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Abstract Multivariate outliers are usually identified by means of robust distances.
A statistically principled method for accurate outlier detection requires both avail-
ability of a good approximation to the finite-sample distribution of the robust
distances and correction for the multiplicity implied by repeated testing of all the
observations for outlyingness. These principles are not always met by the currently
available methods. The goal of this paper is thus to provide data analysts with useful
information about the practical behaviour of some popular competing techniques.
Our conclusion is that the additional information provided by a data-driven level of
trimming is an important bonus which ensures an often considerable gain in power.

1 Introduction

Obtaining reliable information on the quality of the available data is often the first
of the challenges facing the statistician. It is thus not surprising that the systematic
study of methods for detecting outliers and immunizing against their effect has a
long history in the statistical literature. See, e.g., Cerioli et al. (2011a), Hadi et al.
(2009), Hubert et al. (2008) and Morgenthaler (2006) for recent reviews on this
topic. We quote from Morgenthaler (2006, p. 271) that “Robustness of statistical
methods in the sense of insensitivity to grossly wrong measurements is probably
as old as the experimental approach to science”. Perhaps less known is the fact that
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similar concerns were also present in the Ancient Greece more than 2,400 years ago,
as reported by Thucydides in his History of The Peloponnesian War (III 20): “The
Plataeans, who were still besieged by the Peloponnesians and Boeotians, . . . made
ladders equal in length to the height of the enemy’s wall, which they calculated by
the help of the layers of bricks on the side facing the town . . . A great many counted
at once, and, although some might make mistakes, the calculation would be oftener
right than wrong; for they repeated the process again and again . . . In this manner
they ascertained the proper length of the ladders”.1

With multivariate data outliers are usually identified by means of robust dis-
tances. A statistically principled rule for accurate multivariate outlier detection
requires:

(a) An accurate approximation to the finite-sample distribution of the robust
distances under the postulated model for the “good” part of the data;

(b) Correction for the multiplicity implied by repeated testing of all the observa-
tions for outlyingness.

These principles are not always met by the currently available methods. The
goal of this paper is to provide data analysts with useful information about the
practical behaviour of popular competing techniques. We focus on methods based
on alternative high-breakdown estimators of multivariate location and scatter, and
compare them to the results from a rule adopting a more flexible level of trimming,
for different data dimensions. The present thus extends that of (Cerioli et al.
2011b), where only low dimensional data are considered. Our conclusion is that
the additional information provided by a data-driven approach to trimming is an
important bonus often ensuring a considerable gain in power. This gain may be
even larger when the number of variables increases.

2 Distances for Multivariate Outlier Detection

2.1 Mahalanobis Distances and the Wilks’ Rule

Let y1; : : : ; yn be a sample of v-dimensional observations from a population with
mean vector � and covariance matrix ˙ . The basic population model for which
most of the results described in this paper were obtained is that

yi � N.�; ˙/ i D 1; : : : ; n: (1)

1The Authors are grateful to Dr. Spyros Arsenis and Dr. Domenico Perrotta for pointing out this
historical reference.
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The sample mean is denoted by O� and Ȯ is the unbiased sample estimate of ˙ . The
Mahalanobis distance of observation yi is

d 2
i D .yi � O�/0 Ȯ �1.yi � O�/: (2)

For simplicity, we omit the fact that d 2
i is squared and we call it a distance.

Wilks (1963) showed in a seminal paper that, under the multivariate normal
model (1), the Mahalanobis distances follow a scaled Beta distribution:

d 2
i � .n � 1/2

n
Beta

�
v

2
;

n � v � 1

2

�
i D 1; : : : ; n: (3)

Wilks also conjectured that a Bonferroni bound could be used to test outlyingness
of the most remote observation without losing too much power. Therefore, for a
nominal test size ˛, Wilk’s rule for multivariate outlier identification takes the
largest Mahalanobis distance among d 2

1 ; : : : ; d 2
n , and compares it to the 1 � ˛=n

quantile of the scaled Beta distribution (3). This gives an outlier test of nominal test
size � ˛.

Wilks’ rule, adhering to the basic statistical principles (a) and (b) of Sect. 1,
provides an accurate and powerful test for detecting a single outlier even in small
and moderate samples, as many simulation studies later confirmed. However, it can
break down very easily in presence of more than one outlier, due to the effect of
masking. Masking occurs when a group of extreme outliers modifies O� and Ȯ in
such a way that the corresponding distances become negligible.

2.2 Robust Distances

One effective way to avoid masking is to replace O� and Ȯ in (2) with high-
breakdown estimators. A robust distance is then defined as

Qd 2
i D .yi � Q�/0 Q̇ �1.yi � Q�/; (4)

where Q� and Q̇ denote the chosen robust estimators of location and scatter. We can
expect multivariate outliers to be highlighted by large values of Qd 2

i , even if masked in
the corresponding Mahalanobis distances (2), because now Q� and Q̇ are not affected
by the outliers.

One popular choice of Q� and Q̇ is related to the Minimum Covariance Deter-
minant (MCD) criterion (Rousseeuw and Van Driessen 1999). In the first stage,
we fix a coverage bn=2c � h < n and we define the MCD subset to be the sub-
sample of h observations whose covariance matrix has the smallest determinant.
The MCD estimator of �, say Q�.MCD/, is the average of the MCD subset, whereas
the MCD estimator of ˙ , say Q̇

.MCD/, is proportional to the dispersion matrix of this
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subset (Pison et al. 2002). A second stage is then added with the aim of increasing
efficiency, while preserving the high-breakdown properties of Q�.MCD/ and Q̇

.MCD/.
Therefore, a one-step reweighting scheme is applied by giving weight wi D 0 to
observations whose first-stage robust distance exceeds a threshold value. Otherwise
the weight is wi D 1. We consider the Reweighted MCD (RMCD) estimator of �

and ˙ , which is defined as

Q�RMCD D
Pn

iD1 wi yi

w
; Q̇RMCD D �

Pn
iD1 wi .yi � Q�.RMCD//.yi � Q�.RMCD//

0

w � 1
;

where w D Pn
iD1 wi and the scaling �, depending on the values of m, n and v,

serves the purpose of ensuring consistency at the normal model. The resulting robust
distances for multivariate outlier detection are then

Qd 2
i.RMCD/ D .yi � Q�RMCD/0 Q̇ �1

RMCD.yi � Q�RMCD/ i D 1; : : : ; n: (5)

Multivariate S estimators are another common option for Q� and Q̇ . For Q� 2 <v

and Q̇ a positive definite symmetric v � v matrix, they are defined to be the solution
of the minimization problem j Q̇ j D min under the constraint

1

n

nX
iD1

�. Qd 2
i / D �; (6)

where Qd 2
i is given in (4), �.x/ is a smooth function satisfying suitable regularity and

robustness properties, and � D Ef�.z0z/g for a v-dimensional vector z � N.0; I /.
The � function in (6) rules the weight given to each observation to achieve
robustness. Different specifications of �.x/ lead to numerically and statistically
different S estimators. In this paper we deal with two such specifications. The first
one is the popular Tukey’s Biweight function

�.x/ D
(

x2

2
� x4

2c2 C x6

6c4 if jxj � c
c2

6
if jxj > c;

(7)

where c > 0 is a tuning constant which controls the breakdown point of S
estimators; see Rousseeuw and Leroy (1987, pp.135–143) and Riani et al. (2012)
for details. The second alternative that we consider is the slightly more complex
Rocke’s Biflat function, described, e.g., by Maronna et al. (2006, p. 190). This
function assigns weights similar to (7) to distance values close to the median, but
null weights outside a user-defined interval. Specifically, let

� D min

 
�2

v;.1��/

v
� 1; 1

!
; (8)
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where �2
v;.1��/ is the 1 � � quantile of �2

v . Then, the weight under Rocke’s Biflat

function is 0 whenever a normalized version of the robust distance Qd 2
i is outside the

interval Œ1 � �; 1 C �	. This definition ensures better performance of S estimators
when v is large. Indeed, it can be proved (Maronna et al. 2006, p. 221) that the
weights assigned by Tukey’s Biweight function (7) become almost constant as
v ! 1. Therefore, robustness of multivariate S estimators is lost in many practical
situations where v is large. Examples of this behaviour will be seen in Sect. 3.2 even
for v as small as 10.

Given the robust, but potentially inefficient, S estimators of � and ˙ , an
improvement in efficiency is sometimes advocated by computing refined location
and shape estimators which satisfy a more efficient version of (6) (Salibian-Barrera
et al. 2006). These estimators, called MM estimators, are defined as the minimizers
of

1

n

nX
iD1

��.
QQd 2
i /; (9)

where QQd 2
i D .yi � QQ�/0 QQ̇ �1.yi � QQ�/ (10)

and the function ��.x/ provides higher efficiency than �.x/ at the null model (1).

Minimization of (9) is performed over all QQ� 2 <v and all QQ̇ belonging to the set

of positive definite symmetric v � v matrices with j QQ̇ j D 1. The MM estimator

of � is then QQ�, while the estimator of ˙ is a rescaled version of QQ̇ . Practical
implementation of MM estimators is available using Tukey’s Biweight function only
(Todorov and Filzmoser 2009). Therefore, we follow the same convention in the
performance comparison to be described in Sect. 3.

2.3 The Forward Search

The idea behind the Forward Search (FS) is to apply a flexible and data-driven
trimming strategy to combine protection against outliers and high efficiency of
estimators. For this purpose, the FS divides the data into a good portion that agrees
with the postulated model and a set of outliers, if any (Atkinson et al. 2004). The
method starts from a small, robustly chosen, subset of the data and then fits subsets
of increasing size, in such a way that outliers and other observations not following
the general structure are revealed by diagnostic monitoring. Let m0 be the size of
the starting subset. Usually m0 D v C 1 or slightly larger. Let S.m/ be the subset of
data fitted by the FS at step m (m D m0; : : : ; n), yielding estimates O�.m/, Ȯ .m/

and distances

Od 2
i .m/ D fyi � O�.m/g0 Ȯ .m/�1fyi � O�.m/g i D 1; : : : ; n:
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These distances are ordered to obtain the fitting subset at step m C 1. Whilst S.m/

remains outlier free, they will not suffer from masking.
The main diagnostic quantity computed by the FS at step m is

Od 2
imin

.m/ W imin D arg min Od 2
i .m/ for i … S.m/; (11)

i.e. the distance of the closest observation to S.m/, among those not belonging to this
subset. The rationale is that the robust distance of the observation entering the fitting
subset at step m C 1 will be large if this observation is an outlier. Its peculiarity will
then be revealed by a peak in the forward plot of d 2

imin
.m/.

All the FS routines, as well as the algorithms for computing most of the com-
monly adopted estimators for regression and multivariate analysis, are contained
in the FSDA toolbox for MATLAB and are freely downloadable from http://www.
riani.it/MATLAB or from the web site of the Joint Research Centre of the European
Commission. This toolbox also contains a series of dynamic tools which enable the
user to link the information present in the different plots produced by the FS, such
as the index or forward plot of robust Mahalanobis distances Od 2

i .m/ and the scatter
plot matrix; see Perrotta et al. (2009) for details.

3 Comparison of Alternative Outlier Detection Rules

Precise outlier identification requires cut-off values for the robust distances when
model (1) is true. If Q� D Q�RMCD and Q̇ D Q̇RMCD, Cerioli et al. (2009) show
that the usually trusted asymptotic approximation based on the �2

v distribution can
be largely unsatisfactory. Instead, Cerioli (2010) proposes a much more accurate
approximation based on the distributional rules

Qd 2
i.RMCD/ � .w � 1/2

w
Beta

�
v

2
;

w � v � 1

2

�
if wi D 1 (12)

� w C 1

w

.w � 1/v

w � v
Fv;w�v if wi D 0; (13)

where wi and w are defined as in Sect. 2.2. Cerioli and Farcomeni (2011) show
how the same distributional results can be applied to deal with multiplicity of tests
to increase power and to provide control of alternative error rates in the outlier
detection process.

In the context of the Forward Search, Riani et al. (2009) propose a formal outlier
test based on the sequence Od 2

imin
.m/, m D m0; : : : ; n � 1, obtained from (11). In this

test, the values of Od 2
imin

.m/ are compared to the FS envelope

V 2
m;˛=
T .m/2;

http://www.riani.it/MATLAB
http://www.riani.it/MATLAB
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where V 2
m;˛ is the 100˛ % cut-off point of the .m C 1/th order statistic from the

scaled F distribution
.m2 � 1/v

m.m � v/
Fv;m�v; (14)

and the factor


T .m/2 D P.X2
vC2 < �2

v;m=n/

m=n
(15)

allows for trimming of the n� m largest distances. In (15), X2
vC2 � �2

vC2 and �2
v;m=n

is the m=n quantile of �2
v .

The flexible trimming strategy enjoyed by the FS ensures a balance between
the two enemy brothers of robust statistics: robustness against contamination and
efficiency under the postulated multivariate normal model. This makes the Forward
Search a valuable benchmark against which alternative competitors should be
compared. On the other hand, very little is known about the finite sample behaviour
of the outlier detection rules which are obtained from the multivariate S and MM
estimators summarized in Sect. 2.2. In the rest of this section, we thus explore the
performance of the alternative rules with both “good” and contaminated data, under
different settings of the required user-defined tuning constants. We also provide
comparison with power results obtained with the robust RMCD distances (5) and
with the flexible trimming approach given by the FS.

3.1 Size

Size estimation is performed by Monte Carlo simulation of data sets generated
from the v-variate normal distribution N.0; I /, due to affine invariance of the robust
distances (4). The estimated size of each outlier detection rule is defined to be the
proportion of simulated data sets for which the null hypothesis of no outliers, i.e.
the hypothesis that all n observations follow model (1), is wrongly rejected. For S
and MM estimation, the finite sample null distribution of the robust distances Qd 2

i is
unknown, even to a good approximation. Therefore, these distances are compared to
the 1 � ˛=n quantile of their asymptotic distribution, which is �2

v . As in the Wilks’
rule of Sect. 2.1, the Bonferroni correction ensures that the actual size of the test of
no outliers will be bounded by the specified value of ˛ if the �2

v approximation is
adequate.

In our investigation we also evaluate the effect on empirical test sizes of
each of some user-defined tuning constants required for practical computation of
multivariate S and MM estimators. See, e.g., Todorov and Filzmoser (2009) for
details. Specifically, we consider:

• bdp: breakdown point of the S estimators, which is inherited by the MM
estimators as well (the default value is 0.5);

• eff: efficiency of the MM estimators (the default value is 0.95);
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• effshape2: dummy variable setting whether efficiency of the MM estimators is
defined with respect to shape (effshapeD 1) or to location (effshapeD 0,
the default value);

• nsamp: number of sub-samples of dimension .pC1/ in the resampling algorithm
for fast computation of S estimators (our default value is 100);

• refsteps: maximum number of iterations in the Iterative Reweighted Least
Squares algorithm for computing MM estimators (our default value is 20);

• gamma: tail probability in (8) for Rocke’s Biflat function (the default value
is 0.1).

Tables 1 and 2 report the results for n D 200, v D 5 and v D 10, when ˛ D 0:01

is the nominal size for testing the null hypothesis of no outliers and 5,000
independent data sets are generated for each of the selected combinations of
parameter values. The outlier detection rule based on S estimators with Tukey’s
Biweight function (7) is denoted by ST. Similarly, SR is the S rule under Rocke’s
Biflat function. It is seen that the outlier detection rules based on the robust S and
MM distances with Tukey’s Biweight function can be moderately liberal, but with
estimated sizes often not too far from the nominal target. As expected, liberality is
an increasing function of dimension and of the breakdown point, both for S and MM
estimators. Efficiency of the MM estimators (eff) is the only tuning constant which
seems to have a major impact on the null behaviour of these detection rules. On the
other hand, SR has the worst behaviour under model (1) and its size can become
unacceptably high, especially when v grows. As a possible explanation, we note
that a number of observations having positive weight under ST receive null weight
with SR (Maronna et al. 2006, p. 192). This fact introduces a form of trimming in
the corresponding estimator of scatter, which is not adequately taken into account.
The same result also suggests that better finite-sample approximations to the null
distribution of the robust distances Qd 2

i with Rocke’s Biflat function are certainly
worth considering.

3.2 Power

We now evaluate the power of ST, SR and MM multivariate outlier detection rules.
We also include in our comparison the FS test of Riani et al. (2009), using (14),
and the finite-sample RMCD technique of Cerioli (2010), relying on (12) and (13).
These additional rules have very good control of the size of the test of no outliers
even for sample sizes considerably smaller than n D 200, thanks to their accurate
cut-off values. Therefore, we can expect a positive bias in the estimated power of all
the procedures considered in Sect. 3.1, and especially so in that of SR.

2In the RRCOV packege of the R software this option is called eff.shape
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Table 2 Estimated size of the test of the hypothesis of no
outliers for n D 200 and nominal test size ˛ D 0:01, using
S estimators with Rocke’s Biflat function (SR), for different
values of � in (8). Five thousand independent data sets are
generated for each of the selected combinations of parameter
values

gamma

0.15 0.10 0.05 0.025 0.01 0.001

v D 5 0.066 0.057 0.055 0.056 0.056 0.061
v D 10 0.089 0.080 0.079 0.078 0.077 0.081

Average power of an outlier detection rule is defined to be the proportion
of contaminated observations rightly named to be outliers. We estimate it by
simulation, in the case n D 200 and for v D 5 and v D 10. For this purpose,
we generate v-variate observations from the location-shift contamination model

yi � .1 � ı/N.0; I / C ıN.0 C �e; I /; i D 1; : : : ; n; (16)

where 0 < ı < 0:5 is the contamination rate, � is a positive scalar and e is a column
vector of ones. The 0:01=n quantile of the reference distribution is our cut-off value
for outlier detection. We only consider the default choices for the tuning constants
in Tables 1 and 2, given that their effect under the null has been seen to be minor.
We base our estimate of average power on 5,000 independent data sets for each of
the selected combinations of parameter values.

It is worth noting that standard clustering algorithms, like g-means, are likely to
fail to separate the two populations in (16), even in the ideal situation where there
is a priori knowledge that g D 2. For instance, we have run a small benchmark
study with n D 200, v D 5 and two overlapping populations by setting � D 2 and
ı D 0:05 in model (16). We have found that the misclassification rate of g-means
can be as high as 25 % even in this idyllic scenario where the true value of g is
known and the covariance matrices are spherical. The situation obviously becomes
much worse when g is unknown and must be inferred from the data. Furthermore,
clustering algorithms based on Euclidean distances, like g-means, are not affine
invariant and would thus provide different results on unstandardized data.

Tables 3–5 show the performance of the outlier detection rules under study for
different values of ı and � in model (16). If the contamination rate is small, it
is seen that the four methods behave somewhat similarly, with FS often ranking
first and MM always ranking last as � varies. However, when the contamination
rate increases, the advantage of the FS detection rule becomes paramount. In that
situation both ST and MM estimators are ineffective for the purpose of identifying
multivariate outliers. As expected, SR improves considerably over ST when v D 10

and ı D 0:15, but remains ineffective when ı D 0:3. Furthermore, it must be
recalled that the actual size of SR is considerably larger, and thus power is somewhat
biased.
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Table 3 Estimated average power for different shifts � in the contamination
model (16), in the case n D 200, v D 5 and v D 10, when the contamination
rate ı D 0:05. Five thousand independent data sets are generated for each of
the selected combinations of parameter values

Mean shift �

2 2.2 2.4 2.6 2.8 3

v D 5 ST 0.344 0.525 0.696 0.827 0.912 0.963
SR 0.387 0.549 0.698 0.820 0.908 0.957
MM 0.148 0.280 0.466 0.672 0.836 0.935
RMCD 0.227 0.390 0.574 0.732 0.856 0.936
FS 0.359 0.567 0.730 0.840 0.909 0.953

v D 10 ST 0.758 0.919 0.978 0.995 0.999 1
SR 0.856 0.946 0.986 0.997 0.999 1
MM 0.479 0.782 0.942 0.990 0.998 1
RMCD 0.684 0.839 0.956 0.987 0.997 1
FS 0.808 0.911 0.968 0.991 0.998 1

Table 4 Quantities as in Table 3, but now for ı D 0:15

Mean shift �

2 2.4 2.6 2.8 3 3.4

v D 5 ST 0.073 0.532 0.772 0.901 0.960 0.996
SR 0.275 0.433 0.594 0.742 0.854 0.925
MM 0.006 0.010 0.012 0.016 0.026 0.397
RMCD 0.096 0.428 0.652 0.815 0.913 0.988
FS 0.580 0.803 0.878 0.935 0.965 0.993

v D 10 ST 0.006 0.007 0.008 0.01 0.013 0.041
SR 0.696 0.825 0.895 0.923 0.931 0.946
MM 0.001 0.001 0.001 0.001 0.003 0.030
RMCD 0.530 0.938 0.959 0.993 1 1
FS 0.887 0.938 0.974 0.991 0.998 1

A qualitative explanation for the failure of multivariate MM estimators is
shown in Fig. 1 in the simple case v D 2. The four plots display bivariate ellipses
corresponding to 0.95 probability contours at different iterations of the algorithm
for computing MM estimators, for a data set simulated from the contamination
model (16) with n D 200, ı D 0:15 and � D 3. The data can be reproduced using
function randn(200,2) of MATLAB and putting the random number seed to 2.
The contaminated units are shown with symbol ı and the two lines which intersect
the estimate of the robust centroid are plotted using a dash-dot symbol. The upper
left-hand panel corresponds to the first iteration (i1), where the location estimate
is Q� D .0:19; 0:18/0 and the value of the robust correlation r derived from Q̇ is
0.26. In this case the robust estimates are not too far from the true parameter values
� D .0; 0/0 and ˙ D I , and the corresponding outlier detection rule (i.e., the ST
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Table 5 Quantities as in Table 3, but now for ı D 0:30

Mean shift �

2 2.4 2.6 2.8 3 4 6

v D 5 ST 0.003 0.005 0.006 0.007 0.009 0.016 0.092
SR 0.006 0.033 0.286 0.372 0.458 0.557 1
MM 0.002 0.003 0.004 0.005 0.006 0.012 0.085
RMCD 0.010 0.159 0.381 0.637 0.839 1 1
FS 0.627 0.915 0.920 0.941 0.967 1 1

v D 10 ST 0.002 0.002 0.003 0.003 0.003 0.004 0.011
SR 0.002 0.005 0.004 0.005 0.009 0.011 0.039
MM 0.001 0.001 0.001 0.001 0.001 0.001 0.001
RMCD 0.207 0.842 0.969 0.994 0.999 1 1
FS 0.904 0.929 0.961 0.980 0.989 0.995 1
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i7, ¹ = (0.37,0.32) , r =0.47˜̃

−2 0 2 4 6
−2

0
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4

i8, ¹ = (0.37,0.32) , r =0.47˜̃

Fig. 1 Ellipses corresponding to 0.95 probability contours at different iterations of the algorithm
for computing multivariate MM estimators, for a data set simulated from the contamination
model (16) with n D 200, v D 2, ı D 0:15 and � D 3

rule in Tables 3–5) can be expected to perform reasonably well. On the contrary,
as the algorithm proceeds, the ellipse moves its center far from the origin and the
variables artificially become more correlated. The value of r in the final iteration
(i8) is 0.47 and the final centroid QQ� is .0:37I 0:32/0. These features increase the bias
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Fig. 2 Index plots of robust scale residuals obtained using MM estimation with a preliminary
S-estimate of scale based on a 50 % breakdown point. Left-hand panel: 90 % nominal efficiency;
right-hand panel: 95 % nominal efficiency. The horizontal lines correspond to the 99 % individual
and simultaneous bands using the standard normal

of the parameter estimates and can contribute to masking in the supposedly robust
distances (10).

A similar effect can also be observed with univariate (v D 1) data. For instance,
Atkinson and Riani (2000, pp. 5–9) and Riani et al. (2011) give an example of a
regression dataset with 60 observations on three explanatory variables where there
are six masked outliers (labelled 9, 21 30, 31, 38 47) that cannot be detected using
ordinary diagnostic techniques. The scatter plot of the response against the three
explanatory variables and the traditional plot of residuals against fitted values, as
well as the qq plot of OLS residuals, do not reveal observations far from the bulk of
the data. Figure 2 shows the index plots of the scaled MM residuals. In the left-hand
panel we use a preliminary S estimate of scale with Tukey’s Biweight function (7)
and 50 % breakdown point, and 90 % efficiency in the MM step under the same
� function. In the right-hand panel we use the same preliminary scale estimate as
before, but the efficiency is 95 %. As the reader can see, these two figures produce
a very different output. While the plot on the right (which is similar to the masked
index plot of OLS residuals) highlights the presence of a unit (number 43) which
is on the boundary of the simultaneous confidence band, only the plot on the left
(based on a smaller efficiency) suggests that there may be six atypical units (9, 21
30, 31, 38 47), which are indeed the masked outliers.

4 Conclusions

In this paper we have provided a critical review of some popular rules for identifying
multivariate outliers and we have studied their behaviour both under the null
hypothesis of no outliers and under different contamination schemes. Our results
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show that the actual size of the outlier tests based on multivariate S and MM
estimators using Tukey’s Biweight function and relying on the �2

v distribution is
larger than the nominal value, but the extent of the difference is often not dramatic.
The effect of the many tuning constants required for their computation is also seen
to be minor, except perhaps efficiency in the case of MM estimators. Therefore,
when applied to uncontaminated data, these rules can be considered as a viable
alternative to multivariate detection methods based on trimming and requiring more
sophisticated distributional approximations.

However, smoothness of Tukey’s Biweight function becomes a trouble when
power is concerned, especially if the contamination rate is large and the number
of dimensions grows. In such instances our simulations clearly show the advantages
of trimming over S and MM estimators. In particular, the flexible trimming approach
ensured by the Forward Search is seen to greatly outperform the competitors, even
the most liberal ones, in almost all our simulation scenarios and is thus to be
recommended.
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