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1 Introduction

In the present chapter, we will reexamine the so-called Fourier/time transformation
(FTT) that has been proposed by Ernst Terhardt (1985, 1992, 1998) as a tool for
analysis and representation of audio signals such as speech and music. The main
reason for suggesting such an approach was that Terhardt (1985) saw a different
interpretation of the Fourier transform (as is widely used for spectrum analysis), on
the one hand, and a need to develop a transform suited to perform time/frequency
analysis comparable to that of the mammalian auditory system, on the other.
Hence the aim of the FTT is to provide a time-to-frequency transformation
equivalent to parameters in auditory processing as well as a ‘‘natural’’ approach to
signal analysis (cf. Terhardt 1985, 1998, 78–97). In order to assess the possibilities
the FTT approach might offer in regard to signal analysis, some other methods
relevant for musical acoustics and psychoacoustics such as the short-time Fourier
transform (STFT), autoregressive spectral modeling (AR) and Wavelet transform
(WT) are presented in a brief survey, and are illustrated by some examples. Dif-
ferent approaches to time/frequency analysis are also viewed as to their power with
respect to the so-called uncertainty product Dt Df.

Over the past decades, there has been a broad range of research directed at
understanding the functional anatomy and physiology of the auditory system (for
summaries of research, see Oertel et al. 2002, Pickles 2008, Winer and Schreiner
2011). Since about 1980, computational models of the auditory system have been
issued that were progressively taking neurophysiological data and results from
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behavioral studies into account (for an overview, see de Cheveigné 2005, Meddis
et al. 2010). By including elements representing hair cell transduction and neural
activity patterns in the auditory nerve (AN) as well as in some of the relays along
the subsequent neural pathway, complexity of the models as well as realism in
performance has been increased by far (see, e.g., Meddis and O’Mard 1997, 2006).
While most current models are based in the time domain, there are some operating
in the frequency domain. Traditionally, analysis in the time domain has been
concerned with signal periodicity detection and estimation of ‘pitch’ from the
repetition frequency of the envelope (f0). Analysis in the frequency domain typ-
ically has been done with the spectrum comprising a fundamental frequency f1 and
higher harmonics n 9 f1 in view. For both approaches that have been pursued in
auditory research for more than 150 years now (see de Boer 1976; de Cheveigné
2005), there are reasons at hand referring to the structure of audio signals (that can
be represented both in the time and in the frequency domain) as well as with the
functional anatomy and physiology of the mammalian auditory system. Consid-
ering only the first stages of auditory processing, and allowing for a rather sche-
matic view, there is (1) transfer of waves from the environment through the ear
channel to the tympanon. Then there is (2) a mechanical transmission line from the
tympanon by means of the ossicles to the oval window where the pattern of
vibration is transferred into (3) the cochlear fluid system in which a travelling
wave with a relatively steep maximum for individual frequencies corresponding to
sine tones is observed. Hence it has been concluded that a complex harmonic wave
is decomposed in the fluid channel such that several maxima representing single
partials or groups thereof will be observed. The cochlear partition with (4) the
basilar membrane (BM) as well as structures combined with the BM are regarded
as a filter bank of k channels capable to decompose a complex signal into partials
or groups thereof. (5) Inner hair cells (IHC) effect mechanoelectrical transduction
so that the output of each of the BM channels is coded into a train of neural spikes
that are (6) represented in fibers of the AN. Modeling transmission of audio signals
from the pinna to the stapes (a mechanical system with impedances and admit-
tances) and within the fluid ducts of the cochlea (a hydromechanical system that
incorporates nonlinearities; see Nobili and Mammano 1999) as well as the
transduction mechanism on the IHC and AN level is quite complex since every
element in the transmission chain as well as their interaction must be adequately
covered, that is, as close as possible to empirical data from (mostly, animal)
experiments and behavioral studies (cf. Meddis and Lopez-Poveda 2010).

In regard to such a complex transmission line that may incorporate also relays of
the auditory pathway such as the cochlear nucleus (CN) or models for processing at
even higher levels (the superior olivary complex and the inferior colliculus),
restricting an analysis to peripheral filtering processes as effected in the cochlea
(as is done in this chapter) may seem odd. The point, however, is that initial analysis
on the BM and IHC level seems decisive since it can be shown that distinctive
features of complex sounds such as salient or ambiguous pitch structure, harmonic
or inharmonic spectrum (leading to percepts classified as consonant or dissonant),
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and also phenomena such as combination and difference tones are derived from
peripheral processing (for examples, see Schneider and Frieler 2009). In the case of
the peripheral processing lacking sufficient precision (consequent to, for example,
inappropriate design of BM filters), feature extraction at this stage of processing
and also on higher levels of the auditory pathway can be significantly hampered.

2 Uncertainty Relation and Time/Frequency Resolution

The uncertainty relation known from quantum mechanics states that a particle can
be defined exactly either as to its impulse p or to its place x. Since exact definition
of the impulse precludes exact definition of the space (in regard to wavelength), a
situation where both have to be taken into account leads to the product of place and
impulse such that Dx Dp C �h/2 (�h = h/2p with h = Planck’s constant). This basic
equation became known as the uncertainty relation and has been adapted, with
necessary modifications, into various fields of science such as communication
theory and acoustics (Gabor 1946). According to Gabor (1946), for signals a limit
for the product of time resolution and frequency resolution exists like

Df Dt ¼ 1=2 ð1Þ

This minimum is restricted to very few ‘ideal cases’ (see below) so that for real
signals such as sound of a certain duration and bandwidth values above 0.5 will
apply. In a general formulation, the uncertainty relation for acoustic phenomena
such as impulses (cf. Meyer and Guicking 1974, 92ff.) can be given as

DtDf � 1 ð2Þ

As can be demonstrated by calculation, the lower limit of Dt Df = 1 can be
achieved for a Gaussian impulse while for almost every other pulse type Dt Df [ 1
applies.

Taking two extremes, a Dirac-d (with a duration approaching zero and an
impulse height approaching infinity) and a sine wave of an arbitrary frequency fi
lasting from -?\ t \?, the impulse is defined exactly as to time t (ms), and the
sine wave as to frequency f (Hz), in a two-dimensional time–frequency space.
‘‘Real-world’’ signals such as produced by musical instruments including the
human voice are neither as short in duration as a Dirac-d, nor infinite in duration as
the undamped sine wave repeating itself at the same frequency. Of course, in
regard to spectral bandwidth, the Dirac impulse and the sine tone of a given
frequency also represent two extremes. In music as well as in other audio signals
such as human speech or birdsong, the situation typically is that a number of
complex sounds each comprising n harmonic or inharmonic partials occur at a
certain time, and have disappeared due to damping forces after a duration of, in
most cases, a few hundred milliseconds or perhaps several seconds. Hence we are
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dealing with sequences of complex sounds such as melodies, or with several such
sequences played or sung more or less in parallel (in regard to tracks of funda-
mental frequencies) as well as more or less synchronous (as regards onsets of
tones/notes) as in homophonic and polyphonic music.

In this respect, conventional western staff notation constitutes an acceptable
approximation to a two-dimensional time/frequency representation with the ordi-
nate y giving frequency on a log scale, and the abscissa x time on a linear scale (cf.
Rossing 1982, 134–135). One can therefore substitute staff notation with semi-
logarithmic graph paper to yield a similar (but more precise) notation for mono-
phonic or polyphonic music (for an example of a Bach chorale with four voices,
see Schneider 2001). It has to be noted, in this context, that western staff notation
in regard to ‘pitch’ information represents the fundamental frequency f1 (as is
obvious from definitions such as standard pitch A4 = 440 Hz or ‘‘middle c’’
[C4] = 261.6 Hz in equal temperament). Whether the tone notated on staff as C4 is
a pure (sine) tone or a complex tone cannot be gained from Western staff notation,
which does not include spectral information. However, it is implied from
A4 = 440 Hz that any complex tone played to render this note audible should
comprise a fundamental frequency f1 at 440 Hz (though, at least in perception, a
‘pitch’ corresponding to 440 Hz could be realized also with an envelope repetition
frequency f0 = 440 Hz while the fundamental of the spectrum is weak or even
missing).

Of course, one could further substitute staff notation with a melogram or
spectrogram (sonogram) as a two-dimensional representation of sound and music
in a time/frequency space. We will do this with a musical example offered recently
by Florian Messner (2011) who, together with another singer, recorded a phrase
noted down in staff notation by Franchino Gafori (Franchinus Gaffurius,
1451–1521), in his Practica musicae (Milan 1496). Gafori (Lib. III, cap. 14: de
falso contrapuncto) gave us this piece of two-part music then still in practice in the
Lombardic in vigils and in the mass for the dead because he thought it defied all
rules of counterpoint (…ab omni modulationis ratione seiunctus est). What in fact
singers were performing was vocal music where two voices go in parallel with
dissonant intervals (seconds, fourths) between them. Singing styles as well as
instrumental music organized as a diaphonia with two voices forming narrow
intervals were or even still are in use in the Balkans (notably in areas of Bosnia and
Herzegowina, Croatia, Albania, Bulgaria). Since two notes sung in parallel at the
interval of a minor or a major second will have fundamental frequencies so close
as to fall into one ‘critical band’ (CB), they cannot be separated by the auditory
filter bank, and thus a sensation of roughness from the interaction of fundamental
frequencies as well as from other partials in their respective CBs will result. In
Bulgarian diaphonic singing, one finds two (female) voices approaching each other
as close as ca. 45–80 cents (cf. Schneider et al. 2009), that is, from about a quarter
tone to a chromatic semitone.

For the Lombardic contrapunctus falsus as performed by two male singers, the
spectrogram shown in Fig. 1 results.
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Though the spectrogram has been calculated in the frequency domain with a
rather high resolution as to time and frequency,1 the trajectories of the fundamental
frequencies for the two voices will be difficult to recognize. Also kind of a me-
logram representing the pitches (calculated in the time domain with a special
autocorrelation algorithm, Boersma 1993) will give only some rough idea as to the
movement of the voices (see Fig. 2).

Fig. 1 Lombardic diaphony, two male singers, spectrogram 0–2 kHz

Fig. 2 Pitch (f0) tracking for lombardic diaphonia, autocorrelation method

1 Settings for the analysis performed with the Praat software (Boersma and Weenink 2011) were
a time window of 30 ms with a Gaussian weighting, a time step of 2 ms from one frame to the
next, an analysis bandwidth of 2 kHz and a frequency step of 2 Hz. The sound sample of 11.17 s
was processed in 5253 (overlapping) frames.
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It is possible to find the fundamental frequencies for the two male voices even
for narrow intervals with a standard frequency analysis based on FFT, provided the
window of analysis is long enough to ensure that relevant components can be
separated.

Applying a Discrete Fourier Transform (DFT, cf. DeFatta et al. 1988, 238ff.) to
a digital signal x(n) with a period of T, the frequency resolution Df depends on the
sampling rate Fs and the transform length (often also called ‘frame’ or ‘window’)
of size N. The discrete frequencies fk for a spectrum X(k) of the signal can be
calculated as

fk ¼ k ðFs=NÞ where k ¼ 0; 1; 2; 3; . . .;N � 1 is the frequency index: ð3Þ

The frequency resolution hence depends on the ratio Fs/N and can also be
expressed as

Df ¼ 1=T ¼ Fs=N ð4Þ

It is obvious from Eq. (3) that basic relations defined for analogue band pass
filters hold likewise in the digital domain. For a narrow-band filter (cf. Küpfmüller
1968, 71f.), the response time s is defined as

s ¼ 2p=Dx ¼ 1=Df for x ¼ 2pfð Þ ð5Þ

Hence the response time and bandwidth of the filter are in reciprocal relation.
For any frequency resolution Df designed for the filter, a corresponding response
time s can be calculated; since s in this respect defines Dt of the filter (taken as an
ideal, non-dispersive band pass; cf. Meyer and Guicking 1974, 92ff., 346ff.), the
product Df Dt C 1 applies equivalent to Eq. (1).2 The uncertainty relation that, as a
general principle, needs to be adopted for specific areas, underlies also digital
sampling and frequency analysis (Eqs. 2, 3) where a signal x(n) of period T sam-
pled at Fs can be determined in regard to its spectrum X(k) the better the longer the
transform size N is chosen. This, however means that good frequency resolution
Dt can be achieved only at the cost of rather poor time resolution Dt.

With respect to our example, the Lombardic diaphonia, the sample rate of 44100
per second will require a window size or transform length of at least 212 = 4096 to
ensure a frequency resolution Df * 10.77 Hz. As can be easily checked, the exact
value for Df is 10.7666 Hz; Dt is determined by the transform of length N = 4096
samples = 92.8798 ms. If we leave out windowing and other effects, the product of
time and frequency achieved in FFT-based analysis indeed would be unity.3 For the
analysis of the sound example, FFT windows of 212, 213 and 214 samples were
employed together with a spectral peak estimation algorithm. Frequency readings
were confined to full frequency values (e.g., 195, 222 Hz) averaged over the

2 A formal proof can be given on the basis of the Cauchy-Bunjakowski-Schwarz inequality (cf.
Meyer and Guicking 1974, 95, 108; Papoulis 1962, 63).
3 Applying no specific windowing function means a rectangular window is chosen for which the
so-called Equivalent Noise Bandwidth (ENBW [Bins], see DeFatta et al. 1988, 262ff.) is 1.0.
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window of length N. The results of the time/frequency analysis have been tabled
and then plotted as shown in Fig. 3. For reasons of readability, a linear frequency
scale (ordinate) was chosen. The movements up and down (melodic contour) as
well as musical intervals formed between the two voices by their fundamental
frequencies over time are clearly visible. However, the relatively poor time reso-
lution of the analysis is also quite obvious since the ‘pitches’ sung (represented by
their respective fundamental frequencies f1) are indicated according to the trans-
form size that has been employed. For example, at Fs = 44100 samples, a window
of 8192 samples means a time interval of 185.76 ms for which a spectrum is
calculated that contains information as to the ‘average pitch’ that, in our example,
was realized by two singers within this span of time. In reality, there can be marked
shifts of fundamental frequency within one frame or window of length N. In fact,
the intonation practiced by the two singers in recording this piece of music shows
far more subtle fluctuations than shown in Figs. 2 and 3 as became obvious in a
more detailed analysis carried out with high resolution tools (Wigner transform and
FFT combined with LPC pitch tracking and very small hop ratios).

What is evident from Fig. 3 is that the two singers didn’t start in unison (what the
notation provided by Gafurius would have demanded) but at an interval of about a
semi-tone (193:180 Hz * 122 Cents). Also, one can see that at the end of the
phrase (from 7.500 to 10.700 on the time scale) a long dissonant interval, namely a
major second based on the notes G3 and A3 occurs. While singing their respective
notes/tones forming the major second, the singers adjust their intonation several
times (the interval size varies from an initial 233/234 cents to ca. 201 and even
193 cents towards the end). There are some more details one can study with the data
condensed in Fig. 3 at hand. Figure 3 can be regarded as kind of a descriptive
‘notation’ derived ex post from an actual performance. This notation, by the way,
could be transformed back into a symbolic notation (e.g., western staff notation).

Words: Do – o – o – o – o – mi – ne,        mi – se – r e – r e  

Fig. 3 Lombardic diaphonia, 2 male voices, tracks of fundamental frequencies/time
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If one would need to improve temporal resolution of the analysis, there are
methods at hand in digital signal processing (DSP) which permit to achieve this
goal without sacrificing adequate frequency resolution. One of the most basic and at
the same time most efficient procedures is to overlap consecutive frames of analysis
(what has been done to some degree also for the present analysis). In case overlap is
almost complete and the so-called ‘hop ratio’ therefore very small, a sequence of
signal spectra will result following one another at a short delay of n samples while
the frequency resolution of each spectrum is determined by N. Such an analysis
technique is well suited for transients where the rate of change in the signal per time
often is significant. We will show an example for such an analysis below. The point
of interest with respect to choosing a certain method of analysis of course is this:
what is the degree of exactitude necessary in regard to (a) auditory perception and
relevant psychoacoustic parameters? Further, which technique should be used if (b)
the study of musical structure is an issue (e.g., when studying music not well
documented yet)? In addition, signal analysis could also be pursued in regard to (c)
acoustics of certain instruments where the aim often is to investigate processes of
vibration, sound production and sound radiation. The precision needed under (c) is
certainly much higher than that required for (a) or wanted for (b).

Taking Fig. 3 as an example, one may call the analysis plausible in regard to
musical structure since the melodic contours of the two voices and the intervals
formed between them can be followed with ease. What is less accessible to
intuitive understanding in this plot, though, is the exact size of the intervals
realized by the two voices. Of course, musicians and musicologists will have an
idea as to the fundamental frequencies of notes in a diatonic scale (at least in
regard to main intervals). However, a number of deviations in intonation that were
documented in the signal analysis are difficult to read from the tracks in Fig. 3. In
regard to auditory perception, the precision achieved in the plot in Fig. 3 probably
is above that ordinary listeners might achieve by using their ears only for analysis
(even trained musicians might find it difficult to separate the two voices which are
quite close in register, and in the recording at hand do not differ much as to their
respective timbre). In sum, one could argue that the analysis as shown in Fig. 3 is
sufficient to illustrate a musical structure as was put to sound by two male singers,
and it represents about the result trained listeners might obtain from an aural
analysis of the musical phrase as recorded on CD.

In regard to time and frequency resolution as are most relevant for signal anal-
ysis, it should be noted at this point that the ‘uncertainty relation’ (or ‘relation of
indeterminacy’) yields Df Dt C 1 for linear systems such as analogue band filters.4

For the auditory system, it has been shown in experiments based on biophysical
cochlea models (cf. Mammano and Nobili 1993, Nobili and Mammano 1999)

4 There are several definitions as to ‘linear‘. In electronics, linear refers to circuits (like LRC
filters) in which linear relations exist between physical magnitudes (induction, capacity, resistance,
gain) and where all voltages and current are proportional to the electromotive force driving the
system (cf. Küpfmüller 1968, 12f.). In signals and systems theory, linearity is defined by Bachmann
(1992, 9) like this: superposition at the input has the same effect as superposition at the output.
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that time/frequency analysis of the cochlea for the range of speech signals above
200 Hz already for a passive model comes close to Df Dt & 0.55 (Russo et al.
2011), that is, very close to the theoretical limit of 0.5 as defined by Heisenberg’s
‘uncertainty relation’ or the equivalent formulation Gabor (1946) has given for
time/frequency resolution as a relevant parameter for communication systems. The
general concept Gabor advanced was that for every type of resonator a charac-
teristic rectangle of about unit area can be defined in a time/frequency plane. For a
sharp resonator such as a narrowband filter Df Dt & 1 can be assumed. From
mathematical considerations as well as from properties of some elementary signals
(sine or cosine wave, Dirac-d) Gabor (1946, 435) concluded that the signal for
which Df Dt = 1/2 applies is the modulation product of a harmonic oscillation of
any frequency with a pulse of the form of a probability function. (For an ‘ideal’
bandpass filter he calculated the value 0.571). Gabor suggested that a time/
frequency space (understood as an information diagram with the axes time and
frequency) can be divided into rectangles which have sides defined by Df and Dt,
respectively. According to Gabor, each area Df Dt represents one elementary
quantum of information; he therefore proposed to call such an area a logon.

Remarkably, Gabor (1946, Part 2) included hearing into his study, where he is
making reference to several empirical studies on difference limens for pitch and
time (as had been published by Shower and Biddulph in 1931, and by Bürck et al.
1935; see below). Gabor argued that the ear (or, rather, the sense of hearing)
disposes of a threshold information area in regard to frequency (pitch) and time,
and of an adjustable time constant at least between 20 and 250 ms. Thus he
regards hearing a most relevant field where his concept of time/frequency areas or
logons is of practical significance.

It is obvious that basic ideas as formulated by Gabor for signal and systems
theory also underlie some other approaches, notably wavelet analysis (cf. Dutilleux
et al. 1988; Mertins 1999, Chap. 7; Evangelista 1997). In fact, it can be demon-
strated that, in regard to fundamental mathematical concepts, formal equivalence
exists for the Wigner transforms, Gabor coefficients, and Weyl-Heisenberg wave-
lets (see Dellomo and Jacyna 1991). Gabor’s concept and related concepts by
Eugene Wigner and J. Ville have led to a systematic treatment of linear and
non-linear time/frequency analysis of signals (see Cohen 1995; Flandrin 1999;
Mertins 1999). Application of the Wigner transform (WiT) to acoustical signals is
possible with some modification of the original formulation (cf. Yen 1987) and can
yield high-resolution time/frequency representations. For a complex-valued signal
s(t), WiT can be calculated according to

Wðt;xÞ ¼
Z1

�1

e�jxss t þ s
2

� �
� t � s

2

� �
ds ð6Þ

where * denotes the complex conjugate. For practical applications in DSP, the
integral comes down to a summation, and a window function is applied since the
WiT is a bi-linear transform that produces cross terms between spectral energy
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peaks resulting from a real-valued signal. The cross spectrum appears in the time
and in the frequency representation and contains sum and difference of the original
spectral components. The window function helps to cancel out cross terms. Also, a
good comprise solution suited to suppress spurious spectral components is a
combination of FFT and WiT for which parameters can be set so as to cancel out
most of the unwanted cross terms while improved resolution (as compared to FFT
alone) is maintained. As an example, an analysis of a phrase sung and played by
Joni Mitchell in a demo version of her song In France they kiss on mainstreet is
presented (Fig. 4). For the analysis, a combination of WiT and FFT as well as a
spectral peak picking algorithm (linear predictive coding, LPC, see Markel and
Grey 1976) was used.5 One can easily trace the fundamental frequency as well as
the second partial (i.e., the first harmonic an octave above the fundamental) of
Mitchell’s voice. In regard to intonation, some pitches within the phrase ‘‘roll-in,
roll-in, rock and roll-in’’ are more stable than others; Mitchell goes into a marked
vibrato on the last, long held syllable ‘‘in’’.

3 Time/Frequency Analysis: Some Applications
and Examples

There are quite many time/frequency analysis techniques that have been applied to
musical signals (for an overview see Kostek 2005). In retrospect, sonagrams
derived with analogue filtering were a valuable tool for sound analysis and also for

Fig. 4 Joni Mitchell In France they kiss on mainstreet, WiT+FFT+LPC

5 Analysis for 0–1 kHz was performed with the Sonogram software (Hiroshi Momose 1991);
settings were FFT+Wigner, time window 2048 pts, Hanning weighting, time increment 85
pts = 1.77 ms; LPC, sideband suppression 80 Hz, dynamic range of analysis and graph
representation -20 to -1 dB.
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musical transcription (see Schneider, this volume). The output of the analysis was
plotted on special paper as kind of a 2�-D graph indicating spectral energy for
quasi-continuous frequency bands over time (with relative amplitude per fre-
quency or small frequency band marked as grayscale or, rather, ‘‘blackscale’’).
With DSP tools, sonagrams (now often labelled sonograms or spectrograms, see
Fig. 1) were typically calculated by means of FFT algorithms operating in the time
or in the frequency domain (or in both). In regard to time and frequency resolution,
the common Fourier analysis effected by means of a FFT implementation (cf.
DeFatta et al. 1988) bears to the fundamental relation of Df Dt = 1 if we neglect
weighting functions and other possible restrictions. In practice, the result of the
analysis can be improved in many details by zero padding and interpolation of
data. In addition, overlap of frames (typically, blocks of samples of length 2n)
allows to account for changes a signal undergoes in time (e.g., frequency and
amplitude modulation). Further, peak-picking algorithms which detect peaks in
spectral envelopes and create tracks of such peaks from one spectrum to the next
are very useful tools in particular for the analysis of transient or modulating signals
(see Kostek 2005; Beauchamp 2007).

For a demonstration of alternative techniques of analysis, sounds composed of
two sounds produced from quite different instruments, namely a pipe organ and a
carillon bell have been processed with several tools. The two sounds employed in
analysis consist (1) of an organ tone followed by a bell, and (2) a bell followed by
the organ. Two organ tones (C2, C3) have been played with a Quintadena 160 stop of
a historic organ.6 The bell is part of the historic carillon of Bruges in Flanders.7 For
the fundamental frequencies and the prominent partials of the organ sounds, mind
that the Quintadena stop is covered (Gedackt), and that a pipe length of 160 means
each tone played sounds one octave below the actual note name. Due to historic
tuning (before a ‘standard pitch’ had been established), the fundamental of the C2

played with the Quintadena 160 is at *36 Hz, and C3 is at *72 Hz, respectively.
The sound where the pipe organ starts at C2 develops slowly in amplitude

(Fig. 4) because few harmonic partials are actually excited in the covered pipe
where excitation of modes and built-up of standing waves takes about 200 ms
before the process is complete. Of the partials, the fundamental at 36 Hz is strongest
in amplitude. An interval of 333 ms was chosen from the (measurable, barely
audible!) onset of the pipe sound for the point where the bell sound starts (Fig. 5).

The bell sound, because of the excitation of the instrument by an impulse,
builds up very fast with a considerable number of modes some of which are in a
harmonic and others are in an inharmonic frequency ratio to the fundamental. The
first second of sound (organ plus bell), if subjected to a standard Fourier spectral
analysis, can be represented in a 3D-plot as in Fig. 6 which shows 20 spectra

6 Historic organ of St. Bartholomäus, Mittelnkirchen, Altes Land, build by Arp Schnitger, Jacob
Albrecht and Johann Matthias Schreiber 1688–1753. The Quintadena 160 pipe rank is in the
Hauptwerk of the organ.
7 Built by Joris du Mery 1742–1748.
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Fig. 5 Oscillogram of organ (Quintadena 160, Pipe C2) plus bell sound

Fig. 6 3D-spectrogram of a complex sound (organ plus bell), 20 spectra
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calculated with parameter settings for appropriate time and frequency resolution.8

For readability, the frequency range displayed is 0–2 kHz though the bell sound
contains spectral energy up to about 5 kHz. The 3D-plot, which covers about one
second of sound, seems sufficient to study the evolution of two complex sounds
that do have but little spectral overlap since the three most significant partials nos.
1, 3 and 5 of the organ sound have average frequencies of a 36, 112 and 181 Hz,
respectively while the bell has its lowest partial (the so-called hum note) at about
208 Hz. From the 3D-plot, one can see that the organ sound except for the fun-
damental and partials nos. 3 and 5 (of which no. 3 has a long transient and comes
into play not before spectrum no. 6) is quite noisy (air is streaming through the
pipe before standing waves for more modes of vibration are established). Also, one
can see that, with spectrum no. 7, the bell sound sets in, which is percussive and
therefore has a fast buildup of modes of vibration and of corresponding spectral
energy (the display is band-limited at 2 kHz for reasons of readability). The bell
sound has a quite weak fundamental (the so-called hum, marked ‘a’ in the plot) at
ca. 208 Hz yet a very regular spectrum typical of a minor third bell; in this sound,
major components representing the prime, tierce, quint, and nominal (marked b, c,
d, e in the plot) are found at ca. 411, 493, 627 and 829 Hz, respectively. It is
evident that the bell sound carries significant energy from 400 Hz to the upper
limit of the range on display, and that the ‘watershed’ that divides the organ sound
and the bell sound in the spectrum is at about 200 Hz.

Given the two sounds have practically no spectral overlap they should be
perceived as two separate objects (or as falling into two ‘streams’ in regard to
auditory scene analysis, cf. Bregman 1990) as they excite different areas of the BM
filter bank. This might support stream segregation as used for object identification
along the auditory pathway. Moreover, the two sounds superimposed into one have
different onsets in time as well as different attack features in regard to their wave
shape and envelope. If processed by a filter bank that measures excitation of the
BM per Bark (excitation per Bark [phon]; see Zwicker and Fastl 1999, Chap. 6),
the analysis done with the Praat software (version 5323; Boersma and Weenink
2011) yields the following cochleagram (Fig. 7):

Since we know already from the FFT analysis presented in Fig. 6 that the organ
sound has its energy concentrated at low frequencies, we find this distinctive
feature also in the cochleagram where excitation at the onset is restricted to Bark
bands 1–5. By contrast, the bell sound with many spectral components in the
frequency band from about 400 Hz to 4.5 kHz mostly engages Bark bands 4–18.
From its onset for an interval of ca. 150 ms the bell sound is so strong in energy
that it masks the soft organ sound which, however, resurfaces later in the
cochleagram (after time point 0.5 s) and becomes audible as such because many of
the bell’s higher partials have a fast decay so that the envelope of the bell sound

8 FFT: 8192, Hanning, Hop ratio 0.25, zero pad factor 2.0. Analysis performed with Spectro 3.01
(Perry Cook, Gary Scavone).
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shows a clear exponential decay (intensity [SPL dB] of the bell sound decays by
ca. 8 dB in the first 500 ms, and by ca. 14 dB within a second from onset).

The purpose of presenting an analysis of the same sound performed with two
different, if related tools is to underpin the usefulness of complementary methods
where information obtained with one tool can help in interpreting output data
generated with the other. In this way, one can often expand analyses by going into
more details; in addition, applying different tools to the analysis of the same sound
samples can help to minimize the risk of artifacts. To this end, two methods of
analysis applied to another sound example will be evaluated in brief. We will
analyze one sound played again with the Quintadena 160 stop with two methods
suited to achieve high resolution in time and frequency. One is autoregressive
modeling (AR), the other is a complex-valued filter bank with the option of cal-
culating the so-called instantaneous frequency for any sample point.

AR (see Marple 1987, Kostek 2005) is a family of methods developed for
calculating spectral estimates for short or even very short segments of signals x(n)
representing, for example, sound that may be transient or modulating in frequency
and amplitude. For such sound segments usual Fourier techniques which are
directed at frequency values for more or less steady-state sound signals may yield
unclear results or even fail. In regard to DSP implementation suited to signal
analysis, the AR approach rests on an all-pole filter model since the aim is to find
such frequency bands in a signal where energy exists (see Marple 1987, Chap. 8).
The transfer function of an AR model system (LTI = linear, time-invariant; cf.
Bachmann 1992, Chap. 13) implemented as a recursive IIR filter can be given as

Hðf Þ ¼ 1

1þ
Pk
k¼1

ak exp½�j2pfkT �
ð7Þ

Fig. 7 Cochleagram of a complex sound containing organ and bell sound
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The issue that makes AR techniques difficult is that one must choose a certain
model as well as the order of the model (i.e., the number of poles in the complex
z-plane). In practice, one must have some knowledge about properties of the signal
to be analyzed in beforehand, or otherwise check various models and prediction
order settings to find a good solution. ‘Good’ in this respect means the signal
should neither be underanalyzed (for this will lead to missing part of the relevant
spectral information) nor overanalyzed (which will result in spurious peaks in the
spectra that do not represent energy at frequencies actually contained in the
signal). Experimenting with various models (such as Burg, Autocorrelation,
Covariance, Modified Covariance [ModCov]; see Marple 1987) and block lengths
in processing sounds recorded from bells and harpsichords, Keiler et al. (2003)
found that a stable analysis valid with respect to a mathematically defined signal
which includes both FM and AM could be achieved best with the ModCov model
(which did yield more precise and valid results than the Burg model at identical
prediction orders and block sizes); a condition that must be met for stable AR
analyses with ModCov is that the prediction order does not exceed a limit of 2/3 of
the block length of samples used for analysis. Accordingly, AR9 applied to the
analysis of a transient organ sound produced by the pipe C4 (in the Helmholtz
system, this is c’) of the Quintadena 160 stop uses ModCov on a block of
N = 355 samples with a prediction order of p = 192. For the analysis, a sequence
of blocks was processed to yield data for one second of sound sampled at 16 bit/
48 kHz. One should note that 355 samples at 48 kHz sampling mean *7.4 ms of
the sound signal. The organ sound put to AR analysis is peculiar in that harmonic
no. 7 audibly sets in first (what is a rather rare case for an organ pipe). The issue to
be checked with AR analysis was (a) whether the auditory sensation is correct, and
if so, (b) what the exact onset time as well as (c) the estimated frequency position
for the partials might be as they appear in the sound one after another. The result of
the AR analysis is shown in Fig. 8:

One can see that the fundamental is at ca. 143 Hz, and that only odd harmonics
(1, 3, 5, 7, 9) are present with noticeable energy (as it should in a covered
Quintadena pipe). Partial no. 7 indeed sets in first and builds up fast to a stable
vibration (with a corresponding strong line in the AR spectrum marking its fre-
quency at ca. 1015 Hz).10 However, after ca. 250 ms, this mode of vibration starts
to modulate (initially, almost in a periodic fashion) and then disintegrates.
Conversely, the fundamental mode undergoes a transient phase of about 100 ms

9 The code used for analysis was programmed in MatLab by Can Karadogan and Florian Keiler
while working in the Department of Signal Processing and Communications of the Helmut-
Schmidt-Universität Hamburg. The AR tool was developed to be used in a joint project directed
at the study of transients in the sound of musical instruments (cf. Keiler et al. 2003).
10 Fourier transforms of the steady-state part of the sound show that partial frequencies for
higher harmonic partials are not exactly at integer ratios. Moreover, frequencies for partials
including the fundamental fluctuate over time as can be seen from increasing values for variance
of frequencies in longer FFT transforms (e.g., 65536). However, ACF analysis clearly gives a
single ‘pitch’ for this pipe tone corresponding to 143 Hz.
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and then reaches a fairly stable regime of vibration (the frequency in the spectrum
from then on shifts only slightly over time). Partial no. 3 is very unstable for about
200 ms and only after 300 ms begins to reach the harmonic frequency at ca.
431 Hz. Partial no. 5 sets in with a swing around the expected harmonic frequency
of 715 Hz and after 150 ms disintegrates (not to recover within the time window
of 520 ms under review). Partial no. 9 sets in weakly in a frequency range that is
above the expected harmonic frequency range; after ca. 200 ms, this partial gets
somewhat more stable for about 100 ms to undergo heavy modulation thereafter.
The AR analysis indicates that partials 1, 3, 5, 7 set in almost at the same time,
however, partial no. 7 indeed becomes audible first so prominently because it is the
only partial for which a stable vibration and a corresponding frequency exist for at
least 150 ms from onset.

Since reliability and validity of AR analyses are often difficult to assess (this
holds true in particular for unknown types of signals where one must make
assumptions as to the structure of the signal), it is always wise to check the results
with another method. This has been done with a high-resolution filter bank making
use of a complex-valued, quasi-continuous wavelet transform that offers calcula-
tion of instantaneous frequencies (Solbach et al. 1998). A complex-valued signal
has the advantage that the instantaneous frequency can be determined for very

Fig. 8 Quintadena 160, pipe/
tone C4, AR-Analysis
(ModCov) 0–1.5 kHz
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short segments (or even single sample points).11 For the present analysis covering
four octaves each of which was separated further into four bands in order to
simulate the bandwidth of the auditory filter, a gammatone filter was used as
mother wavelet. The gammatone filter is considered a good approximation to the
human auditory filter (cf. Patterson et al. 1992) and has been implemented in many
auditory models (see, e.g., Meddis and O’Mard 1997). For the gammatone filter
defined in the time domain the impulse response is given as

gc tð Þ ¼ c n; kð Þ � e tð Þtn�1 � e�kt � cos 2pf0tð Þ; n � 1; k [ 0; ð8Þ

where n is the filter order, k [ 0 is the damping factor, f0 is the center frequency
of the filter, e(t) is the unit step function, and c(n, k) is a normalization constant.
For the present analysis, a 4th order IIR filter with a relative bandwidth of 0.05 is
used. The upper limit frequency of analysis was set to 1600 Hz. The results of the
analysis are displayed in Fig. 9. The frequency axis has logarithmic spacing (the
distance between frequencies printed on the y-axis is 400 cents; ticks on the x-axis
are at a distance of 100 ms):

Fig. 9 Quintadena 160, tone/pipe C4, wavelet gammatone filter

11 The usual approach (cf. Cohen 1995, 30ff., Flandrin 1999, 26ff.) is to calculate the so-called
analytic signal by means of a Hilbert transform (Flandrin rightly calls the analytic signal a
‘‘complexified’’ signal).

Fourier-Time-Transformation (FTT), Analysis of Sound and Auditory Perception 315



The analysis clearly shows partial no. 7 to appear as a stable spectral compo-
nent of definite pitch before the fundamental sets in weakly a hundred ms later
fluctuating somewhat in frequency. Even more delayed is partial no. 3 which is
300 ms behind partial no. 7 yet quite stable in frequency. The wavelet analysis has
been repeated with a Gaussian as mother wavelet for five octaves and twelve filter
bands per octave; this fine-grain analysis detected partial no. 5 in addition to
partials 1, 3 and 7. The two wavelet analyses are in good agreement with the AR
analysis though the latter is even more detailed in very short signal segments while
the wavelet analysis based on the gamma-tone filter might be closer to the actual
behaviour of the auditory periphery (see below).

4 ‘Perceptually Adequate’ Analysis and the Fourier-Time-
Transform (FTT)

In the following, some fundamentals of psychoacoustics will be considered and
compared to parameters found in DSP-based analysis and auditory modeling. The
latter aims at a realistic ‘emulation’ of the auditory system in regard to basic
functions and actual performance (cf. Meddis et al. 2010). Signal-analysis tools
such as WT and FTT are less complex than full-grown auditory models (e.g.
Meddis and Lopez-Poveda 2010), however, they can be viewed as representing the
initial stage of BM filtering and thus are important as auditory ‘preprocessors’
(cf. Solbach et al. 1998; Terhardt 1998) that generate output used further in pitch
and loudness perception as well as in auditory scene analysis. It should be un-
derpinned that effective neural processing of complex sound naturally depends on
the quality of (peripheral) BM filtering; the faster and the more precise this stage
operates, the better neural processing along the auditory pathway can be achieved.

4.1 Frequency and Time Resolution; Discrimination
and Recognition Tasks

The Fourier integral (see Bracewell 1978, Chap. 2; Meyer and Guicking 1974,
70ff) which is fundamental to Fourier analysis can be viewed as presenting a time
function x(t) in terms of frequency (or, rather, angular frequency x). The Fourier
integral considers frequency in an infinite interval (-? B T B ?) and thus, as
Gabor (1946, 431) has put it, sub specie aeternitatis. In musical signal analysis,
however, one has to work with sounds that change over time, and often abruptly
so. The answer to this situation was to consider applicability of Fourier theory to
signals of definite length as well as to signals that lack clear periodicity and which
are inharmonic in spectral composition. For practical reasons, techniques such as
STFT (see Mertins 1996, Chap. 4, 1999, Chap. 7) were developed. The basic
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concept for STFT is to multiply a sound signal x(t) by an analysis window g(t) and
then compute the Fourier transform. For the analysis of a time signal, typically
windows of length N = 2n, n = 8, 9,…, k are chosen. If the signal to be analyzed
is longer than N, the signal is processed frame by frame (with an overlap of 50 %
or more to ensure continuity). Hence the window ‘‘slides’’ along the time axis by
an amount defined by a shift parameter s. The result thus obtained can be displayed
in 2D or in (quasi) 3D-images such as Fig. 6 above. Though the STFT is regarded
a good analysis tool that has been widely applied in acoustics and in particular in
musical acoustics, it has a certain disadvantage in that conventional Fourier-
transform algorithms operate on fixed values for N, which defines both Df and
Dt in a two-dimensional time/frequency plane (with f [Hz] as ordinate and t [ms] as
the abscissa). Hence, time and frequency resolution are constant over the total
bandwidth of analysis. In terms of Gabor’s logons (see above), a uniform rectangle
as ‘‘analysis box’’ results for low as well as for high frequency bands. An analysis
window of constant length N = 2n samples applied to the full bandwidth of human
auditory perception (ca. 25 Hz–16 kHz) seems unfortunate because our auditory
system apparently needs a certain number of signal periods rather than a fixed time
interval for pitch analysis (see below). Since the period duration T (ms) varies with
frequency, the analysis window (either expressed in ms or in the number of
samples) should be longer for low frequencies as compared to middle and high
frequency bands.

In regard to temporal resolution relevant to hearing, a range of ‘time constants’
basic to temporal integration has been issued. It has been critically remarked that
‘‘time constants’’ estimated from different experimental tasks range over three
order of magnitude, from 250 to 200.000 ls (Eddins and Green 1995, 207). In fact,
there are different time constants relevant for different perceptual tasks as well as
in regard to triggering motor responses, etc. In view of acuity achieved in dis-
crimination tasks, minimum integration time in hearing appears to be 2–5 ms,
depending to some extent on types of stimuli and conditions (see, e.g. Bilsen and
Kievits 1989 who used so-called white flutter pulses). The data, which have been
obtained in gap detection as well as in other experiments, are uneven (cf. Moore
2008, Chap. 5). Among relevant factors, time-intensity trades have to be taken into
account (temporal integration depends on intensity or sound level; see Eddins and
Green 1995). If minimum integration time of ca. 2–5 ms is interpreted in terms of
response time of the auditory filter (as has been done), it appears that the response
time perhaps plays a small role at low frequencies (100 \ fgr \ 500 Hz) but not
for frequencies above 1 kHz.

Other ‘time constants’ refer to noticeable asynchronies in the onset of the same
tone played by two instruments (typical values seem to be 10 \ t \ 20 ms), to
‘‘smearing’’ of several discrete echoes that occur in a room within a certain time
span (t \ 50 ms) into a sensation of quasi-continuous reverberation, and to tem-
poral integration of energy in the sensation of loudness (most experimental data
suggest an interval of 100 \ t \ 200 ms). In regard to such ‘time constants’, one
of course has to distinguish between discrimination and identification tasks, not to
forget temporal organization of sound objects on a higher level such as grouping
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and chunking in music cognition (see Snyder 2000). Discrimination for example in
2fc-experiments simply calls for responding if a certain ‘event’ did happen or not
irrespective of what the informational ‘content’ of such an event may be. A very
short pulse or noise burst will be sensed as a ‘knack’ but is not accessible for
detailed auditory analysis. Even decisions subjects have to make whether a
stimulus presented in a pair of sine tones is ‘higher’ or ‘shorter’ than the other (a
design typical of experiments directed to difference limens for Dt and Df relative to
frequency bands) might just require a modicum of information on the side of the
subject as to the nature of the stimuli. In contrast, identification of a stimulus in
regard to one or several properties needs considerably more time since sound input
that has been transformed into neural spike trains must be processed along several
stages of the auditory pathway before, for example, a certain ‘pitch’ can be
assigned to a stimulus. If one accepts periodicity detection and temporal pro-
cessing for pitch as the predominant principle (notwithstanding significant evi-
dence for rate-place representations and tonotopicity), the periods of time signals
that might occur in musical sound are roughly from 33 ms (30 Hz) to 0.067 ms
(15 kHz). Therefore, a maximum lag of 33 ms has been implemented in an ACF
model suited to account for very low frequencies down to 30 Hz (Pressnitzer et al.
2001). In addition, time needed for arbitrary pitch estimates has been suggested as
being 66 ms, with possibly less time down to about 40 ms or even 20 ms needed
for such signals where subjects have a certain knowledge as to their likely pitch
range in beforehand (cf. de Cheveigné 2005, 205). If 66 ms is a correct ‘time
constant’, for most of musical relevant frequencies it would cover several or even
many periods. In some early experiments, the time needed for developing a clear
sensation of pitch for a sine tone varied from about 60–100 ms for very low
frequencies (50 Hz) and ca. 30 ms for 300 Hz to about 15 ms for a frequency
range of ca. 0.5–5 kHz (Bürck et al. 1935). From the empirical data as well as
from considerations concerning the physics of the signal (that was switched on and
off in an electronic circuit) and conditions of measurement, Bürck and colleagues
calculated curves of tone recognition times as a function of frequency where about
80–100 ms would be required for a sine tone of 100 Hz but only ca. 5–10 ms for a
sine tone in the range 1–5 kHz. Taking these approximate figures, one may
hypothesize that pitch estimates for sine tones require about 5–8 periods of the
time signal. The estimate figures mentioned above (to which several more from
various experiments can be added) can be taken as tentative time constants in
computational models of auditory perception.

In regard to frequency discrimination in hearing, for frequencies of two pure
(sine or cosine) tones presented one after another, and with constant sound pres-
sure level (SPL), the difference limen (DL) or just noticeable difference (jnd) has
been estimated to be of the order of 1/30 of the Critical Bandwidth (CB). The
concept of CB (see Moore 1995; Zwicker and Fastl 1999, Chap. 6) refers to BM
excitation and filtering. From empirical data, a cochlear tonotopic frequency map
has been proposed (cf. Greenberg 1990) where one CB corresponds to ca.
0.89 mm of BM. Hence, 1/30 of this unit would have to be considered as the jnd in
regard to place theories of pitch and BM excitation patterns. However, one has to
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see that hearing is a dynamic process based on feedback regulation and fast
adaptation to stimulus conditions (otherwise, extremely sharp frequency discrim-
ination as observed in trained musicians and very short recognition times for pitch
and timbre of complex sounds would not be possible). Therefore, it seems only
natural to see that center frequencies, bandwidths and shape of auditory filters
(AF) vary with BM excitation level and bandwidth of input signals. Further, it is
obvious that CB models such as have been proposed for loudness summation and
place theories of pitch should be taken as a basic concept that must be validated
with empirical data since a number of assumptions pertaining to CB models do not
hold in a strict sense (cf. Moore 1995). Empirical data on CBs indicate that the
Bark scale comprising 24 or 25 (in theory: non-overlapping) filter bands is not
quite appropriate in particular for low frequencies (fc \ 500 Hz) since the band-
width of the AF increases significantly with decreasing frequency. This effect is
most prominent for fc \ 200 Hz (cf. Jurado and Moore 2010; Schneider and
Tsatsishvili 2011). Compared to the Bark scale (cf. Zwicker and Fastl 1999), the
so-called ERB scale (ERB = Equivalent Rectangular Bandwidth) comprising
about 40 filter bands fits better to perceptual data though it does not fully account
for pronounced increase of bandwidth at low frequencies. Each ERB is calculated
by taking 4fc/p, where fc is the center frequency and p is a filter parameter that
determines the passband and the slope of the filter. In regard to modeling, the
‘‘effective bandwidth’’ for each AF along the BM depends on place and center
frequency (that apparently is not fixed yet variable within a certain range), on
sound level as well as on spectral energy distribution and spectral flux within audio
signals. Very roughly, one can approximate CBs by 1/3 octave band pass filters. In
reality, the ‘‘effective bandwidth’’ of AFs seems to vary from about one octave at
very low frequencies to close to 250 cent around 1–3 kHz.

4.2 Wavelets and FTT

Wavelet analysis is one of several methods that have been developed to account
for Gabor’s logon concept and to provide equally good time and frequency res-
olution over the bandwidth of auditory perception. Wavelet analysis basically can
be viewed as a Fourier approach where the window of analysis g(t) is shifted in
frequency by X0, that is, multiplied in the time domain by eiX0t. Similar to STFT, a
sliding process along the time axis is part of the analysis with an increment of s.
Wavelet analysis (cf. Dutilleux et al. 1988) further includes a part equivalent to the
‘window’ g(t), namely the analyzing wavelet h(t) = eiX

0
t g(t) that is dilated in

frequency by a parameter a so that

hða;sÞðtÞ ¼ 1ffiffiffi
a
p h

t � s
a

� �
: ð9Þ

The wavelet transform (WT) of a continuous time signal s(t) then is
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Whðs; aÞ ¼
1ffiffiffi
a
p
Z

h
t � s

a

� �
sðtÞdt ð10Þ

The wavelet transform is computed by convolving the signal with a time-
reversed and scaled wavelet (see Evangelista 1997). In regard to sound analysis,
WT can be considered as a kind of band pass filter where the center frequency and
the bandwidth of the filter can be varied by different values for the parameter a (cf.
Mertins 1999, Chap. 9). In this respect, WT effectively computes a constant-Q filter
analysis as has been employed in the gammatone filter analysis shown above
(Fig. 9) where WT was performed for a frequency band of 0–1.6 kHz divided into
four octaves each of which was subdivided into four bands of 250 cents to
approximate the bandwidth of the auditory filter (AF) with respect to CB concepts.

A concept similar to STFT as well as to WT in certain respects is the Fourier-
Time-Transform (FTT) as proposed by Terhardt 1985. In an article in which he
considered properties of several different Fourier transforms, Terhardt argued that
Fourier transforms are not restricted to periodic signals, and that the actual analysis
window must not be identical with a period (or several periods) of a time signal
p(x) to yield valid spectral representations (a criterion to check validity of course is
whether or not restoration of the time signal from the spectral data by an inverse
transform can be achieved). Without going into details (many of which relate to
linear systems theory rather than to ‘‘plain’’ spectral analysis), the argument put
forward by Terhardt is that, for causal systems and signals, analysis of a physical
signal such as sampled sound can be confined to time intervals from t = 0 to t so
that the FTT for one-sided signals is given by

Pðw; tÞ ¼
Z t

0

pðxÞe�wxdx; t [ 0 and w ¼ j 2pf ¼ jx ð11Þ

The spectrum P(w, t) for every instant t represents the time signal within a time
interval that is defined as -?\ x B t. Also, p(x) = 0 for x \ 0. For practical
applications, signal values that are far in the past are of little relevance as to the
current state of a system or signal12; therefore, the signal is multiplied by an
exponential weighting function exp(-a(t - x)) where a C 0 is a damping factor
that can have values of 0–1. Consequently, with the exponential weighting
included, Eq. (11) becomes

12 The same consideration was made in ‘‘running’’ autocorrelation algorithms, which typically
‘‘slide’’ along a time signal and include a weighting function to successively discard past sample
values so that ACF in fact is computed from an ‘‘effective time window’’ of N samples up to the
sample point t moving with time. As to the equivalence of ‘‘running’’ ACF and FTT, see Terhardt
1998, 94f.
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pðw; tÞ ¼
Z t

0

pðxÞe�aðt�xÞ e�wx dx; t [ 0 ð12Þ

FTT applied to one-sided signals yields two parts, one steady-state and one
transient (cf. Terhardt 1985, Eqs. 32 and 33)13; the transient part vanishes with
ongoing time; also, amplitude density distribution narrows with time passing, and
approaches a steady-state bandwidth of Dx = a (3 dB cutoff frequency). After
signal onset, the steady-state is reached at about t = 1/a (1/a is also the time
constant of the exponential weighting). The damping factor a can be employed to
control the steady-state bandwidth (that can be narrowed, however at the cost that
the time needed to attain the steady-state proportionally increases). For simple
cosine signals of sufficiently high frequency, the FTT magnitude spectrum
according to Terhardt (1985, 254) is largely similar to the output of a simple-
resonance filter for which the 3 dB bandwidth is B = a/p. Given that the boundary
between transient part and steady-state part can be taken as the ‘‘effective time
window’’ of the analysis defined by 1/a, the product of the effective time window
and the steady-state bandwidth would be as small as 1/p = 0.3183.

If this product would be viewed in terms of the uncertainty relation in regard to
signals and systems, it would clearly be far below Gabor’s theoretical limit of
Df Dt = 1/2. In this context, it might be noted that, for signals of given (rms)
duration and energy (set to a value of 1), the uncertainty product has been cal-
culated by Papoulis (1962, 62f., Eqs 4-39–4-46) as

Dt � Dx�
ffiffiffi
p
2

r
ð13Þ

where the equality holds for Gaussian signals (i.e., the product numerically yields
1.2533). The difference between products Df Dt C 1 (Eq. 2) postulated from
mathematical analysis and values much smaller than 1 calculated for FTT and
other filter models results from the 3 dB bandwidth parameter, which is common
to filter design and performance tests yet must not necessarily apply to auditory
perception. The bandwidth of the AF as determined in hearing experiments
involving subjects of different age (Patterson et al. 1982) can be roughly given as
11 % of the center frequency for young adults who have not yet suffered hearing
loss. For a fc of 0.5, 2 and 4 kHz (as were employed in the experiments of
Patterson et al. 1982), this means a relative filter bandwidth of ca. 191 cents
(corresponding to the musical interval of a major second). Alternatively, the
normalized width of the equivalent rectangular filter (roex[p, r]) has been given as
BWER/fc = 4/25 = 0.16 (Patterson et al. 1982, 1801).

In FTT analysis, parameter values for bandwidth B and damping factor a can be
set so as to simulate performance of the auditory periphery. To this end, the
bandwidth should be that of the CB (cf. Zwicker and Fastl 1999, Chap. 6) divided

13 A more detailed analytic formulation of the FTT is given by Mummert 1997.
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by 25, which would not be too far away from the jnd for pure tones14 Referring to
analytical expressions designed to approximate critical-band rate and critical
bandwidth (Zwicker and Terhardt 1980), Terhardt suggested that an ‘‘audio FTT’’
could be performed with the parameters set like

B ¼ a=p ¼ 1þ 3 1þ 1:4 f=kHzð Þ2
� �0:69

Hz ð14Þ

Assuming that there are 24 CBs (expressed as a Bark scale), the frequency
resolution for the FTT is 24 9 25 = 600 frequency samples per spectrum deemed
sufficient and necessary to model peripheral auditory analysis (cf. Terhardt 1985,
255). In regard to the effective window length (i.e., the analysis interval TA)
relative to frequency bands, Terhardt (1992, 378) has given these figures:

f/kHz 0.1 0.5 1 2 4 8
TA/ms 24 22 16 8 2.7 0.74

Numerically, for a sampling rate at 44.1 kHz, an effective window length of
24 ms would correspond to 1058 samples falling into this time interval. A cosine
signal of f = 0.1 kHz and a period of 10 ms would cover 441 samples per period
so that the analysis interval will have access to, on the average (as the analysis
window slides along the time signal), two periods of the signal. The ratio is much
better at higher signal frequencies and shorter periods where the analysis window
would hold (at best, if no truncation occurs) 16 periods at 1 kHz as well as at
2 kHz. The effective window length of the FTT has been calculated (Vormann and
Weber 1995, 1191) as

T xð Þ ¼ 2:988=a xð Þ ð15Þ

where a(x) is the frequency-dependent transformation parameter. Correspond-
ingly, the bandwidth is given as

B xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 1
pp

p
� a xð Þ ð16Þ

whereby an uncertainty product T 9 B & 0.61 has been calculated. This of course
would outperform a conventional Fourier transform analysis by far so that time/
frequency resolution close to the cochlear filter bank can be expected from the
FTT analysis (see below). In some of the relevant publications (Heldmann 1993;
Vormann 1995), values as to T and B as well as to their product differ somewhat;
parameter values as found in the literature for the 1st and 2nd order as well as
estimates for the 4th order are given in Table 1:

14 For example, one CB included in the table given by Zwicker and Terhardt (1980, p. 152),
ranges from 920 to 1080 Hz with fc = 1000 Hz and is 160 Hz wide; divided by 25, the frequency
step would be 160/25 = 6.4 Hz as compared to the jnd at 1000 Hz, which is ca. 3 Hz.
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In this table, a denotes the scaling factor a(x), and t denotes the time axis. For
practical reasons, parameter values may be rounded like

Order 1 2 4

Window function e�at t � e�at t3

6 � e�at

dT 1/a 3/a 5/a
B a/p 0.644 a/p 0.435 a/p
dT * B 1/p & 0.32 1.93/p & 0,61 2.17/p & 0,69

The bandwidth B for any order of analysis n can be calculated according to

B ¼ a

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1
n � 1

p
ð17Þ

The original FTT algorithm (see Terhardt 1985) has been improved later on in
regard to the weighting function (cf. Schlang and Mummert 1990, Terhardt 1998, 97)
where a form a t e-at has been proposed. Also, weighting of the form h(t) = t3e-at

has been introduced for a 4th order FTT (as h(t) in this case is equivalent to the
Laplace transform of a 4th order low-pass filter, see von Rücker 1997).

For comparison of conventional Fourier transform and FTT analysis, a number
of natural sounds were chosen; in addition some complex sounds based on FM and
AM processes were generated with Mathematica. In the following, the results for
the organ sound (Quintadena 160, pipe/note C2) on which a bell sound has been
superimposed (see Figs. 5–7) will be presented.

In the FTT algorithm applied to analysis, a 4th order weighting function had
been implemented. Since the effective time window for the standard FTT has been
given as 24 ms at 0.1 kHz, corresponding to 1058 samples at 44.1 kHz sampling
(see above), a comparison to an FFT of 1024 sample points seems a reasonable
choice. However, the FFT also employed a weighting function for which a
Blackman window was chosen.15

The analysis obtained with a FFT of 1024 and Blackman weighting is shown in
Fig. 10:

The same sound subjected to 4th order FTT analysis is displayed in Fig. 11:

Table 1 FTT parameters

Order 1 2 4

Window function e^ - ax x e^ - ax x3/6 e^ - ax
Resolution dT 1/a 2.988/a 4.990/a
Bandwidth (B) a/p 0.6436 a/p 0.4350 a/p
dT * B 1/p 1.923/p 2.171/p

15 The ENBW for the Blackman window is 1.73 bins in DFT and the 3.0 dB bandwidth is 1.68
bins.
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From a comparison of both analyses presented as 3D-plots (were the abscissa [x]
is in Bark[z], the ordinate [y] is in dB, and time (ms) is in the z-dimension) one can
see that time and frequency resolution for the FTT at low frequencies is consid-
erably better than with the 1024 point FFT subjected to Blackman weighting. Note
that with a FFT length of N = 1024 and sampling at 44.1 kHz, frequency resolution
(Eq. 3) nominally is ca. 43 Hz. As this is the constant bandwidth of the FFT

Fig. 11 Organ (Quintadena 160 C2) plus bell, 4th order FTT

Fig. 10 Organ (Quintadena 160 C2) plus bell, FFT 1,024 pts, Blackman
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analysis (a DFT can be viewed as equivalent to a filter bank), the signal is under a
fine-grain analysis at higher frequencies (Bark[z] 10–20) so that the FFT analysis
picks many small spectral components corresponding to higher modes of vibration
of the bell while the FTT analysis is more condensed since it relates to the concept
of CBs, and therefore integrates such components which are closely spaced in
frequency into broader ‘‘spectral ridges’’ (Fig. 11). A similar picture would be
obtained with a WT-based analysis. One can argue that auditory perception of
complex sounds basically is directed at picking spectral peaks that are present
during a reasonable time interval (relevant as ‘integration constant’ in regard to
hearing). In this respect, a limited number of clearly expressed ‘‘spectral ridges’’
may be more relevant to actual hearing as this must be performed in quasi-real time,
and consequently calls for some temporal as well as spectral integration
(as reflected in CBs and ‘integration constants’). Algorithms directed to finding
peaks in spectral envelopes are quite common as in LPC (see Fig. 4) or similar
source-filter analysis models (cf. Rodet and Schwarz 2007); if a sequence of frames
is processed so that spectral envelope peaks can be separated and extracted, the next
step is to connect such peaks from one frame to the next so that ‘tracks’ for
harmonic partials or inharmonic components result over time. Such tracks then can
be used for finding quasi-continuous pitch contours or for separation of ‘sound
objects’ in a computational auditory scene approach (cf. Kostek 2005).

Comparison of the two types of analysis (‘‘plain’’ Fourier, FTT) may indicate
an advantage on the side of the FTT as one would expect from uncertainty
products reported in the literature. However, the difference obtained in several
analyses (of which but one example is included in the present article) seems
gradual rather than principal. To optimize analysis, one often has to experiment
with parameter settings. In addition, it is always revealing to apply different
methods and models to the analysis of particular sound samples because in this
way one can try to extract as many distinctive features as is needed for a certain
problem, and at the same time the results obtained with one method can be tested
for validity and reliability by using a second or even a third tool.

As far as ‘perceptually adequate’ analysis is concerned, comparison of several
models including Gabor filtering, a linear, simplified but functional cochlear model
(first published by Netten and Duifhuis 1983), WT and gammatone filtering tested
for their impulse responses resulted in kind of a ranking (Hut et al. 2006) where
Gabor filtering was leading in regard to the uncertainty product, but also the linear
cochlea model performed well. WT was judged to be unsuited to auditory mod-
eling because an ‘auditory wavelet’ would not exist, and, therefore, Hut et al.
(2006, 633) concluded that wavelet analysis methods cannot be used in perception
research. The gammatone filter (implemented in many auditory models) according
to these tests did well in terms of general purpose linear time–frequency filtering,
but does not give a good cochlear representation (Hut et al. 2006, 635). Since an
advanced cochlear model (Mammano and Nobili 1993; Nobili and Mammano
1999) seems to provide extremely good resolution in both time and frequency
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(Russo et al. 2011) with Df Dt & 0.55, and hence close to the Gabor limit of 0.5,
this approach perhaps could be the most promising to approximate performance of
the auditory system even further (for recent developments, see Meddis et al. 2010).
It should be noted, in this respect, that known values for the ‘uncertainty relation’
have been questioned to hold for the human auditory system (see, e.g. Kral and
Majérnik 1996). The reason for such an assessment based on empirical data in
most cases was that the performance of the auditory system in discrimination tasks
(where stimuli were varied in frequency, level, and duration) was better than
accepted values for the ‘uncertainty product’, on the one hand, and the relation
between band-width and duration apparently was not linear, on the other. An
explanation for this system behaviour can be found on the level of functional
neuroanatomy and neurophysiology since hearing is effected by a complex net-
work involving ascending and descending pathways as well as feedback regulation
loops (as in OHC motility and BM/TM adjustment necessary for sharp frequency
discrimination and ‘pitch’ processing; OHC = outer hair cell, BM = basilar
membrane, TM = tectorial membrane; see Pickles 2008).

5 Conclusion

The present article intends to shed light on several approaches to digital sound
analysis that are viewed (a) as tools useful for research in musical acoustics and
organology, and (b) in regard to auditory perception. Besides the proven Fourier
analysis techniques such as STFT, especially for the study of transient or impulsive
sounds other methods such as WT (see Zhu and Kim 2006) or AR can be applied for
time/frequency representations. To account for characteristics of the auditory
systems, namely different resolution power relative to the period length (ms) of
nearly periodic as well as quasi-periodic sound signals (meaning spectral structures
ranging from harmonic to inharmonic; see Schneider 1997, 2001), algorithms
simulating peripheral filtering must be designed which offer appropriate filter
bandwidth and time constants. WT and gammatone filter banks are among such
algorithms that can be applied to many sounds, and can thus be considered versatile
tools. If an approach is needed which is closer to functions found implemented in
the auditory system, computational models such as developed by Meddis and
O’Mard (1997, 2006) should be applied to the study of musical sound in regard to
psychoacoustics and perception (see Schneider and Frieler 2009). The FTT model
that was proposed already in 1985 still can be a useful method for time/frequency
analysis that is close to basic parameters of the auditory periphery.
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