
Chapter 13
Coherent Light Sources in the Extreme
Ultraviolet, Frequency Combs and Attosecond
Pulses

Matt Zepf

Abstract Converting laser radiation into coherent extreme ultraviolet radiation via
high-order harmonic processes allows the creation of extremely broadband spectra
with well-behaved phase structure. Such spectra will exhibit attosecond temporal
structure – either in the form of an attosecond pulse train or an isolated attosecond
pulse. The basic principles of achieving such broad, phase controlled spectra and
the two prevalent non-linear media (extended gaseous media and step-like plasma-
vacuum interfaces) will be discussed.

13.1 Introduction

The history of science and human discovery is also a history of describing and
recording nature to develop and communicate scientific theories and concepts. The
strong influence of vision on how we perceive the world around us makes images
of natural processes extremely powerful in shaping our understanding of the world.
Thus it comes as no surprise that using lenses as a means of enhancing our vision
(as magnifying glasses) dates back to Greek and Roman times. The impact of
using pairs of glass lenses to form telescopes by Galileo challenged and led to a
transformation of our worldview. However, the recording of what was observed had
to be performed by hand with its obvious limitations in terms of speed and accuracy.
Since the development of the first photographic materials in the early part of the
nineteenth century by Niépce and Daguerre, photographic recording has undergone
an extremely rapid development, culminating in pixelated semi-conductor devices
such as CCDs (charge-coupled devices), which allow rapid acquisition and storage
of digital images. Digital images are not only a simplification of the processes
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Fig. 13.1 Single cycle limit
vs. carrier frequency. Note
that achieving pulse durations
below 1 fs requires
frequencies beyond the
optical spectrum

possible until then, they are also the essential ingredient to novel forms of
microscopy using high quality X-ray beams for lensless microscopy and hence the
reconstruction of objects on a nm to scale [1], which can also be combined with
femtosecond (10−15 s) temporal resolution. To achieve recording on such extreme
temporal and spatial scales requires a photon source, that can provide sufficiently
well controlled (coherent, short) pulses of light. Thus, extending the realm of
natural phenomena that can be investigated using photons relies as much on the
development of light sources as on the development of suitable detection systems.
In particular recording dynamic events without motion blurring requires either a
bright continuous light source combined with a detector with sufficient temporal
resolution (shuttering/gating) or a slow detector with a bright sufficiently short pulse
light source. Note that the two approaches differ substantially in terms of what
can realistically be achieved. While mechanical shutters are ultimately limited (by
inertia) to shutter speeds of around a microsecond and electrically gated shutters are
limited to temporal windows of 50–100 ps by the risetime of the electrical pulses
driving them, the limit for photon light sources is simply given by the Fourier-
transform limit of the spectral width of the pulse. Thus the ultimate limit for a
given pulse of a frequency f is a temporal duration of the associated optical cycle
T = 1/ f .1 Figure 13.1 shows the duration of a single optical cycle vs. the centre
frequency.

What is clear from Fig. 13.1 is that the shortest pulse duration that can be
achieved using optical pulses is limited to just above 1 fs. While this is an extremely
short pulse, it is still long compared to the dynamics of a bound electron. For

1Note that the temporal resolution of electrically gated devices such as Pockels cells and gated
MCPs is also limited by the effective bandwidth of the electrical signals and their dispersion.



13 Coherent Light Sources, Frequency Combs and Attosecond Pulses 353

example the timescale associated with the Bohr-orbit in the ground state of hydrogen
is τBohr = v/rBohr = 2.4× 10−17 s = 24as (also known as the atomic unit of time).
Consequently, freezing the dynamics of electrons under such conditions requires
pulses in the attosecond regime and therefore light pulses in the extreme ultraviolet
part of the electromagnetic spectrum and beyond [2–4].

13.1.1 Requirements for Attosecond Pulses

The challenge is therefore to generate and control light under such conditions.
To understand the requirements that we need to meet, it is useful to first recap how
ultrafast pulses close to the single cycle limit are generated using optical lasers. The
first condition that needs to be met by any light source that aims to be shorter than
a given pulse duration is that the bandwidth must be sufficiently large to support
the pulse duration. The Fourier transform limit of a given spectrum is given by
ΔνΔ t = β , whereby β is constant of the order of unity that depends on the exact
spectral shape. For example, for a Gaussian spectral shape β = 0.441, while a sech2

has β = 0.315.
While large spectral bandwidth is a necessary requirement, it is clearly not

sufficient (think of a light-bulb!). The key parameter that distinguishes a light-
bulb from a femtosecond optical pulse is the spectral phase. The Fourier-transform
limited pulse duration is only achieved if the phase of all spectral components
is identical. Hence, one needs to find a means of producing a broad spectrum
with identical spectral phase. In the optical regime, the characteristics of our light
pulse are controlled by designing the optical cavity to ensure that only those
photons that match our requirements are allowed to propagate in the oscillator,
while the unwanted photons have a net-loss in each round-trip and thus die away
exponentially.

Remember that oscillator cavities only support discrete frequencies (oscillator
modes) separated by a frequency Δνcomb = c/2L (i.e. the cavity round-trip length
2L is a multiple of the wavelength λ ). Hence an oscillator produces a comb of
equally spaced spectral peaks. In time, such a frequency comb with constant spectral
phase corresponds not to a single short pulse but a pulse train (Fig. 13.2) [5, 6].
That this should be the case is also easily understood from the basic layout of
an oscillator which contains a pulse that is short compared to the cavity length
(Fig. 13.3). Every time the pulse reflects from the partial reflector, part of the pulse
is also transmitted and the separation between each of the transmitted pulses must
just be the cavity round-trip time of the oscillator. The task of achieving a transform
limited pulse is therefore equivalent to achieving a fixed relative phase between the
individual modes of the oscillator – a mode-locked frequency comb. For a reflective
cavity with no dispersive elements this will be fulfilled to very good approximation.
However a laser cavity must include a gain medium, which contributes dispersion
(i.e. frequency dependent phase) to the cavity and thus results in the phase between
two modes varying from one round-trip to the next. To regain the fixed relative phase
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Fig. 13.2 Fourier-transfom of a frequency comb under the assumption of ideal (constant) spectral
phase. Note the correspondence between spectrum and time of the various structures, with
corresponding features in frequency and time highlighted by corresponding colour and lines. The
temporal duration of each attosecond spike ΔtΔν is set by the total spectral width Δν (solid line),
the separation of each peak in the frequency comb Δνcomb (i.e. mode-separation or harmonic
separation) determines the period of pulse-train Ttrain (dots) while the width of each individual
(harmonic or mode) peak Δνmode determines the temporal width of the train as a whole Δttrain

(dashed line)

Fig. 13.3 Schematic of a mode-locked oscillator showing the key components required for
operation. The dispersion compensator (shown here as a prism pair) ensures that the relative
spectral phase of each mode stays constant from one round-trip to the next. The intensity dependent
loss mechanism (shown here as an aperture placed at the focus of a Kerr-lens) ensures that only
intense pulses can propagate through the cavity with a net gain. The separation of the peaks in the
pulse-train transmitted through the partial mirror corresponds to one oscillator round-trip in reality

between these modes (i.e. mode-locked operation), a short pulse cavity must include
additional dispersive elements that compensate the dispersion in the gain medium.
Common approaches to achieving this goal are a prism-pair or dispersive (‘chirped’)
mirrors (Fig. 13.3). Compensating the dispersion allows the relative spectral phase
of the modes to remain fixed. It does not, however, result in the selection of modes
with identical spectral phase. Since the shortest pulse for a given average power in
the oscillator cavity corresponds to the highest peak intensity, the selection of a short
pulse is achieved by introducing an intensity dependent loss mechanism (such as a
Kerr-lens with an aperture at its focus or a saturable absorber).
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It is easy to see that such an optical layout will produce a pulse-train of ultra-
short pulses with a repetition rate corresponding to the cavity round-trip time
Ttrain = 1/Δνcomb = 2L/c. For time resolved applications using an isolated pulse
is of course highly desirable. In the optical regime selecting a single pulse from
such an oscillator can be straightforwardly achieved by electro-optical switching
using a Pockels-cell, since typical cavity round-trip times (and therefore interpulse
spacings) are ∼ 10ns. The changed temporal structure (by selecting a single pulse)
must result in a change of the spectral structure. Selecting a single pulse corresponds
to a pulse-train with infinite spacing. Since the separation of the pulses in time is
inversely proportional to the comb-spacing in frequency, we obtain Δνcomb = 0 and
hence a continuous spectrum.

At this point it is worth emphasising some basic corollaries from our discussion
(Fig. 13.2).

1. Although the lasing medium produces, and can amplify, emission from a
continuous range of frequencies the temporal interference in a cavity results in a
spectral structure commonly referred to as a frequency comb.

2. Achieving constant spectral phase across the frequency comb results in the
individual pulses having a duration corresponding to the Fourier Transform
Limit.

3. Isolating a single pulse from the train changes the spectrum from a frequency
comb to a continuous spectrum while retaining the same shape of the envelope.

4. The temporal separation of the pulses is connected to the frequency separation
of the individual modes as Ttrain = 1/Δνcomb

5. The temporal duration of each pulse in the train is determined by the width of the
spectral envelope Δ t = β/Δν

6. The width of the temporal envelope in the pulse-train Δ ttrain is determined by the
spectral width Δνmode of the individual frequency comb spikes

13.2 Producing an Attosecond Pulse – Harmonic Generation

From the previous discussion it is clear that scaling the principle of a femtosecond
oscillator to an attosecond pulse(-train) requires the production of a phase-locked
frequency distribution (-comb) with an overall spectral width Δν sufficient to sup-
port the desired pulse-duration. Once this has been achieved the remaining challenge
is to isolate an individual pulse from the train (or to ensure only one is produced in
the first instance). As can be seen from Fig. 13.1 achieving a pulse duration below
100 as requires a central frequency of> 1016 Hz or expressed in terms of wavelength
of < 30 nm. The lack of optical components with similar quality to those found
in visible/infra-red lasers in terms of reflectivity and transparency and the lack of
easily pumped gain media result in the oscillator approach developed at optical
wavelengths no longer being directly applicable.
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Fig. 13.4 Schematic of a harmonic spectrum with power-law decay ω−q (plotted with both
axes logarithmic). The spectral width and hence the Fourier-transform limited pulse duration is
determined only by the low-frequency cut-off of the filter ωF and the parameter q

However the principles derived from mode-locked oscillators still apply. The
frequency comb technique is extended to short wavelength by generating harmonics
(integer multiples) of the laser frequency at frequencies ωm = mωLaser. Harmonics
can be generated in any medium that displays a strong non-linear response to
the incident laser light. Consider an electron bound in an atomic potential: as
long as the potential shape is parabolic to good approximation, the electron will
respond as a simple harmonic oscillator, which oscillates and emits light only at the
frequency of the incident light wave. Since all atomic potential wells are parabolic
to good approximation for sufficiently small amplitudes (cf. Taylor expansion), the
polarisation at low intensities is simply linear with the applied electric field P(1) =
ε0χ (1)E and the superposition of the external and re-emitted field results in the well-
known linear refractive index n. At higher intensities the potential shape generally
deviates from an ideal parabola and the polarisation of the medium contains higher
order terms |P(n)| ∼ χ (n)En. In terms of the electron’s motion this simply implies
that the electron’s displacement x must be described as a series that requires higher
frequencies 2ω ,3ω , . . . ,nω to describe the motion and the emitted field accurately,
and thus the emission of higher integer multiples of the laser frequency (harmonics).
However, the production of harmonics on its own is not sufficient to achieve as
substantial reduction of the pulse duration. To lead to a substantial increase in the
effective bandwidth harmonic spectrum must decay sufficiently slowly. Assuming
a simple power law decay of a given spectrum [7], such that I(ω) ∼ 1/ωq and a
simple step filter that transmits above some critical frequency ωF one obtains an
effective bandwidth of the spectrum collected by the filter of Δω = (21/q − 1)ωF

(Fig. 13.4). Note that the transform limited pulse duration is purely determined by
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Fig. 13.5 Schematic of a
simple HHG experiment with
a gaseous non-linear medium.
Typical parameters would be
lasers with few to 10’s of
optical cycles with intensities
close to the saturation
intensity for tunnel-ionisation
for the medium of interest
(typically 1014–1015 Wcm−2)

the decay of the spectrum and the lowest transmitted frequency ωF . Any constraint
on the maximum frequency ωmaxin the transmitted spectrum has no bearing on the
pulse duration, so long as ωmax > ωF +Δω .

While harmonics generated from bound electrons via the perturbative process
described above find widespread use in the frequency doubling of lasers in crystals
and even some higher order direct processes in gases such as 3rd harmonic
generation, their intensity generally decays too rapidly to higher orders to be a
source of a broad harmonic frequency comb suitable for producing a higher central
frequency with increased spectral bandwidth. Note that bulk solid media can be
ruled out as a suitable non-linear medium for attosecond pulse generation, because
they strongly absorb the high frequencies required for attosecond pulse production.
Therefore we will need to look beyond the perturbative harmonic generation from
bound electrons i.e. consider laser fields comparable or large with respect to the
binding field strength and consider only gaseous media or surfaces.

13.2.1 Non-Linear Medium 1: Harmonic Generation
from Gaseous Targets (HHG)

As the intensity is increased further – e.g. by placing a jet of atoms into the focus
of a femtosecond laser (Fig. 13.5) – to an appreciable percentage of the Coulomb
field of the atom, the perturbative approximation breaks down, because the electron
is no longer trapped in the potential well of the atom, but can instead tunnel ionise.
Once ionised the electrons motion can be described to good approximation by the
motion of a free electron in the laser field [8]. For linear polarisation there is a high
probability that the electron will recollide with the atom and emit a photon with
an energy of hν = Ip +Wkin (where Ip is the ionisation potential, Wkin the kinetic
energy of the returning electron). By solving the equation of motion for an electron
that tunnel ionises at a time t0 in a field given by E(t) = E0 cos(ωt) one finds that
the electrons velocity at a given point in time depends on t0 as

v(t, t0) =− eE0

mω
[sin(ωt)− sin(ωt0)] (13.1)
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Fig. 13.6 Kinetic energy upon first return versus tunnelling time in units of the laser period T .
The maximum possible return energy is 3.17 × the ponderomotive energy Up. Note that for all
return energies apart from 3.17Up two distinct tunnelling times exist that lead to the same return
energy, corresponding to the long and short trajectories respectively. The pattern repeats in the
second half-cycle t0/T > 0.5. Note that not all tunnelling times t0 lead to solutions that return to
the parent ion within the first optical cycle

The return energy therefore also depends on t0 and reaches a maximum value of
Wkin = 3.17Up for electrons which ionise 17◦ after the peak of the electric field of
the laser (Fig. 13.6, where the ponderomotive energy Up = e2E2/meω2 = 9.33×
10−14I[Wcm−2]λ 2[μm2] is the kinetic energy of a free electron oscillating in the
laser field). Therefore the highest possible photon energy is given by the sum of the
kinetic energy and the ionisation potential.

hνmax = Ip + 3.17Up (13.2)

Thus, harmonic generation in the tunnel-ionising regime is generally thought of
as a three-step process [8]:

1. Electron tunnel ionises
2. Electron gains energy in the laser field
3. Harmonic photons are emitted upon recombination with the atom

Unlike perturbative harmonic generation discussed earlier, the probability of gen-
erating a photon at a given harmonic order m, is only weakly dependent on the
harmonic order. We might expect photon energies that correspond to electrons
‘born’ at the peak of the field, where the ionisation rate is highest (Fig. 13.7), to be
somewhat stronger and thus favouring higher harmonic orders. However this effect
is off-set by the fact that the recombination probability is higher for electrons with
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Fig. 13.7 Temporal dependence of ionisation fraction (left) and intensity dependence of ionisation
rate (right). The remaining neutral fraction at the peak of the pulse strongly depends on the pulse
intensity

lower return energy, resulting a slow decay of the harmonic spectrum (Fig. 13.9).
As discussed earlier, the effective bandwidth of a slowly decaying frequency comb
can be very large and would be sufficient for transform limited pulses of 10’s
of attoseconds. Note that harmonics are generated twice per optical cycle with a
separation of T/2, since the ionisation dynamics are symmetrical with respect to
the sign of the electric field. From our previous discussion on laser cavities we see
that harmonics must therefore be separated by Δν = 2/T = 2νLaser and therefore
only odd harmonic orders n = 1,3,5, are generated. From the physical picture
of the dynamics on a single atom level described above, it may seem surprising
that one observes emission of well defined harmonics at all. Since electrons can
return with a continuum of energies Wkin(t0) = 0 . . .3.17Up one might expect to
observe the emission of a continuous photon energy spectrum instead of a discrete
frequency comb. However we can easily see that even harmonic orders generated
in one half-cycle are simply cancelled by destructive interference with the even
harmonics generated in the following half-cycle. The interference between waves
generated in each half cycle also explains the observation of well-defined harmonics
per se. Similar to a Fabry-Perot etalon, the sharpness of a peak increases with
increasing number of interfering beams or, in our case, an increasing number of
attosecond pulses. Therefore the appearance of odd harmonics can be understood as
interference between the individual attosecond pulses in the pulse train. Isolating
a single attosecond pulse from this train must therefore result in a continuous
spectrum being observed as is indeed the case.

13.2.1.1 Short Wavelength Limit of HHG

From Eq. 13.2 it is clear that to produce harmonics with the shortest wavelength
requires the highest possible value of both Up (and therefore Iλ 2) and Ip. However,
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these two parameters are not independent of each other, and the maximum possible
value of Up depends on Ip and the pulse duration. Since ionisation is an intrinsic
part of the HHG process, the medium (typically a neutral noble gas or noble
gas ion) will become depleted during the laser pulse (Fig. 13.7). The maximum
intensity ISAT for a given species is given by the point where the remaining
amount N(I) of the generating species at the peak of the pulse falls below a given
threshold (e.g. N(ISAT )/N0 < 1/e). The dominant ionisation mechanism for HHG
experiments typically tunnel ionisation, which is well approximated by the ADK
formula (Ammosov, Delone, Krainov [9]). Figure 13.7 shows the tunnel ionisation
rate as a function of intensity. It is clear that even for very short pulses the ionisation
probability will rapidly approach unity during the laser pulse even for moderate
intensities.

W =

ˆ
R(t)dt ∼ RImaxτ

2
(13.3)

Figure 13.7 shows the temporal dependence of ionisation during a laser pulse.
For the higher intensity pulse the cumulative ionisation during the pulse has
significantly depleted the neutral species before the peak of the pulse, while for
the lower intensity pulse most atoms remain neutral. While HHG from ions [10] is
possible, it is much harder to achieve a strong response from the entire medium
due to macroscopic phase-matching considerations discussed below. The strong
preference for neutral media arising from this makes the neutral atoms with the
highest ionisation potentials the preferred choice as HHG medium (He 25.4 eV, Ne
21.6 eV, Ar 15.8, Kr 14 eV, Xe 11 eV). Equation 13.2 suggests that the use of long
wavelengths can be used to extend the cut-off for neutral media by using very long
laser wavelengths. While this is indeed true and photon energies exceeding 1 keV
have been produced with long wavelength lasers, the benefit of this approach is
offset to a certain degree by the strong wavelength scaling of harmonic emission
probability P ∝ λ−6 [11]. This scaling can be understood in qualitative terms to
be due to wave packet spreading after ionisation reducing the amplitude of the
electron wave function at the point of recollision and thus substantially reducing
the recollision probability. This dependence on the wave packet evolution between
ionisation and recollision points to the importance of the 2nd phase of the 3-step
process in understanding the behaviour of HHG.

13.2.1.2 HHG Phase

Thus HHG from gaseous targets appears to be a promising route to generating
attosecond pulses. However, before we consider our quest for an attosecond pulse
complete we must first consider the phase structure of the harmonics, the route to
achieving appreciable conversion efficiencies and selection of a single attosecond
pulse. For pertubative harmonics generated from bound electrons, the phase of the
harmonic is essentially dictated by that of the driving laser. In this case we can view
the harmonic generation process as a strongly driven oscillator, where the relative
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Fig. 13.8 Illustration of the two distinct electron trajectories in HHG. Times of ionisation and
recombination for the long (larger area) and short (smaller area) trajectory in a laser field (solid
curve). Two example trajectories are highlighted for a short trajectory ionised at t0 = 0.1 and long
trajectory ionised at t0 = 0.01 (dashed curves). They are plotted as electron position with respect
to the parent ion vs. time

phase between the driving force and the electron oscillation depends only on the
ratio of the laser frequency to the resonance frequency of the oscillator. For HHG
generated via the 3-step process described above, the situation is significantly more
complex. From a purely classical view of the electron trajectory after ionisation, it
is clear that the time of recombination depends on the laser phase at the point of
ionisation and hence the time elapsed between ionisation and recombination is a
function of the emitted photon energy, implying that we would expect a chirp in the
spectrum of each individual attosecond burst. Close inspection of the equations of
motion shows that during an optical half-cycle all return energies can occur for 2
distinct values of ionisation phase, with the exception of the cut-off energy, which
only occurs for a single well defined value of t0 (Fig. 13.6). These distinct quantum
paths are referred to as the long and short trajectory respectively (Fig. 13.8) and
for each trajectory the relative phase between the harmonic and the laser must be
different since they relative phase clearly depends on the time of return tR. The full
quantum mechanical picture must take into account the phase of the electron wave-
packet, which is proportional to the quasi-classical action integral along the path of
the free electron S(t0, tR) [12].2 The accumulated phase of the electron is

φ(m) = mωtR − 1
h̄

S(t0, tR) (13.4)

2The action is the product of electron energy and time.
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This distinct emission phase for short and the long path results in interference
between the two quantum paths. In practise, optimising the conversion efficiency
and selecting an isolated attosecond pulse requires phase matching (discussed
below), which automatically results in the selection of one quantum path over the
other. For the further discussion it is always assumed that one quantum path is
being selected via phase matching. However, the fact that relative phase between
the harmonic and the laser depends on the time and mean energy between ionisation
and recollision, implies a different phase for each harmonic order. Therefore the
HHG spectrum is intrinsically chirped and thus the attosecond pulses in the train are
longer than the FTL. Controlling this chirp requires the use of suitably dispersive
filters or chirped (dispersive) XUV multi-layer mirrors.

13.2.1.3 Isolating a Single Attosecond Pulse

For time-resolved experiments having only one pulse greatly simplifies the measure-
ment and hence one would like to find a way to isolate a single attosecond pulse.
Applying an optical switch as in the case of a mode-locked oscillator separately
from the production of the pulse-train appears impractical because the temporal
separation of the individual pulses is extremely short. In practise therefore the
selection of an individual attosecond pulse is performed by controlling the properties
of the laser generating the harmonics. There are two main approaches to isolating
an individual attosecond pulse:

(i) Intensity gating: For very short pulses (∼ 5 fs) the neighbouring optical half-
cycles relative to the peak cycle already have an appreciable lower intensity. The
intensity dependence of the HHG process is mainly determined by the tunnel
ionisation rate R(I), which can be approximated as R ∝ I5 . . . I7 in the regime
of interest. This implies a strong suppression of the neighbouring half cycle in
terms of conversion efficiency. Secondly, the cut-off harmonic scales linearly
with I, implying that there is a spectral region which is only produced by the
strongest half-cycle (Fig. 13.9). In this spectral region only a single burst of
XUV radiation is produced during each pulse and thus an appropriate filter or
multi-layer mirror can be used to select the desired spectral range [13].

(ii) Polarisation gating: For longer pulses, the efficiency from one cycle to the
next can be controlled by exploiting the polarisation dependence of the HHG
process [14, 15]. The strong reduction in efficiency with ellipticity of the laser
light can be understood in terms of the trajectory of the free electron in the
laser field. In the case of circular polarisation the electrons will not generally
return to the parent ion and hence no XUV photons are emitted. If a laser
pulse with time varying ellipticity ε(t) can be produced it will only produce
harmonics efficiently for those cycle which are close to linearly polarised,
i.e. ε(t) ∼ 0). Such a polarisation state can be produced by superimposing
two delayed pulses with left- and right-circular polarisation respectively. For
sufficiently short pulses the laser will only be linearly polarised for one half-
cycle, resulting in the emission of an isolated attosecond pulse.
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Fig. 13.9 Typical harmonic
spectrum exhibiting rapid
decay to a plateau region and
exponential cut-off. The two
spectra are similar except for
the strength and position of
the cut-off corresponding to a
spectrum generated with
lower (red) and higher
intensity (black) for a few
cycle laser. If the cut-off
region of the black spectrum
is uniquely produced by one
cycle it becomes spectrally
continuous and with suitable
filtering will result in an
isolated attosecond pulse
(Color figure online)

13.2.1.4 The Role of Phase Matching

The macroscopic response of the medium must depend on the coherent sum of all
emitters at the point of the observer [16]. Clearly achieving the maximum harmonic
signal therefore requires that all emitters add in phase, or at the very least, not
destructively i.e. with a phase difference of < π . For perfect coherent overlap of the
fields emitted from N individual atoms, the electric field will simply be E = NEatom

and the measured intensity I ∝ N2. The total number of atoms contributing to the
harmonic signal is simply N = naLA, where na is the atomic density, L the length
and A the effective area of the focal spot. Including the probability of a harmonic
photon being emitted for a given atom Pm, the maximum achievable intensity is
therefore I(m) ∝ (naLAPm)

2. For otherwise fixed parameters, the effective length
Leff is limited to either

• the maximum length LI over which a sufficiently high intensity can be maintained
(usually due to defocusing or absorption of the laser radiation)

• the absorption length Labs = (na ∗σ)−1 of the harmonic radiation [16], where σ
is the absorption cross-section.

• the coherence length Lc by dispersion between the harmonic and the laser field.

The coherence length Lc = π/Δk is the length over which a signal can grow without
destructive interference in extended non-linear medium, where Δk = km −mkLaser.
Here m is the harmonic order ki is the wave vector of the harmonic or laser
respectively. Clearly in vacuum km = mkLaser and one has perfect phase matching
Δk = 0. In the presence of a medium the phase matching corresponds to the
harmonic and the laser driving the interaction having identical phase velocities and
therefore an identical refractive index n. The effect of any mismatch Δk > π is very
substantial and the phase matching form-factor F(Δk) is shown in Fig. 13.10.



364 M. Zepf

Fig. 13.10 Phase matching
factor F(Δk) as a function of
phase mismatch ΔkL. Note
the rapid decay beyond a total
mismatch of π radians

Phase matching can only be achieved over a narrow time window, since the
continuous ionisation of the medium leads to time varying contributions to the
dispersion (Figure 13.7). Optimised harmonic generation can thus be summarised by
achieving phase matching over the maximum possible length allowed by absorption
Labs at the peak of the laser pulse. The ideal choice of medium (in the presence of
phase-matching) is therefore determined by optimising the ratio P/σ .

In practice, all dispersive terms are wavelength dependent and thus phase
matching can in principle only be achieved by balancing the different contributions
to the dispersion. The wavelength dependence of the dispersive terms implies that
one would expect this to be exactly possible for only one wavelength, though
achieving Lc > Labs may be possible over a fairly wide range of wavelengths. In
practice, the refractive index for the high order harmonic can be assumed to be
nm = 1. In the case of phase matching in a capillary waveguide phase matching is
dominated by laser propagation effects [17]

kLaser ≈ 2π
λ

+
2π p(1−η)δ (λ )

λ
− pηNatmreλ − u2

11λ
4πa2 (13.5)

where the terms are the vacuum k-vector, the neutral atom dispersion, the plasma
dispersion and the waveguide dispersion (with p: pressure in atm η : ionisation
fraction, Natm: number density at 1 atmosphere, re: classical electron radius, δ :
neutral gas dispersion.

In free propagating geometries the waveguide dispersion term would be replaced
by the Guoy shift [18] which has the useful property of changing sign in the focus.
For all practically relevant circumstances, the dominant term with (n− 1) < 0 is
the refractive index due to free electrons while the leading term with (n− 1)> 0 is
refractive index of the neutral atoms. As a rule of thumb, the free electron dispersion
is around 20–50× greater than that neutral dispersion of the gas thus implying
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that phase matching should be achieved at ionisation levels of a few % [17]. This
constrains the highest harmonic that can be achieved due to Eq. 13.2 and thus is
applicable only to harmonic orders up to 30 using a Ti:Sapphire laser at 800 nm and
that phase matching ions with a charge state Z > 1 is impossible since no neutral
atoms are available to balance the dispersion of the free electrons. The λ 2 scaling
of the cut-off allows phase matching using this approach to be extended to shorter
wavelengths, but at the cost of a much weaker (P ∼ λ−6) single atom response and
thus limited overall response [19].

13.2.1.5 Quasi-Phase Matching (QPM)

Thus, while true phase matching (Δk = 0) is desirable, it is only achievable in a
narrow parameter space. Therefore optimisation of other parameters such as the
laser intensity, ionisation potential and P/σ is significantly constrained by the need
to maintain phase matching. So called quasi-phase matching provides an alternative
to ensure rapid signal growth of harmonic radiation. The principle of quasi-phase
matching is illustrated in Fig. 13.11 [20], and simply relies on suppressing the
out-of-phase contributions along the propagation path. This can be done by any
means, which varies the harmonic generation efficiency (intensity, medium etc.).
Figure 13.11 illustrates the effect different QPM scenarios and compares these
with a situation where Δk �= 0. In the mismatched case, the signal grows for one
coherence length Lc and oscillates between 0 and the maximum value achieved after
one coherence length thereafter i.e. there is no advantage to using a medium longer
than Lc in this case. The operating principle of QPM can be seen clearly in the
ideal QPM case: The harmonic intensity initially increases for a length of Lc, for
the subsequent coherence length the phase between the drive laser and harmonic
field continues to slip but the overall signal level remains constant since HHG
is suppressed. This process continues periodically leading to rapid signal growth.
The signal will then grow quadratically with the number of QPM periods NQPM

(consisting of a HHG or ON zone and an suppressed or OFF zone). Recent advances
have shown that interchanging noble gas with hydrogen jets allows the HHG signal
to grow at the theoretical rate of N2

QPM [21] thus decoupling the challenge of phase
matching from other relevant parameters.

13.2.2 Non-Linear Medium 2: Harmonic Generation from
Plasma Vacuum Interfaces (SHHG)

From our initial considerations it has become clear that attosecond pulse production
requires a medium with a strong non-linear response that is capable of providing a
harmonic frequency comb with a well-defined phase behaviour. There are two main
areas in which one would like to go beyond the performance currently available
with HHG. Firstly, higher pulse energy would be highly desirable for a number of



366 M. Zepf

Fig. 13.11 Quasi-phase matching (QPM) allows coherent build-up of signal in the presence of
wave vector mismatch (Δk �= 0). The harmonic source term must be modulated to suppress the
harmonic production over each alternate coherence length Lc (marked ‘NO HHG’) resulting in
constructive interference between the HHG zones marked ‘HHG’. The signal growth for a medium
with ideal QPM is compared to perfect phase matching and mismatch in the absence of QPM in
the lower graph

possible applications. Secondly, the highest harmonic order that can be produced
with reasonable efficiency is constrained to below a few hundred eV photon energy.
The energy in a given attosecond pulse is determined by the energy of the drive laser
pulse and the conversion efficiency. The conversion efficiency is quite low, owing
in part to the difficulty of phase matching at shorter wavelengths and limitations on
the effective density length product due to absorption and defocusing, while the low
intensity required for optimal HHG of < 1015 Wcm−2 makes it hard to exploit high
peak powers and pulse energy available with current ultra-fast lasers. For example a
20 cm diameter petawatt power laser would require a focal length of 2 km!3 Plasma
surfaces driven at relativistic intensities (SHHG) provide an attractive alternative to

3This calculation assumes a diffraction limited spot of 1cm size and therefore a ratio of focal length
to beam diameter of f /D ∼ 104. While one could consider going out of focus, this is undesirable
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Fig. 13.12 Schematic of the Relativistically Oscillating Mirror (ROM) harmonic generation
process. The force of the electric field on the plasma surface at the plasma vacuum interface leads
to a periodic oscillation of the point at which the incoming laser is reflected by the plasma. This
oscillation of the reflection point (indicated as a dashed line) leads to strong modification of the
reflected waveform and the emission of harmonics of the laser frequency (for a multi-cycle pulse)

HHG in gaseous media and in particular a route to intense attosecond pulses. The
primary mechanism of interest is the so-called Relativistically Oscillating Mirror
(ROM) process, although there are other processes which can convert the optical
laser light into higher orders (see [22, 23] for an in-depth reviews of SHHG).

13.2.2.1 The ROM Mechanism

Figure 13.12 shows the basic concept of up shifting via the ROM process. An
initially solid target is illuminated by an intense laser with sufficiently high contrast
to result in a step-like plasma vacuum interface. The plasma surface experiences
the force of the laser and oscillates around its rest position with a mean kinetic
energy of the order of the ponderomotive energy Up. At high intensities, the
ponderomotive potential Up exceeds the rest-mass energy of the electron (511keV)
and the motion of the surface becomes relativistic – i.e. the surface oscillates by an
appreciable fraction of a laser wavelength during each optical cycle resulting in a
periodic distortion of the reflected waveform and hence harmonic generation. This
occurs at Iλ 2 = 1.3× 1018 Wcm−2μm2 and for relativistic interactions the laser
strength is typically referred to by the normalised vector potential a0 = (Iλ 2/1.3×
1018 Wcm−2μm2)1/2. Unlike the case of HHG in gaseous targets, where the electron

from the point of view of the spatial phase which tends to be excellent only in focus due to the
inherent spatial filtering of the laser beam in focus.
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density is much less than the critical density nc, solid targets are have ne/nc�1
and hence reflect the incident laser radiation. The surface oscillations imply an
oscillation of the apparent reflection point (ARP) at which the incident laser light
is reflected [24, 25]. Note that even for low intensities, where the oscillation of
the ARP is sinusoidal the resulting modulation and associated distortion of the
phase of the reflected waveform will already give rise to harmonics. For higher
intensities, the oscillation of the surface becomes increasingly non-sinusoidal giving
rise to stronger harmonics. The underlying process in the case of a relativistically
oscillating mirror is in many ways similar to the process of the relativistic Doppler
up shift described by Einstein [26]. For a mirror moving with a constant velocity
v close to the speed of light c an observer would detect reflected radiation at a
frequency of ωr = ω0(1+ v/c)/(1− v/c)≈ 4γ2 (where ω0 is the laser frequency).
In the case of ROM instead of a constant value of γ describing the motion of the
mirror surface, one now has Lorentz-factor that is a function of time γ(t). The
initial theoretical approach – a physical picture first proposed by Bulanov et al. [27]
– was therefore to describe the harmonics observed in PIC simulations in terms
of the reflection of the incident laser off a moving mirror oscillating at the laser
frequency ω0. A detailed semi-analytical moving mirror model was developed by
Lichters et al. and was found to be in good agreement with PIC simulations [24].
This demonstrated that the picture of the moving mirror captures the essence of the
harmonic generation process. Experiments performed in the mid 1990s observed
harmonic spectra [28,29], where the conversion efficiency η(m) of a given harmonic
order m followed a power-law scaling η(n)∼m−q, where q is an intensity dependent
exponent that increased from q = 5.5 to q = 3.3 when the intensity was varied from
5× 1017 to 1019 Wcm−2 [29]. A quantitative understanding of ROM spectra was
first given by Gordienko et al. and Baeva et al. [25, 30], based on the dynamics of
the ARP. By assuming a boundary condition for the incident and reflected electric
field at the ARP Er +Ei = 04 it was found that the harmonic spectrum assumes
an asymptotic spectral shape in the so-called relativistic limit (where γmax�1).
The spectrum retains a power law scaling for the conversion efficiency in the
relativistic limit with the efficiency of the m-th harmonic reaching η(m) m−qREL ,
with qREL = 8/3 [25]. This slow decay has been identified as being sufficient to
support pulse duration in the zeptosecond regime [30] and extremely high intensity
X-ray radiation [31].

13.2.2.2 Short Wavelength Limit of ROM

Naively, one would expect the short wavelength limit of ROM harmonics to be
determined by the peak γ of the surface to ωmax ∼ 4γ2 as predicted by the
Doppler-upshift from a mirror moving at constant velocity. However the spectra,

4This boundary condition is not always met but provides a useful guide to the typical scaling of
ROM spectra [22].
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Fig. 13.13 The Lorentz
factor γ is sharply spiked even
for a very smooth dependence
of velocity with time. Here a
simple sinusoidal velocity
dependence
(v(φ ) = vmaxsin(φ )) is chosen
to illustrate the dependence of
v(t) on γ(t). The variation of
the Lorentz factor for two
different peak velocities
vmax = 0.995c (γmax ∼ 6,
solid line) and vmax = 0.985c
(γmax ∼ 22, dashed line) is
shown in the lower plot. The
width of the individual
γ-spikes is much less than the
oscillation period and reduces
linearly with increasing γmax

both experimentally [32] and in simulations [25], extend far beyond this limit.
The theoretical prediction is that the q = 8/3 scaling still applies up to an order
nRO ∼ 81/2γ3

max, beyond which the conversion efficiency decreases exponentially
or rolls over. The temporal dynamics of γ(t) are essential to understanding the
substantially larger frequency up shift and hence the short wavelength limit of ROM
[25, 30]. Even assuming a very smooth variation of the actual surface velocity with
time (e.g. v(t)∼ sin(ωt) as in Fig. 13.13) results in a corresponding variation of γ(t)
that is sharply peaked. Returning to Einsteins theory of relativistic Doppler up shift
one would therefore expect the up shifting process to be restricted to a timescale of
the order of the temporal width of each γ-spike – substantially shorter than an optical
half cycle – and the maximum up shift to take place when the Lorentz factor reaches
its maximum γmax. Since the emission of high harmonic orders only takes place
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Fig. 13.14 Scaling of the
highest harmonic with laser
intensity. The data from the
Vulcan laser experiments [32]
clearly follows the γ3 law for
an oscillating surface

for large values of γ a sharp temporal localisation of the emitted harmonics results
and the harmonic radiation is emitted in a burst on the timescale of attoseconds.
As illustrated in Fig. 13.13, the temporal duration of the γ-spikes reduces for
increasing intensity as TSpike ∼ T0/γmax (with T0 = 2π/ω0) [25]. The pulses of
duration TSpike are up-shifted and compressed by the factor of 4γ2

max – familiar
from the continuously moving relativistic mirror. As a result the harmonics are
emitted in short temporal bursts with Tburst ∼ TSpike/γ2

max ∼ T0/γ3
max and hence, from

Fourier-theory, must contain significant spectral components up to frequencies of
O ∼ω0γ3

max. In effect, the high energy cut-off and the ultimate slope of the spectrum
is governed by the temporal compression and truncation of the electromagnetic
pulse rather than the maximum up shift expected from a relativistic mirror moving
at constant γ . Experimental data (Fig. 13.14) obtained with the Vulcan laser shows
that the highest harmonics observed follow the γ3

max trend – a powerful indication
that the theoretical framework of ROM harmonics captures the essential physics
correctly.

An estimate for magnitude γmax can be obtained from the motion of a free
electron in a laser field where γmax = (1+3.6×10−19Iλ 2)1/2. Note that this applies
only for gradients which are a significant fraction of the laser wavelength λ or
greater. In the limit of very steep gradients the laser field at the surface is reduced
and the higher plasma density leads to a larger restoring force. The influence of the
peak plasma density in the limit of step-like density profiles can be quantified in
terms of the similarity parameter S = ne/(a0nc) [25, 33]. For constant S the surface
dynamics of the plasma remain similar – particularly with regards to the velocity
and phase of the ARP.
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13.2.2.3 ROM Phase

In the previous section it was argued that the ultimate spectral extent of the ROM
harmonics arise from temporal truncation of the up shifting process. This implies
that the spectral phase of the highest harmonic orders must be constant or very
close to constant (at least if we restrict the analysis to a single attosecond burst)
and a pulse consisting of in the highest frequency part of the spectrum is therefore
near transform limited. That this should be so, can be understood by a simple
Gedanken experiment (thought experiment). If one takes a beam of light with a
spectral width Δν and truncates this to a duration Δ t such that ΔνΔ t�1 one
obtains a beam with Δν ′�Δν . The condition ΔνΔ t�1 implies that Δ t is much
less than the coherence time tc ∼ 1/δν . The carrier oscillation within the time
window Δ t must therefore have full temporal coherence, i.e. flat spectral phase. This
transform limited phase structure for the highest harmonics is predicted to result
in pulses in the zeptosecond regime (1zs = 10−21s) [30] under ideal conditions.5

There are however contributions to both spatial and temporal phase that can lead
to a departure from this ideal scenario. The peak plasma density in a step-like
plasma gradient effectively changes the resonance frequency of the system. As in a
simple harmonic oscillator the ratio of driving frequency to resonance frequency
determines the relative phase of driver and oscillator. In the case of a plasma
surface this can be parametrised by the S-parameter mentioned above [33] and if
the S-parameter varies in time or space (as it certainly will given the dependence
on the laser strength a0) the phase will vary temporally and spatially. Spatially
this leads to phase-front curvature while temporally this results in a change in
the periodicity of the pulse train. A larger effect is the motion of the critical
surface under the immense laser pressure (P = I/c ≈ Gbar). This pressure leads to
a deformation of the critical density surface and a continuous underlying motion
into the target (hole boring). This effect also leads to a departure from perfect
periodicity and hence spectral changes [34] as well as a red-shift of the spectrum
due to the Doppler-effect [35]. Finally, the radial deformation (denting) determines
the observed angular distribution of ROM harmonics [36]. Such effects affect the
spectral shape, but do not affect the duration of each individual attosecond burst of
radiation.

13.2.2.4 Single Attosecond Pulses

To date single attosecond pulses have not been achieved from SHHG interactions,
though trains of attosecond pulses have been observed [37]. However, the principles
established for HHG remain the same for SHHG. In particular for the ROM process,

5A τ = 300zs pulse corresponds to a spatial extent in propagation direction of Δx = τc = 1.
Maintaining the integrity of the pulse front of such a small extent in the propagation direction
would be extremely challenging.
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the scaling of the highest harmonic is more rapid than for HHG (γ3 ∝ I3/2) and
the pulse to pulse separation in the attosecond pulse-train is greater (T0 compared
to T0/2). Thus the requirements regarding the pulse-duration are more relaxed
than for HHG. The much higher laser power required raises a laser-technological
challenge of providing few-cycle pulse-duration and high intensity concurrently,
with only the latest generation of laser based on OPCPA technology capable of
such performance [38]. Polarisation dependence for ROM harmonic is somewhat
different than for HHG [24]. For oblique incidence circular and linear polarisation
have comparable efficiency, thus precluding polarisation gating. However at normal
(near-normal) incidence the oscillating component of the laser-forces vanish (are
suppressed) and polarisation gating becomes viable – albeit at some cost to overall
efficiency of the process [39].

13.3 Conclusion

Converting intense optical laser radiation to high order harmonics of the incident
laser light is an excellent means of achieving phase controlled spectra with large
spectral width – and hence attosecond pulses. HHG in gaseous targets is a highly
effective means of producing phase-locked spectra with a spectral width sufficient
to support attosecond pulses and is the work-horse of attosecond science to date [3].
The only significant limitation is the relatively low single shot yields which are the
result of challenging, time and space dependent phase matching considerations and,
to a certain extent, practical difficulties in using lasers with extreme peak powers
in the PW regime effectively for HHG due to geometrical constraints. However
the relative ease and versatility of gas targets ensures that the development effort
for HHG has not yet reached it’s conclusion and schemes such as QPM may
yet substantially transform what is possible with this source of attosecond XUV
pulses. SHHG in general and the ROM mechanism in particular has the potential
to increase the pulse brightness of attosecond pulses by many orders of magnitude.
While experimental results to date are very encouraging, SHHG poses substantial
additional complications with respect to targetry.
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