
Chapter 12
Stability of Some Social Mathematical Models
with Delay Under Stochastic Perturbations

In this chapter we propose a mathematical framework to model some social be-
havior. To be precise, we propose delayed and stochastic mathematical models to
analyze human behaviors related to some addictions: consumption of alcohol and
obesity.

12.1 Mathematical Model of Alcohol Consumption

Taking into account the proposal presented in [247], we consider alcohol consump-
tion habit as susceptible to be transmitted by peer pressure or social contact. This
fact led us to propose an epidemiologic-type mathematical model to study this social
epidemic.

Here we generalize the known nonlinear dynamic model of alcohol consumption
[254] by adding distributed delay. We obtain sufficient conditions for the existence
of a positive equilibrium point of this system. Similarly to the previous sections, we
suppose that this nonlinear system is exposed to additive stochastic perturbations
of white noise type that are directly proportional to the deviation of the system
state from the equilibrium point. The considered nonlinear system is linearized in
the neighborhood of the positive point of equilibrium, and a sufficient condition
for asymptotic mean-square stability of the zero solution of the constructed linear
system is obtained via the procedure of constructing Lyapunov functionals that is
described in Sect. 2.2.2. Since the order of nonlinearity of the considered nonlinear
system is higher than one, the obtained condition is also a sufficient one (Sect. 5.3)
for stability in probability of the equilibrium point of the initial nonlinear system
under stochastic perturbations.

12.1.1 Description of the Model of Alcohol Consumption

Let A(t) be nonconsumers, individuals that have never consumed alcohol or in-
frequently have alcohol consumption, and M(t) be nonrisk consumers, individuals
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with regular low consumption, to be precise, men consuming less than 50 cc (cubic
centimeters) of alcohol every day and women consuming less than 30 cc of alcohol
every day. Let R(t) be risk consumers, individuals with regular high consumption,
that is, men consuming more than 50 cc of alcohol every day and women who con-
suming more than 30 cc of alcohol every day.

Considering homogeneous mixing [219], where each individual can contact with
any other individual (peer pressure), a dynamic alcohol consumption model is given
by the following nonlinear system of ordinary differential equations with distributed
delay:

Ȧ(t) = μP(t) + γR(t) − dAA(t) − βA(t)

∫ ∞

0

M(t − s) + R(t − s)

P (t − s)
dK(s),

Ṁ(t) = βA(t)

∫ ∞

0

M(t − s) + R(t − s)

P (t − s)
dK(s) − dM(t) − αM(t),

Ṙ(t) = αM(t) − γR(t) − dR(t),

P (t) = A(t) + M(t) + R(t).

(12.1)

Here:

α the rate at which a nonrisk consumer moves to the risk consumption subpopu-
lation (intensity of transition from the group M(t) to the group R(t)).

β the transmission rate due to social pressure to increase the alcohol consumption,
e.g., family, friends, marketing, TV, etc. (intensity of transition from the group
A(t) to the group M(t)).

γ the rate at which a risk consumer becomes a nonconsumer (intensity of transi-
tion from the group R(t) to the group A(t)); so, the scheme of transition from
one group to another one is

A(t) →β→ M(t) →α→ R(t) →γ → A(t).

μ the birth rate.
dA the death rate.
d the augmented death rate due to alcohol consumption (accidents at work, traffic

accidents, and diseases derived by alcohol consumption are considered).

We suppose that the parameters α,β, γ,μ,dA, d are nonnegative numbers and
K(s) is a nondecreasing function such that

∫ ∞

0
dK(s) = 1. (12.2)

The integral is understood in the Stieltjes sense.

Remark 12.1 In particular, dK(s) = δ(s − h)ds, where h > 0, δ(s) is Dirac’s func-
tion, system (12.1) is a system with discrete delay h. The case of a system without
delay (h = 0) is considered in [254].
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12.1.2 Normalization of the Initial Model

Put

a(t) = A(t)

P (t)
, m(t) = M(t)

P (t)
, r(t) = R(t)

P (t)
. (12.3)

From (12.1) and (12.3) it follows that

a(t) + m(t) + r(t) = 1. (12.4)

Adding the first three equations in (12.1), by (12.4) we obtain

Ṗ (t)

P (t)
= μ − d + (d − dA)a(t).

From this and from (12.3) we have

ȧ(t) = Ȧ(t)P (t) − A(t)Ṗ (t)

P 2(t)
= Ȧ(t)

P (t)
− A(t)

P (t)
× Ṗ (t)

P (t)

= Ȧ(t)

P (t)
− a(t)

[
μ − d + (d − dA)a(t)

]
, (12.5)

and, similarly,

ṁ(t) = Ṁ(t)

P (t)
− m(t)

[
μ − d + (d − dA)a(t)

]
,

ṙ(t) = Ṙ(t)

P (t)
− r(t)

[
μ − d + (d − dA)a(t)

]
.

(12.6)

Thus, putting

I (at ) =
∫ ∞

0
a(t − s) dK(s), (12.7)

by (12.5), (12.6), (12.1), (12.2), and (12.4) we obtain

ȧ(t) = μ + γ r(t) + βa(t)I (at ) − a(t)
[
β + μ − (d − dA)

(
1 − a(t)

)]
,

ṁ(t) = βa(t) − βa(t)I (at ) − m(t)
[
α + μ + (d − dA)a(t)

]
,

ṙ(t) = αm(t) − r(t)
[
γ + μ + (d − dA)a(t)

]
.

In view of (12.4), the last equation can be rejected, and, as a result, we obtain the
system of two integro–differential equations

ȧ(t) = μ + γ − γm(t) + βa(t)I (at ) − a(t)
[
β + μ + γ − (d − dA)

(
1 − a(t)

)]
,

(12.8)
ṁ(t) = βa(t) − βa(t)I (at ) − m(t)

[
α + μ + (d − dA)a(t)

]
.
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12.1.3 Existence of an Equilibrium Point

By (12.8), (12.2), and (12.4) a point of equilibrium (a∗,m∗, r∗) is defined by the
following system of algebraic equations:

(μ + γ )
(
1 − a∗) = a∗(β − d + dA)

(
1 − a∗) + γm∗,

βa∗(1 − a∗) = m∗[α + μ + (d − dA)a∗],
a∗ + m∗ + r∗ = 1.

(12.9)

Lemma 12.1 If d ∈ [dA,β + dA), then system (12.9) has a unique positive solution
(a∗,m∗, r∗) if and only if

β > d − dA + μ + αγ

α + μ + γ + d − dA

. (12.10)

If d ≥ β + dA, then system (12.9) has no positive solutions.

Proof Necessity From the first two equations in (12.9) we have

μ + γ = a∗(β − d + dA) + γβa∗

α + μ + (d − dA)a∗ . (12.11)

Since a∗ ∈ (0,1), from (12.11) it follows that

μ + γ = a∗(β − d + dA) + γβ

(α + μ)(a∗)−1 + d − dA

< β − d + dA + γβ

α + μ + d − dA

= α + μ + γ + d − dA

α + μ + d − dA

β − d + dA,

which is equivalent to (12.10) since

β >
(μ + γ + d − dA)(α + μ + d − dA)

α + μ + γ + d − dA

= d − dA + μ + αγ

α + μ + γ + d − dA

.

Sufficiency Rewrite (12.11) in the form

Q
(
a∗)2 + Ba∗ − C = 0,

B = (β − d + dA)(α + γ + μ) − μ(d − dA),

Q = (β − d + dA)(d − dA), C = (μ + α)(μ + γ ). (12.12)
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Thus, by (12.9) the equilibrium point (a∗,m∗, r∗) is defined by the system of alge-
braic equations (12.12), and

m∗ = βa∗(1 − a∗)
α + μ + (d − dA)a∗ , r∗ = 1 − a∗ − m∗. (12.13)

It is easy to check that by the condition d ∈ [dA,β + dA) (or Q ≥ 0) the existence
of a solution a∗ of (12.12) in the interval (0,1) is equivalent to the condition C <

Q + B , which is equivalent to (12.10).
If d ≥ β + dA, then Q ≤ 0 and B < 0. So, (12.12) cannot have positive roots.

The proof is completed. �

Example 12.1 Following [254], put

α = 0.000110247, β = 0.0284534, γ = 0.00144,

μ = 0.01, d = 0.009, dA = 0.008.
(12.14)

Then condition (12.10) holds, and the solution of (12.12)–(12.13) is

a∗ = 0.364739, m∗ = 0.629383, r∗ = 0.00587794, (12.15)

or, in percents, a∗ = 36.47 %, m∗ = 62.94 %, r∗ = 0.59 %.

12.1.4 Stochastic Perturbations, Centralization, and Linearization

Let us suppose that system (12.8) is exposed to stochastic perturbations of white
noise type (ẇ1(t), ẇ2(t)), which are directly proportional to the deviation of system
(12.8) state (a(t),m(t)) from the equilibrium point (a∗,m∗), i.e.,

ȧ(t) = μ + γ − γm(t) + βa(t)I (at ) − a(t)
[
β + μ + γ − (d − dA)

(
1 − a(t)

)]
+ σ1

(
a(t) − a∗)ẇ1(t),

ṁ(t) = βa(t) − βa(t)I (at ) − m(t)
[
α + μ + (d − dA)a(t)

]
+ σ2

(
m(t) − m∗)ẇ2(t).

(12.16)

Here w1(t),w2(t) are the mutually independent standard Wiener processes, and the
stochastic differential equations (12.16) are understood in the Itô sense (Sect. 2.1.2).

To centralize system (12.16) in the equilibrium point, put now x1(t) = a(t)− a∗,
x2(t) = m(t) − m∗. Then from (12.16) it follows that

ẋ1(t) = μ + γ − γ
(
m∗ + x2(t)

) + β
(
a∗ + x1(t)

)(
a∗ + I (x1t )

)
− (

a∗ + x1(t)
)[

β + μ + γ − (d − dA)
(
1 − a∗ − x1(t)

)] + σ1x1(t)ẇ1(t),

ẋ2(t) = β
(
a∗ + x1(t)

) − β
(
a∗ + x1(t)

)(
a∗ + I (x1t )

)
− (

m∗ + x2(t)
)[

α + μ + (d − dA)
(
a∗ + x1(t)

)] + σ2x2(t)ẇ2(t),
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or

ẋ1(t) = μ
(
1 − a∗) + γ

(
1 − a∗ − m∗) − a∗(1 − a∗)(β − d + dA) − μx1(t)

+ γ
(−x1(t) − x2(t)

) + x1(t)
(
1 − 2a∗)(d − dA) − βx1(t)

(
1 − a∗)

+ βa∗I (x1t ) − x2
1(t)(d − dA) + βx1(t)I (x1t ) + σ1x1(t)ẇ1(t),

(12.17)
ẋ2(t) = βa∗(1 − a∗) − m∗[α + μ + (d − dA)a∗] + βx1(t)

(
1 − a∗)

− m∗x1(t)(d − dA) − βa∗I (x1t ) − x2(t)
[
α + μ + (d − dA)a∗]

− βx1(t)I1(x1t ) − x2(t)x1(t)(d − dA) + σ2x2(t)ẇ2(t).

By (12.9) from (12.17) it follows that

ẋ1(t) = a11x1(t) + a12x2(t) + βa∗I (x1t ) + βx1(t)I (x1t )

− (d − dA)x2
1(t) + σ1x1(t)ẇ1(t),

ẋ2(t) = a21x1(t) + a22x2(t) − βa∗I (x1t ) − βx1(t)I (x1t )

− (d − dA)x1(t)x2(t) + σ2x2(t)ẇ2(t),

(12.18)

where

a11 = −[
μ + γ + (β − d + dA)

(
1 − a∗) + (d − dA)a∗], a12 = −γ,

a21 = β(α + μ)(1 − a∗)
α + μ + (d − dA)a∗ , a22 = −[

α + μ + (d − dA)a∗]. (12.19)

Note that for d ∈ [dA,β + dA), the numbers a11, a12, a22 are negative, and a21 > 0.
Rejecting the nonlinear terms in (12.18), we obtain the linear part of (12.18):

ẏ1(t) = a11y1(t) + a12y2(t) + βa∗I (y1t ) + σ1y1(t)ẇ1(t),

ẏ2(t) = a21y1(t) + a22y2(t) − βa∗I (y1t ) + σ2y2(t)ẇ2(t).
(12.20)

12.1.5 Stability of the Equilibrium Point

Note that the nonlinear system (12.18) has the order of nonlinearity higher than
one. Thus, as it is shown in Sect. 5.3, sufficient conditions for the asymptotic mean-
square stability of the zero solution of the linear part (12.20) of the nonlinear system
(12.18) at the same time are sufficient conditions for the stability in probability of the
zero solution of the nonlinear system (12.18) and therefore are sufficient conditions
for stability in probability of the solution (a∗,m∗) of (12.16).

To get sufficient conditions for the asymptotic mean-square stability of the zero
solution of (12.20), rewrite this system in the form

ẏ(t) = Ay(t) + B(yt ) + σ
(
y(t)

)
ẇ(t), (12.21)
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where

y(t) = (
y1(t), y2(t)

)′
, w(t) = (

w1(t),w2(t)
)′
,

B(yt ) = (
βa∗I (y1t ),−βa∗I (y1t )

)′
,

A =
(

a11 a12
a21 a22

)
, σ

(
y(t)

) =
(

σ1y1(t) 0
0 σ2y2(t)

)
.

(12.22)

Following the procedure of constructing Lyapunov functionals (Sect. 2.2.2), for
stability investigation of (12.21), consider the auxiliary differential equation without
memory

ż(t) = Az(t) + σ
(
z(t)

)
ẇ(t). (12.23)

By Remark 2.6 the zero solution of the differential equation ż(t) = Az(t) is
asymptotically stable if and only if conditions (2.62) hold. By Corollary 2.3 con-
ditions (2.66) are sufficient conditions for the asymptotic mean-square stability of
the zero solution of (12.23). Below, we suppose that conditions (2.62) and (2.66)
hold.

To get stability conditions for (12.20), consider the matrix equation

A′P + PA + Pσ = −C, (12.24)

where

P =
(

p11 p12
p12 p22

)
, Pσ =

(
p11σ

2
1 0

0 p22σ
2
2

)
, C =

(
c 0
0 1

)
,

c > 0, and the matrix A is defined in (12.22), (12.19).
If the matrix equation (12.24) has a positive definite solution P , then the function

v(z) = z′Pz is a Lyapunov function for (12.23) since

Lv = z′(A′P + PA + Pσ

)
z = −z′Cz.

Note that the matrix equation (12.24) can be represented as the system of the
equations

2(p11a11 + p12a21 + p11δ1) = −c,

2(p12a12 + p22a22 + p22δ2) = −1,

p11a12 + p12 Tr(A) + p22a21 = 0,

(12.25)

with the solution

p11 = −c + 2a21p12

2â11
, p22 = −1 + 2a12p12

2â22
, p12 = a21â11 + ca12â22

2Z
,

(12.26)
where

âii = aii + δi, δi = 1

2
σ 2

i , i = 1,2, (12.27)
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Z = Tr(A)â11â22 − a12a21(â11 + â22). (12.28)

Lemma 12.2 Let conditions (2.52), (2.56) hold, and let

â11 < 0, â22 < 0. (12.29)

Then the zero solution of (12.23) is asymptotically mean-square stable.

Proof It is enough to show that the matrix P = ‖pij‖ with the elements (12.26),
which are a solution of the matrix equation (12.24), is positive definite for an arbi-
trary c > 0, i.e., p11 > 0, p22 > 0, p11p22 > p2

12. To this aim, note that by (2.62),
(12.19), (12.29) we have Z < 0. Note also that by (12.27), (12.29), Remark 2.8, and
(2.72) we obtain

δ1 < |a11| ≤ |Tr(A)|det(A)

A2
≤ A1

|Tr(A)| ,

δ2 < |a22| ≤ |Tr(A)|det(A)

A1
≤ A2

|Tr(A)| ,
(12.30)

where

Ai = det(A) + a2
ii , i = 1,2. (12.31)

Besides, by (12.28), (12.27), (2.62), and (12.31) we have

Z + a12a21â22 = Tr(A)â11â22 − a12a21(â11 + â22) + a12a21â22

= (
Tr(A)â22 − a12a21

)
â11

= (
A2 − ∣∣Tr(A)

∣∣δ2
)
â11 (12.32)

and, similarly,

Z + a12a21â11 = (
A1 − ∣∣Tr(A)

∣∣δ1
)
â22. (12.33)

From this and from (12.26), (12.32), (12.30) it follows that for an arbitrary c > 0,

p11 = −cZ + a21(ca12â22 + a21â11)

2Zâ11

= −c(Z + a12a21â22) + a2
21â11

2Zâ11

= c(A2 − |Tr(A)|δ2) + a2
21

2|Z|
> 0, (12.34)

and, similarly, by (12.26), (12.33), (12.30) we obtain

p22 = A1 − |Tr(A)|δ1 + ca2
12

2|Z| > 0. (12.35)
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Finally, let us show that p11p22 > p2
12. Indeed, the inequality

(c + 2a21p12)(1 + 2a12p12)

4â11â22
> p2

12

is equivalent to 4Bp2
12 − 2(a21 + ca12)p12 < c by B = â11â22 − a12a21 > 0. Substi-

tuting p12 from (12.26) into the obtained inequality, we have

B(a21â11 + ca12â22)
2 − (a21 + ca12)(a21â11 + ca12â22)Z < cZ2

or

c2a2
12â22(Z − Bâ22) + câ11â22

(
Z Tr(A) − 2a12a21B

) + a2
21â11(Z − Bâ11) > 0.

Note also that by (12.28), (12.29), (12.19) we obtain

â11(Z − Bâ11) = â11
(
Tr(A)â11â22 − a12a21(â11 + â22)

− (â11â22 − a12a21)â11
)

= â11
(
Tr(A)â11â22 − a12a21â22 − â2

11â22
)

= â11â22
(
Tr(A)â11 − a12a21 − â2

11

)
= â11â22

((
Tr(A) − â11

)
â11 − a12a21

)
= â11â22

(
(a22 − δ1)â11 − a12a21

)
> 0

and, similarly,

â22(Z − Bâ22) = â11â22
(
(a11 − δ2)â22 − a12a21

)
> 0,

Z Tr(A) − 2a12a21B > 0.

So, for an arbitrary c > 0, the matrix P with the elements (12.26) is positive definite.
The proof is completed. �

Theorem 12.1 If conditions (12.29) hold and, for some c > 0, the elements (12.26)
of the matrix P satisfy the condition

(
βa∗|p12 − p22|

)2 + 2βa∗|p11 − p12| < c, (12.36)

then the solution (a∗,m∗) of system (12.16) is stable in probability.

Proof Note that the order of nonlinearity of system (12.16) is higher than one.
Therefore, from Sect. 5.3, to get conditions for stability in probability of the equilib-
rium point (a∗,m∗) of this system, it is enough to get conditions for the asymptotic
mean-square stability of the zero solution of the linear part (12.20) of this system.
Following the procedure of constructing Lyapunov functionals, we will construct a
Lyapunov functional for system (12.20) in the form V = V1 +V2, where V1 = y′Py,
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y = (y1, y2)
′, P is a positive definite solution of system (12.25) with the elements

(12.26), and V2 will be chosen below.
Let L be the generator (Sect. 2.1.2) of system (12.20). Then by (12.20) and

(12.25) we have

LV1 = 2
(
p11y1(t) + p12y2(t)

)(
a11y1(t) + a12y2(t) + βa∗I (y1t )

) + p11σ
2
1 y2

1(t)

+ 2
(
p12y1(t) + p22y2(t)

)(
a21y1(t) + a22y2(t) − βa∗I (y1t )

) + p22σ
2
2 y2

2(t)

= −cy2
1(t) − y2

2(t) + 2βa∗[(p11 − p12)y1(t) + (p12 − p22)y2(t)
]
I (y1t ).

By (12.7), (12.2) we have 2y1(t)I (y1t ) ≤ y2
1(t) + I (y2

1t ) and 2y2(t)I (y1t ) ≤
νy2

2(t) + ν−1I (y2
1t ) for some ν > 0. Using these inequalities, we obtain

LV1 ≤ −cy2
1(t) − y2

2(t) + βa∗|p11 − p12|
(
y2

1(t) + I
(
y2

1t

))

+ βa∗|p12 − p22|
(
νy2

2(t) + ν−1I
(
y2

1t

))

= (
βa∗|p11 − p12| − c

)
y2

1(t) + (
βa∗|p12 − p22|ν − 1

)
y2

2(t)

+ qI
(
y2

1t

)
, (12.37)

where

q = βa∗(|p11 − p12| + |p12 − p22|ν−1). (12.38)

Putting

V2 = q

∫ ∞

0

∫ t

t−s

y2
1(θ) dθ dK(s),

by (12.2), (12.7) we have LV2 = q(y2
1(t) − I (y2

1t )). Therefore, by (12.37), (12.38)
for the functional V = V1 + V2, we have

LV ≤ (
2βa∗|p11 − p12| + βa∗|p12 − p22|ν−1 − c

)
y2

1(t)

+ (
βa∗|p12 − p22|ν − 1

)
y2

2(t).

Thus, if

2βa∗|p11 − p12| + βa∗|p12 − p22|ν−1 < c, βa∗|p12 − p22|ν < 1, (12.39)

then by Remark 2.1 the zero solution of (12.20) is asymptotically mean-square sta-
ble.

From (12.39) it follows that

βa∗|p12 − p22|
c − 2βa∗|p11 − p12| < ν <

1

βa∗|p12 − p22| . (12.40)

Thus, if for some c > 0, condition (12.36) holds, then there exists ν > 0 such that
conditions (12.40) (or (12.39)) hold too, and therefore the zero solution of (12.20)
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is asymptotically mean-square stable. From this it follows also that the zero solu-
tion of (12.18) and therefore the equilibrium point of system (12.16) are stable in
probability. The proof is completed. �

Example 12.2 Consider system (12.16) with the values of the parameters α, β , γ , μ,
d , dA and the equilibrium point (a∗,m∗) given in (12.14), (12.15). As an example,
consider the levels of noises σ1 = 0.028969, σ2 = 0.142252 or δ1 = 0.000420, δ2 =
0.010118. From (12.19) it follows that the values of system (12.20) parameters are
a11 = −0.029245, a12 = −0.001440, a21 = 0.017446, a22 = −0.010475 and the
conditions (12.29) hold: â11 = −0.028825 < 0, â22 = −0.000357 < 0. Put c = 20.
Then by (12.26) p11 = 477.4438, p12 = 215.6615, p22 = 530.4124, and condition
(12.36) holds:

(
βa∗|p12 − p22|

)2 + 2βa∗|p11 − p12| = 16.1036 < 20.

Thus, the solution (a∗,m∗) of system (12.16) is stable in probability.

Example 12.3 Consider system (12.16) with the previous values of the all pa-
rameters except for the levels of noises that are σ1 = 0.0075, σ2 = 0.0077 or
δ1 = 0.000028, δ2 = 0.000030. These values of σ1 and σ2 are selected taking into
account sample errors of the monitoring of the alcohol consumption in Spain [291].
The parameters a11, a21, a22 are the same as in the previous example, and condi-
tions (12.29) hold: â11 = −0.029217 < 0, â22 = −0.010445 < 0. Put c = 4. Then
by (12.26) p11 = 78.6856, p12 = 17.1347, p22 = 45.5060, and condition (12.36)
holds: (

βa∗|p12 − p22|
)2 + 2βa∗|p11 − p12| = 1.3643 < 4.

Thus, the solution (a∗,m∗) of system (12.16) is stable in probability.

Let us now get three corollaries from Theorem 12.1 that simplify a verification
of the stability condition (12.36). By (12.26) and (12.28) we have

p12 − p11 = p12 + c + 2a21p12

2â11

=
(

1 + a21

â11

)
a21â11 + ca12â22

2Z
+ c

2â11

= (a21 + â11)a12â22 + Z

2Zâ11
c + (a21 + â11)a21

2Z

= B0c + B1, (12.41)

where

B0 = (Tr(A) + a12)â22 − a12a21

2Z
, B1 = (a21 + â11)a21

2Z
(12.42)
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and, similarly,

p12 − p22 = p12 + 1 + 2a12p12

2â22

=
(

1 + a12

â22

)
a21â11 + ca12â22

2Z
+ 1

2â22

= (a12 + â22)a12c

2Z
+ (a12 + â22)a21â11 + Z

2Zâ22

= D0c + D1, (12.43)

where

D0 = (a12 + â22)a12

2Z
, D1 = (Tr(A) + a21)â11 − a12a21

2Z
. (12.44)

Remark 12.2 Put

f (c) = (
βa∗D0

)2
(

c + D1

D0

)2

+ 2βa∗|B0|
∣∣∣∣c + B1

B0

∣∣∣∣ − c. (12.45)

From (12.19), (12.29) it follows that B0 < 0. By (12.41)–(12.45) and B0 < 0 condi-
tion (12.36) is equivalent to the condition f (c) < 0.

Put now

S = (
βa∗D0

)2
(

D1

D0
− B1

B0

)2

+ B1

B0
,

R+ = 2βa∗|B0|
(

1 − 2βa∗|B0|
2(βa∗D0)2

− D1

D0
+ B1

B0

)
,

R− = −2βa∗|B0|
(

1 + 2βa∗|B0|
2(βa∗D0)2

− D1

D0
+ B1

B0

)
,

Q = 1

4(βa∗D0)2
− D1

D0
− B2

0

D2
0

.

(12.46)

Corollary 12.1 If conditions (12.29) hold and S < 0, then the solution (a∗,m∗) of
system (12.16) is stable in probability.

Proof From S < 0 and B0 < 0 it follows that B1 > 0. Putting c0 = −B1B
−1
0 > 0,

we obtain f (c0) = S < 0, i.e., condition (12.36) holds. The proof is completed. �

Corollary 12.2 If conditions (12.29) hold and 0 ≤ R+ < Q, then the solution
(a∗,m∗) of system (12.16) is stable in probability.
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Proof Let us suppose that c + B1B
−1
0 ≥ 0. Then the minimum of the function f (c)

is reached by

c0 = 1 − 2βa∗|B0|
2(βa∗D0)2

− D1

D0
≥ −B1

B0
.

Substituting c0 into the function f (c), we obtain that the condition f (c0) < 0 is
equivalent to the condition 0 ≤ R+ < Q. The proof is completed. �

Corollary 12.3 If conditions (12.29) hold and 0 < R− < Q, then the solution
(a∗,m∗) of system (12.16) is stable in probability.

Proof Let us suppose that c + B1B
−1
0 < 0. Then the minimum of the function f (c)

is reached by

c0 = 1 + 2βa∗|B0|
2(βa∗D0)2

− D1

D0
< −B1

B0
.

Substituting c0 into the function f (c), we obtain that the condition f (c0) < 0 is
equivalent to the condition 0 < R− < Q. The proof is completed. �

Example 12.4 Consider system (12.16) with the values of the parameters from Ex-
ample 12.2. Calculating S, R+, Q, we obtain: S = 4.50 > 0, R+ = 736 < Q =
1320. From Corollary 12.2 it follows that the solution (a∗,m∗) of system (12.16) is
stable in probability.

Example 12.5 Consider system (12.16) with the values of the parameters from Ex-
ample 12.3. Calculating S, R+, Q, we obtain: S = −0.39 < 0, R+ = 2462 < Q =
4754. From both Corollary 12.1 and Corollary 12.2 it follows that the solution
(a∗,m∗) of system (12.16) is stable in probability.

12.1.6 Numerical Simulation

Let us suppose that in (12.1) dK(s) = δ(s − h)ds, where δ(s) is Dirac’s delta-
function, and h ≥ 0 is the delay.

In Fig. 12.1 25 trajectories of the solution of (12.16), (12.4) are shown for the
values of the parameters from Examples 12.1 and 12.2: α = 0.000110247, β =
0.0284534, γ = 0.00144, μ = 0.01, d = 0.009, dA = 0.008, the initial values a0 =
0.43, m0 = 0.53, r0 = 0.04, the levels of noises σ1 = 0.028969, σ2 = 0.142252,
and delay h = 0.1. We can see that all trajectories go to the equilibrium point a∗ =
0.364739, m∗ = 0.629383, r∗ = 0.00587794.

Note that numerical simulations of the processes a(t), m(t), and r(t) were ob-
tained via the difference analogues of (12.16), (12.4) in the form

ai+1 = ai + 	
[
μ + γ − γμi + βaiai−m − ai

(
β + μ + γ − (d − dA)(1 − ai)

)]
+ σ1

(
ai − a∗)(w1,i+1 − w1i ),
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Fig. 12.1 25 trajectories of the processes a(t) (blue), m(t) (green), r(t) (red) with the val-
ues of the parameters α = 0.000110247, β = 0.0284534, γ = 0.00144, μ = 0.01, d = 0.009,
dA = 0.008, the levels of noises σ1 = 0.028969, σ2 = 0.142252, the delay h = 0.1, the ini-
tial values a(s) = 0.43, s ∈ [−0.1,0], m(0) = 0.53, r(0) = 0.04, and the equilibrium point
a∗ = 0.364739, m∗ = 0.629383, r∗ = 0.00587794

mi+1 = mi + 	
[
βai − βaiai−m − mi

(
α + μ + (d − dA)ai

)]
+ σ2

(
mi − m∗)(w2,i+1 − w2i ),

ri+1 = 1 − ai+1 − mi+1,

i = 0,1,2, . . . , aj = a0, j = −m, . . . ,−1,0.

Here 	 is the discretization step (which was chosen as 	 = 0.01), ai = a(ti),
mi = m(ti), ri = r(ti), wki = wk(ti), k = 1,2, ti = i	, m = h	−1, trajectories of
the Wiener processes w1(t) and w2(t) are simulated by the algorithm described in
Sect. 2.1.1.

12.2 Mathematical Model of Social Obesity Epidemic

Social obesity epidemic models are popular enough with researches (see, for in-
stance, [14, 34, 42, 51, 68, 115, 227, 255]). Here the known nonlinear social obesity
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epidemic model [255] is generalized to the system with distributed delay. It is sup-
posed also that this nonlinear system is exposed to additive stochastic perturbations
of white noise type that are directly proportional to the deviation of the system state
from the equilibrium point. The research that is similar to the previous one is applied
to this model.

12.2.1 Description of the Considered Model

For constructing the mathematical obesity model [255] the 24- to 65-year-old pop-
ulation is divided into three subpopulations based on the so-called body mass in-
dex (BMI = Weight/Height2). The classes or subpopulations are: individuals at a
normal weight (BMI < 25 kg/m2) N(t), people who are overweight (25 kg/m2 ≤
BMI < 30 kg/m2) S(t), and obese individuals (BMI ≥ 30 kg/m2) O(t).

The transition between the different subpopulations is determined as follows:
once an adult starts an unhealthy lifestyle, he/she becomes addicted to the unhealthy
lifestyle and starts a progression to being overweight S(t) because of this lifestyle.
If this adult continues with his/her unhealthy lifestyle, he/she can become an obese
individual O(t). In both these classes individuals can stop his/her unhealthy lifestyle
and then move to classes N(t) and S(t), respectively.

The transitions between the subpopulations N(t), S(t), and O(t) are governed
by terms proportional to the sizes of these subpopulations. Conversely, the transi-
tions from normal to overweight occur through the transmission of an unhealthy
lifestyle from the overweight and obese subpopulations to the normal-interactions
weight subpopulation, depending on the meet population, depending on the meet-
ings among them. This transition is modeled using the term

βN(t)

∫ ∞

0

(
S(t − s) + O(t − s)

)
dK(s),

where K(s) is a nondecreasing function that satisfies condition (12.2), and the inte-
gral is understood in the Stieltjes sense. The subpopulations’ sizes and their behav-
iors with time determine the dynamic evolution of adulthood excess weight.

Without loss of generality and for the sake of clarity, the 24- to 65-year-old adult
population is normalized to unity, and it is supposed for all t ≥ 0 that

N(t) ≥ 0, S(t) ≥ 0, O(t) ≥ 0, (12.47)

N(t) + S(t) + O(t) = 1. (12.48)

Thus, under the above assumptions, the following nonlinear system of integro–
differential equations is obtained:

Ṅ(t) = μN0 − μN(t) − βN(t)

∫ ∞

0

(
S(t − s) + O(t − s)

)
dK(s) + ρS(t),
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Ṡ(t) = μS0 + βN(t)

∫ ∞

0

(
S(t − s) + O(t − s)

)
dK(s)

(12.49)
− (μ + γ + ρ)S(t) + εO(t),

Ȯ(t) = μO0 + γ S(t) − (μ + ε)O(t), t ≥ 0,

N(0) = N0, S(s) = S0, O(s) = O0, s ≤ 0.

The time-invariant parameters of this system of equations are:

ε the rate at which an obese adult with a healthy lifestyle becomes an overweight
individual (intensity of transition from the group O(t) to the group S(t)).

ρ the rate at which an overweight individual moves to the normal-weight subpop-
ulation (intensity of transition from the group S(t) to the group N(t)).

β the transmission rate because of social pressure to adopt an unhealthy lifestyle,
e.g., TV, friends, family, job, and so on (intensity of transition from the group
N(t) to the group S(t)).

γ the rate at which an overweight 24- to 65-year-old adult becomes an obese indi-
vidual because of unhealthy lifestyle (intensity of transition from the group S(t)

into the group O(t)); so, the scheme of transition from one group to another one
is

O(t) →ε→ S(t) →ρ→ N(t) →β→ S(t) →γ → O(t).

μ the average stay time in the system of 24- to 65-year-old adults (μ = 1/

(65 years – 24 years) ·52 weeks/year).
N0 the proportion of normal weight coming from the 23-year age group.
S0 the proportion of overweight coming from the 23-year age group.
O0 the proportion of obese coming from the 23-year age group.

Here the parameters ε, ρ, β , γ , μ are nonnegative numbers, and N0, S0, O0
satisfy the conditions of type (12.47), (12.48).

By condition (12.48) system (12.49) can be simplified to the following system of
two equations:

Ṅ(t) = μN0 − μN(t) − βN(t)

∫ ∞

0

(
1 − N(t − s)

)
dK(s) + ρS(t),

Ṡ(t) = μS0 + βN(t)

∫ ∞

0

(
1 − N(t − s)

)
dK(s) − (μ + γ + ρ)S(t)

+ ε
(
1 − N(t) − S(t)

)
, t ≥ 0,

N(s) = N0, s ≤ 0, S(0) = S0.

(12.50)

12.2.2 Existence of an Equilibrium Point

The equilibrium point (N∗, S∗) of system (12.50) is defined by the conditions
Ṅ(t) = 0, Ṡ(t) = 0 and by (12.50), (12.47) is a solution of the following system
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of algebraic equations:

μN0 − μN∗ − βN∗(1 − N∗) + ρS∗ = 0,

μS0 + βN∗(1 − N∗) − (μ + γ + ρ)S∗ + ε
(
1 − S∗ − N∗) = 0.

(12.51)

From (12.51) it follows that

S∗ = ρ−1[μ(
N∗ − N0

) + βN∗(1 − N∗)],
S∗ = kρ−1[μS0 + (

ε + βN∗)(1 − N∗)], (12.52)

where

k = ρ(μ + γ + ρ + ε)−1 < 1. (12.53)

By (12.52), (12.53) we obtain that N∗ is a root of the quadratic equation

β(1 − k)
(
N∗)2 − (

μ + kε + β(1 − k)
)
N∗ + μ(N0 + kS0) + kε = 0. (12.54)

Lemma 12.3 Assume that N0 + kS0 < 1. If β > 0, then (12.54) has two real roots,
N∗

1 ∈ (0,1) and N∗
2 > 1. If β = 0 and μkε > 0, then (12.54) has one root N∗ ∈

(N0 + kS0,1).

Proof From N0 + kS0 < 1 and β > 0 we have

D =
√(

μ + kε + β(1 − k)
)2 − 4β(1 − k)

(
μ(N0 + kS0) + kε

)

>

√(
μ + kε + β(1 − k)

)2 − 4β(1 − k)(μ + kε)

= ∣∣μ + kε − β(1 − k)
∣∣, (12.55)

i.e., D > |μ + kε − β(1 − k)| ≥ 0, and therefore the quadratic equation (12.54) has
two real roots

N∗
1 = μ + kε + β(1 − k) − D

2β(1 − k)
, N∗

2 = μ + kε + β(1 − k) + D

2β(1 − k)
. (12.56)

If μ + kε < β(1 − k), then

N∗
1 <

μ + kε

β(1 − k)
< 1, N∗

2 > 1.

If μ + kε ≥ β(1 − k), then

N∗
1 < 1, N∗

2 >
μ + kε

β(1 − k)
≥ 1.
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If β = 0, then from (12.54) it follows that

1 > N∗ = μ(N0 + kS0) + kε

μ + kε
> N0 + kS0.

The proof is completed. �

Lemma 12.4 Assume that N0 = 1. If μ+ kε < β(1 − k), then (12.54) has two roots
on the interval (0,1]: N∗

1 ∈ (0,1) and N∗
2 = 1. If μ+ kε ≥ β(1− k) then (12.54) has

one root only on the interval (0,1]: N∗
1 = 1.

Proof From N0 = 1 and (12.47) we have S0 = 0. Then, similarly to (12.55), D =
|μ + kε − β(1 − k)|. If μ + kε < β(1 − k), then D = β(1 − k) − (μ + kε), and by
(12.56) we obtain

N∗
1 = μ + kε

β(1 − k)
< 1, N∗

2 = 1.

If μ + kε > β(1 − k), then D = μ + kε − β(1 − k), and by (12.56) we have

N∗
1 = 1, N∗

2 = μ + kε

β(1 − k)
> 1.

If μ + kε = β(1 − k), then D = 0 and N∗
1 = N∗

2 = 1. The proof is completed. �

Example 12.6 Following [255], put

μ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035,

β = 0.00085, N0 = 0.704, S0 = 0.25, O0 = 0.046.

Then by (12.56), (12.52), (12.48) we obtain

N∗ = 0.3311, S∗ = 0.3814, O∗ = 0.2875.

Putting β = 0 with the same values of the other parameters, by Lemma 12.3 we
obtain

N∗ = 0.7149 > N0 + kS0 = 0.7148, S∗ = 0.1465, O∗ = 0.1386.

Put now N0 = 1, S0 = O0 = 0. By Lemma 12.4, if β = 0.00085, i.e., if β > 0, then
β > (μ+ kε)(1 − k)−1 = 0.00049 and N∗ = 0.5770, S∗ = 0.2588, O∗ = 0.1642. If
β = 0, then N∗ = 1, S∗ = O∗ = 0.

12.2.3 Stochastic Perturbations, Centralization, and Linearization

Let us suppose that system (12.50) is exposed to stochastic perturbations of white
noise type (ẇ1(t), ẇ2(t)) that are directly proportional to the deviation of system
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(12.50) state (N(t), S(t)) from the equilibrium point (N∗, S∗), i.e.,

Ṅ(t) = μN0 − μN(t) − βN(t)

∫ ∞

0

(
1 − N(t − s)

)
dK(s) + ρS(t)

+ σ1
(
N(t) − N∗)ẇ1(t), t ≥ 0,

Ṡ(t) = μS0 + βN(t)

∫ ∞

0

(
1 − N(t − s)

)
dK(s) − (μ + γ + ρ)S(t)

+ ε
(
1 − N(t) − S(t)

) + σ2
(
S(t) − S∗)ẇ2(t), t ≥ 0,

N(s) = N0, s ≤ 0, S(0) = S0.

(12.57)

Here w1(t), w2(t) are mutually independent standard Wiener processes, and the
stochastic differential equations of system (12.57) are understood in the Itô sense
(Sect. 2.1.2). Note that the equilibrium point (N∗, S∗) of system (12.50) is a solution
of (12.57) too.

To centralize system (12.57) at the equilibrium point, put now x1 = N − N∗,
x2 = S − S∗. Then by (12.57), (12.53) we have

ẋ1(t) = a11x1(t) + a12x2(t) + βN∗I (x1t ) + βx1(t)I (x1t )

+ σ1x1(t)ẇ1(t),

ẋ2(t) = a21x1(t) + a22x2(t) − βN∗I (x1t ) − βx1(t)I (x1t )

+ σ2x2(t)ẇ2(t),

(12.58)

where

a11 = −μ − β
(
1 − N∗), a12 = ρ,

a21 = −ε + β
(
1 − N∗), a22 = −k−1ρ,

I (x1t ) =
∫ ∞

0
x1(t − s) dK(s).

(12.59)

Example 12.7 Using the values of the parameters from Example 12.6, by (12.59)
we obtain

a11 = −0.0010376, a12 = 0.000035,

a21 = 0.0005646, a22 = −0.000808.

It is clear that the stability of the equilibrium point of system (12.57) is equiva-
lent to the stability of the zero solution of (12.58). Rejecting the nonlinear terms in
(12.58), we obtain the linear part of system (12.58)

ẏ1(t) =a11y1(t) + a12y2(t) + βN∗I (y1t ) + σ1y1(t)ẇ1(t),

ẏ2(t) =a21y1(t) + a22y2(t) − βN∗I (y1t ) + σ2y2(t)ẇ2(t).
(12.60)
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12.2.4 Stability of an Equilibrium Point

Note that the nonlinear system (12.58) has the order of nonlinearity higher than one.
Thus, sufficient conditions for the asymptotic mean-square stability of the zero so-
lution of the linear part (12.60) at the same time are (Sect. 5.3) sufficient conditions
for the stability in probability of the zero solution of the nonlinear system (12.58)
and therefore are sufficient conditions for the stability in probability of the solution
(N∗, S∗) of system (12.57).

To get sufficient conditions for the asymptotic mean-square stability of the zero
solution of (12.60), rewrite this system in the form

ẏ(t) = Ay(t) + B(yt ) + σ
(
y(t)

)
ẇ(t), (12.61)

where

y(t) = (
y1(t), y2(t)

)′
, w(t) = (

w1(t),w2(t)
)′
,

B(yt ) = (
βN∗I (y1t ),−βN∗I (y1t )

)′
,

A =
(

a11 a12
a21 a22

)
, σ

(
y(t)

) =
(

σ1y1(t) 0
0 σ2y2(t)

)
,

(12.62)

and aij , i, j = 1,2, are defined by (12.59).
Following the procedure of constructing Lyapunov functionals, for stability in-

vestigation of (12.61), consider the auxiliary differential equation without memory

ż(t) = Az(t) + σ
(
z(t)

)
ẇ(t). (12.63)

Remark 12.3 By (12.62), (12.59) for the matrix A, conditions (2.62) hold:

Tr(A) = −[
μ + ρk−1 + β

(
1 − N∗)] < 0,

det(A) = ρk−1[μ + kε + β(1 − k)
(
1 − N∗)] > 0.

(12.64)

Example 12.8 Using the values of the parameters from Example 12.6, we have

Tr(A) = −0.0018456, det(A) = 0.0000008.

Consider âii , i = 1,2, defined in (12.27).

Lemma 12.5 If

a21 ≤ 0 (12.65)

and

â11 < 0, â22 < 0, (12.66)

then the zero solution of (12.63) is asymptotically mean-square stable.
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Proof By (12.59), (12.65) the matrix A from (12.63) satisfies the condition
a12a21 ≤ 0. By (12.19) the same condition is satisfied by the matrix A from (12.23).
So, further, the proof coincides with that of Lemma 12.2. �

Lemma 12.6 If

a21 > 0 (12.67)

and

max(δ1, δ2) <
det(A)

|Tr(A)| , (12.68)

then the zero solution of (12.63) is asymptotically mean-square stable.

Proof Similarly to Lemma 12.2, it is enough to show that the matrix P = ‖pij‖
with the elements (12.26) is positive definite.

Note that by (12.31), (12.59), (12.67) we have

Ai = a11a22 − a12a21 + a2
ii ≤ aii Tr(A), i = 1,2.

From this and from (12.59), (12.64), (12.68) it follows that

δi <
det(A)

|Tr(A)| ≤ Ai

|Tr(A)| ≤ |aii |, i = 1,2. (12.69)

By (12.27), (12.28), (12.59), (12.64), (12.67), (12.68) we have

Z = Tr(A)(a11 + δ1)(a22 + δ2) − a12a21
(
Tr(A) + δ1 + δ2

)
= Tr(A)det(A) + Tr(A)δ1a22 + Tr(A)δ2a11

+ Tr(A)δ1δ2 − a12a21(δ1 + δ2)

= −∣∣Tr(A)
∣∣det(A) + A2δ1 + A1δ2 − ∣∣Tr(A)

∣∣δ1δ2

< −∣∣Tr(A)
∣∣det(A) + (A1 + A2)

det(A)

|Tr(A)|
= −(∣∣Tr(A)

∣∣2 − A1 − A2
) det(A)

|Tr(A)|
= −2a12a21 det(A)

|Tr(A)|
< 0. (12.70)

From (12.34), (12.35), (12.69), (12.70) we obtain that p11 > 0, p22 > 0 for arbitrary
c > 0.

Let us show that p11p22 > p2
12. Indeed, by (12.26), (12.34), (12.35) this inequal-

ity takes the form
(
c
(
A2 − ∣∣Tr(A)

∣∣δ2
) + a2

21

)(
A1 − ∣∣Tr(A)

∣∣δ1 + ca2
12

)
> (ca12â22 + a21â11)

2,
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which is equivalent to the condition

c2a2
12

(
det(A) − ∣∣Tr(A)

∣∣δ2 + a2
22 − â2

22

)
+ c

[(
A1 − ∣∣Tr(A)

∣∣δ1
)(

det(A) − ∣∣Tr(A)
∣∣δ2

)

+ a2
22

(
det(A) − ∣∣Tr(A)

∣∣δ1
)

+ (
det(A)

)2 + 2a12a21(a11a22 − â11â22)
]

+ a2
21

(
det(A) − ∣∣Tr(A)

∣∣δ1 + a2
11 − â2

11

)
> 0. (12.71)

By (12.67), (12.68), (12.69) and |aii | ≥ |âii |, i = 1,2, condition (12.71) holds for
arbitrary c > 0. So, for arbitrary c > 0, the matrix P with the elements (12.26) is
positive definite. The proof is completed. �

Remark 12.4 If condition (12.65) holds, i.e., a21 ≤ 0, then from (12.59) and from
the proofs of Lemmas 12.3 and 12.4 it follows that β ∈ [0, (μ + ε)(1 − k)−1]. On
the other hand, if β > (μ + ε)(1 − k)−1, then condition (12.67) holds, i.e., a21 > 0.
For example, by the values of the parameters from Example 12.6 we have β =
0.00085 > (μ + ε)(1 − k)−1 = 0.0004945 and a21 = 0.0005646 > 0.

Theorem 12.2 If conditions (12.65), (12.66) or (12.67), (12.68) hold and if, for
some c > 0, the elements (12.26) of the matrix P satisfy the condition

(
βN∗|p12 − p22|

)2 + 2βN∗|p11 − p12| < c, (12.72)

then the solution (N∗, S∗) of system (12.57) is stable in probability.

Proof Note that the stability in probability of the solution (N∗, S∗) of system
(12.57) is equivalent to the stability in probability of the zero solution of system
(12.58) and the order of nonlinearity of system (12.58) is higher than one. So, to get
for this system conditions for stability in probability, it is enough (Sect. 5.3) to get
conditions for the asymptotic mean-square stability of the zero solution of the lin-
ear part (12.60) of this system. Following the procedure of constructing Lyapunov
functionals, we will construct a Lyapunov functional for system (12.60) in the form
V = V1 + V2, where V1 = y′Py, y = (y1, y2)

′, P is the positive definite solution of
system (12.25) with the elements (12.26), and V2 will be chosen below.

Let L be the generator of system (12.60). Then by (12.60), (12.25) we have

LV1 = 2
(
p11y1(t) + p12y2(t)

)(
a11y1(t) + a12y2(t) + βN∗I (y1t )

) + p11σ
2
1 y2

1(t)

+ 2
(
p12y1(t) + p22y2(t)

)(
a21y1(t) + a22y2(t) − βN∗I (y1t )

)

+ p22σ
2
2 y2

2(t)

= −cy2
1(t) − y2

2(t) + 2βN∗[(p11 − p12)y1(t) + (p12 − p22)y2(t)
]
I (y1t ).
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By (12.2), (12.59) we have 2y1(t)I (y1t ) ≤ y2
1(t) + I (y2

1t ) and 2y2(t)I (y1t ) ≤
νy2

2(t) + ν−1I (y2
1t ) for some ν > 0. Using these inequalities, we obtain

LV1 ≤ −cy2
1(t) − y2

2(t) + βN∗|p11 − p12|
(
y2

1(t) + I
(
y2

1t

))

+ βN∗|p12 − p22|
(
νy2

2(t) + ν−1I
(
y2

1t

))

= (
βN∗|p11 − p12| − c

)
y2

1(t) + (
βN∗|p12 − p22|ν − 1

)
y2

2(t)

+ qI
(
y2

1t

)
, (12.73)

where

q = βN∗(|p11 − p12| + |p12 − p22|ν−1). (12.74)

Putting

V2 = q

∫ ∞

0

∫ t

t−s

y2
1(θ) dθ dK(s),

by (12.2), (12.59) we get LV2 = q(y2
1(t) − I (y2

1t )). Therefore, by (12.73), (12.74),
for the functional V = V1 + V2, we have

LV ≤ (
2βN∗|p11 − p12| + βN∗|p12 − p22|ν−1 − c

)
y2

1(t)

+ (
βN∗|p12 − p22|ν − 1

)
y2

2(t).

Thus, if

2βN∗|p11 − p12| + βN∗|p12 − p22|ν−1 < c, βN∗|p12 − p22|ν < 1, (12.75)

then by Remark 2.1 the zero solution of (12.60) is asymptotically mean-square sta-
ble.

From (12.75) it follows that

βN∗|p12 − p22|
c − 2βN∗|p11 − p12| < ν <

1

βN∗|p12 − p22| . (12.76)

Thus, if for some c > 0, condition (12.72) holds, then there exists ν > 0 such that
conditions (12.76) (or (12.75)) hold too, and therefore the zero solution of (12.60)
is asymptotically mean-square stable. From this it follows that the zero solution of
(12.58) and therefore the equilibrium point (N∗, S∗) of system (12.57) is stable in
probability. The proof is completed. �

Example 12.9 Consider system (12.50) with the values of the parameters ε, μ, ρ,
β , γ and the equilibrium point (N∗, S∗) given in Example 12.6. As an example,
consider the levels of noises σ1 = 0.028256, σ2 = 0.029031. From (12.27) it follows
that δ1 = 0.0003992, δ2 = 0.0004214 and condition (12.68) holds: max(δ1, δ2) <

det(A)|Tr(A)|−1 = 0.0004436.
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Put c = 10. Then by (12.26) p11 = 8335.7, p12 = 569.4, p22 = 1344.7, and con-
dition (12.72) holds:

(
βN∗|p12 − p22|

)2 + 2βN∗|p11 − p12| = 4.419 < 10.

Thus, the solution (N∗, S∗) of system (12.57) is stable in probability.

Using the representations (12.41)–(12.44), we get three corollaries from Theo-
rem 12.2, which simplify a verification of the stability condition (12.72).

Put

f (c) = (
βN∗D0

)2
(

c + D1

D0

)2

+ 2βN∗|B0|
∣∣∣∣c + B1

B0

∣∣∣∣ − c, (12.77)

S = (
βN∗D0

)2
(

D1

D0
− B1

B0

)2

+ B1

B0
,

R+ = 2βN∗|B0|
(

1 − 2βN∗|B0|
2(βN∗D0)2

− D1

D0
+ B1

B0

)
,

R− = −2βN∗|B0|
(

1 + 2βN∗|B0|
2(βN∗D0)2

− D1

D0
+ B1

B0

)
,

Q = 1

4(βN∗D0)2
− D1

D0
− B2

0

D2
0

,

(12.78)

where B0, B1, D0, D1 are defined by (12.41)–(12.44). So, condition (12.72) is
equivalent to the condition f (c) < 0.

Corollary 12.4 If conditions (12.65), (12.66) or (12.67), (12.68) hold and S < 0,
then the solution (N∗, S∗) of system (12.57) is stable in probability.

Proof By (12.78) from S < 0 it follows that B1B
−1
0 < 0. Substituting c0 =

−B1B
−1
0 > 0 into (12.77), we obtain f (c0) = S < 0, i.e., condition (12.72) holds.

The proof is completed. �

Corollary 12.5 If conditions (12.65), (12.66) or (12.67), (12.68) hold and 0 ≤
R+ < Q, then the solution (N∗, S∗) of system (12.57) is stable in probability.

Corollary 12.6 If conditions (12.65), (12.66) or (12.67), (12.68) hold and 0 <

R− < Q, then the solution (N∗, S∗) of system (12.57) is stable in probability.

The proofs of Corollaries 12.5 and 12.6 are similar to those of Corollaries 12.2
and 12.3.
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Fig. 12.2 25 trajectories of the processes N(t) (blue), S(t) (green), O(t) (red) with the values of
the parameters μ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035, β = 0.00085, h = 0.1,
δ1 = 0.0003992, δ2 = 0.0004214, the initial values N(s) = 0.704, s ∈ [−0.1,0], S(0) = 0.25,
O(0) = 0.046, and the equilibrium point N∗ = 0.3311, S∗ = 0.3814, O∗ = 0.2875

Example 12.10 Consider system (12.57) with the values of the parameters from Ex-
ample 12.6 and δ1 = 0.0003992, δ2 = 0.0002661. Calculating S, R+, Q by (12.78),
we obtain: S = −0.0100916 < 0, R+ = 7499 < Q = 18161. By both Corollaries
12.4 and 12.5 the solution (N∗, S∗) of system (12.57) is stable in probability.

Example 12.11 Consider system (12.57) with the values of the parameters from Ex-
ample 12.6 and δ1 = 0.0003992, δ2 = 0.0004214. Calculating S, R+, Q by (12.78),
we obtain: S = 0.0051611 > 0, R+ = 7811 < Q = 18914. The condition of Corol-
lary 12.4 does not hold, but from Corollary 12.5 it follows that the solution (N∗, S∗)
of system (12.57) is stable in probability.

12.2.5 Numerical Simulation

Let us suppose that in (12.49) dK(s) = δ(s − h)ds, where δ(s) is Dirac’s delta-
function, and h ≥ 0 is a delay.
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Fig. 12.3 25 trajectories of the processes N(t) (blue), S(t) (green), O(t) (red) with the values
of the parameters μ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035, β = 0, h = 0.1,
δ1 = 0.0003992, δ2 = 0.0004214, the initial values N(s) = 0.704, s ∈ [−0.1,0], S(0) = 0.25,
O(0) = 0.046, and the equilibrium point N∗ = 0.7149, S∗ = 0.1465, O∗ = 0.1386

In Fig. 12.2 25 trajectories of the solution of (12.57), (12.48) are shown for the
values of the parameters from Examples 12.6 and 12.9: μ = 0.000469, γ = 0.0003,
ε = 0.000004, ρ = 0.000035, β = 0.00085, the initial values N0 = 0.704, S0 =
0.25, O0 = 0.046, the levels of noises σ1 = 0.028256, σ2 = 0.029031, and the delay
h = 0.1. One can see that all trajectories go to the equilibrium point N∗ = 0.3311,
S∗ = 0.3814, O∗ = 0.2875.

Putting β = 0 with the same values of the other parameters, one can see that
in accordance with Example 12.6, all trajectories go to another equilibrium point
N∗ = 0.7149, S∗ = 0.1465, O∗ = 0.1386 (Fig. 12.3).

Change now the initial values on N0 = 1, S0 = O0 = 0, and put again β =
0.00085. In accordance with Example 12.6, corresponding trajectories of the so-
lution go to the equilibrium point N∗ = 0.5770, S∗ = 0.2588, O∗ = 0.1642
(Fig. 12.4).

Note that numerical simulations of the processes N(t), S(t), and O(t) were ob-
tained via the difference analogues of (12.57), (12.48) in the form
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Fig. 12.4 25 trajectories of the processes N(t) (blue), S(t) (green), O(t) (red) with the values of
the parameters μ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035, β = 0.00085, h = 0.1,
δ1 = 0.0003992, δ2 = 0.0004214, the initial values N(s) = 1, s ∈ [−0.1,0], S(0) = 0, O(0) = 0,
and the equilibrium point N∗ = 0.5770, S∗ = 0.2588, O∗ = 0.1642

Ni+1 = Ni + 	
[
μN0 − μNi − βNi(1 − Ni−m) + ρSi

]
+ σ1

(
Ni − N∗)(w1,i+1 − w1i ),

Si+1 = Si + 	
[
μS0 + βNiNi−m − (μ + γ + ρ)Si + ε(1 − Ni − Si)

]
+ σ2

(
Si − S∗)(w2,i+1 − w2i ),

Oi+1 = 1 − Ni+1 − Si+1,

i = 0,1,2, . . . , Nj = N0, j = −m, . . . ,−1,0.

Here 	 is the discretization step (chosen as 	 = 0.01), Ni = N(ti), Si = S(ti), Oi =
O(ti), wki = wk(ti), k = 1,2, ti = i	, m = h	−1, and trajectories of the Wiener
processes w1(t) and w2(t) are simulated by the algorithm described in Sect. 2.1.1.
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