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Abstract. Real-world sword-fighting between human opponents requires extreme
agility, fast reaction time, and dynamic perception capabilities. In this paper, we
present experimental results achieved with a 3D vision system and a highly reactive
control architecture which allows a robot to sword fight against human opponents.
An online trajectory generator is used as an intermediate layer between low-level
trajectory-following controllers and high-level visual perception. This architecture
allows robots to react nearly instantaneously to the unpredictable human motions
perceived by the vision system as well as to sudden sword contacts detected by
force and torque sensors. Results show how smooth and highly dynamic motions
are generated on-the-fly while using the vision and force/torque sensor signals in
the feedback loops of the robot motion controller.

1 Introduction

Born as a class project [1, 2], the idea of the “JediBot” is a robot that performs
sword fighting against a human opponent. The basic requirements for implementing
a sword-fighting robot are (i) a reliable visual perception system that detects mo-
tions of the opponent and its sword, (ii) a reactive motion generation and control
system for the robot to be able to immediately react to the opponent’s motion, and
(iii) compliant and reactive motion control capabilities for physical human-robot in-
teraction. Furthermore, appropriate attack and defense strategies are required that
make use of the three mentioned aspects.

Torsten Kröger · Ken Oslund · Tim Jenkins · Dan Torczynski ·
Nicholas Hippenmeyer · Oussama Khatib
Artificial Intelligence Laboratory at Stanford University, Stanford, CA 94305-9010, USA
e-mail: tkr@stanford.edu

Radu Bogdan Rusu
Open Perception, Inc. , 68 Willow Road, Menlo Park, CA 94025, USA

J.P. Desai et al. (Eds.): Experimental Robotics, STAR 88, pp. 155–166.
DOI: 10.1007/978-3-319-00065-7_12 c© Springer International Publishing Switzerland 2013



156 T. Kröger et al.

Fig. 1 Reactive motion generation and control during
physical human-robot interaction with “JediBot”

This paper describes (a)
the hardware and (b) soft-
ware system of “JediBot”, (c)
experimental results of human-
robot interaction during sword-
fighting, and (d) how readers
can replicate the system and
run experiments with their own
system set-up. Figure 1 illus-
trates the suggested setup: A
KUKA/DLR Lightweight Robot
[3] is equipped with a foamed
wooden sword, and a 3D cam-
era (MS Kinect, [4]) is used
to perceive the human opponent
and its sword. The two most
challenging parts that make use
of recent research outcomes are
3D Visual Perception and Online
Trajectory Generation.

3D Visual Perception. Based on underlying technology from PrimeSense [5], 3D
cameras such as Microsoft Kinect [4] have started to simplify 3D visual perception
procedures in robotics. Our approach to detect the opponents posture and sword in
unstructured environments operates on 3D data. One of the most popular descriptors
for 3D data is the Spin-image presented by Johnson et al. [6], which is a 2D rep-
resentation of the surface surrounding a 3D point and is computed for every point
in the scene. Two of the key technologies for online segmentation operations are
provided by FLANN (Fast Library for Approximate Nearest Neighbors, [7]) and
RANSAC (Random Sample Consensus, [8]). All required 3D perception methods
and algorithms for this task are provided by PCL (Point Cloud Library, [9,10]). How
these methods are applied is, for instance, shown in [11].

Online Trajectory Generation. Reactive online motion generation is required
to immediately react to motions of the human opponent and to contacts between
the robot’s and the opponent’s sword. Broquère et al. [12] published a method that
uses an online trajectory generator for an arbitrary number of independently acting
degrees of freedom. The approach is very similar to the one of Liu [13] and is
based on the classic seven-segment acceleration profile. The work of Haschke et
al. [14] presents an online trajectory planner in the very same sense as [15] does.
The proposed algorithms generate jerk-limited trajectories from arbitrary states of
motion. All required motion generation concepts for this task are provided by the
Reflexxes Motion Libraries [16, 17].
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Fig. 2 Overall control scheme of “JediBot”. It can be subdivided into three units: the visual
perception hardware and software (left), the real-time motion generation and control unit
(top), and the KUKA/DLR Lightweight Robot IV (bottom).

2 Technical Approach

Figure 2 gives an overview of the system’s hardware and software components,
which consist of three main blocks:

• hardware and software for visual detection of the human opponent its sword,
• a real-time motion generation and control unit, and
• the robot arm with a sword mounted to its hand (cf. Fig. 1).

The following three subsections describe these components, and Sec. 3 discusses
the interplay between them.

2.1 Human Opponent and Sword Detection

The hardware component of the JediBot vision system is a Microsoft Kinect sensor
which provides both a standard RGB color image and a stereo camera derived depth
image at up to 30 fps and 640× 480 pixels in resolution. The software component
is based on the Point Cloud Library (PCL) [9]. At startup the system goes through
an automatic calibration routine, in which the sword is placed in two perpendicular
positions which are known in the robot’s frame and then detected in the Kinect
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Fig. 3 Screen shots showing the precision and robustness of the RANSAC segmentation [8]
of the human’s sword (yellow) in different configurations

reference frame. This is done using the same algorithm that detects the opponent’s
sword (described bellow).

Multiple measurements are taken at each position and averaged to reduce noise.
Using this data, an affine transformation between the robot and Kinect reference
frames is calculated using functions built into PCL. Once the calibration routine is
complete, the entire point cloud is transformed into the robot frame as soon as it is
captured, so that the results of all further processing are automatically in the robot
reference frame.

To detect the sword, the point cloud is first filtered based on depth to eliminate
background points. Based on the calibration data, an HSV (hue, saturation, value)
color segmentation is performed to select points, which are approximately the same
color as the sword. Then a RANSAC algorithm is used to fit a line in three di-
mensional space to determine end points of the most stick-like object. Finally, the
length of the detected sword is compared to the expected length, and the detection
discarded if it is too long or too short to further reduce false positives. Figure 3 illus-
trates three sample results. The sword speed, calculated from its movement between
two or more successive frames, is also used because it proved to be the most reliable
method of detecting when an opponent begins their swing. This processing pipeline
is split across multiple threads to improve performance.

2.2 Online Trajectory Generation

The Online Trajectory Generation algorithms of [16] are contained in the Reflexxes
Motion Libraries [16,17]. They lets us compute synchronized motions for N degrees
of freedom from any state of motion Mi−1 at instant Ti−1 represented by position,
velocity, and acceleration vectors with N elements each,

Mi−1 = (�Pi−1, �Vi−1, �Ai−1) . (1)

The algorithm will transfer the system from this state of motion into the desired
target state
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Mtrgt
i = (�Ptrgt

i , �V trgt
i ,�0) (2)

under consideration of the current maximum values for velocity, acceleration, and
jerk,

Bi = (�V max
i , �Amax

i , �J max
i ) . (3)

The output values of the algorithm define the desired state of motion Mi at Ti =
Ti−1 + T cycle, where T cycle is the value of the control cycle time. After the transfor-
mation into actuator space, the values of joint position�qi and its derivatives are used
as command variables for the joint controller.

The values of �Amax
i are permanently updated using the forward dynamic model,

for which a constant maximum torque vector�τ max is assumed:

�Amax
i = �f

(
�qi, �̇qi, �τ

max) . (4)

As we will learn in Sec. 3, this will allow for the use of discontinuous input signals
Mtrgt

i of a switched system while permanently guaranteeing steady, jerk-limited,
synchronized robot motions for all N degrees of freedom:

∀ n ∈ {1, . . . , N} :

|nPi − nPi−1| ≤ nVi−1 T cycle + 1
2 nAi−1

(
T cycle

)2 ± 1
6 nJ max

i

(
T cycle

)3 ∧
|nVi − nVi−1| ≤ nAi−1 T cycle ± 1

2 nJ max
i

(
T cycle

)2 ∧
|nAi − nAi−1| ≤ nJ max

i T cycle ∧ |nVi| ≤ nV max
i ∧ |nAi| ≤ nAmax

i .
(5)

Because of this property, the trajectory generation can guarantee that it will send
control commands to the robot at perfectly regular intervals (a requirement for the
robot to opperate properly) even if it recieves target states of motion at highly irregu-
lar intervals. Thus, the image processing hardware and software does not necessarily
have to be real-time capable, and its interface with the real-time trajectory generator
can be very simple, consisting only of sending the desired states of motion whenever
they become available. (cf. Fig. 2). A sample trajectory for three degrees of freedom
is shown in Fig. 4.

2.3 Robot Hardware

A KUKA Light-Weight Robot IV [3, 18] was controlled through the Fast Research
Interface [19, 20] with a control cycle time of T cycle = 1ms. The simplicity of our
setup is based on the control scheme of Fig. 2. Its three components as well as their
interfaces were implemented with a focus on overall computational efficiency. The
robot end-effector only consists of a foamed wooden sword (cf. Fig. 1).



160 T. Kröger et al.

Fig. 4 Position and velocity progressions of Mi and M trgt
i during a motion in defense mode.

While M trgt
i is only updated sporadically, the computed trajectory is provided at a rate of

1 KHz, such that the robot reacts instantaneously to sensor signals.

3 Sword Fighting Strategies

In order to implement appropriate sword fighting strategies using the three compo-
nents described in the previous section, four control modes have been implemented:
defense, attack, contact, and hover.
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Defense (def) The robot defends itself by attempting to block attack swings of
the human. The pose of the human’s sword, obtained by the vision
system, is used to determine the desired position and orientation of
the robot’s sword. When the human’s sword is within a specified
defense range and the velocity of that sword in the direction of
the robot exceeds a certain threshold value, the robot moves to the
blocking position.
In the blocking position, the midpoint of the robot’s sword is placed
on the defense line, which is a line between the midpoint of the hu-
man’s sword and a predefined defense point which represents the
center of the robot (cf. Fig. 5). The robot’s sword is oriented such
that it is orthogonal to both the defense line and the human’s sword.
Mathematically speaking, the robot’s sword is oriented parallel to
the direction of the cross product between the directions of the hu-
man’s sword and the defense line. As the human’s sword moves in
towards the robot’s sword, the robot will push its sword proportion-
ally outward along the defense line until they meet.

Attack (att) When the opponent’s sword is beyond the defense range, the robot
executes periodic attacking motions, swinging toward the opponent
from a randomly selected direction.

Contact (con) Detection of collisions between the human and robot swords is
done using the torque sensors in each of the robot’s joints. If the
human blocks an attack motion, the robot detects this though the
increased torque in its joints, and it immediately recoils, returning
to the defensive position. This mode is activated in the same control
cycle contact is detected.

Hover (hov) If no human sword is detected, the robot enters idle mode, where
the bot sword just hovers around a specified position and orienta-
tion until a human oponent’s sword is detected.

In the scheme of Fig. 2, the discrete value of

σi ∈ {de f , att, con, hov} (6)

selects the signal source of Mtrgt
i that is used to feed the online trajectory generator:

Mtrgt
i =

⎧
⎪⎪⎨

⎪⎪⎩

Mde f
i if σi = de f

Matt
i if σi = att

Mcon
i if σi = con

Mhov
i if σi = hov

. (7)

σi can change spontaneously based on the fight strategy and on sensor signals. For
instance, if contact is detected, σi = con will be applied in the same control cycle.
How the value of σi is selected and how the components of Fig. 2 interact, will be
described in Sec. 4.
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Fig. 5 During defense mode, the midpoint of the robot’s sword (red) lies on the defense line,
which is a line between the midpoint of the human’s sword (green) and a predefined defense
point

In order to provide a compliant behavior of the end-effector while both swords
are in contact, the stiffness vector�ki is adjusted. Assuming a contact was detected at
a time instant Tc, the following function is used:

�ki =

⎧
⎨

⎩

�kmin +
(

Ti − Tc
T recover

) (
�kmax − �kmin

)
if Ti ≤ Tc + T recover

�kmax if Ti > Tc + T recover
.

(8)
T recover is the time until the maximum stiffness�kmax is achieved again. As long as
the contact detection indicates contact, Tc is set to Ti. The damping vector �di remains
constant.

4 Robot Sword Fighting Experiments and Results

The key aspect for achieving a good human-robot interaction behavior during the ex-
periments is an appropriate motion strategy. The simplicity and very high reactivity
of the proposed control scheme allow the system to freely realize different strategies.
Based on the usage of multiple sources for desired states of motion Mtrgt

i , the sys-
tem switches between them depending on the current state, strategy, and situation.
This allows the robot make instantaneous use of sensor signals.

For example, if contact is detected at an instant Ti (σi = con), Mcon
i and an ad-

justed value of�ki will be applied in the same control cycle already. After the re-
coiling motion is completed, the robot can either attack again or switch to defend
mode.

The overall strategy defines when and how to set the selection variable σi. The
most appropriate behavior has been achieved with defense mode as default strategy.
If the human’s sword is beyond the defense radius, then the attack mode is initi-
ated. The contact mode is only active while the swords are in contact after an attack



JediBot – Experiments in Human-Robot Sword-Fighting 163

Fig. 6 Position progressions of Mi and M trgt
i while switching between different modes over a

period of 23 s. Although arbitrary switching procedures are triggered by σi (i.e., M trgt
i = Mσ

i
is not steady), a jerk-limited and executable motion Mi is generated online in each control
cycle (cf. Fig. 4). The switching sequence of σi is def–att–con–def–att–con–def.

motion (cf. eqn. 8). Figure 6 shows the desired and the achieved steady progres-
sions of the robot’s end-effector position that is achieved during arbitrary switchings
of σi.

The vision processing chain on the left of Fig. 2 typically runs at rates of 10 –
15 fps, but since some parts of the processing pipeline take place in parallel, the
latency is up to 300 ms. The need to calculate sword speed between two successive
frames and other delays in the sword command and control further increase the
latency. The total system latency between the opponent beginning a swing with their
sword and the beginning of robot motion in response is typically around 500 ms.
While it is possible for the opponent to move faster than this, it is commonly fast
enough for the robot to respond.

As indicated in Fig. 3, the quality of recognition is very high, with very few false
positives or dropped frames. If the sword was pointed straight at the Kinect, such
that only its tip is visible, it could not be detected, but it typically only needs to
be angled about 15 degrees away from the camera to allow detection. By properly
positioning the camera it is possible to ensure that the sword would rarely pass
through this narrow cone, and when it does, it would only be for a very brief amount
of time.

Based on the visual sword detection, the desired defense pose and velocity
(Mde f

i ) are continuously updated. As indicated in Fig. 4, the image processing loop
runs at a different rate than the robot motion controller (10 – 15 Hz and 1 KHz); as
soon as a new value of Mde f

i is provided, it will be immediately applied in the next
robot control cycle.
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5 Conclusions

Target State Switching

Real-world experimental results of a switched-system using a selection variable (σi)
to select between different desired target states of motion were shown (cf. Fig. 6).
Despite its simplicity, this approach promises to simplify and improve sensor-based
robot motion control, because robots can react instantaneously and in different ways
to unforeseen sensor signals and events.

Human-Robot Interaction

Using the approach of target state switching, jerk-limited executable motions are
generated online, such that robots can permanently respond to human motions de-
ploying sensor signals in the feedback loops.

Reliability and Robustness

The recognition of the opponent’s sword based on camera data of a MS Kinect 3D
camera using segmentation procedures of the Point Cloud Library (PCL) works very
reliably. If there is a significant translational and/or rotational error or if there is a
dropped frame, a jerk-limited and executable motion will always be generated by the
Reflexxes Motion Libraries, such that the system is stable despite erroneous sensor
signals. The overall control scheme reacts deterministically and runs very robustly
because only a joint position or impedance controller is required.

Replicable Implementations and Experiments

The two main software components, the Point Cloud Library (PCL), the Reflexxes
Motion Library, and the interface software for the KUKA/DLR Lightweight Robot
are freely available [10,17,20], such that the proposed control scheme can be easily
duplicated with very reasonable efforts. If other robots are used, only a trajectory
tracking controller is required. For visual perception, only a MS Kinect 3D camera
is required [4].

Implementation Time: Three Weeks

The original “JediBot” was entirely created by students of the class CS225A at Stan-
ford University [1] within only three weeks. Despite many iterations to improve the
system and to exhibit it at the 2011 IEEE International Conferences on Intelligent
Robots and Systems, the control scheme of Fig. 2 remained with relatively few mod-
ifications. Using [10, 17], the scheme is very simple and straight-forward to imple-
ment even for students with limited experience in robotics. The websites of [10,17]
provide tutorials and examples for the presented matter.
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