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Introduction

Musical performance is based on a variety of conditions, parameters, and systems
which allow differentiated articulation, movements, or emotions. This volume is
about to discuss basic concepts of performance in the field of Musical Acoustics,
Music Psychology, and Music Theory. It also presents recent advances in modern
performance environments, algorithms, or hard- and software. The focus is on
understanding performance on a basic level of production and perception of
musical features, relevant for musicians, composers, or engaged listeners. It
suggests systems to understand the framework on which performance in all kinds
of music around the world is based on. Therefore, it is asking core questions of
Systematic Musicology, namely an understanding of musical performance on a
level holding for music generally. The concepts, methods, and applications
discussed by the authors are recent advances in the field and cover the wide range
of thoughts, experiments, or soft- and hardware used to understand or enhance
musical performance practice. The three sections Production and Perception
Models, Neurocogition and Evolution, and Applications reflect this approach.

The volume starts suggesting musical instruments and music perception to be
based on synchronization, therefore to be synergetic systems. Reviewing the
literature suggesting this finding, Rolf Bader discusses nonlinearities of musical
instruments, which are often the base for articulation and the musically important
features. Furthermore, only the complexity of musical instruments is the reason for
their harmonic tone production. Musical performance produced by complex sound
production is nearly always based on this complex behavior in terms of
synchronization and initial transient production. In terms of Music Psychology,
the literature is reviewed about concepts and findings of self-organized systems of
perception and production. The paper suggests an impulse pattern formulation
(IPF) to hold for all musical instruments as synchronized systems.

Following a complementary reasoning for musical performance, perception,
and production, Karl Friston is suggesting a free-energy principle. His model is
based on the notion of minimizing surprise, establishing a stable and coherent state
after an initial transient phase of tone production, perception, or motion in an
interactive way. The difference between the income of a percept and the expected
event leads to a readjustment of the system to minimize surprise and end in a stable
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state. The idea is exemplified with the production and the perception of a bird
song. The system is very flexible as it works as a physical production as well as a
perception framework, where motion feedback or changes of physical parameters
during perception can be used or left out, leading to estimations about the salience
of several performance practices, like gestures or emotional states.

In a review paper, Albrecht Schneider discusses the history of sound analysis
with respect to musical acoustics, music perception, and transcription. With an in-
depth discussion of the evolution of sound analysis algorithms, methods, and tools
he finds many problems still unsolved in a continuous struggle for understanding
and producing musical sounds. Starting from a melographic notation of pitch by
the notion of periodicity, sound color is discussed in terms of its acoustical and
psychological aspects from Chladni and Helmholtz to Stumpf and the notion of
‘Ausdehnung’ (extension). Formants, as known from speech, have also often been
found with musical instruments, still in slightly different forms, not yet understood
today and also discussed in the paper, as well as transient sound behavior, most
interesting for musical expression and performance.

In the field of music theory, Rolf Inge Godøy is suggesting a basic framework
for music experience and performance, consisting of distinct elements he calls
Quantals. Following ideas of chunking and concatenation, he finds music
happening on three time scales, a micro, meso, and macro scale. Incorporating
ideas for sonic objects to be impulsive, sustained or iterative which are also
discrete events, the idea of an impulsive nature of musical events is also found on
an experimental level with musical gestures, in musical acoustics, and in
perception. Especially in terms of body movement, he finds an unequal distribution
of attention and effort, where motion is split into key-postures connected by
continuous movements. The idea of impulse-driven chunking is proposed, and
future research of mathematical formulations is suggested.

The second section about Neurocognition and Evolution starts with a review
paper about the foundation of musical emotions by evolutionary aspects, as
discussed by Altenmüller, Kopiez, and Grewe. Reviewing the different views of
the foundation of music based on language or the survival of the fittest, the paper
also discusses archeological artifacts as early as about 35,000 BC to point to a
cultural usage of sound in the Neolithic age. Reviewing the literature about music
and emotion, in a second part the paper discusses the notion of musical chill, the
effect of strong emotional reaction to musical pieces. The neurocognitive findings
in this field are presented, and a model is suggested to explain the physiological as
well as psychological foundation of the phenomenon of chill.

Focusing on the motion aspect of musical performance, Kölsch and Maidhof
present the state-of-the-art of neurocognitive findings for perception–action
mediation, starting from the common coding scheme to models of pre-motor
area-based music perception. They also discuss neural correlates of music
production as used in musical performances. Aspects of anticipation of musical
events, the role of mirror neurons, differences between trained versus untrained
listeners, the integration of emotional reactions to music, or influences of visual
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stimuli are discussed in detail, often using pianists as subjects. Perception errors
are found suitable to indicate perception of performance and action data. The
investigations clearly show a strong connection between perception and action,
although the subject is still strongly under debate.

Särkämö, Tervaniemi, and Huotilainen then focus on the therapeutic use of music
in terms of neurocognition, where disorders like amusia, autism, depression,
schizophrenia, or strokes are treated. Also diseases like Parkinson or the loss of
speech may be approached by music therapy on a neurocognitive basis toward
improvement of performance, both on haptic or motion, as well as on the speech
production side. Additionally, music is used in everyday life as a mood enhancing
inspiration, which also needs explanation on a neural level. The paper gives a review
on the subject, starting with the healthy brain only then to cover disorders and
discuss methods of music therapy and rehabilitation. Although many aspects are still
unknown, several approaches are already successful and promising for the future.

Another important aspect of music perception is syntax, phrasing, and contour of
musical pieces, which Neuhaus addresses again in terms of neural correlates. After a
discussion about the literature in terms of Gestalt psychology, ideas very close and
even developed with musical examples from the start, the paper develops a theory of
music segmentation based on mismatch-negativity EEG experiments performed on
musical phrases. It appears that several of the Gestalt phenomena are found and are
similar to language, while others deviate from the syntax used in speech
communication. Still, similar brain regions are responsible for understanding
syntax of music and language, which also holds for the neural correlates associated
with segmentation and phrasing. Therefore, musical performance on a syntactic
level can be formulated on a neural level.

The section about applications to musical performance starts with the presen-
tation of a virtual reality for room acoustic simulations built as ‘the Cave’ at the
RWTH Aachen, presented by Vorländer, Pelzer, and Wefers. The application allows
performance of virtual musicians in a virtual concert hall, which can be built on the
scratch by architects, who right away can listen to music performed in the
environment they only just design. The system is based on the room acoustic model
of ray tracing, estimating the impulse response of the room in real time. Also in real
time is the convolution with virtual performers on stage, which are built as complex
radiators. The listener can enjoy a virtual performance in a virtual performance
space. This spectacular environment is able to predict and perform the acoustics of
concert halls and therefore is a valuable tool for architects.

Modern performance spaces include complex sound systems, which may be
ambisonic or surround. The latest development of such systems is the wave-field
synthesis presented as an application at the University of Applied Sciences in
Hamburg by Fohl. The system is able to reproduce sound spaces, and therefore also
virtual concert halls, classrooms, or any kind of artificial acoustic environment. The
paper discusses the basic principle of wave-field synthesis, next to a detailed
discussion of the system used. Also a motion tracking system is presented to retrieve
the position of a person in the sound filed. It then focuses on applications of the
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system as built at the institute, which are gesture based, simulating concert or
classrooms, and discussing rendering software modifications. The system is in use in
a lab environment, still nowadays, wave-field synthesis is also used by composers
and discos, too.

Understanding musical structure and texture is a major performance task for
listeners. Building environments which perform this understanding successfully has
always forwarded our understanding of music in an analysis-by-synthesis method-
ology. Braasch presents a virtual musician with which one can freely improvise. The
system understands the performance of the co-musicians to then play sounds suiting
the overall performance. The basis for this understanding is a Hidden Markov
Model, analyzing the performance to calculate transition probabilities between
performance stages as hidden layers. After this understanding process, the hidden
layer structure can then be used to perform music in association to the co-musicians
playing along. The performance of the model allows a musically satisfying and
interesting performance.

The performance of traditional musical instruments has lead to numerous
modifications of the geometry and materials of these instruments. Mores investi-
gates prominent experimental violins as found in the Hannenforth collection of
musical instruments. After an introduction to the acoustics of the violin with its
basic properties, he compares the impulse responses of several violins in the
collection with a Stradivarius violin judged as a high quality example. Most violins,
like the 1820 Channot or the Zoller bottle-shaped violin, show different sound holes,
both in shape as well as in distribution, while others, like the Philomele or the 1836
Howell, or most prominent the ‘grammophone’ Stroh violin have considerable
different body shapes, with corresponding spectral changes, improving, or
worsening the violin sound.

Also algorithms have been proposed to analyze sounds and therefore musical
performances to quite an extend. Schneider and Mores discuss the use of several
kernels of Fourier transforms in terms of their usefulness to musical sound analysis.
After a discussion of the basic problem of the time/frequency uncertainty principle,
examples of 3D-Fourier, gammatone filter bank, or autoregressive models are
presented. The paper is then about to discuss the Fourier-time transform (FTT) as a
method proposed to come as close as possible to human perception, discussing the
math and perception tasks. It proceeds to a discussion about the relation between the
FTT and Wavelet transforms, exemplified by an organ pipe sound. The paper
concludes that the FTT model to be useful with some restrictions and proposes
Wavelets or advanced methods for musical sound analysis.

Musical performance strongly depends on the musical instruments used.
Physical modeling methods are now able to produce sounds in real time, using
whole-body geometries on a field-programmable gate array (FPGA) hardware,
which calculates massively parallel. Pfeifle and Bader present a performance tool
for controlling such virtual instruments, like banjos, violins, or pianos, using a
software tool. Therefore, the FPGA hardware is implemented on a board with a
PCIe interface, inserted in a standard personal computer. The interchange of
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real-time calculated sound data from the FPGA to the controller, as well as the flow
of performance controller data to the physical model is discussed in detail. The
system is able to change e.g., the geometry of instruments while playing and
therefore offers new kinds of possibilities of performance.

Another way to speed-up performance using physical modeling of musical
instruments is the use of advanced algorithms for solving the differential equation
system. Pfeifle presents the idea of pseudo-Fourier techniques, already proposed in
the 80th, to such physical modeling solutions. Therefore, the iterative process of
calculating new displacements and velocities of a vibrating body from the previous
state is no longer performed in the spatial dimension but rather in the Fourier
domain of this space. Then the convolutions involved in the finite-difference model
becomes a multiplication which speeds-up computation time tremendously.
Although still real-time performance is not achieved on a standard PC, this method
is suitable to speed-up tests of models in software like Matlab or Mathematica.

Performance of virtual instruments also need sophisticated controllers varying
the parameters of the sound generating algorithms. Rosa-Pujazón, Barbancho,
Tardón, and Barbancho present an overview about sensors and sensor techniques
used in the field. Then the paper discusses motion tracking system for musical
gestures, both from the hardware and the software side, where the recorded data are
reduced to retrieve useful information for controlling. Different applications for the
system are discussed, including descending and linear prediction of positions.
Different gestures are retrieved by the system used for musical parameter changes.
A real-time motion-based composition is shown, where a user can compose using
gestures. The system therefore performs music solely by recorded camera gestures
without the need to touch any musical instrument.

The papers presented show the high complexity of musical performance and the
need for sophisticated methods, algorithms, and hard- and software to understand
and to perform music in all its aspects. Our sensibility to slight sound changes
which are meaningful to us is therefore the basis of the richness of music and
musical performance. This sensibility makes the art complex and makes the field so
differentiated and fascinating. In all fields presented, research need to proceed to
come to a point where its fine structure is able to meet musical perception and music
performance we know and enjoy.

Hamburg, January 2013 Rolf Bader
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Part I
Production and Perception Models



Synchronization and Self-Organization
as Basis of Musical Performance, Sound
Production, and Perception

Rolf Bader

1 Introduction

This chapter is about to show that nearly all processes in music, may they be
physical in terms of musical acoustics, may they be psychological in terms of
psychoacoustics, perception, and music production are highly complex and non-
linear in nature. It further argues that the simple, harmonic or linear output of these
systems is only caused by self-organization of subsystems which fuse to a global
system by nonlinear coupling of these subsystems. The linear approaches known in
acoustics and psychology may be a first approximation to many problem. Still
when examining the systems closer, many problems occur, and the simple models
can no longer explain the phenomena appearing in music.

This view is contradicting traditional assumptions. In ancient music theory, the
simple numerical relations of Pure Tone or Pythagorean temperament are also found
in cosmic dimensions, as well as in nature in general. So e.g. in his dialog Timaeus
Plato derives the cosmos from powers of two and three like x2 and x3 (Platon et al.
1997). With x = 1, 2, 3, 4, the numbers 1, 4, 9, 16 and 1, 8, 27, 64 are built, from
which all musical intervals, like the octave 2:1, the fifth 3:2, the fourth 4:3, etc. and
even the whole tone step 9:8 can be derived. Although not explicitly related to music
by Plato, this cosmology is generally assumed to be derived from musical harmonies.
Explicitly, this relation is found in the Dream of Scipio Africanus by Cicero, the
earliest source describing the relation of the planets with harmonic numbers. This
spirit is continued in Renaissance times in the Quadrivium, consisting of geometry,
arithmetic, astronomy, and music, maybe most prominent in the Harmonia Mundi of
Johannes Kepler (Kepler and Caspar 1997). There he derives his music theory not
using the traditional one-dimensional string of a monochord, but by a two-
dimensional geometrical representation of polygons and ’stars’ which allows him
semantic differentiations, e.g. between the minor an the major third. In his earlier
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writing Mysterium Cosmographicum he also refers to the harmonic relations of the
solar system, still there assuming that the distances between the planets are like those
of the five perfect Platonic bodies inscribed one into another (Kepler et al. 1981).
Interestingly, he also justifies this finding by a dream or a dream-like vision he had
lying below a tree, similar to the dream of Scipio. Still this idea turned out to be
physically wrong, the planets do not show such distant relations.

The fact that music theory is often not in accordance to music practice has often
been mentioned before. Still it is reasonably assumed that the harmonic relations
between tones produced on a string or an air column are caused by the linearity of
these systems, which therefore follow simple differential equations, the string
equation or the Helmholtz equation. Their solutions result in harmonic relations,
and therefore the harmonies present with most musical instruments are taken to be
a natural result of the moving bodies. It is also assumed that this holds with
perception. Tonal fusion, the cycle of fifth, timbre perception, or body movements
in music production are mostly explained using simple, linear models, and are
therefore taken to result from bottom–up processes. Only higher musical features
like semantic, synaesthetic, or cognitive perception of music theory is often
assumed to imply also top–down processes.

Still, as discussed below, this simple explanation of musical systems do not
hold. So in a way the ancient idea of music as an audible output of simple relations
in nature is misleading, and harmony is only an output of the synchronization of
otherwise inharmonic motions. Perception of harmony and simple rhythm pro-
duction is only the output of self-organized systems of nonlinear coupled sub-
systems. Without these couplings and nonlinearities, the output of the systems
would not be harmonic at all most of the time, but mistuned, out of straight
rhythmic relations, or not fusing to a whole, a musical Gestalt.

The chapter is organized in three sections. First, musical acoustics is discussed in
terms of simple examples of musical instruments, showing that most of them are self-
organized systems. As clear experimental evidence is facing mathematical formu-
lations able to explain the findings, this section is about to discuss musical instru-
ments as self-organized systems intrinsically. The second section is a mathematical
framework to simplify the basic concept of musical instruments as self-organized
systems, an Impulse Pattern Formulation, which is able to explain basic features of
musical instruments, especially their initial transients, or make instrument families
comparable. The model, as most of the synchronization models discussed below, is
able to get from basic physical parameters to global phenotypes within one single
step. Self-organizing models often do not think of the traditional bottom–up/top–
down interaction, but view the system as a whole, and therefore explain sound
production and perception not as a several-stage hierarchical workflow but as one
dynamic system leading to a musical Gestalt immediately. In a third section about
music psychology, evidence for self-organization and synchronization for several
psychoacoustic features are given. As we cannot look into the neuronal networks of
the brain in real time to a great extend, the evidence here is one of showing that the
nonlinear models of perception are often much better able to explain features in
perception and music production than linear models can cover.
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2 Musical Acoustics

Nonlinearities in general are often found with musical instruments. Some of them
are only add-ons of a basically linear behaviour of the vibrator. So e.g. the
brassiness of trumpets and trombones is caused by a shock-wave formation of the
travelling wave-front in the tube, which steepens along its way (Hirschberg et al.
1996). This change of the wave-front geometry means an increase of the ampli-
tudes of higher overtones. The effect only appears with loud tones, as only there
the sound pressure level in the tube is so strong that the air no longer behaves
linear.

Another example are longitudinal waves in strings with the piano, guitar, or
harpsichord (Beurmann and Schneider 2009; Bank and Sujbert 2005). Contrary to
transverse waves which are the displacement of the string normal to its length, in
the plucking or striking direction, longitudinal waves are the compression or
expansion of the string along its length. These waves are normally about 10–15
times faster than transverse waves, and therefore have quite high frequencies.
Under certain circumstances, when the bridge of guitars or keyboards are con-
structed in a way to transfer energy from the in-plane direction of the string, and
therefore from the longitudinal waves into the bending direction of the sound-
board, the longitudinal waves are also radiated and contribute to the overall sound
of these instruments. Due to their energy in the high frequency domain they
contribute much to the brightness of these instruments.

Also the noise appearing with flutes is caused by chaotic, nonlinear behavior of
the air flow of a player onto the labium of the flute (Howe 1975). There a self-
sustained oscillation takes place, producing a periodic sound (Coltman 1968a, b),
[for a review see (Fabre et al. 2012)]. Still as the air is changing direction from into
the flute to outside of it into the surrounding air in a periodical manner, this fast
change in direction is causing vortices in the surrounding of the embouchure hole
which are radiated as noise. This noise is an add-on to the periodic sound of the
flute caused by the nonlinearities in the flow equations and is very characteristic to
the flute.

Yet another example may be the brightness of radiating plates under tension,
like is the back, and sometimes also the top plate of the guitar (Bader 2005a) or the
soundboard of the piano (Mamou-Mani et al. 2008). Such a plate shows an
increase of its eigenvalues compared to a plane plate, most noticeably heard with
the singing saw. Still when the plate is only radiating the forced oscillations of a
string, the increase of these eigenmodes may not be audible, as the strings are the
cause of the sound. Still additionally, in plates two waveforms are present at the
same time, transversal and longitudinal waves, very similar to the ones discussed
above with strings. In a curved plate these wave types are coupling one to another
to quite an extend. Energy from the high-frequency longitudinal, or in-plane waves
flows into the transversal waves, which are normally much lower in frequency.
Still only the transversal waves are radiated to a considerable amount, as the
radiating surface is large. The radiating surface of the in-plane waves is only the
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small boundary around the corners of the plate. Therefore, without any coupling,
the longitudinal waves in the plate are not radiated and do not contribute to the
sound. Still due to the curvature of the plate, the in-plane waves are radiated via
the transversal waves into which they couple and transfer energy. Therefore a
curved plate is brighter in sound.

Many other examples of nonlinearities in musical instruments sound production
adding a characteristic component to the sound could be mentioned. Most of them
contribute some and often very much brightness to the sound, some add noise or
characteristic frequencies, amplitude fluctuations or the like. One might state that
very often the really interesting aspects of musical instruments are caused by the
nonlinear components of their sound production.

Still this chapter is about to discuss nonlinearities and synchronization not only
as an add-on feature to generally linear musical instrument sound production, but
as their crucial part. The chapter argues that nearly all musical instruments are
self-organized systems driven by strong and characteristic nonlinearities. Only
because of these nonlinearities synchronization appears with these instruments at
all, and only because of this synchronization musical instruments show such
precise harmonic overtone structure. If the systems were purely linear, most of the
instruments, like violins, guitars, flutes, or saxophones would

• not have harmonic overtone structures,
• not show such different playing regimes, from noise production over harmonic

series to bifurcation, and quasi-chaotic regimes as is present within musical
instrument performances, and

• not show regions of such high stability of sound production over a wide range of
control parameter changes, like blowing pressure of clarinets or plucking
strength of string instruments.

The field of synchronization of musical instruments could also be viewed in the
framework of Synergetics (Haken 1990). Within this formulation a multitude of
nonlinear coupled subsystems may lead to a slaving of these subsystems by one of
them. So within the struggle between the subsystems, one may win and slave the
others, force them to go with its frequency, amplitude, or change in parameter. In
such a case the system is acting as one synergetic unit. A very simple example is
one of two subsystems f and g with temporal derivatives _f and _g respectively,
acting upon themselves via strengths a and b and coupling onto another in a
nonlinear way via coupling constants k1 and k2 like

_f ¼ af þ k1g ð1Þ

_g ¼ bgþ k2f 3 : ð2Þ

In case a � b the second equation simplifies, and we have

_f ¼ af þ k1g ð3Þ
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_g ¼ k2f 3 : ð4Þ

Then the change in g only depends on the state of f and no longer on the state of g.
Therefore the system g is moving along with the system f and is slaved by it. This
reasoning was already proposed by (Aschoff 1936) when discussing saxophones,
where the reed is forced to vibrate with the frequency of the tube, necessary to play
pitches on the instrument. Aschoff argues that this is caused by the higher damping
of the reed compared to the air in the tube (Aschoff 1936). So in our example, if f is
the air column and g is the reed, a � b holds and the reed g is forced to vibrate
with the air column f.

There are several reasons for such a slaving. To the well-established ones

• the system which is less damped takes over the stronger damped system, and
• the system with higher eigenvalues takes over the system with lower eigenvalue,

we will argue below that a third one holds for some musical instruments,

• the system which is lower in spatial dimension takes over the one with higher
dimensions, so e.g. a one-dimensional system takes over a two- or three-
dimensional system.

Of course this list of reasons for a take-over is not complete, depending on the
instrument, other mechanisms may be possible, too, like e.g. sets of initial con-
ditions or special kinds of nonlinearities.

To illustrate the point, first a simple linear system is presented. Then frame-
works for nonlinear, synchronizing systems are discussed, two already present in
the literature and a new one, an Impulse Pattern Formulation (IPF), which is
discussed in some detail. Then the guitar and the organ pipe as examples for
synchronized systems are discussed in their basic behaviour. As initial transients
are crucial parts of musical instruments, for the guitar as an example it is found
that the basic behaviour of the instruments within its initial transient can be
simulated using the IPF. The violin string/bow coupling as another synergetic,
self-organizing system is not discussed here, as it is much better known, and
because of lack of space. [For a detailed description of the violin and of other
systems in terms of their physical parameter settings as well as for the IPF solu-
tions see (Bader 2013)].

To get an idea of how complex musical instrument behaviour can be in terms of
the slaving principle, Table 1 shows the generator and resonator parts for several
musical instruments. In a traditional view the generator is supplying energy which
is then radiated into the surrounding air by the radiator. Still it is interesting to see
that not in all cases the system vibrates with the frequencies of this generator. With
string instruments it is the generator who determines the pitch, with wind and
percussion instruments it is the generator. Indeed this is crucial for a regular
performance, a guitarist wants to play pitches by placing his fingers on the fret-
board, a saxophone player wants to change the pitch by choosing a fingering, a
valve combination. Still with organ pipes or with the violin string/bow interaction,
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the pitch may be produced by both coupled subsystems, depending on the control
parameter. In a strict sense, also with saxophones or trumpets, the pitch may be
caused by the generator, e.g. when playing above the cut-off frequency, where the
pitch is only determined by the blowing pressure of the player, no longer by a
valve combination.

So the idea of a coupled system of mostly two subsystems, generator and
resonator, is perfectly fitting into the synergetic framework, where one of the
subsystems slaves the other and forces it to vibrate with its pitch. Of course the
reasons are mostly more complicated as displayed by the simple equation system
discussed above.

Still it is interesting to note that with many musical instruments the eigenfre-
quencies of the slaved system are most often no longer present in the sound,
although they may be sill present within the initial transient of a played tone, like
is the case with the eigenfrequencies of the guitar body modes. Still then these
frequencies are no longer present in the sound, although the ‘generator’, the string,
is no longer a real generator after the initial transient, as then the whole system is
vibrating and both, the guitar body and the string are vibrating and coupling one to
the other. This can also be verified with a simple experiment. Of course the guitar
body can also be made a generator by knocking on it. Then a knocking sound is
heard only very short to then end in a harmonic sound of the strings which have
been driven by the body in a sympathetic manner. So although the body has been
driven, still the strings win the game and force the body into their frequencies.
Although this simple experiment is not astonishing at first, it still challenges the
traditional generator–resonator model and asks for another explanation.

2.1 Linear Example: The String

To approach the problem, first a linear example is discussed, the vibrating string.
The differential equation of the string is

Table 1 List of musical instruments with generator–resonator coupling. The radiated frequency
of the guitar and the violin is determined by the generator, still with the saxophone, trumpet, or
percussion instrument, the resonator determines the radiated pitch. With organs and with the bow/
string model both, the generator or the resonator may determine the pitch, depending on the
control parameters

Instrument Generator Resonator Frequency determined by

Guitar Strings Body Generator
Violin Strings Body Generator
Saxophone Reed Tube Resonator
Trumpet Lips Tube Resonator
Percussion Mallet Bar/membrane Resonator
Organ Labium Tube Generator/resonator
Violin bowing Bow String Generator/resonator
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c2 oy2

ox2
¼ oy2

ot2
; ð5Þ

with displacement y and speed of sound c. If the string with length l has boundary
conditions like y(0) = y(l) = 0, so both ends are fixed, Eq. 5 can be solved using the
d’Alambert solution like

yðx; tÞ ¼ f ðxt þ kxÞ þ f ðxt � kxÞ ; ð6Þ

with angular frequency x and wave vector k. This leads to a harmonic overtone
series for the string like

yðx; tÞ ¼
Xn¼1

n¼0

Aie
ınk0xeınx0t ; ð7Þ

with amplitudes Ai and fundamental frequency x0 and fundamental wave vector
k0: A similar equation is present with the vibrating tube of air, as present with
saxophones, clarinets, etc. Here the differential equation is

c2 op2

ox2
¼ op2

ot2
; ð8Þ

with pressure p. Again when assuming simple boundary conditions of a tube open
at both ends with p(0) = p(l) = 0 we arrive at the same d’Alambert solution, now
for the pressure like

pðx; tÞ ¼ eıxtf ðxt þ kxÞ þ f ðxt � kxÞ : ð9Þ

The frequencies in the tube again follow a harmonic overtone series like.

pðx; tÞ ¼
Xn¼1

n¼0

Aie
ınk0xeınx0t ; ð10Þ

2.2 Nonlinear Approach: Mode Coupling

Still this is a rude simplification when considering a stringed instrument where the
string is coupled to a soundboard, simply because an energy transfer can only take
place at a point where the string is still moving. If the string would rigidly be fixes
at point where the string couples to the body, no energy transfer could happen and
therefore the bridge would not move. So the boundary conditions of the string are
not idle in practice and therefore the linear approach, although very useful at first,
is not perfectly correct. Indeed strings continue beyond the bridge and the nut and
are moving there, too. So the whole system is more difficult and therefore the
modes on the string must be more complex, too.
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A more radical example is the tube like with saxophones or clarinets. These
tubes are not straight but have a horn at one end with a more or less sharp flaring.
The flaring of this horn determines which frequencies may pass the open end and
are radiated into the air to a listener, where it appears that the shaper the flaring,
the better the radiation of high frequencies and the less radiation of lower ones.
Therefore a trumpet with its sharp flaring sounds much brighter than a clarinet.
Still this flaring has a trade-off. At this end of the tube, the different frequencies
behave differently, depending on the end-correction of the tube. Lower frequencies
tend to reach out beyond the length of the tube much more than higher frequencies
to form standing waves. This means that the tube has a different length for each
frequency which is travelling in it. For lower frequencies the tube is much longer
than for higher ones. Still the harmonic overtone series of tubes discussed above in
the section of the linear approach assumes that the length l of the tube is the same,
no matter which frequency is present. But if this length is a function of frequency,
the spectrum produced by such a horn is no longer harmonic, indeed it will become
inharmonic very fast. Therefore we would expect the sound of a trumpet or a
clarinet not to be harmonic at all but would find the instrument sound maybe like
the sustained sound of a percussion instrument.

Still we find the overtone structures of stringed instruments and wind instru-
ments to be nearly perfectly harmonic, even for high partials. So there must be a
mechanism to force these inharmonic overtone structures back into harmonic ones.
This is indeed achieved by the nonlinear coupling of the tube to a ‘generator’
system, a reed with saxophones and clarinets, a double reed with the oboe or the
bassoon, or the players’ lips with trumpets and trombones. This coupling works in
such a way that the modes of the instrument, which are inharmonic at first, couple
one to another.

For this mode coupling to appear, the modes of the system must not be
orthonormal one to another any more, as is the case with the solution of the linear
d’Alambert solution. Two modes y1 and y2 are orthonormal if their convolution
integral becomes zero like

Z
y1ðxÞy2ðxÞdx ¼ 0 : ð11Þ

This means that they cannot interact. Still if the modes appearing in musical
instruments are slightly different from the simple modes, so e.g. if they are pro-
longed or shortened a bit, this integral is no longer perfectly zero like

Z
y1ðxÞy2ðxÞdx 6¼ 0 : ð12Þ

Therefore these modes will interact to a certain extend. As discussed above, the
modes appearing in strings and in the air columns of saxophones, clarinets and the
like are slightly or even quite a bit different in length. Therefore the integral is
different from zero, the modes interact, they transfer energy one to another.

10 R. Bader



Still this energy transfer is not the crucial point for mode coupling. It would only
mean that one modes becomes a bit louder while another one is reducing its
amplitudes. Still modes not only have an amplitude and a frequency, they also have
a phase which they travel through. Taking the air column as example, the pressure
of each modes takes the value of 0–2 p; goes through a whole sine wave. So a mode
in the air column may be a bit ahead or behind the other modes. If these modes were
perfectly orthonomal one to another they would not interact and continue their
phase relations undisturbed. Still as the modes are not perfectly orthonormal they
interact and therefore exchange also their phase. Then the one behind in phase will
tear the one in front a bit back in his direction and vice versa. So the modes will then
control their phases in such a way to lock these phases to one common phase. Then
mode coupling may become a mode locking which is the case with musical
instruments and is the reason that these instruments do not sound inharmonic, as
they would if such a mechanism would not exist (Fletcher 1978; Dubnov and Rodet
2002; Abel et al. 2006; Lottermoser 1983). Mode locking is forcing the modes into
a common phase and therefore ensures a harmonic overtone structure.

This mode locking depends upon certain conditions, the amplitudes need to be
strong enough, the modes must not be too far apart, and the coupling strength need
to be strong enough. If these conditions are not met, musical instrument sounds fall
apart and such instruments are not working properly anymore.

It is interesting to note that the core element of this mode locking is present at
the generator of the system, as there the interaction of the modes is strongest. This
also holds for strings, where most of the energy transfer happens around the bridge
and nut. Although this mode locking is only one possible mathematical explana-
tion for the slaving of the system, it is an important formulation, as it concentrates
on a crucial point for musical instruments, namely that they play in harmonic
overtones and do so only because of this nonlinear effect. If such nonlinearities
would not be present, we would not be able to produce pitches with these
instruments at all.

2.3 Nonlinear Approach: Generator–Resonator Coupling

As discussed above, the standard model of most musical instruments is one of a
generator–resonator coupling (Fabre et al. 2012). Indeed, most of the generators
are nonlinear by nature. With reed instruments, the generator is the reed, inserted
in a mouthpiece and driven by an air flow into this mouthpiece. With double-reed
instruments, like the oboe, the back-pipe, the crumhorn, or zurna-like instruments,
two reeds are attached one to another, also driven by the airflow of the player.
These reeds act like valves, opening and closing, and therefore allow more or less
airflow through the reeds or through the small gap between the reed and the
mouthpiece. The reed rests in an equilibrium position without any airflow. Then, if
the player starts blowing, pressure is acting upon the reeds surfaces, its lower one
in the mouth of the player and its upper one in the mouthpiece. The air stream
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travelling into the mouthpiece is strongly changing direction in there, because of
the enlargement of the cross section, the gap between the mouthpiece and the reed
is about 1 mm during resting, the mouthpiece is several centimeters wide. So the
flow starts changing its direction in the mouthpiece in an complex way forming
vortices and ending in a turbulent mixture (da Silva et al. 2008; Bader 2008). This
turbulent mixture acts like a heavy stop to the flow. Additionally, the pressure in
the mouthpiece is much lower than the one in the mouth. Therefore, the pressure
acting on the lower side of the reed is much stronger than the one on the upper
side. This pressure gradient over the thickness of the reed acts as a force on it, the
reed starts moving and closing like a valve. Still, this closing means that the small
gap between the reed and the mouthpiece of about 1 mm is decreasing. But a
decrease in this gap also means a decrease in the flow allowed through this gap.
Therefore the flow changes its strength and the pressure in the mouthpiece
changes. This change in pressure has a kind of Gauss impulse shape in time. It is
travelling with the speed of sound through the tube, is reflected at the horn (the end
of the tube), and travels back to the mouthpiece. There it is interacting with the
reed, opening the gap of the reed, the valve opens again. This leads to an increase
of flow of air through the gap once more and the whole process starts all over. As
this process will repeat, a periodicity T is present. The length of this periodicity is
determined mainly by the time, the impulse needs to travel down the tube and
comes back again. If the player is applying a certain fingering, a combination of
open and closed valves along the tube, the tube length changes, and therefore the
periodicity is determined by the fingering of the player. Of course, the fundamental
frequency, or played pitch is f = 1/T. So in other words, the player can change the
pitch of the instrument by changing valve combinations. It is interesting to see that
sometimes the valve is not basically closed and opens again when the impulse
comes back, but behaves vice versa, is mainly open and closes when a back-
travelling impulse hits the reed again. This happens, if the impulse travelling along
the tube is an underpressure impulse rather than an overpressure one.

From this behavior of reed instruments, the nonlinearity of the reed as valve
becomes obvious. When plotting the air flow through the reed as a function of the
pressure applied by the player, a highly nonlinear function appears (Dalmont et al.
2005). With low playing pressure the flow increases rather linearly, still closing a
bit and therefore reducing the flow. So there must be a point, where an increase of
blowing pressure will no longer lead to an increase of flow, but to a decrease, as
then the valve already allows only a small flow. If the pressure is still increased,
the reed will close even more, then reducing the air flow allowed through the reed-
mouthpiece gap. Indeed, with very high flow, theoretically no flow can happen at
all, the valve is perfectly closed. This is a highly nonlinear behaviour of the reed
and therefore, if taken as a generator, the reed is a nonlinear generator, while the
tub, the impulse travels through is still acting linear. So we have a nonlinear
generator and a linear resonator.

A similar behavior is present with the violin bow-string interaction (Duffour
and Woodhouse 2004a, b; Woodhouse and Schumacher 1995). Its nonlinear nature
appears right away if one considers the states of the bow friction. Either the bow
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sticks to the string, acting on it with a sticking friction, or it is sliding along the
string with a sliding friction impact. These two states are clearly separated one
from another, and plotting them would lead to a sudden jump in the function at the
sticking-slipping boundary. Therefore, the bow-string interaction is also highly
nonlinear, and therefore again a nonlinear generator is present, which is the bow.
When we assume the string as linear (with its restrictions discussed above) we
again have a nonlinear generator and a linear resonator.

Now starting from such an assumption, a model of a delay-line was proposed by
(McIntyre and Woodhouse 1983). The nonlinear generator is given as a function of
the velocity of the system. This leads to a state at the generator, changing over
time. As each discrete time point, this state is fed into a delay line, so e.g. with the
violin bow-string model the impact of the bow is travelling along the string, in
both directions, to the bridge and to the nut. Still the delay-line is also feeding back
a previous state of the system which has already travelled along the string back to
the generator, changing the generators’ state, too. This delay-line and interaction
model is a simple generalization of such systems and is easily implemented using a
convolution of the generator function with the delay-line. It is capable of repro-
ducing complex bow-string or reed-tube interactions, also producing initial
transients.

2.4 Impulse Pattern Formulation

Another approach, previously proposed by the author, is an Impulse Pattern For-
mulation (IPF). It is based on the fact that most musical instruments work with
impulses, short wave-fronts or Gauss-impulse shaped displacements or accelera-
tors. As appears from the discussion above, this holds for the reed-tube interaction,
where a short impulse is travelling along the tube. Indeed, when simulating blown
instruments with a synthesizer, as a first, rough estimation a rectangular impulse is
used. It also holds for the bow-string interaction, as the sudden change from
sticking to slipping is a short impulse travelling along the string. Other examples
are guitars or pianos. A plucked string shows a travelling wave like a trapezoid
shape circling around the string. Still a string has nearly no radiation, as the air is
rather flowing around the string than radiating into the surrounding air. The string
is an acoustical short circuit. The only radiation appears with the soundboard, top
plate, etc., which are structures of large areas. So only the energy transferred from
the string to the soundboard is radiated. Also, only vibration energy is radiated, a
static displacement does not vibrate. So only the temporally changing component
of the string at the bridge is transferring vibrational energy to the soundboard and
contributes to the radiated sound. Still with a trapezoid shape travelling around the
string, the temporal change at the bridge is nearly zero most of the time. Only
when the tip of the trapezoid shape is travelling around the bridge, being reflected
there, a considerable temporal change of force is acting on the bridge. This time
span is pretty short compared to the complete periodicity T of the string. So with
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guitars or pianos, the string is rather ‘knocking’ on the soundboard than per-
forming a continuous movement. At each periodicity T one of these knocks
appears, therefore preserving this periodicity. Still again, the energy transfer is
impulse-like and not continuous.

This impulse-like behavior of musical instruments also holds for brass instru-
ments, where the lips act like a valve, very much like with reed instruments,
although the valve is an opening rather than a closing one. With percussion
instruments the impulse nature is obvious right away. Flutes and organ pipes may
show a sinusoidal behavior with low frequencies, still an impulse pattern appears
with higher frequencies. E.g. transverse flutes experimentally show a very short
time span when the flow is sucked into the tube, while most of the time it is
flowing over the embouchure hole (Coltman 1968b). This short in-flow then
produces a short impulse into the flutes’ tube.

So if the impulse nature of most musical instruments is obvious, it is
straightforward to formulate a model based on travelling impulses or wave-fronts.
The model proposed tries to hold for all musical instruments. Therefore it is
formulated in the most general way. It therefore at first lacks of many charac-
teristic features of these instruments, which are taken into consideration explicitly
by bottom-up methods like e.g. Finite-Element (FEM) or Finite-Difference (FDM)
time domain solutions, where a set of coupled differential equations governing the
motion of the instruments is performed. Still it is shown, especially in the section
of the guitar, that this model is capable of reproducing the basic nature of even
such complex parts as initial transients compared to a FDM model for the different
guitar parts to an astonishingly high precision. As the model proposed is a self-
organizing one, a basic feature of such models seem to hold here, too, namely that
these synchronization models are often able to connect very basic parameters with
high-level phenotypic system behaviour with only one operational step. This again
leads to further assumptions about the nature of musical instruments, as well as
about musical perception, maybe evolutionarily built in such a way to fit perfectly
the physical nature of musical instrument or general sound producing systems.

To be as general as possible, at first a system parameter g is defined, which will
become a physical parameter only later. So g could become a periodicity of the
system—changing from an unstable periodicity at the initial transients of the
sounds to a stable one during the quasi steady-state of musical tone production. It
may also be the amplitude of a sound, or even a combination of both. Furthermore,
the model assumes a standpoint. This could be the string of a guitar, which acts
upon the guitar top plate, which again acts upon the inclosed air or the ribs and the
back plate. All these parts then act back to the string. The string will then find the
impulse it sent out previously as coming back to it, still most often with a certain
damping. So it is reasonable to have a parameter a; which accounts for the
reduction of energy, the impulse experienced during its travel through the system.
Still the standpoint may also be the top plate or any other component of a musical
instrument, as will be shown below. The model is discussed here briefly, for more
details see (Bader 2013).

The system g is assumed to act upon itself with a damping a like
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� o�g

ot
¼ 1

a
�g : ð13Þ

The system state g changes over time. Still to be most general and allow delayed as
well as instantaneous interaction, this most general formulation uses a bar as
symbol �g; denoting that the kind of temporal interaction is not yet decided.

Next we include damping, which is a strong factor with all musical instruments.
The damping is introduced as an exponential function, where the change of the
system is the exponent like

e�
o�g
ot ¼ 1

a
�g : ð14Þ

This equation can be taken as an instantaneous interaction, e.g. a reed coupling to
itself simply because of its stiffness. Then the system state �g would be at the same
time point on both sides of the equation. This leads to a system behaviour of a
damped ‘vibration’, which of course lacks of the details of the motion and only
describes the basic system behaviour, as discussed above.

Still when we have the generator/resonator model, the system state leaves the
generator and is reflected by a resonator, so acts back delayed, and therefore there
is a present state g and a future state g+, acting back on the system like

e�ðgþ�gÞ=Dt ¼ 1
a

g ; ð15Þ

If we solve for g+, we get

gþ ¼ g� ln
1
a

g : ð16Þ

This equation is an iterative one, similar to those used in programming languages,
where the future state g+ is calculated from the present state g. Although this
equation is derived from a reasoning of a musical instrument with impulse nature,
coupling a generator to a resonator and applying damping, its mathematical form is
like that of a logistic map. This map is very well studied and shows stable system
behaviour for low parameter values of 1=a; only then to bifurcate several times to
end up in chaotic motion with high values, as shown in Fig. 1. This is very
reasonable for musical instruments, e.g. for reed instruments. With normal playing
pressure, a stable oscillation appears. Still with low blowing pressure, only noise is
produced. Indeed, at the boundary between these two states, saxophones or clar-
inets may play multiphonics, several harmonic overtones series at the same time.
In performance of contemporary jazz or classical music these multiphonics are
often used. They can also be produced by complex valve combinations, where
textbooks have been published showing the fingering with and the respective
multiphonics produced, up to 5–6 tones at once (Krassnitzer 2002). Also, from the
standpoint of nonlinear dynamics, the sudden phase change of the reed, and also of
brass instruments, is a clear indication of a nonlinear system which may self-
organize, to then produce a simple harmonic output.
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Still there are musical instruments which are more complex. So e.g. the guitar
string as a generator distributes energy to the top plate. This top plate drives the air
inside the instrument, as well as the ribs and the neck. The air and the ribs drive the
back plate, which in the end acts back to the string via the ribs, the air, and the top
plate. This complex set of interactions may be simplified as impulses coming back
to the string from these parts with different time delays. Each part is then acting
back to the initial system at different time points in the future. As discussed above,
the choice of this viewpoint is arbitrary, and therefore the system may be examined
from any possible standpoint. In terms of mathematics, only the strength of the
back impulses would need to be adjusted.

We first derive the equation for three parts, the viewpoint and two reflecting
parts. It is then trivial to write the equation of an arbitrary amount of reflection
points. When we again use the system variable �g in its temporal neutral form in
analogy to Eq. 13 we can write

o�g

dt
¼ �a�g� b�g : ð17Þ

When again using an exponential damping we can rewrite Eq. 17 like

�g e�g ¼ �ae�g � be�g : ð18Þ

Fig. 1 Bifurcation scenario of the logistic map Eq. 16 for increasing values of 1=a: So e.g. with
saxophones, low blowing pressure would be on the right side, while higher blowing pressure is
located on the left. Then, the noise produced with low blowing pressure is the chaotic behaviour
on the right, while the stable oscillation is the constant value on the left. In between bifurcations
occur, equivalent to multiphonics which can be played at the boundary of the sudden phase shift
from noise to stable harmonics
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As �g is only general, we must not divide this equation by e�g; as the different �g may
be on different time points. Then we can write

�g ¼ �ae�g��g � be�g��g : ð19Þ

Inserting reasonable time points for the different parts we have

� 1
a

�gþ b
a

e�g��g ¼ e�g��g : ð20Þ

Here, g is the present system state, g+ the next and g- the previous state. This
equation can be generalized for n+1 reflecting points like

gðtþÞ ¼ gðtÞ � ln
1
a

gðtÞ �
Xn

k¼1

bk

a
egðtÞ�gðt�kÞ

" #
: ð21Þ

Where gðt�kÞ is the kth delayed reflection.
For understanding musical instruments with several reflection points, it is

interesting to test the model for an increasing amount of reflection points,
assuming that the parts more far away will have a larger damping and therefore
reflect less than parts which are closer to the generator. Also quite strong damping
is assumed, as is the case with wood if which most musical instruments with
several reflection points are built of. Table 2 sums the results when iterating the
system for a value of 1=a from 1 to 2.7, the point of the first bifurcation with
n = 1, the case shown in Fig. 2. Indeed, the maximum possible 1=a for a stable,
non-bifurcated behaviour of the system is ð1=aÞmax ¼ 2:71; as expected.

If additional reflection points are added up to n = 4 with parameters displayed
in Table 2 it is interesting to see that the point of maximum stability is enlarged up
to ð1=aÞmax ¼ 3:41 for n = 4. This seems contrary to intuition, as one might
expect the system to become more unstable with more reflection points. Still the
opposite is true, the system is stabilized through additional reflection points. This
is because then the outgoing impulse is distributed much more, and therefore the
impulse acting back to the generator is temporally spread and therefore not able to
force the generator in a bifurcation. In other words, the one-dimensional string
with its stable strong impulse is more capable of forcing a multi-delayed,

Table 2 Maximum value of stability ð1=aÞmax for different amount of reflection points n with
respective reflection coefficients b1–b3 iterated for 1 \ 1=a \ 2:7: The increasing amount of
reflection points stabilizes the system from ð1=aÞmax ¼ 2:71 for n = 1 to ð1=aÞmax ¼ 3:41 for
n = 4

n 1=a b1 b2 b3 ð1=aÞmax

1 1 ! 2.7 0 0 0 2.71
2 1 ! 2.7 .2 0 0 2.74
3 1 ! 2.7 .2 .1 0 3.25
4 1 ! 2.7 .2 .1 .05 3.41
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geometrically complex structure, because the straight impulse of the string is
blurred by the multiple reflections of this complex geometry. All the smaller
impulses returning to the string from the body parts are then no longer able to
disturb the string with such ease as only one strong compact reflection can. So the
large stability stringed instruments show in terms of their string-body coupling
after its initial transient seems to be caused by the difference of geometry of the
interacting parts, the one-dimensional string is capable of forcing the three-
dimensional body to go with its frequencies only because of this difference in
dimensionality.

2.5 Example: Guitar String—Body Coupling

As an example, the coupling of a guitar string onto its body is discussed. From
previous physical modelling results of a finite-difference model of the whole guitar
(Bader 2005b), the amount of reflection of the several guitar body parts back to the
string can be estimated as shown in Table 3. We rewrite the impulse pattern
equation with damping variables a; b; c; and d like

gðtþÞ ¼ gðtÞ � ln
1
a

gðtÞ � b
a

egðtÞ�gðt�1Þ � c
a

egðtÞ�gðt�2Þ � d
a

egðtÞ�gðt�3Þ
� �

: ð22Þ

So e.g. if the system variable is chosen to be the top plate, the impulses sent out by
it to the other parts of the instrument, strings, inclosed air, ribs, and back plate are
considered. Then the damping variables represent the strength of the other parts to
act back to the top plate, normalized by the first, strongest back impulse. The
values are chosen according to results from the FDM solution of the guitar.

Figure 2 compares the results of the initial transient of an open e-string tone
plucked on the virtual FDM whole-body model on the right side of the figures with

Table 3 Damping coefficients a;b; c; and d for strings, top plate, back plate, ribs, and inclosed
air for those parts as viewpoints for the system variable g for the classical guitar

Viewpoint a b c d
on part

String Top plate Inclosed air Ribs Back plate
.7 .1 .05 .05

Top plate Strings Inclosed air Ribs Back plate
.5 .2 .15 .05

Back plate Ribs Inclosed air Top plate Strings
.5 .01 .2 .19

Ribs Top plate Back plate Inclosed air Strings
.5 .09 .01 .3

Inclosed air Top plate Back plate Ribs Strings
.36 .18 .18 .18
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the results of the IPF on the left side. The time series of the FDM are integrated
over the area with respect to a virtual microphone position 1 m in front of the
respective part to model radiation. Note that the FDM results are pressure values
over time, while the IPF results are periodicity. So when the IPF values converge
to a value, as all of them do, a stable oscillation is reached. In other words, the
initial transient is over then. So next to the duration of the initial transient, the IPF
values show the struggling of the system during this transient phase, its change in
periodicity, amount of chaoticity, or complexity. So next to a stability analysis
shown above, the IPF is able to display the initial transient of musical instrument
tones. It does so in terms of the system variable g, interpreted as periodicity and/or
amplitude of the system. So the IPF does not result in a time series at first, it results
in a basic description of the initial transient.

The inclosed air at the bottom of Fig. 3 is the slowest to converge, has the
longest initial transient. Still this transient is not very complex, mainly the peri-
odicity is oscillating with decreasing oscillation amplitude, as can be seen in the
IPF for the inclosed air. The same behaviour holds for the time series of the FDM

Fig. 2 Comparison between Right the radiation of the different guitar parts top plate, back plate,
ribs, neck, and inclosed air for the initial transient of an open e-string tone plucked virtually on a
whole-body finite-difference solution of the classical guitar, and Left initial transients of the
impulse pattern equation for these parts as viewpoints of the calculation. The general behaviour
of the initial transients in terms of duration and complexity clearly appears. Note that the FDM
results are radiated pressure over time, while the IPF are values of g, and therefore show a stable
or unstable system behaviour. So the convergence of the IPF plots means an establishment of a
stable oscillation in the time domain. The basic behaviour of the different parts during the initial
transient clearly appear. The top plate has the shortest transient phase and reaches a stable
oscillation within one or two impulse cycles, the periodicities of the string. This is well known
from guitars, the top plate is mostly responsible for the attack of the tone, it should react as fast as
possible. This is one of the basic quality characteristics of musical instruments, fast attack, as
otherwise fast playing is not possible, the tones would blur one into another. The IPF clearly
shows such a fast attack, it converges nearly instantaneously to a constant value of g, which
means a stable oscillation of the system. This also clearly appears with the FDM time series on
the right
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shown on the right, the system needs quite some time to establish a stable oscil-
lation, still the struggling of the time series until this stable-state is not very
complex, without many high frequency components, a rather smooth curve.

The ribs, on the other side show a much more complex initial transient. In the
FDM the amplitude raises only after some time, when the air inside the instrument
drives the ribs in their transverse direction, so that they are able to radiate at all.
Then the behaviour shows more complex vibration, pointing to more high fre-
quencies [for details see (Bader 2005a)]. The IPF also shows a much more
complex initial transient compared to the air.

The back plate again takes some time to come in, both in the FDM and the IPF,
its periodicity oscillation, displayed in the IPF, is slower than that of the air, which
may point to a faster adaptation to the frequencies of the string, as the eigenvalues
of the back plate is closer to the 330 Hz of the string fundamental compared to the
about 100 Hz of the Helmholtz motion of the inclosed air.

So it appears that the basic behaviour of the initial transients of the different
guitar parts are very close between the FDM simulation and the IPF. As discussed
above, both methods have a radical different starting point, the FDM is bottom up,
solving the differential equations for the complex geometry of the instrument,
while the IPF is top-down, only assuming reflections of outgoing impulses by the
other parts with a certain damping. Still clearly both result in about the same for
initial transient length and complexity of the different guitar parts. As the FDM has
the advantage of going into details of the time series, it is often difficult to
understand the reason for this behaviour or even come to general conclusions
about families of similar systems. On the other side, the IPF lacks of the details of
the time series, still it is able to give insight into the nature of initial transients, the
reasons for their length and their periodicity oscillations. It is also able to
understand why some systems, like blown instruments, are driven out of their
stable oscillation regime so easily, while complex structured instruments, like
guitars or pianos, are so stable in this respect.

It is also possible to produce time series from the IPF system variable g
development over time, e.g. by inserting a basic waveform, sawtooth, rectangle,
etc. with respective change of periodicity. Although this is beyond the scope of this
chapter, it is interesting to note that the resulting sounds clearly show typical initial
transients, the spitting of a trumpet or trombone, or the scratchy sound of violin
initial transients. It is further interesting to see, that the same IPF initial transient
time series can be used to model e.g. a trumpet and a violin string-bow system, as
both are one-dimensional, and therefore the same for the IPF equation. Still the
resulting sounds, and especially their initial transients, sound one time like a
trumpet spitting, the other like a violin scratching. So the IPF is also able to
compare different instrument families, like blown and bowed instruments, using
the same impulse pattern reflection model.
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2.6 Example: The Organ Pipe

Flue organ pipes, as well as flutes are labium instruments. An air flow from the
players mouth or from an orfice hits a cutting edge. There it may flow above the
edge or below it. With the flute, above the edge means the flow goes in a direction
outside the flute into the surrounding air, while flowing below the edge means
flowing inside the flutes’ tube. With flue organ pipes the picture is similar, the flow
goes into the direction inside the tube or flows outside the instrument.

The problem of the tone production of flues and flue organ pipes is still under
debate (Fabre and Hirschberg 2000). Historically, this cutting edge tone produc-
tion, also known as self-sustained oscillation, was considered a linear phenome-
non. In a discussion between Helmholtz (1863) and Rayleigh (1894), different
views considered the pressure of the flow acting on the air going inside or outside
respectively as the reason for tone production. While Helmholtz found it to be a
monopole source, Rayleigh argues in favour of a dipole sound production. The
same debate was going on post-war between (Cremer and Ising 1967), supporting
the inside tube flow tone production thesis, and (Coltman 1968a), who found the
flow mainly outside the instrument. The difference may also be that Cremer and
Ising used a very large organ pipe, while Coltman was investigating the rather
small flute. (Elder 1973) fused the positions arguing for a combination of both, the
Rayleigh picture. With these models, the edge tone generator was considered in
analogy to an electrical oscillating circuit, the pipe, being driven by an air flow,
which supports the energy necessary to maintain the oscillation.

Still with such a linear model many other phenomena of the flute and flue organ
pipes cannot be understood, as the sudden phase transition from noise to a stable
oscillation from a certain pressure threshold on, an oscillation with a stable pitch
over a large range of blowing pressure, the sudden jumps to higher harmonics,
while overblowing the flute, or the appearance of multiphonics, tones with several
pitches, bifurcations at pressures at the boundaries of the state changes between
noise, tone production, and higher harmonics. All these findings are very similar to
the ones found with the bow-string model of the violin or with reed instruments
and strongly point to a self-organized system. For such behaviour to appear,
nonlinearities need to be present in the system.

The reasoning of the edge tone generator to be a self-organized system is based
on experimental findings (Kaykayoglu and Rockwell 1986a, b), physical modeling
results (da Silva et al. 2008; Bader 2008), and a discussion of the Navier-Stokes
(NS) equation. A typical oscillation around a cutting edge is shown in Fig. 3 as an
experimental result of a water flow. Here, no tube is attached. Such a situation is
different from flutes and flue organ pipes. Coltman criticized such experiments
stating that we try to understand the flute by a system we do not understand either.
Indeed, the labium of flues may only therefore oscillate because a tube is attached.
In Fig. 3, this oscillation appears solely. Still this is also the case with flue organ
pipes. When the pipe foot is deattached from the pipes tube, one may simply blow
into the foot, as would do the wind system of the organ, to produces the pitch of
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Fig. 3 Pressure distribution (Left above and Middle below the edge vertical line) and Right
velocity field for a measured edge tone oscillation without an attached tube at five different time
points t. The different vortices of the flow field are much more elaborated than the pressure,
which has a much more smooth distribution. From Kaykayoglu and Rockwell 1986a, b
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the pipe itself. Still with flutes this may be different, where the labium itself is not
so easily able to oscillate the way it would with the pipe. The reason for this
difference is again pointing to a complex nature of the system, as discussed above
with the generator–resonator picture. With organ pipes the labium produces the
pitch, with flues this pitch is determined by the length of the tube, which is
necessary to play melodies.

So discussing a self-sustained oscillation without a tube is reasonable for
musical instruments, at least for the flue organ pipe. Still the reason for presenting
exactly this experimental results is the comparison between the velocity field on
the right of the figure and the pressure fields above and below the labium middle
line on the left and middle column respectively. Next to a very precise description
of the vortex field, showing the first and the second vortex behind the laminar flow
very clear, this velocity field is very differentiated, the vortices are highly dis-
tributed and differentiated. On the other hand, the pressure fields are very smooth
and do not show a complex distribution. Next to many other interesting findings of
this experiment, e.g. the spectral distribution of the vortex street, for the reasoning
here, this is enough to proceed to the physical model of a flute.

Another important finding of the experimental data of Kakayoglu and Rockwell
is the pressure field around the labium. It shows a very strong gradient at the first
vortex, shown in the left an middle column as maximum pressure envelope. The
pressure is nearly zero at the tip of the labium (very left) and reaches its maximum
very fast. This strong pressure gradient is a sound source, which is identified with
the self-sustained oscillator as present right behind the tip of the labium.

Still, to understand this model, the differential equations used there need to be
briefly considered, which is basically the Navier-Stokes equation

ot ui þ uj oj ui ¼ �
1
q

oi pþ mr2 ui with i=1,2,3 : ð23Þ

This two-dimensional version of NS has flows ui in the two directions i = 1, 2, which
are differentiated with respect to both directions j = 1, 2. The subscripts with the
differential symbols indicate an Einstein sum convention, so the differentiation is
over both directions, where the terms are summed. The flow differentials are bal-
anced by the pressure p differential on the rhs with density .; and the damping terms
of a second derivative with respect to time and viscosity m: This version is incom-
pressible, which means that the changes in the flow sum up to zero like ru ¼ 0:

Obviously, there is a nonlinear terms in the equation, ujojui; leading to an
unstable behaviour and turbulent flow. Although turbulence is a highly complex
field, still not fully understood, the k � � model proposed by Kolmogorov 1941 and
its different formulations [see e.g. (Durbin and Pettersson 2001)] is highly intuitive
and fits astonishingly well in many experimental situations. Although a detailed
mathematical description is beyond the scope of this chapter, the model is used in a
Finite-Element simulation of a flute (Bader 2005b) which is part of the reasoning
proposed here. The main idea of the k�� model is the development of vortices in a
flow, which is laminar at first and then becomes turbulent. Kolmogorov assumes an
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energy flow from the laminar flow to the first, large vortices, from these to smaller
vortices, and so on until a smallest vortex is built. As the rotation speed of vortices
increase with decreasing vortex sizes, the damping of smaller vortices is consid-
erable and so a smallest vortex exists, as even smaller ones would be dissipated
immediately. This is an important point for understanding turbulence. As each
larger vortex produces many smaller ones, a cascade of vortices, or eddies, is
produced in a turbulent flow. Now as the damping increases with many small
eddies, a highly turbulent flow means a very strong damping. This appears in the
classical experiment of turbulent flow, where at first a laminar flow with a medium
speed is flowing through a simple tube. When increasing the speed of this flow,
from a Raynolds number of about Re [ 6,500 the flow becomes suddenly turbulent
(sudden phase change from laminar to turbulent). Indeed, the flow therefore also
suddenly stops within the tube, its mean velocity becomes nearly zero because of
this turbulence. So the Kolmogorov assumption of increased damping caused by the
cascade of vortices seems reasonable.

Following this reasoning, the k�� model does not consider all the small vertices
appearing in a turbulent flow. It need not to do so, as they are included in the
general idea of energy flow through the eddies. Therefore, the flow u of the NS
equation is substituted by �u; which now is divided into two flows, one laminar,
mean flow U and one turbulent flow u like

û ¼ U þ u : ð24Þ

Substituting this into the NS gives the Raynold-Averaged Navier-Stokes (RANS)
equation

ot Ui þ Uj oj Ui ¼ �
1
q

oi pþ mr2 Ui � oj uj ui : ð25Þ

The RANS is very similar to the NS except for one additional term on the rhs
[ujui], summing all terms which produce, transport, redistribute, and dissipate
energy from the mean flow to the turbulence. To deal with the many new variables
introduced in this term, the model defines a turbulent energy k and a turbulent
dissipation �, resulting in two new equations for these terms describing their time
and spatial differentiations [for details see (Bader 2005b)]. Therefore, turbulence is
modelled without displaying the details of the vortices, therefore resulting in an
understanding of the main process in terms of energy flow and dissipation. In other
words, the new term in the RANS equation can also be viewed as a second
damping term to the NS equation, representing turbulent damping, which is
considerable as discussed above.

Figure 4 shows results of two Finite-Element simulations of a flute, where a
player is blowing to the labium. The flute is the horizontal tube, the box above the
flute corresponds to a section of the air outside the flute to display the flow not
entering the tube. The streamlines are flow velocity, the background is the pressure
distribution. The top plot shows the results of a NS simulation, the bottom plot
represents the RANS results. Experimentally, only about 3 % the players lips goes
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into the tube, a very inefficient tone production system. The NS simulation leads to
a 50/50 split of flow into and out of the tube, while the RANS results in about
3.5 % energy going into the tube. The difference is caused by the last term of
the RANS equation which is an additional damping caused by any region, where
the flow changes direction, which is especially the case at the region around the
labium. Additionally, again the flow streamlines are much more differentiated than
is the pressure distribution, the background in the figure. Note, that both models
did not take turbulence into account with respect to its fine structure. All small
eddies which may be present around the labium are not displayed, and must not be
displayed, as they are already present in the RANS model definition. Still, the
elaborated velocity and smooth pressure distributions were also found with the
experimental results of (Kaykayoglu and Rockwell 1986a) discussed above.

Therefore we can summarize the results from experimental findings, physical
modelling, and the NS as well as the RANS equations like

• the labium is a bi-stable geometry, where the flow may easily change from
above to below the labium,

• the NS equation is nonlinear with respect to the flow term ujojui,
• the NS equation is linear with respect to the pressure term, and
• the velocity flow distribution is much more complex than the pressure field.

Additionally it appears that

• sound production happens at regions of strong velocity changes, which cause a
strong pressure gradient here. The point of the strongest pressure change is the
first vortex, as experimentally shown (Kaykayoglu and Rockwell 1986a, b).

Fig. 4 Finite-Element simulations of blowing on the labium of a flute, stream-lines are velocity,
background is pressure. The box above the horizontal tube is a small part of the surrounding air
above the labium to display the flow behaviour when the flow is not entering the tube. The
simulation uses Top the NS equation and Bottom The Raynolds-Averaged Navier-Stokes
equation. With the NS model, about 50 % of the flow goes into the tube, with the RANS model it
is only about 3.5 %, corresponding to experimental results (Coltman 1968a, b)
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• The interaction between the pressure and the laminar flow from the orfice is
present all over the laminar flow region.

From these findings we can formulate a model of tone production in musical
instruments with a labium coupled to a tube. Returning to the global picture of two
interacting systems, we have as a tone production mainly the first vortex above or
below the labium. These vortices appear because of the nonlinear nature of the NS
equation. Due to the very strong damping within turbulence, the laminar flow
decrease its velocity very strongly, leading to a sudden stop in the flow. This stop
corresponds also to a strong gradient in the pressure at this point. Therefore, the
first vortex is acting as a sound source. As this vortex is very small, sound pro-
duction can be viewed as point-like. These point-like pressure change then travel
into the tube. The tube, on the other side, acts back onto the labium over a wide
range all along the laminar flow from the orfice to the edge. As the pressure
distribution is very smooth, it can influence this laminar flow to a great extend.
This is further enhanced by the nonlinearity of the NS equation enabling vortex
production easily. The bi-stable nature of the labium then allows these vortices to
flow in two distinctively different directions, into or outside the tube. Therefore, a
highly nonlinear generator, the NS-labium-vortex system is acting on a linear one,
the tube. The tube is then reacting onto the laminar flow via its smooth distribution
very easily.

Therefore, the linear system is forcing the nonlinear one to go with its fre-
quencies, like is the case with the flute. The organ pipe, which may oscillate with
the tubes’ frequency on its own, may still be disturbed by a tube attached to it with
considerable different resonance frequency, leading to bifurcations and noise.
There are very few experimental studies here, as musically this is not part of
performance practice. So the edge tone generator or labium system is again a self-
organizing one, coupling a nonlinear and a linear system. It is therefore not sur-
prising that is shows all behaviour typical for such a system, as sudden phase
changes from noise to a stable pitch, bifurcations, etc.

2.7 Summary

To discuss other musical instruments as self-organized oscillators is beyond the
scope of this chapter. Still many experimental findings and models point into this
direction. The singing voice is most often considered to be a van der Pol oscillator,
so a nonlinear model [see e.g. (Steinecke and Herzel 1995)]. Therefore it shows all
characteristic features of self-organized systems, like sudden phase changes from
noise to a stable oscillation, hysteresis loops, or bifurcations, e.g. used in Tuvan
throat undertone singing in the style of kagyraa. With organs, the effect of
synchronization of two or more pipes via the surrounding air is found
(Mitnahmeeffekt) (Abel et al. 2006; Lottermoser 1983). Mode couplings in bars,
similar to those found in strings and with tubes of complex flaring have been
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discussed (Legge and Fletcher 1987). Cymbals are identified to be strongly non-
linear, showing beautiful bifurcations when played with increasing amplitude
(Touzê and Chaigne 2000). The tam-tam shows mode coupling to higher har-
monics, which lead to a sound starting from a nearly sinusoidal fundamental, only
to increase energy up to very high frequencies, bursting out (Rossing and Fletcher
1983). Also friction instruments, like the singing saw, singing glass, friction
wooden blocks, like the lounuet of New-Ireland, or the harmonia built by Chladni
all are systems very similar to that of the bow-string model and therefore self-
organizing. Many other examples could be discussed, too.

So in the end, musical instruments not only have some additional nonlinearities
to fresh up sounds, they are self-organizing and synchronizing systems by their
very nature. Only because of this self-organizing nature they have

• such a very precise harmonic overtone structure,
• have such a large range of possible articulations, or
• have such characteristic initial transients enriching musical performance.

Now, as musical instruments are self-organizing systems, it is interesting to
consider self-organization as a principle in music psychology, too. The next sec-
tion, within the scope of a chapter, discusses findings in this direction. It appears
that the models developed there are often much more elaborated than linear
models and therefore able to explain complex perception and performance actions
linear models cannot fully account for.

3 Music Psychology

Music perception in most cases is not linear at all, and examples of nonlinear
relations between a stimulus and a perception are many. In loudness perception,
the curves of equal loudness depend are frequency and furthermore depend on the
overall loudness levels, where the dB weighting dBA, dBB, or dBC are needed to
compensate for this nonlinearity (Stevens 1961; Florentine et al. 2011). The per-
ception of roughness (Daniel 2008; Schneider et al. 2009) depends on the critical
bandwidth physiologically present on the basilar membrane (Seever 2008) is are
also the reason for masking, a nonlinear effect e.g. used for MP3 coding (Vaseghi
2007). In rhythm perception, phase-transitions occur at about 60 beats per minutes
(BPM) and at about 240 BPM (Repp 2003). Below 60 BPM the perception and
production becomes increasingly difficult and subjects tend to count double time.
At 240 BPM the situation is vice-versa, as the beats are too fast, known e.g. from
Bee-Bop tunes. Timbre perception is very complex and not yet understood com-
pletely, as many features like brightness, fluctuations, noise at initial transients,
etc. interact (Herra et al. 2003). Indeed, all senses perceive logarithmically, and so
a nonlinear relation is present right from the beginning (Keidel 1975).

Another feature of music perception making the situation complex is that the
parameters all interact, and so in a state-space, the axis are not orthonormal one to
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another (Garner 1974). A simple and well known example is the interrelation
between pitch and loudness. If a sine wave, producing a pitch sensation is
increased in volume, and so in loudness, at the same time, the pitch is raising
perceptually without changing its physical frequency. In loudness perception,
partials of a sound do not add linearly to a loudness percept, even when they are in
different critical bands (Green 1988). This feature is even stronger with spectra
consisting of harmonic partials compared to spectra with an inharmonic overtone
structure (Drennan and Watson 2001). This makes an analysis of the components
difficult, and complex models of confound percepts are needed.

Interaction between the different musical features may lead to sudden phase
changes in perception. When combining rhythm and timbre in a groove, the beat
may change by adding one instrument sound on the rhythmic level where before an
off-beat was perceived (Bader and Markuse 1994). In certain pitch registers and
during the steady-state of a sound, two instruments may not be distinguishable and
perception changes between e.g. a violin and a saxophone, back and forth, all of a
sudden (Reuter 1995). In a chord progression of a cadence, playing the solving
chord at a rhythmically unstressed time point, the meter perception may change
because of the chord content (Lerdahl and Jackendoff 1983). The situation may
become even more difficult when higher semantic levels are incorporated.

The link between percept and physiological localization in the ear, the auditory
pathway, or the brain has not yet lead to a clear picture for most of the features.
Still a global understanding is still one of a reduction of complexity from the
basilar membrane in the inner ear (Oertel 2002) to an understanding of music in
the neocortex (Poeppel 2012). Although this is a very rough description, many
features point to such a model. So e.g. the nerve cells at the stereocilia on the
basilar membrane fire with a frequency of up to 4 kHz by interlocking nerve firing
rates. Still the highest frequency measured in the primary auditory cortex AI is
about 200 Hz (Bendor 2011). Traditionally, the brain stem, ganglia cells, or
auditory pathway were associated with a more automatic, unconscious treatment
of sensory data, while the neocortex, the secondary auditory cortex, the Broca’s
area analysing musical syntax (Koelsch 2012), the supplementary motor cortex
(Levitin 2006), strongly connected to music perception, and the prefrontal lobe,
active with only very simple rhythm perception to perform pattern analysis (Thaut
2005), all have been considered the associative part of perception. Here, subjects
are perceiving music consciously and are able to deal with the income more or less
freely. This picture of an automatic, unconscious lower-level and a associative,
conscious higher-level treatment of acoustic stimuli is complemented by a two-
way interaction, a bottom-up way using afferent nerve fibres and a top-down way
of efferent nerves acting back to the very low level of the inner ear again (Ryugo
et al. 2011). So conscious decision making in hearing music also tunes the ear
mostly by inhibition of certain nerve fibres. Traditionally, the low-level parts are
taken as physiology, the higher level part as psychology. Historically, this lead
C. Stumpf to the conclusion that tonal fusion, the perception of one pitch although
many partials are present, is not a psychological but a physiological one (Stumpf
1883/1890). Still this reasoning runs into problems with a monist view of
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consciousness (Damasio 2006). Although Descartes claimed a difference between
body and mind and so promoted a dualistic view, most neurocognitive researchers
today are monistic and claim that percepts are neural activity. So telling the
boundary between physiology and psychology would need a dualistic view. Still
on the other hand, promoting a monistic standpoint would lead to the question,
where conscious perception ends, so e.g. if it would be also present in the solar
plexus, where also neural nets are found.

Nevertheless, this picture of a bottom-up/top-down perception has been chal-
lenged by models of neural networks (Todd and Loy 1991; Arbi 2003). The highly
self-organizing nature of these networks resulting in emergent behaviour is
obvious. Also the amount of information processing needed for a linear model of
perception, performing feature extraction by data reduction as used in most models
also in the field of Music Information Retrieval (MIR) is demanding [see e.g.
(Klapuri 2006)]. Taking in mind the high efficiency found in many biological
systems, perception based on self-organization is much more efficient (Smith and
Lewicki 2006). This reasoning is old and already found in music theory very early
with H. Riemann who supported an idea of Lotze, the economy of hearing, as the
basis for tonality perception, the fact that we extract a tonality like e.g C-Major
from the chord progression C-F-G-C, or the tonality e[ minor from e[-a[-b-e[ [for
a deeper discussion see (Bader et al. 2009)]. Furthermore, many linear bottom-up
models fail to show sudden phase-changes in perception, like the ones discussed
above. Therefore it is reasonable to assume neural maps of self-organized and
synchronized nature as basis of many perceptual features in music.

Only to mention a few, below several examples are presented, discussing past
and present work in this field. Many more of these are found in the literature. With
music perception, the reasoning is experimentally much less approved than with
musical instruments, as measuring neural networks with all interactions is only
partially possible and therefore the physiological proofs are scarce [see e.g.
(Bandyopadhyay et al. 2010; Bendor 2011)]. Still perceptual models have been
proposed which are able to produce the features found in music perception most
often much more detailed and more close to music than linear models. Still often
they are mathematically more demanding. As this is only an overview, like with
the musical acoustics section above, only the findings are given and the reader may
consult the research papers for more details. Although not on music, also syner-
getic models of the brain (Haken 2002) and psychological phenomena in gen-
eral(Haken and Schiepek 2006) have been proposed.

3.1 Timbre

Timbre has often been found to be a multidimensional space. In listening tests,
comparing different instrument sounds pairwise by their perceptual difference, a
two- or three-dimensional embedding space was found [see e.g. (Herra et al. 2003)
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or (Bader 2013) for a review]. The axis of this perceptual space can then be
associated with physical parameters. The most important of these parameters are

• pitch
• brightness
• synchronicity of phases during the initial transient
• spectral fluctuations
• inharmonic components within the initial transient
• relation between even and odd harmonics.

The first one is not a timbre parameter. Still sounds of different pitches have been
used in such experiments, too, where it is striking to see that this feature overrules
all timbre features. So it is reasonable to assume pitch as more prominent in terms
of attention. Indeed, increasing the pitch will also increase brightness, which is the
first and most important timbre feature. Brightness is also most prominent when it
comes to instrument identification during the steady-state of the sound. If the
initial transient is present, this is most often used for instrument identification,
where inharmonic components and the phase relations of the harmonic partials are
perceptually the most salient ones. It is also interesting to see that there are
different perceptual strategies of the two tasks, comparison and identification.
Also, next to the main components mentioned here, there are numerous different
features with special sounds, artificial, hybrid instruments, etc. So it is reasonable
to assume that perception is much more complex and adaptive to the sounds
presented.

To test the findings of multidimensionality with timbre perception, (Caclin et al.
2006, 2008) investigated the orthogonality of these parameters in terms of neu-
ronal coding. If the features, like brightness or flux are treated in different neuronal
networks, their content would be independent one from another. Then changing
one of the parameters would only change the perception of this parameter and
leave the perception of the other parameters unchanged. As a result, the perception
would need to be additive, where all parameters added will result in the percep-
tions in an additive way, too.

Caclin used the paradigm of (Garner 1974). He compared stimuli varying by
two parameters, so e.g. varying pitch and loudness, and uses the reaction time of
subjects to estimate if the relation is separable, and orthogonal, or if it is integral,
confound. When examining pitch, three combinations are possible. Either the
loudness increases as pitch increases, or it stays the same, or it even goes the other
direction, decreasing with increasing pitch. If the change in loudness does not
effect the reaction time of subjects on pitch variation, the dimension is separable, if
it does change the reaction time, the two variables are integral, they depend one on
the other perceptually.

Indeed, the perception of dimensions are not always additive with the stimuli
used in (Caclin et al. 2008). In a mismatch negativity (MMN) EEG experiment,
varying the attack time and the relation between even and odd harmonics was
found to be additive at the fronto-central electrode. Still when including bright-
ness, the results were no longer additive, pointing to an integral perception.
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Self-organizing neural networks have been proposed to perceive musical tim-
bre, too, like in (Cosi et al. 1994; Toiviainen 1992; Kostek 2005), or (Feiten and
Günzel 1994). The Kohonen type of neural nets was used. Here, features of the
sounds used are extracted. Each neuron on a two-dimensional map is a feature list.
The network is trained by comparing the features of the sounds with the feature list
of each neuron. The neuron which comes closest to the feature list of the one sound
is changed in direction of the sound features slightly. After many of these tunings
the network shows fields which correspond closely to different sounds. Therefore,
when testing the network with new sounds similar to the ones used for training, the
neurons of feature lists close to the training sounds will correlate strongest to the
new sounds.

It is important to note that these networks are trained by the sounds using many
trails, which is similar to a training of subjects. Then the schemata of these sounds
are learned and similar sounds are categorized according to the schemata of the
trained network. Next to possible applications of such nets, the basic principle of
learning appears with these models and succeed to built up regions similar to
certain sounds.

3.2 Rhythm Production

The production of rhythm when playing with two hands, like drummers, pianists,
or xylophone players do, has features associated with a synergetic system. This
appears when formalizing such movements to a simple isochronous movement of
the index fingers of the two hands, one on the beat, the other off-beat. In slow
tempo such a movement is simple. Still when increasing speed, all of a sudden
both fingers do no longer move in a beat/off-beat manner but tap both at the same
time. From a standpoint of synchronization this is a sudden phase change. Fur-
thermore, if this regime is reached, the fingers continue moving this way, even if
the tempo is slowed down. It takes considerable concentration to return to the beat/
off-beat regime. This phenomena is a hysteresis loop, where a system behaves
differently when moving forward than backward, in our case speeding up or
slowing down. Additionally, at the point of phase change, the speed of the fingers
is strongly disturbed and normally slows down considerably. As this happens at the
critical point of phase-change, this phenomenon is known as a critical slowing
down.

So three features of such a simple beat/off-beat movement of two hands show
complex behaviour while is stable during normal tempo. This is typical for syn-
ergetic systems. The stability of the system in a regime is due to a nonlinear and
complex system behaviour, forcing the system to a stable solution over a wide
range of the control parameter, which was the bowing pressure above and is the
tempo in this case. The change of the control parameter above a critical point then
leads to a break-down of the simple behaviour and suddenly the system behaves
completely different.
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Now with musical instruments we are able to look at the physical system and
therefore find the reason for this behaviour. With the performance of musicians
this is not so straightforward, as we cannot look into the neurons of the musician
when playing. So the reasoning here, as already discussed above, is one of phe-
notype. Still what we can do is to propose a model which is able to explain the
phenomena, filling in the neurological details in the future, when we may be able
to measure and analyse all neurons directly. Such a model was porposed by
(Haken et al. 1985) and is known as the Haken/Kelso/Bunz (HKB) model [For
sake of space we do not discuss the linear models here, for a review see (Repp
2011)].

The model suggests a behaviour, which can mathematically be described like

V ¼ �a cos /� b cos 2/ ; ð26Þ

where 0 \ / \ 2p is the phase relation of the movement, so for / ¼ p they move
in a beat/off-beat manner, for / ¼ 0 they are in parallel. a and b are parameters
changing during performance. Figure 5 shows the potential when plotting Eq. 26
for different relations b/a. The figure shows the development of the system when
speeding up the tapping movement (left to right, top to bottom). At first, the
movement is at / ¼ p; indicated by the small ball. When decreasing b/a, the
potential changes, still the small ball stays at the local minimum at / ¼ p: But at

Fig. 5 Potential V/a vs. finger movement phase relation / of the Haken, Kelso, & Bunz model of
rhythm production for different values of b/a, representing the speed of the movement, producing
bistable potentials up to b/a[0.25. The ball indicates the phase state of the fingers which move
antiparallel for b/a [ 0.25. Therefore the dot is at / = p: Above, the dot suddenly falls into the
well and the phase is / ¼ 0 for a parallel movement. From Haken et al. (1985)
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b/a = 0.25 the potential well has no longer such a local minimum and the ball will
fall into the global minimum at / ¼ 0; hands move in parallel. So a sudden phase
change appears in such a model.

This is the behaviour one is seeking for in a mathematical formulation. The
HKB model is then looking for an underlying differential equation which will
result in such a behaviour. Although the whole model is too complex to discuss
here in detail, it appears that a kind of van der Pol equation will do, namely

o2x

ot2
þ ð�1ðx2 � r2

0Þ þ �2ð
ox

ot
� x2r2

0ÞÞ
ox

ot
þ ax ¼ 0 : ð27Þ

Here, the system variable x appears as second derivative and with the constant a
leads to an oscillation. Additionally, a first-order differentiation with respect to
time serves as a damping. Still this damping depends on the system variable x, too.
As x may be positive or negative, the damping may also be an energy supply,
which is the core of the van der Pol equation. In this model, this depends on the
amplitude of finger movement r, its frequency x; and coupling constants �1 and �2:
Furthermore the van der Pol damping once depends on the system variable, once
on its velocity. Then for the phase of oscillation one gets

o/
ot
¼ � 2

2ðx2 þ c2Þr ððar � 6dr3Þ sin /þ 3dr3 sin 2/Þ : ð28Þ

This solution has the same form as Eq. 26 we wanted to model, where additional
constants appear due to a lengthy calculation [for details see (Bader 2013)].

So it is reasonable to assume rhythm production to be caused by a van der Pol
equation, a nonlinear equation, where the damping of the system changes with its
system parameter itself. Such a model is able to produce the sudden phase change,
a hysteresis loop, as well as the critical slowing down of the performance at the
phase change.

Another approach is to discuss polyrhythms due to a nonlinear coupled system
of oscillators known as the sine-cycle map like in (Haken et al. 1995). This map is
an iterative process and can be written as

Hnþ1 ¼ Hn þ X� ðK=ð2pÞ sinð2pHnÞ : ð29Þ

The system state H at the next time point depends on the previous system state, a
coupling X ¼ x1=x2 of the two oscillator frequencies x1 and x2; and the phase of
the state with a coupling constant K. A winding number WðK;XÞ ¼ ðH2 �H1Þ=n
is defined for the two oscillators for n!1: During the iteration it appears that the
system can only stay stable, so at a constant winding number, for certain relations
between the oscillation frequencies and certain coupling numbers. In Fig. 6 the
stable regions are printed in black. d’Arnold tongues appear, favouring simple
relations of the two oscillations like 1:2, 1:3, or 2:3. Relations which are more
complex appear not to be stable, which is known from rhythm performance.
Indeed, this system is also able to cover learning processes by changing the
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coupling strength, where more complex rhythms can be learned. This is an
important feature, as often music shows slight deviations from simple relations,
which are performed with a high consistency, like the unstable 3/4 m in a Waltz or
the microrhythmic phrasing of swing triplets.

3.3 Tonality

The Riemann idea of tonality as based on the economy of hearing has been
discussed above already. Tonality arises because it is more economic to relate
tones and consider a common ground for all chords and melodies, the tonality. Still
several levels of abstraction point to a complex nature of this referencing. Tonality
may be heard while only presenting a single melody or only chords. It may be
defined by a cadence or by modal playing. In the history of western art music, in
Renaissance polyphony vertical melodic thinking, still the intervals of the voices
are crucial, as e.g. in the rules of Johann Fux gradus ad parnassum. In the Vienna
classic period, music was composed in a homophonic way as a vertical thinking in
chord progressions with one main melodic line. There, tonality is established
mostly by the chord progressions.

We may consider tonality as a simple statistical process, where the amount of
intervals decide about tonality, which also has successfully been performed [see
e.g. (Krumhansl 1990)]. Still interval counting is a global view on a musical piece,
where all intervals are considered. The establishment of tonality on the other hand
is a temporal process, as listeners will decide about it while listening to a piece and
not only at the end of it. Alternatively, we may consider tonality and tonal centers
as an emergent property araising from combinations of melodies, chords, caden-
ces, and phrases. Again we cannot look into the brain on a neuronal level to decide
from a physiological standpoint. So again models have been proposed to cover
tonality, tonal centers, or phrases using neural networks as self-organized systems.

Fig. 6 Sine-circle map of the
iteration Hnþ1 ¼
Hn þ X�
ðK=ð2pÞ sinð2pHnÞ showing
stable oscillations (black) and
unstable oscillations (white)
for different frequency
relations X ¼ x1=x2 vs.
different coupling strengths
K. The black so-called
d’Arnold tongues narrow for
smaller K which in the model
is associated with high
tapping frequency making
high speed performance
much more unstable. From
Haken et al. 1995
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Two basic approaches have been proposed here, networks of the Kohonen type
and connectionist models. The Kohonen nets have been discussed briefly above.
One example is the model proposed by Leman and Carreras (1997). The network
was trained using major and minor chords, where again the feature vector of the
neuron most close to a training chord was slightly changed in the direction of the
chord. This was repeated many times for all chords, resulting in a map which
indeed shows the tonal relations known from the cycle of fifth, as shown in Fig. 7.
The map is cyclic, means that the top is connected with the bottom and the left to
the right side. The chords G–D–A–D are in one line, which is cyclic repeated at the
bottom with the chord C, which is black in this case, followed by F, B[; E[; etc. It
is interesting to see that the minor chords are close to the major chords (capital
letters). The case shown in the figure is while testing the network with a C—major
chord. Black and grey shaping represents the correlation strength between the net
and the test chord. Indeed, the C-chord is most strongly met, still chords in the
neighbourhood are also slightly correlating, interestingly those in close tonal
relations to C—major, like F—major, a—minor, etc.

Another approach is the connectionist approach. Here several layers of neurons
are connected in a hierarchical manner, mostly one layer of income neurons, one
resulting layer, and one hidden layer in between. The network is trained by
stimulating the income neurons which again stimulate the hidden layer depending
on weighting functions. These weightings are changed according the reaction of
the network. The rules of weighting adaptation are manifold, depending on the
model. Often inhibition is performed, where ‘the winner takes it all’ establishes
perceptual centers.

In Fig. 8 one example of a neural net learning musical phrases is shown
(Gjerdingen 1990). The network is trained by early Mozart pieces and is then able
to identify phrases. In the figure two layers are shown, a middle layer, representing

Fig. 7 SOM map of tonal
centers clearly showing the
cycle of fifth for major
(capital letters) and minor
(lower case letter) chords.
The map reacts to a C major
chord (darkest point)
correctly, but also to similar
chords like F major, F minor,
c minor, a minor, e minor,
and G major with less
activation. Again, this map is
continuous, connecting left to
right and bottom to top. From
Leman and Carreras (1997)
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the events over the two-bar phrase and the top layer. In the net, the different
reaction strength of the network is shown which is again plotted on the right side
where the size of the notes represent the different weights. This can be taken as
Gestalt of the phrase. Then, on the highest level, this phrase causes only one
neuron to react, therefore an identification of the phrase by the network is present.

4 Conclusions

This review only contains a small amount of approaches for synchronized, self-
organized, or synergetic models of music production, perception, and perfor-
mance. It appears that the features used in music performance are mainly found
with the special features found in these formulations, in terms of articulation,
deviations, or synchronization.

Nonlinearities are strongly discussed with musical instruments. The pre-stress
and bending of piano soundboards is crucial for the instruments’ sound (Mamou-
Mani et al. 2008). Longitudinal waves in strings enhance the brightness of the sounds
considerably (Bank and Sujbert 2005). Shock waves in trumpets or trombones are
the cause of their brassiness (Hirschberg et al. 1996). Synchronization of organ pipes

Fig. 8 Mozart KV1d, measures 1 and 2 as original score transposed from F to C (bottom left),
neural net activation pattern (top), and score representation of this activation pattern (bottom
right), where activation strength is displayed as note size. The asterisk shows the time point at
which the activation appears. From Gjerdingen (1990)
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appear when pipes are close in space and frequency (Abel et al. 2006). Self-sustained
oscillations of flute tone production is a bi-stable process including turbulence
(Bader 2013). Forced oscillations of string/body couplings cause an enhanced res-
onance especially for low frequencies to avoid dead spots on the instrument (Bader
2010). Indeed, no instrument does work without nonlinearities. Still this is not
enough to understand musical instruments. They appear to be self-organized systems
only producing harmonic overtone structures and musical tones at all because of this
synchronizing processes. As an additional result, the crucial initial transients of
instruments are caused by the struggle between the subsystems during the slaving
process. So indeed, the ancient picture of music as based on harmonic relations is not
found with musical instruments, contrary, the cause of harmonicity is a strong
nonlinear nature of the vibrating systems.

This also seems to hold on the perception side, although with the restriction
mentioned that we cannot look into the neural networks of musicians while
playing. Another recent approach to this, also presented in this volume, is a free-
energy principle (Friston 2010). This model is in the line of Bayes models of
hidden-layer structures, like Hidden-Markov models, which are also hot topics in
music analysis and production (see also (Nakano et al. 2001) or Braasch in this
volume). Efficient neural coding of auditory perception is found with the cat
auditory system (Smith and Lewicki 2006). Models of stochastical information
processing find dependencies of perception on the deviation of the stimulus rather
than on its mean (Rao et al. 2002). Nonlinear distortion in the cochlea is known
and discussed for quite some time (Young et al. 2005). Synchronization of brain
regions in the 40 Hz regime or by perception tasks like expectation are found on a
neuronal basis (Shamir et al. 2009). Oscillatory neurons are strongly discussed in
speech processing (Wang 2010). The afferent/efferent coupling in the auditory
pathway is also a candidate for such synchronizing behaviour.

Still also many musicians and composers work with fractals or emergent
properties of music, e.g. G. Ligeti in his piano sonatas (Bader 2013). Self-simi-
larity has been proposed as a compositional principle in pieces of J.S. Bach
(Hofstadter 1980). Algorithms of contemporary music production, like Physical
Modeling (Bader and Hansen 2008), use many nonlinearities to produce inter-
esting sounds and come close to real instrument sounds.

So nonlinearities in musical acoustics cause most instruments to produce
sounds and harmonic overtone structures at all. With perception the models are
often much closer to reality than linear models. It is worth considering these
phenomena more closely in the future, both, in terms of production and perception.
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A Free Energy Formulation of Music
Generation and Perception: Helmholtz
Revisited

Karl J. Friston and Dominic A. Friston

1 Introduction

It is the theory of the sensations of hearing to which the theory of music has to look for the
foundation of its structure. (Helmholtz 1877, 4)

This chapter considers music from the point of view of its perception and how
acoustic sensations are constructed into musical percepts. Our treatment follows
the tradition established by Helmholtz that perception corresponds to inference
about the causes of sensations. This therefore requires us to understand the nature
of perceptual inference and the formal constraints that this inference places on the
nature of music. The basic idea, developed in this chapter, is that music supports
the prediction of the unpredictable and that this prediction fulfils a fundamental
imperative that we are all compelled to pursue. Heuristically, those activities that
we find pleasurable are no more, and no less, than the activities we choose to
engage in. The very fact that we can indulge in the same sorts of behaviours
repeatedly speaks to the remarkable fact that we are able to maintain a homeostatic
exchange with our world—from a physiological to an aesthetic level. We will see
later, that this remarkable ability rests upon an active sampling of the sensorium to
minimise surprise and fulfil our predictions. In short, music provides the purist
opportunity to do what we must do—the opportunity to predict. The opportunity is
pure in the sense that musical constructs stand in intimate relation to auditory
sensations, perhaps more than any other aesthetic construct:
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Music stands in a much closer connection with pure sensation than any other art… In
music, the sensations of tone are the material of the art. (Helmholtz 1877 2, 3)

A less heuristic version of this thesis can be motivated from the writings of
Helmholtz (1866) on the perceptions in general: in brief, we will consider the brain
as a Helmholtz machine (Dayan et al. 1995) that actively constructs predictions or
explanations for sensory inputs using internal or generative models. This process
of active prediction or inference rests upon predicting the causes of sensory input
in a way that minimises prediction errors or surprises. If one generalises this notion
of minimising surprise or prediction error to action, one obtains a fairly complete
explanation for behaviour as the selective sampling of sensory input to ensure that
it conforms to our predictions or expectations, as also articulated nicely by Pearce
et al. (2010, 302):

The ability to anticipate forthcoming events has clear evolutionary advantages, and pre-
dictive successes or failures often entail significant psychological and physiological
consequences. In music perception, the confirmation and violation of expectations are
critical to the communication of emotion and aesthetic effects of a composition.

In what follows, we will see that the ability to predict and anticipate is not just
of evolutionary advantage, it is a hallmark of any self-organising biological system
that endures in an inconstant and changing world. Active inference then puts
prediction centre-stage in the action-perception cycle, to the extent it could be
regarded as embodied inference: Embodiment in music production and generation
is clearly an important formal constraint on the way music is perceived at many
levels. For example, as noted by Helmholtz:

The enigma which, about 2,500 years ago, Pythagoras proposed to science, which
investigates the reasons of things, ‘Why is consonance determined by the ratios of small
whole numbers?’ has been solved by the discovery that the ear resolves all complex
sounds into pendular oscillations, according to the laws of sympathetic vibration, and it
regards as harmonious only such excitements of nerves as continue without disturbance.
(Helmholtz 1877, 279)

In other words, the sensory apparatus and neuronal infrastructure responsible
for sensing and predicting auditory input places constraints on what we can predict
and, according to the current thesis, what is perceived as musical. This is meant in
the sense that colour perception is formally constrained by our (three wavelength
selective) photoreceptors to lie in a low dimensional perceptual space—despite the
fact that the wavelength composition of visual information arriving at the retina is
infinite in its dimensionality. Not only is the perception of music constrained by
the embodied brains that perceive it—the nature of music also conforms to
embodied constraints on production, so music is ‘‘within the compass of
executants’’:

There is nothing in the nature of music itself to determine the pitch of the tonic of any
composition…In short, the pitch of the tonic must be chosen so as to bring the compass of
the tones of the piece within the compass of the executants, vocal or instrumental.
(Helmholtz 1877, 310)
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We will exploit this theme of embodied inference throughout this article;
paying careful attention to the neuronal structures that can generate and predict
music. This is particularly important for music perception that relies upon neuronal
dynamics with deep hierarchical structure.

2 Music and Deep (Hierarchical) Structure

Why is music so compelling to listen to? We started with the premise that music
affords the opportunity to predict the unpredictable. This predictable unpredict-
ability rests upon the temporally extensive nature of music and its hierarchical
dynamics. If we are biological machines that are built (have evolved) to predict,
then the deepest most complicated predictions can only be elicited by stimuli that
have a multi-layered (deep) hierarchical structure. Hierarchical causal structure is
most evident in a separation of temporal scales, in which slower changes con-
textualise and prescribe faster changes in a recursive fashion. A non-musical
example here would be a story (hours) that unfolds on the basis of a narrative
(minutes), which entails semantics that emerge from prosody and syntax (sec-
onds); where the semantics themselves depend upon phonological structures
(milliseconds) and so on. Music represents a pure (perhaps the purist) example of
deep hierarchical dynamical structure, whose prediction involves the resolution of
surprise at multiple temporal scales and—by necessity—can only be accomplished
by brains that can support similarly structured neuronal dynamics. We will see an
example of this later using the production and recognition of bird songs that are
composed by separating the temporal scales of hierarchical neuronal dynamics.

But why the prediction of the unpredictable? It is evident in many writings on
music perception and appreciation, that the aesthetic qualities of music and its
emotive aspects depend upon a resolution of unpredicted excursions or violations
of what might have been predicted. It is the resolution of local violations that is
afforded by music’s hierarchical structure—and the hierarchical models predicting
music. A simple example here would be the use of attractors from dynamical
systems theory to produce and recognise musical structures—particularly, attrac-
tors that support deterministic chaos. Although this may sound fanciful, these
(strange) attractors may play a central role in music and song for several reasons:
first, the fact that they exhibit deterministic chaos means that the actual dynamics
(say amplitude and frequency modulations as a function of time) are unpredictable
from any initial conditions yet, at the same time, they evolve according to entirely
deterministic rules which—once inferred by the brain—provide perfect predictions
of what will happen next; namely, prediction of the unpredictable. We will see an
example of this later, using simulated (bird) songs.

Second, the neuronal dynamics (central pattern generators) responsible for the
production of musical stimuli, and—from the perspective of this chapter—their
perception can be cast as attractors. Crucially, many of the fundamental aspects of
music can be captured quite nicely by attractors with chaotic itinerancy (or related
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mathematical images called heteroclinic cycles). This is important because it
means that we can simulate or model music perception in a biologically plausible
way. Furthermore, by hierarchically composing attractors with different time
scales, one can model the perception of auditory objects or scenes with deep
hierarchical structure. The last section provides a proof of concept of this approach
to music perception, using dynamical attractor models of bird song to simulate
both perceptual and neurophysiological responses, of the sort that are seen in real
brains.

This chapter comprises four sections: In the first, we briefly review the literature
on music and prediction with a special emphasis on the neuroscience of music—as
it relates to unconscious inference. The second section introduces an abstract and
broad theoretical framework that motivates the importance of prediction and
minimising surprise in terms of the free energy principle and active inference. This
section is a bit technical but sets up the formalism for the third section that
introduces plausible neuronal architectures that minimise surprise (or more exactly
maximise free energy) through predictive coding. In the final section, we consider
some canonical examples of song perception using simulations of bird song and
the predictive coding scheme of the preceding section. These examples illustrate
the basic phenomenology and illustrate some ubiquitous phenomena in the
neurosciences, like omission responses and categorisation, as measured both
psychophysically and electrophysiologically.

3 Prediction in Music and Cognition

Predictive information processing is fundamental to music in three ways. (1) Prediction
and expectancy incorporate the essence of the dynamics of musical temporality. Further
they make the experience of local or large-scale goal-directed processes in music possible
(based on, e.g., melodic, harmonic or modal features). (2) Predictive processing constitutes
a major process involved in musical interaction and synchronisation. (3) Finally, processes
of expectancy and prediction are understood to be linked with specific emotional and
aesthetic musical effects. (Rohrmeier and Koelsch 2012)

The Helmholtzian view considers the brain as a learning and inference sys-
tem—assimilating prior beliefs and violated predictions to predict future events as
accurately and as parsimoniously as possible. The evolutionary benefits of such a
system are clear: it is through a constant updating of our internal model of the
world that our interactions with the world are nuanced and optimised. Prediction
consequently plays a deep-seated role in all cognition, including that of music.
Predictive processing is fundamental to music in three ways (Rohrmeier and
Koelsch 2012): it accommodates musical temporality and underlies musical
interactions and synchronisation. Furthermore, it plays a key role in mediating the
emotive and aesthetic effects of music.
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Meyer (1956) proposed that by confirming or violating the listener’s musical
expectations—and thereby conveying suspense or resolution—music generates an
emotional response. However, to recognise the musical qualities of auditory
sensations, we must infer the rules or causal structures that underlie our expec-
tations. This structure is manifest over several levels within music, such as melody
and harmony, and entails the recognition of rhythmic or metrical structure.
Investigations of Meyer’s proposal have focused on individual musical features
and—consistent with the prominent contribution of harmony to Western styles of
music—the processing of harmonic violations has received much attention.
Responses reflecting violated predictions, induced by the preceding harmonic
context, are measurable with electroencephalography (EEG). For example, infre-
quent and unpredictable chords, within chord sequences, elicit an early right-
anterior negativity (ERAN) and a late bilateral-frontal negativity (N5) in the event
related response (ERP) of the listener (Koelsch et al. 2000). These response
components are thought to reflect the violation of harmonic expectations and
higher processes of harmonic integration into the on-going musical context
respectively. Both of their amplitudes are sensitive to the degree of expectance and
the probability of harmonic deviation. Further research showed that they are
evoked irrespective of whether the stimulus is attended to (Koelsch et al. 2002;
Loui et al. 2005). Furthermore, while the N5 is influenced by emotional expression
in the performance of a piece (i.e., deliberate variations in loudness and tempo) the
ERAN is not (Koelsch et al. 2008). While these components reflect the brain’s
capacity to establish expectations given a harmonic context, other studies have
demonstrated a late positive component with violation of melodic expectations
(Besson and Faita 1995; Verleger 1990)—a prediction—dependent response that is
modulated by expertise and familiarity.

While the expression of neural responses to violation of musical expectation is
established, the implications of these findings for the emotive effects of music are
less well understood; due in part to the difficulty of measuring emotional
responses. The possibility that emotional attribution is engaged in violation par-
adigms has emerged as an intriguing prospect from functional neuroimaging
studies: unexpected chords activate both the orbital frontolateral cortex (OFLC)—
a paralimbic region associated with evaluating a stimulus’ emotional salience—
and the anterior insula, associated with autonomic responses to emotionally valent
stimuli (Koelsch et al. 2005). Interestingly, similar OFLC activation, in subjects
listening to classical music, could be prevented when scrambling music, hence
disrupting its structure (Levitin and Menon 2003). The authors attributed this
activation to the recognition of fine-structured stimuli that evolve over extended
periods of time. The absence of this activation, with scrambled music, suggests
that high-level (emotive) attributes of music are associated with longer timescales,
as suggested by the studies of the (late) N5 ERP components above.

Some studies have used retrospective subjective accounts of emotional and
autonomic responses to music, analysing the musical structure of cited excerpts to
identify evocative musical characteristics. For example, violations of harmonic
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expectation evoke spine shivers, while a musical phrase occurring earlier than
expected reliably increases heart rate (Sloboda 1991). While promising, the link
between expectation violation and emotion in such approaches is weakened by the
lack of an objectively measurable emotional response. Steinbeis et al. (2006)
addressed this by combining the use of subjective scales of tension and emo-
tionality with the recording of heart rate and electrodermal activity (EDA)—
physiological measures consistently associated with emotional processing. Har-
monic expectation was violated via modification of a single chord in each of six
Bach chorales. Tension, emotionality and EDA were found to increase with the
degree of harmonic expectation violation, which was also reflected in concurrently
recorded ERPs (as discussed above).

While the evidence is intriguing, there are some caveats to consider. For
example, violation studies are limited by their design, as the violating stimuli do not
occur naturally. Furthermore, harmonic studies in particular typically employ
paradigms that assess expectation associated with final chords, so the findings may
only apply to tonal closure. The generalisation of violation-dependent responses to
all aspects of music perception may be more challenging, because some attributes
are more predictable than others. For example, while forthcoming elements of
melodic or harmonic expectation may be clearly defined, this is not the case for
more complex features, such as key structure, that do not necessarily apply to the
next musical event, nor to an unambiguous point in time. Additionally, the interplay
of attention and prediction in complex styles of music, with non-aligned (e.g.
polyrhythmic) features, remains poorly understood (Rohrmeier and Koelsch 2012).
Although (unsupervised) statistical learning models can predict single features such
as melody (Pearce et al. 2010), predictive models of complex music are still in
developmental stages. Nevertheless, the findings thus far support Meyer’s proposal,
in which music engages the base mechanisms by which we come to understand our
environment. The evidence for violation of expectation in emotion discussed here
may underlie the initiation of music’s intrigue; as Meyer wrote,

Such states of doubt and confusion are abhorrent. When confronted with them, the mind
attempts to resolve them into clarity and certainty. Meyer (1956)

It may indeed be by a flirtatious generation of disorder and its subsequent
resolution that music communicates its emotional effect.

3.1 Summary

In summary, the very fact that neuronal responses to the violation of musical
predictions can be elicited speaks to the fact that the brain can construct expec-
tations or predictions about the temporal structure of music. Furthermore, the
empirical evidence suggests that these predictions have a hierarchical aspect, in
which higher level predictions pertain to a longer timescales. Circumstantial
evidence suggests that high-level attributes have an emotive dimension; which,
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from the point of view of active inference, mean that these representations provide
both exteroceptive (auditory) and interoceptive (autonomic) predictions that may
explain the visceral responses that music can elicit—visceral responses associated
with the violation and resolution of high-level predictions. These conclusions rest
upon a hierarchical model of musical structure that is characterised by a separation
of temporal scales. In the next section, we will consider the form of hierarchical
models that the brain might use; starting with a purely formal or mathematical
description that will be used in the subsequent section to understand the neuronal
circuits that might underlie hierarchical inference or predictive coding in the brain.

4 Hierarchical Models and Bayesian Inference

In the introduction, we hinted at the fundamental imperative for all self-organising
biological systems to minimise their surprise and actively engage with the envi-
ronment to selectively sample predicted sensations—this is known as active infer-
ence. In the previous section, we saw that the brain can predict the underlying causal
structure of (musical) sensory streams over multiple timescales; in other words it
can infer the hidden causes of its sensory input. In the remainder of this chapter, we
try to put these things together and provide a formal model of perception that can be
used to illustrate the nature of perception and prediction. In brief, to maintain a
homoeostatic exchange with the environment biological systems must counter the
dispersion of their sensory states due to environmental fluctuations. In terms of
information theory, this means biological systems must minimise the entropy of
their sensory states. This can be achieved by minimising the surprise associated with
sensory states at each point in time, because (under ergodic assumptions) the long-
term average of surprise is entropy. Crucially, negative surprise is the logarithm of
Bayesian evidence. This means that minimising surprise is the same as maximising
the evidence for a model of the world entailed by the structure and dynamics of the
biological system. In other words, we are all obliged to be Bayes-optimal modellers
of our sensorium. In what follows, we consider in more detail the nature of the
models that the brain may use to guide active inference and, implicitly, make
predictions about hidden causes of sensory input.

4.1 Hierarchical Dynamic Models

Hierarchical dynamic models are probabilistic generative models pðs; wÞ ¼
pðsjwÞpðwÞ based on state-space models. They entail the likelihood pðsjwÞ of
getting some sensory data sðtÞ given some parameters w ¼ x; v; hf g and priors on
those parameters pðwÞ: We will see that the parameters subsume different quan-
tities, some of which change with time and some which do not. A dynamic model
can be written as
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s ¼ gðx; vÞ þ xs

_x ¼ f ðx; vÞ þ xx
ð1Þ

The continuous nonlinear functions (f, g) of the states are parameterized by h.
The states v(t) can be deterministic, stochastic, or both. They are referred to as
sources, or causes. The states x(t) mediate the influence of the input on the output
and endow the system with memory. They are often referred to as hidden states
because they are seldom observed directly. We assume the random fluctuations
(i.e., observation noise) x(t) are analytic, such that the covariance of the gener-
alised fluctuations ~x ¼ ðx; x0; x00; . . .Þ is well defined. Generalised states include
the state itself and all higher order temporal derivatives.

The first (observer) equation above shows that the hidden states (x, v) are
needed to generate an output or sensory data. The second (state) equation enforces
a coupling between orders of motion of the hidden states and confers memory on
the system. Gaussian assumptions about the fluctuations pð~xÞ ¼ N ð0; RÞ provide
the likelihood of any given sensory data and (empirical) priors over the motion of
hidden states. It is these empirical priors that can be exploited by the brain to make
predictions about the dynamics or trajectories of hidden states causing sensory
input. Hierarchical dynamic models have the following form, which generalizes
the model in Eq. 1

s ¼ gðxð1Þ; vð1ÞÞ þ xð1Þv

_xð1Þ ¼ f ðxð1Þ; vð1ÞÞ þ xð1Þx

..

.

vði�1Þ ¼ gðxðiÞ; vðiÞÞ þ xðiÞv

_xðiÞ ¼ f ðxðiÞ; vðiÞÞ þ xðiÞx

..

.

ð2Þ

Again, f(i) = f(x(i), v(i)) and g(i) = g(x(i), v(i)) are continuous nonlinear functions
of the states. The random innovations x(i) are conditionally independent fluctua-
tions that enter each level of the hierarchy. These play the role of observation error
or noise at the first level and induce random fluctuations in the states at higher
levels. The causal states v = (v(1), v(2),…) link levels, whereas the hidden states
x = (x(1), x(2),…) link dynamics over time. In hierarchical form, the output of one
level acts as an input to the next. Inputs from higher levels can enter nonlinearly
into the state equations and can be regarded as changing its control parameters to
produce complicated convolutions with ‘‘deep’’ (i.e., hierarchical) structure.

The conditional independence of the fluctuations means that these models have
a Markov property over levels (Efron and Morris 1973), which simplifies the
architecture of attending inference schemes. See Kass and Steffey (1989) for a
discussion of approximate Bayesian inference models of static data and Friston
(2008) for dynamic models. In short, a hierarchical form endows models with the
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ability to construct their own priors. For example, the prediction ~gðiÞ ¼ ~gð~xðiÞ; ~vðiÞÞ
plays the role of a prior expectation on ~vði�1Þ, yet it has to be estimated in terms of
ð~xðiÞ; ~vðiÞÞ. This feature is central to many inference and estimation procedures,
ranging from mixed-effects analyses in classical covariance component analysis to
automatic relevance determination in machine learning.

4.2 Summary

This section has introduced hierarchical dynamic models (in generalized coordi-
nates of motion). These models are about as complicated as one could imagine;
they comprise causal and hidden states, whose dynamics can be coupled with
arbitrary (analytic) nonlinear functions. Furthermore, these states can have random
fluctuations with unknown amplitude and arbitrary (analytic) autocorrelation
functions. A key aspect of these models is their hierarchical structure, which
induces empirical priors on the causes. These complement the constraints on
hidden states, furnished by empirical priors on their motion or dynamics. Later, we
will examine the roles of these structural and dynamical priors in perception. We
now consider how these models are inverted to disclose the unknown states
generating observed sensory data.

4.3 Model Inversion (inference) and Variational Bayes

The concluding part of this section considers model inversion and provides a
heuristic summary of the material in Friston (2008). A generative model maps
from hidden causes or states to sensory consequences. Recognition (model
inversion) inverts this mapping to infer the hidden causes from sensations. We will
focus on variational Bayes, which is a generic approach to model inversion that
approximates the conditional density pðwj~sÞ over the unknown states and param-
eters, given some data. This approximation is achieved by optimizing the sufficient

statistics of a recognition density qð~wÞ over the hidden generalised states, with
respect to a lower bound on the log-evidence ln pð~sjmÞ of the model m (Feynman
1972; Hinton and von Camp 1993; MacKay 1995; Neal and Hinton 1998; Friston
2005; Friston et al. 2006). The log-evidence or negative surprise can be expressed
in terms of a free-energy and divergence term

ln pð~s mj Þ ¼ F þ DKLðqð~wÞjjpð~wj~s; mÞÞ )

F ¼ ln pð~s; ~wÞ
D E

q
� ln qð~wÞ
D E

q

ð3Þ
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The free-energy comprises an energy term, corresponding to a Gibb’s energy,

Gð~s; ~wÞ :¼ ln pð~s; ~wÞ expected under the recognition density and its entropy.
Equation 3 shows that the free energy is a lower-bound on the log-evidence
because the divergence term is, by construction, nonnegative. The objective is to
optimize the sufficient statistics of the recognition density by maximising the free-

energy and minimizing the divergence. This ensures qð~wÞ � pð~wj~s; mÞ becomes an
approximate posterior density.

Invoking the recognition density converts a difficult integration problem
(inherent in computing the evidence) into an easier optimization problem. We now
seek a recognition density that maximizes the free energy at each point in time. In
what follows, we will assume the hidden parameters are known and focus on the
hidden states u = (x, y). To further simplify things, we will assume the brain uses
something called the Laplace approximation. This enables us to focus on a single
quantity for each unknown state, the conditional expectation or mean. Under the
Laplace approximation, the conditional density assumes a fixed Gaussian form
qð~uÞ ¼ N ð~l; CÞ with sufficient statistics ð~l; CÞ; corresponding to the conditional
expectation and covariance of the hidden states. The advantage of the Laplace
approximation is that the conditional covariance is a function of the mean (the
inverse curvature of the Gibbs energy at the expectation). This means we can
reduce model inversion to optimizing one sufficient statistic; namely, the condi-
tional expectation or mean. This is the solution to

_~l� D~l ¼ ouF ð4Þ

Here, _~l� D~l can be regarded as motion in a frame of reference that moves
with the predicted generalised motion D~l, where D is a matrix derivative operator.
Critically, the stationary solution (in this moving frame of reference) maximizes
free energy. At this point the mean of the motion becomes the motion of the mean,
_~l ¼ D~l and ouF ¼ 0. Those people familiar with Kalman filtering will see that
Eq. 4, can be regarded as (generalised) Bayesian filtering, where the change in
conditional expectations _~l ¼ D~lþ ouF comprises a prediction and a correction
term that depends upon free energy or—as we will see in the next section—
prediction error.

4.4 Summary

In this section, we have seen how the inversion of dynamic models can be for-
mulated as an optimization of free energy. By assuming a fixed-form (Laplace)
approximation to the conditional density, one can reduce optimization to finding
the conditional means of unknown quantities. For the hidden states, this entails
finding a path or trajectory that maximizes free energy. This can found by making
the motion of the generalized mean perform a gradient ascent in a frame of
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reference that moves with the mean of the generalized motion. The only thing we
need to implement this recognition scheme (generalised Bayesian filtering) is the

Gibbs energy Gð~s; ~wÞ :¼ ln pð~s; ~wÞ. This is specified completely by the generative
model (Eq. 2). In the next section, we look at what this scheme might look like in
the brain—and see that it corresponds to something called predictive coding.

5 Hierarchical Models in the Brain

A key architectural principle of the brain is its hierarchical organization (Felleman
and van Essen 1991; Maunsell and van Essen 1983; Mesulam 1998; Zeki and
Shipp 1988). This has been established most thoroughly in the visual system,
where lower (primary) areas receive sensory input and higher areas adopt a
multimodal or associational role. The neurobiological notion of a hierarchy rests
upon the distinction between forward and backward connections (Angelucci et al.
2002; Felleman and Van Essen 1991; Murphy and Sillito 1987; Rockland and
Pandya 1979; Sherman and Guillery 1998). This distinction is based upon the
specificity of cortical layers that are the predominant sources and origins of
extrinsic connections. Forward connections arise largely in superficial pyramidal
cells, in supra-granular layers, and terminate on spiny stellate cells of layer four in
higher cortical areas (DeFelipe et al. 2002; Felleman and Van Essen 1991).
Conversely, backward connections arise largely from deep pyramidal cells in
infra-granular layers and target cells in the infra and supra-granular layers of lower
cortical areas. Intrinsic connections mediate lateral interactions between neurons
that are a few millimetres away. There is a key functional asymmetry between
forward and backward connections that renders backward connections more
modulatory or nonlinear in their effects on neuronal responses (e.g., Sherman and
Guillery 1998; see also Hupe et al. 1998). This is consistent with the deployment
of voltage-sensitive NMDA receptors in the supra-granular layers that are targeted
by backward connections (Rosier et al. 1993). Typically, the synaptic dynamics of
backward connections have slower time constants. This has led to the notion that
forward connections are driving and elicit obligatory responses in higher levels,
whereas backward connections have both driving and modulatory effects and
operate over larger spatial and temporal scales.

5.1 Bayesian Filtering and Predictive Coding

This hierarchical structure of the brain speaks to hierarchical models of sensory
input. We now consider how the brain‘s functional architecture can be understood
as inverting hierarchical models (recovering the hidden causes of sensory input). If
we assume that the activity of neurons encodes the conditional mean of states, then
Eq. 4 specifies the neuronal dynamics entailed by perception or recognizing states
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of the world from sensory data. In Friston (2008), we show how these dynamics
can be expressed simply in terms of prediction errors on the causes and motion of
the hidden states. Using these errors, we can write Eq. 4 as

_~lðiÞv ¼ D~lðiÞv � o~v~e
ðiÞ � nðiÞ � nðiþ1Þ

v

_~lðiÞx ¼ D~lðiÞx � o~x~e
ðiÞ � nðiÞ

nðiÞv ¼ PðiÞv ð~lði�1Þ
v � gðiÞð~lðiÞx ; ~lðiÞv ÞÞ

nðiÞx ¼ PðiÞx ðD~lðiÞx � f ðiÞð~lðiÞx ; ~lðiÞv ÞÞ

ð5Þ

This scheme describes a gradient descent on the (sum of squared) prediction

error—or more exactly precision-weighted prediction errors nðiÞ ¼ PðiÞ~eðiÞ, where

precision PðiÞ corresponds to the reliability (inverse covariance) of the prediction
error ~eðiÞ at the i-th level of the hierarchy. The first pair of equalities just says that

conditional expectations about hidden causes and states ð~lðiÞv ; ~lðiÞx Þ are updated
based upon the way we would predict them to change—the first term—and sub-
sequent terms that minimise prediction error. The second pair expresses prediction
error as the conditional expectations about hidden causes and (the changes in)
hidden states minus their predicted values.

It is difficult to overstate the generality and importance of Eq. 5—it grandfa-
thers nearly every known statistical estimation scheme, under parametric
assumptions about additive noise. These range from ordinary least squares to
advanced Bayesian filtering schemes (see Friston 2008). In this general setting,
Eq. 5 corresponds to (generalised) predictive coding. Under linear models, it
reduces to linear predictive coding, also known as Kalman-Bucy filtering.

5.2 Predictive Coding and Message Passing in the Brain

In neuronal network terms, Eq. 5 says that prediction error units receive messages
based on expectations in the same level and the level above. This is because the
hierarchical form of the model only requires expectations between neighbouring
levels to form prediction errors. Conversely, expectations are driven by prediction
error in the same level and the level below—updating expectations about hidden
states and causes respectively. This updating corresponds to an accumulation of
prediction errors—in that the rate of change of conditional expectations is pro-
portional to prediction error. This means expectations are proportional to the
integral or accumulation of prediction errors over time. Crucially, this accumu-
lation requires only the prediction error from the lower level and the level in
question. These constitute the bottom-up and lateral messages that drive condi-
tional expectations to provide better predictions—or representations—which
suppress the prediction error. Electrophysiologically, this means that one would
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expect to see a transient prediction error response to bottom-up afferents (in
neuronal populations encoding prediction error) that is suppressed to baseline
firing rates by sustained responses (in neuronal populations encoding predictions).
This is the essence of recurrent message passing between hierarchical levels to
suppress prediction error (see Fig. 1 and Friston 2008 for a more detailed
discussion).

We can identify error-units with superficial pyramidal cells, because the only
messages that pass up the hierarchy are prediction errors and superficial pyramidal
cells originate forward connections in the brain. This is useful because it is these
cells that are primarily responsible for electroencephalographic (EEG) signals that
can be measured noninvasively. Similarly, the only messages that are passed down
the hierarchy are the predictions from state-units that are necessary to form

Fig. 1 Schematic, detailing the neuronal architectures that encode a recognition density over the
hidden states of a hierarchical model. This schematic shows the speculative cells of origin of
forward (driving) connections that convey prediction error from a lower area to a higher area and
the backward connections that are used to construct predictions. These predictions try to explain
away input from lower areas by suppressing prediction error. In this scheme, the sources of
forward connections are the superficial pyramidal cell population, and the sources of backward
connections are the deep pyramidal cell population. The differential equations relate to the
optimization scheme detailed in the main text. The state-units and their efferents are in black and
the error-units in red, with causes on the right and hidden states on the left. For simplicity, we
have assumed the output of each level is a function of, and only of, the hidden states. This induces
a hierarchy over levels and, within each level, a hierarchical relationship between states, where
causes predict hidden states. This schematic shows how the neuronal populations may be
deployed hierarchically within three cortical areas (or macro-columns)
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prediction errors in lower levels. The sources of extrinsic backward connections
are the deep pyramidal cells, and one might deduce that these encode the expected
causes of sensory states (see Mumford 1992 and Fig. 1). Crucially, the motion of
each state-unit is a linear mixture of bottom-up prediction error (Eq. 5). This is
exactly what is observed physiologically, in that bottom-up driving inputs elicit
obligatory responses that do not depend on other bottom-up inputs. The prediction
error itself is formed by predictions conveyed by backward and lateral connec-
tions. These influences embody the nonlinearities implicit in ~gðiÞ and ~f ðiÞ. Again,
this is entirely consistent with the nonlinear or modulatory characteristics of
backward connections.

5.3 Summary

In summary, we have seen how the inversion of a generic hierarchical and
dynamical model of sensory inputs can be transcribed onto neuronal quantities that
optimize a variational free energy bound on the evidence for that model. This
optimization corresponds, under some simplifying assumptions, to suppression of
prediction error at all levels in a cortical hierarchy. This suppression rests upon a
balance between bottom-up (prediction error) influences and top-down (empirical
prior) influences. In the final section, we use this scheme to simulate neuronal
responses. Specifically, we pursue the electrophysiological correlates of prediction
error and ask whether we can understand the violation phenomena in event-related
potential (ERP), discussed in Sect. 2, in terms of hierarchical inference and
message passing in the brain.

6 Birdsong and Attractors

In this section, we examine the emergent properties of a system that uses hierar-
chical dynamics or attractors as generative models of sensory input. The example
we use is birdsong, and the empirical measures we focus on are local field
potentials (LFPs) or evoked (ERP) responses that can be recorded noninvasively.
Our aim is to show that canonical features of empirical electrophysiological
responses can be reproduced easily under attractor models of sensory input. Fur-
thermore, in a hierarchical setting, the use of dynamic models has some interesting
implications for perceptual infrastructures (Kiebel et al. 2008). The examples in
this section are taken from Friston and Kiebel (2009), to which the reader is
referred for more details.

We first describe the model of birdsong and demonstrate the nature and form of
this model through simulated lesion experiments. This model is then used to
reproduce the violation-dependent responses discussed in Sect. 2 using, perhaps,
the most profound form of violation; namely, an omission of an expected event.
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We will then use simplified versions of this model to show how attractors can be
used to categorize sequences of stimuli quickly and efficiently. Throughout this
section, we will exploit the fact that superficial pyramidal cells are the major
contributors to observed LFP and ERP signals, which means we can ascribe these
signals to prediction error because the superficial pyramidal cells are the source of
bottom-up messages in the brain (see Fig. 1).

6.1 Attractors in the Brain

The basic idea in this chapter is that the environment unfolds as an ordered
sequence of spatiotemporal dynamics, whose equations of motion entail attractor
manifolds that contain sensory trajectories. Critically, the shape of the manifold
generating sensory data is itself changed by other dynamical systems that could
have their own attractors. If we consider the brain has a generative model of these
coupled dynamical systems, then we would expect to see attractors in neuronal
dynamics that are trying to predict sensory input. In a hierarchical setting, the
states of a high-level attractor enter the equations of motion of a low-level attractor
in a nonlinear way, to change the shape of its manifold. This form of generative
model has a number of sensible and appealing characteristics.

First, at any level the model can generate and therefore encode structured
sequences of events, as the states flow over different parts of the manifold. These
sequences can be simple, such as the quasi-periodic attractors of central pattern
generators (McCrea and Rybak 2008) or can exhibit complicated sequences of the
sort associated with chaotic and itinerant dynamics (e.g., Breakspear and Stam
2005; Canolty et al. 2006; Friston 1997; Haken Kelso et al. 1990; Jirsa et al. 1998;
Kopell et al. 2000; Rabinovich et al. 2008).

Second, hierarchically deployed attractors enable the brain to generate and
therefore predict or represent different categories of sequences. This is because any
low-level attractor embodies a family of trajectories that correspond to a structured
sequence. The neuronal activity encoding the particular state at any one time
determines where the current dynamics are within the sequence, while the shape of
the attractor manifold determines which sequence is currently being expressed. In
other words, the attractor manifold encodes what is being perceived and the
neuronal activity encodes where the current percept is located on the manifold or
within the sequence.

Third, if the state of a higher attractor changes the manifold of a subordinate
attractor, then the states of the higher attractor come to encode the category of the
sequence or dynamics represented by the lower attractor. This means it is possible
to generate and represent sequences of sequences and, by induction, sequences of
sequences of sequences, and so on. This rests upon the states of neuronal attractors
at any cortical level providing control parameters for attractor dynamics at the
level below. This necessarily entails a nonlinear interaction between the top-down

Helmholtz Revisited 57



effects of the higher attractor and the states of the recipient attractor. Again, this is
entirely consistent with the known functional asymmetries between forward and
backward connections and speaks to the nonlinear effects of top-down connections
in the real brain.

Finally, this particular model has implications for the temporal structure of
perception and, in particular, music. Put simply, the dynamics of high-level rep-
resentations unfold more slowly than the dynamics of lower level representations.
This is because the state of a higher attractor prescribes a manifold that guides the
flow of lower states. In the limiting case of the higher level having a fixed-point
attractor, its fixed states will encode lower level dynamics, which could change
quite rapidly. We will see an example of this later, when considering the per-
ceptual categorization of different sequences of chirps subtending birdsongs. This
attribute of hierarchically coupled attractors enables the representation of arbi-
trarily long sequences of sequences and suggests that neuronal representations in
the brain will change more slowly at higher levels (Kiebel et al. 2008; see also
Botvinick et al. 2007; Hasson et al. 2008). One can turn this argument on its head
and use the fact that we are able to recognize sequences of sequences (e.g., Chait
et al. 2007) as an existence proof for this sort of generative model. In the examples
that follow, we will try to show how autonomous dynamics furnish generative
models of sensory input, which behave much like real brains, when measured
electrophysiologically.

6.2 A Synthetic Avian Brain

The toy example used here deals with the generation and recognition of birdsongs
(Laje and Mindlin 2002). We imagine that birdsongs are produced by two time-
varying control parameters that control the frequency and amplitude of vibrations
emanating from the syrinx of a songbird (see Fig. 2). There has been an extensive
modelling effort using attractor models at the biomechanical level to understand
the generation of birdsong (e.g., Laje et al. 2002). Here, we use the attractors at a
higher level to provide time-varying control over the resulting sonograms. We
drive the syrinx with two states of a Lorenz attractor, one controlling the frequency
(between 2 and 5 kHz) and the other (after rectification) controlling the amplitude
or volume. The parameters of the Lorenz attractor were chosen to generate a short
sequence of chirps every second or so. To endow the generative model with a
hierarchical structure, we placed a second Lorenz attractor, whose dynamics were
an order of magnitude slower, over the first. The states of the slower attractor
entered as control parameters (known as the Rayleigh and Prandtl number) to
control the dynamics exhibited by the first. These dynamics could range from a
fixed-point attractor, where the states of the first are all zero, through to quasi-
periodic and chaotic behaviour, when the value of the Prandtl number exceeds an
appropriate threshold (about 24) and induces a bifurcation. Because higher states
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evolve more slowly, they switch the lower attractor on and off, generating distinct
songs, where each song comprises a series of distinct chirps (see Fig. 3).

6.3 Song Recognition

This model generates spontaneous sequences of songs using autonomous
dynamics. We generated a single song, corresponding roughly to a cycle of the
higher attractor and then inverted the ensuing sonogram (summarized as peak
amplitude and volume) using the message-passing scheme described in previous
sections. The results are shown in Fig. 3 and demonstrate that, after several
hundred milliseconds, the veridical hidden states and superordinate causes can be
recovered. Interestingly, the third chirp is not perceived, in that the first-level
prediction error was not sufficient to overcome the dynamical and structural priors
entailed by the model. However, once the subsequent chirp had been predicted
correctly the following sequence of chirps was recognized with a high degree of
conditional confidence. Note that when the second and third chirps in the sequence
are not recognized, first-level prediction error is high and the conditional confi-
dence about the causes at the second level is low (reflected in the wide 90 %
confidence intervals). Heuristically, this means that the synthetic bird listening to

Fig. 2 Schematic, showing the construction of a generative model for birdsongs. This model
comprises two Lorenz attractors, where the higher attractor delivers two control parameters (grey
circles) to a lower level attractor, which, in turn, delivers two control parameters to a synthetic
syrinx to produce amplitude and frequency modulated stimuli. This stimulus is represented as a
sonogram in the right panel. The equations represent the hierarchical dynamic model in the form
of Eq. 2
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the song did not know which song was being emitted and was unable to predict
subsequent chirps.

6.4 Structural and Dynamic Priors

This example provides a nice opportunity to illustrate the relative roles of struc-
tural and dynamic priors. Structural priors are provided by the top-down inputs
that dynamically reshape the manifold of the low-level attractor. However, this

Fig. 3 Results of a Bayesian inversion or deconvolution of the sonogram shown in Fig. 2.
a Upper panels show the time courses of hidden and causal states. (Upper left) These are the true
and predicted states driving the syrinx and are simple mappings from two of the three hidden
states of the first-level attractor. The solid lines respond to the conditional mode and the dotted
lines to the true values. The discrepancy is the prediction error and is shown as a broken red line.
(Upper right) The true and estimated hidden states of the first-level attractor. Note that the third
hidden state has to be inferred from the sensory data. Confidence intervals on the conditional
expectations are shown in grey and demonstrate a high degree of confidence, because a low level
of sensory noise was used in these simulations. The panels below show the corresponding causes
and hidden states at the second level. Again the conditional expectations are shown as solid lines
and the true values as broken lines. Note the inflated conditional confidence interval halfway
through the song when the third and fourth chirps are misperceived. b The stimulus and percept in
sonogram format, detailing the expression of different frequencies generated over peristimulus
time
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attractor itself contains an abundance of dynamical priors that unfold in general-
ized coordinates. Both provide important constraints on the evolution of sensory
states, which facilitate recognition. We can selectively destroy these priors by
lesioning the top-down connections to remove structural priors (over hidden
causes) or by cutting the intrinsic connections that mediate dynamic priors (over
hidden states). The latter involves cutting the self-connections in Fig. 1 among the
causal and state units. The results of these two simulated lesion experiments are
shown in Fig. 4. The top panel shows the percept as in the previous panel, in terms
of the predicted sonogram and prediction error at the first and second level. The
subsequent two panels show exactly the same information but without structural
(middle) and dynamic (lower) priors. In both cases, the bird fails to recognize the
sequence with a corresponding inflation of prediction error, particularly at the last
level. Interestingly, the removal of structural priors has a less marked effect on
recognition than removing the dynamical priors. Without dynamical priors there is
a failure to segment the sensory stream and although there is a preservation of
frequency tracking, the dynamics per se have completely lost their sequential
structure. Although it is interesting to compare structural and dynamics priors, the
important message here is that both are necessary for veridical perception and that
removal of either leads to suboptimal inference. Both of these empirical priors
prescribe dynamics that enable the synthetic bird to predict what will be heard
next. This leads to the question ‘What would happen if the song terminated
prematurely?’

6.5 Omission and Violation of Predictions

We repeated the above simulation but terminated the song after the fifth chirp. The
corresponding sonograms and percepts are shown with their prediction errors in
Fig. 5. The left panels show the stimulus and percept as in Fig. 4, while the right
panels show the stimulus and responses to omission of the last syllables. These
results illustrate two important phenomena. First, there is a vigorous expression of
prediction error after the song terminates abruptly. This reflects the dynamical
nature of the recognition process because, at this point, there is no sensory input to
predict. In other words, the prediction error is generated entirely by the predictions
afforded by the dynamic model of sensory input. It can be seen that this prediction
error (with a percept but no stimulus) is almost as large as the prediction error
associated with the third and fourth stimuli that are not perceived (stimulus but no
percept). Second, it can be seen that there is a transient percept, when the omitted
chirp should have occurred. Its frequency is slightly too low, but its timing is
preserved in relation to the expected stimulus train. This is an interesting stimu-
lation from the point of view of ERP studies of omission-related responses. These
simulations and related empirical studies (e.g., Nordby et al. 1994; Yabe et al.
1997) provide clear evidence for the predictive capacity of the brain. In the context
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Fig. 4 Results of simulated lesion studies using the birdsong model of the previous figures. The
left panels show the percept in terms of the predicted sonograms, and the right panels show the
corresponding prediction error (at both levels); these are the differences between the incoming
sensory information and the prediction and the discrepancy between the conditional expectation
of the second-level cause and that predicted by the second-level hidden states. Top panels The
recognition dynamics in the intact bird. Middle panels The percept and corresponding prediction
errors when the connections between the hidden states at the second level and their corresponding
causes are removed. This effectively removes structural priors on the evolution of the attractor
manifold prescribing the sensory dynamics at the first level. Lower panels The effects of retaining
the structural priors but removing the dynamical priors by cutting the connections that mediate
inversion in generalized coordinates. These results suggest that both structural and dynamical
priors are necessary for veridical perception

62 K. J. Friston and D. A. Friston



of music studies, the results in Fig. 5 can be seen as a rough model of the violation
(harmonic) responses described in Sect. 2 (Koelsch et al. 2000, 2002, 2008, Loui
et al. 2005; Besson and Faita 1995; Verleger 1990). In this example, prediction
rests upon the internal construction of an attractor manifold that defines a family of
trajectories, each corresponding to the realization of a particular song. In the last
simulation we look more closely at perceptual categorization of these songs.

6.6 Perceptual Categorization

In the previous simulations, we saw that a song corresponds to a sequence of
chirps that is preordained by the shape of an attractor manifold controlled by top-
down inputs. This means that for every point in the state-space of the higher
attractor there is a corresponding manifold or category of song. In other words,
recognizing or categorizing a particular song corresponds to finding a fixed
location in the higher state-space. This provides a nice metaphor for perceptual
categorization; because the neuronal states of the higher attractor represent,
implicitly, a category of song. Inverting the generative model means that, prob-
abilistically, we can map from a sequence of sensory events to a point in some
perceptual space, where this mapping corresponds to perceptual recognition or
categorization. This can be demonstrated in our synthetic songbird by ignoring the
dynamics of the second-level attractor and exposing the bird to a song and letting
the states at the second level optimize their location in perceptual space, to best
predict the sensory input. To illustrate this, we generated three songs by fixing the
Rayleigh and Prandtl variables to three distinct values. We then placed uninfor-
mative priors on the second-level causes (that were previously driven by the
hidden states of the second-level attractor) and inverted the model in the usual
way. Figure 6a shows the results of this simulation for a single song. This song
comprises a series of relatively low-frequency chirps emitted every 250 ms or so.
The causes of this song (song C in panel b) are recovered after the second chirp,
with relatively tight confidence intervals (the blue and green lines in the lower left
panel). We then repeated this exercise for three songs. The results are shown in
Fig. 6b. The songs are portrayed in sonogram format in the top panels and the
inferred perceptual causes in the bottom panels. The left panel shows the evolution
of these causes for all three songs as a function of peristimulus time and the right
shows the corresponding conditional density in the causal or perceptual space of
these two states after convergence. It can be seen that for all three songs the 90 %
confidence interval encompasses the true values (red dots). Furthermore, there is
very little overlap between the conditional densities (grey regions), which means
that the precision of the perceptual categorization is almost 100 %. This is a simple
but nice example of perceptual categorization, where sequences of sensory events

Helmholtz Revisited 63



64 K. J. Friston and D. A. Friston



with extended temporal support can be mapped to locations in perceptual space,
through Bayesian filtering (predictive coding) of the sort entailed by the free-
energy principle.

7 Conclusion

This chapter has suggested that the architecture of cortical systems speaks to
hierarchical generative models in the brain. The estimation or inversion of these
models corresponds to a generalized Bayesian filtering (predictive coding) of
sensory inputs to disclose their causes. This predictive coding can be implemented
in a neuronally plausible fashion, where neuronal dynamics self-organize when
exposed to inputs to suppress prediction errors. The focus of this chapter has been
on the nature of the hierarchical models and, in particular, models that show
autonomous dynamics. These models may be relevant for music perception
because they enable sequences of sequences to be inferred or recognized. We have
tried to demonstrate their plausibility, in relation to empirical observations, by
interpreting the prediction error, associated with model inversion, with observed
electrophysiological responses. These models provide a graceful way to map from
complicated sensory trajectories to points in abstract perceptual spaces. Further-
more, in a hierarchical setting, this mapping may involve trajectories in perceptual
spaces of increasingly higher order. The mathematical formalism (and simula-
tions) of hierarchical Bayesian inference in the brain provides a nice link between
the generic principles of perceptual inference (and self-organisation) and the
perception of music—in particular, it enabled us to simulate one of the most
prominent electrophysiological phenomena in music research; namely violation—
dependent responses.

The ideas presented in this chapter have a long history, starting with the notion
of neuronal energy (Helmholtz 1860), covering ideas like efficient coding and
analysis by synthesis (Barlow 1961; Neisser 1967) to more recent formulations in
terms of Bayesian inversion and predictive coding (e.g., Ballard et al.1983; Dayan
et al. 1995; Kawato et al. 1993; Mumford 1992; Rao and Ballard 1998). This work

Fig. 5 Omission-related responses. Here, we have omitted the last few chirps from the stimulus.
The left-hand panels show the original sequence and responses evoked. The right-hand panels
show the equivalent dynamics on omission of the last chirps. The top panels show the stimulus
and the middle panels the corresponding percept in sonogram format. The interesting thing to
note here is the occurrence of an anomalous percept after termination of the song on the lower
right (i). This corresponds roughly to the chirp that would have been perceived in the absence of
omission. The lower panels show the corresponding (precision-weighted) prediction error under
the two stimuli at both levels. A comparison of the two reveals a burst of prediction error when a
stimulus is missed (ii) and at the point that the stimulus terminates (iii) despite the fact that there
is no stimulus present at this time. The darker lines correspond to prediction error at the first level,
and the lighter lines correspond to prediction error at the second level

b
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has tried to provide support for the notion that the brain uses attractors to represent
and predict causes in the sensorium (Byrne et al. 2007; Deco and Rolls 2003;
Freeman 1987; Tsodyks 1999). More generally, one might conclude that we need
large brains, with deep hierarchical structure, to perceive and appreciate the world
we inhabit. This resonates with Einstein’s conclusion:

He who joyfully marches to music in rank and file has already earned my contempt. He
has been given a large brain by mistake, since for him the spinal cord would suffice. Albert
Einstein

although motivated from a slightly different perspective.

Fig. 6 a Schematic demonstration of perceptual categorization. This figure follows the same
format as Fig. 3. However, here there are no hidden states at the second level, and the causes
were subject to stationary and uninformative priors. This song was generated by a first-level
attractor with fixed control parameters of 16 and 8/3, respectively. It can be seen that, on
inversion of this model, these two control variables, corresponding to causes or states at the
second level, are recovered with relatively high conditional precision. However, it takes about 50
iterations (about 600 ms) before they stabilize. In other words, the sensory sequence has been
mapped correctly to a point in perceptual space after the occurrence of the second chirp. This
song corresponds to song C on the right. b The results of inversion for three songs each produced
with three distinct pairs of values for the second-level causes (the Rayleigh and Prandtl variables
of the first-level attractor). Upper panel The three songs shown in sonogram format
corresponding to a series of relatively high-frequency chirps that fall progressively in both
frequency and number as the Rayleigh number is decreased. Lower left These are the second-
level causes shown as a function of peristimulus time for the three songs. It can be seen that the
causes are identified after about 600 ms with high conditional precision. Lower right This shows
the conditional density on the causes shortly before the end of peristimulus time (dotted line on
the left). The blue dots correspond to conditional means or expectations, and the grey areas
correspond to the conditional confidence regions. Note that these encompass the true values (red
dots) used to generate the songs. These results indicate that there has been a successful
categorization, in the sense that there is no ambiguity (from the point of view of the synthetic
bird) about which song was heard
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Change and Continuity in Sound Analysis:
A Review of Concepts in Regard
to Musical Acoustics, Music Perception,
and Transcription

Albrecht Schneider

1 On measuring Basic Properties of Sound: A Brief
Retrospect

Over the past decades, a broad range of software and hardware tools has become
available suited to perform sound analysis both in the time domain and in the
frequency domain. Though musical acoustics as a field of research based on both
calculation and experiment started to evolve around 1600 (cf. Cohen 1984), and
had gained impetus by 1700 with experiments on, for example, vibration of strings
as conducted by J. Sauveur and many other scholars since (see Cannon and
Dostrovsky 1982), investigation of actual sound as produced by instruments and
voices was limited since appropriate tools for measurement and analysis were
scarce. Experiments at the time of Chladni (1805) were mostly done with sets of
tuning forks or organ pipes (see Beyer 1999). After Charles Cagniard de la Tour
had invented the siren (1819), such instruments came into use soon (as in the
pioneering experiments of August Seebeck that led to the first formulation of
‘periodicity pitch’ published in 1841; see Hesse 1972, 58ff.; de Boer 1976;
Schneider 1997b, 134f.). Tuning forks, pipes, sirens as well as resonance boxes
and resonance bottles such as described by Helmholtz (1863/1870/1896) were the
basic toolkit of the acoustician then. Even Stumpf conducted most of his experi-
ments on perception of consonant and dissonant sounds (1890, 1898) with the aid
of sets of tuning forks (mounted on resonance boxes), reed pipes and organ
mixture stops. One proven method used to study the structure of harmonic partials
in complex tones was resonance, another was additive synthesis of sounds such as
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vowels by means of a set of tuning forks that could be excited in an electro-
magnetic circuit, and thereby would produce a continuous sound. Mechanical
devices such as the Tonmesser built by Appun (of Hanau, Germany) and the
Tonvariator developed by Stern (1902) even allowed measurement and production
of tones varying continuously in frequency as well as synthesis of sonorities
ranging from perfect harmonic to inharmonic. Besides resonance, interference was
a principle used for analysis. By the end of the 19th century, an apparatus for
dampening or cancelling partials out of complex sounds (such as vowels) had been
developed (cf. Graf 1980, 212). A range of mechano-acoustical devices available
at the time were used by Helmholtz and other scholars (e.g., Carl Stumpf and co-
workers, Wilhelm Wundt and co-workers) to explore sound as well as auditory
phenomena such as the sensation of consonance and dissonance, roughness, beats,
and combination tones.

For the study of sound wave characteristics, Helmholtz (1870, 33f.) also saw
the need to record sound as radiated from musical instruments (including the
human voice) on some suited graph paper or other material. He rightly emphasized
that the shape of a sound wave per period determines the corresponding timbre
(German: Klangfarbe; see below, Sect. 3). Helmholtz pointed to the Phonauto-
graph of Scott de Martinville who, around 1857–1860, had actually recorded
sound waves (including a few seconds of a French folk song, Au clair de la lune)
on a rotating cylinder.1 In 1877, Edison presented his Phonograph (the early tinfoil
version), which was used in the 1880s and 1890s for the study of sounds from
musical instrument and the human voice by the German physiologist Georg
Meissner (see below). With Edison’s improved 1888 model of the Phonograph
(Edison 1888), recording and reproduction of sound had become a standard
method. In particular the physiologist Ludimar Hermann published numerous
articles on speech sounds (vowels, consonants; see below, Sect. 3) recorded and
analyzed by way of Phonophotographie (e.g., Hermann 1889, 1893, 1894, 1895,
1911). As an alternative to the Phonograph, the physiologist Victor Hensen had
developed a machine called Sprachzeichner (1879, 1888) that offered a very subtle
registration of sound waves (plus the recording of a tuning fork as referent). The
Sprachzeichner was one of the fundamental tools in phonetics that has been
employed, for instance, by the Finish-Swedish linguist, Hugo Pipping, for the
study of spoken and sung vowels (e.g., Pipping 1894). The study of sung vowels of
course played a central role in the theory of formants (see below, Sect. 3.3).
Meissner, Hermann, Pipping and others took great pains in analyzing complex
sounds for finding the period length and the fundamental frequency as well as to
determine the spectral content for each single period. Fourier analysis was done by

1 It is reported (cf. Beyer 1999, 140f., Figures 6,7,8,9,10,11) that Karl Rudolph Koenig (who
invented a range of instruments for acoustics) had improved the Phonautograph by adding a
conical horn to collect the sound (as was similarly done later by Edison with the Phonograph) as
well as the rotating cylinder on which the sound was actually recorded as an oscillogram. As to
the early history of sound analysis, see also Graf (1980, 211ff).
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hand with the aid of rulers and curve templates in a time-consuming geometrical
analysis procedure.2

2 Frequency Measurement, Periodicity Estimation,
Melographic ‘Pitch’ Notation

Besides Meissner, Hermann, and Pipping, another scholar with a medical training,
Edward W. Scripture, became a specialist in the study of speech curves for which
he developed a methodology to determine actual (fundamental) frequencies of
speech or sung melodies (Scripture 1906, 1927). This approach still was based on a
manual reading of wave-lengths (Scripture 1906, 60ff.) or periods that had to be
transferred to their respective frequency values. A similar yet improved technique
again called Phonophotography was employed by Metfessel (1928) who had the
sound wave (plus a referent vibration of 100 Hz obtained from a tuning fork usable
as a time-line) recorded on film. It was applied to the study of vibrato and into-
nation in ‘‘western’’ music as well as to the microstructure of African-American
singing styles.

The basic idea behind the analyses performed by Hermann, Scripture, Metfessel
as well as by other researchers is to use the information provided by the temporal
structure of a sound wave in order to determine the frequency (Hz) corresponding
to a given period length (ms). The fundamental frequency can be calculated by
making use of the inverse relation between period T(ms) and frequency f(Hz),
which is given by T = 1/f, and f = 1/T. In case the signal is a complex tone
comprising a series of harmonic partials, the period typically is determined by the
first partial acting as the fundamental frequency f1, which is acoustically real if it
can be measured as a spectral component (for example, in the sound of a flute in
normal blowing condition). In the case of a harmonic complex tone, partial fre-
quencies can be determined according to fn = n 9 f1. In a strict sense, the fre-
quency corresponding to any particular period of a sine tone or to f1 of a complex
tone (with all partials locked in zero-phase) can be taken as its instantaneous
frequency (German: Augenblicksfrequenz).3 An additional aspect is that, in a
signal where f1 is weak or even missing, the period length T(ms) determined by a
sufficient number of harmonic partials superimposed on each other and locked in
phase is identical with the period length s(ms) defined by the f1 partial (for

2 Some of the early research is reported (with details in regard to methods of measurement and
the technology then available) in Meissner (1907), Krueger (1907), Hermann (1893), Herrmann
(1908). See also Panconcelli-Calzia (1941/1994).
3 This is a practical definition applicable to empirical observation and measurement. In signal
processing, the notion ‘instantaneous frequency’ has a more technical definition based on
calculating the instantaneous (or local) phase u(t) (a real-valued function) for a (complex-valued)
function x(t) representing the signal; the instantaneous angular frequency can be determined as
the derivative of the phase, that is x(t) = u0(t); see Cohen (1995, 39ff).
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examples, see Schneider 1997a, b and 2000). What is measured, in this case, is the
repetition frequency of the envelope of a complex waveshape. This repetition
frequency can be labeled f0 of F0, and in contemporary psychoacoustics is gen-
erally addressed as the ‘‘fundamental frequency’’ of a complex sound (what is
rather misleading since it implies the concept of a complete harmonic spectrum
where f1 is present). The envelope repetition frequency f0 of course permits to
calculate also f1 (whether this is present in the spectrum or not; if it is,
f0[Hz] = f1[Hz]). The sensation corresponding to f0 is a ‘periodicity pitch’ that
proved of importance to explain pitch perception in the case of a ‘missing fun-
damental’, that is, where the sound carries little or no energy at f1 (cf. de Boer
1976). The sensation of a ‘periodicity pitch’ evoked from detecting f0 at times has
also been labeled ‘low pitch’ since it is typically found below the spectral com-
ponents actually present. For example, in major and minor chords in ‘‘root’’
position comprising a triad of three complex tones each synthesized from a number
of partials in just intonation, the ‘‘fundamental’’ f0 that can be calculated by either
autocorrelation or subharmonic matching appears as the common denominator of
the total harmonic series (cf. Schneider and Frieler 2009; Schneider 2011).

In practice, finding the frequencies for musical tones from reading periods
manually (as was done by Scripture et al.) is an arduous task since the sound
segments under investigation must be small to allow manual search for appropriate
zero crossings defining periods. By about 1930, measurements had been improved
in that electronic equipment including amplifiers and oscilloscopes (based on
either galvanometer or cathode ray technology) had become available that allowed
for continuous recording of oscillograms up to ca. 15 s on film or special paper
strips. Such a setup has been used, for example, to study intonation patterns of
cellists playing scales and melodic phrases in a microtonal context (Kreichgauer
1932). Still the length of periods for each tone played by skilled musicians had to
be determined manually (i.e., by counting the number of periods per time unit); the
amount of labour Kreichgauer (1932) has put into his study of intonation patterns
seems incredible since a corpus of several hundred meters of oscillographic reg-
istrations resulting from a series of experiments had to be analyzed.

The advantage of taking the sound wave as a prime source for analysis is that, if
we assume linear behaviour of all tools used in the recording, it can be assumed that
no alterations in the signal have yet occurred before analysis. Hence, looking for the
period lengths of a time signal and transferring the temporal information to cor-
responding frequency values can be regarded as an objective way of measurement.
Such an analysis allows, most of all, to determine the fundamental frequency per
period, and to see if, and possibly to which extent, there is a fluctuation in period
length (meaning that there is some frequency modulation in the signal as well). To
illustrate the case, we might look into a very short segment of the sound wave
recorded as part of a song, Abu Zeluf, as sung by a woman in Lebanon (Fig. 1).4

4 Abu Zeluf, sung by Dunya Yunis, recorded by Poul Rovsing Olsen on 4th of February, Beirut
1972. Published on the LP Music in the World of Islam, Vol. I: The Human Voice, Tangent
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The period length at the beginning of this segment is 3.426 ms corresponding to
291.91 Hz while at the end a period length of 3.025 ms is found corresponding to
330.54 Hz. Hence, there is a shift in fundamental frequency that can be viewed
also as a shift in ‘pitch’ (in regard to hearing and psychoacoustics; see below) by
more than one semitone. With modern digital equipment, measuring the period
lengths and even calculating the ‘pitch shift’ can be done with great precision. In
the days of analogue measurement, tracking of zero crossings that define the
periods in complex wave shapes mostly was done with an oscilloscope, and often
the signal was put through a low pass or band pass filter in order to simplify the
wave shape, and possibly to extract the fundamental from each complex tone (as
this was believed to represent the ‘pitch’) in a melody. Already in the 1930s,
techniques for finding the fundamental frequency of a sequence of tones forming a
(quasi-continuous) melodic contour and plotting such a curve over time by means
of a so-called Tonhöhenschreiber or pitch recorder suited for monophonic signals
had been developed (Grützmacher and Lottermoser 1937; Obata and Kobayashi
1937). The range of the German Tonhöhenschreiber has been given as 2.5 octaves,
and the precision of ‘pitch’ as ca. 25 cent (Lottermoser 1976/1977, 139). By the
end of the 1940s, ideas of Charles Seeger, one of the pioneers in systematic and
comparative musicology, for constructing a ‘melograph’ capable to plot the ups
and downs of a melodic contour as well as the dynamic changes of a signal over
time had reached the state of a beta version (cf. Seeger 1951). The aim was to
develop an electronic device that could perform electronic sound-writing in the
laboratory (Seeger 1951), that is, automated transcription of (monophonic) music
recorded in the field or available on phonograph records. Melographic analysis was

(Footnote 4 continued)
Records TGS 131 (London 1976), B2. As to the history of the recording and its later (ab)use, see
Feld and Kirgegaard (2010).

Fig. 1 Short segment (100 ms) of sound recorded from a female singer in Lebanon
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considered not only to make transcription easier and subtle changes in pitch
detectable but also to provide a tool for objective analysis and notation indepen-
dent of the ear of the individual listener (see also Schneider 1986, 1987).

During the 1950s, more attempts at constructing ‘melographs’ were made (of
which one realized in Oslo was notable; see Dahlback 1958). Seeger’s idea for a
melograph finally materialized in his ‘Model C’, which was used as an aid in
transcription of, for example, saxophone parts Charlie Parker had played in his
rendition of Parker’s Mood (rec. New York 1948; cf. Owen 1974). Model C
besides tracking of ‘pitch’ offered recording of dynamics as well as a (rather
elementary) representation of spectral energy over time. A more advanced concept
of a melograph was developed by Miroslav Filip who, instead of low-pass filtering
a given signal for extraction of the fundamental (f1 of a complex tone) took a
nonlinear approach to envelope periodicity detection that could handle also signals
with a ‘‘missing fundamental’’ and proved to be robust in actual measurement
(Filip 1969, 1970). The melograph developed by Filip has been used as an aid for
transcription and analysis of orally transmitted music (cf. Elschek 1979, 2006).
The main purpose of melographic analysis is to determine the exact fundamental
frequency contour or (for harmonic/periodic signals) its equivalent, the ‘pitch
contour’ calculated from f0 values.5 Also, the onset and duration of tones as they
occur in a certain melodic context are of interest. In addition to finding pitch
contours at large, one may look into details of intonation and fluctuations of pitch
due to glissandi, vibrati, etc. An example to illustrate the case is given in Fig. 2,
which shows the ‘pitch’ trajectory of a segment of ca. 20 s of a female singing a
song, Abu Zeluf, recorded in the Lebanon.

The segment in question includes three short introductory notes (the musical
notes being, roughly, c4 at about 264 Hz [repeated once], and d4 taken a bit sharp
at ca. 301 Hz) followed by a very long note e4 (at ca. 333 Hz) which is held
almost constant in pitch for more than 9 s. Then, after a short e4 and a sudden
jump upwards to a short peak at ca. 380 Hz, a strong melisma follows with a
modulation between the notes e4 and d4. Of course, all notes or, rather, note names
like c4, d4, e4, etc. must be taken as relative pitches only that have to be inter-
preted in regard to the Arab modal scale used in this song (apparently, a scale of
the maqam rast group of modes). The modulation frequency found in the melisma
is about 5.5 Hz (Fig. 3):

After the melisma, we find a sequence of short notes beginning on b3 (at ca.
245 Hz), with a transition from c#4 and d4 to e4, followed by a d4, another e4 and
then d4 (on which note the phrase ends). What the melogram (Fig. 2) clearly
reveals is the small fluctuation of ‘pitch’ on the long note e4 before the melisma,
and the fairly regular modulation applied when rendering the melisma d4 $ e4.

5 The measurements for pitch curves shown in Figs. 2 and 3 were performed with the Praat
software (Boersma and Weenink 2011). A special autocorrelation method (Boersma 1993) was
chosen for calculation of pitch with a time resolution of 1 ms.
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In addition to continuous registration of the fundamental frequency as a func-
tion of time, another approach was taken by establishing histograms of funda-
mental frequency distributions (Tjernlund et al. 1972; Filip 1978). This approach
includes statistical considerations and needs computers for practical realization.
Recently, such a histogram analysis was chosen (in modern software implemen-
tations) for the study of Turkish makam music (Bozkurt 2008; Bozkurt et al. 2009;

Fig. 2 Melogram of a segment (ca. 200 0) of a female singing Abu Zeluf, Lebanon

Fig. 3 Dunya Yunis singing Abu Zeluf, melisma, frequency modulation
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f0 calculation is done with the well-known Yin algorithm of de Cheveigné and
Kawahara 2002) and of Cambodian melismatic chanting (of the genre smot; Bader
2011). In these recent studies, melographic analysis is combined with an auto-
mated, algorithmic analysis of fundamental frequency distributions. To be sure,
while melographic analysis can show deviations of ‘pitch’ from expected values
(i.e., frequency values defined by a certain tone system or scale) that occur at a
certain time of a performance, and in a specific melodic context, frequency his-
tograms eliminate the time dimension as well as the melodic context in which
certain pitch deviations or melodic embellishments (such as vibrato or melisma)
take place. The advantage of the histogram technique, however is that the number
of occurrences of particular fundamental frequencies leads to a pattern of pitches
prevalent in a certain piece of music. In most cases (depending of course on the
shape of the frequency distribution and the statistics for frequencies obtained in a
particular study) a melodic scale or mode can be inferred from the histogram data.

The melographic approach that, in its original concepts, was directed to finding
trajectories of fundamental frequency which then could be plotted as pitch contour
curves against time on some graph paper (possibly with a linear or logarithmic
frequency [y] and a linear time [x] scale), has been expanded in several directions
over the past decades. First, besides normal algorithms suited to achieve either f1
(= fundamental frequency of complex tones/sounds with n harmonics; f1 is typi-
cally extracted by low pass or band pass filtering) or f0 (= frequency with which
the envelope of a complex sound repeats per second), a number of ‘tracking
algorithms’ have become available that allow to calculate trajectories for partials
according to some model. One of the best-known such models is that issued by
McAulay and Quatieri (1986) that utilizes frame-to-frame peak matching, thereby
establishing a number of frequency tracks (depending on the spectral energy
distribution and the number and strength of peaks per frame). Instead of covering a
full spectrum, tracking algorithms may be directed to the fundamental frequency
of complex sounds determined by means of, for example, a constant Q transform
(Brown and Puckette 1993; see also Brown 2007). This approach allows precise
tracking even of signals changing rapidly in frequency over time (like the example
shown in Fig. 1). Other methods applied to speech and music for f0 estimates
include autocorrelation plus additional processing steps (de Cheveigné and
Kawahara 2002) and Principal Component (PC) autoregressive frequency esti-
mation based on the ModCov (modified covariance, see Marple 1987) model
(Hekland 2001). Also, software especially suited for the study of micromelodic
ornamentation (such as found in Hindustani music of India) has been developed
that uses autocorrelation for an initial pitch estimate but also performs calculation
of the spectral centroid; smoothed pitch contours are found by fitting Bézier spline
curves to the data (Battey 2004).

Second, while algorithms suited to extract either f1 or f0 from complex sound
for a long time were restricted to deal with monophonic signals only (i.e., signals
containing one tone and, typically, one pitch per time), there have been a number
of attempts in recent years to cover polyphonic signals as well (for an overview,
see Klapuri 2004; Klapuri and Davy 2006, part III, chs. 7 and 8). The goal of
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polyphonic analysis often is to provide (if possible) a MIDI file of musically
defined (pitch, duration) notes from audio sample data (see, e.g., Paiva et al. 2008).
Some of the concepts chosen are related to those of Auditory Scene Analysis
(ASA, Bregman 1990) since a number of source signals have to be separated into
(spectrally correlated) ‘‘streams’’ or, in this case, ‘‘voices’’. However, though a
range of commercial and free software for PCM-to-MIDI-conversion is at hand,
one has to bear in mind that the rate of accuracy achieved for polyphonic pitch
tracking analysis even with advanced models by now comes close to 60 % (cf.
Cañadas Quesada et al. 2010). As it seems, there is still a lot of work ahead for
automated transcription of polyphonic music.

3 ‘Sound Colour’ (Klangfarbe) and Spectrum: Acoustical
and Psychological Aspects

3.1 On the Archaeology of ‘Sound Colour’ or ‘Timbre’

Man (like other mammalian species) has experienced various types of sounds as
occurring in the natural environment for thousands of years. Also, communication
between humans as well as with animals needed articulated sound. It is very likely
that individuals discovered phenomenal differences as well as similarities between
various sounds early on, and that categorization of sounds according to certain
attributes was undertaken. Though direct evidence is difficult to adduce, there are
‘‘ethnographic parallels’’ that at least can illustrate the case (see, e.g. Feld 1990
with a survey of sound phenomena that are part of the natural environment as well
as of the sociocultural life of the Kaluli tribe of Papua New Guinea). Regarding
‘Old World’ cultures, there is ample evidence for sound phenomena resulting from
singing or from various instruments in written sources of Greek and Roman
antiquity, and also in medieval writings. For example, the mathematician and
music theorist Nikomachos, dealing with sounds produced by various instruments
(harm. en. IV), rightly states that sound is an impact on air, and that sounds can be
distinguished as to large and small, dull and sharp (low pitches corresponding to
dull sound because of a loss of tension in stringed instruments). By the end of the
Middle Ages, and more so during ‘Renaissance’, musical instruments in use had
increased by far, and so had the number of different stops or ranks of organ pipes
producing different sounds (the variety of instruments is reflected in Praetorius’ De
Organographia of 1619). These facts indicate an awareness of people listening to
music for characteristic tonal registers and sound qualities.

As is well-known, theory of vibration and other fundamental issues in acoustics
were developed steadily between, roughly, 1500 and 1800 (cf. Cannon and Dost-
rovsky 1982; Cohen 1984). Resonance in strings and stringed instruments was a
major topic of research already when Sauveur (1701) succeeded in the determination
of harmonic partials in vibrating strings. However, his lectures, demonstrating that
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even a single musical ‘tone’, when played on, for example, a harpsichord, contained
a series of harmonics, were widely recognized, and had great impact also on music
theory (as is evident in particular in Rameau’s writings, see Schneider 2011). Since
vibration theory was based on observations of the swinging pendulum, the notion of a
period of vibration (expressed as the duration the pendulum needed to complete a full
circle of motion) and its relation to ‘pitch’ was fairly well understood. The faster the
motion, the higher the frequency of vibration and the number of pulses transmitted
through the air to the ear would be. And the stronger the excitation force applied to a
string, the louder the resulting sound. ‘Pitch’, then, was dependent on the number of
pulses per time unit, and ‘loudness’ on the amplitude of vibration. Also, one did
distinguish ‘tone’ (the result of a regular vibration) and ‘noise’ (irregular or even
arbitrarily changing motion).

When Chladni entered the stage with his comprehensive work Die Akustik
(1805/1830), he rightly argued that the source of audible sound (German: Schall)
is an elastic body set to regular vibration (Klang) or irregular motion (Geräusch).
Criticising Rameau and others who had claimed one could hear a number of
harmonic partials in addition to the fundamental (Chladni 1805, 3, in this respect,
speaks of Hauptschwingung), Chladni argued that a given sound is not an
agglomerate or complex but something that is single (etwas ganz Einfaches).
Notwithstanding his many insights into types of vibration (transversal, longitudi-
nal, torsional) and the modal structure of vibrations in elastic bodies (many of
them demonstrable by means of Klangfiguren), Chladni did not quite come to grips
with ‘sound colour’ or timbre though he mentions this French term in a chapter
treating modifications and articulations of sound (Chladni 1805/1830, § 248). In
line with his fundamental theory of sound as emanating from vibration of elastic
bodies, he saw such modifications and articulations of sound depending on various
materials (such as steel, brass, or gut used for strings) as well as in small differ-
ences in the motion within vibrating bodies resulting probably from strain and
stress. This was a modern view as far as vibration is concerned yet not enough in
regard to the perception of ‘sound colour’. In a later writing, Chladni (1817, 58)
again refers to the French word timbre,6 saying that it denotes die qualitative
Verschiedenheit des Klanges auf die Würkung, wofür man im Deutschen keinen
bestimmten Ausdruck hat. This indicates that timbre, or Klangfarbe by this time
was not yet a central issue for research. Moreover, Chladni’s resistance against
Rameau’s perception of string partials as audible tones led even major music
theorists in Germany to subscribe to his view. For instance, Weber (1817/1824/
1830, §§ I–V, 180) relates to Chladni when stating that a Klang ist ein einfacher
und ungemischter Laut, and that the very nature of musical instruments is to
produce sounds or tones (a Klang of a definite pitch is called Ton) as pure as
possible. Only instruments of a musically ‘‘lower’’ grade (like a snare drum and,
more so, cymbals and other Turkish instruments) apparently have a number of

6 The meaning of timbre in the French language comprises sound, sound colour, and also bike
bell (timbre d’une bicyclette) as well as brand, mark and (postal) stamp.
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Nebenschwingungen that result in audible Beitöne. These, however, Weber claims,
are almost not audible in ‘‘higher’’ instruments such as strings and wind instru-
ments. Partials, he (1830, 12) concludes, even though these might be found in
vibrating strings, have nothing to do with the nature or the beauty of a sound and
can be considered an imperfection that, however, is harmless since higher partials
or Beitöne in reality would not be audible. Such statement left Weber in a position
where he, on the one hand, could not but admit that there is something one
perceives as the quality or character of a sound (sein eigenthümliches Gepräge in
the sense of the French timbre), and on the other he refuses to take notice of the
acoustical basis underlying any Tonfarbe or Klangfarbe.

Due to ongoing research in acoustics and also in optics (where the wavelength
and spectrum of light had become an issue since Newton, and, by analogy, sound
thus could hardly be conceived without the concept of a spectrum), the situation
had changed by about 1850. In Opelt’s Theorie der Musik (1852, § 7) it is
hypothesized that ‘‘the so-called Klangfarbe depends on different kinds and shapes
of pulses’’ (by pulses periodic wavetrains are meant), even though this cannot be
proved with certainty by ear alone. Opelt assumed that sound as transmitted from
an instrument indeed is a complex whole to which several vibrating structures of
each instrument contribute.

Since ‘pitch’ was associated with wavelength and the number of vibrations per
time unit, and the sensation of intensity (or, rather, loudness) with the amplitude of
vibration, ‘sound colour’ could not be attributed to anything else but the shape of a
wave. This is what Helmholtz (1863/1870/1896) elaborated in great detail con-
sequent to the basic statement that ‘sound colour’ (Klangfarbe) depends on the
microstructure of vibration of a sounding body. This microstructure of course is
reflected in the shape of each period of a sound wave recorded from an instrument.
In regard to perceiving ‘sound colour’, Helmholtz (1863) argued that the ear is
capable to perform decomposition of any complex periodic sound wave into its
constituents according to Ohm’s law, that is, into sinusoidals (each of a given
frequency and a given amplitude). Of course, Helmholtz knew the theorem of
Joseph Fourier, according to which (in a brief interpretation Helmholtz gave as
part of a popular lecture in Bonn 1857) any arbitrary [periodic] waveshape can be
synthesized from a number of simple waves of different wavelength.7 Accordingly,
Helmholtz held that our ear does the same what the mathematician does by
applying Fourier’s theorem, namely ‘‘it dissolves [periodic] complex waves into a
sum of simple (or elementary) waves’’. Helmholtz (1870/1896) also explored in an
approach one may call ‘analysis-by-synthesis’ production of complex periodic
sounds (and even inharmonic sounds) from superposition of sinusoidals. The idea
was to compare natural with synthesized sounds; if a synthesized sound came close
enough to the original, its spectral composition could be stated in terms of the
formula used in the additive synthesis.

7 Translations are from the edition of Helmholtz’ collected lectures and speeches (Helmholtz
1896).
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3.2 A Matter of Ausdehnung: Stumpf on ‘Sound Colour’
(Klangfarbe)

The study of ‘sound colour’ was begun, as far as instrumentation and method is
concerned, on a mechanical basis, namely by use of tuning forks and other devices
as resonators, and of interference tubes for cancellation of partials. Along with
analysis, empirical work on ‘analysis-by-synthesis’ was undertaken in that com-
plex sounds were synthesized from a set of (almost pure) tones. Though scholars
recognized that sounds can undergo marked changes not only in regard to pitch
and dynamic level over time but also with respect to timbral characteristics, ‘sound
colour’ was first viewed in a more static sense, namely as an attribute of sound that
is present and audible for a certain time. As Stumpf (1890, 520ff.) has discussed in
a phenomenological approach to perception of specifics of ‘sound colour’
(Klangfarbe im engeren Sinne), we can assign three basic attributes to sounds:
height (Höhe), intensity (Stärke), and extension (Größe). While height and
intensity can be directly related to physical parameters (frequency, amplitude), this
is not the case for the third attribute that, in certain ways, for Stumpf has to do with
perception of space and of spatial properties (cf. Stumpf 1890, 50ff.). The key
word he uses in this context is Ausdehnung (that can be translated, in this context,
as extension or volume), however, in his discourse there are several ‘spatial’
aspects to which he relates. These range from localizing the source of a sound in
three-dimensional space, that is, a task performed in binaural hearing (a process
that can be described in terms of acoustics and psychoacoustics), to a more sub-
jective assessment of sound qualities such as ‘volume’, ‘density’, ‘brightness’, and
‘sharpness’. For example, musical tones low in fundamental frequency and ‘pitch’
seem to be more extended (to fill a larger ‘volume’, or to have a larger ‘body’) than
high-pitched tones that, typically, appear as small and lacking ‘volume’. Further,
low tones often appear as dull as well as soft while high-pitched tones appear as
bright and also as sharp, etc. There are a number of such phenomenal attributes
that, according to Stumpf (1890; also Stumpf 1926, Kap. 15) we use to charac-
terize the quality of certain sounds we perceive. The attributes, however, are
assigned to sounds in a quantitative way. If sounds are classified, for instance in
terms of ‘thickness’, certain sounds may be rated as being ‘thicker’ than others.

Stumpf (1890, 535ff.) argued that ‘spatial’ attributes (such as massiveness or
sharpness) apply even to pure (sine) tones, that those attributes are immanent to a
tone of given height and intensity, and that these attributes vary in parallel with the
‘height’ and the brightness of tones.8 Also, certain combinations of the primary
(objectively measurable) attributes tone height and intensity will result in certain

8 For an in-depth discussion of the tonal and sound attributes that were used by Stumpf,
Hornbostel, Wellek, etc., see Albersheim (1939) and Schneider (1997b), Kap. III.1, 404–430.
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sensations that are the basis of the ‘tone colour’ we assign even to pure tones.9 For
example, a sine tone of high frequency and high intensity (SPL) made audible
appears as sharp, or even as ‘‘piercing’’. In general, sensation of pitch and
brightness can be said to vary with the physical property of frequency (intensity is
held constant), sensation of loudness varies with physical intensity (frequency held
constant); density and sharpness vary (in upward direction) with frequency and
intensity, volume varies against frequency, brightness and density (with maximal
volume for tones low in frequency, ‘tone height’, and brightness). In regard to the
issue: what is the ‘‘dimensionality’’ of sounds, it seems obvious that even pure
tones have a number of physical properties and sensational as well as perceptional
attributes that can vary in a quantitative way. For the physical properties (fre-
quency, intensity [dB]), which can be varied along a continuum, and independent
of each other, the notion of a ‘dimension’ applies. With respect to sensation and
perception, the matter is much more difficult since, as is well-known from sen-
sation of ‘pitch’ and brightness of pure tones, these are ‘integral variables’ whereas
volume and brightness are (in principle) separable (cf. Schneider 1997b, 429f.). If
the notion of ‘dimension’ is taken in a strict sense (requiring quasi-continua for
measurement on at least interval scale level and correlational independence of
variables so that such ‘dimensions’ representing variables can be unfolded as an
orthogonal structure in a k-dimensional vector space), it will be hard to separate
phenomenal attributes according to well-defined ‘dimensions’. Stumpf saw the
interrelation of tonal attributes already in simple tones, for which ‘tone color’, he
said (1890, 540) is not an attribute besides ‘height’ and ‘intensity’ but comprises
‘‘partly intensity, partly height, and partly extension’’ (or volume).

In regard to ‘sound colour’ (of complex sounds), Stumpf distinguishes char-
acteristics he calls ‘inner’ moments from such he refers to as ‘outer’. The ‘inner’
moments relate to the structure of partials in a given sound, that is, the number of
partials present and the relative amplitude of each partial. Hence, the ‘inner’
structure of sounds concerns the energy distribution in a (typically harmonic or, in
certain types of sounds, also an inharmonic) spectrum. Inner moments of sound
colour can be represented by a line spectrum as well as by a spectral envelope. The
‘outer’ moments relate to, first of all, temporal and dynamic aspects such as the
onset and the decay of sound, the occurrence of transients and noisy components at
the onset (as well as noisy components even in the steady-state portion), modu-
lation and other fluctuations. Most of these phenomena can be described in terms of
the temporal envelope. Taken together, ‘inner’ and ‘outer’ moments of ‘sound
colour’ thereby form a three-dimensional structure (Fig. 4), in which x represents
the partials (ordered by their harmonic number and/or their frequency [Hz or kHz]),

9 The term ‘tone colour’ (Tonfarbe, Stumpf 1890, 1926) applies to pure tones, while ‘sound
colour’ (Klangfarbe) is reserved to complex tones. More empirical evidence for the fact that, by
varying two physical properties (frequency, amplitude) of pure tones, one can vary more than two
sensational attributes (namely, pitch, loudness, and volume), was later given by Stevens (1934).
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y represents the (linear) amplitude of sound pressure or the intensity of the sound,10

and z represents time [s or ms].
Stumpf rightly emphasized that sounds produced from instruments quite often

vary more in regard to the register in which they are located (from low or very low
to medium to high or even very high depending on the ambitus or range of octaves
an instrument can cover) than from one instrument to the other (the phenomenal
difference for certain sounds produced by either a French Horn or a Cello in a low
register thereby appears smaller than for two sounds produced by each instrument
in either a very low or a very high register). This fact has led to considerations
according to which one would need to keep the number and relative intensity of
partials constant in order to maintain a certain ‘sound colour’ over several registers
(cf. Slawson 1985). This idea (which owes to Slawson’s concept of composing
sequences of ‘sound colour’ equivalent to sequences of tones in a melody) would
imply shifting an identical spectral envelope along the frequency axis; such an
operation would, however, not preserve zones of spectral energy concentrations
that are often viewed as ‘formants’. Consequently, such a linear shift can have
unwanted effects because sounds appear unnatural in timbre when envelopes are
transposed by an octave up or down (cf. Rodet and Schwarz 2007, 177).

Another finding Stumpf reported was that even experienced musicians and
instrument makers failed significantly to identify sounds produced from various
instruments (presented at random) correctly if the onset including transients and
the final decay were cut off from the sound, and only the quasi-stationary portion
was audible for 2 s for the subjects. To be sure, such experiments again were
carried out basically on a mechanical level, in this case, with sounds presented
through tubes in a wall that could be rapidly opened and closed to cut out portions
of sound (cf. Stumpf 1926, 374f.).

y                z  Time (t[s]) 

Ampl., Level              Decay                   Envelope 

Spectral Structure (partials, additional components) 

                       1        2        3        4        5        6     Partial no. (and frequency)       x 

Transients 

Onset 

Modulation 

0

Fig. 4 ‘Inner’ and ‘outer’ moments of Klangfarbe (Stumpf 1926, Kap. 15)

10 Where, approximately, I = peff veff = p2/Z that can be transferred to SPL [dB].
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3.3 The Quest for ‘Formants’ in Musical Instruments

Helmholtz (1863/1870) devoted one chapter of his comprehensive work to dif-
ferences various musical instruments show in regard to their respective Klang-
farbe. He included a section on vowels as occurring in speech and in singing and
reported many of his own observations plus some of the research done by other
scholars. After going into details of resonance phenomena in the vocal tract and in
particular in the mouth cavity, Helmholtz (1870, 179) came to the conclusion that
vocal sounds differ significantly from most other musical instruments in that the
relative power of partials is not dependent on their harmonic number but on their
absolute pitch (or frequency) position.11 As an example, he said that the vowel /A/,
when sung on the musical note Es (Eb

2), would have a resonance peak at b’’ (B5),
which is the twelfth partial of Es (Eb

2). If, however, the same vowel /A/ is sung on
the note b’ (B4), there is still a peak at b’’ (B5) though in this case it is the second
partial. In this respect, vowels apparently did differ from a range of musical sounds
where the strength of partials typically decreases with harmonic number (such as
A = 1/n or in any other suitable ratio of amplitude to harmonic number).

The finding of Helmholtz, in a generalized form, implies that vowels retain
spectral energy concentrations at certain frequencies or small frequency bands
irrespective of the absolute fundamental frequency where phonation takes place.
Though direct observation of phonation had become possible when Johann
Nepomuk Czermak (1828–1873, a Czech-Austrian professor of physiology) had
introduced the larynx mirror into the study of the vocal folds when in action,
Helmholtz still saw the vocal tract (German: Ansatzrohr) consisting of the pharynx
and the mouth cavity as the main part relevant for spectral shaping of vowels.
Explaining vowel production basically by resonances in the vocal tract, Helmholtz
(1870, 178) referred to the work of Robert Willis (1830), a professor of mechanics
at Cambridge who had conducted relevant experiments with reed pipes of variable
length and had claimed that each vowel can be related to a single resonance.
Helmholtz’s concept of vowels characterized by distinct resonances of the vocal
tract and mouth cavity corresponding to certain musical pitches (e.g., /U/ to f [F3],
/A/ to b’’ [B5], /E/ to b’’’[B6]) was confirmed, in the main, by observations and
measurements made by several scholars independently. It is not possible here to
review the many notable contributions to the theory of vowels put forward, for the
most part, by professors of anatomy and physiology like the Czech-Austrian
Johann N. Czermak (1828–1873), the Dutch Franciscus Cornelis Donders
(1818–1889), and the Germans Georg Meissner (1848–1905) and Ludimar Her-
mann (1838–1914).12 Also of importance was the Finish-Swedish linguist Hugo
Pipping (1864–1944) who published several relevant articles as well as a

11 Helmholtz (1870, 179): …dass die Stärke ihrer Obertöne nicht von der Ordnungszahl
derselben, sondern von deren absoluter Tonhöhe abhängt.
12 Meissner was a professor in Göttingen when conducting his research on vowels and sounds
from musical instruments in the 1880s and 1890s. Hermann was a professor in the University of
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monograph (Pipping 1894) on this matter and explicitly dealt with the sound
colour of vowels as sung.

It should be noted that there were some controversies concerning the nature of
the formant, a term coined by Hermann (1894, 267) who defined it as the
‘‘characteristic tone’’ within a spectrum. For many sounds, Hermann had calcu-
lated the formant as a ‘center of gravity’ (he called it Schwerpunktmethode) by
taking three adjacent partials with their amplitudes. Since determination of fre-
quency and amplitudes for partials could only be done by approximation (given the
mechanical tools available for analysis, see also Meissner 1907; Herrmann 1908),
Hermann came to the conclusion that the formant must not always stand in a
harmonic frequency ratio to the fundamental but could be inharmonic as well. This
provoked severe criticism because the formant was primarily understood as a
resonance phenomenon in a tube (the vocal tract) filled with air that undergoes
longitudinal vibration only.

From his own measurements, in line with those of Pipping (1890), Hermann
concluded dass die Höhe der hervorragenden Partialtöne der Vocale sich mit der
Notenhöhe nicht wesentlich ändert (Hermann 1891, 181). Since the formant
should be kept fixed in a certain frequency band while the musical notes of a scale
rise in fundamental frequency, Hermann (1894, 268) stated as a Grundgesetz
(fundamental law) that der Formant mit steigender Stimmnote in der Ordnungs-
zahl immer weiter herabgeht, seine absolute Lage dagegen behält.

Following to the investigations of Helmholtz in regard to the sound colour of
musical instruments and the human voice, it was proposed that the basic sound
quality of certain instruments could be compared to vowels, whereby the bassoon
should be similar to /U/, the French horn to /O/, the trombone to /A/, the oboe to
the German /Ä/, and so on (cf. von Qvanten 1875). In much of the early research,
the formant was viewed either as a single harmonic partial of strong intensity (the
most prominent resonance in the vocal tract or in a tube filled with air such as a
flute or flue pipe) or as kind of a Mundton (as Hermann claimed to exist) resulting
from a separate regime of vibration. However, it had become clear quite soon that
the specific quality of vowels as well as of sounds characteristic for a certain
musical instrument resulted from groups of partials rather than from single spectral
components. Meissner (1907, 595), summing up his findings, stated that (1) it is
groups of higher partials with significant amplitudes that characterize both the
sound of wind instruments (aerophones, Blasinstrumente) as well as vowel sounds
of the human voice. He had found (2) such concentrations of spectral energy not to
shift with different musical notes played or sung (that is, such concentrations are
relatively independent of the ‘pitch’ played). Meissner concluded that the groups
of relevant partials (3) are forming regions of spectral energy concentration which
are fixed in frequency (Eine den Klang eines Blasinstruments wesentlich

(Footnote 12 continued)
Königsberg and internationally acknowledged as author/editor of textbooks on physiology. Some
of the historical background to this era of research is briefly summed up in Graf (1980, 211ff).
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charakterisierende Gruppe höherer Obertöne …ist ein festes Gebiet oder eine
feste Region bestimmter absoluter Tonhöhen…). In research done in the 20th
century, the term for the regions Meissner had found usually was Formantregionen
or Formantstrecken (cf., e.g. Stumpf 1926; Vierling 1936; Winckel 1960).

One interesting point reported in several of the early publications (e.g.,
Meissner 1907; Herrmann 1908) is that, in vocal sounds such as vowels as well as
in sounds recorded from various pipes, the fundamental f1 was found quite weak or
almost missing. This led to questioning the Ohm/Helmholtz-theory of pitch as
applicable to all kinds of sounds and to suggesting that ‘periodicity pitch’ as
proposed by Seebeck might be a valid alternative in certain cases. Further, it was
found that air in a cylindrical tube excited by a reed (as a valve periodically
opened and shut) did not yield a sound spectrum confined to odd harmonics since
even harmonics with significant amplitudes were measured as well.

When Stumpf finally wrote his book on speech sounds (Sprachlaute such as
vowels and consonants, Stumpf 1926), he could drew on a broad range of previous
research plus a wealth of observations and data he and his co-workers had col-
lected. Stumpf offered a descriptive and analytical treatment of many phenomena
relevant for phonetics though he (1926, VI) considered this book mainly as a
continuation of the chapters on Klangfarbe he had offered in vol. II of the Ton-
psychologie (1890, § 28). In his Sprachlaute monograph, Stumpf also included
chapters on the psychology of listening and on topics relevant for psychoacoustics.
Concluding his book, he added a chapter on instrumental sounds (Kap. 15: Über
Instrumentalklänge) in which he treated the problems of ‘sound colour’ once more
(on the basis of experiments he had conducted for many years after the second
volume of the Tonpsychologie had been published).

Naturally, one of the chapters on the analysis of sung vowels relates to ‘for-
mants’ (Kap. 2, 62ff.). Formants according to Stumpf are not necessarily confined
to single partials (as most of previous research from Helmholtz to Hermann had
suggested) but rather may include several partials so that energy is concentrated in a
frequency band (eine Strecke des Tongebietes). Stumpf distinguished between a
Hauptformant (the frequency band in which the most prominent spectral peak is
found) and one or several Nebenformanten that appear as additional relative
maxima of spectral energy distribution and can be found above or below the
Hauptformant. As to the debate whether formants are rising in parallel with f1 of the
notes sung or played on instruments (usually within one octave) or are almost fixed
in their frequency position, Stumpf (1926, 62ff., 191f., 377f.) did not accept the
view of Hermann (1891) concerning ‘‘frequency-fixed formants’’ but took kind of
an intermediate approach in that he argued that formants are only relatively stable
in their frequency position, and will shift in the direction of the notes played or sung
in a scale: ihre Bewegung erfolgt in gleicher Richtung, aber weit langsamer,
sie umfaßt (abgesehen vom Grundton c2) nur wenige Töne. Thus formants should
shift only slightly with rising ‘pitch’, and only within certain boundaries. Probably
due to his focus on vowels, Stumpf reported spectral energy maxima for a number
of instruments (in particular woodwinds and brass) which he, in analogy to
speech, addressed as formants. He saw a main formant (Hauptformant), typically
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comprising harmonic partials no. 4–6, shifting relative to the fundamental fre-
quency of different musical tones that were played, while several Nebenformanten
(adjunct formants) that might also occur according to his observations should
remain within a certain frequency range.

It should be noted that, after Hermann’s Schwerpunktmethode for finding the
center of formant regions, a new method was proposed by Vierling (1936) on the
basis of the phase relationship between several partials making up a formant group
for which a spectral envelope with a single peak can be found in an amplitude
spectrum. Taking the frequency corresponding to an envelope maximum as the
resonance frequency xres (for a resonance filter in a generator/resonator model), its
phase would be zero; it follows from an equivalent resonance filter curve that for
all partials below xres (as the point of phase inversion), the phase is negative, and
for all partials higher in frequency, the phase is positive. Vierling suggested that,
by superimposing the partials with correct amplitudes and phases, a new wave
results, whose envelope periodicity frequency would represent the center of the
formant region.

Not long after Die Sprachlaute had been published, Stumpf’s former student
Karl Erich Schumann submitted his Habilitationsschrift on Die Physik der
Klangfarben (typewritten, 1929) to the Berlin university.13 Schumann, who—from
what is known today as factual evidence—took his Ph.D. with Stumpf (in 1922),14

had specialized in musical acoustics and had published a small book on this matter
in a popular scientific series. His treatment of formants in this publication
(Schumann 1925, 76–79) sums up some of the earlier findings and discussions
(Helmholtz, Hermann) and refers briefly to experiments Stumpf had conducted on
the synthesis of vowels. It is not possible, at this place, to discuss Schumann’s
work in any detail though it became influential in some circles in the 1970s, and
has been referred to more frequently since (see Mertens 1975; Fricke 1993; Reuter
1995; Reuter 1996). Ironically, Schumann’s Physik der Klangfarben never got
published due to, it seems, effects of World War II (while Schumann played an
important role in the organization of the Nazi war effort and in the development of
weapons, in particular high-grade explosives; cf. Nagel 2007).

Schumann had postulated four Klangfarbengesetze (laws reigning ‘sound col-
our’; see Mertens 1975; Reuter 1996, 110ff.) which all relate to formants in the
spectra of musical instrument sounds. Though there are certain patterns or even

13 A copy of this Habilitationssschrift is kept in the library of the Staatliche Institut für
Musikforschung of Berlin. Another copy apparently is in the Institute of Musicology at Cologne.
14 As to Schumann’s biography, see his Wikipedia entry and Nagel (2007, 232ff). Stumpf
became an emeritus in 1921 but continued to teach (including supervision of candidates) until late
in the 1920s. According to Reinecke (2003, 185) who knew Schumann personally, he was
Schüler und langjähriger Assistent Carl Stumpfs. However, Stumpf (1926, 7), in the Einleitung to
his Sprachlaute, mentions eleven co-workers and colleagues who had helped him in experiments
on the analysis of vowels (notably Dr. von Allesch), but not Schumann who (cf. Nagel 2007,
232ff.) apparently was a paid assistant in the Institute of Physics where he worked with Arthur
Wehnelt, well known for his discoveries in electronics.
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regularities that can be found empirically in the structure of spectra of certain types
of instruments (e.g., reed-driven aerophones, see Voigt 1975), the notion of a ‘law’
would require generalization that, from the evidence at hand, seems hard to justify
yet. The concept of ‘formant’ itself has been given somewhat different interpre-
tations in regard to vowels and musical sounds (see above). In a general view, the
term is synonymous with resonances in the vocal tract (Slawson 1985, 38).
According to acoustic fundaments of speech production in a system that can be
described as a source/filter model comprising a generator (the vocal folds) and a
resonator (the vocal tract up to and including the lips), formants are regarded as
resonances in a cylindrical tube of length L(cm) closed at one end (a k/4 reso-
nator). Hence, the resonance frequencies should be found at F1 = c/4 l, F2 = 3c/
4 l, and F3 = 5c/4 l of a resonator of length L with c = speed of sound in air (see
Neppert and Pétursson 1986) where F1, F2, F3 represent the three (most promi-
nent) formants. For the sound pattern corresponding to the neutral vowel /E/, and
the typical male resonator tube of L = 17.5 cm length, the formant frequencies
should be close to 500 Hz, 1500 Hz, and 2500 Hz, respectively. This is an ide-
alization, though, since both the generator and the resonator can be varied
dynamically by speakers or singers during phonation. As has been demonstrated
by Fant (1960) by means of measurement and modeling, the cross section profile
and even the length of the vocal tract (German: Ansatzrohr) as well as other
parameters relevant for ‘pitch’ and spectral energy distribution can be modified in
the course of phonation processes. There is a range of articulation effects resulting
from small changes in the position of the larynx, the lower jaw, the tongue (body
and tip as two separate subsystems), and the lips (for details, see Sundberg 1997)
which lead to modifications also of formants in regard to their bandwidth and
frequency position relative to a fundamental as well as to changes in spectral
energy distribution and spectral envelope of sound radiated from the mouth.

The distribution of spectral energy for an individual singer and a particular
vowel sung with the ‘colour’ of a certain language can be determined by analysis of
steady-state portions of sounds. For example, taking the long note sung by a woman
on the vowel /A / at the beginning of her rendering Abu Zeluf (see the left half of the
melogram in Fig. 2), one gets a fairly stable spectrum with a pattern of peaks shown
in Fig. 5.

The sound actually contains spectral energy up to at least 12 kHz. The fun-
damental is found near 333 Hz, with the second harmonic (667 Hz) strongest in
amplitude. Taking the spectral envelope in Fig. 5 calculated from a formant filter
analysis, one finds peaks at harmonics nos. 2, 4, 9 and a zone of condensed spectral
energy carried with the harmonics 11, 12, 13. Taking a template for vowel for-
mants (cf. Födermayr 1971, Abb. 21), one sees that for the vowel in question
energy maxima should occur in four frequency bands: the first is around 700 Hz,
the second around 1 kHz, the third covers a band from, roughly, 1.8 to 2.7 kHz,
and the fourth a band from about 3.3 to 4 kHz.

As had been stressed already in earlier research, certain sounds produced from
various musical instruments appear as similar to vowels when such are sung.
Phenomenal similarity of course can be rated by subjects, and especially by those
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with a musical training. However, ‘vowel quality’ in violin sounds can be detected
also with signal processing tools where the output is referenced to a Jones-type
diagram of vowel categories (see Mores 2010). Since subjective ratings of the
‘vowel quality’ in violin sounds and automated extraction of vowels show a high
degree of convergence, there must be distinctive features which permit to classify
sounds as to their ‘vowel quality’. In retrospect, this has led to the issue of
‘formants’ as well as to several explanations why formants are genuine to musical
sounds. Given that the steady-state of most vowels produced in singing shows a
pattern of peaks and/or concentrations of energy (the latter may be connected with
a single partial or with a group of partials) in the envelope, one can address
formants accordingly as (1) single prominent spectral peaks, as (2) groups of
partials with amplitudes or intensities above the average level of neighbouring
partials, or (3) simply as frequency bands in which more spectral energy is found
than in adjacent regions of the spectrum. The ‘‘ideal’’ formant spectrum, then,
would be characterized by a regular pattern of spectral maxima and minima so that
the envelope would show a cyclic structure defined by zeros. Such spectra can be
obtained from trains of rectangular pulses with a duty cycle of s/T (where s is
pulse width [ms], and T is the pulse period[ms]). Amplitudes of partials in the
spectrum of a train of rectangular pulses conform to a sinc function (sin [x]/x)
where the zeros are found at n s/T = 1, 2, 3, …(cf. Meyer and Guicking 1974,
40f.). The function useful for demonstrating a cyclic spectrum would be of the
form Sin[x]^2/x so that the envelope is all positive (Fig. 6); the roots of the
function of course are found at n p, n = 1, 2, 3, … The peaks and troughs of the
envelope can be conceived as covered by another envelope that represents the
overall exponential decay of amplitudes (dashed line):

Fig. 5 Spectrum and formant filter envelope, vowel / A / as sung by Dunya Yunis
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Since spectra obtained for sounds of certain musical instruments such as reed-
driven aerophones basically exhibit a more or less cyclic structure [as is the case
for a number of double reeds (cf. Voigt 1975) and also reed pipe stops in organs,
see Beurmann et al. 1998], the explanation at hand is taking the reed as a pulse
generator that should produce, in theory, a sequence of rectangular pulses where
the pulse of height A and duration t corresponds to the time the valve is open so
that a flow U of air at a certain pressure p is released into the resonator while the
time between pulses marks the duration for which the valve is shut. Though such a
model serves to explain the basic principle, things are quite complex in reality
since even for instruments with a beating reed such as the clarinet the vibration of
the reed and the pressure measured in the mouthpiece (cf. Backus 1963) do not
yield a rectangular shape equivalent to a pulse (which is defined as a [discontin-
uous] jump-function). Rather, reed vibration and pressure seem to be almost
sinusoidal when excitation of the reed is very soft, and approximate a triangular
shape with medium blowing pressure. Only when driven hard, motion of the
clarinet reed becomes more of a rectangular wave. It was observed that for soft
blowing the valve never completely shuts while it shuts for about a half-cycle
when high blowing pressure meaning a very strong force acting on the valve is
applied.

If we take a comparatively large double reed mounted on a small brass tube as it
is used for the French-Breton bombarde,15 the reed generator produces a periodic
change in pressure at the output (see Schneider 1998, Figs. 1, 2) that becomes
audible as the source signal since the double reed is fixed to a small cylindrical

Fig. 6 Model of a cyclic spectrum (envelope of the form Sin[x]2/x)

15 The triangular double reed used for measurements is 10.5 mm wide at the opening. It is
20 mm long and is mounted on a cylindrical tube of 25 mm length and 4 mm diameter. Thereby,
the total length of reed and tube is 45 mm. Recordings were made with the reed and tube put
close in front to a condenser microphone (Neumann U 67, AKG C 414 B-TL II) set to cardioid
and fed into a preamp and A/D converter system (Telefunken V 76, Panasonic DAT SV 3800 at
16 bit/48 kHz and RME Fireface 800 at 32 bit float/96 kHz on hard disc.
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tube of 25 mm length that already may act as a (first) resonator. The bombarde can
be modeled as a coupled system comprising the valve as such, this small brass
tube, the conical bombarde pipe of 27.5 cm length (with 8 mm bore at the upper,
15 mm at the lower end) plus the bell which has an effective length of 3.4 cm and
opens from 16 mm to 48 mm. For the double reed on the small brass tube, at soft
to medium pressure force, the wave shape of the source signal is approximately
triangular (comparable to the beating reed generator of the clarinet) while the
signal becomes more complex with respect to its fine structure per period with
increasing blowing pressure. The reed generator (double reed bound to its proper
tube) for medium excitation yields a spectrum comprising a series of quasi-har-
monics starting at ca. 698 Hz as listed in Table 1.

There are some more partials above 14 kHz up to 22 kHz so that excitation of
modes in the resonator is secured even at modest blowing pressure. It is obvious
that partials no. 2, 4, 6 are exceedingly stronger than their neighbours, partials 1, 3,
5 and 7, so that they will make up good candidates for ‘formants’. In fact, if the
reed generator sound is put through a formant analysis using the routine imple-
mented in the Praat software,16 it turns out three ‘formants’ (Fig. 7).

One can see that the three ‘formants’ in fact correspond to partials no. 2, 4 and 6
of the reed generator spectrum (Table 1), and that there is considerable energy
fluctuation in partials 2 and 6 over time while partial 4 remains stable.17 Whether
one may call the three strongest partials of the generator spectrum ‘formants’
because they ‘stand out’ against their neighbours seems a matter of terminology

Table 1 bombarde, reed generator output spectrum 0.5–14 kHz (FFT: 16384 pts, Hanning)

Partial no. Frequency dBa Partial no. Frequency dB

1 698 -59.4 11 7,658 -73.3
2 1,395 -13.4 12 8,372 -43.7
3 2,094 -54.8 13 9,063 -73.6
4 2,790 -27.4 14 9,767 -42.7
5 3,510 -77.9 15 10,446 -73.7
6 4,186 -17.8 16 11,162 -42.2
7 4,837 -66.0 17 11,853 -72.5
8 5,581 -41.3 18 12,556 -52.0
9 6,248 -74.2 19 13,247 -83.3
10 6,976 -34.4 20 13,957 -62.8

a SPL relative to 0 dBFS; therefore, all dB readings for undistorted signals are negative (from 0
to -100 dB)

16 The analysis is based on STFT with an approximation of spectral peaks in the envelope per
analysis frame by the Burg method (cf. Marple 1987). The three ‘formants’ in fact represent
tracks of spectral envelope peaks plotted against time.
17 The fluctuation is evident from so-called speckles (black dots) which indicate spectral energy
peaks per analysis frame.
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rather than of principle. However, in this case each of the three ‘formants’ of the
reed generator would consist of but one partial.

In case the generator is excited with maximum admissible blowing pressure
(there is of course a limit beyond which the two reeds are pressed against each
other and the valve simply remains shut), crests of the wave become quite steep
and the wave shape even more complex per period due to additional modes of
vibration.18 Consequent to overblowing, the bandwidth of the source spectrum in
this condition starts with partial no. 2 indicated in Table 1, and increases with
blowing force and pressure applied to the valve so that the source spectrum of the
reed generator carries energy up to about 33 kHz. The spectrum shows distinct and
strong peaks up to 10 kHz from where on peaks are broader; also, there is con-
siderable energy distributed in between peaks due to noise from the air flow
through the valve. The reed generator spectrum however does not reveal a cyclic
structure with clear dips or gaps at certain partials as one would expect from a
system that produces rectangular pulse trains as output.

If driven with a medium blowing force applied to the reed generator, bombarde
sounds in the normal playing range (i.e., not overblown into the higher octave)
have spectra like that displayed in Fig. 8:

Fig. 7 bombarde reed generator output, formant analysis (Burg algorithm)

18 In reed-driven instruments such as the clarinet, a range of nonlinearities is observed with
respect to the vibration of the (single or double) reed, the flow of air through the slit as well as in
other parameters. For details in regard to modeling and calculation, see Dalmont et al. (2000),
Kergomard et al. (2000).

Change and Continuity in Sound Analysis 93



The spectrum can be structured into four main groups of partials, which cover
(I) partials 1–9, (II) 9–15, (III) 15–24, and (IV) 24–41 so that the partials two
groups have in common are spectral dips that separate two neighbouring groups
from each other. If an envelope is put on the partial amplitudes for each group, it
will approximate somehow a shape like \ (an inverse U), however, the spectrum
hardly can be called cyclic in any strict form (according to the model in Fig. 6).
Though sound spectra for most notes of the bombarde played within one octave
are similar in structure, there is still some variation which is also evident from
spectral statistics given in Table 2 (all sounds normalized to -3dB before analysis):

The data with the center of gravity rising from one note and sound to the next
(except for note/sound 3) indicate spectral energy basically seems to shift with the
rise of f1 rather than to remain fixed in a certain frequency position. If segments of

Fig. 8 Spectrum, bombarde note 1, f1 & 419 Hz (0.3–18 kHz, 42 partials displayed)

Table 2 bombarde: notes
1–8, f1, spectral center of
gravity and SDa

Note/tone f1(Hz) Center of gravity(Hz) SD(Hz)

1 419 2082.77 642.83
2 452 2156.88 528.73
3 502 2098.26 804.65
4 566 2451.21 847.87
5 597 2561.56 1101.84
6 673 2720.42 1051.01
7 752 2824.61 1317.79
8 839 2928.04 1225.11

a The center of gravity is the average of f over the frequency
band covered by the analysis, weighted (in this case) by the
power spectrum (for details, see documentation in the Praat
manual)
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one second each of the sounds 1–8 are subjected to a formant analysis (Burg
method), there will be up to five, and typically four, tracks that are created in the
frequency range relevant for formants with respect to a male (4.5 kHz) or a female
voice (5.5 kHz) (Fig. 9).

One can mostly relate the four formants per sound to particular partials or to
pairs of such partials. For instance, in the first sound segment the lowest formant at
1.5 kHz is very close to the strong partial no. 4 of the spectrum (Fig. 8) at
1674 Hz/68.2 dB, formant 2 represents the most prominent partial of the spectrum
(no. 5 at ca. 2093 Hz/68.7 dB), formant no. 3 is in between partial no. 6 (ca.
2511 Hz/65.6 dB) and no. 7 (2929 Hz/58.6 dB), etc. Whether there are any
‘‘formant laws’’ inherent in the sound especially of reed instruments (cf. Mertens
1975; Voigt 1975) that could be derived from spectral analysis at present seems
hard to tell; in any event, one would have to analyze a sample of many sounds to
justify such a conclusion in regard to principles of inductive generalization.

Though reasonable approximations to cyclic spectra can be found in the sound of
reed-driven instruments (and in particular in organ reed pipes, cf. Beurmann et al.
1998; Schneider et al. 2001), there are probably much closer approximations to
cyclic spectra at hand for plucked strings of harpsichords where the harmonics that
are cancelled out are determined by the ratio of the string length and the plucking
point, L/l (for examples, see Beurmann and Schneider 2008, 2009). An approximate
cyclic spectral envelope of course indicates that there are bands where energy is
concentrated relative to the dips or gaps in between. Following common terminol-
ogy, one may address such concentrations of energy in groups of partials as ‘for-
mants’ even for harpsichord sounds. It would need empirical evaluation involving
experienced listeners to find out to which extent such sounds in perception might
appear as similar to sung vowels. After all, it should be remembered that the concept
of ‘formant’ was developed for vowels as observed in singing, in the first place.

Fig. 9 Formant analysis (Burg), segments of bombarde sounds 1–8
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3.4 Stumpf Reconfirmed: Periodicity, Harmonicity,
Verschmelzung, Consonance

‘Inner’ and ‘outer’ features of Klangfarbe condensed into Fig. 4 are suited to
characterize a large number of sounds in an objective way (namely, by signal
analysis as well as through psychoacoustic experiments). In regard to objective
criteria, Stumpf (1926, 390) identified Klangfarbe im engeren Sinne with spectral
structure, and subjectively with the sum of so-called Komplexeigenschaften
resulting from listening to sounds composed of partials. To Stumpf (1926, 278),
sounds comprising a number of partials (and in particular vowels) in normal
perception (i.e., holistic perception not directed to structural analysis) will appear
as complexes that are not segregated or ordered (ungegliederte Komplexe). To
Stumpf, sound colours were classic examples of Komplexeigenschaften since they
are perceived as wholes that must not necessarily be analyzed into their constit-
uents. A different matter though is a complex of partials that is experienced as
giving a special perceptual quality, that of Verschmelzung into a highly consonant
formation (cf. Stumpf 1890, 1898, 1926). Stumpf himself had experienced highly
consonant complexes of partials by listening to organ mixture stops as well as by
synthesizing vowels; applying attentive listening to such sounds, he regarded
Verschmelzung an experience that reflects not just ‘‘fusion’’ of partials but even
more so their interpenetration (Durchdringung; cf. Stumpf 1890, 128ff.). Stumpf’s
view was that the perception of spectral Verschmelzung and Durchdringung must
have a neural basis, and that apperception of consonance would most likely be
effected on the cortical level.

It is characteristic of such complexes (cf. Schneider 1997a, b, 2000) that per-
ception can switch between two different modes, one being holistic and one
analytic.19 While the holistic experience of such a complex of harmonic partials as
produced by a chord of three or more complex tones in just intonation (see
examples in Schneider 1997a; Schneider and Frieler 2009) rests on facts that can
be described in terms of acoustics and psychoacoustics (namely, strict periodicity
of the time signal, clear microstructure of the waveshape with steep crests at the
beginning of each period, absence of beats and roughness, strict harmonicity of the
spectrum, strong difference and combination tones present at appropriate SPL), the
analytic approach can be directed to segregating the complex sound into several
constituents whose relational structure is perceived and cognitively evaluated (this
is one of the reasons why Stumpf and other psychologists with a philosophical
background maintained to use the notion of apperception for such a process; cf.
Stumpf 1926, 279, 372; Schneider 1997a, b). To illustrate the case, we synthesized
a sound Stumpf himself (1926, 394) has proposed for demonstrating the effect of a
special concord (Zusammenklang) that is perceived as sehr einheitlich, aber noch
reicher und von wunderbarer Schönheit (even more coherent and richer in

19 The difference is not identical with, yet bears some parallels to, that between bottom-up and
top-down analysis as outlined in Bregman’s Auditory Scene Analysis (Bregman 1990).
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harmony than another concord that had been proposed by Dayton Miller).
Stumpf’s concord comprises five perfect triads played simultaneously that are
build on the root frequencies of 100, 200, 400, 800 and 1600 Hz, respectively.
Hence, we need 15 partials, which are arranged so as to match Stumpf’s desired
spectral structure (that included an envelope where the intensity decreases regu-
larly from one partial to the next; in our sound, damping per partial is set to -3dB).
Also, when synthesizing the sound (done with Mathematica) we put a temporal
envelope on the partials for a smooth decay just as Stumpf had suggested (Fig. 10).

Hearing such a complex, the attentive listener indeed can switch between a
holistic mode where he or she will perceive a chord-like sonority of fifteen tones,
and a more analytic mode directed to evaluating the spectral structure of the
complex as well as the tonal relations between the five triads. Though there are
certain limits for such an analysis as far as frequency resolution of the ear and,
consequently, identification of components by means of perception is concerned,
the pitch structure and also the interplay of some of the partials in this complex can
be recognized. The basis for a cognitive evaluation is an analysis that takes place
in the auditory pathway consequent to two interacting mechanisms, peripheral
spectral analysis and the detection of periodicities arising from spectral compo-
nents as well as from the temporal envelope. The autocorrelation process (ACF)
will also reveal periodicities corresponding to virtual pitches including a series of
subharmonics.20 Hence when fed into a model of the auditory periphery working
in the time domain that processes complex sounds from basilar membrane filtering
and hair cell transduction to neural nerve spike representation in the auditory nerve

Fig. 10 Stumpf’s perfect Zusammenklang, 5 9 3 partials = 5 just triads

20 Not to be confused with the subharmonic matching process that has been proposed by
Terhardt (1998) for ‘pitch’ (f0) estimation of complex sounds; of course, there are some
correspondences in both concepts.
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(see Meddis and O’Mard 1997), the output aggregates periodicities found in the
neural activity pattern (NAP) into a sum ACF (SACF). As can be expected, the
neural output contains all periodicities inherent in the sound input plus virtual
pitches and subharmonics (see Schneider and Frieler 2009). Exactly this will
happen also with Stumpf’s ‘paradigm sound’ (1926, 394: idealer Klang) since an
analysis performed with various algorithms including standard and advanced
autocorrelation as well as cepstrum analysis (see Mertins 1996, 1999; Arfib et al.
2002) not only turns out lags (ms) corresponding to actual partial frequencies (such
as 10 ms = 100 Hz) but also gives the two main periods (10, 25 ms) governing
this complex sound. In addition, the analysis yields a series of subharmonics below
the fundamental ranging from 50 Hz down to 10 Hz. Hence we confirm once more
(cf. Schneider 1997a; Schneider and Frieler 2009) what Stumpf had experienced
and what could be expected taking fundamentals of acoustics and psychoacoustics
into account: sounds composed of harmonic partials organized into several com-
plex tones representing a concord in just intonation will result in the perception of
a highly consonant formation having a distinct ‘Gestalt’ and sensory quality. The
explanation on the level of the sound signal of course is the causal relation
between strict periodicity of the time signal and perfect harmonicity of the spec-
trum as defined by the Wiener-Khintchine theorem (cf. Meyer and Guicking 1974,
110ff.; Hartmann 1998, Chap. 14).

The following example should demonstrate the robustness of the principle:
consider three cosine pulse trains which have fundamental frequencies at 300, 400,
500 Hz plus a number of harmonics so that equal energy is contained in the
spectrum at {300, 400, 500, 600, 800, 900, 1,000, 1,200, 1,600 Hz}. The pulse
trains (sampled at 16 bit/44.1 kHz) are in a harmonic ratio and might be regarded
as representing both a sound signal and the corresponding neural output. The time
function s(t) arising from the superposition of the pulse trains for 100 ms is shown
in Fig. 11 (for an almost identical SACF output derived from processing in an
auditory model, see Schneider and Frieler 2009, Fig. 3).

Fig. 11 Periodicities inherent in pulse trains based on harmonic ratios 3:4:5
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From Fig. 11 it is easy to see that the signal is strictly periodic with a period
T = 10 ms implying a repetition frequency f0 of the compound pulse of 100 Hz
that constitutes the ‘root’ of the harmonic series and gives rise to the sensation of a
salient low virtual pitch. The complex sound thus composed of course is highly
consonant in regard to Stumpf’s concept of Verschmelzung.

If the pulse trains are subjected to frequency modulation (FM) with individual
modulation frequencies per Fourier component, the resulting sound is audibly
shifting up and down in pitch and spectrum so that the degree of Verschmelzung
one may assign to the percept is much less than that of the unmodulated sound
(Fig. 11), and the time function s(t)fm of the compound pulse at a first glance
appears quite irregular (Fig. 12; 100 ms displayed).

Though it is not easy to detect the periodicities still inherent in the modulated
time function s(t)fm from looking into the graph, autocorrelation analysis still finds
some of the Fourier components making up the compound as well as f0 clearly
marked at 100 Hz. The reason is that FM in this sound also is periodic (though
with different modulation frequencies applied to different components), and that
the autocorrelation function (ACF) by Norbert Wiener (1961) explicitly had been
defined as the temporal mean of the product s(t) s(t ? s) in order to detect peri-
odicities even in complex and/or noisy signals (in particular, EEG recordings).
Hence, ACF and, similarly, cross-correlation (CCF; see Hartmann 1998, 346ff.;
Ingle and Proakis 2000) such as used to compare two sequences (e.g., two audio
signals or one audio signal recorded from both ears) is a tool suited to detect
periodicities in various signals; ACF and CCF is robust in regard to angular
modulation (frequency, phase) as long as the modulation itself is periodic (or
nearly so). Therefore, pitch extraction based on ACF or CCF works also for
slightly detuned intervals (as is the case in equal temperament) or even for
inharmonic signals up to a certain degree of inharmonicity (since increasing in-
harmonicity of the spectrum implies decreasing periodicity of the time signal).

Fig. 12 Pulse trains with fundamental frequencies in the ratio of 3:4:5 subjected to FM; all
Fourier components have individual modulation frequencies An Sin(2p kt), k = 1, 2, 3, …
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As far as auditory perception is concerned, Licklider (1951, 1956) it seems was
the first to draw on ACF for a model of pitch perception where the autocorrelation
mechanism consists of many delay-line autocorrelators in parallel. In addition,
Licklider proposed a cross-correlational operation conceived as a time-coincidence
arrangement with two inputs and two delay lines running in opposite direction.
Though the basic idea of time-domain pitch analysis (that had been proposed by
scholars such as Seebeck and Schouten) has been widely accepted and has been
realized in many models of ‘‘neurally inspired’’ auditory perception (for an
overview, see de Cheveigné 2005), the ACF-based model suffered from a lack of
convincing neuroanatomical and neurophysiological evidence since an array of
neural delay-line autocorrelators was not yet discovered. Also, processing speed in
the auditory pathway is at odds with the huge delay needed to perform ACF for
low pitches. On the other hand, in neurophysiological research undertaken from
the 1960s onwards (summarized in Hesse 1972; Keidel 1975; Ehret 1997;
Schneider 1997a, b; Nelken 2002), there had been measurements of periodicities in
the auditory nerve as well as on the level of higher relays of the auditory pathway
(notably, the ICC and the CGM) corresponding to periodicities in input signals.
More recently, the neural basis for differences between consonant and dissonant
musical intervals has been demonstrated by all-order interspike interval histograms
recorded from auditory nerve fibers of cats in animal experiments (Tramo et al.
2001; see also Cariani 2004). Also, an improved auditory processing model that
includes the auditory nerve, the cochlear nucleus (CN), and the inferior collicus
(ICC) has replaced the ACF process by operations on a huge array of components
which are physiologically plausible (Meddis and O’Mard 2006).

3.5 Transients and Dynamic Evolution of Sound Spectra

In addition to finding pitch curves based on either f1 or f0 measurements (see
above), spectral structure and spectral energy distribution have always been of
interest. After decades of research where analysis and synthesis of sounds had been
confined to mechanical instrumentation, the 1920s saw the breakthrough of elec-
tro-acoustics. Stumpf (1926, 408f.) points already to experiments in radio stations
on stereophonic recordings done with several microphones and finds such trends
fitting his own concepts, namely, spatialization of sound.

In the 1920s, sound analysis gained new impetus when filtering based on the so-
called search tone method (Grützmacher 1927; see also Küpfmüller 1968, 122ff.)
allowed spectral decomposition of a time signal. This led first to finding spectra for
steady-state sounds. At the same time, transients preceding almost stable sounds
such as vowels in speech or tones played on woodwind and bowed string instru-
ments were investigated. The problem in such an approach is that transients lack
the clear periodic time structure which governs the steady-state portion of a given
sound. Hence, a Fourier analysis that (in principle) assumes strict periodicity of the
signal is difficult to conduct if possible at all. Backhaus (1932) who offered a
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thorough study of transients (labeled Ausgleichsvorgänge then) had the idea to
take the period found for the steady-state portion of the signal following the
transient portion and see if spectral decomposition could be carried out by ten-
tatively applying the known period length of the stationary signal to the transient
part. In many instances, a fair approximation was possible (including manual
interpolation of step functions to obtain smoothed curves for the dynamic evolu-
tion of partials over time; see Backhaus 1932, 32–34). The results were presented
as a family of curves for the partials studied in a 2D amplitude/time diagram. The
concept resembles a modern approach, namely the phase vocoder and the 3D-Plots
one can obtain for the evolution of partials with appropriate software (such as
sndan, see Beauchamp 2007). Since the phase vocoder analysis can be understood
as a bank of band pass filters tuned to a fundamental frequency (whereby the
center frequency of the lowest band pass should closely match f1 of the sound to be
analyzed), a decision as to f1 or f0 of the signal has to be made not unlike the
considerations Backhaus had outlined. Phase vocoder analysis effects spectral
decomposition of a complex harmonic sound into its partials. One option of sndan
(see Beauchamp 2007) is to plot the amplitude for each partial against time to
facilitate the study of onsets and the evolution of spectral energy with time for
various partials. For example, looking into the sound produced on a bassoon for
the note B2 (f1 & 120 Hz), the 3D plot shows different trajectories for the first six
partials within the first 300 ms of sound. The slow rise of most of the partials
indicates a rather soft attack for this sound (Fig. 13).

Fig. 13 Phase vocoder analysis, harmonics 1–6, bassoon note B2, linear amplitude
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Of course, analysis techniques such as the phase vocoder are based on digital
signal processing and were not at hand in the 1930s. Acousticians found, however,
a clever technique for the study of transients by applying octave-band filters
where, because of the wide bandwidth, transient response time of the filter was
short enough not to affect the filter output in a significant way.21 The filter output
per octave and the original signal were recorded on sound film and then plotted as
oscillograms whereby different onset times for partials in consecutive octave bands
became apparent. Such an analysis was carried out, among others (see Graf 1972;
Reuter 1995), on organ flue and reed pipes (Trendelenburg et al. 1936). Studying
pipe ranks from the famous organ Arp Schnitger had built for the chapel in the
palace of Berlin, in 1706 (cf. Edskes and Vogel 2009, 138–143; the organ was
destroyed in WW II), it was found that the onset of partials differs significantly
from reed pipes to flue pipes (what can be explained by taking into account
characteristics of different generators and regimes of vibration) and also with
respect to various pipe geometries and pipe sizes per octave.

Basically the same approach as Suchtonanalyse is known also as heterodyne
filter analysis (see Fant 1952; Roads and Strawn 1996, 548ff.), which has been
adopted in the construction of the analogue sonagraph (designed by Bell Labs) that
came into research institutions as a stand-alone hardware unit (built by Kay
Elemetrics Co.) in the 1950s and was primarily used for visualization of speech
patterns (‘‘visible speech’’; cf. Potter et al. 1947; Neppert and Pétursson 1986). The
sonagraph offered analysis of a segment of sound either directly recorded into the
machine (by microphone) or fed from tape or record player into a line input
(mono). The Kay sonagraph became a standard tool in phonetics and, beginning in
the 1960s, also for systematic and comparative musicology (see Graf 1972, 1976,
1980; Födermayr 1971; Rösing 1972). The following sonogram displays the same
melisma of a female singer from Lebanon that has been under study above
(Figs. 2, 3); the sonagram was produced with the (advanced) Kay model 7030 A
that offered two exchangeable filter units with four different band filter settings
(wide: 300 or 150 Hz; narrow: 45 or 10 Hz).22

The sonagram clearly shows the modulation and a concentration of spectral
energy in bands corresponding to vocal formants (these bands cover ca.
600–800 Hz, 1200–1400 Hz, and from 3.4 to above 4 kHz). The results of the
analogue sonagraphic analysis are well in line with the spectral and formant
analysis obtained by digital signal processing (see Figs 2, 3 and 5).

21 For the calculation of analogue low pass and band pass filter parameters, see Fant (1952),
Küpfmüller (1968).
22 The sonagram was produced, in spring 1978, in the lab of the Kommission für
Schallforschung of the Austrian Academy of Sciences at Vienna where the present author was
working for a period on invitation of Walter Graf, then head of the Kommission für
Schallforschung and its lab. Fant (1952) developed a heterodyne filter that, different from the
constant bandwidth filter employed in the sonagraph, offers continuously variable bandwidth
along with the continuously variable center frequency.
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Since the analogue sonagraph employs a linear frequency scale, one could
measure (manually peak-to-peak) the modulation (as in Fig. 14) at the nth partial and
then calculate the frequency modulation deviation for the fundamental simply by
dividing the shift found at the nth partial by n. Also, one could make use of both wide
band and narrow band filters in the same probe and thereby overcome—at least to a
certain degree—the limitations known from linear systems (cf. Küpfmüller 1968,
Kap. IV), where the relation df dt C 1 applies. In regard to band pass filters this
means that the filter response time is s = 2p/Dx = 1/Df, that is, the response takes
the longer the narrower the pass band of the filter is chosen. Having the same probe
processed by filters of different bandwidth, one could have the advantage of better
temporal resolution with the 300/150 Hz filter, and improved frequency resolution
by using the 45/10 Hz narrow band (cf. Schneider 1986).

In the 1970s, digital signal analysis based on the Discrete Fourier Transforms
(DFT) making use of highly efficient algorithms such as FFT (see Randall 1987;
DeFatta et al. 1988) was developing fast. Spectrum analyzers offering DFT/FFT
became available though sampling rates, length of the transform for Fourier
analysis and, hence, temporal and frequency resolution were still modest (cf.
Randall 1987) mostly due to limits in memory needed for storage and processing
of signals. In addition to narrow-band spectrum analyzers (such as the B and K
2031 and 2033 models that, by about 1980/81, were found in many labs), also a
digital sonagraph (Sona-Graph DSP 5500, Kay Elemetrics) was constructed which,
like the analogue model, allowed to measure the temporal evolution of spectra and
to plot time/frequency representations as spectrograms but also had an option for
analysis of two independent signal channels. This machine has been used in the
study of transients in organ flue pipes as well as in recorders (Castellengo 1999).

By the end of the 1970s, the Synclavier (and by about 1980 the Synclavier II)
became available that, besides its capabilities as a digital synthesizer and high
resolution sampler (with sampling up to 100 kHz at 16 bit), offered also state-of-
the-art FFT-based spectral analysis including 3D spectral plots and harmonic grid
display to check the harmonicity of spectral components (cf. Beurmann and
Schneider 1995; Schneider 1997b). Moreover, the Synclavier II offered automated

Fig. 14 Abu Zeluf, melisma, Sonagram 0–4 kHz, 4.8 s of the time signal
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transcription, whereby sound was directly transformed into western staff notation.
We have tried this option along with the spectral analysis and component fre-
quency and level (dB) calculation on, for example, two-part pan pipe music of the
‘Are’are (Salomon Islands, recordings made by Hugo Zemp; cf. Schneider 1997b,
393ff.).

By about 1990, powerful workstations (like SGI, SUN, NeXT) had become
available, some with A/D and D/A conversion as well as DSP hardware onboard.
Also, software for sound analysis and synthesis such as sndan (cf. Beauchamp
2007), Spectro (Gary Scavone and P. Cook, CCRMA/Stanford), Sonogram (Hiroshi
Momose, UC Davis), SuperVP (IRCAM) as well as versatile platforms for pro-
gramming (like CSound, CMusic, ESPS +) along with multi-functional math
packages (Mathematica, MatLab) opened a completely new age especially for
systematic musicologists as well as for composers and musicians interested in
acoustics and psychoacoustics, sound synthesis, computer music, etc. [for an
overview of tools and fields of application, see comprehensive books edited by
Roads and Strawn 1996; Roads et al. 1997; Zölzer 2003; Beauchamp 2007 and the
monograph Smith (2007) has supplied]. In regard to sound analysis, careful
application of short-time Fourier transforms (STFT) allowed to study transients as
well as inharmonic signals. By choosing a very low hop ratio (down to a few
samples or even one sample) and, thus, a high percentage of overlap of frames that
are processed (and in addition zero padding as needed, depending on the signal
structure and transform length; see DeFatta et al. 1988), a quasi-continuous spectral
documentation of transients in onsets as well as of modulation processes as
observed in various musical instruments became accessible (for examples, see
Schneider 1997b, 1998, 2000; Beurmann et al. 1998). Also, spectral envelope
estimates by means of LPC or AR algorithms (cf. Marple 1987; Rodet and Schwarz
2007, Schneider and Mores, this volume) allowed close inspection of transient parts
of sound. In addition to STFT, wavelet analysis has been employed as a high-
resolution time/frequency representation of signals (cf. Mertins 1996, 1999). Since
the transient portion of a signal contains most of the information, calculation of
fractal dimensions and other methods known from dynamic system analysis (e.g.,
phase space and limit cycle analysis, Hopf bifurcation) help to identify processes
characteristic of the transient part as distinct from the steady-state sound (cf. Bader
2002). One of the motives central to conduct such studies is to understand complex
acoustic systems such as musical instruments from their sound as it is radiated from
vibrating parts and surfaces. The sound patterns thus are likely to indicate patterns
of vibration. Therefore, results obtained from the analysis of sound of real instru-
ments must converge to a high degree with data from vibration analysis and
modeling of instruments such as is done with, for example, the finite element and
finite difference methodologies (FEM, FDM; see Bader 2005 for his model of the
classical guitar and Lau et al. 2010 for a model of a swinging bell as compared to a
real bell). In this respect, advanced sound analysis has gained an important role in
musical acoustics as well as in areas of psychoacoustics where properties of sound
in regard to perception are of interest. To be sure, most of the developments
addressed in the present survey (covering, in the main, the era of Helmholtz to
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the time when computers and digital signal processing had become widespread)
happened within a span of but a hundred years.

4 Summing Up: Continuity and Change

Modern times up to the present seem to be governed by unprecedented speed and
ever increasing rates of acceleration. Travel within the 20th century has become
faster and faster (from simple automobiles to jet planes), and technological
developments have followed one another in ever shorter cycles. A field where the
rate of change perhaps is most obvious is information and communication systems
including the hardware involved. The computational power of a mainframe of the
1960s or even the 1970s appears small when compared to an average PC in use
now. Musical acoustics and sound research have clearly benefited from rapid
developments in electronics and in computer technology. Because of the progress
in technology and in actual research, the number of publications relating to sound
analysis and synthesis is vast. In such a situation, there is a risk that significant
portions of previous knowledge will fall into oblivion notwithstanding massive
data storage and archiving of relevant publications in digital formats.

Of course, there is always the possibility to look back on earlier achievements
in research and technology as has been done for acoustics. In regard to science,
historical accounts, rather than being conceived as a plain ‘‘narrative’’ of past
endeavours and achievements, must try to reveal topics central to research in a
certain field along with shedding light on issues in approach and methodology
(including basic mathematical and physical background; see, e.g., Cannon and
Dostrovsky 1982; Beyer 1999).

While history conceived as ‘‘narrative’’ can hardly be written without some
concept of continuity, Canguilhem (1966/1994) has stressed the importance of
discontinuity in science as a driving force for progress. One could also point to the
role of changing ‘paradigms’ that supplant or replace one another to underpin the
dynamics of science. Though discontinuity is a fact that can be observed in many
instances in regard to theories, methodology, and also practical matters, there is
also persistence of previous knowledge as well as of problems that are unsolved
yet and hence need to be investigated. In order to find improved experimental
designs and possibly more appropriate solutions, one has to know about previous
research and its outcome (including valid results as well as failures).

The present article and some other publications I have contributed making use
of sound analysis and synthesis in one way or another (e.g., Schneider 1997a, b,
2001, 2011) were conceived with the intent to connect the present to the past, and
to outline certain developments in regard to both change and continuity in
research. While change is often induced by new tools (technical as well as con-
ceptual and methodological) that become available for research, leading to fresh
perspectives, in quite many areas a certain continuity can also be observed either
because problems resist to be solved completely, or because previous research is
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acknowledged as still worth noticing and perhaps calls for a continuation of
efforts.
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Quantal Elements in Musical Experience

Rolf Inge Godøy

1 Introduction

The aim of this chapter is to present a model for understanding unit formation,
what we prefer to call chunking, at short-term timescales in musical experience,
typically in the duration range of approximately 0.5–5 s. The idea is that at these
short-term timescales, chunks of sound and associated body motion are conceived
and perceived holistically; hence demonstrate what may be called quantal
elements in musical experience. Very many salient musical features for identifying
style, motion, and affect, can be found at such short-term timescales [and some-
times at even shorter timescales as suggested by Gjerdingen and Perrott (2008)].
A better understanding of such quantal elements in musical experience could be
useful in the fields of music perception, music analysis, and music information
retrieval, as well as in various practical artistic and educational contexts.

Needless to say, from an acoustical point of view, music is something that
unfolds linearly in time. This is the case for basic sonic phenomena such as
periodicity and frequency, and for more composite phenomena such as timbre,
loudness, and pitch, as well as event-level (or note-level) phenomena such as
rhythm, texture, and melody. Yet it is also well known from psychoacoustic and
music perception research that sequentially occurring elements contribute to
holistic, and in a sense ‘atemporal’, perception of features: Sequentially occurring
attack transients and fluctuations in the course of sounds are essential for holistic
timbral experience and categorization; sequentially occurring variations in pitch,
loudness, and timbre are essential for experiences of expressivity; sequentially
occurring tone events are essential for experiences and recognition of motives,
textures, motion, and affect, etc. In short, it seems that very many musical features
are dependent on some kind of transformation of sequentially occurring elements
at short-term timescales to quantal percepts.
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Although we have had more than a century of significant research in gestalt
theory on unit formation in music, as well as important advances in research on
auditory perception and human motion during the last decades, the perception and
cognition of such short-term chunks of sound and associated body motion are to
my knowledge still not well-researched topics. Drawing on past and present rel-
evant research, the main hypothesis of this chapter is that below the threshold of
the short-term timescale (i.e., very approximately in the 0.5–5 s range), there is a
qualitative difference in our perception and cognition of continuous sound and
continuous body motion, in that what is occurring sequentially is subjectively
perceived and conceived as simultaneous, or ‘‘in a now’’, to borrow the expression
used by Edmund Husserl more than a century ago (Husserl 1991; Godøy 2010).

The main challenge of this chapter is then to present some kind of under-
standing of how these quantal elements work in musical experience, in view of the
long-term goal of developing a model applicable to sound and motion data. On the
way to a sketch of such a model, we shall first have a look at what are the contents
and criteria for such quantal elements, as well as present evidence suggesting that
these quantal elements are based on various perceptual and motor constraints.

2 Duration Thresholds

One basic principle in both auditory and motion perception, as well as in human
motion control, is that of quite distinct qualitative experiences at different time-
scales, something that has consequences for quantal elements in musical experi-
ence. There are the well-known thresholds in both audition and vision at
approximately 20 Hz between what may be called the sub-sonic and sonic
domains in audition, and between still pictures and animation in vision, the so-
called flicker-fusion threshold. Within these domains, there are furthermore
thresholds of duration for various features to be perceived, such as that of mini-
mum duration for the perception of pitch, timbre, and location of sound sources, as
well as for onset simultaneity and order; however, the time values involved here
seem to vary somewhat depending on content and context (Pöppel 1989; Moore
1995). Interestingly, it seems that rather composite and style-related timbral-
textural features may be perceived at duration thresholds as low as 250 ms, a
finding suggesting that the perception of rich timbral-textural content is indeed
both quite fast and robust (Gjerdingen and Perrott 2008).

There are several important auditory features found at the sub-sonic timescale
(i.e., below the 20 Hz limit), meaning features that typically take more than 50 ms
to unfold. These features include dynamic, timbral, and pitch-related envelopes for
sound, ranging in duration from that of various audible fluctuations in pitch,
loudness, or timbre, to more composite features such as rhythmical and textural
patterns, melodic motives, and figurations. The effect of dynamic envelopes on the
holistic perception of sounds have been studied for several decades, such as in the
classic investigations of ‘plucked’ versus ‘bowed’ sounds (Cutting 1982). We now

114 R. I. Godøy



have a fairly large collection of research and feature descriptors that try to pinpoint
various transients and fluctuations in the sub-sonic range (see e.g., Peeters et al.
2011 for an overview).

Interestingly, envelopes in the sub-sonic range were extensively studied from a
subjective perceptual point of view by Pierre Schaeffer and co-workers in the
1950s and 1960s, resulting in what was called the typology of sonic objects
(Schaeffer 1966; Chion 1983). From our present point of view, an essential feature
of this typology is that the sound envelope categories may be linked with body
motion categories (Godøy 2006), hence, providing a basis for an embodied and
multisensory scheme for understanding quantal elements in musical experience. In
this typology, there are three main categories for the overall dynamic envelopes:

• Sustained, meaning basically a prolonged and steady sound, reflecting corre-
sponding continuous effort and attention.

• Impulsive, meaning a short burst of energy such as in a sound made by hitting or
kicking, followed by a longer or shorter decay.

• Iterative, meaning a rapid series of impulses such as in a tremolo, a trill, or a
vibrato.

Furthermore, it was suggested that there are categorical thresholds between
these dynamical envelopes, dependent on the variables of duration and rate: If the
duration of a sustained sound is progressively shortened, there will sooner or later
be a transition to the category of an impulsive sound, and conversely, if the
duration of an impulsive sound is progressively extended, there will sooner or later
be a transition to a sustained sound. Similarly, if the rate of impulsive sounds is
increased, this will sooner or later turn into a continuous iterative sound, and
conversely, if the rate of onsets in an iterative sound is decreased, this will sooner
or later turn into a series of impulsive sounds. Similar time-dependent categorical
thresholds for other sonic features were suggested by Schaeffer and co-workers,
such as between so-called grain (fast fluctuations in the sound) and allure (slower
fluctuations in the sound).

We find similar qualitative transitions in human motion control, here often
referred to as phase-transitions (Haken et al. 1985), for instance in the transitions
between human walking and running, however details of the underlying biome-
chanical and/or neurophysiological factors seem not yet to be fully understood. Such
categorical changes on the basis of continuous changes in variables (speed, rate,
amplitude), contribute to constraint-based quantal elements in music (more on this
below). However, in some cases it may be difficult to specify exactly where changes
occur, in particular between motion and rest, for the simple reason that a living
human body is never completely still, hence the need to define some threshold values
for stillness here (Hogan and Sternad 2007). Yet, what emerges from looking at
different timescales and qualitative categories in human motion, is a striking simi-
larity with qualitative categories in sonic features, and thus yet another reason for
considering sound and motion together in music (Godøy and Leman 2010).

On a slightly longer timescale, on what we could collectively call the meso-
level timescale, we find some other qualitative thresholds that may all be qualified
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as manifesting holistically conceived and perceived events, as opposed to the more
continuous features mentioned above. It could be useful again to take Pierre
Schaeffer’s ideas of the sonic object as point of departure, and also see if more
recent research can shed light on features at this timescale. Typically, the sonic
object will be in the duration range of 0.5–5 s, however this also depends on
content and context. The main idea is that at this meso-level timescale we can
perceive a number of salient musical features such as overall dynamic envelope
and timbral evolution, as well rhythmical, textural, and melodic patterns, and
importantly, the associated body motion patterns. This timescale is probably also
the most salient in terms of determining style/genre and affect, e.g., Gjerdingen
and Perrott (2008) suggest a 3,000 ms duration as fairly reliable in this respect.

The focus on the sonic object was initially motivated by pragmatic concerns in
the early days of the musique concrete. Before the advent of the tape recorder, one
way to mix sounds was to engrave a closed groove (‘‘sillon fermé’’) on a pho-
nograph disc, what we today would call a loop, and in the composition process
have a number of assistants activate the playback of such sound fragments so that
they could be feed into a mix. However, listening to these looped sound fragments,
Schaeffer and co-workers discovered that their perceptions changed, that they
started to consider the overall dynamic and timbral features of the fragments, and
from this practice, more extensive theories of sonic objects emerged (Schaeffer
1966; Chion 1983). Various ideas of gestalt and phenomenological theory were
combined with these initially pragmatic experiences of sonic objects, with the
main conclusion emerging that the meso-level timescale was the most salient
timescale, and that it also allowed for useful qualifications of both the overall
shape and the internal, more fine-grained, features of the sonic object.

For timescales significantly longer than this meso-level timescale, it could be
convenient to use the term macro-level timescale. This timescale is typically on
the level of whole sections, tunes, and/or works, and will consist of several meso-
level timescale fragments in succession.

In summary, we can think of three main feature timescales for both sound and
body motion here:

• Micro, meaning the sonic (the above 20 Hz) timescale of basically continuous
features, i.e., pitch, stationary timbre, and loudness, as well as fast sub-sonic rate
fluctuations such as tremolos, trills, and timbral fluctuations in the sound, and
corresponding continuous, smooth body motion and/or very rapid back-and-
forth, shaking, or trembling body motion.

• Meso, the 0.5–5 s timescale, typically manifesting features such as rhythmical
and textural patterns, motives, melodic fragments, modality, tone semantics,
sense of motion, affect, and various expressive elements. This timescale is the
basis for quantal elements in musical experience.

• Macro, typically concatenations of meso-level chunks, but also entailing sen-
sations of longer, and often hierarchical, metrical schemes, e.g., the very often
occurring 4 ? 4, 8 ? 8, etc., measure schemes in Western music.
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Clearly, these different feature timescales are concurrent, yet also interdepen-
dent: Micro-level features are embedded in meso-level chunks, meso-level chunks
are embedded in macro-level segments, and conversely, macro-level segments
owe their content to the meso-level chunk features, and these in turn to the micro-
level features. This is why Pierre Schaeffer stated that for any sonic object we
always have the duality of a larger-scale context of the sonic object and an internal
contexture of the sonic object, as well as ‘‘the two infinities’’ of music, meaning
that in listening to musical sound we can intentionally zoom in and out (Schaeffer
1966, 279), similar to Husserl’s idea of being able to zoom in and out of any
musical excerpt in our memory (Husserl 1991, 49–50).

We may look at these different timescale thresholds from micro to macro as
simply reflecting different durations to unfold, e.g., a waltz pattern (depending on
the tempo) takes anything from one to a couple of seconds to manifest itself, hence
is typically at the meso timescale, whereas e.g., an eight measure pattern of a waltz
takes proportionally longer to manifest itself, hence is at the macro timescale. Yet,
the subjective experience in our minds and bodies of these different timescale
features may not be equivalent to their temporal unfolding, as there may be
compression (retrospective accumulation, but also prospective, anticipatory com-
pression) and categorization at work, hence we need to look at some features of
continuity versus discontinuity in perception and cognition.

3 Continuity and Discontinuity

The transformation of continuous phenomena, such as sound and motion, into
more atemporal and categorical entities is partly a matter of physical attributes,
e.g., as manifest in going from the time domain to the frequency domain in signal
processing: The temporally unfolding continuous signal, because of its periodicity,
is seen as equivalent to the discrete frequency and amplitude values. But also our
western musical conceptual apparatus is, needless to say, filled with such con-
tinuous to discrete transitions in the form of various categories and schemas. This
goes not only for basic elements like pitch, duration, and timbre, but also for more
composite phenomena like whole patterns of tones and even more extended works
of music. As such, Xenakis’ ideas of ‘‘outside time’’ (‘‘hors-temps’’), epitomizes
our heritage’s capability for such notions of discontinuity on the basis of continuity
(Xenakis 1992).

However, this continuous to discrete transition in perception of more composite
phenomena becomes quite enigmatic when we try to get a better understanding of
how it works. Clearly, our event-level perception is also a biological capability
common to other species, and involves feature extraction and memory in different
forms. Yet it is also an epistemological-philosophical issue regarding time per-
ception in general, and it was a hotly debated topic in the early stages of phe-
nomenological philosophy, as reflected in Husserl (1991), partly dating from 1893
(see Godøy 2010 for details). The basic challenge for Husserl and several of his
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contemporaries was this: How is it that we can perceive a melody (or a single tone,
for that matter), when we know that the actual physical sound of each tone (or part
of any tone) is gone right after its sounding? Husserl discussed and rejected
various solutions, and ended up with the famous tripartite model of retention
(cumulative memory for that which has just passed), primary impression (what is
happening presently), and protention (expectations of what is to come), and with
the understanding that perception proceeds by a series of so-called ‘‘now-points’’
that include all three elements of the tripartite model. This has fittingly been called
‘‘The Principle of Simultaneous Awareness’’ by Miller (1982), and could be
understood as a quantal element in perception and cognition. Another very
interesting element here is that Husserl’s ‘‘now-points’’ are intermittent, i.e., dis-
continuous in occurrence, something that we shall return to later.

In more recent research, issues of continuity versus discontinuity in perception
and cognition seem still to create debate: On the one hand, there are proponents of
continuity who regard most mental activity as a continuous and competitive
process with more gradual emergent percepts (e.g., Spivey 2008), and on the other
hand, proponents of discontinuity, suggesting that although neuronal processes
may be continuous, there is discontinuous, point-by-point awareness and decision-
making based on transitions of activation thresholds in the dynamics of neuronal
activity (Sergent and Dehaene 2004). A similar moment-by-moment approach has
been advocated by Pöppel (1989, 1997), suggesting that these moments are in the
roughly 3 s range. Pöppel also suggests that these moments are of similar duration
in music, various other arts (e.g., utterance length in poetry), and in very many
everyday actions, in turn suggesting a mutual attunement of temporal chunking in
consciousness and in body motion.

In other recent memory research, it has been suggested that memory is com-
posite, with components working at different timescales (Snyder 2000): The so-
called echoic memory being more or less on the continuous signal level, and the
short-term memory being on the couple of seconds level, i.e., approximately at the
chunk-level timescale. In addition, there is the long-term memory that has the
function of recalling long stretches of events, and also of forming categories and
schemas. These categories and schemas, as well as more concrete recollections of
past events in long-term memory, are thought to contribute to any ongoing per-
ceptual process, hence are variably reactivated as needed. These various models
seem to assume (if not state explicitly) that perception is based on holding con-
tinuous sensations in some kind of buffer, hence have a quantal element.

In addition to Schaeffer’s pioneering work on sonic objects, there has also been
research on auditory objects, suggesting that there is indeed a quantal element at
work in auditory perception (Griffiths and Warren 2004; Winkler et al. 2006).
A modeling of auditory buffering, including some interesting ideas on the holistic
and temporally bi-directional working of memory can be found in Grossberg and
Myers (2000). It should be commented here that K. N. Stevens’ quantal theory in
linguistics, first presented in 1972, is basically a theory concerned with tolerance
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for variation within feature space (i.e., what could be called intra-categorical
variation), not with temporal compression as we are here (Clements and Ridouane
2006).

Common to most of the abovementioned research on chunking in perception is
that of somehow transforming, or re-coding, to borrow the expression from Miller
(1956), the continuous into something more discontinuous in our minds. One way
to understand these quantal elements in perception could then be that of con-
straints in the sense of a necessity, both in perception (for extracting useful
information) and in body motion (for anticipation in motor control), as we shall
have a look at in the next section.

4 Constraint-Based Chunking

There are various constraint-based factors at work in the generation and perception
of sound that may result in quantal elements in musical experience. For one thing,
natural sound is very often continuous within certain duration limits: Sounds
typically (but of course variably so) have an envelope with an attack, sustain, and
decay. In percussive and plucked sounds, there is an excitation in one point in time
followed by a variably long reverberation, thus being a quantal sonic element in
the sense that it is one coherent event.

Similarly, sound-producing (and sound-accompanying) body motion is also
continuous in the sense that all body motion takes time, i.e., it is physiologically
impossible to instantly go from one position to another position. This leads to the
phenomenon of coarticulation, meaning that at any point in time, the position and
speed of an effector (be that finger, hand, arm, etc., or any part of the vocal
apparatus) will be determined by the immediately preceding motion as well as the
immediately succeeding motion (see Godøy et al. 2010 for details). There is an
interesting similarity here with Husserl’s tripartite model in that at every instant, at
every ‘‘now-point’’ in Husserl’s terms, there is the effect of that which has just
passed and of that which is to come. Importantly, this temporal coarticulation is a
contextual smearing, blurring the boundaries between micro-level events, and
effectively creating a quantal element of cohesion within any music-related body
motion, as well as often also within the sonic object. The sonic smearing by
coarticulation is evident and much studied in linguistics (Hardcastle and Hewitt
1999), and also clearly at work in various musical contexts (Godøy et al. 2010).

Going one step further, it is clear that in motor control, there is a need for
anticipation, both in the sense of positioning the effectors for any sound-producing
task (e.g., fingers on the keyboard), and for optimal motor control when required
motions are too fast to be produced without being preprogrammed into one
compact action chunk that is automatically performed in due course. The question
of preprogramming of action has been hotly debated for more than a century
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(Elliott et al. 2001), and in particular Karl Lashley was an advocate for the need for
preprogramming in human behavior (Lashley 1951). However, a general con-
sensus seems to be emerging that preprogramming is necessary, yet that there is
also a possibility of feedback and adjustment in the course of one action (Ro-
senbaum et al. 2007). Notwithstanding any possibilities of ad hoc adjustment,
there is substantial evidence in favor of anticipatory and holistic cognition of
action gestalts (Klapp and Jagacinski 2011), a preprogramming also evident in the
workings of coarticulation as indicated above.

Research on action hierarchies attest to such quantal elements in human body
motion, where in goal-directed action there is clearly a need for ‘‘…a control
mechanism in which the different motor elements are not simply linked together in
the correct sequence, but are also tuned individually and linked synergistically
based on the final goal, with coarticulation observed as an emergent phenome-
non.’’ (Grafton and Hamilton 2007, 593–594). And further more, with reference to
Nicholai Bernstein’s seminal work on motor control: ‘‘The fifth aspect of Bern-
stein’s work is now referred to as chunking, the integration of independent motor
elements into a single unit. With chunking there can be an increase of coarticu-
lation and reduced cognitive demands, because less elements are organized for a
given motor goal. […] Chunking is also a critical element for automatization to
emerge.’’ (ibid, 592). And finally: ‘‘What Bernstein was trying to identify was a
more fluid process for structuring action, based on an internal hierarchical model
where elements describing shorter action sequences or motor primitives could be
combined. In such a structure a desired outcome is achieved within a cascade of
intermediate steps that converge onto a solution. In this situation, the desired
outcome is an invariant representation that is held as a reference during planning,
when the desired elements are organized.’’ (ibid, 593).

It seems fair to conclude that with both action hierarchies and coarticulation at
work in music-related body motion, as well as with musical instrument physical
constraints of reverberation (dissipation), we have constraint-based quantal ele-
ments in music as follows:

• Sonic events are acoustically often quantal in nature in the sense that we have
excitation and reverberation as coherent events that can be holistically con-
ceived and perceived.

• Sonic events and sonic features are included in some kind of sound-producing
body motion trajectory.

• Motion trajectories exhibit coarticulation, meaning contextual smearing that
creates continuity within a chunk.

• Motion trajectories require anticipatory cognition, hence a compressed overview
image of the whole trajectory, constituting a quantal element in motor cognition.

Taking motor elements into consideration, i.e., taking the so-called motor
theory perspective (Liberman and Mattingly 1985; Galantucci et al. 2006), it
becomes quite clear that chunking to a large extent is also determined by motor
control, and in particular by the phenomenon of what we call key-postures.
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5 Key-Postures

One way of understanding human body motion is that it proceeds by a series of
goal-directed actions. This is clearly valid for various everyday body motion
(Grafton and Hamilton 2007), and it will be argued, is also valid for music-related
body motion. In Rosenbaum et al. (2007), a review of research in support of goal-
directed action is presented, ending up with a general model of key-frames and
interframes for human motion control. Borrowed from the field of animation, the
term ‘‘key-frames’’ designates the images of body postures at salient moments, and
the term ‘‘interframes’’ designates the intermediate frames that need to be made
(draw by hand or computer generated) between the key-frames in order to create
sensations of continuous motion. The generation of interframes in actual human
motion is considered less demanding than that of key-frames, and may be left to
sub-routines of the motor control system.

Borrowing this idea from Rosenbaum et al. (2007), we prefer to use the term
key-postures, to avoid potential confusion as to the meaning of key-frames (also
used in contexts of video encoding), as well as to indicate that key-postures
include both position and shape (hence also spread) of effectors, e.g., the position
of hands and spread of fingers on a keyboard. Furthermore, key-postures are
intermittent, meaning that with key-postures we have a discontinuous, point-by-
point, planning and control of music-related motion. We shall assume that these
key-postures occur at salient moments in time, typically at downbeats and other
accented points in the music, and we will furthermore argue that sound-motion
chunks are oriented around such key-postures.

As for downbeats and other accents, we seem to lack a more comprehensive
theory as to their cognitive underpinnings. Also, the concept of ‘beat’ in music is
often used, and there seems to be a working consensus as to its meaning, whereas
there seems to be less consensus as to its perceptual-cognitive workings (see Todd
et al. 2002 for an overview). However, there is an interesting study of the shape of
the beat trajectory (Elliott et al. 2009), and related to this, studies of perceptual
centers, so-called p-centers, i.e., of the subjective experience of the attack-point in
musical sound (Wright 2008). The beat shape research suggests that the shaper (or
more pointed) the shape of the effector motion trajectory (e.g., hand motion) for
the beat, the more accurate is the resultant timing, and conversely, the more sloped
the motion trajectory, the more inaccurate the resultant timing. As for p-centers,
available research seems to indicate that the perceived point of an attack is to a
large extent a mental phenomenon based on several factors, and not an unam-
biguous acoustical fact only based on the amplitude peaks.

One plausible candidate for what a downbeat is, or generally, what an accent is,
seems to be related to a sensation of force. In discussing beat perception in con-
ducting, Luck and Sloboda (2009) suggest acceleration as an important cue for
downbeat perception, and that this is related to peaks in muscle contraction: ‘‘As
for why acceleration along the trajectory might offer a cue for synchronization,
there are interesting parallels between this finding and the fact that, when
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individuals spontaneously move to rhythmic auditory stimuli (beat-driven music),
bursts of instantaneous muscular power tend to be associated with rhythmic ele-
ments of the stimuli (the beat of the music). […] That is, people exert muscular
energy in synchrony with the beat. If we assume that muscular energy peaks at
moments of maximum acceleration of a conductor’s hand, we might speculate that
perception of a visual beat, like corporeal representation of a musical beat, is
closely related to peaks of instantaneous muscular power.’’ (Luck and Sloboda
2009, 472).

Another attribute of the downbeat, as suggested by its etymology, is a down-
ward motion of the hands when conducting: ‘‘The explicit or implied impulse that
coincides with the beginning of a bar in measured music, by analogy with the
downstroke in conducting.’’ (Julian Rushton, ‘‘Downbeat’’, Grove Music Online,
accessed 13 October 2012).

From the elements briefly presented above, it seems reasonable to infer that
there is an unequal distribution of attention and effort in music-related body
motion, something that may be summarized as follows:

• Continuous monitoring and adjustment in motor control is problematic for the
simple reason that monitoring and adjusting takes time, i.e., the process would
be too slow for many musical purposes. This is in accordance with Lashley’s
classic rejection of so-called reflex chaining and his alternative view that there
must be preprogramming (anticipative cognition) to enable efficient motion
control (Lashley 1951; Rosenbaum et al. 2007). There is also some recent
research suggesting that motor control is optimal when intermittent (Loram et al.
2011), i.e., that accuracy of body motion is actually enhanced by having dis-
continuous control.

• Body motion is centered on certain key-postures, cf. the reasonably well-doc-
umented theories of action hierarchies (Grafton and Hamilton 2007) and pos-
ture-based motion control (Rosenbaum et al. 2007) mentioned above.

• Between these key-postures, we have continuous motion and coarticulation
(Grafton and Hamilton 2007).

• It seems reasonable to assume that also chunks of music-related body motion are
centered on key-postures, and furthermore, that key-postures occur typically on
downbeats and other accented points. In addition, there are often upbeat motion
trajectories, what we call prefixes, prior to these downbeat key-postures, and the
downbeat key-postures are very often followed by a continuous trajectory until
the next downbeat key-posture, what we call suffixes, thus creating continuous
motion around the key-postures (Godøy 2010).

As key-postures are intermittent, and downbeats (and other beats and accents)
are intermittent, the next step is to see if this scheme of intermittent control of
music-related motion can somehow be modeled, and in effect demonstrating
quantal elements in musical experience.
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6 Impulse-Driven Chunking

Given the constraints of key-postures at salient moments in time as well as the
emergent coarticulation, it could be possible to think of musical performance (and
hence, also of music perception in a motor theory perspective) as a series of
impulses with intervening continuous motion trajectories.

As an example, consider the waltz-like texture for piano left hand solo in Fig. 1.
Underneath the notation of this fragment, we see the motion capture data for the
position, velocity and acceleration of the hand, wrist, and elbow, along the vertical
plane. We can see peaks in velocity and acceleration at the downbeat points,
indicating salient moments in time (as suggested above), as well as key-postures.
The ensuing offbeat tones (the sixth C4–E3) on the twos and threes of each measure
are included in the overall motion trajectories for each measure, and are in effect
subsumed as coarticulated events. This means that each measure here is one chunk,
centered on the downbeat, a downbeat that coincides with a key-posture.

Fig. 1 A waltz-like fragment for the piano for left hand solo, with notation (top), and underneath
this, motion trajectories of hand, wrist, and elbow along the vertical plane, and underneath this
again, the velocity and acceleration plots of this motion data
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From the combination of these observations and the abovementioned more
general principles of motor control, we could reasonably infer that these chunks
are impulse-driven in the sense that the downbeat and key-posture are made
intermittently present at one point in time, and that the rest of the chunk follows as
a result of, and is subordinate to, this impulse. Knowingly setting many and quite
complex motor control and biomechanics issues aside for now, it could still be
tempting to make a sketch of a general model for impulse-driven chunking in
music as an initial hypothesis that would of course need much more elaboration.

In Fig. 2, we see a schematic illustration of such impulse driven chunking. At
the top, (a), we have an ‘instantaneous’ impulse [similar to a Dirac impulse which
goes off to a maximal value (or theoretically, to infinity) at one point and is zero
elsewhere] combined with a key-posture at that point. However, the effector
(finger, hand, elbow, etc.) needs time to get to this key-posture; hence there is a
prefix trajectory up to the peak, followed by a suffix trajectory from this peak back
to equilibrium (i.e., a state of relative stillness). This looks similar to convolving
and impulse with an impulse-response, and analogously, we could here think that
the impulse is convolved with the body response, resulting in the trajectory we see
at (b). We could say that the musical result is an upbeat prefix to the downbeat
point followed by a decaying suffix trajectory back to equilibrium after the
downbeat point. Furthermore, when we have several such impulses in succession
(which we most often will have in music as we have a series of beats and key-
postures), this may be depicted as a series of impulses like in (c). Again, due to the
constrains of the effector system, there are prefix trajectories to the peaks as well as
suffix trajectories from the peaks back to equilibrium, so that we have trajectories
as in (d). Here we see that the prefix trajectories and the suffix trajectories may
overlap (if they are close enough and are not interleaved with moments of still-
ness), hence we have the resultant seemingly continuous and undulating trajectory
we see in (e). The effect of this is that of having continuity as the emergent
phenomenon of an underlying series of discontinuous impulses, hence, in a sense
reconciling discontinuity and continuity by such impulse-driven chunking.
A similar schematic model of overlapping trajectories of phonemic gestures has
been suggested in research on coarticulation in linguistics, see e.g. (Hardcastle and
Hewlett 1999, 52).

Modeling impulse-driven chunking in music-related motion could be extended
from this conceptual sketch to a more detailed mathematical implementation, in
the line of what Edward W. Large has called a ‘‘normal form dynamical system’’
for his modeling of rhythm perception (Large 2000, 534). But initially, impulse-
driven chunking has attractive features to explore further also in other directions.
For one thing, it treats music as a series of overlapping chunks with superordinate,
coarticulatory motion trajectories, i.e., it does not primarily rely on internal gestalt
features for coherence, but instead on the overall impulse-driven motion trajec-
tories. Musically (and acoustically), impulse-driven chunking could thus account
for the fusion of sonic events into holistically experienced chunks as may also be
simulated by so-called diphone synthesis. As such, impulse-driven chunking offers
a different scheme for the understanding of gestalt formation, in that gestalt
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coherence here is not primarily understood as a bottom-up, feature-based phe-
nomenon, but just as much as a top-down impulse-driven, motor schematic,
quantal element in music.

Furthermore, impulse-driven chunking has the advantage of shedding light on
the problem of determining chunk boundaries: By focusing on impulse-points
rather than first of all trying to find the precise start and end points of a chunk,
chunk boundary issues can be determined by classifying continuous motion as
either belonging to a prefix (upbeat) trajectory or to a suffix (after downbeat)
trajectory, with the chunk boundaries determined as the (not so critical) border
between these two.

Impulse-driven chunking can be seen as the source of rhythmical grouping, in
some cases (but by no means always), also at the so-called beat-level in music,
e.g., as in the waltz-like fragment in Fig. 1 when it is played so fast that the
measure level becomes equal to the beat level of the music. Notably, impulse-
driven chunking need not be restricted to isochronous beats, and beats may very
well be non-periodic, e.g., as in various folk music, as it is the overall motion
trajectory that controls the length of the beats. Impulse-driven chunking could
potentially give us interesting views on other ‘irregular’ rhythmic phenomena as
well as syncopation. Some very interesting ideas on beat-level rhythmical

(a)

(b)

(c)

(d)

(e)

!

!

Fig. 2 Schematic illustration
of impulses and trajectories.
First is shown a single
impulse (a), and this impulse
as embedded in a trajectory
(b). In (c) there is a series of
three impulses, and in
(d) these impulses are
embedded in trajectories.
However, with overlap, the
emergent result in (e) is of an
undulating motion trajectory
that does not go down to
equilibrium (stillness) before
at the end
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chunking have been presented in Sethares (2007, p. 279), with the significant
question ‘‘Which Comes First, the Notes or the Beat?’’ And furthermore, orna-
ments of all kinds, and various other figures, may be considered to be impulse-
driven chunks, making this useful in musical analysis and studies of styles, cf.
David Cope’s ‘‘signatures’’, i.e., small, style-typical fragments (Cope 1991). Last
but not least, expressivity and rhythmical articulation, timing, grooving, etc., could
all likewise benefit from being understood as impulse-driven chunks.

7 Conclusions

In summary, it seems clear that we usually have different concurrent timescales,
ranging from the micro-level to the macro-level, at work in musical experience,
but that there is good reason to designate the meso-level timescale (very
approximately in the 0.5–5 s duration range) as highly significant for very many
musical features. At the meso-level, there are also clear indications of quantal
elements in the holistic perception and production of chunks of sound and music-
related body motion.

Several signal-based and/or auditory feature-based arguments for this quantal
nature of meso-level chunks may be presented, such as in various gestalt-related
lines of inquiry (Tenny and Polansky 1980; Bregman 1990; Winkler et al. 2006),
or in other auditory research (Grossberg and Myers 2000; Griffiths and Warren
2004). But as a supplement, there is the motor theory perspective taken in this
chapter, implying that the quantal nature of meso-level chunks are related to body
motion trajectories, be that in the production of sound or in various sound-
accompanying motion, or in combinations of these. The basic tenet here is that all
within-chunk features are subordinate to the chunk-level motion trajectories, tra-
jectories that in turn are centered on key-postures and driven by impulses, hence
that we have a quantal element of musical experience here.

The scheme of impulse-driven chunking turns things around, in the sense that
chunk boundaries are considered secondary to chunk impulse-points, so that what
comes before the impulse point is a prefix (upbeat) trajectory and what comes after
the impulse point is a suffix, i.e., a trajectory returning to equilibrium (unless being
‘interrupted’ by a new upbeat trajectory before equilibrium as in Fig. 2d, e).

The next step now will be to develop this model sketch into a generic math-
ematical model, and to test it out on real sound-motion data. Later, more devel-
oped versions of this model could be tested in music perception experiments, in
music analysis, and in music information retrieval, all with the basic tenet that the
‘building blocks’ of music are not just tones/notes, but just as much quantal
element of impulse-driven sound-action chunks.
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Part II
Neurocognition and Evolution



Strong Emotions in Music: Are they
an Evolutionary Adaptation?

Eckart Altenmüller, Reinhard Kopiez and Oliver Grewe

1 Introduction: The Difficult Question About the Origins
of Music

There is general agreement that all human cultures possessed and still possess
music. Here, we understand music as intentionally created, non-linguistic,
acoustical events, structured in time, and produced in social contexts (Altenmüller
und Kopiez 2005). Amongst the oldest cultural artefacts, musical instruments such
as bone and ivory flutes have been discovered in the Hohle Fels cave and the
Geissenklösterle cave in the region of Swabia, South-West Germany (Conard und
Malina 2008). These flutes, dating back to about 35,000 years, indicate a paleo-
lithical musical tradition at the time when modern humans colonized Europe.
Intriguingly, they are tuned in line with a ‘‘modern’’ diatonic scale: the grip holes
of the flute are arranged in such a way that an octave is divided into five whole
steps and two half steps, with the half steps being separated by at least two whole
steps. The tuning is so ‘‘modern’’ that the main theme of J.S. Bach’s Kunst der
Fuge (The art of the Fugue) can be played on a reconstructed Geissenklösterle-
flute (Münzel et al. 2002, see Fig. 1). Nicholas Conard, the archaeologist who is in
charge of the excavation in the Hohle Fels cave therefore speculates that there
might have existed cultural traditions, which persisted from the paleolithic ages
until our times and preserved this diatonic scale locally in Central Europe (Conard
et al. 2009). This is a strong claim, since performance parameters, i.e. the
embouchure and the speed and width of the air-jet used to blow, may yield pitches,
which vary more than a quarter tone (Liang 2002).
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Furthermore, such a presumed tradition is generally difficult to prove due to
lacking continuity of records used in different sites at different times. It might
belong to one of those romanticisms, frequently encountered when dealing with
speculations about music and its evolutionary roots. We still do not understand the
exact function of these flutes, since it is even unclear whether they were regarded
as musical instruments and aesthetic objects or for example as signalling instru-
ment, used by hunters or gatherers to indicate a temporary station or to require a
specific action. Conard and Malina (2008) claim that the emotional life of pal-
aeolithic individuals was not different from ours. They therefore suggest that these
flutes were indeed used for playing expressive tunes and designed to influence
early humans’ well-being, emotions, group cohesion, and sense of beauty. In
favour of this hypothesis is the fact that the manufacturing of these flutes was
extremely time consuming and required fine manual skills and technical expertise
(Münzel and Conard 2009). Earlier musical activities are likely to have existed
although they are not documented in artefacts or as cave art. Here, we consider
instruments made from less durable materials, i.e. reed and wood, and furthermore
of joint singing, hand clapping or drumming as being connected to motor activities
such as rhythmic movements and dancing. It is an open question though, to why
these musical activities did emerge or persist, despite them being labour intensive
and therefore costly in an environment of constant struggle for survival.

From a scientific viewpoint the question of the origin of music is difficult, if not
impossible, to answer. There is too little information available about the nature of
musical activities in prehistoric times. Music does not fossilize and we rely on

Fig. 1 Replicas of the Geissenklösterle- and the Grubgraben-flutes dating back to about 35,000
and 20,000 years respectively. The 22 cm long Geissenklösterle flute is made from the radius
bone of a swan wing. The grip holes are arranged in a way that five notes of a perfectly tuned
diatonic scale can be played. It is unclear, whether the horizontal carvings are ornaments or were
used to determine the position of the grip holes. The 16 cm long Grubgraben flute is made from a
reindeer tibia. It is similarly tuned in a diatonic scale, however easier to play. The replicas are
manufactured by Wulf Hein, paleo-technician. Photo by E. Altenmüller
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sparse documents, mainly artefacts such as the above-mentioned flutes. There are
remarkably few cave paintings depicting musicians. Probably the earliest—though
still debated—depiction of the use of a musical instrument in rituals is the
‘‘Schaman with the Mouth Bow’’ in the Cave ‘‘Le Trois Frères’’ dating back to
about 14,000 years (Anati 1996) (see Fig. 2).

Further indirect information concerning the origins of music can be obtained
either from a comparative approach, for example when analysing the acoustic
communication of nonhuman mammals or from cross-cultural studies, especially
when comparing music production and appreciation in humans who have been
isolated from westernized cultures, such as the Mafa in the North of Cameroun
(Fritz et al. 2009). Finally, conclusions can be drawn from considering ontogen-
esis, observing the individual developments of vocalizations and responses to
music in infants (e.g. Mampe et al. 2009; Zentner and Eerola 2010). Undoubtedly,
as many animal vocalizations do in conspecifics, music can evoke strong emotions
and change the state of arousal when listened to attentively (Grewe et al. 2007a, b,
see also Panksepp and Bernatzky 2002, for the role of attention see Kämpfe et al.
2011). These strong emotions can even have effects on physiological functions, for
example on heart beat frequency (Nagel et al. 2008) and brain neurotransmitter
production (e.g. Salimpoor et al. 2011). Thus, it is not far-fetched to speculate that

Fig. 2 The Schaman with
the mouth bow from the cave
‘‘le Trois Frères’’. Redrawing
from Henri Bégouen and
Henri Breuil, Les cavernes du
Volp. Trois-Frères—Tuc
d’Audoubert à Montesquieu-
Avantès (Ariège). Paris,
1958, Figure 63. Redrawing
by E. Altenmüller
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our love for music may have an adaptive value based on evolutionary old
mechanisms, linked to the very nature of humans.

In the following, we will strive to find an answer to whether there is sufficient
evidence supporting the claim that music is an evolutionary ingrained character-
istic of humans. Furthermore we will discuss if making and listening to music as a
means to produce and experience strong emotions is a fitness relevant behaviour or
not. Finally, we will propose a tentative model attributing the origins of music to a
variety of either biologically relevant sources or culturally ‘‘invented’’ activities,
thus reconciling the opposing adaptationist—non-adaptationist standpoints of
‘‘music as part of the evolutionary founded endowment of humans’’ (e.g. Brown
2000) versus music as an ‘‘invention of humans, a transformative technology of the
mind’’ (Patel 2010).

2 Is Music an Evolutionary Adaptation?

For the sake of brevity we will only summarize the discussion on a potentially
adaptational value of music in human cultures. There are several recently pub-
lished articles and books, reviewing this on-going discussion in more detail (e.g.
Patel 2010; Grewe et al. 2009a; Special Issue of Musicae Scientiae 2009/2010).
Furthermore, we refer to the excellent classic ‘‘The origins of Music’’ edited by
Wallin et al. (2000).

The adaptationist’s viewpoint posits that our capacity to produce and appreciate
music has an evolutionary adaptive value; it is the product of a natural selection
process and contributes to the ‘‘survival of the fittest’’. It implies that it is bio-
logically powerful and based upon innate characteristics of the organism, for
example specialized brain networks refined by acculturation and education. His-
torically Darwin (1871, p. 1209), who proposed in his book ‘‘The Descent of Man’’
an analogy of human music to bird-song, has been the most prominent exponent of
this view. He wrote: ‘‘Musical tones and rhythm were used by half-human pro-
genitors of man, during a season of courtship, when animals of all kinds are
excited by the strongest passions’’. He further argued that the use of music might
have been antecedent to our linguistic abilities, which evolved from music. This
thought has been recently elaborated in the musilanguage model of Brown (2000).
Indeed, the idea that music or at least musical elements producing strong emotions
could be precursors of our language capacity has been already developed in 1770
by Herder in his ‘‘Treatise on the Origin of Language’’ (Abhandlung über den
Urspung der Sprache, Voss, Berlin, 1772), which received the price of the Royal
Academy of Berlin. Here, Herder states that language may have evolved from a
‘‘natural’’ affective sound system, common to humans and animals, which aimed at
the communication of emotions: ‘‘since our sounds of nature are destined to the
expression of passions, so it is natural that they will become elements of all
emotions’’. According to Darwin and Herder, music is an acoustic communication
system conveying information on emotions and inducing emotions, thus either
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(according to Darwin) promoting success in reproduction or (according to Herder)
improving social cohesion. These two adaptationists arguments are still discussed:
Miller (2000) has explored the sexual selection hypothesis, arguing that making
music was a demonstration of hidden qualities in the struggle for mates. Playing a
musical instrument means that resources for building such an instrument and
investing time in practicing it are available. Furthermore, the performance itself
requires self-confidence, creativity, emotionality and, frequently, bodily features
(such as skilled use of fingers) which can be conceived as the display of otherwise
hidden qualities.

With respect to the social coherence hypothesis, recent research convincingly
demonstrates that making music together promotes prosocial behaviour in Kin-
dergarten children (Kirschner and Tomasello 2010). Furthermore, music seems to
have the potential to initiate or reinforce the social bonding among individuals in a
group by means of ‘‘emotional resonance’’ and shared emotional experiences.
McNeill (1995, p. viii) assumed that ‘‘moving our muscles rhythmically and giving
voice consolidate group solidarity by altering human feelings.’’ In other words,
keeping together in time creates social cohesion.

Cross (2009) extended this theory to the effects of music on the human capacity
for entrainment. According to Cross, listening to music and making music
increases ‘‘… the likelihood that participants will experience a sense of shared
intentionality. […] Music allows participants to explore the prospective conse-
quences of their actions and attitudes towards others within a temporal framework
that promotes the alignment of participant’s sense of goal. As a generic human
faculty music thus provides a medium that is adapted to situations of social
uncertainty, a medium by means of which a capacity of flexible social interaction
can be explored and reinforced’’ (Cross 2009, p. 179). In going further, he ascribes
music a role ‘‘as risk-free medium for the exercise and rehearsal of social inter-
action’’ (Cross 2008).

Besides sexual selection and group-cohesion, adaptationists frequently propose
the role of musical and music-like interactions during parental care as a third major
group of evolutionary adaptive behaviours. Motherese, for example, is a specific
form of vocal-gestural communication between adults (mostly mothers) and
infants. This form of emotional communication involves melodic, rhythmic, and
movement patterns as well as communication of intention and meaning and, in this
sense, may be considered to be similar to music. Motherese has two main func-
tions: to strengthen bonding between mother and infant, and to support language
acquisition. Lullabies are universal musical activities designed to manipulate the
infant’s state of arousal, either by soothing overactive children or by arousing
passive children (Shenfield et al. 2003). All of these functions enhance the infant’s
chances of survival and may therefore be subject to natural selection.

The importance of making music and listening to music as a potentially
adaptational feature of humanity is underlined by neurobiological findings linking
our sense of music to hard wired neuronal networks and adaptations of neuro-
transmitters. Humans possess specialized brain regions for the perception of
melodies and pitches. This is impressively demonstrated by the selective loss of
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the sense of melody and pitch in congenital and acquired amusia, the former being
a genetically transmitted deficit in fine grained pitch perception, probably due to a
dysfunctional right fronto-temporal neuronal network (Ayiotte et al. 2002). Fur-
thermore, humans have specific sensory motor networks to adapt to and entrain
with rhythmic stimulation. These networks are an almost unique feature in ver-
tebrates, with only few exceptions such as the dancing Cacadu Snowball (Patel
et al. 2009).

Strong emotions whilst listening to music have been shown to affect various
neurotransmitters, predominantly the serotonergic and dopaminergic systems.
Serotonin is a neurotransmitter commonly associated with feelings of satisfaction
from expected outcomes, whereas dopamine is associated with feelings of pleasure
based on novelty or newness. In a study of neurochemical responses to pleasant
and unpleasant music, serotonin levels were significantly higher when participants
were exposed to music they found pleasing (Evers and Suhr 2000). In another
study with participants exposed to pleasing music, functional and effective con-
nectivity analyses showed that listening to music strongly modulated activity in a
network of mesolimbic structures involved in reward processing including the
dopaminergic nucleus accumbens and the ventral tegmental area, as well as the
hypothalamus and insula. This network is believed to be involved in regulating
autonomic and physiological responses to rewarding and emotional stimuli
(Menon and Levitin 2005).

Blood and Zatorre (2001) determined changes in regional cerebral blood flow
(rCBF) with positron emission tomography (PET)-technology during intense
emotional experiences involving chill responses accompanied by goose bumps or
shivers down the spine whilst listening to music. Each participant listened to a
piece of their own favorite music to which a chill experience was commonly
associated to. Increasing chill intensity correlated with rCBF decrease in the
amygdala as well as in the anterior hippocampal formation. An increase in rCBF
correlating with increasing chill intensity was observed in the ventral striatum, the
midbrain, the anterior insula, the anterior cingulate cortex, and the orbitofrontal
cortex: again, these latter brain regions are related to reward and positive
emotional valence.

In a recently published study by the same group, the neurochemical specificity
of [11C]raclopride PET scanning was used to assess dopamine release on the basis
of the competition between endogenous dopamine and [11C]raclopride for binding
to dopamine D2 receptors (Salimpoor et al. 2011). They combined dopamine-
release measurements with psychophysiological measures of autonomic nervous
system activity during listening to intensely pleasurable music and found endog-
enous dopamine release in the striatum at peak emotional arousal during music
listening. To examine the time course of dopamine release, the authors used
functional magnetic resonance imaging (fMRI) with the same stimuli and listeners,
and found a functional dissociation: the caudate was more involved during the
anticipation and the nucleus accumbens was more involved during the experience
of peak emotional responses to music. These results indicate that intense pleasure
in response to music can lead to dopamine release in the striatal system. Notably,
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the anticipation of an abstract reward can result in dopamine release in an ana-
tomical pathway distinct from that associated with the peak pleasure itself. Such
results may well help to explain why music is of such high value across all human
societies. Dopaminergic activation furthermore regulates and heightens arousal,
motivation and supports memory formation in the episodic and the procedural
memory (Karabanov et al. 2010) and thereby will contribute to memorization of
auditory stimuli producing such strong emotional responses.

3 Is Music a Human Invention?

The non-adaptationists theory postulates that music is a human invention and has
no direct adaptive biological function. However, it can still be useful in terms of
manipulating emotions, synchronizing group activities, supporting wellbeing and
promoting health. An elegant analogy is the comparison of the ability to make and
appreciate music to the ability of humans to control fire, which emerged probably
some 150,000 years ago (Brown et al. 2009). Clearly, there is no ‘‘fire-making’’
gene and no neurological syndrome such as an ‘‘apyretia’’—the inability to make
and control fire—but nobody would deny that making fire had an enormous impact
not only on human wellbeing (heating, cooking, lighting) and nutrition (better
digestion of protein-rich diets from animal meat), but also on physiological
parameters such as the configuration of our gut and teeth. Why not considering
music as such an ingenious invention in humans?

Historically, this viewpoint dates back to Spencer (1857) and his essay ‘‘On the
origins and functions of music’’. Spencer argued that music developed from the
rhythms and expressive prosody of passionate speech. The eminent psychologist
William James followed this line of arguments by stating that music is a ‘‘mere
incidental peculiarity of the nervous system’’ (James 1890, vol. 2, p. 419), which
has ‘‘no zoological utility’’ (vol. 2, p. 627).

Two decades later, German music psychologist Stumpf (1911) elaborated the
non-adaptationist viewpoint. According to his theory, music is the result of cor-
relative thinking, which allowed transgressing from sliding melodic contours to
discrete pitches and intervals.

The most prominent modern protagonist of a non-adaptationist position is
Pinker (1997, p. 528), who stated in his book entitled ‘‘How the mind works’’:
‘‘Music appears to be a pure pleasure technology, a cocktail of recreational drugs
that we ingest through the ear in order to stimulate a mass of pleasure circuits at
once’’. With respect to the biological significance Pinker comes to the same
conclusion as James by stating: ‘‘As far as biological cause and effects are con-
cerned, music is useless’’ (ibid., p. 534).

An elegant way to conceptualize music as a human invention, while taking into
account how human musicality can shape brain functions (Münte et al. 2002) and
even influence our genetic information (be it by selection or by epigenetic fea-
tures) is the ‘‘transformative technology of the mind theory’’ (TTM-Theory)
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proposed recently by Patel (2010). Basically, this theory has developed from a
comparative approach, stating that there are aspects of music cognition rooted in
other non-musical brain functions, which are shared with other animals. The logic
behind it is as follows: if music relies on other brain functions developed for other
purposes, then it is NOT music which has shaped our genetic material by natural
selection. As in fire making, which relies on skilled motor hand functions devel-
oped as a consequence of upright gait and adept use of tools, our ancestors
invented music by transforming previously acquired abilities (e.g. refined pitch
processing, ability to keep in time with an external beat, see also Patel 2008,
p. 207 f). This ‘‘invention of music’’, once established and tested for usefulness in
several domains, does not preclude the later development of more specialised brain
regions which may be of adaptational value—as is the length of the guts in fire
making humans. For example, the potential to memorize melodies and harmonies
critically relies on superior right temporal lobe functions, which are shaped by
musical expertise (e.g. Schneider et al. 2002; Hyde et al. 2009). The same holds for
the sensory-motor hand cortex, which adapts in function and structure to the
breath-taking virtuosic skills of the hands in professional violinists and pianists
(Bangert and Schlaug 2006, see also Hyde et al. 2009 for the discussion of the
famous ‘‘hen-egg-problem’’).

Aniruddh Patel’s argumentation in favour of the TTM theory is based on two
general lines which we only briefly delineate here: firstly, he focuses on tonality
processing and on the differential use of scale pitches such that some are perceived
as more stable or structurally significant than others. He argues that this ‘‘musical’’
feature leading to implicit formation of tonal hierarchies is not domain specific, but
shared with cognitive processing of syntactic hierarchies in language. Support for
this theory is derived from the neuroscientific research on brain networks, which
serve both processing of musical hierarchies and language syntax (see for a review
Koelsch and Siebel 2005). Accordingly, music tonality processing shares the same
resources as syntactic language processing; and both rely on much more basic
cognitive operations, namely the general building of mental hierarchies or cog-
nitive ‘‘reference points’’ (Krumhansl and Cuddy 2010) and the mechanisms of
statistical learning (McMullen and Saffran 2004).

The second line of argumentation comes from Patel’s work on entrainment to a
musical beat. Musical beat perception and synchronisation is intrinsic to dance and
to many other musical activities, such as synchronizing work songs or choir
singing. It does not appear to be rooted in language, since at least prose language
does not have temporally periodic beats and does not elicit periodic rhythmic
movements from listeners (Patel 2008, Chap. 3). Furthermore, the ability to
flexibly synchronize to changing tempi of musical beats seems to be unique to
humans and to a few parrot species, who share with humans their excellent vocal
learning ability. Here, it is important to note that adaptive rhythm and beat per-
ception is essential for language acquisition. It is already present in prenatal
intrauterine auditory learning (Patel et al. 2009). Summarizing, Patel argues that
synchronisation to a musical beat relies on the brain systems designed for vocal
learning, involving specialized auditory-motor networks not restricted to the
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cortex, but also to midbrain structures such as the periaqueductal grey and its
homologue in parrots. Thus, the TTM ability to keep in time with an external beat
is a by-product of vocal learning and its neuronal prerequisites.

In summary, valid arguments are in favour of music as a human invention,
based upon–or transformed from—already pre-existent cognitive and motor
capacities of our brain. However, the TTM-theory neglects the strong impact of
music on emotions and its possible origin and consequence with respect to its
adaptational value. It is interesting to note that the emotional value of music has
always been central to the adaptationists’ viewpoint, beginning with Herder’s and
Darwin’s ideas quoted above.

In the following two paragraphs we will demonstrate how music can elicit
different types of emotions, namely aesthetic emotions and strong emotions.
Aesthetic emotions are based on complex feelings with less salient physiological
correlates, whereas strong emotions lead to shivers down the spine and chills or
thrills accompanied by physiological reactions of the autonomous nervous system.
We will argue that the former constitute parts of a TTM, invented in later times,
whereas the latter may point towards an evolutionary old acoustic communication
system we share with many other non-human mammals.

4 Emotions Induced by Music

Although most listeners agree that music can sound happy or sad, there is fewer
consensus whether music truly evokes emotions. It is beyond the scope of this
article to review the issue in detail, or furthermore whether and how music induces
emotions. This discussion has recently been thoroughly reviewed by Hunter and
Schellenberg (2010). Basically, two main theoretical standpoints are held: the
cognitivist and the emotivist position. In brief, cognitivists argue that happy- and
sad-sounding music does not evoke true happiness and sadness in listeners. Rather,
affective responses stem from listener’s evaluation of the music (Kivy 1990).
However, such an evaluation or ‘‘appraisal’’ of music can clearly induce emotions,
and is in itself a constituent of emotions according to the ‘‘component theory of
emotions’’ by Scherer (2004). For example, a boring and inaccurate rendering of a
musical masterpiece might well induce feelings of anger and frustration in a music
lover based on his or her knowledge of other more adequate interpretations.

In contrast, emotivists posit that music directly evokes and induces emotions.
Several mechanisms accounting for such a role of music are discussed. Amongst
them, cognitive appraisal is only but one of them. Juslin and Västfjäll (2008) have
proposed six other mechanisms, namely (1) Brainstem reflexes, (2) Conditioning,
(3) Episodic memory, (4) Contagion, (5) Visual imagery, and (6) Expectancies that
are fulfilled or denied.

With respect to brainstem reflexes, Juslin and Västfjäll consider automatic
reactions of individuals towards highly dissonant sounds as such an emotional
effect of music, acting via a hardwired neuronal network of the brainstem.
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Although this phenomenon clearly exists the labeling is debatable, being in con-
trast with ‘‘true’’ brainstem reflexes, for example the constriction of the pupil
following exposure to light, these reactions to music are inter-individually vari-
able, adapting to repetitions and strongly depending on learning.

The emotional power of conditioning and episodic memory has been masterly
portrayed by Marcel Proust in the chapter ‘‘Swann in love’’, part of the novel ‘‘In
search of lost time’’: The hero Swann falls in love with a lady whilst a tune of
Vinteuil, is played in the background. Subsequently, the piece becomes the
‘‘national anthem of their love’’, strongly linked to positive emotions of tenderness
and longing. After breakup of the liaison, however, listening to the piece produces
intense negative emotions in Swann, feelings of distress, melancholy and hatred
(Proust 2004). Here, associations of music with significant non-musical life events
cause contrary emotions induced by the same piece of music. It should be men-
tioned, however, that the associative memories linked to music are less frequent
than usually assumed: In a retrospective autobiographic study, Schulkind et al.
(1999) could demonstrate that only 10 % of the greatest hits of the last 60 years
were linked to specific episodic memories.

Emotional contagion is based on the idea of a sympathetic response to music
invoking sad feelings in the presence of sad music (e.g. Levinson 1996). Music
induced emotions via visual imagery can best be exemplified in opera and film-
music, linking specific melodies or instruments to emotionally charged scenes or
personalities. A suitable example is the mouth organ melody in the movie ‘‘Once
upon a time in the west’’ by Sergio Leone, linking the chromatic tune to emotions
of gloomy suspense and revenge personified by the actor Charles Bronson.

Finally, with respect to the expectancies that are fulfilled or denied, Meyer (1956)
identifies the building up of tension and subsequent relaxation as a major component
of emotional appreciation of music. Recently, Huron (2006) has refined this idea in
his book ‘‘Sweet anticipation’’. Here, he develops the ITPRA (Imagination-Tension-
Prediction-Response-Appraisal) theory. He identifies five expectancy responses
towards music. Two occur before the onset of the event and three afterwards. The
first is the ‘‘imagination response’’, which consists of the prediction of what will
happen and how will the listener feel when the musical event takes place. The second
is the ‘‘tension response’’, which refers to the mental and physiological preparation
immediately before the onset of the event. After the event, the ‘‘prediction response’’
is based on the pleasure or displeasure depending on the degree of accuracy of the
prediction. Furthermore, listeners evaluate the pleasantness or unpleasantness of the
outcome in the ‘‘reaction response’’. Finally, in the ‘‘appraisal response’’, the con-
scious evaluation of the events occurs. According to Huron, the entire process can
lead to specific affective responses. When expectancies are met, music listeners get a
certain degree of pleasure which is reinforced if the event and its evaluation are
considered positive. If expectancies remain unfulfilled, this does not necessarily lead
to negative emotions; rather the result may be laughter, awe or chill-responses:
strong emotions that are frequently accompanied by physiological responses of the
autonomous nervous system as will be specified below (for a recent update of this
theory see also: Huron and Margulies 2010).
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Coming back to the question of the adaptational value of music induced
emotions, it is reasonable to distinguish strong emotions, leading to the above-
mentioned physiological responses from ‘‘aesthetic’’ emotions (Scherer 2005).
Scherer groups emotions into two classes, namely utilitarian emotions, such as for
example the prototypical emotions anger, disgust, fear, happiness, sadness, sur-
prise (Ekman 1994) and aesthetic emotions. While the former can be objectively
assessed by psychophysiological measures and have clear adaptational value in
terms of fitness relevant behavior, the latter are characterized by a strong sub-
jective feeling component. Their behavioral and physiological components remain
frequently obscure and the emotional responses are highly individual. Zentner
et al. (2008) have analyzed the vocabulary used in self-reports of aesthetic emo-
tions induced by music. They were able to group the common affective responses
into one of nine categories: Wonder, Transcendence, Tenderness, Nostalgia,
Peacefulness, Joyful activation, Tension, and Sadness. It is difficult to attribute an
adaptational value to these highly elaborated feelings, although they clearly are
beneficial for human wellbeing, adding meaning, consolation and security to our
lives. Thus, aesthetic emotions are good candidates as a human invention forming
parts of a TTM.

5 The Chill-Response in Music as an Example
of Emotional Peak Experience: Phenomenology
and Contributing Factors

‘‘Chills’’, ‘‘thrills’’, or ‘‘Shivers down the spine’’, terms used inter-changeably,
combined with goose-bumps occur in many contexts and are elicited in different
sensory domains. Physiologically, the chill-response is a consequence of the
activation of the sympathetic nervous system. This activation induces the hair to
erect, event caused by a contraction of the minuscule arrectores pilorum muscles in
the skin. Furthermore, chills are frequently accompanied by other reactions of the
sympathetic nervous system, for example increase in heart rate, blood pressure,
breathing rate, and sweat production measured by the galvanic skin response. As
already mentioned above, chills are linked to dopaminergic activation (Salimpoor
et al. 2011), increase in arousal and motivation thus supporting memory formation
(for a review see Mc Gaugh 2006). In this way, events leading to a chill response
will be memorized more precisely and for longer time. This fact is important as we
will be later considering the adaptational value of chill-responses in music.

The chill-response seems to be common in furred mammals and occurs as a
response to cold or to anger and fear. In the former case, erect hairs trap air close to
the warm body surface and create a layer of insulation (Campbell 1996). In the
latter, erect hairs make the animal appear larger in order to frighten enemies. This
can be observed in the intimidation displays of chimpanzees, in stressed mice and
rats, and in frightened cats, but also in the course of courtship of male chimpanzees
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(Nishida 1997, for a review see Kreibig 2010). A special case of acoustically
invoked chills in mammals seems to be in response to maternal separation calls in
some monkey species. Panksepp (1995) argues that feelings of social loss and
social coldness in the offspring could thus be soothed by maternal vocalizations. In
his opinion this could explain why, in humans, chills are frequently perceived in
the presence of sad or bitter-sweet emotions (Benedek and Kaernbach 2011).
Critically, it should be noted that no systematic study on the frequency, time
course, and intensity of chill-responses to separation calls in non-human primates
exists. Therefore, evidence for such a mechanisms remains, albeit frequently
quoted, anecdotal and scientifically ill founded.

In humans, chills can be induced through aural, visual, somatosensory, gusta-
tory, and enteroceptive stimulation (Grewe et al. 2010). Although most research
has focused on the above mentioned music evoked chills—which are in most
instances linked to pleasurable and joyful, albeit sometimes nostalgic feelings
(Guhn et al. 2007, Grewe et al. 2007b) it should not be forgotten that aversive
acoustic stimulation, such as the scraping sound of chalk on a blackboard or a
dentist’s drill, can induce such chill responses even more reliably (Grewe et al.
2010). These aversive sounds are characterized by high intensity, high pitch, and
frequently high degree of roughness in psychoacoustic terms.

In the somatosensory domain chills are evoked by cold, as a thermoregulatory
reflex, and by tactile stimuli. The latter are frequently perceived as pleasurable and
are probably linked to grooming and sexual arousal, although research on this
topic is lacking. Gustatory chills are evoked by sour and spicy food, and visual
chills by aesthetic objects and feelings of awe (Konecni 2011), but also by viewing
highly aversive pictures (Grewe et al. 2010). Finally, chills are frequently elicited
by mere mental self-stimulation, thoughts of pleasure and emotional memories,
including musical ones. All these highly diverse chill responses have similar
physiological correlates, as assessed by measurements of skin conductance
response, increases in heart rates and breathing rates (Grewe et al. 2010), and thus
cannot be distinguished by psychophysiological laboratory parameters. In the
following, we will focus on the ‘‘positive’’ chill response to music linked to
pleasurable feelings. We will briefly summarize our findings on musical param-
eters and listeners’ characteristics contributing to evoking these bodily reactions.

Positive chill responses and emotional peak experiences in music are rare
events. According to Goldstein (1980), about 70 % of the general population are
familiar with these reactions. Interestingly, there are differences between occu-
pational groups. Music students are with up to 90 % more susceptible to chills as
medical students (80 %), and employees of an addiction research center (53 %). In
a preselected and susceptible group of avid music lovers and amateur choir
singers, only 72 % had a chill response when listening to emotionally arousing
music for half an hour in a laboratory setting (Grewe et al. 2009a). It should be
noted that these responses are fragile and not perfectly reproduced when playing
the same musical passages on different days, even in individuals with high ‘‘chill-
susceptibility’’ (see Fig. 3).
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Furthermore, they strongly depend on the context. For example in an experi-
ment comparing the effects of listening to favorite ‘‘chill-producing’’ music alone
or in a group with friends, less chills occurred in the group condition, pointing
to another interesting facet of the chill-response, at least in our western culture:
Chills are frequently perceived as intimate and even linked to a sense of shame
(Egermann et al. 2011).

In a series of studies we attempted to identify musical factors such as structural
characteristics, harmonic progressions, timbre of instruments/voices and loudness
developments contributing to elicit a chill response. The results were quite disil-
lusioning. First, there was no simple stimulus–response relationship, i.e. even in
music believed to be highly emotionally arousing the chill-responses remain rather
casual and not simply reproducible. Secondly, there was no combination of
musical factors producing chills in a fairly reliable manner. This was already
demonstrated by Guhn et al. (2007), who strived to maximize chill-responses in
listeners by experimenter selected ‘‘chill-music’’, unfamiliar to the subjects. Only
29–35 % of the subjects perceived chills in the respective passages from works of
Mozart, Chopin and Bruch. In our experiments, the only general factor identifiable
as a necessary, however not sufficient, condition to induce a chill-response was a
change in musical structure, or, in the terminology of David Huron’s ITPRA-
model, a non-fulfillment of expectancies (Grewe et al. 2007b).

In a group of 38 quite heterogeneous subjects (age-range 11–72 years, 29
females, five professional musicians, 20 amateur musicians, and 13 non-musi-
cians) we analyzed musical parameters of their favorite music, producing a chill-
response in the laboratory. In 29 % of the pieces, the entry of a voice, irrespec-
tively of whether it was human or of an instrument, could be identified (Grewe
et al. 2007b). Furthermore, in 19 % a peak in loudness and in 14 % a peak in
sharpness was found. When looking closer to the latter parameters, the increase in
loudness was prominent in the high register (between 920 and 4,400 Hz), thus
contributing directly to the parameter ‘‘sharpness’’. Less salient was the increase in
roughness. In 12 % of the chill responses an increase in roughness linked to a
reduced tone/noise ratio was observed. The latter reflects an increase in acoustic
‘‘density’’ (Grewe et al. 2007b; Nagel et al. 2008). Transferred to music, this
occurs for example when more instruments are playing or more voices are singing
with higher loudness and tempo. Behaviorally, all these acoustic changes are
accompanied by an increase in arousal, which was confirmed in real time self-
reports using the device ‘‘EmuJoy’’ that allowed to monitor the self-declaration of
felt valence and arousal on a two dimensional coordinate system (Nagel et al.
2007). A typical example including all the above-mentioned criteria is the

b Fig. 3 Chill response data (top panel) for one participant across seven days in response to
Strauss’ ‘‘Breit über mein Haupt’’ with accompanying psychoacoustic analysis presented in the
bottom panel. Chill response consistency is evident at t = 1 min. Psychoacoustic parameters
loudness, roughness, and fluctuation show peaks at this point in time. However, the other chill
responses vary considerably the seven days with a general tendency to habituation. From Grewe
et al. 2007a, with permission
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‘‘Barrabas-Call’’ in St. Matthew’s passion of Johann Sebastian Bach. Interestingly,
this example was the most frequently quoted in John Sloboda’s first pilot study on
strong emotions when listening to music (Sloboda 1991). However, the chill
response in the ‘‘Barrabas-Call’’ is not reflex-like, since it varies depending on
many factors, such as the listening situation of the individual, overall wellbeing,
attentional factors, and day-form (Grewe et al. 2009b).

With respect to the listeners’ factors in the above mentioned heterogeneous
group, strong chill responders differed from those not perceiving chill-responses in
several respects: they were more familiar with classical music, rated music as more
important for their lives, identified more with the music they preferred, and lis-
tened more readily to music in everyday life (Grewe et al. 2007b). Of course, it
could be discussed further, whether these features are a consequence of the par-
ticipant’s proneness to pleasurable experiences in music or whether they contribute
a priori to a higher susceptibility for chill-responses in music. Concerning psy-
chological traits, chill responders showed a general tendency for less intensive
stimuli, as operationalized by Zuckerman’s sensation seeking questionnaire (Litle
and Zuckermann 1986) and were more reward dependent, i.e. they especially liked
approval and positive emotional input from their environment.

Since familiarity with musical genre and personal emotional memories seemed
to be important factors in the production of chill responses, we addressed the role
of the individual musical biography in a further experiment (Grewe et al. 2009b).
The goal of this study was to induce chill responses more reliably and to gain
further insights into the factors influencing it. We recruited 54 subjects from three
different amateur choirs who had performed Mozart’s requiem, further referred to
as ‘‘Mozart-group’’, and 41 participants from gospel and pop choirs, further
referred to as ‘‘control-group’’, who were unfamiliar with the Mozart requiem and
with classical music in general. We exposed these subjects to emotionally moving
excerpts from Mozart’s requiem (Lacrimosa, Confutatis, Rex tremendae, Tuba
mirum, Dies irae), which were either recordings of themselves or of professionals.
Furthermore, excerpts from the Requiem of Puccini ad from the Bach Motet ‘‘Our
live is a shadow’’, which had been sung in each case by only one of the three choirs
of the Mozart-group, were played. As measurements, subjective real-time rating of
the intensity of the feelings, and perceived chill-responses were recorded using the
software EMuJoy (Nagel et al. 2007). Additionally psychophysical measures such
as skin conduction response (SCR), skin conduction level (SCL), heart rate (HR),
and breathing rate (BR) were assessed. Figure 4 shows the time course of psy-
chophysiological data 10 s prior, during and 10 s after the chill response in a grand
average. The two most salient features of the physiological responses are (a) the
increase of SCR about 2 s before the chill reaction and (b) the response after the
chill of about 4–6 s which has recently been called the ‘‘afterglow effect’’
(Schubert in press).

Overall, comparable to previous results of Goldstein and Guhn, only about two
thirds of the participants reported a minimum of one chill during the experiment.
There was high variability in chill responses, ranging from a maximum of 88 chill-
responses in one subject to no chills at all in others. On average, each participant
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experienced 9 chills during the experiment. Interestingly, chill-responses showed
no relation to age, gender or knowing and liking of classical music. However,
familiarity with the stimuli influenced the frequency of chill-responses. Chills
occurred more frequently in the Mozart-group than in the control-group (72 vs.
56 % of the participants), and the overall number of chills was much higher in the
former than in the latter (679 vs. 173 chill-responses). Furthermore, whilst listening

Fig. 4 Comparison of 622
chill samples (upper line
marked with arrow) with 622
random non-chill samples
(lower line). Grey shaded
areas indicate significant
differences (Random
Permutation Test). From the
curves it becomes clear that
self-declared intensity of
feeling, skin response (SCR)
and heart rate (HR) start
about two seconds before the
individual chill-response,
which is marked by an arrow.
A salient characteristic of the
physiological response (SCR
and HR) is the afterglow
effect, which lasts about
4–6 s after the chill event.
Modified from Grewe et al.
2009a
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to the Bach motet and the Puccini excerpts, chill-responses were significantly more
frequent in the choir-members familiar with the respective pieces. However, it
seems not to be very important to listen to one’s own interpretation, since only the
Confutatis interpretation of one choir produced slightly more chill responses in the
choir-members as compared to the professional version (in average 0.95 chills vs.
0.11 chills). Thus, obviously, familiarity with the stimulus is an important factor in
eliciting chill-responses. Musical biography and individual associations, for
example the remembrances of a successful performance in an awe inspiring gothic
cathedral, may well promote emotional susceptibility.

Summarizing this paragraph with respect to the overall topic of this review,
namely the evolutionary adaptive value of music, the chill-response is biologically
grounded in an ancient reflex-like response of the sympathetic nervous system
related to thermoregulation and intimidation displays. It is biologically linked to
arousal and facilitates memory formation. In humans, the chill response occurs in
the auditory domain in the context of negative arousal and alarm, mainly linked to
aversive loud and high frequency noise, and in the context of highly pleasurable
events leading to activation of the dopaminergic reward system in the brain.
Factors facilitating these positive chill-responses include: structural changes,
beginning of something new, increase in loudness in the high register and personal
emotional memories linked to positive associations and liking of the music. Chill-
responses are more frequent in more sensitive and social personalities. In the
following last paragraph we will demonstrate how the chill-response may be
linked to an adaptive value of music in human evolution. Lastly, we will develop
our model of ‘‘mixed origins of music’’ in human evolution.

6 The Mixed Origins of Music Theory (MOM-Theory):
Evidence from the Chill-Response

The evolutionary adaptive value of the chill-response is at hand when considering
the above-mentioned biological concomitants. Negative chill-responses may have
been direct, arousing reactions towards the piercing sounds of a hunting predator
or by the shrieking calls of conspecifics attacked by an enemy or predator (Owren
and Rendall 2001). They may be part of an evolutionary ancient inter- and
intraspecific affective signaling system of alarm calls and pain shrieks, observable
today in many socially living mammals, for example in tree-shrews and vervet
monkeys. These sounds furthermore support avoidance behavior in order to
increase the distance to the sound source. In this way, close contact to a potentially
dangerous predator is prevented, but also the delicate sensory organ of the cochlea
with its hair cells, susceptible to high sound pressure levels damage, is protected
(Subramaniam et al. 1995). Finally, in agonistic contexts, an intimidation display
is activated to frighten the predator. In human evolution, the roots of such a
behavior may well date back to some 3.2 million years when we, or better our
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about one meter tall evolutionary ancestors Australopithecus afarensis, prowled
through the high grass of the Central African dry steppes, haunted by the piercing
sounds of some large African eagles, hunting for prey.

Explaining the evolutionary adaptive value of the positive chill response is
more difficult. There are two proven and one hypothetical features, which can be
related to an adaptive value of music. First, it is the fact that ‘‘surprise’’, for
example the above-mentioned ‘‘not fulfillment of expectancies’’, contributes reg-
ularly to the chill-response. Since accompanying arousal and activation of the
reward system improves memory formation, this kind of acoustic stimulation may
well have enlarged the repertoire of auditory patterns remembered by our ancestors
and furthermore fuelled curiosity to detect novel auditory stimuli. This, in turn,
was of evolutionary relevance, since fast and precise classification of acoustic
stimuli was a prerequisite for optimal adaptations of behavior (for example
avoidance of a sneaking predator at night and perception of subtle nuances of
intraspecific affect vocalizations). We therefore speculate that one of the driving
forces of the development of our superior auditory memory was the reward gained
by identification of novel acoustic patterns. We will even go further claiming that
the first song-like vocalizations, the first artificial sounds produced by primitive
instruments (for example wooden drumsticks hit on hollow stumps) may have
constituted a safe playground to train auditory discrimination. Furthermore, vocal
production abilities improved and reinforced curiosity to detect novel sounds long
before language emerged, thus establishing prerequisites to develop the latter.

The second feature of the positive chill response implicating an evolutionary
adaptive value is pleasure induction by music. Rooted in the activation of the
sympathetic nervous system and of central nervous reward circuits, music as a
transformative technology of the mind (TTM) could add moments of happiness
and comfort to the hard lives of early modern humans living in hostile environ-
ments. The Hohle Fels and Geissenklösterle caves for example were located in
alpine tundra at the time the flutes were constructed, 35,000 years ago. Average
temperatures were comparable to present day Greenland. Albeit food was readily
available, due to the rich wildlife, musculoskeletal diseases, gastro-intestinal
infections, parasites, toothache and the omnipresent cold rendered life cumber-
some. Music could provide moments of wellbeing, of forgetting the daily hardship
not only by producing aesthetic emotions but also by giving rise to occasional
emotional peak experiences, which then reawakened love of life.

Finally, the third potential feature with evolutionary adaptive value is the fre-
quently quoted ‘‘separation call’’ theory by Panksepp (1995). It proposes that the
evolutionary origin of music induced positive chill-responses is a soothing and
‘‘warming’’ function of maternal monkey vocalizations on the offspring. Unfor-
tunately, this theory has not yet been verified by empirical research. An argument
speaking against such a mechanism is the lacking evidence of acoustically evoked
chill-responses in infants and toddlers, for example when listening to soothing
lullabies. Possibly, such a phenomenon may have been overlooked up to now.
However, in informal interviews with children and adolescents, it seems that the
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earliest descriptions of positive chill-responses emerge just before reaching pub-
erty. Admittedly, systematic empirical research on this interesting topic is missing.

In short, when hypothetically summarizing the long history of chill-responses,
we argue that in the beginning it was predominantly related to a reflex-like
mechanism, involved in thermoregulation. This was based on neuronal networks
of the autonomous nervous system, involving thermoceptive afferents from the
skin and efferent activation of the sympathetic nuclei. These reflexes were addi-
tionally activated by exposure to aversive stimuli, such as shrieking sounds, sour
food, or enteroceptive pain, producing a threatening display and enlarging the
appearance by hair-raising. Due to conditioned reflexes, the trigger of such a
threatening display could be modified by learning and vice versa the chill-response
activated memory formation. Finally, after the human-specific loss of fur, chill-
responses in the context of thermoregulation and threatening displays became
biologically meaningless and could be used for other purposes. The acoustically
mediated positive chill-responses, previously reflex-like and conditioned, could be
powerfully used for auditory learning. Rewarding new and surprising acoustic
stimuli with chill-responses accompanied by endorphin- and dopamine-release and
subjective feelings of wellbeing could be the most important driving force of
auditory learning, constituting a prerequisite of differentiated communication
behavior of the socially living early humans.

What are then the origins of music and when did music start to be part of our
human condition? In the following, we will expose our ‘‘mixed origins of music-
theory’’ or in short ‘‘MOM-theory’’. This will be achieved by integrating several
aspects of ancient evolutionary adaptive, or later acquired, or recently refined
properties of music. We are aware that this theory, as many other theories in
evolution and anthropology cannot be directly proven, since there are no records of
musical activities until the first human made instruments appeared. However, we
strive to strengthen our arguments by drawing on a comparative approach when
possible and by referring to physiological and neuronal adaptations which most
probably date back long in our phylogenetic history.

As we have exemplified above with the chill-response, we argue that music may
have several roots in human evolution, some dating back to many millions of years
and some acquired in later times possibly as a TTM, comparable to the invention
of fire (Brown et al. 2009). All these possible origins of music are not mutually
exclusive; rather, they demonstrate its richness and multi-faceted nature. The many
roots of music may well explain the many effects music can have in humans. In
Fig. 5, we provide a scheme of the putative development of music out of an
ancient affective signaling system, elaborating our MOM-theory.

In the very beginning, intraspecific and interspecific affective communication
amongst pre-humans included shrieking calls of threatened conspecifics and of
alarm calls of threatening predators, producing a heightened arousal, which may
have been accompanied by aversive chill-reactions as it can be witnessed today in
many socially living mammals. An important step in evolution must have been the
generalization of these chill-reactions to affiliative sounds and vocalizations with
positive emotional valence. These may have been related to parent-offspring
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communication, although experimental evidence for the separation-call theory is
still lacking. However, irrespectively of the emotional valence induced, the chill-
reaction fostered auditory memory formation by activating the brain’s reward
systems when new acoustic patterns were perceived. It is unclear whether vocal-
izations, probably some hundred thousand years ago, were related to music in the
narrow sense of the word or whether they were part of an ancient affective sig-
naling system comparable to Mithens (2005, p. 172) ‘‘hmmmm’’- proto language,
which means that music was part of a communication system which was holistic,
multi-modal, musical and mimetic. However, the brain’s reward system activation
and improved memory consolidation linked to detection of violations of auditory
expectancies may have triggered the superior auditory discrimination faculty of
early humans, which in turn constituted the prerequisite of language acquisition
and production. Here, we argue that chill-responses to novel melodic contours,
timing subtleties, timbre variations and structural breaks lead to superior classi-
fication abilities and in turn to a large repertoire of language like vocalizations, apt
to replace for example manual gesturing as a means to organize distributed labor in
complex social groups (e.g. Corballis 1992).

In parallel with this very fundamental aspect of human auditory learning, music
also contains aspects of a TTM, which may have developed much later than
language. Besides the above mentioned positive chill-response as a source of
pleasure when exposed to refined tunes and playful manipulation of increasingly
complex melodies, harmonies and rhythms, other facets of music are good can-
didates for a TTM: As Patel (2010) exemplified, group cohesion and co-operative
behavior are supported by joint clapping and dancing, relying on the human ability

Fig. 5 Schematic display of the mixed origins of music theory (MOM theory). For detailed
explanation see text
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to synchronize in time with an external beat. According to Patel, this capacity is
related to vocal learning, and may thus be an epiphenomenon of our language
abilities. However, as demonstrated above, our language capacity in turn may be
grounded in our auditory classification abilities facilitated by the chill-responses.

A more convincing musical TTM aspect is the processing of musical hierar-
chies in tonality. These cognitive processes rely partly on the same neuronal
resources as syntactic language processing. Brain activation studies showed
overlapping neuronal networks when violating either harmonic musical rules or
linguistic syntactic rules (for a review, see Kölsch and Siebel 2005). According to
Patel, both tonal music and language rely on the same basic cognitive operations,
namely the general building of mental hierarchies. Thus, our ability to identify and
create tonal hierarchies in music and syntax in language emerges from a common
evolutionary old capacity, which is on one side transformed into linguistic syntax
and on the other into musical tonal hierarchies. Here, a word of caution is nec-
essary since many forms of music such as Minimal Music, Rap, or many types of
Ethnic music in Africa, do not contain tonal hierarchies (for a review, see Stevens
and Byron 2010). On the other hand, hierarchies and rules, whether tonal or
temporal, are almost universally found in both music and language and thus may
indeed share a common ‘‘rule detector’’ mechanism in the brain, which is ancient
and evolutionary adapted (Brown and Jordania 2011).

Many other effects of music may additionally be considered as constituents of
an evolutionary late acquired TTM. To name but a few, the role of music in
improving health status and rehabilitation in stroke patients and patients with basal
ganglia disorders may serve as example (e.g. Thaut et al. 2001; Särkämo et al.
2008; Schneider et al. 2010). Similarly, improving memory functions in Alzheimer
patients (e.g. Vink et al. 2003) and supporting memory consolidation of complex
linguistic contents in healthy individuals (Wallace et al. 1994) may be regarded as
a positive side effect of such a musical TTM.

In summary, we argue that on the basis of a very ancient affective communi-
cation system, auditory learning was rewarded and lead to an increasing refine-
ment of auditory discrimination abilities in pitch and timing. This may have laid
the ground to acquisition of language and also to our love of music, which in turn
constituted a safe playground for new auditory experiences. Later, music was
adapted for many social functions, increasing our chances of survival by better
organising groups and by adding pleasure and aesthetic emotions to our hard lives.

This review is not exhaustive and for the sake of brevity many aspects of our
MOM-theory could not be considered sufficiently and may be discussed critically.
For instance, we did not comment on the phenomenon of congenital amusia, a
condition that strongly supports the existence of evolutionary old, specialized
neuronal networks, designed for refined pitch discrimination (for a review see
Ayotte et al. 2002). With respect to the positive chill-response we admit that in
present times this phenomenon is highly individual, linked to personal memories,
and even unknown to about 30 % of the western population. Furthermore, it is
usually elicited by highly complex acoustic patterns, such as a Bruckner symphony
or a Beatles song. We do not know how flute tunes were experienced by our
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ancestors in the Hohle Fels and Geissenklösterle, but we believe it is reasonable to
assume that at times of low exposure to music, and artificially produced sound in
general, even a simple monophonic tune could have a strong emotional impact.
Another open question is whether the positive chill-response is a musical universal
or whether it is predominantly linked to variations in the pitch domain, restricted to
a limited number of music cultures. If positive chills were not universally found,
this would weaken our argument of an evolutionary ancient emotional reaction.
This brings us to another perspective, namely that the chill-response may be a
consequence of our modern way to listen to music seated in a chair without the
possibility to move bodily to the rhythms, comparable to a ‘‘sublimation’’ of our
natural urge to move to music. Systematic research on the impact of bodily
movements on the positive chill-response is still lacking.

To end with, music as an immensely rich human experience contains many
facets and may have many effects:

Orpheus with his lute made trees,
And the mountain tops that freeze,
Bow themselves, when he did sing:
To his music plants and flowers
Ever sprung; as sun and showers
There had made a lasting spring.
Every thing that heard him play,
Even the billows of the sea,
Hung their heads, and then lay by.
In sweet music is such art,
Killing care and grief of heart
Fall asleep, or hearing, die.
(William Shakespeare, Henry VIII, 3.1.4-15).
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Music and Action

Stefan Koelsch and Clemens Maidhof

Music in the broadest sense can be defined as intentionally structured sounds
(for design features of music see Fitch 2006; Koelsch 2012). This requires, that
at least one individual somehow creates sounds. In most cultural practices, this is
achieved by singing or playing an instrument. Such music performance includes
planning, initiation, execution, monitoring, and correction of actions. This
chapter deals with action-related processes during music performance. Because
the production of actions and the perception of actions and their effects are not
separable, the first part of this chapter deals with perception-action mediation
(or ‘‘mirror mechanisms’’) during music listening, focussing in particular on
neural correlates of perception-action mediation. The second part then reviews
studies using event-related potentials (ERPs) to investigate neural correlates of
music production.

1 Perception–Action Mediation

The perception of events can give rise to action-related processes. With regard to
music, simply listening to music can automatically engage action-related
processes. The term action as used here implies that an action (a) consists of at
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least one movement, or a chunk of movements (such as playing triad arpeggios
across several octaves), (b) has a goal, (c) can be voluntarily executed (or inhib-
ited), (d) can be corrected during execution (if necessary), and (e) is modulated by
the anticipation of a specific action effect.1 Actions can be chained into action
sequences, each action having a sub-goal (and related action effects), and the
action sequence having a superordinate goal (and a related action effect).

In his common coding approach to perception and action, Wolfgang Prinz
(1990) described that actions are represented in terms of their perceptual conse-
quences, and that the late stages of perception overlap with the early stages of
action in the sense that they share a common representational format.2 Such a
common format can, e.g., be a common neuronal code. ‘Common coding’ is
supposed to be involved when an individual perceives a movement, as well as
when an individual perceives the effects of an action produced by another
individual (and due to common coding, such perception evokes movement rep-
resentations). Similarly, Liberman and Mattingly (1985) proposed in their motor
theory of speech perception that, during speech perception, speech is decoded in
part by the same processes that are involved in speech production. With regard to
the observation of movements, Giacomo Rizzolatti and colleagues published in the
1990s reports about neurons located in the area F5 of the premotor cortex of
macaque monkeys, which were not only active when the monkeys performed a
movement, but also when the monkeys simply observed that movement (the so-
called mirror neurons, reviewed in Rizzolatti and Sinigaglia 2010). For example,
when a monkey observed an experimenter grasping a piece of food with his hand,
neural responses were evoked in neurons located in area F5. These neurons ceased
to produce action potentials when the experimenter moved the food toward the
monkey, and they produced action potentials again when the monkey grasped the
food. The ‘‘mirror function’’ of these premotor neurons is a physiological correlate
of ‘common coding’, and fundamental for perception–action mediation. This
section will provide an overview of studies on perception–action mediation during
listening to music.3

The first neuroscientific study on auditory perception–action mediation was a
study by Jens Haueisen and Thomas Knösche (Haueisen and Knösche 2001) using
magnetoencephalography (MEG). In that study, both non-musicians and pianists
listened to piano melodies. Compared to non-musicians, musicians showed neu-
ronal activity in (pre)motor areas that was elicited simply by listening to music
(the task was to detect wrong notes, and those trials with wrong notes were

1 An action effect can, e.g., be a single tone, or the sounds of a triad arpeggio across several
octaves.
2 The common coding approach follows the ideomotor approaches of Hermann Lotze (1852) and
Willam James (1890). For a summary of the Lotze-James account and the ideomotor framework
see, e.g., Prinz (2005), p. 142–143.
3 For an fMRI study investigating pianists and non-musicians observing finger-hand movements
of a person playing piano see Haslinger et al. (2005).
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excluded from the data analysis).4 Interestingly, the centre of neuronal activity for
notes that would usually be played with the little finger was located more supe-
riorly than activity for notes that would usually be played with the thumb
(according to the somatotopic representation of the fingers), supporting the notion
that the observed neural activity was premotor activity. Similar activations were
observed with functional magnetic resonance imaging (fMRI) when violinists
listened to violin music (Dick et al. 2011).

One year later, Evelyne Kohler et al. (2002) investigated neurons in the area F5
of macaque monkeys that discharged not only when the monkeys performed a
hand action (such as tearing a piece of paper), but also when the monkeys saw, and
simultaneously heard the sound of this tearing action (similar to the mirror neurons
mentioned above, that are active during both observation and execution of
actions). Importantly, simply hearing the sound of the same action (performed out
of the monkey’s sight) was equally effective in evoking a response in these neu-
rons. Control sounds that were not related to action (such as white noise, or
monkey calls) did not evoke excitatory responses in those neurons. Thus, this
study showed that (in monkeys) some premotor neurons are active during both
hearing and execution of actions.

Further evidence comes from behaviorial studies, which demonstrated a close
coupling between action and perception (Drost et al. 2005a, b): In a series of
experiments, pianists and non-musicians were required to play different intervals
or chords following corresponding visual stimuli. Simultaneously with the
imperative visual stimuli, task-irrelevant sounds were presented, which could be
either congruent or incongruent with the visual stimulus. For example, participants
were visually instructed to play a C–E interval, but heard concurrently a different
interval. Results showed that pianists, but not non-musicians, reacted more slowly
to the visual stimuli when the distracting sound was incongruent with the
imperative stimulus. In addition, perceived intervals could induce incorrect
responses, e.g. when pianists played the heard interval instead of the instructed
interval. This indicated that due to music (piano) training, pianists have acquired
strong associations between movements and their resulting auditory effects (Drost
et al. 2005a, b).

As mentioned above, the study by Haueisen and Knösche (2001) showed
perception–action mediation in musicians (pianists). Music-related perception–
action mediation in non-musicians was shown by Callan et al. (2006). In that
study, activation of premotor cortex was observed not only when participants
(non-musicians) were singing covertly, but also when they simply listened to
song. Interestingly, premotor activity in the same area was also observed during
both covert speech production and listening to speech (Fig. 1a). This showed that
neural correlates of mirror mechanisms overlap strongly for music and speech
perception.

4 Neural sources were located on the crown of the precentral gyrus, thus presumably in the
premotor cortex, rather than in the motor cortex, contrary to what the title of the article says.
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In a study on the effects of musical training on perception–action mediation in
non-musicians by Lahav et al. (2007), non-musicians were trained over the course
of five days to play a piano melody with their right hand. After this training period,
simply listening to the trained melody activated premotor cortex (Fig. 1b). Lis-
tening to an untrained melody did not activate premotor cortex, suggesting that in
the early stages of learning, perception–action mediation relies on fairly specific
learned patterns. Dick et al. (2011) reported that in trained musicians, on the other
hand, such activity does not differ between familiar and unfamiliar music (and
similar training effects were observed in trained actors listening to dramatic
speech). Bangert et al. (2006) measured BOLD signals during both listening to
melodies and producing simple melodies with the right hand on a keyboard
(without auditory feedback). In pianists, activation was observed during both
perception and production of melodies in the premotor cortex, the pars opercularis
(corresponding to BA 44), the planum temporale, and the supramarginal gyrus

Fig. 1 Premotor activation during listening to musical information in non-musicians. The top
panel a shows areas that were activated during listening to singing, covert singing, listening to
speech, and covert speech (conjunction analysis) in the study by Callan et al. (2006). Both left and
right premotor activity was observed in all four conditions, showing that this area is active not
only during perception of speech or music, but also during the production of speech or music.
b shows areas that were more active during listening to trained melodies compared to listening to
melodies consisting of untrained (and different) tones in the study by Lahav et al. (2007).
aSTG1 = anterior superior temporal gyrus; PMC = premotor cortex; PP = planum polare;
PT = planum temporale; Stp = superior temporal plane. Modified with permission from Callan
et al. (2006) and Lahav et al. (2007)
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(BA 40).5 Activations within the premotor cortex (PMC) (and BA 44) during both
perception and production of melodies were clearly left lateralized.

Interestingly, perception–action mediation appears to be modulated by emotional
processes: In an fMRI experiment on music and emotion (in which pleasant and
unpleasant music was presented to the participants; Koelsch et al. 2006) the contrast
of listening to pleasant versus listening to unpleasant music showed an increase in
BOLD signal in premotor areas, as well as in the Rolandic, or ‘central’, operculum
during listening to pleasant music. During listening to unpleasant music, a decrease
of BOLD signal in these areas was found. That is, premotor activity during listening
to music was modulated by the emotional valence of the music, suggesting that
perception–action mediation is modulated by emotional processes. It is likely that
the Rolandic operculum contains, at least partly, the representation of the larynx, and
therefore it seems that participants were quasi-automatically (that is, without being
aware of this, and without intentional effort) singing subvocally along with the
pleasant, but not with the unpleasant music. The activation of the Rolandic oper-
culum during singing is different from the one reported by Callan et al. (2006),
perhaps because the former study (Koelsch et al. 2006) used instrumental music,
whereas the latter (Callan et al. 2006) used songs. The notion that mirror mechanisms
can be modulated by emotional factors is consistent with findings showing that
auditory mirror mechanisms elicited by emotional vocalizations can be modulated
by the emotional valence of these vocalizations (Warren et al. 2006).6

With regard to temporal aspects of music, both cortical (supplementary motor
area, SMA, and PMC) and subcortical structures (basal ganglia and cerebellum)
are active during both perception and production of tactus, metre, and rhythm (e.g.,
Grahn and Brett 2007; Grahn and Rowe 2009; Grahn 2009). Moreover, functional
connectivity between the basal ganglia, SMA, and PMC increases during the
perception of tone sequences based on an isochronous pulse (Grahn and Rowe
2009). Finally, patients with Parkinson’s disease show increased difficulties in
discriminating changes in such sequences (compared to healthy controls; Grahn
2009), corroborating the notion that the basal ganglia (in addition to SMA, PMC,
and cerebellum) play an important role for both the generation and the perception
of rhythm and metre.

2 Neural Correlates of Music Production

The last section described action-related neural processes activated by music
perception. This section will report studies investigating neural correlates of
playing music, that is, of the execution of actions during music production. A few

5 In addition, performing the melodies on a piano (without auditory feedback) elicited activity in
auditory areas.
6 That study used vocalizations such as ‘‘yuck’’ or ‘‘yippee’’ expressing triumph, amusement,
fear, or disgust.
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neuroimaging studies investigated the networks underlying music performance
(Limb and Braun 2008; Parsons et al. 2005; Meister et al. 2004; Zatorre et al.
2007). Here, we will focus on recent studies using electroencephalography (EEG),
in particular event-related brain potentials (ERPs). ERPs are brain-electric
responses that can reflect with a millisecond resolution a number of cortical
processes in the brain. Because of its high temporal resolution, EEG (and mag-
netoencephalography, MEG) is particularly suited to capture the temporal
dynamics of neural processes underlying music performance.

When playing a musical instrument (or when singing), alone or together in a
group, a player continuously establishes action goals, forms the corresponding
motor programs to execute the right movements at the right time with the right
strength, monitors ongoing movements by relating information such as proprio-
ceptive feedback of the actual movements to the planned movements, and initiates
corrective movements (when necessary). Corrective movements are also required
when synchronizing movements with movements of other players. While playing,
such corrections are memorized, and integrated with the execution of simultaneous
movements. The perception of the action effects completes the action, and can
modify selection, programming, execution, and control of new actions. All these
processes overlap in time, making the investigation of these different processes
challenging. One approach to investigate music production with ERPs is to
examine neural correlates of error-related processes.

Even tens of thousands of hours of deliberate practice cannot prevent musicians
from making errors (‘‘error’’ means that the auditory outcome of an action does not
match the intended tone). Errors can have various reasons (e.g., lack of attention,
memory, misreading of a score). Recently, rare pitch errors occurring when a
pianist hits the wrong key, have attracted some interest. Such errors can be good
opportunities to gain insights into mechanisms operating during music perfor-
mance, and error processing in general. Questions that arise in this context are at
what point in time errors are actually detected by the sensorimotor system, whether
they are detected already prior to execution, and—if so—at what point in time
potential errors can still be corrected. Using music, an ERP-study by Maidhof et al.
(2009) investigated whether errors are detected already before a movement is fully
executed (for a similar study see Herrojo-Ruiz et al. 2009). That study (Maidhof
et al. 2009) investigated expert pianists playing scales and scale patterns
(bimanually) in a relatively fast tempo (Fig. 2). These stimuli were chosen to
provoke pianists committing errors, with the aim to compare the brain-electric
potentials related to incorrect with those related to correct keystrokes (in time
intervals preceding, and following the onsets of keystrokes).

Results showed that, behaviourally, pianists pressed incorrect and correct keys
with different velocities: Participants pressed incorrect keys with a lower velocity
than (a) correct keypresses, and (b) the simultaneous correct keypresses (and the
velocity of these simultaneous correct keypresses was not influenced by the lower
velocity of the erroneous keypress of the other hand). Moreover, correct and
incorrect keypresses were produced with different inter-onset intervals (IOIs): The
IOI between an incorrect keypress and the preceding keypress was prolonged
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(compared to the IOI between successive correct keypresses), indicating that an
upcoming error slowed down the keypresses (pre-error slowing). IOIs of simul-
taneous keystrokes performed by the other hand (without errors) were influenced
by the error; that is, in contrast to the velocity, both hands showed a similar pre-
error slowing during an error (even if the error occurred only in one hand), pre-
sumably due to the integration of several movements during executing an action.7

In addition to pre-error slowing, Herrojo-Ruiz et al. (2009) also reported post-
error slowing following the commission of an error. Those data (Herrojo-Ruiz
et al. 2010) also indicate that pre-error and post-error slowing effects are limited to
the trials directly preceding and following the errors, i.e., these temporal

Pattern A

= 69

4
2 etc.

Pattern B

= 69

4
2 etc.

Diatonic Scale

= 144

4
2 etc.

Fig. 2 Illustration of the patterns used in the study by Maidhof et al. (2009) (patterns are shown
in C major; in the experiment, the stimuli had to be produced in different major keys). The
instructed tempo for the scales was 144 bpm, and for the patterns 69 bpm

7 The integration of bimanual movements is also referred to as bimanual coupling: bimanual
movements begin and end synchronously, even when they have different parameters
(e.g. amplitudes), and even when movement times differ when the respective movements are
performed in isolation by one hand (Marteniuk et al. 1984; Spijkers et al. 1997; Swinnen and
Wenderoth 2004; Diedrichsen et al. 2010). In addition, musicians specifically train to play
synchronously with both hands. Such integrative processes (including bimanual coupling) are not
only due to low-level processes of motor execution, for ‘‘the symmetry constraint observed in
bimanual coordination […] depends on perceptual variables and task demands […]. More
generally, many demonstrations of constraints in bimanual coordination appear to reflect
limitations in the simultaneous estimation of high-level, task-relevant states […], rather than
hard-wired coordination constraints between the two hands. The human coordination system has
evolved to achieve single goals flexibly using many effectors rather than to achieve multiple goals
simultaneously’’ (Diedrichsen et al. 2010, p. 38).
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disruptions are not progressive phenomena, and slowing does not occur several
events before or after an error.8

The ERPs of the study by Maidhof et al. (2009) showed that, compared to
correct keypresses, incorrect keypresses elicited an increased negativity already
before a wrong key was actually pressed down (Fig. 3). This ERP effect was
maximal at central leads and peaked around 100 ms before a key was pressed
down (left of Fig. 3B). This pre-error negativity was followed by a later positive
deflection with an amplitude maximum at around 280 ms after the onset of an
incorrect note. This potential had a fronto-central scalp topography and resembles
the early Error Positivity (Pe) or the P3a (see also right of Fig. 3b). Virtually the
same ERP pattern was reported in the study by Herrojo-Ruiz et al. (2009). That
study (Herrojo-Ruiz et al. 2009) also employed a condition in which pianists
played without auditory feedback. Under that condition, the error positivity was
considerably reduced. In addition, the pre-error negativity elicited in the motor
condition (without auditory feedback) was identical to the pre-error negativity
elicited in the audio motor condition. This finding is consistent with findings
showing that, after extensive learning of a sequence, auditory feedback is irrele-
vant for music performance with regard to error-monitoring (Finney 1997; Finney
and Palmer 2003; Pfordresher 2003, 2005, 2006). In those studies, even the
complete absence of auditory feedback had mostly no effects on the performance

 Scalp Maps
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Fig. 3 Grand-average ERPs (recorded from ten pianists) elicited by correctly and incorrectly
performed keypresses, time-locked to the onset of keypresses. a The arrow indicates the note
onset and thus the onset of the auditory feedback. The grey areas highlight the pre-error
negativity (occurring prior to the keypress), and the later positive effect (occurring after the
incorrect keypress). b Scalp topographies for the difference potentials for correct keypresses
subtracted from incorrect keypresses in the two time windows marked grey in (A). Modified with
permission from Maidhof et al. (2009)

8 But see also Palmer et al. (2012), who report decreased key press velocities for correct tones
immediately preceding incorrect tones.
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of extensively trained piano pieces.9 Note, however, that the vertical bar in Fig. 3
corresponds to the onset of the MIDI-signal. That is, the vertical bar corresponds to
the point in time where the key was pressed down, and this point in time is
preceded by touching the key and pressing down the key. Because touching the
key and pressing down the key take several tens of milliseconds, tactile and
proprioceptive feedback could already have contributed to the observed ‘‘pre-error
negativity’’!10

In the study by Maidhof et al. (2009), left-hand errors and right-hand errors
were also analyzed separately. That analysis showed that the ERPs elicited by the
errors were not lateralized. Therefore, left- or right-hand errors were probably not
simply due to some right- or left-hemispheric neural disturbance that caused the
erroneous movement (such hemispheric disturbances would then occur bilaterally
when averaged across left- and right-hand errors). That is, it does not appear that
the early ERP difference occurring before a key was pressed down was the cause
for the error. Instead, it appears that this early ERP difference reflects cognitive
processes of error detection, error correction, and/or movement integration. With
regard to movement integration, note that IOIs were prolonged before incorrect
keypresses in both hands (in contrast to velocities, which differed between syn-
chronous erroneous and correct key presses). Such integrative adjustment of
bimanual movements perhaps contributed to this ERP effect.

The fact that the early ERP elicited by incorrect movements occurred prior to
keypresses indicates that errors were detected before they were committed (and
before auditory feedback was available). Such an error detection process is prob-
ably based on internal forward models: Probably during the formation of a motor
program, a forward model is prepared which includes an efference copy, or ‘cor-
ollary discharge’. The formation of a motor program takes into account the action
goal, as well as the initial movement conditions, such as the respective locations
and movements of body, arm, hand and target. The formation of a motor program
appears to involve several areas, including the pre-supplementary motor area (pre-
SMA) and SMA proper (see Fig. 4), the (pre-)supplementary eye field, premotor
cortex, primary motor cortex (M1), basal ganglia, and parietal areas (e.g., Hoover
and Strick 1999; Middleton and Strick 2000; Nachev et al. 2008; Desmurget and

9 Specific alterations of auditory feedback, on the other hand, profoundly disrupt performance:
For example, disruptive effects of pitch manipulations (false auditory feedback) occur during
learning, or when the perceived feedback resembles an intended sequence (reviewed in
Pfordresher, 2006). However, if auditory feedback is random, that is, when the feedback sequence
is highly dissimilar to the intended sequence, the auditory feedback does not disrupt performance
(presumably because players perceive the feedback as being unrelated to the planned actions).
10 The exact point in time at which a key was touched could be determined with a motion-
capture system.
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Sirigu 2009; Schubotz 2007).11 Studies investigating the activity of neurons in M1
of non-human primates showed that the latency between the first activity in M1 and
movement onset is variable and can range up to several hundred milliseconds, with
the typically assumed latency being around 100–150 ms (Evarts 1974; Porter and
Lewis 1975; Thach 1978; Holdefer and Miller 2002; Hatsopoulos et al. 2007).

Then, at the same time as the motor command is sent from M1 to the periphery,
an efference copy is created (supposedly in brain structures that are also involved
in the generation of the movement), and sent to sensory structures. The efference
copy is not used to generate the ongoing motor activity, but can be used to predict
the outcome (i.e., the sensory consequences) of the motor command. Information
of efference copies interacts at several levels of the central nervous system, and

Fig. 4 Anatomical map of the medial frontal cortex. SMA: supplementary motor area, RCZ:
rostral cingulate zone, CCZ: caudal cingulate zone. The vertical line through the anterior
commissure (left dashed line) indicates the approximate border between SMA and pre-SMA. The
oval indicates the presumed location of the supplementary eye field according to Amiez and
Petrides (2009). The numbers indicate Brodmann areas. Left of the image corresponds to anterior.
From Koelsch (2012)

11 The basal ganglia are either part of the motor planner itself or are in a loop with planning
structures. Note that cortico—basal ganglia—thalamo—cortical and cerebellar loops contribute
to the programming, initiation, execution, and control of movements. For a role of the basal
ganglia (as well as other motor structures) in the perception of tactus and metre see Grahn and
Brett (2007). For the role of the basal ganglia in sensorimotor synchronization see Schwartze
et al. (2011).
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usually modulates sensory processing (see also Poulet and Hedwig 2007; Crapse
and Sommer 2008).12 In the auditory domain, recent studies with tasks in which
participants initiate a sound simply by pressing a button show that auditory for-
ward models can modulate auditory evoked potentials and oscillatory brain
activity already at very early processing stages (around 30 ms after sound onset,
Baess et al. 2008, 2009).

Particularly when actions are carried out quickly, as it is often the case during
music performance, it is likely that the efference copy contains more predictive
information than the preparation of the efference copy during program formation,
e.g. with regard to those sensory consequences of movements that are due to
external objects (such as objects that are touched, grazed, or moved during the
movement). That is, in the course of the establishment of the efference copy,
predictive information about sensory consequences is probably added to the for-
ward model (these consequences are based on knowledge about the nature of
external objects, such as their weight, temperature, surface texture, etc.).

During the execution of an action, information about the actual consequences of
a movement, is differentiated from the information of the efference copy, and
related to the predicted consequences of planned movements (Wolpert et al. 1995;
1998; Miall and Wolpert 1996; Desmurget and Grafton 2000; Wolpert and Gha-
hramani 2000). Information about the actual consequences originates from (a)
somatosensory feedback (such as proprioceptive and tactile information), (b)
visual feedback, and (c) efferent information (motor outflow).13 Whenever there is
a mismatch between actual and predicted consequences, an error signal is gen-
erated. It is likely that such signals are also generated when the sensory conse-
quences of a movement deviate from the predicted consequences, even though the
movement itself was correct (for example, when a key of the piano got stuck, or
when an experimenter provides false auditory feedback, see also below). The
occurrence of the pre-error negativity in the studies by Maidhof et al. (2009) and
Herrojo-Ruiz et al. (2009) reflects that this detection mechanism operates prior to
the full execution of the movement, and thus before the perception of the auditory
feedback, that is, before the perception of the tone produced by the movement
(action effect).

The error signal can, in turn, lead to the corrective modulation of motor
commands (for details see Desmurget and Grafton 2000). Note, however, that the
execution of movements is sometimes faster than the propagation of sensory
information to the cortex, and that, thus, sensory feedback cannot always be used

12 The information of the efference copy also tells the sensory areas about the upcoming sensory
perceptions and allows them to prepare for the sensory consequences of the movement, for details
see Crapse and Sommer (2008).
13 Note that, despite some overlap, the networks underlying somatosensory feedback on the one
hand, and visual feedback on the other, differ significantly from each other (see, e.g., Swinnen
and Wenderoth 2004).
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to correct movements (Desmurget and Grafton 2000).14 Also note that, without
any erroneous movement, movements can also be re-programmed during execu-
tion (Leuthold and Jentzsch 2002).15

In the studies by Maidhof et al. (2009) and Herrojo-Ruiz et al. (2009), the
corrective modulation of the motor command might have resulted in the lower
velocities of incorrect keypresses. Note that the IOIs were prolonged before
incorrect keypresses in both hands (although only one hand performed an erro-
neous movement). This indicates that the movement of the hand playing the
correct key was integrated with the erroneous movement of the other hand. Neural
mechanisms of such integration processes during the performance of actions
remain to be specified.16

The error positivity (Pe) following incorrect keypresses in the study by Maidhof
et al. (2009) is probably related to the conscious recognition of a committed error
(see also the ‘‘error-awareness hypothesis’’, e.g. Nieuwenhuis et al. 2001). Con-
scious recognition might also involve the adaptation of response strategy after an
error has been perceived, involving remedial performance adjustments following
errors (‘‘behavior-adaption hypothesis’’, Hajcak et al. 2003). Such adaptive pro-
cesses might also include making up for delays due to pre- and post-error slowing
(Herrojo-Ruiz et al. 2010). Recognition of errors might also result in affective
processes following the committed error or its consequences, including autonomic
responses (such as changes in heart rate and sweat production). Especially in the
case of highly-trained musicians, recognition of errors during performance may
result in negative affective processes following the committed error or its conse-
quences (like the sounding of a wrong note, which can also be perceived by
listeners!), and the corresponding autonomic responses can be particularly
obstructive in a concert situation. Recognition of errors during practice, on the
other hand, has beneficial effects on learning (to avoid similar errors in the future
when aiming to obtain a similar action goal).

Notably, in addition to the experimental design described so far, the mentioned
study by Maidhof et al. (2009) provided the participants during playing every so
often with manipulated (false) feedback when correct notes were played: Randomly
between every 40–60th produced note, the auditory feedback of the digital piano
was manipulated in a way that the pitch of one tone was lowered by one semitone
(for a similar study see Katahira et al. 2008). This was done to investigate the time
course of the neural mechanisms underlying the processing of (manipulated)
feedback during music performance, and thus to study the processing of auditory

14 Or, depending on the movement and the speed of a movement, sensory feedback loops might
allow corrections only at the very end of the trajectory.
15 In that study (Leuthold and Jentzsch 2002), re-programming was reflected electrically in a
negative centro-parietal potential that was maximal at around 370 ms after the onset of a cue that
required participants to re-program a movement that had already been commenced.
16 It is likely that a network of numerous (sensori-)motor structures mediates bimanual
movement integration. For a study suggesting involvement of the supplementary motor area
(SMA) in this network see Steyvers et al. (2003).
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effects of actions intended by a player or singer. Musicians expect to perceive the
auditory feedback of their action, and the intention of musicians to produce specific
auditory effects by executing certain actions is a fundamental aspect of music
performance. Skilled piano players are trained to produce specific auditory effects
with highly accurate movements (Ericsson and Lehmann 1996; Palmer 1997;
Sloboda 2000). Accordingly, results of behavioral (Drost et al. 2005a, b), electro-
physiological (Bangert and Altenmüller 2003), and neuroimaging studies (see first
section of this chapter) consistently show pronounced coupling of auditory and
motor systems in individuals with musical training.17

ERPs of correct (!) keypresses with and without feedback manipulation are
shown in the top of Fig. 5 (reported in Maidhof et al. 2010). Feedback manipu-
lations (i.e., the sound of a wrong note, although the correct key was pressed)
elicited a negativity that was maximal at around 200 ms and had a fronto-central

Regular Tones 
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Passive listening

Action condition 

0.140 - 0.230 s 0.250 - 0.340 s
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0.270 - 0.330 s

-4.0 +4.0µV
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Manipulated Tones

0.40.8

-10
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s

FCZ

FCZ

(a)

(b)

Fig. 5 a Grand-average ERPs (recorded from twelve pianists) elicited by correct keypresses
with correct (solid line) and manipulated (dotted line) auditory feedback, time-locked to the onset
of tones (i.e., when a key was pressed down). Feedback-manipulated tones elicit a feedback ERN
(presumably overlapping with MMN/ERAN potentials), followed by a P3a, and a P3b (best to be
seen in the isopotential maps). b Grand-average ERPs (recorded from the same twelve pianists)
elicited while passively listening to the auditory stimuli of the action condition. Here, the deviants
(‘‘manipulated tones’’) also elicit a negativity peaking around 200 ms (possibly in part due to
ERN potentials), and a P3a; no P3b was elicited in this condition (reflecting that the deviants were
not task-relevant). Note that in both the action and the passive listening condition, ERN potentials
presumably overlapped with MMN/ERAN potentials, making it challenging to disentangle
action-related from perception-related brain potentials. Modified with permission from Maidhof
et al. (2010)

17 Notably, in the EEG study by Bangert and Altenmüller (2003), musically naive participants
showed auditory-sensorimotor co-activity already within 20 min of piano learning.
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scalp distribution. As will be discussed further below, this negativity was pre-
sumably mainly a feedback error-related negativity (feedback-ERN), with addi-
tional contributions of MMN/ERAN potentials.18,19 The negativity was followed
by a P3a, and a P3b.20

The feedback ERN is a type of error-related negativity (ERN or Ne, Botvinick
et al. 2001; Yeung et al. 2004; Van Veen and Carter 2006; Falkenstein et al. 1990).
Classically, the ERN (or response-ERN) is an ERP usually peaking shortly after
participants commit an error in a variety of speeded response tasks (although the
ERN often begins to emerge already before a button press, shortly after the onset
of electromyographic potentials). The ERN typically peaks around 50–100 ms
after incorrect responses, regardless of the modality in which the stimulus is
presented, and regardless of the modality in which the response is made. The
feedback ERN is elicited after negative performance feedback (compared to
positive feedback), and after feedback stimuli indicating loss (or punishment) in
time estimation tasks, guessing tasks and gambling tasks (Miltner et al. 1997;
Hajcak et al. 2005, 2007). The feedback ERN is generally taken to reflect
expectancy-related mechanisms, probably irrespective of whether the outcome of
an event is worse or better than expected (Oliveira et al. 2007; Ferdinand et al.
2008).

Notably, feedback ERN-like components can also be observed in the absence of
button-press responses (Donkers et al. 2005; Tzur and Berger 2007, 2009). The
N200 is similar to the feedback ERN in latency and scalp distribution, and elicited
when a mismatch between an expected and an actual sensory event is detected
(Kopp and Wolff 2000; Ferdinand et al. 2008). Because the N2b is considered as a
sub-component of the N200 which is elicited only when individuals consciously
attend to a stimulus, the N200 in the mentioned studies is synonymous with the
N2b (for other subcomponents of the N200 see Patel and Azzam 2005). There is
even an ongoing debate as to whether the feedback ERN also reflects a subcom-
ponent of the N200.

Note that musical feedback manipulations most presumably elicit, in addition to
action-related processes, cognitive processes related to the perception of acoustic

18 The ‘‘mismatch negativity’’ (MMN) is a brain electric response that is elicited when repetitive
(‘‘standard’’) auditory information is not repeated anymore, or repeated in a different way. For
example, if a single tone is repeated several times, then the presentation of a tone with a different
pitch, or loudness, or location, or timbre (or any other physical feature) elicits an MMN. Because
the elicitation of an MMN relies on the representation (that is, a ‘‘memory trace’’) of the
repetitive information in the auditory sensory memory, the MMN is thought to reflect in part
auditory sensory memory operations. For a review see Näätänen et al. (2007).
19 The ‘‘early right anterior negativity’’ (ERAN) is a brain electric response elicited by
music-syntactic irregularities. Note that the elicitation of the ERAN relies on representations of
music-syntactic regularities that are stored in a long-term memory format in the brain. This stays in
contrast to the MMN: The regularities represented in a sensory memory trace are extracted on-line
from the auditory input of the last moments. For reviews see Koelsch (2009) and Koelsch (2012).
20 Behavioural results showed that feedback-manipulated tones did not cause longer IOIs with
regard to succeeding tones.
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deviants: Wrong notes (whether produced by the player him/herself, or whether
due to false feedback) presumably elicit ERPs such as ERAN or MMN, which
overlap with ERPs such as the ERN (or the N2b). A study by Maidhof et al. (2010)
offered one approach to deal with this difficulty: In that study, ERPs elicited during
music performance (action condition) were compared with ERPs elicited when
musicians merely listened to such stimuli (perception condition). Such compari-
sons are also interesting because they can perhaps inform us about action-related
processes evoked during music perception. Figure 5 (bottom panel) shows ERPs
elicited in a condition in which pianists passively listened to the tone patterns with
and without wrong (feedback-manipulated) tones produced in the action condition.
As in the action condition, incorrect tones (compared to correct tones) elicited a
negativity that was maximal around 200 ms, but with smaller amplitude than in the
action condition. This negativity was followed by a small P3a (being maximal at
frontal leads; no P3b was elicited in this condition).

That is, manipulated tones elicited during both the production and the per-
ception of tones negative potentials with maximal amplitudes around 200 ms, with
larger amplitude in the action compared to the perception condition. Similarly, the
P3a elicited by (wrong) tones was more pronounced during the action condition
(when participants were playing) compared to the perception condition (i.e., when
participants only listened to the stimuli). The absence of a P3b during the per-
ception condition reflects that the pitch manipulations were task-irrelevant for the
participants. Because the N2b, or the ERN, is usually observed in combination
with a P3b, it is likely that the observed negative potential is not simply an N2b or
ERN.

That is, although the early negativity observed during the action condition is
presumably in part due to a feedback ERN, it might well be that this ERN effect
overlaps with MMN/ERAN potentials related to the processing of acoustic or
harmonic-syntactic irregularity. On the other hand, the negativity elicited during
the perception condition presumably reflects at least in part an MMN/ERAN, but it
might well be that these potentials overlap in part with ERN/N2b potentials due to
the simulation of action during the perception of music. This illustrates the diffi-
culty to disentangle the different contributions of these components during music
performance and music perception. However, there are several aspects that can be
addressed to distinguish ERN- from MMN- or ERAN-potentials:

1. A comparison of feedback-manipulated tones with wrong tones produced by
players themselves: In contrast to the ERPs elicited by feedback manipulations,
ERPs of self-performed errors (Fig. 3) did not show a significant negative effect
around 200 ms after the onset of erroneous keypresses (although a small
negativity is visible in the ERPs of wrong tones in this time range, cf. Figure 3).
Because the auditory deviance is comparable between self-generated errors and
feedback manipulations, the ERPs of self-performed errors provide an estimate
of possible MMN contributions. Thus, because no clear MMN is visible in the
ERPs of self-performed errors, it is unlikely that the negativity elicited by
feedback manipulations is simply an MMN or ERAN.
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2. A localization of the sources of ERPs. Using current source density, the study
by Maidhof et al. (2010) localized the sources of the negativities elicited in both
action and perception condition in the rostral cingulate zone (RCZ) of the
posterior medial frontal cortex (see also Fig. 4). These results are consistent
with an explanation in terms of a feedback ERN: Studies on action monitoring
and cognitive control indicate that the RCZ plays a key role in the processing of
expectancy violations, performance monitoring, and the adjustment of actions
for the improvement of task performance (Veen and Carter 2002; Ridderinkhof
et al. 2004; Nieuwenhuis et al. 2004; Veen et al. 2004; Folstein and Van Petten
2008). Therefore, the ERN, the feedback ERN, and the N200/N2b presumably
all receive (main) contributions from neural generators located in the RCZ (this
also supports the notion that feedback ERN and N2b are subcomponents of the
N200, with feedback ERN and N2b possibly being synonymous labels for
effects with very similar functional significance).

3. A comparison between musical experts and musical beginners. A study by
Katahira et al. (2008) reported an ERN to feedback-manipulated tones in
musical experts (similar to the study by Maidhof et al. 2009), but no ERN was
observed in participants who had only moderate musical training.21 This is
consistent with results by Maidhof et al. (2010), which showed that the ERN
amplitude correlated negatively with the duration of musical training. An
absence of ERN potentials (as in the study by Katahira et al. 2008) renders it
unlikely that the effect observed in expert musicians is an MMN or ERAN,
because frank violations elicit such potentials also in non-experts (although the
amplitude of these potentials is also modulated by musical training, Tervaniemi
and Huotilainen 2003; Tervaniemi 2009; Koelsch et al. 2002, 2007; Müller
et al. 2010; Fujioka et al. 2005).

4. A comparison between diatonic (in-key) and non-diatonic (out-of-key) feedback-
manipulations. If ERN potentials partly overlap with ERAN potentials, then non-
diatonic feedback-manipulations should evoke larger negative effects than
diatonic manipulations (because the ERAN amplitude is related to the degree of
violation, Leino et al. 2007). The study by Katahira et al. (2008) reported that the
ERN amplitude did not differ between diatonic and non-diatonic feedback-
manipulations, suggesting that ERAN-related potentials did not, or only mini-
mally, contribute to the ERN potentials.

It is also worth noting that the MMN is not influenced by the anticipation of
deviant tones, nor by prior knowledge of deviant stimuli (e.g. Rinne et al. 2001;
Waszak and Herwig 2007; Scherg et al. 1989). Moreover, the MMN amplitude
does not differ between a condition in which participants trigger the presentation of

21 Participants played unfamiliar melodies on a keyboard, and in five percent of the keypresses,
the tone was shifted a semitone upwards.
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tones, or listen to the same sequence of tones (Nittono 2006).22 Therefore, different
ERN amplitudes in the absence of P3b potentials (as observed in the study by
Maidhof et al. 2009) indicate that possible MMN contributions could have been
only minor.

The discussed methods provide approaches to illuminate to which extent
evoked negativities following the perception of feedback manipulations reflect
ERN, N2b, or MMN/ERAN potentials. As mentioned above, the manipulated
tones elicited in both the action and the perception condition an early negativity
that strongly resembled the ERN (in terms of latency, distribution, and neural
generators). In both the study by Katahira et al. (2008) and by Maidhof et al.
(2010), this feedback-ERN effect was more pronounced during the performance of
music compared to the mere perception of music. Thus, it seems likely that similar
expectancy-related mechanisms operate during both performance and perception
of music.23 Importantly, the feedback ERN in the mentioned music studies is
influenced by the expectancies generated by the intention and action of the pianists
to produce a certain auditory effect. In contrast to these action-related expectan-
cies, pianists could also build expectancies during the perception of the sequences
based on the preceding musical context and its underlying regularities. Conse-
quently, the manipulated tones during piano performance were more unexpected
than the manipulated tones during the perception of the sequences, resulting in the
enlarged feedback ERN in the action compared to the perception condition.

If the feedback ERN reflects the processing of violations of action-related
predictions, how are these predictions established during the production and per-
ception of musical sequences? It appears that, during the production of action
sequences, pianists anticipate the tone mapped to the particular keypress they are
about to perform. After having learned these associations (due to extensive
training), the formation of an action plan leads to the establishment of predictions
of the sensory feedback using the internal forward model described above. This
implies that predictions are formed before a motor command is sent. According to
the common coding theory (Prinz 1990), it also seems likely that, when making
music, actions are selected, and controlled, using an inverse model of the intended
effect, leading to an expectation for a certain effect (the ideomotor principle, see
e.g. Hommel et al. 2001). As mentioned above, the common coding theory
assumes that coding of perception overlaps with the coding of action in the sense
that they share a common representational format. Therefore, the anticipated
effects of an action should influence its planning, control and execution (the
action-effect principle). The notion that the prediction of action effects is related to

22 In that study (Nittono, 2006), participants triggered the presentation of a tone (which was
either a standard tone, or one of two pitch-deviants) by pressing buttons. That is, participants had
control over the timing of the stimuli, but not over the pitch of the stimuli.
23 Note that it is conceivable that a feedback ERN can also be elicited during perception
(without action), because feedback ERN-like waveforms are also observed when no actions, or
responses, are required on the part of the participants (Donkers et al. 2005), and when rules
(i.e., expectations) are violated in tasks without overt responses (Tzur and Berger 2007, 2009).
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the training of the participants is supported by the correlation between ERN
amplitude and amount of training: In the study by Katahira et al. (2008), no ERN
was elicited in non-expert players, and in the study by Maidhof et al. (2010)
pianists with longer training showed larger ERN amplitudes. While listening to the
sequences without playing, predictive mechanisms probably extrapolate from the
regularities of the preceding auditory input, and thus generate a prediction towards
a specific sound to follow. This expectancy (or prediction) seems to be a funda-
mental aspect of perception, which is most likely not under the strategic control of
individuals (Schubotz 2007).

Even more importantly, the combined data show that the processing of
expectancy violations is modulated by the action of an individual. During music
performance, players (or singers) expect, based on their intention and their act of
performing, to perceive a specific auditory effect. In addition, the preceding
musical context induces expectancies for specific tones. Hence, when an unex-
pected tone is encountered following an action, the detection of the violation of
such expectancies elicits a brain response similar to the feedback ERN/N200.
A similar effect, although with smaller amplitude, is elicited when pianists merely
perceive an unexpected tone (without performing). It is tempting to speculate that
these processes are in part also due to action-related mechanisms, such as an effect
of simulated action during the perception of music.

The reported studies investigating ERP correlates during music production
provided first insights into neural mechanisms operating during music performance.
However, several issues remain to be investigated. For example, detailed infor-
mation about how the movements were executed in terms of their kinetic and
kinematic features were lacking, and neural correlates could only be investigated
with respect to on- and offsets of the recorded MIDI-signals (i.e., information about
the time point when a key was pressed down, and about the key press velocity).
Therefore, much of the information about a musical performance could not be
quantified. By contrast, using motion capture techniques allows to investigate
movements underlying music performance more directly, and enable the analysis of
movements of body parts with a high spatial and temporal accuracy. Such studies
investigated a huge variety of research questions, e.g. the role of tactile feedback in
timing accuracy during piano and clarinet performance (Goebl and Palmer 2008;
Palmer et al. 2009), disruptive effects of delayed auditory feedback during rhythm
production and the role of the ongoing movement trajectory (Pfordresher and Dalla
Bella 2011), the effect of tempo on finger kinematics in pianists (Dalla Bella and
Palmer 2011), identification of pianists based on their profiles of finger velocity and
acceleration (Dalla Bella and Palmer 2011), the role of anticipatory auditory
imagery during music-like sequential tasks (Keller et al. 2010), the relationships
between the kinematics of a singer’s body movement and their vocal performances
(Luck and Toiviainen 2008), the role of different features of conductors’ gestures
used by ensemble musicians to synchronize (Luck and Toiviainen 2006), to name
just a few. It is also worth noting that, in addition, motion capture techniques were
used to investigate movements not directly involved in sound production, but
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involved in emotional expressions (Livingstone et al. 2009) or as cues for other
performers in ensemble performance (e.g., Keller and Appel 2010).

Importantly, obtaining additional detailed information about the movements
can lead to a more behaviour-driven analysis of brain activity, and thus to a better
understanding of neural processes involved in music performance. In particular,
setups combining the recording of EEG, MIDI, and motion capture data could
enable researchers to investigate brain activity of natural musical behaviours
without many of the limitations mentioned above. A vision for the future is to
adapt such setups for the simultaneous acquisition of data from several players to
investigate interactions between performance and social factors.
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Music for the Brain Across Life

Teppo Särkämö, Mari Tervaniemi and Minna Huotilainen

1 Foreword

As the French poet Victor Hugo (1802–1885) put it, ‘‘music expresses that which
cannot be said and on which it is impossible to be silent’’. Just like spoken
language, music has been an essential part of every known human culture and
therefore has roots that reach deep into our very selves and into our brains. Thus
far, the oldest concrete evidence regarding the early existence of music were
obtained a few years ago from southern Germany, where archaeological excava-
tions revealed a 40,000-year-old flute made of bone (Conard et al. 2009). Some
scholars believe that a singing-based form of communication, a protolanguage,
could be even older, possibly dating back over 200,000 years, and could have
formed a basis of the development of modern spoken language (Mithen 2005).

More recently, various cultural trends and technological innovations, such as
the karaoke and the choir singing boom, MP3 players, and digital streaming ser-
vices and players (e.g., Spotify, iTunes), have made music more available and
easily accessible than ever before. In its many forms, music has become a popular
leisure activity and hobby through which many of us mediate our emotional and
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arousal state, experience creativity and aesthetic pleasure, and interact with others.
Thanks to modern brain imaging methods, such as electroencephalography (EEG),
magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI),
and positron emission tomography (PET), as well as behavioural and clinical
studies, we are now starting to understand better how music affects us and how it
can be used to promote well-being and facilitate recovery and rehabilitation. In this
article, we aim to provide a brief review of the neural basis of music in both the
healthy and the damaged brain, the development of musical skills and the meaning
of music in different ages, and the effectiveness of music-based interventions in
various somatic, psychiatric, and neurological illnesses.1

2 Music in the Healthy Brain

Neuroscience of music is a relatively new, fast-developing field of science, which
has during the past 20 years provided a lot of novel information on how music is
processed in the brain, how musical activities can shape the brain, and what neural
mechanisms underlie the therapeutic effect of music. To date, converging evidence
suggests that music activates an extremely complex and wide-spread, bilateral
network of cortical and subcortical areas that controls many auditory, cognitive,
motor, and emotional functions.

The process of music perception begins in the inner ears where acoustic
information is converted to an electric impulse or signal. The signal then travels
along the auditory nerve to the brain stem (especially to the inferior colliculus)
where certain basic features of the sound, such as periodicity and intensity, are first
processed (Pickles 2008). Interestingly, the earliest signs of musical training can
be seen as early as 10 ms after sound onset in the auditory brain stem, which in
musicians can represent the frequency of the sound with more fidelity than in non-
musicians (Kraus and Chandrasekaran 2010). From the brain stem, the auditory
information is conveyed to the thalamus and from there primarily to the auditory
cortex, but also directly to limbic areas, such as the amygdala and the medial
orbitofrontal cortex (LeDoux 2000). All across this pathway, an enormous amount
of ascending contacts are active in the process of refining and processing the
auditory input. The primary auditory cortex and its neighbouring superior temporal
areas analyse the basic acoustic cues of the sound, including frequency, pitch,
sound level, temporal variation, motion, and spatial location (Hall et al. 2003). The
left auditory cortex has a better temporal resolution and the right auditory cortex a
better spectral resolution, which is thought to form one crucial premise for the
lateralization of speech to the left hemisphere and music to the right hemisphere
(Zatorre et al. 2002).

1 An extended and updated version of this review entitled ‘‘Music perception and cognition:
development, neural basis, and rehabilitative use of music’’ will be published in Wiley
Interdisciplinary Reviews: Cognitive Science
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Music is, however, much more than just the sum of its basic acoustic features.
Upon its initial encoding and perception, music triggers a sequence of cognitive,
motor, and emotional processes in the brain that are governed by numerous cor-
tical and subcortical areas. Next, we outline five such processes.

1. The perception of higher-order musical features, such as chords, harmonies,
intervals, and rhythms, calls for a rule-based syntactic analysis of complex
patterns of spectral and temporal fluctuations within the sound stream, enabling
the perception of some of the most essential features of music syntax.
According to neuroimaging studies, this takes place in a network comprising
the inferior and medial prefrontal cortex, the premotor cortex, the anterior and
posterior parts of the superior temporal gyrus, and the inferior parietal lobe
(Janata et al. 2002a; Koelsch and Siebel 2005; Patel 2003).

2. Continually keeping track of the music, which always unfolds over time,
requires the engagement of the attention and working memory system, which is
spread over many prefrontal areas (especially the dorsolateral prefrontal cor-
tex), the cingulate cortex, and inferior parietal areas (Janata et al. 2002b; Za-
torre et al. 1994).

3. Hearing music that is familiar to the listener from past experience triggers
processing especially in the hippocampus as well as in medial temporal and
parietal areas, which are involved in episodic memory (Janata 2009; Platel et al.
2003).

4. Hearing music that touches us emotionally engages a network of many deep
limbic and paralimbic areas, including various midbrain areas, striatal areas
(especially nucleus accumbens), the amygdala, the hippocampus, the cingulate
cortex, and the orbitofrontal cortex (Blood and Zatorre 2001; Koelsch 2010;
Menon and Levitin 2005). This dopaminergic network is known as the meso-
limbic or reward system of the brain and it has been implicated in the expe-
riencing of emotions, pleasure, and reward and in regulating the autonomic
nervous system and the endocrine (or hormone) system. Recently, the direct
involvement of striatal dopamine in the emotional reaction to music was
demonstrated in a combined psychophysiological, PET and fMRI study (Sal-
impoor et al. 2011).

5. Producing music by singing or playing an instrument, moving to the beat of
music, or even just perceiving the rhythm of music involves the motor network
of the brain, including areas in the cerebellum, the basal ganglia, and the motor
and somatosensory cortices (Grahn and Rowe 2009; Zatorre et al. 2007).

3 Musical Disorders in the Brain

Our ability to perceive, process, and appreciate music may become impaired in
many neurological illnesses (Goll et al. 2010). The most well-known disorder is
amusia, which can be either innate (congenital amusia) or result from a brain
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lesion (acquired amusia). The term amusia refers to an inability to perceive and/or
produce music, which is not caused by a disorder in another domain, such as
hearing, motor, or cognitive functions (Peretz 2006; Stewart et al. 2006). Amusia
can be observed in the majority of musical features (perceiving pitch, timbre, or
rhythm or recognizing musical emotions or musical pieces) or be specific to one or
some of them. The most commonly reported deficit is that of poor pitch dis-
crimination: amusic individuals are typically not able to perceive pitch changes
smaller than a semitone (Foxton et al. 2004). As a result, they often have great
difficulties in perceiving sequential notes (or tones) and, therefore, in recognizing
melodies– for some rare individuals, music may sound more like noise.

It has been estimated that the prevalence of congenital amusia is approximately
2–4 % in the general population (Henry and McAuley 2010). Genetic studies of
congenital amusia suggest that the disorder is heritable: in amusic families, 39 %
of first-degree relatives have the same deficit, whereas only 3 % have it in the
control families (Peretz et al. 2007). Furthermore, dizygotic (identical) twins have
more uniform performance in a musical pitch perception test than monozygotic
(fraternal) twins (Drayna et al. 2001). Compared to congenital amusia, acquired
amusia seems to be a lot more common deficit, at least after a cerebrovascular
accident such as stroke. In studies of stroke patients, the reported incidence of
amusia has varied between 60 and 69 % in the acute stage (about one week post-
onset) and between 35–42 % in the subacute/chronic stage ([3 months post-
lesion) (Särkämö et al. 2009; Schuppert et al. 2000; Ayotte et al. 2000). Based on
structural and functional MRI studies, the crucial neuroanatomical correlate of
congenical amusia appears to be the auditory cortex and the inferior frontal gyrus
in the right hemisphere (Hyde et al. 2007, 2011) as well as the subcortical neural
matter tracts (arquate fasciculus) connecting these areas (Loui et al. 2009). Cor-
respondingly, acquired amusia is most typically caused by damage to the auditory
cortex and its surrounding cortical and subcortical areas (anterior and posterior
superior temporal gyrys, insula) or to temporoparietal or inferior frontal areas,
especially in the right hemisphere (Stewart et al. 2006).

Interestingly, amusia can occur independently of or in parallel with linguistic
disorders, thereby raising an intriguing question of whether the neural mechanisms
of music and speech processing are separate or shared. In studies of brain damaged
patients, approximately half of the patients with acquired amusia have been
documented to have at least minor aphasia (Stewart et al. 2006), although there are
also cases of clear double dissociations (amusia without aphasia and vice versa),
suggesting that there may be separate neural modules for music and speech (Peretz
and Coltheart 2003). Recent studies, however, have found that aphasic patients
have difficulties in perceiving musical structures (Patel et al. 2008) and, con-
versely, that individuals with congenital amusia have difficulties in perceiving
the intonation and prosody of speech (Liu et al. 2010; Jiang et al. 2012), thereby
supporting the views about the commonalities between speech and music
perception at the neural level.
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4 Music Across Life Span

Music, especially hearing, singing, and producing musical sounds, appears to
evoke the natural interest of infants and children across cultures (Trehub 2003).
Indeed, babies seem to be born with innate musical abilities: even small infants can
detect the pitch, timbre, and duration of the sounds, recognize familiar melodic and
rhythmic patterns, and prefer consonant over dissonant music and singing over
speech (Trehub 2003). Infants are also sensitive to prosody, in other words, to
changes in the melody, rhythm, stress, and intonation of speech, which are used to
communicate emotions and to emphasize word meanings in speech. Intuitively,
parents tend to speak to their babies in a manner which utilizes this sensitivity. In
fact, infant-directed speech (or motherese or parentese) contains many musical or
singing-like elements, such as strong pitch fluctuations and repetitive melodic
lines, which help the infant to grasp and acquire the essential structure of natural
speech (Nakata and Trehub 2004). Lullabies and play songs are also globally used
to modulate the arousal level of infants, as reflected, for example, in salivary
cortisol changes (Shenfield et al. 2003). At the age of 6 months, babies start to
babble and to ‘‘dance’’, i.e., to adjust their movements with the tempo of music
(Zentner and Eerola 2010). For a toddler, musical activity is a playground of sorts,
where parents can use reciprocal communication and rhythmic movements to
regulate the emotional and attentional state of the child. At the same time, the child
him/herself can practice the cognitive, motor, and social skills needed for speech
acquisition and communication.

At preschool age, children are often enthusiastic in expressing music with their
gestures and movements and in taking part in musical activities as listeners, singers,
players, and dancers. In many native cultures, music making or dancing is an
integral and natural part of the everyday life of children. For the developing brain,
repeated exposure to music in the childhood environment can be beneficial. In
developmental animal studies, an enriched auditory environment that contains
complex sounds or music, has repeatedly and consistently been shown to improve
auditory functions, learning and memory as well as induce neural plasticity, as
indicated by changes in neurotransmitter (e.g., dopamine, glutamate) and neuro-
trophin (e. g., brain-derived neurotrophic factor, BDNF) levels, synaptic plasticity,
and neurogenesis (Angelucci et al. 2007; Bose et al. 2010; Rickard et al. 2005).
According to studies on children, musical hobbies can improve auditory and motor
skills (Hyde et al. 2009) as well as high-level cognitive skills such as logical
reasoning, executive functioning, attention, and memory (Hannon and Trainor
2007; Schellenberg 2004; Moreno et al. 2011). Musical skills and music training
seem to be also related to enhanced neural processing of speech and improved
language skills, such as reading, speech segmentation, perceiving speech in noise,
and pronunciation of a foreign language (Besson et al. 2011; Kraus and Chandr-
asekaran 2010; Milovanov and Tervaniemi 2011). At the neural level, structural
changes in the auditory cortex, the motor cortex, and the corpus callosum have been
observed already after 15 months of individual piano lessons (Hyde et al. 2009).
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During adolescence, music serves as a forum for constructing the developing
self-identity, forming interpersonal relationships, experiencing agency and self-
control, and in dealing with negative emotions and stress (Saarikallio and Erkkilä
2007; North et al. 2000). Furthermore, a key aspect of all musical activity is
emotional expression, which, according to recent theory (Molnar-Szakacs and
Overy 2006), is at least partly mediated by the mirror neuron system, a set of
frontal and parietal cortical structures, which are thought to contribute to the
understanding the actions of other people (i.e., empathy), learning new skills by
imitation, and to theory of mind, and which continue to develop through adoles-
cence and early adulthood. Musicking, or even simple music listening, can thus
form a safe shared and dynamic platform for exploring one’s emotional processes
with respect to others and for forging relationships through common experiences,
chats, and discussions. Some evolutionary theories of music postulate that joint
musical activities, such as singing and dancing with others, facilitate the release of
endorphins and the experience or reward and pleasure, which in turn promote
group cohesion and social bonding (Dunbar 2003). In children, there is already
some empirical evidence for the emergence of prosocial behavior after joint music
making (Kirschner and Tomasello 2010).

Finally, music has a lot to give also in adulthood and in old age. In most cases,
individual musical preferences are formed during adolescence and early adult-
hood—maybe because of this, music also offers means to refresh and process
memories and reflect on prior experiences later in life. During adulthood, music is
strongly linked to emotional and self-conceptual processing, mood, and memories
(Saarikallio 2010). Music continues to play a vital role as well during aging.
Studies suggest that regular musical activities are very important to seniors in
maintaining psychological well-being and in contributing to positive aging by
providing ways to maintain self-esteem, competence, and independence and in
reducing loneliness and isolation (Cohen et al. 2002; Hays and Minichiello 2005).
Interestingly, studies of healthy seniors have also showed that regular musical
activities, such as dancing or playing an instrument, are cognitively beneficial
(Bugos et al. 2007; Kattenstroth et al. 2010) and can also reduce the risk of
developing dementia later (Verghese et al. 2003). Similarly, one recent study
reported that musicians performed better than non-musicians on tasks of executive
functioning, memory, visuospatial judgement, and motor dexterity in the old age
(while controlling for general lifestyle activities), suggesting that musical activity
is associated with successful cognitive aging (Hanna-Pladdy and Gajewski 2012).

5 Music as a Form of Therapy and Rehabilitation

Broadly defined, music therapy is an intervention provided by a trained music
therapist where music is used in a therapeutic interaction with the client to achieve
individually defined goals. The scientific study of the efficacy of different music
interventions has increased rapidly during the past 20 years, and the experimental
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evidence for these interventions is accumulating regarding their clinical utility and
applicability in the treatment and rehabilitation of many somatic, psychiatric, and
neurological illnesses. In the following, we will briefly review what is currently
known about the efficacy of music interventions regarding five domains: emotion,
attention and sensory functions, memory, communication, and motor functions.

Emotion. Music has a powerful emotional effect, which is manifested both
psychologically and physiologically (e.g., in heart rate, respiration, skin temper-
ature, and hormone secretion, limbic/paralimbic brain activation (Juslin and
Västfjäll 2008; Lundqvist et al. 2009; Koelsch 2010). Various music interventions
have been applied in the rehabilitation of person suffering from various affective
disorders, such as depression and anxiety, or from illnesses with more severe
neuropsychiatric symptoms, such as schizophrenia or Alzheimer’s disease (AD).
For depressed patients, studies suggest that music therapy is an applicable method
that can alleviate depression and anxiety symptoms and improve mood (Gold et al.
2009; Maratos et al. 2008). Recently, a novel therapeutic technique called
improvisational psychodynamic music therapy, which utilizes musical improvi-
sation and interaction in a psychodynamic context, was found to be effective on
reducing depression and anxiety and improving general functioning in working-
age depressed patients (Erkkilä et al. 2011). For schizophrenic patients, music
therapy can help improve the global and mental state and the social functioning of
the patients and to reduce their negative symptoms, depression, and anxiety
(Mössler et al. 2011). For persons suffering from AD or other form of dementia,
music therapy may be effective in reducing neuropsychiatric and behavioural
symptoms, such as agitation and wandering, as well as in enhancing social and
emotional functioning, although more methodologically robust studies are still
needed (Vink et al. 2011). Finally, music interventions can be effective in reducing
anxiety, improving mood, and influencing various autonomic nervous system
functions (heart rate, respiration, blood pressure) also in patients suffering from
severe chronic somatic illnesses, including cancer (Bradt et al. 2011) and coronary
heart disease (Bradt and Dileo 2009).

Attention and sensory functions. Music has a unique capacity to draw and direct
attention and influence arousal and vigilance. Clinically, this attribute has been
effectively utilized in the alleviation of pain (Bernatzky et al. 2011). Evidence
suggests that musical interventions are able to reduce pain intensity and also to
reduce the amount of opioid medication in many pain conditions, especially in
post-surgical pain (Cepeda et al. 2006). Another application of music is the
treatment of tinnitus using a novel treatment strategy called tailor-made notched
music training. In this training, patients listen on a daily basis to specially-made
music where the energy spectrum of the music is notched around the individual
tinnitus frequency. Currently, behavioural and brain-imaging evidence suggests
that subjective tinnitus loudness and annoyance and tinnitus-related auditory
evoked fields can be significantly reduced by the training (Okamoto et al. 2010).
These results are important because tinnitus is a highly common and often very
debilitating disorder for which there is no effective drug treatment. Music listening
has also been utilized to mediate attention and arousal in children with attention
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deficit hyperactivity disorder (ADHD) and in stroke patients suffering from uni-
lateral spatial neglect, a disorder of awareness of the contralesional space. In
ADHD children, the presence of background music has been found to reduce
distractibility and enhance concentration on a school task (Abikoff et al. 1996;
Pelham et al. 2011). In neglect patients, listening to pleasant music can temporarily
overcome the bias in spatial attention and reduce neglect (Hommel et al. 1990;
Soto et al. 2009).

Memory. Listening to music naturally entails keeping track of the incoming
auditory information (auditory sensory memory, working memory) as well as
analyzing the musical structure and the identity of the piece (long-term semantic
memory) and retrieving the experiences and memories associated with it (long-
term episodic memory). By affecting mood and arousal state (Thompson et al.
2001), music can temporarily improve memory performance in healthy subjects
(Greene et al. 2010). In persons with AD, exposure to stimulating music can
temporarily improve autobiographical recall, especially from the remote life era
(Irish et al. 2006; Foster and Valentine 2001), and songs can function as mnemonic
aids for recalling verbal material (Simmons-Stern et al. 2010). Also after an acute
stroke, daily music listening can enhance the recovery of auditory and verbal
memory (Särkämö et al. 2008, 2010). The positive effects on memory were also
coupled with reduced depression and confusion during the early recovery stage
(Särkämö and Soto 2012), suggesting that the positive effect of music on cognition
is at least partly mediated by enhanced mood.

Communication. Both music and speech are forms of communication that make
use of the acoustic properties of sound, such as pitch, timbre, and rhythm. Music
has been clinically utilized in enhancing verbal communication in persons with
developmental or acquired neurological disorder, such as autistic spectrum dis-
order or stroke. Children with autism typically lack communication skills but may
have enhanced auditory and musical abilities (Ouimet et al. 2012). Currently, there
is preliminary evidence that music therapy may help autistic children to improve
their communicative skills (Gold et al. 2006). Remarkably, a recently developed
method called auditory-motor mapping training, which utilizes song-like intona-
tion and bimanual motor activities, has been observed to improve the articulation
of non-trained words and phrases in autistic children who were entirely non-verbal
at the beginning of the training (Wan et al. 2011). Another example of a music-
based rehabilitation method that emphasizes the melodic and rhythmic elements of
speech, is melodic intonation therapy, which has been utilized in the rehabilitation
of aphasia caused by a left hemisphere lesion (Norton et al. 2009). Although the
clinical efficacy of this therapy has yet to be substantiated, evidence from small
case series suggests that an intense course of melodic intonation therapy can lead
to improvements in speech production (Schlaug et al. 2010; Zipse et al. 2012) and
to various neuroplastic changes in the spared right frontotemporal network
(Schlaug et al. 2010; Zipse et al. 2012).

Motor functions. Rhythm and movement are intimately linked to music; in fact,
some cultures do not even differentiate ‘‘music’’ and ‘‘dance’’ in their vocabulary.
Also in the brain, almost all musical activity, even the passive listening of music,
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automatically recruits motor areas, and there is rich connectivity between auditory
and motor brain areas (Zatorre et al. 2007). Clinically, our innate tendency to
sequence and entrain movements to the beat of music has been utilized in the
rehabilitation of walking in many neurological illnesses including stroke, trau-
matic brain injury, and Parkinson’s disease (PD). Rhythmic auditory stimulation,
in which an external auditory rhythm is provided by a metronome or music tapes
and adapted to the movements of the patient, has been shown to be beneficial for
improving gait in hemiparetic stroke patients (Bradt et al. 2010) and in PD patients
(McIntosh et al. 1997; Hove et al. 2012). Interestingly, some evidence suggests
that also hearing familiar stimulating music can temporarily enhance motor
coordination in PD patients (Bernatzky et al. 2004; Sacrey et al. 2009). Another
way to use music in motor rehabilitation is to utilize active music making in the
form of instrument playing. Recently, a method called music-supported therapy
has been developed where movements of the affected upper extremity are trained
by playing a piano keyboard or electronic drum set. Music-supported therapy has
been shown to be effective in improving the speed, precision, and smoothness of
arm movements, enhancing the recovery of fine and gross motor skills, and
facilitating the coherence and functional connectivity of auditory-motor networks
in the frontotemporal cortex (Schneider et al. 2010; Altenmüller et al. 2009;
Rodriguez-Fornells et al. 2012; Rojo et al. 2011).

In summary, the clinical evidence for the effectiveness of music interventions in
alleviating emotional, cognitive, communicative, and motor deficits has increased
substantially during the last years. Currently, research in the fields of music
therapy, psychology, and cognitive and affective neuroscience is beginning to
merge, and there are now on-going multidisciplinary studies in many countries
aimed towards determining the clinical impact of music and uncovering its
underlying neural mechanisms.

6 Concluding Remarks

In this article, we have reviewed a number of studies which together shed light on
the neural basis, development and rehabilitative use of music. Modern neuroim-
aging has shown that musical activities, ranging from simple music listening to
singing and playing a musical instrument, have diverse positive effects on the
structure and function of the brain. Musical activities have different roles and
meanings in different phases of life: during infancy and early childhood, they can
support speech development; during school years, they can develop cognitive and
attentional skills; during adolescence, they help to build self-identity and enhance
emotional self-regulation; and during adulthood and old age, they help maintain
cognitive performance and memory and improve mood. Clinically, the use of music
therapy and other music interventions as a form of treatment and rehabilitation has
received scientific support especially in somatic, psychiatric, and neurological ill-
nesses involving deficits in emotions, attention, and sensory functions, memory,
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communication, and motor functions. In summary, although the research field is
still relatively young and more studies are still needed, music can be considered as a
viable and promising non-pharmacological form of treatment and rehabilitation
and, more generally, as an enriching and useful hobby that can shape the devel-
opment and maintain the healthy functioning of the brain across life.
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The Perception of Melodies: Some
Thoughts on Listening Style, Relational
Thinking, and Musical Structure

Christiane Neuhaus

Every day, countless numbers of pop songs, ballads, and classical themes are
broadcasted via radio stations, sung at schools, or rehearsed by professional
ensembles. Given an almost infinite variety of melodies, we may ask which attri-
butes they have in common, and what features we can extract. Composers, how-
ever, often decide for the word ‘motif’ rather than ‘melody’ to explain their musical
ideas, partly due to different sequence length, and partly because both terms point to
a different character of tone progression: A ‘motif’ has the potential for develop-
ment because of clearly recognizable rhythmic and interval features, enabling us
even to build the whole musical architecture. A ‘melody’, by contrast, is often
considered a closed entity (or integrated whole) with elements kept in balance.

In the following chapter we focus on the perception of melodic structure. We
first try to define the word ‘melody’ (Greek: melōdía, ‘singing, chanting’) from the
viewpoint of music theory. In my opinion, four structural properties determine the
melody’s nature, namely ‘interval type’, ‘melodic contour’, ‘balance between form
parts’, as well as the ‘underlying harmonic framework’ (based on the piece’s
tonality). The first three attributes describe a melody in horizontal direction
whereas the fourth refers to its vertical dimension.

Let us quickly go through the details: The word ‘interval type’ describes the type
of tone combination that predominates over several bars. In this regard, most tonal
Western melodies either make use of scale segments (or tone steps; in German:
‘Skalenmelodik’) or of triads in succession (in German: ‘Dreiklangsmelodik’), or of
a combination of both. The second property, named ‘melodic contour’ (first men-
tioned by Abraham and Hornbostel in 1909), refers to the outline of a melody. It
describes the curve of melodic movement in rough lines without considering
detailed interval progression. For the majority of Western tunes the following
contour types are characteristic: continuously ascending or descending, undulating
around the pitch axis, or having an arch-like shape (e.g. Adams 1976).
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From the empirical point of view White (1960) argues convincingly that
‘Happy birthday’ and other familiar tunes that have been altered with some
algebraic procedures can easily be identified when transformations are linear, i.e.
when preserving contour while the opposite holds true when transformations are
non-linear, i.e. when distorting contour. In detail, subtracting, adding, or multi-
plying an integer, e.g. i(+)1 or 2i(-)1, keep tunes recognizable but whenever
intervals are allowed to change sign, recognition is poor.

Now let us think on ‘balance between form parts’ which is the third structural
property that contributes to the quality of a melody. In this regard lots of tunes are
restricted to eight bars which is the common length of the ‘musical period’. This
type of musical form can further be split up into segments of 4 plus 4, both parts
revealing some symmetry due to similar melodic beginnings. (On the empirical
findings on musical form perception I will report in detail several pages later).

The fourth structure-determining factor is the assignment of a melody to a latent
harmonic framework which is mostly concurrent with the cadence scheme. This
assignment allows us to evaluate each tone in its tension towards the harmonic
basis, in particular towards inherent vertical anchor points such as the tonic or the
dominant, often arousing feelings of tension or relaxation. The involvement of
vertical aspects into the horizontal line particularly becomes apparent in the
improvisation practice of North Indian music. Here, each tone of a raga becomes
established in the listener’s mind by constantly playing the drone, i.e. the tonic
tone, on the tanpura. This way, distance estimation in vertical direction can be
performed easily (see e.g. Danielou 1982).

However, most encyclopedias do not define ‘melody’ by mere description or
analysis of its structural properties but also consider the perceptual side with a
particular focus on Gestalt psychology (c.f. van Dyke Bingham 1910; Zieg-
enrücker 1979). The Gestalt school of psychology (represented by Wertheimer,
Krüger, Koffka, and others) has two principles at hand to determine how mel-
odies are perceived, namely the experience of ‘unity or completeness’ (also
known as the ‘law of closure’), and the quality of ‘structuredness’ (‘Geglied-
ertheit’) of auditory sequences. The first attribute primarily refers to perceiving
as a cognitive process whereas the second is a structural property inherent in the
material as such.

Let us briefly explain the points: The impression of completeness arises from
cohesive forces regarding the melody’s inner structure. Cohesiveness is high when
tones are in close distance (i.e. in spatial and temporal proximity) to each other but
low when tones are scattered over several octaves. This holistic approach, con-
sidering melodies as Gestalt entities, once more becomes obvious through the ‘law
of transposition’, first articulated by the Austrian philosopher Christian von Eh-
renfels (1890), the founder of Gestalt theory. According to this perceptual law,
melodies remain invariable and can still be recognized when shifting the entire
figure to another key.

The second principle that determines how melodies are perceived is based on
(pre-)‘structuredness’ (‘Gegliedertheit’) as an inherent property of time-based art
per se (e.g. West et al. 1991). ‘Pre-structuredness’ enables the active mind to
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subdivide sound patterns into perceivable portions or musical phrases. Interest-
ingly, this perceptual process of segmentation has an equivalent on the neuronal
level: For the perception of musical phrase boundaries, a neural correlate has been
identified by using event-related potentials as the method of study. This correlate is
called Closure Positive Shift (abbreviated CPS), it has a counterpart in the per-
ception of speech. Whenever attention is on the detail, musicians react in the way
just described whereas non-musicians respond with an early negativity (cf. Knösche
et al. 2005; Neuhaus et al. 2006). This indicates that qualitatively different ERP
components (CPS and early negativity) reflect some top-down activation of general
but dissimilar phrasing schemata depending on prior musical training.

Besides this issue of (pre-)structuredness which helps to segment and encode
the complete musical sequence we should also become aware of another form of
experiencing the whole, named ‘complex quality’ which is a term coined by
Krüger in 1926. Complex qualities are indivisible entities of purely sensual
character that are evoked by emotions or sensations. This difference in holistic
experience—caused by (pre-)structured and perceptually groupable objects on the
one hand and indivisible emotions on the other—is indeed the main point that
distinguishes the ‘Berlin School of Gestaltpsychologie’ (represented by Werthei-
mer, Köhler, and Koffka) from the ‘Leipzig School of Ganzheitspsychologie’
(represented by Krüger and Wundt).

When further elaborating on pre-structuredness, two comments have to be men-
tioned here, the first made by the Czech musicologist Karbusicky (1979), the second
made by Levitin (2009), an American sound producer and neuroscientist. Karbusicky
focusses on the difference between the words ‘tone structure’ and ‘tone row’. As
mentioned above, ‘tone structure’ indicates that notes are grown together into an entity
whereas ‘tone row’ describes that notes are loosely connected so that elements can
arbitrarily be replaced. Levitin (2009), by contrast, draws our attention to the emo-
tional aspect of this issue, emphasizing that ‘‘a randomized or ‘scrambled’ sequence of
notes is not able to elicit the same [emotional] reactions as an ordered one’’ (p. 10).
Levitin focusses in particular on the structure’s temporal aspects and their respective
neural correlates. By using functional imaging methods he could prove that two brain
regions of the inferior frontal cortex—named Brodmann Area 47 and its right-
hemispheric homologue—are significantly activated when tone structure is preserved
but do not react to arbitrarily scrambled counterparts, having the same spectral energy
but lacking any temporal coherence (Levitin and Menon 2005). In addition, Neuhaus
and Knösche (2008) could demonstrate by using event-related potentials that the brain
responds to time-preserving versus time-permuting tone sequences from a very early
stage of sequence processing on. In detail, lack of time order causes a larger increase of
the P1 component already around 50 ms (measured from sequence onset) while no
such difference in brain activity beyond 250 ms could be observed. In this regard, the
brains of musicians and non-musicians react similarly, as both groups of participants
have been tested in this study. From these results we conclude that the establishment of
a metrical frame, i.e. the intuitive grasp of the underlying beat and the meter’s accent
structure is essential to integrate new tone items and for processing pitch and time
relations (cf. Neuhaus and Knösche 2008) (Fig. 1).
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Taken non-randomness, i.e. the structured nature of a melody as given, how do
we become aware of interval type, melodic contour, and the other properties
mentioned above? Which listening mode is the most adequate to grasp these
essential musical features? Everyone would agree with me to leave emotional,
associative, aesthetic, and distracted styles of listening aside in favor of that one
which aims at understanding the logic behind the tones and brings the composer’s
intention into focus.

The listening style that fits best is called ‘structural hearing’, a term coined by
the Austro-American music theorist Felix Salzer in 1952. According to his
younger colleague, the American musicologist Rose Rosengard Subotnik

Fig. 1 Grand average event-related potentials of musicians (a) and non-musicians (b) at selected
electrodes. Compressed brain activity over all tones per condition (from tone 6 onward). [Source
Neuhaus and Knösche (2008)]
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structural hearing especially stands for modern viewpoints on music and became
‘‘the prevalent aesthetic paradigm in Germanic and Anglo-American musical
scholarship’’ around 1950 (cf. dell’ Antonio 2004, p. 2). To elaborate on the
details, structural hearing ‘‘highlights [the] intellectual response to music to the
almost total exclusion of human physical presence’’ (cf. dell’ Antonio 2004, p. 8)
and should therefore be seen in contrast to some sort of kinesthetic listening style,
where the listener may feel the urge to dance, tap his feet, or snap his fingers
(cf. Huron 2002; see also Kubik 1973, for the African variant of this motion-
inducing listening mode). This ‘intellectual response to music’, as dell’ Antonio
puts it, might be restricted to music students, professional instrumentalists, and
other people educated in music as it requires that several preconditions such as ear
training and self-discipline as well as certain deductive musical abilities like
melodic completion and anticipation are fulfilled. Thus, in full consequence,
‘‘[structural hearing] gives the listener the sense of composing the piece as it
actualizes itself in time.’’ (Subotnik 1988, p. 90). To what extent non-musicians
are also capable of doing so, i.e. whether the aforementioned (listening) skills can
also be acquired through implicit learning by mere exposure to music remains a
question for further empirical research.

In this context we may call to mind that from a sociological point of view music
philosopher Adorno (1962) as well as the musicologist and pedagogue Rauhe et al.
(1975) made interesting general remarks on music consumption, taking the eco-
nomic preconditions as well as the different educational standards within society
into account. Both worked separately on a specific typology of listening behavior,
elaborating carefully on—mostly a priori obtained—categories of reception (in
German: ‘Rezeptionskategorien’).

With regard to structural hearing, Adorno (1962) distinguishes between two
types of music listeners. The first is the ‘music expert’ who is almost exclusively
recruited from music professionals, and the second one is the ‘good [adequate]
listener’. Please note that the ‘good listener’ should not be confused with another
type of recipient, called ‘educated listener’ (or ‘possessor of knowledge’; in
German: ‘Bildungskonsument’), being familiar with facts and reports about
musical pieces and their interprets.

According to Adorno the ‘music expert’ is able to set past, present, and future
moments within a musical piece in relation to each other to comprehend the
musical logic behind the piece. Furthermore, while listening to music, the expert is
aware of every structural aspect and can report on each musical detail afterwards.

The ‘good [adequate] listener’, by contrast, possesses these listening skills in a
reduced form. Although he can relate musical parts to each other as the ‘music
expert’ does, he is not fully aware of the consequences and implications that
specific chords and other pivotal points with regard to musical progression have.

Rauhe et al. (1975) tackle this issue in a slightly different way. From the very
start they distinguish between distinct attributes freed from human prototypes.
That is, they argue on the basis of listening style rather than on the personnel level.
Thus, the distinguishing feature between Rauhe’s and Adorno’s typologies is a
certain flexibility in terms of switching between listening habits.
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With regard to structural hearing, Rauhe et al. (1975) differentiate between a
‘structural-analytical’ and a ‘structural-synthetical’ listening mode (in German:
‘strukturell-analytische Rezeption’ and ‘strukturell-synthetisches Hören’), mean-
ing that the attentional focus is either on the structural detail, or that skills are quite
similar to those possessed by Adorno’s ‘musical expert’.

In slight contrast to that, modern American musicologists such as Subotnik, dell’
Antonio, or Huron put more emphasis on the real-time listening situation as such,
i.e. on versatile listening styles beyond any (a priori drawn) boundaries, taking into
account that actual listening behavior may change spontaneously throughout a
performance. The American music psychologist Aiello (1994) puts it this way:

I believe that when we listen, consciously or subconsciously, we choose what to focus on.
This may be because of outstanding features of the music itself, certain features that are
emphasized in the particular performance we are hearing, or because we just choose to
focus on this or that element during that particular hearing. A piece of classical music is
filled with more information than a listener can process in a single hearing. […] Given the
complexity and the richness of the musical stimulus, listening implies choosing which
elements to attend to. (p. 276).

More importantly, this principle of selection is confirmed with a series of
experiments performed by the Belgian music psychologist Deliège et al. (1996).
Deliège and their colleagues provide proof that musicians and non-musicians are
able to extract several cues such as ‘registral shifts’ or ‘change of density’ from the
textural surface of unfamiliar pieces, showing that cue abstraction is an effective
means to grasp and encode the most obvious musical aspects in any real-time
listening situation.

To extend this approach some sort of ‘zoom in’/‘zoom out’ principle seems best
to deal with real-time listening situations, giving the listener the perceptual free-
dom to either consider the whole or focus on the structural detail. This zooming
principle corresponds nicely to Rauhe’s structural-analytical and structural-syn-
thetical listening styles. However, to put this zooming principle into practice,
several preconditions must be fulfilled, each pointing to higher-order perceptual
processes, including the involvement of an active mind. Such preconditions are,
first, attentional mechanisms, i.e. some kind of conscious perception of the musical
piece, second, strength of mind as well as, third, some form of intentionality, i.e.
directing attention towards the whole pattern or a specific sound feature.

But which attribute is essential to experience a melody as an organic whole?
How shall we use our zoom mechanism when listening to a musical piece in real-
time? In my opinion, synthesis is more important than selection, i.e. the mental act
of setting parts in relation to each other has priority over, what Deliège calls, ‘cue
abstraction’. Hugo Riemann, the well-known music theorist of the 19th century,
already became aware of this principle in 1877, he called ‘relational thinking’ (in
German: ‘Beziehendes Denken’). Relational thinking means to create coherence
between constituent elements, intervals, and form parts along the horizontal axis,
lasting several seconds up to one minute, i.e. occurring within the temporal limits
of working memory. However to describe these processes in modern psychology,
the term ‘chunking’ is much more frequently used.
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Theodor Lipps, a late German 19th-century philosopher and psychologist, puts
emphasis on the structural side of relational thinking, i.e. on properties given in
melodies and other musical pieces as such. By using some kind of mathematical
formula, he called ‘the law of number 2’, Lipps managed to specify the relations
between constituent tones and intervals as follows:

Whenever tones meet each other that behave as 2n : 3, 5, 7 etc., the latter naturally move
towards the former; i.e. they have a natural tendency of inner motion to come to rest in the
former. The latter ‘‘search for’’ the former as their natural basis, anchor points, or natural
centers of gravity.

See also the original wording in German:

Treffen Töne zusammen, die sich zueinander verhalten wie 2n : 3, 5, 7 usw., so besteht
eine natürliche Tendenz der letzteren zu den ersteren hin; es besteht eine Tendenz der
inneren Bewegung, in den ersteren zur Ruhe zu kommen. Jene ‘‘suchen’’ diese als ihre
natürliche Basis, als ihren natürlichen Schwerpunkt, als ihr natürliches Gravitationszen-
trum. (quoted from van Dyke Bingham, 1910, p. 11)

Please note that whenever we argue in favor of process, i.e. less in favor of
structure, future-directed aspects of relational thinking become relevant. They are
closely connected to concepts known as ‘expectancy’ and ‘prediction’ which either
derive from a certain familiarity with the piece, from style-specific knowledge, or, in
a statistical sense, from frequent occurrence of some textural features. In this regard,
Pearce et al. (2010) distinguish between musical expectations generated on the basis
of over learned rules and those built on the basis of associations and co-occurrence of
events (with both processes most likely activating different parts of the brain).

From this it follows that processes of ‘thinking ahead’, be it prediction, antici-
pation, or ‘setting-parts-in-relation-to-each-other’, do not only demand the listener’s
perceptual awareness of the present with a particular focus on the input’s acoustical
features but also require some sort of re-activation of concepts about style, phrasing,
harmonic progression, and other relevant structural issues stored in mind. Accord-
ingly when ‘thinking ahead’, bottom-up and top-down processes do interact.

How can we ‘operationalize’ these processes? How can we grasp relational
thinking by experiment? We first have to bring to mind that processes such as
building expectancies and establishing coherence are two-fold, referring to
musical items in horizontal as well as in vertical direction. Regarding the linear
dimension, these processes can further relate to small segments or to the large-
scale musical form. Let us quickly review the relevant research:

Narmour (1990, 1992), for instance, restricts his elaborations to the detail, i.e.
to interval expectation formed within 3-tone segments. To explain how these
expectancies for interval progression develop in the listener’s mind he proposes a
so-called implication-realization model, comprising five principal aspects based on
the Gestaltists’ perceptual laws, namely proximity, similarity, as well as good
continuation. Among these five, the principle of registral direction means that in
terms of small intervals pitch direction is expected to continue whereas for large
intervals, i.e. of a perfect fifth or more, pitch direction is expected to change (see
also Krumhansl 1997 for details).
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Narmour’s model of expectancy formation can simply be tested in a rating
experiment, i.e. by asking participants to predict melodic continuation after having
interrupted a folksong or some other musical piece at a specific point in time.
However, when looking at this testing method a little more closely, Eerola et al.
(2002) point out that, since listener’s expectations may change in real-time lis-
tening situations, it is far better to obtain some continuous data on prediction.
Thus, when testing expectation for melodic progression a dynamic approach seems
more appropriate, using a coordinate system and a mouse-driven slider to enter the
likelihood of forthcoming melodic events on a computer screen.

Krumhansl’s probe tone method, in contrast (developed in collaboration with
Roger Shepard in 1979) is a valuable means to investigate tone relations in vertical
direction. Again, Krumhansl makes use of the rating method, this time by judging
the cohesive strength between melodic events and the latent harmonic framework.
For this objective, participants have to evaluate on a rating scale how well the
twelve probe tones of the chromatic scale fit into the context of the just heard
piece, be it tonal, atonal, bi-tonal, or non-Western (e.g. Kessler et al. 1984).

Cook (1987) as well as Eitan and Granot (2008) take a different approach to
relational thinking. They study cohesiveness within large-scale musical forms
along the horizontal axis. The objective of their studies is to find out whether and
to what extent participants become aware of key change and of permuted musical
sections while listening to sonata movements and other types of compositional
form. A second focus is on the aesthetical impressions created by hybrid and
original pieces. Again, insights are gained from rating results. By taking two of
Mozart’s masterworks (i.e. his piano sonata KV 332 and the earlier KV 280) as the
original, and comparing it with a mixed version including some equivalent parts of
the respective counterpart, Eitan and Granot (2008) could demonstrate that pref-
erences for hybrid versions in musically trained listeners are strong, and become
even stronger when exposed to these pieces several times. Since these rating
results do not confirm that priority is given to the original, Eitan and Granot (2008)
call the musical logic and the piece’s inner unity into question. However, any
sweeping generalizations based on these findings should be avoided since judg-
ment results might be restricted to a specific idiolect and style, i.e. to Mozart’s way
of composing and to the Classical period per se.

In addition, Cook (1987) investigated the effect of tonality on cohesion. In this
study, music students rated the degree of completeness of musical pieces of dif-
ferent lengths up to 6 min, ending either on the tonic or a distant key. Since
modulations were merely perceptible within a time span of one minute or less,
Cook concluded that form-building effects of tonality are weak which advocates
for the psychological reality of small-scale over large-scale musical structures.

An even more radical view, called ‘concatenationism’, is hold by the American
philosopher Jerrold Levinson (1997; cited by v. Hippel 2000). Concatenationism
in its strictest sense describes a ‘‘moment-by-moment listening, faintly tinted by
memory and expectation’’ (p. 135). According to Levinson, ‘concatenationism’
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denies any conscious influence of large-scale musical form on listening at all,
meaning that we simply hear musical sections in succession and remain in the
musical present.

To put this issue to the test, I performed a neurocognitive experiment on rela-
tional thinking at the Max Planck Institute for Human Cognitive and Brain Sciences
Leipzig which I would like to re-report in this context here. To my knowledge it is
the first neuroscience approach to musical form perception at all. Brain activity was
recorded by using event-related potentials (ERPs) as the measuring method. To
control the listening result immediately after presenting a melody, short behavioral
feedback was given and registered via button press response. In general, event-
related potentials (as well as other neuroimaging methods) have the advantage to
map physiological processes in real time, enabling us to watch brain reactions—
either (synchronized) extracellular current flows in terms of EEG and ERP or
oxygen consumption regarding fMRI—while bundles of nerve cells are active.

The objective of the present study was to find out if the brain responds to the
mental act of relational thinking and, if so, whether chunking processes can be
made visible by specific component reactions. From the structural point of view I
thus tested ‘balance between form parts’, which is a property considered essential
when thinking about the melody’s particular characteristics (c.f. p. 1f).

For the clarity of the experiment I decided for the small-scale type of musical
form, using the eight-bar ‘musical period’, also called ‘Liedform’, in two variants,
AABB and ABAB (see Fig. 2).

The figure shows that form parts with equal labelling (AA, ABAB,
ABAB) have exactly the same rhythm while intervals are only similar, whereas
form parts with different labelling (AB) are dissimilar in both, rhythm and interval
structure. In terms of sequence succession we assume that relational thinking is
affected by the sequential order of form parts, meaning that chunking may either be
facilitated or made more difficult when A-parts alternate with B-parts as in ABAB,
or when A- and B-parts follow in immediate repetition as in AABB. From these
considerations the following hypotheses are deduced:

1. H1: Adjacent form parts of contrasting structure (AB) are subsumed to higher-
level perceptual units. Melodies of form type ABAB are rated as hierarchical.

H0: The sequential order of form parts has no effecton building higher-level
perceptual units at all.

Fig. 2 Example melodies in
AABB and ABAB forms
(modified versions of
originals). First example L. v.
Beethoven. Rondo, WoO 48.
Second example C. Ph.
E. Bach. Thema from Sonata
III
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2. H1: Structuring small-scale musical forms is an online cognitive process taking
place in working memory.
Specific ERP components serve as indicators.

H0: Structuring form parts happens in retrospect. Post hoc ratings are necessary
to evaluate the entire melody as either ‘hierarchical’ or ‘sequential’.

From this it follows that melodies of form type ABAB probably elicit a large
arc of suspense, increasing coherence, whereas in melodies of form type AABB
the arc of suspense is smaller, and cohesive strength is reduced.

Figure 3 illustrates the task. Participants had to listen to and evaluate the pat-
terns by choosing either a sequential or a hierarchical listening style. Rating results
were indicated by press of key buttons. The study was exclusively performed with
non-musicians.

1 Methods

1.1 Subjects

Twenty students of different faculties (recruited from the University of Leipzig)
participated in the experiment. Age and gender were equally balanced (10 males,
10 females; average age = 25.9 years, SD = 2.29).

2 Stimuli and Task

Melodies of form types AABB and ABAB were built on the eight-bar schema of
the Classical period split up into 2 ? 2 ? 2 ? 2- phrase-units (see note examples
in Fig. 2). Each form type was realized with 25 different melodies randomly
presented in three keys (C major, E major, A flat major), resulting in 75 different

Fig. 3 Illustration of the
listening task. Possible
segmentations of a melody in
real-time. For each given
example participants had to
decide by individual
judgment which listening
strategy was best. a Patterns
are closed sections following
in a row. b Patterns are
related to each other and form
higher-order units
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versions of AABB and ABAB, respectively. In terms of melodic contour, an arch-
like shaping of all four phrases might intensify the impression of closure, and
melodies of that shape might be processed sequentially whereas an upward contour
followed by a downward one, each extending over 2 plus 2 bars, strengthens
coherence, and listening might be more hierarchical. We therefore took heed that
example pieces with arch-like and upward/downward contour were equal in
number so that modulating effects caused by contour could be excluded. In
addition, pause length, length of the pre-boundary tone, and the underlying har-
monic schema were kept constant in each melody to avoid interferences with
phrase boundary perception, probably yielding the CPS. In each sequence, the
chord progression was ‘‘tonic (1st phrase)—dominant (2nd and 3rd phrase)—tonic
(4th phrase)’’. Phrase boundaries had an average pause length of 0.27 s
(SD = 0.12), and the average duration for each pre-boundary tone was 0.42 s
(SD = 0.25).

The example pieces were played on a programmable keyboard (Yamaha PSR
1000) in the timbre ‘grand piano’. They were stored in MIDI format using the
music software SteinbergTM Cubasis VST 4.0. For wave-file presentation via
soundcard, MIDI files were transformed to SoundblasterTM audio format.

Each musical piece was played with an average tempo of 102.36 BPM
(SD = 27.92), differing slightly between AABB (108.76 BPM, SD = 32.23) and
ABAB (95.96 BPM, SD = 21.63). However, an independent samples t-test yiel-
ded a non-significant result (t(48) = 1.65, p [ 0.1), giving certainty that tempo
should not be considered as a disturbing factor.

Figure 3 shows the given options how to deal with each melody. The drawings
were also presented during instruction to illustrate the following task: ‘‘Listen
carefully and evaluate the parts: Whenever you perceive sections as closed, fol-
lowing in a row—press the left button for ‘sequential’. Whenever you perceive
sections as related to each other, forming higher-order units—press the right
button for ‘hierarchical’.’’ Participants were also requested to keep head, neck,
arms, hands, and fingers as relaxed as possible and to reduce the amount of eye
blinks during ERP recording (cf. general guidelines of ERP measurement, Picton
et al. 2001). To get familiar with the task, each recording session started with a test
block of ten melodies.

3 Experimental Set-up and Recording

The total duration of each recording session was approximately 55 min. Three
blocks with stimuli were presented, each consisting of 50 melodies of types AABB
and ABAB in pseudo-random order. Each example piece was part of a trial
sequence. It ran as follows: ‘‘Fix your eyes onto the monitor (2 s), listen to the
added type of melody (approximately 11 s), then evaluate whether the melody is
sequential or hierarchical (less than 6 s).’’ Trial sequences were presented auto-
matically using the software package ERTS (Experimental Run Time System,
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Version 3.11, BeriSoft 1995). Each subject was comfortably seated in a dimmed
and electrically shielded EEG cabin in front of a monitor. For binaural presentation
of stimuli, a loudspeaker was placed at a distance of 1 m.

Brain activity was measured with 59 active Ag/AgCl electrodes (Electro Cap
International Inc., Eaton, Ohio) placed according to the 10-10 system onto the
head’s surface (Oostenveld and Praamstra 2001). Brain activity per electrode was
referenced to the left preauricular point (A1), and the sternum was used as the
ground electrode. EEG signals were recorded with an infinite time constant and
digitised with a sampling rate of 500 Hz. Ocular artefacts were measured with a
vertical and a horizontal electrooculogram (EOGV, EOGH). The impedance at
each electrode channel was kept below 5 kX.

4 Data Analysis

4.1 Pre-processing of Signals

The obtained raw signals were high-pass filtered (cut off frequency 0.50 Hz) and
carefully examined for eye blinks, muscle activity, and technical artefacts. Artefact-
free trials were merged over melodies and blocks, but averaged separately
according to form type (AABB vs. ABAB), phrase onset (2nd, 3rd, and 4th phrase),
and electrode channel. The time window for averaging was -200–1,000 ms
measured from onset of the respective phrase. ERP traces were baseline-corrected,
using a pre-onset interval from -30 to 0 ms. The pre-processing procedures were
performed for each subject individually. Figure 5a–c shows the grand average ERP
over all subjects at nine representative electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz,
P4). The time range for display is the same as for averaging, namely
-200–1,000 ms pertaining to phrase onset.

5 Statistical Analysis

Table 1 shows the button press responses of participants rating melodies as hier-
archical or sequential. An additional Chi-square test was performed to prove
whether rating results correlated significantly with pattern structure. In contrast to
that, Table 2 summarizes the attributes of several ‘prototype melodies’ in AABB
and ABAB that 75 % of participants (n = 15) consistently rated as hierarchical or
sequential.

To test the significance of participants’ ERP data, we computed several
ANOVAs (repeated-measures analyses of variance). We started with a four-way
analysis so that, if significant, effects of factor and level could be analyzed sep-
arately. Repeated measures factors were Time Window (five time ranges: 30–80,
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80–140, 140–280, 300–600, 600–800 ms), Onset (2nd, 3rd, 4th phrase), Form
(AABB and ABAB), and Channel (36 electrodes). Due to lack of space, results
reported here are restricted to only one time window (300–600 ms). Further details
were provided with a three-factor ANOVA analysis per time window including the
repeated measures factors Onset, Form, and Channel. Dependencies between
factors and factor levels were specified with several one-way and two-way post
hoc tests. Degrees of freedom were adjusted with Huynh and Feldt’s epsilon, and
results were considered significant at an a-level of 0.05.

6 Results

6.1 Behavioral Results

Table 1 shows the overall rating scores of participants. The distribution assigns the
total number of listening judgments (‘hierarchical’ vs. ‘sequential’) to form type
(‘AABB vs. ABAB’). Altogether, approximately two-thirds of example melodies
were judged as ‘hierarchical’, the remaining one-third was judged as ‘sequential’.
Further specification by ‘Form type’ revealed that example pieces in ABAB
compared to AABB were slightly more often rated as ‘hierarchical’ (74.28 vs.
67.25 %). This difference reached statistical significance (t(38) = 2.13, p \ 0.05).

Table 1 Participants’ rating scores specified according to Form type

Form type Rating results

‘‘hierarchical’’ ‘‘sequential’’

AABB 1009 (67.45 %) 487 (32.55 %)
ABAB 1109 (74.28 %) 384 (25.72 %)
Across form types 2118 (70.86) 871 (29.14)

Sum of raw scores and percentages

Table 2 Prototype melodies, consistently rated as hierarchical or sequential (14 themes in
AABB and 19 themes in ABAB)

Frequency distribution AABB ABAB

Hierarchical Sequential Hierarchical Sequential

Total number of analyzed melodies 11 [44 %] 3 [12 %] 16 [64 %] 3 [12 %]
Rhythmic contrast between

part A and part B
11 [44 %] 1 [4 %] 15 [60 %] 1 [4 %]

Contour
Archlike 1 [4 %] 2 [8 %] 3 [12 %] 2 [8 %]
Upward–downward 10 [40 %] 1 [4 %] 12 [48 %] 1 [4 %]
Downward–upward 1 [4 %]

Frequency distributions (raw scores and percentages)
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We computed a Chi-square test to evaluate if participants’ overall rating results
differed significantly from chance level. The X2-value of 16.9 is far beyond the
critical value of 10.83 at the 0.001 a-level (X2 (1, N = 2989) = 16.9, p \ 0.001).
To quantify correlation strength between ‘Form type’ and ‘Listening style’, we
additionally computed the adjusted contingency coefficient C*, yielding scores on
a range between 0 and 1. The result (C* = 0.86) shows that the effect size between
‘Form type’ and ‘Listening style’ is large, indicating that correlation between both
factors is strong.

Table 2 gives information about a subset of example melodies that three-
fourths of participants (n = 15) consistently rated as hierarchical or sequential.
Two variables are introduced which explain modification across form types:
‘rhythmical contrast’ and ‘melodic contour’. The data show that both, sharp
rhythmical contrast between A and B and/or upward-downward (instead of arch-
like) contours contribute to a strong impression of higher-level junctions—either
of ‘AB’ with ‘AB’ or of ‘AA’ with ‘BB’.

7 Electrophysiological Results

We expect that chunking tendencies were strongest at the immediate onset of A-
and B-parts. For that reason, three trigger points were set per example piece, one at
each phrase onset. Note that at each phrase onset the average tone length was
0.24 s (SD = 0.17) while mode values, i.e. tone lengths occurring most frequently,
were 0.07, 0.08, and 0.18 s over examples. We therefore proceed on the
assumption that each phrase onset displays the average brain response to at least
two or three tones rather than to the onset tone alone.

The first idea was that the brain reflects the interrelation between ‘Form type’
(AABB vs. ABAB) and ‘Listening style’ (hierarchical vs. sequential). Figure 4
shows the grand average ERP at the onset of the second phrase which is the crucial
phrase of the eight-measure theme following the initial phrase.

From 300 ms onward, we observe a splitting of traces according to ‘Form type’
(AABB vs. ABAB) but no further division for subjective listening style

Fig. 4 Grand average ERPs
at phrase onset 2. Division of
traces by form type and
listening style. Cortical
activity at electrode Fz
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(hierarchical vs. sequential). This observation is validated with statistics. The
ANOVA analysis yields a main effect of Form type (F(1,19) = 7.53, p \ 0.01, 36
channels) whereas no interaction between ‘Form type’ and ‘Listening style’ could
be found. The ANOVA results for curve splitting therefore suggest that the brain is
merely sensitive to pattern structure (but not to the respective listening style).

Figure 5a–c displays the event-related potentials as a mere function of form type.
The most interesting result is the broad negative shift between 300 and 600 ms
measured from phrase onset. Since the amplitude maximum is fronto-central, we
call this negative shift ‘anterior negativity’ (anterior N300). As you can see from
Fig. 5a–c polarity changes between the onsets of the second and the third (and
fourth) phrase. At phrase onset 2, the anterior negativity is up for patterns AA
(immediate repetition of A) compared to AB, while at phrase onset 3 it is up for
ABA (non-immediate repetition of A) compared to AAB. At phrase onset 4 we
observe an anterior N300 for ABAB compared to AABB, although amplitude is
reduced. Due to this pattern reversal, a main effect of ‘Form type’ is only marginally
significant, whereas the interaction ‘Form type x Onset’ is highly significant. The
anterior N300 also decreases from anterior to posterior. This is validated by a highly
significant interaction ‘Onset x Form type x Channel’, mostly pronounced at phrase
onset 2. (Due to lack of space ANOVA results are not displayed here).

8 Discussion

What are the study’s main results in particular with regard to relational thinking?
Let us briefly call them to mind:

(a) (b) (c)

Fig. 5 a–c Grand average ERPs at phrase onsets 2, 3, and 4. Curve splittings according to ‘Form
type’ (AABB vs. ABAB)
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1. [behavioral]. Sequences with form parts in alternating order (ABAB) are more
often judged as ‘hierarchical’ than sequences with form parts in immediate
succession (AABB) (cf. Table 1).

2. [behavioral]. Judgment results are more pronounced when rhythmical contrast
between A- and B-parts is sharp and when melodic contours are upward-
downward (cf. Table 2).

3. [electrophysiological]. The brain seems to react to pattern similarity at the
onsets of adjacent (A|A) and of non-adjacent (e.g. AB|A) form parts. It does not
respond to contrasting pattern structure (A-B).

4. [behavioral and electrophysiological]. Decisions on how form parts are per-
ceived are not reflected in the ERP as a ‘real-time protocol of brain activity’.
Instead, the impression of the entire melody seems necessary.

The behavioral results suggest that participants are able to distinguish between
example pieces of strong and weak cohesion. As already mentioned several sen-
tences before, cohesiveness is strong when the following textural properties are
given: (1) Form patterns alternate with each other as in ABAB, (2) melodic
contours are upward-downward, and (3) rhythmic contrast between A- and B-parts
is sharp. Among these points causing the impression of hierarchy, ‘sequential
order’ obviously is the essential one while features regarding rhythm and contour
are merely supplementary. Thus, the choice of the adequate listening style and the
ease of evaluation seem largely to depend on the extent to which these properties
are developed.

Note that due to the given task the primary focus was on listening strategy and
on stimulus evaluation, i.e. on the pre-requisites for relational thinking. That is,
chunking, defined as a cognitive process of ‘subsuming form parts to higher-order
units’ probably requires a still larger amount of mental activity as needed by the
current task.

Please note further that this experiment was exclusively performed with non-
musicians, meaning that the process of ‘setting-form-parts-in-relation-to-each-
other’ obviously belongs to a number of implicitly acquired musical skills. In this
regard, Bigand and his colleagues were able to show that untrained listeners
process tension and relaxation as well as several structural aspects above chance
level and often with same results as professional musicians (Bigand 2003; Bigand
and Poulin-Charronnat 2006). In this context Tillmann and Bigand (2004) write
the following:

Nonmusician listeners tacitly understand the context dependency of events’ musical
functions and, more generally, the complex relations between tones, chords, and keys.
(p. 212).

Now let us try to explain the electrophysiological data. First, form parts with
equal labelling (AA, ABAB, ABAB) are of exactly the same rhythm while
intervals are only similar whereas form parts with different labelling (AB) differ in
both, interval size and tone duration. We therefore suggest that the brain detects
pattern similarity on the basis of identical rhythmic structure. In this context, the
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anterior N300 may serve as a neural correlate, indicating the amount of mental
effort which is necessary to identify the structural properties at phrase onsets. For
these cognitive processes working memory resources are needed that are mainly
found in the brain’s frontal part. Whenever working memory is active, we observe
amplitude maxima at anterior parts of the brain (cf. Patel 2003; and Fig. 5a–c).

Leaving considerations about rhythmical sameness aside, we can also explain
the data from the viewpoint of expecting and predicting musical structure. In a
recent study on pitch expectations in church hymns Pearce and colleagues (2010)
managed to demonstrate that high-probability tones (perceived as expected)
compared to low-probability tones (perceived as unexpected) elicit a fronto-central
negativity in the time range from 300 to 600 ms similar to the anterior N300 of the
present study but slightly different in shape. However, on closer examination, we
have to keep in mind that the anticipated events of both studies are of different
character and size, using highly probable single tones on the one hand and highly
probable form parts (stretching over 2 bars) on the other. Even so, the similarity
between the anterior brain components of both studies is striking.

With regard to ‘relational thinking’—what conclusions should we draw from
this study?

In my opinion the key aspect is that this ‘setting-parts-in-relation-to-each-other’
is not part of a superior process named ‘structural listening’ occurring in the same
time range, but rather a separate process taking place several seconds later. This
means that, initially, the anterior N300 indicates the processing of structural fea-
tures whenever the brain becomes aware of rhythmical sameness in real-time
listening situations, whereas relational thinking, or, more exactly, the choice of the
adequate listening style combined with subsequent rating decisions, needs a
complete perceptual unit to evaluate the coherence of form parts. Thus, so far, no
specific neural correlate for pure active, higher-order mental acts such as chunking
or Gestalt perception has been found, showing that relational thinking seems
measurable only in retrospect by using traditional behavioral methods. The present
ERP study therefore makes clear that a new paradigm seems more appropriate in
order to investigate the idealized form of ‘expert structural listening’ referring to
real-time listening skills such as reconstructing and anticipating the score.

Having elaborated on Riemann’s ‘relational thinking’ and ‘balance between
form parts’ from a structural point of view, we should close this chapter with some
general remarks on structural listening and on grasping the musical idea, this time
by also including the composer’s point of view. The first point we should think
about is that spatio-temporal concepts depend on the type of cognitive process, i.e.
there are conceptual differences between imagining and creating on the one hand
and simply listening to music on the other.

Let us first consider the composer’s point of view: When describing the creative
act, they often report on aspects of simultaneity and spatiality, i.e. on the overall-
structure of a musical piece. Mozart, for instance, obviously sees the complete
musical architecture in his mind’s eye (c.f. a letter written by J. F. Rochlitz 1813)
whereas, Schönberg uses the term ‘‘timeless entity’’ to describe this overall
framework (quoted from Cook 1990, p. 226). Thus, a main problem when
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composing music is to transfer spatial concepts into time-based sequences, i.e. to
unfold basic ideas successively step by step. Listening, by contrast, proceeds in the
opposite direction in that the overall idea has to be grasped (and compressed) from
the sequential ‘spread out’, i.e. from tones presented in succession. Thus, in terms
of transferring sound information, processes of composing/imagining and listening
are diametrically opposite (see also Mersmann 1952).

In sharp contrast to that, Riemann completely omits this spatio-temporal aspect.
He skips also every facet regarding structure and the sound material as such.
Instead, he puts emphasis on the immediate mental exchange between the com-
poser’s and the listener’s minds for rapid transfer of thought and direct flow of
ideas. See the following quotation (Riemann 1914/15):

The Alpha-Omega in music is not the sound, i.e. real music, or the audible tones as such,
but rather the idea of tone relation. Before putting them into notation, these relations live
in the imagination of the creative artist and then in the listener’s imagination .…In other
words, the essential approach to music, i.e. the key to its inner nature is neither provided
by acoustics nor by tone physiology and tone psychology but rather by imagination of
tone. (p. 15f)

See here the original wording in German:

daß nämlich gar nicht die wirklich erklingende Musik, sondern vielmehr die in der Ton-
phantasie des schaffenden Künstlers vor der Aufzeichnung in Noten lebende und wieder in
der Tonphantasie des Hörers neu erstehende Vorstellung der Tonverhältnisse das Alpha
und Omega der Tonkunst ist. ….. Mit anderen Worten: den Schlüssel zum innersten Wesen
der Musik kann nicht die Akustik, auch nicht die Tonphysiologie und Tonpsychologie,
sondern nur eine ‘‘Lehre von den Tonvorstellungen’’ geben. (Riemann 1914/15, p. 15f)

However, several constraints are imposed on Riemann’s idea of communicating
from mind-to-mind, mainly caused by attitudes, experiences, expectations, wishes,
and situational needs on the side of the listener (cf. Rauhe et al. 1975). In other
words, encoding and decoding or the sending and receiving of the overall musical
idea are largely dissimilar processes, even more when they are split between two
people, since they are modified by some mental acts and attributes in-between. In
this regard, Jackendoff distinguishes between a ‘compositional grammar’ and a
‘listening grammar’, although admitting in the spirit of Riemann that ‘‘the best
music arises from an alliance of a compositional grammar with the listening
grammar’’ (1988, p. 255; quoted from Cook 1994, p. 87). Even so, it makes more
sense to assume that one person is real and the other fictional, meaning that a
composer constructs his ‘ideal listener’ to enhance creativity and shape the (cre-
ative) work like poets or journalists do when having their ‘ideal reader’ in mind
(cf. dell’ Antonio 2004).

Altogether we may conclude that the perception of musical structure as well as
related issues such as structural listening and relational thinking need an inter-
disciplinary approach, i.e. the move from music theory to music psychology to
Gestalt psychology and back, focusing on both, the sound object, i.e. the tone
material, and the respective perceptual process.
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Let me close with a quotation from Miller and Gazzaniga (1984) on the
interrelationship between structure and process in its broadest sense:

There seems to be general agreement that the objects of study are cognitive structures and
cognitive processes, although this distinction is drawn somewhat differently in different
fields. In American psychology, for example, a long tradition of functional psychology has
made it easier to think in terms of processes—perceiving, attending, learning, thinking,
speaking—than in terms of structures. Yet, something has to be processed. … Linguists,
on the other hand, generally find it easier to think in terms of structures—morphological
structures, sentence structures, lexical structures—and to leave implicit the cognitive
processes whereby such structures are created or transformed. Computer scientists seem to
have been most successful in awarding equal dignity to representational structures and
transformational processes. … In principle, however, it is agreed that both aspects must be
considered together, but that once the process is understood the structure is easier to
describe. Thus, cognition is seen as having an active and a passive component: an active
component that processes and a passive component that is processed. (p. 8f)
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Part III
Applications



Virtual Room Acoustics

Michael Vorländer, Sönke Pelzer and Frank Wefers

1 Introduction

With the rapid development of computers, room acoustical simulation software
was created and applied in sound field analysis in rooms. The processor speed, the
memory space, and the convolution machines were sufficiently powerful finally in
the beginning of the 1990s to allow room acoustical computer simulation on a
standard personal computer. Since then, several improvements in the modelling
algorithms, in binaural processing and in reproduction techniques were made.

Room acoustic auralization has been developed from simulation algorithms and
binaural technology in a historic process of more than 20 years. Full-immersive
virtual reality (VR) systems, such as CAVE-like environments, have been in use
for more than 15 years. While computer graphics and video rendering are far
developed with applications in film industry and computer games, high-quality
audio rendering is still not on a comparable level. Watching a recent 3D movie
production and comparing the quality of the visual and auditory representation can
best illustrate this mismatch. While advanced projection systems deliver a good
3D vision, the auditory 3D impression lacks a realistic spatial sound impression,
although rather complex surround sound systems are usually installed.

The concept of auralization was also applied to fields other than room acoustics
since about the year 2000. The aim is now different, as not music and the quality of
concert halls or other performance spaces are to be evaluated, but the perception of
sound and noise. Thus, building acoustics, automotive acoustics, and machinery
noise are areas of application. The task in all these applications is the evaluation of
sound sources, transmission constructions, or products by listening instead of a
numeric expression of the acoustic quality. Wave-based numerical acoustics such
as the finite element method (FEM), the boundary element method (BEM), the
finite time-domain difference technique (FDTD), or analytic models and any kind
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of structural acoustics transfer path method is suited as a basis for auralization. The
link between simulation and auralization is the representation of the problem in the
signal domain and the treatment of sound and vibration by signal processing.

Following the concepts of simulations in acoustics and vibration, we can
describe the process of auralization by separation of the processes of sound gen-
eration and transmission into system blocks and description of these blocks with
tools of system theory. Figure 1 illustrates the basic elements of sound generation,
transmission and radiation [see also Vorländer (2008)].

One might ask why the problem cannot simply be treated by using a mono
signal, an equalizer and a headphone. The need for a more complex reproduction
technique with a spatial representation is given by the fact that human hearing
extracts information about the sound event and the sound environment by segre-
gation of acoustic objects due to common cues of spectral, temporal, and spatial
attributes. This, for instance allows us to identify one speaker out of a cloud of
diffuse speech (cocktail party effect). In situations of outdoor noise immission, the
spectral, temporal, and spatial cues are extracted to judge the event as pleasant,
annoying, informative, or neutral. As long as the specific acoustic (physical) and
semantic content of the noise must be treated, restrictions in spectral, temporal,
and spatial cues are not appropriate.

In room acoustics, the quality of the results must be very high. People are
sensitive to the perception of music in all its aspects, temporal, spectral, and
spatial. Therefore, the challenge in creating auralization in room acoustics is very
high, and this applies to source recording, sound propagation (reverberation)
rendering, and audio reproduction. While source recording and audio reproduction
is discussed in other papers, this contribution is focused on simulation of the sound
propagation in rooms.

Sound generation

Vibration
Shock
Impact
Friction
Flow
Combustion
….

Sound transmission

Structural waves
Junctions
Damping
Propagation
Duct
Room
….

Sound reproduction

Loudspeakers
Headphones
Binaural technique
VR cave etc.
….

Interface

Fig. 1 Components of auralization and virtual acoustics: representation of sound and vibration
sources, transmission, reproduction, and mapping on a task of signal processing
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2 Room Acoustic Simulation

Today, simulated room acoustics are applied in various fields with great success.
Their well-developed algorithms help to create realistic acoustics during archi-
tectural planning. Acoustic simulation tools are also used for designing sound
reinforcement systems in churches, stadiums, train stations, and airport terminals.

2.1 Geometrical Acoustics: Ray Tracing and Image Sources

In geometrical acoustics the two basic models of geometrical sound propagation,
ray tracing and image sources are applied. Often, however, the two philosophies
are confused. It is important to highlight the differences in the physical meaning:
Ray tracing describes a stochastic process of particle radiation and detection.
Image sources are geometrically constructed sources which correspond to specular
paths of sound rays. Often, image sources are constructed by using rays, beams, or
cones, via a kind of ray tracing. Nevertheless, they remain to be ‘‘image source
models’’. The fundamental difference between image sources and ray tracing is the
way of calculation of contributions in impulse responses. Ray tracing only yields
impulse response low-resolution data like envelopes in spectral and time domains.
Image sources (via the classical method or via tracing rays, beams, cones, etc.)
may be used for exact construction of amplitude and delay of reflections which
narrow-band resolution depending on the filter specifications for wall reflection
factors, for instance (Fig. 2).

2.2 Hybrid Models

Due to the contradictory advantages and disadvantages of ray tracing and image
sources it was tried to combine the advantages in order to achieve high-precision
results without spending too much complexity or computation time. Either ray
tracing or radiosity algorithms were used to overcome the extremely high calcu-
lation time inherent in the image source model for simulation of the late part of the
impulse response (adding a reverberation tail), or ray tracing was used to detect
audible image sources in a kind of ‘‘forward audibility test’’. The idea behind is
that a ray, beam, or cone detected by a receiver can be associated with an audible
image source. The order, the indices, and the position of this image source can be
reconstructed from the ray’s history with storing the walls hit and the total free
path. Hence the total travel time, the direction and the chain of image sources
involved can be addressed to the image source. Almost all other algorithms used in
commercial software are kind of dialects of the algorithms described above, and
they differ in the way mixing of the specular with the scattered component is
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implemented. The specific choice of dialect depends on the type of results, par-
ticularly on the accuracy, spatial and temporal resolution (Fig. 3).

2.3 Room Acoustics Simulation at RWTH Aachen

At RWTH Aachen University, room acoustics simulation is in the focus since the
mid 1980s, initially based on ray tracing and image source algorithms and later on

Fig. 3 Hybrid simulated
room impulse response with
early reflections by image
sources (red) and late
reflections, using the energy
envelope predicted by ray
tracing (blue). Scattered early
reflections are handled by ray
tracing instead of image
sources

Fig. 2 Simulated room impulse response with comparison of reflections with precise time-
resolution modeled by image sources (red), and time-quantized energy envelope modeled by ray
tracing (blue)
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combinations of both approaches. Vorländer (1989) and independently van
Maerke presented the basis for the cone, beam and pyramid tracing dialects, by
showing that forward tracing is a very efficient method for finding audible image
sources. Since then, the specular components of the room impulse response (RIR)
were computable with high efficiency. The concepts of spatial subdivision were
added for a quick processing of intersection tests which is the crucial subroutine in
methods of Geometric Acoustics (GA). Then, during the 1990s it was shown that
GA cannot solely be based on specular reflections (Vorländer 1995). The era of the
implementation of scattering began with activities on the prediction, measurement,
and standardization of scattering and diffusion coefficients of corrugated surfaces.

Progress in binaural technology enabled the incorporation of spatial attributes
to room impulse responses. The key equation of the contribution of one room
reflection, Hj, is given in frequency domain is

Hj ¼
e�jkrj

rj
HSHRHa

Ynj

i¼1

Ri

where rj is the reflection’s travel distance, jkrj the phase, 1/rj the distance law of
spherical waves, HS the source directivity in source coordinates, Ha the low pass of
air attenuation, Ri the reflection factors of the walls involved, and HR the head-
related transfer function of the sound incidence at a specified head orientation. The
complete binaural room impulse response is composed of the direct sound and the
sum of all reflections. This filter is appropriate for the convolution with anechoic
signals to obtain audible results.

The stochastic part obtained from the ray tracing process must be post-processed
in order to achieve an appropriate temporal resolution for audio sampling, but also
to keep the spatial cues in a best possible way. This is implemented by using a
shaped-noise technique with regard to spatial, temporal, and spectral attributes in
the ray tracing results [see also (Schröder and Vorländer (2007)] (Fig. 4).

3 History of Acoustic Virtual Reality

3.1 VR Technology

In the early days of VR, head-mounted displays (HMDs) usually formed the heart
of any VR-system in order to provide stereoscopic vision to the user. A HMD is a
helmet-like display that features two small monitors positioned directly in front of
the user’s eyes to achieve stereopsis. Typically, a HMD is also equipped with
earphones, where binaural synthesis has most often been used for the presentation
of acoustic stimuli in the virtual 3-D space. However, due to fundamental prob-
lems such as wear comfort and user isolation from the real environment, today’s
HMDs are mainly used in low cost and mobile/portable VR-systems. Instead,
especially in scientific and industrial applications, HMDs have been more and
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more replaced by CAVE-like displays. These displays are room-mounted instal-
lations based on a combination of large projection screens that surround the user.
Here, the stereoscopic vision is realized by means of light-weight polarized glasses
that separate visual information from the stereoscopic projection. Since room-
mounted VR-systems aim at an ergonomic, non-intrusive interaction as well as

Fig. 4 Processing of ray tracing results sorted in directional groups (DG) to a binaural impulse
response
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co-located communication and collaboration between users, headphones should be
avoided. As such, a sound reproduction based on loudspeakers is preferable. Head-
mounted as well as room-mounted VR displays typically come along with a
tracking system that captures the user’s head position and orientation in real-time.
This data is required for adapting the perspective of the visual scene to the user’s
current view-point and view direction. In addition, if binaural synthesis is applied
for auralization, the user’s position and orientation must be precisely known at any
time in order to apply the correct pair of head related transfer functions (HRTF).
A variety of tracking principles for VR-systems are in use, ranging from
mechanical, acoustic (ultrasonic), and electro-magnetic techniques up to inertia
and opto-electronical systems. Recently, a combination of two or more infrared
(IR) cameras together with IR light reflecting markers that are attached to the
stereo glasses, have become the most popular tracking systems. This type of
tracking system is nearly non-intrusive, affordable and works with higher precision
and lower latency in comparison to other technologies.

Real-time auralization systems have been investigated by many groups. Here to
mention is the ‘‘EVE’’-project at the TKK Helsinki University, Finland, and the
‘‘REVES’’ research project at INRIA, France. Recently, Open Source projects
were launched such as ‘‘UNIVERSE’’. The aim of our VR activities is to create a
reference platform for development and application of multimodal environments
including high-quality acoustics. Such a system can be used for scientific research
and testing as well as for development of complexity-reduced surround sound
systems for professional audio or home entertainment. The group working on the
acoustic VR-system is supported by the German Research Foundation, DFG, in a
series of funded projects, where the Institute of Technical Acoustics, ITA, jointly
worked with the Virtual Reality Group of RWTH Aachen University. The latter is
the core group of a consortium of several institutions of our university and external
partners covering the disciplines of computer science, architecture, civil engi-
neering, mechanical engineering, electrical engineering, and information tech-
nology, psychology and medicine (Fig. 5).

In recent years, VR has proven its potential to provide an innovative human
computer interface for applications areas such as architecture, product development,
simulation science, or medicine. VR is characterized as a computer-generated
scenario of objects. A user can interact with these objects in all three dimensions in
real-time. Furthermore, multiple senses should be included to the interaction, i.e.,
besides the visual sense, the integration of other senses such as the auditory, the
haptic/tactile, and the olfactory stimuli should be considered in order to achieve a
more natural, intuitive interaction with the virtual world.

3.2 Audio Rendering

The final step in the real-time auralization chain is the convolution of the simulated
impulse response with a dry excitation signal, usually speech, music, or ambient
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sounds. Since room impulse responses are usually quite long, the convolution can
become a computationally very intensive task. By now, powerful hardware and
fast convolution algorithms exist that enable the realization of the entire audio
rendering by means of high-quality FIR filtering. The mathematical background of
convolution is well known and it can be easily implemented in time- or frequency-
domain using MATLAB or similar tools. In contrast, convolution-based real-time
audio rendering is an advanced problem in itself. Various requirements must be
fulfilled, such as low latencies, rapid exchangeability of filters without audible
artifacts and high signal-to-noise ratios. These can only be met by specialized
algorithms. The state-of-the-art method is non-uniformly-partitioned convolution
in the frequency-domain (Wefers and Vorländer 2012). It unites a high compu-
tational efficiency with low input-to-output latencies, by partitioning the filter
impulse responses into a series of subfilters with increasing size. For a smooth
exchange of filters cross-fading in the time-domain is commonly applied.

3.3 The Virtual Reality Center Aachen System

3.3.1 Background and Base Technology

Shortly after the establishment of the first VR developments at RWTH Aachen
University, the activities in computer science were joined with those in acoustics.
The advantage was that both groups had deep knowledge in their specific field so

Fig. 5 Users experiencing a virtual concert hall within the RWTH Aachen CAVE
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that the competences could be combined with high synergy. The initial step was
the integration of interactive VR technology (visual and haptic) with headphone-
free audio reproduction. At that time the decision was made in favor of a stereo
loudspeaker setup for an adaptive crosstalk cancellation. The first task was inte-
grating head tracking and adaptive filters into a cross talk cancellation (CTC)
system that turned out to be a flexible solution for various display environments
(Lentz 2008).

In 2004 a CAVE-like five-sided surround-screen projection system was
installed at RWTH Aachen University. Figure 6 shows an overview of the
installation. It has a size of 3.6 9 2.7 9 2.7 m and can be reconfigured using a
slide door and a movable wall. Stereoscopic images are produced by two images
per screen with a resolution of 1,600 9 1,200 pixels each and are separated by
polarized glasses. It uses several IR cameras for tracking several input devices and
the user’s head position/orientation. For the reproduction of acoustic signals, four
loudspeakers are installed at the top of the CAVE. This setup was chosen over a
simple stereo system in order to achieve a good binaural reproduction that is
independent from the current user’s orientation (see Figs. 7, 8).

3.4 The ViSTA Framework for Virtual Reality Software

At RWTH Aachen University, the VR Toolkit ViSTA has been under development
for more than 10 years now in order to provide an open, flexible and efficient
software platform for the realization of complex scientific and industrial appli-
cations. One of the key features of ViSTA comprises functionality for the creation

Fig. 6 The RWTH Aachen cave automated virtual environment (CAVE). The installation
features five-sided passive stereoscopic vision (circular polarization) with optical IR tracking

Virtual Room Acoustics 227



of multimodal interaction metaphors, including visual, haptic, and acoustic stimuli.
For such elaborate, multimodal interfaces, flexible sharing of different types of
data with low latency access is needed while maintaining a common temporal
context. Therefore, ViSTA comes along with a high-performance device driver
architecture. It provides a novel approach for history recording of input by means
of a ring buffer concept that guarantees both, a low latency and a consistent
temporal access to device samples at the same time.

In acoustical reproduction based on binaural synthesis and crosstalk cancella-
tion, latency of the (optical) tracking system is especially critical. For this reason,

Fig. 7 Schematic block diagram of the VirKopf (Pelzer and Vorländer 2010) real-time
auralization system

Room acoustics

Auralization server

Ray tracingImage sources

Early specular
reflections

Filter processing,
low latency
convolution

Diffuse /
late 
reflections

VR Application

Position
management

Visualization
Reproduction

Crosstalk
cancellation 
(CTC)

Fig. 8 Software components and their interaction
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a compensation scheme has been developed for ViSTA that, based on current
tracking samples, can predict the state of the human head position and orientation
for the time of application.

3.5 Sketch-Based Interaction

Apart from the multimodal reproduction of a scene, it is also important that one
can interact with the virtual environment in an intuitive way. An example for this
is a virtual room acoustics laboratory, where the user can perform modifications of
the scenery—e.g., by changing the material properties of a wall, creating a piano,
or adjusting a reflector panel (see Fig. 9), and then directly perceive the impact on
the acoustics. For this purpose, special interaction techniques are required that
match the demands of immersive virtual environment, i.e., they are easy-to-use,
use small and light-weight input devices and avoid disturbing graphical interface
elements. Consequently, a sketch-based interface was developed for the interaction
with architectural sceneries where the user can draw three-dimensional command
symbols that are then recognized by a real-time symbol matching algorithm.
Recognized symbols execute commands such as the creation of a window, and can
also contain additional information such as the size and position of the window.
The sketch-based interaction provides a considerable number of possible com-
mands that are quickly executable by using an intuitive pen-like input device.

3.6 Sound Field Rendering

For real-time sound field rendering, the hybrid room acoustics simulation software
room acoustics for virtual environments (RAVEN) was integrated into the VISTA

Fig. 9 Sketch-based
interaction in a virtual concert
hall. The user modifies the
properties of an acoustic
absorber element just by
gestures with a pointing
device in his right hand
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frame-work as a network service. RAVEN combines a deterministic image source
method with a stochastic ray-tracing algorithm in order to compute high quality
room impulse responses on the basis of geometrical acoustics. However, basic
methods of GA do not cover two important wave phenomena, that is sound
transmission and sound diffraction. Thus, these methods fail to correctly simulate
sound propagation from a hidden source to a receiver where the direct line of sight
is blocked by other objects, e.g., an obstacle or a door to an adjacent room.
Therefore, more sophisticated simulation techniques are required which reflect the
real world experience. RAVEN therefore includes the simulation of the sound
phenomena of sound transmission and sound diffraction (Pelzer and Vorländer
2010).

Sound transmission prediction tools are well established. They are based on
statistical energy analysis and enable the calculation of energy transmission via
sound and vibration transmission paths. The implementation of sound transmission
in auralization software can be done using filters that are interpolated from spectra
of transmission coefficients, with secondary sources radiating transmitted sound in
adjacent volumes. In contrast, diffraction is—especially in real-time systems—
often neglected or poorly modeled due to its analytical complexity. However, the
lack of diffraction causes a significant error in most simulations. This becomes
more evident by the example of a simple noise barrier that separates a sound
source from a receiver. Here, a shadow zone grows clearer and sharper with
increasing sound frequency. This zone results from a total cancellation of the
incident wave by the diffraction wave which is radiated from the object’s edges or
perimeter to the receiver. Due to a matter of principle of GA, that is the linear
propagation of sound rays, basic methods fail to detect any sound energy inside the
shadow zone of such a barrier. Fortunately, analytical and stochastic diffraction
models based on GA have been developed which maintain a smooth transition
from the view zone to the shadow zone, meanwhile even in more complex sce-
narios (Fig. 10).

RAVEN imposes no constraints on scene interaction, meaning that not only
sound sources and receivers can move freely in the virtual environment, but also
the scene geometry can be manipulated by the user at runtime. This is achieved by
using advanced modularized and flexible data structures that separate the simu-
lation into single parallel processes that are then distributed and processed on a
computing cluster (see below).

3.7 Diffraction

As mentioned above, RAVEN also accounts for the wave phenomenon of dif-
fraction using a hybrid approach for the simulation of sound diffraction, which
allows the simulation of higher-order edge diffraction. For this purpose, existing
GA methods of edge diffraction have been adapted and optimized. The concept of
secondary sound sources by Svensson was chosen for the image source method, as
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the method allows an exact analytic description of higher order diffraction of finite
edges. Here, the demand for a very fast and accurate prediction conflicted with the
problem of multiple diffracted reflections and the mirroring of the secondary
sources, as the complexity of diffraction path searches and number of secondary
sources rises exponentially with diffraction order. Therefore, two types of
diffraction edges were introduced, static and dynamic edges. Static diffraction
edges cannot be manipulated during the simulation, i.e., they cannot be moved or
changed in size. This allows the pre-computation of visible edges and secondary
sources, which are organized in efficient tree-graphs. By using these data structures
diffraction paths up to a range from three to five can be taken into consideration for
the online simulation (see Fig. 11a). For dynamic diffraction edges, i.e., edges that
are fully scalable and moveable, this order must be reduced to at most order two
due to the complexity of regenerating the graphs for higher order diffraction.
However, it should be kept in mind that this affects only the actual process of
manipulation. Once it has been modified, the object’s state switches back into
static mode.

The diffraction method by Stephenson, which is based on Heisenberg’s
uncertainty principle, was integrated in RAVEN’s stochastic ray tracer. The core
of this approach is the computation of a 2D-deflection-angle-probability-density -
function (DAPDF) of energy particles when they pass an edge. This diffraction
model fits perfectly to algorithms that model sound propagation as the dispersion
of energy particles, such as stochastic ray tracing. Unfortunately, this approach is

Fig. 10 Graphical user interface of the RAVEN simulation framework, here with a visualization
of early reflections in a classroom
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also computational demanding due to the underlying principle of energy dispersion
for higher order diffraction that leads to a very large number of required energy
particles. This problem was tackled by the introduction of cylindrical edge
detectors, called deflection cylinders. A deflection cylinder counts impacting
energy, which is then distributed to other detectors. This approach is not exact, but
prevents the explosion of computing and delivers very good results in simple test
scenarios. A detailed validation is still pending, though.

3.8 Geometry Manipulation

Another important design aspect for interactive room acoustics simulation is the
creation of highly flexible algorithmic interaction interfaces that support a maxi-
mum degree of freedom in terms of user interactivity. While code adjustments for
operations such as the exchange of material parameters and the manipulation of
portal states were relatively easy to implement, the requirements of a modifiable
geometry turned out to be an algorithmic challenge. After first test implementa-
tions it became apparent that RAVEN’s acceleration algorithms based on binary
space partitioning (BSP) do not meet the criteria of dynamically manipulatable
geometry since any modification calls for a recalculation of at least large parts of
the BSP trees. It was therefore decided to introduce two different modi operandi
for scene objects: static and dynamic (similar to the states of diffraction edges).
Static objects, such as walls, are not modifiable during the simulation and are
therefore processable in a quick and efficient way. A dynamic object, for instance a
reflector panel, is adjustable by a user at runtime (see Fig. 9), though it should be
emphasized that there is no limitation on the object’s shape in general, i.e., the
whole room geometry can be defined as dynamic. For the unconditioned

Fig. 11 Edge diffraction implementation in RAVEN using deflection angle probability density
functions (DAPDF)
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modification of dynamic objects, RAVEN switches to a new approach in geometry
processing—that of spatial hashing (SH). SH is a method in Computer Graphics,
which is usually applied for collision tests with deformable objects. The concept of
SH is based on the idea of subdividing the space by primitive volumes called
voxels and map the infinite voxelized space to a finite set of one-dimensional hash
indices, i.e., a hash table (HT), which are en/decoded by a hash function
(see Fig. 12). The advantage of SH over other spatial data structures such as BSP-
trees is that the insertion/deletion of m vertices into/from the HT takes only O(m)
time. Thus, this method is perfectly qualified to efficiently handle modifications of
a polygonal scenery in order to enable a real-time auralization of a dynamically-
changing environment. However, a comprehensive performance analysis has
shown that the principle of SH can never compete with the performance of the fast
BSP tree on a single core computing unit. On the other hand, the approach sig-
nificantly gains performance from any additional CPU core as the HT data
structure is efficiently schedulable in parallel. On a state-of-the-art multicore CPU
(four or more cores), the SH approach will therefore outclass the BSP-based
method if a fully modifiable geometry is desired.

4 Audio Reproduction System

4.1 Sound Generation

The system supports several sound generation methods: In the simplest case, a
virtual sound source plays back a single mono audio file, which can be looped, if
necessary. This simple modeling is sufficient for transient sounds, such as back-
ground noise. However, interaction with virtual objects often results in a multitude

Fig. 12 Geometry data is organized using the acceleration technique ‘spatial hashing’ which
allows fast updates on scene changes, such as moving a reflector panel or wall
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of individual sounds and sound transitions. In order to adequately model these
sounds, more advanced sound generation concepts are required. For this purpose,
the system implements a sequencer, which allows to playback arbitrary sound
samples on a virtual sound source. Medium synchronization between audio and
video is ensured by using time codes. This technique applies for a wide range of
objects, such as an electric sliding door or a virtual drum set, though it is not
appropriate for objects whose sounds are driven by continuous parameters. An
example is a virtual electric motor with freely adjustable revolution speed. For
such applications the system offers real-time modal synthesis and post-processing
filters can be added for high-quality sound authoring.

4.2 Dynamic Crosstalk Cancellation

Binaural playback strictly demands the ability to reproduce individual audio
signals at each of the user’s ears. Therefore, headphones are ideally suited for
binaural playback. In contrast, sound emitted by a loudspeaker will—at least to a
certain degree—always reach both ears of the listener. If left uncompensated, this
crosstalk destroys the three-dimensional binaural cues. With knowledge of the
sound propagation paths (speakers to each ear), a filter network can be designed
that eliminates the crosstalk (see Fig. 13). This technology is known as crosstalk
cancellation (CTC) and has been investigated for some decades now. Several filter
design methods are known and different setups of loudspeakers are possible.

Since the user may freely move, the sound propagation paths change over time.
Consequently, CTC filters must be adapted in order to keep the listener within the
sweet spot and maintain a proper crosstalk cancellation. The position and orien-
tation of the listener is obtained from the motion tracking with a frequency of
60 Hz. A threshold for translation (1� cm) and rotation (1�) is used to trigger the
recalculation and update of the CTC filters. CTC filters prove to be stable only
within certain angular ranges that depend on the orientation of the listener with
respect to the loudspeaker setup. Only two loudspeakers are not sufficient to cover
all possible user orientations within the CAVE. This problem is solved by
combining multiple two-channel CTCs over a setup of four loudspeakers into a
Dual-CTC algorithm. During runtime this method chooses the best speaker con-
figuration by minimizing the compensation energy.

Using free-field HRTFs for compensating the sound propagation paths is valid
only for anechoic conditions. The CAVE-like environment, however, is a confined
space that is surrounded by acrylic glass walls. Reflections occur, which influence
not only the crosstalk compensation, but also the binaural perception. Lentz (2008)
investigated the impact of this issue on the localization performance for binaural
auralization. A distortion of the perceived directions occurred, mainly in the ele-
vation angle, though a combined audio-visual scenario reduced this mislocaliza-
tion significantly.
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4.3 Real-Time Convolution

The VR-system that is presented here performs real-time auralization on the basis
of high-order FIR filters. The audio rendering itself is a complex and computa-
tionally intensive task, which is handled by a dedicated convolution engine. It
filters the audio signal of each sound source with an independent binaural room
impulse response (BRIR). For realistically sounding scenes, the signals of a high
number of virtual sound source (50–100) must be convolved with the results of the
room acoustics simulation. These auralization filters (BRIRs) typically consists of
20.000—200.000 filter coefficients. The latencies of the filtering must be very
small (\20 ms) in order to reproduce the systems’ reaction on user input
(e.g., movement, rotation, actions) without audible delays. The overall system
latency depends on the processing delay (input-to-output latency, but also addi-
tional delays for the exchange of filters). Moreover, the exchange of filters must not
produce audible artifacts.

Fig. 13 Simplified overview of the crosstalk cancellation principle
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Time domain FIR filters (e.g., tapped delay-lines, TDLs) cannot be used for
these extensive filter tasks. Their computational complexity scales linear with the
filter length. The number of arithmetic operations becomes so large that even high-
end computers or DSP cannot deliver the computation power for the requirements
stated above. Specialized algorithms are needed.

Summarized under the term ‘‘fast convolution’’ several efficient methods for
FIR filtering are known today. Many of them use the efficient fast fourier transform
(FFT) to perform the convolution in the frequency-domain, where it can be
implemented by simple multiplication of discrete Fourier spectra. FFT-based
convolution is considered the most effective technique when the filters are long.
Since the FFT is computed block-wise and not sample-wise, it introduces input-to-
output latency equal to the block length of the audio stream. It is often misun-
derstood that one must use small FFTs in order to have small latencies. This is in
general not true. One can for instance use one large 64 k-point FFT to process
small stream blocks of 128 samples with an impulse response of 60,000 taps using
the Overlap-Add scheme. In this case the filter is processed as a whole (single DFT
spectrum), known as unpartitioned block convolution. One can show that it is more
beneficial to split the filter into several smaller parts and convolve them individ-
ually, which is known as partitioned convolution. This keeps the delay low and
allows for a much more efficient realization of the real-time filtering. Figure 14
shows an example of partitioned convolution with a non-uniform filter
partitioning.

Splitting the filter impulse response into parts of equal length is called uni-
formly partitioned convolution. It can be easily implemented and delivers near to
optimal computational efficiency for small filter (e.g., typically up to 1,024 taps).
Therefore, it is the method of choice for free-field audio rendering, where only
short HRIR filters (e.g., 100–300 taps) are used. For real-time room acoustics
audio rendering the method is still not efficient enough. The most efficient of the
currently known techniques is a non-uniformly partitioned convolution. Here the
subfilter sizes vary and they are not fixed to a certain length as for the uniform

Fig. 14 An example for non-uniformly partitioned convolution. The filter impulse response is
split into subfilters, which are realized using an individual fast convolution unit
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case. At the beginning of filters it uses small block lengths to achieve short input-
to-output latencies. Where affordable, it uses longer filter parts. These can be
implemented with larger block length, which reduces the computational effort
significantly. Table 1 illustrates the differences in computational complexity for
several real-time FIR filtering techniques. The way the filter is partitioned is a key
parameter for the algorithms, concerning the filter exchange, runtime stability, and
computational efficiency. It is not trivial to find a partition which on the one hand
minimize the computational effort, but on the other hand is actually realizable in a
real-time system. Efficient optimization algorithms exist in order to maximize the
convolution performance, but it is strictly necessary to consider aspects of reali-
zation as well in order to obtain practicable results.

The presented system uses a dedicated convolution engine called low-latency
convolver (LLC). LLC has been developed at the Institute of Technical Acoustics
for several years. It implements a parallelized non-uniformly partitioned fast
convolution in the frequency-domain on multicore machines. A distinctive feature
of LLC is the ability to allow an arbitrary impulse response partitioning, LLC uses
a filter partitioning that is specifically optimized with respect to the available target
hardware. The convolution algorithm is completely parallelized and can utilize the
performance of current multi- and many-core systems. Since a hard switch of
filters would result in signal discontinuities and thereby would cause unpleasant
audible artifacts, time-domain cross-fading is applied to ensure a smooth
transition.

5 Performance

5.1 Parallelization

Advanced real-time auralization concepts post high requirements on the compu-
tational performance. In order to meet these requirements, parallelization is
extensively used in many components and on all architecture levels. On the most
basic level, all arithmetically intensive computations are vectorized, using single-

Table 1 Comparison of the computational costs of several real-time FIR filtering methods

The VR-system that is presented here performs real-time
auralization on the basis of high-filtering method

Computational cost
(FLOPs/sample)

Speedup
(Factor)

Time-domain FIR filter 129.999 1.009

Unpartitioned block convolution (FFT-based,
Overlap-Save)

29.108 4.469

Uniformly-partitioned FFT convolution 4.142 31.399

Non-uniformly partitioned FFT convolution with
optimized filter partition

408 318.609

The filter length is 65,000 taps and the streaming block length (latency) is 128 samples
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instruction multiple-data (SIMD) instructions. Additionally, multi- and many-core
computers are used to increase the performance and allow faster calculations. Ray
tracing in particular can be efficiently parallelized using OpenMP. Furthermore,
the crucial timing dependencies of the real-time convolution demands more
advanced concepts. Therefore, special concepts such as flexible data structures are
utilized for an efficient parallelization.

Optimizations for multicore machines allow realizing sceneries of medium
complexity. The simulation of complex building environments exceeds the
capabilities of a single PC with a limited maximum number of CPU cores. For the
simulation of extensive sceneries with multiple coupled rooms, detailed geome-
tries, and many sound sources, a cluster of multiple computers can be used to
achieve the required computing performance. For this purpose, a cluster-capable
version of RAVEN was developed, using MPI and the Viracocha-Framework.
It allows distributing different subtasks of the computation, such as individual
sound sources, frequency bands, or particle subsets to different cluster nodes.
Specialized scheduling strategies distribute the computation evenly among all
nodes. Furthermore, simulation tasks can be prioritized, guaranteeing that IS
computations will not be delayed by prior, but less important RT calculations.

Since the top-level interface of RAVEN is unified, the underlying computation
hardware is transparent and can be either a single computer or a computation
cluster of varying size. This makes the approach very scalable so that the hardware
can be chosen to match the complexity of the scenery. All in all, the optimized
parallelization strategies make the room acoustics simulation fast enough for real-
time processing (Fig. 15).

5.2 Real-Time Filtering Performance

Currently, a dedicated 2.4 GHz dual quad-core machine is used to realize the
filtering. A RME Hammerfall series audio interface is used for sound input and
output. Audio streaming is done using Steinberg’s ASIO professional audio
architecture, at 44.1 kHz with streaming buffersize (block length) of 512 samples.
For BRIRs of 88,200 filter coefficients, LLC manages to filter the signals of more
than 50 sound sources.

6 Future Work

An interesting idea for increasing the quality and speed of acoustic simulations at
the same time has been introduced by frequency- and time-dependent room models
(Pelzer and Vorländer 2010). This approach uses a set of models with graduated
level of detail of the same scene geometry, where every single room model is
optimized for a certain frequency range, which is important especially for correct
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reflection patterns at low frequencies. Additionally, with increasing time in the
resulting impulse response, the level of detail can be decreased during the simu-
lation, providing a total simulation speed-up of a factor of six when combined with
the speed-up due to frequency-matched geometries. For even more complex
scenes, the computation on graphic cards is very promising. This technique has
also been successfully applied to auralization. For real-time GPU-based convo-
lution, a highly optimized and promising solution was presented (Wefers and Berg
2010).

Room acoustic simulation by using geometrical acoustics is usually imple-
mented with binaural receivers. Wave models such as FEM are easily applicable
with binaural interfaces as well. This way, however, the signals are restricted to a
specific set of HRTF, and a tedious task is to adapt the results to a proper
reproduction system with very limited possibilities of listener individualization.
With a more general interface such as spherical harmonics, room acoustic spatial
data could be created in intermediate solutions. In post-processing this can lead to
various binaural representations or to reproduction with Ambisonics. Then it must
be discussed how standard routines in geometrical acoustics must be changed in
order to implement multi-channel spherical microphone arrays. Furthermore, the
corresponding output data can be multi-channel time signals or temporal SH
coefficients or any other suitable spectral format. The amount of data and signal
processing affects CPU time and memory. The discussion therefore is focused on
feasibility and on consequences on the real-time performance on the one hand, and
on the spatial quality of the room response, on the other.

For simulation of significant wave effects the next generation of room simu-
lation models can be expected to include combination of wave acoustics and
geometrical acoustics. Progress was made already in this direction but there
remains lot of work to be done in order to provide a robust method and the
necessary boundary conditions of surfaces. The latter is still an underestimated
problem, as every simulation methods can only be sufficiently accurate with
adequate input data.

Fig. 15 Distributed room acoustics simulation system. Several cluster nodes are used to handle
the large amount of room acoustics simulation tasks. All nodes communicate using MPI

Virtual Room Acoustics 239



Acknowledgments The authors would like to thank the German Research Foundation (DFG) for
funding a series of projects. Torsten Kuhlen and his team at Virtual Reality Center Aachen
(VRCA) are acknowledged for excellent and smooth collaboration.

References

Lentz, T. (2008). Binaural technology for virtual reality. Ph.D. dissertation, RWTH Aachen
University.

Pelzer, S., & Vorländer, M. (2010). Frequency- and time-dependent geometry for real-time
auralizations. In 20th International Congress on Acoustics (ICA), Sydney, Australia.

Schröder, D., & Vorländer, M. (2007). Hybrid method for room acoustic simulation in real-time.
In Proceedings of the 20th International Congress on Acoustics (ICA), Spain.

Vorländer, M. (1989). Simulation of the transient and steady state sound propagation in rooms
using a new combined sound particle—image source algorithm. The Journal of the Acoustical
Society of America, 86, 172–178.

Vorländer, M. (1995). International round robin on room acoustical computer simulations. In:
Proceedings of 15th International Congress on Acoustics, Trondheim, Norway.

Vorländer, M. (2008). Auralization: Fundamentals of acoustics, modelling, simulation,
algorithms and acoustic virtual reality. Berlin: Springer.

Wefers, F., & Berg, J. (2010). High-performance real-time FIR-filtering using fast convolution on
graphics hard-ware. In Conference on Digital Audio Effects (DaFX).

Wefers, F., & Vorländer, M. (2012). Optimal filter partitions for non-uniformly partitioned
convolution. AES 45th International Conference on Time-Frequency Audio Processing,
Helsinki, Finland.

[Online]: www.vrca.rwth-aachen.de.

Further Reading

Schroeder, M. R., Atal, B. S.,& Bird, C. (1962). Digital computers in room acoustics. In
Proceedings of the 4th International. Congress on Acoustics, Copenhagen, Denmark.

Vian, J., & van Maercke, D. (1986). Calculation of the room impulse response using a ray-tracing
method. In Proceedings of the ICA Symposium on Acoustics and Theatre Planning for the
Performing Arts, Vancouver, Canada.

Cruz-Neira, C., Sandin, D., DeFanti, T., Kenyon, R., & Hart, J. (1992). The CAVE: Audio visual
experience automatic virtual environment. Communications of the ACM, 35, 64–72.

Dalenbäck, B.-I. (1995). A new model for room acoustic prediction and auralization. Ph.D.
dissertation, Chalmers University, Gothenburg, Sweden.

Gardner, W. G. (1995). Efficient convolution without input-output delay. Journal of the Audio
Engineering Society (JAES), 43, 127–136.

Egelmeers, G. P. M., & Sommen, P. (1996). A new method for efficient convolution in frequency
domain by non-uniform partitioning for adaptive filtering. IEEE Transactions on signal
processing, 44.

Stephenson, U. (1996). Quantized pryamidal beam tracing—a new algorithm for room acoustics
and noise immission prognosis. ACTA ACUSTICA united with ACUSTICA, 82, 517–525.

Svensson, U. P., Fred, R. I., & Vanderkooy, J. (1999). An analytic secondary source model of
edge diffraction impulse responses. Journal of the Acoustical Society of America, 106,
2331–2344.

Müller-Tomfelde, C, (2001). Time-varying filter in non-uniform block convolution. In
Proceedings of the Conference on Digital Audio Effects (DAFX-01).

240 M. Vorländer et al.

http://www.vrca.rwth-aachen.de


Tsingos, N., Funkhouser, T., Ngan, A., & Carlbom, I. (2001). Modeling acoustics in virtual
environments using the uniform theory of diffraction. ACM Computer Graphics, SIG-
GRAPH’01 Proceedings (545–552).

Lokki, T. (2002). Physically-based auralization—design, implementation, and evaluation. Ph.D.
dissertation, Helsinki University of Technology.

García, G. (2002). Optimal filter partition for efficient convolution with short input/output delay.
In Proceedings of 113th AES convention.

Hammershøi, D., & Møller, H. (2002). Methods for bin-aural recording and reproduction.
Acustica united with Acta Acustica, 88, 303.

Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., & Gross, M. (2003). Optimized
Spatial Hashing for Collision Detection of Deformable Objects. VMV ‘03.

Tsingos, N., Gallo, E., & Drettakis, G. (2004). Perceptual audio rendering of complex virtual
environments. ACM Transactions on Graphics (SIGGRAPH Conference Proceedings), 3(23).

Funkhouser, T., Tsingos, N., Carlbom, I., Elko, G., Sondhi, M., West, J. E., et al. (2004). A beam
tracing method for interactive architectural acoustics. Journal of the Acoustical Society of
America, 115, 739–756.

Gerndt, A., Hentschel, B., Wolter, M., Kuhlen, T., & Bischof, C. (2004). Viracocha: An efficient
parallelization framework for large-scale CFD post-processing in virtual environments. In
Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, Magdeburg, Germany.

Thaden, R. (2005). Auralisation in building acoustics, Ph.D. dissertation, RWTH Aachen
University.

Lentz, T. (2005). Performance of spatial audio using dynamic cross-talk cancellation. In 119th
AES Convention, New York, NY, USA.

Cox, T. J., Dalenbäck, B.-I. L., Antonio, P. D., Embrechts, J. J., Jeon, J. Y., Mommertz, E., et al.
(2006). A tutorial on scattering and diffusion coefficients for room acoustic surfaces. Acta
Acustica united with ACUSTICA, 92, 1–15.

Schröder, D., & Lentz, T. (2006). Real-time processing of image sources using binary space
partitioning. Journal of the Audio Engineering Society (JAES), 54(7/8), 604–619.

Raghuvanshi, N., & Lin, M. (2006). Interactive sound synthesis for large scale environments. In
Proceedings of the Symposium on Interactive 3D Graphics and Games, Red-wood City, USA.

Lentz, T. (2006). Dynamic crosstalk cancellation for binaural synthesis in virtual reality
environments. Journal of the Audio Engineering Society (JAES), 54(4), 283–293.

Schröder, D., & Vorländer, M. (2007). Hybrid method for room acoustic simulation in real-time.
In Proceedings of the 20th International Congress on Acoustics (ICA), Madrid, Spain.

Stephenson, U. M., & Svensson, U. P. (2007). An improved energetic approach to diffraction
based on the uncertainty principle. In Proceedings of the 19th International Congress on
Acoustics, Madrid, Spain.

Schröder, D., Dross, P.,& Vorländer, M. (2007). A fast reverberation estimator for virtual
environments. In Proceedings of the 30th AES International Conference, Saariselkä, Finland.

Assenmacher, I., & Kuhlen, T. (2008). The vista virtual reality toolkit. In Proceedings of the
IEEE VR SEARIS, (pp. 23–26).

Schröder, D., & Assenmacher, I. (2008). Real-time auralization of modifiable rooms. In 2nd ASA-
EAA joint conference Acoustics, Paris, France.

Lundén, P. (2008). Universe acoustic simulation system: Interactive realtime room acoustic
simulation in dynamic 3d environments. The Journal of the Acoustical Society of America
(JASA), 123(5), 3937–3937.

Rausch, D., & Assenmacher, I. (2008). A sketch-based interface for architectural modification in
virtual environments. In 5th Workshop VR/AR, Magdeburg, Germany.

Noisternig, M., Katz, B., Siltanen, S., & Savioja, L. (2008). Framework for real-time auralization
in architectural acoustics. Acta Acustica United with Acustica, 94(6), 1000–1015.

Rindel, J.-H. (2009). Auralisation of a symphony orchestra—the chain from musical instruments
to the eardrums. In EAA Symposium on Auralization, Espoo, Finland.

Schröder, D., & Pohl, A. (2009). Real-time hybrid simulation method including edge diffraction.
In Proceedings of the EAA Auralization Symposium, Espoo, Finland.

Virtual Room Acoustics 241



Wefers, F., & Schröder, D. (2009). Real-time auralization of coupled rooms. In Proceedings of
the EAA Auralization Symposium, Espoo, Finland.

Tsingos, N. (2009). Using programmable graphics hardware for auralization. In Proceedings of
the EAA Symposium on Auralization, Espoo, Finland.

Schröder, D., Svensson, P., & Vorländer, M. (2010). Open measurements of edge diffraction from
a noise barrier scale model. In Proceedings of the International Symposium on Room
Acoustics (ISRA), Melbourne, Australia.

Schröder, D., Ryba, A., & Vorländer, M. (2010). Spatial data structures for dynamic acoustic
virtual reality. In Proceedings of the 20th International Congress on Acoustics (ICA), Sydney,
Australia.

Schröder, D., Ryba, A., & Vorländer, M. (2010). Real-time auralization of dynamically changing
environments. Submitted to Acta Acustica united with Acustica.

Dalenbäck, B.-I. (2010). Engineering principles and techniques in room acoustics prediction. In
Baltic-Nordic Acoustics Meeting, Bergen, Norway.

Assenmacher, I., Rausch, D., & Kuhlen, T. (2010). On device driver architectures for virtual
reality toolkits, presence: Teleoperators and virtual environments, 23, 83–95.

242 M. Vorländer et al.



The Wave Field Synthesis Lab
at the HAW Hamburg

Wolfgang Fohl

1 Introduction

Wave field synthesis (WFS) is a technology to create a realistic acoustical
impression of sound sources located in various places outside and—with certain
limitations—inside the listening room. This is accomplished by driving a loud-
speaker array with sound signals whose superposition creates the desired sound
field.

The technology of wave field synthesis (WFS) has been developed and refined
for more than two decades, for an overview see de Bruijn (2004). At present, there
are systems commercially available that show a sufficient maturity and stability to
employ them as lab equipment to create virtual-reality or augmented-reality
environments for human interaction with virtual audio objects. In the year 2011 the
department of computer science of the Hamburg University of applied sciences
(HAW) equipped a lab room with a WFS system to create an augmented-reality
audio (ARA) environment. In this article the experiences of the first half year of
operation shall be reported. The following sections of this article start with an
overview of WFS basics, then the installed system is described, followed by a
description of additional lab systems that support the WFS system. The article
closes with an overview of current and future projects in the WFS-ARA lab.

2 WFS Fundamentals

In this section a very short explanation of the WFS technology is given. A detailed
overview of WFS fundamentals and applications is given in the thesis of Baalman
(2008) and in the article of de Vries (2008).
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According to Huygens’ Principle, each point of the wavefront can be consid-
ered the origin of an elementary wave. The superposition of all these elementary
waves creates the original wave of the source (see Fig. 1).

For an ideal resynthesis of the sound field, the ensemble of secondary sources
would have to be some sort of membrane where the displacement of each surface
element can be controlled by an external device. In order to apply this principle to
a real-world system, several modifications have to be applied.

Discrete actuators: Practically, the secondary sources are realized by an array
of discrete loudspeakers instead of a continuous membrane. This will give rise to
spatial aliasing effects, if the distance between the loudspeakers is too large
compared to the sound wavelength. Spatial aliasing means, that there are audible
artefacts in the sound, when moving along the loudspeaker array (see Fig. 2).
Thus, a narrow loudspeaker spacing is desirable. The synthesized sound field for
sufficiently low frequencies is shown in Fig. 3.

Limit to two dimensions: Instead of creating a closed 3D-surface around the
listening room, the reconstruction is reduced to two dimensions in that the loud-
speakers are lined up around a plane along the walls of the listening room.

Sources within the listening room: In extension of Huygens’ law it is often
desirable to simulate sources within the listening room (so-called focused sources).
This can be accomplished by creating a concave sound field, where all wave fronts
are directed towards a focal point in front of the loudspeaker array in the listening
room. A listener in front of this focal point will perceive the sound source located
in the focal point. If the listener moves between the focal point and the loud-
speakers, the sound will be perceived as originating from the loudspeakers.

Fig. 1 Huygens’ principle.
The sound field of the
primary source can
alternatively be created by a
set of secondary sources
located along the wave front
(Corteel and Caulkins 2004)
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Figure 4 shows a focused source. Persons standing below the focal point will have
the perception of a source positioned within the room.

Plane waves: In order to represent sources in indefinite distance, it is necessary
to create plane waves. A practical application for plane wave sources is the
simulation of reflections at the walls of a virtual room.

Directivity of the loudspeakers: In addition to the sound generated by the
loudspeakers, there is also sound reflected by the walls, floor, and ceiling of the
listening room, possibly creating unwanted interferences. Walls and ceilings will
have to be equipped with curtains and carpets. Furthermore, the loudspeakers
should be designed to have a wide radiation angle in horizontal direction, but a
narrow angle in vertical direction.

Fig. 2 Spatial aliasing. For
frequencies above approx.
3 kHz, the frequency
response in front of the
speaker array depends
strongly on the listening
position parallel to the array.
(Baalman 2008)

Fig. 3 Two-dimensional
wave field of a point source
(located behind the speaker
array) (Bleda et al. 2003)
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Summary of source types:

• Point source: A point source is located behind the loudspeaker array.
• Focused source: This source is located in front of the loudspeaker array. It will

only be perceived correctly for listeners on the far side of the listening room.
• Plane waves: Parallel wavefronts, mainly to simulate room reflections.

2.1 Typical WFS Scenarios

Mimic conventional surround stereo setups: To simulate a 5.1 speaker system, five
point sources are positioned at the desired speaker positions. One benefit of the
WFS system is that these virtual speakers can be positioned outside the listening
room, thus enlarging the sweet spot.

Also Ambisonic speaker setups may be simulated this way, though the positions
are limited to the plane of the WFS loudspeaker array.

Virtual stage, virtual concert room: Each performer is represented by a point
source or a focused source located on the virtual stage. Plane waves (usually eight,
for angles of incidence in steps of 45�) to simulate room reflections.

Virtual-reality/augmented-reality environment: virtual sound objects are rep-
resented by point or focused sources, source characteristics, as position, volume,
and others, are controlled by interaction with the user(s).

Fig. 4 Two-dimensional
wave field of a focused
source (located in front of the
loudspeaker array) (Bleda
et al. 2003)
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3 Description of the WFS System at the HAW Hamburg

3.1 System Architecture

The WFS system consists of the loudspeaker modules and the rendering hardware
and software. The whole system has been supplied by (Four Audio GmbH 2012),
the rendering subsystem was provided by the team of Stephan Weinzierl at the TU
Berlin (Department of audio communication 2012).

The lab room of the WFS system at the HAW Hamburg has a size of 6 9 7 m.
Six loudspeaker modules are installed at the short sides and seven modules at the
long sides of the room. Each module is 80 cm long and contains 8 channels, so the
distance between two channels is 10 cm. The resulting number of channels is 208.

The driving signals for each of these 208 loudspeaker channels have to be
calculated individually in realtime. These calculations are performed by a cluster
of 3 PCs with an Ubuntu Studio operating system. The kernels of the PCs are
modified for realtime operation. The user interface and the audio applications are
executed on a frontend computer, an Apple MacPro with OS X operating system.
The Mac and the PCs of the rendering cluster are interconnected by a local
Ethernet network. Only the Mac has an internet access and can be interfaced to
additional systems via WLAN.

Not only is the calculation of the audio signals for each of the 208 channels a
time-critical task, the signals have also to be transported to the appropriate
loudspeaker modules with virtually no delay. To that purpose, loudspeaker mod-
ules, rendering PCs, and frontend computer are interconnected by an DANTE
audio network. This network solution has the benefit of fewer cables to be installed
compared to a point-to-point connection of loudspeakers and MADI interfaces in
the PCs. The DANTE audio network protocol is a layer on top of the TCP/IP
protocol stack. It is a proprietary protocol developed by Audinate (Audinate Pty
Ltd 2013) (Fig. 5).

3.2 Loudspeaker Modules

To obtain a high frequency limit for spatial aliasing, the spacing of the loud-
speakers has to be as close as possible. The installed modules contain eight
loudspeaker channels in a distance of 10 cm. Each module also contains two
woofers, which are shared between four channels. To create a narrow vertical
radiation angle, each channel consists of 3 tweeters aligned horizontally on top of
each other. The desired radiation characteristic is obtained by beam forming.
Beam forming is implemented by FIR filters for each of the three tweeters of a
channel. These FIR filters are contained in the loudspeaker modules.
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An important requirement for the WFS loudspeaker modules is the maximum
sound pressure level (SPL) per channel. For an ensemble of sources to be rendered
in their correct loudness relations, it has to be considered, that the number of
loudspeakers involved in rendering one source varies with the distance of the
virtual source from the array: the farther away from the array, the more channels
are involved, the closer to the array, the fewer channels are involved in rendering
the source. An extreme situation is a point source located exactly at the position of
one of the loudspeakers. I this case, this channel has to supply the complete power
for this source. This case is crucial for the design of the installed audio power per
channel. The system at the HAW has an installed audio power of 125 W per
channel, resulting in a maximum SPL of 105 dB per channel.

In summary, a loudspeaker module contains the speakers, power supply,
amplifiers, DANTE network interface, and the FIR filters for establishing the
directivity and for compensation of the listening room acoustics. These filters are
configurable via the network (Fig. 6).

3.3 Software

The rendering of the virtual sources, i.e., the calculation of the individual audio
signals for each channel is performed by the software package Wonder (Baalman
2012). This software is developed at the TU Berlin in the department of audio
communication. Wonder is open source software licensed under the GPL. It is a
distributed software system designed to run on multiple Linux PCs forming a
rendering cluster. The main components of the software are:

Fig. 5 Distribution of the WFS software components (FourAudio 2011)
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The controller component (cWonder) transmits the audio signal of each WFS
source to the WFS nodes. The WFS nodes are running multiple instances of the
tWonder program to apply the appropriate time delays to the source signal and
optionally apply frequency modifications by means of the fWonder software
before transmitting it to the loudspeaker channels. The software in combination
with the DANTE audio network is capable of handling 128 separate WFS sources.

The source properties like position, type (point or plane wave) can be controlled
by the GUI provided by the xWonder component. Figure 7 shows a screenshot of
the GUI.

The xWonder software component is running on the frontend computer and
transmits the control information via Open Sound Control (OSC) messages. OSC
is an audio control protocol transmitted via Ethernet connections.

Here are some examples for OSC messages to control WFS sources [from
(Baalman 2008)]:

OSC Message Action

/WONDER/source/position(id, x, y, z,
t, dur)

Move source identified by id to position (x, y, z).
Movement starts at time t and lasts dur seconds

/WONDER/source/angle(id, angle, t,
dur)

Change angle of source (Only meaningful for plane wave
sources)

/WONDER/source/type(id, type) Change source type (point or plane wave)
/WONDER/source/mute(id, mute) Mute source

cWonder Control and coordination of all other software components running on the cluster
xWonder GUI for the management of WFS sources
tWonder Programmable delay lines for each channel (time domain)
fWonder FIR filters for frequency-domain signal manipulations

Fig. 6 Loudspeaker module.
This is a predecessor model
of the modules installed at the
HAW Hamburg. Every
channel consists of a vertical
line of three tweeters (bottom
of the module). Four channels
share one woofer (top of the
module) (Goertz et al. 2007)
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Every other software capable of sending OSC messages (like Csound, Super
Collider and many others) may also send commands to the WFS system to control
the sources. Since OSC is a simple text-based protocol, it is easy to write own
programs that send OSC messages to control the system.

3.4 Audio Interfaces

As already stated, frontend and cluster computers, as well as loudspeaker modules
are interconnected by the DANTE audio network. To the computers these network
connections appear as a sound card with 128 inputs and 128 outputs. Each input or
output represents one WFS source, so the number of I/O connections effectively
limits the number of WFS sources.

The routing between the audio applications on the frontend computer and the
DANTE-I/O ports is made by the software JACK, a low-latency audio routing
server running on all computers of the WFS system. This offers a great flexibility
of system configuration as alternative signal routings can easily be obtained. For
example in the startup procedure, the standard audio routing is modified to test all
of the 208 loudspeaker channels. The test program is a Super Collider script

Fig. 7 Screenshot of the xWonder GUI
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running on the frontend computer. In the first stage, the first 104 audio outputs are
routed to the first half of the 208 loudspeaker channels, and a short signal is played
on each loudspeaker. Then the routing is switched, so that the audio outputs are
routed to the second half of the loudspeakers. In this way, the correct function of
each loudspeaker channel can be tested in reasonable time. Afterwards, the stan-
dard routing of the audio outputs to the WFS sources is established, and the WFS
system is ready for operation. Jack is even capable of audio routing to remote
computers via internet.

4 Auxiliary Lab Components

The WFS system is complemented by various other stand-alone systems located in
the WFS lab.

4.1 Camera-Based Position Tracking System

The listening area of the WFS system is monitored by 6 infrared cameras. These
cameras are calibrated to identify 3D-targets as shown in Fig. 8. From the eval-
uation of the six video streams of the cameras, the tracking system determines the
location and orientation of multiple targets in realtime. These data is broadcasted
via WLAN and is thus available for the frontend computer of the WFS system. In
the next chapter an example project is presented that shows, how these data are
utilized for a gesture control of WFS sources.

Fig. 8 A 3D-target applied
to the hand for gesture
control. Blue x-axis, green y-
axis, red z-axis of the target
coordinate system (Fohl and
Nogalski 2013)
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4.2 Video Power Wall

A video power wall consisting of a 2 9 3 monitor matrix is located at the front
side of the listening area and allows the presentation of large-scale images and
videos to add a visual component to the acoustical presentations (see (Fig. 9).

4.3 Sound Field Microphone

For spatial audio recordings, and for acoustic localization of users, the lab is
equipped with a sound field microphone (TSL 2013). With this microphone it is
possible to record a plane-wave-decomposition of the sound field at the micro-
phone position. Based on these recordings, audio material for playback on the
WFS system can be generated and positions of sound sources can be calculated.

5 Projects

5.1 Gesture Control of Sound Objects

The goal of this project is the control of sound objects (i.e.,WFS sources) by hand
movements (Fohl and Nogalski 2013). A 3D-target (see Fig. 8) is fixed at the
user’s wrist and the tracking data is monitored by a software developed in the
course of the project. The software processes the tracking data, applies the
transformations between the different coordinate systems of the tracker and the
WFS system, and detects the gestures for object control:

Fig. 9 View of the WFS lab
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When gestures are detected, the appropriate OSC messages are sent to the
controller of the rendering cluster.

5.2 Distributed Concert Room/Virtual Conference Room

At the same time when the WFS system was installed at the HAW Hamburg, an
identical system has been installed at the Hochschule für Musik und Theater
(HfMT) in Hamburg. At the inauguration ceremony of this system, a distributed
performance of John Cage’s piece FIVE was presented: Three musicians were
located at the HfMT, the remaining two were at the HAW. The music of the
remote musicians was transferred by the JACK software via Ethernet to the other
room and played by the WFS, so that in both rooms a complete rehearsal could be
heard. This first proof-of-concept is going to be refined and extended.

The same setup can be used to create a virtual conference room. Here it is
possible by means of the tracking system to have the audible locations of the
remote participants synchronized with their real positions and movements in the
remote room.

5.3 Source Visualization with Mobile Devices

The goal is an augmented-reality application for mobile (at the moment: Android-
based) devices. The camera image is overlaid with a graphical representation of
the sound source. The source then can be modified by the usual touch screen
actions. A similar setup is described in (Delerue and Warusfel 2006).

5.4 Modifications of the Rendering Software

For interactive realtime applications, several aspects of the original Wonder
software will have to be modified:

Latency: Audio Buffer sizes of all interconnections in the system have to be
examined and minimized to reduce the latency from the current value of 110 ms to
a value well below 20 ms. Small buffer sizes however bear the risk of audio
dropouts, when audio samples cannot be delivered in time. The software will have

Select Raise the hand above 45�
Deselect Lower the hand below 45�
Move the source on a circular segment around the user Turn the arm to the left or right
Get the source nearer/farther away Bend/stretch the arm
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to be recompiled with reduced values for the buffer sizes to determine the mini-
mum possible size without encountering audio dropouts.

Focused sources: When focused sources (sources in front of the loudspeakers)
are rendered, a choice has to be made by the software, which loudspeakers to use
for the rendering. This choice in consequence defines, in which part of the room
the wave field of the source is correct. In the current version of the software the
decision is only based on the source position: The loudspeakers with the smallest
distance to the source are creating the sound field. In interactive augmented-reality
applications, the choice of the rendering loudspeakers has to be based on the user’s
position to ensure that the wave field is correct at this part of the listening rooms.
Special strategies will have to be developed for multiuser applications.

6 Summary

This article has showed the capabilities and principles of operation of the WFS lab
at the HAW Hamburg. First projects have been presented and further project ideas
have been shown.

After almost a year of operation, the system shows up to be stable and reliable.
Since the rendering software is published under the GPL, is appears feasible to
modify it in a way to support the special requirements arising from the interactive
usage of the system. Very promising is the cooperation with the sibling system at
the HfMT in Hamburg, the concept of a distributed concert room will be devel-
oped further in the near future.

Readers interested in project cooperation or in a demonstration of the system
are kindly invited to contact the author.

Acknowledgments Thanks to Four Audio for the kind permission to use the data and figures of
the technical manual of the system for this article.
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The l�cosm Project: An Introspective
Platform to Study Intelligent Agents
in the Context of Music Ensemble
Improvisation

Jonas Braasch

1 Introduction

Automated music agents have a long tradition in Artificial Intelligence (AI)
research. Starting first as composition tools (Cope 1987; Friberg 1991; Widmer
1994; Jacob 1996), computers are meanwhile sufficiently fast to allow these sys-
tems to improvise music with others in real time. Typically music composition/
improvisation systems use a symbolic language, most commonly in form of the
Musical Instrument Digital Interface (MIDI) format. Successful systems such as
Lewis’ Voyager system (Lewis 2000) and Pachet’s Continuator (Pachet 2004) use
MIDI data to interact with an individual performer whose sound is converted to
MIDI using an audio-to-MIDI converter. The research described in this paper
stems from a larger project with the goal of developing a Creative Artificially-
Intuitive and Reasoning Agent Caira. Instead of using the simple audio-to-MIDI
converter, the agent uses standard techniques of Computational Auditory Scene
Analysis (CASA), including pitch perception, tracking of rhythmical structures,
and timbre and texture recognition (see Fig. 1). The CASA approach allows Caira
to extract further parameters related to sonic textures and gestures in addition to
traditional music parameters such as duration, pitch, and volume. This multi-level
architecture enables Caira to process sound using bottom-up processes simulating
intuitive listening and music performance skills as well as top-down processes in
the form of logic-based reasoning. The low-level stages are characterized by a
Hidden Markov Model (HMM) to recognize musical gestures and an evolutionary
algorithm to create new material from memorized sound events. The evolutionary
algorithm presents audio material processed from the input sound which the agent
trains itself on during a given session, or from audio material that has been learned
by the agent in a prior live session. The material is analyzed using the HMM
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machine listening tools and CASA modules, restructured through the evolutionary
algorithms and then presented in the context of what is being played live by the
other musicians.

The logic-based reasoning system has been designed for Caira so she can
‘‘understand’’ basic concepts of music and use a hypothesis-driven approach to
perform with other musicians (see top-down processes in Fig. 1). The benefits of
including a logic-based reasoning system are many. Firstly, we hope to see this
multi-level approach lead to a more natural system response by trading off several
techniques, thus making the underlying processes less transparent to the human
musicians while not lessening the overall responsiveness of the system. Secondly,
we would like the agent to be able to create new forms of music with the specific
goal that the agent be able to develop her own concepts by expanding and breaking
rules and monitoring the outcome of these paradigm changes. Thirdly, we want to
document the performance of the system, which is not easy to do, when the agent
simulates intuitive listening in the context of Free Music. By adding a logic-based
reasoning system, we can now assess communication between the agent and the
human musicians by comparing the internal states of the agent and the human
musicians. In our project, foot switches are used to record the internal states of the
human participants.

This paper focuses on the third goal for our logic-based reasoning stage. In
particular, I will describe a self-exploratory approach to test the performance of
Caira within a trio ensemble. In my l�cosm approach (pronounced: microcosm), I
control two independent musical instruments, the second one using a foot-operated
interface, to probe the inter-ensemble communication skills of Caira. The

top-down processes 
logic-based reasoning

Effector
virtual 
instrument 
performance

video score 
presentation

Auditory Analysis
pitch extraction
on/offset detection
timbre analysis
Beat analysis
loudness estimation
polyphonic analysis

Internal 
representation

of world
Goals

Auditory
Sensor

near-field 
microphone
aided

video

bottom-up processes 
Intuitive listening

far-field 
reference
microphone

Fig. 1 Schematic of the creative artificially-intuitive and reasoning agent Caira
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approach, which will be described in further detail below, is inspired by experi-
mental ethnomusicology methods practiced by Arom (Arom 1967) and others.
A more detailed description of the Caira lower and higher level architecture and
her ability to operate using the fundamental concepts of music ensemble inter-
action will precede this discussion.

2 Gestalt-Based Improvisation Model Based
on Intuitive Listening

The artificially-intuitive listening and music performance processes of Caira are
simulated using the Freely Improvising, Learning and Transforming Evolutionary
Recombination system (FILTER) (Van Nort et al. 2009, 2010, 2012). The FILTER
system uses a Hidden Markov Model (HMM) for sonic gesture recognition, and it
utilizes Genetic Algorithms (GA) for the creation of sonic material. In the first step,
the system extracts spectral and temporal sound features on a continuous basis and
tracks onsets and offsets from a filtered version of the signal. The analyzed cues are
processed through a set of parallel Hidden Markov Model (HMM) -based gesture
recognizers. The recognizer determines a vector of probabilities in relation to a
dictionary of reference gestures. The vector analysis is used to determine param-
eters related to maximum likelihood and confidence, and the data is then used to set
the crossover, fitness, mutation, and evolution rate of the genetic algorithm, which
acts on the parameter output space (Van Nort et al. 2009).

3 Logic-Based Reasoning Driven World Model

In order to better understand the relationship between bottom-up and top-down
mechanisms of creativity, a knowledge-based top-down model complements the
bottom-up stages that were described in the previous two sections. Caira’s
knowledge-based system is described using first-order logic notation [for a
detailed description of Caira’s ontology see (Braasch et al. 2011a, b)]. For example
Caira knows that every musician has an associated time-varying dynamic level in
seven ascending values from tacit to ff. The agent possesses some fundamental
knowledge of music structure recognition based on jazz music practice. It knows
what a solo is and understands that musicians take turns in playing solos, while
being accompanied by the remaining ensemble. The agent also has a set of beliefs.
For example it can be instructed to believe that every soloist should perform
exactly one solo per piece.

One of the key analysis parameters for Caira is the estimation of the tension arc,
which describes the current perceived tension of an improvisation. In this context,
the term ‘arc’ is derived from common practice of gradually increasing the tension
until the climax of a performance part is reached and then gradually decreasing
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tension to end it. While tension often has the shape of an arc over time, it can also
follow other trajectories. It is noteworthy that we are not focusing here on tonal
tension curves that are typically only a few bars long (i.e., demonstrating low
tension whenever the tonal structure is resolved and the tonic appears). Instead, we
are interested in longer structures, describing a parameter relates to Emotional
Force (McAdams et al. 2002) as well.

Using the individual microphone signals, the agent tracks the running loudness
of each musical instrument using the Dynamic Loudness Model of (Chalupper and
Fastl 2002). The Dynamic Loudness Model is based on a fairly complex simu-
lation of the auditory periphery that includes the simulation of auditory filters and
masking effects. Additionally, the psychoacoustic parameters of roughness and
sharpness are calculated according to (Danial and Weber 1997; Zwicker and Fastl
1999). In its current implementation, Caira estimates tension arcs for each musi-
cian from simulated psychophysical parameters. Based on these perceptual
parameters and through its logic capabilities, the system recognizes different
configurations for various patterns. For example it realizes that one of the musi-
cians is performing an accompanied solo, by noticing that the performer is louder
and has a denser texture than the remaining performers. The system can also notice
that the tension arc is reaching a climax when all musicians perform denser
ensemble textures. Caira takes action by either adapting her music performance to
the analysis results, or by presenting a dynamic visual score. Caira can, for
example, suggest that a performer should end his or her solo, because it is
becoming too long or it can encourage another musician to take more initiative. It
can guide endings and help an ensemble to fuse its sounds together.

4 Tension Arc Calculation

In a previous study, we decided to calculate the tension arcs T from a combination
of loudness L and roughness data R (Braasch et al. 2011):

T ¼ L4 þ a � L3;

with an adjusting factor a. In a further study, we also suggested including infor-
mation rate [e.g., as defined by Dubnov (2003), Dubnov et al. (2006)] as an
additional parameter for the tension arc calculation (Braasch et al. 2012). A real-
time capable solution was developed to measure the rate and range of notes per 2-
second time interval. To achieve this, pitch is measured using the YIN algorithm
(de Cheveigné and Kawahara 2002a, b) and converted to MIDI note numbers.
Next, the number of notes is counted within a 2 s interval, ignoring the repetition
of identical notes. The standard deviation of the note sequence is then determined
from the list of MIDI note numbers. Finally, the information rate is determined
from the product of number of notes and standard deviation of MIDI note numbers.
Practically, we measured values between 0 and 100. The tension curve is calcu-
lated using the following equation:
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T ¼ 1
aþ b

a � Lþ b � ð1� qÞ � Rþ q � Ið Þð Þ;

with the Information Rate I, Loudness L, and Roughness R. Note that all param-
eters, L, R, and I are normalized between 0 and 1 and the exponential relationships
between the input parameters and T are also factored into these variables. The
parameter q is the quality factor from the YIN pitch algorithm. A value of one
indicates a very tonal signal with a strong strength of pitch, while a value of zero
indicates a noisy signal without defined pitch. The parameter is used to trade off
roughness and information rate between tonal and noise-like signals. The
parameters a and b are used to adjust the balance of loudness and the other input
parameters for individual instruments. All tension curves are scaled integer values
between zero and seven. Figure 2 shows an example of how a tension curve is
estimated from the instruments’ sound pressure signal.

5 Ensemble State Calculations

A Bayesian model was used to find an a posteriori estimation of the most likely
ensemble state from the obtained tension curves. The ensemble states describe the
instantaneous relationships between the musicians of an ensemble using methods
in jazz ensemble practice. To keep the interaction sufficiently simple, we define six
Ensemble States E for a trio shown in the schematic in Fig. 3:

1. Solo A: Performer A performs a solo part
2. Solo B: Performer B performs a solo part
3. Solo C (Caira): Caira performs a solo part

Fig. 2 Tension arc calculation for a soprano saxophone sample. Top Waveform of the
saxophone, recorded with a closely positioned microphone. Bottom Calculated tension arc curve
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4. Low-Tension Tutti: All ensemble members perform a tutti part with low
tension

5. High-Tension Tutti: All ensemble members perform a tutti part with high
tension

6. End: All musicians come to an end.

The Ensemble States are determined using a logic-based reasoning approach
published in (Braasch et al. 2011a), the practical rules that were derived in this
study are given in Fig. 4. We cannot assume that each of the six states is per-
formed equally long in time, but by using a Bayesian approach we can improve the
Ensemble State estimation by recording how often each state occurs as a per-
centage over the whole training duration. To this purpose, the human performers
use a foot pedal to update the Ensemble State. In addition, we can compare the
states with instrumentally measured parameters. To see the general approach, let
us focus on the analysis of the time-variant tension curves of Musicians A and
B. We define seven discrete levels of Tension T. Curves will be computed for each
participating musician and for Caira, so we have 3 tension curves: (Ta(t), Tb(t),
Tc(t)). We can compute how often each tension level combination is observed for a
given ensemble state:

pðEjTa;bÞ ¼
pðTa;bjEÞpðEÞ

pðTa;bÞ
:

The parameter Ta,b is the observed combined Tension T for Musicians A and
B. The Tension Curve Tc is not part of the analysis, since the intelligent agent
Caira will observe the other two musicians to predict the current Ensemble State
E. We have 49 discrete values for Ta,b (7�7 Tension State combinations). The term
p(Ta,b|E) is the likelihood that the joint Tension Curve Ta,b is observed for a given
Ensemble State E. The term p(E) is the probability that State E occurs indepen-
dently of the tension curve status, and p(Ta,b) is the probability that the joint
Tension Curve Ta,b occurs independently of the ensemble state. Using the Equation
given above we can compute the posterior estimate for each possible Ensemble

Musician B CAIRA

Musician A

Fig. 3 Schematic communication scheme for a free music trio performance. Each musician has
to establish individual communication channels to all other musicians and also observe his/
herself. Dashed lines symbolize the agent’s machine listening channels
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State E1–E7 for any Tension Curve pair Ta,b.. An Ensemble State curve will be
discussed further below (see also Fig. 5).

6 The l�cosm Trio

Since my key interest became to study our intelligent music system Caira in the
context of ensemble work, I needed to find an ensemble work with. Our general
ensemble to study the Caira project is a trio named Triple Point consisting of Pauline
Oliveros (V-Accordion, an physical modeling synthesizer with an accordion-type
user interface), Doug Van Nort (Granular-feedback Expanded Instrument System,
GREIS, a laptop-based system to generate electronic textural and gestural sounds),
and myself on the soprano saxophone. While Triple Point turned our to be an
effective way to test the two systems Caira and FILTER, I was keen to possess an
alternative, flexible tool, so that I could test the ensemble capabilities of Caira
whenever I wanted, without having to gather other human musicians for a test.

In Western music tradition, the most common way to simulate an ensemble is to
use a keyboard instrument, for example the piano, to simulate one instrument with
the right hand and another with the left. However, since Caira is working with
actual sound textures and her capabilities go beyond symbolic, note-based music
representation, a more flexible musical instrument was needed to complete the
l�cosm trio. As a solution, I started to use an Arturia Moog Modular V Synthesizer,
a piece of software that simulates the Moog Synthesizer. The instrument is flexible
in its sound generation, can produce sound textures as well as traditional note-based
material and has a recognizable sound characteristic. The latter is important for

Ensemble States Musician A Musician B Caira C

1 Solo A TA+1> TB TB–1< TA TC–1< TA * 

2 Solo B TA –1< TB TB +1> TA TC–1< TB*

3 Solo C 0< TA <5 0< TB <5 Decision needed

4 Low Tension Tutti 0< TA <5 0< TB <5 Decision needed

5 High Tension Tutti TA >4 TB >4 TC>4*

6 Ending TA ==0 TB ==0 TC=0*

Fig. 4 Ensemble State calculations based on logic-based reasoning. The variables TA, TB, and TC

represent the tension curves of Musicians A, B, and Caira. The asterisks denote that Caira does
not have to follow the suggestions by the other two musicians but can also respond by using a
different tension curve level
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archival purposes, so the listener can distinguish between the three musical streams
produced by Caira, the synthesizer, and the saxophone.

A foot-controller was the user interface, so I could operate the synthesizer
simultaneously with my saxophone. The foot controller consists of a MIDI foot
controller (Behringer, FCB 1010), which can be used to play notes as well as
control MIDI data and has two pedals for continuous data control. In addition, a
trackball interface (Logitech T-BC21) was also operated by foot, which enabled
me to repatch and control every aspect of the synthesizer in real time. The
trackball buttons were handled with the other, right foot using a modified foot-
switch from a dictation machine (Grundig, 526A foot control) that was equipped
with electronics from a USB mouse.

My new experimental trio now consists of soprano saxophone, the Arturia
Moog Synthesizer, and the agent Caira, who currently performs based on V-
Accordion recordings by Pauline Oliveros. Since I was not interested in using the
l�cosm approach as a substitute for our Triple Point work, but rather to have this
trio for additional tests, the tradeoff between ensemble realism and flexibility is
acceptable.

Fig. 5 Ensemble state example for a l�cosm trio session. Top graph Tension curve for the
saxophone (with variables a = 1.2 and b = 0.6); 2nd graph from Top tension curve for the moog
synthesizer (a = 1.2, b = 0.4); 3rd graph from top caira’s short term ensemble state estimations;
bottom graph: Caira’s final (long-term) ensemble state estimations (solid think black line) versus
human (my own) ensemble state estimations (solid thick gray line)
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7 Examining the Self-Exploratory Approach

One questions the legitimacy of self-evaluating an intelligent music improvising
agent. While the benefit of an introspective approach is clearly that one can
prototype and evaluate the system within a very short cycle, most agreed-on
psychophysical test paradigms build on testing a larger number of human subjects.
The reasons for this are manifold. First, we typically want to obtain data that is
valid across a large population. We may, for example, is the measurement and
standardization of the absolute threshold of hearing curves, where we want to
know what the average threshold of hearing curves are so that we may use these
data as the reference for hearing screening tests. For the current standard for
normal equal-loudness-level contours [ISO 226:2003, see also Suzuki et al.
(2003)], over a hundred normal-hearing subjects were tested in twelve studies.
In contrast, Experimental Music is not a mainstream culture, where one would seek
for data across a large population. The genre is practiced by a very small group of
people, who believe their music contrasts with popular culture. Instead of
understanding the ability of a large portion of the population, we are more
interested in the general possibility of a particular ability, even if it can only be
demonstrated through one subject or a handful of subjects.

The second problem is to avoid skewed data. In order to collect unbiased data,
we often prefer to use a double-blind test paradigm, for example by setting up a
computer-controlled psychophysical experiment. The advantage of this approach
is that it can be suitable for introspective research, where the experimenter is
serving as his or her own test subject. However for an introspective test paradigm,
this technique only works on a subset of research questions that do not affect
preference or background knowledge. For example, if I am testing my own system,
I am not in a neutral position to provide an unbiased preference rating. Neither will
I be able to carry out a Turing test, since I have a priori knowledge that I will be
performing music with an intelligent machine and not a human person. I should
note that I generally question the importance of the Turing Test in this context,
because I am primarily interested in communicating with an intelligent being who
inspires me, and puts me in a creative environment. I care less about whether this
inspiration is human and more about finding a source that inspires me to do things
that I have not thought of doing before. A non-human performance partner might
even be beneficial because in Experimental Music the goal is to stretch boundaries.

To my opinion, the demonstration of intelligent communication is the key for a
successful agent implementation. In the subsequent paragraphs I will lay out how
communication with an agent can be examined using a test paradigm that is open
to introspective methods. In the Caira project, Caira’s ability to communicate can
be tested by determining the degree of agreement of the identified ensemble states
between Caira and the human performer(s) over time. In the trio scenario, we will
have three ensemble state curves over time, one for each performer. In the
l�cosm project, of course, we have only two curves one for Caira and the other one
for myself, because I perform two of the ensemble roles, saxophone and
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synthesizer, simultaneously. Now we can look at events and see if they match in
general. We can also determine which of the states are more often confused with
each other and investigate the temporal mismatch between the agent and human
performers when entering a new state. Figure 6 shows an example of a session that
I carried out with Caira. The two top graphs show the estimated tensions curves for
this session for the saxophone and the Moog Synthesizer. Based on these tension
curves, Caira estimated the short-term ensemble states (3rd graph from top) as well
as the final (long-term) ensemble states (bottom graph, solid thin black line). The
bottom graph also shows my own ensemble state estimates for comparison pur-
poses. I should emphasize that it is crucial that both participants do not know of
each other’s scores. In most cases, the two ensemble states (Caira’s and my own)
are in agreement with a few noticeable exceptions. At approximately 2:40 min,
Caira believes the session has ended, because both observed instruments remain
silent for a brief period, while I do not intend to terminate the piece at this point. In
the time segment between 5 and 7 minutes, Caira fluctuates between the Solo B
and the High-Tension Tutti states, where my own judgment indicates a solid High-
Tension Tutti block. Please also note that the judgment of Caira is typically trailing
my own, since the agent requires time to analyze my intentions.

It would be fair to argue that demonstrating successful communication does not
guarantee an excellent music performance. However, communication is the key for
a successful performance, and lack of communication is usually a good indicator
of failed ensemble work. It is also important to keep in mind that we need to start
somewhere with the goal in mind to develop adequate methods for the quality
judgment of an experimental music session or any other type of music. Further, it
should be pointed out that other, more traditional research fields also accept
indirect measures. In the field of sound source segregation, for example, we show

Fig. 6 Left Photo Technical set-up of the l�cosm trio. The left computer hosts the arturia moog
synthesizer, the right computer the caira agent. Right Photo Close-up of the foot controller in
operation
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the improvement of removing an unwanted sound source in terms of the signal-to-
noise ratio (SNR), which does not account of how the desired signal is distorted.
For example, if speech is the desired signal, it can be harder to understand even
though the SNR improvement predicts a positive outcome, because the masking-
signal removal process introduces distortions that degrade important speech cues
[e.g., compare Roman et al. (2006)]. The reason why we often do not measure
perceptual improvement directly is that we do not have auditory models in place to
execute an automated assessment in lieu of a psychophysical experiment.

Interestingly, the small data challenge that we face using an introspective
approach is a familiar problem in musicology, where we often tend to understand
historical developments through the statements of a few witnesses from that time.
While, for the most popular composers, for example, Mozart, we have enough
records from his contemporaries to understand how his work was received during
his lifetime, in the case of less known composers the margin of error is much larger
because we can only draw from the comments from a very few time witnesses. I
encountered this problem during my work on Georg Joseph Vogler (Braasch
2004). The approach is valid, however, because it is still the best available method
to understand past developments given our lack of a time machine, which would
enable us to interview a larger sample population about their preference of a given
musical event or composer’s work. While musicologists are trained as neutral
observers who assess the situation without interfering with it, this paradigm has
often not proven useful in ethnomusicological research. Without interference, one
could write a very convincing theory, but methods to test if the theory is correct
are very limited. The need for better techniques has then lead to establishing the
field of experimental ethnomusicology. Speaking in practical terms, the traditional
ethnomusicologist would visit a region, listen and record the music, interviewing
native people who are familiar with the music tradition under investigation. Based
on the recorded data the expert then develops a model and publishes it. In contrast,
the experimental ethnomusicologist takes his or her theory back to the studied
community to test it. An example of the latter approach is the work of Arom
(Arom 1967; Arom et al. 1997, 2007). Arom studied the music of a local African
tribe. After he had developed a model of their music practice, he played along with
the tribal musicians on his French horn. Arom updated and refined his model using
an iterative process, based on the local musicians’ feedback.

The evaluation process for the l�cosm project can be seen as an extension of the
experimental ethnomusicology approach. Here, the agent Caira takes the role of
the tribe that is being investigated, and is probed by the experimenter to examine
her response within a given theory. A major difference from the experimental
ethnomusicology case is that we know the underlying theory–because we devel-
oped it. In the Caira project, we are merely testing whether Caira responds
according to the developed theory. In the future we hope the agent evolves its own
theories through concept building; then our approach will close the gap to
experimental ethnomusicology.

Finally, I would also like to discuss the experimental character of the music
used in this research. In experimental music we try to stretch the boundaries of
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what is currently possible and acceptable in music. So, do I expect that my
documented communication with Caira is generalizable to other human musi-
cians? Probably not right away, but by demonstrating that the agent is able to
communicate using a specific protocol, other musicians could learn how to per-
form with the music agent by learning the rules. This is in line with traditional
forms of music where musicians must also learn the specific conventions of the
genre to be able to play along. Further, our object of observation, the human mind,
is a time-variant system unlike the physical world, where laws are assumed to be
time-invariant. An example is the switch in general judgment of a sixth being a
dissonant interval in the Middle Ages [e.g., Gustav Jacobsthal 1873, c. 642], while
it is being considered as a consonant interval today. In the culture of AI, frequently
the question comes up to whether a demo is staged or not. While I argue that this is
not the case for the Caira project, I definitely had to adjust my performance so my
sonic gestures were understandable by the agent. It is normal practice in music,
however, that one should be able to clearly articulate musical form and adjust
one’s style to be recognizable to the other musicians, whether human or synthetic
characters. A classic example is the practice of ending patterns, so the ensemble
can easily pick up cues by the soloist to perform a rehearsed ending ad hoc. If done
well, it will sound freely improvised, although a lot of work has gone into making
this happen.

In closing, I would like to encourage the reader to visit our Caira project web-
page, where a selection of recordings with Caira can be found demonstrating the
agent’s current state of musicianship: http://www.jonasbraasch.com/Caira.html.

Acknowledgments This material is based upon work supported by the National Science
Foundation under Grant No. 1002851. The real-time implementation of the Caira system was
written in Max/MSP utilizing various custom externals and abstractions as well as the FTM,
Gabor and MnM packages from IRCAM, externals from CNMAT and Tristan Jehan’s toolboxes
(also using their loudness and roughness algorithms for a single-machine, stand-alone version of
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Acoustical Measurements
on Experimental Violins
in the Hanneforth Collection

Robert Mores

1 Some Basics of Violin Acoustics

There has been extended research on violin acoustics over the last century com-
prising several thousands of individual studies on string motion, specific compo-
nents, body acoustics and radiation. The interested reader might begin with a
comprehensive overview (Fletcher and Rossing 1998; Rossing 2010) or with
Hutchins’ fine selection of research papers (1997) before going into depth studies
of violin physics (Cremer 1981). Therefore, this section will not add to existing
knowledge but rather provide a tutorial for the first time reader. From the broad
knowledge those basic principles are outlined, which luthiers are likely to be fully
aware of, and, at the same time, which are key to understanding constructive
change and its impact to sound.

For the purpose of amplifying string motion and of radiating sound, most
stringed instruments employ resonating air, vibrating plates, and a body.

1.1 Vibrating Plates

The frequencies of vibration modes on a plate are strongly destined by length L,
width W and strength (height) h of the plate. In the case of using wood for the
plate, the two direction-dependant sound velocities cl and cw are essential for the
potential modes (Fletcher and Rossing 1997, p. 89):

fmn ¼ 0:453 � h � cl �
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First of all there are modes, or standing waves, of order m possible across the
length of the plate or of order n possible across the width of the plate. The
respective frequencies, however, are always constituted by both sound velocities.
The mutual interdependence can be explained by material strain properties:
stretching or compressing the material into one direction will cause stretching or
compression into other directions, expressed by six Poisson modules (General
Technical Report 1999) that co-determine sound velocity, together with Young’s
modulus.

Obviously, the plate strength h is a forceful parameter. Variations of a few
tenths of a millimetre on a plate of typically a few millimetres will change fre-
quencies of all modes by some ten percent. Disconcertingly, the strength of top
plates usually varies strongly, not only from violin to violin, but sometimes even in
a range of 2–5 mm for the same violin top plate. Therefore, the given analytical
approach will fail to predict mode frequencies.

Among the prominent modes and important to luthiers are the (2,0)- and (0,2)-
modes1 and their superpositions, see Fig. 1. The superpositions are called ring
mode and X-mode and are only possible, if the frequencies of the underlying (2,0)-
and (0,2)-modes are close to each other. In plates of homogenous material,
identical frequencies would be given for a square plate. In wooden plates, the
direction-dependant sound velocities require a rectangular shape of the plate to
allow frequencies of different modes to approach each other. For Sitka spruce, the
material properties suggest a length–width-ratio of L/W = 1.9. This ratio can be
considered as a determining factor for the evolution of string instruments. Violin
makers routinely listen to the ring mode and X-mode while they hand craft a violin
top or back. They usually hold the plate at nodal lines, indicated by the holding
point H in Fig. 1.

Superposition of modes does not mean that modes would coexist independently
in one and the same system and can simply be added. Vibrations are rather

+ +     - +

+       - +

- +        -

+
-
+

+  
-

-
+                +

-

(0,0) (0,2) (0,2) + (2,0)

(0,2) - (2,0)(2,0)(1,2)

H

H

Fig. 1 Modes in hinged or free plates [mode (0,0) only in hinged plates], left the abstract
notation for prominent modes including the superposition ring mode and X-mode, right Chladni
patterns of superpositioned modes established on a 3 mm thick plate of Sitka spruce with a
length-width-ratio of about 1.9

1 Notation: a (x,y)-mode has x nodes across direction x and y nodes across direction y.

272 R. Mores



mutually coupled within a physical system. When two resonating systems with
frequencies fa and fb are coupled to each other, the respective resonance curves2

will not simply be added, eventually leading to an excessive increase. Vibrations
will rather interact mutually and the resonance frequencies are likely to even shift.
The coupled system will resonate on frequencies f1 and f2, see Fig. 2. These
frequencies are derived from solving

f 2 � f 2
a

� �
� f 2 � f 2

b

� �
¼ f 4 � k2 ð2Þ

for systems coupled by factor k. Such coupling is given in a plate, and the Poisson
modules qualitatively translate to k.

For the practical example of Fig. 1, the spruce plate (L = 39.4 cm,
W = 21 cm, h = 3 mm) developed the X-mode at f2 = 117 Hz, the ring mode at
f1 = 128 Hz and the (2,0)-mode was measured at fb = 120 Hz. The effect of these
coupled resonance frequencies is also reported for violin tops by Hutchins (1981)
and Molin et al. (1988), referencing to mode 2 and mode 5 for the X-mode and the
ring mode, respectively. These modes are reported to be favourable in violin
acoustics and luthiers usually report a beautiful ringing of the ‘‘tap-tone’’ for well
tuned plates. However, frequencies of these modes are not as adjacent for violin
plates as they are in the free plate example above. Frequencies are even recom-
mended to be spaced by one octave (Hutchins 1994) to achieve a full and rich
sound. Jansson et al. (1988) reports the crafting process from a plate to a violin top
and its accompanying tuning steps. In conclusion, plate tuning is an essential skill
for the successful violin maker.

One more aspect is relevant to be prepared for the investigation of Hanneforth’s
collection: plate resonance frequencies are shifted upwards, when plates are
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Fig. 2 When two systems
with resonance frequencies fa
and fb are coupled to each
other, the resulting resonance
frequencies f1 and f2 will
deviate depending on how
strongly the systems are
coupled to each other,
expressed by factor k

2 The resonance curve describes spectral properties of the resonator: position on a frequency
scale, and width of the curve as a reciprocal quality measure.
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bended. Bending is usually not practiced in violin making, but is quite common for
guitar backs. Jahnel (1981) reports an increased intensity for frequencies above
500 Hz in guitars.

1.2 Vibrating Body

For the completed violin body, there are finally several hundred modes that con-
stitute the so-called resonance profile. More than 30 modes below 1,300 Hz can be
identified by their nature and assigned to different classes (Marshall, 1985). For the
purpose of this investigation we roughly consider (1) coupling between the top and
the back plate, (2) two-dimensional body modes, and (3) one-dimensional body
modes.

Top and back of the violin are brought together with their individual set of
modes. Clearly, the two plates are coupled to each other by the ribs and the trapped
air. In the same way, the frequencies of the (2,0)- and (0,2)-mode are suggested to
be brought together to form ringing superpositions for the unattached plate, the
frequencies of these superpositions are suggested to be brought together for the
attached top and back plates to achieve a full and rich sound in a completed
instrument (Hutchins 1994). Again, the tuning process is of importance, not only
for individual components but also for mutual coupling between components.

The rigid body as such with its given height can be considered as a plate as
well, supporting two-dimensional modes. The waist enhances mobility and facil-
itates torsional modes. Gough (2010) has investigated the principles of what he
calls the strongly radiating ‘‘signature’’ modes in the range of 400–550 Hz.
Essential to these modes are the breathing and the bending of the violin corpus, see
Fig. 3 on the left side. Again, as the frequencies of these two modes approach each
other there will be superpositions following the coupling paradigm. The resulting
pair of body modes is often referred to as B1 modes, see Fig. 3 on the right side.
And the frequency of these superposition modes ‘‘will never meet’’ as Gough

Fig. 3 Superpositions of
breathing mode and bending
mode in a violin body. Left
top breathing added to
bending; left bottom
breathing added to bending of
opposite phase; right side
resulting body modes (two
view angles on the body)
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emphasizes this behaviour as a physicist, confirming the argument above. This
example demonstrates that coincidence of mode frequencies and the combination
of modes results in stronger vibration since two vibrations add together for a larger
displacement. The nature of mode coupling, however, will not transform two
peaks into one stronger peak, but into two stronger peaks.

While the breathing mode is unlikely to vary with rib strength, the bending
mode is very likely to depend on body stiffness contributed by rib strength.
Therefore, without changing the plates, the tuning of frequencies can be achieved
by the rib strength. Depending on the tuning, either superposition mode will be of
slightly higher frequency (often referred to as B1+, equivalent to f1 in Fig. 2), and
the other superposition mode will be of slightly lower frequency (often referred to
as B1-, equivalent to f2 in Fig. 2). Usually, these two modes are likely to be
positioned somewhat above the plate modes.

Yet another prominent body mode is of lower frequency but not as strongly
radiating as the B1 modes. This body mode is of type (1,2), see Fig. 1, and is often
denoted as CBR mode. Gough’s models support mutual interaction not only
between breathing and bending of the body, but likewise between CRB and
bending modes.

An example of a one-dimensional body mode is the bending of the entire
instrument, say the violin corpus on one side and the neck with pegbox and scroll
on the other side vibrating against each other. There are usually different modes
due to the different directions of displacement. These modes are usually located at
about 200 Hz in terms of frequency (Marshall 1985, p. 703), usually denoted as the
first body mode C1. Another noticeable mode results from bending of the fing-
erboard against the body, with the neck serving as spring. Many of these modes are
visualized by means of an early finite element model of the violin (Knott 1987).

1.3 Resonating Air

Vibration of the air trapped in the violin body is usually referred to as the
Helmholtz mode A0 and cavity modes of higher order, A1, A2, and so on. The
frequency of A0 is defined by the volume V of the cavity, the area A of the f-holes
for neckless cavities, the speed of sound c, (Bissinger 1992a, Eq. 2)3

f0 ¼
c

2 � p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

hþ a �
ffiffiffi
A
p� �

� V

s
ð3Þ

3 For the neckless cavity, the length L of the neck corresponds to the strength of the plate.
Therefore, strength h is used in this equation. Equation 3 already implies an end correction term
and holds for circular apertures. For f-holes the frequency can increase by as much as 60 %.
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where a is determined to a = 0.959. Frequency f0 is located between 260 and
290 Hz for most of the violins. A0 is of particular interest, since it amplifies tones
around C4/C#4 and composition relies on the existence of such strong and full tone
on a violin in terms of dramaturgy. Another important aspect of Helmholtz res-
onance is its contribution to a full tone. Even when notes of a pitch higher than f0
are played, the bow-string-friction will always contain enough noise to stimulate
A0, effectively enhancing tone colour across the entire scale.

Investigations reveal little impact of the shape of the f-holes to cavity fre-
quencies. The impact of variations of f-hole positions is negligible for A0 and
lower for A1 than for modes A2, A4 and A5 (Bissinger 1992a, p. 15). Frequencies
for A1, A2, A4 and A5 are roughly located at 500, 1,100, 1,300 and 1,600 Hz,
respectively, and vary only little with variations of cavity height (Bissinger 1992b,
p. 20).

1.4 Combinations of Modes

Apart from the mode superposition already outlined for the plate and for the body
modes, there are several mode combinations that are relevant for sound, projec-
tion, and playability.

Helmholtz mode A0 and body mode B0—Hutchins denotes the bending of the
whole instrument to mode B0, and reports the frequency of B0 to be sometimes
higher, sometimes lower than the frequency f0 of A0, but close to each other in
most instruments (1985). She also reports several hundred successful adjustments
of B0 frequency by altering stiffness of fingerboard and mass of chinrest and pegs.
Coincidence of frequencies will again result in what has led to the ‘‘beautiful
ringing’’ of plates. Here, Helmholtz resonance is enhanced by a tuning instance
most violin makers are aware of.

Cavity mode A1 and body mode B1—The spacing between the frequency of the
cavity mode A1 and the frequency of the body mode B1 (that is usually split into
two peaks, see above) relates to what musicians and owners report in terms of tone
quality and playing qualities: a spacing of over 100 Hz results in a harsh sound and
the violin is practically unplayable, a spacing of 70–80 Hz delivers a bright edgy
tone to skilled soloists, 50–70 Hz bring about a fine tone and projection for soloists
and concertmasters, 40–50 Hz result in a good tone and projection, 20–30 Hz
gentle tone for chamber music and easy playing, below 20 Hz a gentle sound with
little power (Hutchins and Benade 1997, p. 663).

Other cavity and body modes are also present with the violin. There are more
pairs of coinciding modes that potentially improve sound quality when properly
tuned. Some of these even imply tuning of the tailpiece (Hutchins and Voskuil
1993; Zopf 2000). These other options seem to be less familiar among luthiers.
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1.5 Sound Post and Bridge

Sound post and bridge are very relevant to sound. The sound post’s main task is to
introduce asymmetric impedances at the bridge feet, but it has also a secondary
effect of strongly enhancing high frequency components. This can be explained by
the small (few mm) space between the node introduced by the sound post and the
exiting bridge. Even very tiny alterations will strongly influence the high fre-
quency components embodied in the timbre. Such tiny alterations will—at the
same time—influence the general plate modes only marginally (Saldner et al.
1996) which can be explained by the fact that the sound post position is located on
modal nodes for most of the plate modes. This is well visible in the holographic
interferograms of Jansson et al. (1994). In conclusion, the sound post will change
only little for plate, body and cavity modes below 1,500 Hz. The experimental
constructions of the violins in the Hanneforth collection, however, will change a
lot of what has been outlined so far in terms of plate, body, and cavity.

Similarly, the bridge has a main task—transforming string motion to rocking as
well as to up-down movements, depending on frequency (Reinecke 1973)—but
also secondary tasks of filtering high frequency noise (above 6 kHz) and directly
radiating sound (in the range of several kHz). Sound adjustments on bridges will
likewise bring no change to the fundamental plate and body motion. Therefore, the
bridge as well is not of interest in this investigation, the experimental violins do
not focus on these two components.

2 Measurements and Violin References

2.1 Measurements

Three types of measurement are used in this investigation: (1) input admittance at
the bridge, (2) radiated sound in two dimensions, (3) sample of radiated sound at
one point under reverberant condition.

For input admittance measurements, the impulse response is measured by
means of an accelerometer sensor4 attached to the bridge, while the impulse is
generated by an impulse hammer.5 Force direction and direction of displacement
measurement coincide with the plane of the bridge and strictly follow the direction
of rocking motion. The impulse introduced by the hammer is measured as well, so
that from the impulse and its response6 the transfer function can be derived in the

4 Kistler sensor 8778A500.
5 DYTRAN impulse hammer 5800SL, 2 g.
6 Measurements are normalized to each other and calibrated by use of a reference mass.
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frequency domain. This transfer function represents the mechanical admittance7 Y,
or, in other words the mobility of the bridge. Peaks in admittance plots represent
high mobility of the investigated structure, which not always directly translates to
sound radiation. This is a familiar measurement method widely used for structure
borne sound analysis and in engineering.

The two dimensional measurement of radiated sound is done according to a set-
up of Schleske (2002) on the transversal plane around the violin, at the height of
the bridge and at a resolution of 10�. Room characteristics are averaged across
directions by repeating all measurements while the entire setup including violin
and exciter is rotated stepwise within the room. The result is a direction-dependant
sound level for that plane. Illustrations in this chapter use only the total sound level
averaged across all directions.

For measuring sound radiated from instruments of the Hanneforth collection,
only a single microphone was used, perpendicular to the violin top, above the
bridge at a 50 cm distance, in a reverberant room (T60 & 2 s). The exceptional
Stroh violin was recorded with a microphone in front of the horn.

2.2 A Fine Reference: The 1712 ‘‘Schreiber’’ Stradivari

Figure 4 shows the bridge mobility as well as the averaged sound level for the
1712 ‘‘Schreiber’’ Stradivari.

The bridge admittance Y illustrates all the principles outlined so far8: (1) the
bending of the violin, denoted C1 at 200 Hz, (2) the Helmholtz mode A0 at
265 Hz, (3) the range of signature modes CBR and B1 at 400–530 Hz with (4) the
cavity mode A1 in between, (5) a spacing of some 50 Hz between B1- and A1, (6)
plate modes from 700 to 2,000 Hz (Moral and Jansson 1982, p. 332).

Observations on comparing structural admittance in relation to radiated sound
are: (1) the mobility does not translate to radiation one by one, which is well
known, (2) the above mentioned coincidence of A0 and B0 modes is observable in
form of a double peak in the radiation plot, but not in the mobility plot, (3) CBR
does not radiate as prominent as it appears in the mobility plot (Rossing 2010,
p. 222).

The ‘‘Schreiber’’ Stradivari is considered as an exceptionally good example of a
soloist violin, and it might appear wise to use its mobility plot as reference
together with the outlined principles above as supported by research:

Principle (a)—A0 must be in a certain frequency range to meet the musicians’
expectations in the context of existing compositions. A0 must also be sufficiently
strong, violin makers usually strive for high levels here. Bissinger (2008) would
even distinguish among poor and good instruments along the A0 level.

7 Mechanical admittance Y is the mechanical impedance Z inversed.
8 There exist several styles of denoting modes, refer to Rossing for an overview (2010, p. 222).
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Principle (b)—The range of body modes/signature modes appears to be dif-
ferent from violin to violin. However, in this fine instrument the target of a wide
range of resonating frequencies is well identifiable.

Principle (c)—The sound level across the entire spectrum is balanced in a way
as to contain both body and brilliance. From their field studies on valued instru-
ments Meinel (1937 and 1939) and Dünnwald (1982, 1984 and 1991) identified
desirable proportions of energy in defined bands. The Dünnwald findings suggest
high levels in a band ‘‘fullness of sound’’ from 190 to 650 Hz as well as in a band
‘‘brilliance and clarity’’ from 1,300 to 4,200 Hz and lower levels in the band in
between these two bands and above 4,200 Hz. The Stradivari represents this and
its mobility plot might serve as reference.

Principle (d)—Most of the discussions on mobility or resonance focus on
prominent peaks, promising an appreciated sound level. There is little said about
spectral zeros, or dips. Most of the violins, however, even student level instru-
ments reveal a strong dip in the area of 700–800 Hz. Such a dip is reported to be
desirable and seems to be of importance for perceiving a good quality tone.9 This
emphasizes but also particularizes issue (c).

This set of principles would certainly be extended by issues of brilliance and
timbre and some more when high quality instruments are to be evaluated. For the
experimental violins discussed here this set will basically cover the issues.
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Fig. 4 Bridge admittance Y and sound pressure level SPL for the 1712 ‘‘Schreiber’’ Stradivari

9 Personal communication with luthier Martin Schleske.
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2.3 A Moderate Reference: A 1900 Markneukirchen Student
Level Violin

The violin investigated is an ordinary student level violin built around 1900 in
Markneukirchen, and it is not part of the collection. It is a fine piece of work-
manship, very easy to play, nicely merging in chamber music, but it has practically
no projection and a gentle rather than a full sound.

The reason for this choice is to relate ordinary violin making and the too perfect
Stradivari reference so as to understand the scope of changes that ‘‘making copies’’
would bring about, without the idea of undertaking experiments. A scale from
moderate to perfect seems to be a reasonable starting point to further relate and
adequately discuss the changes experimental violins bring about.

Figure 5 illustrates the bridge mobility of both violins, the fine and the mod-
erate reference. At a first glance the general character seems to match. A closer
look at the outlined principles might explain the perceived sound while playing the
moderate instrument: (a) The Helmholtz resonance A0 is perfectly located,
something that is practically always given, even with the cheapest factory violins.
However, the level of A0 is almost 6 dB lower than that of the Stradivari. (b) The
signature modes are located as expected and have an acceptable level. However,
the modes are spaced closely to each other and the tuning result of the violin maker
delivers a small band for the signature modes, about half the width of the fine
reference. This fact together with the poor A0 mode explains the thin sound. And
the narrow spacing also explains the easy playing. (c) The moderate violin is short
of some 5 dB on average in the ‘‘brilliance and clarity’’ band when compared to
the fine reference. However, the violin is still balanced, as the ‘‘fullness of sound’’
band is weak as well. (d) The characteristic dip is given, however, at the somewhat
low frequency of 620 Hz.
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Fig. 5 Bridge admittance Y of the Markneukirchen student level violin (thin, black) in relation to
the 1712 ‘‘Schreiber’’ Stradivari violin (thick, gray)
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In conclusion, the structural sound analysis explains quite well what is per-
ceived by a musician and therefore, translates to the value of an instrument.

3 Results for the Experimental Violins

3.1 1930 Bechstein/Moor Violin with Recessed Top Seam

Heinrich Bechstein (1865-?) and Emmanuel Moor (1863–1931) built this violin
(serial number 30) about 1930 in Germany (MKG inventory number 2012.56). The
choice of wood follows conventional preference for spruce and maple and the
general proportions of the violin are conventional, but the construction of the top
differs. The top seam is recessed effectively forming a fold in the middle of the top.
As a consequence, the top is straight lengthwise and has a strong arch in lateral
direction, see Fig. 6. Bechstein and Moor expected to achieve more tension in the
back with this construction and to increase loudness. They patented the con-
struction (P 517226, 1931) and also mandolins and guitars have been built fol-
lowing this principle.

It is not obvious how this construction would increase tension in the back, but it
is clear the construction adds stiffness to the plate and improves stability. The deep
fold in the middle can be compared with an increased plate strength h, but only in
effect for one direction. Therefore, following Eq. 1, the (0,2)-mode will be
strongly increased in frequency while the (2,0)-mode might remain unaffected.
The frequencies of the two modes will never coincide to form the desired ring
mode and X-mode.

Figure 7 again shows the bridge mobility referenced against the Stradivari
violin. (a) Helmholtz mode A0 is strongly diminished, by more than 8 dB. (b) The
signature modes are still in place but strongly diminished. This is to be expected,
because the back plate still contributes to the breathing mode of the body even
though the top will not help much. And the bending component in the B1 pair of
modes is not primarily defined by the plane, but by the rib strength that contributes

Fig. 6 1930 Bechstein/Moor violin with recessed top seam
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to body rigidness. Conventional rib strength will deliver a useful bending mode
frequency, and the range of signature modes is fine here. However, the level is
some 9 dB below the reference. (c) The ‘‘brilliance’’ band is 5–10 dB too low. (d)
The dip, if any, is at the very low frequency of 600 Hz.

Another observation is that plate modes generally located at 800–1,000 Hz are
now shifted towards 1,000–1,500 Hz, fully in agreement with Eq. 1 and the
analogy between stiffness and plate strength. These plate modes unfortunately
contribute to the level in a frequency band that should normally stay behind the
‘‘fullness’’ and the ‘‘brilliance’’ bands, but here it is the strongest band. This fact
additionally opposes principle (c).

In conclusion, the violin will deliver neither a desirable tone nor an adequate
projection. Categorical listening will conclude on a violin without any doubt, and
even the properties of wood and other typical violin attributes will be clearly
audible. However, the sound quality must be rated poor from a conservative point
of view.

3.2 1820 Chanot Violin with Strings Knot to a Bridge on Top

François Chanot (1788–1825) designed this violin (MKG inventory number
2012.47), which was built around 1820 in Paris, see Fig. 8. From his engineering
perspective the corner blocks would hamper mobility and therefore he shaped the
violins like guitars. A patent for this was granted in 1818 and the violin has been
preferred against a Stradivarius violin in blind tests in those days. The tonal quality
is reported to have been diminished before long. This can be explained by the
unusually high tension at the top that comes from mounting the strings to a
terminating bridge at the top causing strain and deformation.
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Fig. 7 Bridge admittance Y of the Bechstein/Moor violin (thin, black) in relation to the 1712
‘‘Schreiber’’ Stradivari violin (thick, gray)

282 R. Mores



Figure 9 illustrates the bridge mobility of the Chanot violin referenced against
the Stradivari. Again, the general structure is similar due to common measures
such as size or air volume. In terms of the outlined principles, there is one surprise:
(a) A0 is almost 4 dB stronger than in the Stradivari. This is surprising, because it
is known from contemporary violin makers that it is very hard to ever come close
to the old masterpieces. Outperforming the old masterpieces would only be pos-
sible with an increase of tension along the instrument above a limit of long-term
stability. (b) Signature modes are fine in terms of frequency, level and spread. (c)
The ‘‘brilliance’’ band is some 5–10 dB weaker than the reference, slightly out of
balance when related to the level of the signature modes and the strong A0. (d) The
dip is located at the rather low frequency of 560 Hz.

However, there is another problem and that is why this violin asks for a more
detailed discussion than other experimental violins. Attaching the strings to the top
rather than to the end block brings about some change to plate and body vibrations.
A vibrating string will pull at its ends twice for every turn, or, period. Therefore,
the top will be excited via the terminating bridge, where the string is attached to.
This will have several effects. Helmholtz resonance is likely to be stronger as the

Fig. 8 1820 Chanot violin with strings knot to a bridge on top
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Fig. 9 Bridge admittance Y of the 1820 Chanot violin (thin, black) in relation to the 1712
‘‘Schreiber’’ Stradivari violin (thick, gray)
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string pulls at a most effective point for a breathing mode as confirmed by mea-
surement. Given the two excitation points—conventional bridge and terminating
bridge—and given the fixed distance between these two points, some plate modes
are expected to be strongly amplified while others suffer from cancellation,
depending on the phase.10 Such zeros can be seen in the plot at 1,330 and
1,500 Hz. Similar to the situation of two loudspeakers in a room playing a
broadband mono sound, the two excitation points here will generate some kind of
periodical spectrum. For instance, the peaks at 404, 812, 1,248, and 1,620 Hz
follow a rather strict integer arithmetical series with multiples of 405 Hz. Likewise
the series of peaks at 504, 1,008, 1,524, and 2,004 Hz reveal regularity. It is not
primarily the plate or the body structure that defines the mobility but it is the
structure of the generating process that dominates the system while employing two
excitation points.

In this context, the superelevations at 816 and at 1,376 Hz can be explained.
Here the twin excitation principle matches plate modes. Imagine the plate longi-
tudinally subdivided into three segments with two nodes in between. Contraction
of a string—when a string’s displacement is maximum—will push the bridge
and therefore the middle segment down and it will pull the terminating bridge and
therefore the bottom segment up. This works together for perfect amplification and
is supported by Robert’s FEM simulations (1986, page 10). Among 14 simulated
modes of a hinged violin top there are just these two modes with two longitudinal
nodes: a (1,2)-mode at 852 Hz and the (2,2)-mode at 1,399 Hz, perfectly con-
firming the observation.

And yet another observation is relevant to perceived sound quality. While some
frequencies are favoured due to the excitation principle, many others are sys-
tematically suppressed. The mobility plot of the Chanot reveals significantly fewer
peaks at all than the plot of other violins. This brings about some kind of singu-
larity that is even reinforced by the periodicity of peaks. Here the ‘‘sizzle of a
jagged frequency response’’ of a violin is missing, as Curtin would say (Rossing
2010, p. 215).

3.3 1836 Howell Violin with Bottle-Shaped Body

Thomas Howell, trading with musical instruments in Bristol, was concerned about
the comfort of musicians when playing strings. The construction of the violin
which was built in 1836 in Bristol (MKG inventory number 2012.74) shows two
targeted measures. The body is shortened and the neck likewise lengthened to
simplify the playing in high registers, and secondly, the body is widened and
formed concavely rather than convexly at its lower end, to facilitate comfortable

10 Systems theory claims that sampling a system twice will cause the spectrum to be weighted by
a sin(x)/x function, causing periodicity and zeros.
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holding of the instrument, see Fig. 10. Comfort was also the idea behind intro-
ducing the terminating bridge on the top, to clear the space where the chin rests on
the violin. His inventions where granted a patent in 1835 (Newton 1836). As there
are constructive similarities with the Chanot violin, measurements might reveal
similar effects to sound, too.

Figure 11 references the bridge mobility of the Howell violin against the
Stradivari. (a) The Helmholtz mode A0 is quite strong, 2 dB above the Stradivari.
This is similar to the Chanot violin, caused by the same logic of strings pulling at
the top at a most efficient point. The A0 frequency is 308 Hz and hits note D#4 in
an unexpected way. This increased frequency is due to a smaller air volume, see
Eq. 3. Cavity modes should shift upwards due to reduced length of the body. (b)
Signature modes are in place and occasionally even stronger than in the Stradivari.
Both, breathing and bending are still supported by this construction and tuning of
the bending mode by alterations of rib strength should still be possible. (c) The
‘‘brilliance’’ band is some 5–10 dB weaker than the reference, like in the Chanot
violin, hampering the balance when related to the level of the occasionally strong

Fig. 10 1836 Howell violin with bottle-shaped body and strings attached to a terminating bridge
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Fig. 11 Bridge admittance Y of the 1836 Howell violin with bottle-shaped body (thin, black) in
relation to the 1712 ‘‘Schreiber’’ Stradivari violin (thick, gray)
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signature modes and to A0. (d) The dip is strong, -30 dB, at the rather low
frequency of 600 Hz.

Like in the Chanot violin, the principle of the twin excitation rules the system
rather than plate or body structure. While in the Chanot violin the proportions and
the positions of the two excitation points suggested a three-segment system with
two nodal lines in between, the Howell with its much shorter body suggests a two-
segment system with one nodal line in between. Consider that the bridge is
positioned clearly closer to the top end of the body than to the bottom end. In the
Chanot the twin excitation resulted in a prominent plate mode at 812 Hz, here the
same principle causes a prominent plate mode at the somewhat lower 756 Hz.
Periodicity caused by the twin excitation principle can also be identified in this
violin, however, not as clearly as in the Chanot violin.

In summary, similarities can be found between Chanot and Howell. This violin
might be comfortable to play and embody enough energy in the low bands, but it is
not as balanced as an ordinary student level instrument of conventional
construction.

3.4 20th Century Philomele

A contour of an arrow is characteristic to this folksy instrument, probably
developed by zither makers around Munich and named after the Greek myth figure
Philomele, who was turned into a nightingale by Zeus. The body of this violin is
rather flat and usually comes with frets. This fine example here comes without frets
and was built in the first half of the 20th century (MKG inventory number
2012.64) (Fig. 12).

Figure 13 represents the bridge motion of the Philomele. (a) A0 is more than 5 dB
below reference and its frequency rather high at 292 Hz. The size and the flat plates
result in a slightly smaller volume, therefore increasing A0, see Eq. 3. (b) There is
just one signature mode in the expected range, although there should be no reason
why the breathing and bending should not be possible with the given structure.

Fig. 12 20th century Philomele
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A tuning which would arrange B1 modes, A1 and CBR modes in a wider range did
obviously not happen. (c) The ‘‘brilliance’’ band is roughly 8 dB lower than the
reference. This might seem balanced in relation with the weak ‘‘fullness of sound’’
band; but the violin is not soft in general, as a prominent plate mode at 1,044 Hz
exceeds the reference by some 7 dB. This dominant mode can be explained by the
relatively flat arching and is located in the band that should modestly stay behind the
‘‘fullness’’ and ‘‘brilliance’’ bands. Whereas in the Stradivari violin plate modes
around 1,000 Hz and the ‘‘brilliance’’ band are on the same level, the violin
embodies a 15 dB difference. (d) The characteristic dip between body and plate
modes is somewhat low in frequency at 600 Hz, constricting the signature mode
range.

In conclusion, the violin will be loud enough, but have a very thin tone. Its
strength in the middle register might well be associated with Philomele singing as
a nightingale. Nevertheless, the violin has little chance to project its tone.

3.5 Zoller Bottle-Shaped Violin

Julius Zoller (1893–?) was engineer at Telefunken and developed his bottle-shaped
violin from an engineering point of view. Apart from the unconventional shape,
there are several more modifications: the f-holes are replaced by holes in the ribs
(five on each side), plate strength strongly diminishes from the middle to the ribs,
plates are coated with polished metal on the inside and an additional resonating
string is placed below the bridge, tuned to C4. Zoller constructed 60 violins over a
course of 5 years before concluding on this design, which was then manufactured
in a larger lot of 50–60 pieces a month. He believed that his design would facilitate
mass production without degrading tone quality. The violin here, Fig. 14, was
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Fig. 13 Bridge admittance Y of the Philomele (thin, black) in relation to the 1712 ‘‘Schreiber’’
Stradivari violin (thick, gray)
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rebuilt by Framus11 probably in the early seventies (MKG inventory number
2012.67).

The bridge admittance measured on this violin reveals the following: (a) Mode
A0 is right in place at 260 Hz, well supported by the resonating string that has been
tuned to C4 at 261 Hz. The level is 2.5 dB below the Stradivari. (b) Signature
modes are distinct with peaks of 20 dB and more, ranging well across the range of
370–620 Hz. The level is some 5 dB higher than in the Stradivari reference and
can be explained with the rather thin body, that would ease bending and the rather
spacious plate that would support breathing. However, a more careful tuning
process could have brought the modes together to mutually couple with each other.
(c) Whereas the ‘‘fullness of sound’’ band is well supported, the ‘‘brilliance’’ band
suffers some 5–10 dB with respect to the reference. While this might still be rated
as balanced some dominant plate modes foster energy in the wrong band. (d) The
dip between body and plate modes is well located between 700 and 800 Hz, but
the dips within the range of signature modes are likewise strong (Fig. 15).

In conclusion, the Zoller violin has the potential to develop a full and balanced
sound, but it should be tuned in a better way. Although never of a quality for
soloists, the value of this cheap violin is high.

Fig. 14 Zoller bottle-shaped violin

11 Unproven information of the collector.
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3.6 1893 Stelzner Violin with Top and Back Under Tension

Dr. Alfred Stelzner (1852–1906), educated in music, maths, and physics, believed
to have solved the problem of assuredly building quality instruments, while others
seemed to achieve a good quality for their copies only by chance and in rare cases.
He introduced the idea of attaching the top and back to a rib of parabolically shaped
height. Given the highest point in the middle of the corpus, the plates are under
tension after attachment. He preferred parabolic and elliptic shapes instead circular
shapes throughout his construction believing that this would improve resonances.
More than 300 instruments were built in Stelzner’s factory and the investigated
violin (serial number 180) was built in 1893 (MKG inventory number 2012.89),
see Fig. 16. From the seven violins investigated here, the Stelzner violin is closest to
conventional construction.

The bridge admittance of the Stelzner violin discussed: (a) A0 is situated well
but with a level of more than 6 dB lower than the fine reference. (b) Signature
modes are well developed across the acceptable range between 440 and 540 Hz,

Fig. 16 1893 Stelzner violin with top and back under tension
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Fig. 15 Bridge admittance Y of the Zoller bottle-shaped violin built by Simmons in 1928 (thin,
black) in relation to the 1712 ‘‘Schreiber’’ Stradivari violin (thick, gray)
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and the level is comparable with that of the reference. (c) The ‘‘brilliance’’ band is
less than 5 dB below reference and is balanced when related to the ‘‘fullness’’
band. Plate modes below 1,000 Hz are likewise close to the reference, but plate
modes above 1,000 Hz are almost 10 dB stronger than they should. These modes
are likely to hamper the idea of a violin sound that should be dominated by a full
body, low frequencies, and brilliance. (d) The characteristic dip between body
modes and plate modes is placed at the low frequency 600 Hz (Fig. 17).

The Stelzner violin is close to conventional violins not only by construction but
also in terms of the structural response. Air, body, and plate modes are as char-
acteristic as they can be for a violin, see Fig. 5 for comparison with the moderate
reference. Only the slight exaggeration of plate modes above 1,000 Hz is unfa-
miliar and can be explained by the tension in the plates created with the attachment
on the curved ribs.

This constructive measure of plates under tension, however, brings yet another
change to the acoustics: on regarding the admittance curve, the level difference
between peaks and dips is generally less than 10 dB, while the fine and the
moderate violins both embody level differences of more than 10 dB. A similarly
narrow corridor of levels between peaks and dips is observed for the Bechstein/
Moor violin with the recessed seam on top. These two violins have in common that
constructive measures add to stiffness in the plate. A physical point of view would
suggest that the narrow corridor comes from damping. This is not investigated
here, as the material properties of the wood in these instruments have not been
measured. However, the construction allows an explanation as well. X-mode and
ring mode are developed in plates where the waves across the two directions are
tuned in frequency, effectively coinciding. Plates out of tune will not develop such
clear peaks, which can be observed during the process of tuning a plate and
generating the Chladni patterns.12 This is also true for the higher orders of modes.
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Fig. 17 Bridge admittance Y of the 1893 Stelzner violin (thin, black) in relation to the 1712
‘‘Schreiber’’ Stradivari violin (thick, gray)

12 As has been done with the Sitka spruce plate shown in Fig. 1.
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Here, both violins have a similar problem: Stiffness (Bechstein/Moor) in longi-
tudinal direction will ask for a likewise change of the general proportions, the
violin body should be longer. Tension (Stelzner) will also ask for a longer body for
the same reason as we establish an increased sound velocity in longitudinal
direction. Tension raises the additional question of how to tune the unattached
tension-less plate.

In terms of sound perception, the level corridor between peaks and dips
deserves a brief discussion. We identify a narrow corridor of 5–10 dB for Stelzner
and Bechstein/Moor, and a wider corridor of 10–15 dB for the fine and moderate
reference. Violins introducing some kind of singularity, either by the twin exci-
tation principle (Chanot and Howell) or by unusual large and flat plates (Zoller)
reveal a 20 dB corridor. Mathews and Kohut (1973) investigated perceived sound
quality while varying this parameter on an electronic violin in a range between 0
and 30 dB. He concluded that the corridor should be around 10 dB. Such pref-
erence of moderate but not too strong peaks is understood today as Weinreich
(1997) explains it: the effect of directional tone colour depends on the peaks but
also the amplitude modulation contained13 in a vibrato depends on the peaks.

In conclusion, the Stelzner violin is a moderate violin. Its construction principle
will add some power in an unwanted frequency band, and will obstruct the plate
tuning process.

3.7 1928 Savart Trapezium-Shaped Violin

In the early 19th century, the physician Félix Savart (1791–1841) studied the
physics of the violin, following the findings of Chladni. The trapezium-shaped
body is a result of his studies on glass and metal plates. The violin at the MKG is a
replica built by Cyril D. Simmons in Wembley in 1928 (MKG inventory number
2012.34). Simmons used beech wood instead of maple for the back plate. Savart
intensified his studies and sacrificed several valued Stradivari and Guarneri violins
ceded by Vuillaume. This violin has not been measured.

3.8 1920 Stroh Violin

Johannes Matthias Augustus Stroh (1828–1901?) was a watchmaker born in
Frankfurt. He was inspired by the London International Exhibition and moved to
England. A fruitful working period with many technical innovations and patents
followed. His idea to combine a violin with the horn known from Edison’s

13 A vibrato will cause the harmonics to cruise along the peaks, effectively transforming
frequency modulation into amplitude modulation.

Acoustical Measurements on Experimental Violins 291



phonograph was patented in 1899. In principle, the bridge motion directly drives a
membrane, already leveraged by the proportions of the yoke. A compression
chamber drives the horn, effectively amplifying the signal again. Stroh’s violin
was built until 1942 by his son and became quite popular. It was played in Jazz
bands in the Golden Twenties and by gipsy musicians, today it is still widely used
in folk music on the Balkan and in Far East and replicas are still built. The
investigated example is original and was built in London in ca. 1910 (MKG
inventory number 2012.90) (Fig. 18).

Replacing the wood resonator by a horn introduces significant changes. All of
the above outlined principles of body and plate resonances are replaced by the
principles of a compression wave developing in a horn. The pole-zero plot of the
impedance at the end of a horn defines the frequencies of amplification.
The Stroh’s violin has a conical horn, and frequencies are here periodically spaced
like in the cylindrical tube. In singly closed cylindrical tubes of length l the general
periodical pattern follows the f = (2n - 1)*ca/4 l regime as compared to the
f = n*ca/2 l regime in doubly open pipes, given the speed of sound ca and taking
natural numbers n. For conical horns, the regime falls in between these two,
depending on the ratio of diameters at the ends (Fletcher and Rossing 1998,
210–213).

The bridge admittance plot of the violin reveals that the first four peaks directly
relate to the conical horn. The frequencies 272, 448, 676, and 964 Hz follow the
outlined principles.14 Note that the row of frequencies does not strictly follow an
arithmetic progression. Especially the first peak steps out. This fully complies with
the findings of Ayers et al. (1985) quoted by Fletcher and Rossing in that the first
peak is strongly increased in frequency in relation to the other peaks, when the
mouth is wider than the throat in singly closed conical horns. And the other peaks
also do not follow a strict arithmetic progression for all singly closed conical
horns. The peak frequencies measured here match with the findings of Ayers.

Fig. 18 1910 Stroh violin, signed ‘‘Stroviols Trade Mark registered … Patent No. 112548 …’’

14 Calculation without correction term for estuary. The horn is about 35 cm long. The relation of
diameters is about 4.
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Surprisingly, the air mode A0 and the first signature mode both perfectly fall
together with the fine reference. Clearly, the horn was tuned to match such
parameters known from conventional violins. The rest of the plot does of course
not match the wooden reference. The brief discussion from the conservative
perspective: (a) A0 matches in frequency, as discussed, and the level is only 2.5 dB
below reference. (b) There is only one mode in the range of signature modes,
however, it is wisely positioned between 400 and 500 Hz and comes with a level
of 4 dB above the strongest mode in the Stradivari. (c) The ‘‘brilliance’’ band is
about 8 dB below reference. This is similar to Bechstein/Moor, Chanot, Howell,
and Zoller. This violin, however, differs in that the band in between ‘‘fullness’’ and
‘‘brilliance’’ is not strong, but it is rather moderate. This sound is appreciated and
this might be one of the reasons why Stroh’s violin is so popular. (d) A charac-
teristic dip between signature and plate modes cannot be expected. One of the dips
between horn peaks falls at 550 Hz (Fig. 19).

When listening to Stroh’s violin, one will clearly hear a violin. This is due to
the string bowing mechanism and the related characteristic of string excitation.
At the same time, a metal horn can be heard. Some of these violins sound like a
conventional violin played back on an old phonograph. So the signature of the
horn can well be heard categorically and the violin played by a bow can be heard
categorically, simultaneously.

Another important sound attribute is the violin’s loudness. The bridge motion is
amplified thoughtfully taking advantage of the impedances given at each step of
conversion. Secondly, the horn has a narrow beam, while the violin has a dipole
and multi-pole character. Both effects work together for a ‘‘four-fold sound
intensity’’, as Stroh stated.
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Fig. 19 Bridge admittance Y of the 1910 Stroh violin (thin, black) in relation to the 1712
‘‘Schreiber’’ Stradivari violin (thick, gray)
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3.9 Sound Radiation in Comparison with Bridge Mobility

Bridge mobility translates to radiation rather directly, however, not one by one.
This can be seen in Fig. 4. Peaks in the mobility plot will be found in the SPL plot,
but often at unexpected levels or bandwidths. One main reason for differences is
the directional tone colour, as beams become narrower with increased frequency.
For analyses in frequency bands above 2 kHz statistical approaches are common.
Other causes are differences in impedance matching and phase relations.

Figure 20 compares the SPL level differences in low frequency bands, as dis-
cussed before and well related to construction. More precisely, the bars in the
figure represent the level of A0 and the level of the signature modes, both related to
the level of the plate modes in the range of 1 kHz, for all violins.

First of all, the fine reference is outstanding as A0 and signature range both
radiate strongly in relation to the band around 1 kHz. Instruments made by
Luthiers are moderate in this respect, see the student instrument, Howell’s violin
and Philomele, while the truly experimental constructions perform poorly, see
Bechstein, Zoller, and Stelzner. Secondly, the idea that A0 radiates somewhat
weaker than the signature modes is familiar for conventional violins, compare the
two reference violins against all others.

For the Chanot and the Howell violin one expects a confirmation of the above
finding that the twin excitation principle is of advantage for A0. In fact, Howell’s
violin is the only one with an A0 level above the level of signature modes. And for
the Chanot violin the A0 level reaches that of signature modes, uncommon with
conventional violins. The finding is confirmed. One could argue that Bechstein and
Stelzner also achieve comparable levels for A0 and signature modes, but equality
is caused by poor signature modes, as discussed above, and is not caused by any
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Fig. 20 SPL difference in dB between low frequency bands for the 1712 ‘‘Schreiber’’ Stradivari
(STRAD), 1900 Markneukirchen student level violin (STUD), 1930 Bechstein/Moor violin
(BECH), 1820 Chanot violin (CHAN), 1836 Howell violin (HOWE), 20th century Philomele
(PHIL), Zoller violin (ZOLL), 1893 Stelzner violin (STELZ), 1910 Stroh violin (STROH); black
level of A0 minus level of plate modes around 1 kHz, grey level of signature modes minus level
of plate modes around 1 kHz
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improvement on A0. Finally, it is the one prominent plate mode in the Chanot
violin that obstructs the given advantage on A0.

The Zoller violin has the lowest A0 level. This is partially due to the fact, that
measurements are done perpendicular to the top, while there are no f-holes on the
top and only some small holes in the ribs.

Music students who played the different instruments reported that they liked the
Philomele best. This seems surprising against the background of bridge admittance
measurement which concluded on a thin sound. However, in terms of radiation the
Philomele appears to be well balanced. The level relations between bands are
almost as good as for the student level instrument and definitely better than for all
experimental violins. Therefore, the students’ report is in agreement with Dünn-
wald’s discussions on bands. In this respect also the Stroh violin seems to be
balanced which might be one of the reasons why its sound is appreciated and it is
still rebuilt and widely used.

4 Summary

We investigated seven experimental violins acoustically and referenced the results
against a fine Stradivari violin and against a moderate student level instrument.
From the perspective of conventional violin making and when guided by the
principle ideas of plate and body tuning, all the constructive changes and their
impacts to acoustics can be explained. Most of these changes result in a poorer
balance of the instrument or in thin sound. There are two main conclusions when
considering old masterpieces and at the same time these experimental violins from
the 19th and 20th centuries: the old masters understood very well the acoustical
outcome for each step of the crafting and tuning process, and that is why the
performance maximum 300 years ago brought forth the most admired instruments.
Secondly, the engineering perspective brought some fresh but disruptive innova-
tions, most of which ignored the existing knowledge and failed to revolutionize
violin making. A rare exception is the Stroh violin, as it effectively constitutes a
new musical instrument and as it is engineered well enough to produce an
appreciable sound.
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Fourier-Time-Transformation (FTT),
Analysis of Sound and Auditory
Perception

Albrecht Schneider and Robert Mores

1 Introduction

In the present chapter, we will reexamine the so-called Fourier/time transformation
(FTT) that has been proposed by Ernst Terhardt (1985, 1992, 1998) as a tool for
analysis and representation of audio signals such as speech and music. The main
reason for suggesting such an approach was that Terhardt (1985) saw a different
interpretation of the Fourier transform (as is widely used for spectrum analysis), on
the one hand, and a need to develop a transform suited to perform time/frequency
analysis comparable to that of the mammalian auditory system, on the other.
Hence the aim of the FTT is to provide a time-to-frequency transformation
equivalent to parameters in auditory processing as well as a ‘‘natural’’ approach to
signal analysis (cf. Terhardt 1985, 1998, 78–97). In order to assess the possibilities
the FTT approach might offer in regard to signal analysis, some other methods
relevant for musical acoustics and psychoacoustics such as the short-time Fourier
transform (STFT), autoregressive spectral modeling (AR) and Wavelet transform
(WT) are presented in a brief survey, and are illustrated by some examples. Dif-
ferent approaches to time/frequency analysis are also viewed as to their power with
respect to the so-called uncertainty product Dt Df.

Over the past decades, there has been a broad range of research directed at
understanding the functional anatomy and physiology of the auditory system (for
summaries of research, see Oertel et al. 2002, Pickles 2008, Winer and Schreiner
2011). Since about 1980, computational models of the auditory system have been
issued that were progressively taking neurophysiological data and results from
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behavioral studies into account (for an overview, see de Cheveigné 2005, Meddis
et al. 2010). By including elements representing hair cell transduction and neural
activity patterns in the auditory nerve (AN) as well as in some of the relays along
the subsequent neural pathway, complexity of the models as well as realism in
performance has been increased by far (see, e.g., Meddis and O’Mard 1997, 2006).
While most current models are based in the time domain, there are some operating
in the frequency domain. Traditionally, analysis in the time domain has been
concerned with signal periodicity detection and estimation of ‘pitch’ from the
repetition frequency of the envelope (f0). Analysis in the frequency domain typ-
ically has been done with the spectrum comprising a fundamental frequency f1 and
higher harmonics n 9 f1 in view. For both approaches that have been pursued in
auditory research for more than 150 years now (see de Boer 1976; de Cheveigné
2005), there are reasons at hand referring to the structure of audio signals (that can
be represented both in the time and in the frequency domain) as well as with the
functional anatomy and physiology of the mammalian auditory system. Consid-
ering only the first stages of auditory processing, and allowing for a rather sche-
matic view, there is (1) transfer of waves from the environment through the ear
channel to the tympanon. Then there is (2) a mechanical transmission line from the
tympanon by means of the ossicles to the oval window where the pattern of
vibration is transferred into (3) the cochlear fluid system in which a travelling
wave with a relatively steep maximum for individual frequencies corresponding to
sine tones is observed. Hence it has been concluded that a complex harmonic wave
is decomposed in the fluid channel such that several maxima representing single
partials or groups thereof will be observed. The cochlear partition with (4) the
basilar membrane (BM) as well as structures combined with the BM are regarded
as a filter bank of k channels capable to decompose a complex signal into partials
or groups thereof. (5) Inner hair cells (IHC) effect mechanoelectrical transduction
so that the output of each of the BM channels is coded into a train of neural spikes
that are (6) represented in fibers of the AN. Modeling transmission of audio signals
from the pinna to the stapes (a mechanical system with impedances and admit-
tances) and within the fluid ducts of the cochlea (a hydromechanical system that
incorporates nonlinearities; see Nobili and Mammano 1999) as well as the
transduction mechanism on the IHC and AN level is quite complex since every
element in the transmission chain as well as their interaction must be adequately
covered, that is, as close as possible to empirical data from (mostly, animal)
experiments and behavioral studies (cf. Meddis and Lopez-Poveda 2010).

In regard to such a complex transmission line that may incorporate also relays of
the auditory pathway such as the cochlear nucleus (CN) or models for processing at
even higher levels (the superior olivary complex and the inferior colliculus),
restricting an analysis to peripheral filtering processes as effected in the cochlea
(as is done in this chapter) may seem odd. The point, however, is that initial analysis
on the BM and IHC level seems decisive since it can be shown that distinctive
features of complex sounds such as salient or ambiguous pitch structure, harmonic
or inharmonic spectrum (leading to percepts classified as consonant or dissonant),
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and also phenomena such as combination and difference tones are derived from
peripheral processing (for examples, see Schneider and Frieler 2009). In the case of
the peripheral processing lacking sufficient precision (consequent to, for example,
inappropriate design of BM filters), feature extraction at this stage of processing
and also on higher levels of the auditory pathway can be significantly hampered.

2 Uncertainty Relation and Time/Frequency Resolution

The uncertainty relation known from quantum mechanics states that a particle can
be defined exactly either as to its impulse p or to its place x. Since exact definition
of the impulse precludes exact definition of the space (in regard to wavelength), a
situation where both have to be taken into account leads to the product of place and
impulse such that Dx Dp C �h/2 (�h = h/2p with h = Planck’s constant). This basic
equation became known as the uncertainty relation and has been adapted, with
necessary modifications, into various fields of science such as communication
theory and acoustics (Gabor 1946). According to Gabor (1946), for signals a limit
for the product of time resolution and frequency resolution exists like

Df Dt ¼ 1=2 ð1Þ

This minimum is restricted to very few ‘ideal cases’ (see below) so that for real
signals such as sound of a certain duration and bandwidth values above 0.5 will
apply. In a general formulation, the uncertainty relation for acoustic phenomena
such as impulses (cf. Meyer and Guicking 1974, 92ff.) can be given as

DtDf � 1 ð2Þ

As can be demonstrated by calculation, the lower limit of Dt Df = 1 can be
achieved for a Gaussian impulse while for almost every other pulse type Dt Df [ 1
applies.

Taking two extremes, a Dirac-d (with a duration approaching zero and an
impulse height approaching infinity) and a sine wave of an arbitrary frequency fi
lasting from -?\ t \?, the impulse is defined exactly as to time t (ms), and the
sine wave as to frequency f (Hz), in a two-dimensional time–frequency space.
‘‘Real-world’’ signals such as produced by musical instruments including the
human voice are neither as short in duration as a Dirac-d, nor infinite in duration as
the undamped sine wave repeating itself at the same frequency. Of course, in
regard to spectral bandwidth, the Dirac impulse and the sine tone of a given
frequency also represent two extremes. In music as well as in other audio signals
such as human speech or birdsong, the situation typically is that a number of
complex sounds each comprising n harmonic or inharmonic partials occur at a
certain time, and have disappeared due to damping forces after a duration of, in
most cases, a few hundred milliseconds or perhaps several seconds. Hence we are
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dealing with sequences of complex sounds such as melodies, or with several such
sequences played or sung more or less in parallel (in regard to tracks of funda-
mental frequencies) as well as more or less synchronous (as regards onsets of
tones/notes) as in homophonic and polyphonic music.

In this respect, conventional western staff notation constitutes an acceptable
approximation to a two-dimensional time/frequency representation with the ordi-
nate y giving frequency on a log scale, and the abscissa x time on a linear scale (cf.
Rossing 1982, 134–135). One can therefore substitute staff notation with semi-
logarithmic graph paper to yield a similar (but more precise) notation for mono-
phonic or polyphonic music (for an example of a Bach chorale with four voices,
see Schneider 2001). It has to be noted, in this context, that western staff notation
in regard to ‘pitch’ information represents the fundamental frequency f1 (as is
obvious from definitions such as standard pitch A4 = 440 Hz or ‘‘middle c’’
[C4] = 261.6 Hz in equal temperament). Whether the tone notated on staff as C4 is
a pure (sine) tone or a complex tone cannot be gained from Western staff notation,
which does not include spectral information. However, it is implied from
A4 = 440 Hz that any complex tone played to render this note audible should
comprise a fundamental frequency f1 at 440 Hz (though, at least in perception, a
‘pitch’ corresponding to 440 Hz could be realized also with an envelope repetition
frequency f0 = 440 Hz while the fundamental of the spectrum is weak or even
missing).

Of course, one could further substitute staff notation with a melogram or
spectrogram (sonogram) as a two-dimensional representation of sound and music
in a time/frequency space. We will do this with a musical example offered recently
by Florian Messner (2011) who, together with another singer, recorded a phrase
noted down in staff notation by Franchino Gafori (Franchinus Gaffurius,
1451–1521), in his Practica musicae (Milan 1496). Gafori (Lib. III, cap. 14: de
falso contrapuncto) gave us this piece of two-part music then still in practice in the
Lombardic in vigils and in the mass for the dead because he thought it defied all
rules of counterpoint (…ab omni modulationis ratione seiunctus est). What in fact
singers were performing was vocal music where two voices go in parallel with
dissonant intervals (seconds, fourths) between them. Singing styles as well as
instrumental music organized as a diaphonia with two voices forming narrow
intervals were or even still are in use in the Balkans (notably in areas of Bosnia and
Herzegowina, Croatia, Albania, Bulgaria). Since two notes sung in parallel at the
interval of a minor or a major second will have fundamental frequencies so close
as to fall into one ‘critical band’ (CB), they cannot be separated by the auditory
filter bank, and thus a sensation of roughness from the interaction of fundamental
frequencies as well as from other partials in their respective CBs will result. In
Bulgarian diaphonic singing, one finds two (female) voices approaching each other
as close as ca. 45–80 cents (cf. Schneider et al. 2009), that is, from about a quarter
tone to a chromatic semitone.

For the Lombardic contrapunctus falsus as performed by two male singers, the
spectrogram shown in Fig. 1 results.

302 A. Schneider and R. Mores



Though the spectrogram has been calculated in the frequency domain with a
rather high resolution as to time and frequency,1 the trajectories of the fundamental
frequencies for the two voices will be difficult to recognize. Also kind of a me-
logram representing the pitches (calculated in the time domain with a special
autocorrelation algorithm, Boersma 1993) will give only some rough idea as to the
movement of the voices (see Fig. 2).

Fig. 1 Lombardic diaphony, two male singers, spectrogram 0–2 kHz

Fig. 2 Pitch (f0) tracking for lombardic diaphonia, autocorrelation method

1 Settings for the analysis performed with the Praat software (Boersma and Weenink 2011) were
a time window of 30 ms with a Gaussian weighting, a time step of 2 ms from one frame to the
next, an analysis bandwidth of 2 kHz and a frequency step of 2 Hz. The sound sample of 11.17 s
was processed in 5253 (overlapping) frames.
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It is possible to find the fundamental frequencies for the two male voices even
for narrow intervals with a standard frequency analysis based on FFT, provided the
window of analysis is long enough to ensure that relevant components can be
separated.

Applying a Discrete Fourier Transform (DFT, cf. DeFatta et al. 1988, 238ff.) to
a digital signal x(n) with a period of T, the frequency resolution Df depends on the
sampling rate Fs and the transform length (often also called ‘frame’ or ‘window’)
of size N. The discrete frequencies fk for a spectrum X(k) of the signal can be
calculated as

fk ¼ k ðFs=NÞ where k ¼ 0; 1; 2; 3; . . .;N � 1 is the frequency index: ð3Þ

The frequency resolution hence depends on the ratio Fs/N and can also be
expressed as

Df ¼ 1=T ¼ Fs=N ð4Þ

It is obvious from Eq. (3) that basic relations defined for analogue band pass
filters hold likewise in the digital domain. For a narrow-band filter (cf. Küpfmüller
1968, 71f.), the response time s is defined as

s ¼ 2p=Dx ¼ 1=Df for x ¼ 2pfð Þ ð5Þ

Hence the response time and bandwidth of the filter are in reciprocal relation.
For any frequency resolution Df designed for the filter, a corresponding response
time s can be calculated; since s in this respect defines Dt of the filter (taken as an
ideal, non-dispersive band pass; cf. Meyer and Guicking 1974, 92ff., 346ff.), the
product Df Dt C 1 applies equivalent to Eq. (1).2 The uncertainty relation that, as a
general principle, needs to be adopted for specific areas, underlies also digital
sampling and frequency analysis (Eqs. 2, 3) where a signal x(n) of period T sam-
pled at Fs can be determined in regard to its spectrum X(k) the better the longer the
transform size N is chosen. This, however means that good frequency resolution
Dt can be achieved only at the cost of rather poor time resolution Dt.

With respect to our example, the Lombardic diaphonia, the sample rate of 44100
per second will require a window size or transform length of at least 212 = 4096 to
ensure a frequency resolution Df * 10.77 Hz. As can be easily checked, the exact
value for Df is 10.7666 Hz; Dt is determined by the transform of length N = 4096
samples = 92.8798 ms. If we leave out windowing and other effects, the product of
time and frequency achieved in FFT-based analysis indeed would be unity.3 For the
analysis of the sound example, FFT windows of 212, 213 and 214 samples were
employed together with a spectral peak estimation algorithm. Frequency readings
were confined to full frequency values (e.g., 195, 222 Hz) averaged over the

2 A formal proof can be given on the basis of the Cauchy-Bunjakowski-Schwarz inequality (cf.
Meyer and Guicking 1974, 95, 108; Papoulis 1962, 63).
3 Applying no specific windowing function means a rectangular window is chosen for which the
so-called Equivalent Noise Bandwidth (ENBW [Bins], see DeFatta et al. 1988, 262ff.) is 1.0.
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window of length N. The results of the time/frequency analysis have been tabled
and then plotted as shown in Fig. 3. For reasons of readability, a linear frequency
scale (ordinate) was chosen. The movements up and down (melodic contour) as
well as musical intervals formed between the two voices by their fundamental
frequencies over time are clearly visible. However, the relatively poor time reso-
lution of the analysis is also quite obvious since the ‘pitches’ sung (represented by
their respective fundamental frequencies f1) are indicated according to the trans-
form size that has been employed. For example, at Fs = 44100 samples, a window
of 8192 samples means a time interval of 185.76 ms for which a spectrum is
calculated that contains information as to the ‘average pitch’ that, in our example,
was realized by two singers within this span of time. In reality, there can be marked
shifts of fundamental frequency within one frame or window of length N. In fact,
the intonation practiced by the two singers in recording this piece of music shows
far more subtle fluctuations than shown in Figs. 2 and 3 as became obvious in a
more detailed analysis carried out with high resolution tools (Wigner transform and
FFT combined with LPC pitch tracking and very small hop ratios).

What is evident from Fig. 3 is that the two singers didn’t start in unison (what the
notation provided by Gafurius would have demanded) but at an interval of about a
semi-tone (193:180 Hz * 122 Cents). Also, one can see that at the end of the
phrase (from 7.500 to 10.700 on the time scale) a long dissonant interval, namely a
major second based on the notes G3 and A3 occurs. While singing their respective
notes/tones forming the major second, the singers adjust their intonation several
times (the interval size varies from an initial 233/234 cents to ca. 201 and even
193 cents towards the end). There are some more details one can study with the data
condensed in Fig. 3 at hand. Figure 3 can be regarded as kind of a descriptive
‘notation’ derived ex post from an actual performance. This notation, by the way,
could be transformed back into a symbolic notation (e.g., western staff notation).

Words: Do – o – o – o – o – mi – ne,        mi – se – r e – r e  

Fig. 3 Lombardic diaphonia, 2 male voices, tracks of fundamental frequencies/time
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If one would need to improve temporal resolution of the analysis, there are
methods at hand in digital signal processing (DSP) which permit to achieve this
goal without sacrificing adequate frequency resolution. One of the most basic and at
the same time most efficient procedures is to overlap consecutive frames of analysis
(what has been done to some degree also for the present analysis). In case overlap is
almost complete and the so-called ‘hop ratio’ therefore very small, a sequence of
signal spectra will result following one another at a short delay of n samples while
the frequency resolution of each spectrum is determined by N. Such an analysis
technique is well suited for transients where the rate of change in the signal per time
often is significant. We will show an example for such an analysis below. The point
of interest with respect to choosing a certain method of analysis of course is this:
what is the degree of exactitude necessary in regard to (a) auditory perception and
relevant psychoacoustic parameters? Further, which technique should be used if (b)
the study of musical structure is an issue (e.g., when studying music not well
documented yet)? In addition, signal analysis could also be pursued in regard to (c)
acoustics of certain instruments where the aim often is to investigate processes of
vibration, sound production and sound radiation. The precision needed under (c) is
certainly much higher than that required for (a) or wanted for (b).

Taking Fig. 3 as an example, one may call the analysis plausible in regard to
musical structure since the melodic contours of the two voices and the intervals
formed between them can be followed with ease. What is less accessible to
intuitive understanding in this plot, though, is the exact size of the intervals
realized by the two voices. Of course, musicians and musicologists will have an
idea as to the fundamental frequencies of notes in a diatonic scale (at least in
regard to main intervals). However, a number of deviations in intonation that were
documented in the signal analysis are difficult to read from the tracks in Fig. 3. In
regard to auditory perception, the precision achieved in the plot in Fig. 3 probably
is above that ordinary listeners might achieve by using their ears only for analysis
(even trained musicians might find it difficult to separate the two voices which are
quite close in register, and in the recording at hand do not differ much as to their
respective timbre). In sum, one could argue that the analysis as shown in Fig. 3 is
sufficient to illustrate a musical structure as was put to sound by two male singers,
and it represents about the result trained listeners might obtain from an aural
analysis of the musical phrase as recorded on CD.

In regard to time and frequency resolution as are most relevant for signal anal-
ysis, it should be noted at this point that the ‘uncertainty relation’ (or ‘relation of
indeterminacy’) yields Df Dt C 1 for linear systems such as analogue band filters.4

For the auditory system, it has been shown in experiments based on biophysical
cochlea models (cf. Mammano and Nobili 1993, Nobili and Mammano 1999)

4 There are several definitions as to ‘linear‘. In electronics, linear refers to circuits (like LRC
filters) in which linear relations exist between physical magnitudes (induction, capacity, resistance,
gain) and where all voltages and current are proportional to the electromotive force driving the
system (cf. Küpfmüller 1968, 12f.). In signals and systems theory, linearity is defined by Bachmann
(1992, 9) like this: superposition at the input has the same effect as superposition at the output.
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that time/frequency analysis of the cochlea for the range of speech signals above
200 Hz already for a passive model comes close to Df Dt & 0.55 (Russo et al.
2011), that is, very close to the theoretical limit of 0.5 as defined by Heisenberg’s
‘uncertainty relation’ or the equivalent formulation Gabor (1946) has given for
time/frequency resolution as a relevant parameter for communication systems. The
general concept Gabor advanced was that for every type of resonator a charac-
teristic rectangle of about unit area can be defined in a time/frequency plane. For a
sharp resonator such as a narrowband filter Df Dt & 1 can be assumed. From
mathematical considerations as well as from properties of some elementary signals
(sine or cosine wave, Dirac-d) Gabor (1946, 435) concluded that the signal for
which Df Dt = 1/2 applies is the modulation product of a harmonic oscillation of
any frequency with a pulse of the form of a probability function. (For an ‘ideal’
bandpass filter he calculated the value 0.571). Gabor suggested that a time/
frequency space (understood as an information diagram with the axes time and
frequency) can be divided into rectangles which have sides defined by Df and Dt,
respectively. According to Gabor, each area Df Dt represents one elementary
quantum of information; he therefore proposed to call such an area a logon.

Remarkably, Gabor (1946, Part 2) included hearing into his study, where he is
making reference to several empirical studies on difference limens for pitch and
time (as had been published by Shower and Biddulph in 1931, and by Bürck et al.
1935; see below). Gabor argued that the ear (or, rather, the sense of hearing)
disposes of a threshold information area in regard to frequency (pitch) and time,
and of an adjustable time constant at least between 20 and 250 ms. Thus he
regards hearing a most relevant field where his concept of time/frequency areas or
logons is of practical significance.

It is obvious that basic ideas as formulated by Gabor for signal and systems
theory also underlie some other approaches, notably wavelet analysis (cf. Dutilleux
et al. 1988; Mertins 1999, Chap. 7; Evangelista 1997). In fact, it can be demon-
strated that, in regard to fundamental mathematical concepts, formal equivalence
exists for the Wigner transforms, Gabor coefficients, and Weyl-Heisenberg wave-
lets (see Dellomo and Jacyna 1991). Gabor’s concept and related concepts by
Eugene Wigner and J. Ville have led to a systematic treatment of linear and
non-linear time/frequency analysis of signals (see Cohen 1995; Flandrin 1999;
Mertins 1999). Application of the Wigner transform (WiT) to acoustical signals is
possible with some modification of the original formulation (cf. Yen 1987) and can
yield high-resolution time/frequency representations. For a complex-valued signal
s(t), WiT can be calculated according to

Wðt;xÞ ¼
Z1

�1

e�jxss t þ s
2

� �
� t � s

2

� �
ds ð6Þ

where * denotes the complex conjugate. For practical applications in DSP, the
integral comes down to a summation, and a window function is applied since the
WiT is a bi-linear transform that produces cross terms between spectral energy
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peaks resulting from a real-valued signal. The cross spectrum appears in the time
and in the frequency representation and contains sum and difference of the original
spectral components. The window function helps to cancel out cross terms. Also, a
good comprise solution suited to suppress spurious spectral components is a
combination of FFT and WiT for which parameters can be set so as to cancel out
most of the unwanted cross terms while improved resolution (as compared to FFT
alone) is maintained. As an example, an analysis of a phrase sung and played by
Joni Mitchell in a demo version of her song In France they kiss on mainstreet is
presented (Fig. 4). For the analysis, a combination of WiT and FFT as well as a
spectral peak picking algorithm (linear predictive coding, LPC, see Markel and
Grey 1976) was used.5 One can easily trace the fundamental frequency as well as
the second partial (i.e., the first harmonic an octave above the fundamental) of
Mitchell’s voice. In regard to intonation, some pitches within the phrase ‘‘roll-in,
roll-in, rock and roll-in’’ are more stable than others; Mitchell goes into a marked
vibrato on the last, long held syllable ‘‘in’’.

3 Time/Frequency Analysis: Some Applications
and Examples

There are quite many time/frequency analysis techniques that have been applied to
musical signals (for an overview see Kostek 2005). In retrospect, sonagrams
derived with analogue filtering were a valuable tool for sound analysis and also for

Fig. 4 Joni Mitchell In France they kiss on mainstreet, WiT+FFT+LPC

5 Analysis for 0–1 kHz was performed with the Sonogram software (Hiroshi Momose 1991);
settings were FFT+Wigner, time window 2048 pts, Hanning weighting, time increment 85
pts = 1.77 ms; LPC, sideband suppression 80 Hz, dynamic range of analysis and graph
representation -20 to -1 dB.
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musical transcription (see Schneider, this volume). The output of the analysis was
plotted on special paper as kind of a 2�-D graph indicating spectral energy for
quasi-continuous frequency bands over time (with relative amplitude per fre-
quency or small frequency band marked as grayscale or, rather, ‘‘blackscale’’).
With DSP tools, sonagrams (now often labelled sonograms or spectrograms, see
Fig. 1) were typically calculated by means of FFT algorithms operating in the time
or in the frequency domain (or in both). In regard to time and frequency resolution,
the common Fourier analysis effected by means of a FFT implementation (cf.
DeFatta et al. 1988) bears to the fundamental relation of Df Dt = 1 if we neglect
weighting functions and other possible restrictions. In practice, the result of the
analysis can be improved in many details by zero padding and interpolation of
data. In addition, overlap of frames (typically, blocks of samples of length 2n)
allows to account for changes a signal undergoes in time (e.g., frequency and
amplitude modulation). Further, peak-picking algorithms which detect peaks in
spectral envelopes and create tracks of such peaks from one spectrum to the next
are very useful tools in particular for the analysis of transient or modulating signals
(see Kostek 2005; Beauchamp 2007).

For a demonstration of alternative techniques of analysis, sounds composed of
two sounds produced from quite different instruments, namely a pipe organ and a
carillon bell have been processed with several tools. The two sounds employed in
analysis consist (1) of an organ tone followed by a bell, and (2) a bell followed by
the organ. Two organ tones (C2, C3) have been played with a Quintadena 160 stop of
a historic organ.6 The bell is part of the historic carillon of Bruges in Flanders.7 For
the fundamental frequencies and the prominent partials of the organ sounds, mind
that the Quintadena stop is covered (Gedackt), and that a pipe length of 160 means
each tone played sounds one octave below the actual note name. Due to historic
tuning (before a ‘standard pitch’ had been established), the fundamental of the C2

played with the Quintadena 160 is at *36 Hz, and C3 is at *72 Hz, respectively.
The sound where the pipe organ starts at C2 develops slowly in amplitude

(Fig. 4) because few harmonic partials are actually excited in the covered pipe
where excitation of modes and built-up of standing waves takes about 200 ms
before the process is complete. Of the partials, the fundamental at 36 Hz is strongest
in amplitude. An interval of 333 ms was chosen from the (measurable, barely
audible!) onset of the pipe sound for the point where the bell sound starts (Fig. 5).

The bell sound, because of the excitation of the instrument by an impulse,
builds up very fast with a considerable number of modes some of which are in a
harmonic and others are in an inharmonic frequency ratio to the fundamental. The
first second of sound (organ plus bell), if subjected to a standard Fourier spectral
analysis, can be represented in a 3D-plot as in Fig. 6 which shows 20 spectra

6 Historic organ of St. Bartholomäus, Mittelnkirchen, Altes Land, build by Arp Schnitger, Jacob
Albrecht and Johann Matthias Schreiber 1688–1753. The Quintadena 160 pipe rank is in the
Hauptwerk of the organ.
7 Built by Joris du Mery 1742–1748.
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Fig. 5 Oscillogram of organ (Quintadena 160, Pipe C2) plus bell sound

Fig. 6 3D-spectrogram of a complex sound (organ plus bell), 20 spectra
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calculated with parameter settings for appropriate time and frequency resolution.8

For readability, the frequency range displayed is 0–2 kHz though the bell sound
contains spectral energy up to about 5 kHz. The 3D-plot, which covers about one
second of sound, seems sufficient to study the evolution of two complex sounds
that do have but little spectral overlap since the three most significant partials nos.
1, 3 and 5 of the organ sound have average frequencies of a 36, 112 and 181 Hz,
respectively while the bell has its lowest partial (the so-called hum note) at about
208 Hz. From the 3D-plot, one can see that the organ sound except for the fun-
damental and partials nos. 3 and 5 (of which no. 3 has a long transient and comes
into play not before spectrum no. 6) is quite noisy (air is streaming through the
pipe before standing waves for more modes of vibration are established). Also, one
can see that, with spectrum no. 7, the bell sound sets in, which is percussive and
therefore has a fast buildup of modes of vibration and of corresponding spectral
energy (the display is band-limited at 2 kHz for reasons of readability). The bell
sound has a quite weak fundamental (the so-called hum, marked ‘a’ in the plot) at
ca. 208 Hz yet a very regular spectrum typical of a minor third bell; in this sound,
major components representing the prime, tierce, quint, and nominal (marked b, c,
d, e in the plot) are found at ca. 411, 493, 627 and 829 Hz, respectively. It is
evident that the bell sound carries significant energy from 400 Hz to the upper
limit of the range on display, and that the ‘watershed’ that divides the organ sound
and the bell sound in the spectrum is at about 200 Hz.

Given the two sounds have practically no spectral overlap they should be
perceived as two separate objects (or as falling into two ‘streams’ in regard to
auditory scene analysis, cf. Bregman 1990) as they excite different areas of the BM
filter bank. This might support stream segregation as used for object identification
along the auditory pathway. Moreover, the two sounds superimposed into one have
different onsets in time as well as different attack features in regard to their wave
shape and envelope. If processed by a filter bank that measures excitation of the
BM per Bark (excitation per Bark [phon]; see Zwicker and Fastl 1999, Chap. 6),
the analysis done with the Praat software (version 5323; Boersma and Weenink
2011) yields the following cochleagram (Fig. 7):

Since we know already from the FFT analysis presented in Fig. 6 that the organ
sound has its energy concentrated at low frequencies, we find this distinctive
feature also in the cochleagram where excitation at the onset is restricted to Bark
bands 1–5. By contrast, the bell sound with many spectral components in the
frequency band from about 400 Hz to 4.5 kHz mostly engages Bark bands 4–18.
From its onset for an interval of ca. 150 ms the bell sound is so strong in energy
that it masks the soft organ sound which, however, resurfaces later in the
cochleagram (after time point 0.5 s) and becomes audible as such because many of
the bell’s higher partials have a fast decay so that the envelope of the bell sound

8 FFT: 8192, Hanning, Hop ratio 0.25, zero pad factor 2.0. Analysis performed with Spectro 3.01
(Perry Cook, Gary Scavone).
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shows a clear exponential decay (intensity [SPL dB] of the bell sound decays by
ca. 8 dB in the first 500 ms, and by ca. 14 dB within a second from onset).

The purpose of presenting an analysis of the same sound performed with two
different, if related tools is to underpin the usefulness of complementary methods
where information obtained with one tool can help in interpreting output data
generated with the other. In this way, one can often expand analyses by going into
more details; in addition, applying different tools to the analysis of the same sound
samples can help to minimize the risk of artifacts. To this end, two methods of
analysis applied to another sound example will be evaluated in brief. We will
analyze one sound played again with the Quintadena 160 stop with two methods
suited to achieve high resolution in time and frequency. One is autoregressive
modeling (AR), the other is a complex-valued filter bank with the option of cal-
culating the so-called instantaneous frequency for any sample point.

AR (see Marple 1987, Kostek 2005) is a family of methods developed for
calculating spectral estimates for short or even very short segments of signals x(n)
representing, for example, sound that may be transient or modulating in frequency
and amplitude. For such sound segments usual Fourier techniques which are
directed at frequency values for more or less steady-state sound signals may yield
unclear results or even fail. In regard to DSP implementation suited to signal
analysis, the AR approach rests on an all-pole filter model since the aim is to find
such frequency bands in a signal where energy exists (see Marple 1987, Chap. 8).
The transfer function of an AR model system (LTI = linear, time-invariant; cf.
Bachmann 1992, Chap. 13) implemented as a recursive IIR filter can be given as

Hðf Þ ¼ 1

1þ
Pk

k¼1
ak exp½�j2pfkT �

ð7Þ

Fig. 7 Cochleagram of a complex sound containing organ and bell sound
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The issue that makes AR techniques difficult is that one must choose a certain
model as well as the order of the model (i.e., the number of poles in the complex
z-plane). In practice, one must have some knowledge about properties of the signal
to be analyzed in beforehand, or otherwise check various models and prediction
order settings to find a good solution. ‘Good’ in this respect means the signal
should neither be underanalyzed (for this will lead to missing part of the relevant
spectral information) nor overanalyzed (which will result in spurious peaks in the
spectra that do not represent energy at frequencies actually contained in the
signal). Experimenting with various models (such as Burg, Autocorrelation,
Covariance, Modified Covariance [ModCov]; see Marple 1987) and block lengths
in processing sounds recorded from bells and harpsichords, Keiler et al. (2003)
found that a stable analysis valid with respect to a mathematically defined signal
which includes both FM and AM could be achieved best with the ModCov model
(which did yield more precise and valid results than the Burg model at identical
prediction orders and block sizes); a condition that must be met for stable AR
analyses with ModCov is that the prediction order does not exceed a limit of 2/3 of
the block length of samples used for analysis. Accordingly, AR9 applied to the
analysis of a transient organ sound produced by the pipe C4 (in the Helmholtz
system, this is c’) of the Quintadena 160 stop uses ModCov on a block of
N = 355 samples with a prediction order of p = 192. For the analysis, a sequence
of blocks was processed to yield data for one second of sound sampled at 16 bit/
48 kHz. One should note that 355 samples at 48 kHz sampling mean *7.4 ms of
the sound signal. The organ sound put to AR analysis is peculiar in that harmonic
no. 7 audibly sets in first (what is a rather rare case for an organ pipe). The issue to
be checked with AR analysis was (a) whether the auditory sensation is correct, and
if so, (b) what the exact onset time as well as (c) the estimated frequency position
for the partials might be as they appear in the sound one after another. The result of
the AR analysis is shown in Fig. 8:

One can see that the fundamental is at ca. 143 Hz, and that only odd harmonics
(1, 3, 5, 7, 9) are present with noticeable energy (as it should in a covered
Quintadena pipe). Partial no. 7 indeed sets in first and builds up fast to a stable
vibration (with a corresponding strong line in the AR spectrum marking its fre-
quency at ca. 1015 Hz).10 However, after ca. 250 ms, this mode of vibration starts
to modulate (initially, almost in a periodic fashion) and then disintegrates.
Conversely, the fundamental mode undergoes a transient phase of about 100 ms

9 The code used for analysis was programmed in MatLab by Can Karadogan and Florian Keiler
while working in the Department of Signal Processing and Communications of the Helmut-
Schmidt-Universität Hamburg. The AR tool was developed to be used in a joint project directed
at the study of transients in the sound of musical instruments (cf. Keiler et al. 2003).
10 Fourier transforms of the steady-state part of the sound show that partial frequencies for
higher harmonic partials are not exactly at integer ratios. Moreover, frequencies for partials
including the fundamental fluctuate over time as can be seen from increasing values for variance
of frequencies in longer FFT transforms (e.g., 65536). However, ACF analysis clearly gives a
single ‘pitch’ for this pipe tone corresponding to 143 Hz.

Fourier-Time-Transformation (FTT), Analysis of Sound and Auditory Perception 313



and then reaches a fairly stable regime of vibration (the frequency in the spectrum
from then on shifts only slightly over time). Partial no. 3 is very unstable for about
200 ms and only after 300 ms begins to reach the harmonic frequency at ca.
431 Hz. Partial no. 5 sets in with a swing around the expected harmonic frequency
of 715 Hz and after 150 ms disintegrates (not to recover within the time window
of 520 ms under review). Partial no. 9 sets in weakly in a frequency range that is
above the expected harmonic frequency range; after ca. 200 ms, this partial gets
somewhat more stable for about 100 ms to undergo heavy modulation thereafter.
The AR analysis indicates that partials 1, 3, 5, 7 set in almost at the same time,
however, partial no. 7 indeed becomes audible first so prominently because it is the
only partial for which a stable vibration and a corresponding frequency exist for at
least 150 ms from onset.

Since reliability and validity of AR analyses are often difficult to assess (this
holds true in particular for unknown types of signals where one must make
assumptions as to the structure of the signal), it is always wise to check the results
with another method. This has been done with a high-resolution filter bank making
use of a complex-valued, quasi-continuous wavelet transform that offers calcula-
tion of instantaneous frequencies (Solbach et al. 1998). A complex-valued signal
has the advantage that the instantaneous frequency can be determined for very

Fig. 8 Quintadena 160, pipe/
tone C4, AR-Analysis
(ModCov) 0–1.5 kHz
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short segments (or even single sample points).11 For the present analysis covering
four octaves each of which was separated further into four bands in order to
simulate the bandwidth of the auditory filter, a gammatone filter was used as
mother wavelet. The gammatone filter is considered a good approximation to the
human auditory filter (cf. Patterson et al. 1992) and has been implemented in many
auditory models (see, e.g., Meddis and O’Mard 1997). For the gammatone filter
defined in the time domain the impulse response is given as

gc tð Þ ¼ c n; kð Þ � e tð Þtn�1 � e�kt � cos 2pf0tð Þ; n � 1; k [ 0; ð8Þ

where n is the filter order, k [ 0 is the damping factor, f0 is the center frequency
of the filter, e(t) is the unit step function, and c(n, k) is a normalization constant.
For the present analysis, a 4th order IIR filter with a relative bandwidth of 0.05 is
used. The upper limit frequency of analysis was set to 1600 Hz. The results of the
analysis are displayed in Fig. 9. The frequency axis has logarithmic spacing (the
distance between frequencies printed on the y-axis is 400 cents; ticks on the x-axis
are at a distance of 100 ms):

Fig. 9 Quintadena 160, tone/pipe C4, wavelet gammatone filter

11 The usual approach (cf. Cohen 1995, 30ff., Flandrin 1999, 26ff.) is to calculate the so-called
analytic signal by means of a Hilbert transform (Flandrin rightly calls the analytic signal a
‘‘complexified’’ signal).
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The analysis clearly shows partial no. 7 to appear as a stable spectral compo-
nent of definite pitch before the fundamental sets in weakly a hundred ms later
fluctuating somewhat in frequency. Even more delayed is partial no. 3 which is
300 ms behind partial no. 7 yet quite stable in frequency. The wavelet analysis has
been repeated with a Gaussian as mother wavelet for five octaves and twelve filter
bands per octave; this fine-grain analysis detected partial no. 5 in addition to
partials 1, 3 and 7. The two wavelet analyses are in good agreement with the AR
analysis though the latter is even more detailed in very short signal segments while
the wavelet analysis based on the gamma-tone filter might be closer to the actual
behaviour of the auditory periphery (see below).

4 ‘Perceptually Adequate’ Analysis and the Fourier-Time-
Transform (FTT)

In the following, some fundamentals of psychoacoustics will be considered and
compared to parameters found in DSP-based analysis and auditory modeling. The
latter aims at a realistic ‘emulation’ of the auditory system in regard to basic
functions and actual performance (cf. Meddis et al. 2010). Signal-analysis tools
such as WT and FTT are less complex than full-grown auditory models (e.g.
Meddis and Lopez-Poveda 2010), however, they can be viewed as representing the
initial stage of BM filtering and thus are important as auditory ‘preprocessors’
(cf. Solbach et al. 1998; Terhardt 1998) that generate output used further in pitch
and loudness perception as well as in auditory scene analysis. It should be un-
derpinned that effective neural processing of complex sound naturally depends on
the quality of (peripheral) BM filtering; the faster and the more precise this stage
operates, the better neural processing along the auditory pathway can be achieved.

4.1 Frequency and Time Resolution; Discrimination
and Recognition Tasks

The Fourier integral (see Bracewell 1978, Chap. 2; Meyer and Guicking 1974,
70ff) which is fundamental to Fourier analysis can be viewed as presenting a time
function x(t) in terms of frequency (or, rather, angular frequency x). The Fourier
integral considers frequency in an infinite interval (-? B T B ?) and thus, as
Gabor (1946, 431) has put it, sub specie aeternitatis. In musical signal analysis,
however, one has to work with sounds that change over time, and often abruptly
so. The answer to this situation was to consider applicability of Fourier theory to
signals of definite length as well as to signals that lack clear periodicity and which
are inharmonic in spectral composition. For practical reasons, techniques such as
STFT (see Mertins 1996, Chap. 4, 1999, Chap. 7) were developed. The basic

316 A. Schneider and R. Mores



concept for STFT is to multiply a sound signal x(t) by an analysis window g(t) and
then compute the Fourier transform. For the analysis of a time signal, typically
windows of length N = 2n, n = 8, 9,…, k are chosen. If the signal to be analyzed
is longer than N, the signal is processed frame by frame (with an overlap of 50 %
or more to ensure continuity). Hence the window ‘‘slides’’ along the time axis by
an amount defined by a shift parameter s. The result thus obtained can be displayed
in 2D or in (quasi) 3D-images such as Fig. 6 above. Though the STFT is regarded
a good analysis tool that has been widely applied in acoustics and in particular in
musical acoustics, it has a certain disadvantage in that conventional Fourier-
transform algorithms operate on fixed values for N, which defines both Df and
Dt in a two-dimensional time/frequency plane (with f [Hz] as ordinate and t [ms] as
the abscissa). Hence, time and frequency resolution are constant over the total
bandwidth of analysis. In terms of Gabor’s logons (see above), a uniform rectangle
as ‘‘analysis box’’ results for low as well as for high frequency bands. An analysis
window of constant length N = 2n samples applied to the full bandwidth of human
auditory perception (ca. 25 Hz–16 kHz) seems unfortunate because our auditory
system apparently needs a certain number of signal periods rather than a fixed time
interval for pitch analysis (see below). Since the period duration T (ms) varies with
frequency, the analysis window (either expressed in ms or in the number of
samples) should be longer for low frequencies as compared to middle and high
frequency bands.

In regard to temporal resolution relevant to hearing, a range of ‘time constants’
basic to temporal integration has been issued. It has been critically remarked that
‘‘time constants’’ estimated from different experimental tasks range over three
order of magnitude, from 250 to 200.000 ls (Eddins and Green 1995, 207). In fact,
there are different time constants relevant for different perceptual tasks as well as
in regard to triggering motor responses, etc. In view of acuity achieved in dis-
crimination tasks, minimum integration time in hearing appears to be 2–5 ms,
depending to some extent on types of stimuli and conditions (see, e.g. Bilsen and
Kievits 1989 who used so-called white flutter pulses). The data, which have been
obtained in gap detection as well as in other experiments, are uneven (cf. Moore
2008, Chap. 5). Among relevant factors, time-intensity trades have to be taken into
account (temporal integration depends on intensity or sound level; see Eddins and
Green 1995). If minimum integration time of ca. 2–5 ms is interpreted in terms of
response time of the auditory filter (as has been done), it appears that the response
time perhaps plays a small role at low frequencies (100 \ fgr \ 500 Hz) but not
for frequencies above 1 kHz.

Other ‘time constants’ refer to noticeable asynchronies in the onset of the same
tone played by two instruments (typical values seem to be 10 \ t \ 20 ms), to
‘‘smearing’’ of several discrete echoes that occur in a room within a certain time
span (t \ 50 ms) into a sensation of quasi-continuous reverberation, and to tem-
poral integration of energy in the sensation of loudness (most experimental data
suggest an interval of 100 \ t \ 200 ms). In regard to such ‘time constants’, one
of course has to distinguish between discrimination and identification tasks, not to
forget temporal organization of sound objects on a higher level such as grouping
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and chunking in music cognition (see Snyder 2000). Discrimination for example in
2fc-experiments simply calls for responding if a certain ‘event’ did happen or not
irrespective of what the informational ‘content’ of such an event may be. A very
short pulse or noise burst will be sensed as a ‘knack’ but is not accessible for
detailed auditory analysis. Even decisions subjects have to make whether a
stimulus presented in a pair of sine tones is ‘higher’ or ‘shorter’ than the other (a
design typical of experiments directed to difference limens for Dt and Df relative to
frequency bands) might just require a modicum of information on the side of the
subject as to the nature of the stimuli. In contrast, identification of a stimulus in
regard to one or several properties needs considerably more time since sound input
that has been transformed into neural spike trains must be processed along several
stages of the auditory pathway before, for example, a certain ‘pitch’ can be
assigned to a stimulus. If one accepts periodicity detection and temporal pro-
cessing for pitch as the predominant principle (notwithstanding significant evi-
dence for rate-place representations and tonotopicity), the periods of time signals
that might occur in musical sound are roughly from 33 ms (30 Hz) to 0.067 ms
(15 kHz). Therefore, a maximum lag of 33 ms has been implemented in an ACF
model suited to account for very low frequencies down to 30 Hz (Pressnitzer et al.
2001). In addition, time needed for arbitrary pitch estimates has been suggested as
being 66 ms, with possibly less time down to about 40 ms or even 20 ms needed
for such signals where subjects have a certain knowledge as to their likely pitch
range in beforehand (cf. de Cheveigné 2005, 205). If 66 ms is a correct ‘time
constant’, for most of musical relevant frequencies it would cover several or even
many periods. In some early experiments, the time needed for developing a clear
sensation of pitch for a sine tone varied from about 60–100 ms for very low
frequencies (50 Hz) and ca. 30 ms for 300 Hz to about 15 ms for a frequency
range of ca. 0.5–5 kHz (Bürck et al. 1935). From the empirical data as well as
from considerations concerning the physics of the signal (that was switched on and
off in an electronic circuit) and conditions of measurement, Bürck and colleagues
calculated curves of tone recognition times as a function of frequency where about
80–100 ms would be required for a sine tone of 100 Hz but only ca. 5–10 ms for a
sine tone in the range 1–5 kHz. Taking these approximate figures, one may
hypothesize that pitch estimates for sine tones require about 5–8 periods of the
time signal. The estimate figures mentioned above (to which several more from
various experiments can be added) can be taken as tentative time constants in
computational models of auditory perception.

In regard to frequency discrimination in hearing, for frequencies of two pure
(sine or cosine) tones presented one after another, and with constant sound pres-
sure level (SPL), the difference limen (DL) or just noticeable difference (jnd) has
been estimated to be of the order of 1/30 of the Critical Bandwidth (CB). The
concept of CB (see Moore 1995; Zwicker and Fastl 1999, Chap. 6) refers to BM
excitation and filtering. From empirical data, a cochlear tonotopic frequency map
has been proposed (cf. Greenberg 1990) where one CB corresponds to ca.
0.89 mm of BM. Hence, 1/30 of this unit would have to be considered as the jnd in
regard to place theories of pitch and BM excitation patterns. However, one has to
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see that hearing is a dynamic process based on feedback regulation and fast
adaptation to stimulus conditions (otherwise, extremely sharp frequency discrim-
ination as observed in trained musicians and very short recognition times for pitch
and timbre of complex sounds would not be possible). Therefore, it seems only
natural to see that center frequencies, bandwidths and shape of auditory filters
(AF) vary with BM excitation level and bandwidth of input signals. Further, it is
obvious that CB models such as have been proposed for loudness summation and
place theories of pitch should be taken as a basic concept that must be validated
with empirical data since a number of assumptions pertaining to CB models do not
hold in a strict sense (cf. Moore 1995). Empirical data on CBs indicate that the
Bark scale comprising 24 or 25 (in theory: non-overlapping) filter bands is not
quite appropriate in particular for low frequencies (fc \ 500 Hz) since the band-
width of the AF increases significantly with decreasing frequency. This effect is
most prominent for fc \ 200 Hz (cf. Jurado and Moore 2010; Schneider and
Tsatsishvili 2011). Compared to the Bark scale (cf. Zwicker and Fastl 1999), the
so-called ERB scale (ERB = Equivalent Rectangular Bandwidth) comprising
about 40 filter bands fits better to perceptual data though it does not fully account
for pronounced increase of bandwidth at low frequencies. Each ERB is calculated
by taking 4fc/p, where fc is the center frequency and p is a filter parameter that
determines the passband and the slope of the filter. In regard to modeling, the
‘‘effective bandwidth’’ for each AF along the BM depends on place and center
frequency (that apparently is not fixed yet variable within a certain range), on
sound level as well as on spectral energy distribution and spectral flux within audio
signals. Very roughly, one can approximate CBs by 1/3 octave band pass filters. In
reality, the ‘‘effective bandwidth’’ of AFs seems to vary from about one octave at
very low frequencies to close to 250 cent around 1–3 kHz.

4.2 Wavelets and FTT

Wavelet analysis is one of several methods that have been developed to account
for Gabor’s logon concept and to provide equally good time and frequency res-
olution over the bandwidth of auditory perception. Wavelet analysis basically can
be viewed as a Fourier approach where the window of analysis g(t) is shifted in
frequency by X0, that is, multiplied in the time domain by eiX0t. Similar to STFT, a
sliding process along the time axis is part of the analysis with an increment of s.
Wavelet analysis (cf. Dutilleux et al. 1988) further includes a part equivalent to the
‘window’ g(t), namely the analyzing wavelet h(t) = eiX

0
t g(t) that is dilated in

frequency by a parameter a so that

hða;sÞðtÞ ¼ 1ffiffiffi
a
p h

t � s
a

� �
: ð9Þ

The wavelet transform (WT) of a continuous time signal s(t) then is
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Whðs; aÞ ¼
1ffiffiffi
a
p
Z

h
t � s

a

� �
sðtÞdt ð10Þ

The wavelet transform is computed by convolving the signal with a time-
reversed and scaled wavelet (see Evangelista 1997). In regard to sound analysis,
WT can be considered as a kind of band pass filter where the center frequency and
the bandwidth of the filter can be varied by different values for the parameter a (cf.
Mertins 1999, Chap. 9). In this respect, WT effectively computes a constant-Q filter
analysis as has been employed in the gammatone filter analysis shown above
(Fig. 9) where WT was performed for a frequency band of 0–1.6 kHz divided into
four octaves each of which was subdivided into four bands of 250 cents to
approximate the bandwidth of the auditory filter (AF) with respect to CB concepts.

A concept similar to STFT as well as to WT in certain respects is the Fourier-
Time-Transform (FTT) as proposed by Terhardt 1985. In an article in which he
considered properties of several different Fourier transforms, Terhardt argued that
Fourier transforms are not restricted to periodic signals, and that the actual analysis
window must not be identical with a period (or several periods) of a time signal
p(x) to yield valid spectral representations (a criterion to check validity of course is
whether or not restoration of the time signal from the spectral data by an inverse
transform can be achieved). Without going into details (many of which relate to
linear systems theory rather than to ‘‘plain’’ spectral analysis), the argument put
forward by Terhardt is that, for causal systems and signals, analysis of a physical
signal such as sampled sound can be confined to time intervals from t = 0 to t so
that the FTT for one-sided signals is given by

Pðw; tÞ ¼
Z t

0

pðxÞe�wxdx; t [ 0 and w ¼ j 2pf ¼ jx ð11Þ

The spectrum P(w, t) for every instant t represents the time signal within a time
interval that is defined as -?\ x B t. Also, p(x) = 0 for x \ 0. For practical
applications, signal values that are far in the past are of little relevance as to the
current state of a system or signal12; therefore, the signal is multiplied by an
exponential weighting function exp(-a(t - x)) where a C 0 is a damping factor
that can have values of 0–1. Consequently, with the exponential weighting
included, Eq. (11) becomes

12 The same consideration was made in ‘‘running’’ autocorrelation algorithms, which typically
‘‘slide’’ along a time signal and include a weighting function to successively discard past sample
values so that ACF in fact is computed from an ‘‘effective time window’’ of N samples up to the
sample point t moving with time. As to the equivalence of ‘‘running’’ ACF and FTT, see Terhardt
1998, 94f.
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pðw; tÞ ¼
Z t

0

pðxÞe�aðt�xÞ e�wx dx; t [ 0 ð12Þ

FTT applied to one-sided signals yields two parts, one steady-state and one
transient (cf. Terhardt 1985, Eqs. 32 and 33)13; the transient part vanishes with
ongoing time; also, amplitude density distribution narrows with time passing, and
approaches a steady-state bandwidth of Dx = a (3 dB cutoff frequency). After
signal onset, the steady-state is reached at about t = 1/a (1/a is also the time
constant of the exponential weighting). The damping factor a can be employed to
control the steady-state bandwidth (that can be narrowed, however at the cost that
the time needed to attain the steady-state proportionally increases). For simple
cosine signals of sufficiently high frequency, the FTT magnitude spectrum
according to Terhardt (1985, 254) is largely similar to the output of a simple-
resonance filter for which the 3 dB bandwidth is B = a/p. Given that the boundary
between transient part and steady-state part can be taken as the ‘‘effective time
window’’ of the analysis defined by 1/a, the product of the effective time window
and the steady-state bandwidth would be as small as 1/p = 0.3183.

If this product would be viewed in terms of the uncertainty relation in regard to
signals and systems, it would clearly be far below Gabor’s theoretical limit of
Df Dt = 1/2. In this context, it might be noted that, for signals of given (rms)
duration and energy (set to a value of 1), the uncertainty product has been cal-
culated by Papoulis (1962, 62f., Eqs 4-39–4-46) as

Dt � Dx�
ffiffiffi
p
2

r
ð13Þ

where the equality holds for Gaussian signals (i.e., the product numerically yields
1.2533). The difference between products Df Dt C 1 (Eq. 2) postulated from
mathematical analysis and values much smaller than 1 calculated for FTT and
other filter models results from the 3 dB bandwidth parameter, which is common
to filter design and performance tests yet must not necessarily apply to auditory
perception. The bandwidth of the AF as determined in hearing experiments
involving subjects of different age (Patterson et al. 1982) can be roughly given as
11 % of the center frequency for young adults who have not yet suffered hearing
loss. For a fc of 0.5, 2 and 4 kHz (as were employed in the experiments of
Patterson et al. 1982), this means a relative filter bandwidth of ca. 191 cents
(corresponding to the musical interval of a major second). Alternatively, the
normalized width of the equivalent rectangular filter (roex[p, r]) has been given as
BWER/fc = 4/25 = 0.16 (Patterson et al. 1982, 1801).

In FTT analysis, parameter values for bandwidth B and damping factor a can be
set so as to simulate performance of the auditory periphery. To this end, the
bandwidth should be that of the CB (cf. Zwicker and Fastl 1999, Chap. 6) divided

13 A more detailed analytic formulation of the FTT is given by Mummert 1997.
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by 25, which would not be too far away from the jnd for pure tones14 Referring to
analytical expressions designed to approximate critical-band rate and critical
bandwidth (Zwicker and Terhardt 1980), Terhardt suggested that an ‘‘audio FTT’’
could be performed with the parameters set like

B ¼ a=p ¼ 1þ 3 1þ 1:4 f=kHzð Þ2
� �0:69

Hz ð14Þ

Assuming that there are 24 CBs (expressed as a Bark scale), the frequency
resolution for the FTT is 24 9 25 = 600 frequency samples per spectrum deemed
sufficient and necessary to model peripheral auditory analysis (cf. Terhardt 1985,
255). In regard to the effective window length (i.e., the analysis interval TA)
relative to frequency bands, Terhardt (1992, 378) has given these figures:

f/kHz 0.1 0.5 1 2 4 8
TA/ms 24 22 16 8 2.7 0.74

Numerically, for a sampling rate at 44.1 kHz, an effective window length of
24 ms would correspond to 1058 samples falling into this time interval. A cosine
signal of f = 0.1 kHz and a period of 10 ms would cover 441 samples per period
so that the analysis interval will have access to, on the average (as the analysis
window slides along the time signal), two periods of the signal. The ratio is much
better at higher signal frequencies and shorter periods where the analysis window
would hold (at best, if no truncation occurs) 16 periods at 1 kHz as well as at
2 kHz. The effective window length of the FTT has been calculated (Vormann and
Weber 1995, 1191) as

T xð Þ ¼ 2:988=a xð Þ ð15Þ

where a(x) is the frequency-dependent transformation parameter. Correspond-
ingly, the bandwidth is given as

B xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 1
pp

p
� a xð Þ ð16Þ

whereby an uncertainty product T 9 B & 0.61 has been calculated. This of course
would outperform a conventional Fourier transform analysis by far so that time/
frequency resolution close to the cochlear filter bank can be expected from the
FTT analysis (see below). In some of the relevant publications (Heldmann 1993;
Vormann 1995), values as to T and B as well as to their product differ somewhat;
parameter values as found in the literature for the 1st and 2nd order as well as
estimates for the 4th order are given in Table 1:

14 For example, one CB included in the table given by Zwicker and Terhardt (1980, p. 152),
ranges from 920 to 1080 Hz with fc = 1000 Hz and is 160 Hz wide; divided by 25, the frequency
step would be 160/25 = 6.4 Hz as compared to the jnd at 1000 Hz, which is ca. 3 Hz.
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In this table, a denotes the scaling factor a(x), and t denotes the time axis. For
practical reasons, parameter values may be rounded like

Order 1 2 4

Window function e�at t � e�at t3

6 � e�at

dT 1/a 3/a 5/a
B a/p 0.644 a/p 0.435 a/p
dT * B 1/p & 0.32 1.93/p & 0,61 2.17/p & 0,69

The bandwidth B for any order of analysis n can be calculated according to

B ¼ a

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1
n � 1

p
ð17Þ

The original FTT algorithm (see Terhardt 1985) has been improved later on in
regard to the weighting function (cf. Schlang and Mummert 1990, Terhardt 1998, 97)
where a form a t e-at has been proposed. Also, weighting of the form h(t) = t3e-at

has been introduced for a 4th order FTT (as h(t) in this case is equivalent to the
Laplace transform of a 4th order low-pass filter, see von Rücker 1997).

For comparison of conventional Fourier transform and FTT analysis, a number
of natural sounds were chosen; in addition some complex sounds based on FM and
AM processes were generated with Mathematica. In the following, the results for
the organ sound (Quintadena 160, pipe/note C2) on which a bell sound has been
superimposed (see Figs. 5–7) will be presented.

In the FTT algorithm applied to analysis, a 4th order weighting function had
been implemented. Since the effective time window for the standard FTT has been
given as 24 ms at 0.1 kHz, corresponding to 1058 samples at 44.1 kHz sampling
(see above), a comparison to an FFT of 1024 sample points seems a reasonable
choice. However, the FFT also employed a weighting function for which a
Blackman window was chosen.15

The analysis obtained with a FFT of 1024 and Blackman weighting is shown in
Fig. 10:

The same sound subjected to 4th order FTT analysis is displayed in Fig. 11:

Table 1 FTT parameters

Order 1 2 4

Window function e^ - ax x e^ - ax x3/6 e^ - ax
Resolution dT 1/a 2.988/a 4.990/a
Bandwidth (B) a/p 0.6436 a/p 0.4350 a/p
dT * B 1/p 1.923/p 2.171/p

15 The ENBW for the Blackman window is 1.73 bins in DFT and the 3.0 dB bandwidth is 1.68
bins.
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From a comparison of both analyses presented as 3D-plots (were the abscissa [x]
is in Bark[z], the ordinate [y] is in dB, and time (ms) is in the z-dimension) one can
see that time and frequency resolution for the FTT at low frequencies is consid-
erably better than with the 1024 point FFT subjected to Blackman weighting. Note
that with a FFT length of N = 1024 and sampling at 44.1 kHz, frequency resolution
(Eq. 3) nominally is ca. 43 Hz. As this is the constant bandwidth of the FFT

Fig. 11 Organ (Quintadena 160 C2) plus bell, 4th order FTT

Fig. 10 Organ (Quintadena 160 C2) plus bell, FFT 1,024 pts, Blackman
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analysis (a DFT can be viewed as equivalent to a filter bank), the signal is under a
fine-grain analysis at higher frequencies (Bark[z] 10–20) so that the FFT analysis
picks many small spectral components corresponding to higher modes of vibration
of the bell while the FTT analysis is more condensed since it relates to the concept
of CBs, and therefore integrates such components which are closely spaced in
frequency into broader ‘‘spectral ridges’’ (Fig. 11). A similar picture would be
obtained with a WT-based analysis. One can argue that auditory perception of
complex sounds basically is directed at picking spectral peaks that are present
during a reasonable time interval (relevant as ‘integration constant’ in regard to
hearing). In this respect, a limited number of clearly expressed ‘‘spectral ridges’’
may be more relevant to actual hearing as this must be performed in quasi-real time,
and consequently calls for some temporal as well as spectral integration
(as reflected in CBs and ‘integration constants’). Algorithms directed to finding
peaks in spectral envelopes are quite common as in LPC (see Fig. 4) or similar
source-filter analysis models (cf. Rodet and Schwarz 2007); if a sequence of frames
is processed so that spectral envelope peaks can be separated and extracted, the next
step is to connect such peaks from one frame to the next so that ‘tracks’ for
harmonic partials or inharmonic components result over time. Such tracks then can
be used for finding quasi-continuous pitch contours or for separation of ‘sound
objects’ in a computational auditory scene approach (cf. Kostek 2005).

Comparison of the two types of analysis (‘‘plain’’ Fourier, FTT) may indicate
an advantage on the side of the FTT as one would expect from uncertainty
products reported in the literature. However, the difference obtained in several
analyses (of which but one example is included in the present article) seems
gradual rather than principal. To optimize analysis, one often has to experiment
with parameter settings. In addition, it is always revealing to apply different
methods and models to the analysis of particular sound samples because in this
way one can try to extract as many distinctive features as is needed for a certain
problem, and at the same time the results obtained with one method can be tested
for validity and reliability by using a second or even a third tool.

As far as ‘perceptually adequate’ analysis is concerned, comparison of several
models including Gabor filtering, a linear, simplified but functional cochlear model
(first published by Netten and Duifhuis 1983), WT and gammatone filtering tested
for their impulse responses resulted in kind of a ranking (Hut et al. 2006) where
Gabor filtering was leading in regard to the uncertainty product, but also the linear
cochlea model performed well. WT was judged to be unsuited to auditory mod-
eling because an ‘auditory wavelet’ would not exist, and, therefore, Hut et al.
(2006, 633) concluded that wavelet analysis methods cannot be used in perception
research. The gammatone filter (implemented in many auditory models) according
to these tests did well in terms of general purpose linear time–frequency filtering,
but does not give a good cochlear representation (Hut et al. 2006, 635). Since an
advanced cochlear model (Mammano and Nobili 1993; Nobili and Mammano
1999) seems to provide extremely good resolution in both time and frequency
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(Russo et al. 2011) with Df Dt & 0.55, and hence close to the Gabor limit of 0.5,
this approach perhaps could be the most promising to approximate performance of
the auditory system even further (for recent developments, see Meddis et al. 2010).
It should be noted, in this respect, that known values for the ‘uncertainty relation’
have been questioned to hold for the human auditory system (see, e.g. Kral and
Majérnik 1996). The reason for such an assessment based on empirical data in
most cases was that the performance of the auditory system in discrimination tasks
(where stimuli were varied in frequency, level, and duration) was better than
accepted values for the ‘uncertainty product’, on the one hand, and the relation
between band-width and duration apparently was not linear, on the other. An
explanation for this system behaviour can be found on the level of functional
neuroanatomy and neurophysiology since hearing is effected by a complex net-
work involving ascending and descending pathways as well as feedback regulation
loops (as in OHC motility and BM/TM adjustment necessary for sharp frequency
discrimination and ‘pitch’ processing; OHC = outer hair cell, BM = basilar
membrane, TM = tectorial membrane; see Pickles 2008).

5 Conclusion

The present article intends to shed light on several approaches to digital sound
analysis that are viewed (a) as tools useful for research in musical acoustics and
organology, and (b) in regard to auditory perception. Besides the proven Fourier
analysis techniques such as STFT, especially for the study of transient or impulsive
sounds other methods such as WT (see Zhu and Kim 2006) or AR can be applied for
time/frequency representations. To account for characteristics of the auditory
systems, namely different resolution power relative to the period length (ms) of
nearly periodic as well as quasi-periodic sound signals (meaning spectral structures
ranging from harmonic to inharmonic; see Schneider 1997, 2001), algorithms
simulating peripheral filtering must be designed which offer appropriate filter
bandwidth and time constants. WT and gammatone filter banks are among such
algorithms that can be applied to many sounds, and can thus be considered versatile
tools. If an approach is needed which is closer to functions found implemented in
the auditory system, computational models such as developed by Meddis and
O’Mard (1997, 2006) should be applied to the study of musical sound in regard to
psychoacoustics and perception (see Schneider and Frieler 2009). The FTT model
that was proposed already in 1985 still can be a useful method for time/frequency
analysis that is close to basic parameters of the auditory periphery.
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Performance Controller for Physical
Modelling FPGA Sound Synthesis
of Musical Instruments

Florian Pfeifle and Rolf Bader

1 Introduction

In Musical Acoustics, realising real-time solutions for Physical Models is a hot
topic. The sound quality and variability of musical instrument sounds calculated
by whole-body formulations will be strongly pushing this field towards a variety of
different solutions in the near future. As the session of real-time implementations
of Physical Modelling in Musical Acoustics at the Joint Meeting of the American
Acoustical Society with the European Acoustical Society in Paris 2008 showed
(Smith 2008), many attempts are discussed, yet none of them is working with
satisfactory results in real-time. Yet, the first working solution of such a real-time
implementation is by using a Field-Programmable Gate Array (FPGA) hardware
with a Finite-Difference Implementation, like presented for the Banjo (Pfeifle and
Bader 2009), the violin (Pfeifle and Bader 2011), or other musical instruments
(Pfeifle and Bader 2011, 2012). The advantage of using a Finite-Difference scheme
compared to e.g. a Finite-Element solution is that high frequencies are represented
much more realistically. Still, Physical Models using Finite-Differences with
whole-body implementations are far from real-time on a standard Personal
Computer. On the other hand, simplifications of the model to regain real-time
performance is not satisfying if one wants to simulate physically accurate models.
So e.g. reducing the number of Degrees of Freedom (DOF) in these models does
effect the higher partials of sounds considerably. Also changing the instrument
shapes, e.g. through spatial distortion, is too time consuming to work in real-time.
Reducing the complexity of instruments in terms of geometrical simplifications
clearly leads to simplified solutions (Smith 2008). Also, these models can scarcely
be varied in terms of the geometrical fine structure of the instruments and therefore
in modelling the constituent parts crucial for musical expression and articulation.
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But, using a FPGA hardware, such complex models can be formulated and solved
in real-time for instantaneous sound production. This chapter introduces the basic
idea of physical models and their FPGA implementation. Additionally we present
a real-time control implementation for interacting and manipulating the models on
the FPGA. With this, arbitrary parameters of the model, like material constants,
the geometry, etc. as well as performance parameters for playing the instrument
can be changed in real-time. This allows for direct interaction with the instrument
model in a musical setting or an immediate auralisation of parameter changes.

1.1 Physical Modelling

Physical Modelling of Musical Instruments has become a well-established technique
when researching important properties for musical performance or instrument
building (Bader and Hansen 2008). It has been applied to many instruments. With
guitars it could be found, that the coupling of bending and in-plane waves in the
guitar body plays a crucial part in the radiated sound (Bader 2005a, b). Also the need
to build the guitar back plate under tension to enhance the sound’s brightness could
be shown. When systematic changes are applied to the thickness of top plate, back
plates, rims, fan bracing, and ribs, the change in brightness of the sound radiated
from the different parts do sometimes show a linear but mostly a nonlinear behav-
iour, caused by the complex coupling of these parts. So e.g. if the fan bracing is
added to the top plate and so reduces the flexibility of the plate, resulting in reduced
radiation energy of the higher harmonics, this stiffer top plate is able to transport the
higher modes to the neck much stronger. This again leads to a stronger radiation of
the high frequencies with increasing fan bracing thickness (Bader 2008b). Other
investigations show the possibility to model the guitar employing modal synthesis
with respect to the top plate only (Bécache et al. 2005). The precision of modelling is
shown in (Elejabarrieta et al. 2002), where a Finite-Element Analysis of a guitar top
plate is compared to a real top plate through different stages of construction.

Other instruments have been investigated in a similar way, too. The pianos’
sound board has been modelled in (Giordano 2006), where the fan bracing and the
stiffness of the plate play crucial roles in the overall sound behaviour. The kantele, a
finish dulcimer, is investigated in (Erkut et al. 2002). Also a labium is studied in a
similar way, taking fluid dynamics and turbulence into consideration. It could be
shown, that the turbulent damping of the flute is crucial for its impedance, where
only because of this damping of air vortices in the flute at the embouchure hole
causes the flow energy into the tube only to be about 3 % of the whole blowing
energy (Bader 2005d). With saxophones, the role of the thickness distribution of the
reed shape could be shown to produce the sound expected by different reeds of a
commercial reed producer (Bader 2008a). Other investigations concerning the reed
show a very similar air vortex distribution in the mouth piece (Da Silva et al. 2007).

Percussion instruments of many kinds have also widely been studied using
Physical Modelling techniques. Bells show complex behaviour within their
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transient phase as well as in terms of damping or radiation directivity (Schoofs
2002; Lau et al. 2004). Optimization algorithms have been added to a Finite-
Element calculation for bells to find perfect shapes for the bell (Özakča 2004).
Other Percussion Instruments have been investigated, too, like a round drum (Essl
and Cook 2000) discussing travelling waves along the rim of the instrument
important for the transient sound behaviour. In a model/measurement comparison
of the complete bass drum, coupling the drums membranes to the wooden box and
the inclosed air, it could be shown, that the higher frequencies are radiated from
the wooden shell showing its importance in sound production (Bader 2006a).
When investigating a Balinese percussion instrument, the gender dasa played in a
gamelan orchestra, it could be shown, that the trapezoid shape of the plates is
producing additional modes through scattering of waves during the initial transient
phase of the sound (Bader 2009, 2004). This effect is so substantial that it can be
termed as the responsible mechanism producing the overall sound quality of the
instrument.

Violins have been studied using whole body Finite-Difference Methods also,
implementing the string-bow interactions with changing bowing pressure and
velocity (Bader 2005c). Here, also the changes in thickness of different body parts
show a complex interaction structure, meaning, that linear changes in the geometry
of the violin body mostly results in nonlinear changes in the radiated sound. This
effect is also confirmed by investigations of the whole string instrument family,
most prominently in Bissingers research of a Hutchings-Schelleng violin octet
(Bissinger 2003).

Summarising these investigations, Musical Instruments do show properties in
their sound design which can only be treated when examining the fine structure of
the instrument geometry. These fine structural elements can be the precise shape of
the instrument body, coupling between different body parts, thickness distribution
of plates like violin top plates, the shape of fan bracing common with guitars, the
distribution of turbulence during blowing, or the thickness distribution along reeds
with saxophones or clarinets. All these parameters influence the overall sound and
timbre in such a way that they can be responsible for the subtle differences that
distinguishes one piece from another. So one can say that these fine structures are
responsible for differences in musical expressivity and articulation in musical
performance, and in turn are the parts of musical instruments, where ‘‘the music is
happening’’.

Investigation of these fine structures is often only possible when a geometrical
model of the instrument is built, which includes nearly all details of the instrument
(Bader 2006a, 2009, 2007b; Elejabarrieta et al. 2004). These details are respon-
sible for the fine tuning of the sound under different playing conditions. For
example the quality of a violin may only be judged after using it under many
different conditions, in a chamber orchestra, in large concert halls, with folk music,
as a solo instrument etc. Under all these conditions the violin has to fit the needs of
presence, loudness, or timbre flexibility. These changes are difficult to detect with
methods only concentrating on basic characteristics of the instrument.
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The methods used in the field of modelling of whole instrument geometries are
basically Finite-Element Methods (FEM) (Barthe 2002; Knothe and Wessels
1999), Finite-Difference Methods (FDM) (Bader 2005a; Bilbao 2009), methods of
flow dynamics, like Lattice-Boltzmann method (LBM) or simplified methods, like
Waveguides, Delay-Lines or wave front methods. All these methods use basic
differential equations for bending, in-plane movement, or flow dynamics with
appropriate boundary conditions as are well known from the literature (Leissa
1969a, b; Wagner 1947; Hutchings 1981; Fletcher 2000; Flügge 1962). The
advantage of FEM or FDM is that geometries of any complexity can be perfectly
resolved and any kind of differential equations found to govern the system can be
used in the underlying spatial discretisation. Some disadvantages are the need for
many nodal points to resolve the geometry, and the arising computational cost,
both in memory and computation time. Here a method that could provide a high
spatial resolution with shortened computation time (real-time or close to real-time
in the ideal case) would clearly be desirable.

2 Real-Time Synthesis Solutions

For many reasons, a real-time implementation is of great advantage.

1. Musical instrument shapes are so complex, that many changes need to be
tested. Some sound improvements can only be found by trial and error. Until
now, there is no theoretical framework enabling one to design a desired sound
and use an algorithm which calculates the instrument shape which produces this
sound. So as the possibilities of instrument changes are nearly endless, a fast,
real-time tool is needed to try out changes of instruments while immediately
judge the differences aurally.

2. Experts for musical instruments are instrument builders. As they are not
familiar with Physical Modelling and computer implementations, they would
need a soft- or hardware tool to try different shapes and listen to the results.
Although instrument builders would agree to wait for several minutes to get a
resulting sound, the calculation time of several hours for one sound is too much
to be practical in musical instrument building environments. Here a fast, if not
real-time implementation could be used and would be a great convenience in
instrument building practice.

3. Modern music production is based on real-time sound producing algorithms.
Only in rare cases would a sound designer or musician wait for hours before a
calculated sound can be played. In a realistic musical setting they are in need of
real-time sound synthesis tools. Physical Model sounds do change sounds
within musically reasonable regions and therefore enlarge the creative possi-
bilities to a great extent. A whole geometry tool would be a commercial product
on a still growing market. Many attempts have been made to include Physical
Modelling in sound production by commercial soft- and hardware musical
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instrument building companies, and hundreds of ‘Virtual Musical Instruments’
are on the market. Most of them are just sampled versions of real instruments
which are filtered and manipulated using modern musical signal processing
techniques.

Virtual Instruments that try to get as close to a Physical Model as possible again
use many simplifications. Though the resulting sounds are often very close to the
real instruments they often lack timbre components in the transient or steady state.
Hence, a method using accurate whole geometry Physical Modelling would be a
huge step towards realistic sounding Virtual Instruments.

2.1 FPGA-Hardware

A Field Programmable Gate Array (FPGA) is a special form of a Very Large Scale
Integrated Circuit (VLSI) consisting of matrix-like ordered Logic Blocks, Input/
Output-Blocks, and Routing Channels (interconnection network), and is therefore
similar to an Application Specific Integrated Circuit (ASIC). Logic Blocks are
built out of different kinds of logical units, mainly Look-Up-Tables (LUT) with
AND- and OR-Gates and other vendor specific logic such as FLIP-FLOPs or
Multiplexers. All Logic Blocks can be utilised in parallel and connected with an
interconnection network to yield any function expressible by Boolean logic.
Besides this, a FPGA chip consists of physical input and output ports to connect
the implemented logic to other devices.

In contrast to an ASIC and other forms of VLSIs, all elements of the FPGA are
programmable by the user. This means, FPGAs can be programmed and repro-
grammed using a vendor specific flashing tool, with differing logic as often as
needed. This results in the possibility to prototype, test and implement hardware
algorithms from a standard Personal Computer.

These capabilities of free programmability and of parallel rather than sequential
processing are the great advantages of FPGAs compared to CPUs, DSPs, or other
sorts of Micro Processors. On an FPGA it is therefore possible to compute massive
numbers of instructions in parallel within one clock cycle. To benefit from this
advantage it is crucial to implement an algorithm that processes as many parallel
instructions as possible. It has been shown that an optimized parallel FPGA
algorithm is always superior to a similar sequential algorithm in means of cal-
culation time and maximum clock rates (Brassail et al. 2007; Subasri et al. 2006;
Lis and Kowalski 2008; Zou et al. 2006; Inoguchi 2004). In most cases this
massive parallel computation can be implemented on a single FPGA chip located
on a small mother board, so it is much smaller and much cheaper than a multi-core
server system, where MPI can be used to parallelise the algorithm (Karniadakis
and Kirby II 2003). These systems are very expensive even if only about 64 knots
are used. Furthermore, more knots do not result in a linear speed up anymore. The
FPGA on the other hand is capable of processing large amounts of calculations in
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parallel on one single, small board! FPGA chips can also be implemented in a
commercial solution as e.g. in RME sound cards.

A software version of a model that is intended for implementation on a FPGA
device is written in a special Hardware Description Language such as VHDL or
Verilog. These Programming Languages contain many High Level constructs like
if-, for-, or, while-loops, object oriented programming and some Low Level aspects
like bitwise declaration of signals, variables, and constants. The main difference in
comparison to other programming languages is the concurrent processing of
instructions. This means that unlike e.g. with the C programming language, where
code is evaluated and compiled sequentially, here the code is processed in parallel
and needs to be coded accordingly. Although the FPGA structure is parallel by
nature, sequential statements can also be realised using a Finite State Machine
(FSM) as mentioned above and discussed in more detail below.

Before flashing a VHDL design to a FPGA board, the behaviour of the model
can be simulated using a simulation tool. Similar to a software debugger, the
FPGA code can be simulated using all kinds of different external constraints, like
clock speed, changing temperature specifications or varying input values to the
model. After validating if the simulated model behaves as expected, the VHDL
source code can be compiled and build into a bit-file which then can be flashed
onto the hardware device.

The build-process includes different steps like the translation to hardware
language, mapping of the IO-Ports and finally placing and routing the design, so
that all hardware constraints are met. With these advanced programming tech-
niques the engineer is capable to model and simulate complex Digital Hardware
Systems completely in software before putting them into use on a real hardware
device. This allows very fast and stable development of hardware designs without
the need for a physical Integrated Circuit (IC) development.

2.2 FPGA—Implementations

As discussed above, because of their high speed processing capability and flexi-
bility, FPGA devices are used in many fields of digital signal processing.

In the area of sound analysis and sound source localization, implementations
have been realized for real-time noise source identification (Veggeberg and Zheng
2009), high-speed Direction of Arrival (DOA) algorithms (Hao and Ping 2002), or
Delay And Sum (DAS) beamforming (Chen et al. 2008), besides countless other
applications in this field. All of these works either show real-time realization of the
problem for the first time or find a tremendous sped up using an FPGA with its
parallel processing capabilities.

FPGA implementations in the field of music have been reported, too. Gibons
synthesized a singing voice using Wavetable Synthesis (Gibbons et al. 1998).
Physical Modelling was performed by Gibbons for a mass-spring system (Gibbons
et al. 2005). Motuk solved the 1D model wave equation (Motuk et al. 2005) and a
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membrane (Motuk et al. 2007) on an FPGA board. One recent chapter discusses
the use of FPGA to synthesize industrial sounds (Martins et al. 2008).

Typical signal processing applications for FPGAs include various implemen-
tations of IIR- or FIR-filter designs (Meyer-Baese 2004). In (Madanayake et al.
2004) 2D/3D Plane-Wave Filters are realised using IIR/FIR-Filters. (Shuang et al.
2008) focuses on converting analog to digital controllers using a filter-design with
FPGA. Maslenikow et al. and Brich et al. discuss a method how DSP Filter-
Designs (IIR/FIR) can easily be implemented on a FPGA chip (Maslennikow and
Sergiyenko 2006; Brich et al. 2006).

In the field of sound production, several publications in which an FPGA is used
as a function generator for simple signals like a sine wave or a rectangle signal
have been published (Meyer-Baese 2004; Reichardt and Schwarz, 2007;
Kilts 2007). Most of these works focus on high frequency signals, like an
AM-demodulation chain for a digital radio receiver (Meyer-Baese 2004).

Solving differential equations with FPGAs using finite differences have been
reported before, too. Suzuki et al. discuss the use of a FPGA to simulate an electric
field solving Maxwell’s equations using a FDTD (Finite Differences in the Time
Domain) algorithm (Kolodko et al. 2005). This algorithm is widely used for the
analysis of electromagnetic problems (Shlager and Schneider 1995). Other
approaches to solve differential equations on a FPGA implicitely are e.g. the
implementation of the conjugate gradient method (Strzdoka and Göddeke 2006) or
the Euler Method (Jayalakshmi and Ramanarayanan 2006). For parallel algorithms
solving linear equation systems see also (Karniadakis and Kirby II 2003).

Chapters focusing mostly on the real-time aspect of FPGA implementations are
e.g. particle track recognition (Liu et al. 2008), Direction Of Arrival (DOA)
algorithms (Hao and Ping 2002), High Speed cross correlation (Von Herzen 1998),
Noise Source Identification (Veggeberg and Zheng 2009), or Digital Beamforming
(Wang et al. 2005).

3 Performance Control of the Physical Model

3.1 PCIe Interface

Among multiple other In–Out-Ports that are available on the XILINX ML-605
development board, a standard host-device communication port is the PCIe
(Peripheral Component Interface express) interface. In this project the PCIe-port is
used for high-speed data transfer between the instrument model calculated on the
FPGA-Board (Device) and a Graphical User Interface (GUI) running on a Personal
Computer (Host). In this section an introduction to the basic functionalities of the
PCIe protocol and a short overview on the realised model and the communication
protocol is given.
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3.2 PCIe Fundamentals

In 2002 the PCI interest group, the PCI-Sig consortium1 published the first
specifications of the PCIe protocol as an extension to the established PCI and PCI-
X protocols (Solari 2003). To this day the basic protocol has undergone several
revisions and currently has the version number 3.0.2 See Table 1 for an overview.

One of the most notable differences of the PCIe interface compared to the older
PCI and PCI-X protocols is the serial structure of the data transfer instead of the
prior parallel structure. This fundamental design change arose from the insight that
a Point-to-Point interconnection between devices on a bus permitted higher
transmission rates but where too costly when implemented in a parallel structure
(Solari 2003). The implementation of a serial Point-to-Point communication
protocol had another advantage over the older structure: time consuming bus
arbitration, a standard in the older protocol specifications, was eliminated,
enabling the bus to handle higher clock rates and thus a higher data bandwidth.
Another major difference between the protocols is the transmission of the clock
signal. In the older protocols (PCI and PCI-X) the clock signal was transmitted
over a discrete clock line, this slowed the transmission-rates due to settling time
delays in the reference clock signal. In PCIe the clock signal is retrieved directly
from the data stream. This is accomplished by using 8b/10b coding for physical
transmission of a signal. This coding can represent 8 bit of data in a 10 bit data
word eliminating any voltage offset and assuring a maximal number of zero
crossings of the signal, making it easier to retrieve a clock signal by a Phase
Locked Loop (PLL) circuit. Among many other changes, these three design dif-
ferences ensure an increase in bandwidth of data communication in computer
systems. So today the PCIe interface has become the standard interface for high
data throughput communication of peripheral devices with the central processing
unit in Personal Computers.

A PCIe platform usually consists of specific features shown in Fig. 1.

Table 1 Shows some key differences of PCIe compared to PCI-X and PCI

PCI-Express (PCIe) PCI-X PCI

Bus-structure Serial Parallel Parallel
Maximal data-width 64Bit 32/64 Bit 32/64 Bit
Communication

protocol
Point-to-point protocol Split transaction

protocol
Delayed transaction

protocol
Maximum bandwidth

[megabytes/second]
16000 (Rev.: 3.0) 4260 (Rev.: 2.0) 532 (Rev.: 2.1)

Clock signal Retrieved from data-
stream

External clock
lane

External clock lane

1 A consortium consisting of almost 1000 hardware and software development companies.
2 Some specifications for Revision 4.0 where published in August 2012.
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The Root Complex is the interface between all connected PCIe Devices and the
Central Processing Unit of the Host as well as the memory of the host and an
additional graphics adaptor. Connected to the Root Complex are the PCIe-Devices
or Endpoints via Links. A Link consists of at least one PCIe-Lane up to 32 Lanes.
Each Lane consists of one differential line for each direction. So a 16 9 PCIe Link
(a standard Link size for graphics cards) consists of 16 Lanes with 4 lines for every
Lane. To connect more Endpoints to a Root Complex, a Switch is used to handle
the data transfer and switch between the attached devices.

3.3 PCIe Layer Communication

Following the Open Systems Interconnection (OSI) model3 standard, the PCIe
communication protocol implements the three bottommost layers:

1. The Transaction Layer (TL)
2. The Data Link Layer (DLL)
3. The Physical Layer (PL).

Figure 2 shows a schematic overview of the data communication path of the
presented model. The data payload from the FPGA model is packed into Trans-
action Layer Packets (TLP). The TLP’s are then transported to the Data Link
Layer and further on to the Physical Layer. From the Physical Layer the data is
transmitted to the PC. Each Layer has several specific functions on the data path,
the most important are listed in Table 2:

There are four types of PCIe transactions:

1. Memory write/read transaction
2. In/Out transaction
3. Configuration transaction
4. Message transaction

Fig. 1 Overview of basic
PCIe platform components

3 ISO/IEC 7498-1.
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The IO-transaction is provided for backwards compatibility with PCI so the
most common method for transferring data between a host and a device is using
memory transaction. Configuration transactions are used for writing and reading
the configuration space of PCIe devices. Message transactions include error
messages, interrupt requests or power management event signals.

3.4 Hardware Design

The final hardware design is based on a XILINX Core Designer Project for the
ML605 FPGA Development-Board which implements four on-board Block-
RAM’s with 2048 Kbyte each as addressable Memory- or IO-Space. All data
transactions in the model are implemented as memory read/write transactions. The
control data from the GUI is sent to the FPGA Board as data with a destination
address specifying the type of the control data. When for instance two strings are
implemented on the FPGA board, each string has a different address for the value
of its initial length or its material property. The output data of the model for
auralisation is written to a memory space RAM Block on the FPGA. After one
time-step of the implemented model is calculated, the software on the PC host
reads the content of the memory space and handles all further processing (e.g.
communication with the sound card).

Table 2 Layers of the PCIe transaction

Transaction layer Handles the interaction with the user logic and builds transaction packets
with right header information, like type or direction of interaction

Data link layer Handles error detection and ensures correct Link functionality
Physical layer Converts the data into a serial bit stream with integrated reference clock

Fig. 2 Communication
between the FPGA and the
PC via the physical layer of
the PCIe
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3.5 Software, Drivers, and Controllers

The control of the FPGA Physical Model via the PCIe interface is realized by
several drivers and software. The drivers ensures communication between the
software and the PCIe Interface, while the software communicates with the drivers
to downstream parameters of the physical model to the FPGA and to upstream the
sound produced by the virtual instrument, as well as other calculated values, from
the hardware. Additionally, the software communicates with a soundcard imple-
mented on the root complex, to play the sound produced by the FPGA in real-time
to the performer. This soundcard can be attached to the root complex via another
PCI or PCIe slot, or via a USB port. Of course the calculated parameters and sound
can also be stored on the computer and used for analysis later on. The system
described here is working on a WINDOWS platform, although a similar imple-
mentation can also be built on a Linux, MAC, UNIX, or another system.

3.6 Drivers

The Application cannot communicate directly with the Device, it needs the
Windows Driver Foundation (WDF) class. This is split into User and Kernel
Mode, where the Application has only access to the User Mode. From a software
perspective, e.g. within the programming language C++, the communication with
the kernel mode is through subroutines of the Windows API, historically first
implemented in the file system. So all data transfer is realized using the CreateFile,
WriteFile, etc. commands. So all devices, from a software standpoint, are similar
to a file system, sending or receiving data or control parameters.

The Kernel Mode, communicating between the Application and the Device, has
several subsystems, the I/O system or a Plug-and-Play Power system for inserting
USB devices on the fly and managing power consumption of PCIe devices, etc.
These subsystems communicate with the Framework and the WDF objects, which
are objects defined by the drivers of the devices. The Framework contains default
objects for devices, which can be overwritten by drivers implementing their own
callbacks to the WDF Framework. So the Framework manages all requests from
the upper edge with the Applications and the lower edge of the Devices. Most of
this communication is default, so the Framework automatically takes care of them.
Still all drivers installed may add additional functionality, which the Framework
considers.

So all specifications of the device need to be implemented in the Drivers which
can be installed in the User Mode or in the Kernel Mode. User and Kernel Mode
driver can have additional drivers adding some functionality which are therefore
called Function Drivers. So three kinds of drivers exist to communicate between
the Application and the Device: User Mode, Kernel Mode, and Function Drivers.
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The separation between a Kernel and a User Mode is necessary for security
reasons as well as for programming convenience. So e.g. the OS runs on many
different hardware motherboards with different memory, bus, and CPU configu-
rations. Therefore, writing code would mean to know all hardware specifications
of all possible CPUs, busses, etc., which is not practical. The Hardware
Abstraction Layer (HAL) of the OS therefore knows all hardware on the market
and translates the commands to the specific code needed by the hardware. Also, to
ensure stability of the system, it is necessary for the OS to not be disturbed by
loops in a code to end in a deadlock and crash. Therefore, the user is only allowed
to suggest code which is then checked by the OS in terms of its operability. If the
code would lead to a crash it is not performed by the OS. All code written in the
User Mode therefore need not to know anything about the hardware of the com-
puter, and also need not consider a general crash of the system. Still this also
means that certain operations, like reading or writing memory directly to devices,
power up or down devices, etc. are not allowed in the User Mode and only can be
performed in the Kernel Mode. Therefore, drivers which do not need such oper-
ations, like USB drivers, can run in User Mode. Still direct access to memory, as
needed with the FPGA implementation here, needs at least one Kernel Driver. But
writing and testing a Kernel Driver is much more demanding and have serious
security risks, therefore User Mode Drivers are preferred whenever possible.

The Drivers are organized in a stack, a User-mode and a Kernel-mode driver
stack. Communicating between an Application and a Driver works through the
Windows API functions for file operations, as discussed above. The Windows API
calls the Kernel Subsystems, e.g. for an I/O-request it calls the I/O subsystem. This
subsystem then builds an interrupt (IRP) for the request and sends it to the first
Kernel Mode driver on the Kernel-mode stack. This driver, as all drivers on the
stack, is a specific driver written for one device. Therefore it determines if it is
responsible for the request. If it is, it performs the operations with the driver via the
HAL and sends the results back to the Kernel subsystem. If not it checks if the
driver may be a User Mode driver. If so, it sends the request to the User-mode
stack. If the driver is not responsible for the request and the device does not use a
User Mode driver, the first Kernel driver sends the request to the next Kernel Mode
driver in the stack. This continues until one driver answers the request. Then the
flow changes direction and the request is send to the next higher driver, which is
still allowed to add functionality, if a routine in the driver is set to such a case. This
may happen when several drivers operate on one device with different tasks. If the
IRP has reached the highest driver on the Kernel-mode stack, this driver than
passes the IRP to the kernel subsystem. This subsystem creates an error-code (a
no-error at best) and may perform necessary memory copies. This is the case with
the Kernel Driver used in this application. There, device memory is read by the
kernel subsystem and written into the memory space accessible by the Application.
It then returns control to the Application via the Windows API again, returning the
error code and maybe also a pointer to the memory space the memory copy is
accessible by the Application.
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3.7 Memory

The OS has two kinds of memory space, physical and virtual. The physical space
addresses represents all available physical memory on the system, while the virtual
memory maps this physical memory to different layers in the OS. This mapping, or
paging, is necessary, as e.g. two Applications with two different memories may use
the same physical memory of a driver. Also in User Mode, the physical memory is not
available because of security reasons. Therefore, to access the physical memory of
the FPGA, its memory must be mapped in such a way to be accessible by the
Application. Three memory types are needed to achieve this, the physical memory on
the FPGA, a virtual memory space in der Kernel Mode, and the virtual memory space
in the User Mode. The mapping is achieved using a Memory Descriptor List (MDL).

3.8 Implementation

To communicate between the software and the FPGA via the PCIe, reading and
writing to its physical memory needs three drivers, a soundcard handling, and a
control software.

3.8.1 Kernel Mode Driver

To map the physical memory to virtual memory, Kernel Mode drivers can use the
MmMapIOSpace function. This function needs the physical memory address and
the size of the memory. It maps the physical memory to a virtual memory space in
the Kernel Mode and returns a pointer to this virtual memory space. With this
pointer, a MDL is allocated and built with the MmBuildMdlForNonPagedPool and
MmMapLockedPages functions. These Kernel Mode functions then map the vir-
tual Kernel Mode memory to a virtual User Mode memory space. This User Mode
memory space can then be accessed in User Mode.

These functions are implemented in the Kernel Mode Driver in the Devic-
eIOControl callback, in which a control ID is defined, which is provided by the
User Mode Driver calling the Kernel Mode driver with a device control request.

3.8.2 User Mode Driver

The User Mode driver asks the Kernel I/O subsystem for a handle to the Kernel
Mode driver via a CreateDevice function of the Windows API. This function calls
the Kernel Mode driver installed on the system and asks for the handle. It then
accesses the memory mapping function of the Kernel Mode driver by calling the
DeviceIOControl Windows API function using the control ID defined in the
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Kernel Driver. The Kernel I/O subsystem calls the Kernel driver, which returns the
pointer of the virtual User Mode memory space to it in the IRP. The Kernel
subsystem copies the physical memory of the FPGA device into the virtual Kernel
memory and provides the Application with the mapped memory address of the
virtual User Mode memory space.

3.8.3 Filter Driver

The Filter Driver is not necessary to read and write memory from and to the FPGA.
Still it is necessary to access the PCI configuration space, where parameters of the
model can be set or obtained. Therefore the PCI bus need to be accessed which
cannot be addressed, as it is unnamed. Still when installing a function driver adding
additional functionality to the bus, this driver is installed by the OS in such a way to
directly have access to the bus driver. This access also includes the name of the bus,
which then can again be used by the Kernel Driver to access PCI configuration space.

3.8.4 Soundcard Handling

The time series computed by the Physical Model on the FPGA is to be played in
real-time by a soundcard. As users may have any kind of soundcard available on
the market, standard drivers to play back sound are reasonable to implement with
this application. Although in previous investigations, e.g. when building a
microphone array digital input, the ASIO standard was used to be able to record
128 channels with 48 kHz each in real-time, here a more simple solution was
implemented using a DirectX sound I/O setup.

Therefore, the DirectSound library in version 1.0.2902.0 was used. To play
back sound, a circular buffer was allocated and attached to a device object of this
library. The sound object was set to 96 kHz with 24 Bit sampling rate. A short
buffer length was used to realize real-time performance without noticeable delay
between players’ performance control and sound changes. A notification thread
was attached to the buffer to notify the application when the soundcard asked for
new data, to refresh the buffer with new FPGA data. So the soundcard plays back
the buffer which is filled with new data right after filling. When starting the device
to start playback, the notification thread is started, too.

3.9 Control Software

The control software includes all the threads necessary to perform, the control
input from a performer, the parameter streaming to the FPGA, the up-streaming of
the sound produced by the FPGA, and the real-time playback of this sound to a
soundcard to playback the performance. Therefore, three threads are implemented
in the software.
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3.10 Performance Thread

This thread continuously waits for performance data from any kind of controller,
which is digitalised and supported to the software via and I/O driver or via mouse
or keyboard control. The control parameter is then mapped to a parameter in the
FPGA Physical Model. This could be speed or pressure of a violin bowing, it could
be the position of a finger on the fretboard, it could be a knocking on the
instrument, a detuning of a string or a membrane tension, or any other kind of
parameter which is a parameter in the Physical Model. This parameter is mapped
to the memory or configuration space of the PCIe hardware, implemented on the
FPGA and written to the hardware. There, the FPGA hardware accesses it at the
next time point of calculation of the Physical Model, changing this parameter in
real-time during performance.

3.11 Sound Upstream Thread

The FPGA Physical Model solves a complex differential equation system for
adjacent time points. The solution of one or several nodal points of the Physical
Model, chosen by the user, is stored in the PCIe memory. The model continues to
calculate the differential equation system for a finite amount of time points. This
amount is a compromise between performance speed, PCIe package handling, and
soundcard buffer size. From the standpoint of performance, a very short soundcard
buffer size reduces the delay time between performance data input and sound
output. Still, very short buffer sizes, like 8 or 16 words, are not efficiently sent
through the PCIe packaging system, both for the upstream from the FPGA to the
application as well as from the application to the soundcard, which is also a PCIe
device (or USB, which is a PCIe on a lower level, too). So in this application the
VHDL code calculates 32 time points, stores them into the PCIe memory space,
and sets a flag on the PCI configuration space that it finished another buffer of data.
The application is checking this flag, accessing the PCI configuration space within
the sound upstream thread of the application. If the flag is set, the software knows
that a new buffer of data is ready, reads it from the PCIe memory space, and stores
it in an internal buffer. Then the software sets back the flag and the FPGA starts
calculating another buffer of time points.

3.11.1 Sound Play Buffer Thread

The play buffer thread depends on the soundcard. It is a notification thread, as
discussed above, which notifies, when the soundcard has read data from the buffer
up to the next point of notification within the buffer. So the buffer need to be
refilled with data, which is available from the internal buffer filled by the FPGA
data stream. After copying this data, the thread sets the flag in the configuration
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space of the PCIe so that the FPGA knows that it needs to continue calculating
new data.

Most of the time the FPGA is indeed waiting, and not calculating, as the speed of
calculation is much faster than the playback of sound. So the internal sampling rate
of the Physical Model can be much higher than the playback rate of the soundcard,
maybe 10–15 times higher, which increases calculation precision and stability.

4 Conclusions

The system for real-time performance of playing FPGA Physical Modelling of
virtual musical instruments is flexible in a way to input any kind of control
parameter. So e.g. the software could also be compiled as a dynamic library in the
VST PlugIn approach and included in a sequencer software. Then the standard
controllers known from recording studios, like keyboards and other MIDI inputs,
like breath controller, guitar-to-midi controller, etc. could be used. Still it can also
be used to input data from AD-converters with a USB interface attached to the
computer. Its implementation of Physical Models is flexible, too, as different
virtual musical instrument Physical Models can be uploaded via the PCIe inter-
face. The compiled VHDL files are mostly so small that an upload of a new
instrument, or a partial reconfiguration on the FPGA, is so fast that a performer
will not need to wait, but experiences an instantaneous change of the instrument.
Still this is not discussed within this chapter and subject to future work.

Although a systematic investigation about the experiences of users of this
system is still to be done, the first experience of performers is the wide range of
possible sounds of this system. As musical instruments have many nonlinearities,
where sudden phase changes of the sound appear when linearly changing a control
parameter, playing the virtual violin or banjo is often a great pleasure, as the
performer can produce very different and interesting sounds easily. Indeed, as the
playing parameters are manifold, a selection need to be done, which can also be
changed in real-time. Then, playing such instruments, although they might be
traditional ones like violins or plucked string instruments, are often like learning
the same instrument in a new way, often leading to very new and fresh musical
experiences.
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Multisymplectic Pseudo-Spectral Finite
Difference Methods for Physical Models
of Musical Instruments

Florian Pfeifle

1 Introduction

In musical acoustics most aural perceivable features and properties of radiated
sound resulting from structural vibrations can be described to a satisfactory grade
with Differential Equations (DE), in most cases the wave equation. The order and
dimension of this Partial Differential Equation (PDE) is given by the respective
geometry of the instrument and the vibrational behaviour of the underlying
structure. Beside the linear behaviour, also non-linear properties can be described
by these equations, giving accurate results in most cases. Over the last years there
has been a tremendous amount of work regarding physical models of musical
instruments and PM for musical applications in general (Bilbao 2009; Pfeifle and
Bader 2012b; Bader 2005a; Giordano 2006). Most of these works show that
physically based models of musical instruments have a very realistic sound and
timbre quality compared to instruments synthesized with other methods. Still, one
of the major drawbacks of all PM methods is their computational cost which is
directly linked to the accuracy of the model and the sound quality. So in most
cases these instrument models are not capable of real-time sonification or are
simplified in many ways. In a recent work, real-time implementations of physical
models of several musical instruments where presented (Pfeifle and Bader 2011a,
2012b). A real-time controller was implemented, making it possible to play and
configure the instrument models. Among many other findings two central insights
where gained over the course of that work:

1. It is absolutely necessary to have a stable algorithm that yields steady results
under changing conditions and parameters.

2. A high accuracy and small error of the used method benefits the overall stability
and sound quality of the models.
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In this work we research properties of two methods that could facilitate these factors
and result in more stable and accurate real-time models of musical instruments.

All PM-based sound synthesis techniques take a similar approach, the gov-
erning PDEs are discretised and solved using numerical methods like e.g. the
Finite Element Method (FEM) or Finite Difference Method (FDM) (Bilbao 2009).
Both methods are used in many fields of numerical mathematics and physics
(Bathe 2002), Peiró and Sherwin (2008) and are a de facto standard in many
commercial PM software tools.1 A progression of these methods are Spectral and
Pseudo-spectral (PS) methods. They where developed in the 1970s and 1980s
basing in FDMs and FEMs. The development of the mentioned methods can
roughly be categorised into three eras:

• 1950s: Finite Difference Methods
• 1960s: Finite Element Methods
• 1970s: Spectral and Pseudo-spectral Methods (Fornberg 1998).

Even though spectral methods have been shown to have superior properties for a
large range of discretised DE solutions, like for instance spectral accuracy resulting
in a smaller discretisation error, they initially where only suited for problems of
regular geometry and periodic boundary conditions. To reduce some of these
imposed restrictions many different sub-methods have been proposed among which
PS methods take a prominent role (Lyons et al. 2005; Patera 1984; Komatitsch and
Tromp 2002; Gottlieb and Orszag 1987; Hamman et al. 2007; Wang 2002;
Trefethen 2000; Chaljub et al. 2007; Lee et al. 2000; Komatitsch et al. 2005).

PS methods have been applied with success in many fields of research like fluid
dynamics (Patera 1984), medical research (Tong and Krozer 2002) or for solving
the Korteweg-de-Vries equation (Ascher and McLachlan 2004; Fornberg 1998). In
room acoustics there are several works that use PS methods for solving large
3-dimensional FD problems with success (Spa et al. 2010). To the best of our
knowledge there is only one work where a spectral method is used to solve a
physical model of a musical instruments numerically, but only for calculating
mode shapes, not for sound synthesis purposes (Sathej and Adhikari 2008). This
work tries to fill this gap and present a methodology for implementing such
methods for musical instruments.

There is a large body of work for numerical problems of many kinds and in
depth research of pseudo-spectral methods and its properties since the late 1970s
(Fornberg 1990; Tong and Krozer 2002), so in this work we can build upon the
results of such important works for pseudo-spectral methods like the monographs
covering this topic by Fornberg (1998) and Trefethen (2000). In their work they
show many applications and implementations of PS methods for solving differ-
ential equations in various dimensions and for linear and nonlinear problems
(Lesage et al. 2008).

1 COMSOL, ANSYS and many others.
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One conjunctive property to all discrete solution techniques of DEs is the
discretisation of all independent variables over the given problem domain.2 There
are several approaches of solving discrete equations but in the case of PM most
methods parrallelise the problem in space and calculate the time progression of the
solution with implicit or explicit time-stepping methods (also known as numerical
integrators) (Bilbao 2007).

Over the last decade a new classification paradigm for qualitative behaviour of
time stepping methods (numerical integrators) has been developed by comparing
basic properties of standard solution algorithms. Besides fundamental properties
like energy conservation or reversibility an important quality of a numerical
integrator is the area preservation of the Hamiltonian flow. If an algorithm satisfies
this requirement it is called symplectic (Feng and Qin 1987; Hairer et al. 2002).

Hairer et al. showed the beneficial properties of symplectic integrators for
ODEs on long time stability, energy conserving properties and other advantages
over non-symplectic methods. Even though a symplectic method does not always
preserve the energy completely (McLachlan et al. 2006) it is in many cases far
superior to non-symplectic methods.3 Over the last years several works extended
symplectic ODE methods to PDEs yielding multisymplectic integrators (Feng and
Qin 1987; Moore 2009; Moore and Reich 2003b). Even though there is ongoing
research of several attributes of multisymplectic methods, the results that have
been found to this point are encouraging and can be applied in many fields of
numerical mathematics4 (Moore 2009; Schober and Wlodarczyk 2008; Sha et al.
2008; Kong et al. 2007).

2 Mathematical Methods

2.1 Pseudo Spectral Methods

Spectral methods are linked to collocation methods like Galerkin and Chebycheff
methods. The basic idea behind all these methods is to calculate discrete differ-
entiation on a global grid defined by the underlying geometry and the specific
interpolation functions. There are two conventional methods of calculating the
derivative of a function with pseudo-spectral methods:

1. Calculate the derivation function /̂ in Fourier Space given by the Fourier

Transform equalities. Transform /̂ back to the time domain and perform the

2 For the wave equation all space variables and the time variable is discretised.
3 Moore and Reich (2003a) show that in many cases the reversibility of an algorithm is far more
important than an exact energy conservation.
4 To this point many results for multisymplectic integrators are only shown numerically. Some
properties have yet to be generalised (Moore 2009; Moore and Reich 2003b).
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derivation of function w in the time domain via a matrix multiplication with /
(Trefethen 2000).

2. Transform function w to the frequency space, perform a derivation in Fre-

quency space (dot product with /̂ ), then transform the resulting function back
to the time domain (Fornberg 1998).

Another point of view can be deduced by properties of the convolution theorem.
We start with the example of a finite difference approximation for the 1-dimen-
sional wave equation. One can write the discrete version of the wave 1-d wave
equation as follows (Bilbao 2009)

d2
t � u ¼ c2 � d2

x � u ð1Þ

with d2 the second order centered finite difference operator defined as

d2
x ¼
½1;�2; 1�x

Dx2
ð2Þ

and u, the dependent variable in vector form. If we set the values Dx ¼ Dt and the
wave propagation factor c ¼ 1 we can rewrite Eq. 1 with 2 to

½1;�2; 1�tu ¼ ½1;�2; 1�xu ð3Þ

Reorganizing Eq. 3 to u½t þ 1� yields the well known explicit finite difference
equation

u½t þ 1; x� ¼ ½1;�2; 1�xu½t; x� � u½t � 1; x� þ 2 � u½t þ 1; x� ð4Þ

For the boundary value problem on the domain x = x 2 xj0\ = x\ = Lf g with
u½t; 0� ¼ 0 and u½t; L� ¼ 0 the first term on the right side of the equality can be
rewritten as a convolution

½1;�2; 1�u½t; x� � f1;�2; 1g � u½t; x� ð5Þ

over the domain x, with � denoting a convolution and fg a vector. Now, using the
convolution theorem and properties of the Fourier Transform it is possible to
perform this time domain convolution as a multiplication in the frequency domain.

With Ffg and Ffg�1 the Fourier Transform and the Inverse Fourier Transform
respectively we can rewrite Eq. 4 to

u½t þ 1; x� ¼ FfFff1;�2; 1gg � Ffu½t; x�gg�1 � u½t � 1; x� þ 2 � u½t þ 1; x� ð6Þ

Now we have to recapitulate some properties of the finite difference operator d2
x .

The centered difference approximates the derivative at a local point u½x� using a
Taylor expansion around x. Because we use the centered approximation which is
composed of the left-sided and the right-sided finite difference approximation, the
error is of second order. If we use higher order approximations of the finite
difference operator we thereby minimize the error term proportionately to the
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approximation order N. A fourth order approximation has an error of order O4 and
so on. If we approximate the derivative over the whole domain with finite dif-
ferences using the highest possible order, we can minimize approximation errors
up to the order of discrete points �1.5 The fourth order central FD operator for the
second derivative is given as

d2
x ¼
½� 1

12 ;
4
3 ;� 5

2 ;
4
3 ;� 1

12�
Dx2

ð7Þ

with an error ofO4. If we now increase the order of the approximation we can get a
high order FD approximation extending over the whole domain. Following Eq. 6
we can perform the convolution in frequency space as a multiplication with Fourier

transformed FD operators bd2
x ¼ Ffd2

xg. As one can see in Fig. 1 with increasing

order of the FD operator function bd2
x approaches the analytical derivation function /̂ .

2.2 Symplectic Integrators

Numerical methods that exhibit symplectic properties are among the oldest solu-
tion methods for DEs and have been discovered and rediscovered throughout the
centuries (Hairer et al. 2002, 2003) many times. Even though some advantageous
properties where noted by physicists, like Newton or Störmer (Hairer et al. 2003)
the concept of symplecticity was discovered only in the 1980s (Hairer et al. 2002)

Fig. 1 Absolute value of
Fourier transformed
FD-operators with increasing
order. From bottom N ¼ 2 to
N ¼ 64 the topmost

5 If this is physically correct is a question that can not be answered here. The analytical wave
equation has no speed limit for transported information. Whereas discrete approximations have a
speed limit set by the discretisation step width in space and time. This is the stability condition
expressed by Courant et al. (1928).
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and systematically researched over the last two decades. At first, symplectic
methods were only developed for ODEs but since the end of the 1990s were
extended to PDEs (Mclachlan 1994). Numerical methods are called symplectic if
they preserve the Hamiltonian character of the Differential Equation (Hairer et al.
2002). In this section we present some basic features of symplectic methods and
take a simple harmonic oscillator (SHO) as an example.

The ODE of the SHO can be written as

xtt ¼ �x2 � x ð8Þ

This equation can either be solved using a direct discretisation of the differential
term on the left-hand side using a central FD approximation (Bilbao 2009) or using
a P-Q splitting method (Mclachlan 1994) separating the Hamiltonian into

H ¼ TðpÞ þ VðqÞ ð9Þ

with T the kinetic energy and V the potential energy. This results in methods of the
form

ptþ1 ¼ pt � Dt � Hq ptþ1; qt
� �

ð10Þ

qtþ1 ¼ qt þ Dt � Hp ptþ1; qt
� �

ð11Þ

with Hq and Hp vectors of the partial derivatives of H in respect to q and p and Dt
the discretisation step width. Equation 11 approximates the true Hamiltonian flow
for every time step explicitly and is called Symplectic Euler (SE) algorithm, one of
the most widely used symplectic algorithms.

Another well-established method is called Verlet (Position Verlet/Velocity
Verlet) method6 (Verlet 1967; Hairer et al. 2003; Sha et al. 2008). The Velocity
Verlet (VV) can be written as

ptþ1=2 ¼ pt � Dt

2
� Hq ptþ1=2; qt

� �
ð12Þ

qtþ1 ¼ qt þ Dt

2
� Hp ptþ1=2; qt

� �
þ Hp ptþ1=2; qtþ1

� �� �
ð13Þ

ptþ1 ¼ ptþ1=2 � Dt

2
� Hq ptþ1=2; qtþ1

� �
: ð14Þ

As one can see in comparison to the SE method, we have one evaluation step
more. In practice this means a second force evaluation per time-step which leads to
a more accurate calculation of the velocity (pulse) p and position q.

Figure 2 shows a comparison of the SE and the VV algorithm with the non-
symplectic Euler method with increasing time discretisation step size.

6 The Velocity Verlet method is similar to the Leapfrog algorithm.
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As one can clearly see, the VV algorithm (2. order symplectic) is stable for all
time step sizes and the most accurate compared to the analytical solution. The SE
(1. order symplectic) is stable for step sizes that satisfy the relation Dt� 1ffiffiffiffi

x2
p . The

non-symplectic Euler shows the poorest behaviour of all three methods and is
usable only for very small discretisation step widths.

Fig. 2 Comparison of numerical methods (blue), analytical solution (green). Row 1 x2 � Dt ¼ 5,
Row 2 x2 � Dt ¼ 1, Row 3 x2 � Dt ¼ 0:005, Row 4 x2 � Dt ¼ 0:00005
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3 Multisymplectic PS-FD Examples

3.1 1-dimensional Wave Equation

The motion of a string under small deflection and with linear mass distribution can
be described by the 1-dimensional wave equation also known as the d‘Alembert
equation. In this section we present the model of a single linear string and show
properties of the proposed method. Using a multisymplectic integrator for Eq. 1
with boundary conditions uð0; tÞ ¼ uðL; tÞ ¼ 0 as described in Moore and Reich
(2003a), Feng and Qin (1987) and in Sect. 2 we get an explicit time stepping
method called the Euler Box Scheme, similar to (11) as presented in Moore and
Reich (2003a). As already mentioned there are several well researched symplectic
algorithms for this kind of problem. The accuracy of the used algorithm depends in
most cases on the number of force evaluations which directly influence the
computational cost. In practical terms one can say: The more force evaluations
performed per time step the more accurate is a method. But with more force
evaluations the computational complexity rises. For this work three different
numerical integrators are compared for solving the equations of motion. Besides a
straightforward time-domain implementation all three methods are implemented
using PS methods. For calculating the Fourier Transform of the PS part of the
algorithm standard fft-methods are used.7

Because of the linear properties of the symplectic methods within one time-
step, the values for p and q can be calculated in the time domain or the frequency
domain giving similar results. This property is utilised to reduce the number of
Fourier Transforms per time step. Table 1 lists a comparison of the implemented
methods for the 1-dimensional wave equation.

Figure 3 shows the movement of a linear string discretised with 128 points and
calculated with a Spectral Symplectic Euler method. The Blue string is computed
with a spectral FD-kernel with N ¼ 128 points, the green line uses a kernel of
N ¼ 3 points, which is the standard second order central FD grid as in Eq. 2.

As one can see, the string with the larger FD-kernel shows a smaller dissipation
compared to the initial triangular excitation of the string. A comparison with the
analytical solution of the wave equation for the 1-dimensional string with the
presented initial value is not reasonable here because the movement of an ideal
string is not a movement found in real strings of musical instruments. Nonetheless,
for classifying the results gained with PS methods one can compare the frequency
drift of the higher partials commonly found in FD methods (Bilbao 2009).

7 In MATLAB the build-in fft()-function is used. For the C++ implementation the fftw-library
(Frigo and Johnson 1997, 1998), the CUFFT-library (NVIDIA CUDA 2013) and a template based
Fast Fourier Transform is used.
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Table 2 shows the beneficial effect of a higher order spectral kernel on the
accuracy of the higher partials. This minimises the effect of detuning of higher
modes commonly found in FD solutions of the 1-dimensional wave equation
i.e. the linear string.

Fig. 3 Time series of PSFD-string with 128 discrete points. Blue 128-point FD grid, Green
3-point FD-grid

Table 1 Symplectic PS algorithms

Name of method Force eval. Fourier trans.

Symplectic Euler 1 2
Newton-Störmer-Verlet 2 4
PEFRL 3 6
Spectral Symplectic Euler 1 1
Spectral Newton-Störmer-Verlet 2 1

Table 2 Frequency drift of PS kernels of different order

Order N 1. partial 4. partial 8. partial 16. partial 20. partial

Ideal 2 5 9 17 21
3 1.9991 4.9809 8.9554 16.8599 20.7771
128 2.0 4.9936 8.9904 17.0191 21.0541
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3.2 2-dimensional Wave Equation

Following the same multisymplectic discretisation scheme as used in the preceding
section like in Moore and Reich (2003a, b), called the Euler Box Scheme, the
differential equation can be integrated numerically with three time steps similar to
algorithm 11 as shown above. The only difference between the two algorithms is
the extension to two dimensions (integrating in the x and y direction) and a
2-dimensional version of the integration kernel. A central finite difference
approximation of the space discretisation yields a 2-dimensional convolution
kernel. The Fourier transformed kernel is depicted in Fig. 4. Examples of the
2-dimensional membrane can be seen in the next section in Fig. 5.

4 Coupled Geometries

Following the methodology described above, two simplified versions of musical
instruments are modeled in MATLAB and C++ programming language. The
models consist of strings and of a sound radiating front plate and are presented as a
proof of concept and not as complete physical models of the whole geometry as in
other works (Pfeifle and Bader 2011a, b, 2011c, 2012a). The modeled instruments
are a five-string banjo and a violin. The banjo is used as a starting point for the
following model because its ‘‘simple’’ geometry (basically a string coupled to a
round membrane) makes it an instructive device for testing basic concepts of PM
for musical instruments. The second instrument model is chosen to show that the
method also works for higher order differential equations with non-linear mass
distribution (the wooden front plate of the violin with orthotropic material prop-
erties) and for non-linear excitation (the interaction of the violin bow with the
string). All instrument parts are modeled with the method described above. Sounds

Fig. 4 Absolute value of Fourier transformed 2-d FD-operator

360 F. Pfeifle



from both models and other instruments can be found at the Systematic Musicology
web-site of the Institute of Musicology, Hamburg (Pfeifle and Bader 2013).

4.1 Model of a Banjo

The first instrument model is an American five-string banjo, consisting of five
strings, a simplified bridge model and the membrane. Two main parts of the
model, the string and the membrane have been described thoroughly in Sect. 2.
The interesting part of this model is the coupling between the string and the
membrane. Changes in strength and position coupling between the string and the
membrane strongly influence the timbre and characteristic of the radiated sound.
As we have explicit expressions for the force, velocity and deflection of the string

Fig. 5 Time series of a banjo model including PSFD-strings coupled to a PSFD-membrane
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and membrane of every point of the model, we can couple string and membrane
via the impedance at the contact point as described in Bader (2005a). The char-
acteristic motion of the transient movement of the membrane due to excitation by
the string can be seen in Fig. 5. As one can see, the pulse travelling on the string is
transferred via the bridge to the membrane.

4.2 Model of a Violin

The model of the violin consists of four strings, a bridge model similar to the
bridge of the banjo and the front plate of the violin with two sound holes. The
model for the string/violin-bow interaction is based on a model presented in Bader
(2005b) and extended as presented in Pfeifle and Bader (2011a). The non-linear
excitation of the violin string is one of the main reasons for the characteristic violin
sound and the expressiveness of the violin. For this physical model the string is
implemented as presented before but has additional conditions depending on the
state of the string bow interaction. The first characterisation of the violins string
movement was done by Hermann von Helmholtz (1896). In his honour, the generic
motion of the string is called Helmholtz motion. The first 20,000 samples of the
violin model is shown in Fig. 6.

As one can see, at the beginning of time series the string is deflected in a non-
periodic manner. This is the initial scratching sound of the violin. After a short
time, the model settles in the well-known Helmholtz motion as expected.

4.3 Sound Radiation

The sound radiation from the front-plate of each instrument is integrated into a
virtual room and picked up at two positions approximately 60 cm above the
instrument and 16 cm apart.8 The integration includes all sound radiating points

Fig. 6 The first 76 ms of a violin tone

8 Mean length between two ears.
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from the front plate and weight them depending on the respective position and
distance to the receiver point. Sounds are available at Pfeifle and Bader (2013).

5 Conclusion

In this work we have presented a methodology for calculating physical models of
musical instruments with high-order PSFD discretisation. Several positive features
of this method, like smaller error and a stable long-term behaviour of the models
could be shown. Although there are still open questions concerning multisym-
plectic methods from a mathematical point of view, this work has presented some
insights into these methods for musical sound synthesis and computation of
physical models. To the best of my knowledge this has been the first attempt to use
multisymplectic PSFD methods for PMs of musical instruments so there is still a
lot of research to be done in the future. A very important question in this scope is if
the change in sound quality and timbre of higher order PS methods is perceivable
by musicians and non-musicians. Another research question concerns the appli-
cability of the proposed methods for specialised hardware implementations on a
GPU or a FPGA. Furthermore this method can be extended to other instruments or
other musicological problems.
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Human–Computer Interaction and Music

Isabel Barbancho, Alejandro Rosa-Pujazón, Lorenzo J. Tardón
and Ana M. Barbancho

1 Introduction

In this document, we offer some insight into the potential of combining advanced
interaction paradigms with sound and music for the development of innovative
interactive audio applications. Therefore, in this chapter we present novel ways to
interact with the music by means of using advanced natural human computer
interfaces. Furthermore, the basics of specific applications which are currently
being developed will be briefly presented. A motion-based paradigm is considered
in the context of music signal processing to provide an innovative and immersive
experience in audio and music applications.

1.1 Review of Previous Works

Human Computer Interfaces have long moved beyond the conventional setting of a
single user sitting in front of a desktop computer. Nowadays, the latest technological
advances in the fields of motion tracking or speech recognition have allowed for the
definition of more complex, enriching interaction metaphors. Also, the development
and proliferation of low-cost off-the-shelves devices, such as Microsoft’s Kinect
camera or the Nintendo Wiimote, make it possible to provide more intuitive ways of
interaction with a given computing device (Villaroman et al. 2011).

An adequate fusion of auditory and visual cues is critical in the conception of
natural human computer interfaces (Shivappa et al. 2010), since vision and hearing
are the primary senses used by humans to comprehend and interact with the world.
Thus, in order to create a fully immersive experience, it is necessary to carefully
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design the presentation of audiovisual information. As such, music is an integral
part of the auditory modality. Moreover, musical interaction itself can constitute
the basis and main focus of a certain interface for a wide assortment of applica-
tions: music learning (Wang and Lai 2011), musical instrument creation/simula-
tion (Jorda 2010), music-guided rehabilitation (De Dreu et al. 2012), etc.

One of the most well-known types of applications regarding musical interaction
is that of videogames. Games such as GuitarHero (GuitarHero 2011), SingStar
(SingStar 2004) or RockBand (RockBand 2012) are some of the most prominent
and popular applications of this kind, especially on western markets. Guitar Hero
III: Legends of Rock became the first single game ever to surpass $1 billion in
sales (Craft 2009). This proves the economic relevance of this genre. However, an
analysis of 20 releases showed that these rarely respect the creative component of
actually playing music (Grollmisch et al. 2009). Mostly, the player has to rhyth-
mically trigger buttons according to predefined sequences. This mostly requires
dexterity and swift reflexes, whereas the possibilities to actively participate in
music creation are only marginal.

Some rip-offs of the most popular titles exist in the open source world with
titles like FretsOnFire (FrestsOnFire 2006), UltraStar (UltraStar 2010). It is
remarkable that the editing of the songs (alignment of notes and lyrics with the
songs) for these titles has to be done manually, this is why UltraStar features a
built in editor. For commercial titles, game studios use proprietary editors and
formats. There are only a few attempts to use automatic music processing in these
kinds of games. In (Barbancho et al. 2009) a description on how to generate game
packages for FretsOnFire is presented. AudioSurf (AudioSurf 2008) or audio
processing as proposed in (Migneco et al. 2009) are examples of action games
based on automatic, real-time analysis of music features.

Nevertheless, it would be definitely unfair to judge music games as being
nonmusical. They do foster the interest of children and adolescents in music, some
gamers are even encouraged by these games to learn a real instrument. For
example, the Beatles Rock Band Edition (BeatlesRB 2009) allows up to three
singers to sing in harmony and rewards the players with high scores if they
succeed. Such features are somewhat useful for self-study voice education (Mi-
kestar 2009). Furthermore, recent studies seem to confirm that these kinds of
applications can actually help children develop musical skills and knowledge
(Gower and McDowall 2012). Thus, despite their limitations, they can serve as a
gateway to musical concepts for potential users, especially with regards to rhythm.

Musical interaction has recently become a hot topic. Antle et al. (Antle et al.
2008) proposed a system to connect body movements to output sounds. The
experiments conducted showed that learning processes could be improved through
the use of such interaction metaphors. Further research was performed regarding
the use of tangible interaction in order to manipulate the pitch, volume and tempo
of ongoing tones (Bakker et al. 2011). Another study (Holland et al. 2010) made
use of a haptic vibrotactile device set (the Haptic Drum Kit) to aid the learning
process of rhythm and rhythmic patterns.
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A good example of musical exploration and creation using physical body
movements as an interface can be found in the works by Khoo et al. (Khoo et al.
2008). Their study depicts a system capable of mapping motion features onto
acoustic parameters (such as frequency, amplitude, tempo, or time signature) for
real-time expressive rendering of a given piece of music. At the same time, visual
feedback was projected accordingly on a screen. Therefore, this system allowed
users to interact with music in an intuitive and explorative way, lowering the
barriers towards the understanding and appreciation of music features. A similar
interaction metaphor was considered in (Castellano et al. 2007). In a similar
fashion, it is possible to modify the visual patterns presented by means of speech
or sung voice, making the voice ‘‘visible’’, as shown in the works conducted by
Levin and Lieberman (Levin and Lieberman 2004), or directly interacting with a
virtual character (Taylor et al. 2005; Mancini et al. 2007).

Musical interaction can act as a strong motivator, but it can also fulfill an
important role as a way to allow users to acquire or expand their knowledge on
music theory. In general terms, the mechanics and abstract concepts of music are
not usually known to most lay people. Furthermore, in order to learn the different
aspects of music theory it is necessary to devote a considerable amount of time to
such purpose. On the other hand, visitors to physical museums are often over-
whelmed by the vast amount of information available (Karimi et al. 2012). In this
regard, musical interaction allows for a learning-by-action exploration, lowering
the barriers of the inherent abstract nature of many of these concepts and making
the global experience much more accessible and enjoyable.

1.2 Chapter Organization

As previously stated, the aim of this text is to portray how innovative user-
computer interfaces can be used to provide new experiences and forms of inter-
action with music. More concretely, Sect. 2 presents a brief overview of the
technologies available for the design and implementation of interaction paradigms
revolving around human body motion tracking. After the different alternatives
have been identified, the chapter will cover the option chosen to implement the
natural human–computer interface as well as the justification behind this decision
and a succinct review of the capabilities for motion tracking of the Open Natural
Interaction (OpenNI) framework. Then, Sect. 3 will present two applications which
use motion-tracking to allow the user to modify some musical features in the
sounds played. In addition, an overview of alternative motion-based interaction
paradigms will be described in order to more widely show the potential of these
interaction techniques in musical applications. Finally, Sect. 4 will briefly present
the conclusions gathered from this work.
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2 Motion Tracking: A Camera-Based Approach

2.1 Technologies for Motion Tracking

In the next lines, a brief summary of the most commonly used motion capture
technologies is given. As it is not the scope of this chapter to exhaustively cover
the distinct technological aspects behind these technologies, only the most
prominent and relevant aspects will be summarized. For further details, the fol-
lowing works should be reviewed: Welch and Foxlin (Welch and Foxlin 2002),
Baratoff and Blanksteen (Baratoff and Blanksteen 1993), Perry et al. (Perry et al.
1997).

Traditionally, the most commonly used alternatives for motion tracking can be
summarized into the following five categories, depending on the main technology
employed: optical, electromagnetic, acoustic, inertial and mechanical sensors.

• Optical trackers in general show high update rates and short lags. The data
acquired are usually quite accurate, and electromagnetic noise and room tem-
perature have little to no effect on them. However, they suffer from the line of
sight problem: any obstacle between sensor and source will create an occlusion
which can seriously degrade the overall performance of the tracking system.
Ambient light and infrared radiation can also adversely affect the performance.
As a result, the environment must be carefully designed to reduce these inter-
ferences as much as possible.

• Electromagnetic trackers have been quite popular, but they can give inaccurate
measures. They usually show latency problems and they are also very sensitive
to the presence of large amounts of metal and conductive materials in the
surrounding area or other electromagnetic fields, such as those that would be
generated by large computer equipment, displays, etc. They have some
important advantages, however, such as not requiring direct line-of-sight
between the trackers themselves and the source, and they usually have a small
and ergonomic size.

• Acoustic sensors lie somewhat in-between the previous ones. They have a
restricted workspace volume and require direct line-of-sight (although they are
not as affected by this as optical trackers). Time-of-flight trackers usually have a
low update rate, and phase-coherence trackers are subject to error accumulation
over time. Additionally and more importantly, both types are affected by tem-
perature, pressure changes and the humidity level of the environment. Fur-
thermore, the effects of echoing and the presence of other nearby sonic sources
can have very negative effects on their measurement.

• Inertial systems are already available in chip form. Inertial sensors are com-
pletely self-contained. There are no line-of-sight requirements, no emitters to
install, and no sensitivity to interfering electromagnetic fields or ambient noise.
They also have very low latency (typically a couple of milliseconds or less) and
high sampling rates. The main disadvantage of inertial trackers is that they are
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very sensitive to drifting errors, since they do not actually measure position and/
or orientation directly, which makes them ineffective when absolute measures
are needed.

• Mechanical trackers offer many advantages, such as almost complete environ-
ment independence, and potentially highly accurate, fast and low latency
measurements. Unfortunately, mechanical trackers are very cumbersome. They
can be bulky, heavy, and severely limit the motion of the user, giving rise to
ergonomic issues.

As a conclusion, there is no optimal solution when it comes to making a choice.
The advantages and disadvantages of each technology must be carefully assessed
according to the requirements of the task at hand.

We have decided to use a camera-based system. A camera-based tracking
system can be seen as a passive subtype of the optical tracking technology, since
the tracking points of interest will not actually emit light by themselves, instead
the system will rely on the light reflected on natural surfaces. We have followed
this approach because it offers an off-the-shelf, inexpensive solution that mini-
mizes intrusiveness (Gleicher and Ferrier 2002), constituting a good solution to
implement high precision motion tracking. Nevertheless, while humans can easily
identify motion from a recorded sequence telling from their own experience in the
real world, computers face some difficulties (Gleicher and Ferrier 2002), for
mapping a 3D world into a 2D movie involves an important loss of information. In
order to circumvent such limitation, we have opted to use a Z-camera, that is, a
camera that is capable of capturing the 3D scene, by means of a depth map which
assigns to each pixel a value related to the distance between the camera and the
point in the 3D scene which was projected onto that pixel. In particular, a
Microsoft Kinect sensor is used.

2.2 The OpenNI Framework

Kinect is a composite device consisting of an infrared (IR) projector, an IR camera
and a RGB camera. The infrared camera projects a pattern of infrared points which
are then used to triangulate points in space (Smisek 2011), thus allowing to
determine the depth of the objects in the scene. In November 2010, the company
Primesense released their own open source drivers, as well as a middleware
motion tracking module called NITE, both integrated as part of the OpenNI
framework. By using the OpenNI/NITE framework, it is feasible to achieve
advanced user identification and motion tracking capabilities. This section aims to
briefly present the key features to consider in the development of our interface
using a Kinect device.

The purpose of the OpenNI framework is to provide the means to develop
human–computer interfaces that achieve ‘‘natural interaction’’, that is, an inter-
action based on human senses, especially on human hearing, motion and vision. In
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order to actually accomplish this objective, it is necessary to resort to hand and
body gestures and motion tracking, speech and voiced command recognition, etc.
OpenNI offers a flexible framework to make use of natural interaction devices
(such as 3D sensors) and the middleware needed to control those devices.

The layer view of the OpenNI framework is shown in Fig. 1. It includes
complex components, such as Production Nodes, Production Chains or Capabili-
ties. However, it is not the aim of this section to thoroughly cover the possibilities
of the OpenNI API. Let it suffice to say that a Production Node is a component that
outputs a certain type of data to be used by either other Production Nodes or the
application itself. Examples of such components would be an Image Generator
(which generates colored image-maps) or a Depth Generator (which produces a
depth map). In the particular case of the Kinect sensor module, both the RGB data
and depth image data are accessible through the use of Production Nodes, where
examples are shown in Fig. 2.

One of the key features of the OpenNI/NITE framework is the Production Node
called Scene Analyzer. This component analyzes a depth image produced by a
lower-level node to look for figures in it. Thus, the foreground, background, the
floor plane, as well as human figures are identified (PrimeSense 2011a). The data
are then processed into a labeled depth map as output. NITE processes this data to
generate a label map that allows for specific user tracking in the scene, using a user
segmentation algorithm (PrimeSense 2011b). This label map holds information
regarding the detection of human shapes, in such a way that each pixel is associated

Fig. 1 An example of the
abstract layer view of OpenNI
(based on image in
(PrimeSense 2011a))
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with a label which in turn indicates whether that pixel corresponds to the back-
ground or to one of the figures identified. An example can be found in Fig. 3.

Finally, the most critical feature for the implementation of a human–computer
interface for musical interaction applications could be considered to be NITE’s
skeletal tracking production node (PrimeSense 2011b).

NITE’s skeletal model makes use of a total of 15 skeletal nodes (of 24 possible
nodes supported by the OpenNI API). The correspondence of such nodes with
human joints can be seen in Fig. 4. This production node processes the labeled
depth image generated by the user segmentation node to calculate the skeletal
joints position and orientation values for the fifteen nodes of one of the users
identified in the previous step. Note that joint position coordinates are far more
stable than joint orientation ones, which are actually quite noisy. Thus, it is rather
preferable to rely on joint position measures to prevent incorrect measures.

After a sufficiently stable model of the user’s joint positions has been found, it
is possible to implement different kinds of interactive models based on the motion
detected for each of the nodes.

In the next section, we will cover the implementation of specific examples of
musical interaction by means of skeletal motion tracking and musical signal
processing.

Fig. 2 Example of Kinect’s production nodes output, depth image in rainbow scale (left) and
RGB image (right)

Fig. 3 User segmentation
labelled depth image,
identifying three different
users from non-user pixels
(background)
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3 Interaction with Music: Examples of Applications

So far, we have discussed the advantages and drawbacks of different tracking
technologies and we have briefly skimmed over some of the possibilities that the
OpenNI/NITE framework opens for the use of the Kinect camera in an application
with stress in music interaction. However, we have not yet covered any specific
example. This section provides examples of actual applications developed using a
natural interaction interface based on Kinect. More specifically, this section will
present two of such applications: first, an application where the user’s hand
movements induce pitch shifting in a sound source being reproduced, and sec-
ondly, an application that detects a drum-hitting-like gesture as a cue to actually
play a drum-like sound. Finally, a collection of other possible paradigms for
musical interactive applications is portrayed.

3.1 Pitch-Shifting by Motion Tracking

Pitch shifting is the process of changing the pitch of a given piece or sample
without affecting its duration or speed. This process, along with time-stretching, is
used, for instance, to match pitches and tempos of two sound excerpts that are to
be mixed, to correct the intonation of instruments or singers, or to produce special
effects such as increasing the range of a given instrument or adding a chorus-like

Fig. 4 NITE’s skeletal model
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effect to a single singer performance (by mixing transposed copies of the original
monophonic voice).

The most straight-forward way to implement pitch shifting would be to simply
resample the clip to be processed, that is, to rebuild the original continuous
waveform and sample it again at a different rate. However, this process also
changes the duration of the signal. This means that if the signal were to be played
at the original sampling frequency, the audio clip would sound faster or slower. In
order to keep the duration unchanged, it would be necessary to time-scale the input
signal by the same factor as it is going to be oppositely scaled by the resampling
process. This stage can be implemented by using a time-stretching algorithm that
does not introduce changes to the original pitch, such as the synchronized overlap-
add method (Zölzer 2002). The order in which these two operations are applied
can be interchanged (example in Fig. 5).

Another alternative is to use a phase vocoder to apply a pitch transposition
transformation to a representation of the audio data based on a time–frequency
model. One possible implementation of the phase vocoder multiplies the input
audio signal by a sliding window which is nonzero for only a finite period of length
N samples. This divides the input audio waveform in chunks or frames, which are
transformed to the frequency domain by using the Fast Fourier Transform (FFT).
This process is called Short-Time Fourier Transform (STFT), and it is mathe-
matically represented by the equation Eq. 1.

Xðn; kÞ ¼
Xþ1

m¼�1
xðmÞwðm� nÞe

�j2pkm
N ¼ Xðn; kÞj jej/ðn;kÞ ð1Þ

Equation 1: Short-Time Fourier Transform for time–frequency representation.
In this equation, x(n) represents the digital audio samples, w(n) is the sliding

window chosen, and X(n, k) represents the short-time spectra of each frame.
After the short-time spectrum has been calculated, it is possible to apply an

operation or transformation by either manipulating the magnitude or the phase of
each sample at each of the N frequency bins given by the FFT. Once the desired
operation has been performed, the data is transformed back to the time-domain by
using an Inverse FFT (IFFT), and then the processed output signal is conformed by
adding and overlapping all the different frames previously calculated.

The summation of the IFFTs of all the X(n, k) allows the synthesis of the
transformed signal back to the time domain. This implementation of the phase
vocoder is refered to in (Zölzer 2002) as Direct FFT/IFFT approach. An alternative

y(n)s(n) Time Stretching
Factor 1/F

Resampling
Factor F

input signal pitch-shifted signal

Fig. 5 Pitch shifting by resampling and time-stretching
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way to implement phase vocoders is that of the filterbank or ‘‘Sum of Sinusoids’’
approach (Zölzer 2002).

When partitioning the signal into frames it is important to select an appropriate
window. In particular, we have used a Hanning window in our implementation,
and the windowing process is applied with an overlapping factor of 87.5 %, using
a frame and FFT size of 1,024 samples. For each X(n, k) calculated, real fre-
quencies represented by each of the 1,024 bins are extracted (taking into account
the phase u(n, k) and the delay introduced by the overlapping windowing process).
Then, the frame is pitch-shifted by multiplying each frequency value by the cor-
responding pitch-shifting value. Afterwards, the IFFT is calculated using the same
magnitude values as the original frame, but the phase values for each sample at
each frequency bin are extracted from the transposed frequency values. Thus, the
synthesis process yields an effectively pitch-shifted signal (an example can be
found in Fig. 6).

After the selection and implementation of the pitch-shifting scheme, the next
stage is the integration of such a process into a human motion tracking system to
actually perform the pitch-shifting effect. To this end, we designed and pro-
grammed a simple virtual environment integrating the OpenNI/NITE API to get
access to user motion data detected by a Kinect device in real time. The virtual
environment and the application were programmed in C/C++ using a set of dif-
ferent libraries and frameworks: OpenAL for audio management, OGRE3D for
graphics, OpenCV to manage the bitmaps extracted from the Kinect device, and
OpenNI/NITE to implement natural interaction.

A screenshot of the virtual environment developed is portrayed in Fig. 7. Each
of the fifteen nodes of the user’s tracked skeleton was represented visually by
spheres with a metallic texture. The information extracted from the depth image
and the user segmented image was also used to create two small billboards to offer
additional information to the user.

Users interact in the virtual world by using both their left and right hands. More
specifically, during the start-up, the application loads a previously selected audio
file. Left hand motion is used to start playing the audio or to pause the playback.
This action was implemented by performing a simple ‘‘push-button-like’’ gesture
to toggle the playing state of the song. Thus, playback switches between on and off
whenever the user’s left hand is moved forward so that the distance between the
hand and the torso becomes larger than a certain amount over the Z axis, towards
the camera.

While the music is playing, the user has the possibility of altering its pitch in
real time by simply raising or lowering his right hand. In particular, if the right
hand is kept approximately at the same height (Y axis) as the user’s head height,
then the song is played without any alterations. If the right hand is raised or
lowered with respect to the reference height, then the pitch is shifted, increasing or
decreasing respectively, according to the right hand’s position. Pitch transposition
is limited to a maximum of 12 semitones with respect to the original value. The
highest pitch shift is applied when the user’s right hand Y coordinate is approx-
imately 50 cm larger than the head’s one. Similarly, the lowest pitch shift possible
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is performed when the hand is about 50 cm smaller than the user’s head height. In
intermediate positions, the pitch shifting introduced is continuously distributed
along the interval of semitones considered (-12, 12) proportionally to the relative
height of the hand with respect to the head. Such behaviour is represented by
Eq. 2, which portrays the factor F by which the audio excerpt’s pitch is shifted
(relative Height is measured in mm in this equation). Figure 8 illustrates an
example of this procedure.

F ¼ 2
relative Height

41;67� 12 ð2Þ

Equation 2: Transcription of tracked movement into a pitch-shifting factor.
This application has been conceived from a pedagogical point of view. By

correlating pitch rising and lowering with similar rising and lowering movements

Fig. 6 Spectrogram of a
vocal audio excerpt (up) and
its pitch-shifted version
(down). A 3 semitones shift is
applied
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Fig. 8 Example of pitch-shifting of a single tone. When the hand moves from the blurred
position to the end position, the pitch shift factor changes according to the height of the hand at
each instant

Fig. 7 Screenshot of the virtual environment developed for the pitch-shifting application
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of the hand, it becomes easier to understand the musical concept of pitch, espe-
cially for children.

The idea of coupling body motion with the generation of sound effects can be a
useful tool for music learning, as previously indicated in the introduction, making
the experience more enjoyable and explorative, and, at the same time, acting as an
additional motivator towards the learning process.

3.2 Kinect-Battery: Playing Drums with Kinect

In the previously presented application, motion tracking was used in combination
with music signal processing to achieve real-time pitch transposition. In this
second application, we present a system that is capable of emulating a simple
drum-like instrument by capturing user hand motion.

A first approach to the implementation of a simple air-drum would be to
geometrically define a virtual drum in a given position in space. Since the Kinect
3D sensor actually provides coordinates for each position joint within its field of
view, it could be possible to define the position and dimensions of a virtual drum
within that space. Nevertheless, several usability drawbacks can be found in this
approach. First of all, the most glaring problem when the virtual drum is located at
a fixed position is that the drum would be ‘‘invisible’’ in the real world. Thus,
unless the user is wearing a head-mounted display device, the user will need to
keep watching an external display to find the drum. This can be easily overcome
by requiring the user to stay at a particular position. Another issue is that the drum
should be resized according to the height of the user, to ensure that children and
adults alike can use it comfortably.

While these are definitely minor issues, they can pose an unnecessary incon-
venience for user comfort. Therefore, an immediate refinement to the previous
approach would be to virtually attach the virtual drum to the user; this can be
achieved by placing the drum in a fixed relative position with respect to the user.
This modification removes the previous issues and does not restrain user
movements.

Figure 9 shows a screenshot of an application running this implementation. The
framework of the application is the same one used in the pitch-shifting application.
The virtual drum is represented by a simple geometric shape. Whenever the user
moves either hand downwards and ‘‘hits’’ the upper top of the drum, a drum sound
is played (see Fig. 10 for a schematic representation of this model). It is important
to notice that the virtual drum is obviously intangible in the physical world.
Therefore, the user might force the system to keep playing a sound by constantly
waving the hand in short up-and-down moves near the top of the drum, creating a
very unrealistic and unnatural sound output. To prevent this, both hands have to be
raised a certain height before being capable of triggering a new sound when
‘‘hitting’’ the top surface of the virtual drum. The speed of the downwards
movement is also taken into account to modify the intensity of the sound played
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accordingly. A drum kit functionality can be easily implemented by creating
several virtual drums distributed around the user.

Fig. 9 Screenshot of the virtual environment for the drum simulator

Fig. 10 Illustration of the ‘‘hit-drum-to-play’’ model
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A second approach to the implementation of the air-drum would rely strictly on
user’s motion to infer when the user ‘‘intends’’ to hit the drum. More specifically,
the system would follow the movement of the hands, and whenever a drum-hitting
gesture was detected, it would play the corresponding sound. In this second case,
there would be no virtual drum, as the triggering of the sound would not depend on
the exact position of user’s hands but on the identification of drum-hitting gestures.

There are several reasons why this approach constitutes a more interesting
approach. First of all, it removes the need for ‘‘invisible’’ drums. Furthermore, noisy
samples of the hands’ position can be more problematic when using the first
approach, since it is more reliant on the precision of the user when ‘‘hitting’’ the drum.

The second reason why resorting to a drum-hitting recognition model can be a
more enticing prospect is that the 3D sensing technology used to track user
movement has some limitations in terms of accuracy, delay, etc. In particular, the
delay between user movements and user’s avatar transcription of the motion
tracked could be as high as 200 ms. This is a hurdle that cannot be easily overcome
with the former approach. Notwithstanding, it is feasible to look for features in the
user tracked motion that can offer some insight on whether the user intends to
perform a drum-hitting gesture or not. Thus, these features can be used to com-
pensate for the delay introduced by the application. Moreover, by this way it is
possible to predict when the user is going to perform a drum-hitting gesture
according to a reference of previously performed gestures and the corresponding
features extracted.

There are several ways in which a drum-hitting motion can be characterized. In
the following lines, we present some possible features that can be used for the
recognition of drum-hitting-like gestures in a system with meaningful delay. To
illustrate these ideas, we will consider that the user performs drum-hitting gestures
in a somewhat exaggerated way. Note that short moves are very hard to track with
the 3D sensing technology considered.

• Descending Acceleration. A feature that is clearly linked to a downwards
drum-hitting gesture is that of velocity and acceleration. More specifically, a
negative acceleration peak along the Y axis will be expected to be found. At the
start of the downwards movement, the acceleration over the Y axis should have
a negative value; at the time when the drum would be actually hit, velocity
should ideally become zero for that instant (so acceleration should have become
positive instants before). Finally, since it would not be natural to end the
movement exactly at the drum-hitting point, it stands to assume that in a proper
drum-hitting gesture, the hand would ascend again after performing a beat.
Thus, at the ‘‘end’’ of the gesture, the acceleration over the Y axis should
become positive. This is a simple feature that can be used (along with a certain
threshold and some constraints to the X, Y and Z coordinates to avoid false
positives) to discern whether the user actually performs a drum-hitting motion or
not. Furthermore, it is feasible to use this very same feature to predict whether
the user intends to perform such a gesture: if the user makes a downwards
movement with a sufficiently large value of speed/acceleration, it is very likely
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that a drum-hitting gesture is to be performed. Thus, by setting a certain
threshold on the measured acceleration/velocity of the user hand, it is possible to
predict when the user intends to ‘‘play the drums’’. Therefore, the system can
give a response before the actual motion is fully detected, helping to mitigate the
effects of the delay of the tracking device (see Fig. 11).

• Linear Prediction of Position. Another way to address the problem of the delay
is to use a linear predictor to estimate the evolution of user’s motion according
to the behaviour observed in the samples already captured. This would allow the
system to actually predict the position of the user’s hand and identify potential
drum-hitting gestures prior to the actual completion of such gestures. Such
identification would be accomplished, for example, by fitting the samples to a
function that characterizes the gesture with sufficient accuracy. In this case, it is
also important to account for the fact that different users might tend to perform
their gestures at different velocities, so the information in the database should
cover a wide enough assortment of gestures performed at different speeds or be
properly parameterized to prevent this.

These features can be used by themselves to detect whether a drum-hitting
gesture has been performed or not. Despite this, it is more likely to get better
results in the gesture-recognition task when combining the outputs given by these
features. This can be achieved by training a Bayesian classifier or by resorting to
other machine learning methods.

It is important to notice that the data sampled should be appropriately nor-
malized in order to minimize the dependence of the motion data tracked on the
actual size of each user. Even for users similarly sized, the proximity to the 3D
sensing device will also affect the actual range of values that will be tracked.

Fig. 11 Example of gesture detection using descending velocity (or acceleration): if there is a
peak of downward speed faster than a given threshold, a drumbeat is played
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One simple way to overcome this limitation is to use the torso-to-head distance as
a reference to normalize the data tracked. This simple reference removes the
dependence of the data sampled on the proximity to the sensor and mitigates the
effects of user size variability in the size of potential users.

Another issue, especially with regard to avoiding false positive detection, is that
certain constraints should be applied to gesture detection features for those cases in
which it is obvious that no significative gestures can be performed. Examples of
such constraints can refer to the mean velocity of the movement or the coordinates
of the location of the hand at the beginning of the motion.

One final aspect to consider is that of a drum-kit simulation. We previously
stated that, with the first approach discussed (virtual battery simulation in 3D
space), it would be difficult to implement a drum-kit due to the precision necessary
to ‘‘hit’’ the space confined by the invisible virtual drums. In this second approach,
a problem is the delay introduced by the system in the detection of a gesture. Since
the gesture recognition measures proposed do not depend on the actual position on
the XZ plane, a simple way to discriminate between different drums would be to
use the coordinates on the X and Z axes whenever a gesture is detected to select
the corresponding drum sound to play. While this partially brings back some issues
regarding precision when ‘‘hitting’’ an invisible 3D space, this solution is by far
more robust in this case. First of all, discriminating between positions in the XZ
plane is far simpler than detecting when the user ‘‘hits’’ a specific 3D volume.
Secondly, and more important, since a sound is played when a gesture has been
detected, as long as a gesture is correctly performed, a sound will play. Precision
errors might result in having the wrong drum sound played, but the system would
respond. On the contrary, with the first implementation, ‘‘missing the drum’’
implies that no sound would be played, which would be more frustrating to the
user. Furthermore, with the second approach, if the user wants to virtually play
drums, he/she will need to perform gestures that are reasonably similar to the
actual gestures a musician would make when playing the drums.

Like the pitch-shifting application presented in the previous section, this
application can also be seen from a pedagogical point of view. In particular, it can
be used to teach rhythmic patterns in basic music stages. But perhaps the most
enticing application of such a system would be as an accessible way for novice
users to musical expression and performance. Albeit limited, the proposed appli-
cation helps to lower barriers for lay people in musical terms, and allows for a
reasonable simulation of a drum-like instrument. Also, it removes most of the
hurdles related to instrument maintenance and overuse, as well as offering an
explorative and intuitive gateway to the world of musical performance.

3.3 Other Interaction Paradigms

So far we have presented in detail some aspects regarding specific applications for
real-time integration of human motion and musical responses. However, there are
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many other enticing and appealing applications and interaction paradigms that
allow for the integration of motion cues and music signal processing. In this
section, some examples of interaction paradigms that can be used to achieve new
forms of musical expression will be briefly presented.

3.3.1 The Virtual Director: An Example of Tempo Modification
with Hand Motion

The title of music director is normally used in many symphony orchestras to
designate the principal conductor and artistic leader of the orchestra. The role of
the director is to oversee the overall musical performance, supervising and guiding
the musical performance of the orchestra. The director guides the musicians with
the motion of his hands and arms. Thus, a simple approximation to a virtual
director application can be easily achieved with a body motion tracking system, as
shown in Fig. 12.

More concretely, it is relatively easy to use skeletal joint data to discriminate
over a given range of tempo. For example, to discriminate among andante, adagio
and presto, the space around the user could be divided into three regions according
to height: a lower region (for example, from slightly over the waist and down-
wards), an upper region (from the shoulders upwards), and a middle region
(approximately between shoulders and waist). Therefore, if the user moves his/her
hands in the lower region, tempo would be set to adagio, andante in the middle
region, and presto for the upper region. Thus, by detecting that the user is per-
forming a waving motion similar to the archetypical waving motion used by music
directors, it is feasible to implement a basic version of a music director simulator.
More complex implementations could be achieved by extending the range of
tempo considered, or by analyzing the waving speed instead of or in addition to the
height of the hands, as shown in Fig. 13.

Fig. 12 Schematic representation for a simple implementation of a virtual director by means of a
height-based system for tempo selection
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3.3.2 Instrument Simulation

Previously, we have discussed the implementation of a simple drum-like instru-
ment, but a similar approach can be followed for the implementation of other types
of instruments. The xylophone and other percussion instruments could be easily
simulated using a system similar to the one previously proposed. Obviously, the
skeletal model obtained from Kinect’s depth map would not be useful to imple-
ment an ‘‘air-piano’’. However, by processing the depth and RGB images simul-
taneously, it would be possible to find the position of each finger to implement
such application. Of course, the computational cost would be larger than in the
previous examples. Also, in this case a visual reference in the real world would be
necessary since users cannot be expected to correctly hit the keys of an invisible
piano accurately.

3.3.3 Advanced Pitch-Shifting/Correction

An evolution of the previously presented pitch-shifting application could combine
the idea of pitch shifting by motion with an onset detector. In particular, this
application could follow the next scheme: the user records a performance of a
musical piece. Then, this sample is processed and segmented into the notes
actually played. Afterwards, the application shows the timeline of the song divided
by the note-segments detected (for example, using a pentagram, as shown in
Fig. 14). Then, the user could modify the pitch of each identified note-segment

Fig. 13 An alternative interaction paradigm for a virtual director
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along the pentagram, for example using the left hand to select the notes to be pitch-
shifted, and the right hand to raise or lower the pitch. Again, this can be a useful
application for pedagogical purposes, especially in teaching the basics of music
theory.

3.3.4 Real-Time Motion-Based Composition

Motion-based interfaces can provide the means for real-time expressive rendering
of musical pieces, lowering the barriers of music theory for a naïve user. This can
be easily achieved, for example by allowing the user to create music by selecting
notes and placing them on a score (in this case, the motion interface becomes
mainly an additional compelling element). Also, the previously commented pitch-
shifting application can be considered a real-time composition-by-motion scheme.
A more interesting system could be based on combining motion detection with an
automatic score generator.

4 Conclusions

In this chapter, a brief overview of the capabilities of advanced human computer
interaction for the design and development of musical interactive applications has
been drawn. More specifically this chapter has focused on the combination of
human motion with music signal processing techniques in order to achieve an
assortment of effects or applications. After summarizing the main advantages and

Fig. 14 Portrayal of an advanced pitch-shifter
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disadvantages of the different technological alternatives for the implementation of
human motion-tracking systems, we have turned our attention to the Microsoft
Kinect 3D sensor given its availability, low-cost, non-intrusiveness and high
performance features.

We have shown details of two example applications that make use of a 3D
sensor depth camera to implement a real-time motion-based application for pitch
shifting and a drum simulator. However, as evidenced by the bibliography and the
alternative examples shown in the previous sections, the interaction possibilities
are nearly endless.

In view of the work developed, the main advantage of the applications created
or described is their high level of accessibility, since no prior musical knowledge is
required for the user to actually interact with the sounds played. As previously
stated, this makes for an innovative and explorative way to better understand the
concepts behind music, sound, or sound effects. Taking into account this obser-
vation, it is easy to get to the conclusion that this kind of applications can be
potentially useful for music learning purposes, diminishing some of the hurdles
concerning music theory by means of a more ‘‘tangible’’ visualization of theo-
retical concepts.

Furthermore it is expected that this type of added interactivity will also make
the experience more compelling and fulfilling. This should encourage the appli-
cation of advanced technologies and devices for music related tasks, including
entertainment and learning.
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