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Abstract. We consider the assembly of a three dimensional (3D) structure by a team
of heterogeneous robots capable of online sensing and error correction during the
assembly process. The automated assembly problem is posed as a general 3D tiling
problem where the assembly components/tiles consist of various shapes and sizes.
For a desired 3D structure, we first compute the partition of the assembly strategy
into Nc sub-components that can be executed in parallel by a team of Nc assembly
robots. To enable online error detection and correction during the assembly pro-
cess, mobile robots equipped with visual depth sensors are tasked to scan, identify,
and track the state of the structure. The objective is to enable online detection of
missing assembly components and reassignment of these components to the team
of assembly robots. We present the development of the planning, sensing, and con-
trol strategies employed and report on the experimental validation of these strategies
using our multi-robot testbed.

1 Introduction

Distributed autonomous assembly of general two (2D) and three dimensional (3D)
structures is a complex task requiring robots to have the ability to: 1) sense and
manipulate assembly components; 2) interact with the desired structure at all stages
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of the assembly process; 3) satisfy a variety of precedence constraints to ensure as-
sembly correctness; and 4) ensure the stability and structural integrity of the desired
structure throughout the assembly process. While the distributed assembly problem
represents a class of tightly-coupled tasks that is of much interest in multi-robot sys-
tems [1], it is also highly relevant to the development of next generation intelligent,
flexible, and adaptive manufacturing and automation.

The execution of tightly-coupled tasks by multi-robot teams has mostly focused
on cooperative grasping and manipulation [2, 3]. These works, however, do not ad-
dress the challenges imposed by the need to satisfy specific precedence constraints
during assembly to ensure correctness and stability of the desired structure. Existing
approaches to distributed assembly can be broadly classified as micro/nano-scale or
self-assembly and macro-scale assembly. In self-assembly, the objective is to devise
local rules with global guarantees on assembly of stochastically interacting compo-
nents [4, 5, 6]. Macro-scale assembly approaches include [7, 8]. In [7], assembly is
achieved through a combination of robots with limited sensing and actuation capa-
bilities and assembly components capable of storing and communicating location
information with the robots. The focus of this work is on designing a set of con-
sistent local attachment rules that ensure completeness and correctness of the as-
sembly. In [9, 10], a workload partitioning strategy is presented to enable a team of
robots to achieve parallel construction at the macro scale. The approach maintains
a Voronoi decomposition of the structure based on the assembly robots’ locations
by minimizing the total difference in the masses of the assembly components in
each cell.

In this work, we pose the 3D assembly problem as a three dimensional tiling
problem where the team of robots is given a description of the desired structure.
The structure is obtained by tiling, or connecting, a collection of assembly com-
ponents of varying shapes and sizes. The assembly components attached to each
based on predefined attachment sites and may differ depending on the geometry
and size of the components. Given a desired 3D structure, we build on our previ-
ous work [11] to determine an allocation of the assembly task into subcomponents
to enable parallel assembly by a team of autonomous robots. The objective is to
determine the appropriate partition of the assembly task such that local attachment
constraints, specified by the geometry of adjacent assembly tiles/components, and
global precedence constraints, specified by structural stability requirements can be
satisfied while minimizing workload imbalance among the team. While we have
shown that the proposed partitioning strategy ensures the correctness of the dis-
tributed assembly strategy, the allocation is performed a priori and thus is unable to
cope with execution time assembly errors, e.g., incorrect and/or missed placements.
To enable online error detection and correction of the assembly process, we consider
the addition of a small number of mobile scanning robots capable of providing real-
time visual feedback of the state of the structure during the assembly process. The
objective is to enable the mobile scanning robots the ability to inform the assembly
robots, in real-time, when an assembly tile/component has been incorrectly or not
placed. Our main contribution is to experimentally show that a heterogeneous team
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of assembly and scanning robots can improve the robustness and enable the online
adaptation of any given assembly strategy.

The paper is organized as follows: We describe our methodology in Section 2.
The experimental setup and results are presented in Section 3. The experimental
insights and lessons learned are reported in Section 4. We conclude with directions
for future work in Section 5.

2 Methodology

Let Sd denote the desired 3-D structure and M denote the number of distinct as-
sembly components/tiles/blocks where ti denote a component/tile/block of type i.
We will assume that each tile of type i can be described as a general polytope and
that the robots know the geometries of the different tile types a priori. Furthermore,
every tile of type i will have a fixed number of attachment sites. These attachment
sites are locations where tiles can mate and lock onto other tiles.

To assemble the structure Sd , we assume a team consisting of Na assembly robots,
and Ns scanning robots, equipped with visual depth sensors. The scanning robots
will be tasked to sense the state of structure during the assembly process. The as-
sembly robots will use the information provided by the scanning robots to ensure
correct placement of their respective tiles ti.

2.1 Task Partitioning

Given Sd and Na assembly robots, we employ the approach described in [11] to de-
termine an appropriate partitioning of the assembly of Sd into Na tasks that can be
executed in parallel. The objective is to arrive at a partition that maximizes paral-
lel execution of the assembly while minimizing workload imbalance between the
robots without violating any of the placement precedence constraints between the
assembly components. The approach uses Dijkstra’s algorithm with multiple start-
ing nodes to generate a set of assembly tasks for each robot. This results in a par-
titioning of components of Sd such that each robot’s task is composed of tiles that
are closest to the starting node. The starting nodes are chosen to be equally spaced
along the exterior. This initial allocation strategies is then improved with a second
phase of node trading to yield a more balanced workload among the robots. The
last step of this approach is the generation of an assembly sequence for each robot
that minimizes the time a robot must wait for the placement of supporting tile by
another robot. This is achieved by maximizing the time between a placement and
the placements of any supporting tiles.

It is important to note that the approach described in [11] is a partitioning strategy
that is executed a priori and generates a distributed assembly strategy for a team Nc

robots given Sd , and {t1, . . . , tM}.
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2.2 Visual Feedback

To provide information to the robots about the current state of the physical structure
Sp as it is being assembled, we implement a feedback system using visual depth
sensors. The objective is to use online sensing to compare Sp with the robot’s in-
ternal model of the currently assembled structure Sa, and to provide control data to
the building process, based on differences between Sp and Sa. To keep an updated
representation of the state of Sp, we add a sensing robot to the system, which is
equipped with a depth sensor Kp, in our case the Microsoft Kinect sensor. The robot
constitutes the system for visual inspection (VI). The VI-robot is independent of
construction robots. It runs a prioritized exploration algorithm, which aims to map
and update the dynamically changing physical structure with priority on currently
targeted building regions. The input to this system is the internal structure Sa (Figure
1(b)), which models what the system is expected to see from the physical structure
Sp (Figure 1(a)), and the raw visual sensor data (3D point cloud, Figure 1(c)), the
output is a state for every block ti of the internal structure Sa, denoting if the tile
is present, missing, or occluded (currently no visual information about the tile is
available).

Before an assembly robot adds a part ti to the physical structure Sp, it queries the
VI-system, if the targeted region data is updated and Sp matches the expected state
of Sa. For this comparison, we simulate a robot internal system containing Sa and
a virtual Kinect sensor Kv. Using ray-tracing, we simulate a Kinect scan of Sa. The
outcome of the simulated ray tracing is compared with the real scan of the physical
Kinect Kp to compute the state for each tile ti ∈ Sa. The following sections will
explain the VI system in more detail.

2.2.1 Coordinate System Matching

To compare the outcome of the physical scan and the virtual scan, we must find
Pv, the pose of Kv in the virtual system. If we let Pp denote the pose of Kp in the
physical system, then Pv has to equal Pp. The positioning is performed in multiple
steps consisting of an overhead localization system, a floor based correction, and
an Iterative Closest Point (ICP) alignment. In the following we use a right handed
coordinate system. The horizontal plane is described by (x,z), height is described
by the y-axis.

First, an overhead localization system gives an estimate of the horizontal (x,z)
position of Kp. This includes the (x,z) coordinates as well as the yaw α , i.e. the
rotation angle around the y-axis. The overhead localization system is provided by a
network of cameras with errors in (x,y) below 5 cm and angular errors in α of ¡10
degrees.

To complete Pp, the missing pose-parameters y (the Kinect’s height) and β ,γ
(pitch and roll, i.e. rotation around x and z axis respectively) are determined by a
floor-based correction. We perform floor detection in the point cloud Cp resulting
from the physical scan. Since the floor in the physical system defines the x−z plane,
a transformation Tf , which aligns the floor’s normal with the y axis of the virtual
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system completes the estimate of Pp. We compute Tf by regression of the floor
points to their projections in the x− z plane (point to plane correspondence). As
such, we note that Tf has no y-rotation component, i.e. the Kinect’s yaw, as previ-
ously determined by the overhead system, is not altered by an otherwise ambiguous
rotation. In addition, we re-compute the translational part of Tf in the x− z plane,
such that only the vertical position of Kv is affected.

While there are errors in the localization and ground plan position estimates and
noise in Cp, they provide a sufficiently good starting point for an Iterative Closest
Point (ICP) alignment [12]. We use Pp as a starting estimate for Pv, therewith we
also transform Cp: we set Cp ← Tf Cp. We perform a 6D (3 location parameters, 3
directional parameters) point to plane ICP, with the goal to align Cp to Sa. ICP is
a well known technique in robotics and computer vision, successfully applied to
align (3D) point clouds, especially for robot mapping [13]. Given two point clouds
C1 and C2, it finds, in an iterative way, a (locally) optimal transformation Tc that
minimizes the squared sum of distances between points in C1 and their iteratively
re-determined closest neighbors in TcC2. ICP is known robust and fast as long as
a good starting estimate of the point-poses is provided. In practice, the previously
described steps to compute Pp proved to be sufficient as a starting point.

We perform a fast point-to-plane ICP version: C1 ⊂Cp originates from the phys-
ical scan Cp, and consists of a subset of points, being candidates for points belong-
ing to Sp. C2 is iteratively generated as the projection points of C1 onto the virtual
structure Sa. Internally, Sa is represented as a set of planar patches, describing the
geometry of the tiles ti. Storing the tiles of Sa together with a hierarchy of axis
aligned bounding boxes (AABB) allows for fast computation of the projections of
C1 onto Sa. The hierarchy is given naturally: we store an AABB for the structure Sa,
for each tile ti ∈ Sa and each planar patch p ∈ ti. Using this hierarchy of bounding
boxes, C1 results in a relatively small subset of Cp. In addition, we omit points that
belong to the floor, as determined by the floor detection step. A single Kinect scan
in hi-res (640 x 480) contains about 300000 points, the typical point cloud of can-
didates describing reflections from the structure Sp, after filtering, typically reduces
the number of points to less than 10000. We limit our ICP to a maximum of 10 iter-
ations. ICP results in TICP, an accumulated rotation and translation to align C1 to Sa.
When we apply TICP to Pp, this reduces pose errors from the former computation.
We set Pv = TICPPp. See Figure 1(d) for the result of this step.

ICP not only provides the pose Pv of Kv in the virtual system, but also the pro-
jection points C̄1 of C1 onto the structure Sa. We therefore compute a connection
between the physical point cloud and the virtual structure. In fact, for each tile ti
in Sa, we can determine how many projected points, called physical support points
si ⊂ C̄1 of ti are projected on ti. The set of support points tells us, if a tile ti of the
virtual structure Sa is seen in the physical world. A tile ti with a sufficient number
of support points is present. However, the converse argument is not valid, since a
tile without support could be physically present, but occluded. The next step, ray
tracing, solves this problem.
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2.2.2 Ray Tracing

This step determines the set of reflection points of a scan of the virtual Kinect Kv

with pose Pv of the virtual building Sa. We position the virtual Kinect at pose Pv

and simulate a ray-tracing using the Kinect’s optical properties (resolution, view
angles). Again, since the virtual building Sa is stored using planar polygons and
a hierarchy of axis aligned bounding boxes, the ray intersection can be performed
very efficiently. For each ray, we compute the closest intersection with a tile ti from
the Kinect, resulting in a virtual point cloud Cv. For each point in Cv, we know
the supported tile ti (i.e. the tile the generating ray intersected with). Ray tracing
determines the support sets in the virtual system, that is, the support that we should
see under the condition Sa = Sp. In contrast, C̄1 determines the real support, i.e. the
support we do see. See Figure 1(e) for the result of the ray tracing step.

2.2.3 Tile Classification

Differences in support from Cv and C̄1 respectively determine if a tile is classified
as present, missing, or occluded.

For every tile ti, denote the number of physical and virtual support points by pi

and vi respectively. Define r as the minimum ratio between pi and vi, r =min( vi
pi
, pi

vi
),

tr is a threshold value for this ratio, set to 0.7. For our purpose, it proved to be
sufficient to only compare the number of support points of each tile, i.e., we are not
explicitly using any geometric differences. Support below a threshold of 100 points
is set to 0.

The state of a tile ti of Sa reflects its presence in the physical structure Sp. We
determine this state as follows:

• vi = 0⇒ the tile is occluded.
• vi �= 0 and pi = 0⇒ the tile is missing.
• vi �= 0 and pi �= 0 and r ≤ tr ⇒ the tile is missing. This case implicitly tests

geometric differences.
• vi �= 0 and pi �= 0 and r > tr⇒ the tile is present.

If the state of a tile ti is “missing”, the building robots have to adjust. “Present”
signals, that ti ∈ Sa and ti ∈ Sp at the expected position, the building process can
continue. If a tile is in state “occluded’, the VI-robot has to re-scan the building
from a different position before the building process can proceed. See Figure 1(f)
for an example.

2.3 Online Error Correction

The VI-robot(s) is responsible for assigning the replacement of any missing tiles it
discovers. It does this by managing an auction for each block that should have been
placed but is absent. Each assembly robot sends a message to the VI-robot(s) after
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Vision Feedback System. (a) Physical structure Sp (b) Virtual structure Sa. Note that
Sp and Sa differ in this example: the long rectangle (front right) in the virtual structure is not
present in Sp, it is replaced by a small cube. In the building process, this is an example of
a missing/incorrect tile. (c) Green points show raw input data Cp from the physical Kinect
sensor Kp. The Kinect’s pose Pv in the virtual system was determined by the overhead po-
sitioning system. This figure shows the coordinate matching before floor based correction
and ICP (d) After floor-based correction, ICP and candidate filtering: the yellow dots show
the pose-corrected raw kinect data C1, aligned to the virtual building. Points of the original
raw data which were unlikely to support the structure were removed (floor- and bounding box
based filtering). (e) Ray tracing: the red lines show some rays of the simulated Kinect Kv scan
to determine the visibility of tiles ti ∈ Sa. Yellow dots show the aligned real data C1, green
dots the result of the virtual scan Cv. The difference in support for each tile from yellow and
green dots (real/virtual support points) is used to determine the state of each tile. (f) Result:
Green tiles: present in Sa and Sv. Yellow tile: occluded (please note that this tile is occluded
from view point Pv, as seen in (e). Here we rotated the view to make it visible). Red tile:
Missing in Sp. The vision system correctly identified the front right rectangle as missing.
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placing a tile. The VI-robot monitors these messages to maintain a state vector q,
where qi is 1 if the block has been placed and 0 otherwise. After each placement,
the VI-robot reports a sensing vector qs

j, where qs
j is 1 if the block is definitely

present, −1 if it is missing, and 0 if the presence or absence of the block cannot
be determined. Then, if qi ∗ qs

j = −1, a block that a robot claims to have placed
is determined to be missing. Once the error has been detected, the scanning robot
sends a message to inform the assembly robots that the block is missing and asks
for bids to determine which robot will replace the missing block. Each robot then
constructs a bid based on the following criteria:

bi = wi−A∗ ci+B∗ di j, (1)

where bi is the bid of the ith robot, wi is the remaining workload of the ith robot, ci

is the number of blocks still to be placed that are directly supported by the missing
block, and di j is the distance between the missing block and the ith robot’s cache.
The constants A and B are weights that can be optimized experimentally.

3 Experimental Validation

3.1 Setup

To evaluate the performance of the proposed online error detection and correction
strategy, we implemented the proposed distributed assembly strategy on our multi-
robot assembly testbed. The testbed consists of two mini-mobile manipulators (M3
robots), or Nc = 2, shown in Figure 2, each equipped with an iRobot Create base,
a Crustcrawler 5 DOF arm, 802.11b wireless communication, and a Hokuyo URG
laser range finder (LRF). The LRF was used by the assembly robots to detect, pick,
and place the tiles during the assembly process. In addition to the two M3 robots,
the testbed included one scanning robot equipped with a iRobot Create base and
a Microsoft Kinect visual depth sensor. Overhead localization for the robots was
provided using two visual cameras.

Fig. 2 Team of two assembly robots and one VI-robot with a partially completed structure
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Each robot was given the global position of the structure’s center and the posi-
tions of their respective parts cache. The assembly parts were plastic tiles of various
shapes and sizes (side lengths from 4−17 cm), each with a given set of magnetic at-
tachment sites (see Figure 3(a)). Each robot was assigned their respective assembly
plans determined by [11]. The assembly plans consisted of a list of tile identifiers in
the computed assembly order. Distributed implementation of the plan was achieved
by encoding the immediate supports for each component in the plan to ensure robots
wait for the placement of a missing support tile by another robot before placing their
parts.

The assembly tiles were grouped by type and placed in predefined locations in
the workspace. The idea is to have a separate parts cache for each tile type. In our
experiments, we considered the distributed assembly of 3D structures composed of
14 tiles with 5 distinct tile types. Figure 3(b) shows the desired structure for the
experiment. To simulate missed placements, random assembly tiles were removed
at various times during the assembly process.

(a) (b)

Fig. 3 (a) Sample assembly tiles. (b) Desired structure to be assembled.

3.2 Results

Fourteen experimental trials were run on the scanning robot for the desired structure
shown in Figure 3(b). During each trial, one or more random assembly tiles were
removed at different parts of the assembly process. Figure 4 shows the results of
one of the experimental trials where the missing tile was successfully detected by
the scanning robot. Out of twenty-two removed blocks, the scanning robot was able
to successfully detect twelve of the missing tiles and reported undetermined for
the other ten. There were no false positives during these trials, and only one false
negative where a tile was reported as missing when it was actually present. The
smaller tiles (square and triangle) were always reported as undetermined, while the
larger tiles were always detected as missing after they had been removed in these
trials.
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(a) (b)

Fig. 4 (a) Tile removed. (b) Missing tile reported by the scanning tile.

Table 1 summarizes the assembly partition obtained at the start of an experimen-
tal trial for each robot. The tiles allocated to each robot are shown in the order in
which they are supposed to be placed. Table 2 shows the updated assembly alloca-
tion as tiles are removed during the experiment, including the workload reallocation
after the detection of errors.

Table 1 Initial Allocation for the 3D Structure in Fig. 3(b)

Robot 1 Tile ID Robot 2 Tile ID
Long Rectangle 3 Trapezoid 7

Trapezoid 6 Octagon 5
Octagon 4 Square 8
Square 9 Square 10

Long Rectangle 11 Long Rectangle 12
Triangle 13 Triangle 14

4 Experimental Insights and Lessons Learned

The execution of complex tasks by a team of heterogeneous robots in a complex
and dynamic environment with limited resources poses significant challenges. Most
existing assembly strategies do not explicitly address the impact of sensing and ac-
tuation noise on the performance of a team of autonomous robots tasked to assemble
complex three dimensional structures in an actual physical space. In our work, we
consider the real-time on-board sensing requirements necessary for online adapta-
tion of any distributed assembly strategy.
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Table 2 Allocation After Detection of a Missing Tile

Robot 1 Tile ID Robot 2 Tile ID
Long Rectangle 3 Trapezoid 7

Removed tile 7
Trapezoid 6
Octagon 4 Trapezoid 7

Removed tile 4
Square 9 Octagon 5

Removed tile 5
Octagon 4 Square 8

Removed tile 8
Octagon 5

Long Rectangle 11 Square 10
Triangle 13 Long Rectangle 12

Removed tile 13
Square 8 Triangle 14

Triangle 13

In our experimental setup, we considered two types of real-time on-board sens-
ing: 1) the ability to localize the individual assembly tiles for pick-up and placement
by the assembly robots, and 2) the ability to determine the state of the assembly
structure during the entire assembly process. In both cases, the relative small size of
the assembly tiles in relation to the sensing and actuation precision of the actuators
and sensors used in the system posed significant engineering challenges. However,
the ability to overcome these limitations at the small scale suggests that one can be
more confident in the performance of the algorithms when employed on larger full
scale systems.

5 Future Work

In this work, we presented a distributed 3D assembly strategy with online visual
feedback to enable realtime error detection and correction. Our approach enables the
online verification and adaptation of general 3D assembly strategies. An immediate
direction for future work is to improve the visual feedback system to provide more
detailed assessment of the state of the assembly structure. In particular, the reduction
of false negatives by visually inspecting the structure via different viewpoints. A
second direction for future work is to extend the visual feedback system to enable
identification of incorrect assembly placements as well as missing tiles. Finally, we
would like to enable online adaptation of the assembly strategy in the presence of
incorrect tile placements. This, in conjunction with the visual feedback system, can
significantly increase the robustness and adaptability of the system.
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