 2
N

, u(t) ∼ M0G(t, x) as t → ∞, where M0 =∫
RN (u0 + u1)(x)dx − ∫∞

0

∫
RN |u|ρ−1u(t, x)dxdt ,

(ii) when ρ = ρF (N), ‖u(t)‖L2 =O(t−N/4(log t)−N/2) as t → ∞,
(iii) when 1< ρ < ρF (N), ‖u(t)‖L2 =O(t−1/(ρ−1)+N/4) as t → ∞.

Here we note that there exists a similarity solution w0(t, x) of the form

w0(t, x)= (t + 1)−1/(ρ−1)f0
(|x|/√t + 1

)

to the corresponding semilinear heat equation −Δφ + φt + |φ|ρ−1φ = 0, where f0

is a solution of

−f ′′
0 −

(
r

2
+ N − 1

r

)
f ′

0 + |f0|ρ−1f0 = 1

ρ − 1
f0, lim

r→∞ r
2/(ρ−1)f0(r)= 0.

The L2-norm of w0 is the same as ‖u(t)‖L2 in (iii).

Source Semilinear Term If f (u)= +|u|ρ−1u, |u|ρ , then the followings hold:

(i) when ρ > ρF (N), there exists a time-global solution u(t) for small data
(u0, u1), and u(t)∼M0G(t, x) as t → ∞ withM0 = ∫

RN (u0 +u1)(x)dx+∫∞
0

∫
RN f (u)(t, x)dxdt .

(ii, iii) when ρ ≤ ρF (N), f (u) = |u|ρ (f (u) = +|u|ρ−1u in some cases), there is
no existence of time-global solution u(t) for some data (u0, u1).

Thus the critical exponent is the Fujita exponent ρF (N) in both cases.
Next we consider the time-dependent damping problem (22). For the linear equa-

tion

vtt −Δv+ b(t)vt = 0
(
b(t)= (t + 1)−β

)
, (u,ut )(0, x)= (v0, v1)(x), (25)

Wirth ([36, 37]) showed, by the Fourier transformation, that when β > 1, the
damping is non-effective and the solution of (25) has the wave property. When
−1 < β < 1, the damping is effective and the decay rate is the same as that
of solutions of the corresponding diffusive equation (see also Yamazaki [38] for
0 ≤ β < 1). The remaining case β <−1 is classified as the over-damping.
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Here we consider the corresponding parabolic problem when −1< β < 1 from
another point of view. The linear equation is

−Δφ + b(t)φt = 0 or φt = 1

b(t)
Δφ, with φ(0, x)= φ0(x).

The explicit formula of solution is

φ(t, x)=
∫

RN
GB(t, x − y)φ0(y)dy :=

∫

RN

(
4πB(t)

)−N/2
e−|x−y|2/(4B(t))φ0(y)dy

with B(t)= ∫ t
0

dτ
b(τ)

∼ t1+β . Hence, for −1< β < 1 we have the Lp-Lq estimate

∥∥φ(t)
∥∥
Lp

≤ C‖φ0‖Lq t−((1+β)N/2)(1/q−1/p) (1 ≤ q ≤ p ≤ ∞),

in particular,
∥∥φ(t)

∥∥
L2 =O

(
t−(N/4)(1+β)). (26)

On the other hand, the corresponding nonlinear equation is

b(t)φt −Δφ + |φ|ρ−1φ = 0.

For this equation we have the self-similar solution of the form

w0(t, x)= (c+ ct)−(1+β)/(ρ−1)f

( |x|
(c+ ct)(1+β)/2

)
if ρ < 1 + 2

N

with c1+β(1 + β)= 1 ([33]), which satisfies the decay rate

∥∥w0(t, ·)
∥∥
L2 =O

(
t−(1/(ρ−1)−N/4)(1+β)). (27)

Comparing the decay rates of (26) and (27), we can expect that ρF (N) is still critical
in the case of effective time-dependent damping.

In the case of absorbing semilinear term we have the following theorem.

Theorem 1 When f (u) = −|u|ρ−1u, 1 < ρ < N+2
[N−2]+ , the time-global solution u

to (22) with −1< β < 1 satisfies

(i) ‖u(t, ·)‖L2 = O(t−(1/(ρ−1)−N/4)(1+β)) provided that 1 < ρ < ρF (N) (Nishi-
hara and Zhai [33]), and

(ii) ‖u(t, ·)‖L2 = O(t−(N/4)(1+β)+ε) (0 < ε ) 1) provided that ρF (N) ≤ ρ <
N+2

[N−2]+ (Nishihara [31]).

Moreover, when N = 1 with (u0, u1) ∈H 2 ×H 1 additionally,

∥∥u(t, ·)− θ0GB(t, ·)
∥∥
L2 = o

(
t−(1/4)(1+β)) as t → ∞ (28)
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holds (Nishihara [32]), where

θ0 =
∫

R1

(
u1 + (1 − β)u0

)
(x)dx

+
∫ ∞

0

[
β(1 − β)

(τ + 1)(2−β)

∫

R1
udx − (τ + 1)β

∫

R1
|u|ρ−1udx

]
dτ.

From the viewpoint of the diffusion phenomenon, the decay rate (i) in Theorem 1
is optimal in the subcritical exponent, and (ii) is almost optimal in the supercritical
one. When N = 1, by (28) we can conclude that the Fujita exponent ρF (N) is com-
pletely critical. When N ≥ 2, we believe the decay rates are (almost) optimal even
for the damped wave equation, but these are not proved and so we cannot say that
ρF (N) is critical. In the critical exponent, we will have the slightly faster decay rate
than GB(t, x) like (ii) in the absorbing semilinear term, which is remained open.

Finally we consider the source semilinear problem (22) with −1 < β < 1. Our
main theorems are the followings.

Theorem 2 (Global existence in the supercritical exponent) Assume |f (u)| =
O(|u|ρ) in (22). If

I 2
0 :=

∫

RN
e(1+β)|x|2/(2(2+δ))(|u1|2 + |∇u0|2 + |u0|ρ+1)dx

is suitably small for some small δ > 0, then there exists a time-global solution u ∈
C([0,∞);H 1)∩C1([0,∞);L2) to (22), which satisfies

∥∥u(t)
∥∥
L2 ≤ CδI0(t + 1)−(N/4)(1+β)+ε/2 for ε = ε(δ)→ 0 (δ→ 0)

provided that ρF (N) < ρ <
N+2

[N−2]+ .

Theorem 3 (Blow-up in critical and subcritical exponents) Suppose that f (u) =
|u|ρ in (22) and the data (u0, u1) satisfy

∫

RN

(
u1(x)+ b̂1u0(x)

)
dx > 0, b̂−1

1 =
∫ ∞

0
e−

∫ t
0 (τ+1)−βdτ dt.

Then the global solution u ∈ C([0,∞);H 1)∩C1([0,∞);L2) to (22) does not exist
provided that 1< ρ ≤ ρF (N).

The proof of Theorem 2 is done by the energy method with suitable weight,
which is stated in the next section together with the reason why such kind of weight
is chosen. The blow-up result in Theorem 3 will be proved in the final section by
the test function method together with an additional idea. A similar idea can be ap-
plied to the semilinear damped wave equation (3) with quadratically decaying poten-
tial (4). For the semi-linear problem we also refer the recent paper [2] by D’Abbicco,
Lucente and Reissig and the references therein.
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11.4 Weighted Energy Method in the Supercritical Exponent

Our problem is the Cauchy problem
{
utt −Δu+ b(t)ut = f (u), (t, x) ∈ R+ × RN

(u,ut )(0, x)= (u0, u1)(x), x ∈ RN,
(22)

with

b(t)= (t + 1)−β (−1< β < 1) and

∣∣f (u)
∣∣=O

(|u|ρ)
(
ρF (N) < ρ <

N + 2

[N − 2]+
)
.

(29)

The weighted energy method for the damped wave equation is now well-known,
which was originally developed in Todorova and Yordanov [34]. But, here we show
the basic energy estimate for the simplest problem, and then apply it to our problem.
Because this basic treatment implies how to apply the method to more complicated
problems. The simplest problem is

(us)t −Δus = 0, us(0, x)= u0(x). (30)

By the diffusion phenomenon utt in (22) decays fast. Since
∫∞

0

∫
RN |f (u)|dxdt <

∞ in the supercritical exponent, f (u) is small as t → ∞. So, we have the simplest
problem (30), taking β = 0. For the solution us to (30) we easily have the Lp-Lq

estimate
∥∥us(t)

∥∥
Lp

≤ Ct−(N/2)(1/q−1/p)‖u0‖Lq (1 ≤ q ≤ p ≤ ∞),

applying the Hausdorff and Young inequality, in particular,
∥∥us(t)

∥∥
L2 ≤ Ct−N/4‖u0‖L2 . (31)

We want to obtain (31) by the weighted energy method, assuming that

us(t, x) has a compact support. (32)

The assumption (32) is reasonable because the solution to (22) is compactly sup-
ported by the finite propagation property.

We now multiply (30) by 2e2ψus with ψ = a|x|2
t+1 to get

(
e2ψu2

s

)
t
− 2∇ · (e2ψus∇us

)

+ 2
[
e2ψ(−ψt)u2

s + e2ψ∇ψ · 2us∇us + e2ψ |∇us |2
]= 0. (33)

If we change e2ψ2∇ψ · us∇us as

e2ψ∇ψ · 2us∇us = ∇ · (e2ψu2
s∇ψ

)− e2ψ(2|∇ψ |2 +Δψ
)
u2
s ,
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then the last term becomes bad. Hence, we change the term after using an additional
idea as

e2ψ∇ψ · 2us∇us
= 4e2ψ∇ψ · us∇us − e2ψ∇ψ · 2us∇us
= 4e2ψ∇ψ · us∇us − ∇ · (e2ψu2

s∇ψ
)+ e2ψ2|∇ψ |2u2

s + e2ψ(Δψ)u2
s .

Then, (33) becomes

(
e2ψu2

s

)
t
− 2∇ · e2ψ(us∇us + u2

s∇ψ
)

+ 2e2ψ [(−ψt + 2|∇ψ |2)u2
s + 4us∇ψ · ∇us + |∇us |2

]

+ e2ψ(2Δψ)u2
s = 0. (34)

Here we note that, since 2e2ψ(us∇us + u2
s∇ψ)= ∇(e2ψu2

s ), (34) is re-written as

(
e2ψu2

s

)
t
−Δ

(
e2ψu2

s

)+ 2e2ψ[(−ψt + 2|∇ψ |2)u2
s + 4us∇ψ · ∇us + |∇us |2

]

+ e2ψ(2Δψ)u2
s = 0. (34′)

By the definition of ψ ,

−ψt = a|x|2
(t + 1)2

= 1

4a
|∇ψ |2, Δψ = 2aN

t + 1
. (35)

By taking a = 1
8 , the discriminant of the second term in (34) is equal to zero. Hence,

substituting (35) with a = 1
8 to (34) and integrating the resultant equation over RN ,

we have

d

dt

∫

RN
e2ψu2

s dx + 2
∫

RN
e2ψ |2us∇ψ + ∇us |2dx + N/2

t + 1

∫

RN
e2ψu2

s dx = 0.

(36)

Moreover, multiplying (36) by (t + 1)N/2 and integrating the equation over [0, t],
we reach to

(t + 1)N/2
∫

RN
e2ψ(t,x)u2

s (t, x)dx ≤
∫

RN
e2ψ(0,x)u2

0(x)dx

or
∫

RN
e|x|2/(4(t+1))u2

s (t, x)dx ≤ (t + 1)−N/2
∫

RN
e|x|2/4u2

0(x)dx, (37)

which yields the desired estimate (31).
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Note that, if we take a = 1
8 − η (0< η) 1) then the discriminant of the second

term in (34) is negative and, instead of (36), we have

d

dt

∫

RN
e2ψu2

s dx + δ

∫

RN
e2ψ |∇us |2dx + N/2 − δ′

t + 1

∫

RN
e2ψu2

s dx ≤ 0 (36′)

for 0< δ, δ′ ) 1, that is, the decay rate is a little bit less, but a useful term on ∇us
comes out.

For the problem

(t + 1)−β(uβ)t −Δuβ = 0, uβ(0, x)= u0(x), (38)

we multiply (38) by 2(t + 1)βe2ψuβ to get

(
e2ψu2

β

)
t
− 2∇ · (t + 1)βe2ψ(uβ∇uβ + u2

β∇ψ
)

2(t + 1)βe2ψ
[( −ψt
(t + 1)β

+ 2|∇ψ |2
)
u2
β + 4uβ∇ψ · ∇uβ + |∇uβ |2

]

+ (t + 1)βe2ψ(2Δψ)u2
β

= 0. (39)

If we take

ψ(t, x)= a|x|2
(t + 1)1+β , (40)

then

−ψt
(t + 1)β

= a(1 + β)|x|2
(t + 1)2+2β

= 1 + β

4a
|∇ψ |2, Δψ = 2aN

(t + 1)1+β , (41)

and hence, by taking a = 1+β
8 , (39) becomes

d

dt

∫

RN
e2ψu2

βdx + 2(t + 1)β
∫

RN
e2ψ |2uβ∇ψ + ∇uβ |2dx

+ (1 + β)N/2

t + 1

∫

RN
e2ψu2

βdx = 0, (42)

and
∫

RN
e(1+β)|x|2/(4(t+1)1+β)u2

β(t, x)dx ≤ (t + 1)−(1+β)N/2
∫

RN
e(1+β)|x|2/4u2

0(x)dx,

(43)

which is almost the same estimate as (37).
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Now, let us return back to our problem (22). If we multiply (22) by 2e2ψu, then
we have the additional terms

2e2ψuutt = 2
{(
e2ψuut

)
t
+ e2ψ(2(−ψt)uut − u2

t

)}
.

Especially, the final term is working bad. To cover this, the same as (36′), we choose
ψ as

ψ(t, x)=
(

1 + β

4
− η

) |x|2
(t + 1)1+β (0< η) 1)

or

ψ(t, x)= (1 + β)|x|2
2(2 + δ)(t + 1)1+β (0< δ) 1).

For details, see [22].
Finally, we note that, for space-dependent damping +〈x〉−αut (0 ≤ α < 1), ψ

is chosen as ψ(t, x)= a|x|2−α
t+1 (a > 0) ([29]) , and ψ(t, x)= a|x|2−α

(t+1)1+β for both time

and space-dependent damping +〈x〉−α(t + 1)−βut ([20, 21, 35]). See also [17] for
space-time dependent damping.

11.5 Proof of Blow-up and Its Application

To assert the necessity of the additional idea to prove Theorem 3, we observe the
test function method for the simpler equation with β = 0

utt −Δu+ ut = |u|ρ, (u,ut )(0, x)= (u0, u1)(x). (44)

Let u be a global non-trivial solution to (44). We derive a contradiction. With ρ′
denoting the dual number of ρ, i.e. 1

ρ
+ 1

ρ′ = 1, we put

IR :=
∫

QR

|u|ρ · (ψR)ρ′
(t, x)dxdt =

∫

QR

(utt −Δu+ ut ) · (ψR)ρ′
dxdt, (45)

where QR = [0,R2] ×BR(0), BR(0)= {|x| ≤R} and the test function

ψR(t, x)= ηR(t)φR(r)= η

(
t

R2

)
φ

(
r

R

)
, r = |x|

0 ≤ η ≤ 1, η(t)=
{

1 t ∈ [0, 1
4 ]

0 t ∈ [1,∞)
,

∣∣η′(t)
∣∣,
∣∣η′′(t)

∣∣≤ C,

with 0 ≤ φ ≤ 1, φ(r)=
{

1 r ∈ [0, 1
2 ]

0 r ∈ [1,∞)
,

∣∣φ′(r)
∣∣,
∣∣φ′′(r)

∣∣≤ C,

(
η′)2

/η ≤ C (0 ≤ t ≤ 1), |∇φ|2/|φ| ≤ C (0 ≤ r ≤ 1).

(46)
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Then, after integration by parts we obtain, for example,

∫

QR

ut (ψR)
ρ′
dxdt

= −
∫

BR

u0dx −
∫

Q̂R,t

u · ρ′(ψR)ρ
′−1 · 1

R2
· η′

(
t

R2

)
ψ

( |x|
R

)
dxdt

≤ −
∫

BR

u0dx

+
(∫

Q̂R,t

|u|ρ(ψR)ρ′
dxdt

)1/ρ(∫

Q̂R,t

{
η′
(
t

R2

)
φ

( |x|
R

)}ρ′

dxdt

)1/ρ′
C

R2

≤ −
∫

BR

u0dx +C(ÎR,t )
1/ρR(2+N)(1/ρ′)−2, BR := BR(0).

Here we have used the Hölder inequality with ρ′ = (ρ′ − 1)ρ and

ÎR,t :=
∫

Q̂R,t

|u|ρ(ψR)ρ′
dxdt =

∫ R2

R2/4

∫

BR

|u|ρ(ψR)ρ′
dxdt.

By similar ways to treat the other terms in IR we have

IR ≤ −
∫

BR

(u0 + u1)dx +C(ÎR,t + ÎR,|x|)1/ρR(N+2)/ρ′−2

≤ C(IR)
1/ρR(N+2)(1−1/ρ)−2 if

∫

RN
(u0 + u1)dx > 0, (47)

where ÎR,|x| =
∫ t

0

∫
BR\BR/2 |u|ρ(ψR)ρ′

dxdt . Here N+2
ρ′ − 2< 0 is equivalent to ρ <

1 + 2
N

= ρF (N). Hence, if ρ < ρF (N), then (IR)1−1/ρ ≤ CR(N+2)(1−1/ρ)−2 and
IR → 0 as R→ ∞, which contradicts to the non-triviality of u. If ρ = ρF (N), then
IR ≤ C, that is,

∫∞
0

∫
RN |u|ρdxdt <∞ by taking R = ∞. Hence (44) becomes

IR ≤ −
∫

BR

(u0 + u1)dx +C(ÎR,t + ÎR,|x|)1/ρ.

Since both ÎR,t and ÎR,|x| tend to zero as R → ∞, we again reach to the contradic-
tion.

By this observation we know it is a key point that the left hand side of (44) is
in divergence form. However, our equation in (P) is not divergent and some idea is
necessary. To overcome this, we multiply (P) by some non-negative function g(t)
to get

(
g(t)u

)
t t

−Δ
(
g(t)u

)− (
g′(t)u

)
t
+ (−g′(t)+ b(t)g(t)

)
ut = g(t)|u|ρ.
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Hence we choose g(t) by the ordinary differential equation

−g′(t)+ b(t)g(t)= 1, g(0)= 1/b̂1, b̂1 =
(∫ ∞

0
e−

∫ t
0 b(s)dsdt

)−1

,

that is, explicitly, g(t)= e
∫ t

0 b(s)ds(
∫∞

0 e−
∫ τ

0 b(s)dsdτ − ∫ t
0 e

− ∫ τ
0 b(s)dsdτ ). Thus, we

have the divergence form

(
g(t)u

)
t t

−Δ
(
g(t)u

)− (
g′(t)u

)
t
+ ut = g(t)|u|ρ, (48)

and, as above, set IR = ∫
QR
g(t)|u|ρ ·(ψR)ρ′

dxdt withQR = [0,R2/(1+β)]×BR(0)
and ψR(t, x)= ηR(t) · φR(r)= η( t

R2/(1+β) ) · φ( |x|
R
).

Again, assuming that u is a non-trivial global solution, we can derive the contra-
diction if ρ ≤ ρF (N). We omit the details here. �

If we consider the same problem for the space-dependent damping

{
utt −Δu+ b(x)ut = |u|ρ, (t, x) ∈ R+ × RN

(u,ut )(0, x)= (u0, u1)(x), x ∈ RN
(49)

with b(x)= 〈x〉−α (0 ≤ α < 1), 〈x〉 = √
1 + |x|2, then the left-hand side is already

in divergence form. Therefore, the original test function method is applicable and
the critical exponent

ρc(N,α)= 1 + 2

N − α
(50)

is completely determined in [11]. Note that, if α > 1, then the solution has the wave
structure ([25]). In the critical case α = 1 see the recent result [12].

For the problem with both space- and time-dependent damping.

{
utt −Δu+ b(t, x)ut = |u|ρ, (t, x) ∈ R+ × RN

(u,ut )(0, x)= (u0, u1)(x), x ∈ RN
(51)

with b(t, x) = 〈x〉−α(t + 1)−β (α > 0, β > 0, 0 ≤ α + β < 1), the test function
method with the idea used above does not seem to be applicable and the blow-up
result remained open. Several estimates from above for the solution to (51) are ob-
tained in [17, 20, 21, 35]. Therefore, the critical exponent ρc(N,α,β) is determined
if we prove the blow-up result.

To aim to prove the blow-up for (51), as an étude, we consider the space-
dependent problem

{
utt + ut −Δu+ V (x)u= |u|ρ, (t, x) ∈ R+ × RN

(u,ut )(0, x)= (u0, u1)(x), x ∈ RN.
(52)
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The left-hand side of (52) is not in divergence form and so a similar idea is necessary.
Combination of time and space dependent cases may hint to treat (51).

Following Ishige and Kabeya [14], we assume that the potential V has to satisfy

(i) V is radial and V (x)=: V (|x|) ∈ C1(RN
)
,

(ii) V (r)≥ 0 on [0,∞), r = |x|,

(iii) sup
r≥1

r2+θ
∣∣∣∣V (r)−

ω

r2

∣∣∣∣<∞, θ > 0,

(iv) sup
r≥1

∣∣∣∣r
3 dV

dr
(r)

∣∣∣∣<∞.

(V )

Similar to (48), we multiply (52) by a suitable function g(x)≥ 0 to get

(gu)tt + (gu)t −Δ(gu)+ 2∇ · (u∇g)
+ (−Δg + V (x)g

)
u= g|u|ρ. (53)

Hence, if it is possible to choose g as

−Δg + V (x)g = 0, (54)

then the left-hand side of (53) becomes the divergence form

(gu)tt + (gu)t −Δ(gu)+ 2∇ · (u∇g)= g|u|ρ. (55)

Fortunately, it is shown in [14] that there exists a unique and positive g(x)=: g(r),
r = |x| such that

g′′ + N − 1

r
g′ − V (r)g = 0, r ∈ RN+ (N ≥ 2) (g)

with

lim
r→0

sup
∣∣g(r)

∣∣<∞, lim
r→∞ r

−α(ω)g(r)= 1,

and lim
r→∞ r

−α(ω)−1
∣
∣g′(r)

∣
∣= const> 0,

(56)

where α(ω) was defined in (7)–(8). Therefore, there exists g(r)≥ 0 satisfying (54)
with (56) including the case N = 1. Note that (8) is roughly derived as follows.
Since V (r)∼ ωr−2, (g) is approximated by

r2g′′ + (N − 1)rg′ −ωg = 0,

which is a Cauchy differential equation. By the change of variable g(r)= g(es),

d2

ds2
g + (N − 2)

d

ds
g −ωg = 0,

whose characteristic equation is (8).
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Thus, following the procedure of test function method, we define

IR =
∫

QR

g(x)|u|ρ(ψR)ρ′
(t, x)dxdt, R� 1.

The notations such as ψR , QR etc. are the same as in (46). Hence,

IR =
∫

QR

[
(gu)tt + (gu)t −Δ(gu)+ 2∇ · (u∇g)](ψR)ρ′

dxdt

=: J1 + · · · + J4.

Then

J4 = −2
∫

Q̂R,x

u∇g · ρ′(ψR)ρ
′−1(∇ψR) · 1

R
dxdt

≤ C

∫

Q̂R,x

g1/ρ |u|(ψR)ρ′−1 · g1/ρ′ |∇g|
g

|∇ψR| · 1

R
dxdt

≤ C

(∫

Q̂R,x

g|u|ρ(ψR)ρ′
dxdt

)1/ρ(∫

Q̂R,x

r−ρ′
g(r)dxdt

)1/ρ′
1

R

≤ C(ÎR,x)
1/ρR−2+(α(ω)+N+2)/ρ′

,

and, similarly,

J3 ≤ C(ÎR,x)
1/ρR−2+(α(ω)+N+2)/ρ′

.

Here we have used (56). After integration by parts we conclude

J1 + J2

=
∫

QR

∂

∂t

[
gu(ψR)

ρ′ + gut (ψR)
ρ′ − gu · ρ′(ψR)ρ

′−1(ψRt ) · 1

R2

]
dxdt

+ ρ′
∫

Q̂R,t

gu

[
−(ψR)ρ′−1(ψRt )

1

R2

+ {(
ρ′ − 1

)
(ψR)

ρ′−2(ψRt )
2 + (ψR)

ρ′−1(ψRtt )
} 1

R4

]
dxdt

≤ −
∫

BR(0)
g(x)(u0 + u1)(x)(φR)

ρ′
dx

+C

(∫

Q̂R,t

g|u|ρ(ψR)ρ′
dxdt

)1/ρ(∫

Q̂R,t

g(r)dxdt

)1/ρ′
1

R2

≤ −
∫

BR(0)
g(x)(u0 + u1)(x)(φR)

ρ′
dx +C(ÎR,t )

1/ρR−2+(α(ω)+N+2)/ρ′
.
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Combining all, we obtain

IR ≤ −
∫

BR(0)
g(x)(u0 + u1)(x)(φR)

ρ′
dx

+C(ÎR,t + ÎR,x)
1/ρR−2+(α(ω)+N+2)/ρ′

. (57)

Here, −2 + α(ω)+N+2
ρ′ ≤ 0 is equivalent to ρ ≤ 1 + 2

N+α(ω) = ρc(N,ω). Hence,
when ρ < ρc(N,ω), taking R = ∞ in (57), we have

I∞ ≤ −
∫

BR(0)
g(x)(u0 + u1)(x)(φR)

ρ′
dx, (58)

which contradicts provided that

(u0 + u1)(x)≥ 0,
∫

RN
(u0 + u1)(x)dx > 0. (59)

When ρ = ρc(N,ω) and (59) is assumed, (57) yields IR ≤ C(IR)
1/ρ and IR ≤ C

for any R. Hence
∫ ∞

0

∫

RN
g(x)|u|ρ(t, x)dxdt <∞

and both ÎR,t and ÎR,x tends to zero as R → ∞. Taking R = ∞ in (57) again, we
have (58), which contradicts to (59).

Thus we have obtained the blow-up result for (52) when ρ ≤ ρc(N,ω). We have
just showed our ideas for both time-dependent and space-dependent cases, and we
expect that those ideas may be applicable to the blow-up problem for (51).
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Chapter 12
A Note on a Class of Conservative, Well-Posed
Linear Control Systems

Rainer Picard, Sascha Trostorff, and Marcus Waurick

Abstract We discuss a class of linear control problems in a Hilbert space setting.
The aim is to show that these control problems fit in a particular class of evolution-
ary equations such that the discussion of well-posedness becomes easily accessible.
Furthermore, we study the notion of conservativity. For this purpose we require ad-
ditional regularity properties of the solution operator in order to allow point-wise
evaluations of the solution. We exemplify our findings by a system with unbounded
control and observation operators.

Mathematics Subject Classification (2010) 93C05 · 93C20 · 93C25

12.1 Introduction

Abstract linear control systems are commonly described by a system of equations
of the form

ẋ(t)=Ax(t)+Bu(t), y(t)= Cx(t)+Du(t), t ∈R>0,

with appropriate linear operators A, B , C and D and ẋ denoting the time derivative
of x in Newton’s notation, linking the time development of state x, control u and
observation y. The first equation is called state differential equation and the second
one observation equation. The system is formally completed by an initial condition
prescribing x(0+)= x(0) for the state trajectory x. As a matter of convenience we
will consider this system on the whole real time-line R in which case the initial data
x(0) turns into a Dirac-δ-source at time 0. Writing ∂0 for time differentiation on the
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full time-line this yields

∂0x =Ax +Bu+ δ⊗ x(0), y = Cx +Du on R.

We may formally re-write this into a single block operator matrix equation as

(
∂0

(
1 0
0 0

)
+
(

0 0
−C 1

)
+
(
A 0
0 0

))(
x

y

)
=
(

1 B

0 D

)(
δ⊗ x(0)

u

)
, (1)

which brings our linear control system into the realm of a problem class discussed
in [8, 9]. In a suitable setting ∂0 can be established as a normal operator with con-
tinuous inverse so that for continuous linear operators (A,B,C,D) the solution
theory is little more than matrix algebra. If (A,B,C,D) contains unbounded lin-
ear operators matters are more complicated. If only A is unbounded but such that
∂0 +A is invertible the solution theory can be largely salvaged. A common instru-
ment here is to express (∂0 +A)−1 in terms of a semi-group generated byA. Matters
become exceedingly complicated if also other operators in the list (A,B,C,D) are
also permitted to be unbounded (see [4, 6, 7] for a survey, also [14]). The answer
of questions concerning for example well-posedness along this line of reasoning
may be quite involved. The classical approach to well-posedness is the concept of
so-called admissible control and observation operators, using the theory of strongly
continuous semigroups, see for instance [1, 2, 11–13, 15] and [3] for a survey.

Here we want to give a more elementary approach to this issue, by changing the
perspective to the above type of space-time operators, which in effect by-passes C0-
semi-groups as a solution tool and at the same time enlarges the class of accessible
control problems considerably. On the other hand, we use elementary C0-semigroup
theory as a tool for discussing regularity issues.

We shall consider systems of the general form

(∂0M0 +M1 +A)
(
x

y

)
= J

(
f

u

)
,

M0 : X ⊕ Y → X ⊕ Y , M1 : X ⊕ Y → X ⊕ Y continuous linear operators, A :
D(A) ⊆ X ⊕ Y → X ⊕ Y a closed and densely defined operator. Mostly we shall
assume that J : F ⊕U �→X⊕ Y is such that

J =
(
E B

0 D

)

with B : U →X, D : U → Y , E : F →X continuous linear operators. Here X, Y ,
F , U are Hilbert spaces referred to as state, observation, data and control spaces,
respectively.

There is little harm in assuming X = F and U = Y and we shall do so.
As the space to model time-dependence we consider the weighted L2-space

H%,0(R), % ∈R>0, generated by the completion of
◦
C∞(R) with respect to the inner
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product 〈·|·〉%,0
(ϕ,ψ) �→

∫

R

ϕ(t)∗ψ(t) exp(−2%t)dt.

The associated norm will be denoted by | · |%,0. The time-derivative ∂0 can be lifted
canonically to corresponding Hilbert-space-valued generalized functions making ∂0
a normal operator in the resulting Hilbert spaceH%,0(R,H), whereH is an arbitrary
Hilbert space. Thus the linear control system under consideration is a quaternary
relation of the form

CM0,M1,A,J =
{
(x, y, f,u)

∣∣∣(∂0M0 +M1 +A)
(
x

y

)
= J

(
f

u

)}

in spaces derived from this consideration. We say CM0,M1,A,J is well-posed, if
CM0,M1,A,J considered as the associated binary relation

{(
(x, y), (f,u)

)∣∣∣(∂0M0 +M1 +A)
(
x

y

)
= J

(
f

u

)}

induces for all sufficiently large % ∈ R>0 a continuous linear mapping in a suitable
Hilbert space setting linking a solution (x, y) with any given (f,u). Of course we
would want the solution operator (∂0M0 +M1 + A)−1J also to be causal in the
intuitive sense. If there is no danger of confusion and the coefficient operators M0,
M1, A, J are clear from the context, we simply write C for CM0,M1,A,J .

Another extract of our current linear control system C is frequently of particular
interest. It is the so-called transfer relation Tf which is given for a fixed f by

Tf :=
{

(u, y)

∣∣
∣
∨

x

(∂0M0 +M1 +A)
(
x

y

)
= J

(
f

u

)}

.

For a well-posed linear control system this is just reading off the second block com-
ponent of the solution and yields that Tf is a mapping, the transfer mapping. Fre-
quently, one prefers to consider the unitarily equivalent operator

L%TfL∗
%,

where L% is the unitary Fourier-Laplace transformation (see Sect. 12.2), as the trans-
fer mapping.

We also address a question approached in [15], namely conservativity of a linear
control system. In [15] this notion was defined by means of a certain energy balance
equality, that should be fulfilled by state, observation and control.

By considering abstract control system in the above sense we shall show that
for reasonable state differential equations it is always possible to construct an ob-
servation equation, which leads to a conservative linear control system. Moreover,
although in [15] unbounded control and observation operators were considered, we
shall see that in the generalized form such system are reduced to the bounded oper-
ator case (with A being the only unbounded linear operator involved).
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12.2 Setting

The particular time-derivative defined as a normal and invertible operator in the ex-
ponentially weighted space H%,0(R) := L2(R, exp(−2%x)dx) (for some % ∈ R>0)
is given in various articles of the authors of this paper. The core issues are discussed
in [5]. We state the basic facts as follows. Let % ∈ R>0. We define ∂0 as the closure
of the operator

◦
C∞(R)⊆H%,0(R)→H%,0(R) : f �→ f ′, where

◦
C∞(R) denotes the

space of infinitely often differentiable functions with compact support. It can be
shown that ∂−1

0 ∈ L(H%,0(R),H%,0(R)) and ‖∂−1
0 ‖ ≤ 1/%.

It is well-known that there is an explicit spectral representation as a multiplica-
tion operator of the one-dimensional derivative on the real line, which is given by the
unitary Fourier transformation F : L2(R)→ L2(R). An analogous representation
can be found for ∂0: Denote bym the multiplication-by-argument-operator in L2(R)

with natural domain and exp(−%m) : H%,0(R) → L2(R) : f �→ exp(−%(·))f (·).
Then we have the following unitary representation of ∂0:

L∗
%(im+ %)L% = ∂0

with the unitary Fourier-Laplace transformation L% := F exp(−%m). This formula
can canonically be lifted to the Hilbert-space-valued case. Moreover, the latter
unitary representation results in a functional calculus for ∂−1

0 . More precisely, let
r > 1

2% and H be a Hilbert space. Let M : B(r, r) → L(H) be an element of the
Hardy space H∞(B(r, r),L(H)) of bounded and analytic functions defined on the
open ball B(r, r) ⊆ C with values in L(H), the set of continuous linear operators
within H . Define

M
(
∂−1

0

) := L∗
%M

(
1

im+ %

)
L%,

where M( 1
im+% )φ(t) :=M( 1

it+% )φ(t) for all φ ∈ ◦
C∞(R,H) and t ∈ R. It is easy

to see that M(∂−1
0 ) ∈ L(H%,0(R,H)) and ∂−1

0 M(∂−1
0 ) = M(∂−1

0 )∂−1
0 . As it was

already mentioned in [5], for h > 0 the time-shift τ−h defined as τ−hf := f (·−h) or
the convolution with a L1(R)-function supported on the positive reals yield analytic
and bounded functions of ∂−1

0 in the above sense.
In the following we shall also make use of the concept of Sobolev lattices, which

are related to abstract distribution spaces associated with particular (unbounded)
operators in a Hilbert space. The whole set-up is described in [10]. We sketch it as
follows. Let C, D be densely defined, closed, linear operators in a Hilbert space H .
Furthermore, assume that 0 ∈ %(C) ∩ %(D) and C−1D−1 =D−1C−1. For k,n ∈ Z

the Hilbert space Hk,n(C,D) is defined as the completion of D(C|k|) ∩ D(D|n|)
with respect to the (well-defined) inner product (φ,ψ) �→ 〈CkDnφ,CkDnψ〉. The
family (Hk,n(C,D))(k,n)∈Z2 is called Sobolev lattice associated with (C,D). One
can show that for k1, n1 ∈ Z with k1 ≤ k and n1 ≤ n we have dense and continuous
embeddings

Hk,n(C,D) ↪→Hk1,n1(C,D).
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The latter relation justifies the term “lattice”. Indeed, (Hk,n(C,D))(k,n)∈Z2 is a lat-
tice with respect to the order relation ↪→, which is isomorphic to Z

2 endowed with
component-wise order.

Moreover, by continuous extension, we have unitary operators

Ck2Dn2 :Hk,n(C,D)→Hk−k2,n−n2(C,D)

for all n2, k2 ∈ Z. It should be mentioned that any continuous linear operator B :
H → H , which commutes with C−1 ∈ L(H), has a unique continuous extension
(restriction) to Hk,0(C,D). We shall use the construction of Sobolev lattices in the
aforementioned situation of linear control systems. For the special case that D is
the identity on H , we will write Hk(C) :=Hk,n(C,D). Moreover, given a densely
defined, closed linear operator A : D(A) ⊆ H → H with non-empty resolvent set
%(A). Then, for % ∈R>0 and λ ∈ %(A), we define

H%,k
(
R,Hn(A− λ)

) :=Hk,n(∂0,A− λ).

If it is clear from the context, which operator A is under consideration, we shall also
write H%,k(R,Hn) for short. Clearly, the latter set does not depend on the particular
choice of λ ∈ %(A). As another short-hand notation we also define

H%,∞(R,Hn) :=
⋂

k∈N
H%,k(R,Hn).

12.3 Solution Theory for Abstract Linear Control Systems

We summarize the core issues of the solution theory used in this paper. In the whole
section, we make the following assumptions. Let X and Y be Hilbert spaces and
define H := X ⊕ Y . Moreover, let M0 : H → H, M1 : H → H, J : H → H be
continuous linear operators and let A :D(A)⊆ H → H be a closed linear operator.
We assume that

• M0 is selfadjoint, non-negative and strictly positive on its range, whereas
• ReM1 :H → H is strictly positive on the null space of M0.

To simplify matters, we shall also assume that

• A is skew-selfadjoint in H, which is a standard case for most problems.

We will use the extension of these operators to the Hilbert space of H-valued
H%,0(R) functions. From the 3 aforementioned properties, it is easy to see that
the following lemma holds. For a set S ⊆ R, we denote by χS(m0) the truncation
operator, mapping a function f : R → H to the truncated one: χS(m0)f := (t �→
χS(t)f (t)).
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Lemma 1 There is a constant β0 ∈R>0 such that for all ξ ∈D(A)∩D(∂0) and all
sufficiently large % ∈R>0

Re
〈
χ
R<0
(m0)ξ |(∂0M0 +M1 +A)ξ

〉
%,0,0 ≥ β0

〈
χ
R<0
(m0)ξ |ξ

〉
%,0,0. (++a)

It follows

Re
〈
ξ |(∂0M0 +M1 +A)ξ

〉
%,0,0 ≥ β0〈ξ |ξ 〉%,0,0. (++b)

The proof can be found in Chap. 7 in [10]. It is remarkable that the core of
the proof of the solution theory only relies on the positive definiteness as stated in
Lemma 1 and the explicit spectral representation of ∂0.

Theorem 1 For every sufficiently large % ∈ R>0 and every
(
f
u

) ∈H%,0(R,X ⊕ Y)

there is a unique solution
( x
y

) ∈H%,0(R,X⊕ Y) of the problem

(∂0M0 +M1 +A)
(
x

y

)
= J

(
f

u

)
.

Moreover, the solution depends continuously on the data in H%,0(R,X⊕Y) and the
solution operator (∂0M0 +M1 +A)−1J is causal in the sense that

χ
R<a

(m0)(∂0M0 +M1 +A)−1J

= χ
R<a

(m0)(∂0M0 +M1 +A)−1Jχ
R<a

(m0)

for all a ∈ R.

Remark 1 The assumptions on the operators A, M1 and M0 are sharp in the sense
that we can easily construct ill-posed systems, if one of the assumptions fails. For
instance consider the system

(
∂0

(
1 0
0 0

)
+
(

0 0
0 −1

)
+
(

0 −C∗
C 0

))(
u

v

)
=
(
f

0

)
,

whereC is an unbounded, closed and densely defined linear operator. Now ReM1 =( 0 0
0 −1

)
is not strictly positive definite on the kernel of M0 = ( 1 0

0 0

)
. Substituting the

second equation v = Cu into the first yields
(
∂0 −C∗C

)
u= f,

which is an abstract heat equation with time reversed and well-known to be ill-
posed as a forward causal equation. Even in the ode case, i.e. for C = 0, taking now
M1 = ( 0 1

1 0

)
and considering the resulting system

(
∂0

(
1 0
0 0

)
+
(

0 1
1 0

))(
u

v

)
=
(
f

g

)
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would yield

u= g,

∂0u+ v = f,

which can only have a solution u,v ∈ H%,0(R,H) if g = u = ∂−1
0 (f − v) ∈

H%,1(R,H) and not for general data f,g ∈H%,0(R,H).
Using the Sobolev lattice (H%,k(R,Hn))(k,n)∈Z2 , we shall extend the operators

∂0, M0, M1, A to H%,−∞(R,H−1) :=⋃
k∈ZH%,k(R,H−1). This has the effect that

we do not need to write the closure bar anymore. However, this has the consequence
that, whereas the equation

(∂0M0 +M1 +A)
(
x

y

)
= J

(
f

u

)

holds in H%,0(R,X⊕ Y), the equation

∂0M0

(
x

y

)
+M1

(
x

y

)
+A

(
x

y

)
= J

(
f

u

)

only holds in H%,−1(R,H−1). This line of reasoning also yields that
( x
y

) ∈
H%,−1(R,H1). We will use this observation in the forthcoming sections. To incorpo-
rate non-vanishing initial data we record the following corollary, where we use the
continuous extension of the solution operator—a particular bounded and analytic
function of ∂−1

0 (cf. Sect. 12.2)—to the space H%,−1(R,H).

Corollary 1 For every sufficiently large % ∈ R>0 and every
(
f
u

) ∈H%,0(R,X⊕ Y)

and
(
x(0)

y(0)

) ∈M0[X ⊕ Y ] there is a unique solution
( x
y

) ∈ H%,−1(R,X ⊕ Y) of the

problem

(∂0M0 +M1 +A)
(
x

y

)
= J

(
f

u

)
+ δ⊗M0

(
x(0)

y(0)

)
. (2)

The solution depends continuously on the data in H%,−1(R,X⊕ Y).

Proof The existence result follows by applying the previous theorem to

(∂0M0 +M1 +A)
(
ξ

η

)
= J

(
∂−1

0 f

∂−1
0 u

)
+ χ

R>0
⊗M0

(
x(0)

y(0)

)

and then differentiating and letting
(
x

y

)
:= ∂0

(
ξ

η

)
.

The uniqueness and continuous dependence part follows conversely by applying
∂−1

0 to (2) and using the uniqueness and continuous dependence result of Theo-
rem 1. �
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12.4 Regularity

In this section we discuss regularity issues. The method is based on “see-saw”-type
arguments and relies on the Sobolev lattice associated with (∂0,A+ 1), i.e.,

(
H%,s(R,Hk)

)
(s,k)∈Z2 .

Our main focus will be initial value problems. We need the following definition.

Definition 1 Let CM0,M1,A,J be a well-posed1 linear control system. If

P0
(
(∂0M0 +M1 +A)−1δ⊗M0 − χ

R>0
⊗ P0

)[U] ⊆H%,1(R,H)

for some subspace U ⊆ D(A), which is dense in H, then we call CM0,M1,A,J a
globally regularizing linear control system. If for all T ∈R we have

χ
R<T

(m0)P0
(
(∂0M0 +M1 +A)−1δ⊗M0 − χ

R>0
⊗ P0

)[U]
⊆ χ

R<T
(m0)

[
H%,1(R,H)

]

we call CM0,M1,A,J a locally regularizing linear control system. Here P0 := π∗
0π0,

where π0 denotes the orthogonal projector onto M0[H].

Obviously, the regularizing property is independent of J . For locally regulariz-
ing linear control systems we have according to the Sobolev embedding property
(cf. Lemma 3.1.59 in [10]) point-wise evaluation as a continuous operation and we
can define, what it means for such a system to be conservative. In the forthcoming
sections, we deal with a system studied in [15]. This system may be rewritten into a
first order system such that the above theory becomes applicable. Moreover, it can
be shown that the respective system is a special case of the system occurring in the
next theorem, for which the notion of conservativity can be established.

Theorem 2 Let CM0,M1,A,J be a linear control system with

M0 =
(
M00 0

0 0

)
, M1 =

(
M11 0

αR−1π1 α

)
,

A =
(
A 0
0 0

)
, J =

(
0 2Re(M11)π

∗
1R

0 α

)
,

1In this case
(
(∂0M0 +M1 +A)−1δ⊗M0

) : H →H%,−1(R,H).

z �→ (∂0M0 +M1 +A)−1δ⊗M0z

is a continuous linear operator.
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where M00 ∈ L(X) is selfadjoint and strictly positive definite on M00[X], M11 ∈
L(X) with (ReM11)≥ 0 and ReM11 is strictly positive definite on [{0}]M00, U1 :=
(ReM11)[X], R : U1 → U1 is a continuous linear bijection, π1 : X → U1 is the
orthogonal projector, A is a skew-selfadjoint operator on X and α ∈ R \ {0}, is such
that

4
∥∥(
√
(ReM11)|[{0}]M00

)−1∥∥−2∥∥R−1
∥∥−2

> α > 0.

Then CM0,M1,A,J is well-posed. Let U0 :=M00[X] and π0 : X → U0, P0 := π∗
0π0

the corresponding orthogonal projections. Assume in addition that CM0,M1,A,J is
locally regularizing. Then CM0,M1,A,J is conservative in the sense of [15], i.e., the
solution

( x
y

)
of

(∂0M0 +M1 +A)
(
x

y

)
= J

(
0
u

)
+ δ⊗

(
M00x

(0)

0

)

for the initial data x(0) and control u gives rise to mappings

&T :
(√

M00 0
0

√
2ReM11R

)(
P0x

(0)

χ
R<T

(m0)u

)

�→
(√

M00 0
0

√
2ReM11R

)(
P0x(T )

χ
R<T

(m0)y

)
,

which are densely defined isometries on U0 ⊕L2(R>0,U1) for all T ∈R≥0.

Remark 2 In the setting of the theorem above, the state space is given by H =
X⊕U1. Furthermore we shall note here that for the definition of conservativity the
parameter α ∈R \ {0} is irrelevant. However, it is used to adjust for the assumptions
of our above solution theory.

Proof of Theorem 2 At first we show well-posedness of CM0,M1,A,J . We need to
consider the positive definiteness of

ReM1 =
(

ReM11
1
2απ

∗
1 (R

−1)∗
1
2αR

−1π1 α

)

on [{0}]M0 = [{0}]M00 ⊕U1. Let z⊕ y ∈ [{0}]M00 ⊕U1. For ε > 0, we compute

〈
ReM1(z⊕ y)|z⊕ y

〉 = 〈z|ReM11z〉 + 〈
z|απ∗

1

(
R−1)∗y

〉+ α〈y|y〉

≥ 〈
√
ReM11z|

√
ReM11z〉 − 1

2ε
|z|2

− ε

2
α2
∣∣π∗

1

(
R−1)∗y

∣∣2 + α〈y|y〉
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≥
(

1 − 1

2ε

∥∥(
√
(ReM11)|[{0}]M00

)−1∥∥2
)

|√ReM11z|2

+ α

(
1 − ε

2
α
∥∥R−1

∥∥2
)

|y|2.

From the first term of the right-hand side of the latter inequality it follows that ε has
to be chosen such that

1

ε
< 2

∥∥(
√
(ReM11)|[{0}]M00

)−1∥∥−2

holds. From the second term, we read off that

1 − ε

2
α
∥∥R−1

∥∥2
> 0

should hold. Thus, we want ε to satisfy in addition

1

ε
>
α

2

∥∥R−1
∥∥2
.

The condition on α ensures that the interval
]
α

2

∥∥R−1
∥∥2
,2
∥∥(
√
(ReM11)|[{0}]M00

)−1∥∥−2
[

is not empty. Employing Theorem 1, we conclude that the abstract linear control
system C is well-posed. Assume now that C is locally regularizing. Due to the block
structure of the operator matrices M0, M1, A and J there exists a subspace U ⊆
D(A), dense in X, such that for x(0) ∈ U , we have

χR<T (m0)

(
P0 0
0 0

)(
(∂0M0 +M1 +A)−1δ⊗M0 − χR>0 ⊗

(
P0 0
0 0

))(
x(0)

0

)

∈ χR<T (m0)
[
H%,1(R,H)

]

for all T ∈ R. Let x(0) ∈ U and u ∈ H%,1(R≥0,U1). Our general solution theory
yields the unique existence of (x, y) ∈H%,−1(R,X⊕U1) of the problem

(
∂0

(
M00 0

0 0

)
+
(

M11 0
αR−1π1 α

)
+
(
A 0
0 0

))(
x

y

)

=
(

0 2Re(M11)π
∗
1R

0 α

)(
0
u

)
+
(
δ⊗M00x

(0)

0

)
,

where suppx ⊆ R≥0 and suppy ⊆ R≥0 due to the causality of the solution operator.
This leads to
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(
P0 0
0 0

)(
x

y

)
− χR>0 ⊗

(
P0 0
0 0

)(
x(0)

0

)

=
(
P0 0
0 0

)
(∂0M0 +M1 +A)−1

(
0 2Re(M11)π

∗
1R

0 α

)(
0
u

)

+
(
P0 0
0 0

)
(∂0M0 +M1 +A)−1

(
δ⊗M00x

(0)

0

)

− χR>0 ⊗
(
P0 0
0 0

)(
x(0)

0

)
.

Since (∂0M0 +M1 +A)−1 leaves H%,1(R,H) invariant, we read off that

χR<T (m0)

((
P0 0
0 0

)(
x

y

)
− χR>0 ⊗

(
P0 0
0 0

)(
x(0)

0

))

∈ χR<T (m0)
[
H%,1(R,H)

]

holds for all T ∈R. We fix T ∈ R>0 for the rest of the proof. Let ϕ ∈ C∞(R) be such
that ϕ = 1 on R<T+1 and ϕ = 0 on R>T+2. Using the Sobolev lattice associated
with (∂0,A+ 1) we get that

(
ϕ(m0) 0

0 1

)
(∂0M0 +M1 +A)

(
x

y

)
=

(
ϕ(m0) 0

0 1

)(
0 2Re(M11)π

∗
1R

0 α

)(
0
u

)

+
(
ϕ(0)δ⊗M00x

(0)

0

)
,

which implies

(∂0M0 +M1 +A)
(
ϕ(m0) 0

0 1

)(
x

y

)
(3)

=
(
ϕ(m0) 0

0 1

)(
0 2Re(M11)π

∗
1R

0 α

)(
0
u

)

+
(
ϕ(0)δ⊗M00x

(0)

0

)
+
(
M00ϕ

′(m0) 0
0 0

)(
x

y

)

=
(
ϕ(m0)2Re(M11)π

∗
1Ru

αu

)
+
(
δ⊗M00x

(0)

0

)

+
(
M00ϕ

′(m0)x

0

)
. (4)

Define xϕ := ϕ(m0)x. Employing the local regularizing property and using that
M00ϕ

′(m0)x ∈ H%,1(R,X), we deduce that P0xϕ − χR>0 ⊗ P0x
(0) ∈ H%,1(R,X).
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Moreover, from

(∂0M0 +M1 +A)
(
xϕ
y

)

=
(
∂0M0

(
xϕ
y

)
+M1

(
xϕ
y

)
+A

(
xϕ
y

))

=
(
ϕ(m0)2Re(M11)π

∗
1Ru

αu

)
+
(
δ⊗M00x

(0)

0

)
+
(
M00ϕ

′(m0)x

0

)

it follows that

∂0M0

((
xϕ
y

)
− χR>0 ⊗

(
x(0)

0

))
+M1

((
xϕ
y

)
− χR>0 ⊗

(
x(0)

0

))

+A
((
xϕ
y

)
− χR>0 ⊗

(
x(0)

0

))
(5)

=
(
ϕ(m0)2Re(M11)π

∗
1Ru

αu

)
−
(
χR>0 ⊗Ax(0)

0

)

− χR>0 ⊗M1

(
x(0)

0

)
+
(
M00ϕ

′(m0)x

0

)
, (6)

where equality holds in H%,−1(R,H−1). However, since the right-hand of the lat-
ter equation lies in H%,0(R,H0) we get xϕ − χR>0 ⊗ x(0) ∈ H%,0(R,X) and since

P0xϕ − χR>0 ⊗ P0x
(0) ∈ H%,1(R,X), we deduce that

( xϕ
y

) − χR>0 ⊗ (
x(0)

0

) ∈
H%,0(R,H1). In particular, this yields xϕ ∈ H%,0(R,H1(A + 1)). We read off the
first row equation of (5):

∂0M00
(
xϕ − χR>0 ⊗ x(0)

)+M11
(
xϕ − χR>0 ⊗ x(0)

)+A
(
xϕ − χR>0 ⊗ x(0)

)

= 2Re(M11)π
∗
1Rϕ(m0)u−M11

(
χR>0 ⊗ x(0)

)− χR>0 ⊗Ax(0) +M00ϕ
′(m0)x.

Thus, we get that

∂0M00
(
xϕ − χR>0 ⊗ x(0)

)+M11xϕ +Axϕ

= 2Re(M11)π
∗
1Rϕ(m0)u+M00ϕ

′(m0)x,

with equality in H0(A+ 1) pointwise almost everywhere. Multiplying by 〈·|xϕ〉X ,
taking real-parts and using Re〈Axϕ(s)|xϕ(s)〉 = 0 for almost every s ∈]0, T [, we
deduce that for almost every t ∈]0, T [ it holds

Re
〈
∂0M00

(
xϕ − χR>0 ⊗ x(0)

)
(t)|xϕ(t)

〉+ 〈
ReM11xϕ(t)|xϕ(t)

〉

= Re
〈
2Re(M11)π

∗
1Ru(t)|xϕ(t)

〉
.
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We let μ00 := π0M00π
∗
0 , μ11 := π1(Re(M11))π

∗
1 . Thus, for almost every t ∈]0, T [

it holds

Re
〈
∂0
(
μ00

(
π0xϕ − χR>0 ⊗ π0x

(0)))(t)|π0xϕ(t)
〉+ 〈

μ11π1xϕ(t)|π1xϕ(t)
〉

= Re
〈
2μ11Ru(t)|π1xϕ(t)

〉
.

Hence, we conclude that for almost every t ∈]0, T [:
1

2

(
s �→ 〈

μ00
(
π0xϕ − χR>0 ⊗ π0x

(0))(s)|(π0xϕ − χR>0 ⊗ π0x
(0))(s)

〉)′
(t)

= −Re
〈
∂0
(
μ00

(
π0xϕ − χR>0 ⊗ π0x

(0)))(t)|χR>0 ⊗ π0x
(0)(t)

〉

− 〈
μ11π1xϕ(t)|π1xϕ(t)

〉+Re
〈
2μ11Ru(t)|π1xϕ(t)

〉
. (7)

The second row equation of (5) gives

αR−1π1xϕ + αy = αu.

Hence,

π1xϕ =R(u− y).

Since xϕ(t)= x(t) for all t ∈]0, T [, the latter equation put into (7) gives

1

2

(
s �→ 〈

μ00
(
π0x − χR>0 ⊗ π0x

(0))(s)|(π0x − χR>0 ⊗ π0x
(0))(s)

〉)′
(t)

= −Re
〈
∂0
(
μ00

(
π0x − χR>0 ⊗ π0x

(0)))(t)|χR>0 ⊗ π0x
(0)(t)

〉

− 〈
μ11R(u− y)(t)|R(u− y)(t)

〉+Re
〈
2μ11Ru(t)|R(u− y)(t)

〉

= −Re
〈
∂0
(
μ00

(
π0x − χR>0 ⊗ π0x

(0)))(t)|χR>0 ⊗ π0x
(0)(t)

〉

− 〈
μ11Ry(t)|Ry(t)

〉+ 〈
μ11Ru(t)|Ru(t)

〉
.

We integrate the latter equation over ]0, T [. We conclude that

1

2

〈
μ00

(
π0x − χR>0 ⊗ π0x

(0))(T )|(π0x − χR>0 ⊗ π0x
(0))(T )

〉

= −Re
〈
μ00

(
π0x − χR>0 ⊗ π0x

(0))(T )|π0x
(0)〉

−
∫ T

0

〈
μ11Ry(t)|Ry(t)

〉
dt +

∫ T

0

〈
μ11Ru(t)|Ru(t)

〉
dt.

Thus, we get that

1

2

〈
μ00π0x(T )|π0x(T )

〉+
∫ T

0

〈
μ11Ry(t)|Ry(t)

〉
dt

= 1

2

〈
μ00π0x

(0)|π0x
(0)〉+

∫ T

0

〈
μ11Ru(t)|Ru(t)

〉
dt.
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This shows the conservativity of C. �

Example 1 The heat equation yields a conservative, linear control system. With
G :D(G)⊆H0 →H1 closed and densely defined we consider the heat equation in
the abstract form

(
∂0 +G∗G

)
θ = −G∗u,

which is equivalent to

(
∂0

(
1 0
0 0

)
+
(

0 0
0 1

)
+
(

0 G∗
−G 0

))(
θ

q

)
=
(

0
u

)
.

We have X =H0 ⊕H1 and Y =U =H1. Following the above construction we use

2q + y = u

with R = 1
2 as observation equation. So, we get

((
∂0
( 1 0

0 0

)+ ( 0 0
0 1

)+ ( 0 G∗
−G 0

)) ( 0
0

)

(0 2) 1

)(( θ
q

)

y

)

=
(( 0

u

)

u

)
.

For α �= 0 we have equivalently

((
∂0
( 1 0

0 0

)+ ( 0 0
0 1

)+ ( 0 G∗
−G 0

)) ( 0
0

)

(0 2α) α

)(( θ
q

)

y

)

=
(( 0

u

)

αu

)
,

where we choose α suitably to make

Re

(
1 0

2α α

)
=
(

1 α

α α

)

strictly positive on H1 ⊕H1. This is the case if

0< α < 1.

This makes the example system

((
∂0
( 1 0

0 0

)+ ( 0 0
0 1

)+ ( 0 G∗
−G 0

)) ( 0
0

)

(0 1) 1
2

)(( θ
q

)

y

)

=
(( 0

u

)

1
2u

)

+ δ⊗
((

θ(0)

0

)

0

)

(8)

a well-posed and at least formally conservative system. It remains to establish the
required regularity. To this end put u= 0 and let θ(0) ∈D(G∗G) in (8). We compute
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θ = (
∂0 +G∗G

)−1
δ⊗ θ(0)

θ − χ
R>0

⊗ θ(0) = ((
∂0 +G∗G

)−1
δ⊗ θ(0) − χ

R>0
⊗ θ(0)

)

= −(
∂0 +G∗G

)−1(
χ
R>0

⊗G∗Gθ(0)
)
.

This shows that the system is globally regularizing. Indeed, for φ := χ
R>0

⊗
G∗Gθ(0) we estimate

∣∣(∂0 +G∗G
)−1

φ
∣∣2
%,1,0 = ∣∣∂0

(
∂0 +G∗G

)−1
φ
∣∣2
%,0,0

= ∣∣∂0
(
∂0 + |G|2)−1

φ
∣∣2
%,0,0

= ∣∣φ − |G|2(∂0 + |G|2)−1
φ
∣∣2
%,0,0

≤ 2|φ|2%,0,0.

Thus, θ − χ
R>0

⊗ θ(0) ∈H%,1(R,H0).

12.5 The Tucsnak-Weiss System

12.5.1 A First Order Formulation

Tucsnak and Weiss suggested the following particular system class, [15], describing
a class of linear wave phenomena. In this reference, it is assumed that H :=X = F ,
Y = U , E = 1 and D = 1. Let A0 : D(A0) ⊆ H → H be a selfadjoint posi-
tive operator. The observation operator C is an unbounded, closed linear opera-
tor

C :H1(
√
A0 + i)⊆H0(

√
A0 + i)→U.

Then

C0 :H1(
√
A0 + i)→U

x �→ Cx

is a continuous linear operator, according to the Closed Graph Theorem. The
control operator B is now given as the dual operator C-

0 of C0, where U and
U∗ as well as H1(

√
A0 + i)∗ and H−1(

√
A0 + i) are identified so that we have

C-
0 :U →H−1(

√
A0 + i). It is

C∗ ⊆ C-
0 .

The system considered in [15] is formally
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∂2
0z+A0z+ 1

2
C-

0C0∂0z = C-
0u,

C∂0z+ y = u

(C observation operator, C-
0 control operator) on R>0 for a given function u ∈

H%,0(R,U). We shall instead consider the first order system

⎛

⎝∂0

⎛

⎝
1 ( 0 0 ) 0( 0
0

) ( 1 0
0 0

) ( 0
0

)

0 ( 0 0 ) 0

⎞

⎠+
⎛

⎝
0 ( 0 0 ) 0( 0
0

) ( 0 0
0 1

) ( 0
0

)

0 ( 0
√

2 ) 1

⎞

⎠

+
⎛

⎝
0 DIV 0

GRAD
( 0 0

0 0

) ( 0
0

)

0 ( 0 0 ) 0

⎞

⎠

⎞

⎠

⎛

⎝
v(
ζ
w

)

y

⎞

⎠

=
⎛

⎝
0( 0

−√
2u

)

−u

⎞

⎠+ δ⊗
⎛

⎜
⎝

z(1)(√
A0z

(0)

0

)

0

⎞

⎟
⎠ (9)

with

GRAD :=
(

−√
A0

− 1√
2
C

)

:H1(
√
A0 + i)⊆H0(

√
A0 + i)→H0(

√
A0 + i)⊕U

and DIV := −(GRAD)∗. Thus the whole systems acts in the space

H%,0
(
R,H0(

√
A0 + i)⊕ (

H0(
√
A0 + i)⊕U

)⊕U
)
.

Here

z(0) ∈H1(
√
A0 + i), z(1) ∈H0(

√
A0 + i)

are the implementation of the initial data. Our first observation is that this system is
a linear control system in a simple case:

•

A :=
⎛

⎝
0 DIV 0

GRAD
( 0 0

0 0

) ( 0
0

)

0 ( 0 0 ) 0

⎞

⎠

is skew-selfadjoint,
• M0 is the orthogonal projector onto H0(

√
A0 + i)⊕ (H0(

√
A0 + i)⊕ {0})⊕ {0},

•

ReM1 =
⎛

⎜
⎝

0 ( 0 0 ) 0
( 0

0

) ( 0 0
0 1

) ( 0
1√
2

)

0 ( 0 1√
2 ) 1

⎞

⎟
⎠

is strictly positive on the null space {0} ⊕ ({0} ⊕U)⊕U of M0.
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Thus, well-posedness in the above sense is clear. We will show that this system is
the appropriate interpretation of the original system. As a first step we compute the
adjoint of GRAD explicitly.

Lemma 2 Assume 0 ∈ %(A0). Then

DIV ⊆
(√

A0
1√
2
C-

0

)
:H0(

√
A0 + i)⊕U →H−1(

√
A0 + i)

(
ζ

w

)
�→√

A0ζ + 1√
2
C-

0w

and

D(DIV)=
{(

ζ

w

)
∈H0(

√
A0 + i)⊕U

∣∣∣
(√

A0
1√
2
C-

0

)(
ζ

w

)
∈H0(

√
A0 + i)

}
.

Proof We consider

D̃IV :D(D̃IV)⊆H0(
√
A0 + i)⊕U →H0(

√
A0 + i)

(
ζ

w

)
�→

(√
A0

1√
2
C-

0

)(
ζ

w

)

with D(D̃IV) being the set
{(

ζ

w

)
∈H0(

√
A0 + i)⊕U

∣∣∣
(√

A0
1√
2
C-

0

)(
ζ

w

)
∈H0(

√
A0 + i)

}
.

We want to show that

D̃IV = DIV

and we shall do so by showing that

D̃IV
∗ = −GRAD.

Clearly,
(√

A0
1√
2
C∗) :H1(

√
A0 + i)⊕D

(
C∗)⊆H0(

√
A0 + i)⊕U →H0(

√
A0 + i)

⊆ D̃IV ⊆
(√

A0
1√
2
C-

0

)
:H0(

√
A0 + i)⊕U →H−1(

√
A0 + i)

and hence D̃IV is densely defined. So let v ∈ D(D̃IV∗
). Then for some

( f
g

) ∈
H0(

√
A0 + i)⊕U we have

∧

(
ζ
w

)
∈D(D̃IV)

〈
D̃IV

(
ζ

w

)∣∣∣v
〉

H0(
√
A0+i)

=
〈(
ζ

w

)∣∣∣
(
f

g

)〉

H0(
√
A0+i)⊕U

.
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It follows by testing with elements in H1(
√
A0 + i)⊕ {0} ⊆D(D̃IV) that

∧

ζ∈H1(
√
A0+i)

〈√A0ζ |v〉H0(
√
A0+i) = 〈ζ |f 〉H0(

√
A0+i),

which implies

v ∈D(√A0)

and
√
A0v = f.

Let now w ∈U be arbitrary. Then with ζ = − 1√
2

√
A0

−1
C-

0w we get2

0 =
〈
D̃IV

(
ζ

w

)∣∣∣v
〉

H0(
√
A0+i)

=
〈(− 1√

2

√
A0

−1
C-

0w

w

)∣∣∣
(√

A0v

g

)〉

H0(
√
A0+i)⊕U

=
〈
− 1√

2

√
A0

−1
C-

0w

∣∣∣
√
A0v

〉

H0(
√
A0+i)

+ 〈w|g〉U

=
〈
− 1√

2
C-

0w

∣∣
∣v
〉

H0(
√
A0+i)

+ 〈w|g〉U

=
〈
− 1√

2
w

∣∣∣C0v

〉

U

+ 〈w|g〉U .

This implies

1√
2
Cv = g

and thus, we have

D̃IV
∗
v =

(√
A0v

1√
2
Cv

)

= −GRADv,

i.e.

D̃IV
∗ ⊆ −GRAD.

2Note that in the fourth equality 〈·|·〉H0(
√
A0+i) is used not as the inner product in H0(

√
A0 + i) but

as its continuous extension to the duality pairing between H−1(
√
A0 + i) and H1(

√
A0 + i). This

will be utilized throughout without explicit mention.
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Moreover, let now v ∈D(GRAD). Then for all
(
ζ
w

) ∈D(D̃IV)
〈
D̃IV

(
ζ

w

)∣∣∣v
〉

H0(
√
A0+i)

+
〈(
ζ

w

)∣∣∣GRADv

〉

H0(
√
A0+i)⊕U

=
〈√
A0ζ + 1√

2
C-

0w

∣∣∣v
〉

H0(
√
A0+i)

−
〈(
ζ

w

)∣∣∣

(√
A0v

1√
2
Cv

)〉

H0(
√
A0+i)⊕U

=
〈√
A0ζ + 1√

2
C-

0w

∣∣
∣v
〉

H0(
√
A0+i)

−
〈

1√
2
C-

0w

∣∣∣v
〉

H0(
√
A0+i)

− 〈ζ |√A0v〉H0(
√
A0+i)

=
〈√
A0ζ + 1√

2
C-

0w

∣∣∣v
〉

H0(
√
A0+i)

−
〈√
A0ζ + 1√

2
C-

0w

∣∣∣v
〉

H0(
√
A0+i)

= 0,

from which we see that

−GRAD⊆ D̃IV
∗
.

Thus, we have shown that

D̃IV = −GRAD
∗ = DIV. �

Noting that the solution
⎛

⎝
v(
ζ
w

)

y

⎞

⎠

of (9) is in H%,−1(R,H0) ∩ H%,−2(R,H1), by the results of Sect. 12.3, we
can read (9) line by line under the assumption that 0 ∈ %(A0) and we ob-
tain

∂0v +√
A0ζ + 1√

2
C-

0w = δ⊗ z(1)

∂0ζ −√
A0v = δ⊗√

A0z
(0)

w− 1√
2
Cv = −√

2u

√
2w+ y = −u.

Since v, ζ ∈H%,−1(R,H0(
√
A0 + i)) and y,w ∈H%,−1(R,U), we see that the first

equation holds inH%,−2(R,H−1(
√
A0 + i)). Since also v ∈H%,−2(R,H1(

√
A0 + i))

and z(0) ∈H1(
√
A0 + i), the second equation holds in H%,−2(R,H0(

√
A0 + i)) and
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the third one in H%,−2(R,U). If we let z := √
A0

−1
ζ ∈H%,−1(R,H1(

√
A0 + i)) ∩

H%,0(R,H−1(
√
A0 + i)) then ∂0z= v+ δ⊗ z(0) and

∂2
0z+A0z+ 1√

2
C-

0w = δ⊗ z(1) + ∂0δ⊗ z(0)

w− 1√
2
Cv = −√

2u

√
2w+ y = −u.

Thus, eliminating w we get

∂2
0z+A0z+ 1

2
C-

0

(
C
(
∂0z− δ⊗ z(0)

)− 2u
)= δ⊗ z(1) + ∂0δ⊗ z(0)

y = u−C
(
∂0z− δ⊗ z(0)

)
,

or

∂2
0z+A0z+ 1

2
C-

0C∂0z= C-
0u+ δ⊗ z(1) + ∂0δ⊗ z(0) + 1

2
δ⊗C-

0Cz
(0)

y = u−C∂0z+ δ⊗Cz(0),

which is on R>0 formally the equation we started out with. Here the first equality
holds in H%,−2(R,H−1(

√
A0 + i)) and the second one in H%,−2(R,U).

12.5.2 The Tucsnak-Weiss System as a Conservative Linear
Control System

In this section we want to prove that the system considered in the previous part is
conservative as it was formulated in Theorem 2 under appropriate assumptions on
the initial values z(0), z(1). In order to formulate pointwise evaluations of the solu-
tion, we have to inspect regularity properties for the system. Since the regularization
property does not depend on u we may set u= 0. By assuming 0 ∈ %(A0) we arrive
at the equations

∂0v +√
A0ζ + 1√

2
C-

0w = δ⊗ z(1)

∂0ζ −√
A0v = δ⊗√

A0z
(0)

w− 1√
2
Cv = 0

√
2w+ y = 0
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and re-assemble them in a different way. As was already pointed out, the first
equation holds in the space H%,−2(R,H−1(

√
A0 + i)) and the second one in

H%,−2(R,H0(
√
A0 + i)), while both the third and fourth one hold in H%,−2(R,U).

Using the third equation to eliminate w in the first one, we get the following system

∂0v +√
A0ζ + 1

2
C-

0C0v = δ⊗ z(1),

∂0ζ −√
A0v = δ⊗√

A0z
(0).

Rewriting this in an operator-matrix form we get

∂0

(
ζ

v

)
+
(

0 −√
A0√

A0
1
2C

-
0C0

)(
ζ

v

)
= δ⊗

(√
A0z

(0)

z(1)

)
(10)

as an equation inH%,−2(R,H0(
√
A0 + i)⊕H−1(

√
A0 + i)). We define the following

linear operator

A :D(A)⊆H0(
√
A0 + i)2 →H0(

√
A0 + i)2,

where the domain of A, D(A), is the set
{
(ζ, v) ∈H0(

√
A0 + i)2

∣∣∣v ∈H1(
√
A0 + i),

√
A0ζ + 1

2
C-

0C0v ∈H0(
√
A0 + i)

}

and

A

(
ζ

v

)
:=

(
0 −√

A0√
A0

1
2C

-
0C0

)(
ζ

v

)
.

The density of the domain of A follows by arguing analogously to the proof of
Lemma 2.

Lemma 3 The operator A is closed and continuously invertible. Furthermore the
following holds

Re

〈(
ζ

v

)∣∣∣A
(
ζ

v

)〉

H0(A)

= 1

2

〈(
0 C0

)(ζ
v

)∣∣∣
(
0 C0

)(ζ
v

)〉

U

≥ 0

and

Re

〈(
r

s

)∣∣∣A∗
(
r

s

)〉

H0(A)

= 1

2

〈(
0 C0

)(r
s

)∣∣∣
(
0 C0

)(r
s

)〉

U

≥ 0

for all
(
ζ
v

) ∈D(A), ( rs
) ∈D(A∗).

Proof The operator A is a restriction of the bounded linear operator
(

0 −√
A0√

A0
1
2C

-
0C0

)
:H0(

√
A0 + i)⊕H1(

√
A0 + i)→H0(

√
A0 + i)⊕H−1(

√
A0 + i).
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An easy computation shows that its inverse is given by

(
1
2A

−1/2
0 C-

0C0A
−1/2
0 A

−1/2
0

−A−1/2
0 0

)

:H0(
√
A0 + i)⊕H−1(

√
A0 + i)

→H0(
√
A0 + i)⊕H1(

√
A0 + i),

which is again bounded. If we consider the restriction

H0(
√
A0 + i)2 →H0(

√
A0 + i)2

(
r

s

)
�→

(
1
2A

−1/2
0 C-

0C0A
−1/2
0 A

−1/2
0

−A−1/2
0 0

)(
r

s

)
,

we again obtain a bounded linear operator, whose range is a subset of D(A). Hence
it is the inverse of A and thus A−1 is a bounded linear operator, which shows that A
is closed with 0 ∈ %(A). For z, v ∈H0(

√
A0 + i) we compute

〈
A

−1/2
0 C-

0C0A
−1/2
0 z|v〉

H0(
√
A0+i) =

〈
C-

0C0A
−1/2
0 z|A−1/2

0 v
〉
H0(

√
A0+i)

= 〈
C0A

−1/2
0 z|C0A

−1/2
0 v

〉
U

= 〈
A

−1/2
0 z|C-

0C0A
−1/2
0 v

〉
H0(

√
A0+i)

= 〈
z|A−1/2

0 C-
0C0A

−1/2
0 v

〉
H0(

√
A0+i),

proving that A−1/2
0 C-

0C0A
−1/2
0 is self-adjoint. Thus, we obtain

(
A∗)−1 = (

A−1)∗

=
(

1
2A

−1/2
0 C-

0C0A
−1/2
0 −A−1/2

0

A
−1/2
0 0

)

:H0(
√
A0 + i)2

→H0(
√
A0 + i)2

and so the operator (A∗)−1 is a restriction of the operator

(
1
2A

−1/2
0 C-

0C0A
−1/2
0 −A−1/2

0

A
−1/2
0 0

)

:H0(
√
A0 + i)⊕H−1(

√
A0 + i)

→H0(
√
A0 + i)⊕H1(

√
A0 + i).
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Using this, we get that

A∗ ⊆
(

1
2A

−1/2
0 C-

0C0A
−1/2
0 −A−1/2

0

A
−1/2
0 0

)−1

=
(

0 A
−1/2
0

−A−1/2
0

1
2C

-
0C0

)

:H0(
√
A0 + i)⊕H1(

√
A0 + i)

→H0(
√
A0 + i)⊕H−1(

√
A0 + i).

Now we are able to show the two asserted equalities. For (ζ, v) ∈D(A) we have

Re

〈(
ζ

v

)∣∣∣A
(
ζ

v

)〉

H0(
√
A0+i)2

= Re

〈(
ζ

v

)∣∣∣
(

0 −√
A0√

A0
1
2C

-
0C0

)(
ζ

v

)〉

H0(
√
A0+i)2

= Re

〈
v

∣∣∣
√
A0ζ + 1

2

(
C-

0C0
)
v

〉

H0(
√
A0+i)

+Re〈ζ |√A0v〉H0(
√
A0+i)

= Re

〈
v

∣∣∣
1

2

(
C-

0C0
)
v

〉

H0(
√
A0+i)

= 1

2
Re〈C0v|C0v〉U

= 1

2

〈(
0 C0

)(ζ
v

)∣∣∣
(
0 C0

)(ζ
v

)〉

U

.

Analogously we get for (r, s) ∈D(A∗)

Re

〈(
r

s

)∣∣∣A∗
(
r

s

)〉

H0(
√
A0+i)2

= Re

〈(
r

s

)∣∣∣
(

0
√
A0

−√
A0

1
2C

-
0C0

)(
r

s

)〉

H0(
√
A0+i)2

= Re〈r|√A0s〉H0(
√
A0+i) −Re

〈
s

∣
∣∣
√
A0r − 1

2

(
C-

0C0
)
s

〉

H0(
√
A0+i)

= Re

〈
s

∣∣∣
1

2

(
C-

0C0
)
s

〉

H0(
√
A0+i)

= 1

2
Re〈C0s|C0s〉U

= 1

2

〈(
0 C0

)(r
s

)∣∣∣
(
0 C0

)(r
s

)〉

U

. �
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Remark 3

1. Lemma 3 especially implies that A and A∗ are monotone or accretive operators.
Hence −A is a generator of a contraction semigroup. Furthermore (∂0 + A)−1

and (∂∗
0 + A∗)−1 are bounded linear operators on H%,0(R,H0(A)) and can be

extended to bounded operators on the associated spaces H%,k(R,Hs(A)) and
H%,k(R,Hs(A

∗)) respectively, where k, s ∈ Z.
2. From the equalities we also read off that

(
0 C0

)
(∂0 +A)−1 :H%,1

(
R,H1(A)

)⊆H%,0
(
R,H0(A)

)→H%,0(R,U)

is continuous, since for u ∈H%,1(R,H1(A)) we estimate

Re
〈
(it + %+A)u(t)|u(t)〉

H0(A)
= %

∣∣u(t)
∣∣2
H0(A)

+ ∣∣(0 C0
)
u(t)

∣∣2
U

≥ ∣∣(0 C0
)
u(t)

∣∣2
U

for every t ∈ R and from this we derive the stated continuity. Analogously we
get

(
0 C0

) (
∂∗

0 +A∗)−1 :H%,1
(
R,H1

(
A∗))⊆H%,0

(
R,H0

(
A∗))→H%,0(R,U)

is continuous. Thus we can extend these operators continuously to H%,k(R,

H0(A)) and H%,k(R,H0(A
∗)) respectively taking values in H%,k(R,U) for all

k ∈ Z. From this it is possible to derive the continuity of the composition oper-
ator (∂0 +A)−1

( 0
C-

0

)
as a mapping from H%,k(R,U) to H%,k(R,H0(A)), which

in the terminology of [15] means that C-
0 is admissible. However, in our setting

this property is not needed.

Recall that our equation (10) is valid in H%,−2(R,H0(
√
A0 + i)⊕H−1(

√
A0 + i)).

We show now that this implies the validity in H%,−2(R,H−1(A)).

Lemma 4 The Sobolev-chains of
√
A0 and A∗ are related by

H1
(
A∗) ↪→H0(

√
A0 + i)⊕H1(

√
A0 + i).

Proof Since

(A∗)−1 ⊆
(

1
2A

−1/2
0 C-

0C0A
−1/2
0 −A−1/2

0

A
−1/2
0 0

)

we conclude that the inclusion H1(A
∗)⊆H0(

√
A0 + i)⊕H1(

√
A0 ⊕ i) holds. The

Hilbert spacesH0(
√
A0 + i)⊕H1(

√
A0 + i) and H1(A

∗) are both continuously em-
bedded in H0(

√
A0 + i)⊕H0(

√
A0 + i)=H0(A

∗) and hence the assertion follows
by the Closed Graph Theorem. �
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Remark 4 As a direct consequence of Lemma 4 we get

H0(
√
A0 + i)⊕H−1(

√
A0 + i) ↪→H−1(A)

since H−1(A) is unitary equivalent to the dual space H1(A
∗)∗.

With this we conclude that the equation

∂0

(
ζ

v

)
+A

(
ζ

v

)
= δ⊗

(√
A0z

(0)

z(1)

)

holds in H%,−2(R,H−1(A)). From this we get

(
ζ

v

)
− χR>0 ⊗

(√
A0z

(0)

z(1)

)
= (∂0 +A)−1

(
χR>0 ⊗A

(√
A0z

(0)

z(1)

))
.

If we assume that
(√

A0z
(0)

z(1)

) ∈ D(A), we get, since −A is the generator of a C0-

semigroup, that (∂0 +A)−1
(
χR>0 ⊗A

(√
A0z

(0)

z(1)

)) ∈H%,1(R,H0(A)), by employing

semigroup theory as a regularity result. This shows that the system (9) is globally
regularizing with U := D(A). Thus Theorem 2 is applicable and we can show the
conservativity of the system. We summarize our findings of this section in the fol-
lowing theorem.

Theorem 3 The system (9) is well-posed. If 0 ∈ %(A0) it is globally regularizing
and conservative in the sense of Theorem 2.

Proof The well-posedness was shown in Sect. 12.5.1 and the regularity was proved
above. By comparing the system (9) and the setting in Theorem 2 we see that the
conservativity follows with R = 1√

2
and α = 1. �

12.6 Main Observations

In this note, we gave a unified approach to a large class of infinite-dimensional
control systems. This perspective enabled us, assuming mild regularizing properties
of the solution operator, to construct observation equations such that the respective
control systems become conservative in the sense of [15]. Moreover, we studied
a particular linear control system, which models wave phenomena and consists of
unbounded control and observation operators. It turned out that this system may
be rewritten into a form introduced in [8], such that the solution theory becomes
easily accessible and unbounded control and observation need not to be treated.
Surprisingly enough, the system studied in [15] corresponds to the skew-selfadjoint
operator case, which might be a rather special one at first glance.
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Chapter 13
Recent Progress in Smoothing Estimates
for Evolution Equations

Michael Ruzhansky and Mitsuru Sugimoto

Abstract This paper is a survey article of results and arguments from authors’
papers (Ruzhansky and Sugimoto in Proc. Lond. Math. Soc. 105:393–423, 2012;
Ruzhansky and Sugimoto in Smoothing properties of non-dispersive equations;
Ruzhansky and Sugimoto in Smoothing properties of inhomogeneous equations via
canonical transforms), and describes a new approach to global smoothing problems
for dispersive and non-dispersive evolution equations based on ideas of comparison
principle and canonical transforms. For operators a(Dx) of order m satisfying the
dispersiveness condition ∇a(ξ) �= 0, the smoothing estimate

∥
∥〈x〉−s |Dx |(m−1)/2eita(Dx)ϕ(x)

∥
∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
(s > 1/2)

is established, while it is known to fail for general non-dispersive operators. Es-
pecially, time-global smoothing estimates for the operator a(Dx) with lower or-
der terms are the benefit of our new method. For the case when the dispersiveness
breaks, we suggest a form

∥∥〈x〉−s∣∣∇a(Dx)
∣∣1/2eita(Dx)ϕ(x)

∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
(s > 1/2)

which is equivalent to the usual estimate in the dispersive case and is also invariant
under canonical transformations for the operator a(Dx). It does continue to hold
for a variety of non-dispersive operators a(Dx), where ∇a(ξ) may become zero on
some set. It is remarkable that our method allows us to carry out a global microlo-
cal reduction of equations to the translation invariance property of the Lebesgue
measure.
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13.1 Introduction

This survey article is a collection of results and arguments from authors’ papers
[18, 19], and [20].

Let us consider the following Cauchy problem to the Schrödinger equation:
{
(i∂t +Δx)u(t, x)= 0 in Rt ×R

n
x,

u(0, x)= ϕ(x) in R
n
x.

By Plancherel’s theorem, the solution u(t, x) = eit&x ϕ(x) preserves the L2-norm
of the initial data ϕ, that is, we have ‖u(t, ·)‖L2(Rnx)

= ‖ϕ‖L2(Rn) for any fixed time
t ∈R. But if we integrate the solution in t , we get an extra gain of regularity of order
1/2 in x. For example we have the estimate

∥∥〈x〉−s |Dx |1/2eitΔxϕ
∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
(s > 1/2)

for u = eitΔxϕ, where 〈x〉 = √
1 + |x|2, and (a sharper version of) this estimate

was first given by Kenig, Ponce and Vega [12]. This type of estimate is called a
smoothing estimate, and its local version was first proved by Sjölin [23], Constantin
and Saut [6], and Vega [26]. We remark that, historically, such a smoothing estimate
was first shown to Korteweg-de Vries equation

{
∂tu+ ∂3

xu+ u∂xu= 0,
u(0, x)= ϕ(x) ∈ L2(R),

and Kato [10] proved that the solution u= u(t, x) (t, x ∈R) satisfies

∫ T

−T

∫ R

−R
∣∣∂xu(x, t)

∣∣2dxdt ≤ c
(
T ,R,‖ϕ‖L2

)
.

Similar smoothing estimates have been observed for generalised equations
{
(i∂t + a(Dx))u(t, x)= 0,
u(0, x)= ϕ(x) ∈ L2(Rn),

which come from equations of fundamental importance in mathematical physics as
their principal parts:

• a(ξ)= |ξ |2 · · · Schrödinger

i∂tu−Δxu= 0

• a(ξ)=√|ξ |2 + 1 · · · Relativistic Schrödinger

i∂tu+√−Δx + 1u= 0

• a(ξ)= ξ3 (n= 1) · · · Korteweg-de Vries (shallow water wave)

∂tu+ ∂3
xu+ u∂xu= 0
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• a(ξ)= |ξ |ξ (n= 1) · · · Benjamin-Ono (deep water wave)

∂tu− ∂x |Dx |u+ u∂xu= 0

• a(ξ)= ξ2
1 − ξ2

2 (n= 2) · · · Davey-Stewartson (shallow water wave of 2D)

{
i∂tu− ∂2

xu+ ∂2
yu= c1|u|2u+ c2u∂xv

∂2
x v − ∂2

y v = ∂x |u|2

• a(ξ)= ξ3
1 + ξ3

2 , ξ
3
1 + 3ξ2

2 , ξ
2
1 + ξ1ξ

2
2 · · · Shrira (deep water wave of 2D)

• a(ξ) = quadratic form (n ≥ 3) · · · Zakharov-Schulman (interaction of sound
wave and low amplitudes high frequency wave)

There has already been a lot of literature on this subject from various points of
view. See, Ben-Artzi and Devinatz [2, 3], Ben-Artzi and Klainerman [4], Chihara
[5], Hoshiro [7, 8], Kato and Yajima [11], Kenig, Ponce and Vega [12–16], Linares
and Ponce [17], Simon [22], Sugimoto [24, 25], Walther [27, 28], and many others.
We note that for a given operator A the following are equivalent to each other based
on classical works by Agmon [1] and Kato [9]:

• Smoothing estimate

∥
∥Ae−itΔxϕ(x)

∥
∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
where A=A(X,Dx),

• Restriction estimate

∥∥Â∗f |Sn−1
ρ

∥∥
L2(Sn−1

ρ )
≤ C

√
ρ‖f ‖L2(Rn), where Sn−1

ρ = {
ξ ; |ξ | = ρ

}
(ρ > 0),

• Resolvent estimate

sup
Im ζ>0

∣∣(R(ζ )A∗f,A∗f
)∣∣≤ C‖f ‖2

L2(Rn)
, where R(ζ )= (−& − ζ )−1.

Most of the literature so far use the above equivalence to show smoothing estimates
for dispersive equations by showing restriction or resolvent estimates instead.

But here we develop a completely different strategy. We investigate smoothing
estimates by using methods of comparison and canonical transform which are quite
efficient for this problem:

1. Comparison principle · · · comparison of symbols implies that of estimates,
2. Canonical transform · · · transform an equation to another simple one.

They work not only for all the dispersive equations (that is, the case ∇a �= 0) but also
for some non-dispersive equations, and induce smoothing estimates of an invariant
form. Smoothing estimates for inhomogeneous equations can be also discussed by
a similar treatment. We will explain them in due order.
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13.2 Comparison Principle

Here we list theorems exemplifying the comparison principle, which have been es-
tablished in Sect. 2 in [18]:

Theorem 1 (1D case) Let f,g ∈ C1(R) be real-valued and strictly monotone. If
σ, τ ∈ C0(R) satisfy

|σ(ξ)|
|f ′(ξ)|1/2 ≤A

|τ(ξ)|
|g′(ξ)|1/2

then we have
∥∥σ(Dx)eitf (Dx)ϕ(x)

∥∥
L2(Rt )

≤A
∥∥τ(Dx)eitg(Dx)ϕ(x)

∥∥
L2(Rt )

for all x ∈R.

Theorem 2 (2D case) Let f (ξ, η), g(ξ, η) ∈ C1(R2) be real-valued and strictly
monotone in ξ ∈R for each fixed η ∈R. If σ, τ ∈ C0(R2) satisfy

|σ(ξ, η)|
|fξ (ξ, η)|1/2

≤A
|τ(ξ, η)|

|gξ (ξ, η)|1/2

then we have
∥∥σ(Dx,Dy)eitf (Dx,Dy)ϕ(x, y)

∥∥
L2(Rt×Ry)

≤A
∥∥τ(Dx,Dy)eitg(Dx,Dy)ϕ(x, y)

∥∥
L2(Rt×Ry)

for all x ∈R.

Theorem 3 (Radially Symmetric case) Let f,g ∈ C1(R+) be real-valued and
strictly monotone. If σ, τ ∈ C0(R+) satisfy

|σ(ρ)|
|f ′(ρ)|1/2 ≤A

|τ(ρ)|
|g′(ρ)|1/2

then we have
∥∥σ

(|Dx |
)
eitf (|Dx |)ϕ(x)

∥∥
L2(Rt )

≤A
∥∥τ
(|Dx |

)
eitg(|Dx |)ϕ(x)

∥∥
L2(Rt )

for all x ∈R
n.

13.3 Canonical Transforms

Next we will review the idea of canonical transforms discussed in Sect. 4 in [18]. It
is based on the so-called Egorov’s theorem.
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Let ψ : Γ → Γ̃ be a C∞-diffeomorphism between open sets Γ ⊂ R
n and

Γ̃ ⊂ R
n. We always assume that

C−1 ≤ ∣∣det ∂ψ(ξ)
∣∣≤ C (ξ ∈ Γ ),

for some C > 0. We set formally

Iψu(x)= F−1[Fu
(
ψ(ξ)

)]
(x)= (2π)−n

∫

Rn

∫

Rn

ei(x·ξ−y·ψ(ξ))u(y)dydξ.

The operators Iψ can be justified by using cut-off functions γ ∈ C∞(Γ ) and γ̃ =
γ ◦ψ−1 ∈ C∞(Γ̃ ) which satisfy suppγ ⊂ Γ , supp γ̃ ⊂ Γ̃ . We set

Iψ,γ u(x)= F−1[γ (ξ)Fu
(
ψ(ξ)

)]
(x)

= (2π)−n
∫

Rn

∫

Γ

ei(x·ξ−y·ψ(ξ))γ (ξ)u(y)dydξ. (1)

In the case that Γ, Γ̃ ⊂ R
n \ 0 are open cones, we may consider the homogeneous

functions ψ and γ which satisfy suppγ ∩ S
n−1 ⊂ Γ ∩ S

n−1 and supp γ̃ ∩ S
n−1 ⊂

Γ̃ ∩ S
n−1, where S

n−1 = {ξ ∈ R
n : |ξ | = 1}. Then we have the expressions for com-

positions

Iψ,γ = γ (Dx) · Iψ = Iψ · γ̃ (Dx)
and also the formula

Iψ,γ · σ(Dx)= (σ ◦ψ)(Dx) · Iψ,γ . (2)

We also introduce the weighted L2-spaces. For a weight function w(x), let
L2(Rn;w) be the set of measurable functions f : Rn →C such that the norm

‖f ‖L2(Rn;w) =
(∫

Rn

∣∣w(x)f (x)
∣∣2dx

)1/2

is finite. Then, on account of the relations (2), we obtain the following fundamental
theorem (Theorem 4.1 in [18]):

Theorem 4 Assume that the operator Iψ,γ defined by (1) is L2(Rn;w)-bounded.
Suppose that we have the estimate

∥∥w(x)ρ(Dx)eitσ (Dx)ϕ(x)
∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)

for all ϕ such that supp ϕ̂ ⊂ supp γ̃ , where γ̃ = γ ◦ ψ−1. Assume also that the
function

q(ξ)= γ · ζ
ρ ◦ψ (ξ)
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is bounded. Then we have
∥∥w(x)ζ(Dx)eita(Dx)ϕ(x)

∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)

for all ϕ such that supp ϕ̂ ⊂ suppγ , where a(ξ)= (σ ◦ψ)(ξ).

Note that eita(Dx)ϕ(x) and eitσ (Dx)ϕ(x) are solutions to
{
(i∂t + a(Dx))u(t, x)= 0,
u(0, x)= ϕ(x),

and

{
(i∂t + σ(Dx))v(t, x)= 0,
v(0, x)= g(x),

respectively. Theorem 4 means that smoothing estimates for the equation with
σ(Dx) implies those with a(Dx) if the canonical transformations which relate them
are bounded on weighted L2-spaces.

As for the L2(Rn;w)-boundedness of the operator Iψ,γ , we have criteria for
some special weight functions. For κ ∈ R, let L2

κ(R
n) be the set of measurable

functions f such that the norm

‖f ‖L2
κ (R

n) =
(∫

Rn

∣∣〈x〉κf (x)∣∣2dx
)1/2

is finite. Then we have the following mapping properties (Theorems 4.2, 4.3 in [18]).

Theorem 5 Let Γ, Γ̃ ⊂ R
n \0 be open cones. Suppose |κ|< n/2. Assume ψ(λξ)=

λψ(ξ), γ (λξ)= γ (ξ) for all λ > 0 and ξ ∈ Γ . Then the operator Iψ,γ defined by
(1) is L2

κ(R
n)-bounded.

Theorem 6 Suppose κ ∈ R. Assume that all the derivatives of entries of the n× n

matrix ∂ψ and those of γ are bounded. Then the operator Iψ,γ defined by (1) are
L2
κ(R

n)-bounded.

13.4 Smoothing Estimates for Dispersive Equations

We consider smoothing estimates for solutions u(t, x) = eita(Dx)ϕ(x) to general
equations

{
(i∂t + a(Dx))u(t, x)= 0,
u(0, x)= ϕ(x) ∈ L2(Rn).

Let am(ξ) be the principal term of a(ξ) satisfying

am(ξ) ∈ C∞(
R
n \ 0

)
, real-valued, am(λξ)= λmam(ξ) (λ > 0, ξ �= 0).

We assume that a(ξ) is dispersive in the following sense:

a(ξ)= am(ξ), ∇am(ξ) �= 0
(
ξ ∈R

n \ 0
)
, (H)
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or, otherwise, we assume

a(ξ) ∈ C∞(
R
n
)
, ∇a(ξ) �= 0

(
ξ ∈R

n
)
, ∇am(ξ) �= 0

(
ξ ∈R

n \ 0
)
,

|∂α(a(ξ)− am(ξ)
)∣∣≤ Cα|ξ |m−1−|α| for all multi-indices α and all |ξ | ≥ 1.

(L)

Example 1 a(ξ)= ξ3
1 + · · · + ξ3

n + ξ1 satisfies (L).

The dispersiveness means that the classical orbit, that is, the solution of the
Hamilton-Jacobi equations

{
ẋ(t)= (∇a)(ξ(t)), ξ̇ (t)= 0,
x(0)= 0, ξ(0)= k,

does not stop, and the singularity of u(t, x)= eita(Dx)ϕ(x) travels to infinity along
this orbit. Hence we can expect the smoothing, and indeed we have the following
result (Theorem 5.1, Corollary 5.5 in [18]):

Theorem 7 Assume (H) or (L). Suppose m≥ 1 and s > 1/2. Then we have
∥∥〈x〉−s |Dx |(m−1)/2eita(Dx)ϕ(x)

∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rn).

Remark 1 Theorem 7 with polynomials a(ξ) follows immediately from a sharp
version of local smoothing estimate proved by Theorem 4.1 of Kenig, Ponce and
Vega [12], and any polynomial a(ξ) which satisfies the estimate in Theorem 7 has
to be dispersive, that is ∇am(ξ) �= 0 (ξ �= 0) (see Hoshiro [8]). Theorem 7 with
a(ξ) = |ξ |2 and n ≥ 3 was also stated by Ben-Artzi and Klainerman [4], and with
the case (H) and m> 1 by Chihara [5] in different contexts.

13.5 Proof by New Methods

We explain how to prove Theorem 7 under the condition (H) by our new method.
The main strategy is that we obtain estimates for low dimensional model cases from
some trivial estimate by the comparison principle, and reduce general case to such
model cases by the method of canonical transforms.

13.5.1 Low Dimensional Model Estimates

By the comparison principle, we can show the equivalence of low dimensional esti-
mates of various type. In the 1D case, we have (for l,m > 0)

√
m
∥∥|Dx |(m−1)/2eit |Dx |mϕ(x)

∥∥
L2(Rt )

= √
l
∥∥|Dx |(l−1)/2eit |Dx |l ϕ(x)

∥∥
L2(Rt )

(3)
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for all x ∈ R. Here supp ϕ̂ ⊂ [0,+∞) or (−∞,0].
In the 2D case, we have (for l,m > 0)

∥∥|Dy |(m−1)/2eitDx |Dy |m−1
ϕ(x, y)

∥∥
L2(Rt×Ry)

= ∥∥|Dy |(l−1)/2eitDx |Dy |l−1ϕ(x,y)
∥∥
L2(Rt×Ry)

(4)

for all x ∈ R. On the other hand, in 1D case, we have trivially
∥∥eitDxϕ(x)

∥∥
L2(Rt )

= ∥∥ϕ(x + t)
∥∥
L2(Rx)

= ‖ϕ‖L2(Rx)
(5)

for all x ∈ R. Using the equality (5), the right hand sides of (3) and (4) with l = 1
can be estimated, and we have for all x ∈ R:

• (1D Case)
∥∥|Dx |(m−1)/2eit |Dx |mϕ(x)

∥∥
L2(Rt )

≤ C‖ϕ‖L2(Rx)
,

• (2D Case)

∥∥|Dy |(m−1)/2eitDx |Dy |m−1
ϕ(x, y)

∥∥
L2(Rt×Ry)

≤ C‖ϕ‖L2(R2
x,y )
.

Remark 2 In the case m= 2, these estimates were proved by Kenig, Ponce & Vega
[12] (1D case) and Linares & Ponce [17] (2D case).

The following is a straightforward consequence from these estimates:

Proposition 1 Suppose m> 0 and s > 1/2. Then for n≥ 1 we have
∥∥〈x〉−s |Dn|(m−1)/2eit |Dn|mϕ(x)

∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)

and for n≥ 2 we have

∥
∥〈x〉−s |Dn|(m−1)/2eitD1|Dn|m−1

ϕ(x)
∥
∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
,

where Dx = (D1, . . . ,Dn).

13.5.2 Reduction to Model Estimates

On account of the method of canonical transform (Theorem 4), smoothing estimates
for dispersive equations (Theorem 7) can be reduced to low dimensional model
estimates (Proposition 1) by the canonical transformation if we find a homogeneous
change of variable ψ such that

a(ξ)= (σ ◦ψ)(ξ), σ (D)= |Dn|m or σ(D)=D1|Dn|m−1.
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We show how to select such ψ under the assumption (H). The argument for the case
(L) is similar. By microlocalisation and rotation, we may assume that the initial data
ϕ satisfies supp ϕ̂ ⊂ Γ , where Γ ⊂ R

n \ 0 is a sufficiently small conic neighbour-
hood of en = (0, . . . ,0,1). Furthermore, we have Euler’s identity

a(ξ)= am(ξ)= 1

m
ξ · ∇a(ξ),

and the dispersiveness ∇a(en) �= 0 implies the following two cases:

(I) ∂na(en) �= 0 · · · (elliptic). By Euler’s identity, we have a(en) �= 0. Hence, in
this case, we may assume a(ξ) > 0 (ξ ∈ Γ ), ∂na(en) �= 0.

(II) ∂na(en) = 0 · · · (non-elliptic). By assumption ∇a(en) �= 0, there exits j �= n

such that ∂j a(en) �= 0. Hence, in this case, we may assume ∂1a(en) �= 0.

In the elliptic case (I), we take

σ(η)= |ηn|m, ψ(ξ)= (
ξ1, . . . , ξn−1, a(ξ)

1/m).

Then we have a(ξ)= (σ ◦ψ)(ξ), and ψ is surely a change of variables on Γ since

det ∂ψ(en)=
∣∣∣∣
En−1 0

∗ 1
m
a(en)

1/m−1∂na(en)

∣∣∣∣ �= 0

where En−1 is the identity matrix. In the non-elliptic case (II), we take

σ(η)= η1|ηn|m−1, ψ(ξ)=
(

a(ξ)

|ξn|m−1
, ξ2, . . . , ξn

)
.

Then we have again a(ξ)= (σ ◦ψ)(ξ) and

det ∂ψ(en)=
∣∣∣∣
∂1a(en) ∗

0 En−1

∣∣∣∣ �= 0.

Thus, we successfully showed Theorem 7 in both cases.

13.6 Non-dispersive Case

Now we consider what happens if the equation does not satisfy the dispersiveness
assumption ∇a(ξ) �= 0 (ξ ∈R

n). All the precise results and arguments in this section
are to appear in our forthcoming paper [19].

Although we cannot have smoothing estimates (see Remark 1), such case appears
naturally in physics. For example, let us consider a coupled system of Schrödinger
equations

i∂t v =Δxv+ b(Dx)w, i∂tw =Δxw+ c(Dx)v,
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which represents a linearised model of wave packets with two modes. Assume that
this system is diagonalised and regard it as a single equations for the eigenvalues:

a(ξ)= −|ξ |2 ±√
b(ξ)c(ξ).

Then there could exist points ξ such that ∇a(ξ) = 0 because of the lower order
terms b(ξ), c(ξ). Another interesting examples are Shrira equations, in which case:

a(ξ)= ξ3
1 + ξ3

2 , ξ3
1 + 3ξ2

2 , ξ2
1 + ξ1ξ

2
2 .

Although a(ξ) = ξ3
1 + ξ3

2 satisfies assumption (H), a(ξ) = ξ3
1 + 3ξ2

2 and a(ξ) =
ξ2

1 + ξ1ξ
2
2 do not satisfy assumption (L) because ∇a(0)= 0.

We suggest an estimate which we expect to hold for non-dispersive equations:

∥∥〈x〉−s∣∣∇a(Dx)
∣∣1/2eita(Dx)ϕ(x)

∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
(s > 1/2) (6)

and let us call it invariant estimate. This estimate has a number of advantages:

• in the dispersive case ∇a(ξ) �= 0, it is equivalent to Theorem 7;
• it is invariant under canonical transformations for the operator a(Dx);
• it does continue to hold for a variety of non-dispersive operators a(Dx), where

∇a(ξ) may become zero on some set and when the usual estimate fails;
• it does take into account zeros of the gradient ∇a(ξ), which is also responsible

for the interface between dispersive and non-dispersive zone (e.g. how quickly
the gradient vanishes).

13.6.1 Secondary Comparison

By using comparison principle again to the smoothing estimates obtained from the
comparison principle, we can have new estimates. This is a powerful tool to induce
the invariant estimates (6) for non-dispersive equations. For example, we have just
obtained the estimate

∥∥〈x〉−s |Dx |(m−1)/2eit |Dx |mϕ
∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)

(Theorem 7 with a(ξ) = |ξ |m) from comparison principle and canonical transfor-
mation. If we set g(ρ) = ρm, τ(ρ) = ρ(m−1)/2, then we have |τ(ρ)|/|g′(ρ)|1/2 =
1/

√
m. Hence by the comparison result again for the radially symmetric case (The-

orem 3), we have

Theorem 8 Suppose s > 1/2. Let f ∈ C1(R+) be real-valued and strictly mono-
tone. If σ ∈ C0(R+) satisfy

∣∣σ(ρ)
∣∣≤A

∣∣f ′(ρ)
∣∣1/2,
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then we have

∥∥〈x〉−sσ (|Dx |
)
eitf (|Dx |)ϕ(x)

∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
.

From this secondary comparison, we obtain immediately the following invariant
estimate since a radial function a(ξ)= f (|ξ |) always satisfies |∇a(ξ)| = |f ′(|ξ |)|.

Theorem 9 Suppose s > 1/2. Let a(ξ)= f (|ξ |) and f ∈ C∞(R+) be real-valued.
Then we have

∥∥〈x〉−s∣∣∇a(Dx)
∣∣1/2eita(Dx)ϕ(x)

∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
.

Example 2 a(ξ)= (|ξ |2 − 1)2 is non-dispersive because

∇a(ξ)= 4
(|ξ |2 − 1

)
ξ = 0

if |ξ | = 0,1. But we have the invariant estimate by Theorem 9.

For the non-radially symmetric case, we compare again to the low dimensional
model estimates (Proposition 1) and obtain

Theorem 10 (1D secondary comparison) Suppose s > 1/2. Let f ∈ C1(R) be real-
valued and strictly monotone. If σ ∈ C0(R) satisfies

∣∣σ(ξ)
∣∣≤A

∣∣f ′(ξ)
∣∣1/2,

then we have

∥∥〈x〉−sσ (Dx)eitf (Dx)ϕ(x)
∥∥
L2(Rt×Rx)

≤AC
∥∥ϕ(x)

∥∥
L2(Rx)

.

Theorem 11 (2D secondary comparison) Suppose s > 1/2. Let f ∈ C1(R2) be
real-valued and f (ξ, η) be strictly monotone in ξ ∈ R for every fixed η ∈ R. If
σ ∈ C0(R2) satisfies

∣∣σ(ξ, η)
∣∣≤A

∣∣∂f/∂ξ(ξ, η)
∣∣1/2,

then we have

∥∥〈x〉−sσ (Dx,Dy)eitf (Dx,Dy)ϕ(x, y)
∥∥
L2(Rt×R2

x,y )
≤AC

∥∥ϕ(x, y)
∥∥
L2(R2

x,y )
.

Example 3 By using secondary comparison for non-radially symmetric case, we
have invariant estimates for Shrira equations. In fact, for a(ξ)= ξ3

1 + 3ξ2
2 , we have

by 1D secondary comparison (Theorem 10)

∥∥〈x1〉−s |D1|eitD3
1ϕ(x)

∥∥
L2(Rt×R2

x)
≤ C‖ϕ‖L2(R2

x)
,
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∥∥〈x2〉−s |D2|1/2eit3D2
2ϕ(x)

∥∥
L2(Rt×R2

x)
≤ C‖ϕ‖L2(R2

x)
,

for s > 1/2. Hence by 〈x〉−s ≤ 〈xk〉−s (k = 1,2) we have
∥∥〈x〉−s(|D1| + |D2|1/2

)
eita(Dx)ϕ(x)

∥∥
L2(Rt×R2

x)
≤ C‖ϕ‖L2(R2

x)

and hence we have
∥∥〈x〉−s∣∣∇a(Dx)

∣∣1/2eita(Dx)ϕ(x)
∥∥
L2(Rt×R2

x)
≤ C‖ϕ‖L2(R2

x)
.

For a(ξ)= ξ2
1 + ξ1ξ

2
2 , we have by 2D secondary comparison (Theorem 11)

∥∥〈x1〉−s
∣∣2D1 +D2

2

∣∣1/2eita(D1,D2)ϕ(x)
∥∥
L2(Rt×R2

x)
≤ C‖ϕ‖L2(R2

x)
,

∥∥〈x2〉−s |D1D2|1/2eita(D1,D2)ϕ(x)
∥∥
L2(Rt×R2

x)
≤ C‖ϕ‖L2(R2

x)
,

for s > 1/2, hence we have similarly

∥∥〈x〉−s∣∣∇a(Dx)
∣∣1/2eita(Dx)ϕ(x)

∥∥
L2(Rt×R2

x)
≤ C‖ϕ‖L2(R2

x)
.

13.6.2 Non-dispersive Case Controlled by Hessian

We will show that in the non-dispersive situation the rank of ∇2a(ξ) still has a
responsibility for smoothing properties.

First let us consider the case when dispersiveness (L) is true only for large ξ :
∣∣∇a(ξ)∣∣≥ C〈ξ 〉m−1 (|ξ | � 1

)
,

∣∣∂α
(
a(ξ)− am(ξ)

)∣∣≤ C〈ξ 〉m−1−|α| (|ξ | � 1
)
.

(L′)

Theorem 12 Suppose n≥ 1, m≥ 1, and s > 1/2. Let a ∈ C∞(Rn) be real-valued
and assume that it has finitely many critical points. Assume (L′) and

∇a(ξ)= 0 ⇒ det∇2a(ξ) �= 0.

Then we have
∥∥〈x〉−s∣∣∇a(Dx)

∣∣1/2eita(Dx)ϕ(x)
∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
.

Example 4 a(ξ)= ξ4
1 + · · · + ξ4

n + |ξ |2 satisfies assumptions in Theorem 12.

We outline the proof of Theorem 12. For the region where ∇a(ξ) �= 0, we can use
a smoothing estimate for dispersive equations. Near the points ξ where ∇a(ξ)= 0,
there exists a change of variable ψ by Morse’s lemma such that a(ξ)= (σ ◦ψ)(ξ)
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where σ(η) is a non-degenerate quadratic form, and satisfies dispersiveness (H).
Hence the estimate can be reduced to the dispersive case by the method of canonical
transformation.

Next we consider the case when a(ξ) is homogeneous (of oder m). Then, by
Euler’s identity, we have

∇a(ξ)= 1

m− 1
ξ∇2a(ξ) (ξ �= 0),

hence

∇a(ξ)= 0 ⇒ det∇2a(ξ)= 0 (ξ �= 0).

Therefore assumption in Theorem 12 does not make any sense in this case, but we
can have the following result if we use the idea of canonical transform again:

Theorem 13 Suppose n ≥ 2 and s > 1/2. Let a ∈ C∞(Rn \ 0) be real-valued and
satisfy a(λξ)= λ2a(ξ) (λ > 0, ξ �= 0). Assume that

∇a(ξ)= 0 ⇒ rank∇2a(ξ)= n− 1 (ξ �= 0).

Then we have
∥∥〈x〉−s∣∣∇a(Dx)

∣∣1/2eita(Dx)ϕ(x)
∥∥
L2(Rt×Rnx)

≤ C‖ϕ‖L2(Rnx)
.

Example 5 a(ξ)= ξ2
1 ξ

2
2

ξ2
1 +ξ2

2
+ ξ2

3 + · · · + ξ2
n satisfies the assumptions in Theorem 13.

In the case n = 2, this is an illustration of a smoothing estimate for the Cauchy
problem for an equation like

i∂tu+D2
1D

2
2Δ

−1u= 0

which is regarded as a mixture of Davey-Stewartson and Benjamin-Ono type equa-
tions.

13.7 Concluding Remarks

13.7.1 Summary

Finally we summarise what is explained in this article in a diagram below. It is
remarkable that all the results of smoothing estimates so far is derived from just the
translation invariance of Lebesgue measure:

• Trivial estimate ‖ϕ(x + t)‖L2(Rt )
= ‖ϕ‖L2(Rx)

⇓ (comparison principle)
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• Low dimensional model estimates (Proposition 1)

⇓ (canonical transform)

• Smoothing estimates for dispersive equations (Theorem 7)

⇓ (secondary comparison & canonical transform)

• Invariant estimates for non-dispersive equations at least for

∗ radially symmetric a(ξ)= f (|ξ |), f ∈ C1(R+),
∗ Shrira equation a(ξ)= ξ3

1 + 3ξ2
2 , ξ

2
1 + ξ1ξ

2
2 ,

∗ non-dispersive a(ξ) controlled by its Hessian.

13.7.2 Smoothing Estimates for Inhomogeneous Equations

We finish this article by mentioning some results for inhomogeneous equations. Let
us consider the solution

u(t, x)= −i
∫ t

0
ei(t−τ)a(Dx)f (τ, x)dτ

to the equation
{
(i∂t + a(Dx))u(t, x)= f (t, x) in Rt ×R

n
x,

u(0, x)= 0 in R
n
x.

Although smoothing estimates for such equation are necessary for nonlinear ap-
plications (see [21] for example), there are considerably less results on this topic
available in the literature. But the method of canonical transform also works to this
problem, and we will list here some recent achievement given in our forthcoming
paper [20]. The following result is a counter part of Theorem 7. Especially, this kind
of time-global estimate for the operator a(Dx)with lower order terms are the benefit
of our new method:

Theorem 14 Assume (H) or (L). Suppose n≥ 2,m≥ 1, and s > 1/2. Then we have
∥∥∥∥〈x〉−s |Dx |m−1

∫ t

0
ei(t−τ)a(Dx)f (τ, x)dτ

∥∥∥∥
L2(Rt×Rnx)

≤ C
∥∥〈x〉sf (t, x)∥∥

L2(Rt×Rnx)
.

The proof of Theorem 14 is carried out by reducing it to model estimates below
via canonical transform:

Proposition 2 Suppose n = 1 and m > 0. Let a(ξ) ∈ C∞(R \ 0) be a real-valued
function which satisfies a(λξ)= λma(ξ) for all λ > 0 and ξ �= 0. Then we have

∥∥∥∥a
′(Dx)

∫ t

0
ei(t−τ)a(Dx)f (τ, x)dτ

∥∥∥∥
L2(Rt )

≤ C

∫

R

∥∥f (t, x)
∥∥
L2(Rt )

dx
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for all x ∈R. Suppose n= 2 and m> 0. Then we have
∥∥
∥∥|Dx |m−1

∫ t

0
ei(t−τ)|Dx |m−1Dyf (τ, x, y)dτ

∥∥
∥∥
L2(Rt×Rx)

≤ C

∫

R

∥∥f (t, x, y)
∥∥
L2(Rt×Rx)

dy

for all y ∈R.

Remark 3 Proposition 2 with the case n= 1 is a unification of the results by Kenig,
Ponce and Vega who treated the cases a(ξ)= ξ2 (p. 258 in [14]), a(ξ)= |ξ |ξ (p. 160
in [15]), and a(ξ)= ξ3 (p. 533 in [13]).

Since we unfortunately do not know the comparison principle for inhomoge-
neous equations, we gave a direct proof to Proposition 2 in [20].
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Chapter 14
Differentiability of Inverse Operators

Simon Y. Serovajsky

Abstract The Inverse Function Theorem is a mighty tool of the local nonlinear
analysis. It guarantees the existence of the inverse function and its differentiability.
However the first property is sometimes not used. It is true, for example, for the op-
timal control theory and the inverse problems of mathematical physics. The inverse
operator can be interpreted as a control-state mapping here. Its existence is a corol-
lary of the state equation properties, and the differentiability of the inverse operator
is used for the differentiation of the minimizing functional or the discrepancy. We
establish a differentiability criterion of the inverse operator. Moreover, we prove a
property which can be interpreted as a weak form of the operator differentiability.
The Dirichlet problem for a nonlinear elliptic equation is considered as an example.

Mathematics Subject Classification 58C20 · 46T20 · 35J60 · 49K20

14.1 Introduction

Consider an operator A : V → Y , where V and Y are Banach spaces. Suppose that it
is continuously differentiable at a neighborhood of a point y0 ∈ Y . Denote by A′(y0)

the derivative of the operator A at the point y0. It is well known that the following
result holds (see, for example, [1]).

The Inverse Function Theorem Assume that there exists the continuous inverse
operator A′(y0)

−1. Then there exists an open neighborhood O of the point y0 such
that the set O ′ = A(O) is an open neighborhood of the point v0 = Ay0; more-
over, there exists the continuously differentiable inverse map A−1 :O ′ →O , and its
derivative is defined by the formula

(
A−1)′(v)= {

A′[A−1(v)
]}−1 ∀v ∈O ′.

This result has very important applications. It has relationships to the Implicit
Function Theorem [2], Newton–Kantorovich Method [1, 2], Lusternik Smooth
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Manifold Approximation Theorem [3, 4], Brower Fixed Point Theorem [1, 5],
Morse Smooth Function Singularity Lemma [1], Graves Cover Theorem [4], etc.
Extensions of the Inverse Function Theorem to high orders differentiability [6], non-
smooth operators [7–9], multiple-valued maps [1, 7, 10], etc., are also known.

In reality the Inverse Function Theorem involve two different results. These are
the invertibility of the given operator and the differentiability of the corresponding
inverse operator. Sometimes only the second property is important. It is true, for
example, for the extremum theory and the inverse problems theory. In particular,
consider the system described by the equation

Ay = v. (1)

The term v can be interpreted here as a control or an identifiable parameter, and y is
a state function. Suppose that (1) has a unique solution y = y(v) from the space Y
for all values v ∈ V . Then the operator A is invertible. This result can be proved by
some tools which are applicable to the given equation. Therefore, it is not necessary
to use of the Inverse Function Theorem here.

Let U be a convex closed subset of the space V . The state functional is defined
by the formula

I (v)= J (v)+K
[
y(v)

]
,

where J is a functional on the set V , and K is a functional on the set Y . We have
the following optimization control problem.

Problem 1 Minimize the functional I on the set U .

A necessary condition for the minimum of a smooth functional F on a convex
set W at a point v0 is the variational inequality (see [11])

〈
F ′(v0), v − v0

〉≥ 0 ∀v ∈W, (2)

where 〈λ,ϕ〉 is the value of the linear continuous functional λ at the point ϕ.
The functional I is the sum of J and the map v→K[y(v)]. The last mapping is

the superposition of the functional K and the map v → y(v), which is, in fact, the
inverse operator A−1. Then the proof of the differentiability of the given functional
requires the differentiation of the inverse operator. This result can be obtained using
the Inverse Function Theorem.

Lemma 1 Suppose that the operator A has a continuous inverse operator, which is
continuously differentiable at an open neighborhood of the point y0 = y(v0), and
there exists the continuous inverse operator A′(y0)

−1. Then the map y(·) : V → Y

is Gateaux differentiable at the point v0, and its derivative satisfies the formula
〈
μ,y′(v0)h

〉= 〈
pμ(v0), h

〉 ∀μ ∈ Y ∗, h ∈ V, (3)

where Y ∗ is the adjoint space of Y , and pμ(v0) is the solution of the equation
[
A′(y0)

]∗
pμ(v0)= μ. (4)
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Proof By the Inverse Function Theorem the map y(·) : V → Y is differentiable at
the point v0, and, moreover,

y′(v0)=
[
A′(y0)

]−1
.

Then we get

〈
μ,y′(v0)h

〉= 〈
μ,

[
A′(y0)

]−1
h
〉= 〈{[

A′(y0)
]−1}∗

μ,h
〉 ∀μ ∈ Y ∗, h ∈ V.

It is known that each linear operator and its adjoint operator are invertible at the
same time (see p. 460 in [2]). Therefore (4) has a unique solution

pμ(v0)=
{[
A′(y0)

]−1}∗
μ

from the space V ∗. So the previous formula can be transformed to (4), and the
equality (3) is true. �

Now we can prove the differentiability of the functional I and obtain necessary
conditions of optimality. Let v0 be the solution of the minimization problem for the
functional I on the set U . Define y0 = y(v0).

Lemma 2 Under the conditions of Lemma 1 suppose that the functional J is
Gateaux differentiable at the point v0, and the functional K is Frechet differentiable
at the point y0. Then the control v0 satisfies the variational inequality

〈
J ′(v0)− p0, v− v0

〉≥ 0 ∀v ∈U, (5)

where p0 is a solution of the adjoint equation

[
A′(y0)

]∗
p0 = −K ′(y0). (6)

Proof Using the Composite Function Theorem (see p. 637 in [2]), we obtain that
the Gateaux derivative of the map v→K[y(v)] exists such that

(Ky)′(v0)=K ′(y0)y
′(v0).

By equality (3) we get

〈
(Ky)′(v0), h

〉= 〈
K ′(y0), y

′(v0)h
〉= −〈p0, h〉 ∀h ∈ V,

where p0 is the solution of (4) for μ= −K ′(y0). Thus, we obtain the adjoint equa-
tion (6). So the derivative of the map v → K[y(v)] at the point v0 equals to −p0.
Then the functional I has the derivative

I ′(v0)= J ′(v0)− p0

at this point. Using (2), we obtain the variational inequality (5). �
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Thus the Inverse Function Theorem is a good tool for proving the differentiability
of the control-state mapping. This result is the basis for obtaining necessary opti-
mality conditions. Note that we use now the serious assumption of the invertibility
of the operator’s derivative. It is equivalent to the existence of the unique solution
y ∈ Y for the linearized equation

A′(y0)y = v (7)

for all v ∈ V .
Now we have the following questions:

• How large is the class of operators that satisfy the mentioned assumption?
• What is the criterion of the differentiability of the inverse operator at a concrete

point?
• Could we prove the differentiability of the inverse operator without using the

Inverse Function Theorem?
• Could we prove a weaker form of the differentiability of the inverse operator for

obtaining optimality conditions in the case of non-invertibility of the operator’s
derivative?

We will try to answer these questions.

14.2 Criterion for the Differentiability of the Inverse Operator

Consider an operator A : Y → V . Let it be continuous and differentiable at a neigh-
borhood of a point y0 ∈ Y .

Theorem 1 Suppose the existence of an open neighborhood O of the point y0 such
that the set O ′ = A(O) is an open neighborhood of the point v0 = Ay0. Suppose
that there exists the inverse operator A−1 :O ′ →O , and that (7) has not more than
one solution. Then this inverse operator is Gateaux differentiable at v0 if and only
if the derivative A′(y0) is a surjection.

Proof Let the derivative A′(y0) be a surjection. Then it is invertible by the assump-
tions of the theorem. By Banach Inverse Operator Theorem there exists the contin-
uous inverse operator A′(y0)

−1. Therefore, the differentiability of the operator A−1

at the point v0 follows from the Inverse Function Theorem directly.
Suppose now that the operator A−1 has the Gateaux derivative D at y0, and that

the derivative A′(y0) is not a surjection. We get the equality

Ay(v0 + σv)−Ay(v0)= σv

for all v ∈ V and small enough number σ . Dividing it by σ and passing to the limit
as σ → 0, using the Composite Function Theorem and differentiability of A−1, we
get

A′(y0)Dv = v.
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Then there exists a point y =Dv from Y such that A′(y0)y = v. So the derivative
A′(y0) is a surjection. However this conclusion contradicts our assumption. Hence,
the operator A′(y0) is a surjection whenever the inverse operator is differentiable. �

Thus Gateaux differentiability of the inverse operator is equivalent to the follow-
ing property: the operator A′(y0) is a surjection. It is called Lusternik Condition
[4].

Consider as an example the homogeneous Dirichlet Problem for the equation

−Δy + |y|ρy = v (8)

in the n-dimensional bounded set Ω , where ρ > 0. Denote the space

Y =H 1
0 (Ω)∩Lq(Ω),

where q = ρ + 2. Using Monotone Operators Theory [12], we obtain that this
boundary problem has the unique solution y ∈ Y for all v from the set V , which
is the adjoint space

Y ∗ =H−1(Ω)+Lq ′(Ω),

where 1/q + 1/q ′ = 1. Denote the operator A : Y → V such that Ay equals to the
left side of the equality (8). The existence of the operator A−1 follows from the
one-valued solvability of the boundary problem. Its differentiability can be obtained
by using the properties of the linearized equation. It is the homogeneous Dirichlet
Problem for the equation

−Δy + (ρ + 1)|y0|ρy = v. (9)

Corollary 1 The solution of the Dirichlet problem for (8) is Gateaux differentiable
with respect to the absolute term at the point v = v0 iff (9) has a solution y ∈ Y for
all v ∈ V .

Indeed, the continuous differentiability of the given operator A is obvious. The
existence of the inverse operator follows from the one-valued solvability of the given
boundary problem. It is obvious that the Dirichlet problem for the linear equation
(9) cannot have two solutions. Then the criterion for the invertibility of the inverse
operator is the Lusternik condition, by Theorem 1.

Now we obtain a criterion for the differentiability of the solution of (8) with
respect to the absolute term on the space V .

Corollary 2 The solution of the Dirichlet problem for (8) is Gateaux differentiable
with respect to the absolute term at an arbitrary point if and only if the embedding
H 1

0 (Ω)⊂ Lq(Ω) is true.
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Proof Multiply equality (9) by the function y and integrate the result in x ∈Ω using
the Green formula and the boundary condition. We get

∫

Ω

|∇y|2dx + (ρ + 1)
∫

Ω

|y0|ρy2dx =
∫

Ω

vydx.

We have Y =H 1
0 (Ω) by the given assumption, hence V =H−1(Ω). So the a-priori

estimate of the solution of (9) in the sense of Y for all v ∈ V follows from the
obtained equality. Now we get the one-valued solvability of the linearized equation
by means of the standard theory of elliptic equations (see, for example, [11]). Thus
the differentiability of the solution of (8) with respect to the absolute term at an
arbitrary point follows from Corollary 1.

We prove now that the solution of (8) is not differentiable with respect to its
absolute term, if the mentioned embedding does not hold. Let y0 be a continuous
function from the space Y . Then the left side of the equality (9) is a point of the space
H−1(Ω) for all y ∈ Y . Therefore, the image of the derivative A′(y0) is narrower
than the set V , if the mentioned embedding does not hold. So (9) does not have
any solutions from the space Y for all function v from the difference V \H−1(Ω).
Therefore, the solution of the homogeneous Dirichlet problem for (8) is not Gateaux
differentiable at the point

v0 = −Δy0 + |y0|ρy0

by Corollary 1. This completes the proof of Corollary 2. �

By Sobolev Theorem the embedding H 1
0 (Ω) ⊂ Lq(Ω) is true if n = 2 or

ρ ≤ 4/(n − 2) for n > 2. Then the solution of (8) is differentiable with respect
to the absolute term for small enough values of the set dimension n and nonlinear-
ity parameter ρ. These characteristics determine a degree of the difficulty for the
given equation. It is clear that the differentiability of the inverse operator (but not
the absence of this property) follows from the Inverse Function Theorem. We will
show soon that there exists another technique for proving this property. It is appli-
cable even in the case of nondifferentiability in the sense of Gateaux. However it is
important, that it satisfies some property which can be interpreted as a weak form
of the differentiability.

The obtained result can be used for the analysis of optimization control problems
for the system described by (8). Consider as an example the functional

I (v)= α

2
‖v‖2∗ + 1

2

∥∥y(v)− yd
∥∥2
,

where α > 0, yd ∈ H−1(Ω), and y(v) is the solution of the Dirichlet problem (8)
for the control v, besides ‖ · ‖ and ‖ · ‖∗ are the norms of the spaces H 1

0 (Ω) and
H−1(Ω). Consider the following optimization problem.

Problem 2 Minimize the functional I on the convex closed subset U of the
space V .



14 Differentiability of Inverse Operators 309

The solvability of this problem can be proved by a standard method (see, for ex-
ample Chap. 1, Theorem 1.1 in [11]) using the weak continuity of the state function
with respect to the absolute term. Note that the indeterminacy of the functional I on
the complete set U is not an obstacle for the analysis of the optimization problem
[13].

Corollary 3 If H 1
0 (Ω) ⊂ Lq(Ω), then the solution v0 of Problem 2 satisfies the

inequality
∫

Ω

(αΛv0 − p0)(v − v0)dx ≥ 0 ∀v ∈U, (10)

where Λ is the canonical isomorphism of the spaces H−1(Ω) and H 1
0 (Ω), and p0

is the solution of the homogeneous Dirichlet problem for the equation

−Δp0 + (ρ + 1)|y0|ρp0 =Δy0 −Δyd. (11)

Proof The derivative of the functional J (first term of the minimizing functional) is
defined by the equality

〈
J ′(v0), h

〉= α(v0, h)∗ ∀h ∈H−1,

where (·, ·)∗ is the scalar product of the space H−1(Ω). By Riesz theorem there
exists the canonical isomorphism Λ :H−1(Ω)→H 1

0 (Ω). Then we get

J ′(v0)= αΛv0.

The derivative of the functional K (second term of the minimizing functional) is
defined by the equality

〈
K ′(y0), h

〉= (y0 − yd,h) ∀h ∈H 1
0 (Ω),

where (·, ·) is the scalar product of the space H 1
0 (Ω). Using Green formula, we

obtain

K ′(y0)=Δyd −Δy0.

The operator A′(y0) is self-adjoint. Then the adjoint equation (6) transforms to (11),
and the variational inequality (5) transforms to (10). This completes the proof of the
corollary. �

14.3 Differentiation of the Inverse Operator

We will try to prove the differentiability of the inverse operator directly without
using of the Inverse function Theorem. Consider again an operator A : V → Y and
a point v0 ∈ V . Suppose the following assumption.

Property 1 The operator A is invertible in a neighborhood O of the point v0.
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Choose a small enough positive number σ such that the point vσ = v0 + σh is in
O for all h ∈ V . Denote by y(v) the value A−1v. Using the equalities Ay(vσ )= vσ ,
Ay(v0)= v0, we get

Ay(vσ )−Ay(v0)= σh.

Assume the following property.

Property 2 The operator A is Gateaux differentiable.

By the Mean Value Theorem we obtain

Ay −Ay0 =
{∫ 1

0
A′[y0 + θ(y − y0)

]
dθ

}
(y − y0),

where y0 = y(v0). Then we have

G(vσ )
[
y(vσ )− y(v0)

]= σh,

where the linear continuous operator G(v) : Y → V is defined by the formula

G(v)=
∫ 1

0
A′{y0 + θ

[
y(v)− y0

]}
dθ

for all v ∈ V . We get
〈
G(vσ )

∗λ,
[
y(vσ )− y(v0)

]
/σ

〉= 〈λ,h〉 ∀λ ∈ V ∗. (12)

Consider the linear operator equation

G(v)∗pμ(v)= μ. (13)

It transforms to

A′(y0)
∗pμ(v0)= μ (14)

for v = v0. We will use the following assumption.

Property 3 Equation (13) has a unique solution pμ(v) ∈ V ∗ for all μ ∈ Y ∗, v ∈O .

Defining λ= pμ(vσ ) for small enough σ in (12) we get
〈
μ,

[
y(v0 + σh)− y(v0)

]
/σ

〉= 〈
pμ(vσ ),h

〉 ∀μ ∈ Y ∗, h ∈ V. (15)

Define

M = {
μ ∈ Y ∗|‖μ‖ = 1

}
.

Property 4 The convergence pμ(vσ ) → pμ(v0) *-weakly in V ∗ uniformly with
respect to μ ∈M as σ → 0 is true for all v ∈ V .
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Theorem 2 Let us suppose the Properties 1–4. Then the operator A−1 has the
Gateaux derivative D at the point v0 such that

〈μ,Dh〉 = 〈
pμ(v0), h

〉 ∀μ ∈ Y ∗, h ∈ V. (16)

Proof Let the operator D be defined by (16). It is a map from V to Y . Besides it is
linear continuous. Using (15) and (16) we get
∥∥[y(v0 + σh)− y(v0)

]
/σ −Dh

∥∥
V

= sup
μ∈M

∣∣〈μ,
[
y(v0 + σh)− y(v0)

]
/σ −Dh

〉∣∣

= sup
μ∈M

∣∣〈pμ(vσ )− pμ(v0), h
〉∣∣

by the definition of the norm. Then we obtain pμ(vσ )→ pμ(v0) *-weakly in V ∗
uniformly with respect to μ ∈M for all h ∈ V because of Property 4. Passing to the
limit in the last equality as σ → 0, we get the convergence

[
y(v0 + σh)− y(v0)

]
/σ →Dh in V for all h ∈ V.

So the operator D is the Gateaux derivative of the operator A−1 at the point v0. �

Let us explain applications of this result.

Lemma 3 The operator A for (8) satisfies the Properties 1–4 if H 1
0 (Ω)⊂ Lq(Ω).

Proof Property 1 is the one-valued solvability of (8). The differentiability of the
operatorA (Property 2) is obvious, moreover, its derivative is defined by the equality

A′(y)h= −Δh+ (ρ + 1)|y|ρh ∀h ∈ Y.
Thus it is necessary to use Properties 3 and 4 and properties of the adjoint equation
(13).

We have

G(v)y =
{∫ 1

0
A′{y0 + θ

[
y(v)− y0

]}
dθ

}
y

= −Δy +
{∫ 1

0

∣∣y0 + θ
[
y(v)− y0

]∣∣ρdθ
}
y

= −Δy + ∣∣y0 + ε
[
y(v)− y0

]∣∣ρy ∀y ∈ Y,
where ε ∈ [0,1]. Define

g(v)= ∣∣y0 + ε
[
y(v)− y0

]∣∣ρ/2,

so that we get

G(v)y = −Δy + g(v)2y.
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Then we obtain the equality

〈
G(v)∗p,y

〉= 〈
p,G(v)y

〉=
∫

Ω

[−Δy + g(v)2y
]
pdx =

∫

Ω

[−Δp+ g(v)2p
]
ydx

for all y ∈ Y , p ∈ V ∗, v ∈ V . So we get

G(v)∗p = −Δp+ g(v)2p,

and (13) is transformed to

−Δpμ(vσ )+ g(vσ )
2pμ(vσ )= μ. (17)

Multiplying (17) by pμ(vσ ) and integrating in x ∈Ω we have

∫

Ω

∣∣∇pμ(vσ )
∣∣2dx +

∫

Ω

∣∣g(vσ )pμ(vσ )
∣∣2dx =

∫

Ω

μpμ(vσ )dx.

Then we obtain the inequality

∥
∥pμ(vσ )

∥
∥2 + ∥

∥g(vσ )pμ(vσ )
∥
∥2

2 ≤ ‖μ‖∗
∥
∥pμ(vσ )

∥
∥,

where ‖ · ‖p is the norm in Lp(Ω). So we get

∥∥pμ(vσ )
∥∥≤ ‖μ‖∗,

∥∥g(vσ )pμ(vσ )
∥∥

2 ≤ ‖μ‖∗. (18)

Then (17) has the unique solution pμ(vσ ) ∈ V ∗ for all μ ∈ Y ∗, h ∈ V , and σ , and
hence Property 3 holds.

The space V is reflexive, so it is sufficient to prove that pμ(vσ )→ pμ(v0)weakly
in V ∗ uniformly with respect to μ as σ → 0 for all h ∈ V . The set {pμ(vσ )} is
bounded in the space H 1

0 (Ω), and the set {g(vσ )pμ(vσ )} is bounded in the space
L2(Ω) uniformly with respect to μ ∈M for all h ∈ V because of the inequalities
(18). Using the Banach–Alaogly Theorem we get pμ(vσ )→ p weakly in H 1

0 (Ω)

uniformly with respect to μ ∈M for all h ∈ V . Applying the Rellich–Kondrashov
Theorem we get pμ(vσ )→ p strongly in L2(Ω) and a.e. onΩ . Using the continuity
of the solution of (8) with respect to the absolute term, we obtain y(vσ )→ y(v0) in
H 1

0 (Ω) and a.e. on Ω . Then

∣∣g(vσ )
∣∣2pμ(vσ )→ (ρ + 1)|y0|ρp a.e. on Ω.

The sets {pμ(vσ )}, {y(vσ )}, and {g(vσ )2/ρ} are uniformly bounded in Lq(Ω). We
have

∥∥g(vσ )2pμ(vσ )
∥∥
q ′ ≤ ∥∥g(vσ )pμ(vσ )

∥∥
2

∥∥g(vσ )
∥∥

2q/ρ

= ∥∥g(vσ )pμ(vσ )
∥∥

2

∥∥y0 + ε
[
y(vσ )− y0

]∥∥ρ/2
q
.
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So the set {g(vσ )2pμ(vσ )} is uniformly bounded in Lq ′(Ω). Using Lemma 1.3 (see
Chap. 1 in [12]), we get

g(vσ )
2pμ(vσ )→ (ρ + 1)|y0|ρp weakly in Lq ′(Ω)

uniformly with respect to μ ∈M for all h ∈ V .
Let us multiply (16) by a function λ ∈H 1

0 (Ω). After integration we get

∫

Ω

[−Δpμ(vσ )+ g(vσ )
2pμ(vσ )

]
λdx =

∫

Ω

λμdx.

Passing to the limit as σ → 0, we obtain, that the function p = pμ(v0) satisfies the
equation

−Δpμ(v0)+ (ρ + 1)|y0|ρpμ(v0)= μ. (19)

Thus pμ(vσ )→ pμ(v0) weakly in H 1
0 (Ω) uniformly with respect to μ ∈M for all

h ∈ V , notably the Property 4 is true. �

By Lemma 3 the differentiability of the solution of (8) with respect to the absolute
term follows from Theorem 2 if the embedding H 1

0 (Ω)⊂ Lq(Ω) holds.

Lemma 4 Properties 1–4 follow from the assumptions of the Inverse Function The-
orem.

Proof The existence of the inverse operator is a corollary of the Inverse Function
Theorem. The differentiability of the operator A is the assumption of this theorem.
So our general difficulty is the analysis of (13), namely the justification of Assump-
tions 3 and 4. Equation (13) can be transformed to

G(v0)
∗pμ(vσ )=A′(y0)

∗pμ(vσ )=
[
G(v0)

∗ −G(vσ )
∗]pμ(vσ )+μ.

The derivative A′(y0) is invertible by the Inverse Function Theorem. So its ad-
joint operator is invertible too. Then (13) can be transformed to the equality

pμ(vσ )= Lμ(σh)pμ(vσ ), (20)

where the map Lμ(σh) : V ∗ → V ∗ is defined by the formula

Lμ(σh)p = [
A′(y0)

∗]−1{[
G(v0)

∗ −G(vσ )
∗]p+μ

}
.

Using properties of the operator norm we get the inequality

∥∥Lμ(σh)p1 −Lμ(σh)p2
∥∥
V ∗ = ∥∥[A′(y0)

∗]−1[
G(v0)

∗ −G(vσ )
∗](p1 − p2)

∥∥
V ∗

≤ ∥∥[A′(y0)
∗]−1∥∥∥∥G(v0)

∗ −G(vσ )
∗∥∥‖p1 − p2‖V ∗
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for all p1,p2 ∈ V ∗. Then we obtain

∥∥Lμ(σh)p1 −Lμ(σh)p2
∥∥
V ∗

≤ ∥∥A′(y0)
−1
∥∥∥∥G(v0)−G(vσ )

∥∥‖p1 − p2‖V ∗ ∀p1,p2 ∈ V ∗

because of the equality of the norms for adjoint operators. The operator A−1 is
continuous at the point v0 by the Inverse Function Theorem. Therefore we get the
convergence y(v0 + σh)→ y0 in Y as σ → 0 for all h ∈ V . Using the continuous
differentiability of the operator A at the point y0, we get G(vσ ) → G(v0) in the
sense of the corresponding operator norm. The value σ can be chosen small enough
such that

∥∥G(vσ )−G(v0)
∥∥≤ χ

∥∥A′(y0)
−1
∥∥−1

,

where 0< χ < 1. So we obtain the estimate

∥
∥Lμ(σh)p1 −Lμ(σh)p2

∥
∥
V ∗ ≤ χ‖p1 − p2‖V ∗ ∀p1,p2 ∈ V ∗.

Thus the operator Lμ(σh) is contracting. Then (20) has a unique solution pμ(vσ ) ∈
V ∗ because of the Contracting Mapping Theorem.

We get G(vσ ) → G(v0) as σ → 0. So G(vσ )λ → G(v0)λ in V for all λ ∈ Y .
Using the obtained inequalities, we get

∥
∥pμ(vσ )

∥
∥
V ∗ = ∥

∥Lμ(σh)pμ(vσ )
∥
∥
V ∗

≤ ∥∥[A′(y0)
∗]−1∥∥∥∥[G(v0)

∗ −G(vσ )
∗]pμ(vσ )+μ

∥∥
Y ∗

≤ ∥∥A′(y0)
−1
∥∥[∥∥G(v0)−G(vσ )

∥∥∥∥pμ(vσ )
∥∥
V ∗ + ‖μ‖Y ∗

]

≤ χ
∥
∥pμ(vσ )

∥
∥
V ∗ + ∥

∥A′(y0)
−1
∥
∥‖μ‖Y ∗ .

So we have

(1 − χ)
∥∥pμ(vσ )

∥∥
V ∗ ≤ ∥∥A′(y0)

−1
∥∥‖μ‖Y ∗ .

Then pμ(vσ )→ p *-weakly in V ∗ for all h ∈ V as σ → 0.
Using inequality (13) we get

〈
pμ(vσ ),G(vσ )λ

〉= 〈μ,λ〉 ∀λ ∈ Y.

As a consequence {pμ(vσ )} converges *-weakly, and {G(vσ )} converges strongly.
After passing to the limit we have A′(y0)

∗p = μ, and p = pμ(v0). �

Thus the assumptions of Theorem 2 follow from the assumptions of the Inverse
Operator Theorem. However assertions of Theorem 2 may be true if assumptions of
the Inverse Operator Theorem are not satisfied.
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14.4 Extended Differentiation of the Inverse Operator

The solution of (8) is differentiable with respect to the absolute term for small
enough values of the set dimension n and nonlinearity parameter ρ. But it is not dif-
ferentiable for large enough values of these parameters. Suppose n≥ 3. By Sobolev
Theorem the embedding H 1

0 (Ω) ⊂ Lq(Ω) is true if ρ ≤ 4/(n − 2). It guarantees
the differentiability of the considered inverse operator. However this embedding
fails if the parameter ρ increases. Then the solution of the equation becomes non-
differentiable with respect to the absolute term. It seems to be a strange situation.
Properties of the inverse operator change with a jump at the neighborhood of some
value ρ. The differentiability of the operator disappears after the passage of this
value. This situation seems not likely. We could suppose the existence of a weaker
operator differentiability than the Gateaux derivative. We would like also to de-
termine the extension of the operator derivative because the solvability of our opti-
mization problem was proved for all values of the set dimension and the nonlinearity
parameter.

There exist extensions of classical operator differentiation, for example, subdif-
ferential calculus [14], Clarke derivatives [15], quasidifferential calculus [7]. They
are used also for the resolution of nonsmooth optimization problems. These results
are effective enough for the analysis of operators with nonsmooth terms, for exam-
ple, the absolute value or the maximum of functions. However similar terms are
absent in our case. So we will try to define another form of operator derivatives
extension.

It is known that “the general idea of the differential calculus is a local approx-
imation of a function by a linear function” (see p. 170 in [16]). The differentiation
is a tool of the local approximation of the analyzed object. The desired form of
an operator derivative can be obtained by weakening of topological approximation
properties of the differentiation. Then we get the extended operator derivative (see
[17–19]).

Definition An operator L : V → Y is called (V0, Y0;V1, Y1)-extended differen-
tiable in the sense of Gateaux at the point v0 ∈ V if there exist linear topological
spaces V0, Y0, V1, Y1 with continuous embeddings

V1 ⊂ V0 ⊂ V, Y ⊂ Y0 ⊂ Y1,

and a linear continuous operator D : V0 → Y0 such that

[
L(v0 + σh)−L(v0)

]
/σ →Dh in Y1 for all h ∈ V1

as σ → 0.

It is obvious that the (V ,Y ;V,Y )-derivative is the standard Gateaux derivative.
The following result is known (see Theorem 4 in [18]; Theorem 5.4 in [19]).
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Lemma 5 The operator A−1 for (8) is (V0, Y0;V1, Y1)-extended differentiable in
the sense of Gateaux at an arbitrary point v0 ∈ V , where

Y1 =H 1
0 (Ω), Y0 = Y1 ∩ {

y||y0|ρ/2y ∈ L2(Ω)
}
,

V1 =H−1(Ω), V0 = V1 + {
v|v = |y0|ρ/2ϕ,ϕ ∈ L2(Ω)

}
, y0 = y(v0),

moreover, its derivative D satisfies the equality
∫

Ω

μDhdx =
∫

Ω

pμ(v0)hdx ∀μ ∈ Y ∗
0 , h ∈ V0, (21)

and pμ(v0) is the solution of the homogeneous Dirichlet problem for (19).

Thus the inverse operator for the given example is extended differentiable for
all values of the set dimensions and nonlinearity parameters. Its extended derivative
is transformed to the Gateaux one for small enough values of these characteristics.
However the Gateaux derivative does not exist for its large enough values, notably
in the case of the high enough degree of the difficulty for the problem. Besides
the difference between standard derivative and extended one is determined by this
degree of the difficulty. Thus the inverse operator is extended differentiable without
any constraints. However the extended derivative differs from the classical one after
the augmentation of the parameters that determine the degree of the difficulty for
the problem. Then we obtain the gradual change of the inverse operator properties
after the gradual change of its parameters, although the standard derivatives theory
permits the change with a jump.

We will prove that the obtained result is sufficient for the analysis of the given
optimization problem without any constraints.

Corollary 4 The solution of the minimization problem of the functional I on the set
U for (8) satisfies the variational inequality

∫

Ω

(αΛv0 − p0)(v − v0)dx ≥ 0 ∀v ∈U1, (22)

where U1 =U ∩ (v0 + V1), and p0 is a solution of (11).

Indeed, if v0 is a solution of the optimization problem, then

I
[
v0 + σ(v− v0)

]− I (v0)≥ 0 ∀v ∈U.
Let us choose v ∈ v0 +V1. Passing to the limit and using Lemma 5 after division by
σ we get

∫

Ω

αΛv0(v − v0)dx +
∫

Ω

∇(y0 − yd)∇D(v − v0)dx ≥ 0 ∀v ∈U1.



14 Differentiability of Inverse Operators 317

Then the inequality (22) is true.
If H 1

0 (Ω)⊂ Lq(Ω), then U1 = U , and the variational inequalities (10) and (22)
are equal. Thus necessary conditions of optimality can be obtained without any
assumptions by means of the extended derivatives theory. Optimization problems
for elliptic equations with power nonlinearity without Gateaux differentiability of
the control-state mapping were considered in [18, 19]. But the control space was
narrower, and the state functional was more regular there. This technique was used
for the analysis of optimization problems for others equations in [20].

Note that Lemma 5 uses the technique of the proof of Theorem 2. We can suppose
that it is possible to obtain the extended differentiability of the inverse operator in the
general case. Consider Banach spaces Y , V , a map A : Y → V , and points y0 ∈ Y ,
v0 =Ay0. Let V1 be a Banach subspace of V with a neighborhoodO1 of zero. Then
O = v0 +O1 is a neighborhood of v0. We suppose the following assertion.

Property 5 The operator A is invertible on the set O .

Define y(v)=A−1v. We get the equality

Ay(vσ )−Ay(v0)= σh

for all v ∈ V1 and small enough σ , where vσ = v0 + σh. Let G(v) be the operator
from the proof of Theorem 2. We have

G(vσ )
[
y(vσ )− y(v0)

]= σh,

so
〈
λ,G(vσ )

[
y(vσ )− y(v0)

]〉= σ 〈λ,h〉 ∀λ ∈ V ∗.

Consider Banach spaces V (v) and Y(v) such that the embeddings of the spaces
Y , Y1 and Y(v) to V (v), Y(v) and V , respectively, are continuous for all v ∈O . Let
the following assumption be true.

Property 6 The operatorA is Gateaux differentiable, moreover, there exists the con-
tinuous extension G(v) of the operator G(v) to Y(v) such that its image is a subset
of V (v) for all v ∈O .

Using the properties y(v) ∈ y0 + Y(v) and V (v)∗ ⊂ V ∗ we get
〈
G(vσ )

∗λ,
[
y(vσ )− y(v0)

]〉= σ 〈λ,h〉 ∀λ ∈ V ∗. (23)

It is an analogue of (12). Consider the linear operator equation

G(vσ )
∗pμ(vσ )= μ, (24)

which is an analogue of (13). It can be transformed to

A
′
(y0)pμ(v0)= μ
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for v = v0, where A
′
(y0)=G(v0) is the extension of the operator A′(y0)=G(v0)

to the set Y(v0).
Consider Banach space V1 such that the embedding Y(v)⊂ V1 is continuous and

dense for all v ∈O . We suppose the following condition.

Property 7 Equation (24) has the unique solution pμ(v) ∈ V (v)∗ for all v ∈ O ,
μ ∈ Y(v)∗.

Defining in (23) λ= pμ(vσ ) for a small enough σ we get

〈
μ,

[
y(v0 + σh)− y(v0)

]
/σ

〉= 〈
pμ(vσ ),h

〉 ∀μ ∈ Y(vσ )∗, h ∈ V1. (25)

We will use the additional assumption.

Property 8 The convergence pμ(vσ ) → pμ(v0) holds *-weakly in V ∗
1 uniformly

with respect to μ ∈M as σ → 0 for all h ∈ V1.

The extended differentiability of the inverse operator is guaranteed by the fol-
lowing result.

Theorem 3 Let us suppose the Properties 5–8. Then the operator A−1 has the
(V (v0), Y (v0);V1, Y1)-extended Gateaux derivative D at the point v0 such that

〈μ,Dh〉 = 〈
pμ(v0), h

〉 ∀μ ∈ Y(v0)
∗, h ∈ V (v0). (26)

Proof By (25), (26) we get
〈
μ,

[
y(v0 + σh)− y(v0)

]
/σ −Dh

〉

= 〈
pμ(vσ )− pμ(v0), h

〉 ∀μ ∈M,h ∈ V (v1). (27)

Then
∥∥[y(v0 + σh)− y(v0)

]
/σ −Dh

∥∥
V1

= sup
μ∈M

∣∣〈pμ(vσ )− pμ(v0), h
〉∣∣.

We have pμ(vσ )→ pμ(v0)*-weakly in V1 uniformly with respect to μ ∈M for
all h ∈ V1 as σ → 0 by Property 8. Passing to the limit in the last equality we obtain

[
y(v0 + σh)− y(v0)

]
/σ →Dh in Y1

for all h ∈ V1. Thus D is an extended derivative of the inverse operator. �

A result of the extended differentiability of the inverse operator for nonnormal-
ized spaces was obtained in [18].

Let us prove that the assumptions of the Theorem 3 are true for the considered
example.
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Lemma 6 The operator A, which is defined by (8), satisfies the Properties 5–8.

Proof The Property 5 is the solvability of (8) at a neighborhood of the given point.
It is obviously that this assumption is true. The differentiability of the operator A is
clear. The operator G(v) for our case is determined by the equality

G(v)y = −Δy + g(v)2y ∀y ∈ Y,
where

g(v)2 = (ρ + 1)
∣∣y0 + ε

[
y(v)− y(v0)

]∣∣ρ, ε ∈ [0,1].
Let the spaces Y1, V1, Y(v), V (v) be those defined in the proof of Lemma 5. Define
the map G(v) by the equality

G(v)y = −Δy + g(v)2y ∀y ∈ Y(v).
Then Property 6 is true. Reliability of Properties 7 and 8 was obtained in the proof
of Lemma 5. �

Thus extended differentiability of the inverse operator for (8) follows from The-
orem 3.

Lemma 7 the Properties 5–8 follow from the assumptions of the Inverse Function
Theorem.

Indeed, Property 5 is a direct corollary of this theorem. Let us define the spaces
V = V1, Y = Y1. Then we get Y(v)= Y , V (v)= V . So the operator G(v) is equal
to G(v), and Property 6 is trivial. Therefore Properties 7 and 8 are transformed to
Properties 3 and 4. Its validity was proved before.

Thus Theorem 3 is a generalization of the Theorem 2. The obtained results can be
used for other applications if it is necessary to differentiate an inverse operator. For
example the extended differentiable submanifolds of Banach spaces are defined in
[21, 22]. Optimization control problems on differentiable submanifolds are consid-
ered there. Analogical results could be obtained for the implicit operator, including
the case of nonnormalized spaces (see [23]). Banach spaces with extended differ-
entiable operators form a category, and necessary conditions of optimality have a
category interpretation (see [24]).
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Chapter 15
Solution of the Cauchy Problem for Generalized
Euler-Poisson-Darboux Equation by the Method
of Fractional Integrals

A.K. Urinov and S.T. Karimov

Abstract In this work the singular Cauchy problem for the multi-dimensional
Euler-Poisson-Darboux equation with spectral parameter has been investigated with
the help of the generalized Erdelyi-Kober fractional operator. Solution of the con-
sidered problem is found in explicit form for various values of the parameter p of
the equation.

Mathematics Subject Classification 35L10 · 35Q05 · 26A33

15.1 Introduction

For the first time the equation

uxy − α

x − y
ux + β

x − y
uy + γ

(x − y)2
u= 0, (1)

where α,β, γ = const, was obtained by Euler [1] in connection with the study of the
air flow in pipes of different cross sections and the vibrations of strings of variable
thickness. He gave a solution of this equation for α = β = m, γ = n (m, n are
natural numbers).

The same equation, but in another form

E−
q,p(u)≡ uxx − uyy − 2q

y
ux − 2p

y
uy = 0, (2)

where q,p = const, was solved by Poisson [2] for q = 0. He found a hyperbolic
analogue of the representation of solution for this equation. In the same work he
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considered the equation

Lp(u)≡
n∑

k=1

∂2u

∂x2
k

− ∂2u

∂t2
− 2p

t

∂u

∂t
= 0, (3)

with n= 3, p = 1.
The general solution of (1) with α = β was found by Riemann [3]. He con-

structed the solution of the Cauchy problem with the help of auxiliary function
using the method which is now called after him.

Much later, (2) with q = 0, 0 < p < 1 appeared in the monograph by Darboux
[4] in connection with studying curvature of surfaces, where it was called the Euler-
Poisson equation. Subsequently, many authors began to cite equations of the forms
(1), (2), (3) and their elliptic analogs, as the equations of Euler-Poisson-Darboux.

After the publication of the first issue of the book by Tricomi [5], where the prob-
lem for mixed elliptic-hyperbolic equation yuxx + uyy = 0, later called as Tricomi
equation, was formulated and investigated, the interest in such equations greatly in-
creased. When studying this problem the key role is played by the equation of the
form (2) and

E+
q,p(u)≡ uxx + uyy + 2q

y
ux + 2p

y
uy = 0, (4)

where q = 0, p = (1/6).
More bibliography in this direction can be found in the monographs by Bitsadze

[6] and Smirnov [7].
The theory of equations with singular coefficients is directly connected to the the-

ory of equation degenerating on the boundary. Using a change of variables, a wide
class of degenerate equations can be reduced to equations with singular coefficients.
For instance, the equation with degeneration of type and order,

ym
n∑

k=1

∂2u

∂x2
k

− yk
∂2u

∂y2
− αyk−1 ∂u

∂y
− λ2yku= 0

by the change of variables t = 2
m−k−2y

(m−k+2)/2 can be reduced to the equation

Lλp(u)≡
n∑

k=1

∂2u

∂x2
k

− ∂2u

∂t2
− 2p

t

∂u

∂t
− λ2u= 0. (5)

The main role in creating the theory of Euler-Poisson-Darboux equations was
played by works of Weinstein [8–11]. In these works Weinstein investigated
the Cauchy problem for (3) with various values of the parameter p, with half-
homogeneous initial conditions

u(x,0)= τ(x), ut (x,0)= 0, x ∈Rn, (6)

and found its solution in an explicit form.
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There he showed also the matching formulae of the form

E+
q,p

(
y1−2pu

)= y1−2pE+
q,1−p(u), (7)

considering (4) with q = 0, 0 < p < (1/2). Note that the formula of the form (7)
can be found in the work of Darboux [4].

In the work by Young [12] one can find the survey of the investigations of the
singular Cauchy problem {(3), (6)}. In the works of Diaz, Weinberger [13], Blum
[14], the problem {(3), (6)} was studied for various values of the parameter p.

Kapilevich [15] investigated the Cauchy problem with initial conditions

u(x,0)= τ(x), lim
t→+0

t2put (x, t)= ν(x), x ∈Rn (8)

for (5), when λ �= 0, 0<p < (1/2) and n= 1,2.
The uniqueness of the solution of the Cauchy problem {(5), (8)} was proved

in the works by Fox [16], Blum [17], Bresters [18]. However, as it was shown by
Bresters [18], the solution is not unique when p < 0.

In the present work, using fractional integrals, we investigate the Cauchy problem
{(5), (8)} for various values of the parameters p ≥ 0 and λ �= 0.

15.2 Generalized Erdelyi-Kober Operator

In the paper [10] Weinstein found a formulae in which the connection of the solution
of (2) for q = 0 with fractional integrals was made for various values of the param-
eter p. This idea was substantially developed in the work of Erdelyi [19–22], who
continued investigations by Weinstein [11], and studied properties of the differential
operator

B(x)η = x−2η−1 d

dx
x2η+1 d

dx
= d2

dx2
+ 2η+ 1

x

d

dx
. (9)

In the work of Erdelyi [22] the apparatus of fractional integration was used for
developing the result by Friedlander and Heins [23], where (2) was considered for
q = 0.

The results of Erdelyi were generalized by Lowndes [24–26], where a general-
ized Erdelyi-Kober operator

Jλ(η,α)f (x) = 2αλ1−αx−2α−2η

×
∫ x

0
t2η+1(x2 − t2

)(α−1)/2
Jα−1

(
λ
√
x2 − t2

)
f (t)dt (10)

was introduced and studied. Here η,α,λ ∈ R, such that α > 0, η ≥ −(1/2), and
Jν(z) is the Bessel function of the first kind of order ν [27–29].

Further we need the following properties of the operator (10), which were proved
in [25]:
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1. It is obvious that for λ→ 0 the operator (10) coincides with the regular Erdelyi-
Kober operator

Iη,αf (x)= 2x−2(η+α)

Γ (α)

∫ x

0

(
x2 − t2

)α−1
t2η+1f (t)dt,

where Γ (α) is Euler’s Gamma function.
2. The following equalities hold true:

Jiλ(η+ α,β)Jλ(η,α)= Jλ(η+ α,β)Jiλ(η,α)= Iη,α+β,

where i is the imaginary unit, α,β,λ ∈R.
3. From the latter equality, using the property J0(η,0) = E, where E is unique

operator, one can pre-define the operator Jλ(η,α) for α < 0 in the following
way:

Jλ(η,α)f (x)= x−2(η+α)
(

d

2xdx

)m
x2(η+α+m)Jλ(η,α +m)f (x), (11)

where −m< α < 0, m= 1,2, . . . .
4. From the property 3, the relations for inverse operator

J−1
iλ (η,α)= Jλ(η+ α,−α), J−1

λ (η,α)= Jiλ(η+ α,−α)

follow.

In the work [26] Lowndes proved the following lemma:

Lemma 1 Let α > 0, f (x) ∈ C2(0, b), b > 0, let the function x2η+1f (x) be inte-
grable in a neighborhood and let x2η+1f ′(x)→ 0 as x → 0. Then

J
(x)
λ (η,α)B(x)η f (x)= (

B
(x)
η+α + λ2)J (x)λ (η,α)f (x), (12)

where B(x)η is the operator of Bessel which is defined by (9).

Using this lemma Lowndes solved the Cauchy problem {(5), (8)} for p = 0.
Further we need the following form of the formula (10):

Jλ(η,α)f (x)= 2x−2(α+η)

Γ (α)

∫ x

0
t2η+1(x2 − t2

)α−1
J̄α−1

(
λ
√
x2 − t2

)
f (t)dt, (13)

where J̄ν(z) is the Bessel-Clifford function, which can be written by the Bessel
function as: J̄ν(z)= Γ (ν + 1)(z/2)−νJν(z).
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15.3 Application of the Erdelyi-Kober Operator for Solving the
Cauchy Problem

For the construction of the solution of the problem {(5), (8)}, corresponding to
various values of the parameter p, first we give some properties of the solution of
(5), [9].

We denote by u(x, t;p), w(x, t;p) the solutions of (5) for a given value of p.

1. If u(x, t;1 − p) is a solution of the equation Lλ1−p(u) = 0, then the function

w(x, t;p) = t1−2pu(x, t;1 − p) will be a solution of the equation Lλp(w) =
0 and vice versa, if w(x, t;p) is a solution of the equation Lλp(w) = 0, then

u(x, t;1 −p)= t2p−1w(x, t;p) will be a solution of the equation Lλ1−p(u)= 0.

2. If u(x, t;p) is a solution of the equation Lλp(u)= 0, then the function

u(x, t;1 + p)=
(

1

t

∂

∂t

)
u(x, t;p)

will be a solution of the equation Lλ1+p(u)= 0 and vice versa, if u(x, t;1 + p)

is a solution of the equation Lλ1+p(u) = 0, then there exists always a solution

u(x, t;p) of the equation Lλp(u)= 0.

Now we begin the investigation of the problem {(5), (8)}. Assume that the so-
lution of the problem {(5), (6)} exists. We look for this solution as a generalized
Erdelyi-Kober operator:

u(x, t) = J
(t)
λ (η,α)V (x, t)

= 2t−2(η+α)

Γ (α)

∫ t

0
s2η+1(t2 − s2)α−1

J̄α−1
(
λ
√
t2 − s2

)
V (x, s)ds, (14)

where α,η ∈R are numbers to be specified later and, moreover, α > 0, η ≥ −(1/2),
V (x, t) is a twice continuously differentiable unknown function.

Substituting (14) into (5) and initial condition (6), and applying Lemma 1 we
find the unknown function V (x, s), so that it satisfies the equation

n∑

k=1

∂2V

∂x2
k

− ∂2V

∂s2
− 2η+ 1

s

∂V

∂s
= 0 (15)

and the initial conditions

V (x,0)= k0τ(x), Vs(x,0)= 0,

x ∈Rn, k0 = Γ (α + η+ 1)/Γ (η+ 1). (16)

Further, we choose parameters α, η such that the function u(x, t) defined by (14)
satisfies (5) and the initial conditions (8).
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Let η = (n/2)− 1, α = p − (n− 1)/2 and p > (n− 1)/2. Then (15) is trans-
formed to the Darboux equation. It is known from [30] that the solution of the prob-
lem {(15), (16)} in this case is unique and represented by Mn(x, t; τ), which is the
spherical mean of the function τ(x) in the space Rn, by the formula

V (x, s) = k0Mn(x, s; τ)
= k0

ωnsn−1

∫

|ξ−x|=s
τ (ξ)dσξ = k0

ωn

∫

|y|=1
τ(x + sy)dω, (17)

where |ξ − x|2 = ∑n
k=1 (ξk − xk)

2, dω is the area-element of the unit sphere, and
ωn = 2πn/2/Γ (n/2) is the area of its surface.

It is easy to verify that the function Mn(x, s; τ) satisfies the initial conditions

lim
s→0

Mn(x, s; τ)= τ(x), lim
s→0

∂Mn(x, s; τ)
∂s

= 0, x ∈Rn. (18)

Substituting (17) into the equality (14) we obtain

u(x, t) = Γ (p+ 1/2)t1−2p

πn/2Γ (p− (n− 1)/2)

×
∫

|ξ−x|≤t
τ (ξ)

J̄p−(n+1)/2(λ
√
t2 − |ξ − x|2)

[t2 − |ξ − x|2](n+1)/2−p dξ. (19)

If τ(x) ∈ C2(Rn), then by virtue of Lemma 1, the function (19) will be a regular
solution of (5) satisfying the initial conditions (6).

Note that in the case when p < (n− 1)/2, the function (19) will be the solution
of the problem {(5), (6)}, if one uses the pre-definition of the operator (14) for α < 0
based on (11):

J
(t)
λ (η,α)V (x, t) = t−2(η+α)

(
∂

2t∂t

)m
t2(η+α+m)J (t)λ (η,α +m)

= 2t−2(η+α)

Γ (α +m)

(
∂

2t∂t

)m

×
∫ t

0
s2η+1(t2 − s2)α+m−1

Jα+m−1
(
λ
√
t2 − s2

)
V (x, s)ds,

where −m < α < 0, m = 1,2,3 . . . . In this case we choose m to be the smallest
positive integer satisfying the inequality p+m> (n− 1)/2.

Here one can see that the range of the parameter p depends on the dimension
of the space Rn. There is a question: how to find the solution of the considered
problem for any n, if the range of the parameter p is fixed in advance, for instance,
0<p < 1/2?

In this case we choose the parameter η so that the function u(x, t) which is
defined by (14) satisfies (5) and the initial conditions (6).
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Let η = −1/2, then the parameter α = p and (15) can be transformed to the
n-dimensional wave equation.

In this case the solution of the problem {(15), (16)} for odd n has the form ([30]):

V (x, s)= γ1k0
∂

∂s

(
1

s

∂

∂s

)(n−3)/2(
sn−2Mn(x, s; τ)

)
, (20)

where γ1 = 1/[1 · 3 · · · · · (n− 2)].
Let n= 2m+ 1, then the solution (20) has the form

V (x, s)= γ1k0
∂

∂s

(
1

s

∂

∂s

)m−1(
s2m−1M2m+1(x, s; τ)

)
. (21)

The solution of the problem {(15), (16)} for even n can be written as ([30]):

V (x, s)= γ2k0
∂

∂s

(
1

s

∂

∂s

)(n−2)/2(∫ s

0
Mn(x,ρ; τ) ρ

n−1dρ
√
s2 − ρ2

)
, (22)

where γ2 = 1/[2 · 4 · · · · · (n− 2)].
Let n= 2m, then the solution (22) will have the form

V (x, s)= γ2k0
∂

∂s

(
1

s

∂

∂s

)m−1(∫ s

0
M2m(x,ρ; τ) ρ

2m−1dρ
√
s2 − ρ2

)
. (23)

Combining solutions (21) and (23), we obtain

V (x, s)= γ
∂

∂s

(
1

s

∂

∂s

)m−1

T (x, s), (24)

where

γ =
{
γ1k0, n= 2m+ 1,

γ2k0, n= 2m,

T (x, s) =
⎧
⎨

⎩

s2m−1M2m+1(x, s; τ), n= 2m+ 1,
∫ s

0 M2m(x,ρ; τ) ρ2m−1dρ√
s2−ρ2

, n= 2m.

Substituting (24) into the formula (14) we have

u(x, t)= 2γ t1−2p

Γ (p)

∫ t

0

J̄p−1(λ
√
t2 − s2)

(t2 − s2)1−p
∂

∂s

(
1

s

∂

∂s

)m−1

T (x, s)ds. (25)

The following lemmas hold true:

Lemma 2 If τ(x) is m times continuously differentiable, then

lim
s→0

(
1

s

∂

∂s

)m−1

T (x, s)= 0, m= 1,2, . . . .
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Proof Considering (17) and (18) we rewrite the function T (x, s) as T (x, s) =
s2m−1T0(x, s), where

T0(x, s)=
⎧
⎨

⎩

M2m+1(x, s; τ), n= 2m+ 1,
∫ 1

0 M2m(x, sζ ; τ) ζ 2m−1dζ√
1−ζ 2

, n= 2m.

Then
(

1

s

∂

∂s

)m−1

T (x, s)= T0(x, s)

(
1

s

∂

∂s

)m−1

s2m−1 + s2m−1
(

1

s

∂

∂s

)m−1

T0(x, s).

Further, considering the equality

(
1

s

∂

∂s

)m−1

s2m−1 = s

m−1∏

k=1

[
2m− (2k − 1)

]
,

(
1

s

∂

∂s

)m−1

T0(x, s) = O
(
s−2m+3),

we obtain ( 1
s
∂
∂s
)m−1T (x, s) = O(s), from which the statement of the Lemma 2

follows. �

Lemma 3 Under the conditions of Lemma 2 the equality

∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)[(1

s

∂

∂s

)m
T (x, s)

]
sds

=
(

1

t

∂

∂t

)m ∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)
T (x, s)sds (26)

holds true.

Proof We prove this lemma using the method of mathematical induction. First, we
prove that (25) is true for m= 1.

Consider the function

uε(x, t)=
∫ t−ε

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

) ∂
∂s
T (x, s)ds,

where ε is a small enough positive real number.
Applying integration by parts to the latter integral and considering statements of

the Lemma 2, we obtain

uε(x, t) = [
t2 − (t − ε)2

]p−1
J̄p−1

(
λ
√
t2 − (t − ε)2

)
T (x, t − ε)

−
∫ t−ε

0

∂

∂s

[(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)]
T (x, s)ds.
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Further, taking into account the following easily checkable equalities

∂

∂s

[(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)]= − s
t

∂

∂t

[(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)]
,

∫ t−ε

0

1

t

∂

∂t

[(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)]
T (x, s)sds

=
(

1

t

∂

∂t

)∫ t−ε

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)
T (x, s)sds

− t − ε

t

[
t2 − (t − ε)2

]p−1
J̄p−1

(
λ
√
t2 − (t − ε)2

)
T (x, t − ε),

we have

uε = 1

t

[
t − (t − ε)

]p[
t + (t − ε)

]p−1
J̄p−1

(
λ
√
t2 − (t − ε)2

)
T (x, t − ε)

+
(

1

t

∂

∂t

)∫ t−ε

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)
T (x, s)sds.

From here, by virtue of p > 0, after ε→ 0 we get

∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)
(

1

s

∂

∂s

)
T (x, s)sds

=
(

1

t

∂

∂t

)∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)
T (x, s)sds. (27)

Assume that formula (26) holds for m= k − 1. We prove that it is valid also for
m= k:

∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)(1

s

∂

∂s

)k
T (x, s)sds

=
∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)(1

s

∂

∂s

)k−1[1

s

∂

∂s
T (x, s)

]
sds

=
(

1

t

∂

∂t

)k−1 ∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)[1

s

∂

∂s
T (x, s)

]
sds.

Further, considering (27) we get the statement of Lemma 3. �

Now, applying Lemma 3 to (25) we obtain

u(x, t)= 2γ t1−2p

Γ (p)

(
1

t

∂

∂t

)m ∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)
T (x, s)sds. (28)
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Let n= 2m+ 1. Then, substituting the value of the function T (x, s) into (28) we
deduce

u(x, t) = γ1Γ (p+ 1/2)Γ (n/2)

π(n+1)/2Γ (p)
t1−2p

(
1

t

∂

∂t

)(n−1)/2

×
∫

|ξ−x|≤t
τ (ξ)

(
t2 − |x − ξ |2)p−1

J̄p−1
(
λ

√
t2 − |x − ξ |2)dξ. (29)

We now construct a solution of (5) for odd n satisfying the conditions

w(x,0)= 0, lim
t→+0

t2pwt (x, t)= ν(x), x ∈Rn, (30)

where ν(x) ∈ C[n/2]+1(Rn) is a given function, and [n/2] means the integer part of
the number n/2.

Let function u(x, t;1 − p) be a solution of the equation Lλ1−p(u)= 0 satisfying
conditions (6). Then by virtue of the property 1 of (5), the function w(x, t;p) =
t1−2pu(x, t;1 − p) will be a solution of the equation Lλp(w)= 0, satisfying condi-
tions (30). Further, substituting (1 − 2p)τ(x) to ν(x), we get

w(x, t;p) = t1−2pu(x, t;1 − p)

= γ1Γ [(1/2)− p]Γ (n/2)
π(n+1)/2Γ (1 − p)

(
1

t

∂

∂t

)(n−1)/2

×
∫

|ξ−x|≤t
ν(ξ)

(
t2 − |x − ξ |2)−pJ̄−p

(
λ

√
t2 − |x − ξ |2)dξ. (31)

Thus, if τ(x) ∈ C[n/2]+2(Rn), ν(x) ∈ C[n/2]+1(Rn), then the sum of the functions
(29) and (31) for odd n is a solution of (5), satisfying conditions (8).

Let n = 2m. Then, substituting the value of the function T (x, s) into formula
(28) we obtain

u(x, t) = 2γ2k0t
1−2p

Γ (p)

(
1

t

∂

∂t

)m ∫ t

0

(
t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)

×
{∫ s

0
M2m(x,ρ; τ) ρ

2m−1dρ
√
s2 − ρ2

}
sds.

Changing the order of integration by the Dirichlet formula we have

u(x, t) = 2γ2k0t
1−2p

Γ (p)

(
1

t

∂

∂t

)m ∫ t

0
M2m(x,ρ; τ)ρ2m−1dρ

×
∫ t

ρ

(
s2 − ρ2)−(1/2)(t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)
sds. (32)
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We now evaluate the inner integral. Using the expansion of the Bessel-Clifford
function into a series, and calculating the obtained integral we get

∫ t

ρ

(
s2 − ρ2)−(1/2)(t2 − s2)p−1

J̄p−1
(
λ
√
t2 − s2

)
sds

= 1

2

Γ (p)Γ (1/2)

Γ [p+ (1/2)]
(
t2 − ρ2)p−1/2

J̄p−(1/2)
(
λ

√
t2 − ρ2

)
. (33)

Substituting (33) into (32) we obtain

u(x, t) = γ2

ωn
t1−2p

(
1

t

∂

∂t

)(n/2) ∫

|ξ−x|≤t
τ (ξ)

[
t2 − |ξ − x|2]p−1/2

× J̄p−(1/2)
(
λ

√
t2 − |ξ − x|2)dξ. (34)

Similarly, as in the case when n is odd, for even nwe get a solution of the problem
(5), (30) as

w(x, t) = γ2

ωn(1 − 2p)

(
1

t

∂

∂t

)(n/2) ∫

|ξ−x|≤t
ν(ξ)

[
t2 − |ξ − x|2](1/2)−p

× J̄(1/2)−p
(
λ

√
t2 − |ξ − x|2)dξ. (35)

Thus, if τ(x) ∈ C[n/2]+2(Rn), ν(x) ∈ C[n/2]+1(Rn), then the sum of the functions
(34) and (35) for even n will be the solution of (5) satisfying conditions (8).

The formulae (29) and (31) for odd n, and formulae (34) and (35) for even n were
obtained for 0<p < (1/2). For other values of the parameter p �= (1/2), (3/2), . . . ,
the solution will be defined by the analytic continuation of the operator Jλ(η,α) in
the parameter α = p.

When τ(x) and ν(x) are arbitrary functions, then the sum of the functions (29)
and (31) for odd n, and formulae (34), (35) for even n, respectively, give the general
solution of (5). Assume that p = (1/2). Then these sums contain only one arbitrary
function. Therefore, it is not a general solution of (5) for p = (1/2).

Naturally, it is interesting to find a general solution of (5) for p = (1/2), because
with the help of the general solution for any equation one can find information on
correct initial and boundary problems for this equation.

Let n be odd. Then by virtue of J̄(−1/2)(z) = cos(z) from the formula (29) for
arbitrary ϕ(x) ∈ C[n/2]+2(Rn), it follows that the function u(x, t) defined by the
formula

u(x, t) = γ1Γ (n/2)

π(n+3)/2

(
1

t

∂

∂t

)(n−1)/2

×
∫

|ξ−x|≤t
ϕ(ξ)

cos(λ
√
t2 − |ξ − x|2)

√
t2 − |ξ − x|2 dξ (36)
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will be a solution of (5).
In order to construct a second linear-independent solution of (5), we replace in

formulae (29) and (31) the functions τ(x) and ν(x) by an arbitrary function g(x) ∈
C[n/2]+2(Rn) and rewrite it as

u(x, t) = 2Γ [(1/2)+ p]√
πΓ (p)

×
∫ 1

0

(
1 − z2)p−1

J̄p−1
(
λt
√

1 − z2
)
Pn(x, tz;g)dz, (37)

w(x, t) = 2Γ [(3/2)− p]t1−2p

√
πΓ (1 − p)(1 − 2p)

×
∫ 1

0

(
1 − z2)−pJ̄−p

(
λt
√

1 − z2
)
Pn(x, tz;g)dz, (38)

where

Pn(x, s;g)= γ1
∂

∂s

(
1

s

∂

∂s

)(n−3)/2(
sn−2Mn

(
x, s;g(x))). (39)

Calculating the derivatives appearing in equality (39) we deduce

Pn(x, s;g)=Mn(x, s;g)+A1s
∂Mn

∂s
+A2s

2 ∂
2Mn

∂s2
+ · · · +Ans

n−3 ∂
(n−3)/2Mn

∂s(n−3)/2
,

where Ak (k = 1, n) are some constants.
By virtue of (18), from the latter equality it follows that the function Pn(x, s;g)

satisfies the conditions

lim
s→0

Pn(x, s;g)= g(x), lim
s→0

∂Pn(x, s;g)
∂s

= 0, x ∈Rn.

It is obvious that the linear combination of the expressions (37) and (38) of the
form

W(x, t)= u(x, t)

1 − 2p
− Γ (1 − p)Γ [(1/2)+ p]

Γ [(3/2)− p]Γ (p) w(x, t)

will be a solution of (5). We rewrite this combination as

W(x, t) = 2Γ [(1/2)+ p]√
πΓ (p)

∫ 1

0

(
1 − z2)p−1 1

1 − 2p

× {
J̄p−1

(
λt
√

1 − z2
)− [

t
(
1 − z2)]1−2p

J̄−p
(
λt
√

1 − z2
)}

× Pn(s, tz;g)dz. (40)
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Considering

J̄p−1(λt
√

1 − z2)− [t (1 − z2)]1−2pJ̄−p(λt
√

1 − z2)

1 − 2p

= J̄p−1(λt
√

1 − z2)− J̄−p(λt
√

1 − z2)

1 − 2p

+ 1 − [t (1 − z2)]1−2p

1 − 2p
J̄−p

(
λt
√

1 − z2
)
,

passing to the limit as p→ (1/2), and taking into consideration the equalities

lim
p→(1/2)

1 − [t (1 − z2)]1−2p

1 − 2p
J̄−p

(
λt
√

1 − z2
)= − cos

(
λt
√

1 − z2
)

ln
[
t
(
1 − z2)],

lim
p→(1/2)

J̄p−1(λt
√

1 − z2)− J̄−p(λt
√

1 − z2)

1 − 2p
= −B−(1/2)

(
λt
√

1 − z2
)
,

we deduce from (40) that

W1(x, t;g) = lim
p→(1/2)

W(x, t)

= − 2

π

∫ 1

0

{
cos

(
λt
√

1 − z2
)

ln
[
t
(
1 − z2)]+B−(1/2)

(
λt
√

1 − z2
)}

× (
1 − z2)−(1/2)Pn(x, tz;g)dz. (41)

Here

Bν(σ )= Γ (ν + 1)
∞∑

k=1

(−1)k(σ/2)2k

k!Γ (ν + k + 1)

[
ψ(ν + 1)−ψ(k + ν + 1)

]
, (42)

and ψ(z) = [Γ ′(z)/Γ (z)] is the logarithmic derivative of the Gamma-function
([27]).

Consequently, in the case p = (1/2) and odd n, the general solution of (5), in
accordance with (36) and (41), has the form

u(x, t) = 2

π

∫ 1

0

(
1 − z2)−(1/2) cos

(
λt
√

1 − z2
)
Pn
(
x, tz;ϕ(x))dz

− 2

π

∫ 1

0

{
cos

(
λt
√

1 − z2
)

ln
[
t
(
1 − z2)]+B−(1/2)

(
λt
√

1 − z2
)}

× (
1 − z2)−(1/2)Pn

(
x, tz;g(x))dz, (43)

where Pn(x, s;f ) is the function, defined by (39), and ϕ(x), g(x) are arbitrary
functions from the class of functions C[n/2]+2(Rn).
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Now consider the case when n is even, p = (1/2). In this case one of the solutions
of (5) will be the function:

u(x, t)= γ2

ωn

(
1

t

∂

∂t

)(n/2) ∫

|ξ−x|≤t
ϕ(ξ)J0

(
λ

√
t2 − |ξ − x|2)dξ, (44)

which follows from (34) at p = (1/2), here ϕ(x) ∈ C[n/2]+2(Rn) is an arbitrary
function.

With the aim to find a second linearly-independent solution of (5), we replace
in formulae (34), (35), the functions τ(x) and ν(x) by an arbitrary function g(x) ∈
C[n/2]+2(Rn), and rewrite them as

u(x, t) =
∫ 1

0

[
2J̄p−(1/2)(σ )− (1 − 2p)J̄p−(3/2)(σ )

]

×Qn(x, tz;g)
(
1 − z2)p−(1/2)

zdz

+
∫ 1

0
J̄p−(1/2)(σ )t

∂Qn(x, tz;g)
∂t

(
1 − z2)p−(1/2)

zdz, (45)

w(x, t) = t1−2p

1 − 2p

∫ 1

0

[
2J̄(1/2)−p(σ )+ (1 − 2p)J̄−p−(1/2)(σ )

]

×Qn(x, tz;g)
(
1 − z2)(1/2)−pzdz

+ t1−2p

1 − 2p

∫ 1

0
J̄(1/2)−p(σ )t

∂Qn(x, tz;g)
∂t

(
1 − z2)(1/2)−pzdz, (46)

where σ = λt
√

1 − z2,

Qn(x, s;g)= γ2
∂

∂s

(
1

s

∂

∂s

)(n−2)/2(
sn−2Mn

(
x, s;g(x))). (47)

Calculating all the necessary derivatives in (47) we obtain

Qn(x, s;g) =Mn(x, s;g)+C1s
∂Mn

∂s

+C2s
2 ∂

2Mn

∂s2
+ · · · +Cns

n−2 ∂
(n−2)/2Mn

∂s(n−2)/2
,

where Ck (k = 1, n) are some well-defined constants.
By virtue of (18), from the latter equality it follows that the function Qn(x, s;g)

satisfies the conditions

lim
s→0

Qn(x, s;g)= g(x), lim
s→0

∂Qn(x, s;g)
∂s

= 0, x ∈Rn.
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The following linear combination of the functions (45), (46),

W ∗(x, t) = u(x, t)

1 − 2p
−w(x, t)

=
∫ 1

0

(1 − z2)p−(1/2)

1 − 2p

{
J̄p−(1/2)(σ )−

[
t
(
1 − z2)]1−2p

J̄(1/2)−p(σ )
}

×
[

2Qn(x, tz;g)+ t
∂Qn(x, tz;g)

∂t

]
zdz

−
∫ 1

0

{
J̄p−(3/2)(σ )+

[
t
(
1 − z2)]1−2p

J̄−p−(1/2)(σ )
}

×Qn(x, tz;g)
(
1 − z2)p−(1/2)

zdz (48)

will be a solution of (5).
In the equality (48) we pass to the limit as p→ (1/2), and we have

W2(x, t;g) = lim
p→(1/2)

W ∗(x, t)

= −
∫ 1

0

{
J0(σ ) ln

[
t
(
1 − z2)]+B0(σ )

}

×
[

2Qn(x, tz;g)+ t
∂Qn(x, tz;g)

∂t

]
zdz

− 2
∫ 1

0

{
1 +B∗(σ )

}
Qn(x, tz;g)zdz, (49)

where B0(σ ) is the function defined by (42), σ = λt
√

1 − z2,

B∗(σ )=
∞∑

k=1

(−1)k(σ/2)2k

k!Γ (k)
{
ψ(1)−ψ(k)+ ln

[
t
(
1 − z2)]},

such that B∗(σ )=O(σ 2[C + lnσ ]), C = const.
Consequently, in the case p = (1/2) and even n, the general solution of (5), in

accordance with (44), (49), has the form

u(x, t) =
∫ 1

0
J0(σ )

[
2Qn(x, tz;ϕ)+ t

∂Qn(x, tz;ϕ)
∂t

]
zdz

−
∫ 1

0

{
J0(σ ) ln

[
t
(
1 − z2)]+B0(σ )

}

×
[

2Qn(x, tz;g)+ t
∂Qn(x, tz;g)

∂t

]
zdz

− 2
∫ 1

0

{
1 +B∗(σ )

}
Qn(x, tz;g)zdz, (50)
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whereQn(x, s;ϕ) is the function defined by (47), and ϕ(x), g(x) are arbitrary func-
tions from C[n/2]+2(Rn).

From formulae (43) and (50), which give the general solution of (5) for p =
(1/2), it follows that the Cauchy problem for this equation with initial conditions
(8) is not correctly formulated. In this case the initial conditions should be given in
a modified form. Precisely, in the case when n is odd, they should be given in the
form of

lim
t→+0

u(x, t)

(− ln t)
= τ(x), lim

t→+0
t (ln t)2

∂

∂t

[
u(x, t)−W1(x, t; τ)

(− ln t)

]
= ν(x), (51)

and in the case when n is even, in the form of

lim
t→+0

u(x, t)

(− ln t)
= τ(x), lim

t→+0
t (ln t)2

∂

∂t

[
u(x, t)−W2(x, t; τ)

(− ln t)

]
= ν(x). (52)

Here W1 and W2 are functions which are defined by (41) and (49), respectively.

Remark Using property 2 of (5) in the case when p = l + (1/2), l = 1,2, . . . , one
can find a formula for a general solution of this equation.
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Chapter 16
Quasi-symmetrizer and Hyperbolic Equations

Giovanni Taglialatela

Abstract Given a matrix A, a symmetrizer for A is a symmetric matrix Q such
that QA is symmetric. The symmetrizer is a useful tool to obtain a-priori estimates
for the solutions to hyperbolic equations. If Q is not positive definite, it is more
convenient to consider a quasi-symmetrizer: a sequence of symmetric and positive
defined matrices {Qε}ε∈]0,1] such that QεA approaches a symmetric matrix.

In these notes we make a short survey of the basic notions of symmetrizer and
quasi-symmetrizer and we give some applications to the well-posedness for the hy-
perbolic Cauchy problem.

Mathematics Subject Classification 35L30

16.1 The Cauchy Problem

These notes are a short survey on some results concerning the well-posedness of the
Cauchy problem

{
L(t; ∂t , ∂x)u(t, x)= f (t, x), (t, x) ∈]−T ,T [×R,

∂
j
t u(0, x)= uj (x), x ∈ R, j = 0, . . . ,N − 1,

(CP)

where L(t; ∂t , ∂x) is a hyperbolic operator of order N with coefficients depending
only on the time variable:

L(t; ∂t , ∂x)u≡ ∂N
t u−

∑

j+|α|=N

aα(t)∂
j
t ∂

α
x u−

∑

j+|α|<N
bj,ν(t)∂

j
t ∂

α
x u.

We say that the Cauchy problem (CP) is well-posed in C∞ (resp. γ s ), if
for any uj ∈ C∞(Rn) (resp. uj ∈ γ s(Rn)), j = 0, . . . ,m − 1, and any f ∈
C([−T ,T ];C∞(Rn)) (resp. f ∈ C([−T ,T ];γ s(Rn))), the Cauchy problem (CP)
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admits a unique solution u ∈ CN([−T ,T ];C∞(Rn)) (resp. u ∈ CN([−T ,T ];
γ s(Rn))).

Here γ s = γ s(Rn) is the space of Gevrey functions, that is, the space of functions
f ∈ C∞(Rn) such that for any compact st K of Rn there exists CK such that

sup
x∈K

∣∣∂αx f (x)
∣∣≤ CK |α|!s , for any α ∈ N

n.

We begin with a rapid survey on some well-known results on hyperbolic equa-
tions. In this paper we restrict our study to operators whose smooth coefficients
depend only on the time variable, but the following general results are valid also for
space dependent coefficients.

The classical Lax-Mizohata theorem states that, in order the Cauchy problem
(CP) to be well-posed in C∞ or in Gevrey spaces, the principal symbol of L:

P(t; τ, ξ)≡ τ N −
∑

j+|α|=N

aα(t)τ
j ξα

should be hyperbolic; this means that the characteristic roots τ1(t, ξ), . . . , τN(t, ξ),
i.e. the solutions in τ of the characteristic equation

P(t; τ, ξ)= 0

are all real.
On the other side if L is strictly (regularly) hyperbolic, i.e. the characteristic roots

are distinct and verify
∣∣τj (t; ξ)− τk(t; ξ)

∣∣≥ δ|ξ |,
for some δ > 0 if j �= k, then (CP) is well-posed in C∞ and in all Gevrey classes.

If L is weakly hyperbolic, i.e. δ = 0, so that the characteristic roots may coincide,
the situation becomes more difficult. A complete characterization of the C∞ and γ s

well-posedness has been obtained for operators with constant coefficients principal
part [14, 26, 28], or when the multiplicity of the characteristic roots is constant
[2, 8, 13]. Bronšteı̆n [1] proved that the Cauchy problem (CP) is well-posed in γ d

for 1< d < dB = r
r−1 , where r is the largest multiplicity of the characteristic roots.

In general the bound dB is sharp, unless one assumes further conditions on the
principal symbol and on the lower order terms.

To illustrate the difficulties in the weakly hyperbolic case, we recall the following
examples.

Example 1 Colombini and Spagnolo constructed in [4] a function a ∈ C∞ verifying
a(t) > 0 for t �= 0 and exhibiting infinite oscillations as t → 0+ such that the Cauchy
problem at t = 0 for the operator

∂2
t − a(t)∂2

x

is well-posed in all the Gevrey classes, but not well-posed in C∞.
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To prevent the oscillations in the principal symbols one can assume the coef-
ficients to be analytic. However, the next example shows that even if we assume
analytic coefficients the well-posedness may fail. Thus some extra conditions are
needed.

Example 2 The Cauchy problem for the operator

∂2
t − 2t∂t ∂x + t2∂2

x

is well-posed in γ s for s < 2 and not well-posed in γ s for s > 2 and in C∞.

The last example shows that the influence of the lower-order terms may destroy
the well-posedness.

Example 3 The Cauchy problem for the operator

∂2
t − ∂x

is well-posed in γ s for s < 2 and not well-posed in γ s for s > 2 and in C∞.

16.2 Reduction to a System Depending on a Parameter ξ ∈R
n

We will limit our presentation to third order equations in only one space variable,
but the method can be applied to the general case in a similar way.

Consider the Cauchy problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L(t; ∂t , ∂x)u
≡ ∂3

t u−∑
j+|α|=3 aj,α(t)∂

3−j
t ∂αx u−∑

j+|α|≤2 bj,α(t)∂
3−j
t ∂αx u

= 0,

u(0, x)= u0(x), ut (0, x)= u1(x), utt (0, x)= u2(x).

(16.1)

The standard strategy to get well-posedness results for (16.1) goes back to [6] and
[7], and it is to show an a-priori estimate for the Fourier transform of the solution.

By the classical Ovciannikov theorem the Cauchy problem is well-posed in the
space of the real analytic functionals. Moreover, by the finite speed of propagation
property, we can assume that the data have compact support. Thus we only need to
prove that, for fixed t , the solution belongs to C∞ or to a Gevrey space.

Let u be a solution to (16.1). We set

V (t; ξ) :=
⎛

⎝
(i|ξ |)2v(t; ξ)
i|ξ |∂tv(t; ξ)
∂2
t v(t; ξ)

⎞

⎠ , V0(t; ξ) :=
⎛

⎝
(i|ξ |)2v0(ξ)

i|ξ |v1(ξ)

v2(ξ)

⎞

⎠ ,

where v(t; ξ) := Fx→ξ (u(t;x)) is the Fourier transform with respect to the space
variables x of u and vj (ξ) := Fx→ξ (uj (x)), j = 0,1,2, are the Fourier transforms
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of the data. The Cauchy problem (16.1) is transformed into a Cauchy problem for a
first order linear system depending on a parameter ξ ∈R

n

{
V ′(t; ξ)= i|ξ |A(t; ξ)V (t; ξ)+B(t; ξ)V (t; ξ),
V (t0; ξ)= V0(ξ),

where

A(t; ξ)=
⎛

⎝
0 1 0
0 0 1
a3 a2 a1

⎞

⎠ , (16.2)

is the Sylvester matrix associated to P , and

B(t; ξ) =
⎛

⎝
0 0 0
0 0 0
b0,2 b1,1 b2,0

⎞

⎠+ |ξ |−1

⎛

⎝
0 0 0
0 0 0
b0,1 b1,0 0

⎞

⎠

+ |ξ |−2

⎛

⎝
0 0 0
0 0 0
b0,0 0 0

⎞

⎠ . (16.3)

Note that the characteristic polynomial of A is the polynomial P , and the eigen-
values of A are the characteristic roots τj .

The Paley-Wiener theorem for C∞ functions states that U0 belongs to C∞
0 if, and

only if, for any N ∈N there exists a constant CN such that
∣∣V0(ξ)

∣∣≤ CN|ξ |−N for |ξ | ≥ 1.

Thus to verify that U ∈ C2([0, T ];C∞
0 ) it will be sufficient to show that there exist

constants C and ν such that
∣∣V (t; ξ)∣∣≤ C|ξ |ν∣∣V (0; ξ)∣∣ for |ξ | ≥ 1, (16.4)

for any t ∈ [0, T ].
Similarly, the Paley-Wiener theorem for Gevrey functions states that a function

f belong to γ s ∩ C∞
0 if, and only if, there exists constants C0, δ0 such that

∣∣f̂ (ξ)
∣∣≤ C0e

−δ0|ξ |1/s for |ξ | ≥ 1.

To verify that U ∈ C2([0, T ];γ s) it will be sufficient to show that there exist con-
stants C0, δ0, ν0 such that

∣∣V (t; ξ)∣∣≤ C0|ξ |ν0e−δ0|ξ |1/s ∣∣V (0; ξ)∣∣, for |ξ | ≥ 1 (16.5)

for any t ∈ [0, T ].
To derive (16.4) or (16.5) we will use an energy estimate. In order to construct a

suitable energy functional, we preliminarily need to consider a symmetrizer.
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16.3 Jannelli’s Symmetrizer of a Sylvester-Type Matrix

We recall the construction of the Jannelli’s symmetrizer for a 3 × 3 Sylvester ma-
trix. The symmetrizer in the general case can be constructed in a similar way (see
[18]). The construction being an algebraic procedure, we omit the dependence on
the variables. Let

A=
⎛

⎝
0 1 0
0 0 1
a3 a2 a1

⎞

⎠

be a Sylvester 3 × 3 matrix, and let τ1, τ2, τ3 be the eigenvalues of A:

P(τ)= det(τI −A)= (τ − τ1)(τ − τ2)(τ − τ3).

Let

W =
⎛

⎝
τ2τ3 −(τ2 + τ3) 1
τ1τ3 −(τ1 + τ3) 1
τ1τ2 −(τ1 + τ2) 1

⎞

⎠ (16.6)

and denote by wk the k-th row of W . Note that the entries of wk are the coefficients
(in reversed order) of the polynomial

Pk̂(τ ) :=
P(τ)

τ − τk
.

Moreover wk is a left eigenvector of A, that is:

wkA= τkwk.

Let

Q := W∗W =
∑

1≤i<j≤3

⎛

⎝
τ 2
i τ

2
j −τ 2

i τj − τiτ
2
j τiτj

−τ 2
i τj − τiτ

2
j (τi + τj )

2 −2τi
τiτj −2τi 1

⎞

⎠

=
⎛

⎝
a2

2 − 2a1a3 a1a2 + 3a3 −a2

a1a2 + 3a3 2a2
1 + 2a2 −2a1

−a2 −2a1 3

⎞

⎠ , (16.7)

where we used Vieta’s formulas:

τ1 + τ2 + τ3 = a1, τ1τ2 + τ2τ3 + τ3τ1 = −a2, τ1τ2τ3 = a3.

Then

QA= W∗WA= W∗DW = (QA)∗,

where D := diag(τ1, τ2, τ3). We say that Q is the standard symmetrizer of A.
We gather the fundamental properties of the standard symmetrizer in the follow-

ing proposition.
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Proposition 1 ([17, 18]) Let

A=

⎛

⎜⎜
⎜⎜⎜⎜
⎝

0 1 0 . . . 0

0 1
. . .

...

. . .
. . . 0
0 1

aN . . . a1

⎞

⎟⎟
⎟⎟⎟⎟
⎠

be a N × N Sylvester type matrix, then there exists a symmetric matrix Q such that

• the matrix Q symmetrize A, that is

(QA)∗ = QA;
• Q is the Bezout matrix of (P, ∂τP );
• there is an explicit formula to compute the entries of Q:

Qjk = jaN−j aN−k −
N−k∑

p=1

(k − j + 2p)aN−j+paN−k−p (j ≤ k);

• the determinant of Q is the discriminant of the characteristic polynomial of A:

detQ =Δ :=
∏

j �=k
(τj − τk)

2;

• a lower bound of Q is given by

(QV,V )≥ CΔ|V |2, (16.8)

where the constant C depends only on the maximum of the coefficients of P(τ).

16.3.1 Leray’s Symmetrizer

In [22] Leray constructed a symmetrizer for any hyperbolic Sylvester type matrix,
and used it to prove the well-posedness in C∞ for strictly hyperbolic equations (with
coefficients depending also on the space variables). Nevertheless, as we remarked in
[24], in the weakly hyperbolic case Jannelli’s symmetrizer seems to be more pow-
erful. In this section we compare these two symmetrizers, limiting our discussion,
for the sake of simplicity, to 3 × 3 matrices.

Let

V :=
⎛

⎝
1 1 1
τ1 τ2 τ3

τ 2
1 τ 2

2 τ 2
3

⎞

⎠
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be the Vandermonde matrix associated to τ1, τ2, τ3. It is easy to check that the
column vectors of V are right eigenvectors of A, thus

AV = VD,

where D := diag(τ1, τ2, τ3). Moreover, the matrix AVV∗ is symmetric. Let QL be
the cofactor matrix of VV∗:

QL := (
VV∗)co =Δ

(
VV∗)−1

,

where Δ = (detV)2 is the discriminant of P(τ). The matrix QL is a symmetrizer
for A, indeed we have

QLA = QL
(
AQL−1)QL = (

QL∗(
AQL−1)∗QL∗)∗

= (
QLAQL−1QL

)∗ = (
QLA

)∗
,

that is, QLA is symmetric.
The entries of QL are polynomial functions in the coefficients of the operator.

Indeed,

VV∗ =
⎛

⎝
s0 s1 s2
s1 s2 s3
s2 s3 s4

⎞

⎠ ,

where sj are the Newton polynomials

sj = τ
j

1 + τ
j

2 + τ
j

3 ,

and they can be computed by the inductive formula

sj =
{
a1, if j = 1,

a1sj−1 + a2sj−2 + · · · + aj−1s1 + jaj , if j > 1,

where we set aj ≡ 0 if j > 3. We have

VV∗ =
⎛

⎝
3 a1 a2

1 + 2a2

a1 a2
1 + 2a2 a3

1 + 3a1a2 + 3a3

a2
1 + 2a2 a3

1 + 3a1a2 + 3a3 a4
1 + 4a2

1a2 + 4a1a3 + 2a2
2

⎞

⎠ ,

thus

QL =
⎛

⎝
s2s4 − s2

3 s3s2 − s1s4 s1s3 − s2
2

s3s2 − s1s4 3s4 − s2
2 s1s2 − 3s3

s1s3 − s2
2 s1s2 − 3s3 3s2 − s2

1

⎞

⎠ ,

and

QL
1,1 = −2a3

1a3 + a2
1a2

2 − 10a2a1a3 + 4a2
3 − 9a3

2,

QL
1,2 = QL

2,1 = a3
1a2 − a2

1a3 + 4a1a2
2 + 6a3a2,



346 G. Taglialatela

QL
1,3 = QL

3,1 = −a2
1a2 + 3a1a3 − 4a2

2,

QL
2,2 = 2a4

1 + 8a2
1a2 + 12a1a3 + 2a2

2,

QL
2,3 = QL

3,2 = −2a3
1 − 7a1a2 − 9a3,

QL
3,3 = 2a2

1 + 6a2.

In order to compare Leray’s and Jannelli’s symmetrizer we note that

WV = Z := {z1, z2, z3}, where zk := Pk̂(τk)=
∏

1≤j≤3,j �=k
(τk − τj ),

thus

〈
QLV,V

〉 = Δ
〈(
VV∗)−1

V,V
〉=Δ

〈(
V∗)V−1V,V

〉

= Δ
∥∥V−1V

∥∥2 =Δ
∥∥Z−1WV

∥∥2

= ∥∥ZcoWV
∥∥2 ≤ ∥∥Zco

∥∥2‖WV ‖2 = ∥∥Zco
∥∥2〈QV,V 〉.

We see that for strictly hyperbolic equations the two symmetrizers are equivalent.
But, in the weakly hyperbolic case, Jannelli’s symmetrizer seems to be more suit-
able, since it vanishes on the multiple characteristics at lower order.

Example 4 Consider the polynomial

P(t; τ, ξ)= τ 3 − 3t2τξ2 + 2t3ξ3,

which has the roots

τ1 = τ2 = tξ, τ3 = −2tξ,

we get:

Q =
⎛

⎝
9t4 −6t3 −3t2

−6t3 6t2 0
−3t2 0 3

⎞

⎠ QL = 18t2

⎛

⎝
4t4 −2t3 −2t2

−2t3 t2 t

−2t2 t 1

⎞

⎠ .

We can see directly that

〈
QLV,V

〉≤ 18t2〈QV,V 〉,
since the matrix

Q− 1

18t2
QL =

⎛

⎝
5t4 −4t3 −t2

−4t3 5t2 −t
−t2 −t 2

⎞

⎠

is positive semi-definite.
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16.4 Energy Estimate for the Homogeneous Equation

To begin with, let us consider the homogeneous case, i.e. B(t) ≡ 0, thus V is a
solution of

V ′ = i|ξ |AV. (16.9)

Using the symmetrizer we can obtain an a-priori estimate of V . Let

Ehyp(t; ξ) :=
〈
Q(t; ξ)V (t; ξ),V (t; ξ)〉

be the (hyperbolic) energy of V . Since V is a solution of (16.9) and QA is symmet-
ric, we have

E′
hyp = 〈

Q′V,V
〉+ 2 Re

〈
QV ′,V

〉

= 〈
Q′V,V

〉+ 2 Re
〈
i|ξ |QAV,V 〉= 〈Q′V,V 〉

〈QV,V 〉 Ehyp,

hence, by Gronwall’s Lemma we get

Ehyp(t2)≤ exp

(∫ t2

t1

|〈Q′V,V 〉|
〈QV,V 〉 ds

)
Ehyp(t1) for any t1, t2 ∈]−T ,T [. (16.10)

If

〈Q′V,V 〉
〈QV,V 〉 ∈ L∞ (16.11)

we get the energy estimate

Ehyp(t2)≤ CEhyp(t1). (16.12)

Now, some natural questions arise:

1. Does the estimate (16.12) imply an estimate for V as (16.4) or (16.5)?
2. Can we assume a condition weaker than (16.11)?
3. Can we give a more explicit form of (16.11)?

Concerning the first question, the answer is negative, in general, since Q is only
positive semi-definite, if the characteristic roots may coincide (cf. (16.8)). One may
ask if another positive definite symmetrizer is possible. The answer is negative.

Example 5 Consider the matrix

A=
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ ,
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and let Q = (qjk)jk=1,2,3 be any symmetric matrix. Then, since

QA=
⎛

⎝
0 q11 q12
0 q12 q22
0 q13 q32

⎞

⎠

we see that in order that QA to be symmetric we need to assume q11 = 0, which
implies that Q is not positive definite.

To deal with this problem the strategy is to modify the energy near the zeroes
of Δ. To illustrate the method we assume, for simplicity, that the discriminant Δ
may vanishes only at t = 0, with finite order, i.e. the following inequality is satisfied:

Δ(t)≥ Ctν (16.13)

with a positive constant C and an even number ν. Moreover, let us assume the
following condition:

|t | 〈Q
′V,V 〉

〈QV,V 〉 ∈ L∞ (16.14)

which is weaker than (16.11). Define

Ekov(t; ξ) := ∣∣V (t; ξ)∣∣2, if |t ||ξ |< 1,

Ehyp(t; ξ) := ∣∣〈Q(t; ξ)V (t; ξ),V (t; ξ)〉∣∣2, if |t ||ξ | ≥ 1.

Ekov is called the pseudodifferential (or kovalevskian) energy, Ehyp is called the
hyperbolic energy.

Since V is a solution of (16.9) we have

E′
kov(t; ξ) := 2 Re

〈
V (t; ξ),V ′(t; ξ)〉

= 2 Re
〈
V (t; ξ), i|ξ |A(t)V (t; ξ)〉≤ C|ξ |Ekov(t; ξ),

where here and in the following C denotes a constant which can vary from line to
line, but which is independent of t and ξ . Then by Gronwall’s Lemma we get

Ekov(t2; ξ)≤ e2C|ξ ||t2−t1|Ekov(t1; ξ)≤ e4CEkov(t1; ξ) (16.15)

if |t1||ξ |, |t2||ξ |< 1.
From (16.10), by using (16.14), we get

Ehyp(t2; ξ)≤ exp

(∫

|s|≥1/|ξ |
C

|s|ds
)
Ehyp(t1; ξ)≤ C|ξ |CEhyp(t1; ξ). (16.16)

Moreover,

Ehyp(t; ξ)≥ CΔ(t)|V |2 ≥ Ctν |V |2 ≥ C|ξ |−ν |V |2, (16.17)
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thus combining (16.15), (16.16) and (16.17) we get (16.4).
Summing up we have proved that after assuming (16.13) and (16.14) the Cauchy

Problem (CP) with bj,k ≡ 0 is well-posed in C∞.
Thus we have given simultaneously a (partial) answer to questions 1 and 2.
We are now interested in question 3. More precisely: can we put the hypothesis

(16.13) and (16.14) into an intrinsic form?
It is clear that (16.13) can be replaced by the hypothesis of analyticity of the

coefficients, since, at least in the one dimensional case, if Δ is analytic, then we can
decompose [0, T ] in a finite number of subintervals [tj − δ, tj + δ], in which we
have

Δ≥ Cj |t − tj |νj , (16.18)

and we can repeat a similar reasoning.
We remark however that the extension of this method to several variables presents

some difficulties, since we have to prove that the constants Cj , νj in (16.18) are
uniformly bounded for ξ ∈R

n. We refer to Sect. 4 in [19] for further details.
Concerning condition (16.14) we can explicit it in terms of the characteristic

roots, or in terms of the coefficients of the operator.

16.4.1 Expressing (16.14) in Terms of the Characteristic Roots

Recalling that Q := W∗W we have

〈
Q′V,V

〉= 2 Re
〈
W ′V,WV

〉
,

hence
∣∣〈Q′V,V

〉∣∣≤ 2
∣∣W ′V

∣∣|WV | = 2
∣∣W ′V

∣∣√Ehyp,

and

∣∣W ′V
∣∣2 =

3∑

j=1

∣∣w′
jV

∣∣2,

the wj being the j -th row of W . We have

w′
1 = (

τ ′
2τ3 + τ2τ

′
3,−τ ′

2 − τ ′
3,0

)= τ ′
2(τ3,−1,0)+ τ ′

3(τ2,−1,0)

and since

(τ3,−1,0)= w1 −w2

τ2 − τ1
, (τ2,−1,0)= w1 −w3

τ3 − τ1
,

we get

w′
1 = τ ′

2

τ2 − τ1
(w1 −w2)+ τ ′

3

τ3 − τ1
(w1 −w3),
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thus

∣∣w′
1V

∣∣ ≤
∣∣∣∣

τ ′
2

τ2 − τ1

∣∣∣∣
(|w1V | + |w2V |)+

∣∣∣∣
τ ′

3

τ3 − τ1

∣∣∣∣
(|w1V | + |w2V |)

≤ max

{∣∣∣∣
τ ′

2

τ2 − τ1

∣∣∣∣,
∣∣∣∣

τ ′
3

τ3 − τ1

∣∣∣∣

}
〈QV,V 〉1/2.

Analogous formulas hold true for w′
2 and w′

3. Thus we see that (16.14) holds true
if we assume

|t |∣∣τ ′
j

∣∣≤ C|τj − τk| if j �= k. (16.19)

Condition (16.19) has been introduced in [3], where they proved that such con-
dition is also necessary, in space dimension n= 1, then extended in various form in
[5, 9, 10] and [16]. Nevertheless it is not easy to check (16.19) for concrete exam-
ples, since it involves the derivatives of the characteristic roots (see Sect. 16.5).

Thus we are interested in a more explicit form of (16.14).

16.4.2 Expressing (16.14) in Terms of the Coefficients of the
Operator

In view to explicit (16.14) we remark that if B and C are two real symmetric N × N

matrices, with C positive definite, then

sup
V∈Rn\{0}

〈BV,V 〉
〈CV,V 〉 ≤ sup

{
λ ∈R|det(λC −B)= 0

}
, (16.20)

and the polynomial det(λC −B)= 0 has only real roots. Moreover, it follows from
Newton’s formula that if

∑N
h=0 dh(t)λ

N−h is a polynomial with real roots for any
t , then the roots λ1(t), . . . , λN(t) are bounded if, and only if, the ratios d1(t)/d0(t),
d2(t)/d0(t) are bounded, since

N∑

j=1

λ2
j (t)=

d2
1 (t)

d2
0 (t)

− 2
d2(t)

d0(t)
.

From (16.20) we see that (16.14) is equivalent to the boundness of the solutions
in λ of the equation

det
(
λQ(t)− |t |Q′(t)

)=
N∑

k=0

dk(t)|t |kλN−h = 0. (16.21)

The first and the last terms in (16.21) are easily computed

d0 = det(Q), dN = (−1)N det
(
Q′).
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The term d1 is the sum of the determinants of the matrices obtained from N −1 lines
of Q and one line of Q′. Thus we have (see [15])

d1 = −(
det(Q)

)′ = −Δ′.

The term d2 needs more complicated calculations (see Proposition 2.4 in [19]), how-
ever we obtain:

d2 = 1

2
trace

(
Q′(Qco

)′)
,

where Qco is the cofactor matrix of Q. We call d2 the check function of Q, and we
denote it by ψ .

Example 6 If N = 3, according to (16.7), we have

ψ = −3a2
2a

′2
1 + 6a1a2a

′
1a

′
2 − a2

1a
′2
2 + 6a2a

′2
2 − 8a2

1a
′
1a

′
3

− 6a2a
′
1a

′
3 − 18a1a

′
2a

′
3 − 27a′2

3 . (16.22)

Thus we get that (16.14) is equivalent to

|t |det(Q)′
det(Q) ∈ L∞ and t2

ψ

det(Q) ∈ L∞.

The first condition, being det(Q)=Δ, is automatically verified, if Δ(t) is an an-
alytic function. The second condition is not always verified, and should be assumed
as hypothesis.

Theorem 1 ([19]) Assume that the coefficients of P(t; ∂t , ∂x) are analytic in
]−T ,T [, and, moreover, Δ(t) �≡ 0 in ]−T ,T [.

Then the condition

∣∣ψ(t)
∣∣≤ CΔ̃(t) for any t ∈]−T ,T [, (16.23)

where

Δ̃(t) :=Δ(t)+ Δ′2(t)
Δ(t)

is necessary and sufficient for the Cauchy Problem (CP) to be well-posed in C∞.

Remark 1 Condition (16.23) means that if Δ(t) vanishes at t of order 2k, then ψ(t)
vanishes at t of order 2k− 2.

Remark 2 In space dimension greater than 1, condition (16.23) (with a constant C
independent of ξ ∈ R

N) remains sufficient, while it is an open problem to show its
necessity.
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16.4.3 The Case Δ ≡ 0

If Δ≡ 0, condition (16.23) is no longer sufficient to assure the C∞ well-posedness.
Indeed, if the coefficients of P(t; ∂t , ∂x) are analytic, then, two roots either coin-

cide in ]−T ,T [, either coincide only at a finite number of points. Thus it is possible
to find a closed interval I ⊂]−T ,T [ such that the restriction of P(t; ∂t , ∂x) to I
is an operator with characteristics of constant multiplicity. For such operators the
necessary and sufficient condition for the C∞ well-posedness is well known, also in
the case of x-depending coefficients (see [2, 8, 13]). In particular, for homogeneous
operators, this condition means that the multiple roots should be constant functions:
if we write

P(t; τ, ξ)=
∏(

τ − τj (t)ξ
)mj ,

then in order the Cauchy problem for P(t; ∂t , ∂x) to be well-posed in C∞(I ) the
following condition is necessary:

mj > 1 =⇒ τ ′
j (t)≡ 0. (16.24)

Consider a third order operator with a double characteristic root τ1(t), so that

P(t; τ, ξ)= (
τ − τ1(t)

)2(
τ − τ2(t)

)
.

A direct calculation shows that

ψ = −4τ ′
1(t)

(
τ1(t)− τ2(t)

)4
.

Now, if τ1 is constant, then both (16.23) and (16.24) are satisfied. Remark that in
this case it is obvious that the Cauchy problem for P(t; ∂t , ∂x) is well-posed since
we can write

P(t; ∂t , ∂x)=
(
∂t − τ2(t)∂x

)
(∂t − τ1∂x)

2.

On the other side, if τ1(t)≡ τ2(t) is not constant, that is, P(t; τ, ξ) has a triple
root, (16.23) is satisfied, but (16.24) is not satisfied, and the Cauchy problem for
P(t; ∂t , ∂x) is not well-posed.

Thus, in the case Δ≡ 0 more refined conditions are needed.
Before to proceed, recall the following criterion to establish the hyperbolicity of

a polynomial.

Lemma 1 ([18]) Let

Qj :=
⎛

⎜
⎝

QN+1−j,N+1−j · · · QN+1−j,N
...

. . .
...

QN,N+1−j · · · QN,N

⎞

⎟
⎠ ,

so that QN := Q, and Qj , j = 1, . . . ,N − 1, is the principal j × j minor of Q
obtained by removing the first N − j rows and the first N − j columns of Q. Let Δj
be the determinant of Qj . Then
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1. P is strictly hyperbolic if and only if

Δj > 0 for any j = 1, . . . ,N.

2. P is weakly hyperbolic if and only if there exists r < N such that

ΔN = · · · =Δr+1 = 0, Δr > 0, . . . ,Δ1 > 0.

In this case P has exactly r distinct roots.

If P(t; ∂t , ∂x) is a third order operator with a triple root τ1(t), then

Q=Q3 =
⎛

⎜
⎝

3τ 4
1 −6τ 3

1 3τ 2
1

−6τ 3
1 12τ 2

1 −6τ1

3τ 2
1 −6τ1 3

⎞

⎟
⎠ ,

and

Q2 =
(

12τ 2
1 −6τ1

−6τ1 3

)
.

Note that Δ2 := detQ2 = 0, and the check function ψ2 of Q2 is −36(τ ′
1)

2. It seems
then natural to require that ψ2 vanishes when Δ2 vanishes.

Indeed, in the case Δ≡ 0 we have the following result.

Theorem 2 ([19]) Assume that the coefficients of P(t; ∂t , ∂x) are analytic in
]−T ,T [, and Δ(t)≡ 0 in ]−T ,T [. According to Lemma 1 let r < N be the greatest
integer such that Δr(t) �≡ 0 in ]−T ,T [. Then the conditions

ψr+1(t)≡ 0, (16.25)
∣∣ψr(t)

∣∣≤ CΔ̃r(t), (16.26)

where

Δ̃r (t) :=Δr(t)+ Δ′
r

2
(t)

Δr(t)
,

are necessary and sufficient for the Cauchy Problem (CP) to be well-posed in C∞.

Remark 3 Let r < N be as in Theorem 2. We can write the decomposition

P(t; τ, ξ)=
s∏

j=1

(
τ − τj (t)ξ

)mj
r∏

j=s+1

(
τ − τj (t)ξ

)
,

where τj (t) �= τk(t) for j �= k apart at most a finite set Σ . Condition (16.25) means
that the multiple roots are constant, i.e. τ ′

j (t)≡ 0 for j = 1, . . . , s, whereas condition
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(16.26) is equivalent to condition (16.23) for the operator with symbol

P̃ (t; τ, ξ)=
r∏

j=1

(
τ − τj (t)ξ

)
.

Indeed, up to a multiplicative constant, Δr is the discriminant of P̃ (t; τ, ξ) (see
Proposition 3.1 in [19]).

Remark 4 In space dimension greater than 1, conditions (16.25) and (16.26) (allow-
ing r dependent on ξ ∈ R

N, but C independent of ξ ∈ R
N) remains sufficient, while

it is an open problem to show its necessity.

16.4.4 Non Analytic Coefficients

If the coefficients are not analytic, then the Cauchy problem can fail to be well-
posed in C∞ (see Example 1). We expect, however, that if the coefficients belong
to some Cκ , then the Cauchy problem is well-posed in some Gevrey space, as it has
been shown in [6] and [7] for wave type equations. A result of this kind has been
obtained in [21], where they assumed a condition which is, in the case of analytic
coefficients, more restrictive then (16.23) (or (16.25) and (16.26)).

For third order operators we have the following result. The proof will appear
elsewhere [20].

Theorem 3 Let

P(t; ∂t , ∂x)u= ∂3
t u−

3∑

j=1

aj (t)∂
3−j
t ∂

j
x u.

We assume that the coefficients are C∞(]−T ,T [), and, moreover,

∣∣ψ(t)
∣∣≤ CΔ(t)+ Δ′2(t)

Δ(t)
, a′2

1 (t)≤ CΔ1(t)+ Δ′2
1 (t)

Δ1(t)
,

where ψ is the check function, defined in (16.22), Δ is the discriminant of P(t; τ, ξ)
and

Δ1 := (τ1 − τ2)
2 + (τ2 − τ3)

2 + (τ3 − τ1)
2 = 2a2

1 + 6a2.

Then the Cauchy problem (16.1) is well-posed in every Gevrey space.

16.5 Examples of Operators of Higher Order

As previously remarked, condition (16.23) is expressed only in terms of the coeffi-
cients of the operator, without needing to compute the characteristic roots. This is
of great importance for higher order operators.
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Consider for example the following two operators:

L1(t; ∂t , ∂x) = ∂10
t − 10∂8

t ∂
2
x − (−33 + 4t2

)
∂6
t ∂

4
x − (

2 + 2t2
)
∂5
t ∂

5
x

− (
40 − 20t2

)
∂4
t ∂

6
x − (−10 − 8t2

)
∂3
t ∂

7
x

− (−16 + 20t2
)
∂2
t ∂

8
x − (

8 + t2
)
∂t∂

9
x + ∂t ∂

10
x ,

L2(t; ∂t , ∂x) = ∂10
t + 10t∂9

t ∂x − (
10 − 45t2

)
∂8
t ∂

2
x − (

80t − 120t3
)
∂7
t ∂

3
x

− (−33 + 280t2
)
∂6
t ∂

4
x − (

2 − 198t + 560t3
)
∂5
t ∂

5
x

− (
40 + 10t − 495t2 + 50t4

)
∂4
t ∂

6
x

− (−10 + 160t + 20t2 − 660t3
)
∂3
t ∂

7
x

− (−16 − 30t + 240t2 + 20t3
)
∂2
t ∂

8
x

− (
8 − 32t − 30t2 + 160t3

)
∂t ∂

9
x

− (−1 + 8t − 16t2 − 10t3 + 50t4
)
∂10
x .

Are these operators hyperbolic? Is the corresponding Cauchy problem well-
posed? Note that, since

L1(0; τ,1)= L2(0; τ,1)= (
τ 5 − 5τ 3 + 4τ − 1

)2

it is not possible to compute the characteristic roots, even at t = 0.
On the other hand, using Theorem 1, we can answer the above questions. All cal-

culations needed may be carried out by means of a symbolic manipulation software.
(see the appendix).

The results for L1 are

Δ(t) = 13436759265055744t10 + o
(
t10),

Δ9(t) = 734001349184512t8 + o
(
t8
)
,

Δ8(t) = 4892992931840t6 + o
(
t6
)
,

Δ7(t) = 33846920192t4 + o
(
t4
)
,

Δ6(t) = 123420800t2 + o
(
t2
)
,

Δ5(t) = 1234208 + o(1),

Δ4(t) = 141280 + o(1),

Δ3(t) = 5600 + o(1),

Δ2(t) = 200,

Δ1(t) = 10,

ψ(t) = 537470370602229760t8 + o
(
t8
);
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which shows that L1 is hyperbolic in a neighborhood of the origin and (16.23) holds
true.

Similar calculations can be carried out for L2:

Δ(t) = 4121196658887895100800000t20 + o
(
t20),

Δ9(t) = 9262512342452312640000t16 + o
(
t16),

Δ8(t) = 7974599327387648000t12 + o
(
t12),

Δ7(t) = 1953869747968000t8 + o
(
t8
)
,

Δ6(t) = 25177843200t4 + o
(
t4
)
,

Δ5(t) = 1234208 + o(1),

Δ4(t) = 141280 + o(1),

Δ3(t) = 5600 + o(1),

Δ2(t) = 200,

Δ1(t) = 10,

ψ(t) = −10592437873824646055680000t16 + o
(
t16);

which show that L2 is hyperbolic in a neighborhood of the origin but (16.23) fails
to hold.

16.6 The Quasi-symmetrizer

When studying the Cauchy problem for homogeneous operators in the C-infinity
framework the symmetrizer Q is enough to get energy estimates. But, when we
consider non homogeneous operators, a more substantial perturbation of the sym-
metrizer is needed. Thus we are lead to consider the so called quasi-symmetrizer,
introduced in [17] and [11], and extensively studied in [18].

Roughly speaking, a quasi-symmetrizer of a N × N matrix A is a family
{Qε}0<ε≤1 of positive definite matrices such that

(QεV ,V )≥ Cε2(m−1)|V |2, (16.27)
∣∣((QεA− (QεA)

∗)V,V
)∣∣≤ Cε(QεV ,V ), (16.28)

where m is maximum multiplicity of the eigenvalues of A.

Example 7 Returning to Example 5, if

A=
⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠
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we choose

Qε =
⎛

⎝
ε4 0 0
0 ε2 0
0 0 1

⎞

⎠

so that

Rε := QεA− (QεA)
∗ =

⎛

⎝
0 ε4 0

−ε4 0 ε2

0 −ε2 0

⎞

⎠ .

Thus, using the elementary inequality 2ab ≤ a2 + b2, we get

∣∣(Rεv, v)
∣∣ = ∣∣ε4(v1v2 − v1v2)+ ε2(v2v3 − v2v3)

∣∣

≤ 2ε4|v1||v2| + 2ε2|v2||v3| ≤ 2ε
(
ε4v2

1 + ε2v2
2 + v2

3

)= 2ε(Qεv, v).

We briefly sketch the construction of the quasi-symmetrizer as introduced by
D’Ancona & Spagnolo [11]. To simplify the presentation we consider only the case
of a 3 × 3 matrix, and we refer to [11] and [18] for further details. As for the sym-
metrizer, the construction of the quasi-symmetrizer is just an algebraic procedure,
thus we omit the dependence on the variables.

Let

A=
⎛

⎝
0 1 0
0 0 1
a3 a2 a1

⎞

⎠

be a Sylvester 3 × 3 matrix, and let τ1, τ2, τ3 be the eigenvalues of A, then define
W0 = W as in (16.6), and

W1 :=
⎛

⎝
−τ1 1 0
−τ2 1 0
−τ3 1 0

⎞

⎠ W2 :=
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ .

Then

Qε := W∗
0W0 + ε2W∗

1W1 + ε4W∗
2W2

=
⎛

⎝
a2

2 − 2a1a3 a1a2 + 3a3 −a2

a1a2 + 3a3 2a2
1 + 2a2 −2a1

−a2 −2a1 3

⎞

⎠

+ ε2

⎛

⎝
a2

1 + 2a2 −a1 0
−a1 3 0

0 0 0

⎞

⎠+ ε4

⎛

⎝
3 0 0
0 0 0
0 0 0

⎞

⎠

verifies (16.27) and (16.28).
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To prove (16.27) withm= 3, we remark that for ε = 1 the matrix Q1 is coercive,
since

Q1 := P∗
1P1 +P∗

2P2 +P∗
3P3,

with

P1 :=
⎛

⎝
1 0 0

−τ1 1 0
τ1τ2 −τ1 − τ2 1

⎞

⎠ , P2 :=
⎛

⎝
1 0 0

−τ2 1 0
τ2τ3 −τ2 − τ3 1

⎞

⎠ ,

P3 :=
⎛

⎝
1 0 0

−τ3 1 0
τ3τ1 −τ3 − τ1 1

⎞

⎠ .

Thus (Q1V,V )≥ C|V |2 for some C > 0. We get

Cε4|V |2 ≤ ε4(Q1V,V )≤ (QεV ,V ),

which shows (16.27) for m= 3. The case m= 2 is proved in a similar way.
To prove (16.28), since W∗

0W0A is symmetric, it will be enough to show that

ε2
∣∣((W∗

1W1A− (
W∗

1W1A
)∗)
V,V

)∣∣ ≤ Cε(QεV ,V ), (16.29)

ε4
∣∣((W∗

2W2A− (
W∗

2W2A
)∗)
V,V

)∣∣ ≤ Cε(QεV ,V ). (16.30)

Let w1,1 be the first row of W1, since

w1,1 = 1

τ2 − τ3
(w2 −w3),

where w2 and w3 are the second and third row of W0, we have

w1,1A = 1

τ2 − τ3
(w2A−w3A)= 1

τ2 − τ3
(τ2w2 − τ3w3)

= 1

τ2 − τ3
(τ2w2 − τ2w3 + τ2w3 − τ3w3)= τ2w1,1 +w3,

and similarly we get

w1,2A= τ3w1,2 +w1, w1,3A= τ1w1,3 +w2.

Thus

W1A=DW1 + W̃0,
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where D = diag(τ2, τ3, τ1) and W̃0 is obtained from W0 after a permutation of the
rows. It follows that

ε2((W∗
1W1A− (

W∗
1W1A

)∗)
V,V

) = ε2((W∗
1W̃0 − W̃0

∗W1
)
V,V

)

≤ 2ε2‖W̃0V ‖‖W1V ‖ = 2ε2‖W0V ‖‖W1V ‖
≤ ε

(‖W0V ‖2 + ε2‖W1V ‖2)

which implies (16.29). Equation (16.30) is proved in a similar way.

Remark 5 There are other methods to construct a quasi-symmetrizer.

• According to [17] let {P ε(τ)}ε∈]0,1] be a sequence of polynomials approximating
P(τ), whose roots τ εj satisfy

∣∣τ εj − τ εk

∣∣≥ ε, if j �= k, and
∣∣τj − τ εj

∣∣≤ Cε,

then define

QJ
ε := QP ε ,

QP ε being the symmetrizer of P ε .
• Following [23] let

P (j)(τ )= (N − j)!
N! ∂jτ P (τ)

be the normalized derivatives of P , we set

QP
ε := QP + ε2QP (1) + ε4QP (2) + · · · + ε2(N−1)QP (N−1) ,

QP (j) being the symmetrizer of P (j) (here we identify a k × k matrix with the
N×N matrix obtained form the given matrix adding N−k rows and N−k columns
of zeros).

However, we can show ([27]) that the three methods are equivalent in the sense
that there exist positive constants C1, C2, C3 depending only on the L∞-norm of
the coefficients such that

(Qεv, v)≤ C1
(
QJ
εv, v

)≤ C2
(
QP
ε v, v

)≤ C3(Qεv, v).

We gather the properties of the quasi-symmetrizer in the following proposition.

Proposition 2 ([11, 17, 18, 25]) Let

A=

⎛

⎜⎜⎜⎜⎜
⎜
⎝

0 1 0 . . . 0

0 1
. . .

...

. . .
. . . 0
0 1

aN . . . . . . . . . a1

⎞

⎟⎟⎟⎟⎟
⎟
⎠
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be a N × N Sylvester type matrix, then for any ε ∈]0,1] there exists a symmetric
matrix Qε such that

Qε =
N−1∑

j=0

ε2j qj (a1, . . . , aN),

where qj are matrices whose entries are polynomials in a1, . . . , aN. The following
properties are satisfied:

1. Q∗
ε = Qε;

2. ε2(m−1)|V |2 ≤ 〈QεV ,V 〉 ≤ |V |2, where m is the maximum multiplicity of the
eigenvalues;

3. if the coefficients aj belong to C2, then
∣∣〈Q′

εV ,V
〉∣∣≤ Cε1−m〈QεV ,V 〉;

4. we have

QεA= Tε +Rε,

where
a. Tε is symmetric: T ∗

ε = Tε;
b. |〈TεV,V 〉| ≤ C〈QεV ,V 〉;
c. if the coefficients aj belong to Cm, then |〈T ′

εV ,V 〉| ≤ Cε1−m〈QεV ,V 〉;
d. |(RεU,V )| ≤ ε(QεU,U)

1/2(QεV ,V )
1/2;

5. if the coefficients aj belong to Cm, then
∣∣〈A(k)V ,V

〉∣∣≤ Cε1−k〈QεV ,V 〉 for k = 1, . . . ,m− 1.

Remark 6 If the coefficients of the operator depend only on the time variable, as
in this notes, in order to derive energy estimates we use only properties 1., 2., 3.,
4.a. and 4.d. But when the coefficients depend also on the space variables, then
properties 4.b., 4.c. and 5. play an essential role (see [24, 25]).

16.7 Non Homogeneous Operators

In this section we use the quasisymmetrizer technique to obtain a sufficient condi-
tion for the well-posedness in C∞ and in Gevrey spaces for non-homogeneous op-
erators. This result is just a different presentation of a more general result obtained
in [5] (see also [9, 10] and [16]).

According to [23], given a hyperbolic polynomial P(t; τ, ξ) of degree N, with
roots τj (t; ξ), j = 1, . . . ,N, we say that a polynomial R(t; τ, ξ) of degree ≤ N − 1
has a proper decomposition w.r.t. P if there exists ck ∈ L∞ such that

R(t; τ, ξ)=
N∑

k=1

ck(t)Pk̂(t; τ, ξ), (16.31)
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where

Pk̂(t; τ, ξ) :=
∏

j=1,...,N
j �=k

(
τ − τj (t)ξ

)
.

We say that

P = P0 +R1 + · · · +RN,

where P0 is the homogeneous part of degree N and Rj is the homogeneous part
of degree N − j , is properly hyperbolic if P0 is hyperbolic and Rj has a proper

decomposition w.r.t. ∂jτ P .
Properly hyperbolic operators have been introduced by Peyser in [23], where an

energy estimate has been established for constant coefficients operator. Svensson
[26] was then able to show that an operator with constant coefficients is properly
hyperbolic if, and only if, it is hyperbolic in the sense of Gårding [14].

Dunn [12] extended Peyser’s method to operators whose lower order terms have
variable coefficients, and successively Wakabayashi [28] proved that proper hyper-
bolicity is a necessary condition for the C∞ well-posedness for this kind of opera-
tors.

We can prove the following result for operators with time dependent coefficients.

Theorem 4 Let L be a hyperbolic operator of order N, whose principal symbol
P(t; τ, ξ) has analytic coefficients and verifies (16.23).

We assume that the homogeneous part of degree N − j has a decomposition w.r.t.
∂
j−1
τ P as in (16.31) with coefficients verifying

(
Δ(t)

Δ̃(t)

)(1/2)(1+jα)
ck(t) ∈ L∞ for some α ≥ 0. (16.32)

Then the following statements hold:

• if α = 0, then the Cauchy problem is well-posed in C∞;
• if α > 0, then the Cauchy problem is well-posed in γ s for s < 1 + 1

α
.

Here we give the proof in a very special case: a third order operator and we
assume that Δ= Ctν as in (16.13). We assume, moreover, that the term of order 0
(which has no influence on the well-posedness) is absent. Thus let

L(t; ∂t , ∂x)u= ∂3
t u−

3∑

j=1

aj (t)∂
3−j
t ∂

j
x u−

∑

1≤j+k≤2

bj,k(t)∂
j
t ∂

k
xu,

and let

P(t; τ, ξ) = τ 3 − a1(t)τ
2ξ − a2(t)τξ

2 − a3(t)ξ
3

= (
τ − τ1(t)ξ

)(
τ − τ2(t)ξ

)(
τ − τ3(t)ξ

)
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be the principal symbol of L(t; ∂t , ∂x). As remarked above (16.23) is equivalent to

|t |∣∣τ ′
j (t)

∣
∣≤ C

∣
∣τj (t)− τk(t)

∣
∣ if j �= k.

We transform as before the equation in u into a system in V : we get

V ′ = i|ξ |AV +BV, (16.33)

instead of (16.9), where A and B are given in (16.2) and (16.3).
For ε ∈]0,1] we define the approximated energies

Eε,kov(t; ξ) := ∣∣V (t; ξ)∣∣2, if |t |< ε,
Eε,hyp(t; ξ) := ∣∣〈Qε(t; ξ)V (t; ξ),V (t; ξ)

〉∣∣2, if |t | ≥ ε.

Concerning Eε,kov(t) since V is a solution of (16.33) we have

E′
ε,kov(t) := 2 Re

〈
V (t),V ′(t)

〉

= 2 Re
〈
V (t), i|ξ |A(t)V (t)〉+ 2 Re

〈
V (t), i|ξ |B(t)V (t)〉

≤ C|ξ |Eε,kov(t),

since |ξ | ≥ 1. Thus by Gronwall’s Lemma we get

Ekov(t2)≤ e2C|ξ ||t2−t1|Ekov(t1)≤ e4Cε|ξ |Ekov(t1) (16.34)

if |t1|, |t2|< ε.
Concerning Eε,hyp(t) since V is a solution of (16.33) we have

E′
ε,hyp(t) = 〈

Q′
εV ,V

〉+ 〈
QεV

′,V
〉+ 〈

QεV ,V
′〉

= 〈
Q′
εV ,V

〉+ |ξ |〈iQεAV,V 〉 + |ξ |〈QεV , iAV 〉
+ 〈QεBV,V 〉 + 〈QεV ,BV 〉

≤
[ |〈Q′

εV ,V 〉|
〈QεV ,V 〉 + |ξ | |〈(QεA− (QεA)

∗)V ,V 〉|
〈QεV ,V 〉

+ |2 Re〈QεBV,V 〉|
〈QεV ,V 〉

]
Eε,hyp(t)

hence, by Gronwall’s Lemma, we get

Eε,hyp(t2)≤ exp

[∫ T

−T
|〈Q′

εV ,V 〉|
〈QεV ,V 〉 dt + ε|ξ | + |2 Re〈QεBV,V 〉|

〈QεV ,V 〉 dt

]
Eε,hyp(t1).

The first term can be estimated as in the homogeneous case. Thus we have to
estimate the last term.
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Using Schwarz inequality for Qε we have
∣∣Re〈QεBV,V 〉∣∣≤ 〈QεBV,BV 〉1/2〈QεV ,V 〉1/2 ≤ ‖BV ‖√Eε,hyp.

Note that

BV = (b0,2, b1,1, b2,0) · V + |ξ |−1(b0,1, b1,0,0) · V.
The homogeneous part of degree 2 of L has a proper decomposition w.r.t. P

b2,0τ
2 + b1,1τξ + b0,2ξ

2 = c1(t)
(
τ − τ2(t)ξ

)(
τ − τ3(t)ξ

)

+ c2(t)
(
τ − τ3(t)ξ

)(
τ − τ1(t)ξ

)

+ c3(t)
(
τ − τ1(t)ξ

)(
τ − τ2(t)ξ

)
, (16.35)

where, according to (16.32), the functions cj satisfy

|t |1+α∣∣c1(t)
∣∣, |t |1+α∣∣c2(t)

∣∣, |t |1+α∣∣c3(t)
∣∣ ∈ L∞.

Condition (16.35) is equivalent to

(b0,2, b1,1, b2,0)= c1w1 + c2w2 + c3w3,

where the wj are the rows of W . Thus
∣∣(b0,2, b1,1, b2,0) · V

∣∣

≤ |c1||w1 · V | + |c2||w2 · V | + |c3||w3 · V |
≤ (
c2

1 + c2
2 + c2

3

)1/2(|w1 · V |2 + |w2 · V |2 + |w3 · V |2)1/2

≤ C

t1+α
√
Eε,hyp ≤ 1

εα

C

t

√
Eε,hyp

since t ≥ ε.
The homogeneous part of degree 1 has a proper decomposition w.r.t. ∂τP :

b1,0(t)τ + b0,1(t)ξ = c1,1(t)
(
τ − λ2(t)ξ

)+ c1,2(t)
(
τ − λ1(t)ξ

)

with, by (16.32),

t1+2α
∣∣c1,1(t)

∣∣, t1+2α
∣∣c1,2(t)

∣∣ ∈ L∞,

where λ1(t) and λ2(t) are the roots of the normalized derivative of P :

P (1)(t; τ, ξ) = 1

3
∂τP (t; τ, ξ)= τ 2 − 2

3
a1(t)τξ − 1

3
a2(t)ξ

2

= (
τ − λ1(t)ξ

)(
τ − λ2(t)ξ

)
.

Now, since

τ1(t)≤ λ1(t)≤ τ2(t)≤ λ2(t)≤ τ3(t)



364 G. Taglialatela

we see that τ − λ1(t)ξ and τ − λ2(t)ξ are convex combinations of the τ − τj (t)ξ .
Thus

b1,0(t)τ + b0,1(t)ξ = c̃1(t)
(
τ − τ1(t)ξ

)+ c̃2(t)
(
τ − τ2(t)ξ

)+ c̃3(t)
(
τ − τ3(t)ξ

)

with

t1+2α
∣∣c̃1(t)

∣∣, t1+2α
∣∣c̃2(t)

∣∣, t1+2α
∣∣c̃3(t)

∣∣ ∈ L∞.

This gives

(b1,0, b0,1,0)= c̃1w1,1 + c̃2w1,2 + c̃3w1,3,

where w1,j is the j -th row of W1. Thus

|ξ |−1
∣
∣(b1,0, b0,1,0) · V

∣
∣

≤ |ξ |−1(|c̃1||w1,1 · V | + |c̃2||w1,2 · V | + |c̃3||w1,3 · V |)

≤ |ξ |−1(c̃1
2 + c̃2

2 + c̃3
2)1/2(|w1,1 · V |2 + |w1,2 · V |2 + |w1,3 · V |2)1/2

≤ C

ε|ξ |t1+2α

√
Eε,hyp ≤ 1

ε1+2α|ξ |
C

t

√
Eε,hyp

since t ≥ ε.
Finally, we get

Eε,hyp(t2)≤ exp

[(
1

εα
+ 1

ε1+2α|ξ |
)∫ T

−T
1

t
dt + ε|ξ |

]
Eε,hyp(t1).

Choosing

ε := |ξ |−1/(α+1)

we get

Eε,hyp(t2)≤ exp
(|ξ |α/(α+1) log |ξ |)Eε,hyp(t1),

which gives, together with (16.34), the estimates (16.5).

Appendix: Maple® Code Used to Check Condition (16.23)

Here is a simple Maple® code which is used to check condition (16.23) for the
operator L1 (the lines ending with a backslash are broken to fit the page size).
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with(linalg,LinearAlgebra):

m:=10;
a[1]:=0 ; a[2]:=10 ; a[3]:=0 ;
a[4]:=-33 + 4*tˆ2 ; a[5]:=2 + 2*tˆ2 ;
a[6]:=40 - 20*tˆ2 ; a[7]:=-10 - 8*tˆ2 ;
a[8]:=-16 + 20*tˆ2 ; a[9]:=8 + tˆ2 ; a[10]:=-1 ;

P := tau -> tauˆm-sum(’a[k]*tauˆ(10-k)’,’k’=1..m);

Q := -BezoutMatrix(P(tau),diff(P(tau),tau),tau, \
method=symmetric, \
methodoptions=increasing_degree));

for k from 1 to m do
det(submatrix(Q,k..m,k..m));

end do;

psi := 1/2*trace(evalm(map(D,Q) \
&* map(D,adjoint(Q))));
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Chapter 17
Thermo-elasticity for Anisotropic Media
in Higher Dimensions

Jens Wirth

Abstract In this paper we develop tools to study the Cauchy problem for the sys-
tem of thermo-elasticity in higher dimensions. The theory is developed for general
homogeneous anisotropic media under non-degeneracy conditions. For degenerate
cases a method of treatment is sketched and for the cases of cubic media and hexag-
onal media detailed studies are provided.

Mathematics Subject Classification 35B40 · 35B45 · 35Q72 · 74F05 · 74E10

17.1 Introduction

While isotropic thermo-elasticity is a well-known and well-established subject (see,
e.g., the book of Jiang–Racke [7] and references therein) only very few results are
available for the case of anisotropic media. Among them are the theses of Borken-
stein [2] for cubic media and Doll [4] for the case of rhombic media together with
the authors treatments [16, 23], all in two space dimensions.

In this paper the system of anisotropic thermo-elasticity in three (and more) di-
mensions, i.e.,

Utt +A(D)U + γ∇θ = 0, (1a)

θt − κΔθ + γ∇ ·Ut = 0 (1b)

for the elastic displacement U(t, ·) : Rn → R
n and temperature difference θ(t, ·) :

R
n →R to the equilibrium state, will be considered. The system (1a) and (1b) cou-

ples the hyperbolic elasticity equation with the parabolic heat equation. The operator
A(D) describes the elastic properties of the underlying medium, while κ denotes its
thermal conductibility. The constant γ describes the thermo-elastic coupling. Basic
assumptions of our theory are κ > 0, γ 2 > 0 together with
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• A(ξ)= |ξ |2A(η), η= ξ/|ξ |, is a 2-homogeneous matrix-valued symbol;
• A : Sn−1 →R

n×n is a real-analytic function of η ∈ S
n−1, n≥ 3;

• A(η)=A∗(η) > 0 is self-adjoint and positive.

In general we can not assume that A(η) is non-degenerate in the sense that
# specA(η) = n for all η ∈ S

n−1 (as done for the two-dimensional case in [16]).
All basic examples show degeneracies in dimensions n≥ 3.

Example 1 Isotropic media

A(η)= μI + (λ+μ)η⊗ η (2)

with Lamé constants λ and μ. The matrix A(η) is positive as long as μ > 0 and
λ > −2μ. The eigenvectors of A(η) are multiples of η and η⊥ and thus invariant
under rotations of frequency space.

Example 2 Cubic media

A(η)=

⎛

⎜⎜⎜⎜
⎝

(τ −μ)η2
1 +μ (λ+μ)η1η2 · · · (λ+μ)η1ηn

(λ+μ)η1η2 (τ −μ)η2
2 +μ

...
...

. . .
...

(λ+μ)η1ηn · · · · · · (τ −μ)η2
n +μ

⎞

⎟⎟⎟⎟
⎠

(3)

described by parameters λ, μ and τ . Later we will describe the assumptions made
on these parameters and the resulting spectral properties of the matrix functionA(η)
more precisely. In the case of three space dimensions, the matrix A(η) is positive if
and only if μ > 0, τ > 0 together with −2μ− τ/2< λ < τ . In three space dimen-
sions this will be one of our main examples.

Example 3 We can replace the constant τ on the diagonal by τ1, . . . , τn in (3). This
yields so-called rhombic media. The behaviour of rhombic media is close to that
of cubic media if the parameters are of similar size, in general there will appear
exceptional situations. See, e.g., [23] or [25] for a discussion of this effect in two
space dimensions.

Example 4 Hexagonal media are another particularly interesting case for three
space dimensions. Since we want to come back to them later on we introduce the
corresponding operator. It is given by

A(η)= D(η)T CD(η), (4)

where C contains the 5 structure constants τ1, τ2, λ1, λ2 and μ and D(η) is of a
particular form,
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C =

⎛

⎜⎜⎜⎜⎜⎜
⎝

τ1 λ1 λ2
λ1 τ1 λ2
λ2 λ2 τ2

μ

μ
τ1−λ1

2

⎞

⎟⎟⎟⎟⎟⎟
⎠

, D(η)=

⎛

⎜⎜⎜⎜⎜⎜
⎝

η1
η2

η3
η3 η2

η3 η1
η2 η1

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (5)

Even the first (non-trivial) anisotropic example, the case of cubic media in three
space dimensions, has degenerate directions in which A(η) has double eigenvalues.
Later on we will analyse this example in detail.

Definition 1 We call a direction η ∈ S
n−1 (elastically) non-degenerate if

# specA(η)= n (6)

holds true for this direction η.

The set of non-degenerate directions is an open subset of S
n−1. For non-

degenerate directions the treatment of [16] transfers almost immediately and gives
a representation of solutions. We will sketch the results in Sect. 17.2. In Sect. 17.3
we consider special degenerate directions and discuss the examples of cubic and
hexagonal media. Dispersive estimates for solutions are given in Sect. 17.4. In the
neighbourhood of degenerate directions they are essentially based on estimates de-
veloped by Liess [1, 10, 12] for the treatment of anisotropic acoustic equations.

Hyperbolic equations of higher order and systems were treated by Ruzhansky and
Smith, [19]. Their micro-local decay estimates are related to our results, although
the thermo-elastic coupling helps to simplify the proofs of decay estimates in our
case.

17.2 Treatment of Non-degenerate Directions

For the following we consider a simply connected open subset U of Sn−1, where the
symbol A(η) has n distinct (and real) eigenvalues. We denote these eigenvalues in
ascending order as

0< κ1(η) < κ2(η) < · · ·< κn(η). (7)

By analytic perturbation theory, see [8], we know that these eigenvalues are real-
analytic and that we find corresponding normalised eigenvectors

r1(η), . . . , rn(η) ∈ C∞(
U ,Sn−1) (8)

depending analytically on η ∈ U . Collecting them in the unitary matrix
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M(η)= (
r1(η)|r2(η)| · · · |rn(η)

)
, (9)

M∗(η)M(η)= I =M(η)M∗(η), (10)

we can diagonalise the matrix A(η)

A(η)M(η)=M(η)D(η), (11)

D(η)= diag
(
κ1(η),κ2(η), . . . ,κn(η)

)
. (12)

In our treatment we will not make use of analyticity directly, instead our use of
perturbation theory will be based on [6] und [24] and uses only smooth dependence.
This will be of interest for generalisations later on. Therefore, whenever we use
analyticity, we will explicitly state that.

We use M(η) to reduce the thermo-elastic system to a system of first order. For
this we denote by Û and θ̂ the partial Fourier transforms of U and θ with respect to
the spatial variables and consider

V =
⎛

⎝
(Dt +D1/2(ξ))M∗(η)Û
(Dt −D1/2(ξ))M∗(η)Û

θ̂

⎞

⎠ ∈C
2n+1, (13)

as usual Dt = −i∂t and η = ξ/|ξ |. Then V satisfies a first order system of ordinary
differential equations, which has an apparently simple structure. Straightforward
calculation shows that

DtV = B(ξ)V (14)

holds true with coefficient matrix

B(t, ξ)=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

ω1(ξ) iγ a1(ξ)

ω2(ξ) iγ a2(ξ)

. . .
...

−ω1(ξ) iγ a1(ξ)

−ω2(ξ) iγ a2(ξ)

. . .
...

iγ
2 a1(ξ)

iγ
2 a2(ξ) · · · iγ

2 a1(ξ)
iγ
2 a2(ξ) · · · iκ|ξ |2

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

, (15)

where ωj (ξ)=
√
κj (ξ) ∈ C∞(U ,R+) and

aj (ξ)= rj (η) · ξ. (16)

Following the conventions of [16] we denote these functions aj (ξ) as the coupling
functions of the thermo-elastic system associated to the elastic operator A(D). They
play a prominent rôle for the description of the time-asymptotic behaviour of solu-
tions. This reflects the fact that they couple the homogeneous first order entries in
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B(ξ) with the second order lower right corner entry. Note, that

n∑

j=1

a2
j (η)= 1. (17)

Zeros of the coupling functions are of particular importance. Following Definition 1
in [16] we define:

Definition 2 A non-degenerate direction η ∈ S
n−1 is called

• hyperbolic if one of the coupling functions vanishes; more precisely, it is called
hyperbolic with respect to the eigenvalue κj (η) if aj (η)= 0;

• parabolic if all coupling functions are non-zero.

In the anisotropic case the set of hyperbolic directions is (generically1) a lower
dimensional subset of Sn−1. In order to decide whether a direction is hyperbolic or
parabolic we can employ the following proposition. We denote for a matrix A and a
vector η by

Z(A,η)= span
{
Akη|k = 0,1, . . .

}
(18)

the corresponding cyclic subspace, i.e. the span of the trajectory of η under the
action of the matrix A.

Proposition 1 The following statements are equivalent:

1. The cyclic subspace of η has dimension n− k, i.e., dimZ(A(η), η)= n− k.
2. Exactly k of the coupling functions vanish in η.

Hence, a non-degenerate direction η ∈ S
n−1 is parabolic if and only if Z(A(η), η)=

R
n and therefore

det
(
η|A(η)η| · · · |An−1(η)η

) �= 0. (19)

Proof If we represent η in the eigenbasis of A(η) we obtain

η= a1(η)r1(η)+ · · · + an(η)rn(η) (20)

and therefore

A$(η)η= κ
$
1(η)a1(η)r1(η)+ · · · +κ

$
n(η)an(η)rn(η). (21)

If k of the coupling functions vanish, then An−k(η)η must be in the span of the
A$(η)η with $ = 0,1, . . . , n − k − 1 and thus the cyclic subspace is at most of

1If not, by analyticity it follows that one coupling function vanishes on U and the system is there-
fore decoupled. This case is reduced to the study of the lower dimensional blocks, one is a hyper-
bolic system the other one a thermo-elastic system of lower dimension. This is, e.g., the case for
hexagonal media, see Sect. 17.3.4.
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dimension n − k. On the other hand, the first n − k vectors in the trajectory are
linearly independent since the corresponding matrix in the basis representation with
respect to a1(η)r1(η), . . . , an(η)rn(η) is just the van der Monde matrix associated
to the eigenvalues of A(η) for non-vanishing coupling functions and therefore reg-
ular. �

17.2.1 On the Characteristic Polynomial of the Full Symbol

At first we collect some of the spectral properties of the matrix B(ξ) which are
directly related to the characteristic polynomial of B(ξ).

Proposition 2 The following identities hold true:

trB(ξ) = iκ|ξ |2, (22)

detB(ξ) = iκ|ξ |2 detA(ξ), (23)

det
(
ν −B(ξ)

) = (
ν − iκ|ξ |2)

n∏

j=1

(
ν2 −κj (ξ)

)

− νγ 2
n∑

j=1

a2
j (ξ)

∏

k �=j

(
ν2 −κk(ξ)

)
. (24)

Furthermore, the matrix B(ξ) has a purely real eigenvalue for ξ �= 0 if and only if
the direction η= ξ/|ξ | is hyperbolic. If it is j -hyperbolic, then ±ωj (ξ) ∈ specB(ξ).

The proof of the last fact is fairly straightforward and consists of separating real
and imaginary parts of the characteristic polynomial. Note that for all parabolic di-
rections we can divide the characteristic polynomial by ν

∏
j (ν

2 −κj (ξ)) to obtain

1 = iκ|ξ |2
ν

+ γ 2
n∑

j=1

a2
j (ξ)

ν2 −κj (ξ)
. (25)

This formulation allows to consider the neighbourhoods of hyperbolic directions.
Assume for this that the set of hyperbolic directions with respect to κj (η)

Mj = {
η ∈ U |aj (η)= rj (η) · η= 0

}
(26)

is a regular submanifold of U . If we consider the corresponding hyperbolic eigen-
values ν±

j (ξ) of B(ξ) in a neighbourhood of Mj , i.e. the eigenvalues which satisfy

lim
η→Mj

ν±
j (ξ)= ±ωj (ξ) (27)
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for fixed |ξ |, (25) gives a precise description of the behaviour of the imaginary part
of these eigenvalues. The proof is a straightforward generalisation from Proposi-
tion 2.2 in [16].

Proposition 3 The non-tangential limit

lim
η→Mj

a2
j (ξ)

ν±
j (ξ)

2 −κj (ξ)
= 1 ∓ iκ|ξ |2

ωj (ξ)
− γ 2

∑

k �=j

a2
k (ξ)

κj (ξ)−κk(ξ)

= γ 2(Cη̄ ∓ iDη̄|ξ |
)

(28)

exists and is non-zero for all ξ �= 0. Furthermore,

lim
η→Mj

Imν±
j (ξ)

a2
j (η)

= Dη̄|ξ |2
2ωj (η̄)(C2

η̄ + |ξ |2D2
η̄)
> 0. (29)

17.2.2 Asymptotic Expansion of the Eigenvalues as |ξ | → 0

We decompose B(ξ) into homogeneous components B(ξ)= B1(ξ)+ B2(ξ) of de-
gree 1 and 2, respectively. For sufficiently small |ξ | we expect the eigenvalues of
B(ξ) to be close to the eigenvalues of B1(ξ). For parabolic directions the (non-zero)
eigenvalues of B1(η) can be determined from the equation

1

γ 2
=

n∑

j=1

a2
j (η)

ν̃2 −κj (η)
, (30)

which follows directly from (25) with κ = 0. It can be solved (e.g. graphically,
see Fig. 17.1 for n = 3) to obtain the distinct eigenvalues 0,±ν̃1(η), . . . ,±ν̃n(η)
ordered as

0<ω1(η) < ν̃1(η) < ω2(η) < ν̃2(η) < · · ·<ωn(η) < ν̃n(η). (31)

For hyperbolic directions a similar result holds true. In the case of hyperbolic
directions w.r.to κj (η) eigenvalues move to ωj (η). According to the choice of the
coupling constant γ different cases occur:

1. if 1
γ 2 is large then ν̃j (η)= ωj (η), the other inequalities are unchanged;

2. if 1
γ 2 is small then ν̃j−1(η)= ωj (η) and the other inequalities remain true.

The critical threshold between these two cases is

1

γ 2
=
∑

k �=j

a2
k (η)

κj (η)−κk(η)
, (32)
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Fig. 17.1 Non-zero eigenvalues of B1(ξ) for parabolic directions

where B1(η) has the double eigenvalue ν̃j−1(η) = ωj (η) = ν̃j (η). Following the
conventions from [16] we define:

Definition 3 We denote a hyperbolic direction w.r.to κj (η) as γ -degenerate if (32)
holds true.

For the following treatment we exclude γ -degenerate hyperbolic directions and
assume instead that for all hyperbolic directions in U condition (32) is not satisfied
for the corresponding index j . Then the following statement is apparent.

Proposition 4 Let η be not γ -degenerate. Then the matrix B1(η) has 2n+1 distinct
real eigenvalues 0,±ν̃1, . . . ,±ν̃n for all η ∈ U .

Proposition 4 allows to apply the standard diagonalisation scheme (see Sect. 2.1
in [6]) to B(ξ)= B1(ξ)+B2(ξ) as ξ → 0. Hence, eigenvalues, eigenprojections and
all their derivatives have full asymptotic expansions as ξ → 0. The proof is almost
identical to that from Proposition 2.5 in [16] and is omitted.

Proposition 5 For all not γ -degenerate directions η = ξ/|ξ | ∈ U the eigenvalues
and eigenprojections of B(ξ) have full asymptotic expansions as ξ → 0. The main
terms are given by

ν0(ξ) = iκ|ξ |2b0(η)+O
(|ξ |3) (33a)

ν±
j (ξ) = ±|ξ |ν̃j (η)+ iκ|ξ |2bj (η)+O

(|ξ |3) (33b)
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with

b0(η)=
(

1 + γ 2
n∑

k=1

a2
k (η)

κk(η)

)−1

> 0 (34a)

and

bj (η)=
(

1 + γ 2
n∑

k=1

a2
k (η)

ν̃2
j (η)+κk(η)

(ν̃2
j (η)−κk(η))2

)−1

≥ 0. (34b)

Furthermore, bj (η)= 0 if and only if η is hyperbolic with respect to the eigenvalue
κj (η).

Remark 1 Note, that trB(ξ)= iκ|ξ |2 implies

b0(η)+ 2
n∑

j=1

bj (η)= 1. (35)

Recall that by Proposition 2 eigenvalues of B(ξ) can only be real along hyper-
bolic directions (and then they are exactly the ‘trivial’ real eigenvalues). In combi-
nation with the fact that eigenvalues of B(ξ) are continuous in ξ we obtain:

Corollary 1 For all parabolic directions η= ξ/|ξ | ∈ U we have Imν±
j (ξ) > 0. The

same is true as long as η is not hyperbolic w.r.to κj (η).

17.2.3 Asymptotic Expansion of the Eigenvalues as |ξ | → ∞

In this case the two-step procedure developed in Sect. 2.2 in [6], Proposition 2.6
in [16] applies in analogy. Essential assumption is the non-degeneracy of A(η). We
omit the proof and cite the corresponding result only.

Proposition 6 For all non-degenerate directions the eigenvalues and eigenprojec-
tions of the matrix B(ξ) have full asymptotic expansions as |ξ | → ∞. The first terms
are given by

ν0(ξ) = iκ|ξ |2 − iγ

κ
+O

(|ξ |−1), (36a)

ν±
j (ξ) = ±|ξ |ωj (η)+ iγ 2

2κ
a2
j (η)+O

(|ξ |−1). (36b)

Remark 2 We make a short notational remark. We use the same notation for de-
scriptions of eigenvalues as ξ → 0 and |ξ | → ∞; this notation is consistent in a
neighbourhood of infinity and also of 0. There might be obstructions to define such
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functions globally in ξ ∈ R
n. As we will only use (micro-) localised arguments later

on we will not make this more precise and prefer a more suggestive notation.

Corollary 2 For all parabolic directions η = ξ/|ξ | the eigenvalues of B(ξ) satisfy
Imν(η)≥ Cη > 0 for |ξ | ≥ c. The same is true for parabolic eigenvalues in hyper-
bolic directions.

Remark 3 In particular, we see by the asymptotic expansions that the eigenvalues
of B(ξ) are simple for large and also for small values of |ξ |. Furthermore, we see
that the hyperbolic eigenvalues are always separated (i.e. if multiplicities occur in
hyperbolic directions, they involve only parabolic eigenvalues).

17.2.4 Behaviour of the Imaginary Part

The asymptotic expansions of Propositions 5 and 6 allow to draw conclusions for
the behaviour of the imaginary part. We collect them for later use. The first result is
apparent.

Proposition 7 On any compact set of parabolic directions we have the uniform
estimates

Imν(±)j (ξ) ≥ Cε for all |ξ | ≥ ε, (37)

Imν(±)j (ξ) ∼ bj (η)|ξ |2 for all |ξ | ≤ ε (38)

for all eigenvalues of B(ξ) and arbitrary ε > 0.

The next statement is concerned with a tubular neighbourhood of a compact sub-
set of a regular submanifold Mj of hyperbolic eigenvalues w.r.to κj (η). It is only
of interest how the corresponding hyperbolic eigenvalues ν±

j (ξ) behave, the others
still satisfy Proposition 7.

Proposition 8 Uniformly on any tubular neighbourhood of a compact subset of
Mj of not γ -degenerate directions the corresponding hyperbolic eigenvalues ν±

j (ξ)

satisfy the estimates

Imν±
j (ξ) ∼ a2

j (η) for all |ξ | ≥ ε, (39)

Imν±
j (ξ) ∼ bj (η)|ξ |2 for all |ξ | ≤ ε. (40)

Proof By Proposition 3 we know that

Imν±
j (ξ)= a2

j (ξ)K(ξ) (41)
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for some function K(ξ). Our aim is to estimate K(ξ). The left hand of this formula
has a full asymptotic expansion as |ξ | → 0 and |ξ | → ∞. Therefore, also the right
hand side has one and it follows that

K(ξ) = γ 2

2κ
+O

(|ξ |−1), |ξ | → ∞, (42a)

K(ξ) = κ|ξ |2 bj (η)
a2
j (η)

+O
(|ξ |3), |ξ | → 0. (42b)

Thus, the desired estimate follows by a compactness argument as soon as we have a
uniform lower/upper bound for bj (η)/a2

j (η). The representation of bj (η) in Propo-
sition 5 in combination with (30) implies

lim
η→Mj

a2
j (η)

bj (η)
= lim
η→Mj

γ 2(ν̃2
j +κj (η)

) a4
j (η)

(ν̃2
j −κj (η))2

+ lim
η→Mj

a2
j (η)

(
1 + γ 2

∑

k �=j
a2
k (η)

ν̃2
j +κk(η)

(ν̃2
j −κk(η))2

)

= 2γ 2
κj (η̄)

(
1 − γ 2

∑

j �=k

a2
k (η̄)

κj (η̄)−κk(η̄)

)2

, (43)

which is clearly bounded and (uniformly) positive on any compact subset of Mj

(where we have to use that η̄ ∈Mj is not γ -degenerate). �

17.2.5 Conclusions

We will draw several conclusions from what we have obtained so far and on what
we still have to consider in the remaining part of this paper.

17.2.5.1 Cubic Media in 3D

If we consider the special case of cubic media in three space dimensions degener-
ate directions are given by η̄ = (η̄1, η̄2, η̄3)

T with η̄2
1 = η̄2

2 = η̄2
3 (eight directions,

corresponding to the corners of a cube) or η̄2
i = 1 for some i (six directions, cor-

responding to its faces). This can be calculated directly, corresponding eigenspaces
are span{η̄} and η̄⊥ = {ξ ∈ R

n|η̄ · ξ = 0}, or concluded by the cubic symmetry2 of
A(ξ) in this particular case. See Fig. 17.2.

2A(ξ) is invariant under the hexaeder group, i.e. the symmetry group of a cube. Thus, eigenspaces
must be transferred in an appropriate way, which implies that symmetries of order 3 or 4 can only
be realised by higher dimensional eigenspaces.



378 J. Wirth

Fig. 17.2 Degenerate points
for cubic media correspond to
symmetries of a cube. Corner
points A are conic
singularities, midpoints of
faces B uniplanar
singularities of specA(η).
The midpoints of edges C are
non-degenerate, but
hyperbolic with respect to
two different eigenvalues

To obtain the hyperbolic directions we apply Proposition 1 and look for the action
A(η) on η. We obtain that

1. a direction η is hyperbolic if and only if

det
(
η|A(η)η|A2(η)η

)

= (τ − λ− 2μ)3η1η2η3
(
η2

1 − η2
2

)(
η2

1 − η2
3

)(
η2

2 − η2
3

)= 0, (44)

thus the set of hyperbolic directions is the union of nine great circles on S
2;

2. η||A(η)η for all 26 intersection points of these great circles, 14 of them are ex-
cluded as being degenerate.

Except for these 14 points on S
2 we obtained an almost complete description of

the spectrum of B(ξ). We know full asymptotic expansions of eigenvalues for small
and large frequencies |ξ |, estimates for the imaginary part of them and similar state-
ments for eigenprojections. This information allows to draw conclusions on the large
time behaviour of solutions, e.g. energy and dispersive estimates. This can be done
similarly to the treatment of [16], see Sect. 17.4. The remaining degenerate direc-
tions appear in two types, which can be interchanged by the action of the symmetry
group. The study of these degenerate directions is what is left open so far and will
be the main point of Sect. 17.3.

17.2.5.2 Isotropic Media

If we consider the special case of isotropic media, A(η) = μI + (λ + μ)η ⊗ η,
we see that specA(η) = {μ,λ + 2μ} and corresponding eigenspaces are span{η}
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(corresponding to λ + μ) and η⊥ (corresponding to μ). All directions are (elas-
tically) degenerate. However, we still find locally smooth systems of eigenvectors.
All directions are hyperbolic and the hyperbolic eigenvalue μ has multiplicity n−1.
Therefore the system DtV = B(ξ)V decouples into a diagonal part of size 2n− 2
and a full 3 × 3 block and is given after a rearrangement of the entries as

B(t, ξ)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√
μ|ξ |

. . .

−√
μ|ξ |

. . . √
λ+ 2μ|ξ | iγ |ξ |

−√
λ+ 2μ|ξ | iγ |ξ |

− iγ
2 |ξ | − iγ

2 |ξ | iκ|ξ |2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(45)

This block structure corresponds to the Helmholtz decomposition of vector fields
applied to the elastic displacement. If ∇ ·U(t, ·)= 0 the lower block gives no non-
trivial contribution and we obtain wave equations with speed

√
μ for the compo-

nents of U . Otherwise, if we cancel the upper block we obtain the 3 × 3 system
corresponding to one-dimensional thermo-elasticity with its well-known properties.

17.2.5.3 One-dimensional Thermo-elasticity

For completeness we mention some results on the one-dimensional system

utt − τ 2uxx + γ θx = 0, (46a)

θt − κθxx + γ utx = 0. (46b)

We assume γ, κ, τ > 0. Following our strategy we can rewrite this problem as a first
order system. The corresponding symbol B(ξ) is given by

B(ξ)=
⎛

⎝
τξ iγ ξ

−τξ iγ ξ
− i

2γ ξ − i
2γ ξ iκξ2

⎞

⎠ . (47)

Its eigenvalues satisfy asymptotic expansions for ξ → 0 and ξ → ±∞. Proposi-
tions 5 and 6 apply with ν̃± = ±√

τ 2 + γ 2 and

b0 = τ 2

τ 2 + γ 2
, b1 = 1

2

γ 2

τ 2 + γ 2
. (48)
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Therefore, by Proposition 5

ν0(ξ) = i
κτ 2

τ 2 + γ 2
ξ2 +O

(
ξ3), (49a)

ν±
1 (ξ) = ±

√
τ 2 + γ 2ξ + i

κγ 2

2(τ 2 + γ 2)
ξ2 +O

(
ξ3), (49b)

as ξ → 0 and by Proposition 6

ν0(ξ) = iκξ2 − i
γ

κ
+O

(
ξ−1), (49c)

ν±
1 (ξ) = ±τξ + i

γ 2

2κ
+O

(
ξ−1), (49d)

as ξ → ∞. The essential information for large time estimates is given by the be-
haviour of the imaginary part. It follows that Im ν(ξ) > Cε for |ξ | ≥ ε for certain
constants and

Imν0(ξ)∼ κτ 2

τ 2 + γ 2
ξ2, Imν±

1 (ξ)∼
κγ 2

2(τ 2 + γ 2)
ξ2, ξ → 0. (50)

17.2.5.4 Hexagonal Media in 3D

For hexagonal media in three space dimensions the situation is (surprisingly) sim-
pler than for cubic media. The elastic operator defined by (4)–(5) is invariant under
rotation around the x3-axis (taking into account a corresponding rotation of the ref-
erence frame for vectors) and therefore it suffices to understand its cross sections in
the x1–x2 plane. We will sketch some of the properties of the corresponding symbol
A(η).

Following Proposition 1 we obtain

1. that

det
(
η|A(η)η|A2(η)η

)= 0, (51)

such that all directions η ∈ S
2 are hyperbolic. The corresponding eigenspace is

(generically) given by multiples of (η2,−η1,0) such that the hyperbolic eigen-
value is

τ1 − λ1

2

(
η2

1 + η2
2

)+μη2
3. (52)

2. It remains to look for directions with two hyperbolic eigenvalues. They satisfy
η||A(η). This is true, if η3 = 0 or if η1 = η2 = 0 or if

η2
3 = λ2 + 2μ− τ1

2λ2 + 4μ+ τ1 − τ2
, (53)
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provided the latter expression is non-negative. Except in the limiting case τ1 =
λ2 + 2μ, the coupling functions vanish to first order along the corresponding
circle. If τ1 = τ2 = λ2 + 2μ all directions are hyperbolic with two hyperbolic
eigenvalues and if τ1 = λ2 + 2μ �= τ2 coupling functions vanish to third or-
der.

3. The matricesA(η) are invariant under rotation. Introducing spherical coordinates
on S

2

η=
⎛

⎝
1
0
0

⎞

⎠ cosφ cosψ +
⎛

⎝
0
1
0

⎞

⎠ sinφ cosψ +
⎛

⎝
0
0
1

⎞

⎠ sinψ (54)

and using a corresponding (moving) basis for vectors given by

±1
√
η2

1 + η2
2

⎛

⎝
η2

−η1
0

⎞

⎠ , η,
±η3√
1 − η2

3

⎛

⎜
⎝

η1
η2

− η2
1+η2

2
η3

⎞

⎟
⎠ (55)

(sign chosen to make them smoothly dependent on η �= ±(0,0,1)0) decom-
poses A(η) into (1,2)-block-diagonal structure (independent of the co-ordinate
φ). The scalar block corresponds to the eigenvalue (52), while the 2 × 2 block
has trace μ+ τ1 cos2ψ + τ2 sin2ψ and determinant μτ1 cos4ψ + μτ2 sin4ψ +
τ1τ2−2λ2−λ2

2
4 sin2 2ψ .

If (τ1 − μ)(τ2 − μ) �= 0, the 2 × 2 block has distinct eigenvalues for all ψ and
therefore the only degenerate directions are directions where this block has (52) as
one of its eigenvalues. This happens if and only if the right hand side of (53) is
non-negative and on the circle defined by that equation.

Thus, the previously developed theory is applicable for all directions except the
degenerate ones η1 = η2 = 0 or (53). The always existent hyperbolic eigenvalue
(52) leads to a decoupling of the thermo-elastic system into two scalar blocks and a
(at least formally) 2D thermo-elastic system.

Due to rotational invariance, it suffices to treat the cut η1 = 0 for handling of
degenerate directions. This will be sketched later.

17.3 Some Special Degenerate Directions

We want to study neighbourhoods of degenerate directions for some particular cases.
To study degenerate directions in full generality is beyond the scope of this paper.
We relate our approach to the type of singularity of the corresponding Fresnel sur-
face

S = {
ξ ∈R

n|1 ∈ specA(ξ)
}
. (56)
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This surface is in general n-sheeted and for all non-degenerate directions these
sheets are given by

Sj = {
ξ ∈R

n non-degenerate|ωj (ξ)= 1
}

= {
ω−1
j (η)η|η ∈ S

n−1 non-degenerate
}
, (57)

while in degenerate points the surface is self-intersecting. For the importance of
these surfaces in elasticity theory and some interesting properties of them we refer
to Duff [5] or the investigations from Musgrave [14, 15] and Miller–Musgrave [13].

We remark only one of the general properties of S here. If A(ξ) is polynomial
in ξ then the surface S is algebraic of degree 2n and therefore any straight line
intersecting S has at most 2n intersection points with S . In particular, if the inner
sheet Sn does not touch any of the outer sheets, it has to be strictly convex.

17.3.1 General Strategy

If we investigate isolated degenerate directions or regular manifolds of degenerate
directions of codimension greater than one we are faced with two major obstacles.
Generically, eigenvectors of A(η) can not be chosen continuously in a neighbour-
hood of the degenerate direction and therefore a reformulation as system of first
order as in (13) is problematic. This problem is related to higher-dimensional per-
turbation theory of matrices. It is well-known that in the one-dimensional situation
eigenspaces are continuous (see, e.g., the book of Kato, [8]) and it can be resolved by
introducing polar co-ordinates/normal co-ordinates around the degenerate directions
and a system related to (13) can be formulated on a corresponding blown-up space
(see, e.g., (65) below). A second obstacle are the multiplicities itself. Eigenvalues
and eigenvectors of the constructed system of first order do not possess asymptotic
expansions in powers of |ξ | as |ξ | tends to 0 or ∞. However, especially in the three-
dimensional setting we can write full asymptotic expansions in the distance to the
degeneracy uniform in all remaining co-ordinates.

We will discuss the application of this general strategy in detail for conic sin-
gularities of the Fresnel surface appearing for the case of cubic media and give the
corresponding results for uniplanar singularities afterwards. Finally we will consider
hexagonal media and show that they are much simpler in their analytical structure.
See Fig. 17.3 to get an impression of the generic shape of cubic and hexagonal
Fresnel surfaces. Cuts of cubic Fresnel surfaces are also depicted in Fig. 17.4.

17.3.2 Cubic Media, Conic Singularities

The Fresnel surface for cubic media has eight conic singularities which are related
by the symmetries of the underlying medium. It suffices to consider one of them
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Fig. 17.3 A cut through the Fresnel surfaces for examples of a cubic and a hexagonal medium.
The material parameter are λ= 1, τ = 4 and μ= 1 for the picture on the top (cubic) and λ1 = 1,
λ2 = 1

5 , τ1 = 4, τ2 = 1 and μ= 3 for the picture on the bottom (hexagonal)
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Fig. 17.4 Cuts of the Fresnel surface for cubic media; on the top in the plane η3 = 0, on the bottom
for η1 = η2. The parameters are chosen as τ = 8, λ= 2 and μ= 2

and we choose η̄ = 1√
3
(1,1,1)T ∈ S

2. Near this direction we introduce polar co-

ordinates (ε,φ) on the sphere S
2 by

η=
⎛

⎝
η1
η2
η3

⎞

⎠=
√

1 − ε2 1√
3

⎛

⎝
1
1
1

⎞

⎠+ ε
1√
6

⎛

⎝
−1
−1
2

⎞

⎠ cosφ + ε
1√
2

⎛

⎝
1

−1
0

⎞

⎠ sinφ. (58)

They allow to blow up the singularity by looking at [0,∞)× S
1 instead of R2 as

local model of S2. In order to simplify notation, we apply a diagonaliser M̃ of A(η̄)
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to our matrices. For this we choose the unitary matrix

M̃ = 1√
6

⎛

⎝

√
2 −1

√
3√

2 −1 −√
3√

2 2 0

⎞

⎠ (59)

(corresponding to the vectors chosen already in (58)). The matrix M̃−1A(η)M̃ has
a full asymptotic expansion as ε → 0 and can be written as

M̃−1A(ε,φ)M̃ =A0 + εA1(φ)+O
(
ε2), ε → 0 (60)

with matrices

A0 = diag

(
τ + 2λ+ 4μ

3
,
τ +μ− λ

3
,
τ +μ− λ

3

)
, (61a)

A1(φ) = 2τ −μ+ λ

3

⎛

⎝
cosφ sinφ

cosφ
sinφ

⎞

⎠

+
√

2(−τ + 2μ+ λ)

3

⎛

⎝
0

− cosφ sinφ
sinφ cosφ

⎞

⎠ . (61b)

Now we can apply the block-diagonalisation procedure (again following Sect. 2.2 in
[6]) to obtain the behaviour of eigenvalues and eigenprojections of M̃−1A(ε,φ)M̃

as ε → 0 for all φ. We restrict consideration to the case where λ+μ �= 0, such that
A0 has two different eigenvalues.

Proposition 9 The eigenvalues κj (ε,φ) and the corresponding eigenprojections of
A(ε,φ) have uniformly in φ full asymptotic expansions as ε → 0. The main terms
are given by

κ1(ε,φ) = τ + 2λ+ 4μ

3
+O

(
ε2), (62a)

κ2(ε,φ) = τ +μ− λ

3
+

√
2(−τ + 2μ+ λ)

3
ε +O

(
ε2), (62b)

κ3(ε,φ) = τ +μ− λ

3
−

√
2(−τ + 2μ+ λ)

3
ε +O

(
ε2). (62c)

Remark 4 The exceptional case when τ = λ+ 2μ corresponds to isotropic media
and is therefore excluded. In all other cases the two sheets ω2(η) = √

κ2(η) and
ω3(η)= √

κ3(η) form a double cone on the Fresnel surface S. Hence, the statement
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explains the notion of conical singularity. Note, that the linear terms are indepen-
dent of φ and therefore the cone is approximately a spherical cone near the conic
point.

Proof of Proposition 9 We will only shortly review the main steps. First we (1,2)-
block-diagonalise M̃−1A(ε,φ)M̃ (modulo O(εN) for any N we like). The diago-
naliser we are going to construct has the form I +εN(1)

1 (φ)+· · ·+εN−1N
(N−1)
1 (φ)

and as in Sect. 2.2 in [6] its terms are given by recursion formulae. For N(1)
1 we di-

vide the off-(block-)diagonal terms of A1 by the difference of the corresponding
diagonal entries of A0. This gives as first term

N
(1)
1 (φ)= 2τ −μ+ λ

3(λ+μ)

⎛

⎝
cosφ sinφ

− cosφ
− sinφ

⎞

⎠ (63)

and allows to cancel the off-(block-)diagonal entries of A1. We skip the further
construction and move to the next step. Since the lower 2 × 2 block of b-diag1,2A1
has distinct eigenvalues (namely ±1) we can now perform a diagonalisation scheme
in the subspace corresponding to this block (modulo O(εN)). Again we restrict
ourselves to the main terms. A unitary diagonaliser of the 2×2-block can be chosen
as the unitary matrix

M̃2(φ)=
⎛

⎜
⎝

1
sin φ

2 cos φ2
cos φ2 − sin φ

2

⎞

⎟
⎠ . (64)

After transforming with that matrix we apply the recursive scheme to diagonalise
further. Note that after applying M̃2(φ) the matrix is diagonal modulo O(ε2) and
therefore, M̃(I + εN

(1)
1 (φ))M̃2(φ) = M0(φ) + εM1(φ) + O(ε2) determines the

main terms of a diagonaliser of the matrix A(ε,φ) and we can deduce the state-
ments about the eigenvalue asymptotics. �

17.3.2.1 System Formulation

Let M(ε,φ) be the diagonaliser of A(ε,φ) constructed in Proposition 9. Then we
consider

V
(
t, ε,φ, |ξ |)=

⎛

⎝
(Dt + |ξ |D1/2(ε,φ))M−1(ε,φ)Û(t, ξ)

(Dt − |ξ |D1/2(ε,φ))M−1(ε,φ)Û(t, ξ)

θ̂

⎞

⎠ ∈ C
7, (65)

with ξ = |ξ |η(ε,φ) and D1/2(ε,φ) = diag(ω1(ε,φ), . . .) the diagonal matrix con-
taining the square roots ωj (ε,φ) = √

κj (ε,φ) of the eigenvalues of A(ε,φ). The
vector V satisfies the first order system DtV = B(ε,φ, |ξ |)V with B(ε,φ, |ξ |) =
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B1(ε,φ)|ξ | +B2|ξ |2 given by

B1(ε,φ)

=

⎛

⎜⎜⎜⎜⎜
⎝

ω1(ε,φ) iγ a1(ε,φ)

ω2(ε,φ) iγ a2(ε,φ)

. . .
...

−ω3(ε,φ) iγ a3(ε,φ)

− i
2γ a1(ε,φ) − i

2γ a2(ε,φ) · · · − i
2γ a3(ε,φ) 0

⎞

⎟⎟⎟⎟⎟
⎠

(66)

and B2 = diag(0, . . . ,0, iκ). The coupling functions aj (ε,φ) are the components
of the vector M−1(ε,φ)η. From Proposition 9 we know that they have asymptotic
expansions as ε → 0.

Remark 5

1. Since M−1(ε,φ) = M̃∗
2 (φ)(I − εN

(1)
1 (φ))M̃∗ + O(ε2) by our construction it

follows that

a1(ε,φ) = 1 +O
(
ε2), (67a)

a2(ε,φ) = ε
2(μ+ 2λ− τ)

3(λ+μ)
sin

3φ

2
+O

(
ε2), (67b)

a3(ε,φ) = ε
2(μ+ 2λ− τ)

3(λ+μ)
cos

3φ

2
+O

(
ε2). (67c)

We know that the coupling functions vanish along three great circles through η̄.
We see that the numbering of the eigenprojections is not consistent along the
circles. The coupling functions a2 and a3 vanish both in the degenerate direction.

2. Since we do not assume that M(ε,φ) is unitary the relation
∑

j a
2
j = 1 does

not hold for these coupling functions. However, M0(φ) is unitary and therefore∑
j a

2
j = 1 +O(ε) as already observed.

17.3.2.2 Real and Imaginary Parts of Eigenvalues

The coefficient matrix B(ε,φ, |ξ |) has the same structure as B(ξ) in Sect. 17.2.
Therefore, we can conclude similar statements on eigenvalues and their behaviour
by (a) investigating the characteristic polynomial and (b) block-diagonalising for
small and large |ξ |, respectively.

Proposition 10

1. trB(ε,φ, |ξ |)= iκ|ξ |2 and detB(ε,φ, |ξ |)= iκ|ξ |2 detA(ξ).
2. B(ε,φ, |ξ |) has purely real eigenvalues for |ξ | �= 0 if and only if the product
a2(ε,φ)a3(ε,φ)= 0 vanishes, i.e., ε = 0 or φ ∈ π

3 Z.

3. B(0, φ, |ξ |) has the real eigenvalues ±ω2,3(0, φ) =
√

3
3 (τ + μ − λ) and three

eigenvalues satisfying Imν ≥ C if |ξ | ≥ c and Imν ∼ |ξ |2 if |ξ |< c.
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4. The quotient
(
a2

2(ε,φ)
(
ν2

2,3

(
ε,φ, |ξ |)−κ3(ε,φ)|ξ |2

)

+ a2
3(ε,φ)

(
ν2

2,3

(
ε,φ, |ξ |)−κ2(ε,φ)|ξ |2

))

/
((
ν2

2,3

(
ε,φ, |ξ |)−κ2(ε,φ)|ξ |2

)(
ν2

2,3(ε,φ)−κ3(ε,φ)|ξ |2
))

(68)

involving the hyperbolic eigenvalues ν±
2,3 of B(ε,φ, |ξ |) is smooth and non-

vanishing for fixed values of |ξ |.

Proof We consider only part (2) to (4). The characteristic polynomial of B is given
by an expression like (24). If we assume that eigenvalues are purely real we can
split the expression into real and imaginary part. We consider the imaginary part
first, which leads to

κ|ξ |2
3∏

j=1

(
ν2 −κj (ε,φ)|ξ |2

)= 0. (69)

Therefore, real eigenvalues have to coincide with the square roots of eigenvalues
of A(ξ). If we assume ν2 = κj (ε,φ)|ξ |2 is a root of the characteristic equation,
we can divide by the corresponding factor and obtain if ε �= 0 (and therefore A is
non-degenerate)

a2
j (ε,φ)= 0. (70)

If ε = 0 the characteristic polynomial factors as

((
ν − iκ|ξ |2)(ν2 − κ̄1|ξ |2

)− νγ 2|ξ |2)(ν − κ̄2,3|ξ |2
)2 = 0 (71)

with κ̄1 = 1
3 (τ +2λ+4μ) and κ̄2,3 = 1

3 (τ +μ−λ). The first factor resembles one-
dimensional thermo-elasticity (with τ 2 = κ̄1) and gives three roots with positive
imaginary parts subject to (49a)–(49d) and (50). Finally (4) follows by collecting
the two related terms in the characteristic equation of form (25). The imaginary
part of the quotient is given by −κ|ξ |2/ν±

2,3 in hyperbolic/degenerate directions and
therefore non-zero. �

The quotient (68) may be used to determine asymptotic expansions of the hyper-
bolic eigenvalue and its imaginary part as ε → 0 for fixed |ξ | and φ �∈ π

3 Z. We will
follow a different strategy and diagonalise as ε → 0 uniform on bounded ξ .

17.3.2.3 Asymptotic Expansion as ε → 0 Uniform in |ξ |
Note first, that B(|ξ |,0, φ) is independent of φ and just the system of one-
dimensional thermo-elasticity (47) extended by four additional diagonal entries.
Since we need to understand this system first, we are going to recall some facts about
the one-dimensional theory. As |ξ | becomes small/large we already gave asymptotic
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expansions of eigenvalues in Sect. 17.2.5.3. The bit of information which is still
missing is contained in the following lemma.

Lemma 1 The coefficient matrix B(ξ) of the one-dimensional thermo-elastic sys-
tem given in (47) has for ξ �= 0 and under the natural assumptions γ, κ, τ > 0 only
simple eigenvalues.

Proof Note that the characteristic polynomial of this matrix B(ξ) is given by

ν3 − iκ|ξ |2ν2 + τ 2|ξ |2ν + iτ 2κ|ξ |4,
which is invariant under the transform ν �→ −ν and has alternating real and imagi-
nary coefficients. From that we conclude that the only possible solutions are of the
form ia, b+ ic and −b+ ic for certain real a, b, c. Furthermore, from the general
theory of Sect. 17.2 it is clear that a, c > 0. Thus, the only possibility for multiplici-
ties to occur is if b= 0. Plugging in b= 0 and multiplying the corresponding linear
factors gives

ν3 − ν2(ia + 2ic)− ν
(
c2 + 2ac

)+ ic2a.

Comparing coefficients with the above polynomial implies that κ|ξ |2 = −ca/(c +
2a), which contradicts to the positivity of all quantities involved. �

We write the coefficient matrix B(|ξ |, ε,φ) as sum of homogeneous components
in ε

|ξ |−1B
(|ξ |, ε,φ)= B(0)

(|ξ |, φ)+ εB(1)
(|ξ |, φ)+O

(
ε2), (72)

where

B(0)
(|ξ |, φ)=

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

ω̄1 iγ
ω̄2

ω̄2
−ω̄1 iγ

−ω̄2
−ω̄2

− i
2γ − i

2γ iκ|ξ |

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

, (73)

B(1)
(|ξ |, φ)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

0 0

δ1 iγ δ2 sin 3φ
2

−δ1 iγ δ2 cos 3φ
2

0 0

δ1 iγ δ2 sin 3φ
2

−δ1 iγ δ2 cos 3φ
2

0 − iγ δ2
2 sin 3φ

2 − iγ δ2
cos

3φ
2 0 − iγ δ2

2 sin 3φ
2 − iγ δ2

2 cos 3φ
2 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎟
⎠

,

(74)
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and ω̄1 =
√
τ+2λ+4μ

3 , ω̄2 =
√
τ+μ−λ

3 , δ1 = 1√
6

−τ+2μ+λ√
τ+μ−λ and δ2 = 2(μ+2λ−τ)

3(λ+μ) .
As a direct consequence of the previous lemma in combination with the asymp-

totic expansions of Sect. 17.2.5.3 we obtain

Proposition 11 Assume, that λ + μ �= 0 and γ 2 + λ + μ �= 0. Then the matrix
B(0)(|ξ |, φ) has uniformly separated eigenvalues in |ξ | ∈ R, φ ∈ S

1 (where ±ω̄2 are
of constant multiplicity two).

Now we can apply several steps of diagonalisation based on the scheme of Sect. 2
in [6]. At first we apply the diagonaliser of the main part. This has only effects on
the two entries related to ω̄1 and the last row/column and determines the eigenvalues
ν0(|ξ |, ε,φ) and ν±

1 (|ξ |, ε,φ) modulo ε2. Furthermore, Proposition 11 allows to
(1,2,1,2,1)-block-diagonalise modulo O(εN), N arbitrary.

Finally we can investigate the remaining 2 × 2-blocks and diagonalise again be-
cause the ε-homogeneous entries ±δ1ε are distinct (trivially uniform in |ξ | and φ).

Proposition 12 Assume, that λ+ μ �= 0 and γ 2 + λ+ μ �= 0. The eigenvalues of
B(|ξ |, ε,φ) have uniformly in |ξ | and φ full asymptotic expansions as ε → 0. The
first main terms are given as

ν0
(|ξ |, ε,φ) = ν̌0

(|ξ |)+ |ξ |O(
ε2), (75a)

ν±
1

(|ξ |, ε,φ) = ν̌±
1

(|ξ |)+ |ξ |O(
ε2), (75b)

ν
±1,±2
2/3

(|ξ |, ε,φ) = ±1ω̄2|ξ | ±2 δ1|ξ |ε + |ξ |O(
ε2) (75c)

where ν̌0(|ξ |) and ν̌±
1 (|ξ |) are the eigenvalues of the one-dimensional thermo-elastic

system with propagation speed ω̄1 and the signs ±1 and ±2 are independent of each
other.

Remark 6 The statement holds true uniformly in |ξ |. However, it is only of use
as long as the error terms |ξ |εN are smaller than the size of the eigenvalues. For
|ξ | → 0 the eigenvalues of the one-dimensional thermo-elastic system behave like
ν̌0(|ξ |) ∼ |ξ |2 and ν̌±

1 (|ξ |) ∼ ±|ξ |. Hence, the statement of (75a) is only of use if
|ξ |ε2 ) |ξ |2, i.e. if ε2 ) |ξ |. For |ξ | → ∞ we know similarly ν̌0(|ξ |) ∼ |ξ |2 and
ν̌±

1 (|ξ |)∼ ±|ξ |, which in turn implies that the expansion determines the behaviour
of the eigenvalues.

This restriction is by no means a severe one; the expansion is only of interest
for the ‘degenerate’ eigenvalues ν±1,±2

2/3 (|ξ |, ε,φ) (for which no such restriction ap-
pears).

17.3.2.4 Diagonalisation for Small and Large |ξ |
To complete the picture we want to give some comments on expansions for small
and large values of |ξ | under the same assumptions as in Proposition 12. Using the
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ideas from [24] we can employ the (block) diagonalisation scheme to separate the
three non-degenerate eigenvalues from the two degenerate ones asymptotically and
give full asymptotic expansions for them as |ξ | tends to zero or infinity. The obtained
expressions coincide with the formulae from Propositions 5 and 6. It remains to
understand the behaviour of the remaining 2 × 2-blocks. This can be done directly
by solving the characteristic polynomial as in Proposition 2.7 in [16] or by a second
diagonalisation scheme.

We focus on the latter idea and consider the case of small |ξ | first. The 2 × 2-
blocks have the form

f0
(|ξ |, ε,φ)I +

(
δ0(|ξ |, ε,φ)

−δ0(|ξ |, ε,φ)
)

+O
(|ξ |2) (76)

with a function δ0(|ξ |, ε,φ)∼ ε|ξ |. If we restrict the consideration to the zone

Z0(c)=
{(|ξ |, ε,φ) : |ξ | ≤ cε, ε ) 1

}
, (77)

the remainder can be written as ε|ξ |O(ε−1|ξ |) and the standard diagonalisation
scheme applied to the last two terms gives full asymptotic expansions in powers
of ε−1|ξ | as ε−1|ξ | → 0,

f0
(|ξ |, ε,φ)± δ0

(|ξ |, ε,φ)+ · · · + ε|ξ |O(
ε−N |ξ |N ). (78)

A similar idea applies for large |ξ | in the zone

Z∞(N)=
{(|ξ |, ε,φ) : ε|ξ | ≥N,ε ) 1

}
. (79)

Based on

f∞
(|ξ |, ε,φ)I +

(
δ∞(|ξ |, ε,φ)

−δ∞(|ξ |, ε,φ)
)

+O(1) (80)

with a function δ∞(|ξ |, ε,φ)∼ ε|ξ | it gives asymptotic expansions in powers of ε|ξ |
as ε|ξ | → ∞.

17.3.3 Cubic Media, Uniplanar Singularities

The Fresnel surface for cubic media has six uniplanar singularities. Again they are
equivalent and it suffices to consider the neighbourhood of η̄= (1,0,0)T ∈ S

2.
We introduce polar co-ordinates near η̄. Let ε ≥ 0 and φ ∈ [−π,π). Then we set

η=
⎛

⎝
η1
η2
η3

⎞

⎠=
√

1 − ε2

⎛

⎝
1
0
0

⎞

⎠+ ε cosφ

⎛

⎝
0
1
0

⎞

⎠+ ε sinφ

⎛

⎝
0
0
1

⎞

⎠ , (81)
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and use an asymptotic expansion of A(η) as ε → 0

A(η)=A0 + εA1(φ)+ ε2A2(φ)+O
(
ε3) (82)

with coefficients

A0 = diag(τ,μ,μ) (83a)

A1(φ) = (λ+μ)

⎛

⎝
cosφ sinφ

cosφ
sinφ

⎞

⎠ (83b)

A2(φ) = (τ −μ)

⎛

⎝
−1

cos2 φ

sin2 φ

⎞

⎠

+ λ+μ

2

⎛

⎝
0

sin 2φ
sin 2φ

⎞

⎠ (83c)

to deduce properties of the eigenvalues and eigenprojections of A(η) near η̄. We
restrict considerations to the case when τ �= μ. Then the following statement follows
again by the two-step diagonalisation procedure (like in the conical case and as
developed in [6, 16]).

Proposition 13 Assume λ+ μ �= 0, τ �= μ and τ �= λ+ 2μ. Then the eigenvalues
κj (η) and the corresponding eigenprojections have uniformly in φ full asymptotic
expansions as ε → 0. The main terms are given by

κ1(η) = τ −Cε2 +O
(
ε3), (84a)

κ2(η) = μ+ 1

2

(
C +

√
C2 − (

C2 −D2
)

sin2(2φ)
)
ε2 +O

(
ε3), (84b)

κ3(η) = μ+ 1

2

(
C −

√
C2 − (

C2 −D2
)

sin2(2φ)
)
ε2 +O

(
ε3), (84c)

where

C = (τ −μ)2 − (λ+μ)2

τ −μ
, D = λ+μ (85)

Remark 7 This statement reflects what we mean by an uniplanar singularity. Two
of the eigenvalues coincide up to second order.

Proof of Proposition 13 We follow the diagonalisation scheme. A0 is already diag-
onal, A1 does not contain (1,2)-block diagonal entries. To get expansions for the
eigenvalues we have to apply two steps of block-diagonalisation. First we treat A1



17 Anisotropic Thermo-elasticity 393

by the aid of

N
(1)
1 (φ)= λ+μ

τ −μ

⎛

⎝
− cosφ − sinφ

cosφ
sinφ

⎞

⎠ , (86)

such that I + εN(1)
1 (φ) block-diagonalises the matrix modulo ε2. This preserves A0

and 0 = b-diag1,2A1 and gives the new 2-homogeneous component

A2 +A1N
(1)
1 , A1N

(1)
1 = (λ+μ)2

τ −μ
diag

(
1,− cos2 φ,− sin2 φ

)
. (87)

The starting terms of the expansion of the first eigenvalue can be read directly from
these matrices. For the remaining two we have to diagonalise the lower 2 × 2 block.
This block has the form

(
C cos2 φ D sinφ cosφ

D sinφ cosφ C sin2 φ

)
(88)

with C, D from (85). The eigenvalues of this matrix are uniformly separated if the
condition

C2 >
(
C2 −D2) sin2(2φ), i.e. C �= 0,D �= 0 (89)

is satisfied. Under this assumption the full diagonalisation scheme works through
and the main terms can be calculated directly and give (84a)–(84c). For complete-
ness we also give a unitary diagonaliser of the matrix (88), namely

M2(φ) = 1
√

2D2 sin2(2φ)+ 2C2 cos2(2φ)+ 2C cos 2φ
√:

×
(
C cos 2φ + √: −D sin 2φ
D sin 2φ C cos 2φ + √:

)

=
(
m1(φ) m2(φ)

−m2(φ) m1(φ)

)
(90)

where
√: =

√
C2 − (C2 −D2) sin2(2φ), φ �= π

2 ,
3π
2 . Expressions are extended by

continuity. �

17.3.3.1 System Form

Again we use the diagonaliser M(ε,φ) of A(ε,φ) constructed in Proposition 13 to
reformulate the thermo-elastic system as a system of first order. Formulae (65) and
(66) give the corresponding representation.
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Remark 8

1. Since M−1(ε,φ) = diag(1,M∗
2 (φ))(I − εN

(1)
1 (φ)) + O(ε2) in the notation of

the proof of Proposition 13 it follows that the coupling functions satisfy

a1(ε,φ) = 1 +O
(
ε2) (91a)

a2(ε,φ) = ε
τ − λ− 2μ

τ −μ

(
m1(φ) cosφ +m2(φ) sinφ

)+O
(
ε2) (91b)

a3(ε,φ) = ε
τ − λ− 2μ

τ −μ

(
m1(φ) sinφ −m2(φ) cosφ

)+O
(
ε2) (91c)

Since τ �= λ + 2μ the function a2(φ) vanishes only for φ = k π2 , k ∈ Z, while
a3(φ) vanishes for φ = (2k+ 1)π4 , k ∈ Z.

2. Note that in contrast to the conic situation the eigenvalues coincide to second
order in the degenerate direction, while the coupling functions still vanish to first
order (if we approach the degeneracy from parabolic directions).

17.3.3.2 Asymptotic Expansion of Eigenvalues as ε → 0

We write the coefficient matrix B(|ξ |, ε,φ) as a sum of homogeneous components
in ε, cf. (72). This gives

B(0)
(|ξ |, φ)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√
τ iγ√

μ √
μ

−√
τ iγ

−√
μ

−√
μ

− i
2γ − i

2γ iκ|ξ |

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(92)

B(1)
(|ξ |, φ)

=

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

0

iγ a(1)2 (φ)

iγ a(1)3 (φ)

0

iγ a(1)2 (φ)

iγ a(1)3 (φ)

0 i
2γ a

(1)
2 (φ) i

2γ a
(1)
3 (φ) 0 i

2γ a
(1)
2 (φ) i

2γ a
(1)
3 (φ) 0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

(93)

and B(2)(|ξ |, φ) has entries on the diagonal, in the last row and last column. In order
to apply a block-diagonalisation as ε → 0 we assume that the matrix B(0)(|ξ |, φ)
has as many distinct eigenvalues as possible. This is ensured if μ �= τ , μ �= τ + γ 2

and we can (1,2,1,2,1)-block-diagonalise this matrix family. Note, that due to the
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structure of the last rows and columns, the system decouples modulo ε2 into a one-
dimensional thermo-elastic system and one containing the elastic eigenvalues. The
coupling comes only into play for the ε3 entries.

Proposition 14 Assume μ �= τ , μ �= τ + γ 2. Then the eigenvalues and eigenprojec-
tions of B(|ξ |, ε,φ) have full asymptotic expansions as ε → 0. The main terms are
given by

ν0
(|ξ |, ε,φ) = ν̌0

(|ξ |)+ |ξ |O(
ε3), (94a)

ν±
1

(|ξ |, ε,φ) = ν̌±
1

(|ξ |)+ |ξ |O(
ε3), (94b)

ν
±1,±2
2/3

(|ξ |, ε,φ) = ±1
√
μ|ξ | + C ±2

√
C2 − (C2 −D2) sin2(2φ)

4
√
μ

|ξ |ε2

+ |ξ |O(
ε3) (94c)

where ν̌0(|ξ |) and ν̌±
1 (|ξ |) are eigenvalues of the one-dimensional thermo-elastic

system with parameter
√
τ . The signs ±1 and ±2 are independent and the parame-

ters C and D are given by (85).

Remark 9 Similar to Proposition 12 this statement is uniform in |ξ |. It will be of
particular importance for us that the hyperbolic eigenvalues ν±

2/3 coincide up to sec-
ond order in ε with the corresponding (roots of) eigenvalues of the elastic operator.
This will be the key observation to transfer stationary phase estimates from elastic
systems to the thermo-elastic ones.

17.3.4 Hexagonal Media

Finally we want to discuss the case of hexagonal media. The elastic operator defined
by (4)–(5) is invariant under rotations around the x3-axis. We will make use of
this fact and reduce considerations to a two-dimensional situation corresponding to
cross-sections of the Fresnel surface, see Fig. 17.5.

As already pointed out in Sect. 17.2.5.4 degenerate directions are ±(0,0,1)0,
which are uniplanar. They could be handled similarly to the cubic case, but rota-
tional invariance makes estimates simpler. There are further circles of degenerate
directions if

τ2 − 2τ1 ≥ λ2 + 2μ. (95)

We exploit rotational symmetry and consider the system only in the frequency hy-
perplane η1 = 0. Then it is possible to express the eigenvectors rj (η) corresponding
to eigenvalues κj (η) smoothly and the thermo-elastic system can be reformulated
as system of first order in full analogy to the general treatment in Sect. 17.2. The
previously derived asymptotic expansions for eigenvalues and the description of
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Fig. 17.5 Cut of the Fresnel
surface for hexagonal media,
η2 = 0. The parameters are
chosen as τ1 = 4, τ2 = 10,
λ1 = 2, λ2 = 4, μ= 2. The
complete surface is obtained
by rotation along the vertical
axis

their behaviour in non-degenerate directions are valid. It remains to combine this
information with an additional description near degenerate directions.

Away from the ξ3-axis it is possible to find smooth families of eigenvectors
rj (η) of A(η). This follows directly from rotational invariance combined with one-
dimensional perturbation theory of matrices, [8]. If we assume that the frequency
support of initial data and therefore of the solution U , θ is conically separated from
the uniplanar directions we can follow Sect. 17.2 and rewrite as first order system
in V (t, ξ) with coefficient matrix B(ξ) given by (15) and of (1,1,5)-block struc-
ture. In what follows, we will ignore the scalar hyperbolic blocks and consider the
remaining 5 × 5 matrix.

Based on the discussions from Sect. 17.2.5.4 we know that this 5 × 5 block is
non-degenerate in the sense that its 1-homogeneous part has distinct eigenvalues
if (τ1 − μ)(τ2 − μ) �= 0. We assume this in the sequel. But this means that the
theory of Sect. 17.2 is applicable and gives a full description of eigenvalues and
eigenprojections and we are done.

Near the uniplanar directions, i.e., on the ξ3-axis, we follow the same approach as
for cubic media. We introduce polar co-ordinates around this direction and construct
expressions for the corresponding asymptotics. There is one major simplification,
due to rotational invariance the construction is independent of the angular variable.

17.4 Dispersive Estimates

We will show how to use the information obtained in Sects. 17.2 and 17.3 to derive
Lp-Lq decay estimates for solutions to thermo-elastic systems. Some of the ideas
we present are general in the sense that they can be applied to arbitrary space dimen-
sions, however, our main focus will be the three-dimensional case and the examples
considered in Sect. 17.3.
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The estimates we have in mind are micro-localised to (a) non-degenerate
parabolic, (b) non-degenerate hyperbolic or (c) degenerate directions. The first two
situations generalise the consideration of [16, 23] taking also into account the es-
timates due to Sugimoto [21, 22], while the treatment of degenerate directions is
inspired by the work of Liess [1, 9–12].

17.4.1 Non-degenerate Directions

We will consider two situations and micro-localise solutions to either open sets of
parabolic directions or tubular neighbourhoods of compact parts of regular subman-
ifolds of hyperbolic directions.

17.4.1.1 Estimates in Parabolic Directions and for Parabolic Modes

Let first ψ, ψ̃ ∈ C∞
0 (S

n−1) be supported in U with ψ̃ = 1 on suppψ and χ ∈
C∞(R+) a cut-off function satisfying χ(s)= 0 for s ≤ ε and χ(s)= 1 for s ≥ 2ε.
We extend both ψ and ψ̃ as 0-homogeneous functions to R

n. Then we consider the
solution to the first order system

DtV = B(D)V, V (0, ·)= ψ̃(D)V0, (96)

with data V0 ∈ S(Rn;C2n+1). Note, that this is well-defined and B(ξ) needs only to
be defined on supp ψ̃ .

Lemma 2 (Parabolic estimate) Assume that suppψ is contained in the set of
parabolic directions. Then the solutions to (96) satisfy the a-priori estimates

∥
∥χ

(|D|)ψ(D)V (t, ·)∥∥
q
� e−Ct‖V0‖p,r , (97a)

∥∥(1 − χ
(|D|))ψ(D)V (t, ·)∥∥

q
� (1 + t)−(n/2)(1/p−1/q)‖V0‖p (97b)

for all 1 ≤ p ≤ 2 ≤ q ≤ ∞ and with Sobolev regularity r > n(1/p− 1/q).

Proof (Sketch of proof) The proof of this estimate is straightforward from the two-
dimensional situation considered in [16]. For small frequencies we write the solution
V as sum

V (t, x)=
∑

ν(ξ)∈specB(ξ)

eitν(D)Pν(D)V0, (98)

Pν the corresponding eigenprojections. We know that ‖Pν(ξ)‖ � 1 and Imν(ξ) ∼
|ξ |2 by Proposition 5. Now each of the appearing terms can be estimated using the
Lp-Lp

′
boundedness of the Fourier transform (for p ∈ [1,2]) and Hölder inequality.

Similarly, the representation (98) in combination with the bound Im specB(ξ) ≥



398 J. Wirth

C gives exponential decay of L2 and Hs norms and this combined with Sobolev
embedding yields the desired estimate.

For intermediate frequencies we may have to deal with multiplicities and result-
ing singularities of the spectral projections. Instead of (98) we use a spectral calculus
representation which implies

∣∣V̂ (t, ξ)
∣∣≤ e−Ct 1

2π

∫

Γ

∥∥(ζ −B(ξ)
)−1∥∥dζ � e−Ct (99)

based on the compactness of the relevant set of frequencies ξ and the bound on
the imaginary part due to Corollary 2/Proposition 7. Here, Γ is a smooth curve
encircling the family of parabolic eigenvalues for the relevant ξ . �

If we consider hyperbolic directions we know that the parabolic eigenvalues are
separated from the hyperbolic ones and we can use the spectral projection associated
to the group of parabolic eigenvalues to separate them from the hyperbolic one(s). In
this case the estimate of the above theorem is valid for the corresponding ‘parabolic
modes’ of the solution. So we can restrict consideration to hyperbolic eigenvalues
near hyperbolic directions.

17.4.1.2 Treatment of Non-degenerate Hyperbolic Directions

We consider only the for us interesting case when hyperbolic directions form part of
a regular submanifold of Sn−1 and coupling functions vanish to first order, i.e., we
assume that the corresponding coupling function aj : Sn−1 ⊃ U → R satisfies

daj (η) �= 0 when aj (η)= 0, η ∈ U . (100)

This implies that Mj = {η ∈ U : aj (η)= 0} is regular of dimension n− 2, the nor-
mal derivative ∂naj (η) �= 0 never vanishes and aj (η) ≤ ε defines a tubular neigh-
bourhood of Mj with a natural parameterisation. The desired dispersive estimate
is related to geometric properties of the section S(Mj ) of the Fresnel surface lying
directly over Mj ,

S(Mj ) =
{
ω−1
j (η)η : η ∈Mj

}= Sj ∩ coMj . (101)

Here coMj denotes the cone over Mj . For dimensions n≥ 4 we have to distinguish
between different cases, depending on whether the cross-section S(Mj ) of the Fres-
nel surface satisfies a convexity assumption or not. By the latter we mean that any
intersection of Sj with a hyperplane tangent to coMj is convex in a neighbourhood
of S(Mj ).

If this convexity assumption is satisfied (or if n= 3 and therefore dimMj = 1),
we define the convex Sugimoto index of S(Mj ) as maximal order of contact of S(Mj )

with hyperplanes normal to coMj .
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Theorem 1 (Hyperbolic estimate, convex case) Assume that ψ is supported in a
sufficiently small tubular neighbourhood of the regular hyperbolic submanifold Mj

and that S(Mj ) satisfies the convexity assumption. Let further γj = γ (S(Mj )) be
defined as above.

Then the solutions to (96) satisfy the a-priori estimate

∥∥ψ(D)Pνj (D)V (t, ·)
∥∥
q
� (1 + t)−(1/2+(n−2)/γj )(1/p−1/q)‖V0‖p,r (102)

for all p ∈ (1,2], pq = p+ q and with Sobolev regularity r > n(1/p− 1/q).

Proof First, we outline the strategy of the proof. We split variables in the tubular
neighbourhood of the regular hyperbolic submanifold Mj , one coordinate being the
defining function aj (η) and the other parameterising points on Mj . We have to
combine a (simple) parabolic type estimate in normal directions taking care of the
imaginary part of the phase with stationary phase estimates for the integration along
Mj . The stationary phase estimate is done first and follows the lines of [21, 22]
along with Sect. 5 in [20].

It is sufficient to show the estimate for t ≥ 1. We follow the treatment of Brenner
[3] and decompose the Fourier integral representing the corresponding hyperbolic
modes of the solution V into dyadic pieces. For large and intermediate frequencies
this amounts to estimate for all k ∈ N0

Ik(t) = sup
z∈Rn

∣∣∣∣

∫ η̃=ε

η̃=−ε

∫

η̌∈Mj

∫

2k−1≤|ξ |≤2k+1
eit |ξ |(z·η+|ξ |−1νj (ξ))

× pj (ξ)χk(ξ)|ξ |n−1−rd|ξ |dη̌dη̃

∣∣∣∣ (103)

with the notation z = x/t , ξ = |ξ |η, η ( (η̌, η̃) with η̌ ∈ Mj and η̃ = aj (η). The
amplitude pj (ξ) arises from the spectral projector Pνj (D) and the phase νj (ξ) is
complex-valued with Imνj (ξ)∼ η̃2 uniform in ξ ∈ suppχk and k ∈N0.

If z+ ∇ξ νj (ξ) �= 0, ξ/|ξ | ∈Mj or if z is not near a direction from Mj , the prin-
ciple of non-stationary phase implies and gives a rapid decay. It suffices to restrict
to z corresponding to stationary points. We use the method of stationary phase to
estimate the integral over Mj , this can be done uniformly over ξ and η̃, provided ε
is chosen small enough and yields an estimate of the form

∣∣∣∣

∫

η̌∈Mj

· · ·dη̌

∣∣∣∣≤ Ct−(n−2)/γj |ξ |n−1−r−(n−2)/γj e−cη̃2t (104)

uniform in k and |η̃| ≤ ε. In order to obtain this estimate we apply Ruzhansky’s
multi-dimensional van der Corput lemma, [17, 18], based on the uniformity of
the Sugimoto index γ (Sj ∩ co{η : aj (η) = η̃, η ≈ η̌}) for small η̃ and the uniform
bounds on the appearing amplitude. Similar to [16] the imaginary part of the phase
can be incorporated in the estimate for the amplitude. Integration over η̃ yields a
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further decay of t−1/2, while integrating over ξ and using |ξ | ∼ 2k yields

Ik(t)≤ Ct−1/2−(n−2)/γj 2k(n−r−(n−2)/γj ). (105)

Hence, we need r ≥ n − n−2
γj

(compared to the elasticity or wave equation with

r ≥ n− n−1
γ

) to apply Brenner’s argument and obtain the desired estimate for the
high frequency part. The required regularity follows from using Sobolev embedding
for small t .

The treatment of small frequencies is somewhat simpler. We do not apply a
dyadic decomposition, but still have to use a stationary phase argument along Mj

combined with the behaviour of the imaginary part of the phase away from it,

I(t) = sup
z∈Rn

∣∣∣∣

∫ η̃=ε

η̃=−ε

∫

η̌∈Mj

∫

|ξ |≤1
eit |ξ |(z·η+|ξ |−1νj (ξ))pj (ξ)χ(ξ)|ξ |n−1d|ξ |dη̌dη̃

∣∣∣∣

≤ Ct−(n−2)/γj

∫

|ξ |≤1

∫ η̃=ε

η̃=−ε
e−cη̃2t |ξ |2 |ξ |dη̃|ξ |n−2−(n−2)/γj d|ξ |

≤ Ct−1/2−(n−2)/γj . �

Without proof we comment on the non-convex situation. If the convexity as-
sumption is violated we have to replace the convex Sugimoto index by a corre-
sponding non-convex one, called γ0(S(Mj )). The index γ0(S(Mj )) is defined as the
maximum over the minimal contact orders of S(Mj ) with hyperplanes normal to the
cone coMj , the maximum taken over all points of S(Mj ). The price we have to pay
for non-convexity is a loss of decay.

Theorem 2 (Hyperbolic estimate, non-convex case) Assume that ψ is supported
in a sufficiently small tubular neighbourhood of the regular hyperbolic subman-
ifold Mj and that S(Mj ) does not satisfy the convexity assumption. Let further
γ̃j = γ0(S(Mj )) be the non-convex Sugimoto index.

Then the solutions to (96) satisfy the a-priori estimate
∥∥ψ(D)Pνj (D)V (t, ·)

∥∥
q
� (1 + t)−(1/2+1/γ̃j )(1/p−1/q)‖V0‖p,r (106)

for all p ∈ (1,2], pq = p+ q and with Sobolev regularity r > n(1/p− 1/q).

17.4.1.3 Application to Cubic and Hexagonal Media

Because of its importance later on we remark that in our applications to three-
dimensional thermo-elasticity the manifolds Mj are parts of circles on S

2, i.e. can
be seen as intersections of S2 with a cone. So we have to look at the corresponding
sections of the Fresnel surface. In this case γj is just the maximal order of tan-
gency between the curve S(Mj )and its tangent lines. If the curvature of this curve is
nowhere vanishing, then γj = 2. Furthermore, algebraicity of S of order 6 implies
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that the highest order of contact is 6 and therefore γj ∈ {2, . . . ,6} is the admissible
range of these indices.

For cubic media there are two types of regular hyperbolic submanifolds. One is
up to symmetry given by the circle η3 = 0 on S

2 and the corresponding eigenvalue
is equal to μ. Thus the section of the Fresnel surface is just a circle and therefore its
curvature is nowhere vanishing. Similarly, for intersections of the Fresnel surface
with the plane η2 = η3 we obtain the hyperbolic eigenvalue κ = η2

2(τ − λ)+ η2
1μ.

It is a simple calculation3 to show that the curvature of the corresponding section of
the Fresnel surface is nowhere vanishing as soon as λ �= τ and μ �= 0. Hence, γj = 2
in both cases.

For hexagonal media regular hyperbolic submanifolds correspond to circles on
the Fresnel surface. Again, γj = 2.

17.4.2 Cubic Media in 3D

We want to discuss the derivation for estimates near degenerate directions by the
example of cubic media in three-dimensional space and combine them with the
general estimates from Sect. 17.4.1.

17.4.2.1 Conic Points

The following statement resembles Theorem 1.5 in [10]. In Sect. 3 in [1] a stronger
decay rate is obtained for some conic degenerations, but they require a sufficiently
bent cone and we can not guarantee that in our case.

Theorem 3 (Conic degeneration) Assume U1, U2 and θ0 are micro-locally sup-
ported in a sufficiently small conical neighbourhood of a conically degenerate point
on Ŝ2. Then the corresponding solution to the thermo-elastic system for cubic media
satisfies the a-priori estimate

∥∥
√
A(D)U(t, ·),Ut (t, ·), θ(t, ·)

∥∥
q

� (1 + t)−(1/2)(1/p−1/q)
∥
∥
√
A(D)U1,U2, θ0

∥
∥
p,r

(107)

for p ∈ (1,2], pq = p+ q and r > 3(1/p− 1/q).

Proof The main idea is that the proof of [9] uses polar co-ordinates around the
singularities of the Fresnel surface similar to our treatment in Sect. 17.3. Stationary

3Parametrising by the angle, the hyperbolic eigenvalue is given by κ(φ)= μ+ τ−λ−2μ
2 sin2 φ and

it remains to check that ∂2
φ

√
κ(φ)+ √

κ(φ) �= 0, see [23] for such a calculation.



402 J. Wirth

phase arguments are applied in tangential direction and are uniform for small radii,
while the final estimate follows after integration over the remaining variables.

It suffices to prove the statement for t ≥ 1, the small time estimate is a direct con-
sequence of Sobolev embedding theorem in combination with the obvious energy
estimate. Similar to the hyperbolic estimate discussed before, we apply a dyadic
decomposition of frequency space (localised to a small conic neighbourhood of the
degenerate direction). The estimate for single dyadic components follows [9] resp.
Theorem 1.5 in [10]; the only thing we have to check is that the necessary assump-
tions are satisfied uniform with respect to |ξ | and k ∈ N. We consider

Ik(t) = sup
z∈R3

∣∣∣∣

∫ ε̃

0

∫ 2π

0

∫

2k−1≤|ξ |≤2k+1
eit |ξ |(z·η+|ξ |−1νj (|ξ |,ε,φ))

× pj
(|ξ |, ε,φ)χk

(|ξ |)|ξ |2−rd|ξ |dφεdε

∣∣∣∣, (108)

where η ∈ S
2 denotes the point with polar co-ordinates (ε,φ) near the conic degen-

erate direction and ξ = |ξ |η. The amplitude pj (|ξ |, ε,φ) arises from the spectral
projector (given in terms of the diagonaliser) constructed in the blown-up polar co-
ordinates and χk(ξ) corresponds to the dyadic decomposition. The complex phase
νj (|ξ |, ε,φ) is described in Proposition 12. Its imaginary part is non-negative and
vanishes to second order in ε = 0 as well as for three hyperbolic manifolds emanat-
ing from the conic degenerate point. Again we may treat this imaginary part as part
of the amplitude and apply stationary phase estimates for the integral with respect
to φ. As the approximation of the phase modulo O(ε2) is independent of φ and
uniform in |ξ | this yields

∣∣
∣∣

∫ 2π

0
· · ·dφ

∣∣
∣∣� t−1/2|ξ |3/2−r ε1/2 (109)

uniform in |ξ |, k and 0 ≤ ε ≤ ε̃. There is no further benefit from the imaginary
part (as there can not be a lower bound with respect to ε) and integrating with
respect to |ξ | and ε concludes the estimate for Ik(t). Similarly, we estimate the
small frequency part

I(t) = sup
z∈R3

∣∣
∣∣

∫ ε̃

0

∫ 2π

0

∫

|ξ |≤1
eit |ξ |(z·η+|ξ |−1νj (|ξ |,ε,φ))

× pj
(|ξ |, ε,φ)χ(|ξ |)|ξ |2d|ξ |dφεdε

∣
∣∣∣

≤ Ct−1/2, (110)

such that Brenner’s method again yields the desired decay estimate. �
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17.4.2.2 Uniplanar Points

The treatment of uniplanar degeneracies follows [10]. We have to make one further
additional assumption related to the shape of certain curves on the Fresnel surface
near the degenerate point. To be precise, we either require that

Ω ∩ S ∩Π has non-vanishing curvature (111)

for Ω ⊂ R
n an open neighbourhood of the uniplanarly degenerate point and for

any plane Π sufficiently close and parallel to the common tangent plane at the un-
ode. This condition is equivalent to the technical assumption (1.12) made in [1]. If
(111) is violated, we need to consider Sugimoto indices γu = γ (Ω ∩ S ∩Π ⊂Π),
i.e., contact orders of these planar curves with its tangent planes combined with a
uniformity assumption. Under assumption (111) the index is given by γu = 2.

For cubic media we have to use the statement of Proposition 13 to determine
the index γu. Using the notation of (85), it suffices to calculate the indices of the
indicator curves determined by

ε2(μ+C ±
√
C2 cos2(2φ)+D2 sin2(2φ)

)= 1. (112)

This yields

γu ∈ {2,3,4} (113)

In the nearly isotropic case we have γu = 2, away from it γu = 3. Both are generic,
while the borderline case with γu = 4 is not. The asymptotic construction of the
eigenvalues and eigenprojections near the uniplanarly degenerate point of Propo-
sition 14 yields that the assumption is satisfied uniformly for the phase functions
appearing in all dyadic components of the operator.

Theorem 4 (Uniplanar degeneration) Assume U1, U2 and θ0 are micro-locally sup-
ported in a sufficiently small conical neighbourhood of a uniplanarly degenerate
point on Ŝ2. Let further γu be the index of the uniplanar point. Then the corre-
sponding solution to the thermo-elastic system for cubic media satisfies the a-priori
estimate

∥∥
√
A(D)U(t, ·),Ut (t, ·), θ(t, ·)

∥∥
q

� (1 + t)−(1/2+1/γu)(1/p−1/q)
∥∥
√
A(D)U1,U2, θ0

∥∥
p,r

(114)

for p ∈ (1,2], pq = p+ q and r > 3(1/p− 1/q).

Proof (Sketch of proof) We will sketch the major differences to the treatment of
conic degeneracies. We will again use polar co-ordinates and estimate correspond-
ing dyadic components (108), where now νj (|ξ |, ε,φ) is determined by Proposi-
tion 14. The imaginary part of νj (|ξ |, ε,φ) vanishes to third order and is of no
benefit, while the real part coincides to third order with the corresponding elastic
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Table 17.1 Contributions to
the dispersive decay rate for
cubic media

Small frequencies Large frequencies

Parabolic directions (1 + t)−3/2 e−Ct

Hyperbolic directions (1 + t)−1 (1 + t)−1

Conic degeneracies (1 + t)−1/2 (1 + t)−1/2

Uniplanar degeneracies (1 + t)−1/2−1/γ

γ ∈ {2,3,4}
(1 + t)−1/2−1/γ

γ ∈ {2,3,4}

eigenvalue. This allows to use estimates from [10] and Sect. 4 in [1], the main dif-
ference to the previous situation is that we now use stationary phase estimates for
both, the angular and the radial integral. The proof itself then coincides with the
corresponding proof for cubic elasticity, cf. [12].

Using a change of variables the integral is written in the new variables ωj (η)|ξ |
(i.e., roughly Reνj ) and η/ωj (η) ∈ Sj . In this form the phase splits and the crucial
estimate is just a Fourier transform of a density carried by the sheet of the Fresnel
surface (with possible singularity in the unode). This is calculated by introducing
distorted polar co-ordinates on the surface. As level sets we use cuts of the sur-
face by planes parallel to the common tangent plane. Then we will at first apply the
method of stationary phase to the radial variable in these co-ordinates. These sta-
tionary points are non-degenerate and we use the obtained first terms in the asymp-
totics for a second stationary phase argument in the angular variables. The condition
(111) would imply again that stationary points are non-degenerate and we are done,
while if (111) is violated we use the Lemma of van der Corput instead to prove the
estimate. �

17.4.2.3 Collecting the Estimates

It remains to collect all the estimates into a final statement for cubic media. Parabolic
directions are treated by Lemma 2; hyperbolic manifolds away from degenerate
points are covered by Theorem 1. The remaining 24 degenerate directions fall into
either of the previously discussed categories and estimates follow from Theorem 3
and 4. The resulting estimates are collected in Table 17.1.

Corollary 3 (Cubic decay rates) Cubic media in three space dimensions satisfy the
dispersive type estimate

∥∥
√
A(D)U(t, ·),Ut (t, ·), θ(t, ·)

∥∥
Lq(Rn)

� (1 + t)−(1/2)(1/p−1/q)
∥∥
√
A(D)U1,U2, θ0

∥∥
p,r

(115)

for all dataU1 ∈Wp,r+1(R3;C3),U2 ∈Wp,r(R3;C3) and θ ∈Wp,r(R3), provided
p ∈ (1,2], pq = p+ q and r > 3(1/p− 1/q).
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Table 17.2 Contributions to
the dispersive decay rate for
hexagonal media

Small frequencies Large frequencies

Genuine hyperbolic mode (1 + t)−1 (1 + t)−1

Parabolic modes (1 + t)−3/2 e−Ct

Hyperbolic directions (1 + t)−1 (1 + t)−1

Uniplanar degeneracies (1 + t)−1 (1 + t)−1

Decay rates improve if the Fourier transform of the initial data vanishes at the
conically degenerate directions. This could be achieved by posing particular sym-
metry conditions.

17.4.3 Hexagonal Media

The treatment of hexagonal media is somewhat simpler. The uniplanar degenera-
tions trivially satisfy the assumption (111) and therefore yield the decay rates spec-
ified by the above theorem. The additionally appearing manifolds of degenerate
directions are easily treated as there are smooth families of eigenprojections asso-
ciated to both eigenvalues (as we stay away from the uniplanar points) and we can
therefore treat the modes separately.

One of them is hyperbolic for all directions, we refer to it as the genuine hyper-
bolic mode. The sheet of the Fresnel surface corresponding to this mode, i.e., to the
eigenvalue κ(η)= τ1−λ1

2 (η2
1 + η2

2)+μη2
3 is easily seen to be strictly convex for all

choices of the parameter and gives a decay order of t−1. The proof is similar to that
for the wave equation, see [3].

The parabolic modes away from the degenerate hyperbolic directions are treated
as before, while the remaining degenerate hyperbolic manifold is treated by the esti-
mate of Theorem 1 with γ = 2 due to rotational invariance. The resulting estimates
are collected in Table 17.2.

Corollary 4 (Hexagonal decay rates) Hexagonal media in three space dimensions
satisfy the dispersive type estimate

∥∥
√
A(D)U(t, ·),Ut (t, ·), θ(t, ·)

∥∥
Lq(Rn)

� (1 + t)−(1/p−1/q)
∥∥
√
A(D)U1,U2, θ0

∥∥
p,r

(116)

for all dataU1 ∈Wp,r+1(R3;C3),U2 ∈Wp,r(R3;C3) and θ ∈Wp,r(R3), provided
p ∈ (1,2], pq = p+ q and r > 3(1/p− 1/q).
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Chapter 18
Global Solutions of Semilinear System
of Klein-Gordon Equations in de Sitter
Spacetime

Karen Yagdjian

Abstract In this article we prove global existence of small data solutions of the
Cauchy problem for a system of semilinear Klein-Gordon equations in the de Sitter
spacetime. The mass matrix is assumed to be diagonalizable with positive eigenval-
ues. The existence is proved under the assumption that the eigenvalues are outside
of some open bounded interval.

Mathematics Subject Classification Primary 35L52 · 35L71 · Secondary 81T20 ·
35C15

18.1 Introduction and Statement of Results

In this article we prove global existence of small data solutions of the Cauchy prob-
lem for the semilinear system of Klein-Gordon equations in the de Sitter spacetime.
Unlike the same problem in the Minkowski spacetime, we have no restriction on the
order of nonlinearity and structure of the nonlinear term, provided that the spectrum
of the mass matrix of the fields is in the positive half-line and has no intersection
with some open bounded interval.

A large amount of work has been devoted to the Cauchy problem for the scalar
semilinear Klein-Gordon equation in the Minkowski spacetime. The existence of
global weak solutions has been obtained by Jörgens [18], Segal [26, 27], Pecher
[22], Brenner [6], Strauss [28], Ginibre and Velo [12, 13] for the equation

utt −Δu+m2u= |u|αu.
For global solvability, the exact relation between n and α > 0 was finally estab-
lished. More precisely, consider the Cauchy problem for the nonlinear Klein-Gordon
equation

utt −Δu= −V ′(u),
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where Δ is the Laplace operator in Rn and V ′ = V ′(u) is a nonlinear function, a
typical form of which is the sum of two powers

V ′(u)= λ0u+ λ|u|αu
with α ≥ 0 and λ ≥ 0. For this equation, a conservation of energy is valid. For
finite energy solutions scaling arguments suggest the assumption α < 4/(n − 1).
In [13], by a contraction method, the existence and uniqueness of strong global
solutions in the energy space H(1) ⊕L2 are proved for arbitrary space dimension n
under assumptions on V ′ that cover the case of sum of powers λ|u|αu with 0 ≤ α <

4/(n−1), n≥ 2, and λ > 0 for the highest α. Some of the results can be extended to
the case α = 4/(n− 1) (see, e.g. [12], Sect. 4 in [13], Sect. 142 in [29]). Nakamura
and Ozawa studied in [20] the global well-posedness in the Sobolev space H(s)
with s ≥ n/2 for the Cauchy problem for semilinear Klein-Gordon equations with
a nonlinearity, which behaves as a power |u|1+4/n near zero, and has at infinity an
arbitrary growth rate.

The Klein-Gordon equation arising in relativistic physics and, in particular, gen-
eral relativity and cosmology, as well as, in more recent quantum field theories,
is a covariant equation that is considered in curved pseudo-Riemannian manifolds.
(See, e.g., Birrell and Davies [5], Parker and Toms [21], Weinberg [31].) Moreover,
the latest astronomical observational discovery that the expansion of the universe is
speeding supports the model of the expanding universe that is mathematically de-
scribed by a manifold with metric tensor depending on time and spatial variables.
In this paper we restrict ourselves to a manifold arising in the so-called de Sitter
model of the universe, which is a curved manifold due to the cosmological constant.
Thus, there is a need to study partial differential equations related to such models
and, in particular, to investigate the question of the global solvability of the semi-
linear hyperbolic equations with variable coefficients. The lack of results for the
global solvability of such semilinear hyperbolic equations can be explained, among
other reasons, by the fact that there are only very few known examples of linearized
equations with explicit formulas for the fundamental solutions.

The line element in the de Sitter spacetime has the form

ds2 = −
(

1 − r2

R2

)
c2dt2 +

(
1 − r2

R2

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

The Lamaître-Robertson transformation leads to the following form for the line el-
ement (Sect. 134 in [19], Sect. 142 in [29]):

ds2 = −c2dt ′2 + e2ct ′/R(dx′2 + dy′2 + dz′2
)
.

HereR is the “radius” of the universe. In fact, the de Sitter model belongs to the fam-
ily of the Friedmann-Lemaître-Robertson-Walker spacetimes (FLRW spacetimes).
In the FLRW spacetime [14], one can choose coordinates so that the metric has the
form ds2 = −dt2 + S2(t)dσ 2. In particular, the metric in the de Sitter spacetime in
the Lamaître-Robertson coordinates [19] has this form with the cosmic scale factor
S(t)= et .
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The homogeneous and isotropic cosmological models possess the highest de-
gree of symmetry that makes them more amenable to rigorous study. Among them
we mention FLRW models. The simplest class of cosmological models can be ob-
tained if we assume, additionally, that the metric of the slices of constant time is flat
and that the spacetime metric can be written in the form ds2 = −dt2 + a2(t)(dx2 +
dy2 +dz2) with an appropriate scale factor a(t). The assumption that the universe is
expanding leads to the positivity of the time derivative d

dt
a(t). A further assumption

that the universe obeys the accelerated expansion suggests that the second deriva-

tive d2

dt2
a(t) is positive. Under the assumption of the FLRW symmetry the equation

of motion in the case of a positive cosmological constant Λ leads to the solution
a(t) = a(0)et

√
Λ/3, which produces models with exponentially accelerated expan-

sion, which is referred to as the de Sitter model.
In general the matter fields described by the function φ must satisfy equations of

motion and, in the case of the massive scalar field, the equation of motion is that φ
should satisfy the Klein-Gordon equation generated by the metric g,

1√|g|
∂

∂xi

(√|g|gik ∂ψ
∂xk

)
=m2ψ + V ′(ψ).

In physical terms this equation describes a local self-interaction for a scalar particle.
In the de Sitter universe the equation for the scalar field with mass m and potential
function V written out explicitly in coordinates is (see, e.g., Sect. 5.4 in [11] and
[24].)

φtt + nHφt − e−2Ht & φ +m2φ = −V ′(φ). (1)

Here x ∈ Rn, t ∈ R, and & is the Laplace operator on the flat metric, & :=
∑n

j=1
∂2

∂x2
j

, while H = √
Λ/3 is the Hubble constant. For the sake of simplicity,

from now on, we set H = 1. A typical example of a potential function would be
V (φ)= φ4.

In this paper we consider the model of interacting fields, which can be described
by the system of Klein-Gordon equations with different masses, containing interac-
tion via mass matrix and the semilinear term. The model obeys the following system

Φtt + nΦt − e−2t &Φ + MΦ = F(Φ). (2)

Here F is a vector-valued function of the vector-valued function Φ . We assume that
the mass matrix M is real-valued, diagonalizable, and it has eigenvaluesm2

1, . . . ,m
2
l ,

i = 1,2, . . . , l. By the similarity transformation with the real-valued matrix O (the
diagonalizer of M), the mass matrix can be diagonalized, therefore, we use the
change of the unknown function as follows:

Ψ = e(n/2)tOΦ, Φ = e−(n/2)tO−1Ψ.

Then the system (2) of the semilinear Klein-Gordon equations for Ψ in the de Sitter
spacetime takes the form

Ψtt − e−2t &Ψ +M2Ψ = e(n/2)tOF
(
e−(n/2)tO−1Ψ

)
, (3)
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where the diagonal matrix M, with nonnegative real part �M ≥ 0, is

M2 := OMO−1 − n2

4
I, I is the identity matrix.

The matrix M2 will be called the curved mass matrix of the particles, which is also
sometimes referred to as the effective mass matrix.

It is convenient to use the diagonal matrix M = diag(|m2
i − n2

4 |1/2). We distin-
guish the following three cases: the case of large mass matrix M that is M2 ≥ 0

(m2
i ≥ n2

4 , i = 1,2, . . . , l); the case of dimensional mass matrix M that is M2 = 0

(m2
i = n2

4 , i = 1,2, . . . , l); and the case of small mass matrix M that is M2 < 0

(m2
i <

n2

4 , i = 1,2, . . . , l). They lead to three different equations: the Klein-Gordon
equation with the real curved mass matrix M,

Ψtt − e−2t &Ψ +M2Ψ = e(n/2)tOF
(
e−(n/2)tO−1Ψ

);
the wave equation with the zero curved mass matrix

Ψtt − e−2t &Ψ = e(n/2)tOF
(
e−(n/2)tO−1Ψ

);
and the Klein-Gordon equation with the imaginary curved mass matrix M,

Ψtt − e−2t &Ψ −M2Ψ = e(n/2)tOF
(
e−(n/2)tO−1Ψ

)
.

We also call the mass matrix M critical if M2 = − 1
4I .

Let Wl,p(Rn) be the Sobolev space and H(s)(Rn) =Ws,2(Rn). We use the no-
tation ‖ · ‖H(s)(Rn) for both the norm of vector valued function and for the norm of
its components. To estimate the nonlinear term F = F(Φ) we use the following
Lipschitz condition:

Condition (L) The function F is said to be Lipschitz continuous in the space
H(s)(R

n) with the norm ‖ · ‖H(s)(Rn) if there is a constant α ≥ 0 such that

∥∥F(Φ1)− F(Φ2)
∥∥
H(s)(R

n)
≤ C‖Φ1 −Φ2‖H(s)(Rn)

(‖Φ1‖αH(s)(Rn) + ‖Φ2‖αH(s)(Rn)
)

(4)

for all Φ1,Φ2 ∈H(s)(Rn).

Define the complete metric space

X(R, s, γ )

:=
{
Φ ∈ C([0,∞);H(s)

(
Rn

))|‖Φ‖X := sup
t∈[0,∞)

eγ t
∥∥Φ(x, t)

∥∥
H(s)(R

n)
≤R

}
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with the metric

d(Φ1,Φ2) := sup
t∈[0,∞)

eγ t
∥∥Φ1(x, t)−Φ2(x, t)

∥∥
H(s)(R

n)
.

The first result of the present paper is the following theorem.

Theorem 1 Assume that the nonlinear term F(Φ) is Lipschitz continuous in the
space H(s)(Rn), s > n/2 ≥ 1, α > 0, and F(0) = 0. Assume also that the system
has a large mass matrix. Then, there exists ε0 > 0 such that, for every given vector-
valued functions ϕ0, ϕ1 ∈H(s)(Rn), such that

‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn) ≤ ε, ε < ε0,

there exists a global solution Φ ∈ C1([0,∞);H(s)(Rn)) of the Cauchy problem

Φtt + nΦt − e−2tΔΦ + MΦ = F(Φ), (5)

Φ(x,0)= ϕ0(x), Φt (x,0)= ϕ1(x). (6)

The solution Φ(x, t) belongs to the space X(2ε, s,0), that is,

sup
t∈[0,∞)

∥∥Φ(x, t)
∥∥
H(s)(R

n)
< 2ε.

For the scalar equation this result implies Theorem 0.1 in [35]. In fact, for the
scalar equation if

F(Φ)= ±|Φ|αΦ or F(Φ)= ±|Φ|α+1,

then, according to Theorem 0.1 in [35], the small data Cauchy problem is globally
solvable for every α ∈ (0,∞) if m ∈ (0,√n2 − 1/2)∪ [n/2,∞) and Condition (L)
is fulfilled. It is conjectured in [35] that (

√
n2 − 1/2, n/2) is a forbidden physical

mass interval for the small data global solvability of the Cauchy problem for all
α ∈ (0,∞).

Consider the particular case of the scalar equation with the spatial dimension
n = 3. In this case the interval (

√
n2 − 1/2, n/2) for the physical mass is re-

duced to (
√

2,3/2), which corresponds to the interval (0,1/2) for the curved
mass. For the physical mass in the physical variables the interval (0,

√
2) implies

0<m2 < 2H 2h2/c4 = 2Λ/3, which means for the curved mass M = √
9 − 4m2/2

the interval 1/2<M < 3/2. It turns out that the interval (0,
√

2) (with the right end-
point in the physical variables 2Λ/3) plays a significant role in the linear quantum
field theory [16], in a completely different context than the explicit representation
of the solutions of the Cauchy problem. More precisely, it is the so-called Higuchi
bound [1, 9, 16], which arises in the quantization of free massive fields with spin 2
in the de Sitter spacetime. It is the forbidden mass range for spin-2 field theory in de
Sitter spacetime because of the appearance of negative norm states. Thus, the point
m= √

2 is exceptional for the quantum fields theory.
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This is why in the present paper we pay special attention to the system of equa-

tions with the mass matrix M = n2−1
4 I. We call such mass matrix M critical, while

the square root of its eigenvalue will be called a critical mass. Thus, for the critical
matrix M the curved mass matrix is M2 = − 1

4 I. Then, we prove in Sect. 18.3.1 (see

Theorem 3 and Corollary 1) that for all n the endpoint m = √
n2 − 1/2 (the criti-

cal mass) of the forbidden mass interval, is the only value of the eigenvalues of the
physical mass matrix M, such that the solutions of the linear system of equations

Φtt + nΦt − e−2tΔΦ + MΦ = 0

obey the strong Huygens’ Principle, whenever the wave equation in the Minkowski
spacetime does. Moreover, in Sect. 18.3.1 we give also a complete asymptotic ex-
pansion for the solution of the scalar linear equation without source. Unlike to the
result by Vasy [30] it does not have the logarithmic term.

We also call the mass matrix M semi-critical mass matrix if the spectrum σ(M)

of the mass matrix M is a subset of (0, (n2 − 1)/4]. For the system with the semi-
critical mass matrix M we prove the following global existence theorem, which is
new in the critical case even for the scalar equation.

Theorem 2 Assume that the nonlinear term F(Φ) is Lipschitz continuous in the
space H(s)(Rn), s > n/2 ≥ 1, α > 0, and F(0) = 0. Assume also that the mass
matrix M is semi-critical, that is σ(M)⊂ (0, (n2 − 1)/4].

Then, there exists ε0 > 0 such that, for every given vector-valued functions
ϕ0, ϕ1 ∈H(s)(Rn), such that

‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn) ≤ ε, ε < ε0,

there exists a global solution Φ ∈ C1([0,∞);H(s)(Rn)) of the Cauchy problem

Φtt + nΦt − e−2tΔΦ + MΦ = F(Φ),

Φ(x,0)= ϕ0(x), Φt (x,0)= ϕ1(x).

The solution Φ(x, t) belongs to the space X(2ε, s, γ ), where

γ <
1

α + 1

(
n

2
− max

{√
n2

4
− λ;λ ∈ σ(M)

})
,

that is,

sup
t∈[0,∞)

eγ t
∥
∥Φ(x, t)

∥
∥
H(s)(R

n)
< 2ε.

We note here that, due to the dependence of the coefficient on time, there is no
conservation of energy, and that, for the general nonlinearity F(Φ), the decay of the
energy cannot be established although the equation contains a dissipative term. We
also note that the evident combinations of Theorems 1–2 give some generalizations,
which we do not formulate here.
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Baskin [3] discussed small data global solutions for the scalar Klein-Gordon
equation on asymptotically de Sitter spaces, which is a compact manifold with
boundary. More precisely, in [3] the Cauchy problem is considered for the semi-
linear equation

�gu+m2u= f (u), u(x, t0)= ϕ0(x) ∈H(1)
(
Rn

)
, ut (x, t0)= ϕ1(x) ∈ L2(Rn

)
,

where mass is large, m2 > n2/4, F is a smooth function and satisfies conditions
|f (u)| ≤ c|u|α+1, |u| · |f ′(u)| ∼ |f (u)|, f (u)− f ′(u) · u≤ 0,

∫ u
0 f (v)dv ≥ 0, and∫ u

0 f (v)dv ∼ |u|α+2 for large |u|. It is also assumed that α = 4
n−1 . In Theorem 1.3

in [3] the existence of the global solution for small energy data is stated. (For more
references on the asymptotically de Sitter spaces, see the bibliography in [2, 30].)

D’Ancona [7] considered the Cauchy problem for the equation

utt − a(t)Δu= −f (u), t ∈ [0, T ], x ∈R3,

with the nonnegative real-analytic function a(t), which has a locally finite number
of zeros and those zeros are of finite order only. It was supposed in [7] that the
nonlinear term obeys conditions f (u)u≥ 0, f (0)= 0,

∣∣f (s)
∣∣1+1/p ≤ c

(
1 +

∫ s

0
f (σ )dσ

)
,

∣∣f ′(s)
∣∣≤ c

(
1 + |s|)p−1

,

f (3)(s)f ′(s)+ β
(
f (2)(s)

)2 ≥ 0,

with some p ≥ 1 and β < 1. Then, assuming that the possible zeros of a(t)
are of order not greater than 2λ, λ = 1,2, . . . , the existence of the solution u ∈
C∞([0, T ] × R3) without restriction on the size of the initial data is proved, pro-
vided that p < (3λ+ 5)/(3λ+ 1). In [8] this result was extended to the case of 1
and 2 spatial dimensions.

The remaining part of this paper is organized as follows. In Sect. 18.2 we give
integral representations for the solutions of the Cauchy problem for the linear equa-
tion with large physical mass. Then, we quote from [32], the Lp-Lq estimates for
the solutions of that equation with and without a source term. In Sect. 18.3 we in-
troduce similar representations for the cases of small real mass and of the imaginary
mass. These representations are used in the Sects. 18.3.2–18.3.3 for the derivation
of asymptotic expansions and the Lp-Lq estimates for the linear equation with and
without a source term. The last section, Sect. 18.4, is devoted to the solvability of
the associated integral equation and to the proof of Theorems 1–2.

18.2 The Scalar Equation. Case of Large Mass

Scalar fields play a fundamental role in the standard model of particle physics, as
well as, its possible extensions. In particular, scalar fields generate spontaneous sym-
metry breaking and provide masses to gauge bosons and chiral fermions by the
Brout-Englert-Higgs mechanism [10] using a Higgs-type potential [15].
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The nonlinear equations (1) and (2) are those we would like to solve, but the
linear problem is a natural first step. The exceptionally efficient tools for studying
nonlinear equations are the fundamental solution of the associated linear operator
and explicit representation formulas for the solutions of the linear equation. We
extract a linear part of the system (3) as an initial model that must be treated first.
That linear system is diagonal, which allows us to restrict ourselves to one scalar
equation

utt − e−2t & u+M2u= f, (7)

where M is a non-negative number throughout this section. In this section we list
the explicit formulas for the solution of the Cauchy problem for (7).

Equation (7) is strictly hyperbolic. That implies the well-posedness of the Cauchy
problem for (7) in several function spaces. The coefficient of the equation is an
analytic function and, consequently, Holmgren’s theorem implies local uniqueness
in the space of distributions. Moreover, the speed of propagation is finite, namely,
it is equal to e−t for every t ∈ R. The second-order strictly hyperbolic equation
(7) possesses two fundamental solutions resolving the Cauchy problem. They can
be written microlocally in terms of Fourier integral operators [17], which give a
complete description of the wave front sets of the solutions. The distance between
two characteristic roots λ1(t, ξ) and λ2(t, ξ) of (7) is |λ1(t, ξ)− λ2(t, ξ)| = e−t |ξ |,
t ∈ R, ξ ∈ Rn. It tends to zero as t approaches infinity. Thus, the operator is not
uniformly strictly hyperbolic. Moreover, the finite integrability of the characteristic
roots,

∫∞
0 |λi(t, ξ)|dt < ∞, leads to the existence of a so-called horizon for that

equation. More precisely, any signal emitted from the spatial point x0 ∈ Rn at time
t0 ∈R remains inside the ball |x−x0|< e−t0 for all time t ∈ (t0,∞). Equation (7) is
neither Lorentz invariant nor invariant with respect to usual scaling and that brings
additional difficulties.

In this section we introduce some necessary notations, definitions, formulas, and
results from [32], where the case of the large mass, that is, m2 ≥ n2/4, is discussed.
First, we define the forward light cone D+(x0, t0), x0 ∈ Rn, t0 ∈ R, and the back-
ward light cone D−(x0, t0), x0 ∈Rn, t0 ∈R, as follows:

D±(x0, t0) :=
{
(x, t) ∈Rn+1; |x − x0| ≤ ±(

e−t0 − e−t
)}
.

In fact, any intersection ofD−(x0, t0)with the hyperplane t = const< t0 determines
the so-called dependence domain for the point (x0, t0), while the intersection of
D+(x0, t0) with the hyperplane t = const > t0 is the so-called domain of influence
of the point (x0, t0). Equation (7) is non-invariant with respect to time inversion.
Moreover, the dependence domain is wider than any given ball if time const> t0 is
sufficiently large, while the domain of influence is permanently, for all time const<
t0, in the ball of the radius et0 .

Define for t0 ∈R in the domain D+(x0, t0)∪D−(x0, t0) the function

E(x, t;x0, t0) = (
4e−t0−t

)iM((
e−t + e−t0

)2 − (x − x0)
2)−1/2−iM

×F
(

1

2
+ iM,

1

2
+ iM;1; (e

−t0 − e−t )2 − (x − x0)
2

(e−t0 + e−t )2 − (x − x0)2

)
, (8)
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where F(a, b; c; ζ ) is the hypergeometric function. (For the definition of F(a, b;
c; ζ ) see, e.g., [4].) Here the notation (x − x0)

2 = (x − x0) · (x − x0) for the points
x, x0 ∈Rn has been used. The kernels K0(z, t) and K1(z, t) are defined by

K0(z, t) := −
[
∂

∂b
E(z, t;0, b)

]

b=0

= (
4e−t

)iM((1 + e−t
)2 − z2)−iM 1

[(1 − e−t )2 − z2]√(1 + e−t )2 − z2

×
[
(
e−t − 1 − iM

(
e−2t − 1 − z2))

× F

(
1

2
+ iM,

1

2
+ iM;1; (1 − e−t )2 − z2

(1 + e−t )2 − z2

)

+ (
1 − e−2t + z2)

(
1

2
− iM

)

× F

(
−1

2
+ iM,

1

2
+ iM;1; (1 − e−t )2 − z2

(1 + e−t )2 − z2

)]
(9)

and K1(z, t) :=E(z, t;0,0), that is,

K1(z, t)=
(
4e−t

)iM((1 + e−t
)2 − z2)−1/2−iM

× F

(
1

2
+ iM,

1

2
+ iM;1; (1 − e−t )2 − z2

(1 + e−t )2 − z2

)
,

0 ≤ z≤ 1 − e−t , (10)

respectively. The main properties of K0(z, t) and K1(z, t) are listed and proved in
Sect. 3 in [32].

We consider the equation with n ≥ 2. The solution u = u(x, t) to the Cauchy
problem

utt − e−2tΔu+M2u= f, u(x,0)= 0, ut (x,0)= 0, (11)

with f ∈ C∞(Rn+1) and with vanishing initial data is given by the next expression

u(x, t)= 2
∫ t

0
db

∫ e−b−e−t

0
drv(x, r;b)E(r, t;0, b),

where the function v(x, t;b) is a solution to the Cauchy problem for the wave equa-
tion

vtt − &v = 0, v(x,0;b)= f (x, b), vt (x,0;b)= 0. (12)

Thus, for the solution Φ of the equation

Φtt + nΦt − e−2t &Φ +m2Φ = f, (13)
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due to the relation u= e(n/2)tΦ , we obtain

Φ(x, t) = 2e−(n/2)t
∫ t

0
db

∫ e−b−e−t

0
dre(n/2)bv(x, r;b)E(r, t;0, b), (14)

where the function v(x, t;b) is defined by (12).
The solution u= u(x, t) to the Cauchy problem

utt − e−2t & u+M2u= 0, u(x,0)= ϕ0(x), ut (x,0)= ϕ1(x), (15)

with ϕ0, ϕ1 ∈ C∞
0 (R

n), n≥ 2, can be represented as follows:

u(x, t) = e(t/2)vϕ0

(
x,φ(t)

)+ 2
∫ 1

0
vϕ0

(
x,φ(t)s

)
K0

(
φ(t)s, t

)
φ(t)ds

+ 2
∫ 1

0
vϕ1

(
x,φ(t)s

)
K1

(
φ(t)s, t

)
φ(t)ds, x ∈Rn, t > 0,

where φ(t) := 1 − e−t . Here, for ϕ ∈ C∞
0 (R

n) and for x ∈ Rn, the function
vϕ(x,φ(t)s) coincides with the value v(x,φ(t)s) of the solution v(x, t) of the
Cauchy problem

vtt − &v = 0, v(x,0)= ϕ(x), vt (x,0)= 0. (16)

Thus, for the solution Φ of the Cauchy problem

Φtt + nΦt − e−2t &Φ +m2Φ = 0, Φ(x,0)= ϕ0(x),Φt (x,0)= ϕ1(x), (17)

due to the relation u= e(n/2)tΦ , we obtain

Φ(x, t) = e−((n−1)/2)t vϕ0

(
x,φ(t)

)

+ e−(n/2)t
∫ 1

0
vϕ0

(
x,φ(t)s

)(
2K0

(
φ(t)s, t

)+ nK1
(
φ(t)s, t

))
φ(t)ds

+ 2e−
n
2 t

∫ 1

0
vϕ1

(
x,φ(t)s

)
K1

(
φ(t)s, t

)
φ(t)ds, x ∈Rn, t > 0.

18.2.1 Lp-Lq Estimates for Equation with Source

The Cauchy problem

vtt − &v = 0, v(x,0)=ψ0(x), vt (x,0)=ψ1(x),

with ψ0,ψ1 ∈ C∞
0 (R

n) for the linear wave equation has a unique solution that can
be written as follows:

u0(x, t)= V1(t,Dx)ψ0(x)+ V2(t,Dx)ψ1(x).
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The operators V1(t,Dx) and V2(t,Dx) are chosen in accordance with

V1(0,Dx)= I (identity operator), ∂tV1(0,Dx)= 0,

V2(0,Dx)= 0, ∂tV2(0,Dx)= I (identity operator).

The microlocal description of those operators by means of Fourier integral operators
is known (see, e.g. [25]). LetWl,p(Rn), Bl,p(Rn), and Ḃl,p(Rn) be Sobolev, Besov,
and homogeneous Besov spaces, respectively. In what follows the space Ms,q can
be each of the next spaces Lq(Rn), Ws,q(Rn), Ẇ s,q(Rn), Bs,q(Rn), or Ḃs,q(Rn).
The following decay estimates for the linear operators V1(t,Dx) and V2(t,Dx) can
be found, e.g., in [6, 22].

For all ψ ∈ C∞
0 (R

n), n > 1, one has the estimates

∥
∥(−Δ)−sV1(t,Dx)ψ(x)

∥
∥
Ml,q ≤ Ct2s−n(1/p−1/q)‖ψ‖Ml,p , t ∈ (0,∞),

under the conditions s ≥ 0, 1 < p ≤ 2, 1
p

+ 1
q

= 1, and 1
2 (n + 1)( 1

p
− 1

q
) ≤ 2s ≤

n( 1
p

− 1
q
). Then, for all g ∈ C∞

0 (R
n) one has the estimate

∥∥(−Δ)−sV2(t,Dx)g(x)
∥∥
Ml,q ≤ Ct1+2s−n(1/p−1/q)‖g‖Ml,p , t ∈ (0,∞),

under the conditions s ≥ 0, 1<p ≤ 2, 1
p

+ 1
q

= 1, k ≥ 0, and 1
2 (n+1)( 1

p
− 1
q
)−1 ≤

2s ≤ n( 1
p

− 1
q
). Moreover, a standard interpolation argument implies that these es-

timates hold for s and r in some range (see for details [23]). Scaling arguments
show that the time dependent factors are exact. The Duhamel’s principle gives cor-
responding estimates for equations with source terms.

Let u = u(x, t) be a solution of the Cauchy problem (11). Then according to
Corollary 9.3 in [32]1 for n≥ 2 one has the following estimate

∥∥(−&)−su(x, t)∥∥
Lq(Rn)

≤ CM

∫ t

0

∥∥f (x, b)
∥∥
Lp(Rn)

eb
(
e−b − e−t

)1+2s−n(1/p−1/q)
(1 + t − b)1−sgnMdb,

provided that 1< p ≤ 2, 1
p

+ 1
q

= 1, 1
2 (n+ 1)( 1

p
− 1

q
)≤ 2s ≤ n( 1

p
− 1

q
) < 2s + 1.

Thus, for the solution Φ (14) of (13), due to the relation u= e(n/2)tΦ , we obtain

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤ CMe
−(n/2)t

∫ t

0
e(n/2)b

∥∥f (x, b)
∥∥
Lp(Rn)

eb
(
e−b − e−t

)1+2s−n(1/p−1/q)

× (1 + t − b)1−sgnMdb.

1There is a misprint in [32].
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For M > 0 we obtain
∥∥(−&)−sΦ(x, t)∥∥

Lq(Rn)

≤ CMe
−(n/2)t

∫ t

0
e(n/2)b

∥∥f (x, b)
∥∥
Lp(Rn)

eb
(
e−b − e−t

)1+2s−n(1/p−1/q)
db.

For M = 0 we obtain
∥∥(−&)−sΦ(x, t)∥∥

Lq(Rn)

≤ CMe
−(n/2)t

∫ t

0
e(n/2)b

∥∥f (x, b)
∥∥
Lp(Rn)

eb
(
e−b − e−t

)1+2s−n(1/p−1/q)

× (1 + t − b)db.

In particular, for s = 0 and p = q = 2, we have

∥∥Φ(x, t)
∥∥
L2(Rn)

≤ CMe
−(n/2)t

∫ t

0
e(n/2)b

∥∥f (x, b)
∥∥
L2(Rn)

(1 + t − b)1−sgnMdb.

Here the rates of exponential factors are independent of the curved mass M and,
consequently, of the mass m.

18.2.2 Lp-Lq Estimates for Equations Without Source

According to Theorem 10.1 in [32] the solution u = u(x, t) of the Cauchy prob-
lem (15) satisfies the following Lp-Lq estimate

∥∥(−&)−su(x, t)∥∥
Lq(Rn)

≤ CM(1 + t)1−sgnM(1 − e−t
)2s−n(1/p−1/q)

× {
et/2‖ϕ0‖Lp(Rn) +

(
1 − e−t

)‖ϕ1‖Lp(Rn)
}

for all t ∈ (0,∞), provided that 1 < p ≤ 2, 1
p

+ 1
q

= 1, 1
2 (n+ 1)( 1

p
− 1

q
) ≤ 2s ≤

n( 1
p

− 1
q
) < 2s + 1.

In particular, for large t we obtain the following no decay estimate
∥∥(−&)−su(x, t)∥∥

Lq(Rn)
≤ CM(1 + t)1−sgnM{et/2‖ϕ0‖Lp(Rn) + ‖ϕ1‖Lp(Rn)

}
.

Thus, for the solution Φ of the Cauchy problem (17), due to the relation u =
e(n/2)tΦ , we obtain the decay estimate

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤ CMe
−(n/2)t (1 + t)1−sgnM(1 − e−t

)2s−n(1/p−1/q)

× {
et/2‖ϕ0‖Lp(Rn) +

(
1 − e−t

)‖ϕ1‖Lp(Rn)
}

(18)

for all t > 0, while
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∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤ CMe
−(n/2)t (1 + t)1−sgnM{et/2‖ϕ0‖Lp(Rn) + ‖ϕ1‖Lp(Rn)

}

for large t . Here the rate of decay is essentially independent of the curved mass M
and, consequently, of the mass m.

18.3 The Scalar Equation. Imaginary Curved Mass

In this section we consider the linear part of the scalar equation

utt − e−2t & u−M2u= −e(n/2)tV ′(e−(n/2)tu
)
, (19)

with M ≥ 0. Equation (19) covers two important cases. The first one is the Higgs
boson equation, which has V ′(φ) = λφ3 and M2 = μm2 + n2/4 with λ > 0 and
μ > 0, while n= 3. The second case is the case of the small physical mass, that is

0 ≤m≤ n
2 . For the last case M2 = n2

4 −m2.
We introduce new functions E(x, t;x0, t0;M), K0(z, t;M), and K1(z, t;M),

which can be obtained by continuation in complex domain the ones introduced
in [32] and which have been used in Sect. 18.2. First we define the function

E(x, t;x0, t0;M) = 4−MeM(t0+t)
((
e−t + e−t0

)2 − (x − x0)
2)−1/2+M

× F

(
1

2
−M,

1

2
−M;1; (e

−t0 − e−t )2 − (x − x0)
2

(e−t0 + e−t )2 − (x − x0)2

)
. (20)

Hence, it is related to the function E(x, t;x0, t0) of (8) as follows:

E(x, t;x0, t0)=E(x, t;x0, t0;−iM).
Next we define also new kernels K0(z, t;M) and K1(z, t;M) by

K0(z, t;M) := −
[
∂

∂b
E(z, t;0, b;M)

]

b=0

= 4−MetM
((

1 + e−t
)2 − z2)M 1

[(1 − e−t )2 − z2]√(1 + e−t )2 − z2

×
[(
e−t − 1 +M

(
e−2t − 1 − z2))

× F

(
1

2
−M,

1

2
−M;1; (1 − e−t )2 − z2

(1 + e−t )2 − z2

)

+ (
1 − e−2t + z2)

×
(

1

2
+M

)
F

(
−1

2
−M,

1

2
−M;1; (1 − e−t )2 − z2

(1 + e−t )2 − z2

)]
, (21)
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and K1(z, t;M) :=E(z, t;0,0;M), that is,

K1(z, t;M)

= 4−MeMt
((

1 + e−t
)2 − z2)−1/2+M

F

(
1

2
−M,

1

2
−M;1; (1 − e−t )2 − z2

(1 + e−t )2 − z2

)
,

0 ≤ z≤ 1 − e−t , (22)

respectively. These kernels will be used in the representation of the solutions of the
Cauchy problem.

The solution u= u(x, t) to the Cauchy problem

utt − e−2tΔu−M2u= f, u(x,0)= 0, ut (x,0)= 0, (23)

with f ∈ C∞(Rn+1) and with vanishing initial data is given in [33] by the next
expression

u(x, t)= 2
∫ t

0
db

∫ e−b−e−t

0
drv(x, r;b)E(r, t;0, b;M),

where the function v(x, t;b) is a solution to the Cauchy problem for the wave equa-
tion (12).

The solution u= u(x, t) to the Cauchy problem

utt − e−2t & u−M2u= 0, u(x,0)= ϕ0(x), ut (x,0)= ϕ1(x),

with ϕ0, ϕ1 ∈ C∞
0 (R

n), n≥ 2, can be represented (see [33]) as follows:

u(x, t) = et/2vϕ0

(
x,φ(t)

)+ 2
∫ 1

0
vϕ0

(
x,φ(t)s

)
K0

(
φ(t)s, t;M)

φ(t)ds

+ 2
∫ 1

0
vϕ1

(
x,φ(t)s

)
K1

(
φ(t)s, t;M)

φ(t)ds, x ∈Rn, t > 0,

where φ(t) := 1 − e−t . Here, for ϕ ∈ C∞
0 (R

n) and for x ∈ Rn, the function
vϕ(x,φ(t)s) coincides with the value v(x,φ(t)s) of the solution v(x, t) of the
Cauchy problem (16).

Thus, for the solution Φ of the Cauchy problem

Φtt + nΦt − e−2t &Φ +m2Φ = f, Φ(x,0)= 0,Φt (x,0)= 0,

due to the relation u= e(n/2)tΦ , we obtain with f ∈ C∞(Rn+1) and with vanishing
initial data the next expression

Φ(x, t)= 2e−(n/2)t
∫ t

0
db

∫ e−b−e−t

0
dre(n/2)bv(x, r;b)E(r, t;0, b;M), (24)
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where the function v(x, t;b) is a solution to the Cauchy problem for the wave equa-
tion (12).

Thus, for the solution Φ of the Cauchy problem (17), due to the relation u =
e(n/2)tΦ , we obtain

Φ(x, t)

= e−((n−1)/2)t vϕ0

(
x,φ(t)

)

+ e−(n/2)t
∫ 1

0
vϕ0

(
x,φ(t)s

)(
2K0

(
φ(t)s, t;M)+ nK1

(
φ(t)s, t;M))

φ(t)ds

+ 2e−(n/2)t
∫ 1

0
vϕ1

(
x,φ(t)s

)
K1

(
φ(t)s, t;M)

φ(t)ds, x ∈Rn, t > 0. (25)

Here for ϕ ∈ C∞
0 (R

n) and for x ∈ Rn, the function vϕ(x,φ(t)s) coincides with the
value v(x,φ(t)s) of the solution v(x, t) of the Cauchy problem (16).

In fact, the representation formulas of this section have been used in [34] to
establish some qualitative properties of the solutions of the Higgs boson equation.

18.3.1 The Critical Case of m2 = (n2 − 1)/4

Here we want to distinguish certain mass m. More precisely, looking for the
simplest possible function E(x, t;x0, t0;M), and consequently, K0(z, t;M) and
K1(z, t;M), we set M = 1/2, that is, m2 = (n2 − 1)/4, which simplifies the hyper-
geometric functions, as well as, the kernels K0(z, t;M) and K1(z, t;M). Indeed, in
that case we have

E

(
x, t;x0, t0; 1

2

)
= 1

2
e(1/2)(t0+t), E

(
z, t;0, b; 1

2

)
= 1

2
e(1/2)(b+t),

while

K0

(
z, t; 1

2

)
= −1

4
e(1/2)t , K1

(
z, t; 1

2

)
= 1

2
e(1/2)t .

For the solution (14) of (13) with the source term it follows

Φ(x, t)= e−((n−1)/2)t
∫ t

0
e((n+1)/2)bdb

∫ e−b−e−t

0
v(x, r;b)dr,

where the function v(x, r;b) is defined by (12). In fact, if we denote by Vf (x, t;b)
the solution of the problem

Vtt − &V = 0, V (x,0)= 0,Vt (x,0)= f (x, b),
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then

v(x, t;b)= ∂

∂t
Vf (x, t;b).

Hence,

Φ(x, t)= e−((n−1)/2)t
∫ t

0
e((n+1)/2)bVf

(
x, e−b − e−t ;b)db.

Further, for the solution Φ (25) of the equation without source term we have

Φ(x, t) = e−((n−1)/2)t vϕ0

(
x,1 − e−t

)+ n− 1

2
e−((n−1)/2)t

∫ 1−e−t

0
vϕ0(x, s)ds

+ e−((n−1)/2)t
∫ 1−e−t

0
vϕ1(x, s)ds, x ∈Rn, t > 0,

where the functions vϕ0 and vϕ1 are defined by (16). Now, if we denote by Vϕ the
solution of the problem

Vtt − &V = 0, V (x,0)= 0,Vt (x,0)= ϕ(x),

then

vϕ(x, t)= ∂

∂t
Vϕ(x, t),

and

Φ(x, t) = e−((n−1)/2)t vϕ0

(
x,1 − e−t

)+ n− 1

2
e−((n−1)/2)tVϕ0

(
x,1 − e−t

)

+ e−((n−1)/2)tVϕ1

(
x,1 − e−t

)
, x ∈Rn, t > 0,

or, equivalently,

Φ(x, t) = e−((n−1)/2)t
(
∂Vϕ0

∂t

)(
x,1 − e−t

)+ n− 1

2
e−((n−1)/2)tVϕ0

(
x,1 − e−t

)

+ e−((n−1)/2)tVϕ1

(
x,1 − e−t

)
, x ∈Rn, t > 0.

The last formula can be also verified by direct substitution.
Thus, in particular, we have proven the following theorem.

Theorem 3 The value m = √
n2 − 1/2 is the only value of the physical mass m,

such that the solutions of the equation

Φtt + nΦt − e−2t &Φ +m2Φ = 0, (26)

obey the strong Huygens’ Principle, whenever the wave equation in the Minkowski
spacetime does, that is n≥ 3 is an odd number.
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Corollary 1 The solutions of the equation

Φtt + nΦt − e−2tΔΦ + MΦ = 0,

obey the strong Huygens’ Principle, if and only if n ≥ 3 is an odd number and the

mass matrix M is the diagonal matrix n2−1
4 I.

18.3.2 The Critical Case. Asymptotic Expansions of Solutions at
Infinite Time

For ϕ1 ∈ C∞
0 (R

n) the formula for the solution u(x, t) of the Cauchy problem

utt −Δu= 0, u(x,0)= 0, ut (x,0)= ϕ(x),

is well-known. It can be written for odd and even n separately as follows. We have

Vϕ(x, t) :=
(

1

t

∂

∂t

)(n−3)/2
tn−2

ωn−1c
(n)
0

∫

Sn−1
ϕ(x + ty)dSy,

where c(n)0 = 1 · 3 · . . . · (n− 2) if n≥ 3 is odd. For x ∈Rn, and even n, we have

Vϕ(x, t) :=
(

1

t

∂

∂t

)(n−2)/2 2rn−1

ωn−1c
(n)
0

∫

Bn1 (0)

1
√

1 − |y|2 ϕ(x + ty)dVy,

where c(n)0 = 1 · 3 · . . . · (n− 1). Similarly, for ϕ0 ∈ C∞
0 (R

n) and for x ∈ Rn, if n is
odd, the formula for the solution u(x, t) of the Cauchy problem

utt −Δu= 0, u(x,0)= ϕ0(x), ut (x,0)= 0,

implies

vϕ(x, t) := ∂

∂t

(
1

t

∂

∂t

)(n−3)/2
tn−2

ωn−1c
(n)
0

∫

Sn−1
ϕ(x + ty)dSy.

In the case of x ∈Rn and even n we have

vϕ(x, t) := ∂

∂t

(
1

t

∂

∂t

)(n−2)/2 2tn−1

ωn−1c
(n)
0

∫

Bn1 (0)

1
√

1 − |y|2 ϕ(x + ty)dVy.

The constant ωn−1 is the area of the unit sphere Sn−1 ⊂Rn. In particular,

vϕ(x,1)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ ∂
∂t
( 1
t
∂
∂t
)(n−3)/2 tn−2

ωn−1c
(n)
0

∫
Sn−1 ϕ(x + ty)dSy]t=1, if n is odd,

[ ∂
∂t
( 1
t
∂
∂t
)(n−2)/2 2tn−1

ωn−1c
(n)
0

∫
Bn1 (0)

1√
1−|y|2 ϕ(x + ty)dVy]t=1,

if n is even,
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and

Vϕ(x,1)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[( 1
t
∂
∂t
)(n−3)/2 tn−2

ωn−1c
(n)
0

∫
Sn−1 ϕ(x + ty)dSy]t=1, if n is odd,

[( 1
t
∂
∂t
)(n−2)/2 2tn−1

ωn−1c
(n)
0

∫
Bn1 (0)

1√
1−|y|2 ϕ(x + ty)dVy]t=1,

if n is even.

Denote

vϕ(x) := vϕ(x,1), Vϕ(x) := Vϕ(x,1).

In order to write the complete asymptotic expansion of the solutions, we define the
functions

V (k)ϕ (x)= (−1)k

k!
[(

∂

∂t

)k
Vϕ(x, t)

]

t=1
∈ C∞

0

(
Rn

)
, k = 1,2, . . . .

Then, for every integer N ≥ 1 we have

Vϕ
(
x,1 − e−t

)=
N−1∑

k=0

V (k)ϕ (x)e−kt +RVϕ,N(x, t), RVϕ,N ∈ C∞,

where with the constant C(ϕ) the remainder RVϕ,N satisfies the inequality

∣∣RVϕ,N (x, t)
∣∣≤ C(ϕ)e−Nt for all x ∈Rn and all t ∈ [0,∞).

Moreover, the support of the remainder RVϕ,N is in the cylinder

suppRVϕ,N ⊆ {
x ∈Rn;dist(x, suppϕ)≤ 1

}× [0,∞).

Analogously, we define

v(k)ϕ (x)= (−1)k

k!
[(

∂

∂t

)k
vϕ(x, t)

]

t=1
∈ C∞

0

(
Rn

)
, k = 1,2, . . . ,

and the remainder Rvϕ,N

vϕ
(
x,1 − e−t

)=
N−1∑

k=0

v(k)ϕ (x)e−kt +Rvϕ,N (x, t), Rvϕ,N ∈ C∞,

such that
∣∣Rvϕ,N (x, t)

∣∣≤ C(ϕ)e−Nt for all x ∈Rn and all t ∈ [0,∞).

Further, we introduce the polynomial in z with the smooth in x ∈Rn coefficients as
follows:
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Φ
(N)
asypt (x, z) = z(n−1)/2

(
N−1∑

k=0

v(k)ϕ0
(x)zk + n− 1

2

N−1∑

k=0

V (k)ϕ0
(x)zk

)

+ z(n−1)/2
N−1∑

k=0

V (k)ϕ1
(x)zk,

where x ∈Rn, z ∈ C. This allows us to prove the following asymptotic expansion

Φ(x, t)=Φ
(N)
asypt

(
x, e−t

)+O
(
e−Nt−((n−1)/2)t)

for large t uniformly for x ∈Rn. Thus, we have proven the next theorem.

Theorem 4 Suppose that m = √
n2 − 1/2. Then, for every integer positive N the

solution of (26) with the initial values ϕ0, ϕ1 ∈ C∞
0 (R

n) has the following asymp-
totic expansion at infinity:

Φ(x, t)∼Φ
(N)
asypt

(
x, e−t

)
,

in the sense that for every integer positive N the following estimate is valid:

∥∥Φ(x, t)−Φ
(N)
asypt

(
x, e−t

)∥∥
L∞(Rn) ≤ C(ϕ0, ϕ1)e

−Nt−((n−1)/2)t for large t.

Remark 1 If we take into account the relation vϕ(x, t)= ∂
∂t
Vϕ(x, t), then

v(k)ϕ (x)= −(k+ 1)V (k+1)
ϕ (x)

and, consequently, the function Φ(N)
asypt (x, z) can be rewritten as follows:

Φ
(N)
asypt (x, z)

= z(n−1)/2

(
N−1∑

k=0

v(k)ϕ0
(x)zk + n− 1

2

N−1∑

k=0

V (k)ϕ0
(x)zk

)

+ z(n−1)/2
N−1∑

k=0

V (k)ϕ1
(x)zk

= z(n−1)/2

(
N−1∑

k=0

(−1)(k + 1)V (k+1)
ϕ0

(x)zk + n− 1

2

N−1∑

k=0

V (k)ϕ0
(x)zk

)

+ z(n−1)/2
N−1∑

k=0

V (k)ϕ1
(x)zk

= z(n−1)/2
N−1∑

k=0

(
n− 1

2
V (k)ϕ0

(x)− (k + 1)V (k+1)
ϕ0

(x)+ V (k)ϕ1
(x)

)
zk.
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18.3.3 The Critical Case. Lp-Lq -Estimates

Lemma 1 Suppose thatm= √
n2 − 1/2. If ϕ0 = ϕ1 = 0 and 1

2 (n+1)( 1
p

− 1
q
)−1 ≤

2s ≤ n( 1
p

− 1
q
), then for the solution Φ = Φ(x, t) of (13) the following estimate

holds

∥
∥(−&)−sΦ(x, t)∥∥

Lq(Rn)
≤ Ce−((n−1)/2)t

∫ t

0
e((n+1)/2)b(e−b − e−t

)1+2s−n(1/p−1/q)

× ∥∥f (x, b)
∥∥
Lp(Rn)

db, t > 0.

For the solution Φ = Φ(x, t) of the Cauchy problem (17): if f ≡ 0, ϕ0 = 0, and
1
2 (n+ 1)( 1

p
− 1

q
)− 1 ≤ 2s ≤ n( 1

p
− 1

q
), then

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤ Ce−((n−1)/2)t(1 − e−t
)1+2s−n(1/p−1/q)‖ϕ1‖Lp(Rn), t > 0,

while if f ≡ 0, ϕ1 = 0, and 1
2 (n+ 1)( 1

p
− 1

q
)≤ 2s ≤ n( 1

p
− 1

q
), then

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤ Ce−((n−1)/2)t(1 − e−t
)2s−n(1/p−1/q)‖ϕ0‖Lp(Rn), t > 0.

Proof The following Lp-Lq decay estimates are well-known (see, e.g., [6, 22]). If
n≥ 2, then for the solution v = v(x, t) of the Cauchy problem for the wave equation
in the Minkowski spacetime

vtt − &v = 0, v(x,0)= 0, vt (x,0)= ϕ(x),

with ϕ(x) ∈ C∞
0 (R

n) one has the following so-called Lp-Lq decay estimate

∥∥(−&)−sv(x, t)∥∥
Lq(Rn)

≤ Ct1+2s−n(1/p−1/q)‖ϕ‖Lp(Rn) for all t > 0,

provided that s ≥ 0, 1 < p ≤ 2, 1
p

+ 1
q

= 1, and 1
2 (n + 1)( 1

p
− 1

q
) − 1 ≤ 2s ≤

n( 1
p

− 1
q
).

Hence, if ϕ0 = ϕ1 = 0 and 1
2 (n+ 1)( 1

p
− 1

q
)− 1 ≤ 2s ≤ n( 1

p
− 1

q
), then

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤
∥∥∥∥(−&)−se−((n−1)/2)t

∫ t

0
e((n+1)/2)bVf

(
x, e−b − e−t ;b)db

∥∥∥∥
Lq(Rn)

≤ e−((n−1)/2)t
∫ t

0
e((n+1)/2)b

∥∥(−&)−sVf
(
x, e−b − e−t ;b)∥∥

Lq(Rn)
db
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≤ Ce−((n−1)/2)t
∫ t

0
e((n+1)/2)b(e−b − e−t

)1+2s−n(1/p−1/q)

× ∥∥f (x, b)
∥∥
Lp(Rn)

db, t > 0.

In particular,

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤ C
(

sup
0≤b≤t

∥∥f (x, b)
∥∥
Lp(Rn)

)
e−((n−1)/2)t

×
∫ t

0
e((n+1)/2)b(e−b − e−t

)1+2s−n(1/p−1/q)
db

≤ C
(

sup
0≤b≤t

∥∥f (x, b)
∥∥
Lp(Rn)

)
e−((n−1)/2)t e−t (1+2s−n(1/p−1/q))

×
∫ t

0
e((n+1)/2)b(et−b − 1

)1+2s−n(1/p−1/q)
db, t > 0.

For the case s = 0 we obtain

∥∥Φ(x, t)
∥∥
Lq(Rn)

≤ C
(

sup
0≤b≤t

∥∥f (x, b)
∥∥
Lp(Rn)

)
e−((n−1)/2)t e−t (1−n(1/p−1/q))

×
∫ t

0
e((n+1)/2)b(et−b − 1

)1−n(1/p−1/q)
db, t > 0,

as well as

∥∥Φ(x, t)
∥∥
Lq(Rn)

≤ C
(

sup
0≤b≤t

∥∥f (x, b)
∥∥
Lp(Rn)

)
e−((n−1)/2)t

∫ t

0
e((n−1)/2)b+n(1/p−1/q)bdb,

for t > 0. In the case p = q = 2 and n≥ 2 we obtain for the L2-norm the estimate

∥∥Φ(x, t)
∥∥
L2(Rn)

≤ C
(

sup
0≤b≤t

∥∥f (x, b)
∥∥
L2(Rn)

)
e−((n−1)/2)t

∫ t

0
e((n−1)/2)bdb

≤ C
(

sup
0≤b≤t

∥∥f (x, b)
∥∥
L2(Rn)

)
, t > 0.

Further, if f ≡ 0, ϕ0 = 0, and 1
2 (n+ 1)( 1

p
− 1

q
)− 1 ≤ 2s ≤ n( 1

p
− 1

q
), then

∥
∥(−&)−sΦ(x, t)∥∥

Lq(Rn)

≤ Ce−((n−1)/2)t(1 − e−t
)1+2s−n(1/p−1/q)‖ϕ1‖Lp(Rn), t > 0,
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while if f ≡ 0, ϕ1 = 0, and 1
2 (n+ 1)( 1

p
− 1

q
)≤ 2s ≤ n( 1

p
− 1

q
), then

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤ Ce−((n−1)/2)t(1 − e−t
)2s−n(1/p−1/q)‖ϕ0‖Lp(Rn), t > 0.

The lemma is proven. �

We can check that these estimates are sharp if, for example, f ≡ 0. Indeed, let
us consider the solution Φ of the problem (17), which is generated by smooth ini-
tial functions ϕ0(x) and ϕ1(x) with compact supports, ϕ0, ϕ1 ∈ C∞

0 (R
n). Then Φ ∈

C∞([0,∞)×Rn) and the support of Φ is contained in some cylinder BR ×[0,∞),
where BR ⊂ Rn is a ball of radius R centered at the origin, which depends on the
supports of ϕ0 and ϕ1. We may say that the support of the solution is permanently
bounded. That is a consequence of the finite propagation speed property of the hy-
perbolic equation and due to the existence of a horizon for the de Sitter spacetime.
Next, we integrate the equation of (17) with respect to x and obtain the following
initial value problem for the second-order ordinary differential equation,

Itt + nIt +m2I = 0, I (0)= C0, It (x,0)= C1,

with the solution I (t) := ∫
Rn
(−&)−sΦ(x, t)dx, where C0 = ∫

Rn
(−&)−sϕ0(x)dx

and C1 = ∫
Rn
(−&)−sϕ1(x)dx, s ∈ R. For the case of small mass m, m ∈ (0, n/2),

the last problem implies

I (t)= C0λ2 −C1

λ2 − λ1
e−(n/2−M)t + C1 −C0λ1

λ2 − λ1
e−(n/2+M)t ,

where M = √
n2/4 −m2, λ1 := −n

2 +M < 0, and λ2 := −n
2 −M < 0 since 0 <

M < n
2 . Hence, we have

∣∣∣∣

∫

Rn
(−&)−sΦ(x, t)dx

∣∣∣∣≤ C(ϕ0, ϕ1)e
−(n/2−M)t for all t > 0.

The last estimate is optimal in the sense that there are ϕ0, ϕ1 ∈ C∞
0 (R

n) and
C(ϕ0, ϕ1) > 0 such that

∣∣∣∣

∫

Rn
(−&)−sΦ(x, t)dx

∣∣∣∣≥ C(ϕ0, ϕ1)e
−(n/2−M)t .

Moreover, since the support of Φ is permanently bounded, we have

∣∣∣∣

∫

Rn
(−&)−sΦ(x, t)dx

∣∣∣∣≤ C(ϕ0, ϕ1, q)
∥∥(−&)−sΦ(x, t)∥∥

Lq(Rn)
, q ∈ [1,∞].
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In the case of the dimensional mass, n2/4 =m2, the curved mass vanishes, M = 0,
and we have

I (t)= C0e
−(n/2)t +

(
C0
n

2
+C1

)
te−(n/2)t .

Hence, there exist ϕ0, ϕ1 ∈ C∞
0 (R

n) and C(ϕ0, ϕ1) > 0 such that

C(ϕ0, ϕ1, q)
∥∥(−&)−sΦ(x, t)∥∥

Lq(Rn)
≥
∣∣∣∣

∫

Rn
(−&)−sΦ(x, t)dx

∣∣∣∣

≥ C(ϕ0, ϕ1)te
−(n/2)t ,

q ∈ [1,∞]. In the case of the imaginary mass the corresponding Cauchy problem is

Itt + nIt −m2I = 0, I (0)= C0, It (x,0)= C1,

where M =
√
n2

4 +m2 > 0 and λ1 := −n
2 + M > 0 while λ2 := −n

2 − M < 0.
Consequently, there are ϕ0, ϕ1 ∈ C∞

0 (R
n) and C(ϕ0, ϕ1) > 0 such that

∣∣∣∣

∫

Rn
(−&)−sΦ(x, t)dx

∣∣∣∣≥ C(ϕ0, ϕ1) exp

(√
n2

4
+m2 − n

2

)
t,

as well as,

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≥ δ exp

(√
n2

4
+m2 − n

2

)
t,

and for all s the norms of the solution are increasing in time. Thus, we have the
following statement.

Lemma 2 ([35]) If q ∈ [1,∞], then for both equations, with the real small mass

(M =
√
n2

4 −m2 ≥ 0, 0 ≤m≤ n
2 ) and with the imaginary mass (M =

√
n2

4 +m2 >
n
2 , m> 0), there exist ϕ0, ϕ1 ∈ C∞

0 (R
n) and δ > 0 such that

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≥ δt1−sgnMe−(n/2−M)t for all t ∈ (0,∞).

To complete the list of the Lp-Lq estimates we quote below results from [35]
which are applicable to the scalar equation with noncritical mass. The lemma shows
that the estimate of the next theorem is optimal. The bound M = 1/2 plays an im-
portant role in the next theorems.

Theorem 5 ([35]) The solution Φ =Φ(x, t) of the Cauchy problem

Φtt + nΦt − e−2t &Φ ±m2Φ = 0, Φ(x,0)= ϕ0(x),Φt (x,0)= ϕ1(x),
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with either M =
√
n2

4 −m2 and m <
√
n2 − 1/2 for the case of “plus”, or M =

√
n2

4 +m2 for the case of “minus”, satisfies the following Lp-Lq estimate

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤ CM,n,p,q,s
(
1 − e−t

)2s−n(1/p−1/q)
e(M−n/2)t

× {‖ϕ0‖Lp(Rn) +
(
1 − e−t

)‖ϕ1‖Lp(Rn)
}

for all t ∈ (0,∞), provided that 1 < p ≤ 2, 1
p

+ 1
q

= 1, 1
2 (n+ 1)( 1

p
− 1

q
) ≤ 2s ≤

n( 1
p

− 1
q
) < 2s + 1.

Theorem 6 ([35]) Let Φ =Φ(x, t) be the solution of the Cauchy problem

Φtt + nΦt − e−2t &Φ ±m2Φ = f, Φ(x,0)= 0,Φt (x,0)= 0, (27)

with either M =
√
n2

4 −m2 and m <
√
n2 − 1/2 for the case of “plus”, or M =

√
n2

4 +m2 for the case of “minus”. Then Φ =Φ(x, t) satisfies the following Lp-Lq

estimate:
∥∥(−&)−sΦ(x, t)∥∥

Lq(Rn)

≤ CMe
−Mte−(n/2)t e−t[2s−n(1/p−1/q)]

×
∫ t

0
e(n/2)beMb

(
et−b − 1

)1+2s−n(1/p−1/q)(
et−b + 1

)2M−1

× ∥∥f (x, b)
∥∥
Lp(Rn)

db,

for all t > 0, provided that 1< p ≤ 2, 1
p

+ 1
q

= 1, 1
2 (n+ 1)( 1

p
− 1

q
)≤ 2s ≤ n( 1

p
−

1
q
) < 2s + 1.

Corollary 2 ([35]) Let Φ =Φ(x, t) be the solution of the Cauchy problem consid-
ered in Theorem 6. Then for n≥ 2 and M > 1/2 one has the following estimate

∥∥(−&)−sΦ(x, t)∥∥
Lq(Rn)

≤ CMe
−(n/2−M)t

∫ t

0
e(n/2−M)be−b(2s−n(1/p−1/q))

∥∥f (x, b)
∥∥
Lp(Rn)

db,

provided that 1<p ≤ 2, 1
p

+ 1
q

= 1, 1
2 (n+ 1)( 1

p
− 1

q
)≤ 2s ≤ n( 1

p
− 1

q
) < 2s + 1.

18.4 Global Existence. Small Data Solutions

The Cauchy problem (23) for the scalar equation was studied in [33]. For the case of
a nonlinearity F(Φ)= c|Φ|α+1, c �= 0, Theorem 1.1 in [33], implies nonexistence
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of a global solution even for arbitrary small initial functions ϕ0(x) and ϕ1(x) under
some conditions on n, α, and M . By means of the evident transformation one can
apply the conclusion of Theorem 1.1 in [33] to the equation with imaginary physical
mass (see (28) below) and derive the following blow up result.

Theorem 7 ([35]) Suppose that F(Φ)= c|Φ|α+1, c �= 0, and α > 0. Then, for every
α > 0, N , and ε, there exist ϕ0, ϕ1 ∈ C∞

0 (R
n) such that

‖ϕ0‖CN(Rn) + ‖ϕ1‖CN(Rn) < ε

but a global in time solution Φ ∈ C2([0,∞);Lq(Rn)) of the equation

Φtt + nΦt − e−2tΔΦ −m2Φ = c|Φ|α+1, (28)

with permanently bounded support does not exist for all q ∈ [2,∞). More precisely,
there is T > 0 such that

lim
t↗T

∫

Rn
Φ(x, t)dx = ∞.

This theorem shows that instability of the trivial solution occurs in a very strong
sense, that is, an arbitrarily small perturbation of the initial data can make the per-
turbed solution blowing up in finite time.

If we allow large initial data, then, according to Theorem 1.2 in [33], the concen-
tration of the mass, due to the non-dispersion property of the de Sitter spacetime,
leads to the nonexistence of the global solution, which cannot be recovered even by
adding an exponentially decaying factor in the nonlinear term. More precisely, the
next theorem states that the solution blows up in finite time.

Theorem 8 ([35]) Suppose that F(Φ) = ceγ t |Φ|α+1, c �= 0, α > 0, and γ ∈ R.
Then, for every α > 0 and n there exist ϕ0, ϕ1 ∈ C∞

0 (R
n) such that a global in time

solution Φ ∈ C2([0,∞);Lq(Rn)) of (28) with permanently bounded support does
not exist for all q ∈ [2,∞). More precisely, there is T > 0 such that

lim
t↗T

∫

Rn
Φ(x, t)dx = ∞.

Thus, for every α > 0 the large energy classical solution of the Cauchy for (28)
blows up.

It is evident that, if the solution is real-valued and either α is large or odd, or
the nonlinear term is Φα+1 with an integer nonnegative α, then the support of the
solution with such initial data is permanently bounded.

In this section we are going to study the global existence of solutions for the
system of semilinear Klein-Gordon equations. The first step toward such result is
to establish the Lp-Lq -estimates for the equation with source term. For the scalar
equation this estimate is proved in [35]. Below we quote it. In fact, the results of
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the previous sections are valid also in more general spaces of functions. In what fol-
lows, the space Ms,q can be each of the following spaces Lq(Rn), Sobolev spaces
Ws,q(Rn), Ẇ s,q(Rn), or Besov spaces Bs,q(Rn), Ḃs,q(Rn).

Lemma 3 ([35]) Let Φ =Φ(x, t) be a solution of the Cauchy problem (27) with ei-

therM =
√
n2

4 −m2 andm<
√
n2 − 1/2 for the case of “plus”, orM =

√
n2

4 +m2

for the case of “minus”. Then for n≥ 2 one has the following estimate

∥∥(−&)l−sΦ(x, t)∥∥
Lq(Rn)

≤ CMe
−(n/2−M)t

∫ t

0
e(n/2−M)be−b(2s−n(1/p−1/q))

× ∥∥(−&)lf (x, b)∥∥
Lp(Rn)

db,

for all t > 0, provided that 1< p ≤ 2, 1
p

+ 1
q

= 1, 1
2 (n+ 1)( 1

p
− 1

q
)≤ 2s ≤ n( 1

p
−

1
q
) < 2s + 1. Moreover,

∥∥(−&)−sΦ(x, t)∥∥Ml,q

≤ CMe
−(n/2−M)t

∫ t

0
e(n/2−M)be−b(2s−n(1/p−1/q))

∥∥f (x, b)
∥∥
Ml,p db.

In particular,

∥∥Φ(x, t)
∥∥
H(l)(R

n)
≤ CMe

−(n/2−M)t
∫ t

0
e(n/2−M)b∥∥f (x, b)

∥∥
H(l)(R

n)
db.

For the equation with “plus” and large mass,m≥ n/2, and with the curved mass
M =√

m2 − n2/4, one has the following estimate

∥∥(−&)l−sΦ(x, t)∥∥
Lq(Rn)

≤ CMe
−(n/2)t

∫ t

0
e(n/2)beb

(
e−b − e−t

)1+2s−n(1/p−1/q)

× (1 + t − b)1−sgnM
∥∥(−&)lf (x, b)∥∥

Lp(Rn)
db.

Moreover,

∥∥(−&)−sΦ(x, t)∥∥Ml,q ≤ CMe
−(n/2)t

∫ t

0
e(n/2)beb

(
e−b − e−t

)1+2s−n(1/p−1/q)

×(1 + t − b)1−sgnM
∥∥f (x, b)

∥∥
Ml,p db.

In particular,

∥
∥Φ(x, t)

∥
∥
H(l)(R

n)
≤ CMe

−(n/2)t
∫ t

0
e(n/2)b(1 + t − b)1−sgnM

∥
∥f (x, b)

∥
∥
H(l)(R

n)
db.

Here the rate of exponential factors is independent of the curved mass M and,
consequently, of the mass m.
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Although we want to prove a global existence for two different cases, for the
system with the semi-critical mass matrix and for the system of equations with the
large mass matrix, the consideration in the next subsections can be done in the single
framework.

18.4.1 System of Real Scalar Fields in de Sitter Spacetime

In this subsection we reduce the Cauchy problem to the integral equation. The main
tool for such reduction is the fundamental solution (the Green’s function) for the
interacting fields, which can be described by the system of Klein-Gordon equations
containing interaction via mass matrix and the semilinear term. The model obeys
the following system

Φtt + nHΦt − e−2Ht &Φ + MΦ = F(Φ). (29)

Here F is a vector-valued function of the vector-valued function Φ . We assume that
the matrix M is diagonalizable by a real-valued matrix O, and it has eigenvalues
m2

1, . . . ,m
2
l , i = 1,2, . . . , l.

By the similarity transformation O the mass matrix M can be diagonalized, there-
fore we use a change of unknown function as follows:

Ψ = OΦ, Φ = O−1Ψ,

and arrive at

Ψtt + nHΨt − e−2Ht &Ψ + M̃Ψ = F̃ (Ψ ),

where

M̃ := OMO−1 =

⎛

⎜⎜⎜
⎝

m2
1 0 0 . . . 0

0 m2
2 0 . . . 0

0 0
. . . . . . 0

0 0 0 . . . m2
l

⎞

⎟⎟⎟
⎠
, F̃ (Ψ ) := OF

(
O−1Ψ

)
.

Let us consider the linear diagonal system

Ψtt + nHΨt − e−2Ht &Ψ + M̃Ψ = f̃ .

Here f̃ is a vector-valued function with the components fi , i = 1, . . . , l. Then, the
solution of the Cauchy problem for the last system with the initial conditions

Ψ (x,0)= 0, Ψt (x,0)= 0,

is

Ψ (x, t)= 2e−(n/2)t
∫ t

0
db

∫ e−b−e−t

0
dre(n/2)bẼ(r, t;0, b)̃v(x, r;b),
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where the components vi , i = 1, . . . , l, of the vector-valued function ṽ(x, t;b) are
solutions to the Cauchy problem for the wave equation

vtt − &v = 0, v(x,0;b)= fi(x, b), vt (x,0;b)= 0, i = 1, . . . , l. (30)

The kernel Ẽ(r, t;0, b) is a diagonal matrix with the elements Ei(r, t;0, b), i =
1, . . . , l, which are defined either by (8) with corresponding mass terms mi , i =
1, . . . , l, or by (20), in accordance with the value of mass m2

i ≥ n2/4 or m2
i < n

2/4,
respectively.

Then, the solution Ψ of the Cauchy problem for the equation

Ψtt + nHΨt − e−2Ht &Ψ + M̃Ψ = 0

with the initial conditions

Ψ (x,0)= ψ̃0(x), Ψt (x,0)= ψ̃1(x),

with the vector-valued functions ψ̃0, ψ̃1 ∈ C∞
0 (R

n), n ≥ 2, can be represented as
follows:

Ψ (x, t) = e−((n−1)/2)t ṽψ̃0

(
x,φ(t)

)

+ e−(n/2)t
∫ 1

0

(
2K̃0

(
φ(t)s, t

)+ nK̃1
(
φ(t)s, t

))
ṽψ̃0

(
x,φ(t)s

)
φ(t)ds

+ 2e−(n/2)t
∫ 1

0
K̃1

(
φ(t)s, t

)
ṽΨ̃1

(
x,φ(t)s

)
φ(t)ds, x ∈Rn, t > 0,

where φ(t) := 1 − e−t and the kernels K̃0, K̃1, are the diagonal matrices with the
elements K̃0i (z, t), i = 1, . . . , l, and K̃1i (z, t), which are defined either by (9) and
(10) with the corresponding mass termsmi , i = 1, . . . , l, or by the diagonal matrices
with the elements K̃0i (z, t;M), i = 1, . . . , l, and K̃1i (z, t;M), which are defined
by (21) and (22), in accordance with the value of mass m2

i ≥ n2/4 or m2
i < n

2/4,
respectively.

Here, for the vector-valued function ψ̃ ∈ C∞
0 (R

n) and for x ∈ Rn, the vector-
valued function ṽΨ̃ (x,φ(t)s) coincides with the value ṽ(x,φ(t)s) of the solution
ṽ(x, t) of the Cauchy problem

ṽt t − &ṽ = 0, ṽ(x,0)= ψ̃(x), ṽt (x,0)= 0.

We study the Cauchy problem through the integral equation. To determine that
integral equation we appeal to the operator

G̃ := K̃ ◦ W̃E,

where the operator W̃E is defined by (30), that is,

W̃E[f ](x, t;b)= ṽ(x, t;b),
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and the vector-valued function ṽ(x, t;b) is a solution to the Cauchy problem for the
wave equation, while K̃ is introduced either by (14),

K̃[v](x, t) := 2e−(n/2)t
∫ t

0
db

∫ e−b−e−t

0
dre(n/2)bẼ(r, t;0, b)̃v(x, r;b), (31)

for the large mass matrix, or by (24),

K̃[v](x, t) := 2e−(n/2)t
∫ t

0
db

∫ e−b−e−t

0
dre(n/2)bẼ(r, t;0, b;M)̃v(x, r;b),

for the small mass matrix. Hence,

G̃[f ](x, t)= 2e−(n/2)t
∫ t

0
db

∫ e−b−e−t

0
dre(n/2)bẼ(r, t;0, b;M)W̃E[f ](x, r;b).

Thus, the Cauchy problem (5), (6) leads to the following integral equation

Ψ (x, t)= Ψ0(x, t)+ G̃
[
F̃ (Ψ )

]
(x, t). (32)

Every solutionΦ =Φ(x, t) to (5) generates the function Ψ = Ψ (x, t), which solves
the last integral equation with some function Ψ0(x, t), that, in fact, is generated by
the solution of the Cauchy problem (17).

18.4.2 Solvability of the Integral Equation Associated with
Klein-Gordon Equation

Let us consider the system of the integral equations (32), where Ψ0 = Ψ0(x, t) is a
given vector-valued function. We are going to apply Banach’s fixed-point theorem.
In order to estimate the nonlinear term we use the Lipschitz Condition (L). Evi-
dently, Condition (L) imposes some restrictions on n, α, s. Now we consider the
integral equation (32), where the vector-valued function Ψ0 ∈ C([0,∞);Lq(Rn)) is
given. We note here that any classical solution to (5) solves also the integral equa-
tion (32) with some vector-valued function Ψ0(x, t), which is a classical solution to
the Cauchy problem for the linear system (17).

The solvability of the integral equation (32) depends on the operator G̃. For scalar
equations with the scalar operator G which is generated by the linear part of (29),
the global solvability of the scalar integral equation (32) was studied in [33]. For the
case of nonlinearity F(Φ)= c|Φ|α+1, c �= 0, the results of [33] imply the nonexis-
tence of the global solution even for arbitrary small functions Φ0(x,0) under some
conditions on n, α, and M .

We start with the case of Sobolev space H(s)(Rn) with s > n/2, which is an
algebra. In the next theorem the operator K̃ is generated by the linear part of (5).
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Theorem 9 Assume that F(Ψ ) is Lipschitz continuous in the space H(s)(Rn), s >
n/2, and also that α > 0.

(i) Let the spectrum of the mass matrix M be {m2
1, . . . ,m

2
l } ⊂ (0, (n2 − 1)/4], and

m= min{m1,m2, . . . ,ml}. Then for every given function Ψ0(x, t) ∈X(R, s, γ0)

such that

sup
t∈[0,∞)

eγ0t
∥∥Ψ0(x, t)

∥∥
H(s)(R

n)
< ε, where γ0 ≤ n

2
−
√
n2

4
−m2,

and for sufficiently small ε the integral equation (32) has a unique solution
Ψ (x, t) ∈X(R, s, γ ) with 0< γ < γ0/(α + 1). For the solution one has

sup
t∈[0,∞)

eγ t
∥∥Ψ (x, t)

∥∥
H(s)(R

n)
< 2ε.

(ii) If the eigenvalues of the mass matrix are large, n2 ≤ mi , i = 1, . . . , l, then for
every given function Ψ0(x, t) ∈X(R, s,0) such that

sup
t∈[0,∞)

∥
∥Ψ0(x, t)

∥
∥
H(s)(R

n)
< ε,

and for sufficiently small ε the integral equation (32) has a unique solution
Ψ (x, t) ∈X(R, s,0). For the solution one has

sup
t∈[0,∞)

∥∥Ψ (x, t)
∥∥
H(s)(R

n)
< 2ε.

Proof Consider the mapping

S[Ψ ](x, t) := Ψ0(x, t)+ G̃
[
F̃ (Ψ )

]
(x, t).

We are going to prove that S maps X(R, s, γ ) into itself and is a contraction pro-
vided that ε and R are sufficiently small.

The case of a semi-critical physical mass matrix. Let the spectrum of the mass
matrix M be {m2

1, . . . ,m
2
l } ⊂ (0, (n2 − 1)/4], where m2

1 ≤ m2
2 ≤ . . . ≤ m2

l . Theo-
rem 6 and Lemma 3 imply for every component S[Ψ ]i , i = 1, . . . , l, of the vector
S[Ψ ] the following estimate:
∥∥S[Ψ ]i (x, t)

∥∥
H(s)(R

n)

≤ ∥∥Ψ0i (x, t)
∥∥
H(s)(R

n)
+ ∥∥G̃

[
F̃ (Ψ )

]
i
(x, t)

∥∥
H(s)(R

n)

≤ ∥∥Ψ0i (x, t)
∥∥
H(s)(R

n)
+Ce−(n/2−Mi)t

∫ t

0
e(n/2−Mi)b

∥∥F̃ (Ψ )(x, b)
∥∥
H(s)(R

n)
db,

where Mi =
√
n2

4 −m2
i ≥ 1/2. If we denote M =M1, γ = 1

α+1 (
n
2 −M − δ) > 0,

and δ > 0, then the last inequality leads to the estimate for the vector S[Ψ ]:
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∥∥S[Ψ ](x, t)∥∥
H(s)(R

n)

≤ ∥∥Ψ0(x, t)
∥∥
H(s)(R

n)
+Ce−(n/2−M)t

∫ t

0
e(n/2−M)b∥∥F̃ (Ψ )(x, b)

∥∥
H(s)(R

n)
db

≤ ∥∥Ψ0(x, t)
∥∥
H(s)(R

n)
+Ce−γ (α+1)t−δt

∫ t

0
eγ (α+1)b+δb∥∥F̃ (Ψ )(x, b)

∥∥
H(s)(R

n)
db.

Taking into account Condition (L) we arrive at
∥∥S[Ψ ](x, t)∥∥

H(s)(R
n)

≤ ∥∥Ψ0(x, t)
∥∥
H(s)(R

n)
+Ce−γ (α+1)t−δt

∫ t

0
eγ (α+1)b+δb∥∥Ψ (x, b)

∥∥α+1
H(s)(R

n)
db

≤ ∥∥Ψ0(x, t)
∥∥
H(s)(R

n)
+Ce−γ (α+1)t−δt

∫ t

0
eδb

(
eγ b

∥∥Ψ (x, b)
∥∥
H(s)(R

n)

)α+1
db.

Then

eγ t
∥∥S[Ψ ](x, t)∥∥

H(s)(R
n)

≤ eγ (α+1)t
∥∥S[Ψ ](x, t)∥∥

H(s)(R
n)

≤ eγ (α+1)t
∥∥Ψ0(x, t)

∥∥
H(s)(R

n)

+C
(

sup
τ∈[0,∞)

eγ τ
∥∥Φ(x, τ)

∥∥
H(s)(R

n)

)α+1
e−δt

∫ t

0
eδbdb

≤ eγ0t
∥∥Ψ0(x, t)

∥∥
H(s)(R

n)
+Cδ−1

(
sup

τ∈[0,∞)

eγ τ
∥∥Ψ (x, τ)

∥∥
H(s)(R

n)

)α+1
,

and

sup
t∈[0,∞)

eγ t
∥
∥S[Ψ ](x, t)∥∥

H(s)(R
n)

≤ sup
t∈[0,∞)

eγ0t
∥∥Ψ0(x, t)

∥∥
H(s)(R

n)
+Cδ−1

(
sup

t∈[0,∞)

eγ t
∥∥Ψ (x, τ)

∥∥
H(s)(R

n)

)α+1
.

(33)

In particular, since γ0 = n
2 −M > 0, then, with δ > 0 such that γ (α+1)= n

2 −M−
δ < γ0, we have

sup
t∈[0,∞)

eγ t
∥∥S[Ψ ](x, t)∥∥

H(s)(R
n)

≤ sup
t∈[0,∞)

e(n/2−M)t∥∥Ψ0(x, t)
∥∥
H(s)(R

n)
+C

(
sup

t∈[0,∞)

eγ t
∥∥Ψ (x, t)

∥∥
H(s)(R

n)

)α+1
.
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Thus, the last inequality proves that the operator S maps X(R, s, γ ) into itself if ε
and R are sufficiently small, namely, if ε+CRα+1 <R.

It remains to prove that S is a contraction mapping. As a matter of fact, we just
need to apply the estimate (4) and get the contraction property from

eγ t
∥∥S[Ψ1](x, t)− S[Ψ2](x, t)

∥∥
H(s)(R

n)
≤ CR(t)αd(Ψ1,Ψ2),

where

R(t) := max
{

sup
0≤τ≤t

eγ τ
∥∥Ψ1(x, τ )

∥∥
H(s)(R

n)
, sup

0≤τ≤t
eγ τ

∥∥Ψ2(x, τ )
∥∥
H(s)(R

n)

}
≤R.

Indeed, we have

∥∥S[Ψ1](x, t)− S[Ψ2](x, t)
∥∥
H(s)(R

n)

= ∥∥G̃
[(
F̃ (Φ)− F̃ (Ψ )

)]
(x, t)

∥∥
H(s)(R

n)

≤ Ce−(n/2−M)t
∫ t

0
e(n/2−M)b∥∥(F̃ (Ψ1)− F̃ (Ψ2)

)
(x, b))

∥
∥
H(s)(R

n)
db

≤ Ce−γ (α+1)t−δt
∫ t

0
eγ (α+1)b+δb∥∥(F̃ (Ψ1)− F̃ (Ψ2)

)
(x, b))

∥∥
H(s)(R

n)
db

≤ Ce−γ (α+1)t−δt
∫ t

0
eγ (α+1)b+δb∥∥Ψ1(x, b)−Ψ2(x, b)

∥∥
H(s)(R

n)

× (∥∥Ψ1(x, b)
∥∥α
H(s)(R

n)
+ ∥∥Ψ2(x, b)

∥∥α
H(s)(R

n)

)
db.

Thus, taking into account the last estimate and the definition of the metric d(Ψ1,Ψ2),
we obtain

eγ (α+1)t
∥∥S[Ψ1](x, t)− S[Ψ2](x, t)

∥∥
H(s)(R

n)

≤ Ce−δt
∫ t

0
eγ (α+1)b+δb∥∥Ψ1(x, b)−Ψ2(x, b)

∥∥
H(s)(R

n)

× (∥∥Ψ1(x, b)
∥∥α
H(s)(R

n)
+ ∥∥Ψ2(x, b)

∥∥α
H(s)(R

n)

)
db

≤ Ce−δt
∫ t

0
eδb

(
max

0≤τ≤b
eγ τ

∥∥Ψ1(x, τ )−Ψ2(x, τ )
∥∥
H(s)(R

n)

)

×
((

max
0≤τ≤b

eγ τ
∥∥Ψ1(x, τ )

∥∥
H(s)(R

n)

)α +
(

max
0≤τ≤b

eγ τ
∥∥Ψ2(x, τ )

∥∥
H(s)(R

n)

)α)
db

≤ CM,αd(Ψ1,Ψ2)R(t)
αe−δt

∫ t

0
eδbdb

≤ Cαδ
−1d(Ψ1,Ψ2)R(t)

α.
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Consequently,

eγ t
∥∥S[Ψ1](x, t)− S[Ψ2](x, t)

∥∥
H(s)(R

n)
≤ Cαδ

−1R(t)αd(Ψ1,Ψ2).

Then we choose ε and R such that Cαδ−1Rα < 1. Banach’s fixed point theorem
completes the proof for the case of small physical mass matrix.

The case of a large physical mass matrix. In this case min{mi; i = 1,2. . . . , l} ≥
n/2 and the operator K̃ is given by (31). We set γ = 0 in the definition of the metric
of the space X(R, s, γ ). Then we have

∥∥S[Ψ ](x, t)∥∥
H(s)(R

n)

≤ ∥∥Ψ0(x, t)
∥∥
H(s)(R

n)
+ ∥∥G̃

[
F̃ (Ψ )

]
(x, t)

∥∥
H(s)(R

n)

≤ ∥∥Ψ0(x, t)
∥∥
H(s)(R

n)

+CMe
−(n/2)t

∫ t

0
e(n/2)b(1 + t − b)

∥∥F̃ (Ψ )(x, b)
∥∥
H(s)(R

n)
db

≤ ∥∥Ψ0(x, t)
∥∥
H(s)(R

n)
+CM,αe

−(n/2)t
∫ t

0
e(n/2)b(1 + t − b)

∥∥Ψ (x, b)
∥∥α+1
H(s)(R

n)
db.

Hence,

∥∥S[Ψ ](x, t)∥∥
H(s)(R

n)

≤ ∥∥Ψ0(x, t)
∥∥
H(s)(R

n)

+CM,α

(
sup

τ∈[0,∞)

∥∥Ψ (x, τ)
∥∥
H(s)(R

n)

)α+1
e−(n/2)t

∫ t

0
e(n/2)b(1 + t − b)db

≤ ∥∥Ψ0(x, t)
∥∥
H(s)(R

n)
+CM,α

4

n

(
sup

τ∈[0,∞)

∥∥Ψ (x, τ)
∥∥
H(s)(R

n)

)α+1
.

Then we choose ε and R such that ε+ 4CM,αRα+1/n < R.
In order to prove that S is a contraction mapping, we just need to apply estimate

(33) and get the contraction property from

∥∥S[Ψ1](x, t)− S[Ψ ](x, t)∥∥
H(s)(R

n)
≤ CR(t)αd(Ψ1,Ψ ),

where

R(t) := max
{

sup
0≤τ≤t

∥∥Ψ1(x, τ )
∥∥
H(s)(R

n)
, sup

0≤τ≤t
∥∥Ψ (x, τ)

∥∥
H(s)(R

n)

}
≤R.

Indeed, we have
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∥∥S[Ψ1](x, t)− S[Ψ ](x, t)∥∥
H(s)(R

n)

= ∥∥G
[(
F(Ψ1)− F(Ψ )

)]
(x, t)

∥∥
H(s)(R

n)

≤ CMe
−(n/2)t

∫ t

0
e(n/2)b(1 + t − b)

∥∥(F(Ψ1)− F(Ψ )
)
(x, b))

∥∥
H(s)(R

n)
db

≤ CM,αe
−(n/2)t

∫ t

0
e(n/2)b(1 + t − b)

∥
∥Ψ1(x, b)−Ψ (x, b)

∥
∥
H(s)(R

n)

× (∥∥Ψ1(x, b)
∥∥α
H(s)(R

n)
+ ∥∥Ψ (x, b)

∥∥α
H(s)(R

n)

)
db.

Thus, taking into account the last estimate and the definition of the metric, we obtain
∥∥S[Ψ1](x, t)− S[Ψ2](x, t)

∥∥
H(s)(R

n)

≤ CM,αe
−(n/2)t

∫ t

0
e(n/2)b(1 + t − b)

∥∥Ψ1(x, b)−Ψ2(x, b)
∥∥
H(s)(R

n)

× (∥∥Ψ1(x, b)
∥∥α
H(s)(R

n)
+ ∥∥Ψ2(x, b)

∥∥α
H(s)(R

n)

)
db

≤ CM,αe
−(n/2)t

∫ t

0
e(n/2)b(1 + t − b)

(
max

0≤τ≤b
∥∥Ψ1(x, τ )−Ψ2(x, τ )

∥∥
H(s)(R

n)

)

×
((

max
0≤τ≤b

∥∥Ψ1(x, τ )
∥∥
H(s)(R

n)

)α +
(

max
0≤τ≤b

∥∥Ψ2(x, τ )
∥∥
H(s)(R

n)

)α)
db

≤ CM,αd(Ψ1,Ψ2)R(t)
αe−(n/2)t

∫ t

0
e(n/2)b(1 + t − b)db

≤ CM,α
4

n
d(Ψ1,Ψ2)R(t)

α,

and, consequently,

∥∥S[Ψ1](x, t)− S[Ψ2](x, t)
∥∥
H(s)(R

n)
≤ CM,α

4

n
δ−1R(t)αd(Ψ1,Ψ2).

Then we choose ε and R such that 4CM,αδ−1Rα/n < 1. The application of Ba-
nach’s fixed point theorem completes the proof of theorem. �

18.4.3 Proof of Theorems 1–2

The case of a semi-critical physical mass matrix. In this case the operator K̃ is given
by (24). Then for the function Ψ0 = Ψ0(x, t) which is generated by the solution of
the Cauchy problem (17) and for s > n

2 , p = q = 2, n≥ 2, according to Theorem 5
and Lemma 1 we have the estimate

∥∥Ψ0(x, t)
∥∥
H(s)(R

n)
≤ CM,n,p,q,se

(M−n/2)t{‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn)
}
.
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Hence, for every initial functions ϕ0 and ϕ1 the function Ψ0 belongs to the
space X(R, s, γ ), where the operator S is a contraction. The considerations from
Sect. 18.4.2 complete the proof of the existence of the global solution.

The case of a large physical mass matrix. In this case the operator K̃ is given
by (14). We set γ = 0 in the definition of the metric of the space X(R, s, γ ). Then
for the function Ψ0 which is generated by the solution of the Cauchy problem (17)
and for s > n

2 , p = q = 2, n≥ 2, we have the estimate (18),

∥
∥Ψ0(x, t)

∥
∥
H(s)(R

n)
≤ CMe

−(n/2)t (1 + t)
{
et/2‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn)

}

≤ CM
{‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn)

}
.

Thus, Ψ0 ∈ X(R, s,0). According to Sect. 18.4.2, Banach’s fixed point theorem
implies the existence of the solution Ψ ∈ X(R, s,0) of the integral equation (33)
provided that R is sufficiently small. This completes the proof of the theorem. �
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