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Abstract We discuss the ground state properties of matter in outer and inner crusts of
neutron stars under the influence of strong magnetic fields. In particular, we demon-
strate the effects of Landau quantization of electrons on compositions of neutron star
crusts. First we revisit the sequence of nuclei and the equation of state of the outer
crust adopting the Baym, Pethick and Sutherland (BPS) model in the presence of
strong magnetic fields and most recent versions of the theoretical and experimental
nuclear mass tables. Next we deal with nuclei in the inner crust. Nuclei which are
arranged in a lattice, are immersed in a nucleonic gas as well as a uniform background
of electrons in the inner crust. The Wigner-Seitz approximation is adopted in this
calculation and each lattice volume is replaced by a spherical cell. The coexistence of
two phases of nuclear matter—liquid and gas, is considered in this case. We obtain
the equilibrium nucleus corresponding to each baryon density by minimizing the
free energy of the cell. We perform this calculation using Skyrme nucleon-nucleon
interaction with different parameter sets. We find nuclei with larger mass and charge
numbers in the inner crust in the presence of strong magnetic fields than those of
the zero field case for all nucleon-nucleon interactions considered here. However,
SLy4 interaction has dramatic effects on the proton fraction as well as masses and
charges of nuclei. This may be attributed to the behaviour of symmetry energy with
density in the sub-saturation density regime. Further we discuss the implications of
our results to shear mode oscillations of magnetars.
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1 Introduction

Neutron star crust is a possible site where neutron rich heavy nuclei might reside.
Extreme physical conditions exist at the crust of a neutron star. The temperature
is ∼ 1010 K and the density varies from 104–1014 g/cm3 there. Recently, it was
observed that certain neutron stars called magnetars had surface magnetic fields
∼ 1015 G. The internal fields could be several times higher than the surface fields
of magnetars. Soft gamma repeaters (SGRs) are suitable candidates for magnetars
[1–3]. Giant flares were observed from SGRs in several cases. Those giant flare events
are thought to be the results of star quakes in magnetars. This might be attributed
to the tremendous magnetic stress due to the evolving magnetic field leading to
cracks in the crust. Quasi-periodic oscillations discovered in three giant flares are
the evidences of torsional shear mode oscillations in magnetar crusts.

Such strong magnetic fields in magnetars are expected to influence charged parti-
cles such as electrons in the crust through Landau quantization. The effects of strong
magnetic fields on dense matter in neutron star interior were studied earlier [4, 5].
It was also noted that atoms, molecules became more bound in a magnetic field [6].
In this article, we discuss the effects of strongly quantising magnetic fields on com-
positions and equation of state of the ground state matter in neutron star crusts and
its connection to torsional shear mode oscillations.

We organise the article in the following way. Neutron star crusts in strong mag-
netic fields are described in Sects. 2, 3 and 4. Torsional shear mode oscillations of
magnetars are discussed in Sect. 5. Finally, we summarise in Sect. 6.

2 Crusts in Strong Magnetic Fields

We investigate compositions and equations of state (EoS) of outer and inner crusts
in strong magnetic fields. Nucleons are bound in nuclei in the outer crust. Nuclei
are immersed in a uniform background of electron gas which becomes relativistic
beyond 107 g/cm3. Neutrons start to drip out of nuclei at higher densities. This is the
beginning of the inner crust. In this case, nuclei are embedded both in electron and
neutron gases. Magnetic fields may influence the ground state properties of crusts
either through magnetic field and nuclear magnetic moment interaction or through
Landau quantisation of electrons. In a magnetic field ∼ 1017 G, magnetic field and
nuclear magnetic moment interaction would not produce any significant change.
However such a strong magnetic field is expected to influence charged particles such
as electrons in the crust through Landau quantization. Our main focus is to study the
effects of Landau quantisation on the ground state properties of neutron star crusts.
Later we discuss shear mode frequencies using our results of magnetised neutron
star crusts.
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2.1 Landau Quantisation of Electrons

We consider electrons are noninteracting and placed under strongly quantising
magnetic fields. In the presence of a magnetic field, the motion of electrons is quan-
tized in the plane perpendicular to the field. We do not consider Landau quantisation
of protons because magnetic fields in question in this calculation are below the
critical field for protons. However, protons in nuclei would be influenced by a mag-
netic field through the charge neutrality condition. We take the magnetic field (B)
along Z-direction and assume that it is uniform throughout the inner crust. If the
field strength exceeds a critical value Bc = m2

e/e � 4.414 × 1013 G, then electrons
become relativistic [6]. The energy eigenvalue of relativistic electrons in a quantizing
magnetic field is given by

Ee(ν, pz) =
[

p2
z + m2

e + 2eBν
]1/2

, (1)

where pz is the Z-component of momentum, ν is the Landau quantum number. The
Fermi momentum of electrons, pFe, ν , is obtained from the electron chemical potential
in a magnetic field

pFe, ν =
[
μe

2 − m2
e − 2eBν

]1/2
. (2)

The number density of electrons in a magnetic field is calculated as

ne = eB

2π2

νmax∑
ν = 0

gν pFe, ν , (3)

where the spin degeneracy is gν = 1 for the lowest Landau level (ν = 0) and gν = 2
for all other levels.

The maximum Landau quantum number (νmax ) is obtained from

νmax = μe
2 − m2

e

2eB
. (4)

The energy density of electrons is,

εe = eB

4π2

νmax∑
ν = 0

gν

(
pFe, ν μe + (m2

e + 2eBν) ln
pFe, ν + μe√
(m2

e + 2eBν)

)
. (5)

Similarly the pressure of the electron gas is determined by

Pe = eB

4π2

νmax∑
ν = 0

gν

(
pFe, ν μe − (m2

e + 2eBν) ln
pFe, ν + μe√
(m2

e + 2eBν)

)
. (6)
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3 Magnetic BPS Model of Outer Crust Revisited

We describe the BPS model in the presence of strong magnetic fields B ∼ 1016G to
determine the sequence of equilibrium nuclei and the equation state of the outer crust
[7, 8]. Nuclei are arranged in a bcc lattice in the outer crust. Here we adopt the Wigner-
Seitz (WS) approximation and replace each lattice volume by a spherical cell which
contains one nucleus at the center. Further each cell is to be charge neutral such that
equal numbers of protons and electrons are present there. The Coulomb interaction
among cells is neglected. An equilibrium nucleus (A, Z) at a given pressure P is
obtained by minimising the Gibbs free energy per nucleon with respect to A and Z.
In this calculation, we modify the magnetic BPS model including the finite size effect
in the lattice energy and adopting recent experimental and theoretical mass tables.
The total energy density of the system is given by

Etot = nN (WN + WL) + εe . (7)

The energy of the nucleus (including rest mass energy of nucleons) is

WN = mn(A − Z) + m p Z − bA , (8)

where nN is the number density of nuclei, b is the binding energy per nucleon.
Experimental nuclear masses are obtained from the atomic mass table compiled
by Audi, Wapstra and Thibault [9]. For the rest of nuclei we use the theoretical
extrapolation of Möller et al. [10]. WL is the lattice energy of the cell and is given by

WL = − 9

10

Z2e2

rC

(
1 − 5

9

(
rN

rC

)2
)

. (9)

Here rC is the cell radius and rN � r0 A1/3 (r0 � 1.16 fm) is the nuclear radius.
The first term in WL is the lattice energy for point nuclei and the second term is the
correction due to the finite size of the nucleus (assuming a uniform proton charge
distribution in the nucleus). Further εe is the electron energy density as given by
Eq. (5) and P is the total pressure of the system given by

P = Pe + 1

3
WLnN , (10)

where Pe is the pressure of electron gas in a magnetic field as given by Eq. (6).
The Gibbs free energy per nucleon is

g = Etot + P

n
= WN + 4/3WL + Zμe

A
, (11)

where n is the total baryon number density.
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Fig. 1 Gibbs free energy per nucleon is plotted with mass density for zero magnetic field (left
panel) and B∗ = 103 (right panel). Equilibrium nuclei are shown with solid symbols in both panels

At a fixed pressure P , we minimise g varying A and Z of a nucleus. The sequence
of equilibrium nuclei and their corresponding free energies are shown in Fig. 1. Here
we define B∗ = B/Bc. The left panel shows results for B = 0 and the right panel
corresponds to B∗ = 103. It is evident from the figure that some nuclei disappear and
new nuclei appear under the influence of strong magnetic fields. It is attributed to the
phase space modification of electrons due to Landau quantisation which enhances
the electron number density [8].

4 Inner Crust in Quantizing Magnetic Fields

Now we describe the ground properties of matter of inner crusts in presence of strong
magnetic fields using the Thomas-Fermi (TF) model at zero temperature. Inner crust
nuclei are immersed in a nucleonic gas as well as a uniform background of electrons.
Furthermore, nuclei are arranged in a bcc lattice. As in the case of outer crust, we
again adopt the Wigner-Seitz (WS) approximation in this calculation. Here each cell
is taken to be charge neutral and the Coulomb interaction between cells is neglected.
Electrons are uniformly distributed within a cell. The system is in β-equilibrium.
We assume that the system is placed in a uniform magnetic field. Though electrons
are directly affected by strongly quantizing magnetic fields, protons in the cell are
influenced through the charge neutrality condition [11]. The interaction of nuclear
magnetic moment with the field is not considered because it is negligible in a magnetic
field below 1018 G [12].

The spherical cell in the WS approximation does not define a nucleus. We exploit
the prescription of Bonche, Levit and Vautherin [13, 14] to subtract the gas part
from the cell and obtain the nucleus. It was shown that the TF formalism at finite
temperature generated two solutions [15]—one for the nucleus plus neutron gas and
the other representing the neutron gas. The nucleus is obtained as the difference of
two solutions. This formalism is adopted in our calculation at zero temperature as
described below.
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The thermodynamic potentials for nucleus plus gas (NG) and only gas (G) phases
are defined as [13, 14]

� = F −
∑

q = n, p

μqnq , (12)

where F , μq and nq are the free energy density, baryon chemical potential and
number density, respectively. The nucleus plus gas solution coincides with the gas
solution at large distance i.e. �N G = �G . The free energy which is a function of
baryon number density and proton fraction (Yp), is defined as [11]

F (nq , Yp) =
∫

[H + εc + εe]dr . (13)

The nuclear energy density is calculated using the Skyrme nucleon-nucleon inter-
action and it is given by [16–18]

H (r) = �
2

2m∗
n
τn + �

2

2m∗
p
τp + 1

2
t0

[(
1 + x0

2

)
n2 −

(
x0 + 1

2

) (
n2

n + n2
p

)]

− 1

16

[
t2

(
1 + x2

2

)
− 3t1

(
1 + x1

2

)]
(∇n)2

− 1

16

[
3t1

(
x1 + 1

2

)
+ t2

(
x2 + 1

2

)] [
(∇nn)2 + (∇n p)

2
]

+ 1

12
t3nα

[(
1 + x3

2

)
n2 −

(
x3 + 1

2

)(
n2

n + n2
p

)]
, (14)

and the effective nucleon mass

m

m∗
q(r)

= 1 + m

2�2

{[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
n

+
[

t2

(
x2 + 1

2

)
− t1

(
x1 + 1

2

)]
nq

}
, (15)

where total baryon density is n = nn + n p.
The direct parts of Coulomb energy densities for the nucleus plus gas and gas

phases follow from [11, 19]

εN G
c (r) = 1

2
(nN G

p (r) − ne)

∫
e2

| r − r′ | (n
N G
p (r ′) − ne)dr′

εG
c (r) = 1

2
(nG

p (r) − ne)

∫
e2

| r − r′ | (n
G
p (r ′) − ne)dr′

+ nN
p (r)

∫
e2

| r − r′ | (n
G
p (r ′) − ne)dr′ , (16)
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where nN G
p and nG

p are proton densities in two respective phases. The exchange parts
of coulomb energy densities are small and neglected in this calculation.

The average electron chemical potential in a magnetic field given by Eq. (2) is
modified to [11]

μe =
[

pFe, ν (ν)2 + m2
e + 2eBν

]1/2 − 〈V c(r)〉 , (17)

where 〈V c(r)〉 denotes the average single particle Coulomb potential and for both
phases it is given by

V c(r) =
∫ [

nN G
p (r ′) − ne

] e2

| r − r′ |dr′ . (18)

The density profiles of neutrons and protons with or without magnetic fields are
obtained by minimising the thermodynamic potential in the TF approximation

δ�N G

δnN G
q

= 0 ,

δ�G

δnG
q

= 0 , (19)

with the condition of number conservation of each species from

Zcell =
∫

nN G
p (r)dr ,

Ncell =
∫

nN G
n (r)dr , (20)

where Ncell and Zcell are neutron and proton numbers in the cell, respectively.
We obtain the mass number A = N + Z and atomic number using the subtraction

procedure as

Z =
∫ [

nN G
p (r) − nG

p (r)
]

dr ,

N =
∫ [

nN G
n (r) − nG

n (r)
]

dr . (21)

Here we again obtain the equilibrium nucleus at each density by minimising
the free energy of the nuclear cluster in the cell along with charge neutrality and
β-equilibrium conditions [11]. In the left panel of Fig. 2, proton fraction is shown
for B = 0 and B∗ = 104. Protons are influenced by the Landau quantisation of
electrons through charge neutrality condition. At lower densities, only the zeroth
Landau level is populated by electrons whereas a few Landau levels are populated
above density 0.005 fm−3 for B∗ = 104 i.e. 4.414×1017 G. This is reflected in the
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Fig. 2 Proton fraction (left panel) and mass and atomic numbers of equilibrium nuclei (right panel)
are plotted with average baryon density for different magnetic field strengths and Skyrme interaction
parameter sets

proton fraction which rises hugely at lower densities and approaches to the zero field
case at higher densities. Further we estimate the effects of different parameter sets of
Skyrme interaction on the proton fraction. It is noted that the SLy4 set [20] results in
higher proton fraction due to the stiffer density dependence of the symmetry energy
at sub-saturation densities than that of the SkM set.

We exhibit mass and atomic numbers of equilibrium nuclei after subtraction of
free neutrons as a function of average baryon density in the right panel of Fig. 2.
Results are obtained for B = 0 and B∗ = 104. Besides SkM and SLy4 parameter
sets, we also exploit Sk272 [21] parameter set for this calculation. In all three cases,
mass and atomic numbers are higher than zero field cases as long as only the zeroth
Landau level is populated. However, the situation is changed at higher densities when
electrons jump from the zeroth Landau level to the first level. This leads to jumps in
mass and atomic numbers in nuclei as noted for the SLy4 set. Further, the variation
of parameters for nucleon-nucleon interaction affects mass and atomic numbers of
nuclei as it is evident from the figure. We also note that the free energy of the ground
state matter in strong magnetic fields is reduced and becomes more bound compared
with the field free case.

5 Shear Mode Oscillations in Magnetars

Giant x-ray flares caused by the tremendous magnetic stress on the crust of magnetars
were observed in several cases. Star quakes associated with these giant flares excite
seismic oscillations. Quasi-periodic oscillations (QPOs) were found in the decaying
tail of giant flares from SGR 1900+14 and SGR 1806-20. Those QPOs were identified
as shear mode oscillations of magnetar crusts [3, 22]. Frequencies of the observed
QPOs ranged from 18 to 1800 Hz.
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Shear mode frequencies are sensitive to the shear modulus of neutron star crust.
The shear modulus is again strongly dependent on the composition of neutron star
crust. It might be possible to constrain the properties of neutron star crusts by studying
the observed frequencies of QPOs. Torsional shear mode oscillations were investi-
gated both in Newtonian gravity [23, 24] and general relativity [25–27]. In both
cases, it was assumed that the magnetised crust was decoupled from the fluid core.

Here we describe the calculation of shear mode frequencies adopting the model
of Sotani et al. [26]. In this case, we study torsional shear oscillations of spherical
and non-rotating relativistic stellar models. The metric used here has the form,

ds2 = −e2
dt2 + e2�dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (22)

The equilibrium models are obtained by solving Tolman-Oppenheimer-Volkoff
equation. Next the equilibrium star is assumed to be endowed with a strong dipole
magnetic field [26]. The deformation in the equilibrium star for magnetic fields
∼ 1016 G is neglected. Torsional shear modes are the results of material velocity
oscillations. These modes are incompressible and do not result in density perturbation
in equilibrium stars. Consequently, this leads to negligible metric perturbations and
justifies the use of the relativistic Cowling approximation [26]. The relevant perturbed
matter quantity for shear modes is the φ-component of the perturbed four velocity
∂uφ [26]

∂uφ = e−φ∂tY (t, r)
1

sin θ
∂θ Pl(cos θ) , (23)

where ∂t and ∂θ correspond to partial derivatives with respect to time and θ , respec-
tively, Pl(cos θ) is the Legendre polynomial of order � and Y (t, r) is the angular
displacement of the matter. The perturbation equation is obtained from the linearised
equation of motion. Finally, we estimate eigenfrequencies by solving two first order
differential equations Eqs. (69) and (70) of Sotani et al. [26].

Now we study the dependence of shear mode frequencies on the compositions of
magnetised crusts which are already described in Sects. 3 and 4. Earlier calculations
were performed with non-magnetised crusts [3, 26–28]. One important input for the
shear mode calculation is the knowledge of shear modulus of the magnetised crust.
Here we adopt the expression of shear modulus as given by [29, 30]

μ = 0.1194
ni (Ze)2

a
, (24)

where a = 3/(4πni ), Z is the atomic number of a nucleus and ni is the ion density.
This zero temperature form of the shear modulus was obtained by assuming a bcc
lattice and performing directional averages [31]. Later the dependence of the shear
modulus on temperature was investigated with Monte Carlo sampling technique
by Strohmayer et al. [30]. However we use the zero temperature shear modulus of
Eq. (24) in this calculation.
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We calculate the shear modulus using Eq. (24) and the compositions and equations
of state of magnetised crusts obtained in Sects. 3 and 4. This is shown as a function of
normalised distance with respect to radius (R) of the star for different field strengths
B = 0, B∗ = 103 and B∗ = 104 and a neutron star mass of 1.4 M	 in the left panel
of Fig. 3. Shear modulus increases initially with decreasing distance and drops to
zero at the crust-core boundary. For B∗ = 104 i.e. 4.414×1017 G or more, the shear
modulus is enhanced appreciably compared with the zero field case.

It was argued that shear mode frequencies are sensitive to shear modulus [3,
28]. We perform our calculation for shear mode frequencies using the model of
Sotani et al. [26] and the shear modulus of magnetised crusts as described above.
We calculate fundamental shear mode frequencies for a neutron star mass of 1.4
M	 as well as magnetic fields as high as 4.414 × 1017 G. When we compare those
frequencies involving magnetised crust with those of the non-magnetised crust, we
do not find any noticeable change between two cases. For SGR 1900+14 having
B = 4×1014 G and a neutron star mass of 1.4 M	, we show in the right panel of Fig. 3
that the observed QPO frequencies match nicely with frequencies estimated using our
magnetised crust model. Further we observe that the first radial overtones calculated
with our magnetised crust model have higher frequencies than those calculated with
the non-magnetised crust model. This is in agreement with the prediction that the
radial overtones are susceptible to magnetic effects [23].

6 Summary

We have constructed the model of magnetised neutron star crusts and applied it
to shear mode oscillations of magnetars. In particular, we highlighted the effects
of strongly quantising magnetic fields on the properties of ground state matter of
outer and inner crusts in this article. It is noted that compositions and equations
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of state of neutron star crusts are significantly altered in strong magnetic fields.
Consequently, shear modulus of the crust which is sensitive to the compositions of
crusts, is enhanced. We have observed that our model of the magnetised crust might
explain the observed shear mode frequencies quite well.
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