Chapter 10

Stability of Positive Equilibrium Point of
Nonlinear System of Type of Predator—Prey
with Aftereffect and Stochastic Perturbations

Here we consider a system of two nonlinear differential equations that is destined
to unify different known mathematical models, in particular, very often investigated
models of predator—prey type [47, 53, 60, 65, 72, 82, 83, 94, 107, 108, 112, 113,
127, 128, 153, 180, 235, 249, 267, 283, 288, 304, 305,311, 314, 317, 321, 325]. The
system under consideration is exposed to stochastic perturbations and is linearized
in a neighborhood of the positive point of equilibrium. Asymptotic mean-square
stability conditions for the trivial solution of the constructed linear system are at
the same time sufficient conditions for the stability in probability of the positive
equilibrium point of the initial nonlinear system by stochastic perturbations.

10.1 System Under Consideration

Consider the system of two nonlinear differential equations
x1(t) = xl(t)(a - FO(Xlzyx2t)) — Fi(x1, x20),
%2(1) = —x2(t) (b + Go(x11, x20)) + G1(x1s, X21), (10.1)
Xxi(s) =¢i(s), s<0,i=1,2.

Here x;(¢), i = 1,2, is the value of the process x; at time ¢, and x;; = x; (¢t + s),
s <0, is a trajectory of the process x; to the point of time 7.
Put, for example,

Fo(Xszz):/O Jo(x1(t —5)) dKo(s),

2 o0
Fi(xinxa) =] / fi(xi(t =) dKi(s), (10.2)
i=170
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Go(X1z,X2z)=/O go(x1(t —5)) dRo(s),
2 o

Gi(x1r, x2) = l_[/o gi(xi(t —)) dRi(s),
i=1

where K;(s) and R;(s), i =0, 1,2, are nondecreasing functions such that

o0 o0
Ki:/ dK;(s) < o0, R,~=/ dR;(s) < o0,
0 0
A ° ) o (10.3)
1(,:/ sdK;(s) < oo, R,-=/ sdR;(s) < oo,
0 0

and all integrals are understood in the Stieltjes sense.
In the case (10.2)—(10.3) system (10.1) takes the form

o 2 0
51(6) =x1(r>(a— / fo(xl(l—s))dKo(S)> [T st —9)axio,
= (10.4)

[o/0] 2 o0
Xao(t) = —x2(1) <b + /0 go(x1(t —s)) dRo(S)) + ]_[/0 gi(xi(t —5)) dRi(s).
i=1

Systems of type (10.4) are investigated in some biological problems. Put here,
for example,

fox) = fix) = fa(x) = g1(x) = g2(x) = x,
go(x) =0, dKi(s) =65(s)ds, dRy(s) =0

(10.5)

(8(s) is Dirac’s function). If @ and b are positive constants, x1(#) and x,(¢) are re-
spectively the densities of prey and predator populations, then (10.4) is transformed
to the mathematical predator—prey model [267] with distributed delay

fcl(t)=x1(r)(a— / X1t —5)dKo(s) — f xz(t—s)dsz),
0 0 (10.6)

o]

)'cz(t)z—bxz(t)—}-/ xl(t—s)de(s)/ x2(t —s)dRy(s).
0 0

Putting in (10.6)

dKo(s) =ai18(s)ds, dK>(s) =azé(s)ds,
dR(s) =b16(s — hy)ds, dRy(s) =8(s — ho)ds,

(10.7)
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we obtain the known predator—prey mathematical model with fixed delays
(1) =x1()(a — a1x1 (1) — ax2(1)),

x2(t) = —bxo(t) + brx1(t — h1)x2(t — ha).

(10.8)

If here h| = hp = 0, we have the classical Lotka—Volterra model
1) =x1(0)(a — arx1 (1) — axx2(1)),
X2(t) = x2()(—b + b1x1(1)).
Many authors [15, 19, 23, 50, 69, 70, 116, 306, 309] consider the so-called ratio-
dependent predator—prey models with delays of type

B =3 (1) (a - /0 it - S)dKo(S))

00 ke
- f U =n® e, (10.9)
0

x{‘(t —5) +a2x§(t —5)
x'(t —s)xa2(t)
x{"(t —s) +byxy' (t —s)

$a(t) = —bxa (1) + / ARy ().
0

Here it is supposed that m and k are positive constants.
System (10.9) follows from (10.1) if

o
Fo(xlz,xzt)=/ x1(t —s)dKo(s), Go(x1s, x2¢) =0,
0

Fi(xiy, x2r) :/o f(x1@ = 8), x2(t — 5))x2(t) dK 1 (5),

o (10.10)
G1(x1s, x21) =/ g(x1(t —5), x2(t — 8))x2(1) dR1 (),
0
I X
f(xl,xz)in{_i_azx,zc’ g(m,xz):m-
Putting in (10.9), for example,
dKo(s) =apd(s)ds, dK(s) =a16(s)ds,
(10.11)
dR(s) =b15(s — h)ds, k=m=1,
we obtain the system
t
£ =31 (1) (a — agx1 (1) %)
(10.12)
(1) (l)< b bixi(t —h) )
X =x — ,
B x1(t — ) + byxa(t — h)

which was considered in [23, 50].
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10.2 Equilibrium Points, Stochastic Perturbations, Centering,
and Linearization

10.2.1 Equilibrium Points

Let in system (10.1) F; = Fi(¢, V) and G; = Gi(¢, V), i =0, 1, be functionals
defined on H x H, where H is a set of functions ¢ = ¢(s), s <0, with the norm
l@ll = supy<g @ (s)], the functionals F; and G; are nonnegative for nonnegative
functions ¢ and ¥ . Let us suppose also that system (10.1) has a positive equilibrium
point (x, x3). This point is obtained from the conditions x1(f) = 0, x2(¢) = 0 and
is defined by the system of algebraic equations

xHa — Fo(x¥, x¥)) = Fy(xF, x¥),
1( 0(1 2)) 1(1 2) (10.13)
x5 (b+ Go(xf.x3)) = G1 (2], x3).

From (10.13) it follows that system (10.1) has a positive solution by the condition
a> Fo(xi‘,x;‘) (10.14)

only. For example, if a > Ko fo(x}), a positive equilibrium point of system (10.4) is
defined by the system of algebraic equations

xi(a — Ko fo(x7)) = K1 K2 fi(x}) f2(x3),
x5 (b + Rogo(x7)) = RiRag1 (x7) 82(x3)-

In particular, from (10.5), (10.14), (10.15) it follows that system (10.6) has a positive
equilibrium point

(10.15)

b a—Koxi a—(RiR)'Kob

= -, .X;: =
RiR> K> K>

%
X1

(10.16)
provided that a > (R Ry) 1 Kob. For system (10.8), from (10.7), (10.16) we obtain

ai
=—, Y=—, A=a—-b— >0. 10.17
by Xy . a by > ( )

From (10.13), (10.10) it follows that the positive equilibrium point for sys-
tem (10.9) is

1
A A K bb n
xf=—, Xy ==, A:a—71>0,B: 72 > 0.
Ko BKy B +ayB!=k Ri—b
In particular, by (10.11), for system (10.12), it is
A A bb
xf=—, XN=—, A=a-— a >0, B= 220 (10.18)
aop Bayg B+ap b1 —b
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10.2.2 Stochastic Perturbations and Centering

Similarly to Sect. 9.2, we will assume that system (10.1) is exposed to stochastic
perturbations that are of white noise type and are directly proportional to the de-
viations of the system state (x1(¢), x2(¢)) from the equilibrium point (xi", xi‘) and
influence x1(¢), x2(t), respectively. In this way system (10.1) is transformed to the
form

X1(0) =x1(0)(a — Fo(x1s, x21)) — Fi(x1r, x2) + 01 (x1(6) — x7)w1 (1), (10.19)
X2(t) = —x2(0) (b + Go(x1r, x20)) + G1(x1r, X20) + 02 (x2(1) — x3) w2 (). .

Here o1, 07 are constants, and wi(¢), w2 (¢) are independent standard Wiener pro-
cesses.

Centering system (10.19) at the positive point of equilibrium via the new vari-
ables y; = x1 — x|, y2 = x2 — xJ, we obtain

y10) = (1) +x7) (@ = Fo(yie + 7, y2r +x3))
— Fi(y1 +x7, y2r +x3) + o1y1(0w1 (1),

y2() = = (y2(0) +x3) (b + Go (s + x7, yor +x3))
+ G1(y1 +x7. yu + x3) + o2y2 (D (0).

(10.20)

It is clear that the stability of equilibrium point (x, x3) of system (10.19) is equiv-
alent to the stability of the trivial solution of system (10.20).

For system (10.4), the representations (10.19) and (10.20) respectively take the
forms

Xl(t)=X1(t)<a—/O fo(X1(t—S))dK0(S)>

2 o0
]_[f (i (t — 9)) dK;i(s) + o1 (x1(2) — x} )b (2),
= (10.21)
Xo(t) = —X2(t)< go(x1 (1 —S))dRo(S))

2
+ ]"[f (31t = ) dRi(5) + 02 (12(0) — x3)ia (1)
i=1

0

and

yi(®) = (yi1 (1) +xT)<a —/0 fo(ri@t —9) +xT)dK0(S))

2 00
—H/O fi(it — ) +x7¥)dKi(s)
i=1
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+o1y1(Dw (1), (10.22)

» () = —(y2(t) + x3) <b + /O

o]

go(x1(t —s) +x;‘)dR0(s)>

2 o0
+ H/o gi(yi(t — ) +x7) dRi(s) + 02y2 ()2 (7).
i=1
In particular, for system (10.6), from (10.21), (10.22) by (10.5), (10.16) we obtain

561(t)=X1(t)<a—/0 X1(t—S)dKo(S)—/O Xz(t—S)dKz(S)>

+ o1 (x1(1) — x{)w1 (1),
(10.23)

[e¢]

X2(t) = —bxa(t) + / x1(t —$)dR;(s) / x2(t —5)dRa(s)
0 0
+ 02 (x2(1) — x3 ) (1)

and

e¢]

Vi) =— (yl(t)+xf)(/0 yi(t —S)dKo(S)-i-/O yal(t —S)dKz(S)>
+o1y1(Hwi (1),

y'z(l)=—by2(t)+R2x;/ yi(t —s)dRy(s)
0 (10.24)

o0
+R1XT/ y2(t —s)dRa(s)
0

2 o
+]] fo Yi(t = $)dR;(s) + 022 ()i (1).
i=1

For (10.8), systems (10.23) and (10.24) take respectively the forms

X1 =x1(0)(a — arxi (1) — axxa2 (1)) + o1 (x1 (1) — x] )i (1),

(10.25)
X2(t) = —bxa(t) + bix1(t — h1)x2(t — ha) + 02 (x1 (1) — x3 )2 (1)

and

y1(0) == (1) + x7) (ary1(t) + a2y2 (1)) + o1y1 ()1 (1),
V2(t) = — by (t) + b1 (X3 y1(t — hi) + x{y2(t — h2)) (10.26)
+b1y1(t — h)ya2(t — ha) + o2y2()wa(2).
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10.2.3 Linearization

Along with the considered nonlinear system, we will use the linear part of this sys-
tem. Let us suppose that the functionals in (10.19) have the representations (10.2)
with differentiable functions f;(x), gi(x),i =0, 1, 2. Using for all these functions
the representation

f(z —i—x*) = fo+ fiz+0(2), f0=f(x*), fi =%(x*),

and neglecting o(z), we obtain the linear part (process (z1(?), z2(f))) of system
(10.22)

il(l)Z(a—Kofoo)Zl(l)—/o z1(t —5)dK(s)

o]

—mﬁwmﬁ 22t — $)dKa(s) + 0121 (1 (1),

-~ (10.27)
22(t) = —(b+ Rogoo)z2(t) + /0 z21(t = $)dR(s)
+ R1810g21/0 2(t = 5)dRy(s) 4 0222 (1) w2 (1),
where
dK (s) = K> fro fi1 dK1(s) + forx] dKo(s),
(10.28)

dR(s) = R2g20811dR1(s) — go1x5 dRo(s).

Below we will speak about system (10.27) as about the linear part corresponding
to system (10.22) or, for brevity, as about the linear part of system (10.22).

In particular, by conditions (10.5), (10.16), and (10.28) from (10.27) we obtain
the linear part of system (10.24)

Zﬂt):—xf(/o m(t—s)dKo(s)—i-/O zz(t—s)dKz(s)> +o1z1()w(2),

Zz(t)=—bzz(f)+R2x§/ Zl(t—S)de(S)-i-Rle/ 20t —5)dRy(s)
0 0

+ o722 () wy(1).
(10.29)

From (10.26) or, via (10.7), from (10.29) we have the linear part of system (10.26)
21(0) = =x{ (@121 (1) + a222(1)) + o121 (D (1), (10.30)
22(8) = —bza () + by (W21 (t — ) + X220t — o)) + 2222 ().

As it is shown in Sect. 5.3, if the order of nonlinearity of the system under consid-
eration is higher than one, then a sufficient condition for the asymptotic mean-square



264 10 Stability of Positive Equilibrium Point of Nonlinear System of Type

stability of the linear part of the considered nonlinear system is also a sufficient con-
dition for the stability in probability of the initial system. So, below we will obtain
sufficient conditions for the asymptotic mean-square stability of the linear part of
considered nonlinear systems.

10.3 Stability of Equilibrium Point

Obtain now sufficient conditions for the asymptotic mean-square stability of the
trivial solution of system (10.27) as the linear part of (10.22). The obtained condi-
tions will be at the same time sufficient conditions for the stability in probability of
the equilibrium point of (10.21).

Following the procedure of constructing Lyapunov functionals (Sect. 2.2.2),
rewrite (10.27) in the form

Z1(t) = anz1(t) + aza(t) + o121 () (1), (1031)
Z5(1) = aznz1 () + aznza(t) + o222 (Own (1), ‘

where

o0 t o0 t
200 = 21() — /0 / 210)dO K (s) — Ky fio fo /0 / 22(8)d6 dKx(s),
t—s t—s

o0 t o0 t
Zo(t) = 22(0) + /0 / 210)dOdR(s) + Rig10821 /0 / 22(0)d0 dR(s),
t—s t—s

(10.32)
and, by (10.15), (10.28),
f10 .
a1 =a — K — Ko foo = K1K2 f20 g S ) — Ko forxy,
1
a2 = —K1 K3 fio /21, a1 = R = R1R220811 — Rogo1 x5, (10.33)

820
axn = RiRag10821 —b — Rogoo = —R1R2810<x—* - g21>-
2

System (10.31), (10.32) is a system of stochastic differential equations of neutral
type, so, following (2.10), we have to suppose that

fode(S)-l-KllfloleI/O sdKy(s) <1,

o0 o0
/ sdR(s) +R1|g10g21|[ sdRy(s) <1,
0 0
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or, by (10.3), (10.28), that

| forlx} Ko + Kal fo fi1 1K1 + K1l fio f1 1Kz < 1,
(10.34)

20113 Ro + Ralg20g11|R1 + Rilgiogat Ry < 1.

10.3.1 First Way of Constructing a Lyapunov Functional

Let A= lla; |l be the matrix with the elements defined by (10.33), and P = | p;;||
be the matrix with the elements defined by (1.29) for some g > 0. Represent pqy,
P22 in the form

pi==(apY +pD), i=12, (10.35)

| =

where

O _ ap+det(d) m_ 4

I Tr(A) | det(A)

2
0 _ 9
22 - A A
| Tr(A)| det(A)
and put

duij(s) = qdug

where

a2

dp'D = dK (s) — —=—dR(s),

[ Tr(A)|

dugg)=K1f10f21dKz(S)— -~

d'u(]) _ aZIA
2 Tr(A))

P —
| Tr(A)|

dp9 = — a;
2 Te(A)|

P =

)(s)+du§j

dK(s), dl‘«zl =

| Tr(A)| det(A)
1) _ a%l + det(AA)
27 Te(A)| det(A)

1

), i.j=1.2,

1 _ a2

dﬂll = — dR(s),

| Tr(A)|

R1810821 dRa(s),

A)l

R1810821 dRa(s),

a
| Tr(A)|

— dK(s) —dR(s),

K1 fi0f21dK2(s),

1 az
dﬂéz) = K1 fiof21dK>2(s) — R1g10821 dRa(s),

| Tr(A)|

and dK (s), dR(s) are defined by (10.28).

(10.36)

(10.37)

(10.38)
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Put also
1
Si==0? i=1,2,
2
o [ (10.39)
v =/0 sldulP )|, i j=1.2, m=0,1,
and
Ar=1-v) =pPs1. Ap=1-15) — pi)s,
Bi=v{) +p\ls1,  Ba=v) +ps, (10.40)
Cr=viy +u),  C=v ).
Theorem 10.1 If A > 0, Ay > 0, and conditions (10.34) and
V(AIC1 + BIC2)(A2Cy + ByC1) + B1 By < A1 Ay (10.41)

hold, then the trivial solution of system (10.27) is asymptotically mean-square stable
and the equilibrium point of system (10.21) is stable in probability.

Proof We will consider now system (10.31)—(10.33) and suppose that the trivial so-
lution of the appropriate auxiliary system without delays of type (2.60) with a;;,
i, j =1,2, defined by (10.33) is asymptotically mean-square stable, and so condi-
tions (2.62) hold.

Consider the functional

Vi(t) = puZi(t) + 2p1aZi(t) Zo(t) + pnZ3 () (10.42)

with p;j, i, j = 1,2, defined by (1.29). Let L be the generator of system (10.31).
Then, by (10.31), (10.42),
LVi(t) =2(pn1Z1(t) + p1aZo(®)) (anz1(t) + aipza (1)) + priofzi ()
+2(p12Z1(t) + p2Za(1)) (a2121(t) + axnza (1)) + p20y25(1)
=2(puan + pr2az) Zi1(t)z1(t) + 2(pi2air + pazaz1) Z2(t)z1 (1)
+2(prian + p12an)Z1()z2(t) + prioizi(t)
+2(pr2ai + p2a) Z2()22(1) + pnoy 35(0). (10.43)

Putting

_ a1 —ang

- (10.44)
| Tr(A)|
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and using (1.29), (2.62), we obtain

2(p1ian + proaz1) = —q, 2(p12a12 + pnaxn) =—1,

—(anang + axan)an + (a3, + det(A) + at,q)az

2(p12ai1 + pra) = = =
| Tr(A)| det(A)

_det(A)ay — (an1an — anaxn)ang
| Tr(A)| det(A)

bl

(a3, +det(A))q + a2))ai» — (a1pang + axai)ax
[ Tr(A)| det(A)

_ det(A)ang — ai(anan —aan) _

| Tr(A)| det(A)

2(p11a12 + p12axn) =

So, (10.43) takes the form

LVI(t) = —qZ1(1)21(t) + pZa()z1(t) + pr1o223 (1)
— pZ1(D)22(t) — Zo(1)22(1) + p203z3 (). (10.45)

Substituting (10.32) into (10.45), we have
LV = (—q + pnio})zi (1) + (=1 + p2o3)z5 (1)

+q/ooo /t;m(r)me)dedK(s)

+ K fiofr /O N / ;m(t)zz(e)dedKz(s)
+p/000/1;21(t)z1(9)d9dR(S)

+ pRigi0gar /0 h /t ISZ1(t)Z2(6’)d9 AR (s)
+p /0 h /t (0)210)d0 dK (s)

+ pKi fiof21 /OOO /tts 72(1)z22(0) d0 d K> (s)
- /0 h [t;zza)zl(e)dedR(s)

o0 t
~ Rigiogar / / 22(1)22(8) O d Ry (s).
0 t—s
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By (10.37), (10.38), (10.44), it can be written in the form
LV = (—q+ p11o})z; () + (=1 + p220o3)z5(1)

+ fo f 21(0)21(0) d8 dpiyy (s) + /0 / 1(0)22(0) 6 dia(s)
t—s t—s

[ee) t o0 t
+/0 / Zz(l)Zl(Q)de,uzl(S)-l-/o / 22(1)22(0) d6 d 22 (s).
t—s t—s
(10.46)

Using (10.35), (10.37), (10.39) and some positive number y from (10.46), we
obtain

LVi = (=q +p81 + P})'81)73(0) + (—1 +gp% 82 + p3)82) 3 (0)
f f (22) +220)) d6 (q|di'? ()| + [du'} ()])
+3 /0 /H( @) +y23©)) do (qlduy ()| + |duis )])
3 [ B0+ de)as @land o))+ o))
s / (30) +3©) 6 (qlanQ )|+ [dush ).
From this by (10.39) we have
LVi = (=g +qp}1 + pi81) 30 + (— 1+ apy) 82+ p3y'62)23 (1)
S5y R0+ [T Ao alano]+ o)
@ )
/ / 30)do (q|dpty )]+ |duty )))
+ 2(av) + )0

-1 oo pt
— fo f 21(0)d0 (qldps) ()] + |dps) (5)])
t_

+%(qv£g)+v£;))z2(t)+ / / 22(0)do (q|dusy ()| + |[duly (5)])
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I o 1.0 0
= |:q(—l—‘r§(1)§1)+)/ lvfz))—i-pgl)(?l

1 - 1
#3010+ + ol [0

2
1 1 1 1 1 0 0 0
+ [—1 + 5 (o +v3)) + P82 +a( 5 (vu +v3)) + P82 ) |0
2 0 pt
+Z/ / 22(0)d9 dFi(s), (10.47)
. 0 t—s
i=1

where
1
dFi(s) = E(qui(O) () +dFV(s), i=1,2,
dF”(5) = ldp )] + v~ [duy) (o)
dF" () = |dul) ©] + ' dus) )

dFy” (s) = lydul) ()| + |dus) (s)

9

’

dF"(s) = lydply) )| + |dusy )]

Note that for the functional
2 0o pt
no=Y [" [ @-r+oeddnc,
i=1 0 t—s
we have
R R 2 © pt
LVz(t)=F1z%(t)+Fzz§(t)—Z/ / 22(0)dO dF(s), (10.48)
i=1 0 t—s

where
A 1 0 ~1.(0 1 -1,
F1=§[61(V§1)+)/ lvél))—i_vfl)—i_y 11’51)]’

.1
o= 5arviy +v5) + vl +%]

From (10.47), (10.48), for the functional V = V; + V>, by (10.40) we obtain
y~! y!
LV(I) < [q <_A1 + TCz) + B1 + TCl]Z%(l)

+ [—Az +2c +q<Bz + %Cz)}zg(t). (10.49)
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By Theorem 2.1, if there exist positive numbers g and y such that
v~ y~!
Q<_A1 + TC2> + B+ Tcl <0,
(10.50)
4 |4
—A2+ 3G —H](Bz + Ecz) <0,

then the trivial solution of system (10.27) is asymptotically mean-square stable.
Rewrite (10.50) in the form

-1 -1 -1 -1
(Bl+yTC1)<A1—VTC2> <q< <A2—%C1>(32+%C2) . (10.51)

So, if

-1 -1 -1 -1

Y Y 14 Y
B — A ——C Ay — = B =C 10.52
< 1+ 5 Cl)( 1 7 2) <( 2 2C1)( 2+2 2) . ( )

then there exists ¢ > 0 such that (10.51) holds.
Rewriting (10.52) in the form

—1
%(Alcl + B1Cy) + VT(AzC'z + ByC1) < A1Ay — B1 B

and calculating the infimum of the left-hand part of the obtained inequality with
respect to y > 0, we obtain (10.41). So, if (10.41) holds, then there exist positive
numbers ¢ and y such that (10.50) holds, and therefore the trivial solution of system

(10.27) is asymptotically mean-square stable. The proof is completed. |
Put now
ai 81 a8
Dy=— —Ah; — —, Dy =1—bh, — —, 10.53
= =7 2 2~ by ( )

and note that the first condition (10.34) for system (10.30) is a trivial one and the
second condition takes the form Aa, 1b1h1 + bhy < 1 or, via the representation
(10.17) for A,

bihia + (axhy — arh1)b < as. (10.54)

Corollary 10.1 If Dy > 0, Dy > 0, and conditions (10.54) and

8
VAD1 1 + h2)(82h1 + Dabhy) + 32 < D\D, (10.55)

hold, then the trivial solution of system (10.30) is asymptotically mean-square sta-
ble, and the equilibrium point of system (10.25) is stable in probability.
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Proof Calculating for (10.30) the parameters (10.33), (10.36), (10.38), (10.39),
(10.40), we obtain

alb azb Ab 0
ajg=—— ap=——— ay = —, ax» =0,
11 b 2= b 21 o 2
pO = b i Ab} 20— a3 P 4y b
= a0 1 aja3b?’ 27 Aayby’ 27 Aby | a1b’
0) Ab]hl (1) A2b3/’l] ©0) _ azbhz (1) Ab%]’lz
Yiu=—-— a Vit = Vo = , Vo = J
1 alazb ap ajaz
Abih
0) (1) aoiny (0) (D
Vyy = 0, Vo, = P , Vyy = 01 Vyy = th»
2
b b6
Al ——lDl, A2=D2—¥,
ay arb
Ab} ) a2s
By = (Ahl l) By = 22,
alazb b Aa1by
Aby azbhy
C1 = ——(aihy +bi1hy), Cr= .
ajay ai
From this it follows that
Ab?
A1C1 + B1Cy = ———(D1hy + hy),
ajar
a
A2Ca + ByCy = (82l + Dabh), (10.56)
1
b 5o
A1Ar — BBy = DDy — —=
aq b

From the representations for a;;, i, j = 1, 2, it follows also that conditions (2.62)
hold. Substituting (10.56) into (10.41), we obtain (10.55). The proof is completed. []

Remark 10.1 Note that condition (10.55) does not depend on a;. The dependence
on ay is included in condition (10.54).

Remark 10.2 By the absence of the delays, i.e., by A; = hy = 0, condition (10.54)
is trivial, and condition (10.55) can be written in the form

aj Aby(a1b —by6y)
81 <b—, Sy < 5 .
b1 Ab{ + a(a1b — b16y)

The same conditions can be obtained immediately from Corollary 2.3.



272 10  Stability of Positive Equilibrium Point of Nonlinear System of Type

10.3.2 Second Way of Constructing a Lyapunov Functional

Let us consider another way of constructing of a Lyapunov functional for system
(10.30).

Theorem 10.2 If D{ > 0, D> > 0, and conditions (10.54) and

(\/Abh§ + 48251 Dy + v/ Abh2 ) (A6} + 4Dz + ~/Abh1) <4D1 Dy (10.57)

hold, where A and D1, Dj are defined by (10.17) and (10.53), respectively, then
the trivial solution of system (10.30) is asymptotically mean-square stable, and the
equilibrium point of system (10.25) is stable in probability.

Proof Using (10.17), rewrite system (10.30) in the form

. arb arb .
21 =——z21(t) — ——z22(t) + o1z1(Ow1 (1),

by by
(10.58)
. Aby .
Z>(1) sz(l) + oz wa (1),
where
Ab
ZH(t) =22(t) + a—zjl (z1) + bJa(z2s),
; (10.59)
Ji(zir) 2/ zits)ds, i=1,2.
t—h;
Consider now the functional
Vi) =z21() +2uz1 (D Za(t) + v Z3 (1), (10.60)

where the parameters © and y will be chosen below. Then by (10.60), (10.58) we
have

b
LVi() = —27- (210 + nZo(®)) (@121 (1) + a222()) + o 27 (1)

Abq -
+ 2—a2 (mz1() + ¥ Z2()z1(t) + yo325(1)
b Ab b
=2 ai —M—l—fSl Z%(l)—z /Lai—)/(sz Z%(I)
by a by

Ab b b
+ 2<y—‘ S ai)zl(r)zz(r)

an b] bl

Ab] a1b Abl

+2ly— —u— )z @) — N1 (z1) + bJa(z2)
ar by ap
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arb Aby
—211?22(1) a—zjl(le)-i-sz(Zzt) . (10.61)

Defining now y by the equality

Ab1 alb azb
y— =p—+ =, (10.62)
an bl bl

from (10.61) we obtain

a1b Aby 2 arb 2
iy =—2(22 w22 5) 20 — 222 — v, )30
by ap by

b by
n 2&@(0(—11 1) + sz(zz:))

b
-2 b—Zz(t)<—Jl (z11) +bJ2(Zzz)>

By (10.59) from this, for some positive y1, y», we have
arb Ab axb 2
LVi(t) < =2 —— — p—— =81 )23 (1) = 2( p— — y82 ) 23(0)
by ap by
ab (Ab; (! ! _
+b—1(—/ . (z%(r)+z’f'(s))ds+bf , (nzi@) +y; '25(s)) ds
t—ny t—hyp

az
azb(Abl /t 5 19
u—_\— n25(t) + z7(s)) ds
b @ [_hl(V 2 Y2 & )

t
+b / (23(1) + 23(5)) ds>. (10.63)
t—hy

By the representations (10.53) for Dy, D, and (10.62) for y inequality (10.63) can
be written in the form

b1 azb h2 2
LVi(t) <|—-2bDy — Abh| + Zu— +y1— b zi(@®)
1

arbD ab?h 2a2bs
+<—2M2 2 Hap 2+ 222
by by Abyj

+ ymAbm)z%(t)

b2ay

1 t
+Ab(1+w{1)/ . zi(s)ds + B 2 (! +M)/ ) 25(s)ds.
— —hy

Put now

t
V2=Ab(1+u)/2_l)/ (s—t+h1)z%(s)ds
t—hy
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b2

t
+ =2 (7 + 1) / (s — 1 +h2)5(s) ds.
b t—hy

Then

t
LV2=Ab(1 +uy21)<h1z%(t)—/ z%(s)ds)
t—h

blay, _ !
+ == ") (hzz%(t) —/ z%(S)dS),
1 t—hy

and as a result, for the functional V = V| + V,, we obtain

Ab ab*h»
LV§< 2bD1+2u—1 T 2b vy MAbh1>Z](t)
1

arb b ab*h
( 21927 p, 42427 yre S+ 2b 2+yzuAbh1)z§(t).
1 1

by
By Theorem 2.1, if

Ab b2h,
—2bD, +2M—1 4y azb

+v, ,uAbhl <0,

P (10.64)
212D, 10 b5 Lty e <0

., @b azb’hy <0,
oy ap I Ty FranAbh

then the trivial solution of system (10.30) is asymptotically mean-square stable.
Rewrite (10.64) in the form

71 b2h
2Ah28 LR T T 2bDy — y; azb ha
: <u< W (10.65)
Z%Dz — y2Abh; 2= 1 +vy, Abh
So, if the inequality
2
2 82 + —l arb“hy 2b _ a2b2h2
Abz b Dy —y
: b (10.66)

<
290Dy — ypAbhy 282 4y Abiy

holds, then there exists u such that (10.65) holds too.

It is easy to check that from (10.65), (10.62) the condition uz < y follows, which
ensures the positivity of the functional (10.60).

Representing (10.66) in the form

1 arbhy

Ab —1 Aby/
82+V1 2b; L +)/ S

2ar

X
azbhz Abhy
Dy =y1755* D — V275,

Ab2
<1

and using Lemma 2.4 twice, we obtain (10.57) O
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Fig. 10.1 Region of stability in probability for (10.25): a; = 0.6, by =1, h; =0, h, =0, §; =0,
8 =0

Remark 10.3 Note that the representation (10.31)—(10.33) for system (10.30) coin-
cides with (10.58), (10.59). So, conditions (10.55) and (10.57) are equivalent and
give the same stability region. For simplicity, let us check this statement by the
condition 41 = 0. Indeed, in this case from (10.57) we have

Abh3 4+ 48,07 Dy < 2D1y/Dy — \/Abhy)* = 4D?> Dy — 4D hy\/AbD; + Abh3
2 1 2

or 8,6~ < Dy Dy — hon/AbD;, which is equivalent to (10.55) by i; = 0. Similarly,
it is easy to get that (10.55) coincides with (10.57) by the condition /5 = 0 or by the
condition 8, = 0. In the general case the necessary transformation is bulky enough.

The regions of stability in probability for a positive point of equilibrium of system
(10.25), obtained by condition (10.55) (or (10.57)), are shown in the space of the
parameters (a, b) for a; = 0.6, by = 1 and different values of the other parameters:
in Fig. 10.1 for hy =0, hp =0, §; =0, 6, =0, in Fig. 10.2 for h; =0, hy =0,
81 =0.2, 6, =0.3, in Fig. 10.3 for a = 0.6, h1 =0.1, h, =0.15, 6 =0, 6, =0,
and in Fig. 10.4 for a = 0.07, h; =0.01, h =0.15, 6; =0.05, 6, =0.1.

The equation of the straight line in Figs. 10.1 and 10.2 is ab; = ba;, which
corresponds to the condition A = 0. In Figs. 10.3 and 10.4 the straight line 1
also corresponds to this equation and the straight line 2 is defined by the equation
bihia + (axhy — a1h)b = ap, which follows from condition (10.54).

Note that the stability of the positive equilibrium point of the difference analogue
of system (10.25) is investigated in [278].
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Fig. 10.2 Region of stability in probability for (10.25): a; =0.6,b1 =1,h; =0,h2 =0,8; =0.2,
8 =0.3

o
=

o

wu

-

L
B e S S St S

Fig. 10.3 Region of stability in probability for (10.25): a; = 0.6, a = 0.6, by =1, h; = 0.1,
hy=0.15,8=0,8,=0
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Fig. 10.4 Region of stability in probability for (10.25): a; = 0.6, a =0.07, by =1, h; = 0.01,
hy =0.15,8; =0.05, 8, =0.1

10.3.3 Stability of the Equilibrium Point of Ratio-Dependent
Predator—Prey Model

Consider now system (10.9) with stochastic perturbations, i.e.,

00 00 ke
x1<t)=x1<t)<a— f xl(t—S)dKo(S)) - f NUZOR0 e
0 0

xll‘(t —5) —I—azxé‘(t —5)

+ o1 (x1 (1) — x{)wr1 (0), (10.67)

x{'(t — 5)x2(2)
x{'(t —5) +byxy' (t —s)

)'Cz(t)z—bxz(l)-i-/(; de(S)+02(X1(t)—x;)wz(l‘).

System (10.9) was obtained from (10.1) by conditions (10.10). So, by (10.13),
(10.14) the positive equilibrium point (x{, x5) of system (10.9) (and also (10.67)) is
defined by the conditions

x(a — Kox}) = K1 f (x{, x3)x3, (10.68)
b= Rig(x{,x3), @ > Koxy. |

Suppose that the functions f(x, x2) and g(x1, x2) in (10.10) are differentiable and
can be represented in the form

Fy1+x1. 24+ x3) = fo+ fiyi — fay2 +o(y1. y2),

g +xf y2+x3) = g0+ g1y — g2y2 + o1, y2),
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where lim|y|0 ”(ylly"”) =0 for |y| = ‘/yf + y%, and

f():f(xik’xi)’ flzX;fv fZZfov f:

kaz(xi‘x;)k_l
((H* 4+ ar(x)F)2

mbz(xi*xik)m_l
(Gxepym +b2(x§)m)2'

So, the functionals Fo(x1y, x2;), F1(x1s, x2¢), G1(x1¢, X2¢) in (10.10) have the repre-

A

go=g(x{.x3), g=x38  =x{§ &=

sentations

o0
Fo()’1z+XT,yzz+X§)=KOXT+/ yi(t —s)dKo(s),
0
o0
Fl(yn+Xik,y2t+X§)=K1fox§+f1X§/ yi(t —s)dK1(s) + K1 foy2(t)
0
o
—fzx;/ y2(t —s)dK(s) +o(y1, y2),
0
o0
Gi(yie + x5, yor +x3) =R1gOX§+81X§/ yi(t —s)dRi(s) + Rigoy2(1)
0

oo
—gzxik/ y2(t = s)dRy(s) +o(y1, y2).
0

(10.69)
By (10.68), (10.69) the linear part of system (10.67) has the form
o0
21(t) = (a — Kox{)z1(t) — K1 foza(1) —/ z1(t —5)dK (s)
0
o0
+f2X§/ 22(t — 5)dKi(s) + o1z1(DHw1 (1), (10.70)
0

o0

iz(t)=g1X§/O Zl(t—S)de(S)—gME“/O 22(t —$)dR(s) + 0222(1) w2 (1),

where dK (s) = x| dKo(s) + fix; dKi(s). Rewrite system (10.70) in the form
(10.31) with

o0 t oo t
Z1(t)=Z1(t)—/ / 11(9)d9dK(S)+f2X§[ / 22(0)dO d K, (s),
0 t—s 0 t—s
o0 t
Zz(t>=zz(t)+g1x;/0 / 21(0)dO R (s)
r—s
o0 t
—gzxi"/ / 22(0)dO dR(s), (10.71)
0 t—s

Jo
an = le%k(x_* — fi ] — Koxj, aix =K1 (f2x3 — fo).
1

a1 = R1g1x53, a» =—Ri1g2x5.



10.3  Stability of Equilibrium Point 279

Further investigation is similar to the previous sections.

For short, consider system (10.67) by conditions (10.11). The point of equilib-
rium in this case is defined by (10.18). From (10.11), (10.18), (10.70) and (10.71) it
follows that system (10.67) and the linear part of this system respectively take the
forms

. ayxp(t .
1) =31 (1) (a —apmi () - ;()> o (x1(6) — x7) b (),
x1() + axx2(r)
bixi( " (10.72)
. 1x1(f — .
X () =x0) -b+ + oo (x1(t) — xH)wa (¢
2(2) 2()( xl(t_h)+b2x2(t_h)) 2 (o1 (6) — x3 )2 (1)
and
21(t) = anz1(t) +apza(t) + o121 (Hwi (1),
. . (10.73)
22() =an1z1(t — h) + axnz(t — h) + o2z2(Hwa (1),
where
ar =Ba10l2—A, a12=—B2a1a2,
az = b1byp?, ay = —BbibyB?,
bb 1
A=a—aja, B= —2 (10.74)

, o= , B= .
by —b B+a B+ b
Let A= lla;; |l be the matrix with the elements defined by (10.74). Suppose that
b€ (0,b1),
aja if aja® < b1by B2, (10.75)
a >
aja + B(aja? —bib%)  if aja® > b1by 2.
By conditions (10.75) conditions (2.62) for the matrix A hold. Indeed,
Tr(A) = B(aja* — b1h28?) — A <0, det(A) = ABb1b:B%> > 0. (10.76)

Let P = || p;;|l be the matrix with the elements defined by (1.29) for some
q > 0 and represented in the form (10.35), (10.36). Using (10.35), (10.36), (10.44),
(10.76), put

_ 0 o) ) _ a12 (n _ _ 921
P=p q+p ) 1% - ~— P - ~ s (1077)
| Tr(A)| | Tr(A)|
and
Ar=1-p81—pVlanlh,  Ay=1-p3)s; —lanlh,
1
Bi = p{V81 + pWlaz |, By=p\)ss, &= 50,2, i=1,2, (1078

C1 = (laz1| + pVlaz|)h, C2 = plan|h.
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Rewrite system (10.73) in the form

21(t) =anz1(t) + apz2(t) + o121 (Hwi (),
. (10.79)
Zr(t) = ap1z21(t) + axnza(t) + 0222(H)wa (),

where
t
Zr(t) =z22(t) + / h(a2121 (8) + anza(s)) ds, (10.80)
i

and following condition (2.10), suppose that the parameters a»; and az> in (10.74)
satisfy the condition #, /a%1 + a%z < 1or, via (10.74), b1b2,32hv 1+ B2 < 1, which

is equivalent to
, biby
(b1 — b)y/ (b1 — b)? + b2b5 < 5 (10.81)

Theorem 10.3 Let conditions (10.75), (10.81) hold. If A > 0, Ay > 0, and

V(A1C1 + B1C2)(A2Cy + B2Cy) + By By < A As, (10.82)

then the trivial solution of system (10.73) is asymptotically mean-square stable, and
the equilibrium point of system (10.72) is stable in probability.

Proof Consider the functional
Vi(6) = pr1z3(t) + 2p1oz1 (1) Za(t) + paZ3 (1)

with p;j, i, j = 1,2, defined by (1.29). Let L be the generator of system (10.79).
Then, using (10.77), similarly to (10.45), for system (10.79), we obtain

LVi(1) = —qzi(t) + pZa()z1 (1) + pr1oizi(r)
— p21(D22(t) — Zo()22 (1) + P03 (1). (10.83)

Substituting (10.80) into (10.83) and using some positive y, we obtain
t
LVi(1) = —qz1()) + pz1(t)(zz(t) + / h(azm(S) +anza(s)) ds) + pnojzi(0)
t_

t
—,021(l)22(l)—Zz(t)<zz(t)+/ h(a21Z1(S)+a2222(S))dS>
l_
+ p20oiz5(t)

t
< (~g+puot)t® + §|a21| f h(z%(r) +23(s)) ds
t_

t
Jo _
+ 3 lax| / h(y 120 +yz3(s)) ds
t_
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2\.2 1 ! 2 1.2
+ (=14 p2no3)z5 ) + 5|a21|/ (rz3(0) +y~'z1(9)) ds
t—h
1 e 2
+ = la| (z3() +25(9)) ds
2 t—h
o 1P
= (—q + piof + 5|021|h +vy 1§|a22|h>2%(l)

2 1 14 2
+ —1+P2202+§|022|h+5|021|h 25(t)

lazi | [ |ax| !
—i——(,o—i-)/ 1)/ z%(s)ds—i——(]—i—p)/)/ Z%(s)ds.
2 —h 2 t—h
Putting
t
a
Vs = %(p + y—l)/ (s —t + h)z3(s)ds

t—h

laza| ! 2
+ T(l-i—,o)/) (s —t+h)z5(s)ds,
t—h

for the functional V = V; + V>, we have

1

LV() < [—q + p11of + plaai |h + VTh(mm + plazzl)}z%(t)

+ |:—1 + p207 + lan|h + %h(|021| + ,0|a22|)}Z%(t)- (10.84)

Using the representations (10.35), (10.36), (10.77), (10.78), we can rewrite
(10.84) in the form

)/_1 J/_l
LV(t) < |:‘1 <_A1 + Tcz) + B + TCI]Z%(I)

n |:—A2 + %Cl n q<32 + ng)}zg(t),

which coincides with (10.49). So, from this (10.82) follows, which coincides with
(10.41). The proof is completed. d

The regions of stability in probability for a positive point of equilibrium of sys-
tem (10.72), obtained by conditions (10.81), (10.82), are shown in the space of the
parameters (a, b) for ap =0.3, a1 =5a» =0.5, by =6, bp =2, h = 0.4 and dif-
ferent values of §1, 87: in Fig. 10.5 for §; = 1.5, §, = 0.05, in Fig. 10.6 for §; =1,
82 =0.55.

In the both figures the thick line shows the stability region given by conditions
(10.75) that corresponds to the values of the parameters 7 = §; = §, = 0.
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