
Coordination Strategies for Multi-robot
Exploration and Mapping

John G. Rogers III, Carlos Nieto-Granda, and Henrik I. Christensen

Abstract. Situational awareness in rescue operations can be provided by teams of
autonomous mobile robots. Human operators are required to teleoperate the current
generation of mobile robots for this application; however, teleoperation is increas-
ingly difficult as the number of robots is expanded. As the number of robots is
increased, each robot may interfere with one another and eventually decrease map-
ping performance. Through careful consideration of robot team coordination and
exploration strategy, large numbers of mobile robots be allocated to accomplish the
mapping task more quickly and accurately.

1 Motivation

Projects like the Army Research Laboratory’s Micro-Autonomous Systems Tech-
nology (MAST) [1] seek to introduce the application of large numbers of inex-
pensive and simple mobile robots for situational awareness in urban military and
rescue operations. Human operators are required to teleoperate the current gener-
ation of mobile robots for this application; however, teleoperation is increasingly
difficult as the number of robots is expanded. There is evidence in human factors
research which indicates that the cognitive load on a human operator is significantly
increased when they are asked to teleoperate more than one robot [18].

Autonomy will make it possible to manage larger numbers of small robots for
mapping. There is a continuum of options as to the degree of shared autonomy
between robot and human operator [11]. Current robots employed in explosive ordi-
nance disposal (EOD) missions are fully tele-operated. At the other extreme, robots
can be given high-level tasks by the operator, while autonomously handling low-
level tasks [3] such as obstacle avoidance or balance maintenance. In this paper, our
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robot teams occupy the latter end of the spectrum; we imagine that the operator has
tasked the robot team to autonomously explore and map an unknown environment
while focusing on the high level task of looking for survivors.

In the multi-robot scenario, resources are distributed amongst a team of robots
instead of concentrated on one large and expensive machine. This distribution of-
fers a number of advantages and disadvantages over the single robot case. The dis-
tributed team is able to continue its mission even if some of the robots are disabled
or destroyed. A single robot can only explore or monitor at one location at a time;
however, the multi-robot team can provide situational awareness in many locations
at once. Unless the single robot is able to move much faster than the multi-robot
agents, the lone robot will be slower in performing the exploration and mapping
task. These advantages are taken for a multi-robot team at the cost of increased
complexity in communication and coordination.

As the number of robots is increased, each robot may interfere with one another
and eventually decrease the performance of the mapping task. Careful considera-
tion of exploration strategy and coordination of large numbers of mobile robots can
efficiently allocate resources to perform the mapping task more quickly and more
accurately.

Mobile robot simultaneous localization and mapping (SLAM) has been thor-
oughly addressed in the literature, see [2] and [6] for a detailed review of the history
and state-of-the-art in SLAM research. The specific techniques used in this paper
are based upon the Square Root SAM algorithm [4] [5] which uses the well-known
algorithms of linear algebra least-squares system solving to compute the map and
robot trajectory based on a set of measurements.

Multi-robot mapping and exploration was addressed in [9] and [17]. These pa-
pers build a map using up to 3 robots with a decision-theoretic planner which trades
off robot rendezvous operations with frontier exploration. These robots rendezvous
to determine their relative pose transforms to provide constraints to recover the final
map. In contrast, our approach does not require this rendezvous step because land-
marks are globally data associated between each robot on a central map coordinator.
The exploration strategy used is similar to our strategy called Reserve; however, we
will not use a rendezvous step and do not require a decision-theoretic planner.

2 Technical Approach

We use the Robot Operating System (ROS) from [12]. ROS provides interprocess
communication as well as coordination of sensor data with pose information. Our
robot algorithms are implemented as a distributed set of programs which run in
the ROS system. In addition, we make use of several implementations of common
mobile robot software components which are provided in the ROS distribution such
as motion planning, obstacle avoidance, platform control, and IMU and odometry
filtering.
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2.1 Mapping System

Our mapping system is based upon the GTsam library developed at Georgia Tech.
This library extends the Square Root SAM technique in [5] with sparse linear alge-
bra in a nonlinear optimization engine. We have extended the GTsam library with
a framework based upon the M-space formulation of Folkesson and Christensen [8]
called OmniMapper. OmniMapper is a map library based upon a system of plug-
ins which handle multiple landmark types simultaneously. We have used the Omn-
iMapper in the past to build maps using multiple types of landmarks such as walls,
doors, and objects [14] [13] [16]. This implementation builds maps of planar regions
corresponding to walls and tables from [15].

Fig. 1 OmniMapper

Each robot in the team builds a map locally with the OmniMapper and sends map
data to the map coordinator. Each robot can incorporate new landmark measure-
ments whenever it has moved far enough from the last pose where measurements
were made. In the current implementation this is set to 10cm. When a robot finishes
optimizing its local map with new landmark measurements, all relevant information
needed by the map coordinator is packaged and transmitted.

The information which is needed by the map coordinator to incorporate a new
piece of information from a team member consists of many components. First, the
sensor measurement data is needed. In the current implementation, this consists of
the extracted plane information consisting of a plane equation along with a convex
hull of points along the perimeter of the plane. This represents a significant com-
pression over an alternative scheme where all point-cloud data could be transmitted
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and processed at the master node. Secondly, the team member’s integrated odometry
is transmitted. This allows the master node to compute the odometric relative pose
since the prior landmark measurement data was incorporated; this is used to insert a
relative pose factor and also give initial conditions for data association. Finally, the
team member’s local map pose is transmitted. This is used by the master node to
compute a map pose correction. This correction is sent back to the team member so
that it knows it’s relative pose in the global map frame. This knowledge is needed
so that the team member can interpret exploration goals correctly.

The map coordinator maintains trajectories for each of the robots in the team.
Measurements from each robot are merged into one global view of the landmarks.
This is realized through a simple modification to the standard OmniMapper through
duplication of data structures tracking indexing data and pose information used for
interaction with GTsam into arrays. This implementation potentially allows for an
unlimited number of team members to build a map together.

Most modern SLAM approaches use a pose graph [10] which is generated via
laser scan matching in 2D or point-cloud ICP in 3D. This approach is effective
for single robot mapping; however, it has some drawbacks for larger multirobot
mapping. Scan matching and ICP algorithms are computationally intensive and
matching across many robots would rapidly become intractable. Also, point cloud
representations are large and their transport over a wireless link could be prohibitive
if the link is limited in capacity due to mesh network routing or environmental in-
terference. To address these limitations, our robots extract relevant, parsimonious
features from the environment and transmit them to the master node.

Each turtlebot in these experiments maps planar wall structures using a Microsoft
Kinect sensor. Planar segments corresponding to walls are extracted from point
clouds via a RANSAC [7] based algorithm [15]. Points are uniformly sampled from
the point cloud and any sufficiently large set of points coplanar with these three
points are selected as a plane and are removed from the point cloud. This process
is repeated until up to four planes are extracted or a fixed number of iterations is
reached. To improve the speed of plane extraction, the Kinect point cloud is com-
puted at QQVGA ( f rac18) resolution, which achieves 1̃Hz frame rate.

The Kinect sensor on each robot has a narrow field-of-view which is not ideal for
detecting exploration frontiers. To alleviate this problem, we incorporated a strategy
by which each robot will rotate periodically to get a 360 degree view of its surround-
ings. This data is synchronized with robot odometry to synthesize a 360 degree laser
scan. This synthesized laser scan is sent to the local mapper and forwarded to the
global mapper. At the global mapper, it is linked to a trajectory pose element and
used to populate an occupancy grid. This occupancy grid is re-computed after every
map optimization so that a loop closure will result in a correct occupancy grid map.
The frontier based exploration strategies detailed below use this occupancy grid to
find the boundary between clear and unknown grid cells.
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2.2 Exploration Strategy

Each robot team leader uses a frontier based exploration strategy similar to the one
used in [17]. An exploration frontier is defined on a costmap cellular decomposi-
tion where each cell has one of three labels: Clear, Obstacle, and Unknown. The
costmap is initialized as Unknown. Costmap cells are set to Obstacle corresponding
to locations where the Kinect sensor detects an obstacle in the environment. The
cells on a line between the obstacle cell and the robot’s current location are set to
Clear. Exploration frontiers are defined as Clear cells which are adjacent to at least
one neighbor where the label is Unknown.

Fig. 2 Global maps using the Reserve coordination algorithm described in this paper

The high level robot exploration goal allocation is centrally planned on the same
workstation where the global map is constructed. There are many choices which can
be made by the exploration planner when choosing which robot or group of robots
should move towards an exploration goal. We have chosen to employ a greedy strat-
egy by which the nearest robot or team is allocated to a goal instead of a more so-
phisticated traveling-salesman type of algorithm. We believe that this is appropriate
because the exploration goals will change as the robots move through the environ-
ment; re-planning will be required after each robot or team reaches an exploration
goal.

2.3 Coordination Strategy

The coordination strategy used between robot agents as well as the number of robots
are the independent variables in the experiments performed in this paper. The co-
ordination strategy refers to the proportion of robots which are dispatched to each
exploration goal. On one extreme, a single robot can be sent to explore a new goal;
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at the other extreme all available robots can be sent to a new goal. Larger robot
teams sent to a new exploration goal will improve availability of new agents at the
location of new exploration goals are discovered. The larger group has spare robots
which can be quickly allocated to explore new goals, such as those discovered when
the team moves past a corridor intersection or t-junction. If the group of robots al-
located to a navigation goal is too large, then the robots can interfere with each
other due to local reactive control of multiple agents with respect to dynamic ob-
stacles and limited space in corridors. The strategies selected for testing trade off
availability (robots are close and able to explore branching structure quickly) with
non-interference (robots do not get in each other’s way).

The first coordination algorithm is called Reserve. In this algorithm, all unallo-
cated robots remain a the starting locations until new exploration goals are uncov-
ered. When a branching point is detected by an active robot, the closest reserve robot
will be recruited into active status to explore the other path. This strategy has low
availability because all of the reserve robots remain far away at the entrance; how-
ever, it has minimal interference because the exploring robots will usually be further
away from other robots.

Fig. 3 A map built by three robots using the Reserve cooperative mapping strategy

The second coordination algorithm is Divide and Conquer. In this strategy, the
entire robot group follows the leader until a branching point is detected. The group
splits in half, with the first n

2 robots following the original leader, robot n
2 + 1 is

selected as the leader of the second group, and robots n
2 + 2 through n are now

members of its squad. Once there are n squads with one robot, no further divide op-
erations can be made and new exploration goals will only be allocated once a robot
has reached a dead-end or looped back into a previously explored area. This algo-
rithm maximizes availability, but potentially causes significant interference between
robots.

An example 3D map built by two robots as they approach a branch point can be
seen in figure 4(a). At this point, the robot team splits and each team member takes
a separate path, as seen in figure 4(b). The map shown is built concurrently with
local maps built on each robot. The global map is used to establish a global frame
of reference for robot collaboration message coordinates.
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(a) Two robots approach the intersection. (b) Two robots split and move past the in-
tersection

Fig. 4 An illustration of the Divide and Conquer exploration strategy. As the robots approach
an intersection, the team must split and recruit new partner robots from the reserved units.

3 Experiments

The setting for the multi-robot mapping task for this series of experiments consists
of a team of robots being introduced into a single entrance in an unknown envi-
ronment. Each robot is an inexpensive Willow Garage TurtleBot; a team of nine of
these robots is shown in figure 3. The TurtleBot was chosen for this application due
to its low cost and the ease of integrating large numbers of robots through ROS.
The TurtleBot platform is based on the iRobot Create base. The robots make mea-
surements of planes with a Kinect sensor, and use an onboard IMU together with
odometry to estimate ego-motion.

We evaluated the performance of various robot coordination strategies in the
multi-robot exploration and mapping task. An example scenario for the Divide
and Conquer cooperative mapping strategy can be seen in the panorama image in
figure 3.

We performed a series of experiments to demonstrate the performance of our two
cooperative mapping strategies. A total of 6 runs were performed for each coopera-
tion strategy, team size, and starting location. For each experiment run, the TurtleBot
team explored the environment from a wedge-shaped starting configuration, which
can be seen in figure 3. These experiments were performed in an office environment.
In order to measure the exploration and mapping performance in each location, we
chose specific starting locations which are labeled Base1 and Base2 in figure 3.
These starting locations were chosen because the area around the robot teams could
be blocked off so there is only one initial exploration frontier, directly in front of the
lead robot. This initial configuration was chosen to represent a breaching behavior
which would be needed for implementation of collaborative mapping in a hostile
environment.
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(a) A map built by seven robots in an experiment using the Reserve coopera-
tive mapping strategy.

(b) The same map shown from a different angle to demonstrate 3D
plane features which are used for map landmarks.

Fig. 5 Global maps gathered by a team of seven mobile robots
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Fig. 6 Our nine TurtleBots used in these experiments

Fig. 7 An example scenario for the experiments described in this paper. Three teams of two
robots are exploring the branching hallway structure in an office environment. In this illustra-
tion, the robots are using the Divide and Conquer cooperative mapping strategy.

4 Results

We performed a series of experiments for this paper which demonstrate team perfor-
mance based upon coverage in a mapping task on an unknown office environment.
Robot team sizes were varied from 2 to 9 robots. An map built with 7 robots at
TurtleBots using the Reserve strategy is seen in Figure 5(a). An image showing
the same final global map from a side view demonstrates the 3D plane features in
figure 2.3.

Each of the collaboration strategy and robot team size experiments were per-
formed from two starting locations. These starting locations are labeled Base1 and
Base2 in figure 3. A series of interesting locations was determined in advance by ex-
amining the building floor-plan; these points of interest are also marked in figure 3.
Each experiment run gets a score based on how many of these points of interest are



240 J.G. Rogers III, C. Nieto-Granda, and H.I. Christensen

Fig. 8 Our office environment where the experiments were performed. The areas labeled
Base1 and Base2 are the initial position of the robots. Red lines indicate artificial barricades
to restrict the initial exploration of the robot teams to simulate a breach entrance into a hostile
environment. Blue squares indicate the position of points-of-interest. Results are reported on
the number of these points-of-interest visited by the robot team.

visited and mapped before a time limit is reached. This score represents the effec-
tiveness of that algorithm and team size at providing coverage while exploring an
unknown map.

In the first experiment series from Base1 in figure 3, both strategies achieve re-
duced exploration coverage per robot as the team size is increased, as can be seen in
the graphs in figure 9. In this starting location, there is limited space to maneuver,
so both strategies generate significant interference between robots trying to move to
their goals. In several instances, pairs of robots even crashed into each other due to
the limited field-of-view of their sensors. We believe that the Divide and Conquer
strategy results in figure 9(b) indicate that the team was slightly more effective than
the Reserves strategy in figure 9(a). At the largest team size of 9 robots, the Divide
and Conquer strategy usually visited one additional point-of-interest more than the
Reserves strategy. Additional qualitative impressions are that the Divide and Con-
quer strategy explored the points-of-interest that it reached more quickly than with
the Reserves strategy. For both strategies, the best team size appears to be 6 robots
in this starting location.
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(b) Divide and Conquer

Fig. 9 Results from the first starting area
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(b) Divide and Conquer

Fig. 10 Results from the second starting area

In the second set of experiments, the robot teams were placed in the starting area
labeled Base2 in figure 3. As in the first experiment, the per-robot performance of
both strategies decreased as the number of robots were increased. This series of
experiments demonstrates a marked improvement of the Divide and Conquer strat-
egy over the Reserves strategy as can be seen in figure 10. The Divide and Con-
quer strategy causes more robots to be making observations of exploration frontiers
due to the fact that groups contain more than one robot. These additional observa-
tions of the frontier allow the Divide and Conquer strategy to find exploration fron-
tiers faster than the Reserves strategy, and therefore explore more points-of-interest.
The second experiment started from an area where there is more room to maneu-
ver. This allowed the Divide and Conquer strategy to have less interference since
the entire team moved together out of the starting area into the larger area before
any divide operations were performed. The Reserves strategy still had to initially
maneuver from the cramped starting location. As in the first experiment, the Di-
vide and Conquer strategy qualitatively explored the environment faster than the
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Reserves strategy. The best value for the number of robots is 6, which is the same
value found in the first experiment.

5 Discussion

We have presented experiments which evaluate two collaboration strategies which
can be used by teams of mobile robots to map and explore an unknown environ-
ment. We have also evaluated the impact of the number of robots on coverage in the
exploration and mapping task.

The first collaboration strategy, called Reserves keeps a pool of unallocated
robots at the starting location. A new robot is activated when there are more ex-
ploration frontiers than currently active robots. This strategy was intended to min-
imize the amount of interference between robot agents since robots would be far
away from each other during exploration. The results from our experiments do not
indicate that this strategy results in less interference than other strategies since per-
formance decreases more when more robots are added in some environments. The
Reserves strategy is significantly slower at exploring the environment than other
strategies.

The second collaboration strategy, called Divide and Conquer has all available
robots proceed in one large group. Once there are two exploration frontiers, at a
corridor t-junction for example, the team will divide in half and each sub-team will
follow one of the exploration frontiers. This process will be repeated with teams
dividing in half each time they see branching structure in the environment. It was
anticipated that this strategy would result in higher interference since robots would
be maneuvering close together; however, the increased availability of robots near
new exploration frontiers offsets this phenomenon.

Divide and Conquer appears to be a more effective strategy than Reserves for ex-
ploring and mapping an unknown environment. There are additional hybrid strate-
gies which could now be considered such as the Buddy System, which modifies the
Reserves strategy with teams of 2 robots instead of 1. We believe that this strategy
will mitigate much of the slowness of the Reserves strategy while still minimizing
interference.
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