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1 Introduction

In this document, we offer some insight into the potential of combining advanced
interaction paradigms with sound and music for the development of innovative
interactive audio applications. Therefore, in this chapter we present novel ways to
interact with the music by means of using advanced natural human computer
interfaces. Furthermore, the basics of specific applications which are currently
being developed will be briefly presented. A motion-based paradigm is considered
in the context of music signal processing to provide an innovative and immersive
experience in audio and music applications.

1.1 Review of Previous Works

Human Computer Interfaces have long moved beyond the conventional setting of a
single user sitting in front of a desktop computer. Nowadays, the latest technological
advances in the fields of motion tracking or speech recognition have allowed for the
definition of more complex, enriching interaction metaphors. Also, the development
and proliferation of low-cost off-the-shelves devices, such as Microsoft’s Kinect
camera or the Nintendo Wiimote, make it possible to provide more intuitive ways of
interaction with a given computing device (Villaroman et al. 2011).

An adequate fusion of auditory and visual cues is critical in the conception of
natural human computer interfaces (Shivappa et al. 2010), since vision and hearing
are the primary senses used by humans to comprehend and interact with the world.
Thus, in order to create a fully immersive experience, it is necessary to carefully
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design the presentation of audiovisual information. As such, music is an integral
part of the auditory modality. Moreover, musical interaction itself can constitute
the basis and main focus of a certain interface for a wide assortment of applica-
tions: music learning (Wang and Lai 2011), musical instrument creation/simula-
tion (Jorda 2010), music-guided rehabilitation (De Dreu et al. 2012), etc.

One of the most well-known types of applications regarding musical interaction
is that of videogames. Games such as GuitarHero (GuitarHero 2011), SingStar
(SingStar 2004) or RockBand (RockBand 2012) are some of the most prominent
and popular applications of this kind, especially on western markets. Guitar Hero
III: Legends of Rock became the first single game ever to surpass $1 billion in
sales (Craft 2009). This proves the economic relevance of this genre. However, an
analysis of 20 releases showed that these rarely respect the creative component of
actually playing music (Grollmisch et al. 2009). Mostly, the player has to rhyth-
mically trigger buttons according to predefined sequences. This mostly requires
dexterity and swift reflexes, whereas the possibilities to actively participate in
music creation are only marginal.

Some rip-offs of the most popular titles exist in the open source world with
titles like FretsOnFire (FrestsOnFire 2006), UltraStar (UltraStar 2010). It is
remarkable that the editing of the songs (alignment of notes and lyrics with the
songs) for these titles has to be done manually, this is why UltraStar features a
built in editor. For commercial titles, game studios use proprietary editors and
formats. There are only a few attempts to use automatic music processing in these
kinds of games. In (Barbancho et al. 2009) a description on how to generate game
packages for FretsOnFire is presented. AudioSurf (AudioSurf 2008) or audio
processing as proposed in (Migneco et al. 2009) are examples of action games
based on automatic, real-time analysis of music features.

Nevertheless, it would be definitely unfair to judge music games as being
nonmusical. They do foster the interest of children and adolescents in music, some
gamers are even encouraged by these games to learn a real instrument. For
example, the Beatles Rock Band Edition (BeatlesRB 2009) allows up to three
singers to sing in harmony and rewards the players with high scores if they
succeed. Such features are somewhat useful for self-study voice education (Mi-
kestar 2009). Furthermore, recent studies seem to confirm that these kinds of
applications can actually help children develop musical skills and knowledge
(Gower and McDowall 2012). Thus, despite their limitations, they can serve as a
gateway to musical concepts for potential users, especially with regards to rhythm.

Musical interaction has recently become a hot topic. Antle et al. (Antle et al.
2008) proposed a system to connect body movements to output sounds. The
experiments conducted showed that learning processes could be improved through
the use of such interaction metaphors. Further research was performed regarding
the use of tangible interaction in order to manipulate the pitch, volume and tempo
of ongoing tones (Bakker et al. 2011). Another study (Holland et al. 2010) made
use of a haptic vibrotactile device set (the Haptic Drum Kit) to aid the learning
process of rhythm and rhythmic patterns.
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A good example of musical exploration and creation using physical body
movements as an interface can be found in the works by Khoo et al. (Khoo et al.
2008). Their study depicts a system capable of mapping motion features onto
acoustic parameters (such as frequency, amplitude, tempo, or time signature) for
real-time expressive rendering of a given piece of music. At the same time, visual
feedback was projected accordingly on a screen. Therefore, this system allowed
users to interact with music in an intuitive and explorative way, lowering the
barriers towards the understanding and appreciation of music features. A similar
interaction metaphor was considered in (Castellano et al. 2007). In a similar
fashion, it is possible to modify the visual patterns presented by means of speech
or sung voice, making the voice ‘‘visible’’, as shown in the works conducted by
Levin and Lieberman (Levin and Lieberman 2004), or directly interacting with a
virtual character (Taylor et al. 2005; Mancini et al. 2007).

Musical interaction can act as a strong motivator, but it can also fulfill an
important role as a way to allow users to acquire or expand their knowledge on
music theory. In general terms, the mechanics and abstract concepts of music are
not usually known to most lay people. Furthermore, in order to learn the different
aspects of music theory it is necessary to devote a considerable amount of time to
such purpose. On the other hand, visitors to physical museums are often over-
whelmed by the vast amount of information available (Karimi et al. 2012). In this
regard, musical interaction allows for a learning-by-action exploration, lowering
the barriers of the inherent abstract nature of many of these concepts and making
the global experience much more accessible and enjoyable.

1.2 Chapter Organization

As previously stated, the aim of this text is to portray how innovative user-
computer interfaces can be used to provide new experiences and forms of inter-
action with music. More concretely, Sect. 2 presents a brief overview of the
technologies available for the design and implementation of interaction paradigms
revolving around human body motion tracking. After the different alternatives
have been identified, the chapter will cover the option chosen to implement the
natural human–computer interface as well as the justification behind this decision
and a succinct review of the capabilities for motion tracking of the Open Natural
Interaction (OpenNI) framework. Then, Sect. 3 will present two applications which
use motion-tracking to allow the user to modify some musical features in the
sounds played. In addition, an overview of alternative motion-based interaction
paradigms will be described in order to more widely show the potential of these
interaction techniques in musical applications. Finally, Sect. 4 will briefly present
the conclusions gathered from this work.
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2 Motion Tracking: A Camera-Based Approach

2.1 Technologies for Motion Tracking

In the next lines, a brief summary of the most commonly used motion capture
technologies is given. As it is not the scope of this chapter to exhaustively cover
the distinct technological aspects behind these technologies, only the most
prominent and relevant aspects will be summarized. For further details, the fol-
lowing works should be reviewed: Welch and Foxlin (Welch and Foxlin 2002),
Baratoff and Blanksteen (Baratoff and Blanksteen 1993), Perry et al. (Perry et al.
1997).

Traditionally, the most commonly used alternatives for motion tracking can be
summarized into the following five categories, depending on the main technology
employed: optical, electromagnetic, acoustic, inertial and mechanical sensors.

• Optical trackers in general show high update rates and short lags. The data
acquired are usually quite accurate, and electromagnetic noise and room tem-
perature have little to no effect on them. However, they suffer from the line of
sight problem: any obstacle between sensor and source will create an occlusion
which can seriously degrade the overall performance of the tracking system.
Ambient light and infrared radiation can also adversely affect the performance.
As a result, the environment must be carefully designed to reduce these inter-
ferences as much as possible.

• Electromagnetic trackers have been quite popular, but they can give inaccurate
measures. They usually show latency problems and they are also very sensitive
to the presence of large amounts of metal and conductive materials in the
surrounding area or other electromagnetic fields, such as those that would be
generated by large computer equipment, displays, etc. They have some
important advantages, however, such as not requiring direct line-of-sight
between the trackers themselves and the source, and they usually have a small
and ergonomic size.

• Acoustic sensors lie somewhat in-between the previous ones. They have a
restricted workspace volume and require direct line-of-sight (although they are
not as affected by this as optical trackers). Time-of-flight trackers usually have a
low update rate, and phase-coherence trackers are subject to error accumulation
over time. Additionally and more importantly, both types are affected by tem-
perature, pressure changes and the humidity level of the environment. Fur-
thermore, the effects of echoing and the presence of other nearby sonic sources
can have very negative effects on their measurement.

• Inertial systems are already available in chip form. Inertial sensors are com-
pletely self-contained. There are no line-of-sight requirements, no emitters to
install, and no sensitivity to interfering electromagnetic fields or ambient noise.
They also have very low latency (typically a couple of milliseconds or less) and
high sampling rates. The main disadvantage of inertial trackers is that they are
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very sensitive to drifting errors, since they do not actually measure position and/
or orientation directly, which makes them ineffective when absolute measures
are needed.

• Mechanical trackers offer many advantages, such as almost complete environ-
ment independence, and potentially highly accurate, fast and low latency
measurements. Unfortunately, mechanical trackers are very cumbersome. They
can be bulky, heavy, and severely limit the motion of the user, giving rise to
ergonomic issues.

As a conclusion, there is no optimal solution when it comes to making a choice.
The advantages and disadvantages of each technology must be carefully assessed
according to the requirements of the task at hand.

We have decided to use a camera-based system. A camera-based tracking
system can be seen as a passive subtype of the optical tracking technology, since
the tracking points of interest will not actually emit light by themselves, instead
the system will rely on the light reflected on natural surfaces. We have followed
this approach because it offers an off-the-shelf, inexpensive solution that mini-
mizes intrusiveness (Gleicher and Ferrier 2002), constituting a good solution to
implement high precision motion tracking. Nevertheless, while humans can easily
identify motion from a recorded sequence telling from their own experience in the
real world, computers face some difficulties (Gleicher and Ferrier 2002), for
mapping a 3D world into a 2D movie involves an important loss of information. In
order to circumvent such limitation, we have opted to use a Z-camera, that is, a
camera that is capable of capturing the 3D scene, by means of a depth map which
assigns to each pixel a value related to the distance between the camera and the
point in the 3D scene which was projected onto that pixel. In particular, a
Microsoft Kinect sensor is used.

2.2 The OpenNI Framework

Kinect is a composite device consisting of an infrared (IR) projector, an IR camera
and a RGB camera. The infrared camera projects a pattern of infrared points which
are then used to triangulate points in space (Smisek 2011), thus allowing to
determine the depth of the objects in the scene. In November 2010, the company
Primesense released their own open source drivers, as well as a middleware
motion tracking module called NITE, both integrated as part of the OpenNI
framework. By using the OpenNI/NITE framework, it is feasible to achieve
advanced user identification and motion tracking capabilities. This section aims to
briefly present the key features to consider in the development of our interface
using a Kinect device.

The purpose of the OpenNI framework is to provide the means to develop
human–computer interfaces that achieve ‘‘natural interaction’’, that is, an inter-
action based on human senses, especially on human hearing, motion and vision. In
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order to actually accomplish this objective, it is necessary to resort to hand and
body gestures and motion tracking, speech and voiced command recognition, etc.
OpenNI offers a flexible framework to make use of natural interaction devices
(such as 3D sensors) and the middleware needed to control those devices.

The layer view of the OpenNI framework is shown in Fig. 1. It includes
complex components, such as Production Nodes, Production Chains or Capabili-
ties. However, it is not the aim of this section to thoroughly cover the possibilities
of the OpenNI API. Let it suffice to say that a Production Node is a component that
outputs a certain type of data to be used by either other Production Nodes or the
application itself. Examples of such components would be an Image Generator
(which generates colored image-maps) or a Depth Generator (which produces a
depth map). In the particular case of the Kinect sensor module, both the RGB data
and depth image data are accessible through the use of Production Nodes, where
examples are shown in Fig. 2.

One of the key features of the OpenNI/NITE framework is the Production Node
called Scene Analyzer. This component analyzes a depth image produced by a
lower-level node to look for figures in it. Thus, the foreground, background, the
floor plane, as well as human figures are identified (PrimeSense 2011a). The data
are then processed into a labeled depth map as output. NITE processes this data to
generate a label map that allows for specific user tracking in the scene, using a user
segmentation algorithm (PrimeSense 2011b). This label map holds information
regarding the detection of human shapes, in such a way that each pixel is associated

Fig. 1 An example of the
abstract layer view of OpenNI
(based on image in
(PrimeSense 2011a))
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with a label which in turn indicates whether that pixel corresponds to the back-
ground or to one of the figures identified. An example can be found in Fig. 3.

Finally, the most critical feature for the implementation of a human–computer
interface for musical interaction applications could be considered to be NITE’s
skeletal tracking production node (PrimeSense 2011b).

NITE’s skeletal model makes use of a total of 15 skeletal nodes (of 24 possible
nodes supported by the OpenNI API). The correspondence of such nodes with
human joints can be seen in Fig. 4. This production node processes the labeled
depth image generated by the user segmentation node to calculate the skeletal
joints position and orientation values for the fifteen nodes of one of the users
identified in the previous step. Note that joint position coordinates are far more
stable than joint orientation ones, which are actually quite noisy. Thus, it is rather
preferable to rely on joint position measures to prevent incorrect measures.

After a sufficiently stable model of the user’s joint positions has been found, it
is possible to implement different kinds of interactive models based on the motion
detected for each of the nodes.

In the next section, we will cover the implementation of specific examples of
musical interaction by means of skeletal motion tracking and musical signal
processing.

Fig. 2 Example of Kinect’s production nodes output, depth image in rainbow scale (left) and
RGB image (right)

Fig. 3 User segmentation
labelled depth image,
identifying three different
users from non-user pixels
(background)
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3 Interaction with Music: Examples of Applications

So far, we have discussed the advantages and drawbacks of different tracking
technologies and we have briefly skimmed over some of the possibilities that the
OpenNI/NITE framework opens for the use of the Kinect camera in an application
with stress in music interaction. However, we have not yet covered any specific
example. This section provides examples of actual applications developed using a
natural interaction interface based on Kinect. More specifically, this section will
present two of such applications: first, an application where the user’s hand
movements induce pitch shifting in a sound source being reproduced, and sec-
ondly, an application that detects a drum-hitting-like gesture as a cue to actually
play a drum-like sound. Finally, a collection of other possible paradigms for
musical interactive applications is portrayed.

3.1 Pitch-Shifting by Motion Tracking

Pitch shifting is the process of changing the pitch of a given piece or sample
without affecting its duration or speed. This process, along with time-stretching, is
used, for instance, to match pitches and tempos of two sound excerpts that are to
be mixed, to correct the intonation of instruments or singers, or to produce special
effects such as increasing the range of a given instrument or adding a chorus-like

Fig. 4 NITE’s skeletal model
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effect to a single singer performance (by mixing transposed copies of the original
monophonic voice).

The most straight-forward way to implement pitch shifting would be to simply
resample the clip to be processed, that is, to rebuild the original continuous
waveform and sample it again at a different rate. However, this process also
changes the duration of the signal. This means that if the signal were to be played
at the original sampling frequency, the audio clip would sound faster or slower. In
order to keep the duration unchanged, it would be necessary to time-scale the input
signal by the same factor as it is going to be oppositely scaled by the resampling
process. This stage can be implemented by using a time-stretching algorithm that
does not introduce changes to the original pitch, such as the synchronized overlap-
add method (Zölzer 2002). The order in which these two operations are applied
can be interchanged (example in Fig. 5).

Another alternative is to use a phase vocoder to apply a pitch transposition
transformation to a representation of the audio data based on a time–frequency
model. One possible implementation of the phase vocoder multiplies the input
audio signal by a sliding window which is nonzero for only a finite period of length
N samples. This divides the input audio waveform in chunks or frames, which are
transformed to the frequency domain by using the Fast Fourier Transform (FFT).
This process is called Short-Time Fourier Transform (STFT), and it is mathe-
matically represented by the equation Eq. 1.

Xðn; kÞ ¼
Xþ1

m¼�1
xðmÞwðm� nÞe

�j2pkm
N ¼ Xðn; kÞj jej/ðn;kÞ ð1Þ

Equation 1: Short-Time Fourier Transform for time–frequency representation.
In this equation, x(n) represents the digital audio samples, w(n) is the sliding

window chosen, and X(n, k) represents the short-time spectra of each frame.
After the short-time spectrum has been calculated, it is possible to apply an

operation or transformation by either manipulating the magnitude or the phase of
each sample at each of the N frequency bins given by the FFT. Once the desired
operation has been performed, the data is transformed back to the time-domain by
using an Inverse FFT (IFFT), and then the processed output signal is conformed by
adding and overlapping all the different frames previously calculated.

The summation of the IFFTs of all the X(n, k) allows the synthesis of the
transformed signal back to the time domain. This implementation of the phase
vocoder is refered to in (Zölzer 2002) as Direct FFT/IFFT approach. An alternative

y(n)s(n) Time Stretching
Factor 1/F

Resampling
Factor F

input signal pitch-shifted signal

Fig. 5 Pitch shifting by resampling and time-stretching
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way to implement phase vocoders is that of the filterbank or ‘‘Sum of Sinusoids’’
approach (Zölzer 2002).

When partitioning the signal into frames it is important to select an appropriate
window. In particular, we have used a Hanning window in our implementation,
and the windowing process is applied with an overlapping factor of 87.5 %, using
a frame and FFT size of 1,024 samples. For each X(n, k) calculated, real fre-
quencies represented by each of the 1,024 bins are extracted (taking into account
the phase u(n, k) and the delay introduced by the overlapping windowing process).
Then, the frame is pitch-shifted by multiplying each frequency value by the cor-
responding pitch-shifting value. Afterwards, the IFFT is calculated using the same
magnitude values as the original frame, but the phase values for each sample at
each frequency bin are extracted from the transposed frequency values. Thus, the
synthesis process yields an effectively pitch-shifted signal (an example can be
found in Fig. 6).

After the selection and implementation of the pitch-shifting scheme, the next
stage is the integration of such a process into a human motion tracking system to
actually perform the pitch-shifting effect. To this end, we designed and pro-
grammed a simple virtual environment integrating the OpenNI/NITE API to get
access to user motion data detected by a Kinect device in real time. The virtual
environment and the application were programmed in C/C++ using a set of dif-
ferent libraries and frameworks: OpenAL for audio management, OGRE3D for
graphics, OpenCV to manage the bitmaps extracted from the Kinect device, and
OpenNI/NITE to implement natural interaction.

A screenshot of the virtual environment developed is portrayed in Fig. 7. Each
of the fifteen nodes of the user’s tracked skeleton was represented visually by
spheres with a metallic texture. The information extracted from the depth image
and the user segmented image was also used to create two small billboards to offer
additional information to the user.

Users interact in the virtual world by using both their left and right hands. More
specifically, during the start-up, the application loads a previously selected audio
file. Left hand motion is used to start playing the audio or to pause the playback.
This action was implemented by performing a simple ‘‘push-button-like’’ gesture
to toggle the playing state of the song. Thus, playback switches between on and off
whenever the user’s left hand is moved forward so that the distance between the
hand and the torso becomes larger than a certain amount over the Z axis, towards
the camera.

While the music is playing, the user has the possibility of altering its pitch in
real time by simply raising or lowering his right hand. In particular, if the right
hand is kept approximately at the same height (Y axis) as the user’s head height,
then the song is played without any alterations. If the right hand is raised or
lowered with respect to the reference height, then the pitch is shifted, increasing or
decreasing respectively, according to the right hand’s position. Pitch transposition
is limited to a maximum of 12 semitones with respect to the original value. The
highest pitch shift is applied when the user’s right hand Y coordinate is approx-
imately 50 cm larger than the head’s one. Similarly, the lowest pitch shift possible
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is performed when the hand is about 50 cm smaller than the user’s head height. In
intermediate positions, the pitch shifting introduced is continuously distributed
along the interval of semitones considered (-12, 12) proportionally to the relative
height of the hand with respect to the head. Such behaviour is represented by
Eq. 2, which portrays the factor F by which the audio excerpt’s pitch is shifted
(relative Height is measured in mm in this equation). Figure 8 illustrates an
example of this procedure.

F ¼ 2
relative Height

41;67� 12 ð2Þ

Equation 2: Transcription of tracked movement into a pitch-shifting factor.
This application has been conceived from a pedagogical point of view. By

correlating pitch rising and lowering with similar rising and lowering movements

Fig. 6 Spectrogram of a
vocal audio excerpt (up) and
its pitch-shifted version
(down). A 3 semitones shift is
applied
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Fig. 8 Example of pitch-shifting of a single tone. When the hand moves from the blurred
position to the end position, the pitch shift factor changes according to the height of the hand at
each instant

Fig. 7 Screenshot of the virtual environment developed for the pitch-shifting application
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of the hand, it becomes easier to understand the musical concept of pitch, espe-
cially for children.

The idea of coupling body motion with the generation of sound effects can be a
useful tool for music learning, as previously indicated in the introduction, making
the experience more enjoyable and explorative, and, at the same time, acting as an
additional motivator towards the learning process.

3.2 Kinect-Battery: Playing Drums with Kinect

In the previously presented application, motion tracking was used in combination
with music signal processing to achieve real-time pitch transposition. In this
second application, we present a system that is capable of emulating a simple
drum-like instrument by capturing user hand motion.

A first approach to the implementation of a simple air-drum would be to
geometrically define a virtual drum in a given position in space. Since the Kinect
3D sensor actually provides coordinates for each position joint within its field of
view, it could be possible to define the position and dimensions of a virtual drum
within that space. Nevertheless, several usability drawbacks can be found in this
approach. First of all, the most glaring problem when the virtual drum is located at
a fixed position is that the drum would be ‘‘invisible’’ in the real world. Thus,
unless the user is wearing a head-mounted display device, the user will need to
keep watching an external display to find the drum. This can be easily overcome
by requiring the user to stay at a particular position. Another issue is that the drum
should be resized according to the height of the user, to ensure that children and
adults alike can use it comfortably.

While these are definitely minor issues, they can pose an unnecessary incon-
venience for user comfort. Therefore, an immediate refinement to the previous
approach would be to virtually attach the virtual drum to the user; this can be
achieved by placing the drum in a fixed relative position with respect to the user.
This modification removes the previous issues and does not restrain user
movements.

Figure 9 shows a screenshot of an application running this implementation. The
framework of the application is the same one used in the pitch-shifting application.
The virtual drum is represented by a simple geometric shape. Whenever the user
moves either hand downwards and ‘‘hits’’ the upper top of the drum, a drum sound
is played (see Fig. 10 for a schematic representation of this model). It is important
to notice that the virtual drum is obviously intangible in the physical world.
Therefore, the user might force the system to keep playing a sound by constantly
waving the hand in short up-and-down moves near the top of the drum, creating a
very unrealistic and unnatural sound output. To prevent this, both hands have to be
raised a certain height before being capable of triggering a new sound when
‘‘hitting’’ the top surface of the virtual drum. The speed of the downwards
movement is also taken into account to modify the intensity of the sound played
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accordingly. A drum kit functionality can be easily implemented by creating
several virtual drums distributed around the user.

Fig. 9 Screenshot of the virtual environment for the drum simulator

Fig. 10 Illustration of the ‘‘hit-drum-to-play’’ model
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A second approach to the implementation of the air-drum would rely strictly on
user’s motion to infer when the user ‘‘intends’’ to hit the drum. More specifically,
the system would follow the movement of the hands, and whenever a drum-hitting
gesture was detected, it would play the corresponding sound. In this second case,
there would be no virtual drum, as the triggering of the sound would not depend on
the exact position of user’s hands but on the identification of drum-hitting gestures.

There are several reasons why this approach constitutes a more interesting
approach. First of all, it removes the need for ‘‘invisible’’ drums. Furthermore, noisy
samples of the hands’ position can be more problematic when using the first
approach, since it is more reliant on the precision of the user when ‘‘hitting’’ the drum.

The second reason why resorting to a drum-hitting recognition model can be a
more enticing prospect is that the 3D sensing technology used to track user
movement has some limitations in terms of accuracy, delay, etc. In particular, the
delay between user movements and user’s avatar transcription of the motion
tracked could be as high as 200 ms. This is a hurdle that cannot be easily overcome
with the former approach. Notwithstanding, it is feasible to look for features in the
user tracked motion that can offer some insight on whether the user intends to
perform a drum-hitting gesture or not. Thus, these features can be used to com-
pensate for the delay introduced by the application. Moreover, by this way it is
possible to predict when the user is going to perform a drum-hitting gesture
according to a reference of previously performed gestures and the corresponding
features extracted.

There are several ways in which a drum-hitting motion can be characterized. In
the following lines, we present some possible features that can be used for the
recognition of drum-hitting-like gestures in a system with meaningful delay. To
illustrate these ideas, we will consider that the user performs drum-hitting gestures
in a somewhat exaggerated way. Note that short moves are very hard to track with
the 3D sensing technology considered.

• Descending Acceleration. A feature that is clearly linked to a downwards
drum-hitting gesture is that of velocity and acceleration. More specifically, a
negative acceleration peak along the Y axis will be expected to be found. At the
start of the downwards movement, the acceleration over the Y axis should have
a negative value; at the time when the drum would be actually hit, velocity
should ideally become zero for that instant (so acceleration should have become
positive instants before). Finally, since it would not be natural to end the
movement exactly at the drum-hitting point, it stands to assume that in a proper
drum-hitting gesture, the hand would ascend again after performing a beat.
Thus, at the ‘‘end’’ of the gesture, the acceleration over the Y axis should
become positive. This is a simple feature that can be used (along with a certain
threshold and some constraints to the X, Y and Z coordinates to avoid false
positives) to discern whether the user actually performs a drum-hitting motion or
not. Furthermore, it is feasible to use this very same feature to predict whether
the user intends to perform such a gesture: if the user makes a downwards
movement with a sufficiently large value of speed/acceleration, it is very likely
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that a drum-hitting gesture is to be performed. Thus, by setting a certain
threshold on the measured acceleration/velocity of the user hand, it is possible to
predict when the user intends to ‘‘play the drums’’. Therefore, the system can
give a response before the actual motion is fully detected, helping to mitigate the
effects of the delay of the tracking device (see Fig. 11).

• Linear Prediction of Position. Another way to address the problem of the delay
is to use a linear predictor to estimate the evolution of user’s motion according
to the behaviour observed in the samples already captured. This would allow the
system to actually predict the position of the user’s hand and identify potential
drum-hitting gestures prior to the actual completion of such gestures. Such
identification would be accomplished, for example, by fitting the samples to a
function that characterizes the gesture with sufficient accuracy. In this case, it is
also important to account for the fact that different users might tend to perform
their gestures at different velocities, so the information in the database should
cover a wide enough assortment of gestures performed at different speeds or be
properly parameterized to prevent this.

These features can be used by themselves to detect whether a drum-hitting
gesture has been performed or not. Despite this, it is more likely to get better
results in the gesture-recognition task when combining the outputs given by these
features. This can be achieved by training a Bayesian classifier or by resorting to
other machine learning methods.

It is important to notice that the data sampled should be appropriately nor-
malized in order to minimize the dependence of the motion data tracked on the
actual size of each user. Even for users similarly sized, the proximity to the 3D
sensing device will also affect the actual range of values that will be tracked.

Fig. 11 Example of gesture detection using descending velocity (or acceleration): if there is a
peak of downward speed faster than a given threshold, a drumbeat is played
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One simple way to overcome this limitation is to use the torso-to-head distance as
a reference to normalize the data tracked. This simple reference removes the
dependence of the data sampled on the proximity to the sensor and mitigates the
effects of user size variability in the size of potential users.

Another issue, especially with regard to avoiding false positive detection, is that
certain constraints should be applied to gesture detection features for those cases in
which it is obvious that no significative gestures can be performed. Examples of
such constraints can refer to the mean velocity of the movement or the coordinates
of the location of the hand at the beginning of the motion.

One final aspect to consider is that of a drum-kit simulation. We previously
stated that, with the first approach discussed (virtual battery simulation in 3D
space), it would be difficult to implement a drum-kit due to the precision necessary
to ‘‘hit’’ the space confined by the invisible virtual drums. In this second approach,
a problem is the delay introduced by the system in the detection of a gesture. Since
the gesture recognition measures proposed do not depend on the actual position on
the XZ plane, a simple way to discriminate between different drums would be to
use the coordinates on the X and Z axes whenever a gesture is detected to select
the corresponding drum sound to play. While this partially brings back some issues
regarding precision when ‘‘hitting’’ an invisible 3D space, this solution is by far
more robust in this case. First of all, discriminating between positions in the XZ
plane is far simpler than detecting when the user ‘‘hits’’ a specific 3D volume.
Secondly, and more important, since a sound is played when a gesture has been
detected, as long as a gesture is correctly performed, a sound will play. Precision
errors might result in having the wrong drum sound played, but the system would
respond. On the contrary, with the first implementation, ‘‘missing the drum’’
implies that no sound would be played, which would be more frustrating to the
user. Furthermore, with the second approach, if the user wants to virtually play
drums, he/she will need to perform gestures that are reasonably similar to the
actual gestures a musician would make when playing the drums.

Like the pitch-shifting application presented in the previous section, this
application can also be seen from a pedagogical point of view. In particular, it can
be used to teach rhythmic patterns in basic music stages. But perhaps the most
enticing application of such a system would be as an accessible way for novice
users to musical expression and performance. Albeit limited, the proposed appli-
cation helps to lower barriers for lay people in musical terms, and allows for a
reasonable simulation of a drum-like instrument. Also, it removes most of the
hurdles related to instrument maintenance and overuse, as well as offering an
explorative and intuitive gateway to the world of musical performance.

3.3 Other Interaction Paradigms

So far we have presented in detail some aspects regarding specific applications for
real-time integration of human motion and musical responses. However, there are
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many other enticing and appealing applications and interaction paradigms that
allow for the integration of motion cues and music signal processing. In this
section, some examples of interaction paradigms that can be used to achieve new
forms of musical expression will be briefly presented.

3.3.1 The Virtual Director: An Example of Tempo Modification
with Hand Motion

The title of music director is normally used in many symphony orchestras to
designate the principal conductor and artistic leader of the orchestra. The role of
the director is to oversee the overall musical performance, supervising and guiding
the musical performance of the orchestra. The director guides the musicians with
the motion of his hands and arms. Thus, a simple approximation to a virtual
director application can be easily achieved with a body motion tracking system, as
shown in Fig. 12.

More concretely, it is relatively easy to use skeletal joint data to discriminate
over a given range of tempo. For example, to discriminate among andante, adagio
and presto, the space around the user could be divided into three regions according
to height: a lower region (for example, from slightly over the waist and down-
wards), an upper region (from the shoulders upwards), and a middle region
(approximately between shoulders and waist). Therefore, if the user moves his/her
hands in the lower region, tempo would be set to adagio, andante in the middle
region, and presto for the upper region. Thus, by detecting that the user is per-
forming a waving motion similar to the archetypical waving motion used by music
directors, it is feasible to implement a basic version of a music director simulator.
More complex implementations could be achieved by extending the range of
tempo considered, or by analyzing the waving speed instead of or in addition to the
height of the hands, as shown in Fig. 13.

Fig. 12 Schematic representation for a simple implementation of a virtual director by means of a
height-based system for tempo selection
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3.3.2 Instrument Simulation

Previously, we have discussed the implementation of a simple drum-like instru-
ment, but a similar approach can be followed for the implementation of other types
of instruments. The xylophone and other percussion instruments could be easily
simulated using a system similar to the one previously proposed. Obviously, the
skeletal model obtained from Kinect’s depth map would not be useful to imple-
ment an ‘‘air-piano’’. However, by processing the depth and RGB images simul-
taneously, it would be possible to find the position of each finger to implement
such application. Of course, the computational cost would be larger than in the
previous examples. Also, in this case a visual reference in the real world would be
necessary since users cannot be expected to correctly hit the keys of an invisible
piano accurately.

3.3.3 Advanced Pitch-Shifting/Correction

An evolution of the previously presented pitch-shifting application could combine
the idea of pitch shifting by motion with an onset detector. In particular, this
application could follow the next scheme: the user records a performance of a
musical piece. Then, this sample is processed and segmented into the notes
actually played. Afterwards, the application shows the timeline of the song divided
by the note-segments detected (for example, using a pentagram, as shown in
Fig. 14). Then, the user could modify the pitch of each identified note-segment

Fig. 13 An alternative interaction paradigm for a virtual director

Human–Computer Interaction and Music 385



along the pentagram, for example using the left hand to select the notes to be pitch-
shifted, and the right hand to raise or lower the pitch. Again, this can be a useful
application for pedagogical purposes, especially in teaching the basics of music
theory.

3.3.4 Real-Time Motion-Based Composition

Motion-based interfaces can provide the means for real-time expressive rendering
of musical pieces, lowering the barriers of music theory for a naïve user. This can
be easily achieved, for example by allowing the user to create music by selecting
notes and placing them on a score (in this case, the motion interface becomes
mainly an additional compelling element). Also, the previously commented pitch-
shifting application can be considered a real-time composition-by-motion scheme.
A more interesting system could be based on combining motion detection with an
automatic score generator.

4 Conclusions

In this chapter, a brief overview of the capabilities of advanced human computer
interaction for the design and development of musical interactive applications has
been drawn. More specifically this chapter has focused on the combination of
human motion with music signal processing techniques in order to achieve an
assortment of effects or applications. After summarizing the main advantages and

Fig. 14 Portrayal of an advanced pitch-shifter
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disadvantages of the different technological alternatives for the implementation of
human motion-tracking systems, we have turned our attention to the Microsoft
Kinect 3D sensor given its availability, low-cost, non-intrusiveness and high
performance features.

We have shown details of two example applications that make use of a 3D
sensor depth camera to implement a real-time motion-based application for pitch
shifting and a drum simulator. However, as evidenced by the bibliography and the
alternative examples shown in the previous sections, the interaction possibilities
are nearly endless.

In view of the work developed, the main advantage of the applications created
or described is their high level of accessibility, since no prior musical knowledge is
required for the user to actually interact with the sounds played. As previously
stated, this makes for an innovative and explorative way to better understand the
concepts behind music, sound, or sound effects. Taking into account this obser-
vation, it is easy to get to the conclusion that this kind of applications can be
potentially useful for music learning purposes, diminishing some of the hurdles
concerning music theory by means of a more ‘‘tangible’’ visualization of theo-
retical concepts.

Furthermore it is expected that this type of added interactivity will also make
the experience more compelling and fulfilling. This should encourage the appli-
cation of advanced technologies and devices for music related tasks, including
entertainment and learning.
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