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Preface

This book deals with stability of stochastic functional differential equations and
continues and complements the previous book of the author, “Lyapunov Functionals
and Stability of Stochastic Difference Equations” [278].

Functional differential equations (also called hereditary systems [9], or systems
with aftereffect [140], or equations with memory [11], or equations with deviating
arguments [66, 167], or equations with delays [10, 24–29, 54, 93, 97, 226], or equa-
tions with time lag [65, 72, 103], or retarded differential equations [52, 78], or differ-
ential difference equations [22]) are infinite-dimensional ones [88, 181], contrary to
ordinary differential equations, and describe the processes whose behavior depends
not only on their present state but also on their past history [104–106, 131–133].
Systems of such type are widely used to model processes in physics, mechanics,
automatic regulation, economy, finance, biology, ecology, sociology, medicine, etc.
(see, e.g., [15, 18, 20, 24–26, 32, 36–41, 57, 58, 71, 91, 92, 98, 160, 161, 165, 177,
186, 189, 192, 199, 212, 213, 218, 219, 224, 245, 253, 257, 286, 287, 293, 303]).

The first mathematical models with functional differential equations have been
studied during the 18th century (L. Euler, J. Bernoulli, M.J. Condorcet, J. Lagrange,
P. Laplace). In the beginning of 20th century the development of the delay systems
study started from the works by Vito Volterra [302], linked to viscoelasticity and
ecology. This pioneer work was continued by Tsypkin [298–300], Myshkis [220,
221], Kac and Krasovskii [120, 156–158], Elsgoltz [66], Razumikhin [239–242],
and many other (see, for example, [5, 9, 22, 43, 59, 62, 67, 100, 103–106, 111, 126,
132, 133, 140, 194, 206, 308, 313]).

An important direction in the study of hereditary systems is their stability [3, 12,
55, 56, 88, 96, 103, 125, 134, 135, 181, 182, 191, 195–197, 204–207, 211, 215–
217, 231, 236, 258–260, 301]. As it was proposed by Krasovskii in the 1950s [156–
159], a stability condition for differential equation with delays can be obtained using
an appropriate Lyapunov functional. The construction of different Lyapunov func-
tionals for one differential equation with delay allows one to get different stability
conditions for the solution of this equation. The method of Lyapunov–Krasovskii
functionals is very popular and developing until now [78, 79]. However, the con-
struction of each Lyapunov functional required a unique work from its author. In
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1975, Shaikhet [261] introduced a parametric family of Lyapunov functionals, so
that an infinite number of Lyapunov functionals were used simultaneously. This ap-
proach allowed one to get different stability conditions for the considered equation
using only one Lyapunov functional.

During twenty last years, a general method of constructing Lyapunov func-
tionals was proposed and developed by Kolmanovskii and Shaikhet for stochastic
functional differential equations, for stochastic difference equations with discrete
time and continuous time, and for partial differential equations [48, 130, 131, 136–
139, 145–149, 265, 269–272, 278, 280, 281]. This method was successfully applied
to stability research of some mathematical models in mechanics, biology, ecology,
etc. (see, for instance, [27, 36–39, 267, 273, 276]). Nevertheless, it should be noted
that the stability theory for stochastic hereditary system dynamically develops and
has yet a number of unsolved problems [277, 279].

Usually the books devoted to the stability theory for functional differential equa-
tions do not concern numerical determination of stability domains or the behavior
of the solutions. In spite of that, this book, along with the modern theoretical results,
includes also many numerical investigations showing both the stability domains and
structure of the solutions. It offers a certain amount of analytical mathematics, prac-
tical numerical procedures, and actual implementations of these approaches.

In this book, consisting of twelve chapters, a general method of construction of
Lyapunov functionals for stochastic functional differential equations is expounded.

Introductory Chap. 1 presents general classification and some peculiarities of
functional differential equations, some properties of their solutions, the method of
steps and the characteristic equation for retarded differential equations, the depen-
dence of solution stability on small delay in equation, and the Routh–Hurwitz sta-
bility conditions for systems without delay. This section covers some theoretical
backgrounds of the differential equations used in the book with concentration on
mathematical rigor.

In Chap. 2 short introduction to stochastic functional differential equations is
presented, in particular, the definition of the Wiener process and its numerical sim-
ulation, the Itô integral, and the Itô formula. Different definitions of stability for
stochastic functional differential equations are also considered, basic Lyapunov-
type stability theorems, and description of the procedure of constructing Lyapunov
functionals for stability investigation. In this section some useful statements, some
useful inequalities, and some unsolved problems are also included.

In Chap. 3 the procedure of constructing Lyapunov functionals is used to obtain
conditions for stability of scalar stochastic linear delay differential equations with
constant and variable coefficients and with constant and variable delays. It is shown
that different ways of constructing Lyapunov functionals for a given equation al-
low us to get different conditions for asymptotic mean-square stability of the zero
solution of this equation.

In Chap. 4 the procedure of constructing Lyapunov functionals is demonstrated
for stability investigation of stochastic linear systems of two equations with constant
and distributed delays and with constant and variable coefficients.

In Chap. 5 the stability of the zero solution and positive equilibrium points for
nonlinear systems is studied. In particular, differential equations with nonlinearities
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in deterministic and stochastic parts and with fractional nonlinearity are consid-
ered. It is shown that investigation of stability in probability for nonlinear systems
with the level of nonlinearity higher than one can be reduced to investigation of
the asymptotic mean-square stability of the linear part of the considered nonlinear
system.

In Chap. 6 the general method of construction of Lyapunov functionals is used
to get the asymptotic mean-square stability conditions for stochastic linear differen-
tial equations with constant delay, with distributed delay, and with variable bounded
and unbounded delays. Sufficient stability conditions are formulated in terms of the
existence of positive definite solutions of some matrix Riccati equations. Using the
procedure of constructing Lyapunov functionals, it is shown that for one stochastic
linear differential equation, several different matrix Riccati equations can be ob-
tained that allow one to get different stability conditions.

In Chap. 7 sufficient conditions for asymptotic mean-square stability of the so-
lutions of stochastic differential equations with delay and Markovian switching are
obtained. Taking into account that it is difficult enough in each case to get analytical
stability conditions, a numerical procedure for investigation of stability of stochastic
systems with Markovian switching is considered. This procedure can be used in the
cases where analytical conditions of stability are absent. Some examples of using
the proposed numerical procedure are considered. Results of the calculations are
presented by a lot of figures.

Chapter 8 is devoted to the classical problem of stabilization of the controlled
inverted pendulum. The problem of stabilization for the mathematical model of
the controlled inverted pendulum during many years is very popular among the re-
searchers. Unlike the classical way of stabilization in which the stabilized control is
a linear combination of the states and velocities of the pendulum, here another way
of stabilization is proposed. It is supposed that only the trajectory of the pendulum
can be observed and stabilized control depends on the whole trajectory of the pen-
dulum. Via the general method of construction of Lyapunov functionals, sufficient
conditions for stabilization by stochastic perturbations are obtained, and nonzero
steady-state solutions are investigated.

In Chap. 9 the well-known Nicholson blowflies equation with stochastic pertur-
bations is considered. Sufficient conditions for stability in probability of the trivial
and positive equilibrium points of this nonlinear differential equation with delay are
obtained.

In Chap. 10 the mathematical model of the type of predator–prey with afteref-
fect and stochastic perturbations is considered. Sufficient conditions for stability in
probability of the positive equilibrium point of the considered nonlinear system are
obtained.

Chapter 11 deals with a mathematical model of the spread of infectious diseases,
the so-called SIR epidemic model. Sufficient conditions for stability in probability
of two equilibrium points of the SIR epidemic model with distributed delays and
stochastic perturbations are obtained.

In Chap. 12 mathematical models are considered that describe human behaviors
related to some addictions: consumption of alcohol and obesity. The existence of



viii Preface

positive equilibrium points for these models are shown, and sufficient conditions
for stability in probability of these equilibrium points are obtained.

The bibliography at the end of the book does not pretend to be complete and
includes some of the author’s publications [261–279], his publications jointly with
coauthors [27, 36–39, 48, 64, 77, 136–148, 155, 197, 232, 246, 280, 281], and the
literature used by the author during preparation of this book.

The book is addressed both to experts in stability theory and to a wider audi-
ence of professionals and students in pure and computational mathematics, physics,
engineering, biology, and so on.

The book is mostly based on the results obtained by the author independently or
jointly with coauthors, in particular, with the friend and colleague V. Kolmanovskii,
with whom the author is glad and happy to collaborate for more than 30 years.

Taking into account that the possibilities for further improvement and develop-
ment are endless, the author will appreciate receiving useful remarks, comments,
and suggestions.

Leonid ShaikhetDonetsk, Ukraine
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Chapter 1
Short Introduction to Stability Theory
of Deterministic Functional Differential
Equations

1.1 Some Peculiarities of Functional Differential Equations

In comparison with ordinary differential equations, functional differential equations
have some peculiarities. Below we consider some of them for deterministic func-
tional differential equations.

1.1.1 Description of Functional Differential Equations

This section covers some theoretical backgrounds of the equations used in the book
with concentration on mathematical rigor. General classification of the equations
and some properties of their solutions will be discussed.

Let us consider equations with an unknown function depending on a continuous
argument t , which may be treated as time. The equations can be scalar or vector
equations and have the same dimension as the unknown function. It is assumed that
all variables under consideration are real.

A functional equation is an equation involving an unknown function for different
argument values. The equations

2x(3t) + 3x(2t) = 1, x
(
x(t)

)= x
(
t2)+ 1

are examples of functional equations. The differences between the argument values
of an unknown function and t in a functional equation are called argument devia-
tions. If all argument deviations are constant, as in the example

x(t) = t2x(t + 1) − x2(t − 2),

then the functional equation is called a difference equation [278].
Above we have given some examples of functional equations with discrete (or

concentrated) argument deviations. By increasing in the equation “the number of

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional
Differential Equations, DOI 10.1007/978-3-319-00101-2_1,
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2 1 Short Introduction to Stability Theory of Deterministic Functional

summands” and simultaneously decreasing the differences between neighboring ar-
gument values, one naturally arrives at functional equations with continuous (or
distributed) argument deviations

x(t) = x(0) +
∫ t

0
x(s) ds

and mixed (both continuous and discrete) argument deviations [35, 66, 167, 233,
234, 269–272]

x(t) = x(t − 1) +
∫ t

t−1
x(s) ds.

These equations are called integral and integral functional equations (in particular,
integral difference equations).

Combining the notions of differential and functional equations, we obtain the
notion of functional differential equation [5, 44, 104–106, 122, 126, 131–133]
or, equivalently, differential equation with deviating argument [66, 167]. Thus,
this is an equation connecting the unknown function and some of its derivatives
for, in general, different argument values. Here also the argument values can be
discrete, continuous, or mixed. Correspondingly, one introduces the notions of
differential–difference equation, differential equation of neutral type, integral or
Volterra integro–differential equation [4, 13, 55, 57, 63, 64, 74–78, 89, 90, 104,
139, 150, 151, 171, 172, 185, 208, 222, 229, 230, 237, 238, 292], etc.

The order of a functional differential equation is the order of the highest deriva-
tive of the unknown function entering in the equation. So, a functional equation may
be regarded as a functional differential equation of order zero. Hence the notion of
functional differential equation generalizes all equations of mathematical analysis
for function of a continuous argument. A similar assertion holds for function de-
pending on several arguments.

1.1.2 Reducing to Ordinary Differential Equations

Sometimes Volterra-type integro–differential equations can be reduced to equiva-
lent ordinary differential equations. We explain this phenomenon by the following
equation with exponentially fading memory [281]:

ẋ(t) = f

(
t,

∫ t

t0

x(θ)e−k(t−θ) dθ

)
, t ≥ t0.

Put

y(t) =
∫ t

t0

x(θ)e−k(t−θ) dθ.
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Differentiating this equality, we obtain that the initial equation is equivalent to the
system of ordinary differential equations

ẋ(t) = f
(
t, y(t)

)
, ẏ(t) = x(t) − ky(t),

with the additional initial condition y(t0) = 0.
Consider another example of Volterra-type equation that can be reduced to ordi-

nary differential equations. Consider the equation

ẋ(t) = −2x(t) +
∫ t

0
sin(t − s)x(s) ds.

Differentiating this equation two times,

ẍ(t) = −2ẋ(t) +
∫ t

0
cos(t − s)x(s) ds,

...
x (t) = −2ẍ(t) + x(t) −

∫ t

0
sin(t − s)x(s) ds,

and adding the last equation to the initial equation, we obtain

...
x (t) + 2ẍ(t) + ẋ(t) + x(t) = 0.

This equivalence looks like a surprise because integro–differential equations de-
scribe processes whose rate is determined by all previous states, while ordinary
differential equations describe processes determined by the current states only.

1.2 Method of Steps for Retarded Functional Differential
Equations

For discrete delays, very often to solve the Cauchy problem on a finite interval, one
can apply a step method. Let us explain this method using the scalar equation with
one discrete delay

ẋ(t) = f
(
t, x(t), x(t − h)

)
, t ≥ t0, h = const > 0,

xt0(s) = φ(s), s ∈ [−h,0]. (1.1)

Let f : [t0,∞) × R2 → R be a continuous function satisfying the Lipschitz condi-
tion with respect to the second argument. The initial function φ for (1.1) must be
assigned on the interval [t0 − h, t0].

If t ∈ [t0, t0 +h] (it is the first step), then t −h ∈ [t0 −h, t0]. Therefore, the delay
differential equation (1.1) converts into the ordinary differential equation

ẋ(t) = f
(
t, x(t), φ(t − t0 − h)

)
, t0 ≤ t ≤ t0 + h,

x(t0) = φ(0).
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Fig. 1.1 Solutions of (1.2) for a = −1, h = 1, and different initial values of x0

Solving this equation for the initial value x(t0) = φ(0), we get the solution on the
interval [t0, t0 + h]. If now t0 + h ≤ t ≤ t0 + 2h (it is the second step), then t − h ∈
[t0, t0 + h], and so x(t − h) is known from the first step. Hence, (1.1) for t0 + h ≤
t ≤ t0 + 2h once again converts into the ordinary differential equation, which with
the known initial value x(t0 + h) defines the solution x(t) on this interval. After
that we consider the interval [t0 + 2h, t0 + 3h], etc. In this way the solution can be
obtained for arbitrarily large t (theoretically, for the whole semiaxis [t0,∞)).

For the simplest case where the right-hand side of (1.1) does not contain x(t), at
each step the solution is reduced to the integration of a given function.

Example 1.1 Consider the scalar differential equation with discrete delay

ẋ(t) = ax(t − h), x(s) ≡ x0 = const, −h ≤ s ≤ 0. (1.2)

Using the method of steps, it is easy to get the solution of this equation in the form

x(t) = x0

(

1 +
k∑

l=0

al+1 (t − lh)l+1

(l + 1)!

)

, k =
[

t

h

]
. (1.3)

The solutions of (1.2) obtained via (1.3) are shown in Fig. 1.1 for a = −1, h = 1,
and different initial values x0. One can see that the solutions for different x0 intersect
each other at the point t = 1 and many other points. It is known that this situation is
impossible for ordinary differential equations.
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1.3 Characteristic Equation for Differential Equation with
Discrete Delays

Consider the nth-order differential equation with discrete delays

x(n)(t) +
n−1∑

i=0

m(i)∑

j=1

aij x
(i)(t − hij ) = 0, hij ≥ 0. (1.4)

With this equation, the following function is associated:

�(z) = zn +
n−1∑

i=0

m(i)∑

j=1

aij z
ie−zhij , (1.5)

which is called the characteristic quasipolynomial of (1.4).
It is known [80] that the trivial solution of (1.4) is asymptotically stable if and

only if all zeros z = α+ iβ of the characteristic quasipolynomial (1.5) (or all roots of
the characteristic equation �(z) = 0) satisfy the condition α < 0. The bound of the
region of asymptotic stability can be defined by the equality �(iβ) = 0, i2 = −1,
β ∈ R.

Example 1.2 The characteristic quasipolynomial for (1.2) is �(z) = z − ae−hz.
Thus, the characteristic equation �(iβ) = 0 gives the system of two equations

a cosβh = 0, β + a sinβh = 0

with the solution βh = 1
2π or h = − 1

2a
π . This means that the trivial solution of

(1.2) is asymptotically stable if and only if h < 1
2|a|π , a < 0.

Put a = −1. Then, for h = 1, the trivial solution of (1.2) is asymptotically stable,
and all solutions go to zero (Fig. 1.1). If h = 1

2π , then the trivial solution of (1.2)
is stable but not asymptotically stable, and all solutions are bounded (Fig. 1.2). If
h > 1

2π , then the trivial solution of (1.2) is unstable, and all solutions go to infinity
(Fig. 1.3, h = 2).

Note also that as h → 0, (1.2) goes to an ordinary differential equation with
asymptotically (for a < 0) stable trivial solution and different solutions without in-
tersections. In Fig. 1.4 the solutions of (1.2) are shown for h = 0.5.

Example 1.3 Consider the scalar differential equation

ẋ(t) + ax(t − h1) + bx(t − h2) = 0, 0 ≤ h1 < h2. (1.6)

The characteristic quasipolynomial of this equation is

�(z) = z + ae−h1z + be−h2z.

Suppose that a + b ≤ 0. Then �(0) = a + b ≤ 0 and �(∞) = ∞. Therefore,
there exists α ≥ 0 such that �(α) = 0. This means that by the condition a + b ≤ 0
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Fig. 1.2 Solutions of (1.2) for a = −1, h = 1
2 π , and different initial values of x0

Fig. 1.3 Solutions of (1.2) for a = −1, h = 2, and different initial values of x0

the trivial solution of (1.6) cannot be asymptotically stable. So, we will suppose that
a + b > 0.
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Fig. 1.4 Solutions of (1.2) for a = −1, h = 0.5, and different initial values of x0

The equality �(iβ) = 0 gives the system of two equations

a cosβh1 + b cosβh2 = 0,

a sinβh1 + b sinβh2 = β.
(1.7)

From (1.7) it follows that the bounds of the stability region for (1.6) are formed in
the (a, b)-plane by the straight line a + b = 0 and the parametric curve

a = − β cosβh2

sinβ(h2 − h1)
, b = β cosβh1

sinβ(h2 − h1)
. (1.8)

Example 1.4 Consider the first-order scalar linear differential equation with delay

ẋ(t) + ax(t) + bx(t − h) = 0, (1.9)

which is the special case of (1.6) with h1 = 0, h2 = h. Thus, (1.8) takes the form

a = −β cosβh

sinβh
, b = β

sinβh
, βh ∈ [0,π).

The bound of the asymptotic stability region for the trivial solution of (1.9) is defined
by the conditions

a + b = 0, bh < 1,

a + b cos
(
h
√

b2 − a2
)= 0, bh ≥ 1.

(1.10)

The bound of stability region given by conditions (1.10) is shown in Fig. 1.5 for
h = 1.3.
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Fig. 1.5 Stability region for (1.9) given by conditions (1.10) for h = 1.3

Fig. 1.6 Solutions of (1.9) for h = 1.3, x(s) = 0.5, −h ≤ s ≤ 0, a = −0.5, and different values
of b: (1) b = 0.4, (2) b = 0.5, (3) b = 0.7, (4) b = 0.909, (5) b = 1

In Fig. 1.6 the solutions of (1.9) are shown for x(s) = 0.5, −1.3 ≤ s ≤ 0, a =
−0.5 and different values of b: (1) b = 0.4 (x(t) → ∞); (2) b = 0.5 (x(t) = const);
(3) b = 0.7 (x(t) → 0); (4) b = 0.909 (x(t) is a periodical solution); (5) b = 1
(x(t) → ±∞).

In Fig. 1.7 the solutions of (1.9) are shown for x(s) = 0.5, −1.3 ≤ s ≤ 0, a = 0.5
and different values of b: (1) b = −0.6 (x(t) → ∞); (2) b = −0.5 (x(t) = const);
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Fig. 1.7 Solutions of (1.9) for h = 1.3, x(s) = 0.5, −h ≤ s ≤ 0, a = 0.5, and different values of
b: (1) b = −0.6, (2) b = −0.5, (3) b = 0, (4) b = 1, (5) b = 1.537, (6) b = 1.7

(3) b = 0 (x(t) → 0); (4) b = 1 (x(t) → 0); (5) b = 1.537 (x(t) is a periodical
solution); (6) b = 1.7 (x(t) → ±∞).

The points that were used in Figs. 1.6 and 1.7 are shown also in Fig. 1.5. The
solutions of (1.9) were obtained via its difference analogue in the form

xi+1 = (1 − a�)xi − b�xi−m,

where � is the step of discretization, and xi = x(i�), m = h/�, � = 0.01.

Example 1.5 Consider the first-order scalar linear differential equation of neutral
type

ẋ(t) + ax(t) + bx(t − h) + cẋ(t − h) = 0, |c| < 1, (1.11)

which is a generalization of (1.9).
The corresponding characteristic quasipolynomial is �(z) = z + a + be−hz +

cze−hz. The equality �(iβ) = 0 gives the system of two equations

a + b cosβh + cβ sinβh = 0,

β − b sinβh + cβ cosβh = 0,

with the solution

a = −β(c + cosβh)

sinβh
, b = β(1 + c cosβh)

sinβh
, βh ∈ [0,π).
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Fig. 1.8 Stability regions for (1.11) given by (1.12) are shown in space of parameters (a, b) for
h = 1 and different values of c: (1) c = −0.999, (2) c = −0.5, (3) c = 0, (4) c = 0.6, (5) c = 0.85,
(6) c = 0.95, (7) c = 0.995

The bound of the region of asymptotic stability of the trivial solution of (1.11) is
defined by the conditions

a + b = 0, bh < 1 + c,

a + bc + (ac + b) cos

(
h

√
b2 − a2

1 − c2

)
= 0, b > |a|.

(1.12)

In Fig. 1.8 the stability regions given by (1.12) for (1.11) are shown in the space
of the parameters (a, b) for h = 1 and different values of c: (1) c = −0.999, (2)
c = −0.5, (3) c = 0, (4) c = 0.6, (5) c = 0.85, (6) c = 0.95, (7) c = 0.995. In Fig. 1.8
one can see that if a > |b|, then the trivial solution of (1.11) is asymptotically stable
for all h > 0 and |c| < 1.

In Fig. 1.9 the stability regions for (1.11) are shown in the space of the parameters
(c, b) for a = 0.4 and different values of h: (1) h = 2, (2) h = 1, (3) h = 0.7. In
Figs. 1.10 and 1.11 the similar stability regions are shown for a = 0 and a = −0.4,
respectively.

In Fig. 1.12 the solutions of (1.11) are shown for c = 0.1, x(s) = 0.5, s ≤ 0,
a = −0.5, h = 1.3 and different values of b: (1) b = 0.4 (x(t) goes to infinity), (2)
b = 0.5 (x(t) = const), (3) b = 0.7 (x(t) goes to zero), (4) b = 1.004 (x(t) is a
bounded periodical solution), (5) b = 1.1 (|x(t)| goes to infinity). In Fig. 1.13 the
similar solutions are shown for the initial condition x(s) = cos(s), s ≤ 0, and the
same values of other parameters.
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Fig. 1.9 Stability regions for
(1.11) given by (1.12) are
shown in space of parameters
(c, b) for a = 0.4 and
different values of h:
(1) h = 2, (2) h = 1,
(3) h = 0.7

Fig. 1.10 Stability regions
for (1.11) given by (1.12) are
shown in space of parameters
(c, b) for a = 0 and different
values of h: (1) h = 2,
(2) h = 1, (3) h = 0.7

Fig. 1.11 Stability regions
for (1.11) given by (1.12) are
shown in space of parameters
(c, b) for a = −0.4 and
different values of h:
(1) h = 2, (2) h = 1,
(3) h = 0.7
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Fig. 1.12 Solutions of (1.11) are shown for c = 0.1, h = 1.3, x(s) = 0.5, s ∈ [−h,0], a = −0.5,
and different values of b: (1) b = 0.4, (2) b = 0.5, (3) b = 0.7, (4) b = 1.004, (5) b = 1.1

Fig. 1.13 Solutions of (1.11) are shown for c = 0.1, h = 1.3, x(s) = cos(s), s ∈ [−h,0],
a = −0.5, and different values of b: (1) b = 0.4, (2) b = 0.5, (3) b = 0.7, (4) b = 1.004, (5) b = 1.1

In Fig. 1.14 the solutions of (1.11) are shown for c = −0.1, x(s) = 0.5, s ≤ 0,
a = −0.5, h = 1.3 and different values of b: (1) b = 0.4 (x(t) goes to infinity), (2)
b = 0.5 (x(t) = const), (3) b = 0.7 (x(t) goes to zero), (4) b = 0.804 (x(t) is a
bounded periodical solution), (5) b = 0.9 (|x(t)| goes to infinity).

The solutions of (1.11) were obtained via its difference analogue in the form

xi+1 = (1 − a�)xi + (c − b�)xi−m − cxi+1−m,

where � is the step of discretization, and xi = x(i�), m = h/�, � = 0.01.
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Fig. 1.14 Solutions of (1.11) are shown for c = −0.1, h = 1.3, x(s) = 0.5, s ∈ [−h,0], a = −0.5,
and different values of b: (1) b = 0.4, (2) b = 0.5, (3) b = 0.7, (4) b = 0.804, (5) b = 0.9

Example 1.6 Let us consider the scalar second-order differential equation

ẍ(t) + aẋ(t − h1) + bx(t − h2) = 0. (1.13)

The characteristic quasipolynomial of (1.13) is �(z) = z2 + aze−h1z + be−h2z. The
equality �(iβ) = 0 gives the following system of two equations:

βa cosβh1 − b sinβh2 = 0,

βa sinβh1 + b cosβh2 = β2,
(1.14)

with the solution

a = β sinβh2

cosβ(h1 − h2)
, b = β2 cosβh1

cosβ(h1 − h2)
.

In Fig. 1.15 the stability regions for (1.13) are shown for h1 = 1 and different
values of h2: (1) h2 = 0.2, (2) h2 = 0.6, (3) h2 = 1, (4) h2 = 1.4, (5) h2 = 1.8. In
Fig. 1.16 the stability regions for (1.13) are shown for h2 = 1 and different values
of h1: (1) h1 = 0.8, (2) h1 = 0.9, (3) h1 = 1, (4) h1 = 1.1, (5) h1 = 1.2.

Let us consider some particular cases of (1.13).

(a) h1 = h2 = h. In this case the solution of (1.14) has the form a = β sinβh, b =
β2 cosβh, 0 ≤ βh ≤ π

2 . In Fig. 1.17 the stability regions are shown for different
values of h: (1) h = 0.5, (2) h = 0.75, (3) h = 1, (4) h = 1.25, (5) h = 1.5.

(b) h1 = 0, h2 = h. In this case we obtain a = β tanβh, b = β2

cosβh
, 0 ≤ βh < π

2 . In
Fig. 1.18 the stability regions are shown for different values of h: (1) h = 1, (2)
h = 2, (3) h = 3, (4) h = 4, (5) h = 5.
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Fig. 1.15 Stability regions for (1.13) for h1 = 1 and different values of h2: (1) h2 = 0.2,
(2) h2 = 0.6, (3) h2 = 1, (4) h2 = 1.4, (5) h2 = 1.8

Fig. 1.16 Stability regions for (1.13) for h2 = 1 and different values of h1: (1) h1 = 0.8,
(2) h1 = 0.9, (3) h1 = 1, (4) h1 = 1.1, (5) h1 = 1.2

(c) h1 = h, h2 = 0. In this case from the first equation of (1.14) it follows that
cosβh = 0. Therefore,

β = π

2h
(2l + 1), l = 0,1, . . . ,
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Fig. 1.17 Stability regions for (1.13) in the case h1 = h2 = h for different values of h: (1) h = 0.5,
(2) h = 0.75, (3) h = 1, (4) h = 1.25, (5) h = 1.5

Fig. 1.18 Stability regions for (1.13) in the case h1 = 0, h2 = h for different values of h:
(1) h = 1, (2) h = 2, (3) h = 3, (4) h = 4, (5) h = 5

and from system (1.14) it follows that the stability region consists of a sequence
of triangles, formed by parts of the a- and the b-axes and the line segments

b = (−1)l+1 2l + 1

2h
πa +

(
2l + 1

2h
π

)2

, l = 0,1, . . . .
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Fig. 1.19 Stability regions for (1.13) in the case h1 = 1, h2 = 0

Fig. 1.20 Stability regions for (1.13) in the case h1 = 2, h2 = 0

The stability regions (the triangles OB0A0, A0B1A1, A1B2A2, A2B3A3, . . .)
for this case are shown in Fig. 1.19 (h = 1) and Fig. 1.20 (h = 2). The points Al
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Fig. 1.21 Stability regions for (1.13) in the case h1 = h, h2 = 2h for different values of h:
(1) h = 1, (2) h = 1.5, (3) h = 3

and Bl have the coordinates respectively

Al =
(

0,

(
2l + 1

2h
π

)2)
, l = 0,1, . . . ,

B0 =
(

π

2h
,0

)
, Bl =

(
(−1)l

π

h
,
(2l − 1)(2l + 1)

4h2
π2
)

, l = 1,2, . . . .

(d) h1 = h, h2 = 2h. In this case from the first equation of system (1.14) it follows
that

βa cosβh − b sin 2βh = (βa − 2b sinβh) cosβh = 0.

If cosβh = 0, i.e., βh = π
2 , then from the second equation of system (1.14) it

follows that a part of the stability region bound is defined by the straight line

b = π

2h

(
a − π

2h

)
. (1.15)

The stability regions in this case are shown in Fig. 1.21 for different values of h:
(1) h = 1, (2) h = 1.5, (3) h = 3. One can see that the part of the stability region
bound is defined by the straight line (1.15).

Example 1.7 Consider the scalar second-order differential equation

ẍ(t) = ax(t) + b1x(t − h1) + b2x(t − h2), h1 > h2. (1.16)
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The characteristic quasipolynomial of (1.16) is

�(z) = z2 − a − b1e
−h1z − b2e

−h2z, z = α + iβ.

Suppose that a + b1 + b2 ≥ 0. Then �(0) ≤ 0 and �(∞) = ∞. Therefore, there
exists α ≥ 0 such that �(α) = 0. This means that by the condition a + b1 + b2 ≥
0 the trivial solution of (1.16) cannot be asymptotically stable. So, the inequality
a + b1 + b2 < 0 is the necessary condition for asymptotic stability of the trivial
solution of (1.16).

The equality �(iβ) = 0 gives the following system of two equations:

b1 cosβh1 + b2 cosβh2 = −(a + β2),

b1 sinβh1 + b2 sinβh2 = 0,
(1.17)

with the solution

b1 = (a + β2) sinβh2

sinβ(h1 − h2)
, b2 = − (a + β2) sinβh1

sinβ(h1 − h2)
.

Example 1.8 Consider the scalar differential equation

ẍ(t) = −ax(t) + bx(t − h), (1.18)

where a, b,h are nonnegative constants. The characteristic quasipolynomial of
(1.18) is

�(z) = z2 + a − be−zh, z = α + βi.

By the condition b ≥ a we have �(0) ≤ 0, �(∞) = ∞. So, there exists α ≥ 0
such that �(α) = 0. Therefore, the inequality b < a is the necessary condition for
asymptotic stability of the trivial solution of (1.18).

The characteristic equation �(iβ) = 0 can be represented in the form of the sys-
tem of two equations

b cosβh = a − β2, b sinβh = 0

with the following solutions: (1) b = a, (2) b = 0, a ≥ 0, (3) a + b = π2

h2 . So, the
necessary and sufficient condition for asymptotic stability of the trivial solution of
(1.18) takes the form

b < a <
π2

h2
− b. (1.19)

In Fig. 1.22 the stability regions given by condition (1.19) are shown for different
values of h: (1) h = 2, (2) h = 1.5, (3) h = 1.2, (4) h = 1, (5) h = 0.8.

Put x(s) = es , s ∈ [−h,0], a = 1, and consider the behavior of the solution of
(1.18) for different values of b and h.

In Fig. 1.23 the solutions of (1.18) are shown for h = 0 and the values of b:
(1) b = 0.3, (2) b = 0.9, (3) b = 1.01. For h = 0, condition (1.19) is the necessary
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Fig. 1.22 Stability regions for (1.18) given by condition (1.19) for different values of h: (1) h = 2,
(2) h = 1.5, (3) h = 1.2, (4) h = 1, (5) h = 0.8

Fig. 1.23 Solutions of (1.18) for a = 1, h = 0 and different values of b: (1) b = 0.3, (2) b = 0.9,
(3) b = 1.01

stability condition only, so, the solution is periodical in the cases (1), (2) and goes
to infinity in the case (3).

In Fig. 1.24 the solutions of (1.18) are shown for h = 0.5 and the same values of
a and b. Condition (1.19) holds in the cases (1), (2) and does not hold in the case (3).
So, the solution goes to zero in the cases (1), (2) and goes to infinity in the case (3).
The similar picture one can see in Fig. 1.25 for h = 2.

In Fig. 1.26 the solutions of (1.18) are shown for h = 2.755359. In this case

condition (1.19) does not hold since a = π2

h2 − b = 1 for b = 0.3 and a = 1 > π2

h2 −
b = 0.4 for b = 0.9. So, the solution of (1.18) is periodical for b = 0.3 and goes
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Fig. 1.24 Solutions of (1.18) for a = 1, h = 0.5 and different values of b: (1) b = 0.3, (2) b = 0.9,
(3) b = 1.01

Fig. 1.25 Solutions of (1.18) for a = 1, h = 2 and different values of b: (1) b = 0.3, (2) b = 0.9,
(3) b = 1.01

to infinity for b = 0.9. In Fig. 1.27 the solutions of (1.18) are shown for h = 0.8,

b = 0.6 and different conditions on a: (1) a = b, (2) a = 1.3b, (3) a = π2

h2 − b.
In Figs. 1.22–1.27 one can see that the solution of (1.18) goes to constant on the

bound a = b of stability region, is a periodical on the bound a + b = π2

h2 , goes to
zero between these bounds, and goes to infinity out of these bounds. The solutions
of (1.18) were obtained via its difference analogue in the form

xi+1 = (
2 − a�2)xi − xi−1 + b�2xi−m,

where � is the step of discretization, and xi = x(i�), m = h/�, � = 0.01.
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Fig. 1.26 Solutions of (1.18) for a = 1, h = 2.755359, and different values of b: (1) b = 0.3,
(2) b = 0.9

Fig. 1.27 Solutions of (1.18) for h = 0.8, b = 0.6, and different values of a: (1) a = b,

(2) a = 1.3b, (3) a = π2

h2 − b

1.4 The Influence of Small Delays on Stability

The effect of time delay is very essential in different real processes [46, 109, 225].
Many actual phenomena involve small delays, which are often neglected in the pro-
cess of mathematical modeling. Sometimes this leads to false conclusions. We shall
show that sometimes even small delay can change essentially the properties of the
solution.
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Fig. 1.28 Solutions of (1.20) for a = 1, h = 2, x0(s) = 0.7, s ∈ [−h,0], and different values of
b: (1) b = −1.1, (2) b = −1, (3) b = −0.7, (4) b = 0, (5) b = 0.7, (6) b = 1, (7) b = 1.1

Example 1.9 Consider the first-order differential equation of neutral time

ẋ(t) + ax(t) − b
[
ẋ(t − h) + ax(t − h)

]= 0, a > 0. (1.20)

For h = 0, we have the equation (1 − b)[ẋ(t) + ax(t)] = 0 with the solution x(t) =
x(0) exp(−at), which is asymptotically stable for a > 0 and arbitrary b. If h > 0,
then the appropriate characteristic equation (z + a)(1 − be−hz) = 0 has all roots

zk = 1

h

(
ln |b| + i2kπ

)
, i2 = −1, k = 0,±1,±2, . . . ,

with real parts Rezk = 1
h

ln |b|. So, if |b| > 1, then the trivial solution of (1.20) is
asymptotically stable for h = 0 and unstable for each h > 0. If |b| ≤ 1, we have
another picture.

In Fig. 1.28 the solutions of (1.20) are shown for the initial function x0(s) = 0.7,
s ∈ [−h,0], h = 2, a = 1, and for different values of the parameter b: (1) b = −1.1,
(2) b = −1, (3) b = −0.7, (4) b = 0, (5) b = 0.7, (6) b = 1, (7) b = 1.1. We can
see that in the cases (1) and (7) the solution of (1.20) goes to infinity, in the case (2)
it is a periodic solution, in the cases (3), (4), and (5) the solution goes to zero, and
in the case (6) it is a constant. In Fig. 1.29 a similar picture is shown for the initial
function x0(s) = cos s, s ∈ [−h,0], and the same values of other parameters. We
can see again that in the cases (1) and (7) the solution of (1.20) goes to infinity, in
the cases (2) and (6) it is a periodic solution, and in the cases (3), (4), and (5) it goes
to zero. In Fig. 1.30 the same situation with the solution of (1.20) is shown for small
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Fig. 1.29 Solutions of (1.20) for a = 1, h = 2, x0(s) = cos(s), s ∈ [−h,0], and different values
of b: (1) b = −1.1, (2) b = −1, (3) b = −0.7, (4) b = 0, (5) b = 0.7, (6) b = 1, (7) b = 1.1

Fig. 1.30 Solutions of (1.20) for a = 1, h = 0.3, x0(s) = cos(s), s ∈ [−h,0], and different values
of b: (1) b = −1.1, (2) b = −1, (3) b = 0.7, (4) b = 0.9, (5) b = 0.97, (6) b = 1, (7) b = 1.1



24 1 Short Introduction to Stability Theory of Deterministic Functional

Fig. 1.31 Solutions of (1.20) for a = 1, h = 0.3, x0(s) = cos(s), s ∈ [−h,0], and different val-
ues of b: (1) b = −1.1, (2) b = 0.7, (3) b = 1.1, and appropriate process y(t): (4) b = −1.1,
(5) b = 0.7, (6) b = 1.1

delay h = 0.3, the initial function x0(s) = cos s, s ∈ [−h,0], a = 1, and for different
values of the parameter b: (1) b = −1.1, (2) b = −1, (3) b = 0.7, (4) b = 0.9, (5)
b = 0.97, (6) b = 1, (7) b = 1.1.

Note that the process y(t) = x(t) − bx(t − h) goes to zero for all b. In Fig. 1.31
the solutions of (1.20) are shown for the initial function x0(s) = cos s, s ∈ [−h,0],
a = 1, and for different values of the parameter b: (1) b = −1.1, (2) b = 0.7, (3)
b = 1.1 and the appropriate process y(t): (4) b = −1.1, (5) b = 0.7, (6) b = 1.1.

One can see a similar situation for the second-order differential equation of neu-
tral type

ẍ(t) + aẋ(t) + bx(t) = c
[
ẍ(t − h) + aẋ(t − h) + bx(t − h)

]
,

a > 0, b > 0, c > 1. (1.21)

If h = 0, then the trivial solution of (1.21) is asymptotically stable. But for any
h > 0, the trivial solution of (1.21) is unstable since for h > 0, the appropriate char-
acteristic equation (z2 + az + b)(1 − ce−hz) = 0 has all roots with positive real
parts:

zk = 1

h
(ln c + i2kπ), i2 = −1, k = 0,±1,±2, . . . .

The solutions of (1.20) were obtained via its difference analogue in the form
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xi+1 = (1 − a�)xi + b
[
xi+1−m − (1 − a�)xi−m

]
,

where � is the step of discretization, and xi = x(i�), m = h/�, � = 0.01.

1.5 Routh–Hurwitz Conditions

Now we consider some important statements [80] for the stability of determinis-
tic system of linear autonomous differential equations that will be essentially used
below.

Linear autonomous system of ordinary differential equations has the general
form

ẋ(t) = Ax(t), (1.22)

where x ∈ Rn, A is an n × n matrix with real elements aij , i, j = 1, . . . , n.

Theorem 1.1 (Lyapunov theorem) The zero solution of (1.22) is asymptotically sta-
ble if and only if all roots λ of the characteristic equation

det(λI − A) = 0 (1.23)

(I is the n × n identity matrix) have negative real parts, i.e., Re λ < 0.

Definition 1.1 Let us define the trace of the kth order of a matrix A as follows:

Sk =
∑

1≤i1<···ik≤n

∣
∣∣∣∣∣

ai1i1 . . . ai1ik

. . . . . . . . .

aiki1 . . . aikik

∣
∣∣∣∣∣
, k = 1, . . . , n.

Here, in particular, S1 = Tr(A), Sn = det(A), Sn−1 = ∑n
i=1 Aii , where Aii is the

algebraic complement of the diagonal element aii of the matrix A.
Using the traces of the kth order, we can represent the characteristic equation

(1.23) in the form

λn − S1λ
n−1 + S2λ

n−2 − · · · + (−1)nSn = 0. (1.24)

Besides, via Sk we can define the Hurwitz matrix as follows:

⎛

⎜⎜⎜
⎜⎜⎜
⎝

−S1 −S3 −S5 . . . 0
1 S2 S4 . . . 0
0 −S1 −S3 . . . 0
0 1 S2 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . (−1)nSn

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (1.25)
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Theorem 1.2 (Routh–Hurwitz criterion) All roots λ of the characteristic equation
(1.24) have negative real parts if and only if

�1 = −S1 > 0, �2 =
∣
∣∣∣
−S1 −S3

1 S2

∣
∣∣∣> 0,

�3 =
∣∣∣
∣∣∣

−S1 −S3 −S5
1 S2 S4
0 −S1 −S3

∣∣∣
∣∣∣
> 0, . . . ,

�n =

∣∣∣
∣∣∣∣∣∣∣∣∣

−S1 −S3 −S5 . . . 0
1 S2 S4 . . . 0
0 −S1 −S3 . . . 0
0 1 S2 . . . 0
. . . . . . . . . . . . . . .

. . . . . . . . . . . . (−1)nSn

∣∣∣
∣∣∣∣∣∣∣∣∣

> 0.

(1.26)

Definition 1.2 A symmetric n × n matrix Q is called a positive (negative) defi-
nite matrix (Q > 0) (Q < 0) if there exists c > 0 such that x′Qx ≥ c|x|2 (x′Qx ≤
−c|x|2) for all x ∈ Rn.

Theorem 1.3 (Lyapunov theorem) All roots λ of the characteristic equation (1.24)
have negative real parts if and only if for an arbitrary positive definite matrix Q, the
matrix equation

A′P + PA = −Q (1.27)

has a positive definite solution P .

Corollary 1.1 Let A be a 2 × 2 matrix. Then the zero solution of (1.22) is asymp-
totically stable if and only if

Tr(A) < 0 and det(A) > 0. (1.28)

Proof It is enough to note that from (1.25) and (1.26) it follows that �1 = −S1 =
−Tr(A) > 0 and �2 = −S1S2 = −Tr(A)det(A) > 0. �

Corollary 1.2 Let A be a 3 × 3 matrix. Then the zero solution of (1.22) is asymp-
totically stable if and only if

S1 < 0, S1S2 < S3 < 0.

Proof It is enough to note that from (1.25) and (1.26) it follows that �1 = −S1 > 0,
�2 = S3 − S1S2 > 0, �3 = S3(S1S2 − S3) > 0. �

Remark 1.1 If

A =
(

a11 a12
a21 a22

)
, Q =

(
q11 q12
q12 q22

)
, P =

(
p11 p12
p12 p22

)
,
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then

PA =
(

p11a11 + p12a21 p11a12 + p12a22
p12a11 + p22a21 p12a12 + p22a22

)
,

and therefore the matrix equation (1.27) can be represented in the form of the system
of the equations

2(p11a11 + p12a21) = −q11,

2(p12a12 + p22a22) = −q22,

p11a12 + p12Tr(A) + p22a21 = −q12,

which, for arbitrary positive definite matrix Q, has a positive definite solution P

with the elements

p11 = (a2
22 + det(A))q11 + a2

21q22 − 2a22a21q12

2|Tr(A)|det(A)
,

p22 = (a2
11 + det(A))q22 + a2

12q11 − 2a11a12q12

2|Tr(A)|det(A)
,

p12 = a12a22q11 + a21a11q22 − 2a11a22q12

2Tr(A)det(A)
.

If, in particular, q11 = q > 0, q22 = 1, and q12 = 0, then

p11 = (a2
22 + det(A))q + a2

21

2|Tr(A)|det(A)
,

p22 = a2
11 + det(A) + a2

12q

2|Tr(A)|det(A)
,

p12 = a12a22q + a21a11

2Tr(A)det(A)
.

(1.29)

Remark 1.2 In the general case the elements pij of the solution P of the matrix
equation (1.27) are defined as follows [21]:

pij = 1

2�n

n−1∑

r=0

γ
(r)
ij �1,r+1,

where �n is the determinant (1.26) of the Hurwitz matrix (1.25), �1,r+1 is the alge-
braic adjunct of the element of the first line and (r + 1)th column of the determinant
�n, γ

(r)
ij are defined by the identity

(−1)n−1
n∑

k,m=1

qkmDik(λ)Djm(−λ) ≡
n−1∑

r=0

γ
(r)
ij λ2(n−r−1),
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qkm are the elements of the matrix Q, and Dik(λ) are the algebraic adjuncts of the
determinant

D(λ) =
∣∣∣∣∣∣

a11 − λ . . . a1n

. . . . . . . . . .

an1 . . . ann − λ

∣∣∣∣∣∣
.

Example 1.10 Consider the second-order scalar differential equation

ẍ(t) + aẋ(t) + bx(t) = 0. (1.30)

Using the new variables x1 = x, x2 = ẋ, represent (1.30) in the form of (1.22) with
the matrix A = ( 0 1

−b −a

)
. Since Tr(A) = −a, det(A) = b, then via Corollary 1.1 the

inequalities a > 0, b > 0 are necessary and sufficient conditions for the asymptotic
stability of the zero solution of (1.30).



Chapter 2
Stochastic Functional Differential Equations
and Procedure of Constructing Lyapunov
Functionals

2.1 Short Introduction to Stochastic Functional Differential
Equations

Here the basic notation of the theory of stochastic differential equations [16, 17, 81,
84–87, 210] is considered.

Let {Ω,F,P} be a probability space, {Ft , t ≥ 0} be a nondecreasing family of
sub-σ -algebras of F , i.e., Ft1 ⊂ Ft2 for t1 < t2, P{·} be the probability of an event
enclosed in the braces, and E be the mathematical expectation.

2.1.1 Wiener Process and Its Numerical Simulation

The Wiener process sometimes is also called the Brownian motion process. Origi-
nally, the Brownian motion process was posed by the English botanist Robert Brown
as a model for the motion of a small particle immersed in a liquid and thus subject to
molecular collisions. The Brownian motion assumes a central role in the theory of
stochastic processes and statistics. It is basic to descriptions of financial markets, the
construction of a large class of Markov processes called diffusions, approximations
to many queuing models, and the calculation of asymptotic distributions in large
sample statistical estimation problems.

Definition 2.1 A stochastic process w(t) is called the standard Wiener process (rel-
atively to the family {Ft , t ≥ 0}) if it is Ft -measurable and

– w(0) = 0 (P-a.s.);
– w(t) is a process with stationary and mutually independent increments;
– the increments w(t) − w(s) have the normal distribution with

E
(
w(t) − w(s)

)= 0, E
(
w(t) − w(s)

)2 = |t − s|;
– for almost all ω ∈ Ω , the functions w(t) = w(t,ω) are continuous on t ≥ 0 [84].

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional
Differential Equations, DOI 10.1007/978-3-319-00101-2_2,
© Springer International Publishing Switzerland 2013
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We will also consider an m-dimensional Wiener process

w(t) = (
w1(t), . . . ,wm(t)

)′ ∈ Rm

where the components wi(t), i = 1, . . . ,m, are mutually independent scalar Wiener
processes, and

E
(
w(t) − w(s)

)= 0, E
(
w(t) − w(s)

)(
w(t) − w(s)

)′ = I |t − s|.
Here I is the m × m identity matrix, and the prime denotes the transposition.

The trajectories of the Wiener process are nondifferentiable functions, although
formally the derivative of the Wiener process ẇ(t) is called the white noise.

There are different ways to get numerical simulation of trajectories of a Wiener
process. One of them is the following [244].

Let Yi , i = 1, . . . , n, be independent random variables that are uniformly
distributed on [0,1]. Then Xi = √

12(Yi − 0.5) = √
3(2Yi − 1), i = 1, . . . , n,

are independent identically distributed random variables such that EXi = 0 and
Var(Xi) = 1. Define the random walk Sn, n ≥ 0, by S0 = 0 and Sn = X1 + · · · + Xn

for n > 0. By the central limit theorem, 1√
n
Sn converges in distribution to N(0,1),

i.e., 1√
n
Sn → N(0,1).

Define the continuous-time process Wn(t) = 1√
n
S[nt], t ≥ 0, where [t] is the in-

teger part of t , i.e., the greatest integer less than or equal to t . Therefore, for any
t > 0, we have

Wn(t) =
√ [nt]

n

S[nt]√[nt] → N(0, t).

Also, for t > s, we obtain

Wn(t) − Wn(s) = S[nt] − S[ns]√
n

=
∑[nt]

j=[ns]+1 Xj√
n

= S[nt]−[ns]√
n

=
√ [nt] − [ns]

n

S[nt]−[ns]√[nt] − [ns] → N(0, t − s).

Since the process {Wn(t), t ≥ 0} is not continuous, let us modify it in the following
way:

W(c)
n (t) = S[nt]√

n
+ (

nt − [nt])X[nt]+1√
n

, t ≥ 0.

It is easy to see that EW
(c)
n (t) = 0 and

lim
n→∞ Var

(
W(c)

n (t)
)= lim

n→∞

(
t − nt − [nt]

n
+ (nt − [nt])2

n

)
= t.

So, as n → ∞, W(c)
n (t) converges in distribution to the Wiener process w(t). This

means that for large enough n, the process W
(c)
n (t) approximates the Wiener process
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Fig. 2.1 50 trajectories of the Wiener process

well enough. 50 trajectories of the Wiener process obtained via this algorithm are
shown in Fig. 2.1.

2.1.2 Itô Integral, Itô Stochastic Differential Equation, and Itô
Formula

Let H2[0, T ] be the space of random functions f (t) that are defined and Ft -
measurable for each t ∈ [0, T ] and for which

∫ t

0
Ef 2(s) ds < ∞.

Then for all functions from H2[0, T ], the Itô integral with respect to the Wiener
process w(t)

∫ t

0
f (s) dw(s)
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is defined and has the following properties:

E
∫ t

0
f (s) dw(s) = 0, E

(∫ t

0
f (s) dw(s)

)2

=
∫ t

0
Ef 2(s) ds.

Let Hp , p > 0, be the space of F0-adapted stochastic processes ϕ(θ), θ ≤ 0, with
continuous trajectories that are independent on the σ -algebra B[0,∞)(dw), where
B[t1,t2](dw) is the minimal σ -algebra generated by the random variables w(s) −
w(t) for arbitrary s, t : t1 ≤ t ≤ s ≤ t2. In the space Hp two norms are defined:
‖ϕ‖0 = sups≤0 |ϕ(s)| and ‖ϕ‖p

1 = sups≤0 E|ϕ(s)|p .
We will consider the Itô stochastic functional differential equation [84]

dx(t) = a1(t, xt ) dt + a2(t, xt ) dw(t),

t ≥ 0, x ∈ Rn, (2.1)

with the initial condition

x0 = φ ∈ Hp. (2.2)

Here x ∈ Rn, xt = x(t + s), s ≤ 0, w : [0,∞) → Rm is the standard Wiener
process, the continuous functionals a1(t, ϕ), a2(t, ϕ) are defined on [0,∞) × Hp ,
a1 ∈ Rn, a2 is an n × m-dimensional matrix. It is assumed also that the functionals
ai , i = 1,2, satisfy the following conditions: ai(t,0) ≡ 0, and for arbitrary functions
ϕ1(θ), ϕ2(θ) from Hp ,

∣∣ai(t, ϕ1) − ai(t, ϕ2)
∣∣2 ≤

∫ ∞

0

∣∣ϕ1(−θ) − ϕ2(−θ)
∣∣2 dRi(θ),

∫ ∞

0
dRi(θ) < ∞, i = 1,2,

(2.3)

where Ri(θ) are nondecreasing bounded functions.
A solution of problem (2.1)–(2.2) is a process x(t) such that x(θ) = φ(θ) for

θ ≤ 0 and with probability 1

x(t) = x(0) +
∫ t

0
a1(s, xs) ds +

∫ t

0
a2(s, xs) dw(s), t ≥ 0,

x(0) = φ(0).

The last integral is understood in the Itô sense.
Sometimes, instead of x(t), we will write x(t, φ) for the solution of (2.1) with

the initial function (2.2). Existence and uniqueness theorems for problem (2.1)–(2.2)
are considered in [84–87, 132, 133].

To calculate the stochastic differential of the process η(t) = u(t, x(t)), where
x(t) is a solution of problem (2.1)–(2.2), and the function u : [0,∞) × Rn → R has
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continuous partial derivatives

ut = ∂u(t, x)

∂t
, ∇u =

(
∂u(t, x)

∂x1
, . . . ,

∂u(t, x)

∂xn

)
,

∇2u =
(

∂2u(t, x)

∂xi∂xj

)
, i, j = 1, . . . , n,

the following Itô formula [84] is used:

dη(t) = Lu
(
t, x(t)

)
dt + ∇u′(t, x(t)

)
a2(t, xt ) dw(t). (2.4)

The operator L is called the generator of (2.1) and is defined in the following way:

Lu
(
t, x(t)

)= ut

(
t, x(t)

)+ ∇u′(t, x(t)
)
a1(t, xt )

+ 1

2
Tr
[
a′

2(t, xt )∇2u
(
t, x(t)

)
a2(t, xt )

]
, (2.5)

where Tr denotes the trace of a matrix.
The generator L can be applied also for some functionals V (t, ϕ) : [0,∞) ×

Hp → R+. Suppose that a functional V (t, ϕ) can be represented in the form
V (t, ϕ) = V (t, ϕ(0), ϕ(θ)), θ < 0, and for ϕ = xt , put

Vϕ(t, x) = V (t, ϕ) = V (t, xt ) = V
(
t, x, x(t + θ)

)
,

x = ϕ(0) = x(t), θ < 0. (2.6)

Denote by D the set of the functionals for which the function Vϕ(t, x) defined
by (2.6) has a continuous derivative with respect to t and two continuous deriva-
tives with respect to x. For functionals from D, the generator L of (2.1) has the
form

LV (t, xt ) = ∂Vϕ(t, x(t))

∂t
+ ∇V ′

ϕ

(
t, x(t)

)
a1(t, xt )

+ 1

2
Tr
[
a′

2(t, xt )∇2Vϕ

(
t, x(t)

)
a2(t, xt )

]
. (2.7)

From the Itô formula it follows that for functionals from D,

E
[
V (t, xt ) − V (s, xs)

]=
∫ t

s

ELV (τ, xτ ) dτ, t ≥ s. (2.8)

Together with (2.1), we will also consider the stochastic differential equation of
neutral type [134]

d
(
x(t) − G(t, xt )

)= a1(t, xt ) dt + a2(t, xt ) dw(t), t ≥ 0,

x0 = φ ∈ Hp, (2.9)
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with the additional conditions on the functional G(t,ϕ): G(t,0) = 0,

∣∣G(t,ϕ)
∣∣≤

∫ ∞

0

∣∣ϕ(−s)
∣∣dK(s),

∫ ∞

0
dK(s) < 1. (2.10)

2.2 Stability of Stochastic Functional Differential Equations

2.2.1 Definitions of Stability and Basic Lyapunov-Type Theorems

Definition 2.2 The solution x(t) of (2.1) with the initial function (2.2) for some
p > 0 is called:

– Uniformly p-bounded if supt≥0 E|x(t)|p < ∞.
– Asymptotically p-trivial if limt→∞ E|x(t)|p = 0.
– p-integrable if

∫∞
0 E|x(t)|p dt < ∞.

Definition 2.3 The trivial solution of (2.1) for some p > 0 is called:

– p-stable if for each ε > 0, there exists δ > 0 such that E|x(t, φ)|p < ε, t ≥ 0,
provided that ‖φ‖p

1 < δ.
– Asymptotically p-stable if it is p-stable and for each initial function φ, the solu-

tion x(t) of (2.1) is asymptotically p-trivial.
– Exponentially p-stable if it is p-stable and there exists λ > 0 such that for

each initial function φ, there exists C > 0 (which may depend on φ) such that
E|x(t, φ)|p ≤ Ce−λt for t > 0.

– Stable in probability if for any ε1 > 0 and ε2 > 0, there exists δ > 0 such that the
solution x(t, φ) of (2.1) satisfies the condition P{supt≥0 |x(t, φ)| > ε1/F0} < ε2
for any initial function φ such that P{‖φ‖0 < δ} = 1.

In particular, if p = 2, then the solution of (2.1) is called respectively mean-
square bounded, mean-square stable, asymptotically mean-square stable, and so on.

Definition 2.4 A nonnegative functional V (t, ϕ), defined on [0,∞) × Hp , such
that V (t,0) ≡ 0 and limt→0 EV (t, xt ) = 0 if limt→0 E|x(t)|p = 0, p > 0, is called
an Fp-functional.

Certain stability conditions for stochastic functional differential equations can
be stated in terms of Lyapunov functionals. In the sequel, ci are different positive
numbers.

Theorem 2.1 Let V : [t0,∞) × Hp → R+ be a continuous functional such that for
any solution x(t) of problem (2.1)–(2.2) and p ≥ 2, the following inequalities hold:

EV (t, xt ) ≥ c1E
∣∣x(t)

∣∣p, t ≥ 0, (2.11)
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EV (0, φ) ≤ c2‖φ‖p

1 , (2.12)

E
[
V (t, xt ) − V (0, φ)

]≤ −c3

∫ t

0
E
∣∣x(s)

∣∣p ds, t ≥ 0. (2.13)

Then the trivial solution of (2.1) is asymptotically p-stable.

Proof From (2.11)–(2.13) we have

c1E
∣∣x(t)

∣∣p ≤ EV (t, xt ) ≤ EV (0, φ) ≤ c2‖φ‖p

1 . (2.14)

This proves the p-stability.
To prove the asymptotic p-stability, let us show that the solution of (2.1) is

asymptotically p-trivial for any initial function φ. Note that from (2.14) we obtain

sup
t≥0

E
∣∣x(t)

∣∣p ≤ c2

c1
‖φ‖p

1 . (2.15)

From (2.13) and (2.12) it follows that
∫ ∞

0
E
∣
∣x(s)

∣
∣p ds ≤ 1

c3
EV (0, φ) ≤ c2

c3
‖φ‖p

1 < ∞, (2.16)

i.e., the solution of (2.1) is p-integrable. Applying the generator L to the function
|x(t)|p via (2.5), we obtain

EL
∣
∣x(t)

∣
∣p = p

2

[
2E
∣
∣x(t)

∣
∣p−2

x′(t)a1(t, xt )

+ E
∣∣x(t)

∣∣p−2
Tr
[
a′

2(t, xt )a2(t, xt )
]

+ (p − 2)E
∣∣x(t)

∣∣p−4∣∣x′(t)a2(t, xt )
∣∣2].

By the Hölder inequality, (2.3), and (2.15), there is a constant c4 such that

2E
∣∣x(t)

∣∣p−2∣∣x′(t)a1(t, xt )
∣∣

≤ E
∣∣x(t)

∣∣p−2[∣∣x(t)
∣∣2 + ∣∣a1(t, xt )

∣∣2]

≤ E
∣∣x(t)

∣∣p +
∫ ∞

0
E
∣∣x(t)

∣∣p−2∣∣x(t − θ)
∣∣2 dR1(θ)

≤ E
∣∣x(t)

∣∣p +
∫ ∞

0

(
E
∣∣x(t)

∣∣p)
p−2
p
(
E
∣∣x(t − θ)

∣∣p)
2
p dR1(θ)

≤ c4.

Analogously,

E
∣∣x(t)

∣∣p−2∣∣Tr
[
a′

2(t, xt )a2(t, xt )
]∣∣≤ c4,
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E
∣∣x(t)

∣∣p−4∣∣x′(t)a2(t, xt )
∣∣2 ≤ c4.

Hence, there exists a constant c5 such that |EL|x(t)|p| ≤ c5, and using (2.8) for
t2 ≥ t1 ≥ 0, we obtain

∣∣E
∣∣x(t2)

∣∣p − E
∣∣x(t1)

∣∣p∣∣≤ c5(t2 − t1),

i.e., the function E|x(t)|p satisfies the Lipschitz condition. From this, (2.15), and
(2.16) it follows that limt→∞ E|x(t)|p = 0. The proof is completed. �

Remark 2.1 From (2.8) it follows that for the functional V ∈ D, condition (2.13) in
Theorem 2.1 follows from the inequality

ELV (t, xt ) ≤ −c3E
∣∣x(t)

∣∣p, t ≥ 0. (2.17)

Theorem 2.2 Let there exist a functional V (t, ϕ) ∈ D such that for any solution
x(t) of problem (2.1)–(2.2) and p ≥ 2, the following inequalities hold:

V (t, xt ) ≥ c1
∣∣x(t)

∣∣p, (2.18)

V (0, φ) ≤ c2‖φ‖p

0 , (2.19)

LV (t, xt ) ≤ 0, t ≥ 0, (2.20)

ci > 0, for any initial function φ such that P{‖φ‖0 ≤ δ} = 1, where δ > 0 is small
enough. Then the zero solution of (2.1) is stable in probability.

Proof Let us suppose that P{‖φ‖0 ≤ δ} = 1. From (2.20) it follows that the process
V (t, xt ) is a supermartingale. By (2.18), (2.19), and the inequality for supermartin-
gales [84–87] we have

P
{

sup
t≥t0

∣∣x(t, φ)
∣∣> ε1/F0

}
≤ P

{
sup
t≥t0

V (t, xt ) > c1ε
p

1 /F0

}
≤ V (t0, φ)

c1ε
p

1

≤ c2δ
p

c1ε
p

1

< ε2

for δ < ε1(c1ε2/c2)
1/p . The theorem is proven. �

Theorem 2.3 Let there exist a functional W : [0,∞) × H2 → R+ satisfying the
condition EW(t,ϕ) ≤ c1‖ϕ‖2

1 and such that for the functional

V (t, ϕ) = W(t,ϕ) + ∣∣ϕ(0) − G(t,ϕ)
∣∣2, (2.21)

where G(t,ϕ) satisfies condition (2.10), the following estimates are valid:

EV (0, φ) ≤ c2‖φ‖2
1,

EV (t, xt ) − EV (0, φ) ≤ −c3

∫ t

0
E
∣∣x(s)

∣∣2 ds, t ≥ 0,
(2.22)

where ci , i = 1,2,3, are some positive constants. Then the zero solution of (2.9) is
asymptotically mean-square stable.
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The proof of Theorem 2.3 is similar to Theorem 2.1 and can be found
in [132–135].

Theorem 2.4 Let there exist a functional V (t, ϕ) ∈ D such that for some p > 0 and
λ > 0, the following conditions hold:

EV (t, xt ) ≥ c1e
λtE

∣
∣x(t)

∣
∣p, t ≥ 0, (2.23)

EV (0, φ) ≤ c2‖φ‖p

1 , (2.24)

ELV (t, xt ) ≤ 0, t ≥ 0. (2.25)

Then the trivial solution of (2.1) is exponentially p-stable.

Proof Integrating (2.25) via (2.8), we obtain EV (t, xt ) ≤ EV (0, φ). From this and
from (2.23)–(2.24) it follows that

c1E
∣∣x(t)

∣∣p ≤ e−λtEV (0, φ) ≤ c2‖φ‖p

1 .

The inequality c1E|x(t)|2 ≤ c2‖φ‖p

1 means that the trivial solution of (2.1) is p-
stable. Besides, from the inequality c1E|x(t)|2 ≤ e−λtEV (0, φ) it follows that the
trivial solution of (2.1) is exponentially p-stable. The proof is completed. �

Corollary 2.1 Let there exist a functional V0(t, ϕ) ∈ D such that for some p > 0,
the following conditions hold:

c1E
∣∣x(t)

∣∣p ≤ EV0(t, xt )

≤ c2E
∣∣x(t)

∣∣p +
m∑

i=0

∫ ∞

0

∫ t

t−θ

(s − t + θ)iE
∣∣x(s)

∣∣p ds dKi(θ), (2.26)

ELV0(t, xt ) ≤ −c3E
∣∣x(t)

∣∣p, (2.27)

where m ≥ 0, Ki(θ), i = 0,1, . . . ,m, are nondecreasing functions such that, for
some small enough λ > 0,

m∑

i=0

ηi(λ) < ∞, ηi(λ) = 1

i + 1

∫ ∞

0
eλθ θ i+1 dKi(θ). (2.28)

Then the trivial solution of (2.1) is exponentially p-stable.

Proof It is enough to show that by the conditions (2.26)–(2.28) there exists a func-
tional V (t, ϕ) that satisfies the conditions of Theorem 2.4. Indeed, put V1(t, ϕ) =
eλtV0(t, ϕ). By (2.26) and (2.27) we have
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ELV1(t, xt ) = λeλtEV0(t, xt ) + eλtELV0(t, xt )

≤ eλt

(

λ

(

c2E
∣∣x(t)

∣∣p +
m∑

i=0

∫ ∞

0

∫ t

t−θ

(s − t + θ)iE
∣∣x(s)

∣∣p ds dKi(θ)

)

− c3E
∣∣x(t)

∣∣p
)

= eλt

(

(λc2 − c3)E
∣∣x(t)

∣∣p

+ λ

m∑

i=0

∫ ∞

0

∫ t

t−θ

(s − t + θ)iE
∣∣x(s)

∣∣p ds dKi(θ)

)

.

Now put

V2(t, xt ) = λ

m∑

i=0

1

i + 1

∫ ∞

0

∫ t

t−θ

eλ(s+θ)(s − t + θ)i+1
∣
∣x(s)

∣
∣p ds dKi(θ).

Then

LV2(t, xt ) = λ

m∑

i=0

(
eλtηi(λ)

∣∣x(t)
∣∣p

−
∫ ∞

0

∫ t

t−θ

eλ(s+θ)(s − t + θ)i
∣∣x(s)

∣∣p ds dKi(θ)

)

= λeλt
m∑

i=0

(
ηi(λ)

∣
∣x(t)

∣
∣p

−
∫ ∞

0

∫ t

t−θ

eλ(s−t+θ)(s − t + θ)i
∣
∣x(s)

∣
∣p ds dKi(θ)

)
,

and via s ≥ t − θ , for the functional V = V1 + V2, it follows that

ELV (t, xt ) ≤ eλt

((

λ

(

c2 +
m∑

i=0

ηi(λ)

)

− c3

)

E
∣∣x(t)

∣∣p

− λ

m∑

i=0

∫ ∞

0

∫ t

t−θ

(
eλ(s−t+θ) − 1

)
E
∣∣x(s)

∣∣p ds dKiθ

)

≤ eλt

(

λ

(

c1 +
m∑

i=0

ηi(λ)

)

− c3

)

E
∣∣x(t)

∣∣p.
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From this and from (2.28), for small enough λ > 0, we obtain (2.25). It is easy to
check that conditions (2.23)–(2.24) hold too. The proof is completed. �

Example 2.1 Consider the linear stochastic differential equation

ẋ(t) = ax(t) + bx(t − h) + σx(t − τ)ẇ(t). (2.29)

For the functional

V (t, xt ) = x2(t) + |b|
∫ t

t−h

x2(s) ds + σ 2
∫ t

t−τ

x2(s) ds, (2.30)

we have

LV (t, xt ) = 2x(t)
(
ax(t) + bx(t − h)

)+ σ 2x2(t − τ)

+ |b|(x2(t) − x2(t − h)
)+ σ 2(x2(t) − x2(t − τ)

)

≤ (
2
(
a + |b|)+ σ 2)x2(t). (2.31)

So, by the condition

a + |b| + 1

2
σ 2 < 0 (2.32)

the functional (2.30) satisfies the conditions of Theorem 2.1 with p = 2, and there-
fore the trivial solution of (2.29) is asymptotically mean-square stable.

On the other hand, by (2.31)–(2.32) the functional (2.30) satisfies the conditions
of Corollary 2.1 with p = 2, m = 0, and dK0(s) = (|b|δ(s − h) + σ 2δ(s − τ)) ds.
Therefore, the trivial solution of (2.29) is exponentially mean-square stable. By The-
orems 2.1–2.4 the construction of stability conditions is reduced to the construc-
tion of some Lyapunov functionals satisfying the assumptions of these theorems.
Below we will use the general method of construction of Lyapunov functionals
[136–139, 146–148, 150, 265, 269–272, 278] allowing one to obtain stability con-
ditions immediately in terms of parameters of systems under consideration. This
method was successfully used for functional differential equations, for difference
equations with discrete and continuous time [278], and for partial differential equa-
tions [48].

2.2.2 Formal Procedure of Constructing Lyapunov Functionals

The formal procedure of constructing Lyapunov functionals consists of four steps.

Step 1 Let us represent (2.9) in the form

dz(t, xt ) = (
b1
(
t, x(t)

)+ c1(t, xt )
)
dt + (

b2
(
t, x(t)

)+ c2(t, xt )
)
dw(t), (2.33)
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where z(t, xt ) is some functional of xt , z(t,0) = 0, the functionals bi(t, x(t)), i =
1,2, depend on t and x(t) only and do not depend on the previous values x(t + s),
s < 0, of the solution, and bi(t,0) = 0.

Step 2 Consider the auxiliary differential equation without memory

dy(t) = b1
(
t, y(t)

)
dt + b2

(
t, y(t)

)
dw(t). (2.34)

Let us assume that the zero solution of (2.34) is asymptotically mean-square stable
and therefore there exists a Lyapunov function v(t, y) such that c1|y|2 ≤ v(t, y) ≤
c2|y|2 and L0v(t, y) ≤ −c3|y|2. Here L0 is the generator of (2.34), ci > 0, i =
1,2,3.

Step 3 Replacing the second argument y of the function v(t, y) by the functional
z(t, xt ) from left-hand part of (2.33), we obtain the main component V1(t, xt ) =
v(t, z(t, xt )) of the functional V (t, xt ). Then it is necessary to calculate LV1, where
L is the generator of (2.33), and in a reasonable way to estimate it.

Step 4 Usually, the functional V1 almost satisfies the requirements of stability
theorems. In order to satisfy these conditions completely, an auxiliary component
V2 can be easily chosen by some standard way. As a result, the desired functional
V (t, xt ) takes the form V = V1 + V2.

Let us make remarks on some peculiarities of this procedure.

(1) It is clear that the representation (2.33) in the first step of the procedure is not
unique. Hence, for different representations, one can construct different Lya-
punov functionals, and, as a result, one can get different stability conditions.

(2) In the second step, for the auxiliary equation (2.34), one can choose different
Lyapunov functions v(t, y). So, for the initial equation (2.9), different Lyapunov
functionals can be constructed, and, as a result, different stability conditions can
be obtained.

(3) It is necessary to emphasize also that by choosing different ways of estimation
of LV1 one can construct different Lyapunov functionals and, as a result, one
can get different stability conditions.

(4) At last, some standard way of the construction of the additional functional V2
sometimes allows one to simplify the fourth step and do not use the functional
V2 at all. Below the corresponding auxiliary Lyapunov-type theorems are con-
sidered.

2.2.3 Auxiliary Lyapunov-Type Theorem

The following theorem in some cases allows one to use the procedure of construct-
ing Lyapunov functionals without an additional functional V2.
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Theorem 2.5 Let there exist a functional V1(t, xt ) ∈ D of type (2.21) such that

ELV1(t, xt ) ≤ Ex′(t)D(t)x(t) +
l∑

i=1

∫ ∞

0
Ex′(t − s)Si(t − s)x(t − s) dνi(s)

+
n∑

i=1

∫ ∞

0
Ex2

i (t − s) dKi(s)

+
k∑

i=1

Ex′(t − τi(t)
)
Qi

(
t − τi(t)

)
x
(
t − τi(t)

)

+
m∑

j=0

∫ ∞

0
dμj (s)

∫ t

t−s

(θ − t + s)j Ex′(θ)Rj (θ)x(θ) dθ

+
∫ ∞

0
dμ(s)

∫ t

t−s

Ex′(τ )R(τ + s, t)x(τ ) dτ, (2.35)

where L is the generator of (2.9), D(t) is a negative definite matrix, Si(t), i =
1, . . . , l, Qi(t), i = 1, . . . , k, Rj (t), j = 0, . . . ,m, R(s, t), s ≥ t ≥ 0, are non-
negative definite matrices, τi(t), i = 1, . . . , k, t ≥ 0, are differentiable nonnega-
tive functions with τ̇i (t) ≤ τ̂i < 1, Ki(s), i = 1, . . . , n, νi(s), i = 0, . . . , l, μj (s),
j = 0, . . . ,m, and μ(s), s ≥ 0, are nondecreasing functions of bounded variation
such that

ki =
∫ ∞

0
dKi(s) < ∞, qi =

∫ ∞

0
dνi(s) < ∞,

rj =
∫ ∞

0

sj+1

j + 1
dμj (s) < ∞,

(2.36)

and the matrix

G(t) = D(t) + K +
l∑

i=1

qiSi(t) +
k∑

i=1

1

1 − τ̂i

Qi(t)

+
m∑

j=0

rjRj (t) +
∫ ∞

0
dμ(s)

∫ t+s

t

R(t + s, θ) dθ, (2.37)

where K is the diagonal matrix with elements ki , i = 1, . . . , n, is uniformly negative
definite matrix with respect to t ≥ 0 , i.e.,

x′G(t)x ≤ −c|x|2, c > 0, x ∈ Rn. (2.38)

Then the zero solution of (2.9) is asymptotically mean-square stable.
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Proof Put

V2(t, xt ) =
l∑

i=1

∫ ∞

0
dνi(s)

∫ t

t−s

x′(θ)Si(θ)x(θ) dθ

+
n∑

i=1

∫ ∞

0
dKi(s)

∫ t

t−s

x2
i (θ) dθ +

k∑

i=1

1

1 − τ̂i

∫ t

t−τi (t)

x′(s)Qi(s)x(s) ds

+
m∑

j=0

∫ ∞

0
dμj (s)

∫ t

t−s

(θ − t + s)j+1

j + 1
x′(θ)Rj (θ)x(θ) dθ

+
∫ ∞

0
dμ(s)

∫ t

t−s

∫ τ+s

t

x′(τ )R(τ + s, θ)x(τ ) dθ dτ.

Then

ELV2(t, xt ) =
l∑

i=1

qiEx′(t)Si(t)x(t) −
∫ ∞

0
Ex′(t − s)S(t − s)x(t − s) dν(s)

+
n∑

i=1

kiEx2
i (t) −

n∑

l=1

∫ ∞

0
Ex2

l (t − s) dKl(s)

+
k∑

i=1

1

1 − τ̂i

Ex′(t)Qi(t)x(t)

−
k∑

i=1

1 − τ̇i (t)

1 − τ̂i

Ex′(t − τi(t)
)
Qi

(
t − τi(t)

)
x
(
t − τi(t)

)

+
m∑

j=0

rj Ex′(t)Rj (t)x(t)

−
m∑

j=0

∫ ∞

0
dμj (s)

∫ t

t−s

(θ − t + s)j Ex′(θ)Rj (θ)x(θ) dθ

+
∫ ∞

0
dμ(s)

∫ t+s

t

Ex′(t)R(t + s, θ)x(t) dθ

−
∫ ∞

0
dμ(s)

∫ t

t−s

Ex′(τ )R(τ + s, t)x(τ ) dτ. (2.39)

From (2.35), (2.37), and (2.39) for the functional V (t, xt ) = V1(t, xt ) + V2(t, xt ) it
follows that

ELV (t, xt ) ≤ Ex′(t)G(t)x(t). (2.40)
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By (2.38) and Remark 2.1 this means that the functional V (t, xt ) satisfies conditions
(2.22) of Theorem 2.3, and therefore the zero solution of (2.9) is asymptotically
mean-square stable. The proof is completed. �

Corollary 2.2 Let in Theorem 2.5 inequality (2.35) be the exact equality, G(t) =
G = const, and the functional V = V1 + V2 be F2-functional. Then in the scalar
case the condition G < 0 is a necessary and sufficient condition for asymptotic
mean-square stability of the zero solution of (2.9).

Proof In the considered case, for the functional V = V1 +V2, we have ELV (t, xt ) =
GEx2(t). If G ≥ 0, then from this and from (2.8) it follows that

EV (t, xt ) = EV (0, φ) + G

∫ t

0
Ex2(τ ) dτ ≥ EV (0, φ) > 0.

This means that limt→∞ EV (t, xt ) �= 0 and therefore limt→∞ E|x(t)|2 �= 0. The
proof is completed. �

Remark 2.2 Since the functional V (t, xt ) constructed in Theorem 2.5 satisfies the
conditions (2.22) and V (t, xt ) ≥ 0, we have that c3

∫ t

0 E|x(s)|2 ds ≤ EV (0, φ) < ∞.
This means that by conditions (2.35) and (2.38) the solution of (2.9) is also mean-
square integrable.

Remark 2.3 In the scalar case, from Remark 2.2 it follows that if by condition (2.35)
the solution of (2.9) is mean-square nonintegrable, i.e.,

∫∞
0 Ex2(t) dt = ∞, then

supt≥0 G(t) ≥ 0.

Remark 2.4 Theorem 2.5 is a useful development and improvement of the general
method of construction of Lyapunov functionals. It allows one not to use Step 4 of
the procedure and get good stability conditions using much more simple Lyapunov
functional than via Theorem 2.3. It can be used in different applications.

2.3 Some Useful Statements

2.3.1 Linear Stochastic Differential Equation

Consider now conditions for asymptotic mean-square stability of the trivial solution
of the linear Itô stochastic differential equation

ẋ(t) = Ax(t) + Bx(t − τ) + σx(t − h)ẇ(t), (2.41)

where A, B , σ , τ ≥ 0, h ≥ 0 are known constants.
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Lemma 2.1 A necessary and sufficient condition for asymptotic mean-square sta-
bility of the trivial solution of (2.41) is

A + B < 0, G−1 >
1

2
σ 2, (2.42)

where

G =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bq−1 sin(qτ)−1
A+B cos(qτ)

, B + |A| < 0, q = √
B2 − A2,

1+|A|τ
2|A| , B = A < 0,

Bq−1 sinh(qτ)−1
A+B cosh(qτ)

, A + |B| < 0, q = √
A2 − B2.

(2.43)

Remark 2.5 If A = −a and B = 0, then the necessary and sufficient stability condi-
tion (2.42)–(2.43) takes the form a > 1

2σ 2.

Note that the proof of Lemma 2.1 is based on two old enough papers [243, 290]
as it was shown briefly in the author recent book [278]. Following to advices and
requests of some readers of the book [278], the author took the decision to write
here the proof of this lemma in more detail.

Proof of the Lemma 2.1 A necessary and sufficient stability condition (2.42) with

G = 2
∫ ∞

0
x2(s) ds, (2.44)

where x(t) is a solution of (2.41) in the deterministic case, i.e., with σ = 0, was
obtained in [243]. By the Plancherel theorem the integral (2.44) coincides [243, 290]
with

G = 2

π

∫ ∞

0

dt

(A + B cos τ t)2 + (t + B sin τ t)2
. (2.45)

Let us obtain for this integral the representation (2.43) in elementary functions.
Following [243], consider the functional

V (xt ) = 1

2
Gx2(t) +

∫ t

t−τ

β(s − t)x(s)x(t) ds

+
∫ t

t−τ

∫ t

s

δ(s − t, θ − t)x(θ)x(s) dθ ds, (2.46)

where G is a constant, and β(s) and δ(s, θ) are continuously differentiable func-
tions. By (2.46) and (2.41) with σ = 0 we obtain

dV (xt )

dt
=
(

Gx(t) +
∫ t

t−τ

β(s − t)x(s) ds

)(
Ax(t) + Bx(t − τ)

)

+ β(0)x2(t) − β(−τ)x(t − τ)x(t) −
∫ t

t−τ

dβ(s − t)

ds
x(s)x(t) ds
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+
∫ t

t−τ

δ(s − t,0)x(t)x(s) ds −
∫ t

t−τ

δ(−τ, θ − t)x(θ)x(t − τ) dθ

−
∫ t

t−τ

∫ t

s

(
∂δ(s − t, θ − t)

∂s
+ ∂δ(s − t, θ − t)

∂θ

)
x(θ)x(s) dθ ds

= (
GA + β(0)

)
x2(t) + (

GB − β(−τ)
)
x(t)x(t − τ)

+
∫ t

t−τ

(
Aβ(s − t) − dβ(s − t)

ds
+ δ(0, s − t)

)
x(s)x(t) ds

+
∫ t

t−τ

(
Bβ(s − t) − δ(−τ, s − t)

)
x(s)x(t − τ) ds

−
∫ t

t−τ

∫ t

s

(
∂δ(s − t, θ − t)

∂s
+ ∂δ(s − t, θ − t)

∂θ

)
x(θ)x(s) dθ ds.

(2.47)

Let us suppose that the functions β(s) and δ(s, θ) satisfy the conditions

GA + β(0) = −1, GB − β(−τ) = 0,

Aβ(s) − dβ(s)

ds
+ δ(s,0) = 0, Bβ(s) − δ(−τ, s) = 0, (2.48)

∂δ(s, θ)

∂s
+ ∂δ(s, θ)

∂θ
= 0.

Then from (2.47) and (2.48) it follows that dV (xt )
dt

= −x2(t), and therefore (if the
condition for asymptotic stability of the trivial solution of the considered equation
holds, i.e., limt→∞ V (xt ) = 0),

∫ ∞

0
x2(t) dt = −

∫ ∞

0

dV (xt )

dt
dt = V (x0). (2.49)

Using the initial function

xε(s) =
{

0 if − τ ≤ s ≤ −ε,

1 + s
ε

if − ε ≤ s ≤ 0,

and the limit ε → 0, from (2.46) we obtain V (x0) = 1
2G. From this and from (2.49)

it follows that G in the functional (2.46) indeed coincides with (2.44) and has the
representation (2.45).

To get for G the representation (2.43), let us solve system (2.48). From the last
equation of (2.48) it follows that δ(s, θ) = ϕ(s − θ) and, by the forth equation of
(2.48), ϕ(s) = Bβ(−τ − s). Substituting this ϕ(s) into the third equation of (2.48),
we obtain that the function β(t) is defined by the differential equation

β̇(t) = Aβ(t) + Bβ(−t − τ) (2.50)
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with the conditions

GA + β(0) + 1 = 0, GB − β(−τ) = 0. (2.51)

Suppose that q2 = B2 − A2 > 0. Then, by (2.50),

β̈(t) = Aβ̇(t) − Bβ̇(−t − τ)

= A
(
Aβ(t) + Bβ(−t − τ)

)− B
(
Aβ(−t − τ) + Bβ(t + τ − τ)

)

= −q2β(t)

or

β̈(t) + q2β(t) = 0. (2.52)

Substituting the general solution β(t) = C1 cosqt + C2 sinqt of (2.52) into (2.50)
and (2.51), we obtain two equations for G, C1, and C2

GA + C1 = −1, GB = C1 cosqτ − C2 sinqτ, (2.53)

and two homogeneous linear dependent equations for C1 and C2

C1(A + B cosqτ) − C2(q + B sinqτ) = 0,

C1(q − B sinqτ) + C2(A − B cosqτ) = 0.
(2.54)

By (2.54) we have

C2 = C1
A + B cosqτ

q + B sinqτ
= −C1

q − B sinqτ

A − B cosqτ
. (2.55)

Substituting the first equality (2.55) into (2.53) and excluding C1, we obtain

G = A sinqτ − q cosqτ

q(A cosqτ + q sinqτ + B)
. (2.56)

Multiplying the numerator and the denominator of the obtained fraction by
B sinqτ − q , one can convert (2.56) to the form of the first line in (2.43). Note
that the same result can be obtained using the second equality (2.55).

Suppose now that q2 = A2 − B2 > 0. Then, similarly to (2.52), we obtain the
equation β̈(t) − q2β(t) = 0 with the general solution β(t) = C1e

qt + C2e
−qt . Sub-

stituting this solution into (2.50) and (2.51), similarly to (2.53) and (2.54), we have

GA + C1 + C2 = −1, GB = C1e
−qτ + C2e

qτ ,

C1(q − A) − C2Beqτ = 0, C1B + C2(q + A)eqτ = 0.
(2.57)

By the two last equations of (2.57),

C2 = C1
q − A

B
e−qτ = −C1

B

q + A
e−qτ . (2.58)
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From the first equality of (2.58) and the two first equations of (2.57) we obtain

G = q − A + Be−qτ

q(q − A − Be−qτ )
. (2.59)

Put now sinhx = 1
2 (ex − e−x) and coshx = 1

2 (ex + e−x) (respectively, hyperbolic
sine and hyperbolic cosine). Multiplying the numerator and the denominator of
(2.59) by B sinhqτ − q in the denominator, we have

(
q − A − Be−qτ

)
(B sinhqτ − q)

= (
q − A − Be−qτ

)(
B coshqτ − Be−qτ − q

)

= qB coshqτ − AB coshqτ − B2e−qτ coshqτ

− Bqe−qτ + ABe−qτ + B2e−2qτ − A2 + B2 + Aq + Bqe−qτ

= (q − A)(A + B coshqτ) + Be−qτ
(
A + B

(
eqτ + e−qτ − coshqτ

))

= (
q − A + Be−qτ

)
(A + B coshqτ).

As a result, we obtain (2.59) in the form of the third line in (2.43). Note also that the
same result can be obtained using the second equality of (2.58).

The second line of (2.43) can be obtained from the first (or the third) line in the
limit as q → 0. The proof is completed. �

2.3.2 System of Two Linear Stochastic Differential Equations

Consider the system of two stochastic differential equations without delays

ẋ1(t) = a11x1(t) + a12x2(t) + σ1x1(t)ẇ1(t),

ẋ2(t) = a21x1(t) + a22x2(t) + σ2x2(t)ẇ2(t),
(2.60)

where aij , σi , i, j = 1,2, are constants, and w1(t) and w2(t) are mutually indepen-
dent standard Wiener processes.

Put A = ‖aij‖, i, j = 1,2, and

δi = 1

2
σ 2

i , i = 1,2. (2.61)

Remark 2.6 If σ1 = σ2 = 0, then (by Corollary 1.1) the trivial solution of (2.60) is
asymptotically stable if and only if

Tr(A) = a11 + a22 < 0, det(A) = a11a22 − a12a21 > 0. (2.62)

If a12 = a21 = 0, then (by Remark 2.5) the necessary and sufficient conditions for
asymptotic mean-square stability of the trivial solution of (2.60) are

a11 + δ1 < 0, a22 + δ2 < 0. (2.63)
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Lemma 2.2 Let for some positive definite matrix P = ‖pij‖, i, j = 1,2, the param-
eters of system (2.60) satisfy the conditions

p12a21 + p11(a11 + δ1) < 0,

p12a12 + p22(a22 + δ2) < 0,

4
(
p12a21 + p11(a11 + δ1)

)(
p12a12 + p22(a22 + δ2)

)

>
(
p11a12 + p22a21 + p12 Tr(A)

)2
.

(2.64)

Then the trivial solution of system (2.60) is asymptotically mean-square stable.

Proof Let L0 be the generator of system (2.60). Using the Lyapunov function

v(t) = p11x
2
1(t) + 2p12x1(t)x2(t) + p22x

2
2(t) (2.65)

and (2.61)–(2.62) for system (2.60), we have

L0v(t) = 2
(
p11x1(t) + p12x2(t)

)(
a11x1(t) + a12x2(t)

)+ p11σ
2
1 x2

1(t)

+ 2
(
p12x1(t) + p22x2(t)

)(
a21x1(t) + a22x2(t)

)+ p22σ
2
2 x2

2(t)

= 2
(
p12a21 + p11(a11 + δ1)

)
x2

1(t) + 2
(
p12a12 + p22(a22 + δ2)

)
x2

2(t)

+ 2
(
p11a12 + p22a21 + p12 Tr(A)

)
x1(t)x2(t).

By (2.64) L0v(t) is a negative definite square form, i.e., the function v(t) satisfies
(2.17) with p = 2. So, the trivial solution of system (2.60) is asymptotically mean-
square stable. The proof is completed. �

Corollary 2.3 Suppose that conditions (2.62) hold, a12 �= 0, and

δ1 <
|Tr(A)|det(A)

A2
, δ2 <

|Tr(A)|det(A) − A2δ1

A1 − |Tr(A)|δ1
, (2.66)

where

A1 = det(A) + a2
11, A2 = det(A) + a2

22. (2.67)

Then the trivial solution of system (2.60) is asymptotically mean-square stable.

Proof By Remark 1.1, from (1.29) and (2.64) it follows that if, for some q > 0,

−q + 2p11δ1 < 0, −1 + 2p22δ2 < 0, (2.68)

then the trivial solution of (2.60) is asymptotically mean-square stable.
Using (1.29), we can represent (2.68) in the form

(A2q + a2
21)δ1

|Tr(A)|det(A)
< q,

(A1 + a2
12q)δ2

|Tr(A)|det(A)
< 1.
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From this we have

a2
21δ1

|Tr(A)|det(A) − A2δ1
< q <

|Tr(A)|det(A) − A1δ2

a2
12δ2

. (2.69)

So, if

a2
21δ1

|Tr(A)|det(A) − A2δ1
<

|Tr(A)|det(A) − A1δ2

a2
12δ2

, (2.70)

then there exists q > 0 such that (2.69), and therefore (2.68) holds.
Let us show that (2.70) holds. Indeed, by the first condition (2.66) we can rewrite

(2.70) in the form

a2
12a

2
21δ1δ2 <

(∣∣Tr(A)
∣∣det(A) − A2δ1

)(∣∣Tr(A)
∣∣det(A) − A1δ2

)

= (∣∣Tr(A)
∣∣det(A)

)2 − ∣∣Tr(A)
∣∣det(A)(A1δ2 + A2δ1) + A1A2δ1δ2.

(2.71)

By (2.67) we have

A1A2 = (
det(A) + a2

11

)(
det(A) + a2

22

)

= (
det(A) + a2

11 + a2
22

)
det(A) + a2

11a
2
22

= (∣∣Tr(A)
∣∣2 − (a11a22 + a12a21)

)
det(A) + a2

11a
2
22

= ∣∣Tr(A)
∣∣2 det(A) + a2

12a
2
21

≥ ∣∣Tr(A)
∣∣2 det(A). (2.72)

So, by (2.71) and (2.72) it is enough to show that

0 <
∣∣Tr(A)

∣∣det(A) − A2δ1 − (
A1 − ∣∣Tr(A)

∣∣δ1
)
δ2. (2.73)

Note that from (2.66) and (2.72) it follows that

δ1 <
|Tr(A)|det(A)

A2
≤ A1

|Tr(A)| .

So, (2.73) is equivalent to (2.66). The proof is completed. �

Remark 2.7 If a12 = 0, then conditions (2.66) coincide with (2.63). Indeed, by
(2.62) from (2.66) we obtain

δ1 <
|a11 + a22|a11a22

(a11 + a22)a22
= −a11, δ2 <

|a11 + a22|a22(a11 + δ1)

(a11 + a22)(a11 + δ1)
= −a22.
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Remark 2.8 From the conditions (2.63) and a12a21 ≤ 0 it follows that

|a11| ≤ |Tr(A)|det(A)

A2
, |a22| ≤ |Tr(A)|det(A)

A1
.

So, from the conditions (2.63) and a12a21 ≤ 0 it follows that

δ1 <
|Tr(A)|det(A)

A2
, δ2 <

|Tr(A)|det(A)

A1
.

Corollary 2.4 Suppose that the parameters of system (2.60) satisfy the condi-
tions (2.62),

a21 > 0, A2 >
∣∣Tr(A)

∣∣δ2, (2.74)

and the intervals

I1 =
(

− a12(a22 + δ2)

A2 − |Tr(A)|δ2
,−a11 + δ1

a21

)
(2.75)

and

I2 =
( |Tr(A)| −√

(a11 − a22)2 + 4 det(A)

2a21
,
|Tr(A)| +√

(a11 − a22)2 + 4 det(A)

2a21

)

(2.76)
have common points. Then the trivial solution of system (2.60) is asymptotically
mean-square stable.

Proof Consider the function v(t) given by (2.65) with p11 = 1, p12 = μ, p22 = γ ,
where γ = a−1

21 (μ|Tr(A)| − a12). From (2.64) it follows that μ ∈ I1. On the other
hand, the function v(t) is positive definite if and only if γ > μ2, which is equivalent
to μ ∈ I2. So, the appropriate μ exists if and only if the intervals I1 and I2 have
common points. The proof is completed. �

2.3.3 Some Useful Inequalities

Lemma 2.3 For arbitrary vectors a ∈ Rn, b ∈ Rn and an n × n matrix R > 0, it
follows that

a′b + b′a ≤ a′Ra + b′R−1b.

Proof The proof follows from the simple equality

0 ≤ (
a − R−1b

)′
R
(
a − R−1b

)= a′Ra + b′R−1b − a′b − b′a. �
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Lemma 2.4 For positive P2, x and nonnegative P1, Q such that P2 > Qx, the
following inequality holds:

P1 + Qx−1

P2 − Qx
≥
(√

Q2 + P1P2 + Q

P2

)2

.

Proof It is enough to check that the function

f (x) = P1 + Qx−1

P2 − Qx

reaches its minimum at the point

x0 = P2√
Q2 + P1P2 + Q

and this minimum equals x−2
0 . The proof is completed. �

2.4 Some Unsolved Problems

In spite of the fact that the theory of stability for stochastic hereditary systems is
very popular in researches, there are simply and clearly formulated problems with
unknown decisions. In order to attract attention to such problems, one of them for
stochastic difference equation with continuous time is represented in [277], and two
unsolved stability problems for stochastic differential equations with delay are de-
scribed below.

2.4.1 Problem 1

Consider the linear stochastic differential equation with delays

ẋ(t) = Ax(t) +
m∑

i=1

Bix(t − τi) + σx(t − h)ẇ(t), (2.77)

where A, Bi , σ , τi > 0, h ≥ 0 are known constants, and w(t) is the standard Wiener
process.

It is known [290] that a necessary and sufficient condition for asymptotic mean-
square stability of the zero solution of (2.77) can be represented in the form

G−1 >
σ 2

2
, G = 2

π

∫ ∞

0

dt

(A +∑m
i=1 Bi cos τi t)2 + (t +∑m

i=1 Bi sin τi t)2
.

(2.78)
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By Lemma 2.1, in the particular case m = 1, B1 = B , τ1 = τ the integral (2.78)
can be calculated in elementary functions, and the stability conditions take the form
(2.42)–(2.43).

The problem is: to calculate the integral (2.78) in elementary functions for m ≥ 2,
in particular, for m = 2.

2.4.2 Problem 2

From (2.42) and (2.43) it follows that the zero solution of the differential equation
with a constant delay ẋ(t) = −bx(t − h) is asymptotically stable if and only if

0 < bh <
π

2
. (2.79)

It is also known [221, 318] that the zero solution of the differential equation with a
varying delay ẋ(t) = −bx(t − τ(t)) is asymptotically stable for an arbitrary delay
τ(t) such that τ(t) ∈ [0, h] if and only if

0 < bh <
3

2
. (2.80)

Consider the stochastic differential equation with a constant delay

ẋ(t) = −bx(t − h) + σx(t)ẇ(t). (2.81)

From (2.42) and (2.43) it follows that the zero solution of (2.81) is asymptotically
mean-square stable if and only if

0 < bh < arcsin
b2 − p2

b2 + p2
, p = σ 2

2
. (2.82)

In the deterministic case (σ = 0) condition (2.82) coincides with (2.79).
Consider the stochastic differential equation

ẋ(t) = −bx
(
t − τ(t)

)+ σx(t)ẇ(t) (2.83)

with a varying delay τ(t) such that τ(t) ∈ [0, h].
The problem is: to generalize condition (2.80) for (2.83).



Chapter 3
Stability of Linear Scalar Equations

3.1 Linear Stochastic Differential Equation of Neutral Type

Using the proposed procedure of Lyapunov functionals construction, let us inves-
tigate asymptotic mean-square stability of the linear scalar stochastic differential
equation of neutral type with constant coefficients

ẋ(t) + ax(t) + bx(t − h) + cẋ(t − h) + σx(t − τ)ẇ(t) = 0, |c| < 1,

x(s) = φ(s), s ∈ [−max(h, τ ),0
]
.

(3.1)

3.1.1 The First Way of Constructing a Lyapunov Functional

Following Step 1 of the procedure, we rewrite (3.1) in the form

ż(xt ) = −ax(t) − bx(t − h) − σx(t − τ)ẇ(t),

z(xt ) = x(t) + cx(t − h).

Suppose that a > 0. Then the function v = y2 is a Lyapunov function for the auxil-
iary differential equation ẏ(t) = −ay(t) since v̇ = −2ay2. Thus, the trivial solution
of the auxiliary differential equation is asymptotically stable. Put V1 = z2(xt ). Then

LV1 = 2z(xt )
(−ax(t) − bx(t − h)

)+ σ 2x2(t − τ)

= −2ax2(t) − 2bcx2(t − h) − 2(ac + b)x(t)x(t − h) + σ 2x2(t − τ)

≤ (−2a + |ac + b|)x2(t) + ρx2(t − h) + σ 2x2(t − τ),

where

ρ =
{

0 if |ac + b| ≤ 2bc,

|ac + b| − 2bc if |ac + b| > 2bc.
(3.2)

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional
Differential Equations, DOI 10.1007/978-3-319-00101-2_3,
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By Theorem 2.5 with S = Qi = Rj = R(s, t) = 0 and

D = −2a + |ac + b|, dK1(s) = (
ρδ(s − h) + σ 2δ(s − τ)

)
ds

(here and below δ(s) is the Dirac function) we obtain that if σ 2 +ρ +|ac+b| < 2a,
then the trivial solution of (3.1) is asymptotically mean-square stable.

Note that, by (3.2), ρ ≥ 0. So, from the obtained condition it follows that a > 0.
Using two representations for ρ in (3.2), we obtain the following two stability con-
ditions:

|ac + b| ≤ 2bc, σ 2 + |ac + b| < 2a (3.3)

and

|ac + b| > 2bc, p + |ac + b| − bc < a, p = σ 2

2
. (3.4)

By (3.3) we have bc = |bc| and a > 0. So, |ac + b| = a|c| + |b|, and inequalities
(3.3) take the forms 2|bc| ≥ a|c|+|b| and σ 2 +a|c|+|b| < 2a. The former is wrong
if 2|c| < 1. Suppose that 2|c| ≥ 1. Then

σ 2 + |b|
2 − |c| < a ≤

(
2 − 1

|c|
)

|b|,

which is impossible since from this the contradiction σ 2|c| + 2|b|(1 − |c|)2 < 0
follows. Thus, inequalities (3.3) are incompatible.

Consider now conditions (3.4). Suppose first that bc ≥ 0. From this and from
a > 0 we have bc = |bc| and |ac + b| = a|c| + |b|, and inequalities (3.4) take the
forms

2|bc| < a|c| + |b|, a > |b| + p

1 − |c| .
If 2|c| < 1, then the first inequality holds for a > 0 and arbitrary b. If 2|c| ≥ 1, then
the second inequality implies the first one. So, if bc ≥ 0, then from (3.4) it follows
that

bc ≥ 0, a > |b| + p

1 − |c| . (3.5)

Let now bc < 0. Then the first inequality in (3.4) holds, and (3.4) takes the form

bc < 0, p + |ac + b| − bc < a. (3.6)

Since bc < 0, |ac + b| = |a|c| − |b||. So, if a|c| ≥ |b|, then from (3.6) we have

p

1 − |c| − a < |b| ≤ a|c|. (3.7)

If a|c| < |b|, then

a|c| < |b| < a − p

1 + |c| . (3.8)
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Fig. 3.1 Stability regions for
(3.1) given by conditions
(3.11) for c = −0.5, h = 1
and different values of p:
(1) p = 0, (2) p = 0.5,
(3) p = 1, (4) p = 1.5

Combining (3.7) and (3.8), we obtain

bc < 0,
p

1 − |c| − a < |b| < a − p

1 + |c| . (3.9)

Note that since bc < 0, the system

|b| = p

1 − |c| − a, |b| = a − p

1 + |c|

has the solution

a = p

1 − c2
, b = − pc

1 − c2
. (3.10)

Combining (3.5), (3.9), and (3.10), we obtain the stability condition in the form

a >

{ p
1−c

+ b, b > − pc

1−c2 ,

p
1+c

− b, b ≤ − pc

1−c2 .
(3.11)

Thus, if condition (3.11) holds, then the trivial solution of (3.1) is asymptotically
mean-square stable.

The stability regions for (3.1), given by the stability conditions (3.11), are shown
in Fig. 3.1 for c = −0.5, h = 1, and different values of p: (1) p = 0; (2) p = 0.5;
(3) p = 1; (4) p = 1.5. In Fig. 3.2 the stability regions are shown for c = 0.5 and
the same values of the other parameters.
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Fig. 3.2 Stability regions for
(3.1) given by conditions
(3.11) for c = 0.5, h = 1 and
different values of p:
(1) p = 0, (2) p = 0.5,
(3) p = 1, (4) p = 1.5

3.1.2 The Second Way of Constructing a Lyapunov Functional

To get another stability condition, rewrite (3.1) in the form

ż(xt ) = − (a + b)x(t) − σx(t − τ)ẇ(t),

z(xt ) =x(t) + cx(t − h) − b

∫ t

t−h

x(s) ds.

By condition (2.10) it is necessary to suppose that

|c| + |b|h < 1. (3.12)

Suppose also that a+b > 0. Then the function v = y2 is a Lyapunov function for the
auxiliary differential equation ẏ(t) = −(a + b)y(t) since v̇ = −2(a + b)y2. Thus,
the trivial solution of the auxiliary differential equation is asymptotically stable. Put
V1 = z2(xt ). Then

LV1 = −2(a + b)x(t)z(xt ) + σ 2x2(t − τ)

= −2(a + b)x2(t) − 2(a + b)cx(t)x(t − h)

+ 2(a + b)b

∫ t

t−h

x(t)x(s) ds + σ 2x2(t − τ)

≤ (a + b)
(−2 + |c| + |b|h)x2(t) + σ 2x2(t − τ)

+ (a + b)

(
|c|x2(t − h) + |b|

∫ t

t−h

x2(s) ds

)
.
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Fig. 3.3 Stability regions for
(3.1) given by conditions
(3.13) for |c| = 0.5, h = 0.2,
and different values of p:
(1) p = 0.2, (2) p = 0.6,
(3) p = 1, (4) p = 1.4

Thus, using (3.12) and Theorem 2.4 with m = S = Qi = R(s, t) = 0, n = 1 and

D = (a + b)
(−2 + |c| + |b|h), R0(θ) = (a + b)|b|, dμ0(s) = δ(s − h)ds,

dK1(s) = [
(a + b)|c|δ(s − h) + σ 2δ(s − τ)

]
ds,

we obtain the stability condition in the form

a >
p

1 − |c| − |b|h − b, |b| < 1 − |c|
h

. (3.13)

The stability regions for (3.1), given by the stability condition (3.13), are shown
in Fig. 3.3 for |c| = 0.5, h = 0.2, and different values of p: (1) p = 0.2, (2) p = 0.6,
(3) p = 1, (4) p = 1.4 and in Fig. 3.4 for |c| = 0.5, p = 0.4, and different values of
h: (1) h = 0.1, (2) h = 0.15, (3) h = 0.2, (4) h = 0.25.

It is easy to see that for b ≤ 0, condition (3.11) is better than (3.13). So, condition
(3.13) is better to use for b > 0 only in the form

a >
p

1 − |c| − bh
− b, 0 < b <

1 − |c|
h

. (3.14)

The stability regions for (3.1), given by both stability conditions (3.11) and
(3.14), are shown in Fig. 3.5 for c = −0.6, p = 0.4, and different values of h:
(1) h = 0.05; (2) h = 0.1; (3) h = 0.15, (4) h = 0.2. In Fig. 3.6 the stability re-
gions are shown for c = 0.6 and the same values of the other parameters.
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Fig. 3.4 Stability regions for
(3.1) given by conditions
(3.13) for |c| = 0.5, p = 0.4,
and different values of h:
(1) h = 0.1, (2) h = 0.15,
(3) h = 0.2, (4) h = 0.25

Fig. 3.5 Stability regions for
(3.1) given by conditions
(3.11) and (3.14) together for
c = −0.6, p = 0.4, and
different values of h:
(1) h = 0.05, (2) h = 0.1,
(3) h = 0.15, (4) h = 0.2

3.1.3 Some Particular Cases

(1) Note that, as h → 0, condition (3.14) takes the form

a >
p

1 − |c| − b, b > 0. (3.15)

On the other hand, in the case h = 0, for the functional

V = (1 + c)

(
x2 +

∫ t

t−τ

x2(s) ds

)
,
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Fig. 3.6 Stability regions for
(3.1) given by conditions
(3.11) and (3.14) together for
c = 0.6, p = 0.4, and
different values of h:
(1) h = 0.05, (2) h = 0.1,
(3) h = 0.15, (4) h = 0.2

we have LV = [−2(a + b)(1 + c)+ σ 2]x2(t). So, by Corollary 2.2 for h = 0 a nec-
essary and sufficient condition for asymptotic mean-square stability of the trivial
solution of (3.1) is

a >
p

1 + c
− b. (3.16)

For b > 0 and c > 0, condition (3.15) is essentially worse than (3.16), but for b > 0
and c ≤ 0, condition (3.15) coincides with (3.16). The second condition in (3.11)
coincides with (3.16) as well.

(2) For c = 0, the necessary and sufficient condition for asymptotic mean-square
stability of the trivial solution of (3.1) has the form (Lemma 2.1)

a + b > 0, G−1 > p, (3.17)

where

p = σ 2

2
, G =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1+bq−1 sin(qh)
a+b cos(qh)

, b > |a|, q = √
b2 − a2,

1+ah
2a

, b = a > 0,

1+bq−1 sinh(qh)
a+b cosh(qh)

, a > |b|, q = √
a2 − b2.

(3.18)

If, in addition, a = 0, then the necessary and sufficient stability condition (3.17)–
(3.18) takes the form

h <
1

b
arcsin

b2 − p2

b2 + p2
.

In Fig. 3.7 the stability regions for (3.1) given by the sufficient conditions (3.11),
(3.14) and the necessary and sufficient conditions (3.17)–(3.18) are shown for c = 0,
h = 1, and different values of p: (1) p = 0; (2) p = 0.5; (3) p = 1; (2) p = 1.5;
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Fig. 3.7 Stability regions for
(3.1) given by sufficient
conditions (3.11), (3.14) and
necessary and sufficient
conditions (3.17), (3.18) are
shown for c = 0, h = 1 and
different values of p:
(1) p = 0, (2) p = 0.5,
(3) p = 1, (4) p = 1.5,
(5) p = 2

Fig. 3.8 Stability regions for
(3.1) given by sufficient
conditions (3.11), (3.14) and
necessary and sufficient
conditions (3.17), (3.18) are
shown for c = 0, h = 1, and
different values of p:
(1) p = 0, (2) p = 0.5,
(3) p = 1, (4) p = 1.5,
(5) p = 2

(5) p = 2. In Fig. 3.8 the same stability regions are shown in another scale. We
can see that the sufficient conditions (3.11), (3.14) give the stability region that is
sufficiently close to the exact one.

(3) For p = 0, from (3.11), (3.14) it follows that

a >

{
b, b ≥ 1−|c|

h
,

−b, b <
1−|c|

h
.

(3.19)

In Fig. 3.9 the exact stability regions for (3.1) are shown for p = 0, h = 1, and
(1) c = 0.5; (2) c = −0.5 and the stability region given by the sufficient condition
(3.19) for (3) c = |0.5|. In Fig. 3.10 the similar regions are shown for (1) c = 0.85;
(2) c = −0.85; (3) c = |0.85|.
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Fig. 3.9 Exact stability regions are shown for p = 0, h = 1, and (1) c = 0.5, (2) c = −0.5, and
stability region, given by sufficient condition (3.19) for (3) c = |0.5|

Fig. 3.10 Exact stability regions are shown for p = 0, h = 1, and (1) c = 0.85, (2) c = −0.85, and
stability region, given by sufficient condition (3.19) for (3) c = |0.85|
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3.2 Linear Differential Equation with Two Delays in
Deterministic Part

Consider the scalar differential equation

ẋ(t) + ax(t − h1) + bx(t − h2) + σx(t − τ)ẇ(t) = 0, 0 ≤ h1 < h2,

x(s) = φ(s), s ∈ [−max(h2, τ ),0
]
.

(3.20)

Using different representations of this equation, we will obtain different conditions
for asymptotic mean-square stability of the zero solution of (3.20).

3.2.1 The First Way of Constructing a Lyapunov Functional

Rewrite (3.20) in the form

ż(xt ) = −ax(t) − bx(t − h2) − σx(t − τ)ẇ(t),

z(xt ) = x(t) − a

∫ t

t−h1

x(s) ds.

Putting V1 = z2(xt ), we obtain

LV1 = 2z(xt )
(−ax(t) − bx(t − h2)

)+ σ 2x2(t − τ)

= −2ax2(t) − 2bx(t)x(t − h2)

+ 2a2
∫ t

t−h1

x(t)x(s) ds + 2ab

∫ t

t−h1

x(t − h2)x(s) ds + σ 2x2(t − τ)

≤ −2ax2(t) + |b|(x2(t) + x2(t − h2)
)+ a2

(
x2(t)h1 +

∫ t

t−h1

x2(s) ds

)

+ |ab|
(

x2(t − h2)h1 +
∫ t

t−h1

x2(s) ds

)
+ σ 2x2(t − τ)

= (−2a + a2h1 + |b|)x2(t) + (
a2 + |ab|)

∫ t

t−h1

x2(s) ds

+ (|b| + |ab|h1
)
x2(t − h2) + σ 2x2(t − τ).

From this and from (2.10) and Theorem 2.5 with m = S = Qi = R(s, t) = 0,
n = 1 and

D = −2a + a2h1 + |b|, R0(θ) = a2 + |ab|, dμ0(s) = δ(s − h1) ds,

dK1(s) = [(|b| + |ab|h1
)
δ(s − h2) + σ 2δ(s − τ)

]
ds
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it follows that if

|b| < a(1 − ah1) − p

1 + ah1
, 0 < a <

1

h1
, (3.21)

then the trivial solution of (3.20) is asymptotically mean-square stable.

Remark 3.1 Rewriting (3.20) in the form

ż(xt ) = −bx(t) − ax(t − h1) − σx(t − τ)ẇ(t),

z(t) = x(t) − b

∫ t

t−h2

x(s) ds

and using symmetry, we obtain another sufficient condition for asymptotic mean-
square stability of the trivial solution of (3.20):

|a| < b(1 − bh2) − p

1 + bh2
, 0 < b <

1

h2
. (3.22)

3.2.2 The Second Way of Constructing a Lyapunov Functional

Rewrite (3.20) in the form

ż(xt ) = −(a + b)x(t) + bx(t − h1) − bx(t − h2) − σx(t − τ)ẇ(t),

z(xt ) = x(t) − (a + b)

∫ t

t−h1

x(s) ds.

Putting V1 = z2(xt ), we obtain

LV1 = 2z(xt )
[−(a + b)x(t) + bx(t − h1) − bx(t − h2)

]+ σ 2x2(t − τ)

= −2(a + b)x2(t) + 2bx(t)x(t − h1) − 2bx(t)x(t − h2)

+ 2(a + b)2
∫ t

t−h1

x(t)x(s) ds − 2(a + b)b

∫ t

t−h1

x(t − h1)x(s) ds

+ 2(a + b)b

∫ t

t−h1

x(t − h2)x(s) ds + σ 2x2(t − τ)

≤ −2(a + b)x2(t) + |b|(x2(t) + x2(t − h1)
)+ |b|(x2(t) + x2(t − h2)

)

+ (a + b)2
(

x2(t)h1 +
∫ t

t−h1

x2(s) ds

)
+ σ 2x2(t − τ)

+ ∣∣(a + b)b
∣∣
(

x2(t − h1)h1 + x2(t − h2)h1 + 2
∫ t

t−h1

x2(s) ds

)
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= [−2(a + b) + (a + b)2h1 + 2|b|]x2(t) + σ 2x2(t − τ)

+ |b|(1 + |a + b|h1
)(

x2(t − h1) + x2(t − h2)
)

+ (
(a + b)2 + 2

∣∣b(a + b)
∣∣)
∫ t

t−h1

x2(s) ds.

Thus, we obtain the representation (2.35) with m = S = Qi = R(s, t) = 0, n = 1
and

D = −2(a + b) + (a + b)2h1 + 2|b|,
R0(θ) = (

(a + b)2 + 2
∣∣b(a + b)

∣∣), dμ0(s) = δ(s − h1) ds,

dK1(s) = [|b|(1 + |a + b|h1
)(

δ(s − h1) + δ(s − h2)
)+ σ 2δ(s − τ)

]
ds.

From this and from Theorem 2.5 it follows that if

2|b| < (a + b)(1 − (a + b)h1) − p

1 + (a + b)h1
, 0 < a + b <

1

h1
, (3.23)

then the trivial solution of (3.20) is asymptotically mean-square stable.

Remark 3.2 Similarly to Remark 3.1, using symmetry, we obtain another sufficient
condition for asymptotic mean-square stability of the trivial solution of (3.20):

2|a| < (a + b)(1 − (a + b)h2) − p

1 + (a + b)h2
, 0 < a + b <

1

h2
. (3.24)

3.2.3 The Third Way of Constructing a Lyapunov Functional

Rewrite (3.20) in the form

ż(xt ) = −(a + b)x(t) − σx(t − τ)ẇ(t),

z(xt ) = x(t) − a

∫ t

t−h1

x(s) ds − b

∫ t

t−h2

x(s) ds.
(3.25)

Putting V1 = z2(xt ), we obtain

LV1 = 2z(xt )
(−(a + b)

)
x(t) + σ 2x2(t − τ)

= −2(a + b)x2(t) + 2a(a + b)

∫ t

t−h1

x(t)x(s) ds

+ 2b(a + b)

∫ t

t−h2

x(t)x(s) ds + σ 2x2(t − τ). (3.26)
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Therefore,

LV1 ≤ −2(a + b)x2(t) + ∣∣a(a + b)
∣∣
(

x2(t)h1 +
∫ t

t−h1

x2(s) ds

)

+ ∣∣b(a + b)
∣∣
(

x2(t)h2 +
∫ t

t−h2

x2(s) ds

)
+ σ 2x2(t − τ)

= [−2(a + b) + |a + b|(|a|h1 + |b|h2
)]

x2(t) + σ 2x2(t − τ)

+ |a + b|
(

|a|
∫ t

t−h1

x2(s) ds + |b|
∫ t

t−h2

x2(s) ds

)
.

Thus, we obtain the representation (2.35) with m = S = Qi = 0, n = 1 and

D = −2(a + b) + |a + b|(|a|h1 + |b|h2
)
, dK1(s) = σ 2δ(s − τ) ds,

R0(θ) = ∣
∣a(a + b)

∣
∣, dμ0(s) = δ(s − h1) ds,

R(s, t) = ∣∣b(a + b)
∣∣, dμ(s) = δ(s − h2) ds.

From this and from Theorem 2.5 it follows that if

a + b >
p

1 − |a|h1 − |b|h2
, |a|h1 + |b|h2 < 1, (3.27)

then the trivial solution of (3.20) is asymptotically mean-square stable.

Remark 3.3 Note that condition (3.27) follows from condition (3.22), condi-
tion (3.22) follows from condition (3.24), and condition (3.21) follows from con-
dition (3.23).

Let us show, for instance, that condition (3.27) follows from (3.22). Indeed, by
(3.22) we have (p+|a|)b−1 + (|a|+b)h2 < 1. So, using h1 < h2, we obtain |a|h1 +
bh2 < (|a| + b)h2 < 1. To get the first condition (3.27), rewrite (3.22) and (3.27) as
follows: p < b(1 − bh2) − |a|(1 + bh2), p < (a + b)(1 − |a|h1 − |b|h2). So, it is
enough to show that b(1 − bh2) − |a|(1 + bh2) ≤ (a + b)(1 − |a|h1 − |b|h2) or
|a|(a + b)h1 + abh2 ≤ a + |a| + |a|bh2. For a = 0, this inequality holds. If a > 0,
then it is equivalent to (a + b)h1 ≤ 2. Using h1 < h2 and ah1 + bh2 < 1, we have
(a + b)h1 < ah1 + bh2 < 1 < 2. Let now a < 0. Then it is necessary to show that
(a + b)h1 ≤ 2bh2. But this follows from (a + b)h1 < bh1 < bh2 < 2bh2.

3.2.4 The Fourth Way of Constructing a Lyapunov Functional

Let us show that using the same representations of the initial equation but different
ways of LV1 estimation, we can get different stability conditions.
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Rewrite (3.20) in the form (3.25) and put V1 = z2(xt ) again. Using (3.26) and the
condition a + b > 0, let us estimate LV1 in the following way:

LV1 = −2(a + b)x2(t) + 2(a + b)2
∫ t

t−h1

x(t)x(s) ds

+ 2(a + b)b

∫ t−h1

t−h2

x(t)x(s) ds + σ 2x2(t − τ)

≤ −2(a + b)x2(t) + (a + b)2
(

h1x
2(t) +

∫ t

t−h1

x2(s) ds

)

+ (a + b)|b|
(

(h2 − h1)x
2(t) +

∫ t−h1

t−h2

x2(s) ds

)
+ σ 2x2(t − τ)

= [−2(a + b) + (a + b)2h1 + (a + b)|b|(h2 − h1)
]
x2(t) + σ 2x2(t − τ)

+ (a + b)2
∫ t

t−h1

x2(s) ds + (a + b)|b|
∫ t−h1

t−h2

x2(s) ds.

From representation (2.35) with m = S = Qi = 0, n = 1 and

D = −2(a + b) + (a + b)2h1 + (a + b)|b|(h2 − h1), dK1(s) = σ 2δ(s − τ) ds,

R0(θ) = (a + b)2, dμ0(s) = δ(s − h1) ds, dμ(s) = δ(s − h2) ds,

R(τ + h2, t) =
{

(a + b)|b|, τ ∈ [t − h2, t − h1],
0, τ ∈ (t − h1, t].

and from Theorem 2.5 it follows that if

a + b >
p

1 − (a + b)h1 − |b|(h2 − h1)
, (a + b)h1 + |b|(h2 − h1) < 1, (3.28)

then the trivial solution of (3.20) is asymptotically mean-square stable.
It is easy to see that condition (3.28) coincides with (3.27) for a ≥ 0, b ≥ 0, but

in the case ab < 0 condition (3.28) is weaker than (3.27). Using Remark 3.3, we
can conclude that the stability conditions (3.21) and (3.28) together are better than
all other.

Put p = 0 and h2 = 1. In Fig. 3.11 the stability regions for (3.20), given by
conditions (3.21)–(3.24) and (3.27) (with numbers 1–5, respectively), are shown for
h1 = 0.1. In Fig. 3.12 the similar picture is shown for h1 = 0.2 with addition of
the bound of the stability region, given by the necessary and sufficient condition
of asymptotic stability obtained by the characteristic equation (Example 1.3). In
Fig. 3.13 we can see how the picture in Fig. 3.12 is changed for h1 = 0.25.

Consider now the case p > 0, h2 = 1. In Fig. 3.14 the stability regions, given
by conditions (3.21)–(3.24), (3.27), and (3.28) (with numbers 1–6, respectively),
are shown for p = 0.1, h1 = 0.1. In Fig. 3.15 these stability regions are shown for
p = 0.1, h1 = 0.5, and in Fig. 3.16 for p = 0.25, h1 = 0.5.
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Fig. 3.11 Stability regions for (3.20), given by conditions (3.21)–(3.24), (3.27) (with numbers
1–5, respectively), are shown for p = 0, h1 = 0.1, h2 = 1

Fig. 3.12 Stability regions for (3.20), given by conditions (3.21)–(3.24), (3.27) that are similar to
Fig. 3.11, are shown for p = 0, h1 = 0.2, h2 = 1 with addition of the bound of stability region,
given by the necessary and sufficient condition
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Fig. 3.13 Here it is shown how Fig. 3.12 is changed for h1 = 0.25

Fig. 3.14 Stability regions for (3.20), given by conditions (3.21)–(3.24), (3.27), (3.28) (with num-
bers 1–6, respectively), are shown for p = 0.1, h1 = 0.1, h2 = 1
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Fig. 3.15 Stability regions for (3.20), given by conditions (3.21)–(3.24), (3.27), (3.28) (with num-
bers 1–6, respectively), are shown for p = 0.1, h1 = 0.5, h2 = 1

Fig. 3.16 Stability regions for (3.20), given by conditions (3.21)–(3.24), (3.27), (3.28) (with num-
bers 1–6, respectively), are shown for p = 0.25, h1 = 0.5, h2 = 1
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3.2.5 One Generalization for Equation with n Delays

Consider the stochastic differential equation with n delays in the deterministic part

ẋ(t) + a0x(t) +
n∑

i=1

aix(t − hi) + σx(t − τ)ẇ(t) = 0,

x(s) = φ(s), s ∈ [−max(hn, τ ),0
]
.

(3.29)

Here it is supposed that

0 < h1 < h2 < · · · < hn. (3.30)

For V1 = x2(t), we have

LV1 = −2x(t)

(

a0x(t) +
n∑

i=1

aix(t − hi)

)

+ σ 2x2(t − τ)

≤
(

−2a0 +
n∑

i=1

|ai |
)

x2(t) +
n∑

i=1

|ai |x2(t − hi) + σ 2x2(t − τ).

By the representation (2.35) and Theorem 2.5 we obtain the sufficient condition
for asymptotic mean-square stability of the trivial solution of (3.29) in the form

a0 >

n∑

i=1

|ai | + p, p = σ 2

2
. (3.31)

Rewrite (3.29) as follows:

ż(xt ) = −S0x(t) − σx(t − τ)ẇ(t),

z(xt ) = x(t) −
n∑

i=1

ai

∫ t

t−hi

x(s) ds,

Sj =
n∑

i=j

ai, j = 0,1, . . . , n.

(3.32)

Suppose that S0 > 0 and put V1 = z2(xt ). Then

LV1 = −2S0x
2(t) + 2S0x(t)

n∑

i=1

ai

∫ t

t−hi

x(s) ds + σ 2x2(t − τ)

≤ −2S0x
2(t) + S0

n∑

i=1

|ai |
(

x2(t)hi +
∫ t

t−hi

x2(s) ds

)
+ σ 2x2(t − τ)
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=
(

−2 +
n∑

i=1

|ai |hi

)

S0x
2(t) + S0

n∑

i=1

|ai |
∫ t

t−hi

x2(s) ds + σ 2x2(t − τ).

Using Theorem 2.5 with m = S = Qi = Rj = 0 and

D =
(

−2 +
n∑

i=1

|ai |hi

)

S0, dK1(s) = σ 2δ(s − τ) ds,

dμ(s) =
n∑

i=1

δ(s − hi) ds, R(s, t) = S0|ai |,

we obtain the sufficient condition for asymptotic mean-square stability of the trivial
solution of (3.29) in the form

S0 > p

(

1 −
n∑

i=1

|ai |hi

)−1

,

n∑

i=1

|ai |hi < 1, p = σ 2

2
. (3.33)

This condition is a generalization of condition (3.27).
Let us obtain a generalization of condition (3.28). Note that by (3.30) and h0 = 0

the process z(t) from (3.32) can be represented as follows:

z(xt ) = x(t)−
n∑

i=1

ai

i−1∑

j=0

∫ t−hj

t−hj+1

x(s) ds = x(t)−
n−1∑

j=0

Sj+1

∫ t−hj

t−hj+1

x(s) ds. (3.34)

Using the representation (3.34), the functional V1 = z2(xt ), and S0 > 0, we get

LV1 = −2S0x
2(t) + 2S0x(t)

n−1∑

j=0

Sj+1

∫ t−hj

t−hj+1

x(s) ds + σ 2x2(t − τ)

≤ −2S0x
2(t) + S0

n−1∑

j=0

|Sj+1|
(

(hj+1 − hj )x
2(t) +

∫ t−hj

t−hj+1

x2(s) ds

)

+ σ 2x2(t − τ)

=
(

−2 +
n−1∑

j=0

|Sj+1|(hj+1 − hj )

)

S0x
2(t)

+ S0

n−1∑

j=0

|Sj+1|
∫ t−hj

t−hj+1

x2(s) ds + σ 2x2(t − τ).
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By Theorem 2.5 with m = S = Qi = 0 and

D =
(

−2 +
n−1∑

j=0

|Sj+1|(hj+1 − hj )

)

S0, dK1(s) = σ 2δ(s − τ) ds,

dμ(s) =
n−1∑

j=0

δ(s − hj+1) ds,

R(τ + hj+1, t) =
{

S0|Sj+1|, τ ∈ [t − hj+1, t − hj ],
0, τ ∈ (t − hj , t].

from this we obtain a generalization of condition (3.28) in the form

S0 > p

(

1 −
n−1∑

j=0

|Sj+1|(hj+1 − hj )

)−1

,

n−1∑

j=0

|Sj+1|(hj+1 − hj ) < 1. (3.35)

To prove that condition (3.35) is weaker than (3.33), it is enough to show that

n−1∑

j=0

|Sj+1|(hj+1 − hj ) ≤
n∑

i=1

|ai |hi.

Using h0 = 0, rewrite this inequality in the form

n−1∑

j=0

|Sj+1|hj+1 =
n∑

j=1

|Sj |hj ≤
n−1∑

j=1

|Sj+1|hj +
n∑

i=1

|ai |hi.

Now it is enough to note that |Sj | ≤ |Sj+1| + |aj |, j = 1, . . . , n − 1, and Sn = an.

3.3 Linear Differential Equation of nth Order

3.3.1 Case n > 1

Consider the scalar stochastic differential equation of the nth order

x(n)(t) =
n∑

j=1

∫ ∞

0
x(j−1)(t − s) dKj (s) + σx(t − τ)ẇ(t), t ≥ 0, (3.36)

where x(j)(t) = dj x(t)

dtj
, j = 1, . . . , n. The initial conditions for (3.36) have the form

x(j)(θ) = φ(j)(θ), θ ≤ 0, (3.37)
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where φ(θ) is a given n − 1 times continuously differentiable function. The kernels
Kj(s) are functions of bounded variation on [0,∞) such that

αij =
∫ ∞

0
si
∣∣dKj (s)

∣∣< ∞, 0 ≤ i ≤ n, 1 ≤ j ≤ n. (3.38)

Put xi(t) = x(i−1)(t) and transform (3.36) to the system of stochastic differential
equations

ẋi (t) = xi+1(t), i = 1, . . . , n − 1,

ẋn(t) =
n∑

j=1

∫ ∞

0
xj (t − s) dKj (s) + σx1(t − τ)ẇ(t).

(3.39)

Put also

βij =
∫ ∞

0
si dKj (s) (3.40)

and note that for m = 1, . . . , n, we have

∫ ∞

0
xn(t − s) dKm(s)

= xn(t)β0m − d

dt

[∫ ∞

0
dKm(s)

∫ t

t−s

xn(θ) dθ

]
. (3.41)

Similarly, using (3.40), it is easy to check that for i = 1, . . . , n − 1,

∫ ∞

0
xn−i (t − s) dKm(s)

=
i+1∑

j=1

(−1)j−1xn−i+j−1(t)
βj−1,m

(j − 1)!

+ (−1)i+1 d

dt

[∫ ∞

0
dKm(s)

∫ t

t−s

xn(θ)
(θ − t + s)i

i! dθ

]
. (3.42)

Putting

z(xt ) =
n−1∑

l=0

(−1)l+1
∫ ∞

0
dKn−l(s)

∫ t

t−s

xn(θ)
(θ − t + s)l

l! dθ,

al =
n−1∑

i=l

(−1)i−l βi−l,n−i

(i − l)! , l = 0,1, . . . , n − 1,

(3.43)

by (3.42) and (3.43) we obtain
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n∑

j=1

∫ ∞

0
xj (t − s) dKj (s) =

n−1∑

i=0

∫ ∞

0
xn−i (t − s) dKn−i (s)

=
n−1∑

i=0

i+1∑

j=1

(−1)j−1xn−i+j−1(t)
βj−1,n−i

(j − 1)! + ż(xt )

=
n−1∑

i=0

i∑

l=0

(−1)i−lxn−l (t)
βi−l,n−i

(i − l)! + ż(xt )

=
n−1∑

l=0

alxn−l(t) + ż(xt ). (3.44)

Following the procedure of constructing Lyapunov functionals and using (3.44),
rewrite (3.39) as follows:

ẋi (t) = xi+1(t), i = 1, . . . , n − 1,

d

dt

[
xn(t) − z(xt )

]=
n−1∑

l=0

alxn−l(t) + σx1(t − τ)ẇ(t).
(3.45)

For (3.45), consider the auxiliary system of the form

ẏi (t) = yi+1(t), i = 1, . . . , n − 1, ẏn(t) =
n−1∑

l=0

alyn−l (t). (3.46)

Let y = (y1, . . . , yn)
′, and A be the n × n matrix

A =

⎛

⎜
⎜⎜⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . 1
an−1 an−2 an−3 . . . a0

⎞

⎟
⎟⎟⎟
⎠

. (3.47)

By (3.46) and (3.47) we have ẏ = Ay.
Assume that the trivial solution of (3.46) is asymptotically stable. From Theo-

rem 1.3 it follows that for the matrix (3.47) and an arbitrary positive definite matrix
Q, the matrix equation (1.27) has a unique positive definite solution P .

Consider the Lyapunov function for (3.46) of the form v(y) = y′Py. Because of
(1.25), we have v̇(y) = −y′Qy. According to the procedure of constructing Lya-
punov functionals, we consider the functional

V1(t, xt ) = (
x1(t), . . . , xn−1(t), xn(t)−z(xt )

)′
P
(
x1(t), . . . , xn−1(t), xn(t)−z(xt )

)
.

(3.48)
Let Q be a diagonal matrix with positive entries ql , l = 1, . . . , n. From (3.49) it
follows that LV1(t, xt ) with respect to (3.45) equals
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LV1(t, xt ) = −
n∑

l=1

qlx
2
l (t) − 2

n∑

l=1

z(xt )(PA)nlxl(t) + pnnσ
2x2

1(t − τ)

≤ −
n∑

l=1

qlx
2
l (t) + 2

n∑

l=1

βl

∣
∣z(xt )xl(t)

∣
∣+ pnnσ

2x2
1(t − τ), (3.49)

where (PA)nl is (nl)th element of the matrix PA, βl = |(PA)nl |, and pnn = (P )nn.
Put also

α =
n−1∑

j=0

αj+1,n−j

(j + 1)! , W(t, xt ) =
n−1∑

j=0

∫ ∞

0

∣∣dKn−j (s)
∣∣
∫ t

t−s

x2
n(θ)

(θ − t + s)j

j ! dθ,

(3.50)
and suppose that α > 0. Then using (3.43) and some positive numbers γl , l =
1, . . . , n, we obtain

2
∣∣z(xt )xl(t)

∣∣ ≤
n−1∑

j=0

∫ ∞

0

∣∣dKn−j (s)
∣∣
∫ t

t−s

(
γlx

2
l (t) + γ −1

l x2
n(θ)

) (θ − t + s)j

j ! dθ

= αγlx
2
l (t) + γ −1

l W(t, xt ). (3.51)

By (3.51) from (3.49) it follows that

LV1(t, xt ) ≤
n∑

l=1

(αβlγl − ql)x
2
l (t) + pnnσ

2x2
1(t − τ) +

n∑

l=1

βlγ
−1
l W(xt ). (3.52)

From this and from (3.50) the representation of the type of (2.35) follows, where
S(t) = Qi(t) = R(s, t) = 0, D is a diagonal matrix with the elements dll = αβlγl −
ql , dK1(s) = pnnσ

2δ(s − τ) ds, dKl(s) = 0, l = 2, . . . , n, m = n − 1, dμj (s) =
|dKn−j (s)|, and Rj (s) is the matrix with all zero elements except for (Rj )nn =
1
j !
∑n

l=1 βlγ
−1
l .

So, by (2.37) the matrix G is the diagonal matrix with

G11 = αβ1γ1 + pnnσ
2 − q1, Gll = αβlγl − ql, l = 2, . . . , n − 1,

Gnn = α

[

βn

(
γn + 1

γn

)
+

n−1∑

l=1

βl

γl

]

− qn.

It is easy to see that Gnn reaches its minimum with respect to γn at γn = 1. Besides,
from the matrix equation (1.27) with the matrix A given by (3.47) it follows that
β1 = |an−1|pnn, 2βn = qn. So, we can conclude that if there exist positive numbers
γ1, γ2, . . . , γn−1 such that
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γ1 <
1

α

(
q1

β1
− σ 2

|an−1|
)

, γl <
ql

αβl

, l = 2, . . . , n − 1,

n−1∑

l=1

βl

γl

<

(
1

α
− 1

)
qn, α < 1,

(3.53)

then the matrix G is a negative definite one, and therefore the zero solution of (3.36)
is asymptotically mean-square stable.

Let us rewrite inequalities (3.53) in the form

0 < α

(
q1

β1
− σ 2

|an−1|
)−1

<
1

γ1
,

αβl

ql

<
1

γl

, l = 2, . . . , n − 1,

β1

γ1
+

n−1∑

l=2

βl

γl

<

(
1

α
− 1

)
qn, α < 1.

(3.54)

From the system of inequalities (3.54) it follows that

αβ1

(
q1

β1
− σ 2

|an−1|
)−1

+ α

n−1∑

l=2

β2
l

ql

<
β1

γ1
+

n−1∑

l=2

βl

γl

<

(
1

α
− 1

)
qn. (3.55)

So, if the condition

αβ1

(
q1

β1
− σ 2

|an−1|
)−1

+ α

n−1∑

l=2

β2
l

ql

<

(
1

α
− 1

)
qn

or

σ 2 < |an−1|
(

q1

β1
− β1

Θqn −∑n−1
l=2 β2

l q−1
l

)
,

n−1∑

l=2

β2
l

ql

< Θqn, Θ = 1

α2
− 1

α
,

(3.56)
holds, then there exist positive numbers γ1, γ2, . . . , γn−1 such that (3.55) also holds
and the zero solution of (3.36) is asymptotically mean-square stable.

So, we have proven

Theorem 3.1 Let there exist a diagonal matrix Q with positive entries q1, . . . , qn

such that the matrix equation (1.27) has a positive definite solution P that satisfies
inequalities (3.56). Then the zero solution of (3.36) is asymptotically mean-square
stable.

Remark 3.4 Without the loss of generality, we may assume that qn = 1. Otherwise,
the matrix equation (1.27) can be divided by qn. Thus, all elements of the matrices
Q and P will be divided by qn.

Remark 3.5 Note that condition (3.56) is also correct without the assumption α > 0.
Indeed, if α = 0 (this means also that z(xt ) ≡ 0), then from (3.56) we have Θ =
∞ and σ 2 < |an−1|q1/β1, which also follows immediately from (3.49) and β1 =
|an−1|pnn.
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Remark 3.6 The stability condition obtained in Theorem 3.1 uses the representation
(3.42) where the integrals in the right-hand side depend only on xn for all i. Follow-
ing the same procedure, one can try to obtain other stability conditions using the
representations where the right-hand side depends on xm for m ≤ n. For example,
for n = 2, we have
∫ ∞

0
x1(t − s) dK1(s) = β01x1(t) − β11x2(t) + d

dt

∫ ∞

0
dK1(s)

×
∫ t

t−s

(τ − t + s)x2(τ ) dτ,

∫ ∞

0
xi(t − s) dKi(s) = β0ixi(t) − d

dt

∫ ∞

0
dKi(s)

∫ t

t−s

xi(τ ) dτ, i = 1,2,

∫ ∞

0
x2(t − s) dK2(s) = d

dt

∫ ∞

0
x1(t − s) dK2(s).

(3.57)

3.3.2 Some Particular Cases

It is easy to see that the stability condition (3.56) is the best one for those q1, . . . , qn

for which the right-hand part of inequality (3.56) reaches its maximum. Let us con-
sider some particular cases of condition (3.56) in which it can be formulated imme-
diately in the terms of the parameters of the considered equation (3.36).

Let be n = 1. In this case, (3.36) has the form

ẋ(t) =
∫ ∞

0
x(t − s) dK(s) + σx(t − τ)ẇ(t), t ≥ 0. (3.58)

Condition (3.56) cannot be used immediately since it was obtained for n > 1. So,
note that for the functional V1(t, xt ) = x2(t), similarly to (3.52) (for γ1 = q1 = 1),
we have

LV1(t, xt ) ≤ (−1 + αβ1)x
2(t) + p11σ

2x2(t − τ) + β1

∫ ∞

0

∣∣dK(s)
∣∣
∫ t

t−s

x2(θ) dθ,

where

α = α11 =
∫ ∞

0
s
∣∣dK(s)

∣∣, a0 = β01 =
∫ ∞

0
dK(s) < 0,

p11 = − 1

2a0
= 1

2|β01| > 0, β1 = |p11a0| = 1

2
.

The stability condition for (3.58) takes the form σ 2 < 2|a0|(1 − α).
If, in particular, dK(s) = (−aδ(s)−bδ(s−h)) ds, then α = |b|h, a0 = −a−b <

0, and the stability condition takes the form σ 2 < 2(a + b)(1 − |b|h). Note that the
last condition also follows immediately from (3.13) for c = 0.
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Let be n = 2. In this case, (3.36) has the form

ẍ(t) =
∫ ∞

0
x(t − s) dK1(s) +

∫ ∞

0
ẋ(t − s) dK2(s) + σx(t − τ)ẇ(t), t ≥ 0.

(3.59)
Following Remark 3.4, we will consider the matrix equation (1.25) with

A =
(

0 1
a1 a0

)
, P =

(
p11 p12
p12 p22

)
, Q =

(
q 0
0 1

)
, q > 0.

By (3.43), a0 = β02 − β11, a1 = β01, where βij are defined by (3.40). By Corol-
lary 1.1 the matrix equation (1.27) has a positive definite solution if and only if
a0 < 0, a1 < 0. From (1.29) it follows that the last element of the matrix P is
p22 = (q + |a1|)(2a0a1)

−1. Since β1 = |a1|p22 = (q + |a1|)(2|a0|)−1, the stabil-
ity condition (3.56) takes the form

σ 2 < 2|a1|
(

q|a0|
q + |a1| − (q + |a1|)α2

4|a0|(1 − α)

)
, (3.60)

where α = α12 + 1
2α21 < 1, αij are defined by (3.38).

The right-hand part of (3.60) reaches its maximum at q = 2|a0|α−1√(1 − α)|a1|
− |a1|. So, as a result, we obtain a sufficient condition for asymptotic mean-square
stability of the zero solution of (3.58) of the form

σ 2 < 2|a1|
(

|a0| − α

√ |a1|
1 − α

)
, α < 1. (3.61)

Using the representations (3.57), we can get for (3.59) other stability conditions.
Put, for instance,

z1(t) = x1(t) = x(t), x2(t) = ẋ(t),

z2(t) = x2(t) +
∫ ∞

0
dK1(s)

∫ t

t−s

x1(θ) dθ +
∫ ∞

0
dK2(s)

∫ t

t−s

x2(θ) dθ.
(3.62)

By (3.62), (3.57), and (3.40), equation (3.59) can be represented in the form of the
system

ż1(t) = x2(t),

ż2(t) = β01x1(t) + β02x2(t) + σx1(t − τ)ẇ(t),
(3.63)

By Corollary 1.1 the trivial solution of the auxiliary differential equation

ẏ = Ay, A =
(

0 1
β01 β02

)
, y =

(
y1
y2

)
,

is asymptotically stable if and only if

β01 < 0, β02 < 0. (3.64)
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Besides, by (1.29) the matrix equation (1.27) by conditions (3.64) has the positive
definite solution P with the elements

p11 = (β2
01 + |β02|)q + β2

02

2β01β02
, p22 = |β01| + q

2β01β02
, p12 = − q

2β01
. (3.65)

Suppose that (3.64) holds and consider the Lyapunov function V1 = z′Pz where
z = (z1, z2)

′. Calculating LV1 for (3.63), by (3.65) and (3.62) we obtain

LV1 = 2
(
p11z1(t) + p12z2(t)

)
x2(t)

+ 2
(
p12z1(t) + p22z2(t)

)(
β01x1(t) + β02x2(t)

)+ p22σ
2x2

1(t − τ)

= −qx2
1(t) − x2

2(t) + p22σ
2x2

1(t − τ)

+ 2p22β01

∫ ∞

0
dK1(s)

∫ t

t−s

x1(t)x1(θ) dθ

−
∫ ∞

0
dK1(s)

∫ t

t−s

x2(t)x1(θ) dθ

+ 2p22β01

∫ ∞

0
dK2(s)

∫ t

t−s

x1(t)x2(θ) dθ

−
∫ ∞

0
dK2(s)

∫ t

t−s

x2(t)x2(θ) dθ.

Using some γ1 > 0, γ2 > 0 and (3.38), we have

LV1 ≤ −qx2
1(t) − x2

2(t) + p22σ
2x2

1(t − τ)

+ p22|β01|
∫ ∞

0

∣∣dK1(s)
∣∣
∫ t

t−s

(
x2

1(t) + x2
1(θ)

)
dθ

+ 1

2

∫ ∞

0

∣∣dK1(s)
∣∣
∫ t

t−s

(
γ1x

2
2(t) + 1

γ1
x2

1(θ)

)
dθ

+ p22|β01|
∫ ∞

0

∣∣dK2(s)
∣∣
∫ t

t−s

(
γ2x

2
1(t) + 1

γ2
x2

2(θ)

)
dθ

+ 1

2

∫ ∞

0

∣∣dK2(s)
∣∣
∫ t

t−s

(
x2

2(t) + x2
2(θ)

)
dθ.

As a result, we obtain

LV1 ≤ −(q − p22|β01|(α11 + α12γ2)
)
x2

1(t)

−
(

1 − 1

2
(α11γ1 + α12)

)
x2

2(t) + p22σ
2x2

1(t − τ)
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+
(

p22|β01| + 1

2γ1

)∫ ∞

0

∣∣dK1(s)
∣∣
∫ t

t−s

x2
1(θ) dθ

+
(

p22|β01|1
γ2

+ 1

2

)∫ ∞

0

∣∣dK2(s)
∣∣
∫ t

t−s

x2
2(θ) dθ.

From Theorem 2.5 by (2.35) and (3.38) it follows that if

p22
(|β01|(2α11 + α12γ2) + σ 2)+ α11

2γ1
< q,

α12 + α11γ1

2
+ p22α12|β01|

γ2
< 1,

(3.66)

then the trivial solution of (3.59) is asymptotically mean-square stable.
To get stability conditions immediately in the terms of (3.59), transform (3.66)

by the following way. Substituting p22 from (3.65) into (3.66) and solving both
inequalities (3.66) with respect to q , we obtain that inequalities (3.66) are equivalent
to

0 <

(
μ

|β02| + α11

γ1

)(
2 − μ

|β01β02|
)−1

< q

<
γ2|β02|

α12

(
2(1 − α12) − α11γ1 − α12|β01|

γ2|β02|
)

, (3.67)

where

μ = |β01|(2α11 + α12γ2) + σ 2. (3.68)

So, if the inequality

0 <

(
μ

|β02| + α11

γ1

)(
2 − μ

|β01β02|
)−1

<
γ2|β02|

α12

(
2(1 − α12) − α11γ1 − α12|β01|

γ2|β02|
)

holds, then there exists q > 0 such that (3.67) holds too.
From the last condition we have

μ

|β02| + α11

γ1
<

γ2|β02|
α12

(
2(1 − α12) − α11γ1 − α12|β01|

γ2|β02|
)(

2 − μ

|β01β02|
)

= γ2|β02|
α12

(
2(1 − α12) − α11γ1

)(
2 − μ

|β01β02|
)

− 2|β01| + μ

|β02|
or

α11

γ1
<

γ2|β02|
α12

(
2(1 − α12) − α11γ1

)(
2 − μ

|β01β02|
)

− 2|β01|.
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Using (3.68), rewrite the obtained inequality in the form

2|β01| + α11γ
−1
1

2(1 − α12) − α11γ1
< γ2

[
2

( |β02|
α12

− α11

α12
− σ 2

2α12|β01|
)

− γ2

]
. (3.69)

Now the numbers γ1 and γ2 are separated, and we have minimize the left part of
this inequality with respect to γ1 > 0 and maximize the right part of this inequality
with respect to γ2 > 0.

By Lemma 2.4 the minimum of the left part of (3.69) is reached at

γ1 = 2(1 − α12)√
α2

11 + 4|β01|(1 − α12) + α11

and equals γ −2
1 . Besides, it is easy to see that the maximum of the right part of

(3.69) is reached at

γ2 = |β02|
α12

− α11

α12
− σ 2

2α12|β01|
and equals γ 2

2 . So, condition (3.69) takes the form γ −1
1 < γ2 or

√
α2

11 + 4|β01|(1 − α12) + α11

2(1 − α12)
<

|β02|
α12

− α11

α12
− σ 2

2α12|β01| .
As a result, from this and from (3.62) we obtain

σ 2 < 2|β01|
[
|β02| − α11 − α12

√
α2

11 + 4|β01|(1 − α12) + α11

2(1 − α12)

]
,

α11 + α12 < 1. (3.70)

So, if (3.70) holds, then the trivial solution of (3.59) is asymptotically mean-square
stable.

Example 3.1 Consider the second-order differential equation

ẍ(t) + aẋ(t − h1) + bx(t − h2) + σx(t − τ)ẇ(t) = 0 (3.71)

with a > 0, b > 0, h1 ≥ 0, h2 ≥ 0, τ ≥ 0. Equation (3.71) is obtained from (3.59) if
dK1(s) = −bδ(s − h2) ds and dK2(s) = −aδ(s − h1) ds. In this case, α11 = bh2,
α12 = ah1, α21 = bh2

2, β02 = −a < 0, β11 = −bh2, a0 = β02 −β11 = −a+bh2 < 0,
a1 = β01 = −b < 0. The conditions for asymptotic mean-square stability (3.61) and
(3.70) give respectively

σ 2 < 2b

(
a − bh2 −

(
ah1 + 1

2
bh2

2

)√
b

1 − ah1 − 1
2bh2

2

)
,

ah1 + 1

2
bh2

2 < 1, (3.72)
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Fig. 3.17 Stability regions for (3.67), given by the conditions (3.68), (3.69), are shown for h1 = 1,
h2 = 0, and different values of σ : σ = 0.2 (red), σ = 0.1 (yellow), and σ = 0 (triangle A1OB1).
The triangle A0OB0 gives the region of stability obtained via the characteristic equation

Fig. 3.18 Stability regions for (3.67), given by conditions (3.68) (red and yellow) and (3.69) (green
and yellow) are shown for h1 = 0.2, h2 = 0.5, σ = 0.25

σ 2 < 2b

(
a − bh2 − ah1

√
(bh2)2 + 4b(1 − ah1) + bh2

2(1 − ah1)

)
,

ah1 + bh2 < 1. (3.73)

Note that for h2 = 0, conditions (3.72)–(3.73) are equivalent, but for h2 > 0, both
conditions can give regions of stability that are different and complement each other.
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In Fig. 3.17 the stability regions given by conditions (3.72)–(3.73) in the space of
the parameters (a, b) are shown for h1 = 1, h2 = 0, and different values of σ : σ =
0.2 (red), σ = 0.1 (yellow), and σ = 0 (the triangle A1OB1). For comparison, the
triangle A0OB0 gives a part of the region of asymptotic stability that was obtained
via the characteristic equation in Example 1.6 (the case c, Fig. 1.19).

In Fig. 3.18 the stability regions given by conditions (3.72) (red and yellow) and
(3.73) (green and yellow) are shown for h1 = 0.2, h2 = 0.5, σ = 0.25. One can see
that the stability regions have a common part (yellow) but have also the different
parts: red for (3.72) and green for (3.73).

Example 3.2 Consider the second-order differential equation

ẍ(t) = ax(t) + bx(t − h1) + bx(t − h2) + σx(t − τ)ẇ(t) = 0 (3.74)

with a > 0, h1 ≥ 0, h2 ≥ 0, τ ≥ 0. Equation (3.74) is obtained from (3.59) if
dK1(s) = (aδ(s) + b1δ(s − h1) + b2δ(s − h2)) ds and dK2(s) = 0. In this case
we have a0 = −β11 = −b1h1 − b2h2 < 0, a1 = β01 = a + b1 + b2 < 0, α = 1

2α21 =
1
2 (|b1|h2

1 + |b2|h2
2). The stability condition (3.61) takes the form

σ 2 < 2|a1|
(

|a0| − α21

√
|a1|

2(2 − α21)

)
, α21 < 2. (3.75)

Note that the stability condition (3.70) cannot be used here since β02 = 0.
Let n = 3. In this case, (3.36) has the form

...
x (t) =

∫ ∞

0
x(t − s) dK1(s) +

∫ ∞

0
ẋ(t − s) dK2(s)

+
∫ ∞

0
ẍ(t − s) dK3(s) + σx(t − τ)ẇ(t). (3.76)

By Remark 3.4 we will consider the corresponding matrix equation (1.27) with

A =
⎛

⎝
0 1 0
0 0 1
a2 a1 a0

⎞

⎠ , Q =
⎛

⎝
q1 0 0
0 q2 0
0 0 1

⎞

⎠ , P =
⎛

⎝
p11 p12 p13
p12 p22 p23
p13 p23 p33

⎞

⎠ .

(3.77)
By Corollary 1.2 the inequalities

a0 < 0, a2 < 0, A0 = a0a1 + a2 > 0 (3.78)
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are necessary and sufficient conditions for the matrix equation (1.27), (3.77) to have
the positive definite solution P with the elements

p11 = 1

2

(
a1

a2
+ a2

0

A0

)
q1 + a0a2q2 + a2

2

2A0
, p12 = a2

0a1

2a2A0
q1 + |a2|q2 + a1a2

2A0
,

p13 = q1

2|a2| , p22 = a3
0 + a2

2a2A0
q1 + (a2

0 + |a1|)q2 + a2
1 + a0a2

2A0
,

p23 = a2
0

2|a2|A0
q1 + |a0|q2 + |a2|

2A0
, p33 = a0

2a2A0
q1 + q2 + |a1|

2A0
.

(3.79)
Note that from (3.78) it also follows that a1 < 0. Calculating β1 = |a2|p33, β2 =

|p13 + a1p33|, we obtain the representation

βl = ρl1q1 + ρl2q2 + ρl3, l = 1,2, (3.80)

where

ρ11 = |a0|
2A0

, ρ12 = |a2|
2A0

, ρ13 = a1a2

2A0
,

ρ21 = 1

2A0
, ρ22 = |a1|

2A0
, ρ23 = a2

1

2A0
.

(3.81)

So, the stability condition (3.56) can be written in the form

σ 2 < |a2| sup
q1>0,q2>β2

2 Θ−1

f (q1, q2), f (q1, q2) = q1

β1
− β1

Θ − β2
2q−1

2

. (3.82)

For the fixed ai , i = 0,1,2, using (3.78)–(3.82), the supremum of the function
f (q1, q2) can be obtained numerically.

Example 3.3 Consider (3.76) with dKj (s) = kj δ(s − hj ) ds, αij = |kj |hi
j , βij =

kjh
i
j , j = 1,2,3, i = 0,1,2. Then

a0 = β03 − β12 + 1

2
β21 = k3 − k2h2 + 1

2
k1h

2
1, a1 = β02 − β11 = k2 − k1h1,

a2 = β01 = k1, A0 =
(

k3 − k2h2 + 1

2
k1h

2
1

)
(k2 − k1h1) + k1,

α = α13 + 1

2
α22 + 1

6
α31 = |k3|h3 + 1

2
|k2|h2

2 + 1

6
|k1|h3

1, Θ = 1

α2
− 1

α
.

Put, for example, h1 = h2 = h3 = 0.1, k1 = −1, k2 = −2, k3 = −3. Then a0 =
−2.805 < 0, a1 = −1.9 < 0, a2 = −1 < 0, A0 = 4.3295 > 0, α ≈ 0.310 < 1, Θ ≈
7.171, ρ11 ≈ 0.324, ρ12 ≈ 0.115, ρ13 ≈ 0.219, ρ21 ≈ 0.115, ρ22 ≈ 0.219, ρ23 ≈
0.417. Conditions (3.74) hold. The function f (d1, d2) reaches its supremum for
q1 ≈ 4.49, q2 ≈ 0.54. The stability condition (3.82) takes the form σ 2 < 2.246.
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For h3 = 0.2 and the same values of all other parameters, the function f (q1, q2)

reaches its supremum for q1 ≈ 0.75, q2 ≈ 0.96, and the stability condition (3.82)
takes the form σ 2 < 0.1969.

3.4 Nonautonomous Systems

3.4.1 Equations with Variable Delays

Consider the scalar stochastic differential equation with variable delays

ẋ(t) = ax(t) +
m∑

i=1

bix
(
t − hi(t)

)+
m∑

i=1

ci

∫ t

t−hi(t)

x(s) ds + σx
(
t − τ(t)

)
ẇ(t).

(3.83)
Suppose that in (3.83)

hi(t) ≤ h0
i , ḣi (t) ≤ ĥi < 1, τ̇ (t) ≤ τ̂ < 1 (3.84)

and put

B(h) =
m∑

i=1

|bi |√
1 − ĥi

, C0(h) =
m∑

i=1

|ci |h0
i . (3.85)

Let us consider (3.83) as the representation of type (2.33) with z(t, xt ) = x(t) and
the auxiliary differential equation ẏ(t) = ay(t). The zero solution of this equation is
asymptotically stable if and only if a < 0. Using the appropriate Lyapunov function
v(y) = y2, we obtain the functional V1(t, xt ) in the form V1(t, xt ) = x2(t).

Using (3.84), (3.85), and some positive numbers γi , i = 1, . . . ,m, we have

LV1 = 2x(t)

(

ax(t) +
m∑

i=1

bix
(
t − hi(t)

)+
m∑

i=1

ci

∫ t

t−hi(t)

x(s) ds

)

+ σ 2x2(t − τ(t)
)

≤
(

2a + C0(h) +
m∑

i=1

γi |bi |
)

x2(t) +
m∑

i=1

γ −1
i |bi |x2(t − hi(t)

)

+
m∑

i=1

|ci |
∫ t

t−h0
i

x2(s) ds + σ 2x2(t − τ(t)
)
.

So, we obtain the representation of type (2.35), where

D = 2a + C0(h) +
m∑

i=1

γi |bi |, k = m + 1, τk(t) = τ(t), Qk = σ 2,
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R0 = 1, Qi = γ −1
i |bi |, τi(t) = hi(t), i = 1, . . . ,m,

dμ0(s) =
m∑

i=1

|ci |δ
(
s − h0

i

)
ds

and all other parameters are zeros. By (2.36)–(2.37) we have

G = 2a + 2C0(h) + σ 2

1 − τ̂
+

p∑

i=1

(
γi + γ −1

i

1 − ĥi

)
|bi |.

To minimize G, put γi = 1√
1−ĥi

. By Theorem 2.5 we obtain the following asser-

tion: if

σ 2

2(1 − τ̂ )
+ B(h) + C0(h) < |a|, a < 0, (3.86)

then the zero solution of (3.83) is asymptotically mean-square stable.
In addition to (3.84), assume that

∣∣ḣi (t)
∣∣≤ ĥ0

i (3.87)

and put

B0(h) =
p∑

i=1

|bi |h0
i , B1(h) =

p∑

i=1

|bi |ĥ0
i√

1 − ĥi

. (3.88)

Consider the representation (2.33) of (3.83) in the form of the differential equation
of neutral type

ż(t, xt ) = S0x(t) +
p∑

i=1

(
biḣi(t)x

(
t − hi(t)

)+ ci

∫ t

t−hi(t)

x(s) ds

)

+ σx
(
t − τ(t)

)
ẇ(t), (3.89)

where

z(t, xt ) = x(t) +
p∑

j=1

bj

∫ t

t−hj (t)

x(s) ds, S0 = a +
p∑

i=1

bi . (3.90)

Condition (2.10) for (3.89) has the form B0(h) < 1.
The auxiliary equation for (3.89) is ẏ(t) = S0y(t), and the zero solution of

this equation is asymptotically stable if and only if S0 < 0. Using the appropri-
ate Lyapunov function v(y) = y2, we obtain the functional V1(t, xt ) in the form
V1(t, xt ) = z2(t, xt ).
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By (3.84), (3.85), (3.87)–(3.90), for some positive numbers γ1i , γ2ij , we obtain

LV1(t, xt ) ≤ 2S0x
2(t) +

p∑

i=1

|bi |ĥ0
i

(
γ1ix

2(t) + γ −1
1i x2(t − hi(t)

))

+ σ 2x2(t − τ(t)
)

+
m∑

i=1

m∑

j=1

|bjbi |ĥ0
i

∫ t

t−h0
j

(
γ2ij x

2(s) + γ −1
2ij x2(t − hi(t)

))
ds

+
m∑

i=1

m∑

j=1

|bj ci |
∫ t

t−h0
i

∫ t

t−h0
j

(
x2(θ) + x2(s)

)
ds dθ

+
p∑

j=1

|S0bj + cj |
∫ t

t−h0
j

(
x2(t) + x2(s)

)
ds.

As a result, we have the representation of type (2.35)

LV1(t, xt ) ≤ Dx2(t)+σ 2x2(t −τ(t)
)+

m∑

i=1

Qix
2(t −hi(t)

)+
m∑

j=1

qj

∫ t

t−h0
j

x2(s) ds,

where

D = 2S0 +
m∑

i=1

|bi |ĥ0
i γ1i +

m∑

j=1

|S0bj + cj |h0
j , dμ0(s) =

m∑

j=1

qj δ
(
s − h0

j

)
ds,

k = m + 1, τk(t) = τ(t), Qk = σ 2, R0 = 1,

Qi = |bi |ĥ0
i γ

−1
1i + |bi |ĥ0

i

m∑

j=1

|bj |h0
j γ

−1
2ij , τi(t) = hi(t), i = 1, . . . ,m,

qj = |S0bj + cj | + |bj |
m∑

i=1

|bi |ĥ0
i γ2ij + |bj |C0(h) + |cj |B0(h).

So, by (2.36)–(2.37) we obtain

G = 2S0 + 2
m∑

j=1

|S0bj + cj |h0
j + 2B0(h)C0(h) + σ 2

1 − τ̂

+
m∑

i=1

|bi |ĥ0
i

(
γ1i + γ −1

1i

1 − ĥi

)
+

m∑

j=1

|bj |h0
j

m∑

i=1

|bi |ĥ0
i

(
γ2ij + γ −1

2ij

1 − ĥi

)
.
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Choosing the optimal values of γ1i = γ2ij = 1√
1−ĥi

, we can minimize G and by

Theorem 2.5 get the following stability condition: if

σ 2

2(1 − τ̂ )
+

p∑

j=1

|S0bj + cj |h0
j + B1(h) + B0(h)

(
B1(h) + C0(h)

)
< |S0|,

S0 < 0. (3.91)

then the zero solution of (3.83) is asymptotically mean-square stable.

Remark 3.7 It is easy to see that instead of condition (3.91) one can use a more
rough but more simple condition of the form

σ 2

2(1 − τ̂ )
+ (

1 + B0(h)
)(

B1(h) + C0(h)
)
< |S0|

(
1 − B0(h)

)
,

S0 < 0, B0(h) < 1. (3.92)

Put now

C1(h) =
m∑

j=1

|cj |h0
j ĥ

0
j , C2(h) =

m∑

i=1

|ci |
(
h0

i

)2
,

A0(h) = B0(h) + 1

2
C2(h), A1(h) = B1(h) + C1(h),

(3.93)

and consider the representation (2.33) of (3.83) in the form of the differential equa-
tion of neutral type

ż(t, xt ) = S(t)x(t) +
m∑

i=1

ḣi (t)

(
bix

(
t − hi(t)

)+ ci

∫ t

t−hi(t)

x(s) ds

)

+ σx
(
t − τ(t)

)
ẇ(t), (3.94)

where

z(t, xt ) = x(t) +
m∑

i=1

∫ t

t−hi(t)

(
bi + ci

(
s − t + hi(t)

))
x(s) ds,

(3.95)

S(t) = a +
m∑

i=1

(
bi + cihi(t)

)
.

Condition (2.10) for (3.94) has the form A0(h) < 1.
The auxiliary differential equation in this case is ẏ(t) = S(t)y(t), and if

supt≥0 S(t) < 0, then the zero solution of this equation is asymptotically stable. Us-
ing the appropriate Lyapunov function v(y) = y2, we obtain the functional V1(t, xt )

of the form V1(t, xt ) = z2(t, xt ).
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Then by (3.84), (3.87), (3.88), (3.93)–(3.95), for some positive numbers γ1i , γ2ij ,
we obtain

LV1(t, xt ) ≤ 2S(t)x2(t) + ∣∣S(t)
∣∣

m∑

i=1

∫ t

t−hi(t)

(|bi | + |ci |
(
s − t + hi(t)

))

× (
x2(t) + x2(s)

)
ds

+
m∑

i=1

ĥ0
i

(
|bi |

(
γ1ix

2(t) + γ −1
1i x2(t − hi(t)

))

+ |ci |
∫ t

t−hi(t)

(
x2(t) + x2(s)

)
ds

)

+
m∑

j=1

m∑

i=1

ĥ0
i |bj |

∫ t

t−hi(t)

(|bi | + |ci |
(
s − t + hi(t)

))

× (
γ2ij x

2(s) + γ −1
2ij x2(t − hj (t)

))
ds

+
m∑

j=1

m∑

i=1

ĥ0
i |cj |

∫ t

t−hi(t)

∫ t

t−hj (t)

(|bi | + |ci |
(
s − t + hi(t)

))

× (
x2(θ) + x2(s)

)
dθ ds + σ 2x2(t − τ(t)

)
.

Put now

Sm = inf
t≥0

∣∣S(t)
∣∣, SM = sup

t≥0

∣∣S(t)
∣∣,

Ii

(
hi(t)

)=
∫ t

t−hi(t)

(|bi | + |ci |
(
s − t + hi(t)

))
ds,

J0i

(
hi(t)

)=
∫ t

t−hi(t)

x2(s) ds,

J1i

(
hi(t)

)=
∫ t

t−hi(t)

(|bi | + |ci |
(
s − t + hi(t)

))
x2(s) ds, i = 1, . . . ,m.

By (3.84), (3.88), and (3.93) we have

Ii

(
hi(t)

)≤ Ii

(
h0

i

)= |bi |h0
i + 1

2
|ci |
(
h0

i

)2
,

m∑

i=1

Ii

(
hi(t)

)≤ A0(h),

J0i

(
hi(t)

)≤ J0i

(
h0

i

)
, J1i

(
hi(t)

)≤ J1i

(
h0

i

)
.
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So, we obtain the representation of type (2.35)

LV1(t, xt ) ≤ D(t)x2(t) +
m∑

j=1

Qjx
2(t − hj (t)

)+ σ 2x2(t − τ(t)
)

+
m∑

i=1

q0iJ0i

(
h0

i

)+
m∑

i=1

q1iJ1i

(
h0

i

)
,

where

D(t) = (−2 + A0(h)
)∣∣S(t)

∣∣+ C1(h) +
m∑

i=1

ĥ0
i |bi |γ1i ,

k = m + 1, τk = τ, Qk = σ 2,

Qj = |bj |ĥ0
j

(

γ −1
1j +

m∑

i=1

γ −1
2ij Ii

(
h0

i

)
)

, j = 1, . . . ,m,

R0 = R1 = 1,

dμ0(s) =
p∑

i=1

(
q0i + q1i |bi |

)
δ
(
s − h0

i

)
ds,

dμ1(s) =
p∑

i=1

q1i |ci |δ
(
s − h0

i

)
ds,

q0i = (
1 + A0(h)

)|ci |ĥ0
i , q1i = SM + C1(h) +

p∑

j=1

|bj |ĥ0
j γ2ij .

As a result, we have

G(t) = (−2 + A0(h)
)∣∣S(t)

∣∣+ A0(h)SM + σ 2

1 − τ̂
+ 2C1(h)

(
1 + A0(h)

)

+
m∑

j=1

|bj |ĥ0
j

(
γ1j + γ −1

1j

1 − ĥj

)
+

m∑

i=1

m∑

j=1

|bj |ĥ0
j Ii

(
h0

i

)(
γ2ij + γ −1

2ij

1 − ĥj

)
.

To minimize G(t), put γ1j = γ2ij = 1√
1−ĥj

. Then

G(t) = (−2 + A0(h)
)∣∣S(t)

∣∣+ A0(h)SM + 2A1(h)
(
1 + A0(h)

)+ σ 2

1 − τ̂
.

From supt≥0 S(t) < 0 we obtain the estimation for G(t):
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sup
t≥0

G(t) ≤ (−2 + A0(h)
)
Sm + A0(h)SM + 2A1(h)

(
1 + A0(h)

)+ σ 2

1 − τ̂
. (3.96)

From (3.96) by Theorem 2.4 we obtain: if supt≥0 S(t) < 0 and

σ 2

1 − τ̂
+ A0(h)SM + 2A1(h)

(
1 + A0(h)

)
<
(
2 − A0(h)

)
Sm, (3.97)

then the zero solution of (3.83) is asymptotically mean-square stable.

3.4.2 Equations with Variable Coefficients

Consider the scalar differential equation with delays and variable coefficients

ẋ(t) = −a(t)x(t) − b(t)x(t − h) + σ(t)x(t − τ)ẇ(t),

t ≥ 0, h ≥ 0, τ ≥ 0. (3.98)

For V (t, xt ) = x2(t), we have

LV (t, xt ) = 2x(t)
[−a(t)x(t) − b(t)x(t − h)

]+ σ 2(t)x2(t − τ)

≤ [−2a(t) + ∣
∣b(t)

∣
∣]x2(t) + ∣

∣b(t)
∣
∣x2(t − h) + σ 2(t)x2(t − τ).

By Theorem 2.5, if there is c > 0 such that

G(t) = −2a(t) + ∣∣b(t)
∣∣+ ∣∣b(t + h)

∣∣+ σ 2(t + τ) ≤ −c, (3.99)

then the trivial solution of (3.98) is asymptotically mean-square stable.
To get another stability condition, rewrite (3.98) in the form

ż(t, xt ) = −c(t)x(t) + σ(t)x(t − τ)ẇ(t), (3.100)

where

z(t, xt ) = x(t) −
∫ t

t−h

b(s + h)x(s) ds, c(t) = a(t) + b(t + h). (3.101)

Note that (3.100)–(3.101) is a differential equation of neutral type and suppose that

c(t) ≥ c0 > 0, sup
t≥0

∫ t+h

t

∣∣b(s)
∣∣ds < 1. (3.102)

Consider the auxiliary differential equation without delay

ẏ(t) = −c(t)y(t). (3.103)
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Using the Lyapunov function v(t) = y2(t), by (3.99) we have v̇(t) = −2c(t)y2(t) ≤
−2c0y

2(t). So, the trivial solution of (3.103) is asymptotically stable.
Following the procedure of constructing Lyapunov functionals, we will use

the Lyapunov functional V1(t, xt ) for (3.100)–(3.101) of the form V1(t, xt ) =
z2(t, xt ). Calculating LV1(t, xt ), from (3.100)–(3.101) we obtain the representation
of type (2.35)

LV1(t, xt ) = c(t)

(
−2x2(t) + 2

∫ t

t−h

b(s + h)x(t)x(s) ds

)
+ σ 2(t)x2(t − τ)

≤ c(t)

(
−2x2(t) +

∫ t

t−h

∣∣b(s + h)
∣∣(x2(t) + x2(s)

)
ds

)
+ σ 2(t)x2(t − τ)

= D(t)x2(t) + σ 2(t)x2(t − τ) +
∫ t

t−h

R(s + h, t)x2(s) ds,

where

D(t) = c(t)

(
−2 +

∫ t+h

t

∣
∣b(s)

∣
∣ds

)
, Q1(t) = σ 2(t + τ),

dμ(τ) = δ(τ − h)dτ, R(s, t) = ∣∣b(s)
∣∣c(t).

So, by Theorem 2.5, G(t) = c(t)(−2 + G0(t)), where

G0(t) =
∫ t+h

t

∣∣b(s)
∣∣ds + |b(t + h)|

c(t)

∫ t+h

t

c(s) ds + σ 2(t + τ)

c(t)
,

and if

sup
t≥0

G0(t) < 2, (3.104)

then the zero solution of (3.98) is asymptotically mean-square stable.
Note that if h = 0 and the functions a(t) = a, b(t) = b, σ(t) = σ are constants,

then condition (3.104) coincides with the necessary and sufficient condition for
asymptotic mean-square stability σ 2 < 2(a + b). But in the general case the both
obtained conditions (3.99) and (3.102), (3.104) are only sufficient conditions for
asymptotic mean-square stability of the trivial solution of (3.98). Indeed, consider
(3.98) with a(t) = α + sin(t), b(t) = cos(t), and σ(t) = 0. In Fig. 3.19 the behavior
of the functions G(t) (green), c(t) (grey), G0(t) (blue), and the solution x(t) (red)
of (3.98) are shown for x(s) = 0.1, s ∈ [−h,0], h = 0.1, α = −0.2. Here conditions
(3.99) and (3.102), (3.104) do not hold, and the solution goes to infinity. In Fig. 3.20
the same picture is shown for x(s) = 2.5, s ∈ [−h,0], h = 0.8, α = 0.2. Conditions
(3.99) and (3.102), (3.104) do not hold too, but the solution x(t) goes to zero. In
Fig. 3.21 the same picture is shown for x(s) = 1.5, s ∈ [−h,0], h = 1.1, α = 1.7.
Conditions (3.99) and (3.102), (3.104) hold, and the solution x(t) goes to zero.
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Fig. 3.19 Functions G(t) (green), c(t) (grey), G0(t) (blue), and the solution x(t) (red) of (3.98)
are shown for x(s) = 0.1, s ∈ [−h,0], h = 0.1, α = −0.2

Consider the scalar stochastic differential equation with variable coefficients and
unbounded delay

ẋ(t) + a(t)x(t) +
∫ ∞

0
b(t, s)x(t − s) ds + σ(t)x(t − τ)ẇ(t) = 0. (3.105)

For the function V1(t, xt ) = x2(t), we have

LV1(t, xt ) = 2x(t)

(
−a(t)x(t) −

∫ ∞

0
b(t, s)x(t − s) ds

)
+ σ 2(t)x2(t − τ)

≤
(

−2a(t) +
∫ ∞

0

∣∣b(t, s)
∣∣ds

)
x2(t)

+
∫ ∞

0

∣∣b(t, s)
∣∣x2(t − s) ds + σ 2(t)x2(t − τ).

To obtain a stability condition, we consider the functional

V2(t, xt ) =
∫ ∞

0

∫ t

t−s

∣∣b(τ + s, s)
∣∣x2(τ ) dτ ds +

∫ t

t−τ

σ 2(s + τ)x2(s) ds.

Then

LV2(t, xt ) =
∫ ∞

0

(∣∣b(t + s, s)
∣∣x2(t) − ∣∣b(t, s)

∣∣x2(t − s)
)
ds

+ σ 2(t + τ)x2(t) − σ 2(t)x2(t − τ).
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Fig. 3.20 Functions G(t) (green), c(t) (grey), G0(t) (blue) and the solution x(t) (red) of (3.98)
are shown for x(s) = 2.5, s ∈ [−h,0], h = 0.8, α = 0.2

Fig. 3.21 Functions G(t) (green), c(t) (grey), G0(t) (blue), and the solution x(t) (red) of (3.98)
are shown for x(s) = 1.5, s ∈ [−h,0], h = 1.1, α = 1.7

For V = V1 + V2, we obtain LV (t, xt ) ≤ G(t)x2(t), where

G(t) = −2a(t) +
∫ ∞

0

(∣∣b(t, s)
∣∣+ ∣∣b(t + s, s)

∣∣)ds + σ 2(t + τ). (3.106)

So, if supt≥0 G(t) < 0, then the trivial solution of (3.105) is asymptotically mean-
square stable.

Note that if b(t, s) = b(t)δ(s − h), then (3.105) coincides with (3.98), and the
function (3.106) coincides with (3.99).
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Fig. 3.22 The solution of (3.107) (red) and the function G(t) (blue) are shown in the deterministic
case (σ (t) = 0) for a(t) = 1.2 + sin t , x0 = 2, γ = 0.1, λ = 0.2

Fig. 3.23 The solution of (3.107) (red) and the function G(t) (blue) are shown in the deterministic
case (σ (t) = 0) for a(t) = 0.6 − | cos t |, x0 = 1.5, γ = 1, λ = 0.6

The negativity of the function G(t) is a sufficient stability condition but not a
necessary one. Put, for instance, in (3.105)

b(t, s) = −e−λt−γ s, γ > 0, λ > 0, x(s) = x0, s ≤ 0.
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Then (3.105) and the function G(t) take the forms

ẋ(t) + a(t)x(t) + σ(t)x(t − τ)ẇ(t) = e−λt

[
x0

γ
e−γ t +

∫ t

0
e−γ sx(t − s) ds

]
,

(3.107)

G(t) = −2a(t) + σ 2(t − τ) + e−λt

(
1

γ
+ 1

γ + λ

)
. (3.108)

If supt≥0 G(t) < 0, then the trivial solution of (3.107) is asymptotically mean-square
stable.

Note that in some cases the trivial solution of (3.107) is asymptotically stable
if the function G(t) given by (3.108) is a negative one for large enough t only.
In Fig. 3.22 the trajectory of the solution of (3.107) (red) and the function G(t)

(blue) are shown in the deterministic case (σ(t) = 0) for a(t) = 1.2 + sin t , x0 = 2,
γ = 0.1, λ = 0.2. In this case the condition G(t) ≤ 0 holds for all large enough t ,
and the solution of (3.107) goes to zero. In Fig. 3.23 we can see a similar picture
with a(t) = 0.6 − | cos t |, x0 = 1.5, γ = 1, λ = 0.6. In this case the function G(t)

for all t ≥ 0 has both negative and positive values, and the solution of (3.108) goes
to infinity.



Chapter 4
Stability of Linear Systems of Two Equations

Below, several examples are considered where the procedure of constructing Lya-
punov functionals is used for stability investigation of linear systems of two equa-
tions with constant delays, with distributed delays, and with variable coefficients.

4.1 Linear Systems of Two Equations with Constant Delays

Example 4.1 Consider the system of two stochastic differential equations with fixed
delays

ẋ1(t) = ax2(t) − bx1(t − h) + σ1x1(t − τ1)ẇ1(t),

ẋ2(t) = −ax1(t) − bx2(t − h) + σ2x2(t − τ2)ẇ2(t),
(4.1)

where w1(t) and w2(t) are the mutually independent standard Wiener processes.
Put x(t) = (x1(t), x2(t))

′, w(t) = (w1(t),w2(t))
′,

ρ(t) =
∫ t

t−h

x(s) ds, z(t) = x(t) − bρ(t),

B(xt ) =
(

σ1x(t − τ1) 0
0 σ2x(t − τ2)

)
,

(4.2)

A =
(−b a

−a −b

)
, (4.3)

and rewrite (4.1) in the form

ż(t) = Ax(t) + B(xt )ẇ(t). (4.4)

By (4.3) and Corollary 1.1 the condition b > 0 is a necessary and sufficient con-
dition for asymptotic stability of the zero solution of the auxiliary differential equa-
tion ẏ(t) = Ay(t). Let P be a positive definite solution of the matrix equation (1.27),

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional
Differential Equations, DOI 10.1007/978-3-319-00101-2_4,
© Springer International Publishing Switzerland 2013
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where Q is (for simplicity) the identity matrix, and A is defined by (4.3). By (1.29)
the elements of P are p11 = p22 = (2b)−1, p12 = 0.

Following to the procedure of constructing Lyapunov functionals, consider the
functional V1 = z′(t)P z(t) = (2b)−1|z(t)|2. Calculating LV1 for (4.4), by (4.2) we
obtain

LV1 = 1

2b

[

2z′(t)Ax(t) +
2∑

i=1

σ 2
i x2

i (t − τi)

]

= 1

2b

[

2
(
x(t) − bρ(t)

)′
Ax(t) +

2∑

i=1

σ 2
i x2

i (t − τi)

]

= 1

2b

[

2x′(t)Ax(t) − 2b

∫ t

t−h

x′(s)Ax(t) ds +
2∑

i=1

σ 2
i x2

i (t − τi)

]

.

Note, that x′(t)Ax(t) = −b|x(t)|2 and 2x′(s)Ax(t) ≤ ‖A‖(|x(s)|2 + |x(t)|2),
where ‖A‖ = sup|x|=1 |Ax| is the operator norm of a matrix A. Therefore,

LV1 ≤ 1

2b

[

−2b
∣∣x(t)

∣∣2 + b‖A‖
∫ t

t−h

(∣∣x(s)
∣∣2 + ∣∣x(t)

∣∣2)ds +
2∑

i=1

σ 2
i x2

i (t − τi)

]

=
(

−1 + 1

2
‖A‖h

)∣∣x(t)
∣∣2 + 1

2
‖A‖

∫ t

t−h

∣∣x(s)
∣∣2 ds + 1

2b

2∑

i=1

σ 2
i x2

i (t − τi).

So, we have got the representation of type (2.25) with S(t) = Qi(t) = R(s, t) = 0,
m = 0, n = 2 and

D =
(

−1 + 1

2
‖A‖h

)
I, dKi(s) = 1

2b
σ 2

i δ(s − τi) ds, i = 1,2,

R0(s) = 1

2
‖A‖, dμ0(s) = δ(s − h)ds.

Note also that ‖A‖ = sup|x|=1

√
(−bx1 + ax2)2 + (−ax1 − bx2)2 = √

a2 + b2.
From this and from Theorem 2.4 we obtain that if

h
√

a2 + b2 + p

b
< 1, p = 1

2
max

(
σ 2

1 , σ 2
2

)
,

or

|a| <
√

1

h2

(
1 − p

b

)2

− b2, (4.5)

1

2h

(
1 −√

1 − 4ph
)
< b <

1

2h

(
1 +√

1 − 4ph
)
, ph <

1

4
, (4.6)
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Fig. 4.1 Stability regions
for (4.1) given by
conditions (4.5), (4.6) for
h = 1 and different values of
p: (1) p = 0, (2) p = 0.1,
(3) p = 0.2, (4) p = 0.249

Fig. 4.2 Stability regions
for (4.1) given by
conditions (4.5), (4.6) for
p = 0.1 and different values
of h: (1) h = 0, (2) h = 1,
(3) h = 2, (4) h = 2.45

Fig. 4.3 Stability regions
for (4.1) given by
conditions (4.5), (4.6) for
h = 0 and different values of
p: (1) p = 0, (2) p = 0.25

then the trivial solution of system (4.1) is asymptotically mean-square stable.
The stability regions for (4.1) given by conditions (4.5)–(4.6) are shown in

Fig. 4.1 for h = 1 and different values of p: (1) p = 0; (2) p = 0.1; (3) p = 0.2;
(4) p = 0.249; in Fig. 4.2 for p = 0.1 and different values of h: (1) h = 0; (2) h = 1;
(3) h = 2; (4) h = 2.45; in Fig. 4.3 for h = 0 and different values of p: (1) p = 0;
(2) p = 0.25.
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Example 4.2 Consider now the system of two stochastic differential equations with
fixed delays

ẋ1(t) = ax2(t) − bx1(t − h) + σ1x1(t − τ1)ẇ(t),

ẋ2(t) = ax1(t) − bx2(t − h) + σ2x2(t − τ2)ẇ(t),
(4.7)

which can be transformed to the form (4.4), (4.2) with the matrix

A =
(−b a

a −b

)
. (4.8)

By (4.8) and Corollary 1.1 the condition b > |a| is a necessary and sufficient con-
dition for asymptotic stability of the zero solution of the auxiliary differential equa-
tion ẏ(t) = Ay(t). By (1.29) the positive definite solution P of the matrix equation
(1.27), where Q = I (the identity matrix), and A is defined by (4.8), has the ele-
ments

p11 = p22 = b

2(b2 − a2)
, p12 = a

2(b2 − a2)
. (4.9)

Put V1 = z′(t)P z(t) and note that, by (4.8)–(4.9), 2PA = −I . Calculating LV1

for (4.4) with the parameters defined by (4.2), (4.8), and (4.9), we obtain

LV1 = −(x(t) − bρ(t)
)′
x(t) +

2∑

i=1

piiσ
2
i x2

i (t − τi)

= −∣∣x(t)
∣∣2 + b

∫ t

t−h

x′(s)x(t) ds +
2∑

i=1

piiσ
2
i x2

i (t − τi)

≤
(

−1 + bh

2

)∣∣x(t)
∣∣2 + b

2

∫ t

t−h

∣∣x(s)
∣∣2 ds +

2∑

i=1

piiσ
2
i x2

i (t − τi).

So, we have the representation of type (2.25) with S(t) = Qi(t) = R(s, t) = 0, m =
1, n = 2 and

D =
(

−1 + bh

2

)
I, dKi(s) = piiσ

2
i δ(s − τi) ds, i = 1,2,

dμ0(s) = δ(s − h)ds, R0(s) = b

2
.

By Theorem 2.4 and (4.9) we obtain that if

b

(
h + p

b2 − a2

)
< 1, p = 1

2
max

(
σ 2

1 , σ 2
2

)
,
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Fig. 4.4 Stability regions for
(4.7) given by conditions
(4.10), (4.6) for h = 1 and
different values of p:
(1) p = 0, (2) p = 0.1,
(3) p = 0.2, (4) p = 0.249

Fig. 4.5 Stability regions for
(4.7) given by conditions
(4.10), (4.6) for p = 0.1 and
different values of h:
(1) h = 0, (2) h = 1,
(3) h = 2, (4) h = 2.45

Fig. 4.6 Stability regions for
(4.7) given by conditions
(4.10), (4.6) for h = 0 and
different values of p:
(1) p = 0, (2) p = 0.25

or if the conditions

|a| <
√

b

(
b − p

1 − bh

)
(4.10)

and (4.6) hold, then the trivial solution of (4.7) is asymptotically mean-square stable.
The stability regions for (4.7) given by conditions (4.10), (4.6) are shown in

Fig. 4.4 for h = 1 and different values of p: (1) p = 0; (2) p = 0.1; (3) p = 0.2;
(4) p = 0.249; in Fig. 4.5 for p = 0.1 and different values of h: (1) h = 0; (2) h = 1;
(3) h = 2; (4) h = 2.45; in Fig. 4.6 for h = 0 and different values of p: (1) p = 0;
(2) p = 0.25.
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4.2 Linear Systems of Two Equations with Distributed Delays

Example 4.3 Consider the system of two stochastic differential equations with dis-
tributed delays

ẋ1(t) = ax2(t) − b

∫ t

t−h

x1(s) ds + σ1

∫ t

t−τ1

x1(s) ds ẇ1(t),

ẋ2(t) = −ax1(t) − b

∫ t

t−h

x2(s) ds + σ2

∫ t

t−τ2

x2(s) ds ẇ2(t),

(4.11)

where w1(t) and w2(t) are the mutually independent standard Wiener processes.
Put x(t) = (x1(t), x2(t))

′, w(t) = (w1(t),w2(t))
′,

ρ(t) =
∫ t

t−h

(s − t + h)x(s) ds, z(t) = x(t) − bρ(t),

B(xt ) =
(

σ1
∫ t

t−τ1
x1(s) ds 0

0 σ2
∫ t

t−τ2
x2(s) ds

)

,

(4.12)

A =
(−bh a

−a −bh

)
. (4.13)

Then (4.11) can be represented in the form (4.4).
By (4.13) and Corollary 1.1 the conditions b > 0, h > 0 are necessary and suffi-

cient conditions for asymptotic stability of the zero solution of the auxiliary differ-
ential equation ẏ(t) = Ay(t). The positive definite solution P of the matrix dif-
ferential equation (1.27) with Q = I and A defined by (4.13) has the elements
p11 = p22 = (2bh)−1, p12 = 0.

Following the procedure of constructing Lyapunov functionals, put

V1 = z′(t)P z(t) = 1

2bh

∣∣z(t)
∣∣2.

Calculating LV1 for system (4.11), by (4.12)–(4.13) we have

LV1 = 1

2bh

[

2z′(t)Ax(t) +
2∑

i=1

(∫ t

t−τi

σixi(s) ds

)2
]

= 1

2bh

[

2
(
x(t) − bρ(t)

)′
Ax(t) +

2∑

i=1

(∫ t

t−τi

σixi(s) ds

)2
]

= 1

2bh

[

2x′(t)Ax(t) − 2b

∫ t

t−h

(s − t + h)x′(s)Ax(t) ds

+
2∑

i=1

(∫ t

t−τi

σixi(s) ds

)2
]

.
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Using x′(t)Ax(t) = −bh|x(t)|2 and 2x′(s)Ax(t) ≤ ‖A‖(|x(s)|2 + |x(t)|2), we ob-
tain

LV1 ≤ 1

2bh

[

−2bh
∣∣x(t)

∣∣2 + b‖A‖
∫ t

t−h

(s − t + h)
(∣∣x(s)

∣∣2 + ∣∣x(t)
∣∣2)ds

+
2∑

i=1

σ 2
i τi

∫ t

t−τi

x2
i (s) ds

]

=
(

−1 + 1

4
‖A‖h

)∣∣x(t)
∣∣2

+ 1

2h
‖A‖

∫ t

t−h

(s − t + h)
∣∣x(s)

∣∣2 ds + 1

2bh

2∑

i=1

σ 2
i τi

∫ t

t−τi

x2
i (s) ds.

So, we have got the representation of type (2.25) with S(t) = Qi(t) = R(s, t) = 0,
m = 1, n = 2 and

D =
(

−1 + 1

4
‖A‖h

)
I, R0(s) = 1

2bh
, R1(s) = 1

2h
‖A‖,

dμ0(s) =
2∑

i=1

σ 2
i τiδ(s − τi) ds, dμ1(s) = δ(s − h)ds.

Note also that ‖A‖ = √
a2 + b2h2. From this and from Theorem 2.4 it follows

that if

h

2

√
a2 + b2h2 + pτ

bh
< 1, pτ = 1

2
max

(
σ 2

1 τ 2
1 , σ 2

2 τ 2
2

)
,

or if the conditions

|a| <
√

4

h2

(
1 − pτ

bh

)2

− b2h2, (4.14)

pτ

h
<

1

h2
(1 −√

1 − 2pτh) < b <
1

h2
(1 +√

1 − 2pτh), pτh <
1

2
, (4.15)

hold, then the trivial solution of (4.11) is asymptotically mean-square stable.
The stability regions for (4.11) given by conditions (4.14)–(4.15) are shown in

Fig. 4.7 for h = 1.1 and different values of pτ : (1) pτ = 0, (2) pτ = 0.2, (3) pτ =
0.4, (4) pτ = 0.45, in Figs. 4.8 and 4.9 for pτ = 0.1 and pτ = 2.5 respectively and
different values of h: (1) h = 0.085, (2) h = 0.1, (3) h = 0.12, (4) h = 0.16, in
Fig. 4.10 for pτ = 2.5 and the following values of h: (1) h = 0.01, (2) h = 0.005,
(3) h = 0.0025, (4) h = 0.00125. In the last figure one can see that by pτ > 0, as
h → 0, the stability region goes to infinity.
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Fig. 4.7 Stability regions for
(4.11) given by conditions
(4.14), (4.15) for h = 1.1 and
different values of pτ :
(1) pτ = 0, (2) pτ = 0.2,
(3) pτ = 0.4, (4) pτ = 0.45

Fig. 4.8 Stability regions for
(4.11) given by conditions
(4.14), (4.15) for pτ = 0.1
and different values of h:
(1) h = 0.085, (2) h = 0.1,
(3) h = 0.12, (4) h = 0.16

Fig. 4.9 Stability regions for
(4.11) given by conditions
(4.14), (4.15) for pτ = 2.5
and different values of h:
(1) h = 0.085, (2) h = 0.1,
(3) h = 0.12, (4) h = 0.16
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Fig. 4.10 Stability regions
for (4.11) given by conditions
(4.14), (4.15) for pτ = 2.5
and different values of h:
(1) h = 0.01, (2) h = 0.005,
(3) h = 0.0025,
(4) h = 0.00125

Example 4.4 Consider now the system of two stochastic differential equations with
distributed delays

ẋ1(t) = ax2(t) − b

∫ t

t−h

x1(s) ds + σ1

∫ t

t−τ1

x1(s) ds ẇ(t),

ẋ2(t) = ax1(t) − b

∫ t

t−h

x2(s) ds + σ2

∫ t

t−τ2

x2(s) ds ẇ(t),

(4.16)

which can be transformed to the form (4.4), (4.12) with the matrix

A =
(−bh a

a −bh

)
. (4.17)

By (4.17) and Corollary 1.1 the condition bh > |a| is a necessary and suffi-
cient condition for asymptotic stability of the zero solution of the auxiliary equation
ẏ(t) = Ay(t). The positive definite solution P of the matrix equation (1.27) with
Q = I and A defined by (4.17) has the elements

p11 = p22 = bh

2(b2h2 − a2)
, p12 = a

2(b2h2 − a2)
. (4.18)

Following the procedure of constructing Lyapunov functionals, put V1 =
z′(t)P z(t) and note that 2PA = −I . Thus, calculating LV1 for (4.16), we obtain

LV1 = −(x(t) − bρ(t)
)′
x(t) +

2∑

i=1

pii

(∫ t

t−τi

σixi(s) ds

)2

= −∣∣x(t)
∣∣2 + b

∫ t

t−h

(s − t + h)x′(s)x(t) +
2∑

i=1

pii

(∫ t

t−τi

σixi(s) ds

)2



106 4 Stability of Linear Systems of Two Equations

≤ −∣∣x(t)
∣∣2 + b

2

∫ t

t−h

(s − t + h)
(∣∣x(s)

∣∣2 + ∣∣x(t)
∣∣2)ds

+
2∑

i=1

piiσ
2
i τi

∫ t

t−τi

x2
i (s) ds

=
(

−1 + bh2

4

)∣∣x(t)
∣∣2 + b

2

∫ t

t−h

(s − t + h)
∣∣x(s)

∣∣2 ds

+
2∑

i=1

piiσ
2
i τi

∫ t

t−τi

x2
i (s) ds.

So, we have got the representation of type (2.25) with S(t) = Qi(t) = R(s, t) =
0, m = 1, n = 2 and

D =
(

−1 + bh2

4

)
I, dKi(s) = piiσ

2
i δ(s − τi) ds, i = 1,2,

dμ1(s) = δ(s − h)ds, R1(s) = b

2
.

From this and from Theorem 2.4 it follows that if

bh

(
h

2
+ pτ

b2h2 − a2

)
< 1, pτ = 1

2
max

(
σ 2

1 τ 2
1 , σ 2

2 τ 2
2

)
,

or if the conditions

|a| <
√

bh

(
bh − 2pτ

2 − bh2

)
(4.19)

and (4.15) hold, then the trivial solution of (4.16) is asymptotically mean-square
stable.

The stability regions for (4.16) given by conditions (4.19), (4.15) are shown in
Fig. 4.11 for h = 1.1 and different values of pτ : (1) pτ = 0, (2) pτ = 0.2, (3) pτ =
0.4, (4) pτ = 0.45, in Figs. 4.12 and 4.13 for pτ = 0.1 and pτ = 2.5, respectively,
and different values of h: (1) h = 0.085, (2) h = 0.1, (3) h = 0.12, (4) h = 0.16,
in Fig. 4.14 for pτ = 2 and the following values of h: (1) h = 0.01, (2) h = 0.005,
(3) h = 0.0025, (4) h = 0.00125. In the last figure one can see that by pτ > 0, as
h → 0, the stability region disappears.
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Fig. 4.11 Stability regions for (4.16) given by conditions (4.19), (4.15) for h = 1.1 and different
values of pτ : (1) pτ = 0, (2) pτ = 0.2, (3) pτ = 0.4, (4) pτ = 0.45

Fig. 4.12 Stability regions for (4.16) given by conditions (4.19), (4.15) for pτ = 0.1 and different
values of h: (1) h = 0.085, (2) h = 0.1, (3) h = 0.12, (4) h = 0.16

4.3 Linear Systems of Two Equations with Variable Coefficients

Example 4.5 Consider the system of two stochastic differential equations with vari-
able coefficients before the terms with delays

ẋ1(t) = −ax1(t) + b(t)x1(t − h) + cx2(t) + σ1(t)x1(t − τ1)ẇ1(t),

ẋ2(t) = −cx1(t) + σ2(t)x2(t − τ2)ẇ2(t), t ≥ 0,
(4.20)

where a, c, h ≥ 0, τ1 ≥ 0, τ2 ≥ 0 are constants, and b(t), σ1(t), σ2(t) are bounded
functions.
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Fig. 4.13 Stability regions for (4.16) given by conditions (4.19), (4.15) for pτ = 2.5 and different
values of h: (1) h = 0.085, (2) h = 0.1, (3) h = 0.12, (4) h = 0.16

Fig. 4.14 Stability regions for (4.16) given by conditions (4.19), (4.15) for pτ = 2 and different
values of h: (1) h = 0.01, (2) h = 0.005, (3) h = 0.0025, (4) h = 0.00125

Let us show that by the conditions

a > 0, |c| > 0, sup
t≥0

μ(t) < a,

δ2(t + τ2) <
4c2ν(t)

(
√

β1(t) + 4(c2 + aν(t)) + √
β1(t) )2

,

(4.21)
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where

μ(t) = δ1(t + τ1) + β0(t + h), ν(t) = a − μ(t) > 0,

β0(t) = 1

2

(∣∣b(t)
∣∣+ ∣∣b(t + h)

∣∣), β1(t) = ∣∣b(t)b(t + h)
∣∣,

(4.22)

the trivial solution of (4.20) is asymptotically mean-square stable.
Rewrite (4.20) in the form

ẋ(t) = Ax(t) + B(t)x(t − h) + σ(t, xt )ẇ(t),

where x(t) = (x1(t), x2(t))
′, w(t) = (w1(t),w2(t))

′,

A =
(−a c

−c 0

)
, B(t) =

(
b(t) 0

0 0

)
,

σ (t, xt ) =
(

σ1(t)x1(t − τ1) 0
0 σ2(t)x2(t − τ2)

)
.

(4.23)

Let Q be the symmetric 2 × 2 matrix with the elements q11 = q > 0, q22 = 1,
q12 = 0, and the matrix P be a solution of the matrix equation (1.27) where A is
defined in (4.23). By (1.29) the elements of the matrix P are

p11 = q + 1

2a
, p22 = a

2c2
+ q + 1

2a
, p12 = − 1

2c
. (4.24)

For the functional V1 = x′(t)P x(t), by (1.27) we have

LV1 = (
Ax(t) + B(t)x(t − h)

)′
Px(t) + x′(t)P

(
Ax(t) + B(t)x(t − h)

)

+ p11σ
2
1 (t)x2

1(t − τ1) + p22σ
2
2 (t)x2

2(t − τ2)

= x′(t)
(
A′P + PA

)
x(t) + 2x′(t − h)B ′(t)P x(t)

+ p11σ
2
1 (t)x2

1(t − τ1) + p22σ
2
2 (t)x2

2(t − τ2)

= −qx2
1(t) − x2

2(t) + 2x′(t − h)B ′(t)P x(t)

+ p11σ
2
1 (t)x2

1(t − τ1) + p22σ
2
2 (t)x2

2(t − τ2). (4.25)

By (4.23), for some γ > 0, we obtain

2x′(t − h)B ′(t)P x(t) = 2b(t)x1(t − h)
(
p11x1(t) + p12x2(t)

)

≤ ∣∣b(t)
∣∣[p11

(
x2

1(t) + x2
1(t − h)

)

+ |p12|
(
γ x2

2(t) + γ −1x2
1(t − h)

)]
.
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From this and from (4.25) we have

LV1 ≤ (−q + p11
∣∣b(t)

∣∣)x2
1(t) + (−1 + γ )

∣∣p12b(t)
∣∣x2

2(t)

+ (
p11 + γ −1|p12|

)∣∣b(t)
∣∣x2

1(t − h)

+ p11σ
2
1 (t)x2

1(t − τ1) + p22σ
2
2 (t)x2

2(t − τ2).

So, by Theorem 2.5 we obtain that if

p11
(∣∣b(t)

∣∣+ ∣∣b(t + h)
∣∣+ σ 2

1 (t + τ1)
)+ γ −1

∣∣p12b(t + h)
∣∣< q,

γ
∣∣p12b(t)

∣∣+ p22σ
2
2 (t + τ2) < 1,

(4.26)

then the trivial solution of (4.20) is asymptotically mean-square stable.
Note that inequalities (4.26) can be represented in the form

0 <
|p12b(t + h)|

q − p11(|b(t)| + |b(t + h)| + σ 2
1 (t + τ1))

< γ <
1 − p22σ

2
2 (t + τ2)

|p12b(t)| . (4.27)

So, if

0 <
|p12b(t + h)|

q − p11(|b(t)| + |b(t + h)| + σ 2
1 (t + τ1))

<
1 − p22σ

2
2 (t + τ2)

|p12b(t)|
or (which is the same)

p2
12

∣∣b(t)b(t + h)
∣∣<

(
1 − p22σ

2
2 (t + τ2)

)

× (
q − p11

(∣∣b(t)
∣∣+ ∣∣b(t + h)

∣∣+ σ 2
1 (t + τ1)

))
, (4.28)

then there exists γ > 0 that satisfies condition (4.27).
Substituting (4.24) into (4.28) and using (4.22), we obtain

β1(t)

4c2
<

(
1 −

(
a

c2
+ q + 1

a

)
δ2(t + τ2)

)(
q − q + 1

a
μ(t)

)
.

From this by (4.22) it follows that

a2

4
β1(t) <

(
ac2 − (

a2 + (q + 1)c2)δ2(t + τ2)
)(

qν(t) − μ(t)
)
.

Rewrite this inequality in the form

c2ν(t)δ2(t + τ2)q
2

− [(
ac2 − (

a2 + c2)δ2(t + τ2)
)
ν(t) + c2μ(t)δ2(t + τ2)

]
q

+ (
ac2 − (

a2 + c2)δ2(t + τ2)
)
μ(t) + a2

4
β1(t) < 0.
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The obtained condition holds for arbitrary q > 0 and each t ≥ 0 if and only if for
each t ≥ 0, the following condition holds:

[(
ac2 − (

a2 + c2)δ2(t + τ2)
)
ν(t) + c2μ(t)δ2(t + τ2)

]2

> c2ν(t)δ2(t + τ2)
[
4
(
ac2 − (

a2 + c2)δ2(t + τ2)
)
μ(t) + a2β1(t)

]

= 4
(
ac2 − (

a2 + c2)δ2(t + τ2)
)
μ(t)c2ν(t)δ2(t + τ2)

+ a2c2ν(t)β1(t)δ2(t + τ2),

or

[(
ac2 − (

a2 + c2)δ2(t + τ2)
)
ν(t) − c2μ(t)δ2(t + τ2)

]2
> a2c2ν(t)β1(t)δ2(t + τ2),

or
[
c2ν(t) − (

c2 + aν(t)
)
δ2(t + τ2)

]2
> c2ν(t)β1(t)δ2(t + τ2). (4.29)

From (4.21) it follows that

δ2(t + τ2) <
c2ν(t)

c2 + aν(t)
.

So, (4.29) can be written in the form

c2ν(t) − (
c2 + aν(t)

)
δ2(t + τ2) > c

√
ν(t)β1(t)δ2(t + τ2)

or
(
c2 + aν(t)

)
δ2(t + τ2) + c

√
ν(t)β1(t)δ2(t + τ2) − c2ν(t) < 0.

From this we obtain

√
δ2(t + τ2) <

c
√

ν(t)(
√

β1(t) + 4(c2 + aν(t)) − √
β1(t))

2(c2 + aν(t))

= 2c
√

ν(t)
√

β1(t) + 4(c2 + aν(t)) + √
β1(t)

,

which is equivalent to (4.21).
Note that in the case b(t) = 0, σi(t) = σi = const, i = 1,2, conditions (4.21) take

the form

δ1 < a, δ2 <
c2(a − δ1)

c2 + a(a − δ1)
,

which immediately follows from (2.56)–(2.57).



Chapter 5
Stability of Systems with Nonlinearities

The idea of the method of investigation that is used below is similar to the method of
the first approximation. Namely, a linear part of the considered differential equation
is interpreted as being undisturbed, and the other part as the disturbance. Assuming
that the undisturbed equation is stable and the nonlinear disturbance in the right-
hand side can be majorized in a certain sense, this method makes it possible to
obtain stability conditions.

5.1 Systems with Nonlinearities in Stochastic Part

5.1.1 Scalar First-Order Differential Equation

Let us consider the scalar differential equation

ẋ(t) = −ax(t) +
∫ ∞

0
x(t − s) dK(s) + σ(t, xt )ẇ(t), t ≥ 0, (5.1)

where

∣
∣σ(t, ϕ)

∣
∣≤

∫ ∞

0

∣
∣ϕ(−s)

∣
∣dR(s), (5.2)

the function K(s) and the nondecreasing function R(s) are functions of bounded
variation such that

k0 =
∫ ∞

0

∣∣dK(s)
∣∣< ∞, R =

∫ ∞

0
dR(s) < ∞. (5.3)
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5.1.1.1 The First Way of Constructing a Lyapunov Functional

We will consider the auxiliary differential equation (2.34) for (5.1) in the form
ẏ(t) = −ay(t), a > 0. Put V1 = x2. Calculating LV1, by (5.2) and (5.3) we have

LV1 = 2x(t)

(
−ax(t) +

∫ ∞

0
x(t − s) dK(s)

)
+ σ 2(t, xt )

≤ −2ax2(t) +
∫ ∞

0

(
x2(t) + x2(t − s)

)∣∣dK(s)
∣∣+ R

∫ ∞

0
x2(t − s) dR(s)

= (−2a + k0)x
2(t) +

∫ ∞

0
x2(t − s)

∣
∣dK(s)

∣
∣+ R

∫ ∞

0
x2(t − s) dR(s).

By the representation (2.35) with D = −2a + k0 and dK1(s) = |dK(s)| +
R dR(s) (all other parameters are zeros) and by Theorem 2.5 we obtain: if

a > k0 + p, p = 1

2
R2, (5.4)

then the trivial solution of (5.1) is asymptotically mean-square stable.

Example 5.1 Consider the scalar differential equation

ẋ(t) = −ax(t) + b

∫ h

0
(h − s)x(t − s) ds + σ(t, xt )ẇ(t), t ≥ 0, (5.5)

which is a particular case of (5.1) with

dK(s) = f (s) ds, f (s) =
{

b(h − s), s ∈ [0, h],
0, s > h.

(5.6)

In this case condition (5.4) takes the form

a > |b|h
2

2
+ p. (5.7)

In Fig. 5.1 the regions of asymptotic mean-square stability for (5.5), given by condi-
tion (5.7), are shown for h = 0.9 and different values of the parameter p: (1) p = 0,
(2) p = 0.5, (3) p = 1, (4) p = 1.5, (5) p = 2, (6) p = 2.5, (7) p = 3, (8) p = 3.5.

5.1.1.2 The Second Way of Constructing a Lyapunov Functional

Put

k =
∫ ∞

0
dK(s), k1 =

∫ ∞

0
s
∣∣dK(s)

∣∣ (5.8)
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Fig. 5.1 Stability regions for (5.5) given by conditions (5.7) for h = 0.9 and different values of p:
(1) p = 0, (2) p = 0.5, (3) p = 1, (4) p = 1.5, (5) p = 2, (6) p = 2.5, (7) p = 3, (8) p = 3.5

and represent (5.1) in the form

ż(xt ) = −(a − k)x(t) + σ(t, xt )ẇ(t),

z(xt ) = x(t) +
∫ ∞

0

∫ t

t−s

x(θ) dθ dK(s).
(5.9)

Note that

∫ ∞

0

∫ t

t−s

x(θ) dθ dK(s) =
∫ ∞

0

∫ s

0
x(t − θ) dθ dK(s)

=
∫ ∞

0
x(t − θ)

∫ ∞

θ

dK(s) dθ

and
∫ ∞

0

∫ ∞

θ

∣∣dK(s)
∣∣dθ =

∫ ∞

0

∫ s

0
dθ
∣∣dK(s)

∣∣= k1.
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By (5.9) and (2.10) we have to suppose that k1 < 1, and by (2.34) we will con-
sider the auxiliary differential equation ẏ(t) = −(a − k)y(t) with the necessary and
sufficient condition a > k for asymptotic stability of the trivial solution.

Put V1 = z2(xt ). Calculating LV1 and using (5.8), (5.9), (5.2), and (5.3), we have

LV1 = −2z(xt )(a − k)x(t) + σ 2(t, xt )

≤ (a − k)

[
−2x2(t) +

∫ ∞

0

∫ t

t−s

(
x2(t) + x2(θ)

)
dθ
∣
∣dK(s)

∣
∣
]

+ R

∫ ∞

0
x2(t − s) dR(s)

= −(a − k)(2 − k1)x
2(t) + (a − k)

∫ ∞

0

∣
∣dK(s)

∣
∣
∫ t

t−s

x2(θ) dθ

+ R

∫ ∞

0
x2(t − s) dR(s).

So, we obtain the representation of type (2.35) with D = −(a − k)(2 − k1), dμ0 =
(a − k)|dK(s)|, n = 1, and dK1(s) = R dR(s). From Theorem 2.5 it follows that if

a > k + p

1 − k1
, k1 < 1, p = 1

2
R2, (5.10)

then the trivial solution of (5.1) is asymptotically mean-square stable.

Example 5.2 In the case (5.6), condition (5.10) takes the form

a > b
h2

2
+ p

(
1 − |b|h

3

6

)−1

, |b|h
3

6
< 1. (5.11)

In Fig. 5.2 the regions of asymptotic mean-square stability for (5.5), given by condi-
tion (5.11) are shown for h = 0.9 and different values of the parameter p: (1) p = 0,
(2) p = 0.1, (3) p = 0.3, (4) p = 0.7, (5) p = 1.2, (6) p = 1.7, (7) p = 2.5,
(8) ph = 3.

5.1.1.3 The Third Way of Constructing a Lyapunov Functional

Let us show that in some particular cases using a special way of LV1 estimation we
can get new stability conditions.

Consider (5.5) and suppose that b ≤ 0. Putting V1 = x2, by (5.5), (5.2), and (5.3)
we obtain
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Fig. 5.2 Stability regions for (5.5) given by conditions (5.11), for h = 0.9 and different values
of p: (1) p = 0, (2) p = 0.1, (3) p = 0.3, (4) p = 0.7, (5) p = 1.2, (6) p = 1.7, (7) p = 2.5,
(8) ph = 3

LV1 = 2x(t)

(
−ax(t) + b

∫ h

0
(h − s)x(t − s) ds

)
+ σ 2(t, xt )

≤ −2ax2(t) − 2|b|x(t)

∫ h

0
(h − s)x(t − s) ds + R

∫ ∞

0
x2(t − s) dR(s).

(5.12)
Choosing V2 in the form

V2 = |b|
∫ h

0

(∫ t

t−s

x(θ) dθ

)2

ds + R

∫ ∞

0

∫ t

t−s

x2(θ) dθ dR(s),

we have

LV2 = 2|b|
∫ h

0

∫ t

t−s

x(θ) dθ
(
x(t) − x(t − s)

)
ds

+ R2x2(t) − R

∫ ∞

0
x2(t − s) dR(s). (5.13)
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Note that
∫ h

0

∫ t

t−s

x(θ) dθ
(
x(t) − x(t − s)

)
ds

=
∫ h

0

∫ s

0
x(t − θ) dθ

(
x(t) − x(t − s)

)
ds

= x(t)

∫ h

0

∫ s

0
x(t − θ) dθ ds −

∫ h

0
x(t − s)

∫ s

0
x(t − θ) dθ ds (5.14)

and
∫ h

0

∫ s

0
x(t − θ) dθ ds =

∫ h

0

∫ h

θ

ds x(t − θ) dθ =
∫ h

0
(h − s)x(t − s) ds. (5.15)

Besides, changing the order of integration, we have

∫ h

0
x(t − s)

∫ s

0
x(t − θ) dθ ds =

∫ h

0
x(t − θ)

∫ h

θ

x(t − s) ds dθ

=
∫ h

0
x(t − s)

∫ h

s

x(t − θ) dθ ds.

Therefore,

2
∫ h

0
x(t − s)

∫ s

0
x(t − θ) dθ ds =

∫ h

0
x(t − s)

∫ s

0
x(t − θ) dθ ds

+
∫ h

0
x(t − s)

∫ h

s

x(t − θ) dθ ds

=
(∫ h

0
x(t − s) ds

)2

≥ 0,

and from (5.13)–(5.15) we obtain

LV2 ≤ R2x2(t)+ 2|b|x(t)

∫ h

0
(h− s)x(t − s) ds −R

∫ ∞

0
x2(t − s) dR(s). (5.16)

As a result, for the functional V = V1 + V2, from (5.12) and (5.16) it follows that

LV ≤ −2(a − p)x2(t), p = 1

2
R2.

So, if

a > p, b ≤ 0, (5.17)

then the trivial solution of (5.5) is asymptotically mean-square stable.
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Fig. 5.3 Stability regions for (5.5) given by conditions (5.18), (5.19), for h = 0.9 and different
values of p: (1) p = 0, (2) p = 0.1, (3) p = 0.3, (4) p = 0.7, (5) p = 1.2, (6) p = 1.7, (7) p = 2.5,
(8) ph = 3

Using (5.7), (5.11), and (5.17), we can get a sufficient condition for asymptotic
mean-square stability of the trivial solution of (5.5) in the following form.

If ph < 3, then

a >

⎧
⎪⎪⎨

⎪⎪⎩

b h2

2 + p, b ≥ 0,

b h2

2 + p(1 + b h3

6 )−1, −2(3 − ph)h−3 ≤ b < 0,

p, b < −2(3 − ph)h−3.

(5.18)

If ph ≥ 3, then

a >

{
b h2

2 + p, b ≥ 0,

p, b < 0.
(5.19)

In Fig. 5.3 the regions of asymptotic mean-square stability for (5.5), given by
conditions (5.18) and (5.19), are shown for h = 0.9 and different values of the pa-
rameter p: (1) p = 0, (2) p = 0.1, (3) p = 0.3, (4) p = 0.7, (5) p = 1.2, (6) p = 1.7,
(7) p = 2.5, (8) ph = 3.
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5.1.2 Scalar Second-Order Differential Equation

Consider the scalar linear second-order differential equation with distributed delays

ẍ(t) = −aẋ(t) −
∫ ∞

0
ẋ(t − s) dK0(s) −

∫ ∞

0
x(t − s) dK1(s)

+ σ(t, xt , ẋt )ẇ(t), x0 = φ, ẋ0 = φ̇. (5.20)

Here Ki(s), i = 0,1, are functions of bounded variation, and the functional
σ(t, ϕ,ψ) satisfies the condition

σ 2(t, ϕ,ψ) ≤
∫ ∞

0
ϕ2(−s) dr1(s) +

∫ ∞

0
ψ2(−s) dr2(s), (5.21)

where ri(s) are nondecreasing functions such that

ri =
∫ ∞

0
dri(s) < ∞, i = 1,2. (5.22)

Let us obtain sufficient conditions for asymptotic mean-square stability of the
trivial solution of (5.20) using the proposed procedure of Lyapunov functionals con-
struction.

Put x1 = x, x2 = ẋ,

αij =
∫ ∞

0
si
∣∣dKj (s)

∣∣, βij =
∫ ∞

0
si dKj (s).

Following the first step of the procedure, represent (5.20) in the form

ż1(t) = x2(t),

ż2(t) = −bx1(t) − ax2(t) + σ(t, xt , ẋt )ẇ(t),
(5.23)

where b = β01, z(t) = (z1(t), z2(t)),

z1(t) = x1(t),

z2(t) = x2(t) +
∫ ∞

0
x1(t − θ) dK0(θ) −

∫ ∞

0

∫ t

t−θ

x1(s) ds dK1(θ).
(5.24)

In this case the auxiliary system has the form

ẏ(t) = Ay(t), y =
(

y1
y2

)
, A =

(
0 1

−b −a

)
. (5.25)

Note that the matrix Lyapunov equation (1.27) with the matrix A from (5.25) and
the matrix Q with the elements q11 = q > 0, q22 = 1, q12 = 0 is equivalent to the
system

2bp12 = q, 2(ap22 − p12) = 1, p11 − ap12 − bp22 = 0 (5.26)
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and has (see Corollary 1.1) the positive definite solution P with elements pij if and
only if a > 0, b > 0. So, the function v(y) = y′Py is a Lyapunov function for (5.25).

We will construct a Lyapunov functional V for (5.23) in the form V = V1 + V2,
where V1 = z′(t)P z(t). Calculating LV1, where L is the generator of (5.23), and
using (5.24) and (5.26), we have

LV1 = 2
(
p11x1(t) + p12z2(t)

)
x2(t)

− 2
(
p12x1(t) + p22z2(t)

)(
bx1(t) + ax2(t)

)+ p22σ
2(t, x1t , x2t )

= −qx2
1(t) − x2

2(t) + p22σ
2(t, x1t , x2t )

− 2bp22

(∫ ∞

0
x1(t)x1(t − θ) dK0(θ) −

∫ ∞

0

∫ t

t−θ

x1(t)x1(s) ds dK1(θ)

)

−
∫ ∞

0
x2(t)x1(t − θ) dK0(θ) +

∫ ∞

0

∫ t

t−θ

x2(t)x1(s) ds dK1(θ).

Putting α = α00 + α11, for some γ > 0, we obtain

LV1 ≤ −qx2
1(t) − x2

2(t) + p22

(∫ ∞

0
x2

1(t − s) dr1(s) +
∫ ∞

0
x2

2(t − s) dr2(s)

)

+ bp22

[∫ ∞

0

(
x2

1(t) + x2
1(t − θ)

)∣∣dK0(θ)
∣∣

+
∫ ∞

0

∫ t

t−θ

(
x2

1(t) + x2
1(s)

)
ds
∣∣dK1(θ)

∣∣
]

+ 1

2

[∫ ∞

0

(
x2

2(t)

γ
+ γ x2

1(t − θ)

)∣∣dK0(θ)
∣∣

+
∫ ∞

0

∫ t

t−θ

(
x2

2(t)

γ
+ γ x2

1(s)

)
ds
∣∣dK1(θ)

∣∣
]

= (−q + αbp22)x
2
1(t) +

(
−1 + α

2γ

)
x2

2(t)

+
∫ ∞

0
x2

1(t − θ)

(
p22 dr1(θ) +

(
bp22 + γ

2

)∣∣dK0(θ)
∣∣
)

+ p22

∫ ∞

0
x2

2(t − s) dr2(s) +
(

bp22 + γ

2

)∫ ∞

0

∫ t

t−θ

x2
1(s) ds

∣∣dK1(θ)
∣∣.

By Theorem 2.5 the stability condition takes the form

(2αb + r1)p22 + αγ

2
< q,

α

2γ
+ p22r2 < 1. (5.27)
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From (5.26) it follows that p22 = (q + b)(2ab)−1. Substituting p22 into (5.27) and
using the condition

2αb + r1

2ab
< 1, (5.28)

we obtain

(
αγ

2
+ αb

a
+ r1

2a

)(
1 − 2αb + r1

2ab

)−1

< q <
2ab

r2

(
1 − α

2γ
− r2

2a

)
. (5.29)

So, if for some γ > 0,

(
αγ

2
+ αb

a
+ r1

2a

)(
1 − 2αb + r1

2ab

)−1

<
2ab

r2

(
1 − α

2γ
− r2

2a

)
, (5.30)

then there exists q > 0 such that inequalities (5.29) hold. From (5.30) it follows that

α

2

(
γ + 2b(a − α) − r1

γ r2

)
<

2b(a − α) − r1

r2
− b.

To minimize the left-hand part of this inequality, put γ =
√

(2b(a − α) − r1)r
−1
2 .

Then we have αγ < γ 2 − b. From this and using the fact that system (5.23)–(5.24)
is a system of neutral type, we obtain

2b(a − α) > r1 + r2

[
b + α2 + α

√
α2 + 4b

2

]
, α < 1. (5.31)

So, if conditions (5.31) hold, then the trivial solution of (5.20) is asymptotically
mean-square stable.

Remark 5.1 Note that instead of the representation (5.23)–(5.24) for z2(t), we can
use some other representations:

ż2(t) = −β01x1(t) − (a + β00)x2(t) + σ 2(t, xt , ẋt )ẇ(t),

z2(t) = x2(t) −
∫ ∞

0

∫ t

t−θ

x1(s) ds dK1(θ) −
∫ ∞

0

∫ t

t−θ

x2(s) ds dK0(θ),

or

ż2(t) = −β01x1(t) − (a − β11)x2(t) + σ 2(t, xt , ẋt )ẇ(t),

z2(t) = x2(t) +
∫ ∞

0
x1(t − θ) dK0(θ) +

∫ ∞

0

∫ t

t−θ

(s − t + θ)x2(s) ds dK1(θ),
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or

ż2(t) = −β01x1(t) − (a + β00 − β11)x2(t) + σ 2(t, xt , ẋt )ẇ(t),

z2(t) = x2(t) −
∫ ∞

0

∫ t

t−θ

x2(s) ds dK0(θ) +
∫ ∞

0

∫ t

t−θ

(s − t + θ)x2(s) ds dK1(θ).

Using these different representations, we can obtain different stability conditions for
asymptotic mean-square stability of the trivial solution of (5.20).

Remark 5.2 Consider some particular cases of condition (5.31).

(1) Let r2 = 0. Then (5.31) coincides with (5.28).
(2) Let dK0(θ) = 0 and dK1(θ) = bδ(θ) dθ . Then α00 = α11 = 0 and (5.20), (5.31)

are respectively

ẍ(t) = −aẋ(t) − bx(t) + σ(t, xt , ẋt )ẇ(t),

2a > r2 + r1

b
, b > 0.

(3) Let dK0(θ) = 0, dK1(θ) = bδ(θ − h)dθ , and σ(t, xt , ẋt ) = σx(t − τ). Then
α00 = 0, α11 = bh, r1 = σ 2, r2 = 0, and (5.20) and the stability conditions
(5.31) respectively take the forms

ẍ(t) = −aẋ(t) − bx(t − h) + σx(t − τ)ẇ(t), (5.32)

a > bh + σ 2

2b
, 0 < bh < 1. (5.33)

Note that condition (3.70) for (5.32) coincides with (5.33), and condition
(3.61) for (5.32) takes the form

a > bh + bh2

√
b

2(2 − bh2)
+ σ 2

2b
, 0 < bh2 < 2. (5.34)

Note also that conditions (5.33)–(5.34) follow from (3.73), (3.72), respectively,
if h1 = 0, h2 = h.

It is clear that if 0 < b < h−1, then condition (5.33) is weaker than (5.34).
But, on the other hand, if h−1 ≤ b < 2h−2, h < 2, then (5.33) cannot be used,
and (5.34) gives some additional stability region. In Fig. 5.4 the regions of
asymptotic mean-square stability for (5.32), given by conditions (5.33)–(5.34),
are shown for σ = 0.7 and different values of the delay h: (1) h = 1, (2) h = 1.2,
(3) h = 1.4.
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Fig. 5.4 Stability regions
for (5.32), given by
conditions (5.33), (5.34) for
σ = 0.7 and different values
of the delay h: (1) h = 1,
(2) h = 1.2, (3) h = 1.4

5.2 Systems with Nonlinearities in Both Deterministic
and Stochastic Parts

Consider the nonlinear scalar differential equation of neutral type

dz(t) = (
b − ax(t)

)
z(t)

(
dt + σ dw(t)

)
,

z(t) = x(t) − cx(t − h),
(5.35)

where a > 0, b > 0, h ≥ 0, |c| < 1, σ are some known constants. Let us investi-
gate asymptotic mean-square stability of the equilibrium point x(t) ≡ x∗ = a−1b

with respect to perturbations of the initial function φ satisfying the following con-
dition:

z(0) = φ(0) − cφ(−h) > 0. (5.36)

Put h = 0. Then (5.35) takes the form

dx(t) = −a
(
x(t) − x∗)x(t)

(
dt + σ dw(t)

)
. (5.37)

Let us show that if

0 < pb < 1, p = σ 2

2
, (5.38)

then the function

v
(
x(t)

)= x(t) − x∗ − x∗ ln
x(t)

x∗ (5.39)

is a Lyapunov function for the auxiliary equation (5.37).
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First at all, note that v(x∗) = 0, and since x − 1 − lnx ≥ 0 for x > 0, we have

v
(
x(t)

)= x∗
(

x(t)

x∗ − 1 − ln
x(t)

x∗

)
≥ 0, x(t) ≥ 0.

Using that ax∗ = b, we obtain

Lv
(
x(t)

) = −a
(
x(t) − x∗)x(t)

(
1 − x∗

x(t)

)
+ pa2(x(t) − x∗)2x2(t)

x∗

x2(t)

= −a(1 − bp)
(
x(t) − x∗)2.

So, by condition (5.38) the function (5.39) is a Lyapunov function for the solution
x∗ of (5.37).

Using the procedure of constructing Lyapunov functionals, we will construct a
Lyapunov functional V for (5.35) in the form V = V1 + V2, where

V1 = v
(
z(t)

)= z(t) − z∗ − z∗ ln
z(t)

z∗ ,

z(t) = x(t) − cx(t − h), z∗ = (1 − c)x∗.

Calculating LV1, by (5.35) and b = ax∗ we have

LV1 = (
b − ax(t)

)
z(t)

(
1 − z∗

z(t)

)
+ p

(
b − ax(t)

)2
z2(t)

z∗

z2(t)

= −a
(
x(t) − x∗)(z(t) − z∗)+ abp(1 − c)

(
x(t) − x∗)2

= −a
(
x(t) − x∗)(x(t) − cx(t − h) − x∗ + cx∗)+ abp(1 − c)

(
x(t) − x∗)2

= −a
[
1 − bp(1 − c)

](
x(t) − x∗)2 + ac

(
x(t) − x∗)(x(t − h) − x∗)

≤ −a
[
1 − bp(1 − c)

](
x(t) − x∗)2 + a|c|

2

[(
x(t) − x∗)2 + (

x(t − h) − x∗)2]

= −a

(
1 − bp(1 − c) − |c|

2

)(
x(t) − x∗)2 + a|c|

2

(
x(t − h) − x∗)2.

Putting

V2 = a|c|
2

∫ t

t−h

(
x(s) − x∗)2 ds,

for the functional V = V1 + V2, we obtain

LV ≤ −a
(
1 − bp(1 − c) − |c|)(x(t) − x∗)2.
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Fig. 5.5 Stability regions for
(5.35) given by conditions
(5.40) for different values
of p: (1) p = 0, (2) p = 0.2,
(3) p = 0.4, (4) p = 0.6,
(5) p = 0.8

From this it follows that if conditions (5.36) and

0 < bp <

{
1+c
1−c

, −1 < c < 0,

1, 0 ≤ c < 1,
(5.40)

hold then the equilibrium point x∗(t) ≡ a−1b of (5.35) is asymptotically mean-
square stable. Note that condition (5.40) does not depend on a and h.

In Fig. 5.5 the stability regions, given by condition (5.40), are shown for different
values of p: (1) p = 0, (2) p = 0.2, (3) p = 0.4, (4) p = 0.6, (5) p = 0.8.

5.3 Stability in Probability of Nonlinear Systems

Consider the nonlinear stochastic differential equation

dx(t) =
(∫ ∞

0
dK0(s) x(t − s) + g0(t, xt )

)
dt

+
m∑

i=1

(∫ ∞

0
dKi(s)x(t − s) + gi(t, xt )

)
dwi(t),

x0 = φ0. (5.41)

Here x(t) ∈ Rn, w1(t), . . . ,wm(t) are the mutually independent scalar Wiener pro-
cesses, Ki(s), i = 0, . . . ,m, are n × n-matrices such that

αi =
∫ ∞

0

∥∥dKi(s)
∥∥< ∞, (5.42)

and ‖A‖ is the operator norm of a matrix A. It is assumed also that the functionals
gi(t, ϕ), i = 0, . . . ,m, satisfy the condition

∣∣gi(t, ϕ)
∣∣≤

∫ ∞

0

∣∣ϕ(−s)
∣∣νi dri(s), ‖ϕ‖0 ≤ δ, νi > 1, (5.43)
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where δ is small enough, ‖ϕ‖0 = sups≤0 |ϕ(s)|, and ri(s) are nondecreasing func-
tions satisfying the condition

ri =
∫ ∞

0
dri(s) < ∞, i = 0, . . . ,m. (5.44)

The generator L of (5.41) has the form

LV (t, xt ) = L0V (t, xt ) + g′
0(t, xt )

∂Vϕ(t, x)

∂x
+ 1

2

m∑

i=1

g′
i (t, xt )

∂2Vϕ(t, x)

∂x2
g′

i (t, xt )

+
m∑

i=1

g′
i (t, xt )

∂2Vϕ(t, x)

∂x2

∫ ∞

0
dKi(s) x(t − s), (5.45)

where

L0V (t, xt ) = ∂Vϕ(t, x)

∂t
+
(∫ ∞

0
dK0(s) x(t − s)

)′
∂Vϕ(t, x)

∂x

+ 1

2

m∑

i=1

(∫ ∞

0
dKi(s) x(t − s)

)′
∂2Vϕ(t, x)

∂x2

∫ ∞

0
dKi(s) x(t − s)

(5.46)

is the generator of the “linear part” of (5.41), i.e., of the linear differential equation

dx(t) =
∫ ∞

0
dK0(s) x(t − s) dt +

m∑

i=1

∫ ∞

0
dKi(s) x(t − s) dwi(t). (5.47)

Theorem 5.1 Let there exist a functional V0(t, ϕ) ∈ D that satisfies conditions
(2.18)–(2.19) for p = 2 and

L0V0(t, ϕ) ≤ −c0
∣∣ϕ(0)

∣∣2,

∣∣∣
∣
∂V 0

ϕ (t, x)

∂x

∣∣∣
∣≤ c1|x| +

∫ ∞

0
dq(τ)

∫ 0

−τ

∣∣ϕ(s)
∣∣ds,

∥∥∥
∥
∂2V 0

ϕ (t, x)

∂x2

∥∥∥
∥≤ c2,

ci > 0, i = 0,1,2, γ =
∫ ∞

0
τ dq(τ) < ∞.

(5.48)

Then the trivial solution of (5.41) is stable in probability.

Proof We will construct a functional V that satisfies the conditions of Theorem 2.2
(for p = 2). The functional V will be constructed in the form V = V0 + V1, where



128 5 Stability of Systems with Nonlinearities

V0 satisfies conditions (5.48). Calculating LV , by (5.45) we have

LV = LV0 + LV1 = L0V0 + LV1 + g′
0(t, xt )

∂V 0
ϕ (t, x)

∂x

+
m∑

i=1

g′
i (t, xt )

∂2V 0
ϕ (t, x)

∂x2

∫ ∞

0
dKi(s) x(t − s)

+ 1

2

m∑

i=1

g′
i (t, xt )

∂2V 0
ϕ (t, x)

∂x2
g′

i (t, xt ). (5.49)

Supposing that |x(s)| ≤ δ for s ≤ t , by inequalities (5.43), (5.48) we estimate the
terms in (5.49). So, we get

∣∣∣
∣g

′
0(t, xt )

∂V 0
ϕ (t, x)

∂x

∣∣∣
∣ ≤

∫ ∞

0

∣∣x(t − s)
∣∣ν0 dr0(s)

∣∣∣
∣
∂V 0

ϕ (t, x)

∂x

∣∣∣
∣

≤ δν0−1
∫ ∞

0

∣∣x(t − s)
∣∣dr0(s)

×
(

c1
∣∣x(t)

∣∣+
∫ ∞

0
dq(τ)

∫ t

t−τ

∣∣x(s)
∣∣ds

)

= c1δ
ν0−1

∫ ∞

0

∣∣x(t − s)
∣∣∣∣x(t)

∣∣dr0(s)

+ δν0−1
∫ ∞

0
dr0(θ)

∫ ∞

0
dq(τ)

∫ t

t−τ

∣
∣x(t − θ)

∣
∣
∣
∣x(s)

∣
∣ds

≤ 1

2
c1δ

ν0−1
∫ ∞

0

(∣∣x(t − s)
∣
∣2 + ∣

∣x(t)
∣
∣2)dr0(s)

+ 1

2
δν0−1

∫ ∞

0
dr0(θ)

∫ ∞

0
dq(τ)

×
∫ t

t−τ

(∣∣x(t − θ)
∣∣2 + ∣∣x(s)

∣∣2)ds

= 1

2
c1δ

ν0−1
(

r0
∣∣x(t)

∣∣2 +
∫ ∞

0

∣∣x(t − s)
∣∣2 dr0(s)

)

+ 1

2
δν0−1

(
γ

∫ ∞

0

∣
∣x(t − θ)

∣
∣2 dr0(θ)

+ r0

∫ ∞

0
dq(τ)

∫ t

t−τ

∣∣x(s)
∣∣2 ds

)
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= 1

2
c1δ

ν0−1r0
∣∣x(t)

∣∣2

+ 1

2
δν0−1

(
(c1 + γ )

∫ ∞

0

∣∣x(t − s)
∣∣2 dr0(s)

+ r0

∫ ∞

0
dq(τ)

∫ t

t−τ

∣∣x(s)
∣∣2 ds

)
. (5.50)

Similarly, we have
∣∣∣∣
∣

m∑

i=1

g′
i (t, xt )

∂2V 0
ϕ (t, x)

∂x2

∫ ∞

0
dKi(s) x(t − s)

∣∣∣∣
∣

≤ c2

m∑

i=1

∫ ∞

0
dri(s)

∣
∣x(t − s)

∣
∣νi

∫ ∞

0

∥
∥dKi(τ )

∥
∥
∣
∣x(t − τ)

∣
∣

≤ c2

2

m∑

i=1

δνi−1
∫ ∞

0
dri(s)

∫ ∞

0

∥∥dKi(τ )
∥∥(∣∣x(t − s)

∣∣2 + ∣∣x(t − τ)
∣∣2)

= c2

2

m∑

i=1

δνi−1
(

αi

∫ ∞

0
dri(s)

∣∣x(t − s)
∣∣2 + βi

∫ ∞

0

∥∥dKi(τ )
∥∥∣∣x(t − τ)

∣∣2
)

(5.51)

and
∣
∣∣∣∣

m∑

i=1

g′
i (t, xt )

∂2V 0
ϕ (t, x)

∂x2
gi(t, xt )

∣
∣∣∣∣

≤ c2

m∑

i=1

∣∣gi(t, xt )
∣∣2

≤ c2

m∑

i=1

(∫ ∞

0
dri(s)

∣∣x(t − s)
∣∣νi

)2

≤ c2

m∑

i=1

δ2(νi−1)ri

∫ ∞

0
dri(s)

∣∣x(t − s)
∣∣2. (5.52)

Let us define the functional V1 as follows:

V1 = 1

2
δν0−1(c1 + γ )

∫ ∞

0
dr0(τ )

∫ t

t−τ

∣
∣x(s)

∣
∣2 ds

+ 1

2
δν0−1r0

∫ ∞

0
dq(τ)

∫ t

t−τ

(s − t + τ)
∣∣x(s)

∣∣2 ds
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+ c2

2

m∑

i=1

δνi−1ri

∫ ∞

0

∥∥dKi(τ )
∥∥
∫ t

t−τ

∣∣x(s)
∣∣2 ds

+ c2

2

m∑

i=1

δνi−1(αi + 2δνi−1ri
)∫ ∞

0
dri(τ )

∫ t

t−τ

∣∣x(s)
∣∣2 ds. (5.53)

It is easy to see that 0 ≤ V1(t, ϕ) ≤ c‖ϕ‖2, c > 0. Therefore, the functional V =
V0 +V1 satisfies conditions (2.18)–(2.19). Calculating LV1 and using (5.48)–(5.53),
we obtain

LV (t, xt ) ≤ −
[

c0 − δν0−1β0

(
c1

2
+ γ

)
− c2

m∑

i=1

δνi−1ri
(
αi + δνi−1ri

)
]
∣∣x(t)

∣∣2.

For small enough δ, the term in the square brackets is positive. Therefore, LV ≤ 0,
and the functional V satisfies the conditions of Theorem 2.2. So, the trivial solution
of (5.41) is stable in probability. The proof is completed. �

Remark 5.3 The asymptotic mean-square stability of the trivial solution of the lin-
ear differential equation (5.47) follows from the existence of the functional V0 that
satisfies the conditions of Theorem 5.1. Therefore, in order to obtain sufficient con-
ditions for stability in probability of the trivial solution of the nonlinear differential
equation (5.41) with the order of nonlinearity higher than one, it is enough to obtain,
by virtue of some Lyapunov functional, sufficient conditions for asymptotical mean-
square stability of the trivial solution of “the linear part” of (5.41), i.e., of (5.47). For
example, it is easy to show [261] that the functional

V0(t, xt ) = ∣∣x(t)
∣∣2 + ν

∣∣∣∣x(t) +
∫ ∞

+0
dK0(τ )

∫ t

t−τ

x(s) ds

∣∣∣∣

2

+ ν

∫ ∞

+0

∣∣∣∣

(∫ ∞

0
dK0(θ)

)′
dK0(τ )

∣∣∣∣

∫ t

t−τ

(s − t + τ)
∣∣x(s)

∣∣2 ds

+
∫ ∞

+0

∣
∣dK0(τ )

∣
∣
∫ t

t−τ

∣
∣x(s)

∣
∣2 ds

+ (ν + 1)

N∑

i=1

∫ ∞

0

∣∣dKi(θ)
∣∣
∫ ∞

0

∣∣dKi(τ )
∣∣
∫ t

t−τ

∣∣x(s)
∣∣2 ds,

ν ≥ 0, satisfies the conditions of Theorem 2.1 if the matrix

Q =
∫ ∞

0
dK0(s) + inf

ν≥0

1

ν + 1

[∫ ∞

+0

(∣∣dK0(s)
∣∣I − dK0(s)

)

+ ν

∫ ∞

+0
τ

∣∣∣∣

(∫ ∞

0
dK0(s)

)′
dK0(τ )

∣∣∣∣I
]

+ 1

2

N∑

i=1

(∫ ∞

0

∣∣dKi(s)
∣∣
)2

I (5.54)
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is a negative definite matrix, i.e., x′Qx ≤ −c|x|2. Here I is the identity matrix, and
c > 0.

So, we obtain the following theorem.

Theorem 5.2 Let conditions (5.42)–(5.44) hold, and the matrix (5.54) be a negative
definite matrix. Then the trivial solution of (5.47) is asymptotically mean-square
stable, and the trivial solution of (5.41) is stable in probability.

Example 5.3 Consider the well-known Volterra population equation

ẋ(t) = ax(t)

(
1 − 1

K

∫ ∞

0
x(t − s) dH(s)

)
, (5.55)

where

a > 0, K > 0, dH(s) ≥ 0,

∫ ∞

0
dH(s) = 1,

∫ ∞

0
s dH(s) < ∞.

Let us assume that the parameter a is susceptible to stochastic perturbations of
the type of white noise ẇ(t). Then (5.55) is transformed to the stochastic integro–
differential equation

ẋ(t) = a
(
1 + σẇ(t)

)
x(t)

(
1 − 1

K

∫ ∞

0
x(t − s) dH(s)

)
. (5.56)

Substituting x(t) = K(1 + y(t)) into (5.56) and keeping only the linear part of the
obtained equation, we get the linearization of (5.56) in the neighborhood of the
steady-state solution x(t) = K

ẏ(t) = −a

∫ ∞

0
y(t − s) dH(s) − aσ

∫ ∞

0
y(t − s) dH(s) ẇ(t). (5.57)

By Theorem 5.2 and (5.54) we obtain that the inequality

min

[
2
∫ ∞

+0
dH(s), a

∫ ∞

+0
s dH(s)

]
+ aσ 2

2
< 1

is a sufficient condition for asymptotic mean-square stability of the trivial solu-
tion of (5.57) and for stability in probability of the steady-state solution x(t) = K

of (5.55).

5.4 Systems with Fractional Nonlinearity

Here a nonlinear differential equation with a fractional nonlinearity is considered,
and it is supposed that this equation has an equilibrium point and is exposed to addi-
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tive stochastic perturbations of the type of white noise that are directly proportional
to the deviation of the system state from the equilibrium point. Stochastic perturba-
tions of such a form were first proposed by the author in [27, 267] and successfully
used later by other researchers (see, for instance, [19, 38, 39, 49, 117, 214, 257]).

The results from the previous paragraph are used below for investigation of sta-
bility in probability of the equilibrium points of a stochastic fractional differential
equation. Numerous graphical illustrations of stability regions and trajectories of
solutions are plotted.

5.4.1 Equilibrium Points

Nonlinear delay differential equation of type ẋ(t) = −ax(t) + f (x(t − τ)) is rather
popular among researchers. See, for example, [101, 183, 248], the famous Nicholson
blowflies equation [99, 102, 224] ẋ(t) = −ax(t)+bx(t −τ)e−γ x(t−τ), the Mackey–
Glass model [190]

ẋ(t) = −ax(t) + bx(t − τ)

1 + xn(t − τ)
.

On the other hand, recently there is a very large interest in studying the behavior of
solutions of nonlinear difference equations with fractional nonlinearity of the type

xn+1 = μ +∑k
j=0 ajxn−j

λ +∑k
j=0 bjxn−j

, n = 0,1, . . . ,

(see [95, 162–164, 232, 278] and a long list of the references therein).
Here, similarly to [232, 278], the stability of equilibrium points of the nonlinear

differential equation with fractional nonlinearity

ẋ(t) = −ax(t) + μ +∑k
j=0 ajx(t − τj )

λ +∑k
j=0 bjx(t − τj )

, t > 0, (5.58)

and the initial condition

x(s) = φ(s), s ∈ [−τ,0], τ = max{τ1, . . . , τk}, (5.59)

is investigated. Here μ, λ, aj , bj , j = 0, . . . , k, τ0 = 0, τj > 0, j > 0, are known
constants.

Put

A =
k∑

j=0

aj , B =
k∑

j=0

bj , (5.60)
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and suppose that (5.58) has an equilibrium point x̂ (not necessarily a positive one).
By (5.58), (5.60), and the assumption

λ + Bx̂ �= 0 (5.61)

the equilibrium point x̂ is defined by the algebraic equation

ax̂ = μ + Ax̂

λ + Bx̂
. (5.62)

If aB �= 0, then by condition (5.61), (5.62) can be transformed to the form

aBx̂2 − (A − aλ)x̂ − μ = 0. (5.63)

Thus, if

(A − aλ)2 + 4aBμ > 0, (5.64)

then (5.58) has two equilibrium points

x̂1 = A − aλ +√
(A − aλ)2 + 4aBμ

2aB
(5.65)

and

x̂2 = A − aλ −√
(A − aλ)2 + 4aBμ

2aB
; (5.66)

if

(A − aλ)2 + 4aBμ = 0, (5.67)

then (5.58) has only one equilibrium point,

x̂ = A − aλ

2aB
. (5.68)

Finally, if

(A − aλ)2 + 4aBμ < 0, (5.69)

then (5.58) has no equilibrium points.

Remark 5.4 Assume that aB �= 0 and μ = 0. If A �= 0 and A �= aλ, then (5.58) has
two equilibrium points,

x̂1 = A − aλ

aB
and x̂2 = 0; (5.70)

if A = 0 or A = aλ, then (5.58) has only one equilibrium point x̂ = 0.
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Remark 5.5 Assume that aB = 0. If A �= aλ, then (5.58) has only one equilibrium
point

x̂ = − μ

A − aλ
.

Remark 5.6 Consider the case μ = B = 0, λ �= 0. If A �= aλ, then (5.58) has only
one equilibrium point x̂ = 0; if A = aλ, then each solution x̂ = const is an equilib-
rium point of (5.58).

5.4.2 Stochastic Perturbations, Centering, and Linearization

Suppose that (5.58) is exposed to stochastic perturbations of the type of white noise
ẇ(t) that are proportional to the deviation of the state x(t) of (5.58) from the equi-
librium point x̂. Then (5.58) takes the form

ẋ(t) = −ax(t) + μ +∑k
j=0 ajx(t − τj )

λ +∑k
i=0 bix(t − τi)

+ σ
(
x(t) − x̂

)
ẇ(t). (5.71)

Note that the equilibrium point x̂ of (5.58) is also an equilibrium point of (5.71).
Putting x(t) = y(t) + x̂ and

γj = aj − abj x̂

λ + Bx̂
, j = 0, . . . , k, (5.72)

we will center (5.71) in the neighborhood of the equilibrium point x̂. From (5.71)–
(5.72) it follows that y(t) satisfies the equation

ẏ(t) = −ay(t) + γ0y(t) +∑k
j=1 γjy(t − τj )

1 +∑k
i=0 bi(λ + Bx̂)−1y(t − τi)

+ σy(t)ẇ(t). (5.73)

It is clear that the stability of the trivial solution of (5.73) is equivalent to the stability
of the equilibrium point of (5.71).

Together with the nonlinear differential equation (5.73), we will consider the
linear part (in a neighborhood of the zero) of (5.73)

ż(t) = −(a − γ0)z(t) +
k∑

j=1

γj z(t − τj ) + σz(t)ẇ(t). (5.74)

Below, the following method for stability investigation is used. Conditions for
asymptotic mean-square stability of the trivial solution of the constructed linear dif-
ferential equation (5.74) were obtained by the procedure of constructing Lyapunov
functionals. Since the order of nonlinearity of (5.73) is higher than one, the obtained
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sufficient conditions for asymptotic mean-square stability at the same time are (The-
orem 5.2) sufficient conditions for stability in probability of the trivial solution of
the nonlinear differential equation (5.73) and therefore for stability in probability of
the equilibrium point of (5.71).

5.4.3 Stability of Equilibrium Points

Note that the differential equation (5.74) is an equation of type (3.29). So, from
(3.31) and (3.33) we obtain two following sufficient conditions for asymptotic
mean-square stability of the trivial solution of (5.74):

a > γ0 +
k∑

j=1

|γj | + p, p = σ 2

2
, (5.75)

and
(

a −
k∑

j=0

γj

)(

1 −
k∑

j=1

|γj |τj

)

> p,

k∑

j=1

|γj |τj < 1. (5.76)

Remark 5.7 If the delays are absent, i.e., τj = 0, j = 0, . . . , k, then condition (5.76)
is not worse than (5.75) that does not depend on delays.

Suppose at first that condition (5.67) holds. In this case, (5.71) has only one
equilibrium point x̂ that is defined by (5.68), and by (5.72), (5.68) we have

k∑

j=0

γj = A − aBx̂

λ + Bx̂
= A − 1

2 (A − aλ)

λ + 1
2a

(A − aλ)
= a.

Thus, the stability condition (5.76) for the equilibrium point (5.68) does not hold.
Moreover,

a =
k∑

j=0

γj ≤ γ0 +
k∑

j=1

|γj |.

Thus, the stability condition (5.75) for equilibrium point (5.68) does not hold too.
Suppose now that condition (5.64) holds. Then (5.71) has two equilibrium points

x̂1 and x̂2 that are defined in (5.65) and (5.66), respectively. Put

S =
√

(A − aλ)2 + 4aBμ, (5.77)

γ
(l)
j = aj − abj x̂l

λ + Bx̂l

, j = 0, . . . , k, l = 1,2. (5.78)
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Corollary 5.1 Assume that condition (5.64) holds and γ
(l)
0 ≥ 0, l = 1,2. Then for

fixed μ and λ, condition (5.75) cannot be true for both equilibrium points x̂1 and x̂2

together.

Proof By (5.75), (5.78), and (5.65), for x̂1, we obtain

1 >
1

a

k∑

j=0

∣
∣γ (1)

j

∣
∣≥ 1

a

∣∣
∣∣∣

k∑

j=0

γ
(1)
j

∣∣
∣∣∣
= 1

a

∣∣
∣∣
A − aBx̂1

λ + Bx̂1

∣∣
∣∣

=
∣∣∣∣
A − 1

2 (A − aλ + S)

aλ + 1
2 (A − aλ + S)

∣∣∣∣=
∣∣∣∣
A + aλ − S

A + aλ + S

∣∣∣∣.

Similarly, for x̂2, we have

1 >
1

a

k∑

j=0

∣∣γ (2)
j

∣∣≥ 1

a

∣∣∣∣∣

k∑

j=0

γ
(2)
j

∣∣∣∣∣
= 1

a

∣∣∣∣
A − aBx̂2

λ + Bx̂2

∣∣∣∣

=
∣∣∣∣
A − 1

2 (A − aλ − S)

aλ + 1
2 (A − aλ − S)

∣∣∣∣=
∣∣∣∣
A + aλ + S

A + aλ − S

∣∣∣∣.

Thus, we obtain two conflicting conditions. The proof is completed. �

Corollary 5.2 Assume that condition (5.64) holds and a �= 0. If

2aS

S + A + aλ

(

1 −
k∑

j=1

∣∣γ (1)
j

∣∣τj

)

> p,

k∑

j=1

∣∣γ (1)
j

∣∣τj < 1, (5.79)

then the equilibrium point x̂ = x̂1 (defined in (5.65)) of (5.71) is stable in probability.
If

2aS

S − A − aλ

(

1 −
k∑

j=1

∣∣γ (2)
j

∣∣τj

)

> p,

k∑

j=1

∣∣γ (2)
j

∣∣τj < 1, (5.80)

then the equilibrium point x̂ = x̂2 (defined in (5.66)) of (5.71) is stable in probability.
Assume now that a = 0. If

A2

Q

(
1 − |A|

Q
τ

)
> p, τ =

k∑

j=1

|aj |τj <
Q

|A| , Q = Bμ − Aλ, (5.81)

then the equilibrium point x̂ = −μA−1 is stable in probability.
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Proof For a �= 0, by (5.76) it is enough to note that, for x̂1,

a −
k∑

j=0

γ
(1)
j = a − A − aBx̂1

λ + Bx̂1
= a − A − 1

2 (A − aλ + S)

λ + 1
2a

(A − aλ + S)
= 2aS

S + A + aλ
,

and, similarly, for x̂2,

a −
k∑

j=0

γ
(2)
j = a − A − aBx̂2

λ + Bx̂2
= a − A − 1

2 (A − aλ − S)

λ + 1
2a

(A − aλ − S)
= 2aS

S − A − aλ
.

For a = 0, by Remark 5.5 from (5.72), (5.76) we obtain

−
k∑

j=0

γj = − A

λ − BμA−1
= A2

Q
,

k∑

j=0

|γj |τj = τ

|λ + B(−μ)A−1| = |A|
Q

τ.

So, (5.76) implies (5.81). The proof is completed. �

Remark 5.8 If τj = 0, j = 1, . . . , k, then conditions (5.79), (5.80) take the forms

2aS

S + A + aλ
> p,

2aS

S − A − aλ
> p, (5.82)

respectively. Moreover, inequalities (5.82) are necessary conditions for implemen-
tation of conditions (5.79), (5.80) with arbitrary τj , j = 1, . . . , k. If a < 0 or
p ≥ 2a > 0, then conditions (5.79), (5.80) cannot be true for the same μ and λ. Re-
ally, if a < 0, then from (5.82) the contradiction follows: 0 < S < A+aλ < −S < 0.
If p ≥ 2a > 0, then from (5.82) another contradiction follows: 0 ≤ −(2a/p−1)S <

A + aλ < (2a/p − 1)S ≤ 0.

Corollary 5.3 Put

q =

⎧
⎪⎪⎨

⎪⎪⎩

p
2a−p

if p < 2a,

p
p−2a

if p > 2a,

+∞ if p = 2a,

(5.83)

assume that a �= 0, S > 0, τj = 0, j = 1, . . . , k, and consider the following four
cases.

Case 1: a > 0, B > 0.

If

p < 2a, μ >

⎧
⎨

⎩

q2(A+aλ)2−(A−aλ)2

4aB
for λ ≥ −A

a
,

A
B

λ for λ < −A
a
,

(5.84)



138 5 Stability of Systems with Nonlinearities

or

p ≥ 2a,
A

B
λ < μ <

q2(A + aλ)2 − (A − aλ)2

4aB
, λ < −A

a
, (5.85)

then the equilibrium point x̂1 is stable in probability.
If

p < 2a, μ >

⎧
⎨

⎩

q2(A+aλ)2−(A−aλ)2

4aB
for λ < −A

a
,

A
B

λ for λ ≥ −A
a
,

(5.86)

or

p ≥ 2a,
A

B
λ < μ <

q2(A + aλ)2 − (A − aλ)2

4aB
, λ ≥ −A

a
, (5.87)

then the equilibrium point x̂2 is stable in probability.

Case 2: a > 0, B < 0.

If

p < 2a, μ <

⎧
⎨

⎩

q2(A+aλ)2−(A−aλ)2

4aB
for λ ≥ −A

a
,

A
B

λ for λ < −A
a
,

(5.88)

or

p ≥ 2a,
A

B
λ > μ >

q2(A + aλ)2 − (A − aλ)2

4aB
, λ < −A

a
, (5.89)

then the equilibrium point x̂1 is stable in probability.
If

p < 2a, μ <

⎧
⎨

⎩

q2(A+aλ)2−(A−aλ)2

4aB
for λ < −A

a
,

A
B

λ for λ ≥ −A
a
,

(5.90)

or

p ≥ 2a,
A

B
λ > μ >

q2(A + aλ)2 − (A − aλ)2

4aB
, λ ≥ −A

a
, (5.91)

then the equilibrium point x̂2 is stable in probability.
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Case 3: a < 0, B > 0.

If

A

B
λ < μ <

q2(A + aλ)2 − (A − aλ)2

4aB
, λ > −A

a
, (5.92)

then the equilibrium point x̂1 is stable in probability.
If

A

B
λ < μ <

q2(A + aλ)2 − (A − aλ)2

4aB
, λ < −A

a
, (5.93)

then the equilibrium point x̂2 is stable in probability.

Case 4: a < 0, B < 0.

If

A

B
λ > μ >

q2(A + aλ)2 − (A − aλ)2

4aB
, λ > −A

a
, (5.94)

then the equilibrium point x̂1 is stable in probability.
If

A

B
λ > μ >

q2(A + aλ)2 − (A − aλ)2

4aB
, λ < −A

a
, (5.95)

then the equilibrium point x̂2 is stable in probability.

Proof It is enough to prove Case 1; the proofs of the others cases are similar.
Consider the equilibrium point x̂1. Assume first that p < 2a. If A + aλ ≥ 0, then

by (5.77) from the first line of (5.84) it follows that S > q(A + aλ). By (5.83) and
τj = 0, j = 1, . . . , k, this inequality coincides with (5.79). If A+ aλ < 0, then from
the second line of (5.84) we have Bμ > Aλ. So, by (5.77) we obtain S > |A + aλ|
and, therefore, S > S + A + aλ > 0. From this and from 2a > p condition (5.79)
with τj = 0, j = 1, . . . , k, follows.

Let now p > 2a. Then, by (5.85), A + aλ < 0 and Bμ > Aλ. Thus, from
(5.77), (5.85) it follows that q|A + aλ| > S > |A + aλ|. From this by (5.83) con-
dition (5.79) with τj = 0, j = 1, . . . , k, follows. Finally, if p = 2a, then (5.85)
is equivalent to Bμ > Aλ and S > |A + aλ|, which implies (5.79) with τj = 0,
j = 1, . . . , k.

Consider the equilibrium point x̂2. Assume first that p < 2a. If A + aλ ≥ 0,
then from the second line of (5.86) it follows that Bμ > Aλ. In view of (5.77), this
means that S > A + aλ, and therefore S > S − A − aλ. From this and from p < 2a

condition (5.80) with τj = 0, j = 1, . . . , k, follows. If A + aλ < 0, then from the
first line of (5.86) we obtain S > q|A + aλ|. From this and from (5.83) condition
(5.80) with τj = 0, j = 1, . . . , k, follows.
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Fig. 5.6 Stability regions for the equilibrium points x̂1 and x̂2 of (5.96) by a = 1, a1 = 1.5,
a2 = −0.5, b1 = 1.2, b2 = 1.8, τ1 = 0.4, τ2 = 0.3, σ = 1.2

Let now p > 2a. Then, by (5.87), A + aλ ≥ 0 and Bμ > Aλ. Thus, from (5.77),
(5.87) it follows that q(A + aλ) > S > A + aλ ≥ 0. From this and from (5.83)
condition (5.80) with τj = 0, j = 1, . . . , k, follows. Finally, if p = 2a, then (5.87)
is equivalent to Bμ > Aλ, and, by (5.77), S > A + aλ, which implies (5.80) with
τj = 0, j = 1, . . . , k. The proof is completed. �

Corollary 5.4 Put τ =∑k
j=1 |aj |τj , Q = Bμ − Aλ and assume that a = 0, AB �=

0, τ < Q|A|−1. If

Aλ

B
+ A2(1 −√

1 − 4pτ |A−1|)
2pB

< μ <
Aλ

B
+ A2(1 +√

1 − 4pτ |A−1|)
2pB

, B > 0,

or

Aλ

B
+ A2(1 +√

1 − 4pτ |A−1|)
2pB

< μ <
Aλ

B
+ A2(1 −√

1 − 4pτ |A−1|)
2pB

, B < 0,

then the equilibrium point x̂ = −μA−1 is stable in probability.
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Fig. 5.7 Stability regions for the equilibrium points x̂1 and x̂2 of (5.96) by a = 1, a1 = 1.5,
a2 = −0.5, b1 = 1.2, b2 = 1.8, τ1 = 0.15, τ2 = 0.01, σ = 2.2

Proof It is enough to note that the given conditions are the solution of the inequality

pQ2 − A2Q + A2|A|τ < 0, where Q = Bμ − Aλ > 0,

which is equivalent to (5.81). �

5.4.4 Numerical Analysis

Below, for numerical simulation of the solutions of the equations of type (5.71),
we use difference analogues of the considered equations [278] and the algorithm of
numerical simulation of the Wiener process trajectories (Sect. 2.1.1).

Example 5.4 Consider the differential equation

ẋ(t) = −ax(t) + μ + a1x(t − τ1) + a2x(t − τ2)

λ + b1x(t − τ1) + b2x(t − τ2)
+ σ

(
x(t) − x̂

)
ẇ(t), (5.96)

which is an equation of type (5.71) with k = 2, a0 = b0 = 0.
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Fig. 5.8 Stability regions for the equilibrium points x̂1 and x̂2 of (5.96) by a = 1, a1 = −1.5,
a2 = −0.5, b1 = −1.2, b2 = −1.8, τ1 = 0.3, τ2 = 0.4, σ = 1.1

Case 1. Put a = 1, a1 = 1.5, a2 = −0.5, b1 = 1.2, b2 = 1.8, τ1 = 0.4, τ2 = 0.3,
σ = 1.2. Thus, a > 0, B = 1.2 + 1.8 = 3 > 0, p = 0.72 < 2a = 2, A = 1.5 − 0.5 =
1 > 0.

In Fig. 5.6 the regions of stability in probability for the equilibrium points x̂1

and x̂2 are shown in the space of parameters (μ,λ): in the white region there are
no equilibrium points; in the yellow region there are possible unstable equilibrium
points; red, cyan, magenta, and grey regions are the regions for stability in proba-
bility of the equilibrium point x̂ = x̂1 given by condition (5.75) (red and cyan) and
condition (5.79) (cyan, magenta, and grey); blue, green, and grey regions are the re-
gions for stability in probability of the equilibrium point x̂ = x̂2 given by condition
(5.75) (blue) and condition (5.80) (blue, green, and grey); in the grey region both
equilibrium points x̂ = x̂1 and x̂ = x̂2 are stable in probability. Curves 1 and 2 are
the bounds of the equilibrium points x̂1 and x̂2 stability regions, respectively, given
by conditions (5.84) and (5.86) for the case τ1 = τ2 = 0. One can see that the sta-
bility regions obtained for positive delays are placed inside of the regions with zero
delays.

Put now τ1 = 0.15, τ2 = 0.01, σ = 2.2. Then p = 2.42 > 2a = 2, and condition
(5.75) does not hold. Appropriate stability regions obtained with the same values
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Fig. 5.9 Stability regions for the equilibrium points x̂1 and x̂2 of (5.96) by a = 1, a1 = −1.5,
a2 = −0.5, b1 = −1.2, b2 = −1.8, τ1 = 0.02, τ2 = 0.03, σ = 2.1

of all other parameters by conditions (5.85), (5.87) for the equilibrium points x̂1

(magenta) and x̂2 (green) are shown in Fig. 5.7. As it was shown also in Fig. 5.6,
the stability regions obtained for positive delays are placed inside the regions with
zero delays (bounds 1 and 2).

Case 2. Put a = 1, a1 = −1.5, a2 = −0.5, b1 = −1.2, b2 = −1.8, τ1 = 0.3,
τ2 = 0.4, σ = 1.1. Thus, a > 0, B = −1.2 − 1.8 = −3 < 0, p = 0.605 < 2a, A =
−1.5 − 0.5 = −2 < 0.

In Fig. 5.8 the regions of stability in probability for the equilibrium points x̂1

and x̂2 are shown in the space of parameters (μ,λ): in the white region there are
no equilibrium points; in the yellow region there are possible unstable equilibrium
points; the red, cyan, magenta, and grey regions are the regions for stability in prob-
ability of the equilibrium point x̂ = x̂1 given by condition (5.75) (red and cyan) and
condition (5.79) (cyan, magenta, and grey); blue, brown, green, and grey regions
are the regions for stability in probability of the equilibrium point x̂ = x̂2 given by
condition (5.75) (blue, brown) and condition (5.80) (blue, brown, green, and grey);
in the grey region both equilibrium points x̂ = x̂1 and x̂ = x̂2 are stable in proba-
bility. Curves 1 and 2 are the bounds of the equilibrium points x̂1 and x̂2 stability
regions, respectively, given by conditions (5.88) and (5.90) for the case τ1 = τ2 = 0.
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Fig. 5.10 Stability regions for the equilibrium points x̂1 and x̂2 of (5.96) by a = −1.2, a1 = 1.5,
a2 = 0.5, b1 = 1.2, b2 = 1.8, τ1 = 0.04, τ2 = 0.03, σ = 2

One can see that the stability regions obtained for positive delays are placed inside
the regions with zero delays.

Put now τ1 = 0.02, τ2 = 0.03, σ = 2.1. Then p = 2.205 > 2a = 2, and condition
(5.75) does not hold. Appropriate stability regions obtained with the same values
of all other parameters by conditions (5.89), (5.91) for the equilibrium points x̂1

(magenta) and x̂2 (green) are shown in Fig. 5.9. As it was shown also in Fig. 5.8,
the stability regions obtained for positive delays are placed inside the regions with
zero delays (bounds 1 and 2).

Case 3. Put a = −1.2, a1 = 1.5, a2 = 0.5, b1 = 1.2, b2 = 1.8, τ1 = 0.04, τ2 =
0.03, σ = 2. Thus, a < 0, B = 1.2 + 1.8 = 3 > 0, A = 1.5 + 0.5 = 2 > 0, and
condition (5.75) does not hold. In Fig. 5.10 the regions of stability in probability for
the equilibrium points x̂1 and x̂2 are shown in the space of parameters (μ,λ): in the
white region there are no equilibrium points; in the yellow region there are possible
unstable equilibrium points; magenta region is the region for stability in probability
of the equilibrium point x̂1 given by condition (5.79), green region is the region for
stability in probability of the equilibrium point x̂2 given by the condition (5.80).
Curves 1 and 2 are the bounds of the equilibrium points x̂1 and x̂2 stability regions,
respectively, given by conditions (5.92) and (5.93) for the case τ1 = τ2 = 0.
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Fig. 5.11 Stability regions for the equilibrium points x̂1 and x̂2 of (5.96) by a = −1, a1 = −1.5,
a2 = −0.5, b1 = −1.2, b2 = −1.8, τ1 = 0.04, τ2 = 0.05, σ = 1.7

One can see that the stability regions obtained for positive delays are placed
inside the regions with zero delays.

Case 4. Put a = −1, a1 = −1.5, a2 = −0.5, b1 = −1.2, b2 = −1.8, τ1 = 0.04,
τ2 = 0.05, σ = 1.7. Thus, a < 0, B = −1.2 − 1.8 = −3 < 0, A = −1.5 − 0.5 =
−2 < 0. Appropriate regions of stability in probability for the equilibrium points
x̂1 and x̂2 obtained by conditions (5.79), (5.80), (5.94), and (5.95) are shown in
Fig. 5.11.

Example 5.5 Consider the differential equation

ẋ(t) = −ax(t) + μ + a0x(t) + a1x(t − τ1)

λ + b0x(t) + b1x(t − τ1)
+ σ

(
x(t) − x̂

)
ẇ(t), (5.97)

which is a particular case of (5.71) with k = 1. The linear part of type (5.74) for this
equation has the form

ż(t) = γ̂0z(t) + γ1z(t − τ1) + σz(t)ẇ(t), (5.98)
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Fig. 5.12 Stability regions for the equilibrium point x̂1 = 2.696 of (5.97) by a = 1, a0 = −0.4,
b0 = 0.2, a1 = 1.5, b1 = 1.5, τ1 = 0.4, σ = 1.3

where

γ̂0 = γ0 − a, γj = aj − abj x̂

λ + Bx̂
, j = 0,1, B = b0 + b1.

By Lemma 2.1 a necessary and sufficient condition for asymptotic mean-square
stability of the trivial solution of (5.98) is

γ̂0 + γ1 < 0, G−1 > p, (5.99)

where

G =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ1q
−1 sin(qτ)−1

γ̂0+γ1 cos(qτ),
γ1 + |γ̂0| < 0, q =

√
γ 2

1 − γ̂ 2
0 ,

1+|γ̂0|τ
2|γ̂0| , γ1 = γ̂0 < 0,

γ1q
−1 sinh(qτ)−1

γ̂0+γ1 cosh(qτ)
, γ̂0 + |γ1| < 0, q =

√
γ̂ 2

0 − γ 2
1 .
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Fig. 5.13 Stability regions for the equilibrium point x̂2 = −0.873 of (5.97) by a = 1, a0 = −0.4,
b0 = 0.2, a1 = 1.5, b1 = 1.5, τ1 = 0.4, σ = 1.3

Note that if, in (5.98), τ1 = 0, then the sufficient condition (5.76) for asymptotic
mean-square stability of the trivial solution of (5.98) takes the form a > γ0 +γ1 +p

and coincides with the necessary and sufficient condition (5.99) for asymptotic
mean-square stability of the trivial solution of (5.98). Let us show that for small
enough delay, the sufficient stability conditions (5.75) and (5.76) together are suffi-
ciently close to the necessary and sufficient stability condition (5.99).

In Fig. 5.12 stability regions for the equilibrium point x̂1 given by condition
(5.75) (green and magenta), by condition (5.79) (magenta and cyan), and by condi-
tion (5.99) (grey, green, magenta, and cyan) are shown for the following values of
the parameters:

a = 1, a0 = −0.4, b0 = 0.2, a1 = b1 = 1.5, τ1 = 0.4, σ = 1.3.

(5.100)
One can see that both stability conditions (5.75) and (5.79) complement each other
and both these conditions together give the region of stability (green, magenta, and
cyan) that is sufficiently close to the exact stability region obtained by the necessary
and sufficient stability condition (5.99).

In Fig. 5.13 the similar picture for the same values of parameters (5.100) is shown
for the equilibrium point x̂2: both stability conditions (5.75) (magenta and green
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Fig. 5.14 200 trajectories of solutions of (5.98) at the point A(4,−2)

(small region placed between magenta and bound 2)) and (5.79) (magenta and cyan)
complement each other, and both these conditions together give the region of stabil-
ity (green, magenta, and cyan) that is sufficiently close to the exact stability region
(green, magenta, cyan, and grey) obtained by the necessary and sufficient stability
condition (5.99).

Consider the point A with μ = 4 and λ = −2. This point belongs to stabil-
ity regions for both equilibrium points x̂1 = 2.696 (Fig. 5.12) and x̂2 = −0.873
(Fig. 5.13). At the point A(4,−2) the trivial solution of (5.98) is asymptotically
mean-square stable. Thus, at the point A, the trajectories of all solutions of (5.97)
with different given initial functions and the values of the parameters (5.100) con-
verge to zero as t → ∞. 200 such trajectories are shown in Fig. 5.14 by the initial
functions (s ≤ 0)

x(s) = x̂1 + j

33
cos

(
10

7
s

)
− 8.5, j = 0,2,4, . . . ,198,

x(s) = 25

28
x̂1 − j

33
cos

(
10

7
s

)
+ 3, j = 1,3,5, . . . ,199.
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Fig. 5.15 100 trajectories of solutions of (5.97) at the point A(4,−2) for the stable equilibrium
point x̂1 = 2.696

In Fig. 5.15 trajectories of solutions of the nonlinear equation (5.97) are shown
at the point A for the values of the parameters (5.100). At the point A the equilib-
rium point x̂1 = 2.696 of (5.97) is stable in probability. Thus, at the point A, 50
trajectories of solutions of (5.97) with the initial functions

x(s) = x̂1 − 2j

33
cos

(
10

7
s

)
+ 1.5, s ≤ 0, j = 1,2, . . . ,50,

which belong to some neighborhood of the equilibrium point x̂1, converge to x̂1 as
t → ∞ (magenta trajectories), but other 50 trajectories of solution with one initial
function

x(s) = x̂1 + 6

11
cos

(
10

7
s

)
− 2.2, s ≤ 0,

which is placed out of the neighborhood of x̂1, fill the whole space (green trajecto-
ries). Only some of these trajectories, which come to a neighborhood of x̂1, converge
to x̂1 as t → ∞.
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Fig. 5.16 100 trajectories of solutions of (5.97) at the point A(4,−2) for the stable equilibrium
point x̂2 = −0.873

Figure 5.16 is similar to Fig. 5.15, but it shows 100 trajectories for the equilib-
rium point x̂2 = −0.873: 50 trajectories (magenta) with the initial functions

x(s) = x̂2 − j

15
cos

(
5

3
s

)
+ 2.1, s ≤ 0, j = 1,2, . . . ,50,

which belong to a small enough neighborhood of the equilibrium point x̂2, converge
to this equilibrium, and 50 trajectories (green) with one initial function

x(s) = x̂2 + 4

11
cos(2s) + 1.8, s ≤ 0,

which is placed out of this neighborhood of x̂2, fill the whole space.
Consider now the point B with μ = −2 and λ = −4 (Fig. 5.12). This point does

not belong to stability region for the equilibrium point x̂1 = 2.536, and thus, at the
point B(−2,−4) the equilibrium point x̂1 is unstable. In Fig. 5.17 five hundred
trajectories of the solution of (5.97) are shown with the initial function

x(s) = x̂1 + 0.015 sin

(
10

3
s

)
, s ≤ 0,



5.4 Systems with Fractional Nonlinearity 151

Fig. 5.17 500 trajectories of solutions of (5.97) at the point B(−2,−4) for the unstable equilib-
rium point x̂1 = 2.536

which is placed close enough to the equilibrium point x̂1. One can see that the
trajectories do not converge to x̂1 and fill the whole space.

In Fig. 5.18 a similar picture is shown for the unstable equilibrium point x̂2 = −2
at the point C with μ = 4 and λ = 2.5 (Fig. 5.13) with the initial function

x(s) = x̂2 − 0.025 cos

(
5

3
s

)
, s ≤ 0.

Note that simulations of the solutions of (5.97) and (5.98) were obtained via its
difference analogues respectively in the forms

xi+1 = (1 − a�)xi + μ + a0xi + a1xi−m

λ + b0xi + b1xi−m

� + σ(xi − x̂)(wi+1 − wi)

and

zi+1 = (1 + γ̂0�)zi + γ1�zi−m + σzi(wi+1 − wi).

Here � is the step of discretization (that was chosen as � = 0.01), xi = x(i�),
zi = z(i�), wi = w(i�), m = τ1/�, and the trajectories of the Wiener process are
simulated by the algorithm described in Sect. 2.1.1.
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Fig. 5.18 500 trajectories of solutions of (5.97) at the point C(4,2.5) for the unstable equilibrium
point x̂2 = −2



Chapter 6
Matrix Riccati Equations in Stability of Linear
Stochastic Differential Equations with Delays

Here asymptotic mean-square stability conditions are obtained in terms of the exis-
tence of positive definite solutions of some matrix Riccati equations. Using the pro-
cedure of constructing Lyapunov functionals, we will obtain different matrix Riccati
equations for one stochastic differential equation with delays. If a considered dif-
ferential equation does not contain delays, then all these matrix Riccati equations
coincide with a unique linear matrix equation.

Consider first the stochastic linear differential equation without delay

dx(t) = Ax(t) dt + Cx(t) dw(t). (6.1)

Here A and C are constant n×n-matrices, x(t) ∈ Rn, and w(t) is the scalar standard
Wiener process.

Similarly to Theorem 1.3, the necessary and sufficient condition for asymptotic
mean-square stability of the zero solution of (6.1) can be formulated in terms of the
existence of a positive definite solution P of the linear matrix equation

A′P + PA + C′PC = −Q (6.2)

for any positive definite matrix Q. But for differential equations with delays, the
situation is more complicated.

6.1 Equations with Constant Delays

6.1.1 One Delay in Deterministic Part and One Delay in Stochastic
Part of Equation

Below two different ways of Lyapunov functionals construction are considered.

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional
Differential Equations, DOI 10.1007/978-3-319-00101-2_6,
© Springer International Publishing Switzerland 2013

153

http://dx.doi.org/10.1007/978-3-319-00101-2_6


154 6 Matrix Riccati Equations in Stability of Linear Stochastic Differential

6.1.1.1 The First Way of Constructing a Lyapunov Functional

Consider the stochastic linear differential equation

dx(t) = (
Ax(t) + Bx(t − h)

)
dt + Cx(t − τ) dw(t), t ≥ 0,

x(s) = φ(s), s ≤ 0.
(6.3)

Formal application of the quadratic Lyapunov functional for (6.3) leads to a system
of matrix ordinary and partial differential equations [134]. The approach, used in
this chapter, gives Lyapunov functionals defined by the solutions of some nonlinear
(Riccati-type) matrix equations.

Let L be the generator of (6.3). Consider the functional V1(x) = x′Px. Calculat-
ing LV1, we get

LV1 = (
Ax(t) + Bx(t − h)

)′
Px(t) + x′(t)P

(
Ax(t) + Bx(t − h)

)

+ x′(t − τ)C′PCx(t − τ)

= x′(t)
(
A′P + PA

)
x(t) + x′(t − τ)C′PCx(t − τ)

+ x′(t − h)B ′Px(t) + x′(t)PB(t − h).

Using Lemma 2.3 for a = x(t − h), b = B ′Px(t), we have

LV1 ≤ x′(t)
(
A′P + PA + PBR−1B ′P

)
x(t)

+ x′(t − h)Rx(t − h) + x′(t − τ)C′PCx(t − τ), (6.4)

which is the representation of type (2.35), where D(t) = A′P +PA+PBR−1B ′P ,
k = 2, Q1(t) = R, Q2(t) = C′PC, τ1(t) = h, τ2(t) = τ , and all other parameters
are zeros.

Thus, by Theorem 2.5 we obtain the following theorem.

Theorem 6.1 Suppose that for some positive definite matrices Q and R, there exists
a positive definite solution P of the matrix Riccati equation

A′P + PA + C′PC + R + PBR−1B ′P = −Q. (6.5)

Then the trivial solution of (6.3) is asymptotically mean-square stable.

Remark 6.1 Using Lemma 2.3 for a = x(t) and b = PBx(t − h), instead of (6.4),
we obtain the inequality

LV1 ≤ x′(t)
(
A′P + PA + R

)
x(t)

+ x′(t − h)B ′PR−1PBx(t − h) + x′(t − τ)C′PCx(t − τ).

Thus, in Theorem 6.1, instead of (6.5), we can use the equation

A′P + PA + C′PC + R + B ′PR−1PB = −Q. (6.6)
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Example 6.1 In the scalar case a positive solution of (6.5) (or (6.6)) exists if and
only if

A + |B| + 1

2
C2 < 0.

Example 6.2 Let us show that using in the matrix Riccati equations (6.5) and (6.6)
different positive definite matrices Q and R we can get positive definite solutions P

by different conditions on the parameters of the considered equation. Consider, for
instance, the two-dimensional equation (6.3) with

A =
(−a1 0

0 −a2

)
, B =

(
b1 b2

−b2 b1

)
, C =

(
c1 0
0 c2

)
.

Let I be the 2 × 2 identity matrix, Q = qI , R = rI , q, r > 0. It is easy to get that a
solution P of the matrix Riccati equation (6.5) with the elements p11 > 0, p22 > 0,
p12 = 0 is defined by the equation

1

r

(
b2

1 + b2
2

)
p2

ii − 2

(
ai − 1

2
c2
i

)
pii + r + q = 0, i = 1,2.

This equation has a positive root pii for arbitrary positive q and r if and only if

ai >

√
b2

1 + b2
2 + 1

2
c2
i , i = 1,2.

Let us obtain from the matrix Riccati equation (6.6) a positive definite solution
P if the obtained condition does not hold. Put, for instance, Q = I , R = P ,

b1 = 0, a1 = 3

2
+ 1

2
c2

1 >

√
b2

1 + b2
2 + 1

2
c2

1 = 1 + 1

2
c2

1,

b2 = 1, a2 = 7

8
+ 1

2
c2

2 <

√
b2

1 + b2
2 + 1

2
c2

2 = 1 + 1

2
c2

2.

It is easy to check that in this case the matrix Riccati equation (6.6) has a positive
definite solution P with the elements p11 = 3.5, p22 = 6, p12 = 0.

6.1.1.2 The Second Way of Constructing a Lyapunov Functional

Consider now another representation of the initial equation leading to other matrix
Riccati equations.

Let ‖B‖ be the operator norm of a matrix B . Rewrite now (6.3) as follows:

ż(t) = (A + B)x(t) + Cx(t − τ)ẇ(t),

z(t) = x(t) + B

∫ t

t−h

x(s) ds,
(6.7)
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and following the procedure of constructing Lyapunov functionals, consider the
functional V1 = z′(t)P z(t). Calculating LV1, by (6.7) we get

LV1 = z′(t)P (A + B)x(t) + x′(t)(A + B)′Pz(t) + x′(t − τ)C′PCx(t − τ)

= x′(t)
[
P(A + B) + (A + B)′P

]
x(t) + x′(t − τ)C′PCx(t − τ)

+
∫ t

t−h

[
x′(t)(A + B)′PBx(s) + x′(s)B ′P(A + B)x(t)

]
ds.

Using Lemma 2.3 for a = x(s) and b = B ′P(A + B)x(t), we have

∫ t

t−h

[
x′(t)(A + B)′PBx(s) + x′(s)B ′P(A + B)x(t)

]
ds

≤ hx′t (A + B)′PBR−1B ′P(A + B)x(t) +
∫ t

t−h

x′(s)Rx(s) ds. (6.8)

Thus,

LV1 ≤ x′(t)
[
(A + B)′P + P(A + B) + h(A + B)′PBR−1B ′P(A + B)

]
x(t)

+
∫ t

t−h

x′(s)Rx(s) ds + x′(t − τ)C′PCx(t − τ).

So, we get the representation of type (2.35), where

D(t) = (A + B)′P + P(A + B) + h(A + B)′PBR−1B ′P(A + B),

k = 1, Q1(t) = C′PC, τ1(t) = τ,

m = 0, dμ0(s) = δ(s − h)ds, R0 = R,

and all other parameters are zeros. By Theorem 2.5 we obtain the following:

Theorem 6.2 Suppose that the inequality h‖B‖ < 1 holds and that, for some sym-
metric matrices Q > 0 and R > 0, there exists a positive definite solution P of the
matrix Riccati equation

(A + B)′P + P(A + B) + C′PC

+ h
[
R + (A + B)′PBR−1B ′P(A + B)

]= −Q. (6.9)

Then the trivial solution of (6.3) is asymptotically mean-square stable.

Remark 6.2 Using Lemma 2.3 for a = (A + B)x(t) and b = PBx(s), instead
of (6.8), we obtain the inequality
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∫ t

t−h

[
x′(t)(A + B)′PBx(s) + x′(s)B ′P(A + B)x(t)

]
ds

≤ hx′(t)(A + B)′R(A + B)x(t) +
∫ t

t−h

x′(s)B ′PR−1PBx(s) ds.

So, in Theorem 6.2, in place of (6.9), we can use the equation

(A + B)′P + P(A + B) + C′PC

+ h
[
(A + B)′R(A + B) + B ′PR−1PB

]= −Q. (6.10)

Example 6.3 In the scalar case a positive solution of (6.9) (or (6.10)) for arbitrary
positive Q and R exists if and only if

(A + B)
(
1 − h|B|)+ 1

2
C2 < 0, h|B| < 1.

6.1.2 Several Delays in Deterministic Part of Equation

Consider now the more general linear stochastic differential equation

ẋ(t) = Ax(t) +
m∑

i=1

Bix(t − hi) + Cx(t − τ)ẇ(t). (6.11)

To construct a Lyapunov functional for (6.11), let us use both previous representa-
tions of the initial equation. Namely, represent (6.11) in the form

ż(t) = (A + B)x(t) +
m∑

i=m0+1

Bix(t − hi) + Cx(t − τ)ẇ(t),

z(t) = x(t) +
m0∑

j=1

Bj

∫ t

t−hj

x(s) ds, B =
m0∑

j=1

Bj , 0 ≤ m0 ≤ m.

Following the procedure of constructing Lyapunov functionals, put V1 = z′(t)P z(t).
In this case,

LV1 =
(

(A + B)x(t) +
m∑

i=m0+1

Bix(t − hi)

)′
Pz(t)

+ z′(t)P
(

(A + B)x(t) +
m∑

i=m0+1

Bix(t − hi)

)

+ x′(t − τ)C′PCx(t − τ)

= x′(t)
[
(A + B)′P + P(A + B)

]
x(t) + x′(t − τ)C′PCx(t − τ)
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+
m∑

i=m0+1

[
x′(t − hi)B

′
iP x(t) + x′(t)PBix(t − hi)

]

+
m0∑

j=1

∫ t

t−hj

[
x′(t)(A + B)′PBjx(s) + x′(s)B ′

jP (A + B)x(t)
]
ds

+
m∑

i=m0+1

m0∑

j=1

∫ t

t−hj

[
x′(t − hj )B

′
iPBjx(s) + x′(s)B ′

jPBix(t − hi)
]
ds.

Using Lemma 2.3, we obtain that for some Ri > 0, i = m0 + 1, . . . ,m,

x′(t − hi)B
′
iP x(t) + x′(t)PBix(t − hi)

≤ x′(t)PBiR
−1
i B ′

iP x(t) + x′(t − hi)Rix(t − hi), (6.12)

for some Gj > 0, j = 1, . . . ,m0,

x′(t)(A + B)′PBjx(s) + x′(s)B ′
jP (A + B)x(t)

≤ x′(t)(A + B)′PBjG
−1
j B ′

jP (A + B)x(t) + x′(s)Gjx(s), (6.13)

and, for some Sij > 0, i = m0 + 1, . . . ,m, j = 1, . . . ,m0,

x′(t − hi)B
′
iPBjx(s) + x′(s)B ′

jPBix(t − hi)

≤ x′(t − hi)B
′
iPBjS

−1
ij B ′

jPB ′
ix(t − hi) + x′(s)Sij x(s). (6.14)

By inequalities (6.12)–(6.14) we have

LV1 ≤ x′(t)
[

(A + B)′P + P(A + B) +
m∑

i=m0+1

PBiR
−1
i B ′

iP

+
m∑

j=1

hj (A + B)′PBjG
−1
j B ′

jP (A + B)

]

x(t) + x′(t − τ)C′PCx(t − τ)

+
m∑

i=m0+1

x′(t − hi)Rix(t − hi) +
m0∑

j=1

∫ t

t−hj

x′(s)Gjx(s) ds

+
m∑

i=m0+1

m0∑

j=1

[
hjx

′(t − hi)B
′
iPBjS

−1
ij B ′

jPBix(t − hi)

+
∫ t

t−hj

x′(s)Sij x(s) ds

]
.

Using the representation (2.35), similarly to Theorem 6.2, we obtain the follow-
ing theorem.
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Theorem 6.3 Suppose that, for some m0 = 0,1, . . . ,m, the inequality
∑m0

j=1 hj‖Bj‖
< 1 holds and that, for some matrices Ri > 0, Gj > 0, Sij > 0, and Q > 0, there
exists a positive definite solution P of the matrix Riccati equation

(A + B)′P + P(A + B) + C′PC +
m∑

i=m0+1

(
Ri + PBiR

−1
i B ′

iP
)

+
m0∑

j=1

hj

[
Gj + (A + B)′PBjG

−1
j B ′

jP (A + B)
]

+
m∑

i=m0+1

m0∑

j=1

hj

(
Sij + B ′

iPBjS
−1
ij B ′

jPBi

)= −Q, (6.15)

where

B =
m0∑

j=1

Bj , 0 ≤ m0 ≤ m.

Then the trivial solution of (6.11) is asymptotically mean-square stable.

Remark 6.3 Similarly to inequalities (6.12)–(6.14), we can use, for instance, the
inequalities

x′(t − hi)B
′
iP x(t) + x′(t)PBix(t − hi)

≤ x′(t − hi)B
′
iPR−1

i PBix(t − hi) + x′(t)Rix(t), (6.16)

x′(t)(A + B)′PBjx(s) + x′(s)B ′
jP (A + B)x(t)

≤ x′(s)B ′
jP (A + B)G−1

j (A + B)′PBjx(s) + x′(t)Gjx(t), (6.17)

x′(t − hi)B
′
iPBjx(s) + x′(s)B ′

jPBix(t − hi)

≤ x′(s)B ′
jPBiS

−1
ij B ′

iPBjx(s) + x′(t − hi)Sij x(t − hi). (6.18)

Using different combinations of inequalities (6.12)–(6.14) and (6.16)–(6.18) and
different representations of type (2.35) in place of (6.15), we can use one from
other eight different matrix Riccati equations. For example, using in place of all
inequalities (6.12)–(6.14) inequalities (6.16)–(6.18) we obtain the equation

(A + B)′P + P(A + B) + C′PC +
m∑

i=m0+1

(
Ri + B ′

iPR−1
i PBi

)

+
m0∑

j=1

hj

[
Gj + B ′

jP (A + B)G−1
j (A + B)′PBj

]
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+
m∑

i=m0+1

m0∑

j=1

hj

(
Sij + B ′

jPBiS
−1
ij B ′

iPBj

)= −Q.

Using by virtue of Lemma 2.3 other inequalities of type (6.12)–(6.14) or (6.16)–
(6.18), we will obtain other matrix Riccati equations for the initial equation (6.11).

Remark 6.4 It is easy to see that representing (6.11) in the form

ż(t) = (A + B)x(t) +
m0∑

i=1

Bix(t − hi) + Cx(t − τ)ẇ(t),

z(t) = x(t) +
m∑

j=m0+1

Bj

∫ t

t−hj

x(s)ds, B =
m∑

j=m0+1

Bj , 0 ≤ m0 ≤ m,

we obtain a new modification of Theorem 6.3 after replacement of all sums
∑m0

j=1

by
∑m

j=m0+1 and of all sums
∑m

i=m0+1 by
∑m0

i=1. Using other combinations of
the summands for representations of (6.11), we will obtain other modifications of
Theorem 6.3.

Example 6.4 Consider the scalar case of (6.11) with m = 2. Using Theorem 6.3 and
Remark 6.4 for different values of m0 = 0,1,2, we obtain four different sufficient
conditions for asymptotic mean-square stability of the trivial solution of (6.11):

A + |B1| + |B2| + 1

2
C2 < 0,

(A + B1)
(
1 − h1|B1|

)+ |B2|
(
1 + h1|B1|

)+ 1

2
C2 < 0, h1|B1| < 1,

(A + B2)
(
1 − h2|B2|

)+ |B1|
(
1 + h2|B2|

)+ 1

2
C2 < 0, h2|B2| < 1,

(A + B1 + B2)
(
1 − h1|B1| − h2|B2|

)+ 1

2
C2 < 0, h1|B1| + h2|B2| < 1.

6.2 Distributed Delay

Consider now the stochastic linear differential equation with distributed delay

ẋ(t) = Ax(t) +
m∑

i=1

Bi

∫ t

t−hi

x(s) ds + C

∫ t

t−τ

x(s) ds ẇ(t). (6.19)

Rewrite (6.19) in the form

ż(t) = (
A + (B,h)

)
x(t) +

m∑

i=m0+1

Bi

∫ t

t−hi

x(s) ds + C

∫ t

t−τ

x(s) ds ẇ(t),
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z(t) = x(t) +
m0∑

j=1

Bj

∫ t

t−hj

(s − t + hj )x(s) ds,

(B,h) =
m0∑

j=1

Bjhj , 0 ≤ m0 ≤ m.

In this case, for the functional V1 = z′(t)P z(t), we have

LV1 =
(
(
A + (B,h)

)
x(t) +

m∑

i=m0+1

Bi

∫ t

t−hi

x(s) ds

)′
Pz(t)

+ z′(t)P
(
(
A + (B,h)

)
x(t) +

m∑

i=m0+1

Bi

∫ t

t−hi

x(s) ds

)

+
∫ t

t−τ

x′(s) ds C′PC

∫ t

t−τ

x(θ) dθ

= x′(t)
[(

A + (B,h)
)′
P + P

(
A + (B,h)

)]
x(t)

+
∫ t

t−τ

x′(s) ds C′PC

∫ t

t−τ

x(θ) dθ

+
m∑

i=m0+1

∫ t

t−hi

[
x′(s)B ′

iP x(t) + x′(t)PBix(s)
]
ds

+
m0∑

j=1

∫ t

t−hj

(s − t + hj )
[
x′(t)

(
A + (B,h)

)′
PBjx(s)

+ x′(s)B ′
jP
(
A + (B,h)

)
x(t)

]
ds

+
m∑

i=m0+1

m0∑

j=1

∫ t

t−hi

∫ t

t−hj

(s − t + hj )
[
x′(θ)B ′

iPBjx(s)

+ x′(s)B ′
jPBix(θ)

]
ds dθ.

Note that using Lemma 2.3 for a = x(s), b = C′PCx(θ), and R > 0, we have

∫ t

t−τ

x′(s) ds C′PC

∫ t

t−τ

x(θ) dθ

= 1

2

∫ t

t−τ

∫ t

t−τ

[
x′(θ)C′PCx(s) + x′(s)C′PCx(θ)

]
ds dθ

≤ τ

2

∫ t

t−τ

x′(s)Rx(s) ds + τ

2

∫ t

t−τ

x′(θ)C′PCR−1C′PCx(θ) dθ.
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Using inequalities similar to (6.12)–(6.14), we obtain

LV1 ≤ x′(t)
[
(
A + (B,h)

)′
P + P

(
A + (B,h)

)+
m∑

i=m0+1

hiPBiR
−1
i B ′

iP

+ 1

2

m0∑

j=1

h2
j

(
A + (B,h)

)′
PBjG

−1
j B ′

jP
(
A + (B,h)

)
]

x(t)

+ τ

2

∫ t

t−τ

x′(s)
(
R + C′PCR−1C′PC

)
x(s) ds

+
m∑

i=m0+1

∫ t

t−hi

x′(s)Rix(s) ds +
m0∑

j=1

∫ t

t−hj

(s − t + hj )x
′(s)Gjx(s) ds

+
m∑

i=m0+1

m0∑

j=1

[
1

2
h2

j

∫ t

t−hi

x′(s)B ′
iPBjS

−1
ij B ′

jPBix(s) ds

+
∫ t

t−hj

(s − t + hj )x
′(s)Sij x(s) ds

]
.

By Theorem 2.5 we obtain the following:

Theorem 6.4 Suppose that, for some m0 = 0,1, . . . ,m, the inequality
∑m0

j=1 h2
j‖Bj‖

< 2 holds and that, for some matrices R > 0, Ri > 0, Gj > 0, Sij > 0, and Q > 0,
there exists a positive definite solution P of the matrix Riccati equation

(
A + (B,h)

)′
P + P

(
A + (B,h)

)+ τ 2

2

(
R + C′PCR−1C′PC

)

+
m∑

i=m0+1

hi

(
Ri + PBiR

−1
i B ′

iP
)

+ 1

2

m0∑

j=1

h2
j

(
Gj + (

A + (B,h)
)′
PBjG

−1
j B ′

jP
(
A + (B,h)

))

+ 1

2

m∑

i=m0+1

hi

m0∑

j=1

h2
j

(
Sij + B ′

iPBjS
−1
ij B ′

jPBi

)= −Q. (6.20)

Then the trivial solution of (6.19) is asymptotically mean-square stable.

Remark 6.5 Using the arguments from Remark 6.3, one can show that in place of
(6.20) in Theorem 6.4 other matrix Riccati equations can be used, for instance,

(
A + (B,h)

)′
P + P

(
A + (B,h)

)+ τ 2

2

(
R + C′PCR−1C′PC

)
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+
m∑

i=m0+1

hi

(
Ri + B ′

iPR−1
i PBi

)

+ 1

2

m0∑

j=1

h2
j

(
Gj + B ′

jP
(
A + (B,h)

)
G−1

j

(
A + (B,h)

)′
PBj

)

+ 1

2

m∑

i=m0+1

hi

m0∑

j=1

h2
j

(
Sij + B ′

jPBiS
−1
ij B ′

iPBj

)= −Q.

Remark 6.6 Using another representation of (6.19) in the form

ż(t) = (
A + (B,h)1

)
x(t) +

m0∑

i=1

Bi

∫ t

t−hi

x(s) ds + C

∫ t

t−τ

x(s) ds ẇ(t),

z(t) = x(t) +
m∑

j=m0+1

Bj

∫ t

t−hj

(s − t + hj )x(s) ds,

(B,h)1 =
m∑

j=m0+1

Bjhj , 0 ≤ m0 ≤ m,

we obtain a new modification of Theorem 6.4 after replacement of all sums
∑m0

j=1

by
∑m

j=m0+1 and all sums
∑m

i=m0+1 by
∑m0

i=1. Using other combinations of the
summands for representations of (6.19), we will obtain other modifications of The-
orem 6.4.

Example 6.5 Consider the scalar case of (6.19) for m = 2. Using Theorem 6.4 and
Remark 6.6 for different values of m0 = 0,1,2, we obtain four different sufficient
conditions for asymptotic mean-square stability of the trivial solution of (6.19):

A + h1|B1| + h2|B2| + τ 2

2
C2 < 0,

(A + h1B1)

(
1 − 1

2
h2

1|B1|
)

+ h2|B2|
(

1 + 1

2
h2

1|B1|
)

+ τ 2

2
C2 < 0,

h2
1|B1| < 2,

(A + h2B2)

(
1 − 1

2
h2

2|B2|
)

+ h1|B1|
(

1 + 1

2
h2

2|B2|
)

+ τ 2

2
C2 < 0,

h2
2|B2| < 2,

(A + h1B1 + h2B2)

(
1 − 1

2
h2

1|B1| − 1

2
h2

2|B2|
)

+ τ 2

2
C2 < 0,

h2
1|B1| + h2

2|B2| < 2.
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6.3 Combination of Discrete and Distributed Delays

Similar stability conditions can be obtained for systems with different combinations
of discrete and distributed delays. For example, consider the linear stochastic differ-
ential equation

ẋ(t) = Ax(t) + B1x(t − h1) + B2

∫ t

t−h2

x(s) ds

+
(

C1x(t − τ1) + C2

∫ t

t−τ2

x(s) ds

)
ẇ(t). (6.21)

Using four different representations of this equation, we will construct four different
Lyapunov functionals for it.

First, consider (6.21). Using the functional V1 = x′(t)P x(t), we have

LV1 =
(

Ax(t) + B1x(t − h1) + B2

∫ t

t−h2

x(s) ds

)′
Px(t)

+ x′(t)P
(

Ax(t) + B1x(t − h1) + B2

∫ t

t−h2

x(s) ds

)

+
(

C1x(t − τ1) + C2

∫ t

t−τ2

x(s) ds

)′
P

(
C1x(t − τ1) + C2

∫ t

t−τ2

x(s) ds

)

= x(t)
(
A′P + PA

)
x(t) + x′(t − τ1)C

′
1PC1x(t − τ1)

+ x′(t)PB1x(t − h1) + x′(t − h1)B
′
1Px(t)

+
∫ t

t−h2

(
x′(t)PB2x(s) + x′(s)B ′

2Px(t)
)
ds

+
∫ t

t−τ2

(
x′(t − τ1)C

′
1PC2x(s) + x′(s)C′

2PC1x(t − τ1)
)
ds

+ 1

2

∫ t

t−τ2

∫ t

t−τ2

(
x′(θ)C′

2PC2x(s) + x′(s)C′
2PC2x(θ)

)
ds dθ.

Using Lemma 2.3 for some positive definite matrices Ri , Gi , i = 1,2, we obtain

LV1 ≤ x(t)
(
A′P + PA + R1 + h2R2

)
x(t) + x′(t − τ1)C

′
1PC1x(t − τ1)

+ x′(t − h1)B
′
1PR−1

1 PB1x(t − h1) + τ2x
′(t − τ1)G1x(t − τ1)

+
∫ t

t−h2

x′(s)B ′
2PR−1

2 PB2x(s) ds +
∫ t

t−τ2

x′(s)C′
2PC1G

−1
1 C′

1PC2x(s) ds

+ τ2

2

∫ t

t−τ2

x′(s)
(
G2 + C′

2PC2G
−1
2 C′

2PC2
)
x(s) ds.
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By the representation of type (2.35) with Si(t) = 0, dKl = 0,

D = A′P + PA + R1 + h2R2, k = 2, m = 0,

Q1 = C′
1PC1 + τ2G1, τ1(t) = τ1,

Q2 = B ′
1PR−1

1 PB1 + τ2G1, τ2(t) = h1,

dμ(s) = δ(s − h2) ds, R(τ + h2, t) = B ′
2PR−1

2 PB2,

dμ0(s) = δ(s − τ2) ds,

R0 = C′
2PC1G

−1
1 C′

1PC2 + 1

2
τ2
(
G2 + C′

2PC2G
−1
2 C′

2PC2
)
,

and Theorem 2.5, we obtain the following theorem.

Theorem 6.5 Let for some matrices Ri > 0, Gi > 0, i = 1,2, and Q > 0, there
exist a positive definite solution P of the matrix Riccati equation

A′P + PA + C′
1PC1 + R1 + B ′

1PR−1
1 PB1 + h2

(
R2 + B ′

2PR−1
2 PB2

)

+ τ2
(
G1 + C′

2PC1G
−1
1 C′

1PC2
)+ τ 2

2

2

(
G2 + C′

2PC2G
−1
2 C′

2PC2
)= −Q.

(6.22)

Then the trivial solution of (6.21) is asymptotically mean-square stable.

Remark 6.7 Similarly to Remark 6.3, one can show that in place of (6.22) in The-
orem 6.5 one from the eight different matrix Riccati equations can be used, for
example,

A′P + PA + C′
1PC1 + R1 + PB1R

−1
1 B ′

1P + h2
(
R2 + PB2R

−1
2 B ′

2P
)

+ τ2
(
G1 + C′

1PC2G
−1
1 C′

2PC1
)+ τ 2

2

2

(
G2 + C′

2PC2G
−1
2 C′

2PC2
)= −Q.

Rewrite now (6.21) in the form

ż(t) = (A + B1)x(t) + B2

∫ t

t−h2

x(s) ds

+
(

C1x(t − τ1) + C2

∫ t

t−τ2

x(s) ds

)
ẇ(t),

z(t) = x(t) + B1

∫ t

t−h1

x(s) ds.
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Then, for the functional V1 = z′(t)P z(t), we have

LV1 =
(

(A + B1)x(t) + B2

∫ t

t−h2

x(s) ds

)′
Pz(t)

+ z′(t)P
(

(A + B1)x(t) + B2

∫ t

t−h2

x(s) ds

)

+
(

C1x(t − τ1) + C2

∫ t

t−τ2

x(s) ds

)′
P

(
C1x(t − τ1) + C2

∫ t

t−τ2

x(s) ds

)

= x(t)
(
(A + B1)

′P + P(A + B1)
)
x(t)

+
∫ t

t−h1

(
x′(t)(A + B1)

′PB1x(s) + x′(s)B ′
1P(A + B1)x(t)

)
ds

+
∫ t

t−h2

(
x′(t)PB2x(s) + x′(s)B ′

2Px(t)
)
ds

+
∫ t

t−h1

∫ t

t−h2

(
x′(θ)B ′

1PB2x(s) + x′(s)B ′
2PB1x(θ)

)
ds dθ

+ x′(t − τ1)C
′
1PC1x(t − τ1)

+
∫ t

t−τ2

(
x′(t − τ1)C

′
1PC2x(s) + x′(s)C′

2PC1x(t − τ1)
)
ds

+ 1

2

∫ t

t−τ2

∫ t

t−τ2

(
x′(θ)C′

2PC2x(s) + x′(s)C′
2PC2x(θ)

)
ds dθ.

Using Lemma 2.3 for some Ri > 0, i = 1,2,3, Gj > 0, j = 1,2, we obtain

LV1 ≤ x(t)
[
(A + B1)

′P + P(A + B1) + h1(A + B1)
′R1(A + B1) + h2PR2P

]
x(t)

+
∫ t

t−h1

x′(s)
[
B ′

1PR−1
1 PB1 + h2B

′
1PR3PB1

]
x(s) ds

+
∫ t

t−h2

x′(s)
[
h1B

′
2R

−1
3 B2 + B ′

2R
−1
2 B2

]
x(s) ds

+ x′(t − τ1)
[
C′

1PC1 + τ2C
′
1PG1PC1

]
x(t − τ1)

+
∫ t

t−τ2

x′(s)
[
C′

2G
−1
1 C2 + τ2

2

(
C′

2G2C2 + C′
2PG−1

2 PC2
)]

x(s) ds.

By the representation of type (2.35) and Theorem 2.5 the following theorem is
proved.

Theorem 6.6 Suppose that the inequality h1‖B1‖ < 1 holds and that, for some
matrices Ri > 0, i = 1,2,3, Gi > 0, i = 1,2, and Q > 0, there exists a positive
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definite solution P of the matrix Riccati equation

(A + B1)
′P + P(A + B1) + C′

1PC1

+ h1
(
(A + B1)

′R1(A + B1) + B ′
1PR−1

1 PB1
)

+ h2
(
PR2P + B ′

2R
−1
2 B2

)+ h1h2
(
B ′

1PR3PB1 + B ′
2R

−1
3 B2

)

+ τ2
(
C′

1PG1PC1 + C′
2G

−1
1 C2

)+ τ 2
2

2

(
C′

2G2C2 + C′
2PG−1

2 PC2
)= −Q.

(6.23)

Then the trivial solution of (6.21) is asymptotically mean-square stable.

Remark 6.8 Similarly to Remark 6.3, one can show that in place of (6.23) in Theo-
rem 6.6 other different matrix Riccati equations can be used, for instance,

(A + B1)
′P + P(A + B1) + C′

1PC1

+ h1
(
R1 + B ′

1P(A + B1)R
−1
1 (A + B1)

′PB1
)

+ h2
(
R2 + B ′

2PR−1
2 PB2

)+ h1h2
(
R3 + B ′

2PB1R
−1
3 B ′

1PB2
)

+ τ2
(
G1 + C′

2PC1G
−1
1 C′

1PC2
)+ τ 2

2

2

(
G2 + C′

2PC2G
−1
2 C′

2PC2
)= −Q.

Remark 6.9 Rewriting (6.21) in the form

ż(t) = (A + h2B2)x(t) + B1x(t − h1) +
(

C1x(t − τ1) + C2

∫ t

t−τ2

x(s) ds

)
ẇ(t),

z(t) = x(t) + B2

∫ t

t−h2

(s − t + h2)x(s) ds,

one can obtain the following theorem.

Theorem 6.7 Suppose that the inequality h2
2‖B2‖ < 2 holds and that, for some

matrices Ri > 0, i = 1,2,3, Gi > 0, i = 1,2, and Q > 0, there exists a positive
definite solution P of the matrix Riccati equation

(A + h2B2)
′P + P(A + h2B2) + C′

1PC1 + R1 + PB1R
−1
1 B ′

1P

+ 1

2
h2

2

[
R2 + R3 + (A + h2B2)

′PB2R
−1
2 B ′

2P(A + h2B2)

+ B ′
1PB2R

−1
3 B ′

2PB1
]+ τ2

(
G1 + C′

1PC2G
−1
1 C′

2PC1
)

+ τ 2
2

2

(
G2 + C′

2PC2G
−1
2 C′

2PC2
)= −Q (6.24)
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or

(A + h2B2)
′P + P(A + h2B2) + C′

1PC1 + R1 + B ′
1PR−1

1 PB1

+ 1

2
h2

2

[
R2 + R3 + B ′

2P(A + h2B2)R
−1
2 (A + h2B2)

′PB2 + B ′
2PB1R

−1
3 B ′

1PB2
]

+ τ2
(
G1 + C′

2PC1G
−1
1 C′

1PC2
)+ τ 2

2

2

(
G2 + C′

2PC2G
−1
2 C′

2PC2
)= −Q.

Then the trivial solution of (6.21) is asymptotically mean-square stable.

Remark 6.10 Rewriting (6.21) in the form

ż(t) = A1x(t) +
(

C1x(t − τ1) + C2

∫ t

t−τ2

x(s) ds

)
ẇ(t),

z(t) = x(t) +
∫ t

t−h1

B1x(s) ds +
∫ t

t−h2

(s − t + h2)B2x(s) ds,

A1 = A + B1 + h2B2,

one can obtain the following theorem.

Theorem 6.8 Suppose that the inequality h1‖B1‖ + 1
2h2

2‖B2‖ < 1 holds and that,
for some matrices Ri > 0, Gi > 0, i = 1,2, and Q > 0, there exists a positive defi-
nite solution P of the matrix Riccati equation

A′
1P + PA1 + C′

1PC1 + h1
(
R1 + A′

1PB1R
−1
1 B ′

1PA1
)

+ 1

2
h2

2

(
R2 + A′

1PB2R
−1
2 B ′

2PA1
)+ τ2

(
G1 + C′

1PC2G
−1
1 C′

2PC1
)

+ τ 2
2

2

(
G2 + C′

2PC2G
−1
2 C′

2PC2
)= −Q (6.25)

or

A′
1P + PA1 + C′

1PC1 + h1
(
R1 + B ′

1PA1R
−1
1 A′

1PB1
)

+ 1

2
h2

2

(
R2 + B ′

2PA1R
−1
2 A′

1PB2
)

+ τ2
(
G1 + C′

2PC1G
−1
1 C′

1PC2
)+ τ 2

2

2

(
G2 + C′

2PC2G
−1
2 C′

2PC2
)= −Q.

Then the trivial solution of (6.21) is asymptotically mean-square stable.

Remark 6.11 Note that in some cases a matrix Riccati equation can be transformed
to a linear matrix equation. Suppose, for instance, that the matrix B in (6.3) has the
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inverse matrix. Then putting in (6.5) R = B ′PB , we transform it to the linear matrix
equation

A′P + PA + P + B ′PB + C′PC = −Q.

Suppose that for some P > 0 the matrix B satisfies the condition PB = B ′P > 0.
Then putting in (6.5) R = PB , for this P , we obtain the linear matrix equation

(A + B)′P + P(A + B) + C′PC = −Q.

We obtain the same linear matrix equations by putting R = P or R = PB in (6.6).
If in (6.21) the matrices C1, C2 have the inverse matrices, then putting Ri = P ,

Gi = C′
iPCi , i = 1,2, in (6.22), we transform it to the linear matrix equation

A′P + PA + (1 + h2)P + B ′
1PB1 + h2B

′
2PB2

+ (1 + τ2)
(
C′

1PC1 + τ2C
′
2PC2

)= −Q.

If in (6.21) the matrices B1, B2, C1, C2 have the inverse matrices, then putting
R1 = B ′

1PB1, R2 = B ′
2PB2, G1 = G2 = C′

2PC2 in (6.25), we transform it to the
linear matrix equation

A′
1P + PA1 +

(
h1 + 1

2
h2

2

)
A′

1PA1 + h1B
′
1PB1 + 1

2
h2

2B
′
2PB2

+ (1 + τ2)
(
C′

1PC1 + τ2C
′
2PC2

)

= −Q.

Example 6.6 Consider the scalar case of (6.21). Putting C = |C1| + τ2|C2|, by The-
orems 6.5–6.8 we obtain four different sufficient conditions for asymptotic mean-
square stability of the trivial solution

A + |B1| + h2|B2| + 1

2
C2 < 0,

(A + B1)
(
1 − h1|B1|

)+ h2|B2|
(
1 + h1|B1|

)+ 1

2
C2 < 0, h1|B1| < 1,

(A + h2B2)

(
1 − 1

2
h2

2|B2|
)

+ ∣∣B2
∣∣
(

1 + 1

2
h2

2|B2|
)

+ 1

2
C2 < 0, h2

2|B2| < 2,

(A + B1 + h2B2)

(
1 − h1|B1| − 1

2
h2

2|B2|
)

+ 1

2
C2 < 0, h1|B1| + 1

2
h2

2|B2| < 1.
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6.4 Equations with Nonincreasing Delays

6.4.1 One Delay in Deterministic and One Delay in Stochastic
Parts of Equation

Consider the stochastic linear differential equation with delays depending on time

ẋ(t) = Ax(t) + Bx
(
t − h(t)

)+ Cx
(
t − τ(t)

)
ẇ(t),

x0(s) = φ(s), s ≤ 0. (6.26)

Here it is supposed that the delays h(t) and τ(t) are nonnegative differentiable func-
tions satisfying the conditions

ḣ(t) ≤ 0, τ̇ (t) ≤ 0. (6.27)

6.4.1.1 The First Way of Constructing a Lyapunov Functional

Consider the Lyapunov functional V1 = x′Px. Calculating LV1, we get

LV1 = (
Ax(t) + Bx

(
t − h(t)

))′
Px(t) + x′(t)P

(
Ax(t) + Bx

(
t − h(t)

))

+ x′(t − τ(t)
)
C′PCx

(
t − τ(t)

)

= x′(t)
(
A′P + PA

)
x(t) + x′(t − τ(t)

)
C′PCx

(
t − τ(t)

)

+ x′(t − h(t)
)
B ′Px(t) + x′(t)PBx

(
t − h(t)

)
.

Using Lemma 2.3 for R > 0, a = x(t − h(t)), and b = B ′Px(t), we have

LV1 ≤ x′(t)
(
A′P + PA + PBR−1B ′P

)
x(t)

+ x′(t − h(t)
)
Rx
(
t − h(t)

)+ x′(t − τ(t)
)
C′PCx

(
t − τ(t)

)
. (6.28)

By the representation (2.35) with

D(t) = A′P + PA + PBR−1B ′P, k = 2,

Q1(t) = R, τ1(t) = h(t), Q2(t) = C′PC, τ2(t) = τ(t),

and Theorem 2.5 we obtain the following:

Theorem 6.9 Suppose that conditions (6.27) hold and that, for some positive defi-
nite matrices Q and R, there exists a positive definite solution P of the matrix Ric-
cati equation (6.5). Then the trivial solution of (6.26) is asymptotically mean-square
stable.

Remark 6.12 Using Lemma 2.3 for a = Px(t) and b = Bx(t − h(t)), one can get
in Theorem 6.9 in place of (6.5) the matrix Riccati equation

A′P + PA + C′PC + B ′RB + PR−1P = −Q. (6.29)
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6.4.1.2 The Second Way of Constructing a Lyapunov Functional

Consider another way of constructing a Lyapunov functional for (6.26) leading to
another Riccati matrix equation.

Let us rewrite now (6.26) in the form of a neutral type equation

ż(t) = (A + B)x(t) + ḣ(t)Bx
(
t − h(t)

)+ Cx
(
t − τ(t)

)
ẇ(t),

z(t) = x(t) + B

∫ t

t−h(t)

x(s) ds

and suppose that

h(0)‖B‖ < 1, ĥ = sup
t≥0

∣∣ḣ(t)
∣∣< ∞. (6.30)

Following the procedure of constructing Lyapunov functionals, we will construct
now a functional V in the form V = V1 + V2, where V1 = z′(t)P z(t). Calculating
LV1, we get

LV1 = z′(t)′P
(
(A + B)x(t) + ḣ(t)Bx

(
t − h(t)

))

+ (
x′(t)(A + B)′ + ḣ(t)x′(t − h(t)

)
B ′)Pz(t)

+ x′(t − τ(t)
)
C′PCx

(
t − τ(t)

)

= x′(t)
(
P(A + B) + (A + B)′P

)
x(t) + x′(t − τ(t)

)
C′PCx

(
t − τ(t)

)

+ ḣ(t)
(
x′(t)PBx

(
t − h(t)

)+ x′(t − h(t)
)
B ′Px(t)

)

+
∫ t

t−h(t)

(
x′(t)(A + B)′PBx(s) + x′(s)B ′P(A + B)x(t)

)
ds

+ ḣ(t)

∫ t

t−h(t)

(
x′(s)B ′PBx

(
t − h(t)

)+ x′(t − h(t)
)
B ′PBx(s)

)
ds.

(6.31)

Using Lemma 2.3 for R1 > 0, a = x(s), and b = B ′P(A + B)x(t), for R2 > 0, a =
x(t), and b = PBx(t − h(t)), and for R3 > 0, a = x(s), and b = B ′PBx(t − h(t)),
we obtain

∫ t

t−h(t)

[
x′(t)(A + B)′PBx(s) + x′(s)B ′P(A + B)x(t)

]
ds

≤ h(t)x′(t)(A + B)′PBR−1
1 B ′P(A + B)x(t) +

∫ t

t−h(t)

x′(s)R1x(s) ds,

ḣ(t)
(
x′(t)PBx

(
t − h(t)

)+ x′(t − h(t)
)
B ′Px(t)

)

≤ ∣∣ḣ(t)
∣∣(x′(t)R2x(t) + x′(t − h(t)

)
B ′PR−1

2 PBx
(
t − h(t)

))
, (6.32)



172 6 Matrix Riccati Equations in Stability of Linear Stochastic Differential

ḣ(t)

∫ t

t−h(t)

(
x′(s)B ′PBx

(
t − h(t)

)+ x′(t − h(t)
)
B ′PBx(s)

)
ds

≤ ∣∣ḣ(t)
∣∣
(∫ t

t−h(t)

x′(s)R3x(s) ds

+ h(t)x′(t − h(t)
)
B ′PBR−1

3 B ′PBx
(
t − h(t)

))
.

Then by (6.31)–(6.32) we have

LV1 ≤ x′(t)
[
(A + B)′P + P(A + B) + h(0)(A + B)′PBR−1

1 B ′P(A + B)

+ ĥR2
]
x(t) + ĥx′(t − h(t)

)
B ′P

(
R−1

2 + h(0)BR−1
3 B ′)PBx

(
t − h(t)

)

+ x′(t − τ(t)
)
C′PCx

(
t − τ(t)

)+
∫ t

t−h(t)

x′(s)(R1 + ĥR3)x(s) ds.

Choosing the functional V2 in the form

V2 =
∫ t

t−h(t)

(
s − t + h(t)

)
x′(s)(R1 + ĥR3)x(s) ds +

∫ t

t−τ(t)

x′(s)C′PCx(s) ds

+ ĥ

∫ t

t−h(t)

x′(s)B ′P
(
R−1

2 + h(0)BR−1
3 B ′)PBx(s) ds,

by (6.27) we obtain

LV2 = h(t)x′(t)(R1 + ĥR3)x(t) − (
1 − ḣ(t)

)∫ t

t−h(t)

x′(s)(R1 + ĥR3)x(s) ds

+ x′(t)C′PCx(t) − (
1 − τ̇ (t)

)
x′(t − τ(t)

)
C′PCx

(
t − τ(t)

)

+ ĥx′(t)B ′P
(
R−1

2 + h(0)BR−1
3 B ′)PBx(t)

− ĥ
(
1 − ḣ(t)

)
x′(t − h(t)

)
B ′P

(
R−1

2 + h(0)BR−1
3 B ′)PBx

(
t − h(t)

)

≤ x′(t)
[
h(0)(R1 + ĥR3) + C′PC + ĥB ′P

(
R−1

2 + h(0)BR−1
3 B ′)PB+]x(t)

− ĥx′(t − h(t)
)
B ′P

(
R−1

2 + h(0)BR−1
3 B ′)PBx

(
t − h(t)

)

− x′(t − τ(t)
)
C′PCx

(
t − τ(t)

)−
∫ t

t−h(t)

x′(s)(R1 + ĥR3)x(s) ds.

As a result, for the functional V = V1 + V2, we have

LV ≤ x′(t)
[
(A + B)′P + P(A + B) + C′PC

+ h(0)
(
R1 + (A + B)′PBR−1

1 B ′P(A + B)
)

+ ĥ
(
R2 + B ′PR−1

2 PB
)+ ĥh(0)

(
R3 + B ′PBR−1

3 B ′PB
)]

x(t).

So, we obtain the following theorem.
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Theorem 6.10 Suppose that conditions (6.27), (6.30) hold and that, for some ma-
trices Ri > 0, i = 1,2,3, and Q > 0, there exists a positive definite solution P of
the matrix Riccati equation

(A + B)′P + P(A + B) + C′PC

+ h(0)
(
R1 + (A + B)′PBR−1

1 B ′P(A + B)
)

+ ĥ
(
R2 + B ′PR−1

2 PB + h(0)
(
R3 + B ′PBR−1

3 B ′PB
))= −Q. (6.33)

Then the trivial solution of (6.26) is asymptotically mean-square stable.

Remark 6.13 Using Lemma 2.3 for R1 > 0, a = x(t), and b = (A + B)′PBx(s),
for R2 > 0, a = x(t −h(t)), and b = B ′Px(t), and for R3 > 0, a = x(t −h(t)), and
b = B ′PBx(s), in place of (6.32) we obtain the inequalities

∫ t

t−h(t)

[
x′(t)(A + B)′PBx(s) + x′(s)B ′P(A + B)x(t)

]
ds

≤ h(t)x′(t)R1x(t) +
∫ t

t−h(t)

x′(s)B ′P(A + B)R−1
1 (A + B)′PBx(s) ds,

ḣ(t)
(
x′(t)PBx

(
t − h(t)

)+ x′(t − h(t)
)
B ′Px(t)

)

≤ ∣∣ḣ(t)
∣∣(x′(t − h(t)

)
R2x

(
t − h(t)

)+ x′(t)PBR−1
2 B ′Px(t)

)
, (6.34)

ḣ(t)

∫ t

t−h(t)

(
x′(s)B ′PBx

(
t − h(t)

)+ x′(t − h(t)
)
B ′PBx(s)

)
ds

≤ ∣∣ḣ(t)
∣∣
(

h(t)x′(t − h(t)
)
R3x

(
t − h(t)

)

+
∫ t

t−h(t)

x′(s)B ′PBR−1
3 B ′PBx(s)

)
ds.

Using different combinations of inequalities (6.32) and (6.34) and choosing an
appropriate functional V2 in place of (6.33) in Theorem 6.10, one can use differ-
ent matrix Riccati equations. For example, using all inequalities (6.34) in place of
inequalities (6.32) and choosing the functional V2 in the form

V2 =
∫ t

t−h(t)

(
s − t + h(t)

)
x′(s)B ′P(A + B)R−1

1 (A + B)′PBx(s) ds

+ ĥ

∫ t

t−h(t)

x′(s)R2x(s) ds +
∫ t

t−τ(t)

x′(s)C′PCx(s) ds

+ ĥ

∫ t

t−h(t)

(
s − t + h(t)

)
x′(s)B ′PBR−1

3 B ′PBx(s) ds,
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we obtain that in Theorem 6.10 in place of (6.33) the following equation can be
used:

(A + B)′P + P(A + B) + C′PC

+ h(0)
(
R1 + B ′P(A + B)R−1

1 (A + B)′PB
)

+ ĥ
(
R2 + PBR−1

2 B ′P + h(0)
(
R3 + B ′PBR−1

3 B ′PB
))= −Q. (6.35)

Example 6.7 In the scalar case a positive solution of (6.33) (or (6.35)) exists if and
only if

(A + B)
(
1 − h(0)|B|)+ ĥ|B|(1 + h(0)|B|)+ 1

2
C2 < 0, h(0)|B| < 1.

6.4.2 Several Delays in Deterministic Part of Equation

Consider now the stochastic linear differential equation with delays

ẋ(t) = Ax(t) +
m∑

i=1

Bix
(
t − hi(t)

)+ Cx
(
t − τ(t)

)
ẇ(t), (6.36)

which is a generalization of (6.26). Here m is a positive integer, and the delays hi(t)

are nonnegative differentiable functions satisfying the conditions

τ̇ (t) ≤ 0, ḣi (t) ≤ 0, ĥi = sup
t≥0

∣∣ḣi (t)
∣∣< ∞, i = 1, . . . ,m. (6.37)

To construct Lyapunov functionals for (6.36), we will use both previous repre-
sentations of the initial equation. Namely, rewrite (6.36) in the form

ż(t) = (A + B)x(t) +
m0∑

l=1

ḣl(t)Blx
(
t − hl(t)

)

+
m∑

i=m0+1

Bix
(
t − hi(t)

)+ Cx
(
t − τ(t)

)
ẇ(t),

z(t) = x(t) +
m0∑

j=1

Bj

∫ t

t−hj (t)

x(s) ds,

B =
m0∑

j=1

Bj , 0 ≤ m0 ≤ m.
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We will construct a Lyapunov functional V in the form V = V1 + V2, where V1 =
z′(t)P z(t). In this case,

LV1 =
[

(A + B)x(t) +
m∑

i=m0+1

Bix
(
t − hi(t)

)+
m0∑

l=1

ḣl(t)Blx
(
t − hl(t)

)
]′

Pz(t)

+ z′(t)P
[

(A + B)x(t) +
m∑

i=m0+1

Bix
(
t − hi(t)

)+
m0∑

l=1

ḣl(t)Blx
(
t − hl(t)

)
]

+ x′(t − τ(t)
)
C′PCx

(
t − τ(t)

)

= x′(t)
[
(A + B)′P + P(A + B)

]
x(t) + x′(t − τ(t)

)
C′PCx

(
t − τ(t)

)

+
m∑

i=m0+1

[
x′(t − hi(t)

)
B ′

iP x(t) + x′(t)PBix
(
t − hi(t)

)]

+
m0∑

j=1

∫ t

t−hj (t)

[
x′(t)(A + B)′PBjx(s) + x′(s)B ′

jP (A + B)x(t)
]
ds

+
m0∑

j=1

m∑

i=m0+1

∫ t

t−hj (t)

[
x′(t − hi(t)

)
B ′

iPBjx(s)

+ x′(s)B ′
jPBix

(
t − hi(t)

)]
ds

+
m0∑

l=1

ḣl(t)
[
x′(t − hl(t)

)
B ′

lP x(t) + x′(t)PBlx
(
t − hl(t)

)]

+
m0∑

l=1

m0∑

j=1

ḣl(t)

∫ t

t−hj (t)

[
x′(t − hl(t)

)
B ′

lPBjx(s)

+ x′(s)B ′
jPBlx

(
t − hl(t)

)]
ds.

Using Lemma 2.3 for Ri > 0, i = m0 + 1, . . . ,m, a = x(t − hi(t)), and b =
B ′

iP x(t), for Gj > 0, j = 1, . . . ,m0, a = x(s), and b = B ′
jP (A+B)x(t), for Sij >

0, i = m0 + 1, . . . ,m, j = 1, . . . ,m0, a = x(s), and b = B ′
jPBix(t − hi(t)), for

Ul > 0, l = 1, . . . ,m0, a = x(t − hl(t)), and b = B ′
lP x(t), and for Zlj > 0, l =

1, . . . ,m0, j = 1, . . . ,m0, a = x(s), and b = B ′
jPBlx(t − hl(t)), we obtain

x′(t − hi(t)
)
B ′

iP x(t) + x′(t)PBix
(
t − hi(t)

)

≤ x′(t − hi(t)
)
Rix

(
t − hi(t)

)+ x′(t)PBiR
−1
i B ′

iP x(t),

x′(t)(A + B)′PBjx(s) + x′(s)B ′
jP (A + B)x(t)

≤ x′(s)Gjx(s) + x′(t)(A + B)′PBjG
−1
j B ′

jP (A + B)x(t),
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x′(t − hi(t)
)
B ′

iPBjx(s) + x′(s)B ′
jPBix

(
t − hi(t)

)

(6.38)
≤ x′(s)Sij x(s) + x′(t − hi(t)

)
B ′

iPBjS
−1
ij B ′

jPBix
(
t − hi(t)

)
,

ḣl(t)
[
x′(t − hl(t)

)
B ′

lP x(t) + x′(t)PBlx
(
t − hl(t)

)]

≤ ĥl

[
x′(t − hl(t)

)
Ulx

(
t − hl(t)

)+ x′(t)PBlU
−1
l B ′

lP x(t)
]
,

ḣl(t)
[
x′(t − hl(t)

)
B ′

lPBjx(s) + x′(s)B ′
jPBlx

(
t − hl(t)

)]

≤ ĥl

[
x′(s)Zlj x(s) + x′(t − hl(t)

)
B ′

lPBjZ
−1
lj B ′

jPBlx
(
t − hl(t)

)]
.

By inequalities (6.38) we obtain

LV1 ≤ x′(t)
[

(A + B)′P + P(A + B) +
m0∑

l=1

ĥlPBlU
−1
l B ′

lP

+
m∑

i=m0+1

PBiR
−1
i B ′

iP +
m0∑

j=1

hj (0)(A + B)′PBjG
−1
j B ′

jP (A + B)

]

x(t)

+ x′(t − τ(t)
)
C′PCx

(
t − τ(t)

)+
m∑

i=m0+1

x′(t − hi(t)
)
Rix

(
t − hi(t)

)

+
m0∑

j=1

∫ t

t−hj (t)

x′(s)Gjx(s) ds +
m0∑

j=1

m∑

i=m0+1

∫ t

t−hj (t)

x′(s)Sij x(s) ds

+
m∑

i=m0+1

m0∑

j=1

hj (0)x′(t − hi(t)
)
B ′

iPBjS
−1
ij B ′

jPBix
(
t − hi(t)

)

+
m0∑

l=1

ĥl

[

x′(t − hl(t)
)
Ulx

(
t − hl(t)

)+
m0∑

j=1

∫ t

t−hj (t)

x′(s)Zlj x(s) ds

]

+
m0∑

l=1

m0∑

j=1

ĥlhj (0)x′(t − hl(t)
)
B ′

lPBjZ
−1
lj B ′

jPBlx
(
t − hl(t)

)
.

Choosing the functional V2 in the form

V2 =
∫ t

t−τ(t)

x′(s)C′PCx(s) ds +
m∑

i=m0+1

∫ t

t−hi(t)

x′(s)Rix(s) ds

+
m0∑

j=1

∫ t

t−hj (t)

(
s − t + hj (t)

)
x′(s)Gjx(s) ds
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+
m0∑

j=1

m∑

i=m0+1

[
hj (0)

∫ t

t−hi(t)

x′(s)B ′
iPBjS

−1
ij B ′

jPBix(s) ds

+
∫ t

t−hj (t)

(
s − t + hj (t)

)
x′(s)Sij x(s) ds

]

+
m0∑

l=1

ĥl

[∫ t

t−hl(t)

x′(s)Ulx(s) ds

+
m0∑

j=1

∫ t

t−hj (t)

(
s − t + hj (t)

)
x′(s)Zlj x(s) ds

]

+
m0∑

l=1

m0∑

j=1

ĥlhj (0)

∫ t

t−hj (t)

x′(s)B ′
lPBjZ

−1
lj B ′

jPBlx(s) ds,

for the functional V = V1 + V2, we obtain

LV ≤ x′(t)
[

(A + B)′P + P(A + B) + C′PC +
m0∑

l=1

ĥl

(
Ul + PBlU

−1
l B ′

lP
)

+
m0∑

j=1

hj (0)
[
Gj + (A + B)′PBjG

−1
j B ′

jP (A + B)
]

+
m∑

i=m0+1

(
Ri + PBiR

−1
i B ′

iP
)+

m0∑

j=1

hj (0)

m0∑

l=1

ĥl

(
Zlj + B ′

lPBjZ
−1
lj B ′

jPBl

)

+
m0∑

j=1

hj (0)

m∑

i=m0+1

(
Sij + B ′

iPBjS
−1
ij B ′

jPBi

)
]

x(t).

Thus, the following theorem is proved.

Theorem 6.11 Suppose that conditions (6.37) and the inequality
∑m0

j=1 hj (0)‖Bj‖
< 1 for some m0 = 1, . . . ,m hold and that, for some positive definite matrices Ul ,
Ri , Gj , Sij , Zlj , and Q, there exists a positive definite solution P of the matrix
Riccati equation

(A + B)′P + P(A + B) + C′PC +
m0∑

l=1

ĥl

(
Ul + PBlU

−1
l B ′

lP
)

+
m0∑

j=1

hj (0)
[
Gj + (A + B)′PBjG

−1
j B ′

jP (A + B)
]
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+
m∑

i=m0+1

(
Ri + PBiR

−1
i B ′

iP
)+

m0∑

j=1

hj (0)

m0∑

l=1

ĥl

(
Zlj + B ′

lPBjZ
−1
lj B ′

jPBl

)

+
m0∑

j=1

hj (0)

m∑

i=m0+1

(
Sij + B ′

iPBjS
−1
ij B ′

jPBi

)= −Q. (6.39)

Then the trivial solution of (6.36) is asymptotically mean-square stable.

Remark 6.14 Using other variants of inequalities (6.38) and choosing an appropriate
form of the functional V2, in Theorem 6.11 one can use in place of (6.39) other
matrix Riccati equations, for instance,

(A + B)′P + P(A + B) + C′PC +
m0∑

l=1

ĥl

(
Ul + B ′

lPU−1
l PBl

)

+
m0∑

j=1

hj (0)
[
Gj + B ′

jP (A + B)G−1
j (A + B)′PBj

]

+
m∑

i=m0+1

(
Ri + B ′

iPR−1
i PBi

)+
m0∑

j=1

hj (0)

m0∑

l=1

ĥl

(
Zlj + B ′

jPBlZ
−1
lj B ′

lPBj

)

+
m0∑

j=1

hj (0)

m∑

i=m0+1

(
Sij + B ′

jPBiS
−1
ij B ′

iPBj

)= −Q.

Remark 6.15 It is easy to see that rewriting equation (6.36) in the form

ż(t) = (A + B)x(t) +
m∑

j=m0+1

ḣl(t)Blx
(
t − hl(t)

)

+
m0∑

i=1

Bix
(
t − hi(t)

)+ Cx
(
t − τ(t)

)
ẇ(t),

z(t) = x(t) +
m∑

j=m0+1

∫ t

t−hj (t)

x(s) ds,

B =
m∑

j=m0+1

Bj , 0 ≤ m0 ≤ m,

we obtain a new modification of Theorem 6.11 after replacement in (6.39) of all
sums

∑m0
j=1 by

∑m
j=m0+1 and all sums

∑m
i=m0+1 by

∑m0
i=1. Using other combina-

tions of the summands for representations of (6.36), we will obtain other modifica-
tions of Theorem 6.11.
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Example 6.8 Consider the scalar case of (6.36) for m = 2. Using Theorem 6.11 for
different values of m0 = 0,1,2, we obtain four different sufficient conditions for
asymptotic mean-square stability of the trivial solution of (6.36):

A + |B1| + |B2| + 1

2
C2 < 0,

(A + B1)
(
1 − h1(0)|B1|

)+ (
ĥ1|B1| + |B2|

)(
1 + h1(0)|B1|

)+ 1

2
C2 < 0,

h1(0)|B1| < 1,

(A + B2)
(
1 − h2(0)|B2|

)+ (|B1| + ĥ2|B2|
)(

1 + h2(0)|B2|
)+ 1

2
C2 < 0,

h2(0)|B2| < 1,

(A + B1 + B2)
(
1 − h1(0)|B1| − h2(0)|B2|

)+ (
ĥ1|B1| + ĥ2|B2|

)

× (
1 + h1(0)|B1| + h2(0)|B2|

)+ 1

2
C2 < 0, h1(0)|B1| + h2(0)|B2| < 1.

6.5 Equations with Bounded Delays

Consider the linear stochastic differential equation with distributed delays depend-
ing on time

ẋ(t) = Ax(t) +
∫ t

t−h(t)

Bx(s) ds +
∫ t

t−τ(t)

Cx(s) ds ẇ(t),

x0(s) = φ(s), s ≤ 0. (6.40)

We suppose that the delays h(t) and τ(t) satisfy the following conditions:

0 ≤ h0 ≤ h(t) ≤ h1, ĥ = h1 − h0 ≥ 0, 0 ≤ τ(t) ≤ τ1. (6.41)

6.5.1 The First Way of Constructing a Lyapunov Functional

Calculating LV1 for V1 = x′(t)P x(t), we get

LV1 = x′(t)
(
A′P + PA

)
x(t) + I0 + I1,

where

I0 =
∫ t

t−τ(t)

∫ t

t−τ(t)

x(s)C′PCx(θ) dθ ds,

I1 =
∫ t

t−h(t)

(
x′(s)B ′Px(t) + x′(t)PBx(s)

)
ds.
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Using (6.41) and Lemma 2.3 for I0 with R0 > 0, a = x(s), and b = C′PCx(θ) and
for I1 with R1 > 0, a = x(t), and b = PBx(s), we obtain

I0 = 1

2

∫ t

t−τ(t)

∫ t

t−τ(t)

(
x′(θ)C′PCx(s) + x′(s)C′PCx(θ)

)
dθ ds

≤ τ1

2

∫ t

t−τ1

x′(s)
(
R0 + C′PCR−1

0 C′PC
)
x(s) ds, (6.42)

I1 ≤ h1x
′(t)R1x(t) +

∫ t

t−h1

x′(s)B ′PR−1
1 PBx(s) ds.

Then

LV1 ≤ x′(t)
(
A′P + PA + h1R1

)
x(t)

+
∫ t

t−h1

x′(s)B ′PR−1
1 PBx(s) ds

+ τ1

2

∫ t

t−τ1

x′(s)
(
R0 + C′PCR−1

0 C′PC
)
x(s) ds.

By the representation (2.35) and Theorem 2.5 we obtain the following theorem.

Theorem 6.12 Let for some positive definite matrices R0, R1, and Q, there exist a
positive definite solution P of the matrix Riccati equation

A′P +PA+h1
(
R1 +B ′PR−1

1 PB
)+ τ 2

1

2

(
R0 +C′PCR−1

0 C′PC
)= −Q. (6.43)

Then the trivial solution of (6.40) is asymptotically mean-square stable.

Remark 6.16 Using Lemma 2.3 with other representations for a and b, it is possible
to get other matrix Riccati equations in Theorem 6.12. For example, using R0 > 0,
a = Cx(s), and b = PCx(θ), in place of (6.43) we obtain the equation

A′P + PA + h1
(
PR1P + B ′R−1

1 B
)+ τ 2

1

2
C′(R0 + PR−1

0 P
)
C = −Q. (6.44)

Example 6.9 In the scalar case both equations (6.43) and (6.44) have a positive
solution if and only if A + h1|B| + 1

2τ 2
1 C2 < 0.

6.5.2 The Second Way of Constructing a Lyapunov Functional

Rewrite (6.40) in the form of a stochastic differential equation of neutral type

ż(t) = (A + h1B)x(t) −
∫ t−h(t)

t−h1

Bx(s) ds +
∫ t

t−τ(t)

Cx(s) ds ẇ(t),
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z(t) = x(t) +
∫ t

t−h1

(s − t + h1)Bx(s) ds.

Calculating LV1, for the functional V1 = z′(t)P z(t), we get

LV1 = x′(t)
[
(A + h1B)′P + P(A + h1B)

]
x(t) + I0 + I1 + I2 + I3,

where I0 is defined in (6.42), and

I1 =
∫ t

t−h1

(s − t + h1)
[
x′(s)B ′P(A + h1B)x(t) + x′(t)(A + h1B)′PBx(s)

]
ds,

I2 = −
∫ t−h(t)

t−h1

[
x′(t)PBx(s) + x′(s)B ′Px(t)

]
ds,

I3 = −
∫ t

t−h1

∫ t−h(t)

t−h1

(s − t + h1)
[
x′(s)B ′PBx(θ) + x′(θ)B ′PBx(s)

]
dθ ds.

Using Lemma 2.3, we obtain

I1 ≤ 1

2
h2

1x
′(t)R1x(t)

+
∫ t

t−h1

(s − t + h1)x
′(s)B ′P(A + h1B)′PBR−1

1 (A + h1B)′PBx(s) ds,

I2 ≤
∫ t−h(t)

t−h1

[
x′(t)R2x(t) + x′(s)B ′PR−1

2 PBx′(s)
]
ds

≤ ĥx′(t)R2x(t) +
∫ t−h0

t−h1

x′(s)B ′PR−1
2 PBx′(s) ds,

I3 ≤
∫ t

t−h1

∫ t−h(t)

t−h1

(s − t + h1)
[
x′(θ)R3x(θ) + x′(s)B ′PBR−1

3 B ′PBx(s)
]
dθ ds

≤ 1

2
h2

1

∫ t−h0

t−h1

x′(θ)R3x(θ) dθ

+ ĥ

∫ t

t−h1

(s − t + h1)x
′(s)B ′PBR−1

3 B ′PBx(s) ds.

Then

LV1 ≤ x′(t)
[
(A + h1B)′P + P(A + h1B) + 1

2
h2

1R1 + ĥR2

]
x(t)

+
∫ t

t−h1

(s − t + h1)x
′(s)B ′P(A + h1B)R−1

1 (A + h1B)′PBx(s) ds
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+
∫ t−h0

t−h1

x′(s)
[
B ′PR−1

2 PB + 1

2
h2

1R3

]
x(s) ds

+ ĥ

∫ t

t−h1

(s − t + h1)x
′(s)B ′PBR−1

3 B ′PBx(s) ds

+ τ1

2

∫ t

t−τ1

x′(s)
(
R0 + C′PCR−1

0 C′PC
)
x(s) ds.

By Theorem 2.5 we obtain the following theorem.

Theorem 6.13 Suppose that the inequality h2
1‖B‖ < 2 holds and that, for some

positive definite matrices Ri , i = 0,1,2,3, and Q, there exists a positive definite
solution P of the matrix Riccati equation

(A + h1B)′P + P(A + h1B) + τ 2
1

2

(
R0 + C′PCR−1

0 C′PC
)

+ 1

2
h2

1

(
R1 + B ′P(A + h1B)R−1

1 (A + h1B)′PB
)

+ ĥ
(
R2 + B ′PR−1

2 PB
)+ 1

2
h2

1ĥ
(
R3 + B ′PBR−1

3 B ′PB
)= −Q. (6.45)

Then the trivial solution of (6.40) is asymptotically mean-square stable.

Remark 6.17 By analogy with the previous remarks in Theorem 6.13, instead of
(6.45) other variants of matrix Riccati equations can be used.

Remark 6.18 Similar results can be obtained for more general equation

ẋ(t) = Ax(t) +
m∑

i=1

∫ t

t−hi(t)

Bix(s) ds +
k∑

i=1

∫ t

t−τi (t)

Cix(s) ds ẇ(t).

6.6 Equations with Unbounded Delays

Suppose now that the delays h(t) and τ(t) in (6.40) are nonnegative differentiable
functions that satisfy the conditions

ḣ(t) ≤ α < 1, τ̇ (t) ≤ β < 1. (6.46)

From (6.46) in particular it follows that

h(t) ≤ h(0) + αt, τ (t) ≤ τ(0) + βt,

i.e., the delays can increase to infinity.
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We will construct a Lyapunov functional V in the form V = V1 + V2, where
V1 = x′Px. Calculating LV1, we obtain

LV1 ≤ x′(t)
(
A′P + PA + PBR−1B ′P

)
x(t)

+ x′(t − h(t)
)
Rx
(
t − h(t)

)+ x′(t − τ(t)
)
C′PCx

(
t − τ(t)

)
.

By the representation (2.35) with

D(t) = A′P + PA + PBR−1B ′P, k = 2,

Q1 = R, τ1(t) = h(t), Q2 = C′PC, τ2(t) = τ(t),

from Theorem 2.5 we have following:

Theorem 6.14 Suppose that conditions (6.46) hold and that, for some positive def-
inite matrices R and QR, there exists a positive definite solution P of the matrix
Riccati equation

A′P + PA + PBR−1B ′P + 1

1 − α
R + 1

1 − β
C′PC = −Q. (6.47)

Then the trivial solution of (6.40) is asymptotically mean-square stable.

Remark 6.19 Instead of (6.47) in Theorem 6.14 other matrix Riccati equations can
be used, for example,

A′P + PA + B ′PR−1PB + 1

1 − α
R + 1

1 − β
C′PC = −Q.

Putting R = P in this equation, one can reduce it to the linear matrix equation

A′P + PA + B ′PB + 1

1 − α
P + 1

1 − β
C′PC = −Q.

Example 6.10 In the scalar case a positive solution of (6.47) exists if and only if

A + |B|√
1 − α

+ C2

2(1 − β)
< 0.

Consider the differential equation

ẋ(t) = Ax(t) +
∫ h(t)

0
β(s)Bx(t − s) ds +

∫ τ(t)

0
σ(s)Cx(t − s) ds ẇ(t). (6.48)
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Here we suppose that the delays h(t), τ(t) and the scalar functions β(s), σ(s) satisfy
the conditions

ĥ = sup
t≥0

h(t) ≤ ∞, τ̂ = sup
t≥0

τ(t) ≤ ∞,

β =
∫ ĥ

0

∣∣β(s)
∣∣ds < ∞, σ =

∫ τ̂

0

∣∣σ(s)
∣∣ds < ∞.

(6.49)

Calculating LV1 for V1 = x′Px, P > 0, we obtain

LV1 =
(

Ax(t) +
∫ h(t)

0
β(s)Bx(t − s) ds

)′
Px(t)

+ x′(t)P
(

Ax(t) +
∫ h(t)

0
β(s)Bx(t − s) ds

)

+
(∫ τ(t)

0
σ(s)Cx(t − s) ds

)′
P

(∫ τ(t)

0
σ(s)Cx(t − s) ds

)

= x′(t)
[
A′P + PA

]
x(t)

+
∫ h(t)

0
β(s)

[
x′(t − s)B ′Px(t) + x′(t)PBx(t − s)

]
ds

+
∫ τ(t)

0

∫ τ(t)

0
σ(s)σ (θ)x′(t − s)C′PCx(t − θ) dθ ds.

Using Lemma 2.3, we have
∫ h(t)

0
β(s)

[
x′(t − s)B ′Px(t) + x′(t)PBx(t − s)

]
ds

≤
∫ h(t)

0

∣∣β(s)
∣∣[x′(t)PR1Px(t) + x′(t − s)B ′R−1

1 Bx(t − s)
]
ds

≤ βx′(t)PR1Px(t) +
∫ ĥ

0

∣∣β(s)
∣∣x′(t − s)B ′R−1

1 Bx(t − s) ds

and analogously
∫ τ(t)

0

∫ τ(t)

0
σ(θ)σ (s)x′(t − s)C′PCx(t − θ) ds dθ

= 1

2

∫ τ(t)

0

∫ τ(t)

0
σ(θ)σ (s)

[
x′(t − s)C′PCx(t − θ)

+ x′(t − θ)C′PCx(t − s)
]
ds dθ

≤ 1

2

∫ τ(t)

0

∫ τ(t)

0

∣∣σ(θ)
∣∣∣∣σ(s)

∣∣[x′(t − s)C′R2Cx(t − s)
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+ x′(t − θ)C′PR−1
2 PCx(t − θ)

]
ds dθ

= 1

2

∫ τ(t)

0

∣∣σ(θ)
∣∣dθ

∫ τ(t)

0

∣∣σ(s)
∣∣x′(t − s)C′R2Cx(t − s) ds

+ 1

2

∫ τ(t)

0

∣∣σ(s)
∣∣ds

∫ τ(t)

0

∣∣σ(θ)
∣∣x′(t − θ)C′PR−1

2 PCx(t − θ) dθ

≤ σ

2

∫ τ̂

0

∣∣σ(s)
∣∣x′(t − s)C′[R2 + PR−1

2 P
]
Cx(t − s) ds.

Therefore,

LV1 ≤ x′(t)
[
A′P + PA + βPR1P

]
x(t)

+
∫ ĥ

0

∣∣β(s)
∣∣x′(t − s)B ′R−1

1 Bx(t − s) ds,

+ σ

2

∫ τ̂

0

∣∣σ(s)
∣∣x′(t − s)C′[R2 + PR−1

2 P
]
Cx(t − s) ds.

By the representation (2.35) with

D = A′P + PA + βPR1P, l = 2,

S1 = B ′R−1
1 B, dν1(s) = ∣∣β(s)

∣∣ds, s ∈ [0, ĥ],
S2 = C′[R2 + PR−1

2 P
]
C, dν1(s) = σ

2

∣∣σ(s)
∣∣ds, s ∈ [0, τ̂ ],

and Theorem 2.5 we obtain the following:

Theorem 6.15 Suppose that conditions (6.49) hold and that, for some positive defi-
nite matrices R1, R2, and Q, there exists a positive definite solution P of the matrix
Riccati equation

A′P + PA + βPR1P + βB ′R−1
1 B + σ 2

2
C′(R2 + PR−1

2 P
)
C = −Q. (6.50)

Then the trivial solution of (6.48) is asymptotically mean-square stable.

Remark 6.20 Similarly to the previous remarks in Theorem 6.15, other matrix Ric-
cati equations can be used.

Example 6.11 In the scalar case, (6.50) has a positive solution if and only if

A + β|B| + σ 2

2
C2 < 0.



Chapter 7
Stochastic Systems with Markovian Switching

Investigation of systems with Markovian switching has a long history (see, for in-
stance, [119, 120, 197, 198, 266, 268, 278] and references therein). In this chap-
ter sufficient conditions for asymptotic mean-square stability of the solutions of
stochastic differential equations with delay and Markovian switching are obtained.
In particular, an application to Markov chain with two states and numerical simula-
tion of systems with Markovian switching are considered.

7.1 The Statement of the Problem

Consider the stochastic differential equation

ẋ(t) = f
(
t, xt , η(t)

)+ g
(
t, xt , η(t)

)
ẇ(t),

x0 = φ ∈ H. (7.1)

Here w(t) ∈ Rm is the standard Wiener process, η(t) is a scalar Markov chain with
finite set of states ai , i ∈ N = {1,2, . . . ,N}, and the probabilities of transition

pij (t) = P
{
η(τ + t) = aj/η(τ) = ai

}
, t, τ ≥ 0.

We suppose that the Markov chain η(t) is independent on the Wiener process
w(t) and the probabilities of transition can be represented in the form

pij (�) =
{

λij� + o(�), j �= i,

1 + λii� + o(�), j = i,

where

λij ≥ 0, j �= i, λii ≤ 0,

N∑

j=1

λij = 0, i ∈ N.
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For arbitrary symmetric matrix F(s), s ≥ 0, the inequality dF(s) ≥ 0 means that
for each function ϕ ∈ H ,

∫ ∞

0
ϕ′(−s) dF (s)ϕ(−s) ≥ 0.

Here and below, all integrals of such a type are understood as Stieltjes integrals.
For arbitrary symmetric matrices F(s) and G(s), s ≥ 0, dF(s) ≥ dG(s) means that
dF(s) − dG(s) ≥ 0, and |A| denotes some matrix norm of a matrix A.

The set of negative definite matrices Ki is called uniformly negative definite with
respect to i ∈ N if there exists c > 0 such that for each x ∈ Rn,

x′Kix ≤ −c|x|2, i ∈ N.

It is assumed that the functionals f (t, ϕ, ai) ∈ Rn and g(t, ϕ, ai) ∈ Rn×m are
defined for t ≥ 0, ϕ ∈ H , i ∈ N and satisfy the usual conditions [84, 87] of exis-
tence and uniqueness of the solution of (7.1). It is assumed also that the following
conditions hold:

(H1) For every positive definite matrix Pi , there exist symmetric matrices Qi and
Fi(s) such that

ϕ′(0)Pif (t, ϕ, ai) ≤ ϕ′(0)Qiϕ(0) +
∫ ∞

0
ϕ′(−s) dFi(s)ϕ(−s),

dFi(s) ≥ 0, i ∈N. (7.2)

(H ′
1) The functional f (t, ϕ, ai) has the form

f (t, ϕ, ai) = Aiϕ(0) +
∫ ∞

0
dBi(s)ϕ(−s), i ∈ N. (7.3)

(H2) For every positive definite matrix Pi , there exists a matrix Gi(s) such that

Tr
[
g′(t, ϕ, ai)Pig(t, ϕ, ai)

]≤
∫ ∞

0
ϕ′(−s) dGi(s)ϕ(−s),

dGi(s) ≥ 0, i ∈N. (7.4)

(H3) For the matrices Fi(s) and Gi(s) from (H1) and (H2), there exists a matrix
R(s) such that

dR(s) ≥ 2dFi(s) + dGi(s), i ∈N,

R =
∫ ∞

0
dR(s), |R| < ∞,

∫ ∞

0
s
∣∣dR(s)

∣∣< ∞.
(7.5)

Remark 7.1 Note that if the functional f (t, ϕ, ai) satisfies (H ′
1), then it satisfies

(H1) too. For instance, for

Qi = 1

2

(
PiAi + A′

iPi +
∫ ∞

0

∣∣Pi dBi(s)
∣∣I
)

, dFi(s) = 1

2

∣∣Pi dBi(s)
∣∣I. (7.6)
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Let us represent an arbitrary functional V (t, ϕ, ai) defined for t ≥ 0, ϕ ∈ H ,
i ∈N, in the form V (t, ϕ, ai) = V (t, ϕ(0), ϕ(s), ai), s < 0, and put

Vϕ(t, x, ai) = V (t, ϕ, ai) = V
(
t, x, x(t + s), ai

)
, s < 0,

ϕ = xt , x = ϕ(0) = x(t).

Let D be the class of functionals V (t, ϕ, ai) for which the function Vϕ(t, x, ai) is
twice continuously differentiable with respect to x and continuously differentiable
with respect to t for almost all t ≥ 0. For the functionals from D, the generator L of
(7.1) is defined by the formula

LV (t, ϕ, ai) = ∂

∂t
Vϕ(t, x, ai) + f ′(t, ϕ, ai)

∂

∂x
Vϕ(t, x, ai)

+ 1

2
Tr

[
g′(t, ϕ, ai)

∂2

∂x2
Vϕ(t, x, ai)g(t, ϕ, ai)

]

+
∑

j �=i

λij

(
V (t, ϕ, aj ) − V (t, ϕ, ai)

)
. (7.7)

Note that by the condition on λij the last summand in (7.7) can be written also in
the form

N∑

j=1

λijV (t, ϕ, aj ).

Similarly to (2.8) for 0 ≤ s ≤ t < ∞, we have

EV
(
t, xt , η(t)

)= EV
(
s, xs, η(s)

)+
∫ t

s

ELV
(
θ, xθ , η(θ)

)
dθ.

Similarly to Theorem 2.1, one can prove that asymptotic mean-square stabil-
ity conditions can be obtained by construction of some positive definite (or pos-
itive semidefinite for differential equations of neutral type) Lyapunov functionals
V (t, ϕ, ai) for which the inequality

LV (t, ϕ, ai) ≤ −c
∣
∣ϕ(0)

∣
∣2, c > 0, (7.8)

holds. Below sufficient conditions for the asymptotic mean-square stability of the
trivial solution of (7.1) are obtained via the procedure of constructing Lyapunov
functionals.

7.2 Stability Theorems

Here two theorems about sufficient conditions for asymptotic mean-square stability
of the trivial solution of (7.1) are obtained.
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Theorem 7.1 Let hypotheses H1, H2, H3 hold and suppose that the matrices

Ki = 2Qi +
∑

j �=i

λij (Pj − Pi) + R (7.9)

are negative definite for each i ∈ N. Then the trivial solution of (7.1) is asymptoti-
cally mean-square stable.

Proof Let us construct a Markov chain P(t) with the set of states P1,P2, . . . ,PN ,
where Pi , i ∈ N, are positive definite matrices. We will suppose that P(t) = Pi if
η(t) = ai , i ∈ N, and the probabilities of transition

pij (t) = P
{
P(τ + t) = Pj/P (τ) = Pi

}
, t, τ ≥ 0,

are the same as for the Markov chain η(t).
We will construct a Lyapunov functional V for (7.1) in the form V = V1 + V2,

where V1(t, ϕ, ai) = ϕ′(0)Piϕ(0). Calculating LV1, we obtain

LV1(t, ϕ, ai) = 2ϕ′(0)Pif (t, ϕ, ai) + Tr
[
g′(t, ϕ, ai)Pig(t, ϕ, ai)

]

+
∑

j �=i

λijϕ
′(0)(Pj − Pi)ϕ(0).

Using (7.2), (7.4), and (7.5), we have

LV1(t, xt , ai) ≤ 2x′(t)Qix(t) + 2
∫ ∞

0
x′(t − s) dFi(s) x(t − s)

+
∫ ∞

0
x′(t − s) dGi(s) x(t − s) +

∑

j �=i

λij x
′(t)(Pj − Pi)x(t)

≤ x′(t)
[

2Qi +
∑

j �=i

λij (Pj − Pi)

]
x(t)

+
∫ ∞

0
x′(t − s) dR(s) x(t − s).

Consider the functional

V2(t, xt ) =
∫ ∞

0

∫ t

t−s

x′(τ ) dR(s) x(τ ) dτ.

Since

LV2(t, xt ) =
∫ ∞

0

[
x′(t) dR(s) x(t) − x′(t − s) dR(s) x(t − s)

]
,
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using (7.9) and the condition that the matrices Ki are uniformly negative definite
with respect to i ∈N, for the functional V = V1 + V2, we obtain

LV (t, ϕ, ai) ≤ ϕ′(0)Kiϕ(0) ≤ −c
∣∣ϕ(0)

∣∣2.

Therefore, the trivial solution of (7.1) is asymptotically mean-square stable. The
proof is completed. �

Consider the equation

ẋ(t) = A
(
η(t)

)
x(t) + Bx(t − h) + g

(
t, xt , η(t)

)
ẇ(t). (7.10)

We suppose that if η(t) = ai , then A(η(t)) = Ai , g(t, ϕ, ai) satisfies (7.4). Using
Remark 7.1, it is easy to get that in this case

f (t, ϕ, ai) = Aiϕ(0) + Bϕ(−h),

Qi = 1

2

(
PiAi + A′

iPi + |PiB|I), dFi(s) = 1

2
|PiB|Iδ(s − h)ds.

Put

P = sup
i∈N

Pi, dG(s) = sup
i∈N

dGi(s), G =
∫ ∞

0
dG(s)

and suppose that

|G| < ∞,

∫ ∞

0
s
∣∣dG(s)

∣∣< ∞.

From Theorem 7.1 it follows that if the matrices

Ki = PiAi + A′
iPi + (|Pi | + |P |)|B|I +

∑

j �=i

λij (Pj − Pi) + G (7.11)

are negative definite for each i ∈ N, then the trivial solution of (7.10) is asymptoti-
cally mean-square stable.

Let us obtain another stability condition.

Theorem 7.2 Let |B|h < 1 and let Ri , i ∈ N, be uniformly negative definite matri-
ces, where

Ri = (Ai + B)′Pi + Pi(Ai + B) + Λi + G + h(ρi + β)I, (7.12)

Λi =
∑

j �=i

λij (Pj − Pi), ρi = ∣∣(Ai + B)′PiB + ΛiB
∣∣,

βi = (
h
∣∣B ′ΛiB

∣∣+ ρi

)
, β = sup

i∈N
βi.

(7.13)

Then the trivial solution of (7.10) is asymptotically mean-square stable.
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Proof Reduce (7.10) to the form of a stochastic differential neutral-type equation

d

dt

(
x(t) +

∫ t

t−h

Bx(s) ds

)
= (

A
(
η(t)

)+ B
)
x(t) + g

(
t, xt , η(t)

)
ẇ(t).

Consider the functional

V1(t, xt , ai) =
(

x(t) +
∫ t

t−h

Bx(s) ds

)′
Pi

(
x(t) +

∫ t

t−h

Bx(s) ds

)
.

Calculating LV1, we obtain

LV1(t, xt , ai) = 2x′(t)(Ai + B)′Pi

(
x(t) +

∫ t

t−h

Bx(s) ds

)

+ Tr
[
g′(t, xt , ai)Pig(t, xt , ai)

]

+
(

x(t) +
∫ t

t−h

Bx(s) ds

)′
Λi

(
x(t) +

∫ t

t−h

Bx(s) ds

)

= 2x′(t)(Ai + B)′Pix(t) + 2x′(t)(Ai + B)′Pi

∫ t

t−h

Bx(s) ds

+ Tr
[
g′(t, xt , ai)Pig(t, xt , ai)

]+ x′(t)Λix(t)

+ 2

(∫ t

t−h

Bx(s) ds

)′
Λix(t)

+
(∫ t

t−h

Bx(s) ds

)′
Λi

(∫ t

t−h

Bx(s) ds

)

= x′(t)
[
(Ai + B)′Pi + Pi(Ai + B) + Λi

]
x(t)

+ Tr
[
g′(t, xt , ai)Pig(t, xt , ai)

]

+ 2x′(t)
[
(Ai + B)′PiB + ΛiB

] ∫ t

t−h

x(s) ds

+
∫ t

t−h

x′(s) ds B ′ΛiB

∫ t

t−h

x(τ ) dτ.

By (7.4) and (7.13) we have

LV1(t, xt , ai) ≤ x′(t)
[
(Ai + B)′Pi + Pi(Ai + B) + Λi

]
x(t)

+
∫ ∞

0
x′(t − s) dGi(s) x(t − s) + ∣

∣B ′ΛiB
∣
∣
(∫ t

t−h

∣
∣x(s)

∣
∣ds

)2

+ ρi

∫ t

t−h

(∣∣x(t)
∣∣2 + ∣∣x(s)

∣∣2)ds
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≤ x′(t)
[(

A(i) + B
)′
Pi + Pi

(
A(i) + B

)+ Λi + hρiI
]
x(t)

+
∫ ∞

0
x′(t − s) dGi(s) x(t − s) + β

∫ t

t−h

∣∣x(s)
∣∣2 ds.

Putting

V2(t, xt ) =
∫ ∞

0

∫ t

t−s

x′(τ ) dG(s) x(τ ) dτ + β

∫ t

t−h

(s − t + h)
∣∣x(s)

∣∣2 ds,

we obtain

LV2(t, xt ) = x′(t)Gx(t) + βh
∣∣x(t)

∣∣2

−
∫ ∞

0
x′(t − s) dG(s) x(t − s) − β

∫ t

t−h

∣∣x(s)
∣∣2 ds.

Therefore, using (7.12) and the negative definiteness of the matrices Ri , i ∈ N, for
the functional V = V1 + V2, we have

LV (t, xt , ai) ≤ x′(t)Rix(t) ≤ −c
∣
∣x(t)

∣
∣2. (7.14)

From this and from |B|h < 1 it follows that the trivial solution of (7.10) is asymp-
totically mean-square stable. The proof is completed. �

7.3 Application to Markov Chain with Two States

Consider the scalar stochastic differential equation

ẋ(t) = η(t)x(t) + bx(t − h) + σx(t − τ)ẇ(t), (7.15)

where b > 0, h ≥ 0, and η(t) is a Markov chain with two states {a1, a2} such that

a2 < 0, a1 > |a2| > b + σ 2

2
. (7.16)

It is clear that if η(t) = a1, then the trivial solution of (7.15) is unstable. But for
η(t) = a2, from (7.16) the inequality

a2 + b + σ 2

2
< 0

follows, which is (see (3.11)) a sufficient condition for the asymptotic mean-square
stability of the trivial solution of (7.15).
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7.3.1 The First Stability Condition

Let us obtain a sufficient condition for asymptotic mean-square stability of the trivial
solution of (7.15), supposing that the Markov chain η(t) has two states {a1, a2} with
condition (7.16) and the transition rates λ12 and λ21 such that λ12 > λ21.

From Theorem 7.1 and (7.11) it follows that the sufficient condition for the
asymptotic mean-square stability of the trivial solution of (7.15) has the form

2piai + (pi + p)b + pσ 2 + λij (pj − pi) < 0, i, j = 1,2, j �= i, (7.17)

where p1 > 0, p2 > 0, p = max(p1,p2). It is easy to see that if i = 1 and p1 ≤ p2,
then condition (7.17) is impossible. So, let p1 > p2. Therefore, p = p1 and γ =
p2p

−1
1 ∈ (0,1). From (7.17) we have

2a1 + 2b + σ 2 + λ12(γ − 1) < 0,

2a2γ + (γ + 1)b + σ 2 + λ21(1 − γ ) < 0.

From this and from (7.16) it follows that

λ21 + b + σ 2

λ21 + 2|a2| − b
< γ < 1 − 2(a1 + b) + σ 2

λ12
. (7.18)

Thus, if the condition

λ21 + b + σ 2

λ21 + 2|a2| − b
< 1 − 2(a1 + b) + σ 2

λ12
(7.19)

holds, then there exists a positive number γ ∈ (0,1) such that condition (7.18) holds
too. From (7.19) and (7.16) it follows that the sufficient condition for the asymptotic
mean-square stability of the trivial solution of (7.15) has the form

|a2| < a1 <
λ12(|a2| − b − ε)

λ21 + 2|a2| − b
− b − ε, ε = σ 2

2
. (7.20)

Note that condition (7.20) is possible if and only if λ12 > λ21 only. Indeed, from
(7.20) it follows that

λ12 >
(
λ21 + 2|a2| − b

) |a2| + b + ε

|a2| − b − ε
> λ21 + 2|a2| − b > λ21.

7.3.2 The Second Stability Condition

Let us obtain another stability condition. From Theorem 7.2 for (7.15) we have

2(ai + b)pi + pσ 2 + λij (pj − pi) + h(ρi + β) < 0,

i, j = 1,2, j �= i, (7.21)
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where

ρi = b
∣∣(ai + b)pi + λij (pj − pi)

∣∣, β = max(β1, β2),

βi = hb2λij |pj − pi | + ρi, i, j = 1,2, j �= i.
(7.22)

Let us transform condition (7.21)–(7.22) to a more visual form. From (7.16) it fol-
lows that for i = 1 and p1 ≤ p2, condition (7.21) is impossible. So, assume that
p1 > p2. Then from (7.22) it follows that

ρ1 < b
(
(a1 + b)p1 + λ12(p1 − p2)

)
,

ρ2 < b
(|a2 + b|p2 + λ21(p1 − p2)

)
,

β1 < β1 = b
[
(a1 + b)p1 + λ12(1 + bh)(p1 − p2)

]
,

β2 < β2 = b
[|a2 + b|p2 + λ21(1 + bh)(p1 − p2)

]
.

(7.23)

By (7.16) we have |a2 + b| = −a2 − b = |a2| − b < a1 + b. Since, besides, p1 > p2
and λ12 > λ21, we have β1 > β2. Thus, condition (7.21) follows from

2(ai + b)pi + p1σ
2 + λij (pj − pi) + h(ρi + β1) < 0. (7.24)

In addition, using (7.23), we obtain that (7.24) follows from

2(a1 + b)p1 + p1σ
2 + λ12(p2 − p1)

+ hb
[
2(a1 + b)p1 + λ12(2 + bh)(p1 − p2)

]
< 0,

2(a2 + b)p2 + p1σ
2 + λ21(p1 − p2)

+ hb
[(|a2| − b

)
p2 + (a1 + b)p1 + (

λ12(1 + bh) + λ21
)
(p1 − p2)

]
< 0.

Using γ = p2p
−1
1 ∈ (0,1), we can rewrite these inequalities in the form

2(a1 + b) + σ 2 + λ12(γ − 1)

+ hb
[
2(a1 + b) + λ12(2 + bh)(1 − γ )

]
< 0,

2(a2 + b)γ + σ 2 + λ21(1 − γ )

+ hb
[(|a2| − b

)
γ + a1 + b + (

λ12(1 + bh) + λ21
)
(1 − γ )

]
< 0.

(7.25)

Suppose now that

bh <
√

2 − 1. (7.26)

Then from (7.25) we obtain

A + (a1 + b)bh + σ 2

A + C
< γ < 1 − 2(a1 + b)(1 + bh) + σ 2

B
, (7.27)

where

A = (λ21 + λ12bh)(1 + bh),
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B = λ12
(
1 − 2bh − b2h2), (7.28)

C = (2 − bh)
(|a2| − b

)
.

By (7.26) and (7.16) we have that B > 0 and C > 0.
Thus, if the condition

A + (a1 + b)bh + σ 2

A + C
< 1 − 2(a1 + b)(1 + bh) + σ 2

B

or (that is the same in combination with (7.16))

|a2| < a1 <
BC − σ 2(A + B + C)

Bbh + 2(1 + bh)(A + C)
− b (7.29)

holds, then there exists γ ∈ (0,1) such that condition (7.27) holds too, and therefore
the conditions of Theorem 7.2 hold. This means that condition (7.29) or (7.28) is a
sufficient condition for the asymptotic mean-square stability of the trivial solution
of (7.15).

In Fig. 7.1 the stability regions for (7.15), given by condition (7.20), are shown
for λ12 = 28, λ21 = 0.05, b = 1, ε = 0.25 (the bound 1), and the stability regions,
given by condition (7.29), (7.28), are shown for the same values of the parameters
λ12, λ21, b, p and the different values of h: (2) h = 0, (3) h = 0.01, (4) h = 0.02,
(5) h = 0.03, (6) h = 0.04. It is easy to see that in spite of rough estimates that were
used for getting inequalities (7.23), the stability condition (7.29), (7.28) for small
enough h is better than (7.20).

In Fig. 7.2 the stability region for (7.15), given by condition (7.29), (7.28), is
shown for λ12 = 15, λ21 = 1, b = 0.2, h = 0.2, σ = 0. Putting λ12 = 5 and using
the same values of the other parameters, we obtain the stability region shown in
Fig. 7.3.

We can see that in the case λ12 = 15 (Fig. 7.2) the point A(a1, a2) = A(1,−0.5)

belongs to the stability region, and therefore at this point the trivial solution of
(7.15) is asymptotically mean-square stable. On the other hand, in the case λ12 = 5
(Fig. 7.3) the point A(1,−0.5) does not belong to the stability region. Since condi-
tion (7.29), (7.28) is a sufficient condition only, for λ12 = 5, at the point A(1,−0.5)

the trivial solution of (7.15) can be either stable or unstable.

Remark 7.2 Let us show that the trivial solution of (7.15) can be asymptotically
mean-square stable not by conditions (7.16) only. Consider (7.15) by the conditions

a1 = −1, a2 = 1, b = −1,

σ = 0.1, λ12 = 1, λ21 = 5,
(7.30)

and obtain the maximum value of the delay h for which the conditions of Theo-
rem 7.2 hold.

By Theorem 7.2 we obtain the stability conditions in the form (7.21) again, i.e.,

2(ai + b)pi + λij (pj − pi) + pσ 2 + h(ρi + β) < 0, i �= j, (7.31)
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Fig. 7.1 Stability region for
(7.15), given by condition
(7.20), is shown for λ12 = 28,
λ21 = 0.05, b = 1,
ε = 0.25(1), and stability
regions, given by condition
(7.29), (7.28), are shown for
the same values of the
parameters λ12, λ21, b, ε and
the different values of h:
(2) h = 0, (3) h = 0.01,
(4) h = 0.02, (5) h = 0.03,
(6) h = 0.04

Fig. 7.2 Stability region for
(7.15), given by the condition
(7.29), (7.28), is shown for
λ12 = 15, λ21 = 1, b = 0.2,
h = 0.2, σ = 0

Fig. 7.3 Stability region for
(7.15), given by the condition
(7.29), (7.28), is shown for
λ12 = 5, λ21 = 1, b = 0.2,
h = 0.2, σ = 0
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where i = 1,2, p = max(p1,p2). But put now p2 = γp1 with 1 < γ < 3. Then
from (7.13) and (7.30) we have

ρ1 = (3 − γ )p1, ρ2 = 5(γ − 1)p1,

β1 = [
h(γ − 1) + 3 − γ

]
p1, β2 = 5(γ − 1)(h + 1)p1.

(7.32)

If, in addition, γ ∈ (4/3,3), then β2 > β1 for each h > 0, and therefore β =
max(β1, β2) = β2. As a result, the stability conditions (7.31) take the form

5(γ − 1)h(h + 1) + h(3 − γ ) + 1.01γ < 5,

5(γ − 1)h(h + 1) + 5h(γ − 1) + 0.01γ < 5(γ − 1).
(7.33)

From this it follows that

h <

√(
2γ − 1

5(γ − 1)

)2

+ 5 − 1.01γ

5(γ − 1)
− 2γ − 1

5(γ − 1)
,

h <

√
9.99γ − 10

5(γ − 1)
− 1.

It is easy to check that for γ = 1.900923, the both inequalities take the form h <

0.412721. This means that by the values of the parameters (7.30) the inequality
h < 0.412721 is a sufficient condition for the asymptotic mean-square stability of
the trivial solution of (7.15).

However, it is necessary to remember that conditions (7.33) are sufficient condi-
tions only. So, in reality, the trivial solution of (7.15) by the conditions (7.33) can be
asymptotically mean-square stable also for h ≥ 0.412721, as it will be shown below
(in Sect. 7.4.2) by a numerical simulation.

7.4 Numerical Simulation of Systems with Markovian Switching

Taking into account that it is difficult enough in each case to get analytical condi-
tions for stability, it is very important to have numerical methods for stability inves-
tigation. A numerical procedure for investigation of stability of stochastic systems
with Markovian switching is considered here. This procedure can be used in the
cases where analytical conditions of stability are absent. Some examples of using of
the proposed numerical procedure are considered. the results of the calculations are
presented by a lot of figures.
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7.4.1 System Without Stochastic Perturbations

Consider the differential equation (7.15) again but with σ = 0, i.e., without stochas-
tic perturbations of the type of white noise. In this case we have

ẋ(t) = η(t)x(t) + bx(t − h),

x(s) = φ(s), s ∈ [−h,0]. (7.34)

Here, as before, η(t) is a Markov chain with two states {a1, a2}, initial distribution

pi = P
{
η(0) = ai

}
, i = 1,2, (7.35)

and the probabilities of transition pij (�) of the form

pij (�) = P
{
η(t + �) = aj/η(t) = ai

}= λij� + o(�),

i, j = 1,2, i �= j. (7.36)

We suppose also that

a2 < 0, a1 > |a2| > b > 0, λ12 > λ21 > 0. (7.37)

Let us investigate the stability of the trivial solution of (7.34) at the point
A(a1, a2) with a1 = 1, a2 = −0.5 using a numerical simulation. Note that this point
belongs to the stability region (Fig. 7.2). Consider the difference analogue of (7.34)
in the form

xi+1 = (1 + ηi�)xi + bxi−m�,

where

xi = x(ti), ηi = η(ti), ti = i�, h = m�, � > 0.

Simulation of the Markov chain ηi , i = 0,1, . . . , can be reduced to the simpler
problem, simulation of a sequence of independent random variables ζi that are uni-
formly distributed on the interval [0,1]. Indeed, using (7.35), we have

p1 = P{η0 = a1} = P{ζ0 < p1},
p2 = P{η0 = a2} = P{ζ0 > p1}.

(7.38)

So, if after simulation of ζ0, we obtain ζ0 < p1, then we put η0 = a1, else we put
η0 = a2.

Further, if ηi−1 = a1, i > 0, then from (7.36) for small enough � > 0, we have

P{ηi = a2/ηi−1 = a1} = P{ζi < λ12�} = λ12�,

P{ηi = a1/ηi−1 = a1} = P{ζi > λ12�} = 1 − λ12�.
(7.39)
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Fig. 7.4 Four possible trajectories of the Markov chain η(t) and four appropriate trajectories of
the solution of (7.34) are shown for the different values of the parameters: a1 = 1, a2 = −0.5,
b = 0.2, h = 0.2, x(s) = 3.5, s ∈ [−0.2,0], p1 = p2 = 0.5, λ12 = 15, λ21 = 1, � = 0.01

Therefore, we obtain the following algorithm: if after simulation of ζi , we have
ζi > λ12�, then we put ηi = a1, else we put ηi = a2. Analogously, if ηi−1 = a2,
i > 0, then from (7.36) for small enough � > 0, we have

P{ηi = a1/ηi−1 = a2} = P{ζi < λ21�} = λ21�,

P{ηi = a2/ηi−1 = a2} = P{ζi > λ21�} = 1 − λ21�.
(7.40)

By (7.38)–(7.40) we obtain the following algorithm: if after simulation of ζi , we
have ζi < λ21�, then we put ηi = a1, else we put ηi = a2.

In Fig. 7.4 four possible trajectories of the Markov chain η(t) and four appro-
priate trajectories of the solution of (7.34) are shown for the following values of
the parameters: a1 = 1, a2 = −0.5, b = 0.2, h = 0.2, x(s) = 3.5, s ∈ [−0.2,0],
p1 = p2 = 0.5, λ12 = 15, λ21 = 1, � = 0.01. In Fig. 7.5 hundred trajectories of
the solution of (7.34) are shown for the same values of the parameters. We can see
that all trajectories converge to zero in the whole accordance with the properties of
stability.

Put now λ12 = 5 with the same values of the other parameters. In this case the
point A(1,−0.5) does not belong to the stability region (Fig. 7.3), and we have
(Figs. 7.6 and 7.7) another situation: the trajectories of the solution fill by itself
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Fig. 7.5 Hundred trajectories of the solution of (7.34) are shown for the same as in Fig. 7.4 values
of the parameters

Fig. 7.6 Four possible trajectories of the Markov chain η(t) and four appropriate trajectories of
the solution of (7.34) are shown for the different values of the parameters: a1 = 1, a2 = −0.5,
b = 0.2, h = 0.2, x(s) = 3.5, s ∈ [−0.2,0], p1 = p2 = 0.5, λ12 = 5, λ21 = 1, � = 0.01
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Fig. 7.7 Hundred trajectories of the solution of (7.34) are shown for the same as in Fig. 7.6 values
of the parameters

the whole admissible space between the solutions of (7.34) with η(t) ≡ a1 and
η(t) ≡ a2. This shows us the instability of the trivial solution of (7.34).

7.4.2 System with Stochastic Perturbations

Here we will investigate the stability of the trivial solution of stochastic differen-
tial equation (7.15) using a simultaneous numerical simulation of both stochastic
processes: the Markov chain η(t) with two states as it is described in the previous
section and the Wiener process w(t) as it is described in Sect. 2.1.1.

Consider the difference analogue of (7.15) of the form

xi+1 = (1 + ηi�)xi + bxi−m� + σxi−lwi+1,

where

xi = x(ti), ηi = η(ti), wi+1 = W(c)
n (ti+1) − W(c)

n (ti),

ti = i�, h = m�, τ = l�, � > 0.

In Fig. 7.8 four realizations of one trajectory of the Wiener process w(t), one trajec-
tory of the Markov chain η(t), and one trajectory of the solution x(t) of (7.15) are
shown for a1 = −1, a2 = 1, b = −1, σ = 1, λ12 = 1, λ21 = 5, h = 0.99, τ = 1.6,
x0 = 7.5. In Fig. 7.9 we can see at the same time ten trajectories of the solution
x(t) of (7.15) for the referred above values of the parameters. All trajectories of the
solution x(t) go to zero. In Fig. 7.10 we can see the similar picture for σ = 0.1 and
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Fig. 7.8 Four realizations of one trajectory of the Wiener process w(t), one trajectory of the
Markov chain η(t), and one appropriate trajectory of the solution x(t) of (7.15) are shown for
a1 = −1, a2 = 1, b = −1, σ = 1, λ12 = 1, λ21 = 5, h = 0.99, τ = 1.6, x0 = 7.5

the same values of the other parameters. We can see that in this case all trajectories
of the solution x(t) go to zero more quickly.

7.4.3 System with Random Delay

Consider the differential equation

ẋ(t) + bx
(
t − η(t)

)= 0,

x(s) = φ(s), s ∈ [−h,0], (7.41)

with random delay. Here b > 0, η(t) is a Markov chain with two states {a1, a2}
such that 0 < a1 < a2 = h, the initial distribution (7.35), and the probabilities of
transition (7.36).
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Fig. 7.9 Ten trajectories of the solution x(t) of (7.15) for the values of the parameters in Fig. 7.8

Fig. 7.10 Ten trajectories of the solution x(t) of (7.15) for the values of the parameters in Fig. 7.8
except for σ = 0.1

As it was shown in Example 1.2, if η(t) = h = const, then the inequality bh <
π
2 is a necessary and sufficient condition for the asymptotic stability of the trivial
solution of (7.41).

Let us investigate the stability of the trivial solution of (7.41) using the numeri-
cal simulation of the Markov chain η(t) as in the previous examples. Consider the
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Fig. 7.11 One trajectory of the Markov chain η(t)and one appropriate trajectory of the solution
of (7.41) are shown for b = 1, a1 = 1, a2 = 2, x(s) = 2.5, s ∈ [−2,0], p1 = p2 = 0.5, λ12 = 1,
λ21 = 3, � = 0.001

difference analogue of (7.41) of the form

xi+1 = xi − �bxi−ηi
,

xi = x(ti), ηi = η(ti), ti = i�, � > 0.

Put b = 1, a1 = 1, a2 = 2, x(s) = const, s ∈ [−h,0], � = 0.001. Several solu-
tions of (7.41) with different values of the initial function are shown in Figs. 1.1, 1.2,
and 1.3 for η(t) ≡ a1 = 1, η(t) ≡ 1

2π , η(t) ≡ a2 = 2, respectively. We can see that
all solutions converge to zero in the first case, are bounded only but do not converge
to zero in the second case, and go to ±∞ in the last case.

In Fig. 7.11 one trajectory of the Markov chain η(t) and one appropriate trajec-
tory of the solution of (7.41) are shown for p1 = p2 = 0.5, λ12 = 1, λ21 = 3 and the
same values of other parameters. In Fig. 7.12 hundred trajectories of the solution of
(7.41) are shown for the same values of the parameters. We can see that all trajecto-
ries converge to zero. If λ21 = 6, then hundred trajectories of the solution of (7.41)
converge to zero more quickly (Fig. 7.13).

In Fig. 7.14 one trajectory of the Markov chain η(t) and one appropriate trajec-
tory of the solution of (7.41) are shown for p1 = p2 = 0.5, λ12 = 3, λ21 = 1. In
Fig. 7.15 hundred trajectories of the solution of (7.41) are shown for these values of
λ12 and λ21. We can see that in this case the solution of (7.41) is unstable.
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Fig. 7.12 Hundred trajectories of the solution of (7.41) are shown for the same as in Fig. 7.11
values of the parameters

Fig. 7.13 Hundred trajectories of the solution of (7.41) are shown for the same values of the
parameters as in Fig. 7.11 except for λ21 = 6

7.4.4 Some Generalization of Algorithm of Markov Chain
Numerical Simulation

Let us show that the proposed numerical simulation (7.38)–(7.40) of the Markov
chain with two states can be generalized to a Markov chain η(t) with n states
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Fig. 7.14 One trajectory of the Markov chain η(t) and one appropriate trajectory of the solution
of (7.41) are shown for b = 1, a1 = 1, a2 = 2, x(s) = 2.5, s ∈ [−2,0], p1 = p2 = 0.5, λ12 = 3,
λ21 = 1, � = 0.001

Fig. 7.15 Hundred trajectories of the solution of (7.41) are shown for the same values of the
parameters as in Fig. 7.14

{a1, . . . , an}, initial distribution

pi = P
{
η(0) = ai

}
, i = 1, . . . , n,
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and the probabilities of transition

pij (�) = P
{
η(t + �) = aj/η(t) = ai

}= λij� + o(�),

i, j = 1, . . . , n, i �= j.

Indeed, put

ηk = η(tk), tk = k�, � > 0.

Reduce a simulation of the Markov chain ηk , k = 0,1, . . . , to a simulation of a se-
quence of independent random variables ζk that are uniformly distributed on [0, 1].
Note that

pi = P{η0 = ai} = P{Si−1 < ζ0 < Si}, i = 1, . . . , n,

where

S0 = 0, Si =
i∑

j=1

pj , i = 1, . . . , n − 1, Sn = 1.

It is easy to see that for each result of simulation ζ0, there exists a number i such
that Si−1 < ζ0 < Si . So, we put η0 = ai .

Further, put Qi0 = 0,

Qij =
j∑

l=1

λil�, 1 ≤ j < i,

Qij =
i−1∑

l=1

λil� +
j∑

l=i+1

λil�, i < j ≤ n.

Then

P{ηk = aj/ηk−1 = ai} = P{Qi,j−1 < ζk < Qij } = λij�

for j < i or j > i + 1, and

P{ηk = ai+1/ηk−1 = ai} = P{Qi,i−1 < ζk < Qi,i+1} = λi,i+1�,

P{ηk = ai/ηk−1 = ai} = P{Qin < ζk} = 1 − Qin.

Thus, we obtain the following algorithm. Let ηk−1 = ai , k > 0. If after simulation
of ζk , there exists a number j ≤ n such that j �= i and Qi,j−1 < ζk < Qij for j < i

or j > i + 1, Qi,i−1 < ζk < Qi,i+1 for j = i + 1, then we put ηk = aj . If such a
number j does not exist, i.e., ζk > Qin for i < n or ζk > Qn,n−1 for i = n, then we
put ηk = ai .



Chapter 8
Stabilization of the Controlled Inverted
Pendulum by a Control with Delay

The problem of stabilization for the mathematical model of the controlled inverted
pendulum (Fig. 8.1) during many years is very popular among the researchers (see,
for instance, [1, 2, 33, 36, 37, 114, 121, 169, 170, 201, 209, 228, 256, 273, 276,
278, 282]). Unlike the classical way of stabilization in which the stabilized control
is a linear combination of the state and velocity of the pendulum, here we propose
another way of stabilization. We suppose that only the trajectory of the pendulum
can be observed and stabilized control depends on the whole trajectory of the pendu-
lum. We consider linear and nonlinear models of the controlled inverted pendulum
by stochastic perturbations and investigate zero and steady-state nonzero solutions
analytically and by numerical simulations.

8.1 Linear Model of the Controlled Inverted Pendulum

Here we consider the linearized mathematical model of the controlled inverted pen-
dulum. We show that by some controls depending on a delay the trivial solution
of the considered model can be asymptotically stable but by some other controls
depending on a delay it is impossible. We also obtain sufficient conditions for stabi-
lization of the trivial solution of the considered model by stochastic perturbations.

8.1.1 Stabilization by the Control Depending on Trajectory

The linearized mathematical model of the controlled inverted pendulum can be de-
scribed by the linear second-order differential equation

ẍ(t) − ax(t) = u(t), a > 0, t ≥ 0. (8.1)

The classical way of stabilization [121] for (8.1) uses the control u(t) in the form

u(t) = −b1x(t) − b2ẋ(t), b1 > a, b2 > 0.

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional
Differential Equations, DOI 10.1007/978-3-319-00101-2_8,
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Fig. 8.1 Controlled inverted
pendulum

But this type of control, which represents instantaneous feedback, is quite difficult
to realize because usually it is necessary to have some finite time to make measure-
ments of the coordinates and velocities, to treat the results of the measurements, and
to implement them in the control action.

Here we propose another way of stabilization. We suppose that only the tra-
jectory of the pendulum is observed and the control u(t) does not depend on the
velocity but it depends on the previous values of the trajectory x(s), s ≤ t , and has
the form

u(t) =
∫ ∞

0
dK(τ) x(t − τ), (8.2)

where the kernel K(τ) is a right-continuous function of bounded variation on
[0,∞], and the integral is understood in the Stieltjes sense. This means in particu-
lar that both distributed and discrete delays can be used depending on the concrete
choice of the kernel K(τ).

The initial condition for system (8.1)–(8.2) has the form

x(s) = φ(s), ẋ(s) = φ̇(s), s ≤ 0, (8.3)

where φ(s) is a given continuously differentiable function.
Let us show that the inverted pendulum (8.1) can be stabilized by the con-

trol (8.2). Substituting (8.2) into (8.1) and putting x1(t) = x(t), x2(t) = ẋ(t), we
obtain the system of differential equations with delay

ẋ1(t) = x2(t),

ẋ2(t) = ax1(t) +
∫ ∞

0
dK(τ) x1(t − τ).

(8.4)
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To prove the asymptotic stability of the trivial solution of (8.4), we will use the
procedure of constructing Lyapunov functionals. Put

ki =
∫ ∞

0
τ i dK(τ), i = 0,1, kj =

∫ ∞

0
τ j
∣∣dK(τ)

∣∣, j = 2,3. (8.5)

Since
∫ t

t−τ

x2(s) ds =
∫ t

t−τ

ẋ1(s) ds = x1(t) − x1(t − τ),

then by (8.5) we have

∫ ∞

0
dK(τ) x1(t − τ) = k0x1(t) −

∫ ∞

0
dK(τ)

∫ t

t−τ

x2(s) ds.

Therefore, from the second equation of (8.4) it follows that

ẋ2(t) = (a + k0)x1(t) −
∫ ∞

0
dK(τ)

∫ t

t−τ

x2(s) ds. (8.6)

Put now

a1 = −(a + k0), z(t) = x2(t) − G(t, x2t ),

G(t, x2t ) =
∫ ∞

0
dK(τ)

∫ t

t−τ

(s − t + τ)x2(s) ds.
(8.7)

By (8.5) we have

d

dt

∫ ∞

0
dK(τ)

∫ t

t−τ

(s − t + τ)x2(s) ds = k1x2(t) −
∫ ∞

0
dK(τ)

∫ t

t−τ

x2(s) ds.

(8.8)
Using (8.6), (8.7), and (8.8), we reduce (8.4) to the form

ẋ1(t) = x2(t),

ż(t) = −a1x1(t) − k1x2(t),
(8.9)

which is the first step of the procedure.
Following the second step of the procedure of constructing Lyapunov function-

als, we consider the auxiliary system of the ordinary differential equations

ẏ1(t) = y2(t),

ẏ2(t) = −a1y1(t) − k1y2(t).
(8.10)

Rewriting (8.10) in the matrix form

ẏ(t) = Ay(t), y =
(

y1
y2

)
, A =

(
0 1

−a1 −k1

)
, (8.11)
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and using Corollary 1.1, we obtain that the inequalities

a1 > 0, k1 > 0, (8.12)

are necessary and sufficient conditions for the asymptotic stability of the zero solu-
tion of (8.10).

From Theorem 1.3, Remark 1.1, and (1.29) it follows that by conditions (8.12)
the matrix equation (1.27) with the matrix A defined in (8.11) and the symmetric
matrix Q with the elements q11 = q > 0, q22 = 1, q12 = 0 has the matrix solution
P with the elements

p11 = k1p12 + a1p22, p12 = q

2a1
, p22 = p

2a1
, p = q + a1

k1
. (8.13)

Following the third step of the procedure of constructing Lyapunov function-
als, we will construct a Lyapunov functional for (8.9) in the form V = V1 + V2,
where

V1 = p11x
2
1(t) + 2p12x1(t)z(t) + p22z

2(t) (8.14)

with p11, p12, p22, and z(t) are defined in (8.13) and (8.7).
Calculating V̇1, by (8.14), (8.9), and (8.7) we have

V̇1 = 2
(
p11x1(t) + p12z(t)

)
x2(t) − 2

(
p12x1(t) + p22z(t)

)(
a1x1(t) + k1x2(t)

)

= −2p12a1x
2
1(t) − 2(k1p22 − p12)x

2
2(t) + 2(p11 − k1p12 − a1p22)x1(t)x2(t)

+ 2p22a1x1(t)G(t, x2t ) + 2(k1p22 − p12)x2(t)G(t, x2t ).

Using (8.7), (8.13), and arbitrary γ > 0, we obtain

V̇1 = −qx2
1(t) − x2

2(t) + p

∫ ∞

0
dK(τ)

∫ t

t−τ

(s − t + τ)x1(t)x2(s) ds

+
∫ ∞

0
dK(τ)

∫ t

t−τ

(s − t + τ)x2(t)x2(s) ds

≤ −qx2
1(t) − x2

2(t) + p

2

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)

(
γ x2

1(t) + 1

γ
x2

2(s)

)
ds

+ 1

2

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)
(
x2

2(t) + x2
2(s)

)
ds

= −
(

q − 1

4
γpk2

)
x2

1(t) −
(

1 − 1

4
k2

)
x2

2(t)

+ α

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)x2
2(s) ds, (8.15)
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where

α = 1

2

(
1 + p

γ

)
. (8.16)

Following the fourth step of the procedure of constructing Lyapunov functionals,
let us choose the functional V2 in the form

V2 = α

2

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)2x2
2(s) ds. (8.17)

Then

V̇2 = αk2

2
x2

2(t) − α

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)x2
2(s) ds, (8.18)

and by (8.16), for the functional V = V1 + V2, we obtain

V̇ ≤ −
(

q − γpk2

4

)
x2

1(t) −
(

1 − k2

2
− pk2

4γ

)
x2

2(t). (8.19)

From the condition of positivity of the expressions in the brackets we have

4q

pk2
> γ >

pk2

2(2 − k2)
> 0.

So, if

4q

pk2
>

pk2

2(2 − k2)
> 0, (8.20)

then there exists γ > 0 such that the Lyapunov functional V for some c > 0 satisfies
the condition V̇ ≤ −c(x2

1(t) + x2
2(t)).

Using the representation (8.13) for p, rewrite (8.20) in the form

2(2 − k2)k
2
1

k2
2

>
(a1 + q)2

4q
= a1

4

(
2 + a1

q
+ q

a1

)

and note that the right-hand part of the obtained inequality reaches its minimum for
q = a1. Using this q and (8.7), (8.12), we obtain the following theorem.

Theorem 8.1 Let

a1 = −(a + k0) > 0, k1 > 0, k2 <
4

1 +
√

1 + 4a1k
−2
1

. (8.21)

Then the trivial solution of (8.4) is asymptotically stable.

Remark 8.1 Note that two first inequalities in (8.21) are necessary conditions for
asymptotic stability of the trivial solution of (8.4), while the third inequality in (8.21)
is a sufficient condition only.
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Remark 8.2 Note that the third inequality in (8.21) can be represented in the form

k1 > k2

√
a1

2(2 − k2)
.

Remark 8.3 Let us show that the functional G(t, x2t ) in (8.7) satisfies condi-
tion (2.10) for a differential equation of neutral type. Indeed, transform G(t, x2t )

in the following way:

G(t, x2t ) =
∫ ∞

0
dK(τ)

∫ τ

0
(τ − θ)x2(t − θ) dθ

=
∫ ∞

0
x2(t − θ)

∫ ∞

θ

(τ − θ) dK(τ) dθ.

From (8.21) it follows that k2 < 2. So, by (8.5),
∣∣∣∣

∫ ∞

0

∫ ∞

θ

(τ − θ) dK(τ) dθ

∣∣∣∣ ≤
∫ ∞

0

∣∣dK(τ)
∣∣
∫ τ

0
(τ − θ) dθ

= 1

2

∫ ∞

0
τ 2
∣∣dK(τ)

∣∣= k2

2
< 1.

8.1.2 Some Examples

Here we consider some different examples of the controls of type (8.2) and show
that, for some of them, a stabilization is possible but, for some of them, a stabiliza-
tion is impossible.

Example 8.1 Put in (8.2) dK(τ) = bδ(τ −h)dτ , where h > 0, and δ(τ ) is the Dirac
delta-function. In this case system (8.1)–(8.2) has the form

ẍ(t) − ax(t) = bx(t − h). (8.22)

From (8.21) we obtain a contradiction for b: k0 = b < −a < 0, k1 = bh > 0. From
Theorem 8.1 and Remark 8.1 it follows that the trivial solution of (8.22) cannot be
asymptotically stable for any b and h, i.e., the inverted pendulum (8.1) cannot be
stabilized by the control of the form u(t) = bx(t − h).

Let us obtain the same statement using the characteristic equation of (8.22) z2 −
a − be−hz = 0, z = α + iβ , that can be transformed to the following system of two
equations for real α and β:

α2 − β2 − a − be−hα cos(hβ) = 0, 2αβ + be−hα sin(hβ) = 0. (8.23)

Let us show that system (8.23) for every b and h has at least one solution with
α ≥ 0. Suppose first that a +b > 0. In this case, for β = 0, we have α2 −a = be−hα .
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Consider the characteristic quasipolynomial �(α) = α2 −a −be−hα . Since �(0) =
−(a+b) < 0 and limα→∞ �(α) = +∞, then there exists α > 0 such that �(α) = 0.
Let now a + b = 0. In this case, α = β = 0 is the solution of system (8.23). Let at
last a + b < 0. Since a > 0, b < −a < 0. Choose β so that 0 < hβ < π

2 . Then
cos(hβ) > 0 and sin(hβ) > 0. From (8.23) it follows that

α2 − β2 − a

cos(hβ)
= − 2αβ

sin(hβ)
= be−hα < 0.

This means that α is a positive root of the equation α2 + 2αγ = a + β2, γ =
β cot(hβ), i.e., α =√

a + β2 + γ 2 − γ > 0.
Thus, for every b and h, system (8.23) has at least one solution with α ≥ 0, i.e.,

the trivial solution of (8.22) cannot be asymptotically stable.

Example 8.2 Put in (8.2) dK(τ) = (b1δ(τ − h1) + b2δ(τ − h2)) dτ , where
h1, h2 > 0, and δ(τ ) is the Dirac delta-function. In this case system (8.1)–(8.2)
has the form

ẍ(t) − ax(t) = b1x(t − h1) + b2x(t − h2), (8.24)

and by (8.5) the stability conditions (8.21) are

a1 = −(a + b1 + b2) > 0, k1 = b1h1 + b2h2 > 0,

k2 = |b1|h2
1 + |b2|h2

2 < km = 4

1 +
√

1 + 4a1k
−2
1

.
(8.25)

Let us show that for an arbitrary a > 0, there exist b1, b2, h1, h2 such that con-
ditions (8.25) hold and therefore the trivial solution of (8.24) is asymptotically sta-
ble.

First, note that (8.24) was already considered in Example 1.7, where it was shown
that the inequality a + b1 + b2 < 0 is a necessary condition for asymptotic stability.
This condition coincides with the first condition in (8.25).

Put now b1 = b, b2 = −αb, h1 = h, h2 = βh. Here b is an arbitrary positive
number, and positive numbers α, β , and h will be chosen below.

By that the first condition in (8.25) takes the form a + b − αb < 0 and holds
if α > 1 + ab−1. The second condition in (8.25) takes the form bh − αβbh =
bh(1 − αβ) > 0 and holds if β < α−1. The third condition in (8.25) in this case has
the form

Ah2 <
4

1 + √
1 + Bh−2

, A = b
(
1 + αβ2), B = 4(α − 1 − ab−1)

b(1 − αβ)2
> 0.

It is easy to show that it holds if h < 4(
√

A(AB + 8))−1.
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So, we have shown that for an arbitrary a > 0, the parameters b1, b2, h1, and h2

can be chosen such that all conditions (8.25) hold and therefore the trivial solution
of (8.24) is asymptotically stable.

Example 8.3 Consider the control (8.2) in the form

u(t) = b

∫ h1

h2

x(t − s) ds, h1 > h2 ≥ 0. (8.26)

In this case from (8.21) we obtain a contradiction for b:

k0 = b(h1 − h2) < −a < 0, k1 = b

2

(
h2

1 − h2
2

)
> 0.

Thus, there do not exist b, h1, h2 such that conditions (8.21) hold. This means that
system (8.1) cannot be stabilized by the control (8.26).

On the other hand, the characteristic equation of system (8.1), (8.26) has the form
z2 − a − b

∫ h1
h2

e−zs ds = 0, z = α + iβ or, in the form of a system of two equations
for real α and β ,

α2 − β2 − a − bIc = 0, 2αβ + bIs = 0,

Ic =
∫ h1

h2

e−αs cos(βs) ds, Is =
∫ h1

h2

e−αs sin(βs) ds.
(8.27)

Let us show that for arbitrary b, h1, h2, there exists a solution of (8.27) with
nonnegative α. Let first a+b(h1 −h2) > 0. Put β = 0 and consider the characteristic
quasipolynomial

�(α) = α2 − a − b

∫ h1

h2

e−αs ds = α2 − a − b

α

(
e−αh2 − e−αh1

)
.

It is easy to see that limα→0 �(α) = −[a + b(h1 − h2)] < 0 but limα→∞ �(α) =
∞ > 0. Therefore, there exists at least one α0 > 0 such that �(α0) = 0 and (α0,0)

is a solution of (8.27). If a + b(h1 − h2) = 0, then α = β = 0 is a solution of (8.27).
Let now a + b(h1 − h2) < 0. Since a > 0, b < 0. Choose β > 0 such that βh1 < π

2 .
Then Ic > 0 and Is > 0. From (8.27) it follows that

α2 − β2 − a

Ic

= −2αβ

Is

= b < 0.

This means that there exists α > 0 that is a positive root of the equation f (α) = 0,
where f (α) = α2 + 2αγ − a − β2, γ = βIcI

−1
s . Indeed, it is easy to see that

f (0) = −a − β2 < 0 and limα→∞ f (α) = ∞ > 0. So, this equation has a positive
root.
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Example 8.4 Consider the control (8.2) in the form

u(t) = b1

∫ h1

h2

x(t − s) ds + b2

∫ h3

h4

x(t − s) ds,

0 < h4 < h3 < h2 < h1. (8.28)

In this case from (8.21) we obtain

k0 = b1(h1 − h2) + b2(h3 − h4) < −a, (8.29)

k1 = b1

2

(
h2

1 − h2
2

)+ b2

2

(
h2

3 − h2
4

)
> 0, (8.30)

k2 = |b1|
3

(
h3

1 − h3
2

)+ |b2|
3

(
h3

3 − h3
4

)
<

4

1 +
√

1 + 4|a + k0|k−2
1

. (8.31)

Let us show that there exist b1, b2, h1, h2, h3, h4 such that conditions (8.29)–(8.31)
hold. Put, for instance,

b1 = a

h
, b2 = −γ b1, h1 = h, hi+1 = αih, i = 1,2,3, (8.32)

where h > 0, γ > 0,

0 < α3 < α2 < α1 < 1. (8.33)

In this case conditions (8.29)–(8.30) have the forms respectively

k0 = a
(
1 − α1 − γ (α2 − α3)

)
< −a,

k1 = ah

2

(
1 − α2

1 − γ
(
α2

2 − α2
3

))
> 0.

These conditions hold if the parameters γ and αi , i = 1,2,3, satisfy the inequalities

2 − α1

α2 − α3
< γ <

1 − α2
1

α2
2 − α2

3

. (8.34)

Substituting (8.32) into (8.31), we obtain

h <

√
2

αa(1 + 2αβ)
, (8.35)

where

α = 1

3

(
1 − α3

1 + γ
(
α3

2 − α3
3

))
, β = α1 + γ (α2 − α3) − 2

(1 − α2
1 − γ (α2

2 − α2
3))2

. (8.36)
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Fig. 8.2 Solutions of (8.1), (8.28) for a = 1, h1 = 0.48, h2 = 0.24, h3 = 0.12, h4 = 0.06,
b1 = ah−1

1 , b2 = −γ b1, x(s) = 3, s ∈ [−0.48,0], and the different values of γ : (1) γ = 11.5,
(2) γ = 11.99, (3) γ = 12, (4) γ = 13, (5) γ = 16.3

Thus, if the parameters of (8.1) with the control (8.28) satisfy conditions (8.32)–
(8.36), then the trivial solution of (8.1), (8.28) is asymptotically stable.

From (8.33)–(8.34) it follows that the parameters αi , i = 1,2,3, should satisfy
the conditions

0 < α3 < 2 − √
3,

α3 < α2 < 2(2 − √
3) − α3,

α2 < α1 <
1

2

(
δ +

√
δ2 − 8δ + 4

)
, δ = α2 + α3.

(8.37)

Put, for instance, a = 1, αi = 2−i , i = 1,2,3. Conditions (8.37) hold, and condition
(8.34) takes the form 12 < γ < 16. Putting γ = 13, from (8.35)–(8.36) we obtain
h < 1.02392. Putting γ = 12.1, we have h < 2.13984.

In Fig. 8.2 the solutions of (8.1), (8.28) are shown for a = 1, h1 = 0.48,
h2 = 0.24, h3 = 0.12, h4 = 0.06, b1 = ah−1

1 , b2 = −γ b1, x(s) = 3, s ≤ [−0.48,0],
and different values of the parameter γ : (1) γ = 11.5, (2) γ = 11.99, (3) γ = 12,
(4) γ = 13, (5) γ = 16.3. Only one of these solutions with γ = 13 is asymptotically
stable.
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8.1.3 About Stabilization by the Control Depending on Velocity
or on Acceleration

Consider (8.1) with the control

u(t) =
∫ ∞

0
dK(τ) ẋ(t − τ), (8.38)

where
∫ ∞

0

∣
∣dK(τ)

∣
∣< ∞. (8.39)

The characteristic equation of system (8.1), (8.38) has the form

z2 − a − z

∫ ∞

0
dK(τ) e−zτ = 0, z = α + βi. (8.40)

Let us show that this equation has at least one root z with positive real part α.
Indeed, put β = 0 and �(α) = α2 − a − α

∫∞
0 dK(τ) e−ατ . Then (8.40) takes the

form �(α) = 0. Note that �(0) = −a < 0. Using (8.39), it is easy to get that

lim
α→∞�(α) = lim

α→∞α2
(

1 − a

α2
− 1

α

∫ ∞

0
dK(τ) e−ατ

)
= ∞.

Therefore, there exists at least one α > 0 that is a root of the equation �(α) = 0.
Thus, the inverted pendulum cannot be stabilized by the control of type (8.38) de-
pending on the velocity only.

Consider (8.1) with the control

u(t) =
∫ ∞

0
dK(τ) ẍ(t − τ), (8.41)

where
∣∣dK(0)

∣∣= ∣∣K(+0) − K(0)
∣∣< 1,

∫ ∞

+0

∣∣dK(τ)
∣∣< ∞. (8.42)

The characteristic equation of system (8.1), (8.41) has the form

z2 − a − z2
∫ ∞

0
dK(τ) e−zτ = 0, z = α + βi. (8.43)

Let us show that this equation has at least one root z with positive real part α.
Indeed, put β = 0 and �(α) = α2 − a − α2

∫∞
0 dK(τ) e−ατ . Then (8.43) takes the

form �(α) = 0. Note that �(0) = −a < 0. Using (8.42), it is easy to get that

lim
α→∞�(α) = lim

α→∞α2
(

1 − a

α2
− dK(0) −

∫ ∞

+0
dK(τ) e−ατ

)
= ∞.
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Fig. 8.3 Solutions of (8.44) for a = 0.01, h = 5, x(s) = 0.01, s ∈ [−5,0] and the different values
of b: (1) b = −0.01, (2) b = 0.01

Therefore there exists at least one α > 0 that is a root of the equation �(α) = 0.
Thus, the inverted pendulum cannot be stabilized by the control of type (8.41) de-
pending on the acceleration only.

In Fig. 8.3 the solution x(t) of the equation

ẍ(t) − ax(t) = bẍ(t − h) (8.44)

is shown for a = 0.01, h = 5, x(s) = 0.01, s ∈ [−5,0], and the different values of b:
(1) b = −0.01, (2) b = 0.01.

8.1.4 Stabilization by Stochastic Perturbations

Substituting (8.2) into (8.1) and supposing that the parameter a in (8.1) is under the
influence of stochastic perturbations of the type of white noise, we obtain

ẍ(t) − (
a + σẇ(t)

)
x(t) =

∫ ∞

0
dK(τ) x(t − τ), a > 0, t ≥ 0. (8.45)

Here w(t) is the standard Wiener process, and σ is a constant.
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Theorem 8.2 Let

a1 = −(a + k0) > 0, k1 > 0,

σ 2 < 2a1

(
k1 − k2

√
a1

2(2 − k2)

)
,

(8.46)

where ki , i = 0,1,2, are defined in (8.5). Then the trivial solution of (8.45) is asymp-
totically mean-square stable.

Proof Put x1(t) = x(t) and x2(t) = ẋ(t). Then (8.45), similarly to (8.9), can be
rewritten in the form of the system of stochastic differential equations of neutral
type

ẋ1(t) = x2(t),

ż(t) = −a1x1(t) − k1x2(t) + σx1(t)ẇ(t),
(8.47)

with the initial conditions x1(s) = φ(s), x2(s) = φ̇(s), s ≤ 0. Here k1, a1, and z(t)

are defined in (8.5), (8.7).
We will construct a Lyapunov functional for (8.47) in the form V = V1 + V2,

where V1 is defined by (8.14), (8.13). Calculating LV1, where L is the generator
of (8.47), and using (8.7), (8.13), we obtain

LV1 = 2
(
p11x1(t) + p12z(t)

)
x2(t)

− 2
(
p12x1(t) + p22z(t)

)(
a1x1(t) + k1x2(t)

)+ σ 2p22x
2
1(t)

= −(2p12a1 − σ 2p22
)
x2

1(t) − 2(k1p22 − p12)x
2
2(t)

+ 2(p11 − k1p12 − a1p22)x1(t)x2(t)

+ 2p22a1x1(t)G(t, x2t ) + 2(k1p22 − p12)x2(t)G(t, x2t )

= −(q − σ 2p22
)
x2

1(t) − x2
2(t) + p

∫ ∞

0
dK(τ)

∫ t

t−τ

(s − t + τ)x1(t)x2(s) ds

+
∫ ∞

0
dK(τ)

∫ t

t−τ

(s − t + τ)x2(t)x2(s) ds.

Similarly to (8.15), for arbitrary γ > 0 and α defined by (8.16), we have

LV1 ≤ −
(

q − 1

4
γpk2 − σ 2p22

)
x2

1(t) −
(

1 − 1

4
k2

)
x2

2(t)

+ α

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)x2
2(s) ds.
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Choosing the functional V2 in the form (8.17) and using (8.16), for the functional
V = V1 + V2, similarly to (8.19), we obtain

LV ≤ −
(

q − γpk2

4
− σ 2p22

)
x2

1(t) −
(

1 − k2

2
− pk2

4γ

)
x2

2(t).

Supposing the positivity of the expressions in the brackets, we obtain

4(q − σ 2p22)

pk2
> γ >

pk2

2(2 − k2)
> 0.

So, if

4(q − σ 2p22)

pk2
>

pk2

2(2 − k2)
> 0, (8.48)

then there exists γ > 0 such that the Lyapunov functional V for some c > 0 satisfies
the condition LV ≤ −c(x2

1(t) + x2
2(t)).

By the representation (8.13) for p22 and p from (8.48) it follows that

σ 2 < 2a1k1

(
q

q + a1
− A(q + a1)

)
, A = k2

2

8k2
1(2 − k2)

. (8.49)

The right-hand part of inequality (8.49) reaches its maximum at q =
√

a1A−1 − a1.
Substituting this q into (8.49), we obtain the last inequality (8.46). The proof is
completed. �

Note that by Remark 8.2 conditions (8.46) by σ = 0 coincide with (8.21).

8.2 Nonlinear Model of the Controlled Inverted Pendulum

8.2.1 Stabilization of the Trivial Solution

Consider separately the deterministic case and the stochastic case.

8.2.1.1 The Deterministic Case

Consider the problem of stabilization for the nonlinear model of the controlled in-
verted pendulum

ẍ(t) − a sinx(t) = u(t), a > 0, (8.50)

via the control (8.2).
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Let us suppose that conditions (8.21) hold. In Theorem 8.1 it is proved that by
conditions (8.21) on the kernel K(τ) of the control (8.2) the appropriate linearized
system (8.4) is asymptotically stable. So, by conditions (8.21) the trivial solution of
the nonlinear system (8.50), (8.2) is asymptotically stable too if the initial function
(8.3) belongs to some small enough neighborhood of the origin, called a region of
attraction. Let us construct some estimate of the region of attraction for the trivial
solution of system (8.50), (8.2).

Similarly to (8.9), let us represent (8.50), (8.2) in the form

ẋ1(t) = x2(t),

ż(t) = −a1x1(t) − k1x2(t) − af
(
x1(t)

)
,

(8.51)

where f (x) = x − sinx, k1, and a1 and z(t) are defined by (8.5), (8.7).
Following the procedure of constructing Lyapunov functionals, let us choose the

auxiliary ordinary differential equations for system (8.51) in the form (8.10). We
will construct a Lyapunov functional for (8.51) in the form V = V1 + V2, where the
functional V1 is defined again by (8.14), (8.13). Calculating V̇1 for system (8.51),
similarly to (8.15), we obtain

V̇1 ≤ −
(

q − 1

4
γpk2

)
x2

1(t) −
(

1 − 1

4
k2

)
x2

2(t)

+ α

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)x2
2(s) ds

− 2ap12x1(t)f
(
x1(t)

)− 2ap22x2(t)f
(
x1(t)

)

+ 2ap22

∫ ∞

0
dK(τ)

∫ t

t−τ

(s − t + τ)x2(s)f
(
x1(t)

)
ds,

where p and α are defined by (8.13) and (8.16).
Suppose that for all t ≥ 0 and some positive δ,

∣∣x1(t)
∣∣≤ δ. (8.52)

Using (8.52), the inequality |f (x)| = |x − sinx| ≤ 1
6 |x|3, and some ν > 0, we get

∣∣x1(t)f
(
x1(t)

)∣∣≤ x4
1(t)

6
≤ δ2

6
x2

1(t),

2
∣∣x2(t)f

(
x1(t)

)∣∣≤ x2
1(t)

6

(
νx2

1(t) + 1

ν
x2

2(t)

)
≤ δ2

6

(
νx2

1(t) + 1

ν
x2

2(t)

)
,
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and

2
∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)
∣∣x2(s)f

(
x1(t)

)∣∣ds

≤ δ2

6

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)

(
νx2

1(t) + 1

ν
x2

2(s)

)
ds

≤ δ2

6

(
νk2

2
x2

1(t) + 1

ν

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)x2
2(s) ds

)
.

As a result,

V̇1 ≤ −
[
q − 1

4
γpk2 − δ1

(
2p12 +

(
1 + k2

2

)
p22

)
ν

]
x2

1(t)

−
(

1 − k2

4
− δ1p22

ν

)
x2

2(t) + α1

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)x2
2(s) ds,

where

δ1 = aδ2

6
, α1 = α + δ1p22

ν
. (8.53)

Choosing V2 in the form

V2 = α1

2

∫ ∞

0

∣∣dK(τ)
∣∣
∫ t

t−τ

(s − t + τ)2x2
2(s) ds (8.54)

and using (8.53) and (8.16), for the functional V = V1 + V2, we obtain

V̇ ≤ −
(

q − A − γpk2

4

)
x2

1(t) −
(

1 − B − pk2

4γ

)
x2

2(t), (8.55)

where

A = A0 + Dν, B = B0 + D
1

ν
,

A0 = 2p12δ1, D = (1 + B0)p22δ1, B0 = k2

2
. (8.56)

Supposing the positivity of the expressions in the brackets in (8.55), we obtain

4(q − A)

pk2
> γ >

pk2

4(1 − B)
> 0. (8.57)

So, if

4(q − A)

pk2
>

pk2

4(1 − B)
> 0, (8.58)

then there exists γ > 0 such that (8.57) holds.
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Using (8.56), rewrite (8.58) in the form

(q − A0 − Dν)

(
1 − B0 − D

1

ν

)
>

(
pB0

2

)2

. (8.59)

It is easy to show that the left-hand side of this inequality reaches its maximum at
ν =√

(q − A0)(1 − B0)−1. Substituting this ν into (8.59), we obtain

√
(q − A0)(1 − B0) > D + pB0

2
.

By (8.56) and (8.13) this inequality can be represented in the form

k1

√
(1 − δ0)(1 − B0) >

1

2

(√
q + a1√

q

)(
(1 + B0)δ0 + B0

)
, δ0 = δ1

a1
.

Note that the right-hand side of this inequality reaches its minimum at q = a1. Using
this q , we obtain

k1

√
(1 − δ0)(1 − B0) >

√
a1
(
(1 + B0)δ0 + B0

)
.

This inequality can be rewritten in the form of the quadratic equation with respect
to δ0,

δ2
0 + 2μδ0 − ρ < 0, (8.60)

where, by (8.56),

μ = k2

2 + k2
+ k2

1(2 − k2)

a1(2 + k2)2
, ρ = 2k2

1a−1
1 (2 − k2) − k2

2

(2 + k2)2
.

Note that by Remark 8.2 ρ > 0. So, inequality (8.60) holds for δ0 = 0, and therefore
it holds also for small enough δ0 > 0, namely δ0 <

√
μ2 + ρ − μ, or by (8.53) and

the definition of δ0,

δ2 <
6a1

a

√
μ2 + ρ − μ. (8.61)

Let λ0 > 0 and λ1 > 0 be respectively the minimal and maximal eigenvalues of
the positive definite matrix P with the elements pij defined by (8.13) with q = a1.
Then by (8.14), (8.55), (8.54), and (8.5) we have

λ0x
2
1(t) ≤ V (t) ≤ V (0) ≤ λ1

(
x2

1(0) + z2(0)
)+ α1k3

6
sup
s≤0

x2
2(s).

From (8.7) and (8.5) it follows that

∣∣z(0)
∣∣≤ ∣∣x2(0)

∣∣+
∫ ∞

0

∣∣dK(τ)
∣∣
∫ 0

−τ

(s + τ)
∣∣x2(s)

∣∣ds ≤
(

1 + k2

2

)
sup
s≤0

∣∣x2(s)
∣∣.
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So,

λ0x
2
1(t) ≤ λ1x

2
1(0) +

(
λ1

(
1 + k2

2

)2

+ α1k3

6

)
sup
s≤0

x2
2(s),

and by (8.52) the domain of attraction for the trivial solution of system (8.50), (8.2)
contains the set of initial functions satisfying the inequality

λ1

λ0
φ2(0) +

(
λ1

λ0

(
1 + k2

2

)2

+ α1k3

6λ0

)
sup
s≤0

φ̇2(s) ≤ δ2.

By this condition on the initial function φ(s) with δ > 0 that satisfies (8.61) the
solution of system (8.50), (8.2) satisfies condition (8.52).

8.2.1.2 The Stochastic Case

Consider now the nonlinear model of the controlled inverted pendulum (8.50) under
the influence of stochastic perturbations of the type of white noise

ẍ(t) − (
a + σẇ(t)

)
sinx(t) = u(t), a > 0, t ≥ 0, (8.62)

with the control (8.2). Similarly to (8.51), rewrite system (8.62), (8.2) in the form

ẋ1(t) = x2(t),

ż(t) = −a1x1(t) − k1x2(t) − af
(
x1(t)

)+ σ
(
x1(t) − f

(
x1(t)

))
ẇ(t),

(8.63)

where f (x) = x − sinx, and k1, a1, and z(t) are defined by (8.5) and (8.7).

Note that (8.47) is the linear part of (8.63). Since |f (x)| ≤ x3

6 , the order of non-
linearity of (8.63) is 3. From Theorem 5.2 it follows that if the order of nonlinearity
of the nonlinear system under consideration is higher than one, then the sufficient
condition for asymptotic mean-square stability of the linear part of this system is at
the same time a sufficient condition for stability in probability of the initial nonlinear
system. Thus, we obtain the following theorem.

Theorem 8.3 If conditions (8.46) hold, then the trivial solution of (8.62) by the
control (8.2) is stable in probability.

So, the nonlinear model of the controlled inverted pendulum under stochastic
perturbations can be stabilized by a control that depends on the trajectory only.

8.2.2 Nonzero Steady-State Solutions

Here nonzero steady-state solutions of the nonlinear system (8.50), (8.2), (8.3) are
studied. Substituting (8.2) into (8.50) and putting x1(t) = x(t) and x2(t) = ẋ(t), we
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represent this system as follows:

ẋ1(t) = x2(t),

ẋ2(t) = a sinx1(t) +
∫ ∞

0
dK(τ) x1(t − τ).

(8.64)

To get steady-state solutions of (8.64), let us suppose that ẋ1(t) ≡ 0 and ẋ2(t) ≡ 0.
We obtain that x2(t) ≡ 0 and x1(t) ≡ x̂ is a root of the equation

a sin x̂ + k0x̂ = 0. (8.65)

Suppose that x̂ �= 0 and rewrite (8.65) in the form

S(x̂) = 0, (8.66)

where

S(x) = sinx

x
+ k0

a
. (8.67)

We will call the function S(x) “the characteristic function of the system (8.64).”

Remark 8.4 The statements “x̂ is a steady-state solution of the system (8.64)” and
“x̂ is a root of (8.66)” are equivalent.

Remark 8.5 For all x �= 0,

−α ≤ sinx

x
< 1,

where 0.217233 < α < 0.217234. Therefore, if

−α ≤ −k0

a
< 1

or

0 < a + k0 ≤ (1 + α)a, (8.68)

then there exists at least one nonzero root of (8.66).

Remark 8.6 Since the function S(x) is an even function, if x̂ is a root of (8.66), then
−x̂ is a root of (8.66) too.

Remark 8.7 Condition (8.68) contradicts to the necessary condition

a1 = −(a + k0) > 0

for the asymptotic stability of the trivial solution of the corresponding linear system.
Thus, by condition (8.68) the trivial solution of the corresponding linear system is
unstable.
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8.2.3 Stable, Unstable, and One-Sided Stable Points of Equilibrium

Here a stability of the steady-state solutions of system (8.64) is investigated. Let x̂

be a root of (8.66). Put

x1 = x̂ + y1, x2 = y2. (8.69)

Substituting (8.69) into (8.64) and using (8.65), we obtain

ẏ1(t) = y2(t),

ẏ2(t) = a
[
sin
(
x̂ + y1(t)

)− sin x̂
]+

∫ ∞

0
dK(τ) y1(t − τ),

or, after elementary trigonometric transformations,

ẏ1(t) = y2(t),

ẏ2(t) = 2a cos

(
x̂ + y1(t)

2

)
sin

(
y1(t)

2

)
+
∫ ∞

0
dK(τ) y1(t − τ).

(8.70)

It is easy to see that the linear approximation of system (8.70) has the form

ẏ1(t) = y2(t),

ẏ2(t) = a cos x̂y1(t) +
∫ ∞

0
dK(τ) y1(t − τ).

(8.71)

Conditions (8.21) for system (8.71) have the form

a2 = −(a cos x̂ + k0) > 0, k1 > 0,

k2 < km = 4

1 +
√

1 + 4a2k
−2
1

.
(8.72)

So, if for some root x̂ of (8.66), conditions (8.72) hold, then the point x̂ is a stable
equilibrium of (8.64).

Theorem 8.4 Let x̂ be a positive root of (8.66). If x̂ is a point of stable equilibrium
of system (8.64), then

Ṡ(x̂) < 0, (8.73)

i.e., x̂ is a point of decrease of the characteristic function S(x).
If x̂ is a point of increase of the characteristic function S(x), i.e.,

Ṡ(x̂) > 0, (8.74)

then x̂ is a point of unstable equilibrium of system (8.64).
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Proof Using the derivative of the function (8.67), i.e.,

Ṡ(x) = 1

x

(
cosx − sinx

x

)

and (8.66), (8.67), (8.72), we obtain (8.73):

Ṡ(x̂) = 1

x̂

(
cos x̂ − sin x̂

x̂

)
= a cos x̂ + k0

x̂a
= − a2

x̂a
< 0.

Let condition (8.74) hold. Then the first inequality of conditions (8.72) does not
hold, and x̂ cannot (see Remark 8.1) be a point of stable equilibrium. The proof is
completed. �

Remark 8.8 Let x̂ be a point of extremum of the characteristic function S(x). In this
case, Ṡ(x̂) = 0, and x̂ is a point of one-sided stable equilibrium of system (8.64).
This means that if the system stays in a point x from a small enough neighborhood
of x̂ and Ṡ(x) < 0, then the solution converges to x̂. But if the system stays in a
point x from a small enough neighborhood of x̂ and Ṡ(x) > 0, then the solution
goes away from x̂.

Remark 8.9 Since the function S(x) is an even function, for negative roots of (8.66),
the pictures are symmetrical.

8.3 Numerical Analysis of the Controlled Inverted Pendulum

Here we consider the results of numerical simulation of solutions of the lin-
ear and nonlinear mathematical models of the controlled inverted pendulum. For
simplicity, the initial function from (8.3) is considered in the form φ(s) = x(0),
s ≤ 0. For greater visualization, the solutions are shown in the spaces (x1, x2) and
(t, x(t)).

Note that the stability conditions for the difference analogue of the mathematical
model of the controlled inverted pendulum were obtained in [273, 278].

8.3.1 Stability of the Trivial Solution and Limit Cycles

Consider now the linear model of the inverted pendulum in the form (8.24). Suffi-
cient conditions for asymptotic stability of the trivial solution of (8.24) are (8.25).
Recall that in accordance with Remark 8.1 two first inequalities of (8.25) are also
necessary conditions for asymptotic stability, while the third inequality is a sufficient
condition only.
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Fig. 8.4 Solution of (8.24)
for x(0) = 6, a = 1, b1 = 1,
b2 = −4, h1 = 0.25,
h2 = 0.04

Put x(0) = 6, a = 1, b1 = 1, b2 = −4, h1 = 0.25, h2 = 0.04. In this case k0 =
−3, k1 = 0.09, k2 = 0.0689, km = 0.123. So, all conditions (8.25) hold, and the
trivial solution of (8.24) is asymptotically stable. The appropriate solution of (8.24)
is shown in Fig. 8.4.

Put x(0) = 8, a = 3, b1 = 1, b2 = −4.5, h1 = 0.6, h2 = 0.1. Then k0 = −3.5,
k1 = 0.15, k2 = 0.405, km = 0.382. So, two first conditions (8.25) hold, and the third
condition (8.25) does not hold. But the trivial solution of the linear equation (8.24)
is asymptotically stable (see Fig. 8.5), and the trivial solution of the corresponding
nonlinear equation

ẍ(t) − a sinx(t) = b1x(t − h1) + b2x(t − h2) (8.75)

is asymptotically stable too (see Fig. 8.6).
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Fig. 8.5 Solution of (8.24) for x(0) = 8, a = 3, b1 = 1, b2 = −4.5, h1 = 0.6, h2 = 0.1

Fig. 8.6 Solution of (8.75)
for x(0) = 8, a = 3, b1 = 1,
b2 = −4.5, h1 = 0.6,
h2 = 0.1
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Fig. 8.7 Solution of (8.75)
for x(0) = 8, a = 3, b1 = 1,
b2 = −4.5, h1 = 0.59,
h2 = 0.1

Let us investigate the influence of the delay h1 on the behavior of the inverted
pendulum. All other parameters have the same values as in Fig. 8.5. If h1 = 0.59,
then the trivial solution of the linear system (8.24) is asymptotically stable, but the
nonlinear system (8.75) has a limit cycle (Fig. 8.7). The same phenomenon takes
place for all values of the delay h1 from h1 = 0.59 to h1 = 0.54 (Fig. 8.8). If
h1 = 0.53, then the limit cycle of the nonlinear system (8.75) is unstable (Fig. 8.9,
the solution goes to infinity), but the trivial solution of the linear system (8.24) is
asymptotically stable (Fig. 8.10, the solution goes to zero).

Consider the nonlinear model (8.75) for the following values of the parameters:
a = 10, b1 = 1, b2 = −2, h1 = 0.8, h2 = 0.36. In this case the necessary condi-
tion for asymptotic stability a + b1 + b2 < 0 does not hold. So, the trivial solution
of (8.75) is not stable. But for different initial conditions, there are different limit
cycles. In Fig. 8.11 twelve different limit cycles are shown, which correspond to
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Fig. 8.8 Solution of (8.75)
for x(0) = 8, a = 3, b1 = 1,
b2 = −4.5, h1 = 0.54,
h2 = 0.1

different initial conditions: x(0) = 2, x(0) = 12, x(0) = 18, x(0) = 26, x(0) = 31,
x(0) = 38, x(0) = 46, x(0) = 52, x(0) = 57, x(0) = 66, x(0) = 71, x(0) = 77. Four
from these limit cycles are shown separately in Fig. 8.12 by close-up.

Let us note that the considered limit cycles are stable. For instance, in Figs. 8.13
and 8.14 the first cycle from Fig. 8.12 is shown respectively for x(0) = 2 and
x(0) = 10. In the first case the cycle is reached from the inside, and in the second
case the cycle is reached from the outside. In both these cases the solution converges
to the same limit cycle, which shows its asymptotic stability.

Note also that by small changing of the value of the parameter h2 the asymptotic
stability of all these limit cycles disappears. Changing h2 = 0.36 to h2 = 0.37, we
can see (Fig. 8.15, x(0) = 2) that the trajectory of the solution goes to infinity. In
Fig. 8.16 the same picture is shown for x(0) = 0.1.



234 8 Stabilization of the Controlled Inverted Pendulum by a Control with Delay

Fig. 8.9 Solution of (8.75)
for x(0) = 8, a = 3, b1 = 1,
b2 = −4.5, h1 = 0.53,
h2 = 0.1

Put now a = 3, b1 = 1, b2 = −4.5, h1 = 0.59, h2 = 0.1. In this case k0 = −3.5,
k1 = 0.14, k2 = 0.3931, km = 0.3587, two first conditions (8.25) hold, but the third
condition (8.25) does not hold. For x(0) = 4.6, the solution of (8.75) goes to zero
(Fig. 8.17), but for x(0) = 4.61, the solution of (8.75) goes to a stable limit cycle. In
Fig. 8.18 this cycle is reached from the inside, and in Fig. 8.19 it is reached from the
outside for x(0) = 100. In Fig. 8.20 the appropriate solution of the linear equation
(8.24) is shown, which goes to zero from the initial point x(0) = 100.

8.3.2 Nonzero Steady-State Solutions of the Nonlinear Model

Put in (8.75) a = 1, b1 = 1, b2 = −1.08, h1 = 0.8, h2 = 0.3. In this case, k0 =
−0.08, k1 = 0.476, k2 = 0.7372, and the first condition (8.25) does not hold. So,
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Fig. 8.10 Solution of (8.24) for x(0) = 8, a = 3, b1 = 1, b2 = −4.5, h1 = 0.53, h2 = 0.1

Fig. 8.11 Twelve limit cycles of (8.75) for a = 10, b1 = 1, b2 = −2, h1 = 0.8, h2 = 0.36, and
different initial conditions: x(0) = 2, x(0) = 12, x(0) = 18, x(0) = 26, x(0) = 31, x(0) = 38,
x(0) = 46, x(0) = 52, x(0) = 57, x(0) = 66, x(0) = 71, x(0) = 77

the trivial solution of (8.75) is unstable. On the other hand, the equation (8.66) has
three positive roots x̂1, x̂2, x̂3 such that 2.906892 < x̂1 < 2.906893, 6.864548 <

x̂2 < 6.864549, 8.659471 < x̂3 < 8.659472. Therefore (Remark 8.4), these points
are steady-state solutions of (8.75).
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Fig. 8.12 Four limit cycles of (8.75) from Fig. 8.11 by close-up for different initial conditions:
x(0) = 2, x(0) = 12, x(0) = 18, x(0) = 26

Fig. 8.13 The first cycle
of (8.75) from Fig. 8.12 by
x(0) = 2
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Fig. 8.14 The first cycle
of (8.75) from Fig. 8.12 by
x(0) = 10

It is easy to check that

Ṡ(x̂1) < 0, Ṡ(x̂2) > 0, Ṡ(x̂3) < 0.

By Theorem 8.4 the points x̂1 and x̂3 can be points of stable equilibrium of (8.75),
and the point x̂2 is a point of unstable equilibrium of (8.75).

Note also that for the points x̂1 and x̂3, all conditions (8.72) hold, but for the
point x̂2, the first condition (8.72) does not hold.

Let x(0) = 6.864548, i.e., the initial function is close enough to x̂2 and less than
x̂2. In this case the solution of (8.75) goes away from the point of unstable equilib-
rium x̂2 and converges to the point of stable equilibrium x̂1. This situation is shown
in Fig. 8.21.

Let x(0) = 6.864549, i.e., the initial function is close enough to x̂2 and greater
than x̂2. In this case the solution of (8.75) goes away from the point of unstable
equilibrium x̂2 and converges to the point of stable equilibrium x̂3. This situation is
shown in Fig. 8.22.

Put now a = 1, b1 = 1, b2 = −0.782766, h1 = 0.8, h2 = 0.3. In this case
k0 = 0.217233, k1 = 0.565170, k2 = 0.710449, and (8.66) has one positive root
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Fig. 8.15 Disappearance of
limit cycles after changing
h2 = 0.36 to h2 = 0.37,
x(0) = 2

x̂ = 4.493409 only. This point is also a root of the equation Ṡ(x̂) = 0, i.e. (see Re-
mark 8.8), it is a point of one-sided stable equilibrium of (8.75).

Let x(0) = 4, i.e., the initial function is close enough to x̂ and less than x̂. In this
case, Ṡ(4) = −0.116111 < 0, and the solution of (8.75) converges to the point x̂.
This situation is shown in Fig. 8.23.

Let x(0) = 4.5, i.e., the initial function is close enough to x̂ and greater than x̂.
In this case, Ṡ(4.5) = 0.00142958 > 0, and the solution of (8.75) goes away from
the point x̂ and goes to infinity. This situation is shown in Fig. 8.24.

Note that if the initial function is less than the point of one-sided stable equilib-
rium x̂ and stays far enough from this point, then the system converges to infinity
past by the point x̂. This situation is shown in Fig. 8.25 for x(0) = 3.7.

Put a = 7, b1 = 1, b2 = −2, h1 = 0.4, h2 = 0.02. In this case, a + k0 = 6 > 0,
k1 = 0.476, k2 = 0.7372. So, the first condition (8.25) does not hold, and the trivial
solution of (8.75) is unstable. But (8.66) has the positive root x̂1 = 2.739489 and the
symmetric negative root x̂2 = −2.739489. For these roots, a2 = 7.441678 > 0, so,
two first conditions (8.72) hold, and Ṡ(x̂1) < 0, but the third condition (8.72) does
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Fig. 8.16 Disappearance of
limit cycles after changing
h2 = 0.36 to h2 = 0.37,
x(0) = 0.1

not hold since k2 > km = 0.3199. In Fig. 8.26 the solution with the initial condition
x(0) = 19 converges to x̂2, and in Fig. 8.27 the solution with the initial condition
x(0) = 12 converges to x̂1.

Changing in the previous situation a = 7 on a = 27, we obtain nine posi-
tive points of equilibrium: x̂1 = 3.029, x̂2 = 6.527, x̂3 = 9.082, x̂4 = 13.072,
x̂5 = 15.114, x̂6 = 19.665, x̂7 = 21.094, x̂8 = 26.513, x̂9 = 26.819. It is easy to
check that Ṡ(x̂i ) > 0 for i = 2,4,6,8 and Ṡ(x̂i) < 0 for i = 1,3,5,7,9. So, by The-
orem 8.4 the points x̂i for i = 1,3,5,7,9 only can be points of stable equilibrium.
But for all these points, two first conditions (8.72) hold, and the third condition
(8.72) does not hold. So, these points can be points of unstable equilibrium. Indeed,
in Figs. 8.28 and 8.29 we can see that the solution of (8.75) has limit cycles around
the points x̂1 and −x̂1.

Note that in the presence of an ample quantity of points of equilibrium we
can obtain different interesting limit cycles; see, for instance, Figs. 8.30, 8.31,
and 8.32.



240 8 Stabilization of the Controlled Inverted Pendulum by a Control with Delay

Fig. 8.17 Solution of (8.75)
for x(0) = 4.60, a = 3,
b1 = 1, b2 = −4.5,
h1 = 0.59, h2 = 0.10

8.3.3 Stabilization of the Controlled Inverted Pendulum Under
Influence of Markovian Stochastic Perturbations

Consider the linear model of the controlled pendulum in the form

ẍ(t) + η(t)x(t) = u(t), (8.76)

where η(t) is a Markov chain with two states {a1, a2} such that a1 > 0 and a2 < 0,
the initial distribution

pi = P
{
η(0) = ai

}
, i = 1,2, (8.77)

and the probabilities of transition

pij (�) = P
{
η(t + �) = aj/η(t) = ai

}= λij� + o(�),

i, j = 1,2, i �= j. (8.78)
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Fig. 8.18 Solution of (8.75)
for x(0) = 4.61, a = 3,
b1 = 1, b2 = −4.5,
h1 = 0.59, h2 = 0.10

It is easy to see that by the control u(t) ≡ 0 the trivial solution of (8.76) is sta-
ble but not asymptotically stable in the case where η(t) ≡ a1 > 0 (mathematical
pendulum) and unstable in the case where η(t) ≡ a2 < 0 (inverted mathematical
pendulum).

Consider the problem of stabilization of the inverted mathematical pendulum by
the control

u(t) = b1x(t − h1) + b2x(t − h2). (8.79)

By (8.25), if

k0 = b1 + b2 < a2, k1 = b1h1 + b2h2 > 0,

k2 = |b1|h2
1 + |b2|h2

2 <
4

1 +
√

1 + 4(a2 − k0)k
−2
1

,
(8.80)

then the trivial solution of (8.76), (8.79) (with η(t) ≡ a2 < 0) is asymptotically
stable. It was shown also (Example 8.2) that for each a2 < 0, there exist numbers
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Fig. 8.19 Solution of (8.75)
for x(0) = 100, a = 3,
b1 = 1, b2 = −4.5,
h1 = 0.59, h2 = 0.10

Fig. 8.20 Solution of (8.24) for x(0) = 100, a = 3, b1 = 1, b2 = −4.5, h1 = 0.59, h2 = 0.10
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Fig. 8.21 The solution of (8.75) goes away from the left neighborhood of the point of unstable
equilibrium

�
x2 and converges to the point of stable equilibrium

�
x1, x(0) = 6.864548

Fig. 8.22 The solution of (8.75) goes away from the right neighborhood the point of unstable
equilibrium

�
x2 and converges to the point of stable equilibrium

�
x3, x(0) = 6.864549

Fig. 8.23 The initial function of (8.75) is close enough to
�
x and is less than

�
x, the solution con-

verges to the point
�
x, x(0) = 4
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Fig. 8.24 The initial function of (8.75) is close enough to
�
x and is greater than

�
x, the solution

goes to infinity, x(0) = 4.5

Fig. 8.25 The initial function of (8.75) is far enough from
�
x and is less than

�
x, the solution goes

to infinity, x(0) = 3.7

Fig. 8.26 Solution of (8.75) for x(0) = 19, a = 7, b1 = 1, b2 = −2, h1 = 0.4, h2 = 0.02
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Fig. 8.27 Solution of (8.75) for x(0) = 12, a = 7, b1 = 1, b2 = −2, h1 = 0.4, h2 = 0.02

Fig. 8.28 Solution of (8.75) for x(0) = 19, a = 27, b1 = 1, b2 = −2, h1 = 0.4, h2 = 0.02

b1, b2, h1, h2 such that conditions (8.80) hold, and therefore the trivial solution
of (8.76), (8.79) (with η(t) ≡ a2 < 0) is asymptotically stable.

Let us investigate the stability of the trivial solution of (8.76), (8.79) by the nu-
merical method and numerical simulation of the Markov chain η(t) that was de-
scribed in Sect. 7.4.1.
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Fig. 8.29 Solution of (8.75) for x(0) = 12, a = 27, b1 = 1, b2 = −2, h1 = 0.4, h2 = 0.02

Fig. 8.30 Solution of (8.75) for x(0) = 13, a = 123, b1 = 1, b2 = −2, h1 = 0.4, h2 = 0.02

Put a1 = 1, a2 = −1, b1 = 1, b2 = −2.1, h1 = 0.8, h2 = 0.3, x(s) = 3.5, s ≤ 0.
If η(t) ≡ a1, then the solution of (8.76), (8.79) goes to ±∞. The trajectories of η(t)

and x(t) in this case are shown in Fig. 8.33. If η(t) ≡ a2, then conditions (8.80)
hold, and the solution of (8.76), (8.79) converges to zero (Fig. 8.34).
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Fig. 8.31 Solution of (8.75) for x(0) = 13, a = 200, b1 = 1, b2 = −1.1, h1 = 0.4, h2 = 0.02

Fig. 8.32 Solution of (8.75) for x(0) = 72, a = 200, b1 = 1, b2 = −2, h1 = 0.4, h2 = 0.02

Put in (8.77), (8.78) p1 = p2 = 0.5, λ21 = 15, λ12 = 1. One of possible trajecto-
ries of the Markov chain η(t) and the corresponding trajectory of the solution x(t)

of (8.76), (8.79) are shown in Fig. 8.35. Hundred trajectories of the solution x(t) are
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Fig. 8.33 Solution of (8.76), (8.79) by η(t) ≡ a1 = 1, b1 = 1, b2 = −2.1, h1 = 0.8, h2 = 0.3,
x(s) = 3.5, s ≤ 0

Fig. 8.34 Solution of (8.76), (8.79) by η(t) ≡ a2 = −1, b1 = 1, b2 = −2.1, h1 = 0.8, h2 = 0.3,
x(s) = 3.5, s ≤ 0

shown in Fig. 8.36. One can see that in this case the trivial solution of (8.76), (8.79)
is unstable.

Put now λ21 = 1, λ12 = 15. In this case the trivial solution of (8.76), (8.79) is
asymptotically stable. One of the possible trajectories of the Markov chain η(t)

and the corresponding trajectory of the solution x(t) of (8.76), (8.79) are shown in
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Fig. 8.35 Solution of (8.76), (8.79) by a1 = 1, a2 = −1, p1 = p2 = 0.5, λ21 = 15, λ12 = 1,
b1 = 1, b2 = −2.1, h1 = 0.8, h2 = 0.3, x(s) = 3.5, s ≤ 0

Fig. 8.36 Hundred trajectories of solution of (8.76), (8.79) by the values of the parameters as in
Fig. 8.35

Fig. 8.37. Hundred trajectories of the solution x(t) are shown in Fig. 8.38. All these
trajectories converge to zero.
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Fig. 8.37 Solution of (8.76), (8.79) by a1 = 1, a2 = −1, p1 = p2 = 0.5, λ21 = 1, λ12 = 15,
b1 = 1, b2 = −2.1, h1 = 0.8, h2 = 0.3, x(s) = 3.5, s ≤ 0

Fig. 8.38 Hundred trajectories of solution of (8.76), (8.79) by the values of the parameters as in
Fig. 8.37



Chapter 9
Stability of Equilibrium Points of Nicholson’s
Blowflies Equation with Stochastic
Perturbations

We consider the Nicholson blowflies equation (one of the most known models in
ecology) with stochastic perturbations. We obtain sufficient conditions for stability
in probability of the trivial and positive equilibrium points of this nonlinear differ-
ential equation with delay.

9.1 Introduction

Consider the nonlinear differential equation with exponential nonlinearity

ẋ(t) = ax(t − h)e−bx(t−h) − cx(t). (9.1)

It describes a population dynamics of the well-known Nicholson blowflies [224].
Here x(t) is the size of the population at time t , a is the maximum per capita daily
egg production rate, 1/b is the size at which the population reproduces at the maxi-
mum rate, c is the per capita daily adult death rate, and h is the generation time.

Nicholson’s blowflies model is popular enough with researchers [7, 8, 30,
31, 38, 40, 61, 73, 99, 102, 129, 166, 173–176, 178, 184, 250–252, 278, 284–
287, 297, 307, 312, 316, 320]. The majority of the results on (9.1) deal with the
global attractiveness of the positive point of equilibrium and oscillatory behaviors
of solutions [73, 102, 129, 166, 173, 174, 178, 250–252, 278, 285].

Below we will obtain sufficient conditions for stability in probability of the trivial
and positive equilibrium points of (9.1) by stochastic perturbations. The basic stages
of the proposed research are the following. It is assumed that the considered nonlin-
ear differential equation has an equilibrium point and exposed to white-noise-type
stochastic perturbations that are proportional to the deviation of the system current
state from the considered equilibrium point. In this case the equilibrium point is a
solution of the stochastic differential equation too. The constructed stochastic differ-
ential equation is centered around the considered equilibrium point and linearized in
the neighborhood of this equilibrium point. Necessary and sufficient conditions for
the asymptotic mean-square stability of the linear part of the considered equation are

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional
Differential Equations, DOI 10.1007/978-3-319-00101-2_9,
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obtained. Since the order of nonlinearity in (9.1) is higher than one (see Sect. 5.3),
these conditions are sufficient for stability in probability of the equilibrium point of
the initial nonlinear equation by stochastic perturbations.

9.2 Two Points of Equilibrium, Stochastic Perturbations,
Centering, and Linearization

The points of equilibrium of (9.1) are defined by the condition ẋ(t) = 0 that can be
represented in the form

ae−bx∗
x∗ = cx∗. (9.2)

From (9.2) it follows that (9.1) has two points of equilibrium

x∗
1 = 0, x∗

2 = 1

b
ln

a

c
. (9.3)

Similarly to Sect. 5.4, let us assume that (9.1) is exposed to stochastic perturba-
tions that are of white noise type and are directly proportional to the deviation of
x(t) from the point of equilibrium x∗ and influence ẋ(t) immediately. In this way,
(9.1) takes the form

ẋ(t) = ax(t − h)e−bx(t−h) − cx(t) + σ
(
x(t) − x∗)ẇ(t). (9.4)

Let us center (9.4) at the point of equilibrium x∗ using the new variable y(t) =
x(t) − x∗. By this way from (9.4) via (9.2) we obtain

ẏ(t) = −cy(t) + ae−bx∗[
y(t − h)e−by(t−h) + x∗(e−by(t−h) − 1

)]+ σy(t)ẇ(t).

(9.5)
It is clear that the stability of an equilibrium point x∗ of (9.4) is equivalent to the
stability of the trivial solution of (9.5).

Along with (9.5), we will consider the linear part of this equation. Using the
representation ey = 1 + y + o(y) (where o(y) means that limy→0

o(y)
y

= 0) and
neglecting o(y), we obtain the linear part (process z(t)) of (9.5) in the form

ż(t) = −cz(t) − ae−bx∗(
bx∗ − 1

)
z(t − h) + σz(t)ẇ(t). (9.6)

As it follows from Remark 5.3, if the order of nonlinearity of the equation un-
der consideration is higher than one, then a sufficient condition for the asymptotic
mean-square stability of the linear part of the initial nonlinear equation is also a
sufficient condition for the stability in probability of the initial equation. So, we
will investigate sufficient conditions for the asymptotic mean-square stability of the
linear part (9.6) of the nonlinear equation (9.5).
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Fig. 9.1 Regions of stability in probability for zero equilibrium point (yellow) and positive equi-
librium point (red) of (9.4) for h = 0.02, p = 20

9.3 Sufficient Conditions for Stability in Probability for Both
Equilibrium Points

By (9.2)–(9.3) the nonlinear and linear equations (9.5)–(9.6) for the equilibrium
points x∗

1 = 0 respectively are

ẏ(t) = −cy(t) + ay(t − h)e−by(t−h) + σy(t)ẇ(t), (9.7)

ż(t) = −cz(t) + az(t − h) + σz(t)ẇ(t). (9.8)

By Lemma 2.1 a necessary and sufficient condition for the asymptotic mean-
square stability of the trivial solution of (9.8) is

G−1 > p, p = 1

2
σ 2, (9.9)

where

G = 1 − aq−1 sinh(qh)

c − a cosh(qh)
, c > a, q =

√
c2 − a2. (9.10)
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Fig. 9.2 Regions of stability in probability for zero equilibrium point (yellow) and positive equi-
librium point (red) of (9.4) for h = 0.1, p = 20

In particular, if p ≥ 0 and h = 0, then the stability condition (9.9)–(9.10) takes the
form c > a + p.

Condition (9.9)–(9.10) is also a sufficient condition for the stability in probability
of the zero equilibrium point x∗ = 0 of (9.4).

Similarly to (9.9)–(9.10), for the equilibrium points x∗
2 = 1

b
ln a

c
, the nonlinear

and linear equations (9.5)–(9.6) respectively are

ẏ(t) = −cy(t)+ cy(t −h)e−by(t−h) + c

b
ln

a

c

(
e−by(t−h) − 1

)+ σy(t)ẇ(t), (9.11)

ż(t) = −cz(t) − c

(
ln

a

c
− 1

)
z(t − h) + σz(t)ẇ(t). (9.12)

By Lemma 2.1 a necessary and sufficient condition for the asymptotic mean-
square stability of the trivial solution of (9.12) is (9.9), where

G =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1+cq−1(ln(ac−1)−1) sinh(qh)

c[1+(ln(ac−1)−1) cosh(qh)] , c < a < ce2, q = c
√

ln a
c
(2 − ln a

c
),

1+ch
2c

, a = ce2,

1+cq−1(ln(ac−1)−1) sin(qh)

c[1+(ln(ac−1)−1) cos(qh)] , a > ce2, q = c
√

ln a
c
(ln a

c
− 2).

(9.13)
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Fig. 9.3 Zero equilibrium point is stable at the point A = (110,200) (25 red trajectories) and is
unstable in the point B = (900,200) (25 green trajectories)

In particular, if p > 0 and h = 0, then the stability condition takes the form c ln a
c

>

p; if p = 0 and h > 0, then the region of stability is bounded by the lines c = 0,
c = a, and 1 + (ln a

c
− 1) cos(qh) = 0 for a > ce2.

Condition (9.9), (9.13) is also a sufficient condition for the stability in probability
of the positive equilibrium point x∗ = 1

b
ln a

c
of (9.4).

Remark 9.1 Note that the stability conditions (9.9), (9.10) and (9.9), (9.13) have
the following property: if the point (a, c) belongs to the stability region with some
p and h, then for arbitrary positive α, the point (a0, c0) = (αa,αc) belongs to the
stability region with p0 = αp and h0 = α−1h.

9.4 Numerical Illustrations

In Fig. 9.1 the stability regions for (9.4) given by conditions (9.9), (9.10) for the
zero equilibrium point (yellow) and (9.9), (9.13) for the positive equilibrium point
(red) are shown in the space of the parameters (a, c) for h = 0.02 and p = 20. In
Fig. 9.2 the similar regions of stability are shown for h = 0.1 and p = 20.
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Fig. 9.4 Positive equilibrium point is unstable a the point A = (110,200) (25 red trajectories) and
is stable at the point B = (900,200) (25 green trajectories)

For numerical simulation of the solution of (9.4), one uses the algorithm of nu-
merical simulation of trajectories of the Wiener process (Chap. 2) and the Euler–
Maruyama scheme [200]. Note that the stability of the difference analogue of (9.4)
was investigated in detail in [38, 278].

Numerical simulation of the solution of (9.4) with x∗ = 0 is shown in Fig. 9.3.
At the point A with coordinates a = 110, c = 200 (see Fig. 9.2) the zero equilib-
rium point is stable in probability, so, all 25 trajectories (red) of the solution with
the initial function x(s) = 1.35 cos(3s) converge to zero. At the point B with coor-
dinates a = 900, c = 200 (see Fig. 9.2) the zero equilibrium point is unstable, so, 25
trajectories (green) of the solution with the initial function x(s) = 2.35 cos(3s) fill
the whole space.

In Fig. 9.4 numerical simulation of the solution of (9.4) with the positive equilib-
rium point x∗ = 1

b
ln a

c
is shown by b = 1. At the point B with coordinates a = 900,

c = 200 (see Fig. 9.2) the positive equilibrium point is stable in probability, so, all
25 trajectories (green) of the solution converge to x∗ = ln(900/200) = 1.504. At the
point A with coordinates a = 110, c = 200 (see Fig. 9.2) the positive equilibrium
point is unstable, and the trajectories (red) of the solution do not go to zero.



Chapter 10
Stability of Positive Equilibrium Point of
Nonlinear System of Type of Predator–Prey
with Aftereffect and Stochastic Perturbations

Here we consider a system of two nonlinear differential equations that is destined
to unify different known mathematical models, in particular, very often investigated
models of predator–prey type [47, 53, 60, 65, 72, 82, 83, 94, 107, 108, 112, 113,
127, 128, 153, 180, 235, 249, 267, 283, 288, 304, 305, 311, 314, 317, 321, 325]. The
system under consideration is exposed to stochastic perturbations and is linearized
in a neighborhood of the positive point of equilibrium. Asymptotic mean-square
stability conditions for the trivial solution of the constructed linear system are at
the same time sufficient conditions for the stability in probability of the positive
equilibrium point of the initial nonlinear system by stochastic perturbations.

10.1 System Under Consideration

Consider the system of two nonlinear differential equations

ẋ1(t) = x1(t)
(
a − F0(x1t , x2t )

)− F1(x1t , x2t ),

ẋ2(t) = −x2(t)
(
b + G0(x1t , x2t )

)+ G1(x1t , x2t ), (10.1)

xi(s) = φi(s), s ≤ 0, i = 1,2.

Here xi(t), i = 1,2, is the value of the process xi at time t , and xit = xi(t + s),
s ≤ 0, is a trajectory of the process xi to the point of time t .

Put, for example,

F0(x1t , x2t ) =
∫ ∞

0
f0
(
x1(t − s)

)
dK0(s),

F1(x1t , x2t ) =
2∏

i=1

∫ ∞

0
fi

(
xi(t − s)

)
dKi(s), (10.2)
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G0(x1t , x2t ) =
∫ ∞

0
g0
(
x1(t − s)

)
dR0(s),

G1(x1t , x2t ) =
2∏

i=1

∫ ∞

0
gi

(
xi(t − s)

)
dRi(s),

where Ki(s) and Ri(s), i = 0,1,2, are nondecreasing functions such that

Ki =
∫ ∞

0
dKi(s) < ∞, Ri =

∫ ∞

0
dRi(s) < ∞,

K̂i =
∫ ∞

0
s dKi(s) < ∞, R̂i =

∫ ∞

0
s dRi(s) < ∞,

(10.3)

and all integrals are understood in the Stieltjes sense.
In the case (10.2)–(10.3) system (10.1) takes the form

ẋ1(t) =x1(t)

(
a −

∫ ∞

0
f0
(
x1(t − s)

)
dK0(s)

)
−

2∏

i=1

∫ ∞

0
fi

(
xi(t − s)

)
dKi(s),

ẋ2(t) = − x2(t)

(
b +

∫ ∞

0
g0
(
x1(t − s)

)
dR0(s)

)
+

2∏

i=1

∫ ∞

0
gi

(
xi(t − s)

)
dRi(s).

(10.4)

Systems of type (10.4) are investigated in some biological problems. Put here,
for example,

f0(x) = f1(x) = f2(x) = g1(x) = g2(x) = x,

g0(x) = 0, dK1(s) = δ(s) ds, dR0(s) = 0
(10.5)

(δ(s) is Dirac’s function). If a and b are positive constants, x1(t) and x2(t) are re-
spectively the densities of prey and predator populations, then (10.4) is transformed
to the mathematical predator–prey model [267] with distributed delay

ẋ1(t) = x1(t)

(
a −

∫ ∞

0
x1(t − s) dK0(s) −

∫ ∞

0
x2(t − s) dK2(s)

)
,

ẋ2(t) = −bx2(t) +
∫ ∞

0
x1(t − s) dR1(s)

∫ ∞

0
x2(t − s) dR2(s).

(10.6)

Putting in (10.6)

dK0(s) = a1δ(s) ds, dK2(s) = a2δ(s) ds,

dR1(s) = b1δ(s − h1) ds, dR2(s) = δ(s − h2) ds,
(10.7)



10.1 System Under Consideration 259

we obtain the known predator–prey mathematical model with fixed delays

ẋ1(t) = x1(t)
(
a − a1x1(t) − a2x2(t)

)
,

ẋ2(t) = −bx2(t) + b1x1(t − h1)x2(t − h2).
(10.8)

If here h1 = h2 = 0, we have the classical Lotka–Volterra model

ẋ1(t) = x1(t)
(
a − a1x1(t) − a2x2(t)

)
,

ẋ2(t) = x2(t)
(−b + b1x1(t)

)
.

Many authors [15, 19, 23, 50, 69, 70, 116, 306, 309] consider the so-called ratio-
dependent predator–prey models with delays of type

ẋ1(t) = x1(t)

(
a −

∫ ∞

0
x1(t − s) dK0(s)

)

−
∫ ∞

0

xk
1 (t − s)x2(t)

xk
1 (t − s) + a2x

k
2(t − s)

dK1(s),

ẋ2(t) = −bx2(t) +
∫ ∞

0

xm
1 (t − s)x2(t)

xm
1 (t − s) + b2x

m
2 (t − s)

dR1(s).

(10.9)

Here it is supposed that m and k are positive constants.
System (10.9) follows from (10.1) if

F0(x1t , x2t ) =
∫ ∞

0
x1(t − s) dK0(s), G0(x1t , x2t ) = 0,

F1(x1t , x2t ) =
∫ ∞

0
f
(
x1(t − s), x2(t − s)

)
x2(t) dK1(s),

G1(x1t , x2t ) =
∫ ∞

0
g
(
x1(t − s), x2(t − s)

)
x2(t) dR1(s),

f (x1, x2) = xk
1

xk
1 + a2x

k
2

, g(x1, x2) = xm
1

xm
1 + b2x

m
2

.

(10.10)

Putting in (10.9), for example,

dK0(s) = a0δ(s) ds, dK1(s) = a1δ(s) ds,

dR1(s) = b1δ(s − h)ds, k = m = 1,
(10.11)

we obtain the system

ẋ1(t) = x1(t)

(
a − a0x1(t) − a1x2(t)

x1(t) + a2x2(t)

)
,

ẋ2(t) = x2(t)

(
−b + b1x1(t − h)

x1(t − h) + b2x2(t − h)

)
,

(10.12)

which was considered in [23, 50].
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10.2 Equilibrium Points, Stochastic Perturbations, Centering,
and Linearization

10.2.1 Equilibrium Points

Let in system (10.1) Fi = Fi(φ,ψ) and Gi = Gi(φ,ψ), i = 0,1, be functionals
defined on H × H , where H is a set of functions φ = φ(s), s ≤ 0, with the norm
‖φ‖ = sups≤0 |φ(s)|, the functionals Fi and Gi are nonnegative for nonnegative
functions φ and ψ . Let us suppose also that system (10.1) has a positive equilibrium
point (x∗

1 , x∗
2 ). This point is obtained from the conditions ẋ1(t) ≡ 0, ẋ2(t) ≡ 0 and

is defined by the system of algebraic equations

x∗
1

(
a − F0

(
x∗

1 , x∗
2

))= F1
(
x∗

1 , x∗
2

)
,

x∗
2

(
b + G0

(
x∗

1 , x∗
2

))= G1
(
x∗

1 , x∗
2

)
.

(10.13)

From (10.13) it follows that system (10.1) has a positive solution by the condition

a > F0
(
x∗

1 , x∗
2

)
(10.14)

only. For example, if a > K0f0(x
∗
1 ), a positive equilibrium point of system (10.4) is

defined by the system of algebraic equations

x∗
1

(
a − K0f0

(
x∗

1

))= K1K2f1
(
x∗

1

)
f2
(
x∗

2

)
,

x∗
2

(
b + R0g0

(
x∗

1

))= R1R2g1
(
x∗

1

)
g2
(
x∗

2

)
.

(10.15)

In particular, from (10.5), (10.14), (10.15) it follows that system (10.6) has a positive
equilibrium point

x∗
1 = b

R1R2
, x∗

2 = a − K0x
∗
1

K2
= a − (R1R2)

−1K0b

K2
, (10.16)

provided that a > (R1R2)
−1K0b. For system (10.8), from (10.7), (10.16) we obtain

x∗
1 = b

b1
, x∗

2 = A

a2
, A = a − b

a1

b1
> 0. (10.17)

From (10.13), (10.10) it follows that the positive equilibrium point for sys-
tem (10.9) is

x∗
1 = A

K0
, x∗

2 = A

BK0
, A = a − K1

B + a2B1−k
> 0, B =

(
bb2

R1 − b

) 1
m

> 0.

In particular, by (10.11), for system (10.12), it is

x∗
1 = A

a0
, x∗

2 = A

Ba0
, A = a − a1

B + a2
> 0, B = bb2

b1 − b
> 0. (10.18)
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10.2.2 Stochastic Perturbations and Centering

Similarly to Sect. 9.2, we will assume that system (10.1) is exposed to stochastic
perturbations that are of white noise type and are directly proportional to the de-
viations of the system state (x1(t), x2(t)) from the equilibrium point (x∗

1 , x∗
2 ) and

influence ẋ1(t), ẋ2(t), respectively. In this way system (10.1) is transformed to the
form

ẋ1(t) = x1(t)
(
a − F0(x1t , x2t )

)− F1(x1t , x2t ) + σ1
(
x1(t) − x∗

1

)
ẇ1(t),

ẋ2(t) = −x2(t)
(
b + G0(x1t , x2t )

)+ G1(x1t , x2t ) + σ2
(
x2(t) − x∗

2

)
ẇ2(t).

(10.19)

Here σ1, σ2 are constants, and w1(t), w2(t) are independent standard Wiener pro-
cesses.

Centering system (10.19) at the positive point of equilibrium via the new vari-
ables y1 = x1 − x∗

1 , y2 = x2 − x∗
2 , we obtain

ẏ1(t) = (
y1(t) + x∗

1

)(
a − F0

(
y1t + x∗

1 , y2t + x∗
2

))

− F1
(
y1t + x∗

1 , y2t + x∗
2

)+ σ1y1(t)ẇ1(t),

ẏ2(t) = −(y2(t) + x∗
2

)(
b + G0

(
y1t + x∗

1 , y2t + x∗
2

))

+ G1
(
y1t + x∗

1 , y2t + x∗
2

)+ σ2y2(t)ẇ2(t).

(10.20)

It is clear that the stability of equilibrium point (x∗
1 , x∗

2 ) of system (10.19) is equiv-
alent to the stability of the trivial solution of system (10.20).

For system (10.4), the representations (10.19) and (10.20) respectively take the
forms

ẋ1(t) = x1(t)

(
a −

∫ ∞

0
f0
(
x1(t − s)

)
dK0(s)

)

−
2∏

i=1

∫ ∞

0
fi

(
xi(t − s)

)
dKi(s) + σ1

(
x1(t) − x∗

1

)
ẇ1(t),

(10.21)

ẋ2(t) = −x2(t)

(
b +

∫ ∞

0
g0
(
x1(t − s)

)
dR0(s)

)

+
2∏

i=1

∫ ∞

0
gi

(
xi(t − s)

)
dRi(s) + σ2

(
x2(t) − x∗

2

)
ẇ2(t)

and

ẏ1(t) = (
y1(t) + x∗

1

)(
a −

∫ ∞

0
f0
(
y1(t − s) + x∗

1

)
dK0(s)

)

−
2∏

i=1

∫ ∞

0
fi

(
yi(t − s) + x∗

i

)
dKi(s)
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+ σ1y1(t)ẇ1(t), (10.22)

ẏ2(t) = −(y2(t) + x∗
2

)(
b +

∫ ∞

0
g0
(
x1(t − s) + x∗

1

)
dR0(s)

)

+
2∏

i=1

∫ ∞

0
gi

(
yi(t − s) + x∗

i

)
dRi(s) + σ2y2(t)ẇ2(t).

In particular, for system (10.6), from (10.21), (10.22) by (10.5), (10.16) we obtain

ẋ1(t) = x1(t)

(
a −

∫ ∞

0
x1(t − s) dK0(s) −

∫ ∞

0
x2(t − s) dK2(s)

)

+ σ1
(
x1(t) − x∗

1

)
ẇ1(t),

(10.23)

ẋ2(t) = −bx2(t) +
∫ ∞

0
x1(t − s) dR1(s)

∫ ∞

0
x2(t − s) dR2(s)

+ σ2
(
x2(t) − x∗

2

)
ẇ2(t)

and

ẏ1(t) = − (
y1(t) + x∗

1

)(∫ ∞

0
y1(t − s) dK0(s) +

∫ ∞

0
y2(t − s) dK2(s)

)

+ σ1y1(t)ẇ1(t),

ẏ2(t) = − by2(t) + R2x
∗
2

∫ ∞

0
y1(t − s) dR1(s)

+ R1x
∗
1

∫ ∞

0
y2(t − s) dR2(s)

+
2∏

i=1

∫ ∞

0
yi(t − s) dRi(s) + σ2y2(t)ẇ2(t).

(10.24)

For (10.8), systems (10.23) and (10.24) take respectively the forms

ẋ1(t) = x1(t)
(
a − a1x1(t) − a2x2(t)

)+ σ1
(
x1(t) − x∗

1

)
ẇ1(t),

ẋ2(t) = −bx2(t) + b1x1(t − h1)x2(t − h2) + σ2
(
x1(t) − x∗

2

)
ẇ2(t)

(10.25)

and

ẏ1(t) = − (
y1(t) + x∗

1

)(
a1y1(t) + a2y2(t)

)+ σ1y1(t)ẇ1(t),

ẏ2(t) = − by2(t) + b1
(
x∗

2y1(t − h1) + x∗
1y2(t − h2)

)

+ b1y1(t − h1)y2(t − h2) + σ2y2(t)ẇ2(t).

(10.26)
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10.2.3 Linearization

Along with the considered nonlinear system, we will use the linear part of this sys-
tem. Let us suppose that the functionals in (10.19) have the representations (10.2)
with differentiable functions fi(x), gi(x), i = 0,1,2. Using for all these functions
the representation

f
(
z + x∗)= f0 + f1z + o(z), f0 = f

(
x∗), f1 = df

dx

(
x∗),

and neglecting o(z), we obtain the linear part (process (z1(t), z2(t))) of system
(10.22)

ż1(t) = (a − K0f00)z1(t) −
∫ ∞

0
z1(t − s) dK(s)

− K1f10f21

∫ ∞

0
z2(t − s) dK2(s) + σ1z1(t)ẇ1(t),

ż2(t) = −(b + R0g00)z2(t) +
∫ ∞

0
z1(t − s) dR(s)

+ R1g10g21

∫ ∞

0
z2(t − s) dR2(s) + σ2z2(t)ẇ2(t),

(10.27)

where

dK(s) = K2f20f11 dK1(s) + f01x
∗
1 dK0(s),

dR(s) = R2g20g11 dR1(s) − g01x
∗
2 dR0(s).

(10.28)

Below we will speak about system (10.27) as about the linear part corresponding
to system (10.22) or, for brevity, as about the linear part of system (10.22).

In particular, by conditions (10.5), (10.16), and (10.28) from (10.27) we obtain
the linear part of system (10.24)

ż1(t) = − x∗
1

(∫ ∞

0
z1(t − s) dK0(s) +

∫ ∞

0
z2(t − s) dK2(s)

)
+ σ1z1(t)ẇ1(t),

ż2(t) = − bz2(t) + R2x
∗
2

∫ ∞

0
z1(t − s) dR1(s) + R1x

∗
1

∫ ∞

0
z2(t − s) dR2(s)

+ σ2z2(t)ẇ2(t).

(10.29)
From (10.26) or, via (10.7), from (10.29) we have the linear part of system (10.26)

ż1(t) = −x∗
1

(
a1z1(t) + a2z2(t)

)+ σ1z1(t)ẇ1(t),

ż2(t) = −bz2(t) + b1
(
x∗

2z1(t − h1) + x∗
1z2(t − h2)

)+ σ2z2(t)ẇ2(t).
(10.30)

As it is shown in Sect. 5.3, if the order of nonlinearity of the system under consid-
eration is higher than one, then a sufficient condition for the asymptotic mean-square
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stability of the linear part of the considered nonlinear system is also a sufficient con-
dition for the stability in probability of the initial system. So, below we will obtain
sufficient conditions for the asymptotic mean-square stability of the linear part of
considered nonlinear systems.

10.3 Stability of Equilibrium Point

Obtain now sufficient conditions for the asymptotic mean-square stability of the
trivial solution of system (10.27) as the linear part of (10.22). The obtained condi-
tions will be at the same time sufficient conditions for the stability in probability of
the equilibrium point of (10.21).

Following the procedure of constructing Lyapunov functionals (Sect. 2.2.2),
rewrite (10.27) in the form

Ż1(t) = a11z1(t) + a12z2(t) + σ1z1(t)ẇ1(t),

Ż2(t) = a21z1(t) + a22z2(t) + σ2z2(t)ẇ2(t),
(10.31)

where

Z1(t) = z1(t) −
∫ ∞

0

∫ t

t−s

z1(θ) dθ dK(s) − K1f10f21

∫ ∞

0

∫ t

t−s

z2(θ) dθ dK2(s),

Z2(t) = z2(t) +
∫ ∞

0

∫ t

t−s

z1(θ) dθ dR(s) + R1g10g21

∫ ∞

0

∫ t

t−s

z2(θ) dθ dR2(s),

(10.32)
and, by (10.15), (10.28),

a11 = a − K − K0f00 = K1K2f20

(
f10

x∗
1

− f11

)
− K0f01x

∗
1 ,

a12 = −K1K2f10f21, a21 = R = R1R2g20g11 − R0g01x
∗
2 ,

a22 = R1R2g10g21 − b − R0g00 = −R1R2g10

(
g20

x∗
2

− g21

)
.

(10.33)

System (10.31), (10.32) is a system of stochastic differential equations of neutral
type, so, following (2.10), we have to suppose that

∫ ∞

0
s dK(s) + K1|f10f21|

∫ ∞

0
s dK2(s) < 1,

∫ ∞

0
s dR(s) + R1|g10g21|

∫ ∞

0
s dR2(s) < 1,
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or, by (10.3), (10.28), that

|f01|x∗
1 K̂0 + K2|f20f11|K̂1 + K1|f10f21|K̂2 < 1,

|g01|x∗
2 R̂0 + R2|g20g11|R̂1 + R1|g10g21|R̂2 < 1.

(10.34)

10.3.1 First Way of Constructing a Lyapunov Functional

Let Â = ‖aij‖ be the matrix with the elements defined by (10.33), and P = ‖pij‖
be the matrix with the elements defined by (1.29) for some q > 0. Represent p11,
p22 in the form

pii = 1

2

(
qp

(0)
ii + p

(1)
ii

)
, i = 1,2, (10.35)

where

p
(0)
11 = a2

22 + det(Â)

|Tr(Â)|det(Â)
, p

(1)
11 = a2

21

|Tr(Â)|det(Â)
,

p
(0)
22 = a2

12

|Tr(Â)|det(Â)
, p

(1)
22 = a2

11 + det(Â)

|Tr(Â)|det(Â)
,

(10.36)

and put

dμij (s) = qdμ
(0)
ij (s) + dμ

(1)
ij (s), i, j = 1,2, (10.37)

where

dμ
(0)
11 = dK(s) − a12

|Tr(Â)| dR(s), dμ
(1)
11 = a21

|Tr(Â)| dR(s),

dμ
(0)
12 = K1f10f21 dK2(s) − a12

|Tr(Â)|R1g10g21 dR2(s),

dμ
(1)
12 = a21

|Tr(Â)|R1g10g21 dR2(s),

dμ
(0)
21 = − a12

|Tr(Â)| dK(s), dμ
(1)
21 = a21

|Tr(Â)| dK(s) − dR(s),

dμ
(0)
22 = − a12

|Tr(Â)|K1f10f21 dK2(s),

dμ
(1)
22 = a21

|Tr(Â)|K1f10f21 dK2(s) − R1g10g21 dR2(s),

(10.38)

and dK(s), dR(s) are defined by (10.28).
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Put also

δi = 1

2
σ 2

i , i = 1,2,

ν
(m)
ij =

∫ ∞

0
s
∣∣dμ

(m)
ij (s)

∣∣, i, j = 1,2, m = 0,1,

(10.39)

and

A1 = 1 − ν
(0)
11 − p

(0)
11 δ1, A2 = 1 − ν

(1)
22 − p

(1)
22 δ2,

B1 = ν
(1)
11 + p

(1)
11 δ1, B2 = ν

(0)
22 + p

(0)
22 δ2,

C1 = ν
(1)
12 + ν

(1)
21 , C2 = ν

(0)
12 + ν

(0)
21 .

(10.40)

Theorem 10.1 If A1 > 0, A2 > 0, and conditions (10.34) and

√
(A1C1 + B1C2)(A2C2 + B2C1) + B1B2 < A1A2 (10.41)

hold, then the trivial solution of system (10.27) is asymptotically mean-square stable
and the equilibrium point of system (10.21) is stable in probability.

Proof We will consider now system (10.31)–(10.33) and suppose that the trivial so-
lution of the appropriate auxiliary system without delays of type (2.60) with aij ,
i, j = 1,2, defined by (10.33) is asymptotically mean-square stable, and so condi-
tions (2.62) hold.

Consider the functional

V1(t) = p11Z
2
1(t) + 2p12Z1(t)Z2(t) + p22Z

2
2(t) (10.42)

with pij , i, j = 1,2, defined by (1.29). Let L be the generator of system (10.31).
Then, by (10.31), (10.42),

LV1(t) = 2
(
p11Z1(t) + p12Z2(t)

)(
a11z1(t) + a12z2(t)

)+ p11σ
2
1 z2

1(t)

+ 2
(
p12Z1(t) + p22Z2(t)

)(
a21z1(t) + a22z2(t)

)+ p22σ
2
2 z2

2(t)

= 2(p11a11 + p12a21)Z1(t)z1(t) + 2(p12a11 + p22a21)Z2(t)z1(t)

+ 2(p11a12 + p12a22)Z1(t)z2(t) + p11σ
2
1 z2

1(t)

+ 2(p12a12 + p22a22)Z2(t)z2(t) + p22σ
2
2 z2

2(t). (10.43)

Putting

ρ = a21 − a12q

|Tr(Â)| (10.44)
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and using (1.29), (2.62), we obtain

2(p11a11 + p12a21) = −q, 2(p12a12 + p22a22) = −1,

2(p12a11 + p22a21) = −(a12a22q + a21a11)a11 + (a2
11 + det(Â) + a2

12q)a21

|Tr(Â)|det(Â)

= det(Â)a21 − (a11a22 − a12a21)a12q

|Tr(Â)|det(Â)
= ρ,

2(p11a12 + p12a22) = ((a2
22 + det(Â))q + a2

21)a12 − (a12a22q + a21a11)a22

|Tr(Â)|det(Â)

= det(A)a12q − a21(a11a22 − a21a12)

|Tr(Â)|det(Â)
= −ρ.

So, (10.43) takes the form

LV1(t) = −qZ1(t)z1(t) + ρZ2(t)z1(t) + p11σ
2
1 z2

1(t)

− ρZ1(t)z2(t) − Z2(t)z2(t) + p22σ
2
2 z2

2(t). (10.45)

Substituting (10.32) into (10.45), we have

LV1 = (−q + p11σ
2
1

)
z2

1(t) + (−1 + p22σ
2
2

)
z2

2(t)

+ q

∫ ∞

0

∫ t

t−s

z1(t)z1(θ) dθ dK(s)

+ qK1f10f21

∫ ∞

0

∫ t

t−s

z1(t)z2(θ) dθ dK2(s)

+ ρ

∫ ∞

0

∫ t

t−s

z1(t)z1(θ) dθ dR(s)

+ ρR1g10g21

∫ ∞

0

∫ t

t−s

z1(t)z2(θ) dθ dR2(s)

+ ρ

∫ ∞

0

∫ t

t−s

z2(t)z1(θ) dθ dK(s)

+ ρK1f10f21

∫ ∞

0

∫ t

t−s

z2(t)z2(θ) dθ dK2(s)

−
∫ ∞

0

∫ t

t−s

z2(t)z1(θ) dθ dR(s)

− R1g10g21

∫ ∞

0

∫ t

t−s

z2(t)z2(θ) dθ dR2(s).
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By (10.37), (10.38), (10.44), it can be written in the form

LV1 = (−q + p11σ
2
1

)
z2

1(t) + (−1 + p22σ
2
2

)
z2

2(t)

+
∫ ∞

0

∫ t

t−s

z1(t)z1(θ) dθ dμ11(s) +
∫ ∞

0

∫ t

t−s

z1(t)z2(θ) dθ dμ12(s)

+
∫ ∞

0

∫ t

t−s

z2(t)z1(θ) dθ dμ21(s) +
∫ ∞

0

∫ t

t−s

z2(t)z2(θ) dθ dμ22(s).

(10.46)

Using (10.35), (10.37), (10.39) and some positive number γ from (10.46), we
obtain

LV1 ≤ (−q + qp
(0)
11 δ1 + p

(1)
11 δ1

)
z2

1(t) + (−1 + qp
(0)
22 δ2 + p

(1)
22 δ2

)
z2

2(t)

+ 1

2

∫ ∞

0

∫ t

t−s

(
z2

1(t) + z2
1(θ)

)
dθ
(
q
∣∣dμ

(0)
11 (s)

∣∣+ ∣∣dμ
(1)
11 (s)

∣∣)

+ 1

2

∫ ∞

0

∫ t

t−s

(
γ −1z2

1(t) + γ z2
2(θ)

)
dθ
(
q
∣∣dμ

(0)
12 (s)

∣∣+ ∣∣dμ
(1)
12 (s)

∣∣)

+ 1

2

∫ ∞

0

∫ t

t−s

(
γ z2

2(t) + γ −1z2
1(θ)

)
dθ
(
q
∣∣dμ

(0)
21 (s)

∣∣+ ∣∣dμ
(1)
21 (s)

∣∣)

+ 1

2

∫ ∞

0

∫ t

t−s

(
z2

2(t) + z2
2(θ)

)
dθ
(
q
∣∣dμ

(0)
22 (s)

∣∣+ ∣∣dμ
(1)
22 (s)

∣∣).

From this by (10.39) we have

LV1 ≤ (−q + qp
(0)
11 δ1 + p

(1)
11 δ1

)
z2

1(t) + (−1 + qp
(0)
22 δ2 + p

(1)
22 δ2

)
z2

2(t)

+ 1

2

(
qν

(0)
11 + ν

(1)
11

)
z2

1(t) + 1

2

∫ ∞

0

∫ t

t−s

z2
1(θ) dθ

(
q
∣∣dμ

(0)
11 (s)

∣∣+ ∣∣dμ
(1)
11 (s)

∣∣)

+ γ −1

2

(
qν

(0)
12 + ν

(1)
12

)
z2

1(t)

+ γ

2

∫ ∞

0

∫ t

t−s

z2
2(θ) dθ

(
q
∣
∣dμ

(0)
12 (s)

∣
∣+ ∣

∣dμ
(1)
12 (s)

∣
∣)

+ γ

2

(
qν

(0)
21 + ν

(1)
21

)
z2

2(t)

+ γ −1

2

∫ ∞

0

∫ t

t−s

z2
1(θ) dθ

(
q
∣
∣dμ

(0)
21 (s)

∣
∣+ ∣

∣dμ
(1)
21 (s)

∣
∣)

+ 1

2

(
qν

(0)
22 + ν

(1)
22

)
z2

2(t) + 1

2

∫ ∞

0

∫ t

t−s

z2
2(θ) dθ

(
q
∣∣dμ

(0)
22 (s)

∣∣+ ∣∣dμ
(1)
22 (s)

∣∣)
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=
[
q

(
−1 + 1

2

(
ν

(0)
11 + γ −1ν

(0)
12

)+ p
(0)
11 δ1

)

+ 1

2

(
ν

(1)
11 + γ −1ν

(1)
12

)+ p
(1)
11 δ1

]
z2

1(t)

+
[
−1 + 1

2

(
γ ν

(1)
21 + ν

(1)
22

)+ p
(1)
22 δ2 + q

(
1

2

(
γ ν

(0)
21 + ν

(0)
22

)+ p
(0)
22 δ2

)]
z2

2(t)

+
2∑

i=1

∫ ∞

0

∫ t

t−s

z2
i (θ) dθ dFi(s), (10.47)

where

dFi(s) = 1

2

(
qdF

(0)
i (s) + dF

(1)
i (s)

)
, i = 1,2,

dF
(0)
1 (s) = ∣∣dμ

(0)
11 (s)

∣∣+ γ −1
∣∣dμ

(0)
21 (s)

∣∣,

dF
(1)
1 (s) = ∣∣dμ

(1)
11 (s)

∣∣+ γ −1
∣∣dμ

(1)
21 (s)

∣∣,

dF
(0)
2 (s) = ∣∣γ dμ

(0)
12 (s)

∣∣+ ∣∣dμ
(0)
22 (s)

∣∣,

dF
(1)
2 (s) = ∣∣γ dμ

(1)
12 (s)

∣∣+ ∣∣dμ
(1)
22 (s)

∣∣.

Note that for the functional

V2(t) =
2∑

i=1

∫ ∞

0

∫ t

t−s

(θ − t + s)z2
i (θ) dθ dFi(s),

we have

LV2(t) = F̂1z
2
1(t) + F̂2z

2
2(t) −

2∑

i=1

∫ ∞

0

∫ t

t−s

z2
i (θ) dθ dFi(s), (10.48)

where

F̂1 = 1

2

[
q
(
ν

(0)
11 + γ −1ν

(0)
21

)+ ν
(1)
11 + γ −1ν

(1)
21

]
,

F̂2 = 1

2

[
q
(
γ ν

(0)
12 + ν

(0)
22

)+ γ ν
(1)
12 + ν

(1)
22

]
.

From (10.47), (10.48), for the functional V = V1 + V2, by (10.40) we obtain

LV (t) ≤
[
q

(
−A1 + γ −1

2
C2

)
+ B1 + γ −1

2
C1

]
z2

1(t)

+
[
−A2 + γ

2
C1 + q

(
B2 + γ

2
C2

)]
z2

2(t). (10.49)
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By Theorem 2.1, if there exist positive numbers q and γ such that

q

(
−A1 + γ −1

2
C2

)
+ B1 + γ −1

2
C1 < 0,

−A2 + γ

2
C1 + q

(
B2 + γ

2
C2

)
< 0,

(10.50)

then the trivial solution of system (10.27) is asymptotically mean-square stable.
Rewrite (10.50) in the form

(
B1 + γ −1

2
C1

)(
A1 − γ −1

2
C2

)−1

< q <

(
A2 − γ

2
C1

)(
B2 + γ

2
C2

)−1

. (10.51)

So, if

(
B1 + γ −1

2
C1

)(
A1 − γ −1

2
C2

)−1

<

(
A2 − γ

2
C1

)(
B2 + γ

2
C2

)−1

, (10.52)

then there exists q > 0 such that (10.51) holds.
Rewriting (10.52) in the form

γ

2
(A1C1 + B1C2) + γ −1

2
(A2C2 + B2C1) < A1A2 − B1B2

and calculating the infimum of the left-hand part of the obtained inequality with
respect to γ > 0, we obtain (10.41). So, if (10.41) holds, then there exist positive
numbers q and γ such that (10.50) holds, and therefore the trivial solution of system
(10.27) is asymptotically mean-square stable. The proof is completed. �

Put now

D1 = a1

b1
− Ah1 − δ1

b
, D2 = 1 − bh2 − a1δ2

Ab1
, (10.53)

and note that the first condition (10.34) for system (10.30) is a trivial one and the
second condition takes the form Aa−1

2 b1h1 + bh2 < 1 or, via the representation
(10.17) for A,

b1h1a + (a2h2 − a1h1)b < a2. (10.54)

Corollary 10.1 If D1 > 0, D2 > 0, and conditions (10.54) and

√
A(D1h1 + h2)(δ2h1 + D2bh2) + δ2

b
< D1D2 (10.55)

hold, then the trivial solution of system (10.30) is asymptotically mean-square sta-
ble, and the equilibrium point of system (10.25) is stable in probability.
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Proof Calculating for (10.30) the parameters (10.33), (10.36), (10.38), (10.39),
(10.40), we obtain

a11 = −a1b

b1
, a12 = −a2b

b1
, a21 = Ab1

a2
, a22 = 0,

p
(0)
11 = b1

a1b
, p

(1)
11 = Ab3

1

a1a
2
2b2

, p
(0)
22 = a2

2

Aa1b1
, p

(1)
22 = a1

Ab1
+ b1

a1b
,

ν
(0)
11 = Ab1h1

a1
, ν

(1)
11 = A2b3

1h1

a1a
2
2b

, ν
(0)
12 = a2bh2

a1
, ν

(1)
12 = Ab2

1h2

a1a2
,

ν
(0)
21 = 0, ν

(1)
21 = Ab1h1

a2
, ν

(0)
22 = 0, ν

(1)
22 = bh2,

A1 = b1

a1
D1, A2 = D2 − b1δ2

a1b
,

B1 = Ab3
1

a1a
2
2b

(
Ah1 + δ1

b

)
, B2 = a2

2δ2

Aa1b1
,

C1 = Ab1

a1a2
(a1h1 + b1h2), C2 = a2bh2

a1
.

From this it follows that

A1C1 + B1C2 = Ab2
1

a1a2
(D1h1 + h2),

A2C2 + B2C1 = a2

a1
(δ2h1 + D2bh2),

A1A2 − B1B2 = b1

a1

(
D1D2 − δ2

b

)
.

(10.56)

From the representations for aij , i, j = 1,2, it follows also that conditions (2.62)
hold. Substituting (10.56) into (10.41), we obtain (10.55). The proof is completed. �

Remark 10.1 Note that condition (10.55) does not depend on a2. The dependence
on a2 is included in condition (10.54).

Remark 10.2 By the absence of the delays, i.e., by h1 = h2 = 0, condition (10.54)
is trivial, and condition (10.55) can be written in the form

δ1 < b
a1

b1
, δ2 <

Ab1(a1b − b1δ1)

Ab2
1 + a1(a1b − b1δ1)

.

The same conditions can be obtained immediately from Corollary 2.3.
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10.3.2 Second Way of Constructing a Lyapunov Functional

Let us consider another way of constructing of a Lyapunov functional for system
(10.30).

Theorem 10.2 If D1 > 0, D2 > 0, and conditions (10.54) and

(√
Abh2

2 + 4δ2b−1D1 + √
Abh2

)(√
Abh2

1 + 4D2 + √
Abh1

)
< 4D1D2 (10.57)

hold, where A and D1, D2 are defined by (10.17) and (10.53), respectively, then
the trivial solution of system (10.30) is asymptotically mean-square stable, and the
equilibrium point of system (10.25) is stable in probability.

Proof Using (10.17), rewrite system (10.30) in the form

ż1(t) = − a1b

b1
z1(t) − a2b

b1
z2(t) + σ1z1(t)ẇ1(t),

Ż2(t) =Ab1

a2
z1(t) + σ2z2(t)ẇ2(t),

(10.58)

where

Z2(t) =z2(t) + Ab1

a2
J1(z1t ) + bJ2(z2t ),

Ji(zit ) =
∫ t

t−hi

zi(s) ds, i = 1,2.

(10.59)

Consider now the functional

V1(t) = z2
1(t) + 2μz1(t)Z2(t) + γZ2

2(t), (10.60)

where the parameters μ and γ will be chosen below. Then by (10.60), (10.58) we
have

LV1(t) = −2
b

b1

(
z1(t) + μZ2(t)

)(
a1z1(t) + a2z2(t)

)+ σ 2
1 z2

1(t)

+ 2
Ab1

a2

(
μz1(t) + γZ2(t)

)
z1(t) + γ σ 2

2 z2
2(t)

= −2

(
a1b

b1
− μ

Ab1

a2
− δ1

)
z2

1(t) − 2

(
μ

a2b

b1
− γ δ2

)
z2

2(t)

+ 2

(
γ

Ab1

a2
− μ

a1b

b1
− a2b

b1

)
z1(t)z2(t)

+ 2

(
γ

Ab1

a2
− μ

a1b

b1

)
z1(t)

(
Ab1

a2
J1(z1t ) + bJ2(z2t )

)
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− 2μ
a2b

b1
z2(t)

(
Ab1

a2
J1(z1t ) + bJ2(z2t )

)
. (10.61)

Defining now γ by the equality

γ
Ab1

a2
= μ

a1b

b1
+ a2b

b1
, (10.62)

from (10.61) we obtain

LV1(t) = − 2

(
a1b

b1
− μ

Ab1

a2
− δ1

)
z2

1(t) − 2

(
μ

a2b

b1
− γ δ2

)
z2

2(t)

+ 2
a2b

b1
z1(t)

(
Ab1

a2
J1(z1t ) + bJ2(z2t )

)

− 2μ
a2b

b1
z2(t)

(
Ab1

a2
J1(z1t ) + bJ2(z2t )

)
.

By (10.59) from this, for some positive γ1, γ2, we have

LV1(t) ≤ −2

(
a1b

b1
− μ

Ab1

a2
− δ1

)
z2

1(t) − 2

(
μ

a2b

b1
− γ δ2

)
z2

2(t)

+ a2b

b1

(
Ab1

a2

∫ t

t−h1

(
z2

1(t) + z2
1(s)

)
ds + b

∫ t

t−h2

(
γ1z

2
1(t) + γ −1

1 z2
2(s)

)
ds

)

+ μ
a2b

b1

(
Ab1

a2

∫ t

t−h1

(
γ2z

2
2(t) + γ −1

2 z2
1(s)

)
ds

+ b

∫ t

t−h2

(
z2

2(t) + z2
2(s)

)
ds

)
. (10.63)

By the representations (10.53) for D1, D2 and (10.62) for γ inequality (10.63) can
be written in the form

LV1(t) ≤
(

−2bD1 − Abh1 + 2μ
Ab1

a2
+ γ1

a2b
2h2

b1

)
z2

1(t)

+
(

−2μ
a2bD2

b1
− μa2b

2h2

b1
+ 2a2

2bδ2

Ab2
1

+ γ2μAbh1

)
z2

2(t)

+ Ab
(
1 + μγ −1

2

)∫ t

t−h1

z2
1(s) ds + b2a2

b1

(
γ −1

1 + μ
)∫ t

t−h2

z2
2(s) ds.

Put now

V2 = Ab
(
1 + μγ −1

2

)∫ t

t−h1

(s − t + h1)z
2
1(s) ds
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+ b2a2

b1

(
γ −1

1 + μ
)∫ t

t−h2

(s − t + h2)z
2
2(s) ds.

Then

LV2 = Ab
(
1 + μγ −1

2

)(
h1z

2
1(t) −

∫ t

t−h1

z2
1(s) ds

)

+ b2a2

b1

(
γ −1

1 + μ
)(

h2z
2
2(t) −

∫ t

t−h2

z2
2(s) ds

)
,

and as a result, for the functional V = V1 + V2, we obtain

LV ≤
(

−2bD1 + 2μ
Ab1

a2
+ γ1

a2b
2h2

b1
+ γ −1

2 μAbh1

)
z2

1(t)

+
(

−2μ
a2b

b1
D2 + 2

a2
2b

Ab2
1

δ2 + γ −1
1

a2b
2h2

b1
+ γ2μAbh1

)
z2

2(t).

By Theorem 2.1, if

− 2bD1 + 2μ
Ab1

a2
+ γ1

a2b
2h2

b1
+ γ −1

2 μAbh1 < 0,

− 2μ
a2b

b1
D2 + 2

a2
2b

Ab2
1

δ2 + γ −1
1

a2b
2h2

b1
+ γ2μAbh1 < 0,

(10.64)

then the trivial solution of system (10.30) is asymptotically mean-square stable.
Rewrite (10.64) in the form

2
a2

2b

Ab2
1
δ2 + γ −1

1
a2b

2h2
b1

2 a2b
b1

D2 − γ2Abh1
< μ <

2bD1 − γ1
a2b

2h2
b1

2Ab1
a2

+ γ −1
2 Abh1

. (10.65)

So, if the inequality

2
a2

2b

Ab2
1
δ2 + γ −1

1
a2b

2h2
b1

2 a2b
b1

D2 − γ2Abh1
<

2bD1 − γ1
a2b

2h2
b1

2Ab1
a2

+ γ −1
2 Abh1

(10.66)

holds, then there exists μ such that (10.65) holds too.
It is easy to check that from (10.65), (10.62) the condition μ2 < γ follows, which

ensures the positivity of the functional (10.60).
Representing (10.66) in the form

a2
2

Ab2
1
δ2 + γ −1

1
a2bh2

2b1

D1 − γ1
a2bh2

2b1

×
Ab2

1
a2

2b
+ γ −1

2
Ab1h1

2a2

D2 − γ2
Ab1h1

2a2

< 1

and using Lemma 2.4 twice, we obtain (10.57) �
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Fig. 10.1 Region of stability in probability for (10.25): a1 = 0.6, b1 = 1, h1 = 0, h2 = 0, δ1 = 0,
δ2 = 0

Remark 10.3 Note that the representation (10.31)–(10.33) for system (10.30) coin-
cides with (10.58), (10.59). So, conditions (10.55) and (10.57) are equivalent and
give the same stability region. For simplicity, let us check this statement by the
condition h1 = 0. Indeed, in this case from (10.57) we have

Abh2
2 + 4δ2b

−1D1 < (2D1

√
D2 − √

Abh2)
2 = 4D2

1D2 − 4D1h2

√
AbD2 + Abh2

2

or δ2b
−1 < D1D2 −h2

√
AbD2, which is equivalent to (10.55) by h1 = 0. Similarly,

it is easy to get that (10.55) coincides with (10.57) by the condition h2 = 0 or by the
condition δ2 = 0. In the general case the necessary transformation is bulky enough.

The regions of stability in probability for a positive point of equilibrium of system
(10.25), obtained by condition (10.55) (or (10.57)), are shown in the space of the
parameters (a, b) for a1 = 0.6, b1 = 1 and different values of the other parameters:
in Fig. 10.1 for h1 = 0, h2 = 0, δ1 = 0, δ2 = 0, in Fig. 10.2 for h1 = 0, h2 = 0,
δ1 = 0.2, δ2 = 0.3, in Fig. 10.3 for a2 = 0.6, h1 = 0.1, h2 = 0.15, δ1 = 0, δ2 = 0,
and in Fig. 10.4 for a2 = 0.07, h1 = 0.01, h2 = 0.15, δ1 = 0.05, δ2 = 0.1.

The equation of the straight line in Figs. 10.1 and 10.2 is ab1 = ba1, which
corresponds to the condition A = 0. In Figs. 10.3 and 10.4 the straight line 1
also corresponds to this equation and the straight line 2 is defined by the equation
b1h1a + (a2h2 − a1h1)b = a2, which follows from condition (10.54).

Note that the stability of the positive equilibrium point of the difference analogue
of system (10.25) is investigated in [278].
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Fig. 10.2 Region of stability in probability for (10.25): a1 = 0.6, b1 = 1, h1 = 0, h2 = 0, δ1 = 0.2,
δ2 = 0.3

Fig. 10.3 Region of stability in probability for (10.25): a1 = 0.6, a2 = 0.6, b1 = 1, h1 = 0.1,
h2 = 0.15, δ1 = 0, δ2 = 0
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Fig. 10.4 Region of stability in probability for (10.25): a1 = 0.6, a2 = 0.07, b1 = 1, h1 = 0.01,
h2 = 0.15, δ1 = 0.05, δ2 = 0.1

10.3.3 Stability of the Equilibrium Point of Ratio-Dependent
Predator–Prey Model

Consider now system (10.9) with stochastic perturbations, i.e.,

ẋ1(t) = x1(t)

(
a −

∫ ∞

0
x1(t − s) dK0(s)

)
−
∫ ∞

0

xk
1 (t − s)x2(t)

xk
1 (t − s) + a2x

k
2(t − s)

dK1(s)

+ σ1
(
x1(t) − x∗

1

)
ẇ1(t), (10.67)

ẋ2(t) = −bx2(t) +
∫ ∞

0

xm
1 (t − s)x2(t)

xm
1 (t − s) + b2x

m
2 (t − s)

dR1(s) + σ2
(
x1(t) − x∗

2

)
ẇ2(t).

System (10.9) was obtained from (10.1) by conditions (10.10). So, by (10.13),
(10.14) the positive equilibrium point (x∗

1 , x∗
2 ) of system (10.9) (and also (10.67)) is

defined by the conditions

x∗
1

(
a − K0x

∗
1

)= K1f
(
x∗

1 , x∗
2

)
x∗

2 ,

b = R1g
(
x∗

1 , x∗
2

)
, a > K0x

∗
1 .

(10.68)

Suppose that the functions f (x1, x2) and g(x1, x2) in (10.10) are differentiable and
can be represented in the form

f
(
y1 + x∗

1 , y2 + x∗
2

)= f0 + f1y1 − f2y2 + o(y1, y2),

g
(
y1 + x∗

1 , y2 + x∗
2

)= g0 + g1y1 − g2y2 + o(y1, y2),
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where lim|y|→0
o(y1,y2)|y| = 0 for |y| =

√
y2

1 + y2
2 , and

f0 = f
(
x∗

1 , x∗
2

)
, f1 = x∗

2 f̂ , f2 = x∗
1 f̂ , f̂ = ka2(x

∗
1x∗

2 )k−1

((x∗
1 )k + a2(x

∗
2 )k)2

,

g0 = g
(
x∗

1 , x∗
2

)
, g1 = x∗

2 ĝ, g2 = x∗
1 ĝ, ĝ = mb2(x

∗
1x∗

2 )m−1

((x∗
1 )m + b2(x

∗
2 )m)2

.

So, the functionals F0(x1t , x2t ), F1(x1t , x2t ), G1(x1t , x2t ) in (10.10) have the repre-

sentations

F0
(
y1t + x∗

1 , y2t + x∗
2

)= K0x
∗
1 +

∫ ∞

0
y1(t − s) dK0(s),

F1
(
y1t + x∗

1 , y2t + x∗
2

)= K1f0x
∗
2 + f1x

∗
2

∫ ∞

0
y1(t − s) dK1(s) + K1f0y2(t)

− f2x
∗
2

∫ ∞

0
y2(t − s) dK1(s) + o(y1, y2),

G1
(
y1t + x∗

1 , y2t + x∗
2

)= R1g0x
∗
2 + g1x

∗
2

∫ ∞

0
y1(t − s) dR1(s) + R1g0y2(t)

− g2x
∗
2

∫ ∞

0
y2(t − s) dR1(s) + o(y1, y2).

(10.69)

By (10.68), (10.69) the linear part of system (10.67) has the form

ż1(t) = (
a − K0x

∗
1

)
z1(t) − K1f0z2(t) −

∫ ∞

0
z1(t − s) dK(s)

+ f2x
∗
2

∫ ∞

0
z2(t − s) dK1(s) + σ1z1(t)ẇ1(t), (10.70)

ż2(t) = g1x
∗
2

∫ ∞

0
z1(t − s) dR1(s) − g2x

∗
2

∫ ∞

0
z2(t − s) dR1(s) + σ2z2(t)ẇ2(t),

where dK(s) = x∗
1 dK0(s) + f1x

∗
2 dK1(s). Rewrite system (10.70) in the form

(10.31) with

Z1(t) = z1(t) −
∫ ∞

0

∫ t

t−s

z1(θ) dθ dK(s) + f2x
∗
2

∫ ∞

0

∫ t

t−s

z2(θ) dθ dK1(s),

Z2(t) = z2(t) + g1x
∗
2

∫ ∞

0

∫ t

t−s

z1(θ) dθ dR1(s)

− g2x
∗
2

∫ ∞

0

∫ t

t−s

z2(θ) dθ dR1(s), (10.71)

a11 = K1x
∗
2

(
f0

x∗
1

− f1

)
− K0x

∗
1 , a12 = K1

(
f2x

∗
2 − f0

)
,

a21 = R1g1x
∗
2 , a22 = −R1g2x

∗
2 .
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Further investigation is similar to the previous sections.
For short, consider system (10.67) by conditions (10.11). The point of equilib-

rium in this case is defined by (10.18). From (10.11), (10.18), (10.70) and (10.71) it
follows that system (10.67) and the linear part of this system respectively take the
forms

ẋ1(t) = x1(t)

(
a − a0x1(t) − a1x2(t)

x1(t) + a2x2(t)

)
+ σ1

(
x1(t) − x∗

1

)
ẇ1(t),

ẋ2(t) = x2(t)

(
−b + b1x1(t − h)

x1(t − h) + b2x2(t − h)

)
+ σ2

(
x1(t) − x∗

2

)
ẇ2(t)

(10.72)

and

ż1(t) = a11z1(t) + a12z2(t) + σ1z1(t)ẇ1(t),

ż2(t) = a21z1(t − h) + a22z2(t − h) + σ2z2(t)ẇ2(t),
(10.73)

where

a11 = Ba1α
2 − A, a12 = −B2a1α

2,

a21 = b1b2β
2, a22 = −Bb1b2β

2,

A = a − a1α, B = bb2

b1 − b
, α = 1

B + a2
, β = 1

B + b2
. (10.74)

Let Â = ‖aij‖ be the matrix with the elements defined by (10.74). Suppose that

b ∈ (0, b1),

a >

{
a1α if a1α

2 ≤ b1b2β
2,

a1α + B(a1α
2 − b1b2β

2) if a1α
2 > b1b2β

2.

(10.75)

By conditions (10.75) conditions (2.62) for the matrix Â hold. Indeed,

Tr(Â) = B
(
a1α

2 − b1b2β
2)− A < 0, det(Â) = ABb1b2β

2 > 0. (10.76)

Let P = ‖pij‖ be the matrix with the elements defined by (1.29) for some
q > 0 and represented in the form (10.35), (10.36). Using (10.35), (10.36), (10.44),
(10.76), put

ρ = ρ(0)q + ρ(1), ρ(0) = − a12

|Tr(Â)| , ρ(1) = a21

|Tr(Â)| , (10.77)

and

A1 = 1 − p
(0)
11 δ1 − ρ(0)|a21|h, A2 = 1 − p

(1)
22 δ2 − |a22|h,

B1 = p
(1)
11 δ1 + ρ(1)|a21|h, B2 = p

(0)
22 δ2, δi = 1

2
σ 2

i , i = 1,2,

C1 = (|a21| + ρ(1)|a22|
)
h, C2 = ρ(0)|a22|h.

(10.78)
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Rewrite system (10.73) in the form

ż1(t) = a11z1(t) + a12z2(t) + σ1z1(t)ẇ1(t),

Ż2(t) = a21z1(t) + a22z2(t) + σ2z2(t)ẇ2(t),
(10.79)

where

Z2(t) = z2(t) +
∫ t

t−h

(
a21z1(s) + a22z2(s)

)
ds, (10.80)

and following condition (2.10), suppose that the parameters a21 and a22 in (10.74)

satisfy the condition h

√
a2

21 + a2
22 < 1 or, via (10.74), b1b2β

2h
√

1 + B2 < 1, which
is equivalent to

(b1 − b)

√
(b1 − b)2 + b2b2

2 <
b1b2

h
. (10.81)

Theorem 10.3 Let conditions (10.75), (10.81) hold. If A1 > 0, A2 > 0, and
√

(A1C1 + B1C2)(A2C2 + B2C1) + B1B2 < A1A2, (10.82)

then the trivial solution of system (10.73) is asymptotically mean-square stable, and
the equilibrium point of system (10.72) is stable in probability.

Proof Consider the functional

V1(t) = p11z
2
1(t) + 2p12z1(t)Z2(t) + p22Z

2
2(t)

with pij , i, j = 1,2, defined by (1.29). Let L be the generator of system (10.79).
Then, using (10.77), similarly to (10.45), for system (10.79), we obtain

LV1(t) = −qz2
1(t) + ρZ2(t)z1(t) + p11σ

2
1 z2

1(t)

− ρz1(t)z2(t) − Z2(t)z2(t) + p22σ
2
2 z2

2(t). (10.83)

Substituting (10.80) into (10.83) and using some positive γ , we obtain

LV1(t) = −qz2
1(t) + ρz1(t)

(
z2(t) +

∫ t

t−h

(
a21z1(s) + a22z2(s)

)
ds

)
+ p11σ

2
1 z2

1(t)

− ρz1(t)z2(t) − z2(t)

(
z2(t) +

∫ t

t−h

(
a21z1(s) + a22z2(s)

)
ds

)

+ p22σ
2
2 z2

2(t)

≤ (−q + p11σ
2
1

)
z2

1(t) + ρ

2
|a21|

∫ t

t−h

(
z2

1(t) + z2
1(s)

)
ds

+ ρ

2
|a22|

∫ t

t−h

(
γ −1z2

1(t) + γ z2
2(s)

)
ds
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+ (−1 + p22σ
2
2

)
z2

2(t) + 1

2
|a21|

∫ t

t−h

(
γ z2

2(t) + γ −1z2
1(s)

)
ds

+ 1

2
|a22|

∫ t

t−h

(
z2

2(t) + z2
2(s)

)
ds

=
(

−q + p11σ
2
1 + ρ

2
|a21|h + γ −1 ρ

2
|a22|h

)
z2

1(t)

+
(

−1 + p22σ
2
2 + 1

2
|a22|h + γ

2
|a21|h

)
z2

2(t)

+ |a21|
2

(
ρ + γ −1)

∫ t

t−h

z2
1(s) ds + |a22|

2
(1 + ργ )

∫ t

t−h

z2
2(s) ds.

Putting

V2 = |a21|
2

(
ρ + γ −1)

∫ t

t−h

(s − t + h)z2
1(s) ds

+ |a22|
2

(1 + ργ )

∫ t

t−h

(s − t + h)z2
2(s) ds,

for the functional V = V1 + V2, we have

LV (t) ≤
[
−q + p11σ

2
1 + ρ|a21|h + γ −1

2
h
(|a21| + ρ|a22|

)]
z2

1(t)

+
[
−1 + p22σ

2
2 + |a22|h + γ

2
h
(|a21| + ρ|a22|

)]
z2

2(t). (10.84)

Using the representations (10.35), (10.36), (10.77), (10.78), we can rewrite
(10.84) in the form

LV (t) ≤
[
q

(
−A1 + γ −1

2
C2

)
+ B1 + γ −1

2
C1

]
z2

1(t)

+
[
−A2 + γ

2
C1 + q

(
B2 + γ

2
C2

)]
z2

2(t),

which coincides with (10.49). So, from this (10.82) follows, which coincides with
(10.41). The proof is completed. �

The regions of stability in probability for a positive point of equilibrium of sys-
tem (10.72), obtained by conditions (10.81), (10.82), are shown in the space of the
parameters (a, b) for a0 = 0.3, a1 = 5 a2 = 0.5, b1 = 6, b2 = 2, h = 0.4 and dif-
ferent values of δ1, δ2: in Fig. 10.5 for δ1 = 1.5, δ2 = 0.05, in Fig. 10.6 for δ1 = 1,
δ2 = 0.55.

In the both figures the thick line shows the stability region given by conditions
(10.75) that corresponds to the values of the parameters h = δ1 = δ2 = 0.
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Fig. 10.5 Region of stability in probability for (10.69): a0 = 0.3, a1 = 5, a2 = 0.5, b1 = 6, b2 = 2,
h = 0.4, δ1 = 1.5, δ2 = 0.05

Fig. 10.6 Region of stability in probability for (10.69): a0 = 0.3, a1 = 5, a2 = 0.5, b1 = 6, b2 = 2,
h = 0.4, δ1 = 1, δ2 = 0.55



Chapter 11
Stability of SIR Epidemic Model Equilibrium
Points

11.1 Problem Statement

Investigation of different mathematical models for infectious diseases (in particular,
so-called SIR epidemic models) has a long story, and until now these models are
very popular in researchers (see, for example, [6, 18, 26–28, 41, 45, 58, 71, 110,
117, 118, 123, 124, 152, 154, 168, 179, 187, 188, 193, 202, 203, 212, 213, 218, 223,
289, 294–296, 310, 315, 319, 322–324]). Here sufficient conditions for the stability
in probability of two equilibrium points of SIR epidemic model with distributed
delays and stochastic perturbations are obtained.

Consider the mathematical model of the spread of infections diseases. Let S(t) be
the number of members of a population susceptible to the disease at time t , I (t) be
the number of infective members at time t , and R(t) be the number of members that
have been removed from the possibility of infection at time t through full immunity,
b is the recruitment rate of the population, μ1, μ2, and μ3 are the natural death
rates of the susceptible, infective, and recovered individuals, respectively, β is the
transmission rate, and λ is the natural recovery rate of the infective individuals. Then
the SIR epidemic model can be described by the system of the differential equations

Ṡ(t) = b − βS(t)

∫ ∞

0
I (t − s) dF (s) − μ1S(t),

İ (t) = βS(t)

∫ ∞

0
I (t − s) dF (s) − (μ2 + λ)I (t), (11.1)

Ṙ(t) = λI (t) − μ3R(t).

Here we assume that b, β , λ, μ1, μ2, μ3 are positive constants, the integral is un-
derstanding in the Stieltjes sense, and F(s) is a nondecreasing function such that

∫ ∞

0
dF(s) = 1. (11.2)
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The equilibrium point of (11.1) is defined by the conditions Ṡ(t) = 0, İ (t) = 0,
Ṙ(t) = 0 or by the system of algebraic equations

βS∗I ∗ + μ1S
∗ = b, βS∗I ∗ = (μ2 + λ)I ∗, λI ∗ = μ3R

∗. (11.3)

From (11.3) it follows that system (11.1) has two points of equilibrium: E0 =
(bμ−1

1 ,0,0) and

E∗ = (
S∗, I ∗,R∗) with S∗ = μ2 + λ

β
, I ∗ = b(S∗)−1 − μ1

β
, R∗ = λI ∗

μ3
. (11.4)

Remark 11.1 From (11.4) it follows that by the condition

bβ > μ1(μ2 + λ) (11.5)

the point E∗ is a positive equilibrium point of (11.1).

Below we obtain sufficient conditions for the stability in probability of both equi-
librium points E0 and E∗ of (11.1) by stochastic perturbations.

11.2 Stability in Probability of the Equilibrium Point
E0 = (bμ−1

1 ,0,0)

We will assume that (11.1) is influenced by stochastic perturbations of white
noise type that are directly proportional to the deviation of the system state
(S(t), I (t),R(t)) from the equilibrium point E0 and influence the Ṡ(t), İ (t), Ṙ(t)

respectively. So, (11.1) takes the form

Ṡ(t) = b − βS(t)J (It ) − μ1S(t) + σ1
(
S(t) − bμ−1

1

)
ẇ1(t),

İ (t) = βS(t)J (It ) − (μ2 + λ)I (t) + σ2I (t)ẇ2(t), (11.6)

Ṙ(t) = λI (t) − μ3R(t) + σ3R(t)ẇ3(t),

where

J (It ) =
∫ ∞

0
I (t − s) dF (s), (11.7)

σ1, σ2, σ3 are constants, and w1(t), w2(t), w3(t) are mutually independent standard
Wiener processes. Note that the equilibrium point E0 is a solution of (11.6).

Centering (11.6) on the equilibrium point E0 via the variables x1(t) = S(t) −
bμ−1

1 , x2(t) = I (t), x3(t) = R(t), we obtain

ẋ1(t) = −μ1x1(t) − βbμ−1
1 J (x2t ) − βx1(t)J (x2t ) + σ1x1(t)ẇ1(t),

ẋ2(t) = −(μ2 + λ)x2(t) + βbμ−1
1 J (x2t ) + βx1(t)J (x2t ) + σ2x2(t)ẇ2(t),

ẋ3(t) = λx2(t) − μ3x3(t) + σ3x3(t)ẇ3(t).

(11.8)
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It is clear that the stability of the equilibrium point E0 of (11.6) is equivalent to the
stability of the trivial solution of (11.8).

Below we will obtain sufficient conditions for the stability in probability of the
trivial solution of (11.8). As it was noted in Remark 5.3, for getting sufficient con-
ditions for the stability in probability of the trivial solution of the nonlinear system
(11.8) with the order of a nonlinearity higher than one, it is enough to get sufficient
conditions for the asymptotic mean-square stability of the trivial solution of the lin-
ear part of the considered nonlinear system. Thus, besides (11.8), we will consider
the linear part of this system

ẏ1(t) = −μ1y1(t) − βbμ−1
1 J (y2t ) + σ1y1(t)ẇ1(t),

ẏ2(t) = −(μ2 + λ)y2(t) + βbμ−1
1 J (y2t ) + σ2y2(t)ẇ2(t), (11.9)

ẏ3(t) = λy2(t) − μ3y3(t) + σ3y3(t)ẇ3(t),

and following the procedure of constructing Lyapunov functionals, we will also
consider the auxiliary system without delays

ż1(t) = −μ1z1(t) + σ1z1(t)ẇ1(t),

ż2(t) = −(μ2 + λ)z2(t) + σ2z2(t)ẇ2(t), (11.10)

ż3(t) = λz2(t) − μ3z3(t) + σ3z3(t)ẇ3(t).

Put now

δi = 1

2
σ 2

i , i = 1,2,3. (11.11)

Lemma 11.1 The trivial solution of (11.10) is asymptotically mean-square stable if
and only if

δ1 < μ1, δ2 < μ2 + λ, δ3 < μ3. (11.12)

Proof From Remark 2.5 it follows that the first and second inequalities in (11.12)
are necessary and sufficient conditions for the asymptotic mean-square stability of
the trivial solutions of the first and second equations in (11.10), respectively. To
prove the third inequality in (11.12), let us consider separately the system of the
second and third equations in (11.10). If σ2 = σ3 = 0, then by Corollary 1.1 the
trivial solution of this system is asymptotically stable. So, by Theorem 1.3 and (1.29)
the matrix equation (1.27) with

A =
(−(μ2 + λ) 0

λ −μ3

)
, Q =

(
q 0
0 1

)

has a positive definite solution P with the elements

p11 = 2−1q + λp12

μ2 + λ
, p22 = 1

2μ3
, p12 = λ

2μ3(μ2 + μ3 + λ)
. (11.13)
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Let L be the generator of the considered system, and

V = p11z
2
2(t) + 2p12z2(t)z3(t) + p22z

2
3(t), (11.14)

where the parameters p11, p12, p22 are defined in (11.13). Then by (11.14), (11.10),
(11.13), (11.11) we have

LV = −2
(
p11z2(t) + p12z3(t)

)
(μ2 + λ)z2(t) + p11σ

2
2 z2

2(t)

+ 2
(
p12z2(t) + p22z3(t)

)(
λz2(t) − μ3z3(t)

)+ p22σ
2
3 z2

3(t)

= (2p11δ2 − q)z2
2(t) + 2(−μ3 + δ3)p22z

2
3(t).

If δ2 < μ2 +λ, then from (11.13) for big enough q , i.e., q > 2λp12δ2(μ2 +λ−δ2)
−1,

we obtain

2p11δ2 − q = (q + 2λp12)δ2

μ2 + λ
− q

= −μ2 + λ − δ2

μ2 + λ

(
q − 2λp12δ2

μ2 + λ − δ2

)

< 0.

So, by Remark 2.1 and (11.12) the trivial solution of (11.10) is asymptotically mean-
square stable.

Let us suppose that δ3 ≥ μ3. It is easy to see that in this case there exists small
enough q > 0 such that LV ≥ 0. So, EV (z2(t), z3(t)) ≥ EV (z2(0), z3(0)) > 0, and
the trivial solution of the considered system cannot be asymptotically mean-square
stable. The proof is completed. �

Theorem 11.1 If

δ1 < μ1, δ2 < μ2 + λ − βbμ−1
1 , δ3 < μ3, (11.15)

then the trivial solution of (11.9) is asymptotically mean-square stable.

Proof Note that in (11.9) the first equation does not depend on y3(t) and the third
equation does not depend on y1(t). So, (11.9) can be considered as two separate
systems, (y1(t), y2(t)) and (y2(t), y3(t)).

First, let L be the generator of the system (y2(t), y3(t)), and

V1 = p11y
2
2(t) + 2p12y2(t)y3(t) + p22y

2
3(t), (11.16)
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where the parameters p11, p12, p22 are defined in (11.13). Then by (11.16), (11.9),
(11.13), (11.11) we have

LV1 = 2
(
p11y2(t) + p12y3(t)

)[−(μ2 + λ)y2(t) + βbμ−1
1 J (y2t )

]+ p11σ
2
2 y2

2(t)

+ 2
(
p12y2(t) + p22y3(t)

)(
λy2(t) − μ3y3(t)

)+ p22σ
2
3 y2

3(t)

= (−q + 2δ2p11)y
2
2(t) + 2(−μ3 + δ3)p22y

2
3(t)

+ 2βbμ−1
1

(
p11y2(t) + p12y3(t)

)
J (y2t ).

Note that, by (11.2) and (11.7), 2y2(t)J (y2t ) ≤ y2
2(t) + J (y2

2t ) and 2y3(t)J (y2t ) ≤
α−1y2

3(t) + αJ (y2
2t ) for some α > 0. Thus,

LV1 ≤ (−q + 2δ2p11)y
2
2(t) + 2(−μ3 + δ3)p22y

2
3(t)

+ βbμ−1
1

(
p11

(
y2

2(t) + J
(
y2

2t

))+ p12
(
α−1y2

3(t) + αJ
(
y2

2t

)))

≤ [−q + (
2δ2 + βbμ−1

1

)
p11

]
y2

2(t)

+ [
2(−μ3 + δ3)p22 + α−1βbμ−1

1 p12
]
y2

3(t) + AJ
(
y2

2t

)
,

where A = βbμ−1
1 (p11 + αp12).

Following the procedure of constructing Lyapunov functionals, put

V2 = A

∫ ∞

0

∫ t

t−s

y2
2(τ ) dτ dF (s). (11.17)

Then, by (11.2) and (11.7), LV2 = A(z2
2(t) − J (z2

2t )), and, as a result, for the func-
tional V = V1 + V2, we obtain

LV ≤ [−q + (
2δ2 + βbμ−1

1

)
p11 + A

]
y2

2(t)

+ [
2(−μ3 + δ3)p22 + αβbμ−1

1 p12
]
y2

3(t)

= [−q + 2
(
δ2 + βbμ−1

1

)
p11 + αβbμ−1

1 p12
]
y2

2(t)

+ [
2(−μ3 + δ3)p22 + α−1βbμ−1

1 p12
]
y2

3(t).

If

αβbμ−1
1 p12 < q − 2

(
δ2 + βbμ−1

1

)
p11,

α−1βbμ−1
1 p12 < 2(μ3 − δ3)p22,

(11.18)

then by Remark 2.1 the trivial solution of the considered system is asymptotically
mean-square stable.

From (11.18) and (11.15) it follows that

0 <
βbμ−1

1 p12

2(μ3 − δ3)p22
< α <

q − 2(δ2 + βbμ−1
1 )p11

βbμ−1
1 p12

. (11.19)
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So, if

βbμ−1
1 p12

2(μ3 − δ3)p22
<

q − 2(δ2 + βbμ−1
1 )p11

βbμ−1
1 p12

, (11.20)

then there exists α > 0 such that (11.19) holds.
Note that by (11.13) we have

q − 2
(
δ2 + βbμ−1

1

)
p11 = q − (δ2 + βbμ−1

1 )(q + 2λp12)

μ2 + λ

= q(μ2 + λ − βbμ−1
1 − δ2)

μ2 + λ
− 2λp12(δ2 + βbμ−1

1 )

μ2 + λ
.

From this and from (11.15) it follows that for big enough q > 0, i.e.,

q >
μ2 + λ

μ2 + λ − βbμ−1
1 − δ2

(
(βbμ−1

1 p12)
2

2(μ3 − δ3)p22
+ 2λp12(δ2 + βbμ−1

1 )

μ2 + λ

)
,

equation (11.20) holds. So, the trivial solution of the considered system is asymp-
totically mean-square stable.

Now let L be the generator of the system (y1(t), y2(t)) in (11.9), and

V1 = p11y
2
1(t) + p22y

2
2(t), (11.21)

where

p11 = q

2μ1
, p22 = 1

2(μ2 + λ)
. (11.22)

Then by (11.21), (11.9), and (11.11) we have

LV1 = 2p11y1(t)
(−μ1y1(t) − βbμ−1

1 J (y2t )
)+ p11σ

2
1 y2

1(t)

+ 2p22y2(t)
(−(μ2 + λ)y2(t) + βbμ−1

1 J (y2t )
)+ p22σ

2
2 y2

2(t)

= −2(μ1 − δ1)p11y
2
1(t) − 2(μ2 + λ − δ2)p22y

2
2(t)

+ 2βbμ−1
1 J (y2t )

(
p22y2(t) − p11y1(t)

)
.

Note that, by (11.2) and (11.7), 2y2(t)J (y2t ) ≤ y2
2(t) + J (y2

2t ) and 2y1(t)J (y2t ) ≤
α−1y2

1(t) + αJ (y2
2t ) for some α > 0. Thus,

LV1 ≤ −2(μ1 − δ1)p11y
2
1(t) − 2(μ2 + λ − δ2)p22y

2
2(t)

+ βbμ−1
1

[
p11

(
α−1y2

1(t) + αJ
(
y2

2t

))+ p22
(
y2

2(t) + J
(
y2

2t

))]

= [−2(μ1 − δ1) + α−1βbμ−1
1

]
p11y

2
1(t)

+ [−2(μ2 + λ − δ2) + βbμ−1
1

]
p22y

2
2(t) + AJ

(
y2

2t

)
,
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where A = βbμ−1
1 (αp11 + p22). Using (11.17) with this A for the functional V =

V1 + V2, we have

LV ≤ [−2(μ1 − δ1) + α−1βbμ−1
1

]
p11y

2
1(t)

+ [−2(μ2 + λ − δ2) + βbμ−1
1

]
p22y

2
2(t) + Ay2

2(t)

= [−2(μ1 − δ1) + α−1βbμ−1
1

]
p11y

2
1(t)

+ [−2
(
μ2 + λ − βbμ−1

1 − δ2
)
p22 + αβbμ−1

1 αp11
]
y2

2(t).

If

α−1βbμ−1
1 < 2(μ1 − δ1), αβbμ−1

1 p11 < 2
(
μ2 + λ − βbμ−1

1 − δ2
)
p22,

(11.23)
then by Remark 2.1 the trivial solution of the considered system is asymptotically
mean-square stable.

From (11.23), (11.22), and (11.15) it follows that

0 <
βbμ−1

1

2(μ1 − δ1)
< α <

2(μ2 + λ − βbμ−1
1 − δ2)μ1

βbμ−1
1 (μ2 + λ)q

. (11.24)

So, if

βbμ−1
1

2(μ1 − δ1)
<

2(μ2 + λ − βbμ−1
1 − δ2)μ1

βbμ−1
1 (μ2 + λ)q

, (11.25)

then there exists α > 0 such that (11.24) holds. It is easy to see that (11.25) holds
by conditions (11.15) for small enough q > 0 such that

q <
4(μ1 − δ1)(μ2 + λ − βbμ−1

1 − δ2)μ
3
1

β2b2(μ2 + λ)
.

So, the trivial solution of (11.9) is asymptotically mean-square stable. The proof is
completed. �

Corollary 11.1 If conditions (11.15) hold, then the equilibrium point E0 of (11.6)
is stable in probability.

Remark 11.2 Note that the second condition (11.15) contradicts with (11.5).
It means that by conditions (11.15) system (11.1) has no positive equilibrium
point (11.4).

11.3 Stability in Probability of the Equilibrium Point
E∗ = (S∗, I∗,R∗)

Here we assume that (11.1) is influenced by stochastic perturbations of white
noise type that are directly proportional to the deviation of the system state
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(S(t), I (t),R(t)) from the equilibrium point E∗ = (S∗, I ∗,R∗) and influence Ṡ(t),
İ (t), Ṙ(t). Then (11.1) takes the form

Ṡ(t) = b − βS(t)J (It ) − μ1S(t) + σ1
(
S(t) − S∗)ẇ1(t),

İ (t) = βS(t)J (It ) − (μ2 + λ)I (t) + σ2
(
I (t) − I ∗)ẇ2(t), (11.26)

Ṙ(t) = λI (t) − μ3R(t) + σ3
(
R(t) − R∗)ẇ3(t),

where J (It ), σ1, σ2, σ3, w1(t),w2(t),w3(t) are the same as in (11.6), and the equi-
librium point E∗ = (S∗, I ∗,R∗) is the solution of (11.26).

Centering (11.26) on the positive equilibrium E∗ via the variables x1(t) = S(t)−
S∗, x2(t) = I (t) − I ∗, x3(t) = R(t) − R∗ and using (11.2), (11.3), we obtain

ẋ1(t) = −b
(
S∗)−1

x1(t) − βS∗J (x2t ) − βx1(t)J (x2t ) + σ1x1(t)ẇ1(t),

ẋ2(t) = βI ∗x1(t) − βS∗x2(t) + βS∗J (x2t )

+ βx1(t)J (x2t ) + σ2x2(t)ẇ2(t),

ẋ3(t) = λx2(t) − μ3x3(t) + σ3x3(t)ẇ3(t).

(11.27)

It is easy to see that the stability of the equilibrium point E∗ of (11.26) is equivalent
to the stability of the zero solution of (11.27).

Below we will obtain sufficient conditions for the stability in probability of the
zero solution of (11.27) using the linear part of this system

ẏ1(t) = −b
(
S∗)−1

y1(t) − βS∗J (y2t ) + σ1y1(t)ẇ1(t),

ẏ2(t) = βI ∗y1(t) − βS∗y2(t) + βS∗J (y2t ) + σ2y2(t)ẇ2(t), (11.28)

ẏ3(t) = λy2(t) − μ3y3(t) + σ3y3(t)ẇ3(t)

and the auxiliary system without delays

ż1(t) = −b
(
S∗)−1

z1(t) + σ1z1(t)ẇ1(t),

ż2(t) = βI ∗z1(t) − βS∗z2(t) + σ2z2(t)ẇ2(t), (11.29)

ż3(t) = λz2(t) − μ3z3(t) + σ3z3(t)ẇ3(t).

Lemma 11.2 If

δ1 < b
(
S∗)−1

, δ2 < βS∗, δ3 < μ3, (11.30)

then the trivial solution of (11.29) is asymptotically mean-square stable.

Proof Note that the first inequality in (11.30) is a necessary and sufficient condition
for the asymptotic mean-square stability of the trivial solution of the first equation
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(11.29). Note also that the system of two first equations in (11.29) has the structure
that is the same as the structure of the second and the third equations in (11.10). So,
similarly to (11.12), we obtain two first conditions in (11.30).

Finally, note that the third equation in (11.29) with the additive perturbation z2(t)

that satisfies the condition limt→∞ Ez2
2(t) = 0 has the structure that is the same

as the structure of the second equation in (11.29) with the additive perturbation
z1(t) that satisfies the same condition limt→∞ Ez2

1(t) = 0. Thus, since the inequality
δ2 < βS∗ is a sufficient condition for the asymptotic mean-square stability of the
trivial solution of the second equation, the similar inequality δ3 < μ3 is a sufficient
condition for asymptotic mean-square stability of the trivial solution of the third
equation. The proof is completed. �

Theorem 11.2 Let δ3 < μ3 and

δ1 < μ1, δ2 <
βS∗βI ∗

b(S∗)−1 + βS∗ (11.31)

or

μ1 ≤ δ1 < μ1 + βI ∗
√

4I ∗(S∗)−1 + 1 − 1
√

4I ∗(S∗)−1 + 1 + 1
,

δ2 <
βS∗βI ∗

b(S∗)−1 + βS∗

(
1 − βS∗(δ1 − μ1)

(b(S∗)−1 − δ1)2

)
.

(11.32)

Then the trivial solution of (11.28) is asymptotically mean-square stable.

Proof Let L be the generator of the system of two first equations in (11.28). Fol-
lowing the procedure of constructing Lyapunov functionals, we will construct a Lya-
punov functional V for this system in the form V = V1 + V2, where

V1 = p11y
2
1(t) + 2p12y1(t)y2(t) + p22y

2
2(t) (11.33)

and the parameters p11, p12, p22 by (1.29) are

p11 = S∗

2b
q + βI ∗S∗

b
p12, p22 = 1

2βS∗ , p12 = I ∗(S∗)−1

2(b(S∗)−1 + βS∗)
.

(11.34)
Then by (11.33), (11.28) we have

LV1 = 2
(
p11y1(t) + p12y2(t)

)(−b
(
S∗)−1

y1(t) − βS∗J (y2t )
)+ p11σ

2
1 y2

1(t)

+ 2
(
p12y1(t) + p22y2(t)

)(
βI ∗y1(t) − βS∗y2(t)

+ βS∗J (y2t )
)+ p22σ

2
2 y2

2(t)

= 2
((

δ1 − b
(
S∗)−1)

p11 + βI ∗p12
)
y2

1(t) + 2
(
δ2 − βS∗)p22y

2
2(t)
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+ 2
[
βI ∗p22 − (

b
(
S∗)−1 + βS∗)p12

]
y1(t)y2(t)

+ 2βS∗[(p12 − p11)y1(t) + (p22 − p12)y2(t)
]
J (y2t ).

Note that, by (11.2) and (11.7), 2y2(t)J (y2t ) ≤ y2
2(t) + J (y2

2t ) and 2y1(t)J (y2t ) ≤
α−1y2

1(t) + αJ (y2
2t ) for some α > 0. Besides, by (11.34) and (11.4),

(
δ1 − b

(
S∗)−1)

p11 + βI ∗p12 = (δ1 − μ1)p11 + βI ∗(p12 − p11),

βI ∗p22 − (
b
(
S∗)−1 + βS∗)p12 = 0,

p22 − p12 = b(S∗)−1 + βS∗ − βI ∗

2βS∗(b(S∗)−1 + βS∗)
= μ1 + βS∗

2βS∗(b(S∗)−1 + βS∗)
> 0.

Thus,

LV1 ≤ [
2
(
(δ1 − μ1)p11 + βI ∗(p12 − p11)

)+ α−1βS∗|p12 − p11|
]
y2

1(t)

+ [(
2δ2 − βS∗)p22 − βS∗p12

]
y2

2(t) + AJ
(
y2

2t

)
,

where A = βS∗(α|p12 − p11| + p22 − p12).
Choosing the additional functional V2 in the form (11.17) with A obtained above,

for the functional V = V1 + V2, we have

LV ≤ [
2
(
(δ1 − μ1)p11 + βI ∗(p12 − p11)

)+ α−1βS∗|p12 − p11|
]
y2

1(t)

+ [
2
(
δ2p22 − βS∗p12

)+ αβS∗|p12 − p11|
]
y2

2(t). (11.35)

Note that by (11.34) and (11.4)

p11 − p12 = S∗

2b
(q − 2μ1p12). (11.36)

So, putting q = 2μ1p12 > 0, we obtain p11 = p12 and

LV ≤ 2(δ1 − μ1)p11y
2
1(t) + 2

(
δ2 − βS∗p12p

−1
22

)
p22y

2
2(t). (11.37)

By (11.34) we have βS∗p12p
−1
22 = βS∗βI ∗(b(S∗)−1 + βS∗)−1. So, from (11.37) it

follows that by conditions (11.31) the trivial solution of (11.28) is asymptotically
mean-square stable.

Suppose now that δ1 ≥ μ1 and q > 2μ1p12 > 0. Then p11 > p12, and from
(11.35) it follows that if

0 <
βS∗(p11 − p12)

2(βI ∗(p11 − p12) − (δ1 − μ1)p11)
< α <

2(βS∗p12 − δ2p22)

βS∗(p11 − p12)
, (11.38)

then the trivial solution of (11.28) is asymptotically mean-square stable.
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If

0 <
βS∗(p11 − p12)

2(βI ∗(p11 − p12) − (δ1 − μ1)p11)
<

2(βS∗p12 − δ2p22)

βS∗(p11 − p12)
, (11.39)

then there exists α > 0 such that (11.38) holds. By (11.4), (11.36) from (11.39) it
follows that

(βS∗)2

4(βS∗p12 − δ2p22)
<

βI ∗(p11 − p12) − (δ1 − μ1)p11

(p11 − p12)2

= (b(S∗)−1 − δ1)(p11 − p12) − (δ1 − μ1)p12

(p11 − p12)2

= b(S∗)−1 − δ1

p11 − p12
− (δ1 − μ1)p12

(p11 − p12)2

= 2b

(S∗)2

(
S∗(b(S∗)−1 − δ1)

q − 2μ1p12
− 2bp12(δ1 − μ1)

(q − 2μ1p12)2

)
. (11.40)

Note that the right-hand part of the obtained inequality reaches its maximum at

q = 2μ1p12 + 4(δ1 − μ1)bp12

S∗(b(S∗)−1 − δ1)
. (11.41)

Substituting (11.41) into (11.40), we obtain

(βS∗)2

βS∗p12 − δ2p22
<

(b(S∗)−1 − δ1)
2

(δ1 − μ1)p12

or

δ2 <
βS∗p12

p22

(
1 − βS∗(δ1 − μ1)

(b(S∗)−1 − δ1)2

)
,

which is equivalent to the second condition in (11.32).
From the positivity of the expression in the brackets, i.e., from the inequality

βS∗(δ1 − μ1) < (b(S∗)−1 − δ1)
2, the first condition (11.32) follows. Indeed, put

� = δ1 −μ1. Then by (11.3) b(S∗)−1 − δ1 = βI ∗ −�, and we get βS∗� < (βI ∗ −
�)2 or �2 − (2βI ∗ + βS∗)� + (βI ∗)2 > 0. From this it follows that

� <
1

2

(
2βI ∗ + βS∗ −

√(
2βI ∗ + βS∗)2 − 4

(
βI ∗)2

)

= βI ∗ − β

2

(√
4I ∗S∗ + (

S∗)2 − S∗)

= βI ∗ − 2βI ∗S∗
√

4I ∗S∗ + (S∗)2 + S∗

= βI ∗
(

1 − 2
√

4I ∗(S∗)−1 + 1 + 1

)
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Fig. 11.1 25 trajectories of the processes S(t) (blue), I (t) (green), R(t) (red) with the equilib-
rium point S∗ = 4.5, I∗ = 0, R∗ = 0, the initial values S(0) = 7.5, I (s) = 2.5, s ∈ [−0.1,0],
R(0) = 3.5, and the values of the parameters b = 1.8, β = 0.2, λ = 1, μ1 = 0.4, μ2 = μ3 = 0.5,
h = 0.1, δ1 = 0.35, δ2 = 0.25, δ3 = 0.15

= βI ∗
√

4I ∗(S∗)−1 + 1 − 1
√

4I ∗(S∗)−1 + 1 + 1
,

which is equivalent to the first condition in (11.32). The proof is completed. �

By Theorem 11.2 and Remark 5.3 the following statement holds.

Corollary 11.2 Let the conditions of Theorem 11.2 hold. Then the equilibrium point
E∗ of (11.26) is stable in probability.

Remark 11.3 From (11.4) and (11.31) it follows that

bβ(μ2 + λ)−1 − μ1 = βI ∗ >
βS∗βI ∗

b(S∗)−1 + βS∗ > δ2 > 0.

So, (11.5) follows from (11.31). This means that by the conditions of Theorem 11.2
the equilibrium point E∗ is a positive equilibrium point of (11.1).



11.4 Numerical Simulation 295

Fig. 11.2 Stability region for E∗ given by conditions (11.31), (11.32)

11.4 Numerical Simulation

Let us suppose that in (11.1) dF(s) = δ(s − h)ds, where δ(s) is Dirac’s delta-
function, and h ≥ 0 is the delay. So, by (11.7), J (It ) = I (t − h).

Put b = 1.8, β = 0.2, λ = 1, μ1 = 0.4, μ2 = μ3 = 0.5, h = 0.1, and δ1 = 0.35,
δ2 = 0.25, δ3 = 0.15. In this case S∗ = bμ−1

1 = 4.5 and δ1 < μ1, δ2 < μ2 + λ −
βbμ−1

1 = 0.6, δ3 < μ3, i.e., the conditions of Theorem 11.1 hold. So, the equilib-
rium point E0 = (4.5,0,0) of (11.6) is stable in probability. In Fig. 11.1 for twenty
five realizations of each of the processes S(t) (blue), I (t) (green) and R(t) (red)
are shown that are the solution of (11.6) with the initial conditions S(0) = 7.5,
I (s) = 2.5, s ∈ [−0.1,0], R(0) = 3.5. All trajectories converge to the equilibrium
point E0 = (4.5,0,0).

Consider now b = 20 with the same values of the other parameters. In this case
condition (11.5) holds: bβ = 4 > μ1(μ2 + λ) = 0.6. So, (11.6) has a positive equi-
librium point (11.4). The stability region given by the conditions (11.31), (11.32)
for the given values of the parameters is shown in Fig. 11.2 in the space of the pa-
rameters (δ1, δ2). The dotted line separates the stability region into two parts given
by conditions (11.31) and (11.32), respectively. In Fig. 11.3, for twenty five realiza-
tions of each of the processes, S(t) (blue), I (t) (green), and R(t) (red) are shown
that are the solution of (11.6) with the initial conditions S(0) = 3.5, I (s) = 16.33
for s ∈ [−0.1,0], and R(0) = 19.17 at the point A of the stability region (Fig. 11.2)
with the coordinates δ1 = 1, δ2 = 0.16 and with δ3 = 0.25. One can see that all
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Fig. 11.3 25 trajectories of the processes S(t) (blue), I (t) (green), R(t) (red) with the equilibrium
point S∗ = 7.5, I∗ = 11.33, R∗ = 22.67, the initial values S(0) = 3.5, I (s) = 16.33, s ∈ [−0.1,0],
R(0) = 19.17, and the values of the parameters b = 20, β = 0.2, λ = 1, μ1 = 0.4, μ2 = μ3 = 0.5,
h = 0.1, δ1 = 1, δ2 = 0.16, δ3 = 0.25

trajectories converge to the equilibrium point E∗ = (S∗, I ∗,R∗), where S∗ = 7.5,
I ∗ = 11.33, R∗ = 22.67.

Note that numerical simulations of the processes S(t), I (t), and R(t) were
obtained via the Euler–Maruyama scheme [200] for stochastic differential equa-
tions, and difference analogues of systems (11.6), (11.7) and (11.26), (11.7) with
J (It ) = I (t − h) were used in the form

Si+1 = Si + �(b − βSiIi−m − μ1Si) + σ1
√

�
(
Si − S∗)ξ1,i+1,

Ii+1 = Ii + �
(
βSiIi−m − (μ2 + λ)Ii

)+ σ2
√

�
(
Ii − I ∗)ξ2,i+1,

Ri+1 = Ri + �(λIi − μ3Ri) + σ3
√

�
(
Ri − R∗)ξ3,i+1,

i = 0,1,2, . . . , Ij = I0, j = −m, . . . ,−1,0.

Here ξki = �− 1
2 (wk(ti) − wk(ti−1)) are mutually independent random variables

such that Eξki = 0, Eξ2
ki = 1, k = 1,2,3, ti = i�, � is the step of discretization,

Si = S(ti), Ii = I (ti), Ri = R(ti), m = h�−1.



Chapter 12
Stability of Some Social Mathematical Models
with Delay Under Stochastic Perturbations

In this chapter we propose a mathematical framework to model some social be-
havior. To be precise, we propose delayed and stochastic mathematical models to
analyze human behaviors related to some addictions: consumption of alcohol and
obesity.

12.1 Mathematical Model of Alcohol Consumption

Taking into account the proposal presented in [247], we consider alcohol consump-
tion habit as susceptible to be transmitted by peer pressure or social contact. This
fact led us to propose an epidemiologic-type mathematical model to study this social
epidemic.

Here we generalize the known nonlinear dynamic model of alcohol consumption
[254] by adding distributed delay. We obtain sufficient conditions for the existence
of a positive equilibrium point of this system. Similarly to the previous sections, we
suppose that this nonlinear system is exposed to additive stochastic perturbations
of white noise type that are directly proportional to the deviation of the system
state from the equilibrium point. The considered nonlinear system is linearized in
the neighborhood of the positive point of equilibrium, and a sufficient condition
for asymptotic mean-square stability of the zero solution of the constructed linear
system is obtained via the procedure of constructing Lyapunov functionals that is
described in Sect. 2.2.2. Since the order of nonlinearity of the considered nonlinear
system is higher than one, the obtained condition is also a sufficient one (Sect. 5.3)
for stability in probability of the equilibrium point of the initial nonlinear system
under stochastic perturbations.

12.1.1 Description of the Model of Alcohol Consumption

Let A(t) be nonconsumers, individuals that have never consumed alcohol or in-
frequently have alcohol consumption, and M(t) be nonrisk consumers, individuals
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with regular low consumption, to be precise, men consuming less than 50 cc (cubic
centimeters) of alcohol every day and women consuming less than 30 cc of alcohol
every day. Let R(t) be risk consumers, individuals with regular high consumption,
that is, men consuming more than 50 cc of alcohol every day and women who con-
suming more than 30 cc of alcohol every day.

Considering homogeneous mixing [219], where each individual can contact with
any other individual (peer pressure), a dynamic alcohol consumption model is given
by the following nonlinear system of ordinary differential equations with distributed
delay:

Ȧ(t) = μP(t) + γR(t) − dAA(t) − βA(t)

∫ ∞

0

M(t − s) + R(t − s)

P (t − s)
dK(s),

Ṁ(t) = βA(t)

∫ ∞

0

M(t − s) + R(t − s)

P (t − s)
dK(s) − dM(t) − αM(t),

Ṙ(t) = αM(t) − γR(t) − dR(t),

P (t) = A(t) + M(t) + R(t).

(12.1)

Here:

α the rate at which a nonrisk consumer moves to the risk consumption subpopu-
lation (intensity of transition from the group M(t) to the group R(t)).

β the transmission rate due to social pressure to increase the alcohol consumption,
e.g., family, friends, marketing, TV, etc. (intensity of transition from the group
A(t) to the group M(t)).

γ the rate at which a risk consumer becomes a nonconsumer (intensity of transi-
tion from the group R(t) to the group A(t)); so, the scheme of transition from
one group to another one is

A(t) →β→ M(t) →α→ R(t) →γ → A(t).

μ the birth rate.
dA the death rate.
d the augmented death rate due to alcohol consumption (accidents at work, traffic

accidents, and diseases derived by alcohol consumption are considered).

We suppose that the parameters α,β, γ,μ,dA, d are nonnegative numbers and
K(s) is a nondecreasing function such that

∫ ∞

0
dK(s) = 1. (12.2)

The integral is understood in the Stieltjes sense.

Remark 12.1 In particular, dK(s) = δ(s − h)ds, where h > 0, δ(s) is Dirac’s func-
tion, system (12.1) is a system with discrete delay h. The case of a system without
delay (h = 0) is considered in [254].
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12.1.2 Normalization of the Initial Model

Put

a(t) = A(t)

P (t)
, m(t) = M(t)

P (t)
, r(t) = R(t)

P (t)
. (12.3)

From (12.1) and (12.3) it follows that

a(t) + m(t) + r(t) = 1. (12.4)

Adding the first three equations in (12.1), by (12.4) we obtain

Ṗ (t)

P (t)
= μ − d + (d − dA)a(t).

From this and from (12.3) we have

ȧ(t) = Ȧ(t)P (t) − A(t)Ṗ (t)

P 2(t)
= Ȧ(t)

P (t)
− A(t)

P (t)
× Ṗ (t)

P (t)

= Ȧ(t)

P (t)
− a(t)

[
μ − d + (d − dA)a(t)

]
, (12.5)

and, similarly,

ṁ(t) = Ṁ(t)

P (t)
− m(t)

[
μ − d + (d − dA)a(t)

]
,

ṙ(t) = Ṙ(t)

P (t)
− r(t)

[
μ − d + (d − dA)a(t)

]
.

(12.6)

Thus, putting

I (at ) =
∫ ∞

0
a(t − s) dK(s), (12.7)

by (12.5), (12.6), (12.1), (12.2), and (12.4) we obtain

ȧ(t) = μ + γ r(t) + βa(t)I (at ) − a(t)
[
β + μ − (d − dA)

(
1 − a(t)

)]
,

ṁ(t) = βa(t) − βa(t)I (at ) − m(t)
[
α + μ + (d − dA)a(t)

]
,

ṙ(t) = αm(t) − r(t)
[
γ + μ + (d − dA)a(t)

]
.

In view of (12.4), the last equation can be rejected, and, as a result, we obtain the
system of two integro–differential equations

ȧ(t) = μ + γ − γm(t) + βa(t)I (at ) − a(t)
[
β + μ + γ − (d − dA)

(
1 − a(t)

)]
,

(12.8)
ṁ(t) = βa(t) − βa(t)I (at ) − m(t)

[
α + μ + (d − dA)a(t)

]
.
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12.1.3 Existence of an Equilibrium Point

By (12.8), (12.2), and (12.4) a point of equilibrium (a∗,m∗, r∗) is defined by the
following system of algebraic equations:

(μ + γ )
(
1 − a∗)= a∗(β − d + dA)

(
1 − a∗)+ γm∗,

βa∗(1 − a∗)= m∗[α + μ + (d − dA)a∗],

a∗ + m∗ + r∗ = 1.

(12.9)

Lemma 12.1 If d ∈ [dA,β + dA), then system (12.9) has a unique positive solution
(a∗,m∗, r∗) if and only if

β > d − dA + μ + αγ

α + μ + γ + d − dA

. (12.10)

If d ≥ β + dA, then system (12.9) has no positive solutions.

Proof Necessity From the first two equations in (12.9) we have

μ + γ = a∗(β − d + dA) + γβa∗

α + μ + (d − dA)a∗ . (12.11)

Since a∗ ∈ (0,1), from (12.11) it follows that

μ + γ = a∗(β − d + dA) + γβ

(α + μ)(a∗)−1 + d − dA

< β − d + dA + γβ

α + μ + d − dA

= α + μ + γ + d − dA

α + μ + d − dA

β − d + dA,

which is equivalent to (12.10) since

β >
(μ + γ + d − dA)(α + μ + d − dA)

α + μ + γ + d − dA

= d − dA + μ + αγ

α + μ + γ + d − dA

.

Sufficiency Rewrite (12.11) in the form

Q
(
a∗)2 + Ba∗ − C = 0,

B = (β − d + dA)(α + γ + μ) − μ(d − dA),

Q = (β − d + dA)(d − dA), C = (μ + α)(μ + γ ). (12.12)
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Thus, by (12.9) the equilibrium point (a∗,m∗, r∗) is defined by the system of alge-
braic equations (12.12), and

m∗ = βa∗(1 − a∗)
α + μ + (d − dA)a∗ , r∗ = 1 − a∗ − m∗. (12.13)

It is easy to check that by the condition d ∈ [dA,β + dA) (or Q ≥ 0) the existence
of a solution a∗ of (12.12) in the interval (0,1) is equivalent to the condition C <

Q + B , which is equivalent to (12.10).
If d ≥ β + dA, then Q ≤ 0 and B < 0. So, (12.12) cannot have positive roots.

The proof is completed. �

Example 12.1 Following [254], put

α = 0.000110247, β = 0.0284534, γ = 0.00144,

μ = 0.01, d = 0.009, dA = 0.008.
(12.14)

Then condition (12.10) holds, and the solution of (12.12)–(12.13) is

a∗ = 0.364739, m∗ = 0.629383, r∗ = 0.00587794, (12.15)

or, in percents, a∗ = 36.47 %, m∗ = 62.94 %, r∗ = 0.59 %.

12.1.4 Stochastic Perturbations, Centralization, and Linearization

Let us suppose that system (12.8) is exposed to stochastic perturbations of white
noise type (ẇ1(t), ẇ2(t)), which are directly proportional to the deviation of system
(12.8) state (a(t),m(t)) from the equilibrium point (a∗,m∗), i.e.,

ȧ(t) = μ + γ − γm(t) + βa(t)I (at ) − a(t)
[
β + μ + γ − (d − dA)

(
1 − a(t)

)]

+ σ1
(
a(t) − a∗)ẇ1(t),

ṁ(t) = βa(t) − βa(t)I (at ) − m(t)
[
α + μ + (d − dA)a(t)

]

+ σ2
(
m(t) − m∗)ẇ2(t).

(12.16)

Here w1(t),w2(t) are the mutually independent standard Wiener processes, and the
stochastic differential equations (12.16) are understood in the Itô sense (Sect. 2.1.2).

To centralize system (12.16) in the equilibrium point, put now x1(t) = a(t)− a∗,
x2(t) = m(t) − m∗. Then from (12.16) it follows that

ẋ1(t) = μ + γ − γ
(
m∗ + x2(t)

)+ β
(
a∗ + x1(t)

)(
a∗ + I (x1t )

)

− (
a∗ + x1(t)

)[
β + μ + γ − (d − dA)

(
1 − a∗ − x1(t)

)]+ σ1x1(t)ẇ1(t),

ẋ2(t) = β
(
a∗ + x1(t)

)− β
(
a∗ + x1(t)

)(
a∗ + I (x1t )

)

− (
m∗ + x2(t)

)[
α + μ + (d − dA)

(
a∗ + x1(t)

)]+ σ2x2(t)ẇ2(t),
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or

ẋ1(t) = μ
(
1 − a∗)+ γ

(
1 − a∗ − m∗)− a∗(1 − a∗)(β − d + dA) − μx1(t)

+ γ
(−x1(t) − x2(t)

)+ x1(t)
(
1 − 2a∗)(d − dA) − βx1(t)

(
1 − a∗)

+ βa∗I (x1t ) − x2
1(t)(d − dA) + βx1(t)I (x1t ) + σ1x1(t)ẇ1(t),

(12.17)
ẋ2(t) = βa∗(1 − a∗)− m∗[α + μ + (d − dA)a∗]+ βx1(t)

(
1 − a∗)

− m∗x1(t)(d − dA) − βa∗I (x1t ) − x2(t)
[
α + μ + (d − dA)a∗]

− βx1(t)I1(x1t ) − x2(t)x1(t)(d − dA) + σ2x2(t)ẇ2(t).

By (12.9) from (12.17) it follows that

ẋ1(t) = a11x1(t) + a12x2(t) + βa∗I (x1t ) + βx1(t)I (x1t )

− (d − dA)x2
1(t) + σ1x1(t)ẇ1(t),

ẋ2(t) = a21x1(t) + a22x2(t) − βa∗I (x1t ) − βx1(t)I (x1t )

− (d − dA)x1(t)x2(t) + σ2x2(t)ẇ2(t),

(12.18)

where

a11 = −[μ + γ + (β − d + dA)
(
1 − a∗)+ (d − dA)a∗], a12 = −γ,

a21 = β(α + μ)(1 − a∗)
α + μ + (d − dA)a∗ , a22 = −[α + μ + (d − dA)a∗].

(12.19)

Note that for d ∈ [dA,β + dA), the numbers a11, a12, a22 are negative, and a21 > 0.
Rejecting the nonlinear terms in (12.18), we obtain the linear part of (12.18):

ẏ1(t) = a11y1(t) + a12y2(t) + βa∗I (y1t ) + σ1y1(t)ẇ1(t),

ẏ2(t) = a21y1(t) + a22y2(t) − βa∗I (y1t ) + σ2y2(t)ẇ2(t).
(12.20)

12.1.5 Stability of the Equilibrium Point

Note that the nonlinear system (12.18) has the order of nonlinearity higher than
one. Thus, as it is shown in Sect. 5.3, sufficient conditions for the asymptotic mean-
square stability of the zero solution of the linear part (12.20) of the nonlinear system
(12.18) at the same time are sufficient conditions for the stability in probability of the
zero solution of the nonlinear system (12.18) and therefore are sufficient conditions
for stability in probability of the solution (a∗,m∗) of (12.16).

To get sufficient conditions for the asymptotic mean-square stability of the zero
solution of (12.20), rewrite this system in the form

ẏ(t) = Ay(t) + B(yt ) + σ
(
y(t)

)
ẇ(t), (12.21)
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where

y(t) = (
y1(t), y2(t)

)′
, w(t) = (

w1(t),w2(t)
)′
,

B(yt ) = (
βa∗I (y1t ),−βa∗I (y1t )

)′
,

A =
(

a11 a12
a21 a22

)
, σ

(
y(t)

)=
(

σ1y1(t) 0
0 σ2y2(t)

)
.

(12.22)

Following the procedure of constructing Lyapunov functionals (Sect. 2.2.2), for
stability investigation of (12.21), consider the auxiliary differential equation without
memory

ż(t) = Az(t) + σ
(
z(t)

)
ẇ(t). (12.23)

By Remark 2.6 the zero solution of the differential equation ż(t) = Az(t) is
asymptotically stable if and only if conditions (2.62) hold. By Corollary 2.3 con-
ditions (2.66) are sufficient conditions for the asymptotic mean-square stability of
the zero solution of (12.23). Below, we suppose that conditions (2.62) and (2.66)
hold.

To get stability conditions for (12.20), consider the matrix equation

A′P + PA + Pσ = −C, (12.24)

where

P =
(

p11 p12
p12 p22

)
, Pσ =

(
p11σ

2
1 0

0 p22σ
2
2

)
, C =

(
c 0
0 1

)
,

c > 0, and the matrix A is defined in (12.22), (12.19).
If the matrix equation (12.24) has a positive definite solution P , then the function

v(z) = z′Pz is a Lyapunov function for (12.23) since

Lv = z′(A′P + PA + Pσ

)
z = −z′Cz.

Note that the matrix equation (12.24) can be represented as the system of the
equations

2(p11a11 + p12a21 + p11δ1) = −c,

2(p12a12 + p22a22 + p22δ2) = −1,

p11a12 + p12 Tr(A) + p22a21 = 0,

(12.25)

with the solution

p11 = −c + 2a21p12

2â11
, p22 = −1 + 2a12p12

2â22
, p12 = a21â11 + ca12â22

2Z
,

(12.26)
where

âii = aii + δi, δi = 1

2
σ 2

i , i = 1,2, (12.27)
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Z = Tr(A)â11â22 − a12a21(â11 + â22). (12.28)

Lemma 12.2 Let conditions (2.52), (2.56) hold, and let

â11 < 0, â22 < 0. (12.29)

Then the zero solution of (12.23) is asymptotically mean-square stable.

Proof It is enough to show that the matrix P = ‖pij‖ with the elements (12.26),
which are a solution of the matrix equation (12.24), is positive definite for an arbi-
trary c > 0, i.e., p11 > 0, p22 > 0, p11p22 > p2

12. To this aim, note that by (2.62),
(12.19), (12.29) we have Z < 0. Note also that by (12.27), (12.29), Remark 2.8, and
(2.72) we obtain

δ1 < |a11| ≤ |Tr(A)|det(A)

A2
≤ A1

|Tr(A)| ,

δ2 < |a22| ≤ |Tr(A)|det(A)

A1
≤ A2

|Tr(A)| ,
(12.30)

where

Ai = det(A) + a2
ii , i = 1,2. (12.31)

Besides, by (12.28), (12.27), (2.62), and (12.31) we have

Z + a12a21â22 = Tr(A)â11â22 − a12a21(â11 + â22) + a12a21â22

= (
Tr(A)â22 − a12a21

)
â11

= (
A2 − ∣

∣Tr(A)
∣
∣δ2
)
â11 (12.32)

and, similarly,

Z + a12a21â11 = (
A1 − ∣∣Tr(A)

∣∣δ1
)
â22. (12.33)

From this and from (12.26), (12.32), (12.30) it follows that for an arbitrary c > 0,

p11 = −cZ + a21(ca12â22 + a21â11)

2Zâ11

= −c(Z + a12a21â22) + a2
21â11

2Zâ11

= c(A2 − |Tr(A)|δ2) + a2
21

2|Z|
> 0, (12.34)

and, similarly, by (12.26), (12.33), (12.30) we obtain

p22 = A1 − |Tr(A)|δ1 + ca2
12

2|Z| > 0. (12.35)
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Finally, let us show that p11p22 > p2
12. Indeed, the inequality

(c + 2a21p12)(1 + 2a12p12)

4â11â22
> p2

12

is equivalent to 4Bp2
12 − 2(a21 + ca12)p12 < c by B = â11â22 − a12a21 > 0. Substi-

tuting p12 from (12.26) into the obtained inequality, we have

B(a21â11 + ca12â22)
2 − (a21 + ca12)(a21â11 + ca12â22)Z < cZ2

or

c2a2
12â22(Z − Bâ22) + câ11â22

(
Z Tr(A) − 2a12a21B

)+ a2
21â11(Z − Bâ11) > 0.

Note also that by (12.28), (12.29), (12.19) we obtain

â11(Z − Bâ11) = â11
(
Tr(A)â11â22 − a12a21(â11 + â22)

− (â11â22 − a12a21)â11
)

= â11
(
Tr(A)â11â22 − a12a21â22 − â2

11â22
)

= â11â22
(
Tr(A)â11 − a12a21 − â2

11

)

= â11â22
((

Tr(A) − â11
)
â11 − a12a21

)

= â11â22
(
(a22 − δ1)â11 − a12a21

)
> 0

and, similarly,

â22(Z − Bâ22) = â11â22
(
(a11 − δ2)â22 − a12a21

)
> 0,

Z Tr(A) − 2a12a21B > 0.

So, for an arbitrary c > 0, the matrix P with the elements (12.26) is positive definite.
The proof is completed. �

Theorem 12.1 If conditions (12.29) hold and, for some c > 0, the elements (12.26)
of the matrix P satisfy the condition

(
βa∗|p12 − p22|

)2 + 2βa∗|p11 − p12| < c, (12.36)

then the solution (a∗,m∗) of system (12.16) is stable in probability.

Proof Note that the order of nonlinearity of system (12.16) is higher than one.
Therefore, from Sect. 5.3, to get conditions for stability in probability of the equilib-
rium point (a∗,m∗) of this system, it is enough to get conditions for the asymptotic
mean-square stability of the zero solution of the linear part (12.20) of this system.
Following the procedure of constructing Lyapunov functionals, we will construct a
Lyapunov functional for system (12.20) in the form V = V1 +V2, where V1 = y′Py,
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y = (y1, y2)
′, P is a positive definite solution of system (12.25) with the elements

(12.26), and V2 will be chosen below.
Let L be the generator (Sect. 2.1.2) of system (12.20). Then by (12.20) and

(12.25) we have

LV1 = 2
(
p11y1(t) + p12y2(t)

)(
a11y1(t) + a12y2(t) + βa∗I (y1t )

)+ p11σ
2
1 y2

1(t)

+ 2
(
p12y1(t) + p22y2(t)

)(
a21y1(t) + a22y2(t) − βa∗I (y1t )

)+ p22σ
2
2 y2

2(t)

= −cy2
1(t) − y2

2(t) + 2βa∗[(p11 − p12)y1(t) + (p12 − p22)y2(t)
]
I (y1t ).

By (12.7), (12.2) we have 2y1(t)I (y1t ) ≤ y2
1(t) + I (y2

1t ) and 2y2(t)I (y1t ) ≤
νy2

2(t) + ν−1I (y2
1t ) for some ν > 0. Using these inequalities, we obtain

LV1 ≤ −cy2
1(t) − y2

2(t) + βa∗|p11 − p12|
(
y2

1(t) + I
(
y2

1t

))

+ βa∗|p12 − p22|
(
νy2

2(t) + ν−1I
(
y2

1t

))

= (
βa∗|p11 − p12| − c

)
y2

1(t) + (
βa∗|p12 − p22|ν − 1

)
y2

2(t)

+ qI
(
y2

1t

)
, (12.37)

where

q = βa∗(|p11 − p12| + |p12 − p22|ν−1). (12.38)

Putting

V2 = q

∫ ∞

0

∫ t

t−s

y2
1(θ) dθ dK(s),

by (12.2), (12.7) we have LV2 = q(y2
1(t) − I (y2

1t )). Therefore, by (12.37), (12.38)
for the functional V = V1 + V2, we have

LV ≤ (
2βa∗|p11 − p12| + βa∗|p12 − p22|ν−1 − c

)
y2

1(t)

+ (
βa∗|p12 − p22|ν − 1

)
y2

2(t).

Thus, if

2βa∗|p11 − p12| + βa∗|p12 − p22|ν−1 < c, βa∗|p12 − p22|ν < 1, (12.39)

then by Remark 2.1 the zero solution of (12.20) is asymptotically mean-square sta-
ble.

From (12.39) it follows that

βa∗|p12 − p22|
c − 2βa∗|p11 − p12| < ν <

1

βa∗|p12 − p22| . (12.40)

Thus, if for some c > 0, condition (12.36) holds, then there exists ν > 0 such that
conditions (12.40) (or (12.39)) hold too, and therefore the zero solution of (12.20)
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is asymptotically mean-square stable. From this it follows also that the zero solu-
tion of (12.18) and therefore the equilibrium point of system (12.16) are stable in
probability. The proof is completed. �

Example 12.2 Consider system (12.16) with the values of the parameters α, β , γ , μ,
d , dA and the equilibrium point (a∗,m∗) given in (12.14), (12.15). As an example,
consider the levels of noises σ1 = 0.028969, σ2 = 0.142252 or δ1 = 0.000420, δ2 =
0.010118. From (12.19) it follows that the values of system (12.20) parameters are
a11 = −0.029245, a12 = −0.001440, a21 = 0.017446, a22 = −0.010475 and the
conditions (12.29) hold: â11 = −0.028825 < 0, â22 = −0.000357 < 0. Put c = 20.
Then by (12.26) p11 = 477.4438, p12 = 215.6615, p22 = 530.4124, and condition
(12.36) holds:

(
βa∗|p12 − p22|

)2 + 2βa∗|p11 − p12| = 16.1036 < 20.

Thus, the solution (a∗,m∗) of system (12.16) is stable in probability.

Example 12.3 Consider system (12.16) with the previous values of the all pa-
rameters except for the levels of noises that are σ1 = 0.0075, σ2 = 0.0077 or
δ1 = 0.000028, δ2 = 0.000030. These values of σ1 and σ2 are selected taking into
account sample errors of the monitoring of the alcohol consumption in Spain [291].
The parameters a11, a21, a22 are the same as in the previous example, and condi-
tions (12.29) hold: â11 = −0.029217 < 0, â22 = −0.010445 < 0. Put c = 4. Then
by (12.26) p11 = 78.6856, p12 = 17.1347, p22 = 45.5060, and condition (12.36)
holds:

(
βa∗|p12 − p22|

)2 + 2βa∗|p11 − p12| = 1.3643 < 4.

Thus, the solution (a∗,m∗) of system (12.16) is stable in probability.

Let us now get three corollaries from Theorem 12.1 that simplify a verification
of the stability condition (12.36). By (12.26) and (12.28) we have

p12 − p11 = p12 + c + 2a21p12

2â11

=
(

1 + a21

â11

)
a21â11 + ca12â22

2Z
+ c

2â11

= (a21 + â11)a12â22 + Z

2Zâ11
c + (a21 + â11)a21

2Z

= B0c + B1, (12.41)

where

B0 = (Tr(A) + a12)â22 − a12a21

2Z
, B1 = (a21 + â11)a21

2Z
(12.42)
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and, similarly,

p12 − p22 = p12 + 1 + 2a12p12

2â22

=
(

1 + a12

â22

)
a21â11 + ca12â22

2Z
+ 1

2â22

= (a12 + â22)a12c

2Z
+ (a12 + â22)a21â11 + Z

2Zâ22

= D0c + D1, (12.43)

where

D0 = (a12 + â22)a12

2Z
, D1 = (Tr(A) + a21)â11 − a12a21

2Z
. (12.44)

Remark 12.2 Put

f (c) = (
βa∗D0

)2
(

c + D1

D0

)2

+ 2βa∗|B0|
∣∣∣∣c + B1

B0

∣∣∣∣− c. (12.45)

From (12.19), (12.29) it follows that B0 < 0. By (12.41)–(12.45) and B0 < 0 condi-
tion (12.36) is equivalent to the condition f (c) < 0.

Put now

S = (
βa∗D0

)2
(

D1

D0
− B1

B0

)2

+ B1

B0
,

R+ = 2βa∗|B0|
(

1 − 2βa∗|B0|
2(βa∗D0)2

− D1

D0
+ B1

B0

)
,

R− = −2βa∗|B0|
(

1 + 2βa∗|B0|
2(βa∗D0)2

− D1

D0
+ B1

B0

)
,

Q = 1

4(βa∗D0)2
− D1

D0
− B2

0

D2
0

.

(12.46)

Corollary 12.1 If conditions (12.29) hold and S < 0, then the solution (a∗,m∗) of
system (12.16) is stable in probability.

Proof From S < 0 and B0 < 0 it follows that B1 > 0. Putting c0 = −B1B
−1
0 > 0,

we obtain f (c0) = S < 0, i.e., condition (12.36) holds. The proof is completed. �

Corollary 12.2 If conditions (12.29) hold and 0 ≤ R+ < Q, then the solution
(a∗,m∗) of system (12.16) is stable in probability.
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Proof Let us suppose that c + B1B
−1
0 ≥ 0. Then the minimum of the function f (c)

is reached by

c0 = 1 − 2βa∗|B0|
2(βa∗D0)2

− D1

D0
≥ −B1

B0
.

Substituting c0 into the function f (c), we obtain that the condition f (c0) < 0 is
equivalent to the condition 0 ≤ R+ < Q. The proof is completed. �

Corollary 12.3 If conditions (12.29) hold and 0 < R− < Q, then the solution
(a∗,m∗) of system (12.16) is stable in probability.

Proof Let us suppose that c + B1B
−1
0 < 0. Then the minimum of the function f (c)

is reached by

c0 = 1 + 2βa∗|B0|
2(βa∗D0)2

− D1

D0
< −B1

B0
.

Substituting c0 into the function f (c), we obtain that the condition f (c0) < 0 is
equivalent to the condition 0 < R− < Q. The proof is completed. �

Example 12.4 Consider system (12.16) with the values of the parameters from Ex-
ample 12.2. Calculating S, R+, Q, we obtain: S = 4.50 > 0, R+ = 736 < Q =
1320. From Corollary 12.2 it follows that the solution (a∗,m∗) of system (12.16) is
stable in probability.

Example 12.5 Consider system (12.16) with the values of the parameters from Ex-
ample 12.3. Calculating S, R+, Q, we obtain: S = −0.39 < 0, R+ = 2462 < Q =
4754. From both Corollary 12.1 and Corollary 12.2 it follows that the solution
(a∗,m∗) of system (12.16) is stable in probability.

12.1.6 Numerical Simulation

Let us suppose that in (12.1) dK(s) = δ(s − h)ds, where δ(s) is Dirac’s delta-
function, and h ≥ 0 is the delay.

In Fig. 12.1 25 trajectories of the solution of (12.16), (12.4) are shown for the
values of the parameters from Examples 12.1 and 12.2: α = 0.000110247, β =
0.0284534, γ = 0.00144, μ = 0.01, d = 0.009, dA = 0.008, the initial values a0 =
0.43, m0 = 0.53, r0 = 0.04, the levels of noises σ1 = 0.028969, σ2 = 0.142252,
and delay h = 0.1. We can see that all trajectories go to the equilibrium point a∗ =
0.364739, m∗ = 0.629383, r∗ = 0.00587794.

Note that numerical simulations of the processes a(t), m(t), and r(t) were ob-
tained via the difference analogues of (12.16), (12.4) in the form

ai+1 = ai + �
[
μ + γ − γμi + βaiai−m − ai

(
β + μ + γ − (d − dA)(1 − ai)

)]

+ σ1
(
ai − a∗)(w1,i+1 − w1i ),
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Fig. 12.1 25 trajectories of the processes a(t) (blue), m(t) (green), r(t) (red) with the val-
ues of the parameters α = 0.000110247, β = 0.0284534, γ = 0.00144, μ = 0.01, d = 0.009,
dA = 0.008, the levels of noises σ1 = 0.028969, σ2 = 0.142252, the delay h = 0.1, the ini-
tial values a(s) = 0.43, s ∈ [−0.1,0], m(0) = 0.53, r(0) = 0.04, and the equilibrium point
a∗ = 0.364739, m∗ = 0.629383, r∗ = 0.00587794

mi+1 = mi + �
[
βai − βaiai−m − mi

(
α + μ + (d − dA)ai

)]

+ σ2
(
mi − m∗)(w2,i+1 − w2i ),

ri+1 = 1 − ai+1 − mi+1,

i = 0,1,2, . . . , aj = a0, j = −m, . . . ,−1,0.

Here � is the discretization step (which was chosen as � = 0.01), ai = a(ti),
mi = m(ti), ri = r(ti), wki = wk(ti), k = 1,2, ti = i�, m = h�−1, trajectories of
the Wiener processes w1(t) and w2(t) are simulated by the algorithm described in
Sect. 2.1.1.

12.2 Mathematical Model of Social Obesity Epidemic

Social obesity epidemic models are popular enough with researches (see, for in-
stance, [14, 34, 42, 51, 68, 115, 227, 255]). Here the known nonlinear social obesity
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epidemic model [255] is generalized to the system with distributed delay. It is sup-
posed also that this nonlinear system is exposed to additive stochastic perturbations
of white noise type that are directly proportional to the deviation of the system state
from the equilibrium point. The research that is similar to the previous one is applied
to this model.

12.2.1 Description of the Considered Model

For constructing the mathematical obesity model [255] the 24- to 65-year-old pop-
ulation is divided into three subpopulations based on the so-called body mass in-
dex (BMI = Weight/Height2). The classes or subpopulations are: individuals at a
normal weight (BMI < 25 kg/m2) N(t), people who are overweight (25 kg/m2 ≤
BMI < 30 kg/m2) S(t), and obese individuals (BMI ≥ 30 kg/m2) O(t).

The transition between the different subpopulations is determined as follows:
once an adult starts an unhealthy lifestyle, he/she becomes addicted to the unhealthy
lifestyle and starts a progression to being overweight S(t) because of this lifestyle.
If this adult continues with his/her unhealthy lifestyle, he/she can become an obese
individual O(t). In both these classes individuals can stop his/her unhealthy lifestyle
and then move to classes N(t) and S(t), respectively.

The transitions between the subpopulations N(t), S(t), and O(t) are governed
by terms proportional to the sizes of these subpopulations. Conversely, the transi-
tions from normal to overweight occur through the transmission of an unhealthy
lifestyle from the overweight and obese subpopulations to the normal-interactions
weight subpopulation, depending on the meet population, depending on the meet-
ings among them. This transition is modeled using the term

βN(t)

∫ ∞

0

(
S(t − s) + O(t − s)

)
dK(s),

where K(s) is a nondecreasing function that satisfies condition (12.2), and the inte-
gral is understood in the Stieltjes sense. The subpopulations’ sizes and their behav-
iors with time determine the dynamic evolution of adulthood excess weight.

Without loss of generality and for the sake of clarity, the 24- to 65-year-old adult
population is normalized to unity, and it is supposed for all t ≥ 0 that

N(t) ≥ 0, S(t) ≥ 0, O(t) ≥ 0, (12.47)

N(t) + S(t) + O(t) = 1. (12.48)

Thus, under the above assumptions, the following nonlinear system of integro–
differential equations is obtained:

Ṅ(t) = μN0 − μN(t) − βN(t)

∫ ∞

0

(
S(t − s) + O(t − s)

)
dK(s) + ρS(t),
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Ṡ(t) = μS0 + βN(t)

∫ ∞

0

(
S(t − s) + O(t − s)

)
dK(s)

(12.49)
− (μ + γ + ρ)S(t) + εO(t),

Ȯ(t) = μO0 + γ S(t) − (μ + ε)O(t), t ≥ 0,

N(0) = N0, S(s) = S0, O(s) = O0, s ≤ 0.

The time-invariant parameters of this system of equations are:

ε the rate at which an obese adult with a healthy lifestyle becomes an overweight
individual (intensity of transition from the group O(t) to the group S(t)).

ρ the rate at which an overweight individual moves to the normal-weight subpop-
ulation (intensity of transition from the group S(t) to the group N(t)).

β the transmission rate because of social pressure to adopt an unhealthy lifestyle,
e.g., TV, friends, family, job, and so on (intensity of transition from the group
N(t) to the group S(t)).

γ the rate at which an overweight 24- to 65-year-old adult becomes an obese indi-
vidual because of unhealthy lifestyle (intensity of transition from the group S(t)

into the group O(t)); so, the scheme of transition from one group to another one
is

O(t) →ε→ S(t) →ρ→ N(t) →β→ S(t) →γ → O(t).

μ the average stay time in the system of 24- to 65-year-old adults (μ = 1/

(65 years – 24 years) ·52 weeks/year).
N0 the proportion of normal weight coming from the 23-year age group.
S0 the proportion of overweight coming from the 23-year age group.
O0 the proportion of obese coming from the 23-year age group.

Here the parameters ε, ρ, β , γ , μ are nonnegative numbers, and N0, S0, O0
satisfy the conditions of type (12.47), (12.48).

By condition (12.48) system (12.49) can be simplified to the following system of
two equations:

Ṅ(t) = μN0 − μN(t) − βN(t)

∫ ∞

0

(
1 − N(t − s)

)
dK(s) + ρS(t),

Ṡ(t) = μS0 + βN(t)

∫ ∞

0

(
1 − N(t − s)

)
dK(s) − (μ + γ + ρ)S(t)

+ ε
(
1 − N(t) − S(t)

)
, t ≥ 0,

N(s) = N0, s ≤ 0, S(0) = S0.

(12.50)

12.2.2 Existence of an Equilibrium Point

The equilibrium point (N∗, S∗) of system (12.50) is defined by the conditions
Ṅ(t) = 0, Ṡ(t) = 0 and by (12.50), (12.47) is a solution of the following system
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of algebraic equations:

μN0 − μN∗ − βN∗(1 − N∗)+ ρS∗ = 0,

μS0 + βN∗(1 − N∗)− (μ + γ + ρ)S∗ + ε
(
1 − S∗ − N∗)= 0.

(12.51)

From (12.51) it follows that

S∗ = ρ−1[μ
(
N∗ − N0

)+ βN∗(1 − N∗)],

S∗ = kρ−1[μS0 + (
ε + βN∗)(1 − N∗)],

(12.52)

where

k = ρ(μ + γ + ρ + ε)−1 < 1. (12.53)

By (12.52), (12.53) we obtain that N∗ is a root of the quadratic equation

β(1 − k)
(
N∗)2 − (

μ + kε + β(1 − k)
)
N∗ + μ(N0 + kS0) + kε = 0. (12.54)

Lemma 12.3 Assume that N0 + kS0 < 1. If β > 0, then (12.54) has two real roots,
N∗

1 ∈ (0,1) and N∗
2 > 1. If β = 0 and μkε > 0, then (12.54) has one root N∗ ∈

(N0 + kS0,1).

Proof From N0 + kS0 < 1 and β > 0 we have

D =
√(

μ + kε + β(1 − k)
)2 − 4β(1 − k)

(
μ(N0 + kS0) + kε

)

>

√(
μ + kε + β(1 − k)

)2 − 4β(1 − k)(μ + kε)

= ∣∣μ + kε − β(1 − k)
∣∣, (12.55)

i.e., D > |μ + kε − β(1 − k)| ≥ 0, and therefore the quadratic equation (12.54) has
two real roots

N∗
1 = μ + kε + β(1 − k) − D

2β(1 − k)
, N∗

2 = μ + kε + β(1 − k) + D

2β(1 − k)
. (12.56)

If μ + kε < β(1 − k), then

N∗
1 <

μ + kε

β(1 − k)
< 1, N∗

2 > 1.

If μ + kε ≥ β(1 − k), then

N∗
1 < 1, N∗

2 >
μ + kε

β(1 − k)
≥ 1.
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If β = 0, then from (12.54) it follows that

1 > N∗ = μ(N0 + kS0) + kε

μ + kε
> N0 + kS0.

The proof is completed. �

Lemma 12.4 Assume that N0 = 1. If μ+ kε < β(1 − k), then (12.54) has two roots
on the interval (0,1]: N∗

1 ∈ (0,1) and N∗
2 = 1. If μ+ kε ≥ β(1− k) then (12.54) has

one root only on the interval (0,1]: N∗
1 = 1.

Proof From N0 = 1 and (12.47) we have S0 = 0. Then, similarly to (12.55), D =
|μ + kε − β(1 − k)|. If μ + kε < β(1 − k), then D = β(1 − k) − (μ + kε), and by
(12.56) we obtain

N∗
1 = μ + kε

β(1 − k)
< 1, N∗

2 = 1.

If μ + kε > β(1 − k), then D = μ + kε − β(1 − k), and by (12.56) we have

N∗
1 = 1, N∗

2 = μ + kε

β(1 − k)
> 1.

If μ + kε = β(1 − k), then D = 0 and N∗
1 = N∗

2 = 1. The proof is completed. �

Example 12.6 Following [255], put

μ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035,

β = 0.00085, N0 = 0.704, S0 = 0.25, O0 = 0.046.

Then by (12.56), (12.52), (12.48) we obtain

N∗ = 0.3311, S∗ = 0.3814, O∗ = 0.2875.

Putting β = 0 with the same values of the other parameters, by Lemma 12.3 we
obtain

N∗ = 0.7149 > N0 + kS0 = 0.7148, S∗ = 0.1465, O∗ = 0.1386.

Put now N0 = 1, S0 = O0 = 0. By Lemma 12.4, if β = 0.00085, i.e., if β > 0, then
β > (μ+ kε)(1 − k)−1 = 0.00049 and N∗ = 0.5770, S∗ = 0.2588, O∗ = 0.1642. If
β = 0, then N∗ = 1, S∗ = O∗ = 0.

12.2.3 Stochastic Perturbations, Centralization, and Linearization

Let us suppose that system (12.50) is exposed to stochastic perturbations of white
noise type (ẇ1(t), ẇ2(t)) that are directly proportional to the deviation of system
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(12.50) state (N(t), S(t)) from the equilibrium point (N∗, S∗), i.e.,

Ṅ(t) = μN0 − μN(t) − βN(t)

∫ ∞

0

(
1 − N(t − s)

)
dK(s) + ρS(t)

+ σ1
(
N(t) − N∗)ẇ1(t), t ≥ 0,

Ṡ(t) = μS0 + βN(t)

∫ ∞

0

(
1 − N(t − s)

)
dK(s) − (μ + γ + ρ)S(t)

+ ε
(
1 − N(t) − S(t)

)+ σ2
(
S(t) − S∗)ẇ2(t), t ≥ 0,

N(s) = N0, s ≤ 0, S(0) = S0.

(12.57)

Here w1(t), w2(t) are mutually independent standard Wiener processes, and the
stochastic differential equations of system (12.57) are understood in the Itô sense
(Sect. 2.1.2). Note that the equilibrium point (N∗, S∗) of system (12.50) is a solution
of (12.57) too.

To centralize system (12.57) at the equilibrium point, put now x1 = N − N∗,
x2 = S − S∗. Then by (12.57), (12.53) we have

ẋ1(t) = a11x1(t) + a12x2(t) + βN∗I (x1t ) + βx1(t)I (x1t )

+ σ1x1(t)ẇ1(t),

ẋ2(t) = a21x1(t) + a22x2(t) − βN∗I (x1t ) − βx1(t)I (x1t )

+ σ2x2(t)ẇ2(t),

(12.58)

where

a11 = −μ − β
(
1 − N∗), a12 = ρ,

a21 = −ε + β
(
1 − N∗), a22 = −k−1ρ,

I (x1t ) =
∫ ∞

0
x1(t − s) dK(s).

(12.59)

Example 12.7 Using the values of the parameters from Example 12.6, by (12.59)
we obtain

a11 = −0.0010376, a12 = 0.000035,

a21 = 0.0005646, a22 = −0.000808.

It is clear that the stability of the equilibrium point of system (12.57) is equiva-
lent to the stability of the zero solution of (12.58). Rejecting the nonlinear terms in
(12.58), we obtain the linear part of system (12.58)

ẏ1(t) =a11y1(t) + a12y2(t) + βN∗I (y1t ) + σ1y1(t)ẇ1(t),

ẏ2(t) =a21y1(t) + a22y2(t) − βN∗I (y1t ) + σ2y2(t)ẇ2(t).
(12.60)
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12.2.4 Stability of an Equilibrium Point

Note that the nonlinear system (12.58) has the order of nonlinearity higher than one.
Thus, sufficient conditions for the asymptotic mean-square stability of the zero so-
lution of the linear part (12.60) at the same time are (Sect. 5.3) sufficient conditions
for the stability in probability of the zero solution of the nonlinear system (12.58)
and therefore are sufficient conditions for the stability in probability of the solution
(N∗, S∗) of system (12.57).

To get sufficient conditions for the asymptotic mean-square stability of the zero
solution of (12.60), rewrite this system in the form

ẏ(t) = Ay(t) + B(yt ) + σ
(
y(t)

)
ẇ(t), (12.61)

where

y(t) = (
y1(t), y2(t)

)′
, w(t) = (

w1(t),w2(t)
)′
,

B(yt ) = (
βN∗I (y1t ),−βN∗I (y1t )

)′
,

A =
(

a11 a12
a21 a22

)
, σ

(
y(t)

)=
(

σ1y1(t) 0
0 σ2y2(t)

)
,

(12.62)

and aij , i, j = 1,2, are defined by (12.59).
Following the procedure of constructing Lyapunov functionals, for stability in-

vestigation of (12.61), consider the auxiliary differential equation without memory

ż(t) = Az(t) + σ
(
z(t)

)
ẇ(t). (12.63)

Remark 12.3 By (12.62), (12.59) for the matrix A, conditions (2.62) hold:

Tr(A) = −[μ + ρk−1 + β
(
1 − N∗)]< 0,

det(A) = ρk−1[μ + kε + β(1 − k)
(
1 − N∗)]> 0.

(12.64)

Example 12.8 Using the values of the parameters from Example 12.6, we have

Tr(A) = −0.0018456, det(A) = 0.0000008.

Consider âii , i = 1,2, defined in (12.27).

Lemma 12.5 If

a21 ≤ 0 (12.65)

and

â11 < 0, â22 < 0, (12.66)

then the zero solution of (12.63) is asymptotically mean-square stable.
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Proof By (12.59), (12.65) the matrix A from (12.63) satisfies the condition
a12a21 ≤ 0. By (12.19) the same condition is satisfied by the matrix A from (12.23).
So, further, the proof coincides with that of Lemma 12.2. �

Lemma 12.6 If

a21 > 0 (12.67)

and

max(δ1, δ2) <
det(A)

|Tr(A)| , (12.68)

then the zero solution of (12.63) is asymptotically mean-square stable.

Proof Similarly to Lemma 12.2, it is enough to show that the matrix P = ‖pij‖
with the elements (12.26) is positive definite.

Note that by (12.31), (12.59), (12.67) we have

Ai = a11a22 − a12a21 + a2
ii ≤ aii Tr(A), i = 1,2.

From this and from (12.59), (12.64), (12.68) it follows that

δi <
det(A)

|Tr(A)| ≤ Ai

|Tr(A)| ≤ |aii |, i = 1,2. (12.69)

By (12.27), (12.28), (12.59), (12.64), (12.67), (12.68) we have

Z = Tr(A)(a11 + δ1)(a22 + δ2) − a12a21
(
Tr(A) + δ1 + δ2

)

= Tr(A)det(A) + Tr(A)δ1a22 + Tr(A)δ2a11

+ Tr(A)δ1δ2 − a12a21(δ1 + δ2)

= −∣∣Tr(A)
∣∣det(A) + A2δ1 + A1δ2 − ∣∣Tr(A)

∣∣δ1δ2

< −∣∣Tr(A)
∣∣det(A) + (A1 + A2)

det(A)

|Tr(A)|
= −(∣∣Tr(A)

∣∣2 − A1 − A2
) det(A)

|Tr(A)|
= −2a12a21 det(A)

|Tr(A)|
< 0. (12.70)

From (12.34), (12.35), (12.69), (12.70) we obtain that p11 > 0, p22 > 0 for arbitrary
c > 0.

Let us show that p11p22 > p2
12. Indeed, by (12.26), (12.34), (12.35) this inequal-

ity takes the form
(
c
(
A2 − ∣∣Tr(A)

∣∣δ2
)+ a2

21

)(
A1 − ∣∣Tr(A)

∣∣δ1 + ca2
12

)
> (ca12â22 + a21â11)

2,
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which is equivalent to the condition

c2a2
12

(
det(A) − ∣∣Tr(A)

∣∣δ2 + a2
22 − â2

22

)

+ c
[(

A1 − ∣∣Tr(A)
∣∣δ1
)(

det(A) − ∣∣Tr(A)
∣∣δ2
)

+ a2
22

(
det(A) − ∣∣Tr(A)

∣∣δ1
)

+ (
det(A)

)2 + 2a12a21(a11a22 − â11â22)
]

+ a2
21

(
det(A) − ∣∣Tr(A)

∣∣δ1 + a2
11 − â2

11

)

> 0. (12.71)

By (12.67), (12.68), (12.69) and |aii | ≥ |âii |, i = 1,2, condition (12.71) holds for
arbitrary c > 0. So, for arbitrary c > 0, the matrix P with the elements (12.26) is
positive definite. The proof is completed. �

Remark 12.4 If condition (12.65) holds, i.e., a21 ≤ 0, then from (12.59) and from
the proofs of Lemmas 12.3 and 12.4 it follows that β ∈ [0, (μ + ε)(1 − k)−1]. On
the other hand, if β > (μ + ε)(1 − k)−1, then condition (12.67) holds, i.e., a21 > 0.
For example, by the values of the parameters from Example 12.6 we have β =
0.00085 > (μ + ε)(1 − k)−1 = 0.0004945 and a21 = 0.0005646 > 0.

Theorem 12.2 If conditions (12.65), (12.66) or (12.67), (12.68) hold and if, for
some c > 0, the elements (12.26) of the matrix P satisfy the condition

(
βN∗|p12 − p22|

)2 + 2βN∗|p11 − p12| < c, (12.72)

then the solution (N∗, S∗) of system (12.57) is stable in probability.

Proof Note that the stability in probability of the solution (N∗, S∗) of system
(12.57) is equivalent to the stability in probability of the zero solution of system
(12.58) and the order of nonlinearity of system (12.58) is higher than one. So, to get
for this system conditions for stability in probability, it is enough (Sect. 5.3) to get
conditions for the asymptotic mean-square stability of the zero solution of the lin-
ear part (12.60) of this system. Following the procedure of constructing Lyapunov
functionals, we will construct a Lyapunov functional for system (12.60) in the form
V = V1 + V2, where V1 = y′Py, y = (y1, y2)

′, P is the positive definite solution of
system (12.25) with the elements (12.26), and V2 will be chosen below.

Let L be the generator of system (12.60). Then by (12.60), (12.25) we have

LV1 = 2
(
p11y1(t) + p12y2(t)

)(
a11y1(t) + a12y2(t) + βN∗I (y1t )

)+ p11σ
2
1 y2

1(t)

+ 2
(
p12y1(t) + p22y2(t)

)(
a21y1(t) + a22y2(t) − βN∗I (y1t )

)

+ p22σ
2
2 y2

2(t)

= −cy2
1(t) − y2

2(t) + 2βN∗[(p11 − p12)y1(t) + (p12 − p22)y2(t)
]
I (y1t ).
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By (12.2), (12.59) we have 2y1(t)I (y1t ) ≤ y2
1(t) + I (y2

1t ) and 2y2(t)I (y1t ) ≤
νy2

2(t) + ν−1I (y2
1t ) for some ν > 0. Using these inequalities, we obtain

LV1 ≤ −cy2
1(t) − y2

2(t) + βN∗|p11 − p12|
(
y2

1(t) + I
(
y2

1t

))

+ βN∗|p12 − p22|
(
νy2

2(t) + ν−1I
(
y2

1t

))

= (
βN∗|p11 − p12| − c

)
y2

1(t) + (
βN∗|p12 − p22|ν − 1

)
y2

2(t)

+ qI
(
y2

1t

)
, (12.73)

where

q = βN∗(|p11 − p12| + |p12 − p22|ν−1). (12.74)

Putting

V2 = q

∫ ∞

0

∫ t

t−s

y2
1(θ) dθ dK(s),

by (12.2), (12.59) we get LV2 = q(y2
1(t) − I (y2

1t )). Therefore, by (12.73), (12.74),
for the functional V = V1 + V2, we have

LV ≤ (
2βN∗|p11 − p12| + βN∗|p12 − p22|ν−1 − c

)
y2

1(t)

+ (
βN∗|p12 − p22|ν − 1

)
y2

2(t).

Thus, if

2βN∗|p11 − p12| + βN∗|p12 − p22|ν−1 < c, βN∗|p12 − p22|ν < 1, (12.75)

then by Remark 2.1 the zero solution of (12.60) is asymptotically mean-square sta-
ble.

From (12.75) it follows that

βN∗|p12 − p22|
c − 2βN∗|p11 − p12| < ν <

1

βN∗|p12 − p22| . (12.76)

Thus, if for some c > 0, condition (12.72) holds, then there exists ν > 0 such that
conditions (12.76) (or (12.75)) hold too, and therefore the zero solution of (12.60)
is asymptotically mean-square stable. From this it follows that the zero solution of
(12.58) and therefore the equilibrium point (N∗, S∗) of system (12.57) is stable in
probability. The proof is completed. �

Example 12.9 Consider system (12.50) with the values of the parameters ε, μ, ρ,
β , γ and the equilibrium point (N∗, S∗) given in Example 12.6. As an example,
consider the levels of noises σ1 = 0.028256, σ2 = 0.029031. From (12.27) it follows
that δ1 = 0.0003992, δ2 = 0.0004214 and condition (12.68) holds: max(δ1, δ2) <

det(A)|Tr(A)|−1 = 0.0004436.
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Put c = 10. Then by (12.26) p11 = 8335.7, p12 = 569.4, p22 = 1344.7, and con-
dition (12.72) holds:

(
βN∗|p12 − p22|

)2 + 2βN∗|p11 − p12| = 4.419 < 10.

Thus, the solution (N∗, S∗) of system (12.57) is stable in probability.

Using the representations (12.41)–(12.44), we get three corollaries from Theo-
rem 12.2, which simplify a verification of the stability condition (12.72).

Put

f (c) = (
βN∗D0

)2
(

c + D1

D0

)2

+ 2βN∗|B0|
∣∣∣∣c + B1

B0

∣∣∣∣− c, (12.77)

S = (
βN∗D0

)2
(

D1

D0
− B1

B0

)2

+ B1

B0
,

R+ = 2βN∗|B0|
(

1 − 2βN∗|B0|
2(βN∗D0)2

− D1

D0
+ B1

B0

)
,

R− = −2βN∗|B0|
(

1 + 2βN∗|B0|
2(βN∗D0)2

− D1

D0
+ B1

B0

)
,

Q = 1

4(βN∗D0)2
− D1

D0
− B2

0

D2
0

,

(12.78)

where B0, B1, D0, D1 are defined by (12.41)–(12.44). So, condition (12.72) is
equivalent to the condition f (c) < 0.

Corollary 12.4 If conditions (12.65), (12.66) or (12.67), (12.68) hold and S < 0,
then the solution (N∗, S∗) of system (12.57) is stable in probability.

Proof By (12.78) from S < 0 it follows that B1B
−1
0 < 0. Substituting c0 =

−B1B
−1
0 > 0 into (12.77), we obtain f (c0) = S < 0, i.e., condition (12.72) holds.

The proof is completed. �

Corollary 12.5 If conditions (12.65), (12.66) or (12.67), (12.68) hold and 0 ≤
R+ < Q, then the solution (N∗, S∗) of system (12.57) is stable in probability.

Corollary 12.6 If conditions (12.65), (12.66) or (12.67), (12.68) hold and 0 <

R− < Q, then the solution (N∗, S∗) of system (12.57) is stable in probability.

The proofs of Corollaries 12.5 and 12.6 are similar to those of Corollaries 12.2
and 12.3.
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Fig. 12.2 25 trajectories of the processes N(t) (blue), S(t) (green), O(t) (red) with the values of
the parameters μ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035, β = 0.00085, h = 0.1,
δ1 = 0.0003992, δ2 = 0.0004214, the initial values N(s) = 0.704, s ∈ [−0.1,0], S(0) = 0.25,
O(0) = 0.046, and the equilibrium point N∗ = 0.3311, S∗ = 0.3814, O∗ = 0.2875

Example 12.10 Consider system (12.57) with the values of the parameters from Ex-
ample 12.6 and δ1 = 0.0003992, δ2 = 0.0002661. Calculating S, R+, Q by (12.78),
we obtain: S = −0.0100916 < 0, R+ = 7499 < Q = 18161. By both Corollaries
12.4 and 12.5 the solution (N∗, S∗) of system (12.57) is stable in probability.

Example 12.11 Consider system (12.57) with the values of the parameters from Ex-
ample 12.6 and δ1 = 0.0003992, δ2 = 0.0004214. Calculating S, R+, Q by (12.78),
we obtain: S = 0.0051611 > 0, R+ = 7811 < Q = 18914. The condition of Corol-
lary 12.4 does not hold, but from Corollary 12.5 it follows that the solution (N∗, S∗)
of system (12.57) is stable in probability.

12.2.5 Numerical Simulation

Let us suppose that in (12.49) dK(s) = δ(s − h)ds, where δ(s) is Dirac’s delta-
function, and h ≥ 0 is a delay.
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Fig. 12.3 25 trajectories of the processes N(t) (blue), S(t) (green), O(t) (red) with the values
of the parameters μ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035, β = 0, h = 0.1,
δ1 = 0.0003992, δ2 = 0.0004214, the initial values N(s) = 0.704, s ∈ [−0.1,0], S(0) = 0.25,
O(0) = 0.046, and the equilibrium point N∗ = 0.7149, S∗ = 0.1465, O∗ = 0.1386

In Fig. 12.2 25 trajectories of the solution of (12.57), (12.48) are shown for the
values of the parameters from Examples 12.6 and 12.9: μ = 0.000469, γ = 0.0003,
ε = 0.000004, ρ = 0.000035, β = 0.00085, the initial values N0 = 0.704, S0 =
0.25, O0 = 0.046, the levels of noises σ1 = 0.028256, σ2 = 0.029031, and the delay
h = 0.1. One can see that all trajectories go to the equilibrium point N∗ = 0.3311,
S∗ = 0.3814, O∗ = 0.2875.

Putting β = 0 with the same values of the other parameters, one can see that
in accordance with Example 12.6, all trajectories go to another equilibrium point
N∗ = 0.7149, S∗ = 0.1465, O∗ = 0.1386 (Fig. 12.3).

Change now the initial values on N0 = 1, S0 = O0 = 0, and put again β =
0.00085. In accordance with Example 12.6, corresponding trajectories of the so-
lution go to the equilibrium point N∗ = 0.5770, S∗ = 0.2588, O∗ = 0.1642
(Fig. 12.4).

Note that numerical simulations of the processes N(t), S(t), and O(t) were ob-
tained via the difference analogues of (12.57), (12.48) in the form
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Fig. 12.4 25 trajectories of the processes N(t) (blue), S(t) (green), O(t) (red) with the values of
the parameters μ = 0.000469, γ = 0.0003, ε = 0.000004, ρ = 0.000035, β = 0.00085, h = 0.1,
δ1 = 0.0003992, δ2 = 0.0004214, the initial values N(s) = 1, s ∈ [−0.1,0], S(0) = 0, O(0) = 0,
and the equilibrium point N∗ = 0.5770, S∗ = 0.2588, O∗ = 0.1642

Ni+1 = Ni + �
[
μN0 − μNi − βNi(1 − Ni−m) + ρSi

]

+ σ1
(
Ni − N∗)(w1,i+1 − w1i ),

Si+1 = Si + �
[
μS0 + βNiNi−m − (μ + γ + ρ)Si + ε(1 − Ni − Si)

]

+ σ2
(
Si − S∗)(w2,i+1 − w2i ),

Oi+1 = 1 − Ni+1 − Si+1,

i = 0,1,2, . . . , Nj = N0, j = −m, . . . ,−1,0.

Here � is the discretization step (chosen as � = 0.01), Ni = N(ti), Si = S(ti), Oi =
O(ti), wki = wk(ti), k = 1,2, ti = i�, m = h�−1, and trajectories of the Wiener
processes w1(t) and w2(t) are simulated by the algorithm described in Sect. 2.1.1.
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