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Abstract This chapter reviews the dynamics of one or more endless vortices in an
incompressible inviscid fluid. Each vortex, a thin closed tube lying on the surface of
an immaterial torus, is characterised by the number of turns, p, that it makes round
the torus symmetry axis and the number of turns, q, that it makes round the torus
centerline. Since the vortices are assumed to be identical and evenly distributed on
any meridional section of the torus, the flow evolution depends only on the vortex
topology (p, q), the number of vortices (n) and the torus thickness (r1/r0, where r0 is
the centerline radius and r1 is the cross-section radius). Numerical simulations based
on the Biot-Savart law showed that a small number of vortices (n = 1, 2, 3) coiled on
a thin torus (r1/r0 ≤ 0.16) progressed along and rotated around the torus symmetry
axis in an almost uniform manner while each vortex approximately preserved its
shape. In the comoving frame the velocity field always possesses two stagnation
points. The stream tube emanating from the front stagnation point and the stream
tube ending at the rear stagnation point intersect along a finite number of stream
lines, giving rise to a three-dimensional chaotic tangle. It was found that a single
toroidal vortex Vp,q generates a larger chaotic region if it makes less coils round the
symmetry axis (smaller p) or if it lies on a thicker torus (larger r1/r0). Similarly a set
of linked ring vortices V11 generate a larger chaotic region if there are less vortices
in the set (smaller n) or if they lie on a thicker torus (larger r1/r0).

1 Introduction

An endless vortex is a mass of fluid rotating round a closed curve. The best known
example is the smoke ring, which is a vortex whose axis of rotation is approximately
circular. Ring vortices have been observed for over 400years inman-made situations,
like the firing of cannons or the puffing of tobacco smoke, and possibly longer
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in natural situations, like the exhalations of volcanoes and geysers. The earliest
references to smoke rings appeared at the dawn of the seventeenth century in the
writings of English dramatists, and soon afterwards the first graphical representations
of them appeared in the works of Dutch painters (Velasco Fuentes 2013). Despite this
ancient interest, it was seemingly not until the beginning of the nineteenth Century
that it was recognised that themysterious smoke rings are in fact vortices. At this time
it was even suggested that their motion is responsible for their stability and capacity
to carry fluid (B 1804): the “quick rotation of the ring, from within outwards, (...)
seems, in some manner or another, as if it kept the parts together.” In the following
decades the interest in smoke rings increased to such an extent that Helmholtz (1858)
and Rogers (1858) published, with only a few months of difference, an analytical
study of the motion of kreisförmige Wirbelfäden (circular vortex-filaments) and an
experimental study of the formation of rotating rings, respectively.

A few years later Kelvin (1867a) placed the ring vortex in a prominent scientific
position with his hypothesis that matter consists of vortex atoms moving in an all-
pervading ideal fluid. This turned out to be an erroneous conjecture, but it also proved
to be very fruitful for fluid mechanics and mathematics. Indeed, the major advances
on vortex dynamics in the following decades were made in the pursuit of the vortex
atom theory (e.g., the Kelvin circulation theorem, Kelvin waves on a cylindrical
vortex, the stability of a polygon of point vortices, the motion of ring vortices, etc.).
And the theory of knots, now one of the most active areas of research in mathematics,
received a decisive impulse from the speculations of Kelvin and Peter Guthrie Tait
about the shapes that these vortex atoms could take.

One of the first things Kelvin wondered about was the motion of linked ring
vortices. On 22 January 1867 he wrote to Helmholtz that he was “a good deal puzzled
as towhat twovortex-rings through one anotherwould do (howeachwouldmove, and
how its shape would be influenced by the other)” (Thompson 1910). Kelvin (1875)
later deduced that specific configurations of individual as well as multiple endless
vortices could rotate and advance uniformly along a fixed line without changing
their shape. Kelvin did not give the exact configuration of these steady vortices
but hypothesized that they should be thin tubular vortices uniformly coiled on an
immaterial torus so that each vortex winds p times around the torus’ symmetry axis
and q times around the torus’ centerline before closing on itself (see Fig. 1).

Building on Kelvin’s hypothesis, Thomson (1883) analysed the motion of two
or more toroidal vortices. He obtained an approximate analytical expression for the
shape and translation speed of two steady, linked vortices of equal circulation. And
by considering the limit of infinitely thin vortices lying on the surface of a torus of
infinite centerline radius, Thomson (1883) obtained his celebrated result about the
stability of a regular polygon of n equal point-vortices.

Almost a century later, Kida (1981) found steady vortex solutions under the local-
induction approximation (LIA, an approximation that amounts to omitting distant
effects when computing the vortex’ self-induced velocity, which then turns out to
be proportional to the local curvature of the filament). In the LIA solutions of Kida
(1981) the supporting torus may have an oval cross section but steady vortices exist
only when q ≥ p. Ricca et al. (1999) studied the evolution of these vortices under
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Fig. 1 Thin tubular vortices coiled on an immaterial torus represented by the grey surface. a A
toroidal helix coiled once round the torus symmetry axis and five times round the torus centerline.
b Two linked ring vortices, each one coiled once round the torus symmetry axis and once around
the torus centerline. Right frame adapted from Velasco Fuentes and Romero Arteaga (2011)

both the Biot-Savart law and the LIA: the numerical simulations based on the Biot-
Savart law confirmed the hypothesis of Kelvin (1875) whereas those based on LIA
were consistent with the analytical results of Kida (1981).

Recently Kleckner and Irvine (2013) succeeded in generating, in a controlled
and systematic way, knotted, unknotted and linked vortices in water. Their toroidal
helical vortices were stable, the more complicated vortices rapidly became unstable
and underwent topological changes through reconnection. The probable cause of
these results is that neither the couple of ring vortices nor the trefoil-knot vortex
were, in their initial condition, close to the steady solutions hypothesised by Kelvin.

Here we review published results on the dynamics of knotted and unknotted
vortices (Velasco Fuentes 2010) and of linked vortices (Velasco Fuentes and Romero
Arteaga 2011). Two aspects are central in this review: the vortices’ steadiness, that
is to say the uniformity of their motion and the constancy of their shapes; and the
vortices’ capacity to carry fluid, that is to say, the existence of three-dimensional
islands of stability surrounding the vortices. In Sect. 2 we discuss the conservation
laws discovered by Kelvin, which were the basis for his deductions. The numerical
results of Sect. 3 confirm that thin tubular vortices coiled on a torus according to
Kelvin’s prescriptions are quasi-steady. In Sect. 4 we analyse the velocity field and
the transport properties of toroidal vortices. Section5 contains some conclusions.

2 Integrals of Motion

We assume that the vortices evolve in an inviscid, incompressible, homogeneous
fluid which is unbounded and acted upon by conservative forces only. Therefore the
kinetic energy, E , and the linear an angular vortex impulses, I and A respectively,
are invariants of the motion. If all vorticity is concentrated on a single line vortex,
these conserved quantities are defined as follows:
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E = 1

2
Γ

∮
u · R × ds (1)

I = 1

2
Γ

∮
R × ds = Γ

∫
dS (2)

A = −1

2
Γ

∮
R2ds = Γ

∫
r × dS (3)

Here we have used standard notation: the vortex has circulation Γ , moves with
velocity u, and lies on the three-dimensional curve R(s); ds is a line element along
this curve and dS is the surface element at the point r of an arbitrary surface spanning
the closed curve R(s).

Kelvin (1869) demonstrated the conservationof linear and angular vortex impulses
in the general case, and discovered their geometric meaning when the vorticity is
concentrated on a set of filamentary vortices (Kelvin 1875). To achieve this, he first
introduced the following definitions:

1. The resultant area of a 3D closed curve is the area of its projection on the plane
that makes this projection a maximum.

2. The resultant axis of this curve is the line that passes through its centre of gravity
and is perpendicular to the plane of its resultant area.

3. The areal moment of a 2D surface about any axis is equal to its area multiplied
by the distance between that axis and the line passing perpendicularly through
the surface’s centroid.

4. The resultant arealmoment of a 3Dclosed curve is equal to themoment, about the
curve’s resultant axis, of the areas of its projections on two mutually orthogonal
planes that are parallel to this axis.

With these definitions Kelvin (1875) was able to spell out Eqs. (2)–(3) in the form
of two theorems:

Theorem 1 The linear impulse of a curvilinear vortex of unit circulation is equal
to its resultant area.

Theorem 2 The angular impulse of a curvilinear vortex of unit circulation is equal
to its resultant areal moment.

These theorems, combined with the conservation of linear and angular impulses,
allowed Kelvin (1875) to give the following description of the behaviour of a fila-
mentary vortex of arbitrary shape: “the resultant area, and the resultant areal moment
of the curve formed by the filament, remain constant however its curve may become
contorted; and its resultant axis remains the same line in space. Hence, whatever
motions and contortions the vortex filament may experience, if it has any motion of
translation through space this motion must be in average along the resultant axis.”
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Antecedents of these results can be traced back to Helmholtz and Maxwell. The
former showed that in a purely azimuthal vorticity field the sum of the projected
areas of all ring elements, multiplied by their vorticity, is constant (Helmholtz 1858).
The latter, writing to Tait in July 1868, stated that “two ring vortices of any form
affect each others area so that the sum of the projection of the two areas on any plane
remains constant” (Maxwell and Harman 1995).

2.1 Numerical Method

We compute the vortex motion with the Rosenhead-Moore approximation to the
Biot-Savart law (Saffman 1995):

u(x) = − Γ

4π

∑
i

∮ [x − Ri (s)] × ds(|x − Ri (s)|2 + μ2a2
)3/2 , (4)

The use of this approximation implies that the vortices are no longer infinitely thin:
they now have an undeformable, circular cross-section of radius a. The value of
the radius is chosen to be a = 0.05r0, that of the constant μ depends on the vortex
internal structure. The particular value used here,μ = e−3/4, corresponds to uniform
vorticity on the vortex cross section (Saffman 1995).

In order to evaluate the integral on the right-hand side, we represented each vortex
with a set of material markers.We chose the number of markers asm ≈ 2L/a, where
L is the vortex length, and the time step as dt ≈ a2/Γ , because preliminary tests
showed that these values resulted in accurate simulations of the motion of a circular
ring, i.e. the shape was preserved and the speed deviated less than 0.5% from the
analytical value. Higher spatial or temporal resolutions substantially increased the
computational costswithout providingmajor improvements in the accuracy. Since the
vortices evolved without significant changes in length or shape it was not necessary
to update the spatial discretization as is usually done in highly time-dependent flows
(see, e.g., Baggaley and Barenghi 2011).

We used a fourth-order Runge-Kutta scheme with fixed time step to integrate the
evolution equation

dxk

dt
= u(xk, t),

where xk is the position of the node and u(xk, t) is its velocity, computed with
equation (4). Note that k runs through all nodes ( j = 1, . . . , m) of all filaments
(i = 1, . . . , n). To verify the accuracy of the simulations, wemonitored the evolution
of the integrals of motion (1)–(3): the energy varied by less than 0.1% of its initial
value; the linear and angular impulses varied by less than 0.001 and 0.1% of their
initial magnitudes, respectively, while their directions, which initially coincided with
the torus symmetry axis, deviated from this direction by angles of about 0.0001s.
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Fig. 2 Topology of toroidal
vortices as a function of p
and q: ring (black), helices
(green), loops (red), and knots
(blue)
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2.2 Initial Conditions and Parameter Space

Following Kelvin (1875) we assume that a number of identical tubular vortices of
small cross-section are uniformly coiled on a torus whose centerline has a radius r0
and whose cross-section has a radius r1. In Cartesian coordinates the centerline of
the vortex is given as follows:

x = (r0 + r1 cosφ) cos θ,

y = (r0 + r1 cosφ) sin θ,

z = r1 sin φ.

where φ is the angle round the torus centerline and θ is the angle round the torus
symmetry axis (see Fig. 1). They are given by φ = qs − 2(n − i)π/n and θ = ps,
where n is the number of vortices, i indicates the vortex being described, p and q are
co-prime integers and s is a parameter in the range 0−2π . Therefore, before closing
on itself, each vortex Vp,q makes p turns round the torus symmetry axis and q turns
round the torus centerline. These numbers determine the topology of the vortex, as
follows: when p > 1 and q > 1 the vortex forms a toroidal knot, when either p = 1
or q = 1 the vortex forms a toroidal unknot (see Fig. 2). In the latter situation it is
useful to make a further distinction between toroidal helices (p = 1 and q > 1), and
toroidal loops (p > 1 and q = 1).

When there are two or more vortices in a given configuration, all of them have
the same circulation, Γ , and topology, p, q. Equal circulations are necessary for
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the steadiness of motion; equal topologies are necessary to avoid an intersection of
the vortices, which would be in violation of the condition ∇ · ω = 0. Note also that
the term 2(n − i)π/n ensures that the vortices are equally spaced on the section of
the torus (i.e., they intersect anymeridional plane on the vertices of a regular polygon
inscribed on the corresponding cross-section of the torus).

Here we discuss the dynamics of a small number (n < 5) of toroidal vortices
(Vpq ) coiled on thin tori (r1/r0 < 0.16). We must further set a lower bound for
r1/r0 because of the desingularization of the Biot-Savart law, which implies that the
vortices have an undeformable cross-section of radius a. Consistency then requires
that the vortices are never too close to each other, i.e. their centerlines must be
separated by distances about or larger than 3a. We chose to use a value which amply
satisfies this condition for n = 2 and narrowly does it for n = 4. Therefore in this
study the aspect ratio of the torus will be in the range 0.1 < r1/r0 < 0.16 (except
for one case in Sect. 4).

3 Vortex Motion

3.1 Knotted and Unknotted Vortices

Figure3 shows the evolution of a trefoil-knot vortex (V23). The vortex, initially coiled
on a thin torus (r1/r0 = 0.1), progresses along the torus’ symmetry axis (the thin line
in the lateral view) while rotating around the same axis (the cross in the front view).
As predicted by Kelvin (1875), all vortices Vpq coiled on thin tori are observed to
progress and rotate in an approximately uniform manner. The linear speed, U , is
proportional to p and is almost unaffected by the value of q (Fig. 4, left panel). This
behaviour is easily explained as follows: since r1/r0 = 0.1 the progression speed
behaves as if there was a single ring with circulation pΓ instead of p loops of a
filament with circulation Γ . As a matter of fact U ≈ 3/4pU0, where U0 is the speed
of a circular ring of strength Γ and radius r0 (Kelvin 1867b):

U0 = Γ

4πr0

[
log

8r0
a

− 1

4

]
(5)

The angular speed,Ω , grows with increasing p and decreasing q (Fig. 4, right panel).
Note that toroidal helices (p = 1) rotate in the opposite sense and at a much lower
rate than toroidal loops (q = 1); and toroidal knots rotate in the same sense and at
lower rates than toroidal loops.

3.2 Linked Vortices

Figure5 shows the evolution of a pair of linked ring vortices V11 of equal circula-
tion. The vortices were initially coiled on a thin torus (r1/r0 = 0.1). The lateral
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Fig. 3 Evolution of a trefoil-knot vortexV23 with r1/r0 = 0.1. The axis of the system is represented
by a cross in the frontal view (left-hand side column) and by a straight line in the lateral view (right-
hand side column). The stages depicted are (a) t = 0, (b) t = 0.23T , (c) t = 0.46T , (d) t = 0.69T ,
where T is the time required by a circular ring vortex of centerline radius r0 and cross-section radius
a to advance a distance equal to r0

view shows the progression of the vortices along the torus’ symmetry axis whereas
the front view shows the rotation of the vortices around the same axis. This figure
shows exactly one vortex rotation and since this is relatively fast, the vortices are
seen to advance only a short distance during this time. They, however, continue ro-
tating and progressing in the same way for much longer times. Figure6, for example,
shows the vortices advancing a distance equal to eight-times their diameter while
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Fig. 4 Linear speed (U ) and angular speed (Ω) of the vortex system as functions of p and q. The
speed of linear motion along the torus axis, U , is scaled by Γ/4πr0; the angular speed of rotation
round the torus axis, Ω , is scaled by Γ/2πr0r1. The black dots indicate the only points where
toroidal vortices exist. The contours of U and Ω were drawn by interpolation to show how these
speeds change in the parameter space. Taken from Velasco Fuentes (2010)

performing almost sixteen rotations around their symmetry axis. The bottom row of
the same figure shows the corresponding time evolution of quantities that, theoreti-
cally, should be conserved but which are not exactly so in the numerical simulations.
Instead of the instantaneous values of the energy and the linear and angular impulses,
Eqs. (1)–(3), we plotted their relative change; thus Fig. 6 shows, respectively, E(t)/
E(0) − 1, |I(t)|/|I(0)| − 1 and |A(t)|/|A(0)| − 1. In the period shown, the energy is
preserved within 0.01%, the linear impulse within 0.001%, and the angular impulse
within 0.02%.

The progression of the vortices corresponds, because of Helmholtz (1858) vortex
laws,with the advance ofmaterial elements. The vortex rotation around the symmetry
axis does not match a similar motion of material elements: it is actually an azimuthal
wave. To verify this, note that the hue of the colour marks fluid elements along each
vortex and that, in the front view, the darker hues remain on the right-hand side and
the lighter ones on the left-hand side of the vortices. The cause of the azimuthal
wave is a different motion of the material elements, namely their rotation around the
torus centerline. This can be qualitatively verified by close inspection of the vortices’
lateral view in Fig. 6.

Hence the motion of the fluid elements that make up the vortices has two main
components: (a) progression along the torus’ symmetry axis, and (b) rotation around
the torus’ centerline. We found that these components are approximately uniform so
that we characterised them by the average speeds U and Ωc, respectively.

The linear speed U grows with the number of vortices n and decreases with
the aspect ratio r1/r0. A simple argument accounts for this: since r1/r0 << 1 the
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Fig. 5 Evolution of two linked ring vortices V11 with r1/r0 = 0.1. The axis of the system is
represented by a cross in the frontal view (left-hand side column) and by a straight line in the lateral
view (right-hand side column). The stages depicted are (a) t = 0, (b) t = 0.105T , (c) t = 0.210T ,
(d) t = 0.315T , where T is the time required by a circular ring vortex of centerline radius r0 and
cross-section radius a to advance a distance equal to r0. Taken from Velasco Fuentes and Romero
Arteaga (2011)

progression speed behaves as if, instead of n toroidal rings with circulation Γ , there
was a single circular ring with cross-section radius r1 and circulation nΓ . The speed
of this virtual vortex is U0 = (nΓ/4πr0)[log(8r0/r1) − 1/4]. Figure7 shows that
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Fig. 6 Top Progressive motion of a pair of linked vortices (the same of Fig. 5 but for a 16-times
longer period). Bottom Time evolution of the kinetic energy E (continuous line), linear impulse
I (dashed line), and angular impulse A (dot-dashed line). The relative change of these quantities
(see text) is shown as a function of the adimensional distance travelled by the vortices, Z = Ut/r0
(where U is the speed of the vortices, t is the time and r0 is the torus’ centerline radius). Taken from
Velasco Fuentes and Romero Arteaga (2011)

this is in good agreement with the speeds measured for sets of linked ring vortices,
particularly when n = 2.

The angular speed Ωc increases with n and decreases with r1/r0. This can be
explained following (Thomson 1883): since the vortices are thin and r1/r0 << 1
they move on the meridional plane as if they were a set of point vortices. Indeed, in
the parameter region studied here, Ωc ≈ 0.94Ω0, where Ω0 is the angular speed of
a set of n point vortices of circulation Γ placed on the vertices of a regular polygon
inscribed on a circle of radius r1: Ω0 = (n − 1)Γ /4πr12. We argued above that the
material rotation around the torus’ centerline causes the azimuthal wave around the
torus’ symmetry axis. The close agreement, shown in Fig. 7, between Ω0 and the
angular speed of the azimuthal wave, Ω , quantitatively demonstrates the connection
between these two rotations.

We applied several diagnostics to measure the deformation of the vortices
throughout their evolution. The simplest one was the time evolution of the vortex
length, which was observed to vary within 0.3% of its initial value in the region of
the parameter space studied here (n = 2, 3 and 0.1 ≤ r1/r0 ≤ 0.16). The second
diagnostic consisted in finding the torus that best fitted the vortices at every stage of
the evolution. The conservation laws (2)–(3) guarantee that the fitting torus has the
same symmetry axis as the initial one, therefore the former is uniquely determined
by the radii r0(t) and r1(t). We found that r0(t) remained within 1% of its initial
value, whereas r1(t) remained within 5% of its initial value. The final diagnostic was
to measure the signed distance, �r1, from the surface of the torus to every material
marker representing the vortices. The time series of histograms of �r1 showed that
the markers remained within a distance 0.01r0 of the torus (as in the case n = 2,
r1/r0 = 0.1, shown in Fig. 8).
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Fig. 7 Linear speed (U ) and phase angular speed (Ω) of n linked vortices as functions of the torus
aspect ratio (r1/r0), for sets of n = 2 (thickest line and largest markers), n = 3 and n = 4 (thinnest
line and smallest markers). The continuous lines represent the analytical functions discussed in the
text, the markers represent the results of the numerical simulations. The linear speeds are scaled by
the speed of a circular ring vortex of circulation 2Γ , centerline radius r0 and cross section radius
2a, the angular speeds are scaled by the rotation speed of a pair of point vortices of circulation Γ

separated by a distance 4a. Taken from Velasco Fuentes and Romero Arteaga (2011)
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Fig. 8 Evolution of the vortex shape as illustrated by a time series of the histogram of distances
from the vortex markers to the surface of the torus (see text). The signed distance, �r1, at which a
certain percentage of the markers is located (white: 0%; black:100%) is shown as a function of the
adimensional distance travelled by the vortices, Z = Ut/r0 (where U is the speed of the vortices,
t is the time and r0 is the torus’ centerline radius). The results correspond to the simulation shown
in Fig. 6. Taken from Velasco Fuentes and Romero Arteaga (2011)

4 Flow geometry

The toroidal vortices discussed in the previous section very nearly keep their shape
and are almost stationary when observed in a frame that translates with speed U and
rotates with angular speed Ω . Hence we will use this comoving frame to analyse
the geometry of the velocity field. Since the vortices lie on a thin torus the velocity
field they produce may be regarded as a small perturbation of the velocity field of a
circular ring vortex, at least away from the immediate vicinity of the vortices.
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Hence we describe first the flow geometry of a circular ring vortex of radius r0 and
cross section r1 in the comoving system (i.e. progressing with speed U ). The flow
may qualitatively change depending on the numerical value of r1/r0 but all values
used here fall within the regime of fat ring vortices (r1/r0 > 1/86, see Saffman 1995
for a detailed analysis). In this regime the velocity field has two stagnation points,
both lying on the ring’s symmetry axis. The forward one, P , has a linear attractor and
a planar repellor; the backward one, Q, has a linear repellor and a planar attractor.
The two stagnation points are connected by an infinite number of streamlines starting
at P and ending at Q. These lines form a surface with the shape of an oblate spheroid.
This stream surface is called separatrix, because the streamlines located inside it are
qualitatively different from those located outside it: the former are closed whereas
the latter are open and of infinite length. From a more physical point of view, the
separatrix is the surface that divides the ambient fluid from the fluid permanently
carried by the vortex.

The addition of a solid body rotation, Ω , round the symmetry axis affects neither
the existence nor the position of the stagnation points. The rotation transforms the
plane streamlines into helical curves but it leaves the shapes of all stream surfaces
unaltered. Therefore, the separatrix of a circular ring vortex in a system progressing
with speedU and rotating with speedΩ is the same oblate spheroid described above.

Let us now see what happens when we substitute back the toroidal vortices in the
place of the virtual ring vortex. The stagnation points survive, although somewhat
displaced. The separatrix, in contrast, disappears: instead of a single surface starting
at P and ending at Q, there are now two surfaces. The first one, called the unstable
manifold, starts at P and ends infinitely far downstream; the second one, called the
stable manifold, starts infinitely far upstream and ends at Q. These surfaces intersect
along a finite number of streamlines which start at P and end at Q.

We obtained the unstable manifold by computing a set of streamlines starting on
the vicinity of the front stagnation point. The starting points lay on a circle of small
radius (0.01r0), coaxial with the torus and centred at the stagnation point. The stable
manifold could have been computed in a similar way, but this was unnecessary. Note
that a time reversal in the equations of motion is equivalent to a change of sign of
all vortex circulations (i.e. Γ → −Γ ) and this is equivalent to the transformation
(x, y, z) → (x,−y,−z), because of the initial conditions described in Sect. 2.2.
Therefore, to obtain the stable manifold, we rotated the unstable one by an angle π

around the x axis.
In the vicinity of the vortices the flow is always very different from that of a ring

vortex. In order to study the geometry of the flow in this region, we used Poincaré
sections. We constructed these by numerically computing a set of streamlines that
started on a radial line going from the vicinity of the torus symmetry axis to the
vicinity of the vortices, and plotting every intersection of the streamlines with the
meridional plane that contains the starting points.



124 O. Velasco Fuentes

1 2 3 4 5

1

2

3

4

5

p

q

Fig. 9 The unstable manifold of toroidal vortices Vp,q . All vortices have small cross-section
(a/r0 = 0.05) and are coiled on a thin torus (r1/r0 = 0.1); their intersections with the merid-
ional planes θ = 0, π are represented by grey dots. Taken from Velasco Fuentes (2010)

Fig. 10 Poincaré sections of streamlines induced by toroidal vortices: (a)V3,1, (b)V4,1 and (c)V5,1.
The intersections of the vortices with the meridional plane θ = 0 are represented by white circles,
those of the streamlines by dots coloured according to the position of the streamline’s starting point
(blue: closer to the torus’ symmetry axis; red: closer to torus centerline). Adapted from Velasco
Fuentes (2010)

4.1 Knotted and Unknotted Vortices

Figure9 shows meridional cross-sections of the unstable manifold for all toroidal
vortices in the range 1 < p < 5 and 1 < q < 5. The shape of the manifolds
is mainly determined by p, whereas the value of q is important only for toroidal
helices (p = 1). Note, for example, that the manifold of the knotted vortex V2,5 is
more similar to that of the unknotted vortex V2,1 than to the knotted vortex V3,5.
As p grows the oscillations of the unstable manifold start closer to the backward
stagnation point Q. When p > 3 the unstable and stable manifolds differ very little
(except in the immediate neighbourhood of P and Q) from the separatrix of a fat
ring vortex.
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The Poincaré sections show at least 2p large islands of stability: p correspond to
the single tube offluid permanently trappedby the vortex, and p correspond to a single
tube of irrotational fluid which runs parallel to the vortex and has approximately the
same shape (see Fig. 10). When p > 2 there is an additional island of stability which
corresponds to a tube of irrotational fluid that surrounds the torus centerline. When
p = 1, 2 all these tubes are embedded in the unbounded chaotic sea generated by
the intersections of the manifolds. When p > 2 the tubes are embedded in a chaotic
sea that is itself bounded by a KAM-like torus.

4.2 Linked Vortices

Figure11 shows meridional cross sections of the stable and unstable manifolds of
two linked vortices; each frame corresponds to a supporting torus of a particular
aspect ratio (r1/r0 = 0.07, 0.1). In both cases the red curve, which represents the
unstable manifold of P , smoothly moves downstream but, as it approaches Q, it
starts to oscillate about the blue curve, which represents the stable manifold of Q.
Similarly, the stable manifold of Q smoothly moves upstream but as it approaches P
it starts to oscillate about the unstable manifold of P . Note that when the supporting
torus is thinner (frame a, r1/r0 = 0.07) the oscillations of the manifolds are of small
amplitude and they start close to the opposite stagnation point. In contrast, when the
supporting torus is thicker (frame b, r1/r0 = 0.10) the oscillations of the manifolds
are of larger amplitude and they start closer to their own stagnation point.

The presence of this geometric structure, known as heteroclinic tangle, implies
that streamlines are chaotic in this region (Wiggins 1992). It also provides a template
for the wandering of streamlines around different flow regions through the following
mechanism (lobe dynamics, for details see Rom-Kedar et al. 1990). Consider two
adjacent intersections, on some meridional plane, between the unstable manifold of
P and the stable manifold of Q; the two line segments bounded by these points form
a closed contour which defines an area, say A1, usually called lobe (see Fig. 11b).
The streamlines passing through A1 successively intersect the samemeridional plane
within the lobes A2, A3, . . . , thus reaching at some point the interior of the so-called
vortex atmosphere. This is, however, only a transient situation because the same
mechanism eventually brings them out to the downstream side of the vortex.

Figure11b shows that there are two independent sequences of lobes, the green
ones and the white ones, which implies that the unstable manifold of P intersects the
stable manifold of Q along four streamlines. In fact we found that manifolds always
intersect along 2n streamlines, where n is the number of vortices. Note also that here,
as in all cases we have analysed, the areas of the lobes are larger when they are closer
to the torus symmetry axis. This occurs because the fluid is incompressible and the
azimuthal velocity grows with the distance to the torus axis.

Analogously to the case of a single vortex Vpq , the Poincaré sections show at least
2n large islands of stability: n correspond to the tubes of fluid permanently trapped
by an individual vortex, and n correspond to tubes of irrotational fluid which run
parallel to the vortices and have approximately the same shape. When n > 2 there is
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Fig. 11 Meridional cross section of the three-dimensional chaotic tangle of two linked ring vor-
tices coiled on tori of different thickness: (a) r1/r0 = 0.07, (b) r1/r0 = 0.10. The red and blue
lines represent, respectively, the unstable manifold of the front stagnation point (P), and the stable
manifold of the rear stagnation point (Q); the grey circles represent the vortices and the green areas,
labelled with Ai , represent successive intersections of a particular streamtube with the meridional
plane (see text). Adapted from Velasco Fuentes and Romero Arteaga (2011)

an additional island of stability which corresponds to a tube of irrotational fluid that
runs between the n vortices and surrounds the torus centerline.

If the number of vortices is large or the aspect ratio of the torus is small these
islands of stability are embedded in a chaotic sea bounded by a nested set of KAM
tori, as evidenced by the bands of differently coloured dots in Fig. 12a, c. Note that
the largest KAM torus almost fills the “unperturbed” oblate spheroid. If, however,
the number of vortices is small or the aspect ratio of the torus is large these islands of
stability are embedded in an unbounded chaotic sea, as evidenced by the well mixed
coloured dots in Fig. 12b, d.

5 Conclusions

Our numerical results confirm Kelvin (1875) deductions about knotted and linked
toroidal vortices: they progress along and rotate around the torus symmetry axis with
almost uniform speeds while undergoing negligible deformations. Although these
results make plausible the existence of exact solutions which are both steady and
stable, finding the analytical expression of such solutions is still an open problem.
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Fig. 12 Poincaré sections of streamlines in the velocity field of n linked ring vortices lying on tori
of different thick nesses: a n = 2 and r1/r0 = 0.07, b n = 2 and r1/r0 = 0.10, c n = 3 and
r1/r0 = 0.10, d n = 3 and r1/r0 = 0.15. The intersections of the vortices with the meridional
plane θ = 0 are represented by white circles, those of the streamlines by dots coloured according to
the position of the streamline’s starting point (red: closer to the torus’ symmetry axis; blue: closer
to the vortices). Taken from Velasco Fuentes and Romero Arteaga (2011)

The quasi-steadiness of the linked ring vortices enables us to interpret the results
about the flow geometry in terms of the capacity of the vortices to carry fluid. We
may thus conclude that a single toroidal vortex Vp,q carries more fluid if it makes
more coils round the symmetry axis (larger p) or if it lies on a thinner torus (smaller
r1/r0). Similarly a set linked ring vortices V11 carries more fluid if there are more
vortices in the set (larger n) or if it lies on a thinner torus (smaller r1/r0).

Equation (4) shows that the velocity field depends on the value ofμa, particularly
in the neighbourhood of the vortices. This affects the self-induced velocity and,
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through it, the flow geometry. For if μa is smaller the vortices move faster and their
stagnation points are closer to each other, and vice versa. To evaluate the extent of the
modifications produced by changing the value of μa, we used thinner vortices (a =
0.025r0) with the same internal structure used above (μ = e−3/4) and hollow vortices
(μ = e−1/2) with the same cross-section used above (a = 0.05r0). The thinner
vortices moved with a 6%-larger speed and the distance between their stagnation
points was 8% smaller. The hollow vortices moved with a 3%-smaller speed and the
distance between their stagnation points was 4% larger. In neither case the chaotic
tangles or the Poincaré sections exhibited significant changes with respect to those
shown in the present chapter.
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