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Abstract. A critical component of autonomous driving in urban environ-
ment is the vehicle’s ability to interact safely and intelligently with the hu-
man drivers and on-road pedestrians. This requires identifying the human
intentions in real time based on a limited observation history and reacting
accordingly. In the context of pedestrian avoidance, traditional approaches
like proximity based reactive avoidance, or taking the most likely behavior
of the pedestrian into account, often fail to generate a safe and successful
avoidance strategy. This is mainly because they fail to take into account the
human intention and the inherent uncertainty resulting in identifying such
intentions from direct observations.
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This work formulates the on-road pedestrian avoidance problem as an in-
stance of the Intention-Aware Motion Planning (IAMP) problem, where the
human intention uncertainty is incorporated in a principled manner into the
planning framework. Assuming a set of all possible pedestrian intentions in
the environment, IAMPs generate a Mixed Observable Markov Decision Pro-
cess (MOMDP), (a factored variant of Partially Obervable Markov Decision
Process (POMDP)) with the human intentions being the unobserved vari-
ables. Solving the resulting MOMDP generates a robust pedestrian avoidance
policy. In spite of the criticism of POMDPs to be computationally intractable
in general, we show that with proper state factorization and latest sampling
based approaches the policy can be executed online on a real vehicle on road.
We demonstrate this by running the algorithm on a real pedestrian crossing
in the NUS campus successfully handling the intentions for multiple pedes-
trians, even when they are jaywalking. In this paper, we present results in
simulation to show the improved performance of the proposed approach over
existing methods. Additionally, we present results validating experimentally
the assumptions made in formulating the intention aware pedestrian avoid-
ance problem.

This work presents a preliminary step towards safer and effective au-
tonomous navigation in urban environments by incorporating the intentions
of pedestrians and other drivers on the road.

1 Introduction

With robots venturing more into human spaces, it becomes imperative for
the robots to predict the motion and intentions of people and other agents in
the field for effective operation. A popular example is autonomous vehicles in
urban environments which have to react with pedestrians, cyclists and other
human drivers on the road. Identifying intentions is even more relevant in the
case of autonomous vehicles because in many situations direct communication
between the robots and people is not possible, e.g.between pedestrians and
autonomous vehicles. A popular and simple approach of avoiding pedestrians
is that of running a one step prediction interwoven with avoidance based on

(a) (b) (c)

Fig. 1 Autonomous navigation in a crowded environment requires accounting for
the pedestrian intentions
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either potential fields [11], velocity obstacles [7] or by partial motion planning
[2] etc.at a very high update rate. Due to the reactive approach, the success of
such approaches in a crowded environment depends on the assumption that
the dynamic nature of the environment will prevent the robot from getting
stuck. However this assumption may not hold always. Take the scenario shown
in Fig.1(a) of people standing very close to edge of the pedestrian sidewalk.
While their position is close to the road, the pedestrian’s intentions may not
be to actually step on the road. Decisions purely based on the position and
not the intention of the pedestrians may cause an autonomous vehicle to
get stuck waiting for the pedestrian to cross. Human drivers however make
a judgment over the pedestrian’s intentions based on their activity (here
waiting rather than trying to cross the road) and safely drive on.

Detecting a person’s intentions or predicting his/her trajectory has been
addressed using Hidden Markov Models [10, 17], non-parametric approaches
like Inverse Reinforcement Learning [9], Gaussian Processes [6] and Bayesian
Occupancy Filter [4] just to name a few. In most of these approaches the tools
have been developed to identify a person’s intention as an end goal. Only
after the intention has been resolved sufficiently is the robot able to choose
its action. In reality, the purpose of the robot is to navigate safely and it
should only focus on resolving those pedestrian intentions relevant to the task.
Integrating the intention prediction with motion planning provides a more
effective approach. In many cases there might not be enough information
for the intention to be completely resolved before the robot has to make a
decision. Usually in such cases the robot takes actions against most likely
intention [10]. However, not taking into the account the prediction limitation
can lead to unsafe actions. Take the case of Fig.1(b) where the pedestrian
walking along a sidewalk may move to either G0 or G1 along the marked
trajectory. In essence no amount of sensing can effectively predict which goal
the pedestrian is moving towards until he/she passes P . A false prediction
of G0 due to motion stochasticity or sensing inaccuracy can cause potential
collision or evoke emergency avoidance by the robot. In such scenarios it
is imperative to not only take the prediction but also take the uncertainty
associated with the prediction into the robot’s decision process. This work
formulates the on-road pedestrian avoidance problem as an instance of the
Intention-Aware Motion Planning (IAMP) problem presented in [1], where
the intention uncertainty is incorporated in a principled manner into the
planning framework.

In many cases pedestrian motion models, their desired goals in the envi-
ronment and their interaction with other entities can be learnt from the data
collected by sensors in the environments [6]. We approach the problem assum-
ing that the pedestrian motion models and their possible goals are available.
The robot then has to reason about each sensed pedestrian’s intention given
the short observation history of the pedestrian’s motion in making its deci-
sion. Even though in general exact solutions to POMDPs are intractable [14],
with proper factorization of the observable and unobservable state variables
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as a Mixed Observable MDP (MOMDP [13]) and sampling based approxi-
mate solutions (SARSOP [12]), we show that such an approach can be applied
successfully on a real autonomous vehicle in a crowded environment (Fig.1c).
Let us now state the problem statement formally:

For a known environment W and known set of possible pedestrian goal
locations Θ in W, find an optimal policy Π, to minimize the time taken for
the robot R to reach its goal Rg and avoiding collision in the presence of
multiple pedestrians pi moving towards corresponding goals, gi ∈ Θ where all
gi are unknown to the robot.

2 Technical Approach

The problem of avoiding a single pedestrian pi in the environment W , can
be described by a few variables, the robot’s state: location xr, velocity vr,
and the pedestrian state: location xi, his/her intention gi (here the goal lo-
cation). In general, xr, vr and xi can be estimated from a variety of sensors
following an observation function Z : p(o|xr,vr,xi). However under accept-
able sensing accuracy we assume them to be fully observed. This helps us
reduce the computational complexity of the problem and we show experi-
mentally in Sec.3.2 that this assumption is indeed reasonable. On the other
hand, there is no “intention sensor” for gi and it is treated as unobserv-
able variable. Let x ∈ X represent the observed state variables and gi ∈ Y
denote the unobserved pedestrian’s intention. The robot can pick actions
a ∈ A : {cruise, accelerate, deccelerate}, to control the vehicle. The choice
of using such high level acceleration commands as compared to direct ve-
locity commands mimics human driver behavior who control the brakes and
acceleration rather than reason about the actual velocities. The robot is re-
warded by a function R when it successfully navigates to its desired goal and
is penalized for time delay and collision.

xi

xr

vr

Rg

Gi

Fig. 2 Pedestrian avoidance scenario in the quadrangle environment shows the
relevant variables in the formulation



Intention-Aware Pedestrian Avoidance 967

We formulate the pedestrian avoidance problem in autonomous navigation
by a discrete MOMDP: Mi : (X ,Y, A,O, Z, TX , TY , R, γ), where O is the set
of all possible observations and γ the discount factor. The transition function
TX(x, gi, a, x

′) : p(x′|x, gi, a) gives the transition of the observed variables
from the current observed state x into the future observed state x′ upon
taking the action a in the state (x, gi). This incorporates the pedestrian and
the robots motion models.

We assume the motion of the pedestrian to follow a trajectory towards its
intended goal in a shortest possible path, a simplified model of social potential
fields [8]. Note that the pedestrian may not follow the exact shortest path due
to personal preferences, distracted walking, avoidance of other pedestrians
and vehicles on the road. These unknown variations are modeled with the
uncertainty distribution over the intended direction.

pi
′ = pi + vpΔtn̂i

where n̂i ∼ N(n(gi), σ) is the heading of the pedestrian sampled from a distri-
bution with the mean direction towards gi and vp ∼ N(Vp, σ2) is the velocity
of the pedestrian sampled from a mean pedestrian velocity Vp calculated from
interactions with the goal, the environment and robot position.

The robot’s own motion model follows from a velocity controller. In this
paper we consider the robot to be constrained along a single lane. This sim-
plifies the analysis without loss of generality in the discussion. vr is the speed
of the robot along the road.

xr
′ = xr + vrΔt+ ε1

vr
′ = vr + v̇r(a)Δt+ ε2

where v̇r(a) denotes that the actual acceleration of the vehicle is influenced
by the action taken in the previous step. The errors (ε1, ε2) are determined
by the vehicle’s controller characteristics.

The transition function TY (x, gi, a, x
′, gi′) : p(gi′|gi), shows the transition

over the pedestrian intentions gi. In general the pedestrian may change the
intentions midway during execution and can be handled by our formulation.
However in our analysis and results in this paper, we assume that during
the course of the problem, pedestrian’s intentions do not change. Interested
readers are referred to [1] for a more general formulation of the problem of
intention aware motion planning.

The focus of this paper is to formulate the problem of pedestrian avoidance
as an intention aware motion planning problem and to show the effectiveness
and feasibility of such an approach to autonomous navigation on the road.
Once the problem is formulated as a MOMDP, any solver can be used to
solve for the policy. In our case we use SARSOP [12], a leading point-based
approximation algorithm, to solve our MOMDP model.
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The corresponding MOMDP belief space is a union of lower dimensional
belief subspaces over the goal set Θ : {gi} at each observed state x.

B =
⋃

x∈X
BΘ(x)

Here the dimensionality of the belief subspace BΘ is equal to the cardinality
of the goal set Θ less 1, clearly reducing the computational complexity of the
problem. The MOMDP value function is represented by a collection of alpha
vector sets {ΓΘ(x) : x ∈ X}.

V (x, bΘ) = max
α∈ΓΘ(x)

{α · bΘ} (1)

The belief is initialized to a uniform distribution over all goals. The online
execution is performed in two steps: action selection and belief update. The
action corresponding to the alpha vector that maximizes Eq.1 is chosen based
on the current belief, bΘ. The robot gathers observations resulting from its
actions and updates the belief value (Eq.2) and the process repeats itself,
until the robot reaches the goal.

b′Θ(gi) = ηTY (x, gi, a, x
′, gi′)bΘ(gi) (2)

η being the normalizing constant.

Handling Multiple Pedestrians

A naive way of adding multiple pedestrians directly into the state space causes
the problem to become intractable quickly. In addition since pedestrians are
detected asynchronously, the time of detection has to be also incorporated
further adding additional dimensions to the problem space. To avoid this we
address each pedestrian independently. Once a pedestrian is detected, a new
MOMDP problem is generated with uniform beliefs on the possible goals.
This requires maintaining belief of each pedestrians according to Eq.2. Using
the same policy, Π , different actions are chosen based on the unique belief
state for each pedestrian. In general there can be many ways of combining
these actions, we choose a simple conservative approach to pick the safest
action based on a safety metric S : X ×A → �+.

Let Mi denote the problem generated due to pi and ai denote the current
action chosen for Mi.

a = argmax
i

{S(ai)} (3)

In general the safety metric can be defined on relative velocity or conserva-
tive lane changing or safety distance. In our campus environment the robot
is constrained to move along a fixed lane, the only variability being control-
ling the speed. The safety metric we use is inversely mapped to the braking
distance for the vehicle at the expected speed resulting from the decision and
the speed controller.
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3 Experiments and Results

We present the result of our intention aware pedestrian avoidance approach
on the autonomous vehicle. Our autonomous system is a Yamaha golf-cart
with drive by wire capability. Two onboard computers running ROS [16] on
intel i5 processors with 8Gb RAM execute various perception, planning and
control algorithms. The vehicle is programmed to run at a maximum speed
of 2m/s autonomously in a section of the NUS campus and can seat upto 2
people (Fig.3a). The vehicle is equipped with 3 LIDARs and a webcam. The
LIDARs are used for localization while the combination of LIDAR and camera
data is processed to identify pedestrians. More details about the system and
its architecture is presented in [3].

(a) Autonomous vehicle (b) Quadrangle environment

Fig. 3 Experimental Environments

3.1 Qualitative Comparison

Fig.3b shows the quadrangle in the engineering faculty of NUS where the
students enter through (C & D). (A & B) are entrances to a shaded study
area. Let us analyze the policy generated for this environment. Fig.4 plots
the decision executed by the robot at R moving forward with velocity 1m/s
for various positions of the pedestrians for a particular belief value over goals
(displayed on the goal regions). The ‘+’ sign represents the decision to ac-
celerate when a pedestrian is present at that particular location, a ‘-’ sign
deceleration and ‘.’ represents a decision to cruise accordingly. Fig.4(a & b)
compares the spatial distribution of decision when the belief value over goals
changes from uniform to being higher on left (goals, A & D). As the robot
becomes more confident about the pedestrian’s intention, it’s decisions are
no longer overly conservative as shown by an increase in ‘+’, helping it to
navigate a more crowded environment. Note however that at locations where
pedestrians stepping into the robot’s path would require the robot to execute
emergency avoidance, (marked by red box in Fig.4b) the robot’s decisions
are more cautious maintaining speed (‘.’) rather than accelerating (‘+’). Note
however that the lowest decision in the marked area is to accelerate. A quick
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(a) MOMDP: uniform belief (b) MOMDP: strong belief on left

(c) Fixed belief: Bayes-ML (d) Fixed belief: MOMDP

Fig. 4 Comparison

calculation of the location and relative speed shows that by accelerating, the
robot can overtake the pedestrian in case it tries to move towards B and
hence is a safe decision.

Algorithm Time (s): Accident
Mean (S.D) (4500 runs)

Bayes-ML 9.4 (6.4) 4.4 %
IA-MOMDP 9.6 (6.5) 3.4 %

Fig. 5 Performance comparison in simulation
runs in quadrangle environment

We next compare the re-
sult of a simple maximum
likelihood (Bayes-ML) ap-
proach where the robot first
picks the most likely goal and
subsequently chooses an ac-
tion based on the MDP pol-
icy learnt for that particular
goal. We first look at a case
in Fig.4c where the prediction

on goals A and B are both high A being marginally higher. Since Bayes-ML
does not take B into consideration, it ignores, as shown by ‘.’ decision, the
pedestrians at positions marked by red box. However, there is a significant
chance of pedestrian at this location to go towards B. The MOMDP policy
taking into account this possibility leads to a more conservative decision for
the region under the same belief. To test how effectively does such a pol-
icy fare against Bayes-ML, we ran around 4500 simulations for pedestrians
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starting from random locations assigned to random goals. The results are
shown in Table.5. We see that for similar time taken by the robot the
MOMDP policy encounters significantly lower simulated collision states.

3.2 Perception Accuracy

Pedestrians are detected using a single webcam calibrated and mounted on
top of a SickLMS 200 in front of the autonomous vehicle. The range data
from the laser is clustered based on spatial proximity and a HoG person
classifier [5] is run through the corresponding sub-image to label the cluster as
a pedestrian or non-pedestrian [3]. Once sufficient confidence is reached that
a cluster belongs to a pedestrian, a proximity based nearest neighbor data
association is applied to track the pedestrian. The laser system runs around
50Hz while the vision runs at 15Hz. We performed controlled experiments
where a person stood at known locations and the pedestrian detector was
initiated and the data recorded. The false negative rate from the vision system
was 20% over the number of frames computed. However this only affects the
initialization phase of pedestrian detection since, once detected the range
based data association is able to reliably track the pedestrian. On average
it took around 0.46s to reliably detect the pedestrian. The mean distance
error in detection is plotted in Fig.6a for various control positions of the
pedestrian in order of increasing distance (5m to 25m at different angles)
from the sensor. The error in distance estimate is under 30cm. The data
point 5 was close a background wall ( 2m) which created a larger variation
in the estimate error. Fig.6b shows the localization estimate of the vehicle

0 5 10
−0.4

−0.3

−0.2

−0.1

0

0.1
Pedestrian detection noise

0 2 4 6 8
−2

−1

0

1

2

3
Vehicle localization noise

Fig. 6 Perception noise: the vertical axis shows error rate in meters, while horizon-
tal axis marks the data point entries. The plots show that the noise is acceptable
in assuming the pedestrian and vehicle positions as observed variables.
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following a simple curb based localization approach [15]. The error is under
1m which is quite acceptable to a vehicle of footprint 3m x 1.5m. Note also
that the pedestrian is detected relative to the vehicle in the map. Thus the
localization error only affects the uncertainty of the pedestrian’s goal estimate
and not the proximity estimate of the pedestrian w.r.t. the robot which is
crucial for the pedestrian safety.

The results clearly validate the assumption of the MOMDP formulation
where the only unobservable variable is the pedestrian’s intentions, while the
position of pedestrians and robot are sensed within acceptable accuracy.

3.3 Stationary Vehicle: Belief Tracking Experiment

In order to test the results of the MOMDP policy on a real system, we first
kept the robot stationary at R in the quadrangle environment (Fig.3b), look
at the decisions being made.

The snapshots in Fig.7(a & b), display the belief and the decision gener-
ated. A bar graph is plotted associated for each pedestrian, the left being the
belief that the pedestrian is going to a goal to the left of the robot’s heading
and the right correspondingly for the goals to the right. The red/green hori-
zontal bar on the top denotes the decision made by the robot to STOP/GO
w.r.t. the pedestrian.

The series of snapshots in Fig.7a, shows a couple of pedestrians (non-
actors) walking in the quad. Each pedestrian is assigned a uniform belief
upon detection. As more information is received the belief gets updated and
the robot takes decisions accordingly. Note that the belief at snapshot (3-a)
is higher over the goals (A & D) due to the stochasticity of the trajectory
being followed. However, there is still a chance for him to move towards C.
Taking this uncertainty into account, the decision of the robot is to STOP,
which proves to be the right decision eventually.

While we formulate the problem for a single pedestrian, clearly a group of
pedestrians moving cohesively generates exactly the same avoidance problem.
Our cluster based approach tracks the belief over the group of pedestrians as
would on a single pedestrian thereby avoiding the explosion of the problem
space with additional pedestrians. The ability to quickly detect and generate
a MOMDP avoidance problem makes the approach robust to splitting and
merging over the clusters. Snapshots in Fig.7b show a group of pedestrians
splitting to move to different goals. At snapshot (4-b) we see that the split is
detected and a new problem generated and resolved for the left pedestrian.

The videos of all the runs and more experimental results are available at
( http://web.mit.edu/tirtha/Public ). We see that the pedestrian tracker is
able to keep detect, instantiate and maintain the beliefs and decisions over
various pedestrians. This is even robust to temporary occlusion, merging and
splitting of people in the crowd.
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(a) belief tracking: cross (b) belief tracking: split

1

2

3

4

5

6

Fig. 7 Experimental Results (Best viewed in color). The videos of all the runs and
more experiments are available at ( http://web.mit.edu/tirtha/Public ).
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(a) A busy pedestrian crossing scene in the NUS campus
that the vehicle has to navigate

(b) Avoidance for a single pedestrian (on-board camera
picture merged at different times to show the evolution
of the belief)

(c) Avoiding multiple pedestrians. (goals reordered and
labeled differently than (b)). Each pedestrian generates
a avoidance MOMDP and the beliefs are shown based
on asynchronous set of observation history for each
pedestrian.

Fig. 8 Pedestrian crossing experiment
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3.4 Moving Vehicle: Pedestrian Crossing Experiment

We tested the algorithm on a real pedestrian crossing shown in Figure 8(a).
The robot not only needs to detect the pedestrians and their intentions on
the pedestrian crossing but also deal with jay walkers, a common phenomena
in a campus environment. Figure 8(b) shows the robot interacting with such
a pedestrian. The analysis is presented for a single pedestrian for clarity.
The windows in clockwise direction from top left show the onboard camera
view, the simplified environment representation used for solving the policy
(the orange trajectory shows the pedestrian track in this environment and
the green box shows the robot’s position), the speed controller command
velocity generated and the belief plots showing the evolution of the belief
over pedestrian’s goal as the pedestrian moves towards its intended goal. In
the belief plot the color of the graph encodes the goal id.

Snapshots of the pedestrian at different times are merged into one camera
window to show the development of the the belief. Notice that when the
pedestrian is detected, the initial belief over the goals are equal. Due to high
initial uncertainty the robot comes to a stop to wait for the pedestrian and
collect more information about its intention. As the pedestrian starts moving
across the road, the belief values over G2 and G1 increase while that of G0
and G3 drop as it is more likely that the pedestrian wants to move towards the
other side. However there is a chance that the pedestrian will turn back and
so the vehicle remains stationary. Slowly the belief over G1 grows stronger
and that on G2 drops as the pedestrian starts moving diagonally. As soon
as the belief over G1 is sufficiently large and the pedestrian is sufficiently
out of the vehicle’s path the vehicle starts moving. Figure 8(c) shows the
vehicle responding to multiple pedestrians. Note that the goals are ordered
and labeled differently however the environment setup and analysis is the
same.

4 Conclusion

The paper presented an approach to avoid pedestrians on the road by identi-
fying their intentions based on their actions on the road. We show in Sec.3.1,
that trying to analyze the pedestrian’s intentions helps in a better response
to pedestrians than a naive distance based reactive approach (Fig.4(a&b)).
Also maintaining the uncertainty over pedestrians goals gives a more conser-
vative avoidance policy (Fig.4(c&d)) which leads to a lower simulated collision
rates (Table.5). We also show that with proper factorization of the problem
in terms of observed and unobserved variables, we reduce the computational
complexity making it feasible to run the policy online on a realistic scenario.
We demonstrated this on a vehicle interacting with multiple pedestrians in a
real pedestrian crossing.
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The main assumption in this work is the availability of pedestrian motion
models and their finite intention models. An immediate extension of this
work being addressed currently is to try to learn the intention models from
the data collected and integrate it into the planning paradigm.

Even though the approach was presented for pedestrians on the road, such
an approach could also be utilized to identify the intention of other human
drivers on the road and could lead to a principled way of interacting safely
with other drivers on the road.
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