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Abstract. While a significant body of work has been done on grasping objects,
there is little prior work on placing and arranging objects in the environment. In
this work, we consider placing multiple objects in complex placing areas, where
neither the object nor the placing area may have been seen by the robot before.
Specifically, the placements should not only be stable, but should also follow human
usage preferences. We present learning and inference algorithms that consider these
aspects in placing. In detail, given a set of 3D scenes containing objects, our method,
based on Dirichlet process mixture models, samples human poses in each scene
and learns how objects relate to those human poses. Then given a new room, our
algorithm is able to select meaningful human poses and use them to determine where
to place new objects. We evaluate our approach on a variety of scenes in simulation,
as well as on robotic experiments.

1 Introduction

“Tidy my room.” “Put the dishes away.” — While these tasks would have been
easy for Rosie robot from The Jetsons TV show, they are quite challenging for our
robots to perform. Not only would they need to have the basic manipulation skills
of picking up and placing objects, but they would also have to perform them in a
way that respects human preferences, such as not placing a laptop in a dish-rack or
placing the dishes under the bed.

Over the last few decades, there has been a significant body of work on robotic
grasping of objects (e.g., [1–10]). However, there is little previous work on teaching
robots where and how to place the objects after picking them up. Placing an object
is challenging for a robot because of the following reasons:

Yun Jiang · Ashutosh Saxena
Department of Computer Science,
Cornell University, Ithaca, NY 14853, USA
e-mail: {yunjiang,asaxena}@cs.cornell.edu

J.P. Desai et al. (Eds.): Experimental Robotics, STAR 88, pp. 921–937.
DOI: 10.1007/978-3-319-00065-7_61 c© Springer International Publishing Switzerland 2013



922 Y. Jiang and A. Saxena

– Stability. An object needs to be placed in a correct orientation for it to be stable.
For example, while a martini glass could be placed upright on a flat surface, it is
stable when hanging upside down in a wine glass rack.

– Novel objects and placing areas. An unstructured human environment comprises
a large number of objects and placing areas, both of which may have complex
geometry and may not have been seen by the robot before. Inferring stable place-
ments in such situation requires robust algorithms that generalize well.

– Human preferences. The objects should be placed in meaningful locations and
orientations that follow human preferences. For example, a laptop should be fac-
ing the chair when placed on a table.

In our recent work [11, 12], we proposed a learning algorithm for placing objects
stably and in their preferred orientations in a given placing area (see Fig. 1b). Our
approach was based on supervised learning that used a graphical model to learn a
functional mapping from features extracted from 3D point-clouds to a placement’s
quality score. When multiple objects and placing areas were present, the inference
was formulated as an integer linear program that maximized the total placement
quality score. Our formulation also allowed linear stacking of objects. This enabled
our robot to place objects (even the ones that were not seen previously by the robot)
in areas such as dish-racks, a stemware-holder and a fridge, etc. While our model
in [12] captured certain semantic preferences, it did not consider human usage pref-
erences and therefore placements were often not meaningful. For example, placing
food up in a fridge that is hard to reach (see Fig. 1b), or placing a mouse and key-
board far away from each other making them impossible to be used together.

In this work, our goal is to learn meaningful object placements that follow human
preferences, such as the arrangement in Fig. 1c. The key idea that makes a placement
meaningful is how it will be used by humans: Every object is meant to be used by a
human in a certain way, at a certain location and for a certain activity. For example,
in an office, a keyboard is placed on a table below a monitor because a person
typically uses the keyboard while sitting in the chair and watching the monitor. Such
usage preferences are sometimes also called object “affordances” [13]. One naı̈ve
way to encode them would be looking up a dataset that shows examples of humans
using each object. Unfortunately, no such dataset exists and the effort to construct a
comprehensive one would be prohibitive.

Instead of relying on a dataset of real humans manipulating objects in 3D envi-
ronments, we work with a dataset that only has arrangements of objects in different
scenes.1 Then, in order to learn the human usage preferences, we would ‘hallu-
cinate’ human poses in the 3D scene, and learn the object affordances using an
unsupervised learning algorithm.

A hallucination is a fact, not an error; what is erroneous is a judgment
based upon it. Bertrand Russell.

What would be the key here is to learn which human poses are more likely than
others and how they interact with the objects. To do this, we first define a potential

1 Such datasets are readily available on the Internet, e.g., Google 3D warehouse.
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(a) random arrangement (b) object-context arrange-
ment

(c) human-context arrange-
ment

(d) arranging the real scene

Fig. 1 An example of arranging three objects in a room. (a) A random arrangement may lead
to unstable placement (such as the laptop tilted on the fridge) and stable but unreasonable
placement (such as shoes on the table and food on the ground). (b) Therefore, we adopt
supervised learning based on a variety of appearance and shape features for finding stable
orientations and meaningful locations for placing the objects. However, the placed objects
are still hard for human to access, such as the fruit stored high up on the fridge and the laptop
towards the wall. (c) We thus further improve the arrangement by considering the relationship
between the objects and humans (such as a sitting pose in the chair and a reaching pose in
front of the fridge). (d) Our approach does not require human poses at present but samples
them based on Dirichlet processes and learned potential functions. The last arrangement not
only places the objects appropriately but is also ready for human to use.

function giving a score for an object and a human pose, based on their spatial fea-
tures. We consider the human poses as latent variables, and model them as mixture
components in a Dirichlet process (DP) mixture model and consider arranging the
objects as a generative process: a room first generates several human poses; then
each object chooses a human pose and is drawn from the potential function param-
eterized by this human pose. This model allows different objects to be used by the
same human pose (e.g., using a monitor, keyboard and mouse at the same time),
while a room can have as many human poses as needed (one of the DP mixture
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model’s property) [13]. Given the most likely placements, our robot then uses path
planning algorithms to compute specific placing trajectories and execute them.

Our algorithm thus learns the preferred object arrangements from the 3D scenes
collected from the Internet. We first evaluate our algorithm on such datasets con-
sisting of 20 different rooms and compare the inferred arrangements to the ground
truth. We also test on five scenes using real point-clouds. Finally, we perform our
algorithms on our robot on actual placements in three real scenarios.

2 Related Work

There is little work in robotic placing and arrangement of objects and most existing
methods are restricted to placing (or moving) objects on flat horizontal surfaces.
Edsinger and Kemp [14] and Schuster et al. [15] focused on finding flat clutter-free
areas where an object could be placed. Our work considers arranging objects in the
whole room with significantly more complex placing areas in terms of geometry.

Placing objects also requires planning and high-level reasoning about the se-
quence of actions to be performed. Lozano-Perez [16] proposed a task-level (in con-
trast with motion-level) planning system for picking and placing objects on a table.
Sugie et al. [17] used rule-based planning in order to push objects on a table surface.
There are some recent works using symbolic reasoning engines to plan complex ma-
nipulations for human activities, such as setting a dinner table (e.g. [18–20]). How-
ever, these works focus on generating parameterized actions and task-level plans
instead of finding specific placements, and hence are complementary to ours.

In our own recent work [11, 12], we employed 3D stability and geometric features
to find stable and preferred placements. However, without taking human context
into consideration, the generated strategy was often not good enough. In this paper,
we discuss a method for combining the stability with human usage preference, and
compare our approach to one that does not consider the human usage preferences in
Section 4.

In this paper, learning the human usage preference, i.e., the relationship between
the objects and the humans is the key. In a way, this could be called ‘human context.’
In other fields, such as computer vision, the idea of ‘context’ has helped quite a bit
in improving tasks such as object recognition. For example, using estimated 3D
geometric properties from images can be useful for object detection [21–26]. In
[27–29], contextual information was employed to estimate semantic labels in 3D
point-clouds of indoor environments. Fisher et. al. [30, 31] designed a context-based
search engine using geometric cues and spatial relationships to find the proper object
for a given scene. Unlike our work, their goal was only to retrieve the object but not
to place it afterwards. These works are different from ours not only because they
address different problems, but also because none of these works used the ‘human
context.’

We use sampling techniques to sample the human poses, which are never ob-
served. In general, sampling techniques are quite common in the area of path plan-
ning [32, 33], where it is the robot pose that is sampled for constructing a path.
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Often modeling and sampling of human poses is also done in the area of computer
graphics and animation [34], and solving the kinematics and dynamics issues of
robots operating in presence of humans [35], and analyzing human body poses and
actions [36–38]. However, to the best of our knowledge, our work is the first one
that samples such human poses for capturing context among objects.

3 Object and Human Context

An object when placed in an environment depends both on its interaction with the
placing area and its interaction with the humans. In the following sections, we first
briefly review our potential function that captures the object context—relationship
between the object and placing areas [11, 12]. Then we discuss how to encode hu-
man context (such as human usage preferences and access effort) in our algorithm.

Specifically, we formulate a general placing problem as follows: There are n ob-
jects O = {O1, . . . , On} to be placed in m placing areas E = {E1, . . . , Em}, all of
which are represented as point-clouds. A placement of Oi is specified by its loca-
tion �i and orientation/configuration ci. Moreover, a placement is often associated
with certain human pose for certain purpose. Let H = {H1, . . .} to denote all the
possible human poses. Our goal is to, for each object Oi, find 1) a placing area Ej

to place it at and the specific placement (�i, ci), and 2) a relevant human pose Hk

that explains the placement well.

3.1 Object Context

By object context, we mean the relationship/interaction between the object and the
placing area that determines whether the placing area can hold the object stably and,
more importantly, meaningfully. For instance, books should be placed on a shelf or a
table, plates are better inserted in a dish-rack, and shoes should be put on the ground
instead of on a table or in a dishrack.

We capture this object-environment relationship (or object-object relationship
when the objects are stacked on top of each other) using a supervised learning algo-
rithm that learns a functional mapping, Ψobject(Oi, Ej , �i, ci), from a set of features
representing the placement to a placing quality score. A larger value of Ψobject(·)
indicates a better placement. (Our goal then becomes to maximize the value of this
function during learning and inference.)

We decompose the function into two terms:

Ψobject(Oi, Ej , �i, ci) = Ψstability(Oi, Ej , �i, ci)Ψsemantics(Oi, Ej). (1)

We develop a variety of appearance and shape features to capture the stability and
semantic preferences respectively [12].

As we observed in a series of experiments in [12], using this algorithm can help
us to predict preferred placements for various objects and different scenes. However,
because we model each object independently of others, certain connections among
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the objects are lost in this approach, making the arrangement often disorganized
and pointless. For example, a keyboard and mouse are placed far away from each
other and the desk-light faces towards the wall. The goal of capturing the connection
between different objects making them usable after placing is the key motivation for
introducing the human context.

3.2 Human Context

The arrangements and connections among objects can be naturally explained by
human poses and activities. For example, a monitor on the desk would mean that a
human skeleton may be in front of it in a sitting pose. Then the sitting skeleton could
further suggest to place a mouse and a keyboard close to the hand and therefore at the
edge of the desk. Although the human poses are not present during the arrangement,
hallucinating them would help the robots to place objects in a human-friendly way.

We consider an arrangement as an outcome of the following generative process:
A scene generates a set of possible human poses in the scene based on certain criteria
(such as reachability or usage of existing objects); then use the human poses to
determine where to place the new objects. There are two components required for
this approach: (a) modeling how the objects relate to human poses based on criteria
such as their affordances, ease of use and reachability, and (b) learning a distribution
of human poses in the scene.

We first capture the object’s usage preferences by a potential function that models
how a human pose Hk is related to an object Oi. (Again, a higher value of this
function indicates a better match between an object and the human pose.)

Ψhuman(Oi, Hk, �i, ci) = Ψloc(Oi, Hk, �i)Ψori(Oi, Hk, ci). (2)

Here, Ψloc and Ψori represent the preferences in the relative location and the orien-
tation of the object from a human pose respectively. For example, a TV has a usage
score that is high in the front at a certain distance and falls off as you go to the side
(see the projected heat map in Fig. 2). The potential function also indicates more
meaningful and relevant human poses from the innumerable possible poses in an
environment.

For instance, in a room such as the one shown in Fig. 2, the reaching pose (in
yellow) and the sitting pose on the TV stand are less important because they do not
relate to any object, while a sitting pose on the couch is important because it has
high scores with several objects in the scene—the cushion, laptop, TV, etc.

Note that the human poses in our problem are latent, and therefore we model
them using a mixture model. The model comprises an infinite number of human
poses and each object selects a human pose according to a mixture proportion π.
As a result, an object is affected by multiple human poses. For example, in Fig. 2,
the TV’s location is determined by all the human poses (sitting on the couch or next
to the TV, standing to the coffee table and so on). However, since the one on the
couch is more important than others, its corresponding proportion defined in π will
be higher and thus put more influence upon the TV. After considering all possible
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Fig. 2 While there could be innumerable possible human poses in a room, only a few of them
are meaningful, such as the one on the couch who is related to many objects. We sample
human poses based on the objects’ affordances. For example, the learned potential function
for the TV (shown in the projected heat map) has high values in the front with certain distance
and thus the sitting human pose is sampled with high probability.

human poses (i.e., marginalizing out Hk and π in the mixture model), we define the
likelihood of an arrangement, O, of n objects (in human context) as2

p(O) =

∫
π

p(π)

n∏
i=1

∞∑
k=1

(
p(Oi|Hk)P0(Hk)πk

)
dπ, (3)

where P0 is the prior of human poses, and P (Oi|Hk) ∝ Ψhuman(Oi, Hk). We adopt
DP mixture model so that π can have unbounded length and be constructed using
stick-breaking processes [39].

The inference problem is to find O with the maximum likelihood. Although (3)
is intractable to compute, it can be approximated using a sampling scheme. We use
Gibbs sampling with auxiliary parameters [40], where in each round we sample
which human pose to select for each object, the object placements and the human
poses according to their conditional distribution (see [13] for more details).

To differentiate the preference in selecting human poses for different types of
objects, we add type-specific parameters Θ in the potential function and learn them
from the labeled data. During training, given the objects in the scenes, we learn
the parameters using the maximum likelihood estimation based on human poses
sampled from the DP. In detail, we use human poses sampled from a DP, denoted
by H1, . . . , Hs as our observations. The optimal Θ is then computed by solving the
following optimization problem:

Θ∗ = argmax
Θ

∑
scenes

s∑
j=1

n∑
i=1

logΨhuman(Oi, H
j
i ;Θ). (4)

2 We abuse the notation Oi in this section to indicate the object’s placement, including �i
and ci.
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In our previous work [11, 12], we considered only the object context Ψobject(·). In
this current work, we primarily use the human context Ψhuman(·), and only combine
it with some of the object context defined heuristically (see [13]). Jointly learning
both the object and human context is an interesting direction for future work.

Once we have obtained the likelihood of the arrangements p(O), we need to
perform planning to realize the desired placements.

3.3 Planning

After finding the potential object placements that have high scores, the robot still
faces two challenges in realizing the placing: First, high-scored placements may
not be reachable/executable by the robot due to its kinematic constraints; Second,
placing certain objects first may impede placing other objects later. Thus, the order
in which the objects are placed becomes important and we need to find a valid
placing order and target locations efficiently.

Algorithm 1. TryPlace(P , ObjNotPlaced)
if ObjNotPlaced = ∅ then1

Succeed2

for i ∈ ObjNotPlaced do3
for Oi ∈ PossiblePlacementsi do4

if IsSuperSetOf(P ∪Oi,F) then5
continue6

if feasible(Oi,P) then7
TryPlace(P ∪ Oi, ObjNotPlaced \Oi)8

F ← F ∪ {P}9

We address the first challenge
by filtering out the placements that
are not physically realizable by
the robot due to its kinematic con-
straints (while considering place-
ment of each object independently
of the others).

For the second challenge, we
adopt the classic backtracking
search for finding a valid plac-
ing sequence. Particularly, in each
search step, given the already-
placed objects P , we need to de-
termine which object to be placed next (indexed by i) and also where to place it
(denoted by Oi). While this search space is enormous, we can cut the redundancy
using the following fact: Any superset of an infeasible plan is also infeasible. We
maintain a set of all infeasible plans encountered so far, denoted by F (see Algo-
rithm 1). Before trying to place a new object Oi, we check that if P ∪ Oi becomes
a superset of any elements in F . Only if not, a path planning algorithm (in our case,
rBiRRT in OpenRAVE [41]) is then used to verify the validity of placing at Oi and
the search continues for other objects.

4 Experiments

We perform three experiments as follows. First, we verify our human-context learn-
ing algorithm in arranging 20 different rooms, represented as 3D models. Second,
we compare the object context and human context in different scenes in real point-
clouds. Third, we perform robotic experiments on our Kodiak (PR2) robot based on
the learned arrangements.
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Fig. 3 Our dataset contains 20 scenes (7 kitchens, 6 living rooms and 7 offices) and 47 objects
from 19 categories that are commonly seen in these scenes [13]

4.1 Arranging Rooms under Human Context

In order to verify that our DP-based learning algorithm can generate reasonable
human poses as well as object placements, we evaluated it on a dataset containing 20
scenes from three categories (living room, kitchen and office) and of 47 daily objects
from 19 types (listed in Fig. 6) such as dish-ware, fruit, computers, desk-lights,
etc. [13]. Fig. 3 shows a snapshot of our dataset. Some example good arrangements
of each room were labeled by three to five subjects (not associated with the project).

We conduct 5-fold cross validation on 20 rooms so that the test rooms have never
been seen by the algorithm. We consider two placing scenarios: placing objects in
filled rooms and empty rooms. In the first case, the task is to place one type of
objects while other types are given (placed). In the second case, no object is in the
test rooms at all.

Figure 4 shows an example of our algorithm inferring meaningful human poses
and object placements. Given an office such as Fig. 4(a), if we randomly sample
human poses regardless the existing objects, then many unreasonable human poses
appear. For example, in Fig. 4(b), we have standing poses (in blue) oriented ran-
domly and some sitting poses (in red) at absurd locations such as on top of the table
and book shelf and reaching poses (in yellow) on the table as well. However, if we
sample human poses based on the learned potential function (2), then we obtain hu-
man poses in meaningful places such as sitting in the chair or standing close to the
object (see Fig. 4c). Note that now the distribution of both location and orientation
of human poses has changed due to the Ψloc and Ψori terms in the potential function.

We then sample the monitor’s location according to these human poses. Figure
4d shows that the distribution is biased towards the inner side of the L-desk, espe-
cially concentrated in front of the chair. This is because that sitting poses are more
related to monitors. Moreover, the preference of monitor placed on the table (as
compared with being placed on the ground) is naturally learned through our human
access effort rather than hand-script rules. Another interesting observation is that
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(a) an office (b) random human poses.

(c) sampled human poses based on exist-
ing objects.

(d) sampled monitors, shown in red

Fig. 4 Sampling results of a test room. Given an office as (a), sampling human poses ran-
domly results in several poses at absurd locations, such as on the top of the shelf in (b). Our
algorithm, on the other hand, samples more relevant human poses in (c) and thus is able to
sample more locations for placing a monitor in front of the chair than other places in (d).

Fig. 5 Predicted arrangement for 17 objects in an empty rooms. Using our method, all the
objects are correctly placed in their preferred areas, such as the trashcan on the ground and
the books on the table. Some object-object relationships are also captured without modeling
them explicitly, such as the monitor being placed close to the keyboard and their relative
orientation to the chair.

most samples are near the keyboard. This shows that the monitor-keyboard rela-
tionship can be linked through human poses naturally, without needing to explicitly
model it.

Fig. 5 shows one sampled arrangements when placing in an empty room. Al-
though the monitor and keyboard are not perfectly aligned, they are still placed
roughly in front of the chair, with correct orientations. All the objects are placed in
the correct placing areas, such as trashcan on the ground and the desk-light on the
table. The trashcan being far from the chair is mainly due to some sampled human
poses around that location.
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(a) arranging filled rooms
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(b) arranging empty rooms

Fig. 6 Results of arranging filled rooms (top) and empty rooms (bottom), evaluated by the
difference in location and height in meters. The error bar shows one standard error.

We now give the quantitative results on the whole dataset in Fig. 6. Arrange-
ments are evaluated by two metrics: difference in location and height between the
prediction and the ground-truth. We compare our method with six baselines [13],
including using object context (‘obj’). We additionally present another algorithm
in which we combine the distribution of objects generated through human poses
O ∝ Ψhuman(O,H ;Θ) with a distribution generated through object - object con-
text O ∝ Ψobj(O,G) (G is the set of given objects) using a mixture model:
O ∝ ωΨhuman(·)+ (1−ω)Ψobj(·). We give a comparison of methods of using object
context only, human context only and their combination in our experiments.
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In the task of arranging filled rooms (shown in Fig. 6a), using object context
(‘obj’) benefited from the strong spatial relationships among objects and hence beat
other baseline methods, especially for the laptop, monitor, keyboard and mouse
types. However, our methods based on human context (last three bars) still outper-
formed the object context. They significantly improved placements of the objects
that have weaker connection to others, such as book, TV, decoration and shoes.

The task of arranging objects in an empty room (Fig. 6b) raises many challenges
when placing the first few objects as no object context would be available. Not sur-
prisingly, we found that the object-context method performed poorly, even worse
than using just height as a reference (‘height’). Although our methods also per-
formed worse than the previous scenario, they could still sample human poses based
on the furniture in the scene and thus predicted better locations for objects. Our ex-
periments also showed that the finite mixture model using human context (‘FMM’)
performed better than other baselines, but not as well as the ones our method
using DPs.

In both tasks, our human-context algorithm successfully predicted object place-
ments within 1.6 meters on average. The average error in height was only 0.1 meters.
By combining human- and object-context, the error was further reduced—indicating
that they provide some complementary context.

Robotic Simulation Experiment. In order to study how the desired placements
are affected by the robot constraints (see Section 3.3), we tested arranging these
synthetic scenes using Kodiak (PR2) in simulation. Table 1 shows that the location
errors increase only slightly for arranging filled rooms as well as empty rooms, but
the errors in height increase significantly. This is mostly because of the kinematic
constraints of the robot. How to incorporate robotic constraints into our current score
function is an interesting direction for future work.

Table 1 Comparison between the predicted placements with and without the robotic con-
straints (verified in simulation). Unit is meters. Note that only those objects that are physically
movable by the robot are considered.
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AVG
arranging filled rooms

location
without constraints 1.63 1.71 1.00 0.72 1.15 2.09 1.90 1.17 1.13 1.73 1.38 1.42
with constraints 1.87 2.26 0.96 0.69 1.63 2.45 2.38 1.03 1.34 2.01 1.24 1.62

height
without constraints 0.14 0.08 0.04 0.03 0.15 0.18 0.14 0.15 0.05 0.01 0.08 0.10
with constraints 0.32 0.52 0.14 0.17 0.27 0.42 0.33 0.31 0.17 0.18 0.22 0.28

arranging empty rooms

location
without constraints 1.65 1.74 1.15 0.82 1.19 2.21 3.17 1.32 1.47 1.38 1.61 1.61
with constraints 1.97 2.31 1.51 1.22 1.89 2.34 3.01 1.89 1.55 1.55 1.72 1.91

height
without constraints 0.14 0.12 0.10 0.05 0.19 0.22 0.14 0.19 0.12 0.00 0.10 0.13
with constraints 0.36 0.59 0.18 0.21 0.39 0.44 0.35 0.33 0.47 0.19 0.26 0.34
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4.2 Arranging Real Scenes

In this experiment, we compare the two algorithms—using object context [12] and
using human context [13]—in arranging real scenes. The dataset [12] contains 3
different offices and 2 different apartments where the placing areas such as tables,
cabinets, floor, and drawers were segmented out. We evaluated the quality of the
final placing layout by asking two human subjects (one male and one female, not
associated with the project) to label placement for each object semantically correct
or not, and also report a qualitative metric score on how good the overall placing
was (0 to 5 scale).

Results are shown in Table 2. Both methods arranged objects more meaningfully
than heuristic rules (not reported here, see [13]), i.e., books were stacked together,
while a keyboard, laptop and mouse were placed close to each other. The human
context, however, performed much better by, for example, placing shoes at the bot-
tom level of a shelf, while food and books are on the middle level or on a table. The
approach of using object context only sometimes put the laptop on a shelf making
it difficult for human to access.

Fig. 7 shows a comparison in arranging office2. Compared to using object con-
text, human context links the mouses and keyboard together as well as lamp and the
laptop. The laptop is now at the edge of the table and thus becomes accessible for
humans. Other objects are all close to the edge, unlike objects scattered uniformly
in the left figure making the bottle and mouse in the center hard to reach.

Table 2 Results on arranging five real point-cloud scenes (3 offices & 2 apartments). The
number of objects for placing are 4, 18, 18, 21 and 18 in each scene respectively. Co: % of
semantically correct placements, Sc: average score (0-5).

office1 office2 office3 apt1 apt2 Average
Co Sc Co Sc Co Sc Co Sc Co Sc Co Sc

obj context [12] 100 4.5 100 4.2 87 3.5 65 3.2 75 3.0 85 3.7
Human context (FMM) 100 3.5 100 2.0 83 3.8 63 3.5 63 3.0 82 3.2
Human context (DP) 100 5.0 100 4.3 91 4.0 74 3.5 88 4.3 90 4.2
Human (DP) + obj context 100 4.8 100 4.5 92 4.5 89 4.1 81 3.5 92 4.3

Fig. 7 Results of placing multiple objects on an office desk, when considering object con-
text [12] (left) and considering human context (right). While objects are scattered in the left
arrangement, the right arrangement prefers placing objects at the edge of the desk for easy
access.
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Fig. 8 Our Kodiak robot arranging several objects in three different scenarios

4.3 Robotic Experiments

We verified our approach on our Kodiak (PR2) robot in three scenarios: 1) placing
five objects (a beer bottle, cup, soda can, hand torch and shoe) in a kitchen with a
fridge and a table; 2) placing six objects (a mouse, a pen, a trashbin and three books)
in an office with a table and a bookshelf; 3) placing five objecs (a cup, tissue box,
book, soda can and throw pillow) in a living room with a couch and a coffee table.

Given the predicted arrangements, the robot uses a pre-determined grasp to
pick up every object, and executes the plan (see Section 3.3) for moving the
object to its designated location. Fig. 8 shows some screenshots of our robot
performing the object arrangements. We found that all the objects were placed
at the locations consistent with the simulation experiments. For the videos, see
http://pr.cs.cornell.edu/placingobjects/.

There were certain failures however caused by the limitation of our learning al-
gorithm. For example, the beer bottle was placed on the couch instead of the table.
This was because the physical properties of the surfaces (e.g., hard vs soft) are not
explicitly modeled. This may potentially be avoided by including semantic informa-
tion or appearance features of the furniture.

5 Discussion and Conclusions

We considered arranging multiple objects in complex placing areas, while following
human usage preferences. Motivated by the fact that objects are often arranged for
certain human activities, we developed an approach based on sampling meaningful
latent human poses and using them to determine objects’ placements. In detail, we
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designed a potential function for capturing the human-object relationship and used
Dirichlet processes to sample human poses and placements jointly. We verified our
approach on a variety of scenes in simulation as well as on a real robot.

In this work, we have focussed on learning the object arrangements from a hu-
man usage perspective. We believe that integrating the object detection, grasping
and placing jointly is a challenging direction for future work. Furthermore, one can
also potentially incorporate control and planning into our model in order to obtain
placements that are easily executed by the robot.
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