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Preface

This volume contains revised versions of the selected papers presented at the 8th
biannual meeting of the Classification and Data Analysis Group (CLADAG) of
the Italian Statistical Society, organized by the Department of Economics and
Management of the University of Pavia, in September 2011.

The conference has encompassed 170 presentations, organized in 3 plenary talks
and 46 sessions. With 230 attendees from 10 different countries, the conference
provided an attractive interdisciplinary international forum for discussion and
mutual exchange of knowledge. The topics of all plenary and specialized sessions
were chosen, in a peer-review process, to fit the mission of CLADAG which is to
promote methodological, computational and applied research, within the fields of
classification, data analysis and multivariate statistics.

The contributions in this volume were selected in a second peer-review process,
after the conference. In addition to the fundamental areas of clustering and dis-
crimination, multidimensional data analysis and data mining, the volume contains
manuscripts concerning data analysis and statistical modelling in application areas
like economics and finance, education and social sciences and environmental and
biomedical sciences.

We would like to express our gratitude to all members of the scientific program
committee, for their ability in attracting interesting contributions. We also thank the
session organizers, the invited speakers, the chairpersons and the discussants of all
sessions for a very stimulating scientific atmosphere. We are very grateful to the
referees, for their careful reviews of the submitted papers and for the time spent in
this professional activity.

We gratefully acknowledge financial support from the Italian Ministry of
Research (PRIN programme), the University of Pavia, the Credito Valtellinese
banking group and the IT company ISED. We also thank PRAGMA Congressi for
the precious support in the organization of the conference.

A special thanks is due to the local organizing committee and, in particular, to
its coordinator, Dr. Paola Cerchiello, for a very well organized conference, with the
related scientific proceedings. Finally we would like to thank Ruth Milewski and
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Dr. Martina Bihn of Springer-Verlag, Heidelberg, for the support and dedication to
the production of this volume.

Pavia, Italy Paolo Giudici
Catania, Italy Salvatore Ingrassia
Roma, Italy Maurizio Vichi
7 December 2012
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Sacro Cuore, Milano, Italy

Stefano Bonnini Department of Economics, University of Ferrara, Ferrara, Italy

Giovanni Boscaino Dipartimento di Scienze Statistiche e Matematiche “Silvio
Vianelli”, Universit degli Studi di Palermo, Palermo, Italy

Anne-Laure Boulesteix Biometry and Epidemiology of the Faculty of Medicine,
Department of Medical Informatics, University of Munich, Munich, Germany

Giuseppe Bove Dipartimento di Scienze dell’Educazione, Rome, Italy

Riccardo Bramante Department of Statistical Sciences, Catholic University of
Milan, Milan, Italy

Gabriele Cantaluppi Dipartimento di Scienze statistiche, Universitá Cattolica del
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Chieti-Pescara, Pescara, Italy

Lidia Rivoli University of Naples Federico II, Naples, Italy

Luca La Rocca Dipartimento di Comunicazione e Economia, University of
Modena and Reggio Emilia, Reggio Emilia, Italy

Mario Romanazzi Department of Environmental Science, Informatics and Statis-
tics, Ca’ Foscari University of Venice, Venice, Italy

Elvira Romano Second University of Naples, Caserta, Italy

David Rossell Institute for Research in Biomedicine of Barcelona, Barcelona,
Spain

Fabrizio Ruggeri CNR IMATI Milano, Milano, Italy

Luigi Salmaso Department of Management and Engineering, University of
Padova, Vicenza, Italy

Christophe Salperwyck Orange Labs, Lannion, France
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Ordering Curves by Data Depth

Claudio Agostinelli and Mario Romanazzi

Abstract Application of depth methods to functional data provides new tools
of analysis, in particular an ordering of curves from the center outwards. Two
specific depth definitions are band depth and half-region depth (López-Pintado
& Romo (2009). Journal of the American Statistical Association, 104, 718–734;
López-Pintado & Romo (2011). Computational Statistics & Data Analysis, 55,
1679–1695). Another research area is local depth (Agostinelli and Romanazzi
(2011). Journal of Statistical Planning and Inference, 141, 817–830.) aimed to
identify multiple centers and dense subsets of the space. In this work we suggest
local versions for both band and half-region depth and illustrate an application with
real data.

1 Introduction

The data considered here are a set of n curves yi .t/ � yi , t 2 T � R, i D 1; : : : ; n
to be interpreted as IID observations of a functional variable y.t/ defined in an
infinite dimensional space. Examples arise in chemometrics (spectrometrics curves),
environmetrics (time trajectories of concentrations of pollutants), finance (stock
prices), medicine (ECG and EEG curves) and many other fields. Two comprehensive
references on the statistical methods are Ramsay and Silverman (2005) and Ferraty
and Vieu (2006). A general problem is to define an ordering for functional data
able to rank the curves according to centrality. Useful notions of mean curve and
median curve are already available (e.g., Ferraty and Vieu (2006, p. 127)) but a more
general solution is in terms of functional depth, an extension of the order statistic.

C. Agostinelli (�) �M. Romanazzi
Department of Environmental Science, Informatics and Statistics, Ca’ Foscari University
of Venice, Venice, Italy
e-mail: claudio@unive.it; romanaz@unive.it
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2 C. Agostinelli and M. Romanazzi

Data depth was established at the end of the last century as a general nonparametric
methodology for multivariate numerical data (Liu 1990; Zuo and Serfling 2000).
The extension to functional data is a more recent research area (López-Pintado and
Romo 2009) with some useful achievements including a center-outwards ordering
of curves and the notion of depth regions to be interpreted similarly to interquartile
intervals. An important application is supervised classification of a curve into one
of several classes (López-Pintado and Romo 2005).

In this work we concentrate on local versions of functional depth. Unlike the
usual definition, local depth functions (Agostinelli and Romanazzi 2011) allow
recognition of multiple centers and dense subsets of the reference space, a topic
of interest also in the context of functional data. An obvious application is curve
clustering. The content of the paper is the following. The basic definitions of
functional depth are reviewed in Sect. 2 and their local versions are described in
Sect. 3. Some real data applications are discussed in Sect. 4.

2 Functional Depth

The basic tool in data depth is the depth function which maps each object of the
reference space to a non negative real number—the depth value—to be interpreted
as a centrality rank. Depth ranks are different from the standard ranks generated
by the univariate order statistic. The maximum depth identifies the center whereas
the minimum depth corresponds to the outskirts of the distribution. In the case
of the euclidean space R

p some popular definitions are Mahalanobis’, halfspace,
projection and simplicial depth (Zuo and Serfling 2000). Half-region and band depth
can be interpreted as extensions of halfspace and simplicial depth, respectively,
to the functional setting. Roughly speaking, half-region depth is the minimum
probability that a randomly sampled curve lies below or above the curve under
consideration whereas band depth is the probability that the curve is covered by
the band determined by a suitable number of random copies of the underlying
stochastic process. Alternative, less restrictive, definitions are obtained by replacing
probabilities with the expected time the curve satisfies either constraint and are
called modified depths. Precise notation and definitions for the sample situation are
given below. The population versions can be found in the original papers.

The observed data are a collection of functions yn D fyi 2 C .T / W i D
1; � � � ; ng, with C .T / denoting some functional space, e.g., the space of all
continuous functions on some compact interval T � R. The graph of a function
y is the subset of the space G.y/ D f.t; y.t// W t 2 T g.

We start with the definition of half-region depth. The hypograph (epigraph) of
a curve y is the set of points lying on or below (on or above) its graph. Let
Rhypo.yI yn/ (Repi.yI yn/) be the sample proportion of graphs belonging to the
hypograph (epigraph) of y.
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Definition 1 (Half-region depth, López-Pintado and Romo 2011). For a func-
tional dataset yn, the half-region depth of a curve y is

dHR.yI yn/ D min.Rhypo.yI yn/; Repi.yI yn// : (1)

Let �.�/ denote Lebesgue measure. The modified version of (1) is

dMHR.yI yn/ D min.EL.yI yn/;HL.yI yn//; (2)

where

EL.yI yn/ D 1
n�.T /

Pn
iD1 � .t 2 T W y.t/ � yi .t// ; (3)

HL.yI yn/ D 1
n�.T /

Pn
iD1 � .t 2 T W y.t/ � yi .t// : (4)

We proceed with the definition of band depth. For any choice of k � n functions
yi1 ; yi2 ; � � � ; yik out of the n functions y1; y2; � � � ; yn, a band B.yi1 ; yi2 ; � � � ; yik / is
the smallest region of the plane including all of them, that is

B.yi1 ; yi2 ; � � � ; yik / D
�[klD1hypo.yil /

�\ �[kmD1epi.yim/
�

(5)

D [klD1 [kmD1
�

hypo.yil / \ epi.yim/
�

:

The quantity

d
.k/
B .yI yn/ D

 

n

k

!�1
X

1�i1<i2<���<ik�n
1.G.y/ � B.yi1 ; yi2 ; � � � ; yik // (6)

is the proportion of bands B.yi1 ; yi2 ; � � � ; yik / containing the whole graph of y.
Here, 1.�/ is the indicator function of its argument.

Definition 2 (Band depth, López-Pintado and Romo 2009). Let 2 � K � n be
a fixed value. The band depth of a curve y is

dB;K.yI yn/ D
K
X

kD2
d
.k/
B .yI yn/ : (7)

The modified version of (7) is

dMB;K.yI yn/ D
K
X

kD2
d
.k/
MB.yI yn/ ; (8)

where

d
.k/
MB.yI yn/ D

 

n

k

!�1
1

�.T /

X

1�i1<i2<���<ik�n
�.t 2 T W G.y/ � B.yi1 ; yi2 ; � � � ; yik // :

(9)
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An often used value is K D 2.
Together with the depth values, another basic statistic is the deepest—or

median—curve. A useful generalization is the 100p% depth region ODn.p/, defined
as the subset of the 100p% deepest curves, 0 < p < 1. Frequently, p D 0:5 and
ODn.0:5/ is a possible generalization of the interquartile interval. We end this section

recalling that band and half-region depth, and their maximizers, are consistent
estimators of their population counterparts (López-Pintado and Romo 2009, Th. 4,
López-Pintado and Romo 2011, Th. 3 and 4).

3 Local Functional Depth

The rationale of local depth is to measure depth conditional on a bounded
neighbourhood of the objects under consideration, so as to capture features of the
nearby portion of the space, only. It depends on a tuning parameter � , constant
across the space, measuring the size of the neighbourhoods. When � grows higher,
local depth becomes more similar to ordinary depth. For simplicial depth, the
tuning parameter is just simplex size measured, e.g., by diameter or volume. For
halfspace depth, it is the width of minimum probability slabs. The reader is referred
to Agostinelli and Romanazzi (2011) for more details. With functional data sets,
local versions of both half-region and band depth are obtained by constraining the
widths of hypo/epigraphs and bands to a finite value. Setting � equal to the p-th
order percentile of pairwise distances of curves works well in practice, with p in
the range 10%–30%. Accordingly, local half-region depth of a curve y.t/ is the
minimum proportion of curves lying at a distance not greater than � below or above
y.t/ and local band depth is the sample proportion of bands covering y.t/ formed
by K curves with pairwise distances not greater than � . The computing formulae
are given in Eqs. (10) and (11) below.

ldHR.yI yn; �/ D min

 

1

n

n
X

iD1

1.G.yi / � hypo.yI �//; 1
n

n
X

iD1

1.G.yi / � epi.yI �//
!

;

(10)

where

hypo.yI �/ D hypo.y/\ epi.y 	 �/ D f.t; z/ W t 2 T; y.t/ 	 � � z � y.t/g;
epi.yI �/ D hypo.y C �/ \ epi.y/ D f.t; z/ W t 2 T; y.t/ � z � y.t/C �g:

ldB;K.yI yn; �/ D
K
X

kD2
ld.k/B .yI yn; �/ (11)

D
K
X

kD2

 

n

k

!�1
1.G.y/ � B.yi1 ; � � � ; yik /\ s.B.yi1 ; � � � ; yik // � �/:
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In the previous equation, s.B.y1; � � � ; yk// is a scalar measure of band size, like
the diameter

diam.B.y1; � � � ; yk// D max
t2T j max.y1.t/; � � � ; yk.t// 	min.y1.t/; � � � ; yk.t// j :

The modified versions are defined in a similar way as the global counterparts and
are omitted. For x; y 2 C .T /, two often-used distances are

ı1.x; y/ D supt2T j x.t/ 	 y.t/ j ;
ı2.x; y/ D .

R

T
.x.t/ 	 y.t//2dt/1=2 :

The consistency of the local depth functions defined in this section can be proved
along the same lines as Agostinelli and Romanazzi (2011).

4 Applications

We use two data sets to illustrate curve ranking. The first one includes absorbance
curves of 240 samples of meat recorded in the wavelength range 850–1,050nm. See
Ferraty and Vieu (2006) for more details. From Fig. 1, the curves appear very regular
and, apart from a vertical shift, they exhibit a similar behaviour. The second data set
is the gross domestic product (GDP) dataset. Observed data are time trajectories
over the period 1970–2009 of log GDP pro capite of 83 countries (yearly data
in dollars; source: World Bank). Graphical inspection of the curves (see Fig. 2)
shows different locations but a largely common shape. Rich countries form a fairly
separated cluster, notably stable over time.

Our analysis is based on modified half-region depth, the tuning parameter of the
local version being the 10-th percentile of pairwise ı1 distances of trajectories.

For the meat data, the ranks provided by global and local depth largely agree and
there is no evidence of partial centers or clusters. Both functions reach the maximum
value on the dense subset of curves in the lower half of the plot and they steadily
decrease when proceeding towards the lower or the upper extreme of the absorbance
range. The shift of local central region towards the lower absorbance values reflects
the typical behaviour of local depth with asymmetric distributions (Agostinelli and
Romanazzi 2011). A referee suggested that the depth ordering of derivatives of the
curves could provide information on curve shape. In the present instance this proves
to be true because local depth of the second derivatives recognizes three classes of
curves corresponding to those found by Ferraty and Vieu (2006), p. 136–137.

A different picture arises from GDP data (see Fig. 2). The deepest curves
according to global depth are Botswana and Colombia and the extreme curves are
Burundi, Malawi and Norway. In most cases local depth is very different from
global depth, with variations in both directions, which supports the hypothesis that
GDP is a compound process. The (normalized) local and global depth values of
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Fig. 1 Absorbance curves with gray level proportional to depth (darker means deeper; dashed
line: deepest curve). Left: modified half-region depth, right: local version
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Fig. 2 GDP curves with gray level proportional to depth (darker means deeper). Left: modified
half-region depth (dashed line: Botswana, dotted line: Colombia); right: local version (dashed
line: Austria, dotted line: Guatemala)

Botswana are 0.078 and 1, respectively, whereas the corresponding values of Austria
are 1 and 0.194. Indeed, Austria can be considered the centroid of the group of
richest countries. The second highest value of local depth is Guatemala, also shown
in Fig. 2. The different behaviour of global and local depth is best evaluated from
Fig. 2 where the gray level of GDP curves is proportional to (normalized) depth
(black corresponds to maximum depth). It is confirmed that the richest countries
form a densely packed group. Another two dense regions are suggested, but they are
more dispersed. However, the gap between rich and non rich countries is filled with
several curves with low depth values that can mask the group structure.

Previous results suggest that meat curves are determinations of a homogeneous
process whereas GDP curves can come from a mixture of (at least) two processes
describing GDP dynamics of rich and non rich countries, respectively. An important
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Fig. 3 Bootstrap p-value of
homogeneity test with T3;n.�/
test function (solid: GDP
data, dashed: meat data)

problem is to test the (null) hypothesis that the underlying process is homogeneous.
The rank transformation of the local and global depth values are obvious candidates
to build a test function because, under the null hypothesis, local and global depth
produce the same ordering. Two natural test functions are the sample mean T1;n.�/
of the absolute differences of local and global ranks,

T1;n.�/ D n�1
n
X

iD1
j d .R/i 	 ld.R/i .�/ j ;

and the sample correlation T2;n.�/ of local and global ranks,

T2;n.�/ D corr.d .R/; ld.R/.�// :

Here, for i D 1; � � � ; n, d .R/i (ld.R/i .�/) stands for the rank of the i -th global
(local) depth value and corr denotes Pearson’s correlation. A more selective
version of T1;n.�/ arises from consideration of rank differences corresponding to
maximizers of local and global depth functions, only. This test function is denoted
with T3;n.�/.

The homogeneity test was performed on both data sets, using the three test
functions with the percentile order of distances ranging from 5% to 70%. The
p-values are estimated through bootstrap resampling with 500 replicates. The
p-values corresponding to T3;n.�/ are shown in Fig. 3. For meat data, according
to the initial guess, the test is never significant, whatever test function or � value are
used. For GDP data, the p-values corresponding to lower values of � confirm the
observed differences between local and global ranks to be important but they always
remain above the standard critical values. Accordingly, the differences between rich
and non rich countries could just be explained in terms of chance error. Another
possibility, supported by simulations not discussed here, is that the power of the
three test functions is poor when mixture components are not well separated.
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Can the Students’ Career be Helpful in
Predicting an Increase in Universities Income?

Massimo Attanasio, Giovanni Boscaino, Vincenza Capursi,
and Antonella Plaia

Abstract The students’ academic failure and the delay in obtaining their final
degree are a significant issue for the Italian universities and their stakeholders.
Based on indicators proposed by the Italian Ministry of University, the Italian
universities are awarded a financial incentive if they reduce the students’ attrition
and failure. In this paper we analyze the students’ careers performance using:
(1) aggregate data; (2) individual data. The first compares the performances of the
Italian universities using the measures and the indicators proposed by the Ministry.
The second analyzes the students’ careers through an indicator based on credit
earned by each student in seven academic years. The primary goal of this paper is
to highlight elements that can be used by the policy makers to improve the careers
of the university students.

1 Introduction

The Article 5 of the Law 537 of 1993 (Legge 2003) issued by the Italian Government
is the first step towards the evaluation of the Italian University System (IUS). It
marks the beginning of the financial autonomy of the universities with the hope to
contain public expenditures. The law identifies the evaluation criteria of the various
aspects of the IUS with the aim to obtain a fair distribution of the financial resources.
The same Article has created an Evaluation Committee (“Nuclei di Valutazione”)
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within each university and a National Assessment Committee, named “Osservatorio
Permanente”, whose primary scope is the management of the resources allocation.

Since late 1993 the law has experienced many modifications, such as the
Ministerial Decree 509 in 1999. These reforms were created in order to improve the
efficiency and the effectiveness of the universities due to the high number of drop
outs and of long survivor students, defined as those students who stayed much more
over the legal duration of the degree course (Lambert and Butler 2006). To cope
with these aspects, the M.D. 509 introduced a new structure of university curricula,
introducing (1) University Educational Credit (Credito Formativo Universitario—
CFU), as a measurement student academic workload; (2) two qualifications (for
both public and private institutions): first degree (L) or 3-year Bachelor, second
degree (LS) corresponding to two cycles of courses or 2-year Master degree. Since
2004 a part of the National University Funding System (Fondo di Finanziamento
Ordinario—FFO) have been distributed to the universities following new criteria
on university performance, essentially based on teaching and research. Inspite of
the fact that the 509 reform was implemented in the academic year 2001/2002 and
was revised in 2004, the problems of dropouts and of long survivor students is still
unchanged.

Monitoring students’ careers allows us to monitor our system in order to improve
efficiency for the benefit of the students, and it allows real time monitoring of the
performance indicators provided by the Ministry of Education of the University
to better distribute the competitive funds (which was around 10% of the Total
Funds—FFO—in 2010). Indeed, monitoring of the students’ CFUs rates is both
a commitment and a source of essential knowledge for those responsible for the
creation of university degree programs. It also allows to collect information on
the strengths and weaknesses of specific education programs; to acquire important
data for programming and prevention and to establish checks and confirmations in
order to create a process that is constantly under control. Furthermore, in order
to improve educational services and identify appropriate ways to improve weak
students’ performance it is important to analyze the determining factors of university
courses successes and failures (Boscaino et al. 2007).

In this paper the student career performance (SCP) is analyzed using both
aggregate data, taking into account the FFO criteria and the outcome of the 2010
universities fund allocation (Sect. 2), and individual longitudinal data, taking into
account the heterogeneity of students and the monitoring of their careers (Sect. 3).

The SCP data analysis raises several questions. For instance, is it possible to
figure out simple and straightforward actions to accelerate the improvement FFO’s
indicators? Is it possible to figure out a policy to improve FFO’s indicators in the
long term? Are there simple numbers or indicators, useful to address university
policies, which can be extracted from individual SCP analysis? All these questions
lead to the ultimate purpose of this paper: which policy my university will/could
adopt to improve the SCPs?
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2 Aggregate Data: FFO Structure and Criteria

Italian FFO has been divided in three parts since 2009: the QB (Quota Base)
corresponding to the general budget, the MP (Modello Premiale) corresponding to
the competitive funds (introduced to reward teaching and research quality), and a
residual part mostly related to salary increase (RE) (D. M. 2009, 2010). Every year
the Ministry sets the FFO amount, the MP percentage amount and how to compute
the QB, while RE is obtained as residual.

In 2010 the Ministry established the amount of the funds to be distributed to the
universities and set the MP to be 10% of the yearly FFO while the QB was the
80% of the 2009 FFO. The 2010 FFO is composed by 10% MP, 83% QB, and 7%
RE. Moreover, The Ministry has announced that the MP will increase to 12% of the
2011 FFO .

The MP award is proportional to 6 performance indicators, 2 for teaching and 4
for research. The IUS 54 universities have received the MP according to (1):

MP D 0:17 
 A1C 0:17 
 A2C 0:23 
 B1C 0:10 
 B2C
0:20 
 B3
C0:13 
 B4 (1)

The two indicators relevant to the “quality of teaching”, A1 and A2, will be
analyzed in detail in this paper, while we do not analyze the others becauseB1	B4
represent the quality of the research outcome, which is not relevant to the paper
aims. A1 and A2 consider respectively the demand of each University Education
and the number of CFUs earned by the students:

A1 D .4 
 STUDA C 3 
 STUDB C 2 
 STUDC C 1 
 STUDD/ 
 .KT CKA/

(2)

A2 D CFU PA C CFU PB C CFU PC C CFU PD (3)

with:

CFU Pi D
CFU Ei
CFU Ti

Mediani

 CFU Ei (4)

where:

1. i D A; B; C; D (ministerial course classification based on the financial aid
allocated to each student).

2. STUDi is the number of “active students” attending type i course.
3. An “active student” is defined as a student with the following features: they have

been in the university system for a number of years less or equal to the legal
duration of the course; and they have earned at least 5 CFUs per year.
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Fig. 1 Active students in groups B, C, and D (%)

4. KT and KA are correction factors related to the local context (based on the
net income distribution of the university region) and to the sustainability of the
courses (the ratio between the number of teachers and the number of Degree
Courses), respectively.

5. CFU Ei are the CFU earned in a year by the students of the i-th group.
6. CFU Ti are the CFU correlated to the workload of the full-time students per year

in the i -th group.
7. Mediani is the median over the rates CFU Ei=CFU Ti computed for the 54

universities, in each group.

The MP could cause high losses/gains which will influence the FFO in the
subsequent years, since the QB is computed as a percentage (80%) of the previous
year FFO. In this way, successive losses are summed up each year since the QB is
progressive, so it is crucial to undertake actions to improve A1 and A2 in order to
avoid extra losses in the successive years. But how universities can improve their
own performance? According to A1, universities are funded proportionally to the
number of “active students”, but nothing is said about the “inactive students”: how
do these students affect the total number of students? The graphical representation
of the “location” of the single universities (Fig. 1) allows to summarize and compare
quickly the students’ performance (in terms of active students percentage) with
respect to the groups B, C, and D. Group A is not included because it covers just
4% of the students.

The worst universities performance correspond to the black dots in the III
quadrant in the scatterplot (Fig. 1). These are the universities that need to improve
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performances for the benefit of the groups (B to D) by increasing the number of
students earning at least 5 CFUs per year and/or by reducing the number of long
survivor students. In practice, a university should increase the number of “active
students” or, eventually, decrease the number of “inactive students”: this target can
be achieved by avoiding students to stay in the university system for a period not
longer than the legal duration of the course, and by letting them accumulate at least
5 CFUs in a year. This second task, which allows to stimulate earning 5 CFUs per
year, will improve A2 too. A great advantage is to be able to identify early those
students who could become “inactive” or could earn few CFUs each year.

To cope with these problems, a cohort study, as described in the next section, can
give useful information.

3 Individual Data: Student Career Performance

In this section we investigate the student career performance applying individual
longitudinal data. We will use the CFUs accumulation over 7 years.

The data concern the cohort of the Palermo University freshmen, enrolled in
2002/2003 and followed up till the 31st May 2010. For simplicity’s sake, we
analyze only those students who never change faculty during 7 years, who have
payed university fees in the legal terms every year and never dropped out (the core
students). Moreover, we examine 3 faculties (Economics, Engineering, and Arts)
belonging to three different cultural areas. The performance is defined as the number
of CFUs earned by the i-th students at the end of the first j years (j D 1; 2; : : : ; J )
(CFUi .j /). Table 1 reports the distribution of freshmen enrolled in 2002/2003
classified according to the student career status in 2009. Our classification of the
students is the following:

Core The student who never change faculty.
Mover The student who changed faculty, course, and/or university.
Withdrawal The student who quits.
Lost The student who never quitted, but whose follow up ended

before 7th year.

The latter is largely represented in Economics and Arts Faculties, but for the
purpose of this paper we will not investigate this group issue because it deserves
in-depth examination.

Table 1 shows that the most efficient faculty at Palermo University is the Faculty
of Engineering. In this Faculty the graduation rate for the bachelor degree is greater
than the one of two other faculties, reaching 46% at the end of the sixth year (may
be it will be higher if a part of the lost is considered as withdrawal). The low success
rate aetiology is difficult to be proved due to its complexity. To simplify we focus our
attention to few aspects, with the aim of finding out simple and useful information
for the universities.

Based on these findings we investigate the number of CFUs earned at the
end of the first year (CFU(1)) versus the years needed to obtain the degree.
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Table 1 Distribution of Palermo University freshmen enrolled in 2002/2003 by Status and Faculty

Faculty

Status in 2009 Economics (%) Arts (%) Engineering (%)

Core 536 (341a) 49.1 1,339 (960a) 54.2 733 (526a) 63.7
Mover to other

Faculties
53 (7a) 8.8 67 (12a) 5.1 88 (18a) 9.7

Mover to other
Universities

43 60 24

Withdrawal 141 42.1 304 40.6 95 26.6
Lost 318 700 211

Total 1,091 100 2,470 10 1,151 100
aStudents who took a degree (bachelors)

This investigation is needed to figure out if CFU(1) is a good predictor. We restrict
our analysis to those students who never changed Degree Course (core) in 7 years.
Following Cozzucoli and Ingrassia (2005), we define:

B The bachelors, or those students that graduated within 7 years.
O The others (with respect to the B’s), those students not yet graduated in 2009.
CFUi .j / The number of CFUs earned by the i -th students at the end of the first j

years (j D 1; 2; : : : ; J IJ D 7).
Xi The number of years expected to obtain a degree by the i -th student, considering

the number of CFUs earned by the i-th student at the end of the first year
(CFUi (1)), that is 180=CFUi .1/, where 180 is the amount of CFUs needed to
get a degree. We group X into 4 classes: �4; 4-j5; 5-j6; and >6; obviously, the
students whose CFU.1/ D 0 (12% of core students) have been excluded.

Yi The number of years observed to obtain a degree for i -th bachelor (B).
EY i The number of years expected to obtain a degree for the others (O). EY i

is computed extrapolating the student’s annual earning speed (�i ) based on
CFUi .j /, and followed to the attainment of 180 CFU:

�i D CFUi .j /

j
(5)

EY i D 180	 CFUi .j /

�i
C j (6)

EY i first term is the number of years beyond the j -th to “get” the degree. For
instance, if a student earned 105 CFUs at the end of the first 7 years (j D 7), we
expect that they will get their degree by the 12th year of attendance:

�i D CFUi .7/

7
D 105

7
D 15

EY i D 180	 CFUi .7/

�i
C 7 D 180	 105

15
C 7 D 12
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Fig. 2 Box-plots of degree observed or expected years, by expected years at 1st year and student’s
status (O and B)—Faculty of Engineering, Palermo University. Upper O’s boxes are truncated for
reason of space

Figure 2 summarizes the results for the Faculty of Engineering because the other
faculties’ results are quite similar. The X axis is the number of the years to obtain
the degree, as expected at the end of the first academic year (computed through X),
for bachelors and others. The Y axis reports: for B’s the observed number of years
to obtain the degree; for O’s the expected number of years to obtain the degree
(computed through EY). Figure 2 clearly shows in most cases that a good start is
a good predictor for success. For instance, 117 B students obtained the degree in
4-j5, as expected by their performance in the 1st year, and only 34 O students did
not “keep the promise” held in the 1st year. Interestingly, the ratio between B’s
and O’s decreases towards the class 5-j6, showing the “best” promise for class �4.
These results suggest the importance of the first year CFUs as predictor of success.
The box-plots relative to the expected years to obtain the degree (O’s) are very large
and their upper bounds are always over 20. This unusual number is due to the large
number of students who have earned very few CFUs in 7 years. This dysfunction
obviously affects the denominator of EY i .

4 Concluding Remarks and Future Developments

In conclusion, Palermo University aggregate career students data show that the
number of earned CFUs are below the national median while the individual SCPs
show the dramatic slowness to obtain a degree.

These analysis are the first step to investigate the current IUS Evaluation. This
Evaluation system presents several incongruities, whose analysis deserves specific
attention. For instance, there is a need for different policies within the single
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university and, more importantly, competitive policies within the different Italian
universities. A good example is the FFO implementation by the Ministry for the
four types of degree courses A, B, C and D. Nevertheless this is not enough. It is
also very important to underline that FFO distributes the competitive fund on the
basis of crude indicators. In fact, the process of comparison is conducted using the
same set of indicators for all universities, without taking into account the different
characteristics of universities and students. Moreover this process is somehow
unfair, because good universities can attract more easily good students, and a vicious
circle could be boosted by this system of awards (Lambert and Butler 2006).

Further statistical investigations with individual career data will provide detailed
information on other covariates that may influence the success/failure of the
students. For instance, Fasola (2011) applied a discrete-time competing risks models
to the cohort of freshmen of 2002/2003. This model gets in a discrete-time setting
simultaneous estimates of the degree and failure risks, including several covariates,
such as the high school grades; the high school qualification; the age and the gender
(in some faculties). These results may be useful as a basis to create a policy able
to address specific actions for specific types of students with the aim to improve
the quality of teaching outcomes and to provide recommendations to improve FFO
indicators.
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Model-Based Classification Via Patterned
Covariance Analysis

Luca Bagnato

Abstract This work deals with the classification problem in the case that groups
are known and both labeled and unlabeled data are available. The classification rule
is derived using Gaussian mixtures where covariance matrices are given according
to a multiple testing procedure which asesses a pattern among heteroscedasticity,
homometroscedasticity, homotroposcedasticity, and homoscedasticity. The mixture
models are then fitted using all available data (labeled and unlabeled) and adopting
the EM and the CEM algorithms. The performance of the proposed procedure is
evaluated by a simulation study.

1 Introduction

The main purpose of discriminant analysis (DA) is to assign an object to one of the K
groupsG1; : : : ; GK , according to a rule which is based on a vector x D �x1; : : : ; xp

�

of observations of p variables. Following the well-known Bayes rule, the object with
measurement x is assigned to Gk when

k D argmax
1�j�K

�j fj .x/; (1)

where �j is the unconditional prior probability of observing a class j member and
fj .x/ denotes the j -th group conditional density of x. Then, when �j and fj .x/
for all j D 1; : : : ; K are known (or estimated), an object can be classified using the
rule (1). The most common DA methods assume that the data within group j are
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generated from a p-variate normal with mean �j and covariance matrix˙ j . Then,
the global density can be written as a mixture of normal components:

f .x/ D
K
X

jD1
�j fj .x/; (2)

with fj .x/ D .2�/�p=2
ˇ

ˇ˙ j

ˇ

ˇ

�1=2
expŒ	1=2.x	�j /0˙�1j .x	�j /�. These methods

differ depending on how˙ j , j D 1; : : : ; K , are defined. While linear discriminant
analysis (LDA) assumes homoscedasticity, quadratic discriminant analysis (QDA)
assumes heteroscedasticity. Operationally, in order to opt for LDA, assumptions
of normality and homoscedasticity must be checked; with this aim, a possible
solution consists in adopting the test proposed by Hawkins (1981). Unfortunately,
this is a rigid practice, since intermediate configurations between heteroscedasticity
and homoscedasticity can be observed in the data. Methods such as regularized
DA (RDA) and eigenvalue decomposition DA (EDDA) (see Friedman 1989 and
Bensmail and Celeux 1996, respectively) are discriminant methodologies offering
different ways to modelize such situations. Another approach proposed in literature
arises from a test on the between-group covariance structure: some sub-models of
EDDA, such as proportional covariance matrices (PCMs) (see Flury 1986) and
common principal components (CPCs) (see Flury 1984), have been singularly
applied in DA. Also equal correlation matrices (Manly and Rayner 1987) have been
used to this purpose in literature (see McLachlan 1992, Sect. 5.4 and the references
therein for applications of these and other related testing-based approaches of DA).

The traditional discriminant analysis involves samples of known origin (labeled
data) and provides classification rules for samples of unknown origin (unlabeled
data). These methodologies suffer whenever only a few known observations are
available. Furthermore, unlabeled data could contain important information in order
to define the classification rule. Our proposal is to adopt the idea presented in Dean
et al. (2006) where both labeled and unlabeled data are involved in the estimation
procedure. In particular, we use the family of models (as structures for DA) and
the multiple testing procedure (as model selection criteria) recently introduced in
Greselin et al. (2011). The combination of these two approaches (Dean et al. 2006;
Greselin et al. 2011) results in a novel procedure composed by two steps: firstly
the common covariance structure is chosen by means of a test of hypothesis and
then the model parameters are obtained by constrained estimation. Conversely, in
Dean et al. (2006) the choice of the underlying model is performed a posteriori
according to the highest BIC- value after having estimated all the models. It is worth
noticing that the new procedure accommodates also for the case of equal orientation
covariance matrices (the homotroposcedastic model), which has never been used in
the context of mixture models, despite it has been frequently observed in real data.
Then, the obtained classification rule permits to achieve parameter reduction and to
increase the interpretability of the results. In Sect. 2, after a brief introduction to
the adopted family of models and the estimation procedure, two real examples are
presented. Furthermore, some considerations about the relation with the CPC model
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are provided. Finally, in Sect. 3, the validity of the proposed procedure is illustrated
by a simulation study.

2 Patterned Covariance Analysis and Model Estimation

Suppose that the density of the data is given by (2) and let ˙ j D � j�j�
0
j be the

spectral decomposition of the matrix ˙ j , j D 1; : : : ; K , where �j is the diagonal
matrix of the eigenvalues of˙ j sorted in non-increasing order, and � j is the p
p
orthogonal matrix whose columns are the normalized eigenvectors of ˙ j ordered
according to their eigenvalues. Each component of the spectral decomposition has
a different morphologic interpretation in terms of the group scatters: � j governs
the orientation, while �j controls the size-shape. By allowing � j and �j to be
equal (E) or variable (V) between groups, we obtain four parsimonious and easily
interpreted models which are appropriate to describe various practical situations
(see Table 1). Thus, for example, by imposing �1 D � � � D �K D � we
obtain homometroscedasticity (model EV in our notation), while by constraining
� 1 D � � � D � K D � we have homotroposcedasticity (model VE). We propose to
use this family of models which allows to exploit the augmentation multiple testing
procedure in Greselin et al. (2011) as model selection criteria (instead of the com-
mon use of AIC or BIC as in Dean et al., 2006). Without going into details, the main
idea of this procedure is based on giving two separate tests for EV and VE which are
combined by using the relation EV\VE D EE. In particular, EV is tested exploiting
the relationship between the eigenvalues in �j and the variances of the principal
components in the j -th group, j D 1; : : : ; K . The test for VE is obtained by adding
some modification to the CPC test proposed by Flury and Gautschi (1986).

To estimate the models we follow the idea proposed in Dean et al. (2006) where N
labeled observations and M unlabeled observations are available and all of them are
used in the mixture model estimation. EM (see Dempster et al. 1977) and CEM (see
Celeux and Govaert 1992) algorithms, which respectively maximize the likelihood
and the complete-data likelihood, are used here. In addition to the different set of
adopted models, the main contribution of our proposal is given by the choice of the
model restrictions. While in Dean et al. (2006) the structure is chosen ex-post (the
model estimation) using the BIC, we propose to choose ex-ante the structure using
only the labeled data. Note that we can apply the test only on the labeled data since
they can be assumed to be independent.

2.1 Examples of Homometroscedasticity
and Heteroscedasticity

In this section two real examples of EV and VE configurations are presented. The
first example is the famous crab data set (genus Leptograpsus) also considered in
Campbell and Mahon (1974) and Ripley (1996). Here, following the setting of Peel
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Table 1 Model, covariance restrictions, nomenclature and number of covariance parameters for
each considered model (see Greselin et al. 2011)

Model �j � j Nomenclature # of covariance parameters

EE Equal Equal Homoscedasticity p
pC 1
2

EV Equal Variable Homometroscedasticity Kp
pC 1
2
� .K � 1/ p

VE Variable Equal Homotroposcedasticity p
pC 1
2
C Kp

VV Variable Variable Heteroscedasticity Kp
pC 1
2

6 8 10 12 14 16 18
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20
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40

50

RW

C
L

Fig. 1 Scatter plot of
variables RW and CL for
n1 D 50 males and n2 D 50

females blue crabs (ı denotes
male and � female). The
ellipses of equal (95%)
concentration are also
superimposed

and McLachlan (2000), the attention is focused on the sample of n D 100 blue
crabs, there being n1 D 50 males (group 1) and n2 D 50 females (group 2), each
specimen having p D 2 measurements (in millimeters) on the rear width (RW)
and the length along the midline (CL) of the carapace. In Fig. 1 the scatter plot of
RW versus CL, in both groups, is shown jointly with the ellipses of equal (95%)
concentration (arising from estimation under the assumption of heteroscedasticity).
Here, the homometroscedasticity structure stands out since the group scatters are
similar in size and shape but different in orientation. As shown in Greselin et al.
(2011) this conjecture is confirmed also by applying the multiple testing procedure.

The second real example comes from the Swiss 1,000-franc bank notes, also
considered in Flury and Riedwyl (1983), on which the following two variables are
measured

LEFT D width of bank note; measured on left side;

RIGHT D width of bank note; measured on right side:

There are k D 2 groups of bills, genuine (group 1) and forged (group 2), each of
them consisting of nj D 100, j D 1; 2, observations. In Fig. 2a, b the scatter plots of
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Fig. 2 Scatter plots, and related ellipses of equal (95%) concentration, of variables LEFT and
RIGHT in two groups of Swiss bank notes. Coinciding points are marked by single symbol only.
(a) Genuine, (b) Forged

LEFT versus RIGHT, for both groups, are jointly reported with the ellipses of equal
(95%) concentration arising from estimation under the assumption of heteroscedas-
ticity. As confirmed by the multiple test, the structure of homotroposcedasticity can
be assumed: size and shape are different, but the orientations agree.

2.2 Homotroposcedasticity Versus Common Principal
Components

The definition of model VE has been never used in DA, while models EE, EV and
VV are considered also in EDDA. The EDDA counterpart of homotroposcedasticity
exploits the Common Principal Components (CPC) model (see Flury 1984). The
latter is in principle equal to VE but with the difference that in the spectral
decompositions of ˙ j the eigenvalues of �j , j D 1; : : : ; K , are not constrained
to be in decreasing order. In CPC the matrices of normalized eigenvectors are
equal between groups but the requirement of decreasing eigenvalues is abandoned.
Thus, the family of CPC models contains the family of models VE. Even if both
configurations reach the same parsimony in terms of parameters, VE could provide
better discrimination if this configuration really holds. Starting from the estimation
of CPC, an ad hoc procedure to estimate VE has been implemented.

The difference between homotroposcedasticity and CPC is graphically explained
in Fig. 3 considering ellipses of equal concentration of two normal groups. Both the
ellipses have the same axes, according to the CPC model, although they differ in
orientation. This means that homotroposcedasticity does not hold.
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3Fig. 3 Ellipses of equal
concentration of two bivariate
normal distributions, with the
same principal axes but with
different orientation

3 Simulation Study

In this section a simulation study is provided to evaluate the validity of the proposed
procedure. The R code used to for both multiple testing procedure and mixture
model estimation (EM and CEM) is available from the authors upon request. For
sake of brevity only one scenario has been reported here and the results concern
only the use of the EM algorithm. Similar results have been observed adopting the
CEM algorithm. We have considered two normal groups (K D 2) in the bivariate
context (p D 2). In each of theM D 1; 000 replications, we have generated 90 data,
30 of which have been unlabeled and used to calculate misclassification errors. Data
are generated so that the distance between centroids is equal to

p
2. Here, ˙ 1 has

been randomly generated and its spectral decomposition has been computed:

˙ 1 D � 1�1�
0
1 D

 

�
.1/
11 �

.1/
12

�
.1/
21 �

.1/
22

! 

�
.1/
1 0

0 �
.1/
2

! 

�
.1/
11 �

.1/
12

�
.1/
21 �

.1/
22

!0
;

with �.1/1 � �.1/2 . In order to simulate gradual departure from homoscedasticity,˙ 2

has been generated in the following way

˙ 2 D R� 1

0

B

@

d�
.1/
1 0

0
�
.1/
2

d

1

C

A

ŒR� 1�
0 ; with R D

 

cos# 	 sin#

sin# cos#

!

;

where R is the rotation matrix of angle # , and d � 1 is a sort of “deformation”
constant: if d D 1, the concentration ellipsoids of ˙ 1 and ˙ 2 are homomet-
roscedastic; the flattening of the concentration ellipsoids of ˙ 2 increases in line
with d . Several values of # and d have been considered: 4 values for # (0, �=6,
�=3, �=2 in radiants, i.e., 0ı, 30ı, 60ı, 90ı), and 3 values for d (1, 2 and 4). All
combinations of these two factors have been taken into account and specified at the
top of each subtable in Table 2. Subtables are arranged so that d increases moving
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from left to right, while # increases moving from top to bottom. In particular,
while Table 2a is obtained under homoscedasticity, Table 2l has the greatest
departure from homoscedasticity, both in terms of shape and orientation. Finally, it is
interesting to note that the subtables d, g and j are related to homometroscedasticity,
while the subtables b and c are referred to homotroposcedasticity.

Focusing on Table 2a we find, in round brackets, the relative frequencies of
the cases, over the 1;000 replications, in which the multiple testing procedure
(with nominal level 0.05) has chosen each structure. The last row reports the
mean misclassification errors computed over the 1;000 replications, obtained by
classifying the unlabeled data according to the rules based on the models EE, EV,
VE and VV, respectively (specified in columns). The interpretation of the first row
(EE) is the same of the one of the last row but the four averages are calculated
only over the 965 replications in which the multiple test has chosen EE. The same
reading holds for the other three rows EV, VE and VV. Thus we can consider the last
row as a weighted mean, with weights reported in round brackets, of the averages
misclassification rates of the corresponding column. The other subtables in Table 2
can be interpreted in the same way.

From Table 2a, and from the other subtables we can observe coherent results
with the true underlying configurations, both in terms of the chosen structure and
in terms of misclassification errors. For example, in Table 2c which reports a VE
configuration, we can observe that in the 967 replications for which the multiple
testing procedure has chosen this structure, the misclassification rate is the lowest
one. Similar comments also hold by observing Table 2j and l which concern results
under EV and VV configurations, respectively.

4 Conclusions and Further Developments

In this paper we propose a model-based classification rule based on a family of
models recently introduced in Greselin et al. (2011). As model selection criterion
we use the multiple testing procedure proposed by the same authors and the model
is estimated by considering both labeled and unlabeled data. Simulations confirm
the validity of the proposed procedure, both in terms of ability to identify the true
underlying structure and in terms of classification. Further investigation is needed,
maybe extending the multiple testing procedure in such a way that the best model
structure could be chosen among a higher number of available patterns.
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Data Stream Summarization by Histograms
Clustering

Antonio Balzanella, Lidia Rivoli, and Rosanna Verde

Abstract In this paper we introduce a new strategy for summarizing a fast changing
data stream. Evolving data streams are generated by non stationary processes which
require to adapt the knowledge discovery process to the new emerging concepts.
To deal with this challenge we propose a clustering algorithm where each cluster is
summarized by a histogram and data are allocated to clusters through a Wasserstein
derived distance. Histograms are a well known graphical tool for representing
the frequency distribution of data and are widely used in data stream mining,
however, unlike to existing methods, we discover a set of histograms where each
one represents a main concept in the data. In order to evaluate the performance of
the method, we have performed extensive tests on simulated data.

1 Introduction

The increasing diffusion of efficient monitoring systems causes the recording of data
streams generated continuously and at a very high data rates. Common example
of these data include recordings of climatological variables, web logs, computer
network traffic.

Querying and mining from data streams are challenging tasks since elements are
on-line collected and the size of the dataset can be potentially unbounded so, often,
data after processing are discarded or archived and become not easily available
anymore (Babcock et al. 2002). Moreover, often, it is not possible to produce a
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new answer just when a new observation is seen, this is because the time required
for computing answers can be bigger than the inter-arrival time among observations
or due to blocking operators which require the recording of the whole set of data
before to be able to provide the answer to the knowledge discovery task.

A further issue to take into account is that data streams are usually generated by
non stationary processes which require to adapt the knowledge discovery process to
new emerging concepts.

In order to deal with these constraints, techniques for data stream analysis should
process the incoming observation in short and constant times using a very reduced
amount of memory and performing a single scan of the data (Gama and Gaber
2007).

Data stream mining methods are often based on updating some summaries of data
every time a new element or a batch of elements is collected and on extracting the
knowledge starting from these summaries rather than directly from the observations.
However, this way to process data enforces a trade-off between the accuracy of
the knowledge discovery procedures and the computational and storage constraints.
Thus, one of the aims is to develop summarizing methods which include the most
possible information from data under the highlighted constraints, in order to provide
results which approximate the ones from algorithms for data stored into traditional
databases.

According to this premise, summarization is a main task in data stream process-
ing and it has been widely dealt in literature. Main approaches are based on data
sampling, synopses, data compression (Sebastiao 2007; Vitter 1985; Guha et al.
2001; Balzanella et al. 2010, 2011; Balzanella 2009).

In this paper we propose to use histograms as tool for data stream summarization.
Histograms are a widely used tool to represent, in a concise way the frequency
distribution of a dataset. They provide information about the general shape of the
distribution, the variability and the location of data, the symmetry, the modality.

In data stream mining, histograms have found a wide use, for example in
Sebastiao (2007), an on-line method for constructing the histogram of a data stream
has been proposed and then it is used for monitoring the evolution of data by looking
at how the on-line computed histogram changes over the time.

The novelty of our proposal is that we discover a set of histograms which
summarize groups of data so that each histogram will represent a main concept
in the data.

To reach this aim we introduce a clustering algorithm based on the CluStream in
Aggarwal et al. (2003) extended to process histogram data.

It is an efficient clustering algorithm for data streams where the prototype of
each cluster is a histogram and data are allocated to clusters through a Wasserstein
derived distance for histogram data.

The method is based on an on-line step which performs a first summarization
of the incoming data through a set of histogram micro-clusters and on an off-line
step which reveals the final set of summaries using the information stored in the
histogram micro-clusters.
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2 On-Line Clustering for Histogram Data

In order to introduce our proposal, we recall, at first, the CluStream algorithm for
data streams and then on this ground, we introduce the novelties of our method.

2.1 The CluStream Algorithm

CluStream is an one-pass algorithm ables to deal with evolving data streams which
allows to get, as output, not only a summarization of the whole data stream but also
the summarization of a part of it defined by the user at query time.

Let Y D ˚

.y1; t1/; : : : ; .yj ; tj /; : : : ; .y1; t1/
�

be a data stream made by
a set of real valued ordered observations yj on a discrete time grid T D
˚

t1; : : : ; tj ; : : : t1
� � <.

The CluStream is made by an on-line step and by an off-line step. The first one
performs a first summarization of the incoming data and can be still divided into
two phases that we call micro-clusters updating and snapshot recording; the second
one performs the final summarization processing the output of the on-line step.

In the first phase of the on-line step, every time a new data item
�

yj ; tj
�

is collected, it concurs to the updating of the statistics stored in one of the
elements of the set MC D ŒmC1; : : : ; mCk; : : : ; mCK� appropriately selected
through an allocation procedure. In particular, each element of MC is a micro-cluster
mCk D Œssvk; svk; sstk ; svtk; nk� which is a data structure collecting the following
statistics:

• nk is the number of data elements which belong to micro-cluster.
• ssvk DPnk

lD1 y2l .
• svk DPnk

lD1 yl .
• sstk DPnk

lD1 t2l .
• stk DPnk

lD1 tl .

From the information stored in a micro cluster it is possible to compute its
average and variance. As consequence,

�

yj ; tj
�

is allocated to the micro-cluster
mCk 2MC if the distance between yj and the average value ofmCk is the lowest,
and the increasing of variance in mCk is not superior to a threshold value. If the
second condition is not satisfied for any micro-cluster, a new one mCKC1 is started
and if K reaches a threshold value which is set in order to keep under control the
memory occupation, the two micro-clusters having the nearest average value are
mixed into one.

The second part of the on-line step is named snapshots recording and consists
in storing the set of micro-clusters MC on some available media at time stamps
detected through a predefined temporal scheduling. With data flowing, this step
makes available several snapshots of the micro-clusters which will be used for
recovering the summarization of a user defined time period. For example, if the
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current time is tj� and the user is interested to a time-horizon h, that is, the
user wants to find the status of the micro-clusters formed in Œtj��hI tj� �, then
it is sufficient to recover the snapshot temporally nearest to tj��h and the one
corresponding to the current time and subtracting the values of the statistics stored
in the snapshot related to tj��h to the corresponding ones of the current snapshot.

The off-line step of CluStream is a variation of the k-means algorithm where the
input data points are the average value of each micro-cluster and the center of each
cluster is computed as weighted average of the allocated data points.

2.2 CluStream Strategy for Histogram Data

The method we propose adapts the CluStream algorithm to the processing histogram
data according to the following schema:

• On-line phase

1. Splitting of incoming data into non overlapping batches.
2. Representation of each data batch through an equi-frequency histogram.
3. Allocation of the histograms to a micro-cluster through a Wasserstein derived

distance function.
4. Snapshot recording.

• Off-line phase

1. Clustering of the histogram micro-cluster in order to obtain the summarization
of the stream.

Following the previous schema, in the on-line phase the incoming data stream Y is
split into batches Qi such as Qi

T

QiC1 D ;;8i . For each data batch Qi we get
an histogramHi represented by a set of pair .Iij; fij/ as shown below:

Hi D f.Ii1; fi1/; : : : ; .Iij; fij/; : : : ; .IiJ ; fiJ/g; (1)

where Iij are intervals (or bins) obtained partiting the domain of Qi and fij are
empirical frequencies associated to Iij. It noteworthy that we used equi-frequency
histograms (fij D fij0 ; 8j ¤ j 0 in (1)) and we set the number of bins equal to J
for each histogramHi; 8i .

In our procedure, the histograms Hi are the data elements which concur to
the updating of appropriate data structures that we call Histogram micro-Clusters
(HmC). Similarly to CluStream, an histogram micro-cluster stores basic statistics
about a set of histograms. Taking into account that each bin of the histogram Hi

can be expressed as function of its center (mid point) and radius (half-width) that
is Iij D cij C rij.2t 	 1/ for 0 � t � 1 then, a Histogram micro-Cluster HmCk

(with k D 1; : : : ; K), summarizing a set of n histograms, stores the following
information:
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• nk is the number of data elements which belong to the histogram micro-cluster.
• Nckj with j D 1; : : : ; J .
• Nrkj with j D 1; : : : ; J .
• sstk DPnk

lD1 t2l .
• stk DPnk

lD1 tl .

where Nckj and Nrkj ; j D 1; : : : ; J are, respectively, the centers and the radii of
the bins of the histogram NHk , which assumes the role of histogram micro-cluster
prototype.

In the on-line step, every time a new batch of data Qi is available, the
correspondent histogram Hi has to be allocated to nearest micro-cluster HmCk,
selected on basis of the value of proximity betweenHi and all NHk; k D 1; : : : ; K .
For this purpose, we need to introduce an appropriate metric for histogram data.

The comparison of histogram data can be considered as a particular case of
distance between distribution functions. At this end, several distances have been
presented in literature, as example we can cite the f -divergence based measures, the
Kolmogorov (or Uniform metric), the Prokhorov–Levi distance. However in Irpino
and Verde (2006), Verde and Irpino (2007), it is shown that the metric derived by
the Wasserstein–Kantorovich–Monge–Gini metric and known as Mallows’ distance
(Mallows 1972) satisfies important proprieties in the case of histograms.

Let two histograms Hi and Hz and be Fi and Fz the (cumulative) distribution
functions associated to them, their Mallows’ distance can be computed as follows:

dM.Hi ;Hz/ D

v

u

u

u

t

1
Z

0

�

F�1i .t/ 	 F�1z .t/
�2

dt (2)

where F�1i and F�1z are the quantile functions corresponding to Fi and Fz. This
expression has a serious defect because the distribution function is not always
invertible. However, according Irpino and Verde (2006), the distance (2) between
two histogramsHi and Hz can be written as:

d2M .Hi ;Hz/ D
m
X

lD1
�l

�

.cil 	 czl/
2 C 1

3
.ril 	 rzl /

2

�

; (3)

where m is the number of uniformly dense intervals Il determined on the base of
the quantile functions associated to Hi and Hz and � D Œ�l � is the vector of the
relative frequency associated to each bin Il . In particular, when histograms are equi-
frequency, m D J and �l D 1

J
;8l , that is � is the vector containing quantiles of

the distribution functions.
The allocation of the histogram Hi , obtained from the data batch Qi to the

nearest histogram micro-cluster, is performed according to the proximity between
Hi and NHk k D 1; : : : ; K computed through the formula (3).
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Once the allocation ofHi toHmCk has been performed, the statistics ofHmCk

are updated. The new prototype will be computed such to minimize the following
sum of distances in the micro-cluster:

nk
X

iD1
d 2M .Hi ; NHk/ D

nk
X

iD1

m
X

jD1

1

J

�

�

cij 	 Nckj
�2 C 1

3

�

rij 	 Nrkj
�2
�

: (4)

According to Irpino and Verde (2006), it is sufficient to update the centers and radii
of NHk through the following expression:

Nckj D 1

nk

nk
X

iD1
cij I Nrkj D 1

nk

nk
X

iD1
rij :

The updating of the remaining statistics of histogram micro-clusters and the
snapshot recording are performed as in CluStream.

The off-line phase of our method has to consider that the prototype of each
micro-cluster coming out from the on-line phase, is a histogram, thus, the k-means
algorithm used in CluStream cannot be taken as it is. For this reason, we use the
k-means like clustering algorithm introduced in Verde and Irpino (2007) which uses
the distance described in (3) and which is characterized by prototypes which are
histograms. It provides, as output, the final set of histograms which summarize the
whole data stream.

3 Experimental Results

In order to evaluate the effectiveness of the proposed method in discovering
concepts in data, we have performed several experimental tests on simulated data.

We have generated nine datasets composed by 110,000 temporally ordered
observations according to two main concepts. Especially for all datasets, each
concept have been kept for 50,000 consecutive and ordered time stamps and the
observations are locally independent and identically distributed. A further transition
concept made by 10,000 items has been introduced in the datasets, generating
observations by a mixture of the two involved distributions with weights equal to
0:5. In all the cases, the main concepts are obtained by the random generation of
values according to two Gaussian distributions having different parameters.

To discover if our strategy recognizes them, we have compared the prototype
histograms obtained by the off-line clustering procedure with the histograms related
to data generated by two Gaussian distributions. The comparison is based on the
distance between two histogramsHi andHj introduced in Verde and Irpino (2010):

dM.Hi ;Hj / D . Nxi 	 Nxj /2 C .�i 	 �j /2 C 2�i�j .1 	 	.Hi ;Hj // (5)



Data Stream Summarization by Histograms Clustering 33

where Nxi , Nxj , �i , �j and 	.xi ; xj / are mean, variance and correlation of the quantile
functions associated to two histograms. Through this distance function, we can
evaluate the matching of two histograms in terms of location, size and shape. For
this reason, we have distinguished three set of experiments. In the first one, the two
distribution have the same mean
 and different standard deviation � ; in the second,
they have different
 and same � values and in the third, they have different
 and �
values. The dataset are generated according to the distributions shown in following
table:

First concept Second concept

Dataset Id 
1 �1 
2 �2

1 0 1 0 5
2 0 1 0 7
3 0 1 0 7

4 2 1 5 1
5 2 1 7 1
6 2 1 10 1

7 2 1 5 5
8 3 1 9 2
9 5 1 14 10

To run our procedure, we need to set the input parameters. The first input
parameter is the size of each batch of data Qi which, for our data, corresponds
to 200 observations. According to the rule of the square root, we have set the
number of bins of the histograms to K D 15. A further parameter to set is the
boundary value ı. It is worth of noting that a too low value of ı involves that a
lot of processed histograms will not be allocated to existing micro-clusters but they
will start new ones. At the opposite, a too high value implies that histograms will
be always allocated to some existing micro-cluster and it will be more difficult to
capture the emerging concepts. Taking into account this and that we have considered
maximum of 50micro-clusters, a suitable choice is ı D 0:02 for all dataset. Finally,
the number of desired summaries has been set to two consistently with the number
of main concepts in the generated data.

The results in Table 1 show that for all the datasets, the procedure has been able
to catch the main concepts in the data. This emerges by looking at the values of
the distance but also at the values of the single components of it. In particular, the
values near to 0 for the first and second component, highlight that the obtained
histograms have a good match to the original data in terms of average value and
standard deviation while values near to 1, for the correlation component, show that
there is also a very good match in terms of shape of the histograms.
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Table 1 Results of the comparison between the histograms emerging from the proposed procedure
and the generated data

Dataset
Id

First concept Second concept


� 
1 � � �1 	 dM 
� 
2 � � �2 	 dM

1 �0:0496 �0:2422 0:9765 0:3590 �0:3480 �1:3024 0:9809 1:7161

2 �0:0802 �0:1118 0:9860 0:2405 �0:4457 �1:7096 0:9831 2:2537

3 �0:0877 �0:0550 0:9883 0:2101 �0:6223 �2:1930 0:9827 2:9110

4 0:1907 �0:1723 0:9715 0:3800 �0:0652 �0:2621 0:9812 0:3424

5 0:3404 0:0057 0:9656 0:4674 0:072 �0:2399 0:9826 0:3220

6 0:6190 0:1174 0:9304 0:8151 �0:0656 �0:2683 0:9804 0:3509

7 0:1676 �0:08 0:9797 0:3037 �0:2675 �1:4936 0:9786 1:9016

8 �0:1430 �0:5123 0:9811 0:6787 0:4075 0:0793 0:9618 0:5438

9 �0:7666 �2:6773 0:9789 3:5884 0:6431 0:3765 0:9592 0:8425

4 Concluding Remarks

In this paper, we have introduced a new strategy for summarizing a data stream
and then, we have evaluated it on simulated data. Our approach provides, by a two-
step clustering algorithm, a set of histograms which describes the main concepts
emerging in a fast changing data stream. Unlike existent approaches in data streams
literature, we use histograms to summarize the concepts emerging in data and to
provide an intuitive graphic representation of them. Further contributions are the
introduction of a Wasserstein derived distance to the contest of data stream mining
and the proposal of a its more computationally efficient form for comparing equi-
frequency histograms.
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Web Panel Representativeness

Annamaria Bianchi and Silvia Biffignandi

Abstract Web panels are becoming more and more popular for data collection.
They present specific problems and advantages with respect to the usual modes of
collection. This paper analyzes possible re-weighting adjustments for non-response
in panel data. Different weighting schemes are evaluated by means of a simulation
study based on real data.

1 Introduction

In the last decade there has been a rapid growth of online panels for data collection
purposes. Despite this great expansion, web panel representativeness is still an
issue, both for volunteer panels and probability based panels. Refer to AAPOR
(2010) and references therein for a description of different types of panels and
related problems. Understanding how population representative estimates based on
internet/web related data collection tools (both on-line panel and web surveys) can
be obtained is still an open research issue. New methods and ideas need to be
investigated.

When systematic differences in key background variables with respect to a
population are present, not weighted results of surveys based on Internet panels
are often misleading. Reweighting methods are generally used to reduce selection
biases, thus increasing representativeness. The paper is focusing on the maximum
entropy weighting technique. A simulation study is performed and weights based on
different approaches are derived in a case where population panel and sampling data
are available. Using calibration estimators based on the maximum entropy concept,
alternative weights are derived; particular attention is paid to whether the use of
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updated auxiliary information for late respondents may improve the estimates.
A comparison of alternative weighting schemes is carried out in order to obtain
some evidence on the impact of different weights on the estimates, especially for
online collected data. The comparison is carried out by means of a simulation
study based on real data; comparison is extended to Horvitz–Thompson, calibration
based on Euclidean distance, and propensity scores estimates. The data used in the
simulation are from the LISS panel which is part of the MESS project (Measurement
and Experimentation in the Social Sciences) and it is administered by CentERdata
(Tilburg University, The Netherlands).

The paper is organized as follows. Section 2 presents the dataset and the
target variables. The MaxEnt approach and the proposed weighting schemes are
introduced in Section 3. Section 4 provides results, conclusions and ideas for future
work.

2 Data Source and Variables

The target population for the LISS panel is the Dutch-speaking population per-
manently residing in the Netherlands. The sampling and survey units are the
independent, private households. The sampling frame is the nationwide address
frame of Statistics Netherlands. From this sampling frame a simple random sample
was drawn. Hence, this panel should adequately represent the general population. In
order to reduce the coverage error due to the Non-Internet Population, households
who were not yet online are loaned equipment to provide access to the Internet.
Recruitment of the sampled households was done from May until December 2007
and, in order to cover the complete sample, households were approached in a
traditional way: first, an announcement letter was sent and next respondents were
contacted by an interviewer in a mixed mode design (CATI/CAPI).

In case a household takes part in the LISS panel, one of the household members
answers a general questionnaire about some basic demographic characteristics of
the household and the household members. As from then all household members
are in the full LISS panel. Furthermore, all household members of age 16 and older
indicate whether they want to participate in a monthly questionnaire or not. All
persons of age 16 and older who have indicated that they want to answer the monthly
questionnaires are participating members of the LISS panel. See Scherpenzeel
(2009) for more details.

The demographics and other general background information on the households
are updated monthly by the household contact person only. On the other hand,
every month the participating members fill in a questionnaire. Notice that even
if the panel is representative (please refer to Knoef and de Vos 2009 for details
concerning representativeness of the LISS panel), if the response to the individual
questionnaires differs among various household groups, the research results are
not representative for the population. It is therefore necessary to investigate the
representativeness of people who answered the questionnaire with respect to both
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the LISS panel and the target population. In this research we focus only on
the representativeness with respect to the LISS panel and we consider results
of the questionnaire on “Work and Schooling” (WS), which focuses on labour
market participation, job characteristics, pensions, schooling and courses. This
questionnaire was fielded in the panel in April 2008 and repeated in July 2008 for
non respondents, using a remainder.

In order to evaluate the effects of reweighting corrections for non-response on
the precision of estimators we perform a simulation study. As target variable we
consider the personal gross monthly income in Euros. This variable is measured
at the LISS level. Thus data on the target variable for both respondents and non-
respondents to the WS questionnaire are available. The distribution of this variable
is strongly skewed. A comparison of the means of this variable for respondents
and non-respondents shows that they are significantly different. The mean for
non-respondents is much higher than the one for respondents. As pointed out by
Pérez-Duarte et al. (2010), this is a typical phenomenon in wealth surveys: unit non-
response is unlikely to be a random phenomenon and it is likely to more severely
affect wealthy households. As a consequence not weighted estimates are expected
to be biased. Note that since general information and demographic data are available
for the entire set of households belonging to the LISS panel, reweighting schemes
can benefit from the knowledge of these variables collected on the entire household
population, which is our target population. In order to choose the auxiliary variables,
analyses of the non-response and the correlations between the target variable and the
auxiliary variables were performed.

3 Proposed Weighting Approach and Experimental Design

The method employed here is a special case of calibration (Deville and Sarndal
1992) and it is based on the information theory concept of Maximum Entropy
(MaxEnt). This weighting procedure allows to use the information that one has
about the population of interest’s observable covariates without making additional
assumptions neither about the distribution of weights nor about the choice of
the dissimilarity. A similar proposal is the Empirical Likelihood (EL) method
introduced in Chen and Qin (1993) and Chen and Sitter (1999). Proper theoretical
and empirical comparison of the proposed method with EL will be included in a
subsequent research paper.

Consider now a random sample s of size n drawn from a population U of
size N . Denote r the subset of respondents in the sample and y the variable of
interest. The objective is to estimate its mean 
y D N�1Pi2U yi starting from the
observed data .yi /i2r . Assume that a sampling design is given and let �i denote
the inclusion probabilities. A common estimator for 
y is the Horvitz–Thompson
estimator (Sarndal et al. 1992), which has the good property of being unbiased in
case of complete response. In the presence of non-response, this estimator in general
turns out to be biased. Re-weighting techniques are then used to reduce this bias.
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Suppose that an auxiliary vector variable x is given and its mean 
x is known
at the population level (either exactly or an estimate of it computed on the full
sample). This additional information can be exploited by calibration to reduce the
non-response bias. Originally calibration was introduced as a method to obtain a
set of weights wi calibrated on known population means of the auxiliary variables
.N�1

P

i wi xi D 
x/ with a minimum modification of the survey weights di D
1=�i with respect to some distance criterion. Calibration may also be used to adjust
for non-response (see Kott 2006; Sarndal and Lundstrom 2005). In this case it is
expected to be effective in reducing the non-response bias if the auxiliary variables
are related either to the inverse of the response probabilities or to the variable
of interest. On the other hand, precision is linked to the auxiliary information: to
increase precision, population level information and a good linear relationship with
the variable of interest are needed (see Fuller et al. 1994; Kott and Chang 2010).

In this research we focus on a specific kind of calibration technique called
MaxEnt, which gives an interesting interpretation to it. In the MaxEnt approach
the distance between the two distributions of weights is measured using Shannon’s
entropy measure. It is known that Shannon’s entropy measure is used in information
theory to measure the distance between a probability distribution and the uniform
distribution (which corresponds to maximum uncertainty). Refer to Kapur and
Kesavan (1992) and Jaynes (1957) for details about Shannon’s entropy measure.
In the following we show how we can match this framework by rescaling the
variables of interest. Denote Qyi D nN�1diyi , Qxi D nN�1dixi , pi D �iwi n�1
and p0i D n�1. In this notation the Horvitz–Thompson estimator takes the form
O
HTy D N�1

P

i2r diyi D
P

i2r p0i Qyi ; i.e., it coincides with the mean of Qyi with
respect to the uniform distribution on r . We aim at improving this estimator by
deriving a probability measurep D .pi /i2r on r (and consequently weights .wi /i2r )
which is as close as possible to the uniform distribution p0 D �

p0i
�

i2r while also
respecting the set of constraints on the auxiliary variable, which can be rewritten
as
P

i2r pi Qxi D 
x: It is therefore natural to measure the distance between p and
p0 using Shannon’s measure of entropy S.p/ D 	Pi2s pi lnpi . It is not possible
to derive an analytical solution for pi . A solution must be found using an iterative
search algorithm (Mattos and Viega 2004). Once a solution is found, the MaxEnt
estimator is defined as

O
My D
X

i2r
Opi Qyi D N�1

X

i2r
wi yi ;

where wi D ndi Opi , i 2 r .

To take advantage of specific characteristics of panel data, different weighting
schemes are constructed. More specifically, these weighting schemes try to take
advantage of the fact that demographic data are updated frequently. Indeed, a
common situation in panel data is the following. A survey is carried out at
time 1 and repeated at time 2 for non respondents, using a remainder. Further,
updated background variables are available for the entire panel. Hence two different
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Fig. 1 Design of experiment on weights: population data sets

population databases are available: Population 1, which contains data available at
time 1 and Population 2, based on background variables information updated at
time 2. The full experimental design takes into account the cases represented in
Fig. 1.

In Population 1 database sampled households are considered with the back-
ground characteristics detected at time 1 either they were respondent or not. In
the Population 2 database—on the contrary—the background characteristics are the
ones observed at time 2 either the response has been at time 1 or 2. In addition,
a synthetic population is build up under the hypothesis that the population is
fully described according to background variables at the time sampled households
participate in the survey. As regards non-respondents, it is assumed that the
population is that at time 1 (Set A). This population is called the Overall Population.
As shown in Fig. 1, this population includes Set B of Population 1 and Set F of
Population 2.

4 Results and Concluding Remarks

The performance of the proposed estimators is evaluated using a simulation study.
First the WS survey data set is merged to the LISS panel, thus obtaining one data set
containing both the sampled and the non-sampled units. Then 1,000 simple random
samples of size nD 3,000 are drawn from the LISS panel. Non-respondents in the
WS questionnaire are removed from the samples.
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Table 1 Results of the
simulation Estimator Bias Variance MSE Bias rel

HT �167.9 57,499.1 85,695.7 �5.981
MaxEnt.Ov �138.1 61,309.7 80,374.3 �4.918
MaxEnt.1 �138.5 61,284.8 80,456.2 �4.932
MaxEnt.2 �143.0 61,399.0 81,853.3 �5.094
Euclidean.Ov �137.8 61,171.4 80,156.4 �4.908
Euclidean.1 �138.2 61,144.1 80,239.5 �4.922
Euclidean.2 �142.4 61,273.5 81,548.3 �5.072
PS �112.3 58,360.4 70,978.1 �4.001

The target variable is the gross monthly income. As far as the auxiliary variables
are concerned, their choice is crucial for the performance of the reweighting
adjustments. We choose gender, primary occupation and highest level of education
(irrespective of diploma) of the household members. Indeed these variables appear
to be predictors of the response indicator even though the correlation with the target
variable is not high. In order to compute the weights, these variables are turned
into a set of dummy variables (one dummy variable for each category). The dummy
variables associated with each of these variables are used for the reweighting unless
there are too few observations in that cell for the matrix to invert. Moreover an
additional constraint is added to ensure that the sum of the final weights equals the
number of households members in the LISS panel.

Estimates are based on the final survey data, which are from the Overall
Population. The MaxEnt weights are computed using an R program based on
the Minxent package (Asma 2012). In order to perform a proper comparison,
also the classical calibration estimators based on Euclidean distance (Deville and
Sarndal 1992) and the propensity score estimator are included in the simulation.
The calibration estimators are computed using the “sampling” R package (Tillé and
Matei 2012). The propensity score estimator is computed using weights adjusted
for the individual response probabilities O
PSy D N�1

P

i2r diyi= O�i ; where O�i
is the estimated conditional probability that an individual with given observed
characteristics responds to the WS questionnaire. The response probabilities are
estimated by means of a logit model (see Bethlehem and Biffignandi 2012 for more
details).

The estimators that we compare are: Horwitz–Thompson (HT), MaxEnt based
on the Overall Population (MaxEnt.Ov), MaxEnt based on Population 1 (Max-
Ent.1), MaxEnt based on Population 2 (MaxEnt.2), calibration estimators based on
Euclidean distance (Euclidean.Ov, Euclidean.1, Euclidean.2), and the Propensity
score. Table 1 shows the results. The benchmark mean indicator is computed on
Population 1.

The Horvitz–Thompson estimator shows a bias which reflects the difference
between respondents and non-respondents. On the other hand, the proposed
reweighting method has a positive impact on the bias with a small increase of
the variance. The relative bias decreases of one percentage point with respect to HT.
The mean squared error is smaller than the HT one. With regards to the different
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weighting schemes, a slightly better performance is shown by MaxEnt.Ov, even
though it is not very different from MaxEnt.1, since the number of late respondents
is low. The performance of MaxEnt.2 is worse than the other ones. However, we
expect this technique to bring greater improvements over traditional estimates
when the number of late respondents is higher. The propensity score estimator
presents a strong bias reduction and a variance quite similar to the HT one. In
this simulation the PS method seems to be the best solution. The results obtained
with the MaxEnt estimators are not very different from those obtained with the
calibration estimator based on the Euclidean distance. Leading to almost equal
results, the MaxEnt approach presents the desirable characteristic of not requiring
additional assumptions neither about the distribution of weights nor about the choice
of the dissimilarity. Further insights about combining PS and MaxEnt approaches
will be the subject of a forthcoming research paper.

The main conclusions are:

(a) Compared to Horvitz–Thompson, MaxEnt approach performs better in general
and it is similar to the calibration estimator based on the Euclidean distance.
In this case the PS approach performs even better. However, it should be
advised that all the proposed methods are very sensitive to the choice of the
auxiliary variables. The crucial point in empirical analyses is that no clear
relationship exists between auxiliary variables models driving their inclusion
in the estimation process and estimation performance.

(b) Online panels allow to update auxiliary information and to build up a synthetic
population containing updated information for late respondents (the Overall
Population). The empirical simulation presented in this paper shows that the
use of updated socio-demographic information for late respondents could be a
valuable approach for improving estimates. Greater improvements are expected
depending on the portion of late respondents.
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Nonparametric Multivariate Inference Via
Permutation Tests for CUB Models

Stefano Bonnini, Luigi Salmaso, and Francesca Solmi

Abstract A new approach for modelling discrete choices in rating or ranking
problems is represented by a class of mixture models with covariates (Combination
of Uniform and shifted Binomial distributions, CUB models), proposed by Piccolo
(2003, Quaderni di Statistica, 5, 85–104), D’Elia & Piccolo (2005, Computational
Statistics & Data Analysis, 49, 917–934), Piccolo (2006, Quaderni di Statistica,
8, 33–78) and Iannario (2010, Metron, LXVIII, 87–94). In case of a univariate
response, a permutation solution to test for covariates effects has been discussed in
Bonnini et al. (2012, Communication in Statistics: Theory and Methods), together
with parametric inference. We propose an extension of this nonparametric test to
deal with the multivariate case. The good performances of the method are showed
trough a simulation study and the procedure is applied to real data regarding the
evaluation of the Ski School of Sesto Pusteria (Italy).

1 Introduction

Usually in real applications the ordinal response in a rating or ranking problem
depends on specific subjects’ or objects’ characteristics.
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For defining the probability distribution of this ordinal response a new approach
is represented by Piccolo (2003), D’Elia and Piccolo (2005), Piccolo (2006) and
Iannario (2010) and generalized by Piccolo and D’Elia (2008), Iannario and Piccolo
(2009) and Iannario and Piccolo (2012).

According to this approach, data are generated by a class of discrete probability
distributions, that depend on two intrinsically continuous quantities (feeling and
uncertainty) pertaining to the response. This is a mixture of a shifted Binomial
and an Uniform random variable. Let us assume that n evaluators are rating a
given item, hence the sample y D .y1; y2; : : : ; yn/

0 is observed; moreover let
xi and wi , with i D 1; : : : ; n, be subjects’ covariates for explaining feeling and
uncertainty, respectively. Hence, the general formulation of a CUB .p; q/ model
(with p covariates to explain uncertainty and q covariates to explain feeling), is
expressed by:

Pr .Yi D yjxi ;wi / D �i
 

m 	 1
y 	 1

!

.1 	 �i /y�1�m�yi C .1 	 �i /
�

1

m

�

with y D 1; 2; : : : ; m, where m > 3 (Iannario and Piccolo 2012) is the known
number of modalities for the rating survey, and �i D 1=.1 C e�xi ˇ/ and �i D
1=.1 C e�wi �/ where  D .ˇ0;� 0/0 is the vector of parameters associated to the
covariates.

Inference on CUB models has been mainly developed in a parametric framework,
via maximum likelihood and asymptotic theory (see Piccolo 2006 and Iannario and
Piccolo 2009). A nonparametric solution to test for the effect of covariates in a
CUB model has been recently proposed by Bonnini et al. (2012). It is a competitive
alternative to the classical parametric test when the sample size is low.

In this work we extend the above presented permutation solution to the multivari-
ate case. Nonparametric combination of dependent permutation tests (see Pesarin
2001 and Pesarin and Salmaso 2010) is used to end up with a global tool for
comparing several nested CUB models at the same time on several aspects of the
multivariate response. A simulation study is carried out in order to explore the
performances of the multivariate test. The method is applied to real data regarding
the evaluation of the Ski School of Sesto Pusteria in the Trentino Alto Adige region
(Italy).

2 A Permutation Test for Multivariate Responses

Several types of permutation tests have been proposed in order to compare
regression models (see Anderson and Ter Braak 2003 for a review). Permutation
strategies can be divided in permutation of raw data and permutation of residuals.
We propose a nonparametric solution for the test of significance for the coefficients
of the covariates of the CUB model when a multivariate response is observed. Such
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solution performs permutations of raw data. In Bonnini et al. (2012) a nonparametric
test is based on the constrained permutation of the tested covariates. Let us consider
a test on the global influence of one or more covariates on a multivariate response.
For each partial test (on the influence of the tested covariates on a single component
of the multivariate response) the same set of covariates is taken into account.
Hence the global alternative hypothesis is true when at least one of the partial null
hypotheses is false.

Let Y
0 D .Y1; : : : ; Yc/ be the multivariate response, and let a set of subjects’

covariates
	

x
0
;w

0
 D �

x1; : : : ; xp;w1; : : : ;wq
�

be observed on a set of n respon-

dents. Formally the proposed solution works as follows:

i. Set the null and the alternative models that need to be compared (say M j;0 and
M j;1 respectively), treating separately all the components of the multivariate
response Yj , j D 1; : : : ; c.

ii. For the j -th component of the multivariate response, j D 1; : : : ; c, consider
the observed data .yji ; x

0
i ;w

0
i /, with i D 1; : : : ; n and perform one of the per-

mutation tests proposed in Bonnini et al. (2012) to compare M j;0 and M j;1

(t j say). In order to maintain the dependence due to the fact that for each test
the responses come from the same n subjects, synchronized permutations have
to be performed on the several tests.

iii. Consider the c separated tests t j , j D 1; : : : ; c and combine them into
the global test t to test the global null hypothesis of interest, using the
nonparametric combination of dependent permutation tests.

iv. If the global test t is significant, adjust the partial tests t j , j D 1; : : : ; c,
for multiplicity, using a closed testing nonparametric procedure (see Pesarin
2001 and Pesarin and Salmaso 2010), obtaining the adjusted p-values pjadj,
j D 1; : : : ; c, and conclude that the tested covariates influence the response
on those aspects where the adjusted p-values pjadj are significant. If the global
test t is not significant, conclude that the tested covariates do not influence the
multivariate response.

We remark that the permutations tests t j can be chosen among the ones proposed for
the univariate case (see Bonnini et al. 2012). Moreover measures of the significance
of specific domain related models can also be tested.

3 Simulation Study

A Monte Carlo simulation study has been carried out in order to evaluate the
performances of the proposed multivariate method.

As a multivariate version of the CUB model has not yet been defined, a first
problem consists in how to simulate the data. Data were simulated assuming
that the marginal components follow a CUB distribution. Moreover, to take into
account for the dependence among the single components of the multivariate
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response the copula theory was used (see Nelsen 2006). The basic idea is to apply
the probability integral transform to the single components and then specify the
dependence among the resulting uniform random variables, instead of among the
original ones. Copulas’ theory does not share the same results for continuous and
discrete data, and in particular identifiability issues arise in the case of discrete data.
However copulas’ models for discrete data keep on being valid constructions and,
as suggested by Genest and Neslehová (2007), they are helpful in the context of
simulation. The identifiability problem, indeed, concerns the estimation field and
not the simulation one.

Hence the values of the cumulative distribution functions (c.d.f.s) were simulated
from a copula and the response values were obtained inverting the c.d.f.s for a
CUB model. Consider the general case of a c-dimensional response. The simulating
procedure works according to the following two steps:

1. Simulate a sample from a multivariate copula, according to a pre-specified
dependence degree, getting ui D

�

u1i ; : : : ; u
c
i

�

, with i D 1; : : : ; n.
2. Consider each multivariate element of the simulated sample, ui, and transform

it into the final element through the inverse c.d.f. of a CUB model, i.e. yi D
�

y1i ; : : : ; y
c
i

� D �F �11 .u1i /; : : : ; F
�1
c .uci /

�

.

We remark that at any combination .i; j /, with i D 1; : : : ; n and j D 1; : : : ; c,
inverting the c.d.f. Fj .y/, a specific CUB model has to be considered according
to the parameters values ˇj and �j related to that component of the multivariate
response and the values of the covariates. In general the c.d.f. of a CUB model, for

the i -th subject, with uncertainty and feeling parameters �ji D 1=
	

1C e�xi ˇj



and �ji D 1=
	

1C e�wi �j



can be derived as follows:

Fj .y/ D Pr .Y � yjxi ;wi / D
y
X

lD1

"

�
j
i

 

m 	 1
l 	 1

!

.1 	 �ji /l�1�ji
m�l C .1 	 �ji /

�

1

m

�

#

D �ji
y�1
X

lD0

" 

m 	 1
l

!

.1 	 �ji /l �ji
..m�1/�l/

#

C .1	 �ji /
	 y

m




:

Fj .y/ corresponds to a mixture of two discrete distributions: a binomial Bi.m 	 1;
.1 	 �ji // calculated in y 	 1 and a uniform distribution. The inversion of such
function can be obtained using quantile functions of the c.d.f.s and the equation
previously defined.

An Archimedean copula was used (see Nelsen 2006, p. 116), mainly because it
allows to model the dependence with only one parameter (hereafter �). The use of
this copula family with discrete data can be found in Pfeifer and Neslehová (2004).

In the discrete case the copula alone cannot characterize the dependence between
the several components of the multivariate response (see Genest and Neslehová
2007 for a more detailed discussion). Anyway one helpful property holds in the
discrete case: the value of the parameter � of the copula, increases with the
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dependence among the final discrete responses. In this simulation study the settings
are similar to those used in Bonnini et al. (2012). Working in terms of rejection
rates, the reliability of the method under the null hypothesis has been verified, and
its power under alternative hypotheses has been studied. Only two test statistics
for the permutation test were taken into account (hereafter tlrt, twald, see Bonnini
et al. 2012 for a description of the different tests), and a parametric counterpart
is not available for the multivariate case. Such permutation tests are constructed
considering the permutation distribution of the likelihood ratio and Wald type tests.
Only the CUB .0; 1/ model was studied under the alternative hypothesis, since this
model is much used in real applications. For the same reason only dichotomous
covariates were considered (see Bonnini et al. 2012 for a detailed discussion).

As regards the simulation settings, the relation between the power and the
“distance” between the two populations defined by the dichotomous covariate under
H1 has already been studied (see Bonnini et al. 2012). Such a distance could
be represented by the difference between the parameters of feeling of the two
populations (hereafter ı�). Hence only one value of ı� was taken into account. We
considered different numbers of components of the multivariate response simulated
under the partial alternative hypothesis.

Moreover several values for the dependence parameter � were considered
in order to study the behavior of the power functions for different degrees of
dependence among the components of the multivariate response. The dependence
among the univariate responses does not depend on the underlying copula alone
and it is instead influenced by the marginal distributions as well. Therefore in our
particular case some dependence is surely attributable to the covariate when we
simulate all the components under the alternative hypothesis, i.e. by following a
CUB distribution with the same significantly influent covariate. Hence, even if it
is not possible to say which kind of dependence is represented by � , high values
of � (letting fixed all other parameters in the simulation setting) correspond to high
dependence among the univariate responses, no matter which is the impact, on the
global dependence, from the introduction of a significant covariate.

Table 1 shows the considered simulation settings for c D 2; 3 dimensions of the
multivariate response: the table must be read in terms of number of components
simulated under the alternative hypothesis. Settings from 1 to 3 refer to a bivariate
simulated response, while settings from 4 to 7 to the case c D 3. Hence in the first
and in the fourth settings data are simulated under the global null hypothesis that
the covariate does not influence any of the components. The value ı� D 0:2 was
chosen underH1. Two values for the sample size (n D 50; 100) and three values for
the dependence parameter (� D 0; 5; 10) were considered. The feeling parameter
was set to � D 0:1 for the components simulated under the null hypothesis
(CUB .0; 0/ model), and to �.0/ D 0:1; �.1/ D 0:3, in the two sub-groups identified
by the covariate, for the components simulated under the alternative hypothesis
(CUB .0; 1/ model). The uncertainty parameter was set always equal to � D 0:9

(low uncertainty, very frequent in real applications).
Table 2 reports the estimated rejection probabilities of the compared tests (partial

adjusted and global permutation tests) on the parameter �1 for m D 7 and at a
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Table 1 Simulation settings for c D 2; 3,
each cell indicating under which hypothesis
the specific component is simulated for the
specific setting. The symbol � indicates
that the component is not considered in that
setting

Setting Y1 Y2 Y3

1 H0 H0 �
2 H1 H0 �
3 H1 H1 �
4 H0 H0 H0

5 H1 H0 H0

6 H1 H1 H0

7 H1 H1 H1

Table 2 Estimated rejection probabilities for the partial adjusted permutation tests on the single

component of the multivariate response (t Yclrt and t Ycwald, with c D 1; 2; 3) and of the global solution

(t glob
lrt and t glob

wald), settings 1 to 7 and � D 0; 5; 10. The results refer to sample size n D 50, nominal
level of ˛ D 0:05, B D 1; 000 permutations and CMC D 1; 000 replications. Estimates in bold
indicate quantities under the (partial or global) null hypotheses

� D 0 � D 5 � D 10

tlrt twald tlrt twald tlrt twald

Setting t
Y1;2;3
lrt t

glob
lrt t

Y1;2;3
wald t

glob
wald t

Y1;2;3
lrt t

glob
lrt t

Y1;2;3
wald t

glob
wald t

Y1;2;3
lrt t

glob
lrt t

Y1;2;3
wald t

glob
wald

1 0.032 0.057 0.027 0.058 0.035 0.057 0.035 0.056 0.029 0.048 0.031 0.048
0.031 0.031 0.032 0.029 0.030 0.035

2 0.923 0.923 0:912 0.923 0.918 0.921 0:916 0.921 0.914 0.919 0:905 0.917
0.052 0.052 0.050 0.025 0.046 0.050

3 0:949 0.995 0:946 0.995 0:947 0.984 0:936 0.985 0:941 0.973 0:934 0.974
0:956 0:948 0:947 0:936 0:944 0:938

4 0.024 0.056 0.027 0.060 0.016 0.050 0.016 0.053 0.019 0.057 0.019 0.057
0.015 0.015 0.022 0.014 0.025 0.023
0.020 0.019 0.021 0.023 0.031 0.027

5 0.905 0.907 0.889 0.910 0.918 0.923 0.907 0.924 0.910 0.918 0.887 0.917
0.026 0.026 0.030 0.025 0.032 0.026
0.025 0.024 0.025 0.026 0.044 0.038

6 0.923 0.994 0.913 0.994 0.935 0.980 0.929 0.980 0.928 0.978 0.917 0.978
0.915 0.903 0.923 0.916 0.924 0.903
0.041 0.045 0.040 0.045 0.056 0.050

7 0.948 0.999 0.942 0.999 0.956 0.991 0.949 0.991 0.940 0.980 0.930 0.979
0.939 0.926 0.953 0.937 0.945 0.933
0.950 0.948 0.955 0.950 0.933 0.929
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nominal level of ˛ D 0:05 for n D 50. A number of B D 1; 000 permutations
and CMC D 1; 000 conditional Monte Carlo iterations have been considered. The
obtained results show how the global permutation test controls the type I error
when the global null hypothesis is true. Such test also turns out to be a powerful
solution as soon as one of the partial null hypothesis is not true. Therefore a power
increase can also be registered while increasing the number of false partial null
hypotheses (hence passing from setting 2 to 3 and from setting 5 to 7). It also has
to be underlined that when more than one partial null hypothesis is false (hence in
settings 3, 6 and 7), the power decreases as the copula’s dependence parameter �
increases, again confirming an expected behavior (see Pesarin and Salmaso 2010).
In the end the results related to higher sample size (n D 100, which are available
under request) suggest that the power of the global test increases as the sample size
increases, for all the considered settings, reaching the value one.

4 Real Case Application

The S.E.S.T.O. (Statistical Evaluation of a Skischool from Tourists’ Opinions) is the
first Italian survey on the evaluation (by parents) of ski courses for young children
(up to 14 years old) and it is a pilot study performed in the Ski School of Sesto,
in the Dolomites near Bolzano in the North of Italy. Several customer satisfaction
variables towards different aspects of ski teaching have been evaluated on a rating
scale 1–10. A multivariate response has been considered in the study, related to five
aspects of the customer satisfaction: “Easy Learning”, “Helpful Teacher”, “Fun”,
“Involvement” and “General Satisfaction”. Moreover the dichotomous covariate
“First presence in Sesto” for parameter � has been included in the analysis, to verify
if the families who were in Sesto for the first time presented a different feeling
toward the ski courses than the others.

The global p-value lower than 0:001 leads to the rejection of the global null
hypothesis at ˛ D 0:05 hence the tested covariate affects the feeling. According
to the adjusted p-values of the partial tests, to be in Sesto for the first time has
no influence on the easy of learning but it positively affects the feeling of the
respondents toward the helpfulness of the teacher (adjusted p-value equal to 0:009),
the fun and the involvement of the children (adjusted p-value equal to 0:013 and
0:015 respectively) and also the general satisfaction (adjusted p-value lower than
0:001).

5 Conclusions

In this paper an extension of a permutation solution to test for covariate influence on
an ordinal response, working within the CUB model framework, is presented. The
method basically works implementing the permutation solution proposed in Bonnini
et al. (2012) separately on each component of the multivariate response, anyway
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taking into account for the dependence among variables performing synchronized
permutations on the several components.

The method’s performances have been studied through a simulation study were
the cases C D 2 and C D 3 dimensions of the multivariate response have been
considered. Several settings have been explored, which differ from each other in
terms of number of partial components under the alternative hypothesis. The results
have shown the very good behavior of the global permutation solution, which is
reliable under the global null hypothesis and powerful under the alternative even
for low sample sizes. Its power increases (reaching value one) as the sample size
increases and it is a decreasing function of the dependence among the components
of the multivariate outcome. Moreover a power increase can be observed while
increasing the number of false partial null hypothesis.

The permutation test has also been applied to real data regarding the evaluation
of the Ski School of Sesto Pusteria in the Trentino Alto Adige region (Italy). The
influence of the covariate “First presence in Sesto” on several responses is suggested
by the use of the method.

We can conclude that the proposed permutation solution is useful in order to
test for the influence of one covariate on a multivariate ordinal response, while
working in the CUB models framework. Other parametric solutions do not exist
at the moment to solve the multivariate aspect of such a problem.
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Asymmetric Multidimensional Scaling Models
for Seriation

Giuseppe Bove

Abstract Singular value decomposition (SVD) of skew-symmetric matrices was
proposed to represent asymmetry of proximity data. Some authors considered the
plane (bimension or hedron) determined by the first two singular vectors to detect
orderings (seriation) for preference or dominance data. Following these approaches,
in this paper some procedures of asymmetric multidimensional scaling useful for
seriation are proposed focalizing on a model that is a particular case of rank-2
SVD model. An application to Thurstone’s paired comparison data on the relative
seriousness of crime is also presented.

1 Introduction

Gower (1977) and Constantine and Gower (1978) remark that the decomposition
of an asymmetric proximity matrix P in a symmetric part M and a skew-symmetric
part N, with PDMCN, gives an orthogonal breakdown of sum of squares (see also
Critchley 1988; Zielman and Heiser 1996):

kPk2 D kMk2 C kNk2

which suggests a separate analysis (or modelling) of M and N.

• M can be analysed by symmetric MDS.
• N can be analysed by Singular Value Decomposition.
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Analysis of the skew-symmetric component seems promising in the context of
preference or dominance data (e.g. Freeman 1997; Brusco and Stahl 2005), where
it is usually relevant to find an ordering of preference (or seriation) of the objects
compared. Rank-2 approximations provided by the SVD of N allow us to depict in a
diagram orderings of objects useful to support seriation analyses. In Sect. 2 aspects
of the seriation problem and the type of data considered will be recalled, in Sect. 3 a
strategy of analysis based on SVD of skew-symmetry will be proposed, and finally
in Sect. 4 main results obtained by application of the strategy to Thurstone’s paired
comparison data on the relative seriousness of crimes are presented.

2 Type of Data

One of the main goal in the analysis of a dominance/preference n
 n data matrix
is to find an ordering of dominance/preference (or seriation) for the n objects (e.g.
persons, political parties, teams, crimes, etc.). Many authors considered seriation
essentially a combinatorial problem (see e.g. Hubert and Golledge 1981; Hubert
et al. 2001; Brusco and Stahl 2005). In this case a measure of adequacy (i.e., the
value for some objective function) is assigned to each of the reorganizations of rows
and columns of matrix corresponding to the n! permutations of the set. Then the
permutations that maximize (or minimize) the measure of adequacy are located.

One natural measure in this context is the sum of the entries above the main
diagonal of matrix, but many other measures can be considered.

The matrix in Table 1 represents dominance relationships among five players,
for any pair (i,j), the corresponding entry is the number of games player i beats
player j.

The maximum of the sum of the entries above the main diagonal (the optimal
value of the objective function) can be obtained by reorganizing rows and columns
according to the permutation (4,3,1,2,5), as in Table 2.

So the permutation (4,3,1,2,5) provides the optimal dominance ordering for the
five players in this seriation problem, from the strongest to the weakest player.
However, computational requirements of complete enumeration (n! permutations)
become excessive quickly as n increases, and can be excessive even when n is not
very large.

In the following we will restrict attention to the type of n
 n data matrix P,
whose main diagonal elements are zeros and all other elements satisfy pij Cpji D k
for i ¤ j.k � 0/. We note that for this type of matrix, the symmetric component
(with entries 1

2
.pijCpji/) has no practical interest because all off-diagonal elements

are equal to k
2

. For kD 0, PDN is skew-symmetric (pijD	pji).
As an example, a graded paired-comparison matrix on seriousness of 15 crimes

is partially reproduced in Table 3 from a larger study of Thurstone (1927). These
data will be analysed more in detail in Sect. 4.
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Table 1 Dominance
relationships among five
players

Players 1 2 3 4 5

1 – 2 0 0 5
2 0 – 0 0 1
3 3 6 – 0 8
4 7 9 4 – 10
5 0 0 0 0 –

Table 2 Matrix in Table 1
reorganized

Players 4 3 1 2 5

4 – 4 7 9 10
3 0 – 3 6 8
1 0 0 – 2 5
2 0 0 0 – 1
5 0 0 0 0 –

Table 3 Thurstone’s paired
comparison data partially
reproduced from Hubert and
Golledge (1981)

Crimes 1. 2. 3. 4.

1. Arson – 0.348 0.563 0.716
2. Embezzlement 0.652 – 0.752 0.774
3. Kidnapping 0.437 0.248 – 0.595
4. Seduction 0.284 0.226 0.405 –

For any pair (i,j), pij is the proportion of subjects who judged crime in column j
is more serious than crime in row i (so that: pijC pjiD 1, (i¤ j)).

We remark that any skew-symmetric matrix contains two types of information:
size (or magnitude) and sign (or directionality) of skew-symmetry (e.g. Hubert et al.
(2001) and Brusco and Stahl (2005) in combinatorial optimization; Bove (1989) in
asymmetric multidimensional scaling). Thus, matrix N can be written

N D T ı �

where: T D ˚

tij
� D ˚

ˇ

ˇnij

ˇ

ˇ

�

, � D ˚

�ij
� D ˚

sign.nij/
�

with sign.nij/ D 1 if nij > 0,
sign.nij/ D 	1 if nij < 0 and sign.nij/ D 0 if nij D 0, and ı is the Hadamard
product. So, in the case of graded paired comparison data, orderings of the rows and
columns of N can be formulated on the basis of both T and � .

3 Two Complementary Approaches to the Seriation Problem

Brusco and Stahl (2005) proposed a bicriterion dynamic programming method
based on three steps.

STEP 1 Choose an objective function for matrix � (e.g. sum of the entries above
the main diagonal or similar functions).



58 G. Bove

STEP 2 Choose an objective function for matrix T (e.g. L D
n�1
P

iD1

n
P

jDiC1
.tij 	

ˇ

ˇxi 	 xj
ˇ

ˇ/2, where coordinates xi, xj are opportunely obtained from a
permutation of the objects).

STEP 3 Look for a permutation of the n objects optimizing one (or more) opportune
linear combination of the previous objective functions.

As a result an ordered list (or more ordered lists) of the n objects is obtained,
sometimes not easy to interpret (for an application of this method to Thurstone’s
paired comparison data see Brusco and Stahl (2005, p. 338).

Now we show how data visualization based on SVD of skew-symmetry can
help to support or find solutions to the seriation problem. First, we remark that the
singular value decomposition of an n
 n skew-symmetric matrix N is

N D U
V0 D U
JU0 (1)

where 
 D diag.ı1; ı1; ı2; ı2; : : :/ and J is a block diagonal matrix with 2 
 2
matrices

�

0 1

	1 0
�

along the diagonal and, if n is odd, the last diagonal element is conventionally set to
one. Rank-2 approximation obtained by (1) is, in scalar form,

nij D .ui vj 	 uj vi /C eij (2)

by which diagrams (usually named Gower diagrams) in a plane (bimension or
hedron) are obtained. Many authors (e.g. Constantine and Gower 1978; Okada and
Imaizumi 1987; Bove and Critchley 1993; Saito and Yadohisa 2005) studied the
following linear particular case of model (2), that we can call radius model,

nij D .ri 	 rj /C eij (3)

that is the simplest form of skew-symmetry. A least squares solution for the r
0
i s in

(3) was provided by Mosteller (1951) in the context of Thurstone case V scaling.
Bove and Critchley (1989) provided the solution for the weighted least square
problem.

Now we propose a strategy of analysis in three steps, to show how models (2) and
(3) can be applied in different ways to matrices T and � to support the definition of
an ordering of the n objects compared in the data matrices.

STEP 1 Find a unidimensional scaling of the n objects by applying to � the radius
model (3) and visualize the ordering in a Gower diagram by model (2).
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STEP 2 Display entries of matrix T with distances by symmetric Multidimensional
Scaling.

STEP 3 Join the graphical analyses of matrix � and matrix T drawing circles
around the points in the diagram obtained in STEP 2. Estimates of the radii
of the circles can be based on the estimates of the radius model parameters
(the row means of matrix �), made non negative by adding an opportune
constant (so that min.Ori / D 0) and normalized in order to be comparable
with distances obtained in STEP 2.

4 Application

Hubert and Golledge (1981) analysed Thurstone’s paired comparison data con-
cerning the perceived severity of nD 15 criminal offences, reported in a 15 
 15
asymmetric proximity matrix. The 15 crimes are: Abortion (ABO), Adultery
(ADU), Arson (ARS), Assault and Battery (ASB), Burglary (BUR), Counterfeiting
(COU), Embezzlement (EMB), Forgery (FOR), Homicide (HOM), Kidnapping
(KID), Larceny (LAR), Libel (LIB), Perjury (PER), Rape (RAP) and Seduction
(SED). As already explained in Sect. 3 for Table 3, entries of the matrix represent
the proportion of respondents who considered the column offence to be more serious
than the row offence. Because the symmetric component of the data matrix contains
values of 0.5 for all off-diagonal elements, it would be of no practical interest. For
this reason, our attention will focus on the skew-symmetric component.

In the first step of the proposed strategy, the application of model (3) provides
the following estimates of the scaling parameters Ori , reported in parenthesis for each
crime in non decreasing order: HOM (	0.9333), RAP (	0.8000), ABO (	0.6667),
SED (	0.5333), ADU (	0.4000), KID (	0.2667), ARS (	0.1333), EMB (0.1333),
COU (0.2667), PER (0.2667), BUR (0.4000), FOR (0.4000), ASB (0.5333), LAR
(0.8000), LIB (0.9333).

So we obtain the following ordering from the most to the less serious crime:
HOM, RAP, ABO, SED, ADU, KID, ARS, EMB, COU-PER, BUR-FOR, ASB,
LAR, LIB, with the two ties COU-PER and BUR-FOR. The application of model
(2) provides the Gower diagram depicted in Fig. 1. This diagram (that accounts
for 81 % of the � total sum of squares) allows to depict the ordering, to solve for
ties and to check for circular triads. By going from the top-right to the bottom-
left we find the same ordering obtained by model (3). Besides, the diagram helps
to complete the ordering because we see that PER�COU and FOR�BUR, thus the
complete ordering will be: HOM, RAP, ABO, SED, ADU, KID, ARS, EMB, PER,
COU, FOR, BUR, ASB, LAR, LIB, that is the same ordering obtained maximizing
the sum of the entries above the main diagonal by Brusco and Stahl (2005, Table 3).
All points are in only half plane so we do not have evidence for the presence of
circular triads.
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Fig. 1 Gower diagram for
Thurstone’s paired
comparison crime data

Fig. 2 Symmetric
multidimensional scaling of
the size of skew-symmetry

In the second step of the proposed strategy, we can display entries of matrix
T by applying symmetric Multidimensional Scaling. Figure 2 shows the obtained
configuration in two dimensions (Stress-ID 0.11). The size of skew-symmetry is
represented by the distance between points, so we see for example that the pairs
PER-COU and FOR-BUR have small skew-symmetry, while HOM-LIB and RAP-
LAR have large skew-symmetry.

Finally, in the third step we can join the graphical analyses of matrix � and
matrix T drawing circles around the points of the diagram obtained in STEP 2.
Estimates of the radii of the circles can be based on the radius model parameters, as
described in STEP 3 of the proposed strategy. The normalization factor for the radii
was opportunely fixed to 7.9. Figure 3 represents the final result of the strategy. As
in the Gower diagram, in Fig. 3 we can easily detect seriousness of crime by circles
areas (crimes are less serious as larger is the circle area). So we see, for example,
that Homicide and Rape are judged much more serious than Libel and Larceny.

Besides, a graduation of seriousness is provided that we cannot obtain by a
dynamic programming approach. Crimes are depicted in four different groups: a
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group of less serious crimes (Larceny, Libel), a group of “light” crimes (Embezzle-
ment, Perjury, Counterfeiting, Forgery, Burglary, Assault and Battery), a group of
serious crimes (Seduction, Adultery, Kidnapping, Arson), a group of more serious
crimes (Homicide, Rape), with Abortion in a position between the third and the
fourth group. So, we think that this last diagram can add further information and
help a better interpretation of the results obtained for these data by combinatorial
optimization methods (e.g. Hubert and Golledge 1981; Brusco and Stahl 2005).
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An Approach to Ranking the Hedge
Fund Industry

Riccardo Bramante

Abstract Due to the complexity and heterogeneity of hedge fund strategies, the
evaluation of their performance and risk is a challenging task. Starting from the
standard mutual fund industry, the literature has evolved in the direction of refining
traditional measures (e.g. the Sharpe Ratio) or introducing new ones. This paper
develops an approach, based on the Principal Component Analysis, to uncover the
relevant information for performance measurement and combine it into a unique
rank.

1 Introduction

In this paper the problem of performance assessment within the hedge fund industry
is investigated. By combining commonly used and newly developed statistical
performance indicators, a unique ranking of the industry is produced. A set of
18 indicators is firstly identified and then combined into a rank by a principal
component analysis. This allows to detect the underlying drivers of the performance.
Finally, a feature of the hedge funds that is not captured by this combination of
indicators, namely the capability of raising the portfolio efficiency, is investigated.
This is done by computing the upside gained by a balanced portfolio through the
inclusion of a share of hedge funds.

Why should we not solely rely on the traditional risk adjusted measures to
assess hedge funds performance? As a matter of fact, in the traditional mutual
fund industry, performance is typically based on a version of the Sharpe Ratio (see
for instance Morningstar and the well known star attribution system). Subscribing
to the views expressed by Fung and Hsieh (1998, 1999), the transfer of this
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methodology to the hedge fund industry could be arduous, since hedge funds
differ from mutual funds mainly because of the variety of strategies adopted. This
leads to widely different returns and volatilities depending on the particular fund.
Thus, some hedge funds may be non-directional and less volatile than traditional
bond and equity markets, while others may be fully directional and display higher
volatility. As widely discussed by Ineichen (2003), hedge fund differences from
mutual funds hinge on their relationship with the broader environment of financial
markets. Dynamic reallocation of portfolios can create non-linear patterns with
respect to the market (Agarwal and Naik 2004). In addition, hedge funds structurally
use leverage. As discussed in Brealey and Kaplanis (2001), even if the fund
remains exposed to the same market, variation in leverage, obtained by changing
the net exposure between short and long position, may introduce further non-
linearities. Finally, hedge-funds may invest in non-traditional financial assets such
as derivatives. Some of these instruments display non-linearities because of their
implicit features (Mitchell and Pulvino 2001). The structural characteristics of
hedge-funds mentioned above, strongly affect the standard techniques of evaluating
mutual funds.

If the risk adjusted return insufficiently portrays the hedge fund performance,
how may we satisfactorily assess it? An answer to this question must entail the
investor point of view, which ultimately defines the characteristics of hedge funds.
Indeed, a hedge fund portfolio manager, in order to charge higher fees than mutual
funds, makes every effort to provide the fund with some superior characteristics
which can be summarized as follows:

• The capability of generating appealing absolute returns.
• The capability of protecting capital.
• The capability of raising the efficiency of a portfolio.

Generating appealing returns is attained by participating to the upside of a
traditional investment, while protecting the capital may be achieved through an
accurate hedging of the downside. These investment objectives cannot be reached
through a linear exposure to the markets. By contrast, an asymmetric payoff
resembling a call option is more suitable. In addition, the management of a hedge
fund should result in a low correlation with “traditional” financial markets, thus
increasing its appeal as a portfolio diversificator.

To address the problem of performance assessment, statistical indicators—
chosen among widely used indicators—have been selected in accordance with the
three identified features.

2 The Statistical Indicators

A burgeoning literature is currently discussing the appropriate tools for hedge fund
performance measurement (Géhin 2004; Lhabitant 2004). The main problem hinges
on the non-linear market exposure that often results in characteristics that limit the
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Table 1 Statistical indicators

Annualized return Sharpe ratio
Median return Cornish–Fisher sharpe ratio
Frequency of positive returns Adjusted sharpe ratio
Annualized volatility Sortino ratio
Negative semi-deviation Kurtosis
Maximum drawdown Skewness
Value at risk Normality test
Cornish–Fisher percentile Correlation with MSCI world index
Cornish–Fisher value at risk Correlation with BEA index

applicability of the classical bi-dimensional, risk and return, measures. In particular,
the return distribution patterns, measured by moments higher than two, becomes
relevant and could result in an over or underestimation of the performance. On this
basis, measures that either come from the traditional investment world or have been
accepted as useful tools to overcome the typical asymmetries of the hedge fund
industry1 are selected (Table 1).

Besides browsing among all the indicators, we reserve some notes on the
measures capable of capturing the asymmetries typical of returns as it will turn
out to be relevant in our application. Apart from skewness and kurtosis, a common
solution to capture the shape of return distribution is attained by considering only
the returns that lie below the average mean (Markowitz 1959). A measure that goes
in this direction and, coherently with Kahnemann and Tversky (1979), that describes
investors’ viewpoint in an appropriate way, is the negative semi deviation

��R D
v

u

u

t

1

T

T
X

tD1
Min.Rt ; 0/

2

where Rt is the sequence of the hedge fund log-returns.
Together with negative semi deviation practitioners often analyze the downside

exposure, through empirical measures like the maximum drawdown2

MDR D maxt2Œ0;T �.maxs2Œ0;t �Rs 	Rt/

or the value at risk

VaRR.˛/ D 
R 	 z˛ � �R

1MSCI World Index and Barclays Euro Aggregate (BEA) are chosen to represent correlation with
Equity and Bond market.
2It should be pointed out that maximum drawdown is an empirical measure, without any statistical
consistency.



66 R. Bramante

where 
R and �R are respectively the hedge fund average return and volatility and
z˛ satisfies

˚�1.˛/ D z˛

where ’ is the desired percentile and ˆ is the CDF of the standard normal
distribution.

The last indicator has the same previously outlined problems in case returns
exhibit non-normal features. To accomplish this problem, it is convenient to
approximate the quantiles of the distribution via Cornish–Fisher approximations,
which corrects the distortion in the returns distribution of the fund by integrating
the effect of the moments of order greater than two on the left tail.3 According to
Hill and Davis (1968), it is called Cornish–Fisher percentile at the ˛ significance
level the ˛ standard normal percentile corrected by the skewness Skew.R/ and the
kurtosis Kurt.R/ effect4:

�˛ D z˛ C 1

6
.z˛ 	 1/2 � Skew.R/C 1

24
.z˛

3 	 3z˛/ � Kurt.R/

	 1

36
.z˛

3 	 5z˛/ � Skew.R/2

The value at risk correction is then:

VaRR.˛/ D 
R 	�˛ � �R
Another important group of indicators refers to risk-adjusted measures. Beyond
the Sharpe ratio that, in the case of hedge funds, provides a consistent under/over
estimation of the risk adjusted performance, the two selected measures are the
Sortino ratio

SO.R/ D 
R 	 RF
��R

and the Cornish–Fisher Sharpe ratio

S.R/	 CF.R/ D 
R 	 RF
�R�˛

where RF is the risk-free return.

3A different solution can be found in Bramante and Zappa (2011).
4Kurtosis are translated to zero.
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3 Ranking the Hedge Fund Industry

To uncover most of the relevant information scattered across the statistical indicators
adopted we have used the Principal Component Analysis (PCA). It may help to
identify the implicit factors that significantly explain the overall variability, included
in the variance and covariance matrix. Each of these factors consists of a linear
combination of the original indicators. The proportion of variability explained by
each of the factors is a natural way to estimate their relative strength. Moreover
the components turn out to be uncorrelated among themselves so that they may be
aggregated into a unique performance rank.

To explore whether the proposed ranking method can be applied within the
hedge fund industry two different index families—CS (Credit Suisse/Tremont) and
HFR (Hedge Fund Research)—are considered.5 The data consist of monthly returns
(from January 1994 to July 2011) of the universe of the two types of indices (55 for
the CS and 32 for the HFR type respectively) and the ranking exercise is performed
three times in July of the last 3 years.6 The principal component technique, applied
to the set of indicators previously normalized in the interval [0,10], extracts four
factors that explain on average the 89 % of the total industry variability (Table 2).

To characterize the four components, it is convenient to analyze the correlations
of the rotated component matrix.7 In Table 3 results obtained in the 2009 analysis are
reported8 where correlations, between factors and observed variables, in absolute
value greater than 0.7 are shown in italics. The component structure is amenable to
interpretation:

• Factor 1: Appealing returns and Capital Protection. Represents absolute returns
and captures the fund downside exposure (Annualized and Median return,
Frequency of positive returns; Annualized volatility, Negative semi-deviation;
Maximum drawdown and Value at Risk).

• Factor 2: Asymmetry. Measures the ability that the fund payoff resembles a
call: consistent right tailed distribution, i.e. positive skewness/negative kurtosis
(Skewness, Kurtosis, Normality and Cornish Fisher quantile).

• Factor 3: Risk Adjusted Performance. Captures the fund capability of balancing
risk against reward (Sharpe ratio; Sortino; Adjusted and Cornish Fisher Sharpe
ratio).

5These are the two widely recognized hedge fund index providers in the industry.
6Since the ability of this method in summarizing common patters depends on whether data contain
strongly correlated variables, average partial correlation between variables was computed across
the three considered years. Above all, the largest ones are between the three “Cornish Fisher”
indicators and within the risk variables (Annualized Volatility, Negative Semi Deviation and Value
at Risk 5 %).
7A varimax rotation was performed.
8Similar results, referred to the remaining two scenarios, are omitted.
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Table 2 Total variance explained

2009 2010 2011

% of % of % of
variance Cumulative % variance Cumulative % variance Cumulative %

Factor 1 28.87 28.87 26.28 26.28 34.77 34.77
Factor 2 27.50 56.37 25.86 52.13 25.42 60.19
Factor 3 22.48 78.85 25.41 77.54 14.47 74.66
Factor 4 13.96 92.82 13.76 91.30 8.26 82.92

Table 3 Rotated component matrix correlations

Factor 1 Factor 2 Factor 3 Factor 4

Annualized return 0:7345 0:3235 0:5260 �0:2070
Frequency positive returns 0:7397 �0:1967 �0:0202 0:4901

Annualized volatility 0:9319 0:0498 �0:2341 �0:1201
Negative semi deviation 0:9605 0:2182 0:0147 �0:0833
Max drowdown 0:8334 0:2421 0:4144 �0:0148
Value at risk 5 % 0:9793 0:0782 �0:1189 0:0122

Sharpe ratio 0:0980 0:2817 0:9448 �0:0633
Cornish Fisher sharpe ratio �0:0474 �0:1200 0:9561 �0:0409
Adjusted sharpe ratio 0:1098 �0:5585 0:7896 �0:0042
Sortino ratio �0:1385 0:1227 0:9285 �0:1105
Kurtosis 0:1033 0:9668 0:0395 �0:0647
Skewness 0:2211 0:8179 0:3316 �0:0930
Normality test 0:0557 �0:9637 0:1084 0:0483

Cornish Fisher perc. 5 % �0:0674 �0:9867 �0:0117 0:0679

MSCI world correlation 0:3217 0:0346 0:1745 �0:8676
BEA correlation �0:1141 �0:2427 �0:2130 0:8497

• Factor 4: Market correlation. This component is self-explanatory and is approx-
imated by the considered market proxies.

Since the components are by construction uncorrelated, the intuition suggests
to assemble a ranking index, by linearly combining for each hedge fund the score
of each factor with its weight, given by the percentage of variance explained. To
facilitate the construction of a ranking grid, the score is replaced with its rank. In
Table 4 the final ranking for the first ten positions of the HFR and CS indexes in
2009 is reported for explanatory purposes.

As a final test, we used the Spearman Rank correlation to compare previous
and subsequent classifications. Our results indicate a strong correlation if 1 year
lagged rankings are compared whereas—if a 2-year lagged ranking is considered—
the null hypothesis of no persistence can be accepted with at least 95 % confidence
in all the two types of the considered indices. Moreover, in the HFR analysis, the
2-year lagged rankings were found to be of opposite sign, though these results
lacked statistical significance.
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Table 4 HFR and CS indices final ranking

HFR ranking CS ranking

FOF: CONSERVATIVE EQTY MKT.NTL Y
EH: SHORT BIAS EQTY MKT.NTL $
RV: MULTI- STRATEGY EQTY MKT.NTL E
EH: EQUITY MARKET NEUTRAL MULT STRATEGY SF
RV: YIELD ALTERNATIVES MULT STRATEGY E
EMG MKTS: GLOBAL CONV ARBITRAGE Y
RV: FIXED INC.- CONV.ARB. MULT STRATEGY Y
FOF: DIVERSIFIED DEDICATED SHT Y
FUND OF FUNDS COMPOSITE HEDGE FUND SF
RV: FIXED INC.- CORPORATE DEDICATED SHT SF

4 Raising Portfolio Efficiency

Assessing the ability of hedge funds to raise portfolio efficiency requires a separate
analysis. The methodology originally developed by Modigliani and Modigliani
(1997) is adapted to compare a balanced portfolio with another where 30 %9 of
the traditional investments are replaced by hedge funds. The efficiency spread is
measured by the Modigliani–Modigliani index, that is the difference between the
potential return of the (de)leveraged portfolio containing hedge funds and the return
of the balanced portfolio. The former is (de)leveraged to the point where its volatility
is equal to the balanced portfolio volatility. From this perspective, the Modigliani–
Modigliani index can be interpreted as the return spread at the same level of
volatility. The return spread is expected to be higher, the lower the correlation with
traditional investments. It is important to bear in mind that the correlation effect is
more important than the risk/return profile, since it acts directly on the volatility by
reducing the systematic portfolio risk. Even if the hedge fund (HF), as in Fig. 1,
is Pareto dominated by the balanced portfolio (P) it can happen that the combined
portfolio (PC) shares a sufficiently limited volatility to have a positive return spread.

Formally:

M D 
CP 	 rf
�CP

� �P 	 
P 	 rf
�P

� �P D �P � .SRPC 	 SRP /

A classification based on the Modigliani–Modigliani index may stress which
are the hedge funds that contribute to portfolio diversification. We have computed,
for each balanced portfolio obtained by replacing the 30 % with hedge funds, the
Modigliani–Modigliani index.

930 % is arbitrarily chosen. However, empirical simulations show that 30 % of asset allocation in
hedge funds seems to be closed to the optimum, in terms of the distance from the efficient frontier.



70 R. Bramante

Return spread

P

HF

P+

μ

0

rf

σ

Fig. 1 Return spread and Modigliani–Modigliani index

Table 5 HFR indices Modigliani–Modigliani final ranking

Index name Raising portfolio’s efficiency Raising performance

EH: SHORT BIAS 1 2

MACRO: SYST. DIVERSIFIED 2 32

ED: MERGER ARBITRAGE 3 17

FOF: MKT DEFENSIVE 4 24

MACRO (TOTAL) 5 28

RV: FIXED INC.- CONV.ARB. 6 7

EH: SECTOR-TECH/HEALTHCARE 7 29

RELATIVE VALUE (TOTAL) 8 13

EH: EQUITY MARKET NEUTRAL 9 4

EMG MKTS: ASIA EX-JAPAN 10 25

Table 6 CS indices Modigliani–Modigliani final ranking

Index name Raising portfolio’s efficiency Raising performance

MANAGED FUT E 1 48
MANAGED FUT $ 2 49
MANAGED FUT Y 3 46
RISK ARBITRAGE $ 4 52
DEDI SHORT BIAS$ 5 34
MANAGED FUT $ 6 50
GLOBAL MACRO $ 7 54
EVENT DRVNMSTRT$ 8 47
CONV ARBITRAGE $ 9 41
EVENT DRIVEN $ 10 45

In Tables 5 and 6 rankings, only for the first ten positions, obtained according
to the Modigliani–Modigliani index respectively for the HFR and CS indices are
reported and compared to the ones retrieved from the previous analysis. It seems,
as one may grasp from the results, that this technique points out that portfolio
diversification is independent from the properties that the funds share as pure hedge
funds.
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Are hedge funds that have appealing performances alone also good contributor
to portfolio diversification? Intuition may suggest that this cannot be true: appealing
performance profile results from a non linear exposition to the market and this in
some cases may affect portfolio risk. Moreover, the analysis of ranking permuta-
tions, accomplished by Spearman Rho, confirms that few average performing hedge
funds display a consistent advantage in diversification: all the coefficients, albeit
positive, are below 0.3 and indicate that the correlation is weak in all of the 3 years
considered in the analysis.
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Correction of Incoherences in Statistical
Matching

Andrea Capotorti and Barbara Vantaggi

Abstract Statistical matching is studied inside a coherent setting, by focusing on
the problem of removing inconsistencies. When structural zeros among involved
variables are present, incoherencies on the parameter estimations can arise. The
aim is to compare different methods to remove such incoherences based on specific
pseudo-distances. The comparison is given through an exemplifying example of 100
simulations from a known population with three categorical variables, that carries
out to the light peculiarities of the statistical matching problem.

1 Introduction

In several applications different data sources need to be integrated, in particular,
we will deal with the so-called statistical matching problem (D’Orazio et al. 2006;
Paass 1986; Rässler 2002), that can be represented by the following simple situation:
two different sources of information, A and B, on a common population with
some overlapping variables X and some other variables Y;Z collected only in one
source A or B, respectively. To cope with these problems the available data are
combined with assumptions strong enough to point-identify the joint probability
distribution (see Rässler 2002 and references within), as those based on conditional
independence of the variables Y and Z givenX . However, in several situations, the
independence assumption is not adequate (see e.g. D’Orazio et al. 2006). Actually,
since there are many distributions on .X; Y;Z/ compatible with the available partial
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information on .X; Y / and .X;Z/, it is too restrictive to consider just one of the
compatible joint distributions, obtained perhaps by taking a specific assumption
(as noted in D’Orazio et al. 2006, Kadane 2001, Rubin 1986).

This problem has been already faced in a coherent conditional probability setting
(Vantaggi 2008): coherence allows to check the compatibility of heterogenous
partial (conditional) estimations, e.g. coming from field experts or different data
sets, and to draw inferences by considering all the compatible joint distributions.
A further remarkable advantage is related to structural zeros. In particular, in
Vantaggi (2008) it is proved that when there is no structural zero, coherence is
always satisfied, even by requiring conditional independence. On the other hand,
when structural zeros are present, it is necessary to check global coherence of the
relevant partial estimations drawn from the different sources and, when coherence
does not hold, inconsistencies need to be removed.

Our contribution focuses on incoherences for categorical variables and the aim
is to look for the coherent estimates as “close” as possible to the given one, with
respect to different distances (L1;L2, Kulback–Leibler divergence, discrepancy).
These (pseudo)distances need to be suitably tailored for partial conditional assess-
ments. To properly deal with statistical matching, we introduce a specific adjustment
of a discrepancy, originally introduced for conditional probability assessment
(Capotorti et al. 2010): this shows the advantage of unsupervised localization of
the sub-domains where incoherence must be removed.

Then, once coherence is restored, it is possible to draw inference, that means
to extend the estimated coherent conditional probabilities (see e.g. Coletti and
Scozzafava 2002). Actually, our proposal is in the same line with Rässler (2002),
Rubin (1986)—based on multiple imputation in the multi-normal setting—and with
D’Orazio et al. (2006)—based on maximum likelihood approach.

To show the advantages and drawbacks, and in particular to compare the different
pseudo-distances, in Sect. 4 an empirical example is provided. This example is based
on 100 sample couples, A with cardinality nA D 1; 148 and B with nB D 1; 165,
randomly drawn from a finite population with three categorical variables. Among
the 100 unconstrained maximum likelihood estimates of the marginal distribution
for the common random variable X and of the conditional distributions of Y jX
and ZjX , we obtained 57 incoherent estimates. Once such estimates have been
corrected, they induce the so called “credal sets” of joint distributions on .X; Y;Z/
compatible with them. By performing standard �2 “goodness-of-fit” tests, it turns
out that the 57 credal sets induced by the corrected estimate over-perform those
induced by the 43 originally coherent ones.

2 Statistical Matching in a Coherent Setting

Let .X; Y;Z/ be categorical variables with respectively I; J , and K categories and
denote by .X1; Y1/; : : : ; .XnA; YnA/ and by .XnAC1; ZnAC1/; : : : ; .XnACnB ; ZnACnB /
two random samples (related to two sources A and B) concerning the
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same population and drawn according to the same sampling scheme. Thus,
.X1; Y1/; : : : ; .XnA; YnA/ (analogously .XnAC1; ZnAC1/; : : : ; .XnACnB ; ZnACnB /),
as well as the sequence X1; : : : ; XnA; XnAC1; : : : ; XnACnB can be regarded as
exchangeable.

From the two files the relevant population parameters representing the following
(conditional) probability values can be estimated: from file A the probability that
the next unit has Y D yj on the hypothesis that .X D xi / (for any i 2 I )

yj ji D PY j.XDxi /.Y D yj /; (1)

and analogously from file B

zkji D PZj.XDxi /.Z D zk/: (2)

Moreover, by collecting data from both files we can evaluate

xi D PX.X D xi /: (3)

Such estimations are usually performed through the (unconstrained) partial maxi-
mum likelihood evaluations, that coincide with the following frequencies:

yj ji D n
ij
A

ni �A
; zkji D nikB

ni �B
; xi D .nA C nB/i ��

nA C nB ; (4)

where ni �A, ni �B and .nA C nB/i �� represent the number of units expressing .X D xi /

in samples A and B, while nijA stands for the number of units in A with .X D
xi / ^ .Y D yj / and nik

B the number of units in B with .X D xi / ^ .Z D zk/.
Now, we should deal with the whole assessment .E ;p/ with

E D
�

.X D xi /; .Y D yj /j.X D xi /; .Z D zk/j.X D xi /
for any xi ; yj ; zk

�

;

p D fxi ; yj ji ; zkji gi;j;k :

(5)

Then, first of all we need to check its coherence, that means the compatibility of p
with a full conditional probability (de Finetti 1972). Such compatibility is equivalent
to the existence of a suitable class of joint probability distributions ˛1; : : : ;˛l
agreeing with p (see for more details Coletti and Scozzafava 2002). Note that
coherence is crucial being a prerequisite for a sound inference, that means extension
of p to any new conditional event.

In Vantaggi (2008) it has been proved that when there is no structural zeros
between Y andZ for any given value xi ofX (i.e. for any i 2 I , if .X D xi /^.Y D
yj / ¤ ; and .X D x/^ .Z D zk/ ¤ ;, then .X D x/^ .Y D yj /^ .Z D zk/ ¤ ;
for all j 2 J and k 2 K) coherence is assured. On the other hand, in the same
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paper it is proved that when there is some structural zero among the variables Y
and Z, the coherence of the whole assessment (5) is not assured by coherence
of the single assessments (1)–(3) and that, whenever present, incoherences can be
localized among conditional events with the same conditioning event .X D xi /.
Notice that the need of managing structural zeros, such as incompatibilities or
implications among events generated by the random variables, arises from the
practical applications and can be deduced from the structure of the problem and
so are objectively known to the field experts (D’Orazio et al. 2006). For example
in D’Orazio et al. (2006) Italian law imposes incompatibility of age “less than 17”
with professional status “manager” or with educational level “degree”.

Hence, the check of coherence of the whole assessments (5) can be reduced to
the check of coherence for sub-assessments

˚

yj ji ; zkji W for given i and any j; k
�

: (6)

Since the check of coherence is in general a NP-hard problem, its segmentation in
several subproblems is a great advantage.

Thus, it is possible to proceed in two ways: a supervised procedure, where
incoherent sub-assessments of type (6) are detected and attentions are focused only
on them; or a unsupervised approach that adjusts the whole assessment (5).

In any case, adjustment can be performed by finding coherent estimates that
derive from the minimization of some pseudo-distance, as shown in the next section.

3 Removing Inconsistencies in Statistical Matching

Estimate correction has been already studied (e.g. see Lindley and Tversky 1979),
but this approach does not seem suitable in the context of statistical matching
because of the lack of information due to the fact that Y and Z are not jointly
observed, so the prior distribution cannot be updated and the likelihood function has
a flat ridge (as already noted in Rubin 1986).

Our aim is to find coherent estimates as “close” as possible to the available
information formed by the whole assessment (5). This implies the choice of some
(pseudo)distance such as Euclidean distance, Kulback–Leibler divergence, Csiszár
f-divergences. Some of them can be applied only among unconditional probabilities;
while others could be applied also for partial conditional probability assessments.

Given two conditional probability estimates p D Œp1; : : : ; pn� and q D
Œq1; : : : ; qn� on E , the most widely adopted divergencies among them are

L1.p;q/ D
n
X

iD1
jqi 	pi j, L2.p;q/ D

n
X

iD1
.qi 	pi/2, KL.p;q/ D

n
X

iD1
.qi ln.qi=pi/	

qi C pi /.
L1 and L2 are usual metric distances, endowed with all their geometric

properties, but until now remain without an intuitive probabilistic interpretation for
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conditional assessments. Moreover, their use in conditional context could lead to
numerical troubles due to non-convexity of coherent assessments (see e.g. Biazzo
and Gilio 2005).

KL is the so-called logarithmic Bregman divergence and, in the unconditional
case, it is deeply used for its information theoretic properties. In fact, such
divergence generalizes the well known Kulback–Leibler divergence (Kulback 1957)
to partial assessments, however in some cases it presents some unpleasant situation
due to the evaluation of just occurring events, without considering those turning
out to be false. Moreover, L1, L2 and KL work on the whole domain E , so their
minimizations would induce changes also on the marginal estimate fxigi2I that,
being coherent, could be valuable to avoid any change. Recently, to encompass
the need of considering conditional probability assessments a discrepancy suitable
for statistical matching has been introduced (for more details see Capotorti and
Vantaggi 2011):

�.p; f˛i gi / D
X

i

xi

2

4

X

j

 

q
˛i
j ji ln

q
˛i
j ji

yj ji
C .1 	 q˛i

j ji / ln
.1 	 q˛i

j ji /
.1 	 yj ji /

!

C

C
X

k

 

q
˛i
kji ln

q
˛i
kji

zkji
C .1 	 q˛i

kji / ln
.1 	 q˛i

kji /
.1 	 zkji /

!#

: (7)

Each distribution ˛i defined on the sample space spanned by .Y D yj /j.X D xi /

and .Z D zk/j.X D xi /, should fulfill the normalizing condition ˛i .X D xi / D xi ;
and generates the conditional probabilities

q
˛i
j ji D

˛i .Y D yj /
˛i .X D xi / and q

˛i
kji D

˛i .Z D zk/

˛i .X D xi / : (8)

Note that the generated estimate q D fxi ; q˛ij ji ; q˛ikji gi;j;k is coherent (see e.g.
Vantaggi 2008).

In order to correct an estimate p we need to look for the assessment qp, that is
solution of the following nonlinear optimization program, with ı.p;q/ any pseudo-
distance (if ı � � then q are those induced by f˛i gi as in (8)):

min
q
ı.p;q/: (9)

Note that the discrepancy �.p; f˛i gi / profits from the already mentioned segmen-
tation of the possible inconsistencies. In fact, it works separately on scenarios
.X Dxi / and its use in an optimization program like (9) allows to adjust only
the values inside sub-domains where incoherences appear, without any other
change. This feature distinguishes the specialized discrepancy (7) from the original
formulation (Capotorti et al. 2010) so that, even being used in an unsupervised
approach, it gives results as in a supervised one.
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Another criterion for restoring coherence is based on the constrained maximum
likelihood criterion (Little and Rubin 1983):
constrained maximum likelihood estimates of �D �P.XDxi /; PY j.XDxi /.Y D yj /;
PZj.XDxi /.Z D zk/

�

i;j;k
are the values of the parameters

	 O�i ; O�j ji ; O�zji



i;j;k
solution

of the program

max
�
L.� jnA; nB/ D

Y

i;j

.�j ji �i /n
ij
A

Y

i;k

.�kji �i /n
ik
B (10)

under the constraint that � is a coherent conditional probability assessment over
E . Even in this situation we have an optimization problem with the observed
data likelihood L.� jnA; nB/ as non-linear objective function and a set of linear
constraints characterizing the coherence of � .

4 Corrections Comparison

In order to show the different behaviors of corrections presented in the previous
section, we give a simulation study. We simulated 100 sample couples, with
cardinality nA D 1; 148 and nB D 1; 165, respectively, drawn randomly from a
finite population of three categorical variables .X; Y;Z/, with I D f1; 2g; J D
f1; 2; 3g; K D f1; 2; 3g, distributed as described in Table 1, where the .	/ represent
the structural zeros implied by the logical constraints

.Z D z1/ ^ ..Y D y1/ _ .Y D y2// D ; ; .Z D z2/ ^ .Y D y1/ D ;: (11)

With a couple of samples A and B as in Sect. 2 we can obtain an estimate p of the
conditional probability � of Table 2. Over the 100 estimates (4) of frequencies we
observed 57 incoherent, as can be seen by computing e.g. L2 distances between �
and the 100 estimates p, so that L2.p;�/ D 0 corresponds to coherent frequencies
(see Fig. 1). Inconsistencies are mainly localized on .X D x2/ and in particular due
to the violation of the numerical bound y1j2 C y2j2 C z1j2 � 1 implied by the first
logical constraint in (11).

By means of the minimization (9) of pseudo-distances L1;L2;KL; � and
the constrained likelihood maximization (10), for the 57 incoherent estimates
over the whole domain E (hence with unsupervised procedures), we obtain five
different data-sets with coherent corrections. To compare the performances we
evaluate, through chi-squared goodness-of-fit test, the adequacy of the (credal) set
of joint probability distribution compatible with each estimate with respect the joint
distribution of the population. Results are in Fig. 2: there are box-plots of minimal
�2 statistics associated to the five data-sets of corrections and that associated to the
43 coherent estimates obtained by frequencies (4).
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Table 1 Finite population
with .X; Y; Z/ endowed with
structural zeros .�/

Z z1 z2 z3
X Y

x1 y1 .�/ .�/ 116
y2 .�/ 26 5
y3 54 108 25

x2 y1 .�/ .�/ 277
y2 .�/ 65 1
y3 321 1 1

Table 2 Conditional
probabilities based on the
population of Table 1

E �

X D x1 0.3407
X D x2 0.6593
Y D y1jX D x1 0.1856
Y D y2jX D x1 0.3763
Y D y3jX D x1 0.4381
Z D z1jX D x1 0.4903
Z D z2jX D x1 0.0965
Z D z3jX D x1 0.4131
Y D y1jX D x2 0.3551
Y D y2jX D x2 0.0783
Y D y3jX D x2 0.5666
Z D z1jX D x2 0.4105
Z D z2jX D x2 0.0980
Z D z3jX D x2 0.4915

1.0

ecdf(diffL2)

0.8
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F
n(
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x
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Fig. 1 Empirical cumulative
distribution function of L2
distances between original
probabilities � and simulated
estimates p.

Notice the over-performance of the corrected estimates with respect to the
not changed ones and the best behavior of the minimization of L2 and � with
respect to the other pseudo-distances. Then, it seems that the correction produces an
information merging that maximum likelihood estimation does not capture. Among
the different possible corrections,L2 and� minimizations seems to better preserve
the original information, we privilege � for the automatic localization of the sub-
domains of E where the changes are needed.
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Rässler, S. (2002). Statistical matching: a frequentist theory, practical applications and alternative
Bayesian approaches. Lecture notes in statistics. New York: Springer.

Rubin, D. B. (1986). Statistical matching using file concatenation with adjusted weights and
multiple imputations. Journal of Business & Economic Statistics, 2(1), 87–94.

Vantaggi, B. (2008). Statistical matching of multiple sources: A look through coherence. Interna-
tional Journal of Approximate Reasoning, 49(3), 701–711.



The Analysis of Network Additionality in the
Context of Territorial Innovation Policy:
The Case of Italian Technological Districts

Carlo Capuano, Domenico De Stefano, Alfredo Del Monte,
Maria Rosaria D’Esposito, and Maria Prosperina Vitale

Abstract Evidence from economic literature suggests that innovative activities
based on extensive interactions between industry, universities and local government
can yield high levels of economic performance. In many countries, therefore,
steps have been taken at an institutional level to set up innovation networks
and, in particular, regional technological districts. Our paper deals with Italian
Technological Districts: we aim to analyse the network additionality for territorial
innovation determined by district policy. The analysis is based on a priori structural
regional characteristics and on Social Network Analysis techniques.

1 Introduction

The evaluation of R&D policies is based on the concept of additionality of results
considered in terms of inputs, outputs and firms’ behaviour. Economic literature
has recently criticized input or output additionality, as these concepts consider the
firm as a black box and do not capture the impact of public intervention on the
funded organizations’ R&D behaviour. Behavioural issues are important if we are
to understand the performance of policies, and they may be profitably employed to
evaluate innovation policies according to the systemic-evolutionary foundations of
innovation policy. Hence Behavioral Additionality (BA) (the change in the way a
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company undertakes R&D that can be attributed to policy actions) emerges as an
important aspect of additionality to complement traditional evaluation approaches
and there is a growing interest in how best to measure it. In order to tackle the BA
measurement issue and to prove the BA of public subsidies, its multidimensional
character needs to be taken into account. Since a prominent role is here ascribed
to the collaborative and networking capabilities fostered by public interventions,
Network Additionality (NA) must first be considered.

Given that a key role here is played by the concept of relationship, Social
Network Analysis (SNA) techniques can be fruitfully used to measure the extent
of occurrence, outspread and stabilization of a relationship. SNA may be used to
integrate the analysis of the effects on the single components with the analysis of the
effects on the system as a whole (Antonioli and Marzucchi 2010). Other methodolo-
gies used to analyse the effect of R&D policy principally concern input and output
additionality and therefore are not strictly comparable with the SNA approach. This
is the case of counterfactual analysis. If one of the effects of R&D policy is coopera-
tion, it would, in fact, be very difficult to find two groups of organizations, those that
cooperate and get supported and those that cooperate and are not supported, sharing
the same characteristics except cooperation (Antonioli and Marzucchi 2010).

In this paper we focus attention both on the public policies undertaken to foster
the creation and growth of the so called Technological Districts (TDs) (Antonelli
2000)—which are innovation networks originated as result of endogenous factors—
and on the use of the SNA approach for their analysis (Del Monte et al. 2011).
The paper is organized as follows: in Sects. 2 and 3 the theoretical framework to
describe the characteristics of innovation networks and TDs in Italy is presented;
in Sects. 3.1 and 3.2 the study of four Italian TDs through a Network Analysis
approach is briefly discussed. Section 4 presents some preliminary concluding
remarks.

2 Innovation Networks and Technological Districts:
A Theoretical Framework

A policy to create a TD will not necessary have a positive effect from a welfare
point of view (Capuano and Del Monte 2011). This can be seen with the help
of some simple models of social connections developed by Jackson and Wolinsky
(1996), where n organizations (e.g., firms, research centers, etc.) create a network
through collaboration agreements (e.g., participation in research projects). These
direct links between two organizations make it possible to share knowledge about
new technology, to avoid the duplication of fixed costs and to derive a cooperative
advantage from the strong complementarity of R&D activities. The attractiveness
and efficiency of a network configuration depends on the level of direct and indirect
benefits, costs and subsidies. When the benefits of direct effects are higher than
the costs to create a link, a Network Based Policy (NBP), such as the creation of
TDs, will not increase welfare because it will not create additional links between
firms and between firms and other institutions. We expect that this will happen in
areas where there are many firms in the innovative sector and a high concentration
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of knowledge. When, on the other hand, the benefits are lower than the costs to
create a link, the firms will have no incentive to create links and without subsidies
a network will be not created. Therefore, when the number of firms and research
centers in a given location is high, the possibility that networks may be created
spontaneously is high, and we can conjecture that a NBP will not be additional. If
the number of potential partners in a location is low, a NBP may not be efficient. In
the intermediate situations a NBP may be useful.

In order to evaluate the welfare effects and the network configuration of a TD,
Network Analysis tools (Wasserman and Faust 1994) may be fruitfully used, bearing
in mind that the aim is to evaluate the additionality and the welfare effect of Italian
TDs. For example, if the network is highly centralised, the spread of information
among organizations is high but there is a risk that the network will break down if the
central organizations fail (or exit from the network). If the degree of centralization
is low and many organizations play a central role, the failure of one central actor
will not affect the other parts of the network. An index that might better describe
the importance of having several links (e.g., where two organizations are involved
in more than one research project) in a network may be defined by the ratio between
the sum of valued links and the number of effective links activated for each actor
(the higher the value of this index, the lower the transfer cost and the more efficient
the network). Furthermore, blockmodeling analysis can help to define clusters of
equivalent organizations that present similar relational behaviours in the district.

3 The Italian Technological Districts

In Italy, since 2002, steps have been taken at an institutional level to set up
innovation networks to stimulate cooperation in R&D projects between firms and
research centers. The government has identified 27 geographical areas (14 in
Central and Northern Italy and 13 in the South) as potential locations in which
to create organizational entities recognized by the Italian Ministry for University
and Research (MIUR). The firms and other research institutions, belonging to a TD
through formal agreements, can apply for public grants to carry out R&D projects.

A typology of the technological clusters1 can be built by means of a classification
of their share of productive and innovative activity in one of the four technological
areas (pharmaceutical, biomedical, aeronautical and ICT) (Table 1). By using the
model developed by Jackson and Wolinsky (1996), the number of districts where we
can expect that the policy creates additional innovation can be computed. Table 1
shows that seven out of nine TDs in the North are located in an area where a

1Recently a list of technological clusters in Italy has been published (Intesa Sanpaolo - Servizio
Studi e Ricerche 2010), which identifies four technological areas (pharmaceutical, biomedical,
aeronautical and ICT) based on the ATECO 2007 classification. The conditions to identify a
technological cluster in an area are: i) number of employees > 500; ii) share of employees >
5%; iii) number of firms > 20. If two of these conditions are satisfied, the area is considered a
technological cluster.
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Table 1 A D location of the technological area; B D Existence of an innovation cluster in the
area of location of the TD (Yes/No); CD Types of clusters (H-HD High intensity when the share
is higher than 20% of the national value; L-L D low intensity under 5% of the national value);
DD Expected additional links as a result of NBP policy

B C D

A Yes No Total H-H L-L None High Low

North 7 2 9 3 2 4 3 2
Center 2 3 5 1 0 3 2
South 3 10 13 0 1 11 1 1
Total 12 13 27 4 3 18 4 5

technological pole already exists, but in four cases we do not expect the policy to
create network additionality. The main reason for this is that there are spontaneous
forces determining network formation and a specific policy will not create new
opportunities. In the Center, our conjecture is that two TDs have a low possibility of
producing additional links. And in the South we feel that only in one TD there is a
high possibility of additional links being created.

In the following, we consider four TDs that a have different possibility of
producing network additionality. The first (TD1) is located in an area where ICT and
aeronautical sectors play an important role. The second (TD2) is located in an area
with large firms but a low concentration in the high-tech sector. The third (TD3) is
not related to any technological cluster but there are several academic and important
research centers. The fourth (TD4) is located in an area where there is an intermedi-
ate level of firms involved in the high-tech sector and good public research centers.
The first three TDs present different contexts but they have a low possibility that pos-
itive results on network additionality will be achieved; whereas the fourth one has
a high possibility of achieving positive results. These results obtained via economic
theory are confirmed by the analysis performed using Network Analysis techniques.

3.1 A Network Analysis Approach of Italian TDs

The collaboration established between organizations in the four TDs will be
reconstructed by considering data provided by public grants for R&D projects
financially supported by MIUR or by European funds, from the start-up phase of
the TDs until the last granted projects in June 20112 through network indices and
blockmodeling analysis (Ziberna 2007). These techniques enable the description
of collaboration patterns in each TD and the identification of network patterns
according to the definition of groups of equivalent organizations.

To specify the size of the four networks, we consider the provisional list of
associated members of each TD deemed to be in the network in the start-up

2The online information provided by the TDs’ websites and the databases of the research projects
have been integrated with information directly obtained from TD administrative staff.
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Table 2 Characteristics of the four Italian TDs

Ass. Members Typology
Project Typology (%)Associated Research Administr. Project Research

members Firms Centers Instit. Others Partners Projects National European

TD1 22 27.27 31.82 18.18 22.73 49 10 100.00 0.00
TD2 25 56.00 8.00 8.00 28.00 41 7 100.00 0.00
TD3 23 39.13 47.83 0.00 13.04 41 11 45.45 54.55
TD4 29 44.83 37.93 3.45 13.79 21 15 86.67 13.33

phase and then add new associated members and all partners involved in the
research projects by means of the connections observed from this initial “core”.3

Table 2 shows the number of organizations involved in each district according to
certain characteristics (associated member vs project partner, typology of associated
member—firms, public or private research centers, regions, foundations, etc.) and
the number and the typology of research projects. In particular, according to the
typology of associated members, the presence of firms is relevant in TD2 and TD4

(56.00% and 44.83%, respectively), while an involvement of public and private
research centers is particularly present in TD3 (47.83%). Regarding the kind of
research projects, for TD1 and TD2 the only source of funding are national projects,
whereas for TD3 there is noteworthy percentage of research projects financially
supported by the European Commission (54.55%).

3.2 Network Characteristics

The network analysis approach is applied to the collaboration data4 to describe
structural characteristics of the network and to highlight both the role and the
position of organizations.5

3For TD3 and TD4, the district is considered as an actor in the network because it participates as
a partner in some research projects. Furthermore, for TD4 the different departments of the same
institution are considered as single nodes in the network.
4Collaboration data are extracted from the set of research projects and from the set of organizations
arranged in four affiliation matrices. A .n � p/ is the affiliation matrix with aij (i D 1; : : : ; n;
j D 1; : : : ; p/ D 1 if the i-th member participates in the j-th research project, 0 otherwise.
From A we derive an adjacency matrix Gw of size .n � n/ that represents an undirected weighted
adjacency matrix, whose entries are equal to 0 if two organizations have never collaborated in
research projects, or to the number of research projects shared by pairs of organizations. The Gw

matrix can be analysed after removing the diagonal entries (which represent the total number of
research projects for each member) and setting all entries greater than zero to “1”. The new Gb

matrix is an undirected binary adjacency matrix, where only the presence of ties is taken into
account.
5In the following the network indices, at both global and actor level, are computed starting from
the four Gb matrices to explore the collaboration patterns among members in each district, while
blockmodeling analysis is performed on the four Gw matrices to identify the main characteristics
of network structures.
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Fig. 1 Valued graphs showing the joint participation of pairs of organizations in research projects
in the four TDs: (a) TD1, (b) TD2, (c) TD3 and (d) TD4. The colour of the nodes is related to
associated members (grey) and project partner (black), whereas the shape shows the different
member typology (circle D firms; square D research centers; triangle D institutions; diamond
D other)

The network visualizations (Fig. 1) and the network indices (Table 3) show
the presence of a relatively strong connectivity in all networks, especially for TD2

and TD1 (the density values are 0.38 and 0.25, respectively), and a high degree of
network centralization for TD3 (56.64%), due to the presence of few organizations
in the network involved in several research collaboration agreements. The analysis
of actor-level indexes, based on centrality measures (degree and betweenness),
highlights the power of individual organizations arising from their relationships with
others. The following characteristics can thus be traced:

• In TD1 and TD4 both firms and research centers play a central role in the network
in terms of number of links (degree) activated with other organizations sharing
research projects, whereas public research centers occupy advantageous positions
in ensuring connections between organizations. In TD4 the district also has a high
betweenness centrality value.
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Table 3 Network characteristics of the four Italian TDs

Members Isolated Edges Density Avg. degree (SD) Degree central. Valued degree

TD1 71 8 619 0.25 17.44 (11.87) 44.93 2.11
TD2 66 11 824 0.38 24.97 (16.37) 46.06 2.22
TD3 64 14 286 0.14 8.94 (7.73) 65.64 2.71
TD4 50 12 146 0.12 5.84 (5.30) 38.61 2.50

• In TD2 and TD3 an opposed situation is observed: on the one hand TD2 mainly
presents firms in a central position but no organization plays a broker role; on
the other TD3 confirms the presence of highly active research centers with the
district playing a strong broker role.

One quite important item of information for evaluating the network is the number
of projects in which pairs of organizations participate, because if two organizations
are involved in several projects there will be a high possibility that they are linked
more than once. We then define an index that represents the average weight for
the activated links with a value larger than one in the Gw matrix (Valued degree6

in Table 3). Observation of this index for the four districts suggests that for TD3

and TD4 there could be a lower cost of information transfer and a higher network
efficiency, given the greater number of projects shared by pairs of organizations.

The identification of groups of equivalent organizations is achieved by looking at
the results obtained from a clustering procedure. The partition into three groups for
TD1 and TD4, into four groups for TD2 and into five groups for TD3 derived from
a hierarchical cluster analysis was further investigated by means of blockmodeling
analysis.7 According to the blockmodel types (Doreian et al. 2005) and the block
composition, these initial results show that TD1, TD2 and TD3 present a similar
structure near to the core-periphery model with one core position internally cohesive
and connected with other positions but also cohesive subgroups with intraposition
ties. The core composition differs in the three TDs, with research centers and firms
in TD1, mainly firms in TD2 and public research centers in TD3. TD4 presents
cohesive subgroups and no ties between positions but just some light evidence
versus core-periphery model. The core is composed of research centers and firms.

4 Conclusions

According to the theoretical framework to analyse the additionality of NBP policy,
the network analysis results show, in terms of network size, a larger presence of
associated members in TD4 and partners in TD1 with respect to the other two

6This index represents the average weight of activated links computed as the ratio of the sum of
valued links compared to the number of activated links for each actor.
7Euclidean distance, Ward agglomerative method and blockmodeling analysis are performed on
the valued adjacency matrix Gw using the blockmodeling package of R software (Ziberna 2007).
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districts. On the other hand, TD1 has the lower number of firms as associated
members. This is an expected result because firms in the area where TD1 is located
have no incentive to enter into a bureaucratic structure like an Italian TD. They find
it more convenient to establish links directly because it is easier for TD1 to find
partners for research projects since it is located in a highly developed economic
environment. The same is observed for TD2 which is located in an industrial area,
whereas in TD3 the high number of partners is mainly due to the presence of research
centers in the area.

Then, if we evaluate the network size on the basis of associated members, our
expectations about additionality are confirmed even though we cannot exclude the
possibility that the NBPs in TD2 and TD3 have created new links. It is more difficult
to analyse the effects from a welfare point of view, in terms of network configu-
rations described by density and centralization degree results. In this respect, TD4

presents both the lowest density and centralization values. Hence, the structure of
TD4 differs from the near core-periphery model observed for the other three districts
and this result could be considered a positive characteristic. High valued degree
scores suggest that TD3 and TD4, which are in less developed areas than the two
other districts, could have a lower information transfer cost and a higher network
efficiency, given the greater number of projects shared by pairs of organizations.
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Clustering and Registration of Multidimensional
Functional Data

M. Chiodi, G. Adelfio, A. D’Alessandro, and D. Luzio

Abstract In order to find similarity between multidimensional curves, we consider
the application of a procedure that provides a simultaneous assignation to clusters
and alignment of such functions. In particular we look for clusters of multivariate
seismic waveforms based on EM-type procedure and functional data analysis tools.

1 Introduction

Looking for curve similarity is a main issue in many application fields, like graphics,
computer vision, speech recognition and geographic information systems. Contin-
uous transformations (alignment) are required to measure dissimilarity between
curves in order to eliminate phase variability of functions; functional data analysis
may provide useful tools to quantify these differences and explain the variability
within and between functions.

We introduce an approach to find clusters from a set of individual seismic
waveform, represented by seismograms and recorded by a seismic network, accord-
ing to the functional nature of data, highlighting their common characteristics.
A procedure for simultaneous clustering and alignment of sets of varying curves
observed in time, such as seismic signals, is introduced: the alignment problem
is handled with the introduction of a simple procedure, based on a similarity
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measure between curves. In a different context, Chiodi (1989) proposed a method
for clustering multivariate short time series, based on the similarities of shapes.

In Sect. 2 we introduce some notation of functional data, looking at the functional
nature of waveforms and related continuous transformation of curves. The proposed
method that aligns and assigns curves to clusters of waveforms according to an
iterative EM-type procedure is proposed in Sect. 3. An application of the method
to seismic waveform data is proposed in Sect. 4; Sect. 5 is devoted to discussion of
results and some general conclusions.

2 Functional Curves

Let x1, x2,..,xN be unsynchronized multidimensional curves with

xi .t/ D fxi1.t/; xi2.t/; : : : ; xid.t/g; i D 1; : : : ; N

defined on closed real intervals such that xi .t/ W Œ0; Ti �! Rd . In order to compare
main features of curves xi we have to look for a transformation of their domain, that
is to use a registration procedure that optimizes a similarity criterion between curves
and provides registered functions Qxi , Qxi D xi ı hi ; 8 i , where hi .t/ is a warping
function, that is an invertible transformation of time t for each i . The registration
or alignment of salient curves features requires the estimation of the time-warping
transformations hi of the argument t , by maximizing a similarity index between
each curve and a reference curve (often named template).

From a seismological point of view we looked for simple transformation of
waves, like the linear one, in order to slightly modify original waves. Furthermore
we carried out a preliminary explorative analysis of the whole set of waves by
following the approach suggested in James (2007) also fitting general nonlinear
warping functions: from this analysis we observed that the individual optimal
warping function of each wave was very close to the linear one.

3 Clustering and Registering of Curves

Clustering of curves can be seen as an issue of clustering of functional data and
more generally it can be defined in the wide framework of partition type cluster
analysis. Let fx1; : : : ; xN g be N multivariate curves, where xi ; 8i are functions in
Rd ; d � 1. For example, xi can be a four-dimensional seismic wave observed as
a parametric curve in R4 and depending on a real parameter t . We seek a partition
P D fG1;G2; : : : ; Gkg of N objects in k exhaustive clusters with strong internal
homogeneity; as usual, we need to define a measure of internal homogeneity, or,
alternatively, a measure of distance from a reference curve C defined in each group.
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However some sort of curve registration procedure can improve the overall
similarity of this kind of data. The problem of curves alignment has been studied in
different fields: this is referred to as curve registration in statistics (Silverman 1995;
Ramsey and Silverman 2006; Ramsey and Li 1998), time warping in engineering
(Wang and Grasser 1997) and structural averaging in the context of computing an
average curve (Kneip and Gasser 1992). As a first order approximation to the best
warping function, a simple linear transform f .�/ of the argument can be used for
each of the d directions. The distance of a generic curve xi from a group Gm is
defined as the distance of the registered curve Qxi from a reference curve Cm of Gm,
in our implementation Cm will be taken as the average of the curves belonging to
Gm, but other choices are of course possible, like median curves, medoids, etc.; see
Sangalli et al. (2010). More formally this registered distance is defined as:

Qı.xi ;Cm/ D min
aims; bims

s D 1; : : : ; d

ı.Qxi ;Cm/ (1)

where each registered curve Qxi has d components Qxis s D 1; : : : ; d , obtained
through a linear warping defined by hims D aims C bimst with aims and bims

(m D 1; : : : ; k) cluster specific transform coefficients. For each of these distances
Qı.xi ;Cm/, 2d parameters aims; bims; s D 1; : : : ; d have to be estimated, and this can
be done minimizing the distance with respect to aims; bims; i D 1; : : : ; N; s D 1;

: : : ; d; m D 1; : : : ; k, separately for each direction.
Then, given a partition P , we denote by g.�/ an associated labelling function,

such that g.i/ D m W xi 2 Gm 8i and define an overall measure of distances as
the average of the N registered distances of the curves from their group template,
that is:

�P D 1

N

N
X

iD1
Qı.xi ;Cg.i// (2)

Following the aim of the k-means method, and given a starting partition P1 D
fG1

1;G
1
2 ; : : : ; G

1
kg, the proposed clustering method deals with the simultaneous

optimal clustering and warping of curves as in an iterative EM-type algorithm:

(a) At the v-th iteration, compute the reference curves Cv
1.t/;C

v
2.t/; : : : ;C

v
k.t/ for

each group.
(b) For each curve xvi .t/; i D 1; : : : ; N , compute the registered distance from the

reference curve Cv
m.t/ of each group Gv

m of the current partition by means of
the distance Qı.xvi .t/;Cv

m.t//, defined in (1).
(c) For each curve xvi .t/; i D 1; : : : ; N determine the labelling function gvC1.i/

and then update the partition accordingly PvC1 D fGvC1
1 ; GvC1

2 ; : : : ; GvC1
k g.

(d) Apply to each curve xvi .t/ the optimal warping functions (found at step (b)) of
the G�i -th group and replace each curve with the registered curve xvC1i .t/.

(e) Update v and repeat from step 1 until some stopping rule is satisfied.
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At the step (d), the warping coefficients inside each group can be normalized
in order to have a zero average shift and a unit average scale (see Sangalli et al.
2009). In our experience a reasonable starting partition is obtained cutting the tree
of a hierarchical agglomerative procedure: this choice is usually considerably better
than a random starting partition and is computationally acceptable when dealing
with hundreds of multivariate waves.

4 Application to Seismograms

Earthquakes are usually generated by fracture processes that occur in Earth’s
lithosphere. The discontinuous strain fields associated with earthquakes are largely
compatible with rock dislocation along faults. Dislocation causes partial release of
the elastic strain energy stored by tectonic processes and the released energy is
partially propagated away from its source as a wave-field. Waveforms, in particular,
are the signals generated from the movement of waves in a physical medium. Both
hypocenter and focal mechanism are determined by the analysis of the waveforms
represented by seismograms recorded by a seismic network, that are a spatial
sampling of the wave-field. Waveform correlation techniques have been introduced
to characterize the degree of event similarity (Menke 1999) and in facilitating more
accurate relative locations within similar event clusters by providing more precise
timing of P and S arrivals (Phillips et al. 1997). Assuming that waveforms similarity
implies the similarity of focal mechanisms, a procedure that finds clusters from a
set of seismograms according to the functional nature of data is proposed in Adelfio
et al. (2011), applying a variant of a k-means algorithm based on the principal
component rotation of data.

4.1 The Sicilian Data

On September 6-th, 2002 at 01:21 GMT a shallow earthquake with MW D 5:9

occurred near Palermo (Sicily); it was recorded by the Italian National Seismic
Network operated by INGV and relocated by Giunta et al. (2004) in Southern
Tyrrhenian Sea, some tens of kilometers offshore from the Northern Sicilian coast,
followed by a sequence of other seismic events (Fig. 1). The Palermo aftershocks
sequence is an interesting case of study because it constitutes a data set suitable for
the detailed reconstruction of geodynamic and seismogenic models (Adelfio et al.
2006).

In the last years, the Centro Nazionale Terremoti of the INGV developed an own
model of OBS/H (Ocean Bottom Seismometer with Hydrophone). In December
2009, about 7 years after the Palermo seismic crisis, the OBSLab deployed one
OBS/H near the epicentral area of the mainshock at 1,500 m of depth. The OBS/H
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Fig. 1 Location of the Palermo 2002 seismic sequence epicenters (points) and local seismic
activity recorded by the OBS/H in 2009-2010 (crosses). The triangle shows the OBS/H position

was recovered in July, after about 8 operative months. In this experiment the OBS/H
was equipped by a 3-components velocity seismometer and one hydrophone. All the
signals were sampled at 200 Hz. On the basis of the signal/noise ratio, 159 earth-
quakes (159 
 4 seismograms, i.e 3-space dimensions and pressure measurement)
were selected from the initial dataset.

4.2 Warping-Clustering Results

The proposed simultaneous warping-clustering procedure is applied to the 159 
 4
signals relative to the selected events (for fixed dmax D 0:6) for different values of
k, k D 2; : : : ; 12.

We observed the sequence of the optimal values f �k of the target function (2)
for k D 2; : : : ; 12 and computed the simulated distribution of the target function
from 100 random partitions of the 159 curves in k groups: for each value of k we
compute the average f Mk and the standard deviation f Sk of the 100 simulated

values and used them to standardize the sequence of f �k , such as Nf �k D f �
k �f Mk

f Sk

(Fig. 2). These values were plotted against k only for k D 6; : : : ; 12, since values
of k < 6 produced a large number of unclassified curves and also empty groups
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Fig. 2 Values of Nf �
k against k, k D 6; : : : ; 12, for the choice of the number of groups

Table 1 Mean correlation and standard deviation of correlations with respect the cluster specific
average curve and dimensions of the nine identified clusters

m 1 2 3 4 5 6 7 8 9

Nrm 0.931 0.889 0.971 0.695 0.958 0.712 0.801 0.932 0.802
Nsm 0.021 0.081 0.018 0.147 0.021 0.069 0.133 0.043 0.126
nm 6 11 9 13 7 11 8 6 10

and therefore useless results. The results suggest the value k D 9, which showed
a local minimum. For k D 9 the procedure stops at the third iteration (after there
are no more changes in event positions), providing a value of the target function
(2) that decreases from 0.202 to 0.147. When the clustering approach is applied
to the unregistered curves, it returns decreasing values of the target function after
two iterations from 0.227 to 0.218, suggesting the undeniable role of the warping
procedure in order to find similarity between curves. The nine clusters contain
signals with internal mean correlation ( Nrm D 1 	 �m; m D 1; 2; ::; 9; with �m

the mean distance between curves of groupm and their corresponding mean curve)
greater than 0.6 relative to 78 of 159 earthquakes recorded. The Nrm values and mean
standard deviations Nsm with respect the cluster-specific reference curves, together
with cluster dimensions nm, are reported in Table 1.

Figure 3 represents the distribution of the distances, according to the introduced
measure in (1), between registered curves and their average for the nine identified
clusters. Four of these nine groups (clusters 1, 3, 5 and 8) show a mean correlation
inside clusters greater than 0.93 and a standard deviation less than 0.043; the events
of these four clusters may be regarded as seismological multiplets, see also Carmona
et al. (2009). As an example, the signals of events assigned to cluster 5 are shown
in Fig. 4.

5 Concluding Remarks

We have presented a simple and computationally efficient procedure aimed to
identify clusters of earthquakes with similar hypocentral parameters and focal
mechanisms within the complex seismic activity of the investigated area. The
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Fig. 3 Boxplot of distances between curves and their average for the nine clusters
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Fig. 4 Four dimensional signals of the events of cluster 5

proposed procedure is based on the assumption that seismic events which are
similar with respect to the mentioned parameters generate similar wave fields. This
procedure provides a simultaneous assignation and alignment of multivariate signals
finding similar features, assumed as main characteristics of curves.
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The application of this procedure to the small energy earthquakes recorded by
the OBS/H showed its ability in identifying similarities between waveforms also
for events with difference in magnitude greater than 1.5 and with difference in
hypocentral distance greater than 10 km. We have identified four multiplets with
very high mean correlation inside the cluster (>0:94) and very little standard
deviation (<0:035). The signals relative to different multiplets are very dissimilar
due to the different positions of their seismogenic volumes and their energy release.
All the centers of seismic activity identified by the multiplets are clearly associated
with the seismogenic volume of the seismic crisis of 2002 (Fig. 1). Given the high
similarity of the signals, all the data related to the events of the multiplets can be
used to determine the parameters of a single representative average earthquake. The
data relative to the clusters characterized by lower values of average correlation
coefficient will be used instead to make relative determinations of the parameters
of each seismic event, since this kind of estimates is generally much more precise
than the absolute estimates. The main advantage of this procedure is its capability
to identify clusters of waveforms also when events have rather different hypocentral
parameters, such as the local magnitude ML, that depends on the logarithm of the
maximum amplitude of a seismic waveforms, and the hypocentral distance.
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Classifying Tourism Destinations:
An Application of Network Analysis

Rosario D’Agata and Venera Tomaselli

Abstract Tourism is basically a spatial phenomenon, which implies moving
consumption within space. Starting from the assumption that the destinations are
nodes of a network, we are able to reconstruct a spatial grid where each locality
shows different grades and types of centrality. The analysis, focusing on the
spatial dimension, shows clusters of locations. By shifting interest from single
locations to destination networks, the study points out the structural features of each
network. Employing traditional network analysis measures, we classify destinations
considering the routes of a self-organized tourists sample that visited more than one
destination in Sicily.

1 Tourism Mobility Among Destinations: A NA Approach

A tourism destination is a system composed of both a large amount of natural,
cultural, artistic resources—also artificially built, such as museums, theme parks
or sport complexes—and a network of groups of economic, non economic and
institutional actors, whose prevalent activity is providing tourism related services
to visitors and travellers. So, we can consider the concept of tourism destination as
“a physical space in which a visitor spends at least one overnight. : : : It has physical
and administrative boundaries defining its management and images and perceptions
defining its market competitiveness” (UNWTO 2002).

In the study of tourism mobility, the spatial distribution of tourists affects some
areas at regional and/or sub-regional level where the economic and environmental
impact of tourism is more concentrated.
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In our opinion, Network Analysis (NA) methods could be appropriate to define a
territorial network of tourism demand by mapping the spatial distribution of tourism
mobility. If the tourism destination pattern tends to share certain formal, informal
and structural properties as a whole, by means of NA, we can classify destinations
(termed by nodes) by a set of metrics able to measure the relationships (displayed
as links) among tourism destinations.

Network analysis (NA) has been used both to explore how networks are formed in
the relationship among different nodes and—taking the network structure as given—
to analyse economic phenomena that are constrained by the structure (Wasserman
and Faust 1994). NA also plays an important role in determining the effectiveness of
the typology of the linkages. It takes into account the structure of links among nodes
and their ‘location’ in the network, deriving consequences for both the nodes and the
whole system (Hanneman and Riddle 2005). So, we can analyse the combination
of the network components—nodes and their links—and how they are assembled
according to their number and their distribution, referring to the static elements and
to the dynamic processes that govern a network system.

Although the NA methods are quite well known and tourism is a network
business, little has been done so far to apply these techniques to the study of the
tourism sector. Some scholars show the usefulness and the effectiveness of this
approach, with special regard to the analysis of the features of a tourism network
(Scott et al. 2008).

An interesting paper shows the use of these methods to revise the organization
of tourism facilities and services in each destination by measuring the structural
features of routes taken by tourists in multi-destination trips (Shih 2006).

Here, we used NA methods to analyse a database drawn from a survey1 about the
features of tourism demand carried out in Sicily, in order to specify both the relevant
and the marginal destinations by their centrality within the route network.

2 NA Measures for Tourism Destinations

According to graph theory, after collecting relational data and organising it into
a matrix, we compute the network measures of density, in-degree and out-degree
centrality, betweenness centrality and closeness centrality.

In our study, density is used to count the actual number of links as tourism routes
among destinations as a ratio of the maximum number of potential connections
in the Sicilian area. So, we use density as a property of the whole network. It
describes the general level of linkage among the points in a graph. The more

1The survey is carried out as PRIN 2007–2009 “Socio-economic effects of behavior and motiva-
tions of real tourism in Sicily. Internal mobility and its economic effects” by University of Palermo,
Catania, Sassari, Bologna. Selected data consist in face-to-face interviews submitted to tourists
during their departures from most important Sicilian airports and ports.
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points are connected to one another, the denser will the graph be. The density
of a graph is defined as the number of lines incident with each node in a graph,
expressed as the ratio of the number of relationships that exist compared with the
total number of possible ties g (g	1)/2, if each member were tied to every other
member (Wasserman and Faust 1994, p. 101). Density measure is calculated as:

� D L
g.g�1/
2

(1)

where L is the number of lines present. This measure can vary from 0 to 1. So, the
density of a complete graph2 is 1, because all possible ties exist (Rowley 1997).

Afterward, we use centrality as basic measure to identify the most important
nodes of the tourism destination network. So, we can recognize some central or
main tourism destinations within the network, comparing the different centrality
measures. Degree centrality is defined as the number of links incident upon a node
(Opsahl et al. 2010). Since the network is directed, we specify the two separate
measures of degree centrality, namely in-degree and out-degree: for a node, the first
is the number of head endpoints adjacent to a node and out-degree is the number of
tail endpoints that the node directs to others. The in-degree is denoted deg�.v/ and
the out-degree as degC.v/. A vertex with deg�.v/ D 0 is called a source, as it is the
origin of each of its incident edges. Similarly, a vertex with degC.v/ D 0 is called a
sink. For a directed graph, the degree sum formula states that:

X

v2V
degC.v/ D

X

v2V
deg�.v/ D jAj: (2)

In our research, in order to analyze the tourism destination network, we measure
the betweenness as an indicator of the importance or influence of a single destination
in a pattern. Betweenness centrality is a measure of node centrality in a network.
Basically, the fraction of shortest paths between node pairs, from all vertices to all
others, that pass through that node of interest. It is a more useful measure of the node
importance into the network. So, the betweenness centrality of a node v is given by
the expression:

g.v/ D
X

s¤v¤t

�st.v/

�st
(3)

where ¢ st is the total number of shortest paths from node s to node t and �st.v/ is
the number of shortest paths from s to t that pass through a vertex v.

Another important measure of centrality is the closeness. In our study, we
compute the in-closeness centrality to reveal the extent to which each tourism

2A complete graph is one in which all the points are adjacent to one another (Wasserman and Faust
1994, p. 102) and each point is connected directly to every other point.
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destination as node of the network is reachable from every other destination.
Closeness is defined as the mean geodesic distance (i.e., the shortest paths) between
a vertex v or node and all other vertices reachable from it:

P

t2V nv
dG.v; t/

n 	 1 (4)

The closeness CC .v/ for a vertex v is the reciprocal of the sum of geodesic
distances to all other vertices of V. We use the reciprocal in order to count as 0
the vertices that are not reachable, because we want that higher values are taken by
the most central vertices:

CC .v/ D 1
P

t2V nv dG.v; t/
(5)

3 Results

Analysis carried out on a sample of 3,182 self-organized tourists leaving from the
airports of Palermo and Catania after they spent a holiday in Sicily visiting at least
two destinations. Starting from collected data, we focused on destinations. So we
constructed a 74 by 74 adjacency matrix. Then, we considered tourist destinations
as network nodes (Fig. 1) connected by direct relationships.

Each of 74 selected destinations is represented by a square whose size is
proportional to its network centrality (indegree): the higher the number of tourists
who chose such destination, the larger the size of the square is.

In the first step, by means of UCINET 6.211 (Borgatti et al. 2002), we calculated
some descriptive statistics of whole network cohesion (Scott 2000). The first
measure to consider in order to describe the network is the density that shows
a value of 0.324 (SDD 1.765). Since density varies from 0 to 1, the network
does not seem to be very dense. In other words, a density of 0.324 indicates that
the network includes the 32 % of all possible links. Another important network
descriptive measure is centrality. Considering the aim of the analysis, we focus on
indegree centrality that, to simplify, we could define as the attractive capability of
destinations. An average indegree of 23.33 (SDD 42.42) indicates the presence of
few attractive nodes.

In a second step, in order to describe every single network of most central nodes,
employing an ego-networks analysis, we focused on the network of each destination.
The analysis of ego-network (Table 1), reveals as Palermo shows a normalized
value of indegree (NrmInDeg) equal to 5.871 followed by Siracusa, Catania and
Agrigento, all with a value higher than 5. Palermo, thus, appears to be the most
central destination of both inflow and outflow, as remarked by the value (7.449) of
normalized outdegree (NrmOutDeg).
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Fig. 1 Network graph of tourism destinations in Sicily

Table 1 Ego-network indicators of most central destinations in Sicily

Destination NrmInDeg NrmOutDeg Size Densit nEgoBe

Palermo 5.871 7.449 50 18.29 24.37
Siracusa 5.492 5.840 46 19.18 23.04
Catania 5.240 4.735 44 20.51 20.79
Agrigento 5.019 4.198 48 18.66 20.17
Taormina 4.609 4.135 42 21.37 22.49

Furthermore, centrality can be seen as vicinity to other nodes. In this case we
consider the outcloseness based on number of outward connections. Outcloseness,
then, could be seen as proximity to a lot of destinations. The network shows an
average value of outcloseness equal to 31.97 (SDD 3.3). Ego-network analysis
(Table 1) confirms the central role of Palermo (40.91), followed by Taormina
(38.71).

Finally the betweenness indicates the frequency with which each node is within
the shorter route linking every other couple of nodes. It highlights the role of
intermediary between two destinations. In the network we observe an average
betweeness of 84.49. In other words, about the 84 % of links presents intermediary
destinations.

In the last step, we aim to point out the destinations caught from the identical
places and left towards the identical places. From a heuristic point of view, knowing
these destinations could be useful in analyzing tourist routes and allows to detect
clusters of places “playing” the identical role inside the network. In order to identify
these clusters, we employ the concept of Structural Equivalence (Borgatti and
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cluster 1

cluster 2 

cluster 3 

cluster 4 

Fig. 2 Clusters of tourism destinations in Sicily

Everett 1992) considering the positions of the destinations in the network. “Two
actors are structurally equivalent if and only if they have identical ties to and from
identical other actors” (Wasserman and Faust 1994, p. 468). In our application actors
are the destinations representing network’s nodes. In the traditional field of network
analysis, Structural Equivalence is considered a strongly limited method because of
its severe assumptions and often other concepts of equivalence are preferred (e.g.
Automorphic Equivalence or Regular Equivalence). In tourism studies, however,
what is usually seen as a limit could represent an important knowledge element
and a useful tourism-planning tool. Clustering the groups of structurally equivalent
destinations, in fact, allows to identify alternative routes replacing a destination with
an equivalent another one, helping tourism firms in order to differ territorial tourism
supply.

Among the techniques proposed in literature to investigate the pattern of
similarities about nodes’ tie-profiles and to group the nodes in equivalence classes,
we employ the procedure of CONnvergence of iterated CORrelation (CONCOR).
Formalized by Breiger et al. (1975), the CONCOR algorithm is the most common
blockmodelling method (Nunkesser and Sawitzki 2005; Schwartz 1977).

By means of Structural Equivalence approach, we group the 74 destinations of
the network in 4 clusters (Fig. 2). The clusters 1 and 2 include destinations mainly
located in the South and East of Sicily, whereas the clusters 3 and 4 appear chiefly
to characterize the West side of Island and just few central destinations.

Actually geographic proximity plays an important role in determining structural
equivalence. Therefore, it is probable that neighbouring destinations are structurally
equivalent but, focusing on the destinations inside each cluster, we observe that
it is not always like this. In the first cluster, for example, we find destinations as
ACI CASTELLO, a seaside village in the Eastside of the Island and RESUTTANO,
a small hilly village in the Westside and also in the other clusters we observe
similar cases. It is important to remember that inside each cluster, every destination
shares with each other the in-flow and the out-flow. In other words, tourists arrive
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Fig. 3 The map of Lambda Set destinations in Sicily

in those destinations leaving from the identical destination and leave them towards
the identical place. Understanding the reason of this Structural Equivalence could
provide important information in order to develop tourism industry in Sicily.

Another important feature in tourism studies concerns the “bridge” role played
by some destinations. Such bridging destinations represent an intermediate point
along the route and investigating them could help the tourism routes planners to
“re-draw” tourism paths.

In order to analyze the bridging destinations, let switch the attention from the
nodes to the links and introduce the lambda sets (Borgatti et al. 1990). Quoting
Wasserman and Faust (1994) we can say that considering “pairs of nodes in the
subgraph Gs with node set Ns, the set Ns, is a lambda set if any pair of node in a
lambda set has larger line connectivity than any pair of node consisting of one node
from within the lambda set and a second node outside the lambda set”. Comparing
connectivity lines, so, it is possible to rank network links from the most important
ones to the less important. The most important links represent the bridges without
which the network might loose its cohesion.

Considering tourism destination in Sicily, we analyzed the lambda sets of the
node ties aiming to point out the bridging destinations which most tourism routes
follow. Figure 3 shows the map of lambda sets in Sicily, where in darker grey we find
both core and bridge destinations, while in light grey just the bridge destinations.
Except for two destinations localized in the central area of the Island (ENNA and
PIAZZA ARMERINA), all the other bridge destinations are situated in the seaside,
confirming so the exclusively bathing vocation of tourism in Sicily.

In conclusion, NA takes into account the structure of links among the tourism
destinations and their position in the network, deriving effects both for the single
destinations and the whole system.
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The paper tries to provide a framework for placing tourism within the context
of mobility. From individual routes, by means of Network Analysis measures, it is
possible to classify tourism destinations.

Our proposal could be useful in understanding patterns of tourism flows and the
territorial features of tourism market.
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On Two Classes of Weighted Rank Correlation
Measures Deriving from the Spearman’s ¡

Livia Dancelli, Marica Manisera, and Marika Vezzoli

Abstract Weighted Rank Correlation indices are useful for measuring the agree-
ment of two rankings when the top ranks are considered more important than the
lower ones. This paper investigates, from a descriptive perspective, the behaviour of
(i) five existing indices that introduce suitable weights in the simplified formula of
the Spearman’s 	 and (ii) an additional five indices we derive using the same weights
in the Pearson’s product-moment correlation index between ranks. For their evalu-
ation, we consider that a good Weighted Rank Correlation index should (1) differ
from 	, if computed on the same pair of rankings and (2) assume a broad variety
of values in the range Œ	1;C1�, in order to better discriminate amongst different
reorderings of the ranks. Results suggest that linear weights should be avoided and
show that indices (ii) do not have equalities with 	 and are more sensitive.

1 Introduction

Weighted Rank Correlation (WRC) indices are a useful tool for measuring the
agreement between rankings when the top ranks are considered more important than
the lower ones. Examples can be found in Blest (2000), Dancelli et al. (2012), Pinto
da Costa and Soares (2005), Quade and Salama (1992). This paper investigates,
from a descriptive perspective, five existing WRC indices that introduce suitable
weights in the simplified formula of the Spearman’s 	. In addition, we derive a
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new class of WRC measures introducing weights in the Pearson’s product-moment
correlation index between ranks.

Suppose that A W a1; a2; � � � ; ai ; � � � ; an and B W b1; b2; � � � ; bi ; � � � ; bn are two
rankings. For simplicity, no ties are allowed. Without loss of generality,
A W 1; 2; � � � ; i; � � � ; n, where 1 is the “most important” rank (the top rank) and
n is the “least important” one. In the Spearman’s 	 (Spearman, 1904; 1906), ranks
replace variables in the Pearson’s product-moment correlation index

	 D 1

n�a�b

n
X

iD1
.ai 	 Na/.bi 	 Nb/; (1)

which is 	1 in the case of total disagreement (when one ranking is the inverse of the
other one) andC1 in the case of total agreement (when the two rankings coincide).
Indices satisfying this condition are standardized. Index (1) is usually presented in
the simplified form (see, for example, Zani 1994, p. 233), which, in the case of no
ties, is

	 D 1 	 2
Pn

iD1.ai 	 bi /2
.n3 	 n/=3 : (2)

According to some authors, the Spearman’s 	 has an implicit weighting scheme
(among others, Kendall and Gibbons 1990, Tarsitano 2009). On the contrary, the
WRC measures introduce explicit weights in order to emphasize discrepancies on
the top ranks. In this framework, some existing WRC measures were obtained by
introducing weights in (2) and determining the maximum that makes the index
standardized, that is

	w D 1 	 2
Pn

iD1.ai 	 bi /2wi
max

Pn
iD1.ai 	 bi/2wi

: (3)

The paper focuses on indices where weights wi are functions of ai and bi and
treat them symmetrically (symmetric weights, henceforth).

Another possible choice is to introduce weights directly in the unsimplified
formula (1), obtaining

	�w D
Pn

iD1.ai 	 Na�/.bi 	 Nb�/wi
��a ��b

Pn
iD1 wi

(4)

where Na�; Nb�; ��a and ��b are weighted means and weighted standard errors, with
weights wi (Dancelli et al. 2011). These indices are standardized by definition.

Generally, the two classes of indices lead to different results, because (2) follows
from (1) with Na D Nb D .n C 1/=2 and �a D �b D

p

.n2 	 1/=12 that hold only
when A and B are unweighted rankings. The same holds for alternative formulas
of 	 existing in the literature. Henceforth, we label the class (3) as WRCS	 (WRC
measures from the Simplified 	) and the class (4) as WRCU	 (WRC measures from
the Unsimplified 	).
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The aim of this paper is to evaluate, from a descriptive perspective, the two
classes of indices and to establish which weights perform better. To do this, our
exploratory study considers two aspects: first, indices must provide values different
from the Spearman’s 	 when computed on the same pair of rankings (except for the
extreme cases of total agreement or disagreement); second, indices must not assume
the same repeated value at different pairs of rankings. We compare (i) five indices
of class WRCS	 already existing in the literature, and (ii) the corresponding five
indices of class WRCU	 we obtain by introducing the same weights in formula (4).

Section 2 introduces the 5 C 5 indices, along with the two criteria we use to
evaluate their performance. The computational study and the results are described
in Sect. 3. A brief discussion and the conclusions are given in Sect. 4.

2 Some WRC Measures and Their Evaluation

The five existing WRCS	 indices under consideration are obtained by introducing

the weights sri D 1

ai
C 1

bi
, rpi D

1

ai � bi , rsi D 1

ai C bi , li D .n 	 ai C 1/ C
.n 	 bi C 1/, qi D Œ.n 	 ai C 1/C .n 	 bi C 1/�2 in formula (3):

	sr D 1 	 2

n
X

iD1
.ai 	 bi/2

�

1

ai
C 1

bi

�

.nC 1/
n
X

iD1

Œ2i 	 .nC 1/�2
i.n	 i C 1/

	rp D 1 	 2

n
X

iD1
.ai 	 bi/2

�

1

ai � bi
�

2.nC 1/
n
X

iD1

1

i
	 4n

	rs D 1 	 2

n
X

iD1
.ai 	 bi/2

�

1

ai C bi
�

n.n 	 1/=3

	l D 1 	 2

n
X

iD1
.ai 	 bi/2Œ.n 	 ai C 1/C .n 	 bi C 1/�

n.n3 C n2 	 n 	 1/=3

	q D 1 	 2

n
X

iD1
.ai 	 bi/2Œ.n 	 ai C 1/C .n 	 bi C 1/�2

n.n2 	 1/.nC 1/2=3
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In Tarsitano (2009), 	sr is attributed to Salama and Quade; 	rp was proposed
in Salama and Quade (1982) and 	rs in Quade and Salama (1992). The attribution
of 	l gave rise to a controversy: Pinto da Costa and Soares (2005) introduced it,
but Genest and Plante (2007) pointed out that it was their symmetrized version of
the Blest’s coefficient (Blest 2000). Pinto da Costa and Soares (2007) claimed a
different derivation and a simpler form, suitable for generalization. In particular,
they suggested to square the weights in 	l , obtaining 	q . Since the maximum in 	q
shown in Pinto da Costa and Soares (2007) is wrong, we report the right one we
derived in Dancelli et al. (2011).

The counterparts of these measures are the five indices of class WRCU	 denoted
with 	�sr, 	

�
rp, 	�rs, 	

�
l , 	�q that can be obtained by introducing the same weights sri ,

rpi , rsi , li , qi in formula (4).
In order to investigate the behaviour of the 5C5 indices, in this exploratory study

we perform a simulation considering all the possible exchanges of ranks. Hence, we
calculate the indices between the target permutationA W 1; 2; � � � ; i; � � � ; n and the nŠ
permutations of the set f1; 2; � � � ; ng. To evaluate their goodness we consider the two
criteria already mentioned in Sect. 1.

First, a WRC index must generally not assume the same value of the Spearman’s
	 if computed on the same pair of rankings. Otherwise, the introduction of
weights does not serve the purpose. We evaluate the performance of each index
by computing how many values are equal to 	.

To measure the dispersion of a WRC index around the Spearman’s 	, we also
calculate the mean Md of the absolute differences between the values of the
two indices. WRC indices showing a higher dispersion around 	 are more able
to emphasize top ranks.

Second, a good WRC index must generally assume a broad variety of values in
the range Œ	1;C1�, in order to discriminate better amongst different reorderings
of the ranks (with corresponding weights). To evaluate the discrimination power
(sensitivity) of WRC indices, one must consider that they can assume repeated
values at different pairs of rankings. Hence, we evaluate the sensitivity of an index
by considering the number of its unique values. Since the non-unique values can be
replicated few or many times, we also calculate the mean Mr of their frequencies.
WRC indices with a lower mean have a higher sensitivity.

3 Results

The computational study1 was performed:

• Assuming low values of n because the identification of the equalities with 	 (first
criterion) and the unique values (second criterion) makes sense only with short

1Computations were obtained by the statistical software R 2.13.2 with full precision.
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Table 1 Number of values equal to 	, mean Md of the absolute differences from 	, number of
unique values, and mean Mr of the frequencies of the repeated values for the 5C 5 WRC indices

Indices of class WRCS	 Indices of class WRCU	
No. unique No. unique

Values D 	 Md values Mr Values D 	 Md values Mr

	sr 0 0.13 316 2.41 	�
sr 0 0.15 396 -

(0.00%) (79.80%) (0.0%) (100.00%)
	rp 0 0.14 271 2.44 	�

rp 0 0.24 396 -
(0.00%) (68.43%) (0.0%) (100.00%)

	rs 3 0.08 369 2.08 	�
rs 0 0.11 395 2.00

(0.76%) (93.18%) (0%) (99.75%)
	l 74 0.05 149 3.35 	�

l 0 0.12 370 2.20
(18.69%) (37.63%) (0.0%) (93.43%)

	q 9 0.11 310 2.21 	�
q 0 0.22 395 2.00

(2.27%) (78.28%) (0.0%) (99.75%)

rankings. Otherwise, the exchanges of ranks (even the top ones) have little effect
on the values of the indices and their differences are only a matter of decimals.

• Discarding all the inverse permutations from the nŠ permutations of the
set f1; 2; � � � ; ng to avoid unnecessary replications of values.2 Hereafter, the
permutations maintained in the simulation study are denoted as “reduced
permutations”.

We report in detail the results obtained for n D 6, giving rise to 396 reduced
permutations. In addition, some selected results for n D 7; 8; 9 are provided.

First criterion (comparison of each WRC index with the Spearman’s 	).
The results reported in Table 1 show that 	l is the index with the highest number

of values equal to 	 (18.69%). Indices 	rs and 	q have a negligible number of
equalities with 	, while for 	sr and 	rp, no equality was found. It is interesting to
note that all the 5 indices of class WRCU	 show no equalities with 	.
	l is also the index with the lowest meanMd of the absolute differences between

its values and 	 (0.05). This underlines its limited dispersion around 	. When
considering the same weights, indices of class WRCU	 always have higher values of
Md than the corresponding indices of class WRCS	 , suggesting a better performance
in weighting.

Second criterion (power of discrimination).

2An inverse permutation B inv of B is obtained by substituting each number with the number of the
place it occupies. A WRC index with symmetric weights must give the same result when computed
between A and B and between B inv and A, because the pairs .ai ; bi / and .binv

i ; ai / are the same.
Then, one of the two rankings, B or B inv, must be excluded from the nŠ permutations, unless B and
B inv coincide. For example, let A W 1; 2; 3; 4; 5; 6 and B W 2; 3; 1; 5; 4; 6. The inverse permutation
of B is B inv W 3; 1; 2; 5; 4; 6. It is evident that the pairs are the same if we rewrite B inv in the natural
order (B inv0 W 1; 2; 3; 4; 5; 6) and, consequently, rearrange A, obtaining A0 W 2; 3; 1; 5; 4; 6.
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Consider now the number of unique values and the mean Mr of the number of
replications of the repeated values, also reported in Table 1.

The number of unique values of the Spearman’s 	 is only 34 (8.59%). Results
in Table 1 show that, as expected, all the 5C 5 WRC measures better discriminate
different rankings. In detail, indices of class WRCU	 better distinguish cases than
their counterparts of class WRCS	 by showing a higher number of unique values.
Note that the worst index of class WRCU	 (	�l ) and the best index of class WRCS	
(	rs) have a similar number of unique values (370 and 369, respectively). No indices
of class WRCS	 have 100% of unique values; percentages vary from 37.63% (	l ) to
93.18% (	rs). Linear weights li lead to the smallest number of unique values for both
classes. Otherwise, when nonlinear weights are used in formula (4), the percentage
of unique values is virtually 100%.

The meanMr of the frequencies of the repeated values for 	 is 11:65. The means
of all the WRC indices are much lower, ranging from 2:08 (	rs) to 3:35 (	l ) for the
indices of class WRCS	 and from 2:00 (	�rs and 	�q ) to 2:20 (	�l ) for the indices of
class WRCU	 . This underlines their higher sensitivity.

Focusing on 	l , which is the worst index with respect to both criteria, it is
interesting to look in detail at some rankings involving relevant exchanges in the
ranks. Measuring their agreement with the target permutation A W 1; 2; 3; 4; 5; 6, we
always have 	l D 	, meaning that weights are neutralized. Some selected cases
follow.

	 D 	l D �0:7143 W
Œ4; 5; 6; 2; 3; 1� Œ4; 5; 6; 3; 1; 2� Œ4; 6; 3; 5; 2; 1� Œ5; 3; 6; 4; 2; 1� Œ5; 6; 2; 3; 4; 1� Œ6; 3; 5; 2; 4; 1�

	 D 	l D �0:5429 W
Œ4; 3; 6; 5; 2; 1� Œ4; 5; 6; 1; 2; 3� Œ6; 3; 2; 5; 4; 1�

	 D 	l D �0:4286 W
Œ3; 4; 5; 6; 2; 1� Œ3; 5; 4; 6; 1; 2� Œ3; 6; 4; 2; 5; 1� Œ5; 2; 4; 6; 3; 1� Œ6; 2; 3; 4; 5; 1�

	 D 	l D C0:2000 W
Œ2; 3; 6; 4; 1; 5� Œ2; 4; 5; 1; 6; 3� Œ2; 4; 6; 1; 3; 5� Œ2; 6; 3; 1; 4; 5�

	 D 	l D C0:6571 W
Œ1; 3; 4; 5; 2; 6� Œ2; 3; 1; 5; 6; 4� Œ2; 3; 1; 6; 4; 5� Œ2; 4; 1; 3; 6; 5�

	 D 	l D C0:8857 W
Œ1; 3; 2; 5; 4; 6� Œ2; 1; 3; 4; 6; 5�:

Note that the last ranking [2,1,3,4,6,5] combines the two rankings used by Quade
and Salama (1992) for introducing the meaning of “weighted rank correlation”.

Results for n D 7; 8; 9 confirm that as n increases, differences between the values
of the indices are detected with difficulty. For example, looking again at the worst
index 	l , the number of equalities with the Spearman’s 	 are 8:88% (n D 7),
5:84% (n D 8) and 2:96% (n D 9). For the other indices of class WRCS	 , as n
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increases, percentages of values equal to 	 tend to zero, and as expected, the same
happens for indices of class WRCU	 , because such percentages were already zero
for n D 6. Since the meanMd remains substantially constant over the different n’s,
the conclusions drawn for n D 6 hold also when n D 7; 8; 9.

With reference to the discrimination power of indices, as n increases, the
percentage of unique values tends to decrease for each index (even if the absolute
values increase). Such a trend is much more evident for indices belonging to class
WRCS	: for example, for the worst index 	l , the percentage of unique values
decreases from 37:63 (n D 6) to 14:20 (n D 7), then to 3:36 (n D 8) and 0:61
(n D 9), while for 	rs (the best among class WRCS	 in Table 1), such a percentage
moves from 93:18 (n D 6) to 86:75 (n D 7), 74:54 (n D 8) and 63:81 (n D 9).
From this point of view, indices of class WRCU	 also perform better than those
in class WRCS	 when n increases: except for 	�l (56:46% of unique values when
n D 9), all the other indices maintain percentages higher than 98% when n D 9.
The meanMd computed for n D 7; 8; 9 confirms the higher sensitivity of indices of
class WRCU	 , with respect to their counterparts of class WRCS	 and, generally, of
WRC indices with respect to the Spearman’s 	.

4 Discussion and Conclusions

In the present study, we investigated, from a descriptive perspective, the perfor-
mance of 5C 5 WRC measures from two aspects: (1) their ability in weighting the
top ranks and (2) their power of discriminating different pairs of rankings. Results
suggest that linear weights, as in 	l and 	�l , are not appropriate to emphasize the
top ranks. This is due to compensations between the exchanges of the ranks and the
linear weights (Dancelli et al. 2011). In addition, from the points of view (1) and
(2), indices belonging to class WRCU	 seem to be preferable. Besides, since these
indices are standardized by definition, the analytical identification of the maximum
in WRCS	 is not necessary. This can be useful, for example, when other weights
are chosen or when tied ranks are considered. In fact, real applications sometimes
include ties, which may be handled by simple procedures (tied ranks are usually
assigned the midpoint value that would result if the objects were ranked consecu-
tively) or by more sophisticated techniques (Hájek and Sidák 1967, pp. 118–123).

In this study, we maintained low n because the focus was on the two particular
aspects (1) and (2), which cannot be conveniently evaluated with high values of n.
In fact, as n increases, the exchanges of ranks (even the top ones) have little
effect on the final value of a WRC index and it is difficult to detect differences
with the values of the Spearman’s 	 (same paired rankings) or within the values
of the WRC index itself (different paired rankings). In addition, in practice, only
a few decimals are usually retained when computing rank correlation measures.
With few decimals, differences are even more difficult to see, because the number
of equalities of WRC indices with 	 increases while the discrimination power
decreases. Actually, results with full precision do not differ much from results with



114 L. Dancelli et al.

few decimals when n D 6. Differences stand out when n increases, since the number
of possible values of indices with a fixed limited number of decimals is small while
the number nŠ of permutations of A W 1; 2; � � � ; i; � � � ; n rapidly increases, even if
inverse permutations are removed. For example, with n D 9, the possible different
values for whatever index with 4 decimals is 2 � 104 	 1 D 19;999 (not including
	1 and C1), while the number of reduced permutations is 185;152. Moreover, the
choice of low n is consistent also with real applications, where long rankings are
not very frequent.

However, simulation studies with higher values of n are certainly recommended
when the focus is on other topics, such as the sampling properties of the indices.

The promising results obtained in this preliminary study encourage future
research aimed at further refining guidelines helping the choice of the best weights
to use in practice and deepening the study of the indices, for example, when
measuring the agreement between “nonlinear rankings” (Tarsitano 2009).
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Beanplot Data Analysis in a Temporal
Framework

Carlo Drago, Carlo Lauro, and Germana Scepi

Abstract We propose in this work a new approach for modelling, forecasting and
clustering beanplot financial time series. The beanplot time series like the histogram
time series or the interval time series can be very useful to model the intra-period
variability of the series. These types of new time series can be very useful with High
Frequency financial data, data collected with often irregularly spaced observations.

1 Introduction

There are situations in which it is necessary to use some types of aggregation which
can arise in a direct loss of information, for example in financial time series. In
particular high frequency financial data shows some relevant characteristics (they
are inequally spaced and contains errors) which suggest the use of some time series
like intervals or histograms. Alternatives in the context of data types concretely
used, are belong the field of the Symbolic Data Analysis (Billard Diday 2006;
Arroyo Maté 2008). However, we propose the use of the beanplot data (Kampstra
2008) which summarize the initial data by returning the relevant data features.
We have proposed a transformation of the original time series in a time series of
beanplots to analyse the intra-day variability over time. Beanplot allows to keep the
relevant information and data structure of the initial data which could be hidden by
the aggregation. In this way we take into account the entire intra-period variation
over time. Here we propose a new parameterization of the beanplots with aim of
forecasting and clustering.
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2 Beanplot Modeling, Forecasting and Clustering

The beanplot data represents the intra period variability of the initial series. In
particular beanplot data show the centre by period like the aggregate data, then the
size or the range of the variability, and finally the density trace represent the entire
data structure. We start from a classical time series which generates a beanplot time
series (Fig. 1), where a beanplot data at time t can be defined as:

Ofh;t D 1

nh

iD1
X

n

K.
x 	 xi
h

/ (1)

where K is a Kernel and a h is a smoothing parameter defined as a bandwidth.
K can be a gaussian function with mean zero and variance 1. The Kernel is a
non-negative and real-valued function K.z/ satisfying:

R

K.z/dz D 1;
R

zK.z/dz D
0;
R

z2K.z/ D k2 <1with the lower and upper limits of integration being	1 and
C1. It is possible to use various Kernel functions: uniform, triangle, epanechnikov,
quartic (biweight), tricube (triweight), gaussian and cosine. In the gaussian case the
variance can be controlled through the parameter h:

K.
x 	 xi
h

/ D 1p
2�
e
� x�x2i

2h2 (2)

Various methods was proposed in Literature to choose the bandwidth h. In
particular Jones Marron Sheather (1996) reviews bandwidth choice methods. In
the data visualization we use the Sheather-Jones criteria that defines the optimal h
in a data-driven choice (Kampstra 2008). A Beanplot data fbYt g is a combination
between a 1-d scatterplot and a density trace. In a beanplot we take in account both
the interval between the minimum aLt , the maximum aUt and the density as the
kernel nonparametric estimator (the density trace see Kampstra 2008). Every single
observation yit is represented on the one-dimensional scatterplot. This feature is
useful to detect visually observations distant from the others. The beanline at time t
is a central measure of the beanplot (and a measure of location).

2.1 Beanplot Internal Modeling

By assuming each temporal observation as a mixture of distributions, we estimate
the parameters of each mixture distribution (Du 2002) and we obtain a set of
parameters for each beanplot data:

At D Œp1;t ; p2;t ; : : : ; pk;t �0 (3)

We define this procedure internal modeling. For each model at time t we obtain
a measure of goodness of fit It representing the quality of the representation.
The parameters replace both the original data and the densities at time t as the
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Fig. 1 Beanplot time series of the stock Apple for the period 2007–2010. Typically we can observe
regular symmetric shape, where there is a structural change the shape modify in two distincts parts

models of the intra-period variability. The model parameters by each temporal
interval t summarize the relevant data aspects of the densities as the location, the
size, and the shape. The parameters give important information on the sequential
process, in fact they show us the presence of change points at a time t .

2.2 Detecting Structural Changes

We take into account the parameter sequences for checking structural changes over
time t . In particular for each parameter we consider the associated time series. So,
we consider each parameter in At , p1;t ; p2;t ; : : : ; pj;t and we estimate:

pj;t D ˇ0 C
Q
X

qD1
ˇqıq C !j (4)

where ıq is a dummy variable representing a specific period or an interval period
of time, in which the null hypothesis of no structural change is tested and !j is
a residual. In presence of structural change ˇq ¤ 0. We return the dates of the
structural changes for all the parameters in At

2.3 Multiple Beanplot Forecasting

We propose a forecasting method of the beanplot models based on the parameters,
and a clustering procedure based on a distance of models (in the next paragraph).
By obtaining the parameters, that represents the intra period variability over
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time, we can forecast the next beanplot observation by considering a time series
forecasting method. The procedure is divided in two parts. Firstly, it is necessary
a specific synthesis of the models by using the Time Series Factor Analysis (in
particular Gilbert Meijer 2005). Starting from the trajectories obtained by each
parameter time series we can estimate

pj;t D ˛ C ˇ�t C �t (5)

With ˛ as a vector of intercepts, ˇ as a n; k matrix of factor loadings and � is a
n vector of random errors. So, by considering n parameters or observed processes
pj;t with i D 1::n and t D 1::T , in which we are searching from k the factors as
unobserved processes �i;t with t D 1::T and i D 1::k. In particular, for each time
series, we can obtain a set of factors. To measure the factor, as well, we use:

�t D .Bt� t�1B/�1Bt��1Bt .zt 	 ˛t / (6)

In which  t D Cov.�t /. In particular the loadings, in the FA estimators (say
ML) can be estimated by using the sample covariance of the error (Gilbert Meijer
2005). In this way it is possible to compute the factor time series for the trajectories
defined by parameters. Each factorial time series represent the dynamics of the
beanplot time series and allow to identify the external shocks which affect the
beanplot dynamics. We can estimate a VAR or a VECM model based on the factorial
time series considered. In the case the results is not completely satisfying we can
use a combination of different forecasting methods, for example a VAR, VECM
model and some univariate methods (for a review De Gooijer Hyndman 2006) with
equal or different weights (eventually changing over time). By considering explicitly
f 1; f 2 : : : f m as different competing external models we have as external model
forecasts combination ft :

ft D �1f 1 C �2f 2 C : : :C �mf m C � (7)

In this case � is an error term with zero mean and �1 : : : �n are different weights.
In particular the weighted combination of the models allow to improve forecasting
in a context of parameter drift and structural change. Poor results in in-sample
forecasting can occur in a revision of the initial parameters considered (the kernel
K used and the bandwidth h for example).

2.4 Clustering Multiple Beanplot Time Series

Finally for Clustering the different beanplot time series, we use the parameters
obtained. In particular we use an adequate distance, like the distance from models in
Romano Giordano Lauro (2006) where we are trying to consider the dynamics of
the different factors. In this way it is possible to obtain the dissimilarity matrices
related, and use the clustering method. So, in order to cluster multiple time series
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of beanplot Wv;t with v D 1 : : : V , we use a suitable distance between models
that combines a convex function of the differences in model parameters with
corresponding fitting indexes I (Romano Giordano Lauro 2006). The two pieces
of information are combined to define the following measure IM (or intra-model
distance). Following Signoriello (2008) we have:

IM.At ; At 0j�/ D �IMP C .1 	 �/IMR (8)

with � 2 Œ0; 1�. The � is related to weight to apply both to the parameters and the
model fit in the final distance. The IM measure is a sum of IMP and IMR, where
IMP is the L2-norm between the parameters. In practice we are considering the
structural differences between two beanplots by considering their parameters. It
is important to stress the fact that the parameters of the models are related to the
structural part of the beanplot so we are clustering not the initial beanplot but their
models. So we have:

IMP D
�

XK�1
kD1

�

pjk 	 pj 0
k

�2

�

1
2

.j ¤ j 0/ (9)

and IMR is the L1-norm between the Chisquare related the different models
(Du 2002). At the same time we need to consider the fit of the models to the real data
and the difference between these indexes. In this case the fit of the model is related
to the capability to the model to capture the initial data. Clearly an unsatisfactory fit
can lead to different choices in the beanplot modelling. So we have in this case:

IMR D
ˇ

ˇIj K 	 Ij0K
ˇ

ˇ .j ¤ j 0/: (10)

In order to cluster multiple time series of beanplotWv;t with v D 1 : : : V , we use
the Romano Giordano Lauro distance of models by considering the entire series of
the models. In this case the distance between the models need to take into account
all the suberiods and the differences of the parameters in each subperiod.

IMPT D
T
X

tD1

�

XK�1
kD1

	

pj kt 	 pj0kt


2
�

1
2

.j ¤ j 0/ (11)

At the same time we can consider the differences between the model fit.

IMRT D
T
X

tD1

ˇ

ˇ

ˇ

Ij Kt 	 Ij0Kt

ˇ

ˇ

ˇ

.j ¤ j 0/: (12)

The two pieces of information are combined to define the following distance in
which we take into account both the structural aspects of the parameters (and their
differences) and the differences of the model fit related to the initial data. So we
finally have:

IMT .ptj ; ptj 0 : : : pTj ; pTj 0 j�/ D �IMPT C .1 	 �/IMRT (13)
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Fig. 2 Dow Jones Market: subperiod years 2007–2008

In this case we are considering in an direct way all the different subperiods and so
we compare the beanplots time series by considering the entire beanplot dynamics
and not a single subperiod.

2.5 Application on Financial Data 1990–2011

We consider the period from 1990 to 2011 yearly observations for the FCHI France
and the GDAXI Germany Market. In this sense we transform the original data in
beanplot time series. Then we extract the mixtures of the data and we compute
the factorial time series from the data. The factorial time series seems to respond
well to the same economic shocks affecting the different economies over time.
Then we estimate a VAR considering the two factorial time series and obtain the
1 year forecast for the year 2010 characterized by known instability. The results
overperform the univariate models for the Germany but show some instability due
clearly to the crisis. At the same time by considering the predictions for the year
2010 the MAPE became: 27 (France) and 14 (Germany). For the clustering methods
we consider various stocks of the US market for asset allocation purposes (years
2007–2011). It is interesting to observe the strong structural change before and
after the crisis (Figs. 2 and 3). At the same time the financial stocks tend to behave
similarly (due to the strong negative shocks related to the financial crisis) where in
the market there was some not financial companies that perform differently (Apple
and Amazon between others) which better sustained the financial crisis (Figs. 4
and 5).
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Fig. 3 Dow Jones Market: subperiod years 2007–2008

Fig. 4 Dow Jones Market: subperiod years 2009–2010

Fig. 5 Dow Jones Market: subperiod years 2010–2011
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Supervised Classification of Facial Expressions

S. Fontanella, C. Fusilli, and L. Ippoliti

Abstract Over the last decade, the statistical analysis of facial expressions has
become an active research topic that finds potential applications in many areas. As
the expression plays remarkable social interaction, the development of a system that
accomplishes the task of automatic classification is challenging. In this work, we
thus consider the problem of classifying facial expressions through shape variables
represented by log-transformed Euclidean distances computed among a set of
anatomical landmarks.

1 Introduction

Automatic facial expression analysis—FEA—started with the pioneering work of
Mase and Pentland (1991). The reasons for the interest in FEA are multiple, but
they are mainly due to the advancements accomplished in related research areas
such as face detection, face tracking and face recognition.

Given the significant role of the face in our emotional and social lives, it is not
surprising that the potential benefits from efforts to automate the analysis of facial
signals are varied and numerous.

The analysis of facial expressions has a great relevance in sociological, medical
and technological researches. For example, in social science, the relevance of
this new research area is due to the growing importance of investigating the role
of social intelligence in the interaction between human beings. In this context,
an important research domain is the Social Signal Processing—SSP. The term
“social intelligence” is referred here to the ability to express and recognize social
signals produced during social interactions (e.g. agreement, politeness, empathy,
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friendliness, conflict, etc), coupled with the ability to manage them in order to act
wisely in human relations (Pantic et al. 2001). SSP is thus the new research and
technological domain that aims at providing computers with the ability to sense and
understand human social signals.

In the medical field, facial expressions are analysed in order to study deficits in
emotional expressions and social cognition in neuropsychiatric disorders. In fact,
researchers have shown that different neurologic and psychiatric disorders may
present peculiarities in the facial expression. Thus, FEA provides the possibility
of accelerating the process of diagnosis.

Another useful application of FEA is in security systems. Monitoring and
interpreting facial signals can provide important information to lawyers, police,
security, and intelligence agents regarding deception and attitude. Hence, here the
aim is that of designing systems that are able of recognizing friendly, unfriendly or
aggressive faces in order to support the law enforcement process.

In recent years, due to the availability of relatively cheap computational power,
an automatic facial expression analysis has been investigated as facial pattern
recognition using imaging techniques.

Facial expressions are generated by contractions of facial muscles, which results
in temporally deformed facial features such as eye lids, eye brows, nose, lips and
skin texture, often revealed by wrinkles and bulges. Thus, for example, an increase
in distance between lip corners may indicate a smiling or happy face. In our
work, this action is transformed into geometrical shape using landmark coordinates.
Specifically, a face is coded by interactively locating the coordinates of specific
landmarks. These landmarks are defined by biological features on the face and are
usually referred to as anatomical landmarks. We thus use these landmarks to identify
important features of the expressions in order to provide an accurate classifier for
“shape” (expression) allocation.

The outline of the paper is as follows. In Sect. 2 we describe the data and
how to present them in a form suitable for a classification procedure. Specifically,
we compute distances between landmarks to provide partial shape information. In
Sect. 3, we first review the basic of linear discriminant analysis (LDA) and then
discuss the high dimension/small sample size problem to introduce a set of LDA-
based classifiers to deal with the problem of multicollinear data. Then, in Sect. 4,
we illustrate classification results for the FG-NET database while Sect. 5 concludes
the paper with a discussion.

2 Notation and Data Description

In this paper we assume that there are multivariate data available for G groups (or
classes). The vectors in the training set are denoted by a p-dimensional vector z.
There are also nj observational units available in the j -th group. In general,
considering theG groups, we have n statistical units. Finally, the estimated mean in
the j -th group is denoted by Qxj while W and B are the within-group and between-
group covariance matrices, respectively.
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As regards the data, we consider the FG-NET Database with Facial Expressions
and Emotions from the Technical University Munich. This is an image database
containing face images from 18 subjects performing the six basic expressions
described in Ekman and Friesen (1971). For modelling purposes we consider here
four expressions, namely: neutral, happiness, sadness and surprise.

On each image, representing the expression of interest, we have manually
placed a set of 30 landmarks and Fig. 1 shows a typical example of a landmark
configuration. In each of the GD 4 groups (i.e. expressions), there is thus complete
information on nj D 18 subjects and 30 landmarks, each with coordinates si D
fxi ; yi g 2 R2; i D 1; : : : ; 30.

Since the shape of an object determines its coordinates only up to a similarity
transformation, it is necessary to reduce the data to just the shape information. One
possible solution is that of using Procrustes tangent coordinates about a centered
and scaled “mean” configuration estimated through Generalised Procrustes Analysis
(Dryden and Mardia 1998).

An alternative approach is to work with Euclidean distances calculated among
landmarks. The notion of distance is much more intuitive than procrustes tangent
coordinates and hence, we wish to examine here the extent to which the use of
distances among landmarks can be helpful for classifying the expressions.

In principle, all the distances among the 30 landmarks can be considered to
construct the default feature vector, z. However, there are additional distances to
choose from to form a feature vector and these, for example, could be calculated
from an additional landmark which is a function of some of the anatomical
landmarks mentioned above. The construction of this landmark (e.g. points A or
B) is shown in Fig. 2. The choice of working with the complete set of distances
computed among the 30 landmarks, or with a reduced set of distances computed
between each landmark and a reference one (e.g. points A or B), strongly affects
the length, p, of the feature vector z. In contrast with the first approach, the latter,
henceforth called Fixed Point—FP—is a parsimonious one and, for example, avoids
the problem of performing LDA under singularity conditions.

Note that distance data are invariant with respect to the transformations of
translation and rotation. Hence, to transform the data into shape, the size effect
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A

B

11 10

Fig. 2 Construction of the
reference landmarks A and B

(scale) must be removed from the distance measurements. We remove the scale
using a logarithmic transformation thus obtaining a shape space for distances. The
shape mean for distances is the sample mean of the shape variables.

3 Background Theory for Linear Discriminant Analysis
and the High Dimension/Small Sample Size Problem

In this section, we present the general theory of linear discriminant analysis (LDA),
which is an efficient and simple multivariate technique useful to classify our
expressions into the four considered categories. There exists a large amount of
literature on the subject and we refer the interested reader to Krzanowsky and
Marriott (1995), Mardia et al. (1979) and McLachlan (2004) for more details.

LDA examines the relationship between membership of one of several groups or
populations and a set of interrelated variables. The classification of observations in
G groups is based on the calculation of canonical variates obtained as Y D ZA,
where Z is the .n 
 p/ data matrix and A is a transformation matrix. LDA is thus a
linear combination of the original p features which projects the data into a subspace
of dimension, r � min.p;G	1/, in order to maximize the between-group to within-
group variation, subject to the canonical variables being uncorrelated within groups
and between groups.

Formally, it can be shown (Mardia et al. 1979) that the transformation matrix
A is represented by the eigenvectors corresponding to the decreasing-order ranked
eigenvalues of W�1B. In practice, only r transformation vectors ai (i.e. columns of
A) are useful so that the simplest and most frequent way to classify is by assigning
the unit to the j -th group of the transformed group-mean vector, .a1; : : : ; ar /T Nzj ,
which is closest in the L2-norm.

However, the choice of working with the complete set of distances obtained
from the 30 landmarks generates a large number of features that raises the so
called high dimension/small sample size problem. In this case, since it follows that
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p >> n, W becomes singular and we thus need to replace its classical empirical
estimate by alternative methods. As discussed below, one way to circumvent the
singularity problem of W is to perform a dimensionality reduction of the data prior
to the application of LDA on the scores values. Alternative methods come from the
partitioned spectral decomposition of W, see for example Tebbens and Schlesinger
(2007).

3.1 Dimension Reduction Methods

One way to circumvent the singularity problem of W is to project the data in
a reduced space by principal component analysis—PCA—Mardia et al. (1979),
Jolliffe (2002), and apply LDA on the PCA-scores ordered according to the
explained variability. However, by exploiting the available class information, the
PCA-scores could be obtained from the eigenvectors of the within-group covariance
matrix, W. Hence, the principal components can be ranked according to the
following criterion, see for example Devijver and Kittler (1982)

Oj D .aTj Baj /=�j ;

where aj and �j are the j -th eigenvector and eigenvalue of W, respectively. In
this case the first few ranked components provide the orthogonal projections of the
original data that best highlight the between-group differences. Results from this
procedure will be denoted throughout as PCA2.

3.2 Rank Decomposition Methods

Alternative methods come from the partitioned spectral decomposition of W. In
fact, if rank.W/ D r < p, then W can be decomposed as follows

W D 
U1 U2

�

�

L1 0
0 0

� �

UT
1

UT
2

�

;

where U1 contains the first r columns of the .p 
 p/ orthonormal matrix of
eigenvectors U, and L1 is the .r 
 r/ diagonal matrix containing the non-zero
eigenvalues, �i , only. U2 contains the first p 	 r columns which are mutually
orthogonal to each other and to those of U1, and 0 is a proper defined matrix of
zeroes.

Hence, a possible approach to overcome the singularity problem is to con-
sider a truncated SVD of W so that its Moore-Penrose pseudo-inverse, defined
as U1L�11 UT

1 , can be used. Among others, this approach was also proposed in
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Krzanowski et al. (1995) and henceforth, it will be denoted as the Moore-Penrose
discrimination method—MPD.

Another possibility is to concentrate on the null space of W and obtain W�1 D
U2UT

2 , see Krzanowski et al. (1995). This approach corresponds to the zero-variance
discrimination method—ZVD—and is motivated by the fact that in this null space
the within-group variance is minimal.

Following the idea of minimal within-group variance, a further strategy is to
exclude “a priori” the within-group variability from the analysis and perform LDA
as standard PCA applied to the between-group matrix B. W is thus assumed to be
an identity matrix. This approach has been suggested in Dhillon et al. (2002) and is
particularly useful when the data set is huge. We shall denote this procedure as the
between-group based discrimination method (BBD).

4 Classification Results

In the following we discuss discrimination results from LDA applied on distance
variables obtained as described in Sect. 2. By using the FP distance approach, a
data matrix Z1, of dimension .72 
 30/, is available for classification. In this case,
for each individual, the feature vector is obtained as the set of the log-transformed
distances computed between each anatomical landmark and the fixed point A (see
Fig. 1). On the other hand, by using the full set of distances computed among the
30 anatomical landmarks, a new data matrix Z2, of dimension .72 
 435/, is also
available.

Performing a classification on Z1 results in a standard LDA procedure; in
contrast, Z2 poses singularity problems of W and hence, dimension reduction or
reduced rank decomposition methods must be considered for the analysis.

For the two data sets, the comparison of the results is based on the calculation
of the misclassification error rate obtained for each classifier and by using a cross
validation procedure. Since the same subject is involved 4 times, the procedure
essentially consists in leaving out 4 observations (corresponding to 4 expressions
provided by the same subject) from the original sample to use for validation, while
the remaining n	 4 observations constitute the training data from which to classify
the subject left out. The procedure is repeated until each subject in the sample
is used once as a validation set. For each subject, this procedure allows for the
construction of a subject-specific misclassification error rate which, considered
through the different classifiers, provides a knowledge of difficulty in classifying
each single subject.

By applying standard LDA on Z1 we note that the classification error is around
19:50%, which corresponds to 14 misclassified observations. The separate error
rates for each group and the overall error rate for the whole data set are shown
in Table 1.

Considering the data set Z2, we have first performed standard PCA to achieve
dimension reduction and then applied LDA on the score variables for classification
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Table 1 Data set Z1. Separate error rates for each group and the overall error rate
for the whole data set

Classifier Neutral Happiness Sadness Surprise Overall

LDA 11.11% 5.56% 33.33% 27.78% 19.44%

Table 2 Data set Z2. Separate error rates for each group and the overall error rate for the
whole data set

Classifier Neutral Happiness Sadness Surprise Overall

PCA 10:00% 5:00% 12.50% 17.90% 13.90%
PCA2 5:56% 0:00% 22.22% 16.67% 11.11%
MPD 16:67% 22:20% 50.00% 16.67% 27.80%
ZVD 22:20% 11:10% 33.30% 24.50% 20.80%
BBD 27:50% 5:60% 17.50% 19.91% 19.50%

purposes. The number of components is chosen through cross validation and the
minimum is achieved for 13 components giving a classification error rate of 13:90%.
By following the PCA2 method, the classification error rate decreases to 11:11%
with 10 chosen components.

The classification results from the rank decomposition methods are not as good
as those obtained through PCA, with the MPD method to be considered as the worst.
A summary of the cross validation procedure for all the methods is reported in
Table 2, where we show both the separate error rates for each group and the overall
error rate for the whole data set.

5 Conclusion

In this paper we have discussed the problem of classifying facial expressions by
using Euclidean distances computed among a set of landmarks. The prediction of
group membership is performed by applying a set of LDA-based classifiers on a
large set of features. Taking care of the singularity of the within-group covariance
matrix, the classifiers have been compared through the error rate computed in a
cross validation procedure, with PCA2 providing the best performance. Note that
the misclassification error rate achieved here slightly improves the one obtained by
applying the same procedure on procrustes tangent coordinates (12:50%).

The FP procedure is relatively simple and the classification can be performed
using standard LDA. The error rate is larger than those obtained through PCA
and PCA2 on Z2 although it is comparable with the results provided by the other
classifiers.

The comparison of subject-specific misclassification error rates through different
classifiers provides an estimate of the difficulties of classifying the single units.
This comparison shows that some subjects are equally overrated or underrated by
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the classifiers so that their performance in simulating the expressions may be in
question.

Finally, we acknowledge that there exist further proposals to extend LDA to
the high-dimensional setting which have not been considered here. For example,
some of these proposals involve sparse classifiers using lasso (Tibshirani 1996) or
elastic net (Clemmensen et al. 2011) penalties. The study of the performance of
these classifiers will be a topic for future works.
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Grouping Around Different Dimensional Affine
Subspaces

L.A. Garcı́a-Escudero, A. Gordaliza, C. Matrán, and A. Mayo-Iscar

Abstract Grouping around affine subspaces and other types of manifolds is
receiving a lot of attention in the literature due to its interest in several fields of
application. Allowing for different dimensions is needed in many applications. This
work extends the TCLUST methodology to deal with the problem of grouping data
around different dimensional linear subspaces in the presence of noise. Two ways
of considering error terms in the orthogonal of the linear subspaces are considered.

1 Introduction

Many non-hierarchical clustering methods are based on searching for groups around
underlying features. For instance, the well-known k-means method creates groups
around k point-centers. However, clusters found in a given data set are sometimes
due to the existence of certain relationships among the measured variables.

On the other hand, the Principal Component Analysis method serves to find
global correlation structures. However, some interesting correlations are non-global
since they may be different in different subgroups of the data set or even be the
distinctive characteristic of such groups. This idea has also been proposed with
the aim at overcoming the “curse of dimensionality” trouble in high-dimensional
problems by considering that the data do not uniformly fill the sample space and
that data points are instead concentrated around low dimensional manifolds.

There exist many references about clustering around affine subspaces with equal
dimensions within the statistical literature (see, e.g., Van et al. 2006 and Garcia-
Escudero et al. 2008b and the references therein). We can distinguish between two
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different approaches: “clusterwise regression” and “orthogonal residuals methods”.
In clusterwise regression techniques, it is assumed the existence of a privileged
response or outcome variable that we want to explain in terms of the explicative
ones. Throughout this work, we will be assuming that no privileged outcome
variables exist. Other model-based approaches have already been proposed based
on fitting mixtures of multivariate normals assuming that the smallest groups’
covariances eigenvalues are small (see, e.g, Dasgupta and Raftery 1998) but they are
not directly aimed at finding clusters around linear subspaces (see Van et al. 2006).

It is not difficult to find problems where different dimensionalities appear. In fact,
this paradigm has already been addressed by the Machine Learning community. For
instance, we can find approaches like “projected clustering” (PROCLUS, ORCLUS,
DOC, k-means projective clustering), “correlation connected objects” (4C method),
“intrinsic dimensions”, “Generalized PCA”, “mixture probabilistic PCA”, etc.

In Sect. 2, we will propose suitable statistical models for clustering around affine
subspaces with different dimensions. These come from extending the TCLUST
modeling in Garcia-Escudero et al. (2008a). The possible presence of a fraction ˛
of outlying data is also taken into account. Section 3 provides a feasible algorithm
for fitting these outliers. Finally, Sect. 4 shows some simulations and a real data
example.

2 Data Models

Clustering around affine subspaces: We assume the existence of k feature affine
subspaces in R

p denoted by Hj with possible different dimensions dj satisfying
0 � dj � p 	 1 (a single point if dj D 0). Each subspace Hj is thus determined
from dj C 1 independent vectors. Namely, a group “center”mj where the subspace
is assumed to pass through and dj unitary and orthogonal vectors ulj , l D 1; : : : ; dj ,
spanning the subspace. We can construct a p 
 dj orthogonal matrix Uj from
these ulj vectors such that each subspace Hj may be finally parameterized as
Hj � fmj ;Uj g.

We assume that an observation x belonging to the j -th group satisfies x D
PrHj .x/C "�j ; with PrHj denoting the orthogonal projection of x onto the subspace
Hj given by PrHj .x/ D mj C UjU 0j .x 	 
j / and "�j being a random error term
chosen in the orthogonal of the linear subspace spanned by the columns of Uj . If
"j is a random distribution in R

p�dj , we can chose "�j D U?j "j with U?j being
a p 
 .p 	 dj / orthogonal matrix whose columns are orthogonal to the columns
of Uj (the Gram-Schmidt procedure may be applied to obtain the matrix U?j ).
We will further assume that "j has a .p 	 dj /-elliptical distribution with density
j˙j j�1=2g.x0˙�1j x/.

Given a data set fx1; : : : ; xng, we define the clustering problem through the
maximization of the “classification log-likelihood”:
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k
X

jD1

X

i2Rj
log.pj f .xi IHj ;˙j //; (1)

with [kjD1Rj D f1; : : : ; ng, Rj \ Rl D ; for j ¤ l and

f .xi IHj ;˙j / D j˙j j�1=2g
�

.xi 	 PrHj .xi //
0U?j ˙�1j .U?j /0.xi 	 PrHj .xi //

�

: (2)

Furthermore, we assume the existence of some underlying unknown weights pj ’s
which satisfy

Pk
jD1 pj D 1 in (1). These weights lead to more logical assignments

to groups when they overlap.

Robustness: The term “robustness” may be used in a twofold sense. First, in
Machine Learning, this term is often employed to refer to procedures which are able
to handle a certain degree of internal within-cluster variability due, for instance,
to measurement errors. This meaning obviously has to do with the consideration
of data models as those previously presented. Another meaning for the term
“robustness” (as referred to in the statistical literature) is related to the ability of the
procedure to resist to the effect of a certain fraction of “gross errors”. The presence
of gross errors is unfortunately the rule in many real data sets.

To take into account gross errors, we can modify the “spurious-outliers model” in
Gallegos and Ritter (2005) to define a unified suitable framework when considering
these two possible meanings for the term “robustness”. Starting from this “spurious-
outliers model”, it makes sense to search for linear affine subspaces Hj , group
scatter matrices ˙j and a partition of the sample [kjD0Rj D f1; 2; : : : ; ng with
Rj \Rl D ; for j ¤ l and #R0 D n	 Œn˛� maximizing the “trimmed classification
log-likelihood”:

k
X

jD1

X

i2Rj
log.pj f .xi IHj ;˙j //: (3)

Note that the fraction ˛ of observations in R0 is no longer taken into account in (3).

Visual and normal errors: Although several error terms may be chosen under
the previous general framework, we focus on two reasonable and parsimonious
distributions that they follow from considering ˙j D �j Ip�dj and the following
g functions in (2):

(a) Visual errors model (VE-model): We assume that the mechanism generating
the errors follows two steps. First, we randomly choose a vector v in the sphere
Sp�dj D fx 2 Rp�dj W kxk D 1g. Afterwards, we obtain the error term "j as
"j D v � jzj with z following a N1.0; �2j / distribution. We call these “visual”
errors because we “see” (when p � 3) the groups equally scattered when the
�j ’s are equal independently of the dimensions. The VE-model leads to use:
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f .xIHj ; �j / D (4)

D �
�

.p 	 dj /=2
�

�.p�dj /=2
q

2��2j

kx 	 PrHj .x/k�.p�dj�1/=2 exp
� 	 kx	PrHj .x/k2=2�2j

�

:

To derive this expression, consider the stochastic decomposition of a spherical
distribution X in Rp�dj as X D RU with R a “radius” variable and U a
uniform distribution on Sp�dj . If h denotes the p.d.f. of R and g the density

generator of the spherical family then h.r/ D 2�
.p�dj /=2

� ..p�dj /=2/ r
.p�dj /�1g.r2/:

Thus, if R D jZj with Z being a N.0; 1/ random variable, we get h.r/ D
2=
p
2� � exp.	x2=2/. Expression (4) just follows from (2). Note that g.x/ D

Cp�dj xN�1 exp.	rxs/withN	1 D 	.p	dj	1/=2, r D 1=2 > 0, s D 1 > 0
(and satisfying the condition 2N Cp > 2). Therefore, this density is reduced to
the univariate normal distribution wheneverp	dj D 1 and, in general, belongs
to the symmetric Kotz type family (Kotz 1975).

(b) “Normal” errors model (NE-model): With this approach, the mechanism
generating the error terms is based on adding a normal noise in the orthogonal
of the feature space Hj . That is, we take "j following a Np�dj .0; �2j Ip�dj /
distribution:

f .xIHj ; �j / D .2��2j /�.p�dj /=2 exp
� 	 kx 	 PrHj .x/k2=2�2j

�

(5)

The use of “normal” errors has already been considered in Banfield and Raftery
(1993) and “visual” errors in Standford and Raftery (2000) when working with two-
dimensional data sets and grouping around (one-dimensional) smooth curves.

Figure 1 shows two data sets generated with VE- and NE-models. It also
shows the boundaries of sets fx W d.x;Hj / � z0:025=2g with z0:025 being the 97.5%
percentile of the N1.0; 1/ and d.x;H/ D infy2H kx 	 yk when H1 is a point (a
ball) and when H2 is a line (a “strip”). Note the great amount of observations that
fall outside the ball in the normal errors case even though the same scatters were
considered in both groups.

Constraints on the scatter parameters: Let us consider dj C 1 observations and
Hj the affine subspace determined by them. We can easily see that (3) (and (1) too)
become unbounded when j˙j j ! 0. Thus, the proposed maximization problems
would not be mathematically well-defined without posing any constraint on the
˙j ’s.

When ˙j D �j Ip�dj , the constraints introduced in Garcia-Escudero et al.
(2008a) are translated into

max
j
�2j
ı

min
j
�2j � c for a given constant c � 1: (6)

The constant c avoids non interesting clustering solutions with clusters contain-
ing very few almost collinear observations. This type of restrictions goes back to
Hathaway (1985).
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from the VE- and NE- models

3 Algorithm

The maximization of (3) under the restriction (6) has high computational complex-
ity. We propose here an algorithm based on the TCLUST one. Some ideas behind
the classification EM algorithm (Celeux and Govaert 1992) and from the RLGA
(Garcia-Escudero et al. 2008b) also underlie.

1. Initialize the iterative procedure: Set initial weights values p01 D : : : D p0k D
1=k and initial scatter values �01 D : : : D �0k D 1. As starting k linear subspaces,
randomly select k sets of dj C 1 data points to obtain k initial centers m0

j and k
initial matrices U 0

j made up of orthogonal unitary vectors.
2. Update the parameters in the l-th iteration as:

2.1. Obtain
Di D max

jD1;:::;k
fplj f .xi Iml

j ; U
l
j ; �

l
j /g (7)

and keep the set Rl with the n	 Œn˛� observations with largestDi ’s. Split Rl

into Rl D fRl1; : : : ; Rlkg with Rlj D fxi 2 Rl W plj f .xi Iml
j ; U

l
j ; �

l
j / D Di g:

2.2. Update parameters by using:

• plC1j  - “nlj =Œn.1	˛/� with nlj equal to the number of data points inRlj ”.

• mlC1
j  - “The sample mean of the observations in Rlj ”.

• U lC1
j  - “A matrix whose columns are equal to the dj unitary eigenvectors

associated to the largest eigenvalues of the sample covariance matrices of
observations in Rlj ”.

Use the sum of squared orthogonal residuals to obtain initial scatters s2j D
1

nlj

P

xi2Rlj kxi 	 PHl
j
.xi /k2 with Hl

j � fml
j ; U

l
j g. To satisfy the constraints,
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they must be “truncated” as:

Œs2j �t D

8

ˆ

<

ˆ

:

s2j if s2j 2 Œt; ct �
t if s2j < t
ct if s2j > ct

: (8)

Search for topt D arg maxt
Pk

jD1
P

xi2Rlj logf .xi ImlC1
j ; U lC1

j ; Œs2j �t / and

take

• �lC1j  -
q

Œs2j �topt :

3. Compute the evaluation function: Perform L iterations of the process described
in step 2 and compute the final associated target function (3).

4. Repeat several times: Draw S random starting values and keep the solution
leading to the maximal value of the target function.

Determining topt implies solving a one-dimensional optimization problem. This
can be easily done by resorting to numerical methods. More details concerning
the rationale of this algorithm can be found in Garcia-Escudero et al. (2008a). We
denote the previous algorithm as VE-method when the density (4) is applied and as
NE-method when using (5).

4 Examples

Simulation study: Let us consider a clustering problem where observations are
generated around a point, a line and a plane in R3. We generate uniformly-
distributed points on the sets C1 D f.x1; x2; x3/ W x1 D x2 D x3 D 3g (no
random choice), on C2 D f.x1; x2; x3/ W 1 � x1 � 6; x2 D x3 D 3g, and, on
C3 D f.x1; x2; x3/ W x1 D 	2; 1 � x2 � 6; 1 � x3 � 6g. Later, we add error terms
in the orthogonal of the Cj ’s considering the models introduced in Sect. 2. Finally,
points are randomly drawn on the cube Œ	4; 6�
 Œ	4; 6�
 Œ	4; 6� as “gross errors”.
Figure 2 shows the result of the proposed clustering approach for a data set drawn
from that scheme of simulation.

A comparative study based on the previous simulation scheme with VE- and NE-
methods has been carried out. We have also considered an alternative (Euclidean
distance) ED-method where the Di ’s in (7) are replaced by the more simple
expressions Di D infjD1;:::;k kxi 	 PHl

j
.xi /k and no updating of the scatter

parameters is done. The ED-method is a straightforward extension of the RLGA
in Garcia-Escudero et al. (2008b).

Hundred random samples of size n D 400 from the previously described
simulation schemes with VE- and NE-models for the orthogonal errors are randomly
drawn and the associated results for the three clustering VE-, NE- and ED-methods
are monitored. Figure 3 shows the mean proportion of misclassified observations
along these 100 random samples. The NE-model seems to have a higher complexity
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Fig. 3 Proportion of misclassified observations in the simulation study described in the text

since a higher number of random initializations is needed. Note that the results favor
the VE-method even when the true model generating the data was indeed the NE-
model. We can also see that parameter S is more critical than L.
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Fig. 4 Earthquake positions in the New Madrid seismic region
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Real data example: As in Standford and Raftery (2000), we consider position data
on some earthquakes in the New Madrid seismic region from the CERI. We include
all earthquakes in that catalog from 1974 to 1992 with magnitudes 2.25 and above.
Figure 4 shows a scatter plot of the position of earthquakes and a non-parametric
kernel-based density estimation suggesting the existence of a linear tectonic fault
and three main point foci.

Figure 5 shows the clustering results when k D 4 and dimensions .1; 0; 0; 0/.
We have considered a high trimming level ˛ D :4 which allows for discarding
earthquakes that take place in regions where they are not spatially concentrated.

5 Future Research Directions

The proposed methodology needs to fix parameters k, dj ’s, ˛ and c. Sometimes
these are known in advance but other times they are completely unknown. “Split
and merge”, BIC and geometrical-AIC concepts could then be applied. Another
important issue is how to deal with remote observations wrongly assigned to higher
dimensional linear subspaces due to their “not-bounded” spatial extension. A further
second trimming or nearest neighborhood cleaning could be tried.
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Hospital Clustering in the Treatment of Acute
Myocardial Infarction Patients Via a Bayesian
Semiparametric Approach

Alessandra Guglielmi, Francesca Ieva, Anna Maria Paganoni, and Fabrizio
Ruggeri

Abstract In this work, we develop Bayes rules for several families of loss functions
for hospital report cards under a Bayesian semiparametric hierarchical model.
Moreover, we present some robustness analysis with respect to the choice of the
loss function, focusing on the number of hospitals our procedure identifies as
“unacceptably performing”. The analysis is carried out on a case study dataset
arising from MOMI2 (Month MOnitoring Myocardial Infarction in MIlan) survey
on patients admitted with ST-Elevation Myocardial Infarction to the hospitals of
Milan Cardiological Network. The major aim of this work is the ranking of the
health-care providers performances, together with the assessment of the role of
patients’ and providers’ characteristics on survival outcome.

1 Introduction

Performance indicators have recently received increasing attention; they are mainly
used with the aim of assessing quality in health-care research (Austin 2008; Austin
and Lawrence 2008; Grieco et al. 2012; Normand et al. 1997; Normand and Shahian
2007; Ohlssen et al. 2007; Racz and Sedransk 2010). In this work, we suitably model
the survival outcome of patients affected by a specific disease in different clinical
structures; the aim is to point out similar behaviors among groups of hospitals and
then classify them according to some acceptability criteria. In general, provider
profiling of health-care structures is obtained producing report cards comparing
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their global outcomes or performances of their doctors. These cards have mainly
two goals:

• To provide information that can help individual consumers (i.e. patients) making
a decision.

• To identify hospitals that require investments in quality improvement initiatives.

Here we are interested not only in point estimation of the mortality rate, but
also to decide whether investing in quality improvement initiatives for each hospital
with “unacceptable performances”. The paper presents Bayes rules under several
families of loss functions for hospital report cards. In particular, we adopt a Bayesian
semiparametric hierarchical model in this case, since it is known that they are more
flexible than “traditional” Bayesian parametric models. Moreover, we did some
robustness analysis with respect to the choice of the loss function, focusing on the
hospitals our procedure identifies as “unacceptably performing”.

Our aim is to profile health-care providers in our regional district, i.e. Regione
Lombardia. Indeed, the health governance of Regione Lombardia is very sensitive
to cardiovascular issues, as proved by the huge amount of social and scientific
projects concerning these syndromes, which were promoted and developed during
the last years. Details on some of the most important clinical and scientific local
projects can be found in Barbieri et al. (2010). The data we have analyzed
in our application come from a survey called MOMI2, which is a retrospec-
tive longitudinal clinical survey on a particular type of infarction called STEMI
(STsegment Elevation Myocardial Infarction). STEMI has very high incidence all
over the world and it causes approximately 700 events each month only in our
district. These cases are mainly treated through the surgical practice of primary
angioplasty (a collapsed balloon is inserted through a catheter in the obstructed
vessel, and then inflated, so that the blood flow is restored). It is well known
(Gersh et al. 2005; Giugliano and Braunwald 2003) that within this pathology,
the more prompt the intervention is, the more effective the therapy is; for this
reason the main process indicators used to evaluate hospitals performances are
in-hospital treatment times. The MOMI2 survey consists of six time periods data
collection in the hospitals belonging to the cardiological network of the urban area
of Milan. It contains 841 statistical units, and, for each patient, personal data, mode
of admission, symptoms and process indicators, reperfusion therapy and outcomes
have been collected. After each collection, all the hospital performances (in terms
of patients’ survival) were evaluated; moreover, a feedback was given to providers
(especially those with “unacceptable performances”) in order to let them improve
their performances.

The article is organized as follows: in Sect. 2 we present the statistical method
used to support decisions in this health-care context, while Sect. 3 shows how the
proposed model and method have been applied to data coming from MOMI2 survey.
Finally, conclusions and open problems are discussed in Sect. 4.
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2 Statistical Support to Decision-Making in Health-Care
Policy

Since random errors can be present even in a perfect risk-adjustment framework,
some mistakes could occur when classifying hospital performances as “acceptable”
or not, so that some hospitals could be misclassified. Anyway, different players in
the health-care context would pay different costs on misclassification errors. By
False Positive we mean the hospital that truly had acceptable performances but was
classified as “unacceptably performing”, and by False Negative the hospital that
truly had unacceptable performances but was classified as “acceptably performing”.
Then a health-care consumer would be presumably willing to pay a higher payoff for
decisions that minimize false negatives, whereas hospitals might pay a higher cost
for information that minimizes false positives. On the other hand, the same argument
could be used to target hospitals for quality improvement: false positives would
yield unneeded investments in quality improvement, but false negatives would lead
to loose opportunities in improving the hospital quality. According to its plans, any
health-care government could be interested in minimizing false positives and/or
false negatives.

In order to provide support to decision-making in this context, we carry out the
statistical analysis in the following way: first we estimate the in-hospital survival
rates after fitting a Bayesian semiparametric generalized linear mixed-effects model,
in particular modelling the random effect parameters via a Dirichlet process; then
we develop Bayes decision rules in order to minimize the expected loss arising from
misclassification errors, comparing four different loss functions for hospital report
cards.

We fit a Bayesian generalized mixed-effects model for binary data. For unit
(patient) i D 1; : : : ; nj ; in group (hospital) j D 1; : : : ; J , let Yij be a Bernoulli
random variable with mean pij , i.e.,

Yij jpij ind
 Be.pij /:

The pij s are modelled through a logit regression of the form

logit.pij / D log
pij

1 	 pij D �0 C
p
X

hD1
�hxijh C

J
X

lD1
blzjl (1)

where zjl D 1 if j D l and 0 otherwise. In this model, � D .�0; : : : ; �p/

represents the .p C 1/-dimensional vector of the fixed effects, xij is the vector of
patient covariates and b D .b1; : : : ; bJ / is the vector of the additive random-effects
parameters of the grouping factor. According to Kleinman and Ibrahim (1998), we
assume a nonparametric prior for b1; : : : ; bJ , namely the bj s will be i.i.d. according
to a Dirichlet process (see Ferguson 1973), to include robustness with respect to
miss-specification of the prior at this stage, since it is known that the regression
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parameters can be sensitive to the standard assumption of normality of the random
effects; the prior for � is parametric. Prior details will be given in Sect. 3. Model
(1) is a generalized linear mixed model with p C 1 regression coefficients and one
random effect. In Guglielmi et al. (2012b) the same model was fitted on a different
dataset to classify hospitals taking advantage of the in-built clustering property
of the Dirichlet process prior. Here we use Bayesian estimates to address a new
decision problem concerning hospitals’ performances.

Bayesian inferences are based on the posterior distribution, i.e., the conditional
distribution of the parameters vector, given the data. Once the posterior distribution
has been computed, suitable loss functions can be defined in order to a posteriori
weigh the decision of wrongly classifying the hospital as having acceptable or
unacceptable performances. The random intercepts of model (1), i.e., �0 C b1; �0 C
b2; : : : ; �0 C bJ represent the hospital performances quantifying the contribution to
the model after patients’ covariates adjustment. Let us denote by ˇj the sum of �0
and bj . The class of loss functions we are going to assume is then

L.ˇj ; d/ D cI � f1.ˇj / � d � I.ˇj > ˇt /C cII � f2.ˇj / � .1 	 d/ � I.ˇj < ˇt /; (2)

where d is the decision to take (d D 1 means that the hospital has “unacceptable
performances”, d D 0 stand for “acceptable performances”), cI is the weight
assigned to the cost f1.ˇj /, occurring for a false positive, cII is the weight assigned
to cost f2.ˇj /, occurring for a false negative and ˇt is defined as log.pt=.1	 pt //,
pt being a reference value for survival probabilities.

Without loss of generality, we can assume a proportional penalization, i.e.,
f2.ˇj / D k � f1.ˇj /, taking k as the ratio cII=cI . In this sense, the parameter k
quantifies our beliefs on cost, being greater than 1 if we think that accepting a false
negative should cost more than rejecting a true negative and less than 1 otherwise.
An acceptable performance is then defined comparing the posterior expected losses
associated with the decision that the hospital had “acceptable performances”

R.y; d D 0/ D E�
�

L.ˇj ; d D 0/jy
� D

Z

f2.ˇj /I.ˇj < ˇt /˘.ˇj jy/dˇj

and the decision that the hospital had “unacceptable performances”

R.y; d D 1/ D E�
�

L.ˇj ; d D 1/jy
� D

Z

f1.ˇj /I.ˇj > ˇt /˘.ˇj jy/dˇj :

In short, we classify an hospital as being “acceptable” (or with “acceptable
performances”) if the risk associated with the decision d D 0 is less than the risk
associated with the decision d D 1, i.e., if R.y; d D 0/ < R.y; d D 1/.

Within this setting, four different loss functions (2) will be considered in the next
section, to address the decision problem, namely
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0/1 Loss W
L.ˇj ; d/ D d � I.ˇj > ˇt /C k � .1 	 d/ � I.ˇj < ˇt /;

Absolute Loss W
L.ˇj ; d/ D jˇj 	 ˇt j � d � I.ˇj > ˇt /C k � jˇj 	 ˇt j � .1 	 d/ � I.ˇj < ˇt /;

Squared Loss W
L.ˇj ; d/ D .ˇj 	 ˇt /2 � d � I.ˇj > ˇt /C k � .ˇj 	 ˇt /2 � .1 	 d/ � I.ˇj < ˇt /;

LINEX Loss W
L.ˇj ; d/ D l.ˇj 	 ˇt / � d � I.ˇj > ˇt /C k � l.ˇj 	 ˇt / � .1 	 d/ � I.ˇj < ˇt /:

For instance, this means that, to recover the 0/1 loss function above, the functions
fi .ˇj /; i D 1; 2 in (2) are both constant, fi .ˇj / D jˇj 	 ˇt j; i D 1; 2 for the
Absolute Loss case, fi .ˇj / D .ˇj 	 ˇt /2; i D 1; 2 for the Squared Loss case
and fi .ˇj / D l.ˇj 	 ˇt / D exp

˚

a � .ˇj 	 ˇt /
� 	 a � .ˇj 	 ˇt / 	 1; i D 1; 2 to

obtain the LINEX Loss function. Note that all the loss functions, but the last one,
are symmetric, and the parameter k is used to introduce an asymmetry in weighing
the misclassification error costs.

3 Application to MOMI2 Data

In this section we apply the model and the method proposed in Sect. 2 to 536
patients, from MOMI2 data, who underwent PTCA treatment. For this sample,
17 hospitals of admission are involved, and in-hospital survival rate of 95% is
observed. Among all possible covariates (mode of admission, clinical appearance,
demographic features, time process indicators, hospital organization etc.) available
in the survey, only age and Killip class (which quantifies the severity of infarction
on a scale ranging from 1, the less severe case, to 4, the most severe one) have
been selected as being statistically significant. The killip class is made dichotomic
here, i.e., the killip covariate is equal to 1 for the two more severe classes (Killip 3
and 4) and equal to 0 otherwise (Killip 1 and 2). Moreover, we considered the total
ischemic time (namely Onset to Balloon time or briefly OB) in the logarithmic scale
too, because of clinical best practice and know-how. The choice of the covariates
and the link function was suggested in Ieva and Paganoni (2010), according
to frequentist selection procedures and clinical best-practice, and confirmed in
Guglielmi et al. (2012a) using Bayesian tools.

Summing up, the model (1) we considered for our dataset is

logit .EŒYij jbj �/ D logit.pij / D �0C�1 �ageiC�2 � log.OB/iC�3 �killipiCbj (3)
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Table 1 Providers labelled as “unacceptable”, under (3)–(4), for different loss functions and
different values of k and ˇt

k D 0:5 k D 1 k D 2

Loss pt D 0:96 pt D 0:96 pt D 0:96

ˇt D 3:178 ˇt D 3:178 ˇt D 3:178

0/1 None None None
Absolute None None None
Squared None None 9
LINEX None None 9

k D 0:5 k D 1 k D 2

Loss pt D 0:97 pt D 0:97 pt D 0:97

ˇt D 3:476 ˇt D 3:476 ˇt D 3:476

0/1 None 9 3,5,9,10
Absolute None 9 3,5,9,10
Squared 9 9 3,5,9,10
LINEX 9 3,5,9,10 3,5,9,10

k D 0:5 k D 1 k D 2

Loss pt D 0:98 pt D 0:98 pt D 0:98

ˇt D 3:892 ˇt D 3:892 ˇt D 3:892

0/1 3,5,9,10 All All
Absolute 2,3,4,5,9,10, 1,2,3,4,5,6,7,8,9,10, All

13,15 11,13,14,15,16,17
Squared 2,3,4,5,9,10, 1,2,3,4,5,6,7,8,9, All

13,15 10,13,14,15,17
LINEX 2,3,4,5,6,7,8,9, All All

10,13,15,17

for patient i (i D 1; : : : ; 536) in hospital j (j D 1; : : : ; 17). As far as the prior is
concerned, we assume

�?b � 
N4.0; 100 � I4/
b1; : : : bJ jG iid
 G Gj˛;G0 
 Dir.˛G0/

G0j� 
 N .0; �2/ � 
 Unif .0; 10/ ˛ 
 Unif .0; 30/: (4)

See details in Guglielmi et al. (2012b). The estimated posterior expected number of
distinct values among the bj s, computed on 5; 000 iterations of the MCMC output, is
close to 7. In Table 1 the performances of different loss functions for different values
of k and different thresholdˇt are reported. The different values ofpt we considered
(that determine the ˇt values) were fixed in a range of values close to the empirical
survival probability, in order to stress the resolution power of different losses in
detecting unacceptable performances. Of course, when increasing the threshold pt
(and therefore ˇt ), more hospitals will be labelled as unacceptable. The tuning
depends on the sensitivity required by the analysis. The parameter a of the LINEX
loss is set to be equal to 	1. Some comments are due, observing the results of
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Fig. 1 Number of hospitals
labelled as “unacceptable” as
a function of k, under the
Squared Loss function (solid
black) and the LINEX Loss
function (dotted blue). The
threshold parameter ˇt is
3:6635

Table 1. First, as mentioned before, k describes the different approach to evaluating
misclassification errors. For example, people in charge with health-care government
might be more interested in penalizing useless investments in quality improvements,
choosing a value less than 1 for k. On the other hand, patients admitted to hospitals
are more interested in minimizing the risk of wrongly declaring as “acceptably
performing” providers that truly behave “worse” than the gold standards; therefore,
they would probably choose a value greater than 1 for k. Moreover, when fixing
the loss functions among the four proposed here, and k equal to 0:5; 1 or 2, as the
threshold ˇt increases, we obtain the same “implicit ranking” of providers:

9; 3; 5; 10; 2; 4; 13; 15; 6; 7; 8; 17; 1; 14; 16

(i.e., hospital 9 was classified as “unacceptable” even for small values of ˇt , then,
when increasing ˇt , hospital 3 was classified as “unacceptable”, etc.). This result is
in agreement with the provider profiling pointed out also in Grieco et al. (2012). On
the other hand, Fig. 1 shows the number of hospitals labelled as “unacceptable” as
k increases, for a fixed value of the threshold ˇt , under the Squared and the LINEX
loss functions. Of course, the choice of the most suitable loss function is problem-
driven: in our case, it seems reasonable to consider an asymmetric loss in order to
penalize departures from threshold in different ways. For this reason we suggest the
LINEX Loss with k ¤ 1.

4 Conclusions and Further Developments

In this work we have considered data coming from a retrospective survey on
STEMI to show an example of Operational Research applied to Regione Lombardia
health-care policy. Using a logit model, we have represented the survival outcome
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by patient’s covariates and process indicators, comparing results of different loss
functions on decisions about provider’s performances. In doing so, information
coming from clinical registries was used to make the hospital network more
effective, improving the overall health-care process and pointing out groups of
hospitals with similar behavior, as it is required by the health-care decision makers
of Regione Lombardia.

Currently, we are working on the extension of this paradigm to the whole
Regional district, having designed and activated a new registry, called STEMI
Archive (see Direzione Generale Sanità 2005), for all patients with STEMI diag-
nosis admitted to any hospital in Regione Lombardia. The analysis applied here to
this sort of decision problems is relatively simple and effective. We believe that this
approach could be considered by people in charge of the health-care governance in
order to support decision-making in the clinical context.
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A New Fuzzy Method to Classify Professional
Profiles from Job Announcements

Domenica Fioredistella Iezzi, Mario Mastrangelo, and Scipione Sarlo

Abstract In the last years, Universities have created an office of placement to
facilitate the employability of graduates. University placement offices select for
companies, which offer a job and/or training position, a large number of graduates
only based on degree and grades.

We adapt c-means algorithm to discover professional profiles from job announce-
ments. We analyse 1,650 job announcements collected in DB SOUL since January
1st, 2010 to April 5th, 2011.

1 Introduction

In recent years, the number of Italian graduates has increased, although Italy is
still far from targets set out in Europe 2020 (CEDEFOP 2010). In Italy, graduates
have not find an adequate response from the employment point of view, especially
if we compare our nation to other industrialized countries (OCDE 2010). Italian
University reform designed new professional profiles, unlikely usable on the labour
market (Aureli and Iezzi 2006; Iezzi 2005, 2008, 2009). The share of workers
belonging to two large groups of ISCO88, which classifies occupations based on
a master degree, is about 11 %. The European average is 15 % (OCDE 2010).
Moreover graduates in Engineering, Pharmacy, Economics, Dentistry and Dental
Implants quickly find a job consistent with their degree, but for many other
graduates, e.g. in Communication Science, it is more difficult (ISTAT 2010a).

D.F. Iezzi (�)
Tor Vergata University, Rome, Italy
e-mail: stella.iezzi@uniroma2.it

M. Mastrangelo • S. Sarlo
Sapienza University, Rome, Italy
e-mail: m.mastrangelo@uniroma1.it; scipione.sarlo@uniroma1.it

P. Giudici et al. (eds.), Statistical Models for Data Analysis, Studies in Classification,
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-319-00032-9 18,
© Springer International Publishing Switzerland 2013

151

mailto:stella.iezzi@uniroma2.it
mailto:m.mastrangelo@uniroma1.it
mailto:scipione.sarlo@uniroma1.it


152 D.F. Iezzi et al.

The contractual framework marks a further difference. Master’s degrees in Biology
and Architecture guarantees more consistent work with the university courses, their
salary is really not as expected for highly qualified professions (ISTAT 2010b).
In many cases, the job market doesn’t recognize professional profiles designed by
university reforms (Ministerial Degree [MD] 509/99, MD 270/04 and amendments
to MD 270/04).

In order to facilitate the employability of graduates, all universities, often
associated, have created an office of placement (Fabbris 2009; Iezzi 2011). Offices
of placement collect job advertisements of companies accredited with Universities.
The procedure to select a candidate is very simple: companies send to placement
offices a job advertisement in which they describe features of candidates (degree,
skills, knowledge, etc.). Then, Universities ask to companies to classify job profiles
using their rules. Frequently companies classify incorrectly their announcements or
simply they select the category “other.”

The aim of this paper is to classify professional profiles of job announcements.
We use a fuzzy approach, because job announcements for graduates frequently can-
not be classified into mutually exclusive groups. Many different job announcements
could require similar competences, e.g., a good knowledge of English or available
to travel. A hard clustering could produce groups that are not good respect to
compactness and separability. Moreover this approach helps to identify the shading
off of each ad.

We adapt fuzzy c-means algorithm to have partial membership in each class
(Dunn 1973; Pal et al. 1996). The paper is organized as follows: in Sect. 2, we
present the method; in Sect. 3, we describe an application and the main results and,
finally, in Sect. 4, we expose the conclusions and the future developments.

2 Data and Methods

We analyze 1,650 job announcements, published from January 1st, 2010 to April
5th, 2011 on DB SOUL (System University Orientation and Job) by 496 companies.
SOUL1 is a network of eight Universities (Sapienza, Roma Tre, Tor Vergata, Foro
Italico, Accademia di belle Arti, Tuscia, Cassino, LUMSA—Libera Università degli
Studi Maria SS. Assunta) in the area of Lazio. The main goal of SOUL is to make a
bridge between the job market and the university, so that the university students and
graduates can have their best chances to improve their employability.

Our method is composed of six steps:

1. Pre-processing.
2. Lexical analysis.

1Currently the DB SOUL collects 52,000 graduate CVs, of which about 27,000 come from
“Sapienza,” 7,500 from “Roma Tre,” 2,500 from “Tor Vergata,” and 15,000 from other universities
not only of the Lazio region (LUMSA, LUISS, Tuscia, and Cassino), but also from other regions
(e.g., Napoli Federico II, Salerno, Bari, Bologna, Chieti-Pescara, Lecce).
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3. Selecting of weighing scheme.
4. Construction of proximity matrix.
5. Applying different clustering methods.
6. Comparison of final partitions.

In the first step, we work on alphabetic characters to reduce the variability
of tokens due to grammatical or orthographical mistakes. For this reason, we
corrected typing errors, e.g. “canditato,” instead of “candidato” or “diresione”
instead of “direzione.” In the second step, we realized two different forms of
normalization: the first one “soft” and the second one based on lists. In the first one
we uniform numbers, dates, adding space after the apostrophe and we transform
accents in apostrophes. Normalization based on lists recognizes multiple words,
grammatical phrases and nominal groups to preserve their specificity inside the
corpus. To realize this kind of normalization we used several lists, some of these
were provided as resources by software Taltac2 (Bolasco 2010; Giuliano and La
Rocca 2008) other lists were built by ourselves during the pre-processing. These
lists contain multiple words, e.g. “ad esempio” (for example) “all’interno di”
(inside of), “alla ricerca di” (looking for), “partita iva” (VAT), “orario di lavoro”
(working hours). In particular, we focused our attention on the creation of two
lists: the first one, concerning several types and levels of degrees, e.g. “laurea
specialistica in scienze statistiche e attuariali” (master degree in statistics and
actuarial science), the second one made of professions, e.g. “ingegnere elettronico”
(electronic engineer) or “programmatore junior” (junior programmer). These steps
involved text reformatting (e.g., whitespace removal) and stop word removal, using
an other specific list that we created.

In the third step, we transform the corpus into vectors of weighted terms by
a term-document matrix TD [wij], where wij is the weight ith word in a jth
text (for iD 1, : : : , p and jD 1, : : : k). We use two weighting schemes: (1) Term
Frequency (TF), where wij is the frequency of word type i in a document j (wijD nij);
(2) Term Frequency Inverse Document Frequency (TFIDF): wij D nij

max nij
log N

ni
,

where maxnij is the maximum frequency of word i in a corpus, N is the total number
of documents and ni is the number of documents in which the word i appears.

TF scheme assumes that word order has no significance, and TFIDF put the
emphasis on the fact that terms that occur in many documents are more general,
but less discriminative terms, whereas a rare term will be a more precise document
descriptor (Iezzi 2012a). Bolasco and Pavone (2008) specifies that TFIDF is used
“as an indicator of the importance of terms as for example on the web to measure the
relevance of the contents of a document in relation to a specific query, which in most
cases consists in a simple list or combinations of words.” The thresholds 5 and 10
allow to build a TFIDF reduced matrix, respectively, of 64 % and 78 %. This drastic
cut makes the TFIDF matrix less dispersed, improving the performance of clustering
algorithm, but it deletes also the most relevant information on the professional
profiles. The TF matrix has the disadvantage to have a big size, incurring in “the
curse of dimensionality” (Houle et al. 2010).
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In the fourth step, we calculate cosine distance on both TF and TFIDF matrices
to measure the similarity between the job announcements. The job announcements
with many common terms will have vectors closer to each other, than document
with fewer overlapping terms (Iezzi 2010).

In the fifth step, we apply the c-means algorithm (Bezdek 1981). The objective
of fuzzy clustering is to partition a data set into c homogeneous fuzzy clusters. This
algorithm is based on minimization of the following objective function:

Fcmm D
N
X

iD1

C
X

jD1
umij

�

�xi 	 cj
�

�

2
; 1 � m <1

where m is any real number greater than 1, uij is the degree of membership of xi

in the cluster j, xi is the ith of d-dimensional measured data, cj is the d-dimension
center of the cluster, and jj*jj is any norm expressing the similarity between any
measured data and the center. This algorithm is a version soft of the popular
k-means clustering (Iezzi 2012b). As well known, the k-means method begins with
an initial set of randomly selected exemplars and iteratively refines this set so as
to decrease the sum of squared errors. k-centers clustering is moderately sensitive
to the initial selection of centers, so it is usually rerun many times with different
initializations in an attempt to find a good solution. This algorithm requires the user
to pre-define the number of clusters (c). We select the number of clusters (c) using
silhouette index (Rousseeuw 1987).

Due to the fuzzy nature of job announcements, fuzzy methods performed better
than the classical ones. According to the results of the preliminary data exploration
and fuzzy clustering with different values of the input parameters for fuzzy c-means
algorithm, the best parameter combination was chosen and applied to training data
set. In Fuzzy c-means new data is compared to the cluster centers in order to
assign clustering membership values to the test data. A common approach is to
use data to learn a set of centers such that the sum of squared errors between data
points and their nearest centers is small. We perform 12 strategies to select the best
classification (Table 1).

To summarize, the realization of the best-adapted c-means clustering (M3C) is
as follows:

1. Initialize: we calculate cosine distance on T matrix.
2. Randomly we select k of the n data points as the medoids.
3. We associate each data point to the closest medoid (“closest” here is defined

using Euclidean distance).
4. We select the configuration with the lowest cost.
5. We repeat steps 3–4 until there is no change in the medoid.
6. We save the final medoids into a matrix UD [uij], that initializes centroids of

c-means algorithm.
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Table 1 Steps of the twelve adopted methods

Method Input matrix Intermediate algorithms (output: initial centroids) Final algorithm

M1A TFIDF c-means
M1B TFIDF Cosine distance k-means c-means
M1C TFIDF Cosine distance PAMa c-means
M2A TFIDF Cosine distance MDS c-means
M2B TFIDF Cosine distance MDS k-means c-means
M2C TFIDF Cosine distance MDS PAM c-means
M3A TF Cosine distance c-means
M3B TF Cosine distance k-means c-means
M3C TF Cosine distance PAM c-means
M4A TF Cosine distance MDS c-means
M4B TF Cosine distance MDS k-means c-means
M4C TF Cosine distance MDS PAM c-means
aThe Partitioning Around Medoids (PAM) algorithm (Theodoridis & Koutroumbas, 2006) breaks
the dataset up into groups, minimizing squared error and chooses data points as centers (medoids or
exemplars), introducing a method that simultaneously considers, as initial centers. It is more robust
to noise and outliers as compared to k-means because it minimizes a sum of pairwise dissimilarities
instead of a sum of squared Euclidean distances

7. At k-step, we calculate the centers vectors cj D
N
P

iD1
umij xi

N
P

iD1
umij

, C(k)D [cj] with U(k).

8. We update U(k), U(kC 1), uij D 1

c
P

kD1

0

B

B

@

kxi�cjk
2

m�1
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C

C
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. If
�

�U.kC1/ 	 U.k/
�

� < " then

stop; otherwise we return to step 7.

An R program for performing steps 1 through 8 has been developed by the
authors.

3 Results

Before the pre-processing, the corpus of ads is composed of 2,50,368 tokens
and 11,899 words. The ads are very short with a number average of tokens
equals to 151, lexical measures underline a language very standardized (Table 2).
The most frequent words are “languages,” “English,” “software,” “engineer” and
“development.”

After the pre-processing, we involved text reformatting (e.g., whitespace
removal) and stopword removal, using an ad hoc list we created (Table 3).

Overall the 1,650 announcements refer to 156 different job positions classified by
the companies. The most frequent job announcements (454 corresponding to 27.2 %
of total ads) belong to category “other.”
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Table 2 Lexical measures of the corpus before the pre-processing

Tokens (N) 2,50,368 Lexical richness (V/N)� 100 4.75 %
Types (V) 11,899 Hapax percentage 33.78 %
Hapaxa 4,013 Guiraud indexb 23.78
aA hapax is a word (token) which occurs only once within a corpus
bGuiraud index is a measure of lexical richness. It assumes the
following formula: G D Vp

N
, where V is types, and N is tokens

Table 3 Lexical measures of the corpus after the pre-processing

Tokens (N) 1,94,930 Lexical richness (V/N)� 100 18.597 %
Types (V) 10,482 Hapax percentage 34.745 %
Hapax 3,642 Guiraud index 23.741

Table 4 The most popular job positions in DB SOUL

Rank Job profile Job ads no. (%)

1 Other category 454 (27.52)
2 Analyst programmer 109 (6.66)
3 Programmer 95 (5.75)
4 Account 48 (2.90)
5 Systems analyst 36 (2.18)
6 Engineer 30 (1.18)
7 Administrative assistant 26 (1.57)
8 Insurance agent 20 (1.12)
9 Business analyst 18 (1.09)

The job positions in DB SOUL are mainly connected to information technology,
and secondly to financial bank and insurance sector (Table 4).

The maximum number of announcement published by one firm was 65, but 44 %
of 496 firms published only one announcement, whereas three out of four of all
firms published not more than three. We deleted 113 job ads, because they were
written in English. At the end, we analyzed 1,537 job announcements. Our method
detected ten big groups. System engineer, analyst programmer and insurance agent
are the largest groups (Fig. 1). Candidates belong to big groups should have a degree
in Engineering, Statistics or Mathematics. The category “other” belongs to different
clusters.

We searched for the best number of clusters iterating the analyses from two to
ten classes. The most powerful group is one of ten groups with the method M3C.
Table 5 shows that the methods M3A, M3B, and M3C have all classes with a high
number of job announcements.

The method M3C allows to clearly identify the macro groupings of ads, while
other procedures make a confused reading of data.

The most requested job position in DB SOUL is connected with Information
Technology (IT). The professional profiles detected are overlapped. Degree in
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Fig. 1 Hard cluster profiles

Table 5 Size of the clusters composed of ten classes

Size

Methods c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

M1A 6 568 308 5 6 285 7 7 345 0

M1B 341 1 9 5 568 10 284 3 309 3

M1C 16 3 355 14 391 514 244 0 0 0

M2A 286 130 162 146 10 190 265 203 5 140

M2B 152 140 130 190 2 203 286 162 13 259

M2C 237 271 275 215 225 243 71 0 0 0

M3A 224 41 190 123 224 125 173 192 126 119

M3B 206 126 195 124 125 41 225 197 172 126

M3C 152 158 43 195 186 150 194 228 110 121

M4A 1 126 37 1;372 1 0 0 0 0 0

M4B 1 1;385 76 2 1 44 22 1 4 1

M4C 1;334 1 1 19 33 66 78 3 1 1

Engineering is demanded in interdisciplinary field. In particular, Systems Engineer
deals with work-processes and tools to manage risks on such projects, and it overlaps
with both technical and human-centered disciplines such as control engineering,
industrial engineering, organizational studies, and project management. This pro-
cedure allows detecting even new professions, such as green job, not covered in
the national classification system (Duda et al. 2000; Iezzi 2008). According to the
Bureau of Labor Statistics of United Nations, green jobs are either: (1) Jobs in
businesses that produce goods or provide services that benefit the environment or
conserve natural resources. (2) Jobs in which workers’ duties involve making their
establishment’s production processes more environmentally friendly or use fewer
natural resources.

Table 6 shows that the centroids of clusters belong to hard cluster the maximum
57.6 % (c8—System Engineer); in general, the clusters are very overlapped each
other. In particular, the seller ads require skills in common with many groups.
System Engineer is a well-defined group; generally, the ads ask a degree in
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Table 6 Fuzzy cluster profiles of the centroids

fc1 fc2 fc3 fc4 fc5 fc6 fc7 fc8 fc9 fc10

c1 0.225 0.136 0.085 0.049 0.018 0.035 0.013 0.014 0.166 0.243
c2 0.109 0.294 0.048 0.141 0.039 0.092 0.028 0.023 0.216 0.083
c3 0.055 0.008 0.503 0.007 0.003 0.005 0.003 0.004 0.013 0.036
c4 0.053 0.071 0.031 0.203 0.137 0.250 0.093 0.049 0.103 0.039
c5 0.037 0.036 0.024 0.118 0.266 0.135 0.265 0.099 0.056 0.026
c6 0.050 0.064 0.030 0.192 0.157 0.244 0.107 0.053 0.094 0.037
c7 0.032 0.027 0.022 0.087 0.231 0.091 0.327 0.151 0.044 0.022
c8 0.023 0.017 0.017 0.046 0.100 0.043 0.131 0.576 0.028 0.016
c9 0.113 0.308 0.049 0.135 0.038 0.088 0.027 0.022 0.218 0.086
c10 0.304 0.040 0.192 0.023 0.010 0.016 0.007 0.009 0.063 0.411

fc final centroid, c cluster

Engineer, fluently English and propose full time contract. It is interesting to note
that Administrative Assistant is overlap with competences required also by Analyst
Programmer.

4 Conclusions

University offices of placement select for companies, which offer a job and/or
training position, a large number of graduates only based on degree and grades. The
classifier used by universities is frequently incomplete and, moreover, companies
select often the category “other.” This method allows detecting new professions,
because it uses a bottom up procedure. Another advantage is that we do not lose
valuable information on documents, because we didn’t apply a procedure to reduce
dimensions of TF matrix. We could apply Multidimensional Scaling (MDS) to
reduce high dimensional data in a low dimensional space with preservation of the
similarities between texts (Borg and Groenen 2006). In this case, this procedure
could reduce dimensionality, but it may not reveal the genuine structure hidden in
the data. In fact, the job announcements are very short and this method considers
noisy information also hapax and, in this case, they could be a keyword of
professional profiles. In this case, MDS would select a big one group and many
small clusters. The ads would be classified on the basis of transversal skills, such as
knowledge of English.

The future step is to use this method to detect new classifiers that we could be
used for a supervised classification to measure distance between graduate CVs and
job ads. We could analyze graduate CVs encoding data on university courses (NUP
to three digits, declaratory of course) and information on experience of candidate,
including the title and abstract of thesis. In this way, we could select for companies
a large number of CVs not only based on degree and grades, but also taking into
account characteristics and experience of graduates.
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A Metric Based Approach for the Least Square
Regression of Multivariate Modal Symbolic Data

Antonio Irpino and Rosanna Verde

Abstract In this paper we propose a linear regression model for multivariate
modal symbolic data. The observed variables are probabilistic modal variables
according to the definition given in (Bock and Diday (2000). Analysis of symbolic
data: exploratory methods for extracting statistical information from complex data.
Springer), i.e. variables whose realizations are frequency or probability distribu-
tions. The parameters are estimated through a Least Squares method based on a
suitable squared distance between the predicted and the observed modal symbolic
data: the squared `2 Wasserstein distance. Measures of goodness of fit are also
presented and an application on real data corroborates the proposed method.

1 Introduction

Symbolic Data Analysis (SDA) is a recent approach for the statistical analysis
of multivalued data, gathering contributes from different scientific communities:
statistics, machine learning, data mining and knowledge discovery. Differently
from the classical data where each observation is a “punctual” realization of an
observed variable, symbolic data are characterized by sets of values observed
for each variable (intervals, sets of categories, empirical frequency or probability
distributions). Indeed, symbolic data are generally referred to the description of
groups of individuals, typologies or concepts. Many data analysis techniques were
extended to the study of symbolic data (for a wide overview of the SDA methods
see Bock and Diday 2000 and Diday and Noirhomme-Fraiture 2008). In this paper
we focus our proposals on the regression analysis for symbolic data. In SDA, linear
regression models were proposed to study the structure of dependence of a response
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“symbolic” variable from a set of independent or explicative variables of the same
nature.

Some initial proposals were regression models for interval data as extensions
of the classical linear model for numerical variables (see Diday and Noirhomme-
Fraiture 2008 and the therein references for a full overview of regression models for
interval data).

In Billard and Diday (2006) was presented a first regression model for histogram
variables. However, that regression model allows to predict only punctual values and
only indirectly a histogram response from a set of explicative histograms. Indeed,
the authors left open the problem of how to predict directly symbolic data from
a set of symbolic descriptions. To meet such requirement, in Verde and Irpino
(2010) was proposed a simple linear regression model for modeling the relationship
between a histogram response variable and an histogram explicative variable. The
main novelty of the proposed model consists into using a suitable distance, the
`p Wasserstein metric (also known as Mallow’s distance, see Gibbs and Su 2002)
for measuring the Sum of Squared Errors in the Ordinary Least Squares estimate
procedure. The distance is computed stating from the quantile functions associated
(in bijection) with histogram descriptions. So, the method allows to predict quantile
functions, and then the corresponding histograms. According to the nature of the
mathematical entities involved in the analysis, some constraints on the parameters
space are required.

In order to solve such constrained problem, Dias and Brito (2011) proposed a
linear regression model for histogram data based on the Wasserstein distance and
on a constrained Least Square approach, but introducing supplementary variables
related to the original ones.

In this paper, we extend the model proposed in Verde and Irpino (2010) to
the multivariate case. We propose a matrix formulation of the LS problem based
on a novel scalar product between vectors of quantile functions related to the
decomposition of the Wasserstein metric proposed by Irpino and Romano (2007).
We show that the LS problem in the space of quantile functions can be decomposed
into two independent LS problems (one for the averages of the histograms and one
for the centered histograms), and we suggest the solution of the LS problem trough
a Non Negative LS formulation. Indeed, a linear combination of a set of quantile
functions returns a quantile function too only if it is a conical combination (i.e. the
quantile functions are multiplied by non negative scalars).

The paper is organized as follows: in section 2 symbolic data are presented
according to the definition given in Bock and Diday (2000) and Diday and
Noirhomme-Fraiture (2008); in section 3 the new multiple linear regression model
for Numerical Probabilistic (Modal) Symbolic Variables is introduced; finally in
section 4, we apply the model to a climatic data set and compare the obtained results
with two concurrent models.
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2 Numerical Probabilistic Modal Symbolic data

In a classic data table (n 
 p individuals per variables) each individual is described
by a vector of values that are the realizations of a set of variables. Similarly,
in a symbolic data table each individual is described by a vector of set-valued
descriptions (like intervals, set of categories, sequences of values, associated with
frequency or probability distributions), that, for extension, are the realizations of
a set of symbolic variables. According to the taxonomy of symbolic variables
presented in Bock and Diday (2000) we may consider as numeric symbolic variables
all those symbolic variables having as realizations numeric set-valued data.

Given a set of n individuals (concepts, classes) ˝ D f!1; : : : ; !ng a symbolic
variable X , with domain D, is a map X W ˝ ! D such that X.!i / 2 D. In this
paper we refer only to Modal Symbolic Variables. According to Bock and Diday
(2000) the domain of a Modal Variable is a set of mappings. Let us considerD �M
where Mi 2 M is a map Mi W Si ! Wi , such that for each element of the support
si 2 Si it is associated wi DMi.si / 2 <C.

If Mi.si / has the same properties of a random variable (i.e.
R

s2Si w.s/ds D 1, or
P

s2Si ws D 1), X can be defined as a Numerical Probabilistic (Modal) Symbolic
Variable (NPSV) andMi.si / can described through a probability density function, a
histogram, an empirical frequency distribution fi .x/. In this paper we refer only to
Numerical Probabilistic (Modal) Symbolic Data (NPSD), that are in the domain of
Numerical Probabilistic (Modal) Symbolic Variables. Histogram data are the most
common case of NPSD. Given the generic individual !i , X.!i/ is its histogram
description for the NPSV X . It consists in a set of disjoint Ki intervals (a.k.a. bins)
Iki D Œaki ; bki � .k D 1; : : : ; Ki/ with associate a set of positive Ki weights wki
such that

PKi
kD1 wki D 1, as follows:

X.!i/ D fi .x/ D f.I1i ;w1i / ; : : : ; .Iki ;wki / ; : : : ; .IKi i ;wKi i /g :

3 Least Squares Linear Regression Analysis of NPSV’s

Given p explicative NPSV’s X1; : : : ; Xj ; : : : ; Xp and a dependent NPSV Y

observed on a set ˝ , the aim is to predict the variable Y as a linear combination of
the Xj ’s according to the nature of the symbolic variables.

Denoting with X and Y the matrix of the observed independent symbolic data
Xj (j D 1,. . . ,p) and the vector of the observed response symbolic data Y, the linear
regression model f(.) to be fitted according to a set of parameters teta collected in a
vector Teta, is:

Denoting with X and Y, respectively, the matrix of the observed independent
symbolic data xij (i D 1; : : : ; n and j D 1; : : : ; p) and the vector of the observed
response symbolic data yi , the regression model �.�/ is determined by the estimates
of a vector � of parameters, as follows:
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Y D �.X;�/C " (1)

where " is vector of errors. In the regression analysis of NPSV’s (in particular
for histogram-valued variables), two main approaches for the estimation of the
parameters were proposed: the first one (Billard and Diday 2006) is an extension
of the classic LS to histogram-valued data treated as weighted punctual data, while
a second approach is based on the `2 Wasserstein distance, where the sum of square
errors in the LS problem is defined as the integrated squared difference between
two quantile functions (which are in bijection w.r.t. their corresponding NSPD’s).
The idea behind the last approach is to predict the quantile functions (denoted yi .t/
for i D 1; : : : ; n) having observed a set of quantile functions (denoted xij .t/ for
i D 1; : : : ; n) of the p predictors. A simply generalization leads to estimate a set
of parameters of a linear combination of xij .t/’s (for j D 1; : : : ; p) which allow to
predict the yi .t/’s (for i D 1; : : : ; n) except for a error term ei .t/. It is worth noting
that ei .t/ is a residual function, which is not necessarily a quantile function. The
resulting regression model to fit is:

yi .t/ D ˇ0 C
p
X

jD1
ˇj xij .t/C ei .t/: (2)

The parameters ˇj are estimated using a LS method, where the Sum of Squared
Errors (SSE) to minimize is computed by using the (squared) `2 Wasserstein
distance between distributions. We recall that this distance permits to explain and
interpret in an easy way the proximity relations between the characteristics of
two distributions (Verde and Irpino 2007). Consequently, the SSE function can be
expressed as

SSE D
n
X

iD1

1
Z

0

Œei .t/�
2 dt D

n
X

iD1
d 2W

0

@yi .t/;

2

4ˇ0 C
p
X

jD1
ˇj xij .t/

3

5

1

A : (3)

However, a problem arises for the linear combination of quantile functions: only
if ˇj � 0 .j D 1; : : : ; p/ it is assured that yi .t/ is a quantile function (i.e. a not
decreasing function). In order, to overcome this problem, in Verde and Irpino (2010)
and Dias and Brito (2011) are proposed novel formulations of the regression model
for histogram-valued data based on the Wasserstein distance.

3.1 The Proposed Model

Before introducing the new model we recall two particular decompositions of `22
Wasserstein distance. Given f and g, two NPSD and xcf .t/ and xcg.t/ the respective
centred quantile functions (i.e., the quantile functions shifted by the means of the
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distributions) in Cuesta-Albertos et al. (1997) is showed that the `22 Wasserstein
distance can be rewritten as:

d2W .f; g/ D
1
Z

0




xf .t/ 	 xg.t/
�2
dt D � Nxf 	 Nxg

�2 C
1
Z

0

h

xcf .t/ 	 xcg.t/
i2

dt: (4)

This property allows to consider the squared distance as the sum of two components,
the first related to the location of the distributions and the second related to their vari-
ability structure. In Irpino and Romano (2007) was expanded such decomposition,
showing that the d2W can be finally decomposed into three quantities:

d2W .f; g/ D
� Nxf 	 Nxg

�2 C �sf 	 sg
�2 C 2sf sg

�

1 	 	.xf ; xg/
�

(5)

where 	.xf ; xg/ is the correlation between the two quantile functions, i.e.:

	.xf ; xg/ D
R 1

0 xf .t/ � xg.t/dt 	 Nxf � Nxg
sf � sg : (6)

Equation (6) allows to express the inner product between two quantile functions, as
follows:

˝

xf .t/; xg.t/
˛ D

Z 1

0

xf .t/ � xg.t/dt D 	.xf ; xg/ � sf � sg C Nxf � Nxg: (7)

Thus, given two vectors of quantile functions x D Œxi .t/�n�1and y D Œyi .t/�n�1, we
can define the scalar product of two vectors of NPSD as:

xTy D
n
X

iD1

˝

xf .t/; xg.t/
˛ D

n
X

iD1




	.xi ; yi / � sxi � syi C Nxi � Nyi
�

: (8)

If we consider the centred quantile functions yci .t/ D yi .t/ 	 Nyi and xcij .t/ D
xij .t/ 	 Nxij , denoting with NY D Œ Nyi �n�1 the vector of the means of the fi .y/, with
Yc D 


yci .t/
�

n�1 the vector of the centred quantile functions, with NX D 
 Nxij
�

n�p
the matrix of the means, with Xc D

h

xcij .t/
i

n�p the matrix of the centred quantile

functions of fi .xj /’s, and with NXC D Œ1j NX�, we express the model as follows:

Y D NXCBC Xc� C e: (9)

In order to estimate the parameters, we define the Sum of Square Errors criterion
(SSE) as follows:

SSE.B; � / D eT e D 
Y 	 NXCB 	 Xc�
�T 


Y 	 NXCB 	 Xc�
�

: (10)
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Using Eqs. (7) and (8) it is possible to prove1 that NXTCXc D 0.pC1/�p, NXTCY D
NXTC NY and XcTY D XcTYc. Thus, the SSE.B; � / can be expressed as follows:

SSE.B; � / D SSE.B/C SSE.� / D NeT NeC .ec/
T ec (11)

The global minimization problem is divided into the minimization of two indepen-
dent terms: SSE.B/ related to the means of the predictor quantile functions Nxij ’s
in NXC, and SSE.� / related to the variability of the centered quantile distributions
xcij .t/’s in Xc . Therefore, the two independent models are:

NY D NXCBC Ne Yc D Xc� C ec : (12)

The vector B can be solved using a classical OLS model, while the vector of � ’s
is estimated using the NNLS (Non Negative Least Squares) algorithm proposed by
Lawson and Hanson (1974), integrated with the scalar product of vectors of NPSD’s.
This is necessary, because the � ’s cannot be negative, considering that they are
multiplied by quantile functions.

Considering the nature of the data, the evaluation of the goodness of fit of the
model is not straightforward. The extension of the classicR2 index to the regression
of NPSD produced the following two indices:

˝ index .Dias and Brito 2011/ Pseudo 	R2 (Verde and Irpino 2010)

˝D
n
P

iD1
d 2W . Oyi .t/; Ny/

�

n
P

iD1
d 2W .yi .t/; Ny/ I PseudoR2Dmin




max



0I 1	 SSE
SSY

� I 1� :

Further, we propose to use the classic Root Mean Square Index (RMSEW ) in
order to compare concurrent models based on the Wasserstein distance:

RMSEW D

v

u

u

u

t

n
P

iD1

1
R

0

. Oyi .t/ 	 yi .t//2 dt
n

D
r

SSE

n
:

4 Application on Real Data

The Clean Air Status and Trends Network (CASTNET)2 is an air quality monitoring
network of United States which is designed to provide data to assess trends in
air quality, atmospheric deposition, and ecological effects due to changes in air

1Note that if x is a vector of scalars Eq. (8) becomes xTy D
n
P

iD1

xi � Nyi .
2http://java.epa.gov/castnet/.

http://java.epa.gov/castnet/
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Fig. 1 Ozone dataset. Representation of the barycenters for each variable according to Verde and
Irpino (2008)

Table 1 Ozone dataset: Standard deviation of the NPSV’s according to Verde and Irpino (2008)

Ozone Concentration Temperature Solar Radiation Wind Speed
(Y in Ppb) (X1 in Celsius deg.) (X2 Watt/m2) (X3 m/s)

Standard dev. 9.5295 3.8422 113.4308 1.1337

pollutant emissions. From the CASTNET repository, we have chosen to select data
about the Ozone concentration repository, observed in 78 USA sites. Ozone is a
gas that can cause respiratory diseases and, in the literature, there exist studies that
relates the Ozone concentration level to the Temperature, the Wind speed and the
Solar radiation (see for example Dueñas et al. 2002). CASTNET collects hourly
data for each variable and, in this paper, we choose to study the summer season
of 2010 and the central hours of the days (10 a.m.–5 p.m.). For each sites we
have collected the NPSD’s of the four variables in terms of histograms3 and, in
order to give a visual reference, in Fig. 1 we show the average station described
by the sample Wasserstein mean histogram (in the sense of Verde and Irpino 2007)
for each variable. We recall that the Wasserstein mean histogram is the histogram
corresponding to the mean quantile function of all the quantile functions of a set of
NPSD’s. In Table 1, we reported the standard deviation of each variable according
to the dispersion measures proposed in Verde and Irpino (2008).

For a site, given the distribution of Temperature (X1) (Celsius degrees), the
distribution of Solar Radiation (X2) (Watts per square meter) and the distribution
of Wind Speed (X3) (meters per second), the main objective is to predict the
distribution of Ozone Concentration (Y ) (Particles per billion) using a linear model.
We have considered the different regression models proposed by Billard and Diday
(2006) and by Dias and Brito (2011), and we compared them with the here proposed
model. The estimates of the parameter and the goodness of fit indices are reported
in Table 2.

Considering the goodness of fit indices, we observe that the Wasserstein distance
based methods perform better than the Billard–Diday one, while, the new model
is more accurate than the Dias–Brito one. However, the main differences among

3We supply the full table of histogram data, the MatlabTM code and workspace upon request.
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Table 2 Ozone dataset: estimates of the three regression models and goodness of fit indices.
Asterisks indicate that the indices have been computed after a Montecarlo experiment on the
Billard–Diday model

Goodness of fit

Model Estimates ˝ Ps-R2 RMSE

Billard–Diday Oyi D 18:28C 0:357 xi1 C 0:017 xi2 C 1:550 xi3 0:203� 0:024� 9:41�

Dias–Brito Oyi .t/D 13:32C 0 xi1.t /C 0:037 xi2.t /C 0:670 0:371 7:56

1:691 xi3.t /C 0 Qxi1.t /C 0 Qxi2.t /C 0 Qxi3.t /

Irpino–Verde Oyi .t/D ONyi C Oyci .t / 0:742 0:460 7:00
ONyi D 2:93� 0:346 Nxi1 C 0:07 Nxi2 C 0:395 Nxi3
Oyci .t / D 0:915 xci1.t /C 0:018 xci2.t /C 1:887 xci3.t /

the models are related to the interpretation of the parameters. While the Billard–
Diday model is interpretable like a classic regression model, it does not suggest
relationships between the internal variability of the NPSD’s. The Dias and Brito
model, introducing new entities (the quantile functions of the symmetric distri-
butions Qxij .t/), solves the non negativity constraint of the Wasserstein distance
based model parameters, but, in the opinion of the authors, it seems quite artful in
introducing new variables which are also strongly correlated with the original ones.

The here proposed method represent a new and a reasonable trade-off between
the goodness of fit and interpretation issue: a first part of the model allows to
predict the location (the mean) of a NPSD (linearly) depending from the location
(a set of means) of p independent NPSD’s (similar to the Billard and Diday); the
second part of the model is devised for predicting the internal variability of a NPSD
(conically, considering the non negativeness constraint) depending from the internal
variabilities of p explicative NPSD’s: i.e., being the � ’s related to centered quantile
functions, and if the NPSD’s have not very different shapes, their estimates are
measures of how much the variability of the response variable is inflated (when
the parameter is grater than one) or deflated (if the parameter is lower than one)
when an increase of one of the internal variability of a predictor variable occurs
(considering the other constants).
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Dueñas, C., Fernández, M., Cañete, S., Carretero, J., & Liger, E. (2002). Assessment of ozone
variations and meteorological effects in an urban area in the mediterranean coast. Science of
The Total Environment, 299(1–3), 97–113.

Gibbs, A., & Su, F. (2002). On choosing and bounding probability metrics. International Statistical
Review, 70(3), 419–435.

Irpino, A., & Romano, E. (2007). Optimal histogram representation of large data sets: Fisher vs
piecewise linear approximation. Revue des Nouvelles Technologies de l’Information, RNTI-E-9,
99–110.

Lawson, C. L., & Hanson, R. J. (1974). Solving least square problems. Edgeworth Cliff, NJ:
Prentice Hall.

Verde, R., & Irpino, A. (2007). Dynamic clustering of histogram data: Using the right metric. In
P. e. a. Brito (Ed.) Selected contributions in data analysis and classification (pp. 123–134).
New York: Springer.

Verde, R., & Irpino, A. (2007). Dynamic clustering of histogram data: Using the right metric.
In P. Brito, G. Cucumel, P. Bertrand, & F. De Carvalho (Eds.) Selected contributions in data
analysis and classification (Chap. 12, pp. 123–134). Berlin, Heidelberg: Springer.

Verde, R., & Irpino, A. (2008). Comparing histogram data using a mahalanobis-wasserstein
distance. In P. Brito (Ed.) COMPSTAT 2008 (Chap. 7, pp. 77–89). Heidelberg: Physica-Verlag
HD.

Verde, R., & Irpino, A. (2010). Ordinary least squares for histogram data based on wasserstein
distance. In Y. Lechevallier, & G. Saporta (Eds.) Proceedings of COMPSTAT’2010. (Chap. 60,
pp. 581–588). Heidelberg: Physica-Verlag HD.



A Gaussian–Von Mises Hidden Markov Model
for Clustering Multivariate Linear-Circular
Data

Francesco Lagona and Marco Picone

Abstract A multivariate hidden Markov model is proposed for clustering mixed
linear and circular time-series data with missing values. The model integrates
von Mises and normal densities to describe the distribution that the data take
under different latent regimes, with parameters that depend on the evolution of an
unobserved Markov chain. Estimation is facilitated by an EM algorithm that treats
the states of the latent chain and missing values as different sources of incomplete
information. The model is exploited to identify sea regimes from multivariate
marine data.

1 Introduction

In multivariate analysis, mixture-based classification studies are typically carried
out by assuming that the data are in the form of independent multivariate samples.
This assumption is a shortcoming when classification is based on observations
that are collected in the form of multivariate time series, because a clustering
procedure should account for the potential redundancy of the data, due to temporal
autocorrelation. Multivariate hidden Markov models (MHMMs; Zhang et al. 2010
and the references therein) are mixture models that allow for temporal correlation,
because observations are modeled by a mixture of multivariate distributions, whose
parameters depend on the states of latent Markov chain. As a result, classification
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is not only based on similarities in the variables space, but also on similarities that
occur in a temporal neighborhood.

The literature on MHMM-based classification studies is dominated by Gaussian
MHMMs for multivariate continuous data. MHMMs for non-normal data are less
developed and traditionally specified by approximating the joint distribution of
the data by a mixture whose components are products of univariate densities,
therefore assuming that measurements in a multivariate profile are conditionally
independent (CI), given the states of the hidden Markov chain. Although this
assumption facilitates both the specification and the estimation of a non-normal
MHMM, CI-based MHMMs often require an unnecessary large number of states
to obtain a reasonable goodness of fit, complicating the interpretation of the
results. This has motivated a number of efforts in order to relax the CI assumption
in nonnormal MHMMs, for example in the analysis of categorical data (Zhang
et al. 2010). Motivated by classification issues that arise in marine studies, we
extend this strand of the literature in the context of mixed linear and circular time
series data. We focus in particular on quadrivariate time series of wave and wind
directions, wind speed and wave height, typically collected by a buoy to describe sea
conditions. Previous work on the classification of linear-circular data includes either
mixtures whose components are specified as products of univariate or bivariate
densities (Lagona and Picone 2011, 2012), which ignore temporal correlation, or
hidden Markov models where single measurements are assumed as conditionally
independent given the latent states of a Markov chain, which ignore correlation
within latent classes (Holzmann et al. 2006). We integrate temporal autocorrelation
and within-classes correlation in a Gaussian–von Mises MHMM, by approximating
the joint distribution of the data by a mixture with components that are specified
as the product of a bivariate von Mises and a bivariate normal density and with
parameters that depend on the evolution of a latent Markov chain. In this way,
circular measurements (e.g., wind and wave directions) are clustered according
to a number of toroidal clusters, while linear measurements (e.g., wind speed and
wave heights) are clustered within standard elliptical clusters. Toroidal and elliptical
clusters are then paired according to the states of the latent Markov chain, which can
be hence interpreted as latent regimes of the observation process.

2 A Gaussian–von Mises Multivariate Hidden
Markov Model

Our data are in the form of a quadrivariate time series, say z D .zt ; t D 0; : : : ; T /,
where each profile zt D .xt ; yt / includes two circular and two linear components,
xt 2 .	�; �/2 and yt 2 R2. In MHMM-based classification studies, the temporal
evolution of class membership is driven by a latent Markov chain, which can be
conveniently described as a vector 	 D .	t ; t D 0; : : : ; T / of multinomial variables
	t D .�t1; : : : ; �tK/with one trial andK classes, whose binary components represent



A Gaussian–Von Mises Hidden Markov Model for Clustering Multivariate . . . 173

class membership at time t . The joint distribution of the chain, say p.	Ip;P/, is
fully known up an initial probabilities vector p D .p1; : : : ; pK/; pk D P.�0k D 1/;
and a transition probabilities matrix P D .phk; h; k D 1; : : :K/; phk D P.�tk D
1j�t�1;h D 1/.

The specification of the proposed Gaussian–von Mises MHMM is completed by
assuming that circular and linear data profiles are conditionally independent, given
the states of the Markov chain, say

f .zj	I a;b/ D
T
Y

tD0

K
Y

kD1
.f .xt I ak/f .yt Ibk//�tk ; (1)

where

f .xI a/ / exp .a11 cos.x1 	 a1/C a22 cos.x2 	 a2/
C a12 sin.x1 	 a1/ sin.x2 	 a2// (2)

is a bivariate von Mises density (Singh et al. 2002) on the torus .	�; �/2, indexed
by a multivariate parameter a D .a1; a2; a11; a22; a12/, and

f .yIb/ / exp
�

b11.y1 	 b1/2 C b22.y2 	 b2/2 C b12.y1 	 b1/.y2 	 b2/
�

(3)

is a bivariate normal density, indexed by a parameter b D .b1; b2; b11; b22; b12/.
We assume that the observed time series is a sample drawn from the K-states

Gaussian–von Mises MHMM distribution

f .zI�/ D
X

	

p.	Ip;P/f .zj	I a;b/; (4)

known up the parameter � D .p;P; a;b/, a D .a1; : : : aK/, b D .b1; : : : bK/. Under
this setting, the data can be clustered by assigning each profile zt to the class k with
the highest posterior probability O�tk D P.�tk D 1jzT I O�/, where O� is the maximum
likelihood estimate of � .

3 Parameter Estimation

Let xmis D .xt;mis; t D 1; : : : ; T / and xobs D .xt;obs; t D 0; : : : T / be the missing
and observed circular observations, and let ymis D .yt;mis; t D 1; : : : T / and yobs D
.yt;obs; t D 0; : : : T / be the missing and observed linear observations. Accordingly,
zobs D .xobs; yobs/ and zmis D .xmis; ymis/ indicate the vectors of the observed and
the missing values, respectively. If the data are missing at random, the MLE of � is
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the maximum point of the marginal log-likelihood function

logL.�/ D log
X

	

p.	Ip;P/
T
Y

tD0

K
Y

kD1

�

Z

f .xt I ak/dxt;mis

Z

f .y t Ibk/dyt;mis

��tk

:

(5)
Because direct maximization of (5) can be computationally problematic, we
describe an EM algorithm that is based on the complete-data log-likelihood
function,

logLcomp.�/ D
K
X

kD1
�0k logpk C

T
X

tD1

K
X

hD1

K
X

kD1
�t�1;h�t;k logph;k

C
T
X

tD0

K
X

kD1
�tk logf .xt;mis; xt;obsI ak/

C
T
X

tD0

K
X

kD1
�tk logf .yt;mis; yt;obsIbk/; (6)

and generates a sequence of points toward a maximum point of the likelihood, by
alternating a E step and a M step.

The E step reduces to the evaluation of the expected value of the complete data
log-likelihood with respect to the conditional distribution p.	; xmis; ymisjzobs; O�/ of
the unobserved quantities given the available data, say

Q.�j O�/ D E
�

logLcomp.�/jzobs
�

: (7)

The expectation (7) can be evaluated in terms of iterated expectations, by observing
that the conditional distribution of the unobserved quantities can be factorized as
follows

f .	; xmis; ymisjzobsI O�/ D p.	jzobsI O�/f .xmisj	; xobsI Oa/f .ymisj	; yobsI Ob/ (8)

where

f .xmisj	; xobsI Oa/ D
T
Y

tD0

K
Y

kD1

 

f .xt I Oak/
R

xt;mis
f .xt I Oak/dxt;mis

!�tk

f .ymisj	; yobsI Ob/ D
T
Y

tD0

K
Y

kD1

 

f .yt I Obk/
R

yt;mis
f .yt I Obk/dyt;mis

!�tk

: (9)

As a result, the expected complete data log-likelihood can be computed as follows,
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Q.�j O�/ D
K
X

kD1
O�0k logpk C

T
X

tD1

K
X

hD1

K
X

kD1
O�t�1;t;hk logph;k

C
T
X

tD0

K
X

kD1
O�tkE .logf .xt;mis; xt;obsI ak/jxt;obs; �tk D 1I Oa/

C
T
X

tD0

K
X

kD1
O�tkE

	

logf .yt;mis; yt;obsIbk/jyt;obs; �tk D 1I Ob



; (10)

The expected values of logf .xt I ak/ and logf .y t Ibk/ with respect to the condi-
tional distributions of the circular and linear missing values, within each latent class,
can be computed by replacing the sufficient statistics with their expected values;
these expected sufficient statistics are available in closed form in both the case of
normal data (Shafer 1997) and in the case of circular data (Lagona and Picone 2012).
The expected values O�tk D E.�tkjz; O�/ and O�t�1;t;hk D E.�t�1;h�t;k jz; O�/ denote
the posterior state probabilities of first and second order and can be evaluated by
a standard backward–forward iteration procedure, well known in the literature of
MHMMs (Cappe et al. 2005).

The M step is carried out by maximizing the expected complete data log-
likelihood, with respect to � . We observe that function Q.�j O�/ depends on
three functions, say Q.p;Pj O�/, Q.aj O�/ D PK

kD1 Qk.akj O�/ and Q.bj O�/ D
PK

kD1 Qk.bkj O�/, that are known up to independent parameters and can be there-
fore maximized separately. However, while closed formulas are available for the
maximum point ofQ.p;Pj O�/ andQ.bkj O�/ (Cappe et al. 2005), the maximum point
ofQ.akj O�/ is the solution of a system of five trigonometric equations, which has to
be solved iteratively (Lagona and Picone 2012).

Standard errors can be conveniently computed by a parametric-bootstrap pro-
cedure, by re-fitting the model to the bootstrap data, simulated from the estimated
model, and computing the standard deviation of the distribution of the bootstrap
estimates. Simulation of a Gaussian–von Mises MHMM is straightforward. We first
simulate a sequence of states from the Markov chain. Given a sequence of states,
bivariate circular and linear observations are at each time t drawn according to
the appropriate bivariate von Mises or Gaussian density, respectively evaluated at
a D akt and b D bkt , where kt is the state that has been drawn at time t . To obtain a
bivariate circular sample, we follow an acceptance-rejection algorithm, as suggested
in Mardia et al. (2007).

4 Application

Sea conditions can be described in terms of representative wave regimes in specific
areas, characterized by the probability of occurrence and corresponding to dominant
environmental conditions (e.g., wind conditions), acting in the area and during a
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Fig. 1 Marine data, observed at the buoy of Ancona in the period 12/12/2009–12/1/2010; left:
semi-hourly wind and wave directions (in radians), projected on a toroidal surface; right: semi-
hourly wind speed (meter/sec) and wave height (meters)

period of interest (Lagona and Picone 2011). The data that motivated this paper are
semi-hourly, quadrivariate profiles with two linear and two circular components:
wind speed and wave height, wind direction and wave direction, taken in the period
12/12/2009–12/1/2010 by the buoy of Ancona, which is located in the Adriatic sea
at about 30 Km from the coast. Of the resulting 1,501 profiles of wind and wave
observations, about 20% include at least one missing value. In this paper we assume
that the data are missing at random (MAR). In marine studies, missing values occur
because devices transmission errors or malfunctioning. Because buoys are normally
equipped in a way that they are able to transmit data even in the case of severe
environmental conditions, marine observations are often missing completely at
random (MCAR), i.e. the missingness probability does not depend on observed and
unobserved data. The MCAR assumption is a particular case of the MAR hypotesis
and is often likely for marine data that are obtained in semi-enclosed seas, such
as the Adriatic sea, where severe environmental conditions seldom occur. Figure 1
displays the circular and the linear observations, after discarding the incomplete
profiles. In particular, points in the left-hand side plot of the figure indicate hourly
directions from which the wind blows and the wave travels, respectively, projected
on the torus .	�; �/2.

We clustered these data by fitting Gaussian–von Mises HMMs with K D 2 : : : 5
states. To select the number of components, we computed both the Bayesian
Information Criterion (BIC) and the Integrated Complete Likelihood (ICL) statistic
(Table 1). The BIC statistic suggests a model with K D 4 components. However,
a model with 4 components distinguishes the same three clusters provided by a
model with 3 components, using two overlapping components to approximate the
distribution of the data under a single latent state. This behavior of BIC has been
extensively discussed in Baudry et al. (2010) in the context of mixture models. In our
case study, however, overlapping components lack of physical interpretation, and
cluster separation is more important than goodness of fit. We therefore use the ICL
criterion, which approximates the integrated complete log-likelihood (Biernacki
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Table 1 Model selection results

Number Number BIC ICL
of parameters of parameters

2 23 1545.2 1577.3
3 38 1494.4 1551.8
4 55 1483.1 1585.2
5 74 1501.1 1674.0

Table 2 Estimated parameters and standard errors (within brackets) of a 3-states multivariate
Hidden Markov model with mixed linear and circular components

Components

1 (s.e.) 2 (s.e.) 3 (s.e.)

Circular a1 1.710 (0.020) 6.165 (0.011) 2.938 (0.036)
Parameters a2 3.885 (0.072) 6.074 (0.011) 3.314 (0.046)

a11 3.158 (0.187) 10.750 (0.187) 4.819 (0.662)
a22 0.482 (0.069) 9.420 (0.384) 3.465 (0.480)
a12 �0.889 (0.137) 12.450 (0.485) 2.007 (0.491)

Gaussian b1 0.967 (0.032) 1.170 (0.029) 0.555 (0.036)
Parameters b2 3.985 (0.115) 6.527 (0.117) 5.175 (0.245)

b11 0.643 (0.040) 0.649 (0.036) 0.148 (0.017)
b22 8.179 (0.478) 9.937 (0.553) 6.287 (0.738)
b12 2.040 (0.130) 2.355 (0.137) 0.936 (0.111)

Destination state
Origin 1 0.975 (0.007) 0.015 (0.006) 0.010 (0.005)

State 2 0.011 (0.005) 0.988 (0.005) 0.001 (0.002)
3 0.020 (0.026) 0.009 (0.022) 0.972 (0.031)

et al. 2000) and reduces to a BIC statistic, penalized by substracting the estimated
mean entropy

Pn
iD1

PK
kD1 O�tk log O�tk. Because ICL includes cluster separation as

an additional criterion for model choice, the minimum ICL is attained by a model
with three components, which is the model we consider to analyze the data.

Table 2 displays the maximum likelihood estimates and the standard errors of
the model. The dependence parameters a12 and b12 are significant under each
component, making a CI assumption difficult to motivate. Figure 2 shows the
contour plots of the toroidal and planar densities, paired into three latent regimes,
and the data points, allocated to the most probable regime. For simplicity, points
in the top row are displayed in a plane. The model detects three regimes of
straightforward interpretation. Regime 1 is associated with periods of calm sea:
weak winds are associated with waves of modest size, traveling from the Italian
coast, along the minor axis of the Adriatic sea. Under this regime, wind and wave
directions are poorly synchronized and, simultaneously, wind speed and wave height
are weakly correlated, because when wind episodes are modest, then waves are
essentially influenced by marine currents. Wind and wave data are instead strongly
correlated under regimes 2 and 3. Regime 2 is associated with bora episodes,
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Fig. 2 Contour plots of the three conditional circular and linear bivariate densities, as estimated
by fitting a multivariate hidden Markov model with three states, and points allocated to the most
probable component

when fine structured wind jets blow within the Dinaric Alps toward the eastern
Adriatic coast. Regime 3 is instead associated with sirocco episodes, when wind
blows southeasterly, along the major axis of the Adriatic sea. In summary, regime
switching does not only change directional and linear averages but also, and more
interestingly, the correlation structure of the data, which is ignored by CI-based
HMMs (Holzmann et al. 2006). The model hence indicates that weather conditions
should not be used to predict wave direction and height, without accounting for the
latent heterogeneity of the data.

5 Discussion

Motivated by classification issues that arise in marine studies, we introduce a new
MHMM for segmenting environmental data according to latent classes or regimes,
associated with toroidal and elliptical clusters. The combination of bivariate von
Mises and normal distributions allows for a simple specification of the dependence
structure between variables and for the computational feasibility of a mixture-based
classification strategy where missing values can be efficiently handled within a
likelihood framework.
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A Comparison of Objective Bayes Factors for
Variable Selection in Linear Regression Models

Luca La Rocca

Abstract This paper deals with the variable selection problem in linear regression
models and its solution by means of Bayes factors. If substantive prior information
is lacking or impractical to elicit, which is often the case in applications, objective
Bayes factors come into play. These can be obtained by means of different
methods, featuring Zellner–Siow priors, fractional Bayes factors and intrinsic priors.
The paper reviews such methods and investigates their finite-sample ability to
identify the simplest model supported by the data, introducing the notion of full
discrimination power. The results obtained are relevant to structural learning of
Gaussian DAG models, where large spaces of sets of recursive linear regressions
are to be explored.

1 Introduction

In a variety of applications, a numerical response vector y D Œy1 : : : yn�
0 has to be

predicted, and there is an interest in determining a reduced set of predictors among
the columns of a numerical matrix X D ŒX1 : : : Xp�. This is known as the variable
selection problem, and it is often dealt with by assuming that y follows a multivariate
normal distribution with mean vector 
 and covariance matrix ��1In, where � is a
precision (inverse variance) parameter and In is the n-dimensional identity matrix.
Each set of predictors will be represented by a p-dimensional zero-one vector � ,
with �j D 1 (�j D 0) meaning that Xj is included in (excluded from) the set, and
� will be associated with a linear regression model M� by letting


 D ˛1n CX�ˇ� ; (1)
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where 1n is the n-dimensional vector of all ones, ˛ is a scalar intercept parameter,
X� is the matrix consisting of the columns of X identified by �j D 1, and ˇ� is a
vector of regression parameters. An “effective” method for variable selection will
identify a model M O� with “good” predictive performance, but “small” dimension
j O� j C 2, where j O� j D 10p O� . More on variable selection can be found in George
(2000).

Bayesian comparison of any two models M0 and M1 for data y can be performed
through the Bayes Factor (BF): denoting by fk.yj�k/ the sampling density of
y under Mk , k D 0; 1, and by pk.�k/ the corresponding parameter prior, the
BF for M1 against M0 is defined as BF10.y/ D f1.y/=f0.y/, where fk.y/ D
R

fk.yj�k/p.�k/d�k is the marginal likelihood of Mk given y. If several models
are to be compared, each of them will be assigned a prior probability p.Mk/

and will receive the posterior probability p.Mkjy/ D p.Mk/BFk0.y/=fp.M0/ C
P

h¤0 p.Mh/BFh0.y/g once the BF for each model against a baseline model M0

has been computed. Posterior model probabilities can be used for model selection
or to average predictions across models; see Kass and Raftery (1995) for a classic
review.

BFs are especially suited to variable selection, because they automatically imple-
ment Ockham’s razor: they penalize unnecessarily complex models, as discussed
by Jefferys and Berger (1992) among others. However, BFs critically depend on
parameter priors, so that using them for objective analyses (analyses in lack of
substantive prior information) is a challenging task; see Pericchi (2005) and the
references therein. This paper reviews, in Sect. 2, different methods available in
the literature to specify objective parameter priors for the comparison of linear
regression models and compares, in Sect. 3, their performance as Ockham’s razors.
A brief discussion of the link to structural learning of Gaussian DAG models
concludes the paper.

2 Miscellany of Bayes Factors

Let M� and MQ� be two distinct linear regression models for the response vector
y conditional on the predictor matrix X. A first possibility to obtain an objective
BF for MQ� against M� is simply to neglect the effect of parameter priors by using
Schwarz criterion to approximate the log-ratio of marginal likelihoods; see Kass
and Raftery (1995). This gives

SCBF Q�� .B� Q� ; n/ D n�.j Q� j�j� j/=2B�n=2� Q� ; (2)

whereB� Q� D RSS Q�=RSS� is the ratio of residual sum of squares for the two models
fitted using ordinary least squares, n is the available sample size, and j Q� j 	 j� j is the
difference between the two model dimensions. As discussed by Kass and Raftery
(1995), the SCBF in (2) is a rough tool mostly appealing for reference purposes.
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More elaborate objective BFs for comparing linear regression models typically
start by considering the non-informative limiting-conjugate parameter prior

pN
� .˛; ˇ� ; �/ / ��1 (3)

under model M� . If priors pN
� .�/ and pN

Q� .�/ are directly used to compare M� and
MQ� , the resulting BF will only be defined up to a constant factor. Spiegelhalter and
Smith (1982) specified the constant factor so as to obtain a BF equal to one on
special data from a minimal experiment, but their proposal is somehow arbitrary;
see O’Hagan (1995). Alternatively, if pN

� .�/ in (3) is replaced by Jeffreys’s prior

pJ
� .˛; ˇ� ; �/ / ��1Cj� j=2, the constant factor could be uniquely determined using

Jeffreys’s measure without dropping its leading constant factor, as suggested by
Dawid (1999); this would give a BF proportional to SCBF in (2). In order to
make progress with parameter priors, more elaborate methods are needed, which
transform pN

� .�/ so that BFs are uniquely defined. Three such methods are presented
below.

Zellner–Siow Priors

Let M� be nested in MQ� and split the vector of regression parameters for MQ�
as ˇQ� D Œˇ0� ˇ0ı�0, where ı D Q� 	 � identifies the additional predictors in MQ�
with respect to M� . The BF for MQ� against M� will be uniquely defined if
we replace pN

Q� .�/ with pgQ� .˛; ˇ� ; ˇı; �/ / ��1dmn.ˇıj0; g��1.X0ıXı/
�1/, where

dmn.�j0; ˙/ denotes the centred multivariate normal density with covariance matrix
˙ and g is a strictly positive scalar quantity, whose choice is discussed later.
This amounts to giving the common parameters a common non-informative prior
under the two models, regarding them as nuisance parameters, while conventionally
adopting Zellner’s g-prior for the additional parameters. The interpretation of ˛ and
the elements of ˇ� as common parameters, following Zellner and Siow (1980), is
based on a reparameterization leading to 10nXı D 0 and X0�Xı D 0, which is also
instrumental in finding the following expression for the BF:

ZSBF Q�� .B� Q� ; njg/ D f1C gg.n�jQ� j�1/=2f1C gB� Q�g�.n�j� j�1/=2 ; (4)

whereB� Q� � 1 as a consequence of M� being nested in MQ� ; see Liang et al. (2008).
Two non-nested models can be compared through a third model nested

in both of them; using the null model M0 for all pairs, the null-based
approach will compare M� and MQ� using ZSBF0

Q�� .B0Q� ; B0� ; njg/ D ZSBF Q�0

.B0 Q� ; njg/fZSBF�0.B0� ; njg/g�1. In practice, this is equivalent to conventionally
using g-priors under all models. Alternatively, the full-based approach would
compare all pairs through the full model M1, but this would introduce incoherences,
because the prior under M1 would change in each pairwise comparison. Finally,
concerning the choice of g, a wide range of possibilities is discussed by Liang
et al. (2008) and implemented in the R package BAS (Clyde 2010). If g has
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to be fixed, the choice g D max fn; p2g is recommended as a benchmark
on the basis of the work of Fernández et al. (2001). If g can be given a
hyper-prior, then an Inverse-Gamma distribution depending on sample size,
namely, pn.g/D .n=2/1=2� .1=2/�1g�3=2 exp f	n=.2g/g, results in the heavy-
tailed multivariate Cauchy priors of Zellner and Siow (1980). These two choices
guarantee consistency of the BF as a model selector (under a technical assumption
and using strictly positive prior model probabilities). Other mixtures of g-priors, as
well as empirical Bayes estimates of g, are also considered by Liang et al. (2008).

Fractional Bayes Factors

Let pN
k .�k/ be the non-informative prior available under model Mk , k D 0; 1,

and choose a fraction b of the data for training. The fractional BF of O’Hagan
(1995) is the BF obtained using the data-dependent fractional prior pF

k.�k/ /
f .yj�k/bpN

k .�k/ and the fractional likelihood f .yj�k/1�b under model Mk . A
generally recommended fraction choice is b D n�=n, where n� is the minimal
(integer) sample size that makes both pF

0 .�k/ and pF
1 .�k/ proper; an argument in

favour of this choice is given by Moreno (1997). The fractional BF is especially
suited to the context of exponential families and conjugate priors, where the
fractional likelihood is an ordinary likelihood with sample size n	n� and summary
statistics as in the whole data; see Consonni and La Rocca (2012) for details on
this aspect. In particular, for any two linear regression models M� and MQ� , the
fractional BF for MQ� against M� admits the following closed-form expression:

FBF Q�� .B� Q� ; njn�/ D � ..n� 	 j� j 	 1/=2/� ..n 	 j Q� j 	 1/=2/
� ..n� 	 j Q� j 	 1/=2/� ..n 	 j� j 	 1/=2/B

�.n�n�/=2
� Q� ; (5)

where � .�/ denotes the gamma function and n� D max fj� j; j Q� jg C 2. Notice that
n� D p C 2 is necessary to explore the whole model space without incoherences.

Intrinsic Priors

Let M0 be nested in M1 and pN
k .�k/ be the non-informative prior available under

Mk, k D 0; 1. Choose a training sample size t . The intrinsic prior for �1 under
M1, with respect to pN

0 .�0/ under M0, is pI
1.�1jt/ D pN

1 .�1/
R

BFN
01.u/f1.uj�1/du,

where BFN
01.u/ is the BF for M0 against M1 using the non-informative priors

and observing an auxiliary training sample u D Œu1 : : : ut �0; see Berger and
Pericchi (1996). Notice that u is not part of the data, and that it is averaged
out in the definition of pI

1.�1jt/, so that the latter only depends on t . The larger
is t , the more peaked pI

1.�1jt/ will be on the subspace of M1 corresponding to
M0, because values of �1 originating samples u supporting M0 are emphasized
in the definition of pI

1.�1jt/. This feature can also be grasped from the intrinsic
prior representation as an expected-posterior prior of Perez and Berger (2002):
pI
1.�1jt/ D

R

pN
1 .�1ju/f N

0 .u/du. A typical choice of t is the minimal (integer)
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sample size that makes pN
1 .�1ju/ proper for all u. With this choice, in the context of

variable selection, starting from pN
� .�/ in (3), and pairing it with pI

Q� .�/, the following
BF for MQ� against M� is obtained:

IPBF Q�� .B� Q� ; n/ D 2

�

Z

�
2

0

fk Q�k sin2  g.j Q� j�j� j/=2fnC k Q�k sin2  g.n�jQ� j�1/=2
fnB� Q� C k Q�k sin2  g.n�j� j�1/=2 d ;

(6)

where k Q�k D j Q� jC2 is the dimension of MQ� andB� Q� � 1, because M� is nested in
MQ� ; see Casella et al. (2009) and the references therein. Note that implementing (6)
amounts to a unidimensional integral over a bounded interval, and that non-nested
models can be compared exactly as with Zellner–Siow priors.

3 Sharpness of Ockham’s Razor

A general argument by Dawid (1999) suggests that the typical learning rate of
BF10.y/, as n ! 1, when two nested models M0 � M1 with respective
dimensions d0 < d1 are compared, is given by BF10.y/ D Op.n

�.d1�d0/=2/,
when the sampling distribution p belongs to M0, and by BF01.y/ D exp.	Kn C
Op.n

1=2//, for someK > 0, when the sampling distribution p belongs to M1 nM0.
In this way, asymptotically, both wrong models and unnecessarily complex models
are dropped, and the BF automatically implements Ockham’s razor. The learning
speed is clearly unbalanced, as pointed out by Johnson and Rossell (2010), but
this aspect will not be pursued any further here. It will be enough to say that the
above asymptotic learning rate can be verified for the objective BFs of Sect. 2. For
variable selection in linear regression models, a different perspective on the ability
of different methods to implement Ockham’s razor is also of interest. The rest of
this section is written from this perspective, which can be named as the study of
finite-sample discrimination power.

All objective BFs for variable selection presented in Sect. 2 can be written as

BF0
Q�� .B0 Q� ; B0� ; n/ D BF Q�0.B0Q� ; n/fBF�0.B0� ; n/g�1 ; (7)

using the null-based approach, although this is pleonastic when the pairwise BF
is also defined for non-nested models and BF0

Q�� .B0 Q� ; B0� ; n/ D BF Q�� .B� Q� ; n/.
The limit of (7) as B0Q� ! 0 when Q� ¤ 0 determines, for fixed n, how much the
posterior probability mass will be able to concentrate on non-null models with good
fit (relative to the null model). Specifically, the following definition identifies two
kinds of BFs.

Definition 1. The BF in (7) has full discrimination power with respect to wrong
models if BF0

Q�� .B0 Q� ; B0� ; n/!1, as B0 Q� ! 0, when j Q� j > 0.
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Table 1 Discrimination power of objective BFs for variable selection in linear regression models.
The first column identifies the BF. The second and third column report whether the BF satisfies or
not Definitions 1 and 2. The following columns report two-digit posterior model probabilities for
Hald data (identifying models by the set of selected predictors); models receiving zero two-digit
posterior probability from all BFs are not shown. Not all rows sum to one due to rounding errors

BF Def. 1 Def. 2 f3; 4g f1; 4g f1; 2g f2; 3; 4g f1; 3; 4g f1; 2; 4g f1; 2; 3g f1; 2; 3; 4g Total

BPBFa No No 0.03 0.22 0.34 0.06 0.10 0.11 0.11 0.03 1.00
SCBF Yes No 0.00 0.05 0.25 0.01 0.16 0.23 0.23 0.07 1.00
CFBFb Yes No 0.00 0.10 0.24 0.04 0.16 0.20 0.20 0.06 1.00
ZSBF Yes Yes 0.00 0.16 0.52 0.02 0.08 0.10 0.10 0.01 0.99
IFBFc Yes Yes 0.00 0.17 0.54 0.02 0.07 0.09 0.09 0.01 0.99
IPBF Yes Yes 0.00 0.18 0.55 0.02 0.07 0.09 0.09 0.01 1.01
aBPBF (Benchmark Prior BF) is ZSBF given g D max fn; p2g
bCFBF (Coherent Fractional BF) is FBF with n� D pC 2 in all pairwise comparisons
cIFBF (Incoherent Fractional BF) is FBF with n� D j� j C 2 in FBF�0

A BF with full discrimination power with respect to wrong models, which is a BF
resolving the information paradox in the terminology of Liang et al. (2008), will
drop all non-null models with poor fit, as well as the null model, whenever a non-
null model MQ� with good fit is present. However, MQ� will be nested in other non-
null models with good fit, unless it is the full model, and there is no guarantee
that the posterior probability mass will not spread on all these models, instead of
concentrating on the simplest of them. Indeed, for Ockham’s razor to be sharp when
n is small, a further condition has to be verified by the BF.

Definition 2. The BF in (7) has full discrimination power with respect to unneces-
sarily complex models if BF0

Q�� .B0 Q� ; B0� ; n/ ! 0, as B0Q� ! 0 and B0� ! 0, with
B� Q� D B0 Q�=B0� ! 1, when j Q� j > j� j > 0.

A BF with full discrimination power with respect to unnecessarily complex models
will concentrate the posterior probability mass on the simplest non-null model with
good fit whenever one such model is present.

The discrimination power of six objective BFs, covering the whole spectrum
of methods reviewed in Sect. 2, is illustrated in Table 1. Each BF was classified
according to Definitions 1 and 2, then it was applied to Hald data: this very
well-known example, where up to p D 4 ingredients can be used to predict
the heat evolved during the hardening of a cement mix, based on n D 13

observations, provides a simple but effective demonstration of the different degrees
of finite-sample discrimination power; the small sample size prevents the asymptotic
Ockham’s razor from coming into play, while the small number of predictors makes
exhaustive model search possible and thus avoids confounding the features of BFs
with model search issues. Computations were carried out in R (R Development
Core Team 2011), using package BAS (Clyde 2010) for Zellner–Siow priors and
Schwarz criterion, together with user-defined functions for fractional BFs and
intrinsic priors; package BAS also provided a built-in version of Hald data (complete
with documentation). Uniform prior model probabilities were used, as a default
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Fig. 1 Posterior probability of the null model ˝ D M0 on i.i.d. normal data: 2,500 response
vectors of length n D 13 (Hald data sample size) were randomly generated and then analysed with
the six objective BFs of Table 1, using Hald data predictors and uniform prior model probabilities.
Results do not depend on the expected value and variance of the simulated data, because the
distribution of B0� under M0 is free of these parameters

choice for comparing BFs, although this assignment should not be given for granted
in objective analyses; see in particular Scott and Berger (2010).

Intrinsic priors and Zellner–Siow priors (g-priors with random g) have full dis-
crimination power both with respect to wrong models and to unnecessarily complex
models. These two BFs essentially give the same results on Hald data, with more
than half of the posterior probability mass concentrated on the model indexed by
O� D Œ1100�0, which clearly stands out for selection. Schwarz criterion and fractional
BFs (implemented coherently) only achieve full discrimination power with respect
to wrong models, and thus their posterior probability mass is more spread towards
complex models. Interestingly, an incoherent usage of fractional BFs performs
equivalently to intrinsic priors and Zellner–Siow priors. Finally, benchmark priors
(g-priors with fixed g) lack discrimination power both with respect to wrong models
and to unnecessarily complex models, and their posterior probability mass is spread
towards both simple and complex models. Notice that, although all methods select
the same model M O� under the highest posterior probability criterion, they give
different results if the median posterior probability criterion of Barbieri and Berger
(2004) is used: BPBF, SCBF and CFBF select f1; 2; 4g in place of f1; 2g, because
the inclusion probability of predictor 4 is also above 50%.

In order to complete the study of finite-sample discrimination power, the case of
no non-null model fitting the data significantly better than M0 has to be considered.
In this case, the ratio B0� will be close to one for all � , and the posterior probability
of M0 will be close to the following upper bound:

p.M0jy/ � p.M0/

p.M0/CP�¤0 p.M� /BF�0.1; n/
: (8)
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Clearly, due to consistency, the right hand side of (8) goes to one, as n ! 1.
The distribution of p.M0jy/ on simulated data from the null model is illustrated in
Fig. 1.

4 Discussion

Variable selection in linear regression models is a factor in structural learning of
Gaussian DAG models, because these are sets of recursive linear regressions. In
this setting, Consonni and La Rocca (2011) and Altomare et al. (2013) dealt with
the imbalance in the asymptotic learning rate of the fractional BF along the lines
suggested by Johnson and Rossell (2010), and Consonni and La Rocca (2012)
developed fractional BFs invariant with respect to Markov equivalence; work is in
progress to apply intrinsic priors. Since large spaces of DAGs are to be explored,
even with few variables, discrimination power is important to obtain a short list of
models with good fit.
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Evolutionary Customer Evaluation: A Dynamic
Approach to a Banking Case

Caterina Liberati and Paolo Mariani

Abstract Today, the most important asset for a bank is its customer and therefore,
the main targets to achieve by management are: knowledge of his needs, anticipation
of his concerns and to distinguish itself in his eyes. The awareness that a satisfied
customer is a highly profitable asset effort to provide a satisfactory service to the
customer by diversifying its services. This paper aims to analyze the customer
evaluation evolution of the main attributes of banking services to catch differences
among the clusters and time lags through a dynamic factorial model. We propose a
new system of weights by which assessing the dynamic factor reduction that is not
optimal for all the instances considered across different waves. An empirical study
will be illustrated: it is based on customer satisfaction data coming from a national
bank with a spread network throughout Italy which wanted to analyze its reduced
competitiveness in retail services, probably due to low customer satisfaction.

1 Scenario

Customer centric vision has been successfully applied in the last years in banking
sector. Such a concept has customer satisfaction as the most important asset
of a company. According with this idea banks have increased their products
differentiation in order to match with potential clients requests or expectations.
This resulted in offer homologation making necessary a focus on service attributes
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differentiation. Such scenario leads banks to employ intelligent systems to monitor
their own clients in order to build and preserve a robust relationships with them. That
generated an operative improvement in terms of efficiency and economic returns.
However, as it is well known, the bank-consumer is an ever-changing relationship
due to both environment and actors evolution. Therefore the core of our contribution
focuses on analyzing the evolution of customer satisfaction and track patterns of
customer evaluations related to bank service features. The tested hypothesis is the
loss of bank retail services competitiveness, probably due to a drop of customer
satisfaction.

2 Methodological Framework

A growing number of banks are directing their strategies towards customer satis-
faction. In fact, researches have demonstrated, also by longitudinal examinations,
that customer satisfaction serves as a link to critical consumer behaviors, such as
cross-buying of financial services, positive word-of-mouth, willingness to pay a
premium-price, and tendency to the relationship (Winstanley 1997; Bernhardt et al.
2000; Winkler and Schwaiger 2004).

Customer satisfaction data sets can be multidimensional and have a complex
structure: especially when they are collected as sets (tables) of objects and variables
obtained under different sampling periods (as in our case of study). Dynamic
multivariate techniques allow the analysis of complex data structures in order to
study a given instance phenomenon in both a structural (fixing base relationships
among interesting objects (variables)) and a dynamic way (to identify change and
development of in accordance to the occasions referred to). When a sufficiently long
term series is not available a Multiway Factor Analysis (MFA) turns to be a suitable
tool for the study of variable dynamics over various time periods (Tucker 1966;
Kroonenberg 1993; Kiers 1989).

MFA main idea is to compare different data tables (matrices) obtained under
various experimental conditions, but containing the same number of rows and/or
columns. By analogy to N-way methods, the three-way data set is denoted byX with
dimensions n, p and k, corresponding to the number of rows (individuals), columns
(variables) and tables (occasions), respectively (Rizzi and Vichi 1995). Thus, an
element of X is xijh, where i D 1; : : : ; n, j D 1; : : : ; p and h D 1; : : : ; k.
Following Escofier and Pagès (1994) we built a common factorial space, the
“compromise space”, in which the elements are represented according to their
average configuration relative to data volume as a whole. This space is obtained
by means of a Principal Component Analysis of the unfolded matrix X, solving the
following the minimum equation:

min jjX 	 A�B 0jj2 (1)
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where� is a matrix .m 
m/ of eigenvalues, A is a matrix .m
m/ of eigenvectors
of the quadratic formX 0X andB is a matrix .n
n/ of eigenvectors of the quadratic
form XX0. The compromise plan (composed by the first ad the second factor axes) is
the space spanned by a linear combination of three factor analysis. Such plan is the
mean of the covariance matrices as in two-way PCA of unfolded matrix. Distribution
of the subjects belonging to different occasions can be visualized in the space
spanned by the principal components where the center is located according with the
volume of the n objects observed in kD 3 occasions. Such distribution could be also
explored via graphical analysis of subjects trajectories which consists in drawing
instances route paths composing adjacent vectors in order to highlight the evolution,
across the three waves, of the subjects position respect to the compromise plane
(Carlier 1986; D’Urso 2000; D’Urso and Vichi 1998; Coppi and D’Urso 2001).

3 Weighted Factor Analysis

As we underlined in Sect. 2 Multiway Factor Analysis is a suitable technique for
summarizing the variability of a complex phenomenon by highlighting both similar-
ities/dissimilarities among the occasions considered and the main components of the
average behavior in the time interval chosen. Visual inspection of the objects plotted
onto the principal space derived via PCA on the unfolded X matrix (compromise
plan) allows to drawn subjects routes covered in the three waves. Such solution has
to be reviewed in the light of some limitations and geometrical properties of the
orthogonal projection. As it is well known mapping data from a high dimensional
space to a lower dimensional space (compromise plane) might cause new scatter
point configuration. Thus, in such new plot, we obtain a representation where points
do not have the same distance from the factor plan itself. According with this
remark, in this work we propose, as new system of weights, the usage of the quality
of representation of each point (Fig. 1) defined as follows:

QR.i/ D cos2� .xi ; u˛/ D
c2˛.i/

Pp
˛D1 c2˛

(2)

which is a measure of closeness of a point to the axe itself.
Thus, in order to adjust the multiway solution according with relevance of the

point projection we re-weight each coordinates of the compromise plane with a
linear combination in a fashion as follows:

cQR˛.i/ D QR˛.i/ � c˛.i/ (3)

Such transformation produces a rescaling in terms of value but not in terms of sign
and it enhances further the representation of the points, with respect to the other
rotations present in literature (VARIMAX) (Bolasco 1999).
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P

Factor

xi

ua P’0

θ

Fig. 1 Quality of
representation

4 An Italian Bank Case

The managing board of an Italian bank, with a distribution network throughout
the country, wanted to analyze its competitive positioning in retail services (ABI
2009). The starting point was a loss in the market share in some regions and an
average customer lifetime shorter than before especially in some clusters: the loss
of competitiveness was due to service level. Therefore a survey has been conducted,
sampling 27.000 retail customers who effected at least 5 retail requests, conjoint
with other contact points of the bank (call center, e-banking,..) within a year. The
questionnaire was framed according to SERVQUAL model (Berry et al. 1985,
1993; Oliver 1977), therefore, with five dimensions to analyze perceived quality
and expectation of the banking service. A variable number of items catches the
quality dimensions (Tangibles, reliability, responsiveness, assurance, empathy). All
the scores are on a Likert scale 1 to 10. There are 16 questions (type A), measuring
expectations/importance of items, and 16 questions (type B), catching evaluations
on perceived quality of a particular item. One final question aims summarizing the
entire banking service satisfaction. The same questionnaire has been applied to the
same sample for three waves: this is a perfect case for constructing a dynamic model
to quantify variable changes across the three different occasions. A descriptive
analysis of the sample shows a homogeneous distribution across different ages,
sex, instruction levels and profession segments. This reflects the Italian banking
population: more than 60% is between 26 and 55 years old; the sample is equally
distributed between the two sexes and shows a medium low level of instruction. The
sample has been analyzed across 9 different professional clusters: entrepreneurs,
managers, employees, workers, farmers, pensioners, housewives, student, others.
The sample is well distributed across the different professional segments employees
24%, pensioners 22%, housewives 14%. The customer satisfaction was analyzed
according to three different indicators to avoid dependency on the metrics used.
For the three indicators, satisfaction scores are high (above 7/10 in the three cases)
with the same trend across the waves. There is an increase in satisfaction from the
first to the second wave and a decrease in the third wave. A gap analysis between
questions A and B shows that expectations/item importance are always higher than
the perception of that item. A dynamic analysis will show evidence of a gap decrease
between the first and third wave.
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5 Results: Professional Clusters Trajectories and Satisfaction
Decomposition

In this section, we evaluate the effectiveness of our Weighted Factor Analysis and
we present the results on professional clusters trajectories and distances.

The first step of the study consists in estimating, the compromise matrix in order
to represent the average position of the professional clusters with respect to the
selected variables (regardless of the different occasions). The PCA results are very
sturdy: the first two components explain about 84% of the total variance and in
particular the first one explains 54% alone. The compromise matrix based on the
first eigenvalue is robust and can provide a realistic view of the evolution of variables
and individual positioning in the time horizon considered. Also KMO index (0,8)
and Bartlett test (1.312,7; sig. .000) show the quality of the factorial model created.
Representing the compromise matrix and the occasion-points of the k matrices
on the factorial plan created by the first two components, a clear polarization of
the variables on the two axis showed. The first component is characterized by the
positive pole B variables (valuations on the different aspects of the service) and
from the negative pole by A variables; the second component shows the contrary.
In accordance to these results, the first axis is called service evaluation and the
second service expectations. By projecting the unities on the factorial axis of the
compromise phase, movements with respect to the different waves can be analyzed
(Fig. 2).

We chose to monitor opposite professional clusters: Entrepreneurs, Workers,
Students and Pensioners in order to compare and to contrast if and how satisfaction
effects them in the 3 waves. Figure 2 illustrates evolutions of such professional
categories computed according with the simple multiway coordinates (red trajec-
tory) and the weighted multiway coordinates (blue trajectory). Visual inspection of
the plots highlights a drop of satisfaction in the third wave using both coordinates
system. In particular, the first line-segment (passage from 1st to 2nd wave) shows an
increasing slope (Fig. 2 panel (a) and (c)) or constant one (Fig. 2 panel (b) and (d))
then the second passage (from the 2nd to the 3rd wave) evidences a decreasing
trend for all the categories. Moreover all the category paths computed with the
weighted coordinates remain similar to the original one except for the Students
cluster which shows a new point configuration due to the rescale operates by the
Quality of Representation: the compromise plane of the MFA, in fact, does not take
into account the points inertia which are better represented by the other factor axes
(Table 1). That produces a remodeling and a compression of such route.

Thus, it highlights the effectiveness of such transformation which retains the
original value of the factor coordinates only if the quality of representation of a point
reaches its maximum value (QR.i/ D 1) otherwise it reduces it according with its
closeness to the factor itself. Obviously the weights system might cause a rotation
of the factor axes that could not be orthogonal any more, but if the percentage of
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Fig. 2 Professional Cluster Trajectories: panel (a) Entrepreneurs, panel (b) Workers, panel
(c) Students, panel (d) Pensioners

the inertia explained by the compromise plane is high we are confident that such
rescaling does not effect the orthogonality.1

Graphical analysis is a suitable tool to describe and estimate the evolutions
of the clusters: following our approach we interpret trajectories as a proxi of the
customer sensibility to the bank marketing stimuli, therefore more route is covered
more strong is the reaction of a professional category. Such approach can drive the
management to recognize which cluster has to be monitored more closely.

In order to deepen if the overall satisfaction (or dissatisfaction) is mainly
composed by positive (negative) perception of service performances or by the
positive (negative) considerations about service expectation, we decompose the
customer paths analyzing the shifts on each single axe in terms of value and in terms
of sign. Tables 2 and 3 collect category movements which have been measured via
the following equation:

shift.i/ D cf˛k.i/	 cf˛k�1.i/ (4)

1The significance of the correlation value between Weighted Multiway Factor Axes WMFA f1 and
WMFAf2 has been computed via Pearson test (	 D �0:0163 p-value D 0:9356) and Spearman
test (	 D 0:0537 p-value D 0:7898). It turned to be not zero but its value was not significative.
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Table 1 Professional clusters quality of representation and multiway coordinates

Category
per wave QR1 QR2 MFA f1 MFA f2 WMFA f1 WMFA f2

Entrep 1w 0.5809 0.3055 �1:5842 1:1488 �0:9203 0:3510

Entrep 2w 0.2356 0.5065 �0:9914 1:4535 �0:2336 0:7362

Entrep 3w 0.2048 0.1061 �1:1128 0:8011 �0:2279 0:0850

Work 1w 0.4421 0.0412 0:7777 �0:2375 0:3438 �0:0098
Work 2w 0.7313 0.0064 1:1016 �0:1027 0:8056 �0:0007
Work 3w 0.0302 0.8083 0:3422 �1:7701 0:0103 �1:4307
Pens 1w 0.4763 0.0329 1:2343 �0:3247 0:5879 �0:0107
Pens 2w 0.8265 0.0000 1:7650 0:0054 1:4588 0:0000

Pens 3w 0.1629 0.4072 1:0384 �1:6418 0:1691 �0:6686
Stud 1w 0.0476 0.2533 �0:6101 �1:4068 �0:0291 �0:3563
Stud 2w 0.0176 0.1833 �0:3630 �1:1699 �0:0064 �0:2144
Stud 3w 0.0012 0.3542 �0:0883 �1:5184 �0:0001 �0:5379

Table 2 Net routes on factor plan

Routes on MFA f1 Routes on MFA f2Professional
Categories 1st w-2nd w 2nd w-3rd w Net Route 1st w-2nd w 2nd w-3rd w Net Route

Entrepreneurs 0.593 �0.122 0.471 0.305 �0.652 �0.348
Workers 0.324 �0.759 �0.435 0.135 �1.667 �1.533
Students 0.247 0.275 0.522 0.237 �0.349 �0.112
Pensioners 0.531 �0.727 �0.196 0.330 �1.648 �1.317

Table 3 Net routes on weighted factor plan

Professional
Categories

Routes on WMFA f1 Routes on WMFA f2

1st w-2nd w 2nd w-3rd w Net Route 1st w-2nd w 2nd w-3rd w Net Route

Entrepreneurs 0.687 0.006 0.692 0.385 �0.651 �0.266
Workers 0.462 �0.795 �0.334 0.009 �1.430 �1.421
Students 0.023 0.006 0.029 0.142 �0.324 �0.182
Pensioners 0.871 �1.290 �0.419 0.011 �0.669 �0.658

where i is the index set of the professional category, cf˛ is the coordinate of the
factor axe ˛ relatives to the kth wave.

Again shifts have been computed employing the two system of coordinates.
According with the original factors (Table 2) Entrepreneurs (0,471) and Students
(0.522) are the only categories which show positive consideration about service
performance, then Workers (	0.435) and Pensioners (	0.196) present a negative
perception of the same service. If we use the new system of coordinates (Table 3)
we obtain again a positive service evaluation for Entrepreneurs (0,692) and Stu-
dents (0.029) but with a new ranking of the values which highlights a decrease
of satisfaction for the “young people”. As we underlined previously such path
compression is due to quality of representation which is very poor for the Students
in the compromise plan. For what concern service expectation we notice that all
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the categories considered show a negative net route paths using both coordinates
system, also values ranking is invariant. Such decomposition highlights that the drop
of satisfaction mainly intense for Pensioner and Workers, occurs in the third wave
and weights dramatically on the final clusters expectation.

6 Conclusions

In this paper we presented a novel approach to perform a dynamic customer
satisfaction analysis based on a three way factors analysis. We also introduced
a clever system of weights which exploits the quality of representation of each
point to adjust the original factor solution and to obtain more reliable trajectories.
The empirical study presented aims to offer some ideas on the main trends in
customer evaluation and expectation evolution relative to a set of bank service
attributes. A systematic analysis of management action-customers reaction provides
the effectiveness of every decision to increase satisfaction, loyalty and consequently
bank profitability. By such continual analysis management can check the correct
direction of action, and change it according to customer desiderata evolution.
Therefore satisfaction decomposition performed is able to measure the effects of
satisfaction/dissatisfaction in terms of customer instability. A valuable extension of
this work would be to derive a synthetic index which takes into account both paths
and shifting direction for operative usage.
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Measuring the Success Factors of a Website:
Statistical Methods and an Application
to a “Web District”

Eleonora Lorenzini and Paola Cerchiello

Abstract In this paper we propose a statistical methodology to address the issue
of measuring success factors of an ecommerce application, and in particular of a
regional e-marketplace, using as a measurement framework based on the customers’
satisfaction. In the first part of the paper, two different ranking methods have been
compared in order to identify the more appropriate tool to analyse the opinions
expressed by the visitors: a novel non parametric index, named the Stochastic
dominance index, built on the basis of the cumulative distribution function alone,
and a qualitative ranking based on the median and on the Leti Index. SDI has
resulted to be more convenient for comparison purposes and, according to this
measurement tool, the higher satisfaction has been expressed for the quality of the
products. Then, a logistic regression has been performed to understand the impact of
the different satisfaction factors on the overall satisfaction. The empirical evidence
confirms the literature on the importance of the different success factors, showing
that Website user friendliness and Information about purchase mechanisms have the
major impact on the overall satisfaction.

1 Introduction and Literature Review

Directly measuring the success of an e-commerce (EC) application has been found
to be impractical and perhaps impossible (Galletta and Lederer 1989). However,
EC application success can be measured using several frameworks, one being the
customers’ perception of utility and satisfaction (Garrity and Sanders 1998; Cho
1999; Lu 2001). An increased awareness of the importance of customer satisfaction
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issue has prompted the research community to explore how to measure and model
customers satisfaction and their preferences (Kurniawan 2000).

Among the success factors identified in the literature, Trepper (2000) found that
convenient site design and financial security had a significant effect on customer
assessment for EC applications.

Lu (2003) found that customers would not pay for products or services over the
web if financial information was not clear, or could not be transmitted securely.
This is why businesses and web developers should actively seek ways to improve
information and service quality provided through websites, and focus on the way the
customer uses a website. Liu and Arnett (2000) surveyed Web-masters from Fortune
1,000 companies and found four factors that are critical to success: information and
service quality, system use, playfulness, and system design quality.

In this paper the results of a web survey are used in order to understand which
factors affect the overall satisfaction of the users of a particular EC application: the
regional e-marketplace Store Valtellina. Valtellina is a mountain area in Lombardy
Region, known both for its eno-gastronomic typical products but also for winter
tourism and spas. In 2010 some local producers, supported by a University, a bank,
a logistic company and other territorial agents, promoted a project of e-commerce
of the territorial products.

The peculiarity of this portal is that it can be considered as a “web district.”
In fact, it gathers about 40 producers belonging to the Valtellina area that became
partners in this e-commerce experience with the aim of proposing in an integrated
manner the differentiated supply of quality products and services of the area, ranging
from eno-gastronomic products and handcrafts, to tourism services.

2 Research Design and Methodology

The data for this study were gathered by means of a questionnaire emailed to all the
registered users of the website after 3 months of activity, at the beginning of January
2011. The redemption rate was around 20 %, that is 65 visitors.

The interviewed expressed their opinions about the Store with reference to the
quality of the products, the website-related attributes and the overall satisfaction
(see Table 1 for a list of the factors).

A 5-point Likert scale was used, where A means high satisfaction and E
represents low satisfaction.

In order to understand the relative importance of the factors, a double level of
inquiry has been used. Firstly, two different ranking methods have been compared:
the Stochastic Dominance Index (SDI) and a ranking method based on the median
and the Normalised Leti Index. Secondly, logistic regression is applied on the data
in order to analyse how the evaluation of the different attributes of the site impacts
on the total satisfaction of the visitors.
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Table 1 Ranking produced by ML index, based on the NLI, for the
satisfaction factors of the store

Factors Median NLI Ranking ML

Info about products B 0.27 B
Info about purchase mechanism B 0.31 B
Website graphics B 0.34 BB
Promotions B 0.45 BB
Customer care B 0.45 BB
Terms of payement B 0.49 BB
Shipping time B 0.58 BB
Website user friendliness B 0.41 BB
Quality of the products B 0.42 BB
Info about producers B 0.34 BB
Overall satisfaction B 0.32 B

3 Comparison of Different Ranking Methods

In the first part of the paper, two different ranking methods have been compared
in order to identify the more appropriate tool to analyse the opinions expressed by
the visitors to the Store with reference to the quality of the products, the website-
related attributes and the overall satisfaction. We can apply to the data a novel non
parametric index, built on the basis of the cumulative distribution function alone,
which embodies the essential information for ordinal data (for more details see
Cerchiello and Giudici 2012). We propose to consider the sum of the values of the
cumulative distribution function according to the stochastic dominance approach to
model selection, that we now describe. On the basis of the cumulative distribution
function, a summary index, that we name SDI (Stochastic dominance index) can be
calculated as follows:

SDI D
J
X

iD1
Fi

where Fi is the cumulative distribution function and J is the number of classes.
SDI has been chosen due to the good performance of this index when used for
comparative purpose. In addition, a qualitative ranking (henceforth ML) has been
provided based on the median and on the Leti Index (Leti 1983; Cerchiello et al.
2010). Leti index is defined as:

L D 2
K�1
X

iD1
Fi .1 	 Fi /

The median is useful to select the evaluation, while the Leti index is useful to
express the level of consensus on the selected evaluation.
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While the SDI index is a second order stochastic dominance measure, based on
the arithmetic mean, ideal for comparison purposes, ML index aims at measuring
heterogeneity between statistical units. We believe that SDI is more convenient,
because such index maintains the ordinal nature of the data, it is not based on
parametric assumptions and its construction is simple to communicate and to
interpret.

4 Evidence from Ranking Comparison

Now we show the main results obtained from the application of the two indexes
explained in Sect. 3. With regard to ML index, the median has resulted to correspond
to evaluation B for each attribute. The normalized version of the Leti index (NLI)
has then been used as follows. In the case of maximum homogeneity of the
answers .0 � NLI � 0:33/ the assigned value is B; in the case of intermediate
heterogeneity .0:33 < NLI � 0:66/ the assigned value is BB; in the case of
maximum heterogeneity .0:66 < NLI � 1:00/ the assigned value is BBB.

Both indexes have been standardised, the SDI dividing by the number of classes
J and the ML by J-1.

Tables 1 and 2 summarise the values obtained by the application of the two
methods.

We decided to deepen the analysis on the data by employing the results obtained
by means of SDI index, in order to get more information about the customers’
satisfaction. Table 2, in fact, shows that higher satisfaction has been expressed
for the quality of the products than for website-related attributes, but a closer
examination of the data can bring to an understanding of whether there are
differences for product category or type of consumer.

In order to understand if the consumers perceive a different quality according to
the category of product they are evaluating, Table 3 shows the SDI calculated on the
quality differentiated according to the product categories.

It emerges that the perceived quality is high and rather homogeneous across
the categories, which means that the Valtellina’s products share a homogeneous
collective reputation.

Furthermore, Table 4 shows that the SDI for the quality does not differ con-
siderably between the buyers group and the visitors group that have not decided
to purchase from the Store, meaning that the perceived quality for the buyers is
comparable (precisely slightly higher) to the reputation for the non buyers.

The SDI has been calculated for each combination attribute and product category
as well. As Table 5 reports, all categories share a similar average evaluation,
although some differences exist for the different attributes and categories. It is
interesting to notice, for instance, that visitors interested in purchasing train tickets
and ski passes have found higher quality in the information about purchase and
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Table 2 SDI for the satisfaction factors
of the store

Factors SDI

Info about products 0.76
Info about purchase mechanism 0.79
Website graphics 0.74
Promotions 0.70
Customer care 0.74
Terms of payement 0.79
Shipping time 0.74
Website user friendliness 0.82
Quality of the products 0.84
Info about producers 0.74
Overall satisfaction 0.80

Table 3 SDI for the quality of
the products for product category

Product category SDI

Handcrafts 0.90
Christmas packages 0.81
Enogastronomy 0.86
Skis 0.90
Ski passes 0.88
Train 0.84
Wine 0.85
Total 0.85

Table 4 SDI for the quality of the products: buyers and
non buyers

Purchase No purchase

SDI quality of the products 0.85 0.82

payment mechanism with respect to the visitors interested in buying handcrafts,
enogastronomic products and skis. On the contrary, visitors interested in buying
handcrafts have evaluated the information about producers and shipping time higher
than the visitors and buyers of the other product categories.

Finally, the SDI has been calculated according to the amount of money spent for
the purchase. It is evident that those who have spent more, are more satisfied both in
general and for the single satisfaction factors, with the exception of the information
about the producers (Table 6).
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Table 5 SDI for product category and satisfaction factors

Enogastronomic Train
Handcrafts products Skis and skipass

Info about products 0.73 0.74 0.80 0.80
Info about purchase 0.80 0.80 0.80 0.87
Website graphics 0.73 0.74 0.80 0.71
Promotion sales 0.60 0.68 0.80 0.78
Customer care 0.73 0.79 0.70 0.76
Terms of payment 0.73 0.81 0.80 0.87
Shipping time 0.87 0.78 0.60 0.76
Website user friendliness 0.87 0.85 0.80 0.82
Quality of the products 0.87 0.86 0.90 0.80
Info about producers 0.87 0.72 0.80 0.67
Overall satisfaction 0.87 0.82 0.80 0.87
Average 0.79 0.78 0.78 0.79

Table 6 SDI for attributes and value of the purchase in euro

0 <50 50<x<100 >D100

Info about products 0.77 0.74 0.75 0.78
Info about purchase mechanism 0.77 0.80 0.83 0.84
Website graphics 0.77 0.70 0.75 0.82
Promotion sales 0.68 0.65 0.70 0.80
Customer care 0.69 0.76 0.78 0.80
Terms of payement 0.72 0.81 0.83 0.84
Shipping time 0.67 0.77 0.73 0.80
Website user friendliness 0.77 0.83 0.85 0.85
Quality of the products 0.82 0.84 0.83 0.87
Info about producers 0.77 0.73 0.70 0.73
Overall satisfaction 0.73 0.82 0.85 0.85

5 Importance of the Different Satisfaction Factors

A logistic regression has been performed to understand the impact of the different
satisfaction factors on the overall satisfaction. The independent variables are the
different satisfaction factors (as reported in Table 6), while the “Overall satisfaction”
is taken as the dependent variable. All variables have been transformed into binary
variables taking the value of 1 for good and high level of satisfaction and 0
otherwise.

The model is the result of variable selection, in particular the comparison of the
above with the null model gives a p-value of 3.33e-06.

The only significant variables have resulted to be Website user friendliness
and Info about purchase mechanisms. Despite the higher satisfaction for quality
of the products, thus, website related attributes have the major impact on overall
satisfaction.
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Table 7 Results from the logistic analysis on the overall satisfaction using
software R

Factors Estimate SE z value Pr(>jzj)
Constant �2.601 1.346 �1.932 0.0533
Website user friendliness 4.169 1.177 3.543 0.0004
Info about purchase mechanism 2.497 1.276 1.956 0.0504

These findings confirm the literature (Trepper 2000; Lu 2003) that identified
in convenient site design and financial security the critical success factors for an
e-commerce application.

6 Conclusions

In this paper we propose a statistical methodology to address the issue of measuring
success factors of a website. A research project we are involved in, gave us the
chance to monitor a novel website built to sell products of high quality from an
Italian region. We could investigate the clients of the website, by proposing them
a simple questionnaire made of few questions on the key aspects related to the
usability of a website and to the quality of the available products. We proposed to
use a descriptive index SDI evaluated comparatively with another descriptive index
based on the Leti measure. Those indexes allow us to create rankings on the items
of the questionnaire, that is the 11 factors regarding the quality of the products,
the website-related attributes and the overall satisfaction. In particular we pay our
attention on the SDI index that is a second order stochastic dominance measure,
based on the arithmetic mean ideal for comparison purposes. Moreover SDI is more
convenient, because the index maintains the ordinal nature of the data, it is not
based on parametric assumptions and its construction is simple to communicate and
to interpret.

The empirical evidence shows that higher satisfaction has been expressed for
the quality of the products than for website-related attributes. Moreover, deepening
the analysis by considering categories of available products, we can conclude that
perceived quality is high and rather homogeneous across the categories, which
means that the Valtellina’s products share a homogeneous collective reputation.

Finally a logistic regression has been performed to understand the impact of
the different factors on the overall satisfaction. What emerges is that despite the
high satisfaction for quality of the products, website-related attributes have the
major impact on overall satisfaction. This confirms the literature that identified
in convenient site design and financial security the critical success factors for an
e-commerce application.

Further investigations will require a more consistent set of data that could be
monitored along 1 year of activity of the website, allowing us to track not only new
clients but also frequent ones.



208 E. Lorenzini and P. Cerchiello

Acknowledgments The authors are grateful to prof. Paolo Giudici for scientific supervision and
to prof. Silvia Biffignandi for useful comments. Financial support by the Grant Industria 2015 for
the project @bilita—Nuove Tecnologie per il Made in Italy is acknowledged.

References

Cerchiello, P., Dequarti, E., Giudici, P., & Magni, C. (2010). Scorecard models to evaluate
perceived quality of academic teaching. In Statistica and Applicazioni, 2, 145–156.

Cerchiello, P., & Giudici, P. (2012). An integrated statistical model to measure academic teaching
quality. Open Journal of Statistics, 2(5), 491–497.

Cho, S. (1999). Customer-focused internet commerce at cisco systems. IEEE Communications
Magazine, 37(9), 61–63.

Galletta, D. F., & Lederer, A. L. (1989). Some cautions on the measurement of user information
satisfaction. Decision Sciences, 20, 419–438.

Garrity, E. J., & Sanders, G. L. (1998). Introduction to information systems success measurement.
In E. J. Garrity & G. L. Sanders (Eds.), Information systems success measurement. Series In
Information Technology Management: IDEA Group Publishing.

Kurniawan SH. (2000). Modeling online retailer customer preference and stickiness: A mediated
structural equation model. In Fourth Pacific Asia Conference on Information Systems, Hong
Kong, China, June 2000, pp. 238–252.

Leti, G. (1983). Statistica Descrittiva. Bologna: Il Mulino.
Liu, C., & Arnett, K. P. (2000). Exploring the factors associated with Website success in the context

of electronic commerce. Information Management, 38, 23–33.
Lu J. (2001). Assessing web-based electronic commerce applications with customer satisfac-

tion: An exploratory study. In International Telecommunication Society’s Asia-Indian Ocean
Regional Conference, Telecommunications and E-Commerce, Perth, Western Australia, July
2001, pp. 132–144.

Lu, J. (2003). A model for evaluating e-commerce based on cost/benefit and customer satisfaction.
Information Systems Frontiers, 5(3), 265–277.

Trepper, C. H. (2000). E-commerce strategies. Washington: Microsoft.



Component Analysis for Structural Equation
Models with Concomitant Indicators

Pietro Giorgio Lovaglio and Giorgio Vittadini

Abstract A new approach to structural equation modelling based on so-called
Extended Redundancy Analysis has been recently proposed in literature, enhanced
with the added characteristic of generalizing Redundancy Analysis and Reduced-
Rank Regression models for more than two blocks. However, in presence of direct
effects linking exogenous and endogenous variables, the latent composite scores are
estimated by ignoring the presence of the specified direct effects. In this paper, we
extend Extended Redundancy Analysis, permitting us to specify and fit a variety
of relationships among latent composites and endogenous variables. In particular,
covariates are allowed to affect endogenous indicators indirectly through the latent
composites and/or directly.

1 Introduction

For fitting Structural Equation Models, despite a number of benefits in Covari-
ance Structure Analysis (CSA) (Jôreskog 1970) and Partial Least Squares (PLS)
(Wold 1982), both techniques have some problems. In CSA the occurrence of
improper solutions is most likely to interfere with meaningful analysis (Kiers et al.
1996), whereas in PLS the lack of a global optimization criterion (PLS solutions
are not optimal in an overall fit) seems to render its use limited (McDonald
1996). Moreover, in applications, often the underlying theory may specify the
presence of exogenous covariates that may enter the causal model. Hence, a
more comprehensive system would also take into account the possible exogenous
factors that may have a causal impact on both observed endogenous variables as
well as latent composites. Specifically, exogenous covariates that do not strictly
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belong to the formative blocks of latent composites (LC), but may have a causal
impact on observed endogenous variables and onto latent composites too are
called “concomitant indicators”. Within the Component Analysis (CA) framework
(Millsap and Meredith 1988; Schônemann and Steiger 1976), a few attempts have
been made to extend Redundancy Analysis (RA) (van den Wollenberg 1977) and
Reduced-Rank Regression model (RRR) (Izenman 1975) to more than two sets of
variables. However, they are limited to relationships among three sets of variables
(Davies and Tso 1982; Reinsel and Velu 1998) as well as being limited to particular
types of models (Bougeard et al. 2008). A new approach to Structural Equation
Modeling based on so-called Extended Redundancy Analysis (ERA) (Takane and
Hwang 2005), which generalizes RA and RRR for more than two blocks, has
been recently proposed in literature. However, in ERA the LC scores are estimated
by ignoring the presence of direct effects linking concomitant indicators and the
endogenous variables block. In this paper, we propose a new method, called
Generalized Redundancy Analysis (GRA) which generalizes ERA and thus, RRR
and RA. The proposed method allows fitting diverse complex relationships among
variables, including direct effects and concomitant indicators as well.

2 The Extended Redundancy Analysis Model

The ERA model can generally be stated as follows: let Y denote an n by p matrix
consisting of p observed endogenous variables on n subjects. Let X denote an n by
q matrix consisting of q observed exogenous (formative) variables. Assume that all
the variables in X and Y are standardized. The ERA model can be expressed as
YDXWA0CEDFA0CE under the constraint that rank (WA0)DD�min(q, p),
where W denotes a q by D matrix of composite weights, A0 denotes a D by p matrix
of composite loadings, E denotes an n by p matrix of residuals, F (DXW) denotes
an n by D matrix of latent composite scores. For identification, F is restricted to be
diag(F0F)D ID. To allow for concomitant indicators, we distinguish two cases: the
presence of K concomitant indicators in the model that have a causal impact (by
means of the K by p matrix of regression coefficients AY

0) on observed endogenous
variables (Case 1) and onto latent composites, too (Case 2). For Case 2, LC scores
are measured by a linear combination of strictly formative (X) and concomitant (T)
indicators:

F D XWC TWT (1)

where WT is a K by D matrix of weights for T. Direct effects could be accommo-
dated ERA (2a) by an equivalent ERA specification (2b) involving three regressors
(X§) weights (W§) and parameters (A§) matrices:

Y D TAY
0 C FA0 C E (2a)

Y D X�W�A�0 C E (2b)
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under the hypothesis that rank(WA0)DD�min(q1, q2, p) and where X§
nx(KCq)D

[TnxKjXnxq], W§
(KCq)x(KCD)D[PKxKjWqxD], A§

px(KCD)D [AYpxK jA pxD], qD q1C q2

and P is a matrix of fixed elements (zeros or unities), where unity in k-th column
and a non zero coefficient in the j-th row (jD 1, : : : ,p) of AY selects a causal
link between the k-th concomitant indicator and the j-th endogenous indicator. For
Case 2, where F is defined in (1), the associated model is equivalent to model
(2b), in which X§D [TjXjT], W§D [PjWjWT], A§D [AYjAjA]. Model (2b) allows
specifying direct effects and concomitant indicators, but this approach has two
noticeable limitations. Firstly, ERA estimates W in a model between Y and X,
ignoring the presence of concomitant indicators (particularly their direct effects
on Y). Secondly, in Case 2 the LC scores are estimated as linear combinations of
both formative and concomitant indicators. However, since the indicators embedded
in T (concomitant indicators) and X (strictly formative indicators) are typically
correlated and have different causal effects on endogenous variables (X has an
indirect effect mediated by LC on Y, whereas T has both a direct effect and an
indirect effect mediated by F on Y) it is impossible to distinguish the separate
contribution of two blocks to the determination of the LC scores. A more consistent
approach would take into account all specified effects and to examine the separate
contribution of strictly formative and concomitant indicators on the LC scores.

3 The GRA Model

For the more general Case 2, we explicitly specify in the model the block of
concomitant indicators (T) and we simultaneously estimate all the parameters of
model (2a) by an iterative method. In order to separate the contribution of strictly
formative and concomitant indicators, instead of measurement model (1) we adopt
an equivalent specification, with orthogonal regressors’ matrices (Tı and X):

F D XWı C TıWT (3)

where TıDT – X XCT, WıDWCXCT WT and XC is the Moore-Penrose
generalized inverse of X obtained by the Singular Value Decomposition (SVD) of X.
Substituting (3) into (2a) we obtain:

Y D �XWı C Tı WT
�

A0 C TAY
0 C E D XWıA0 C Tı WTA0 C TAY

0 C E

(4)

As has been explained, W, WT and/or A may contain prescribed, fixed (zero) ele-
ments, depending on the specified model. Unfortunately, unlike statistical methods
based on Singular Value Decomposition (SVD) or Generalized SVD, minimizing
the loss function associated to (4) cannot be solved in a closed form, due to the fixed
parameters in Wı, WT and A0 containing zeroes. Hence we use an iterative method,
employing an Alternating Least Squares (ALS) algorithm (ten Berge 1993). In the
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algorithm, parameter matrices AY
0, Wı, WT and A0 are alternately updated in a

four steps algorithm until convergence is reached. In the first step, we update Wı,
independently from WT for fixed A and AY

0. In the second step WT is updated for
fixed, A and AY

0 with Wı obtained in the first step. In the third step, A is updated for
fixed AY

0, Wı and WT, whereas in the fourth step AY
0 is updated for fixed A, Wı

and WT. In the first step, Wı is updated independently from WT, for fixed AT
0 and

A. Firstly, with AY
0 initialized with arbitrary values and defining Y*DY – TAY

0, the
loss function associated to (4) is:

f D SS



Y� 	XWıA0 	 TıWTA0
�

(5)

where SS[Z]D trace(Z’Z). It is of note that, since (7) involves orthogonal regres-
sors, once weight matrices (Wı, WT) are obtained, regression parameters can be
separately resolved. Specifically, let XDQR0 be portion of the QR decomposition
of X, pertaining to the X column space, where Q is an n by q orthonormal matrix
and R0 is a q by n upper-triangular matrix, (5) becomes:

SS

�

Y � 	QQ0Y�
�CQQ0Y� 	Q

�

R0WıA0 CQ0TıWTA0
��

(6)

Since X and Tı are orthogonal, the term Q0TıWTA0 of (8) becomes null. Further,
since the trace of the cross product [(Y* – QQ0Y*)0Q(Q0Y* – R0 WıA0)] is null, (6)
can be rewritten as:

SS



Y� 	QQ0Y�
�C SS




Q
�

Q0Y� 	 R0WıA0
��

(7)

where the first term does not depend on parameters. Hence, minimizing (6) is
equivalent to minimizing:

SS



Q
�

Q0Y� 	 R0WıA0
�� D SS




vec
�

Q0Y�
� 	 .A˝ R0/vec

�

Wı
��

D SS



vec
�

Q0Y�
� 	�wı/

�

(8)

where 
DA˝R0, ˝ denotes a Kronecker product and wıD vec(Wı) denotes a
supervector consisting of all columns of Wı one below another. As previously
said, Wı has to be estimated without destroying its structure (e.g., zero elements
in wı, depending on the existing links between manifest variables and latent
composites). Therefore, let wı* denote the vector that selects non-zero elements
from wıD vec(Wı) and 
* denotes the matrix formed by eliminating the columns
of 
 corresponding to the zero elements in wı, we obtain the wı* least squares
estimate by

wı� D .
�0
�/�1
�0vec
�

Q0Y�
�

(9)

Hence, we obtain wı (reconstructing the zero elements to their original posi-
tions), then Wı. In the second step WT is updated for fixed Wı, A and AY

0.
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This amounts to minimizing (5) which can be expressed as:

SS

�

Y� 	XWıA0
�	 TıWTA0

� D SS



vec
�

Y��
� 	 .A˝ Tı/ vec .WT/

�

(10)

where Y**DY* – XWıA0. Defining
TDA˝Tı, wTD vec(WT) and let
T*, wT*

denote their non-zero counterparts, we obtain the least squares estimate of wT* by

wT� D .
T
0�
T�/

�1

T
0�vec

�

Y��
�

(11)

and, reconstructing the zero elements to their original positions, we further obtain
wT, then WT and finally, using estimates of WT and Wı, by (3) the F scores
that are normalized it so that diag(F0F)D I. Notice that weights to obtain latent
composites scores F are obtained projecting onto the principal directions of
exogenous variables, the matrix of endogenous indicators, once the direct effect
of T onto Y (Wı) and the effects of X onto Y (WT) are controlled for. In the third
step, A0 is updated for fixed W, WT and AY

0. Loss function (5) can be written as

SS



Y� 	 FA0
� D SS




vec
�

Y�
� 	 .I˝ F/ vec

�

A0
��

(12)

Defining aD vec(A0), � D I˝F and a* and � * in a way similar to w* and 
*,
the least squares estimate of a* is:

a� D .��0��/�1��0 vec
�

Y�
�

(13)

and easily reconstructing the updated a and A0 from a*. In the final (fourth) step,
AY
0 is updated with fixed Wı, WT and A0, by Multivariate Regression, regressing T

onto Y–FA0 scores, where F (defined in 3) and A are estimated in the previous three
steps. The above four steps are alternated until convergence is reached. For Case 1,
since WT disappears, in the algorithm we eliminate step 2, whereas the remaining
three steps remain the same.

4 Discussion

By (3), we could obtain weights W in its original specification (1) by the back
transformation WDWı – XCT WT. However, the new measurement model (3)
offers a benefit in term of meaningful interpretation for latent composites. F is
obtained as a combination of two terms: the combinations of strictly formative
indicators XWı, net of contribution of concomitant indicators to the latent scores,
and the combinations of concomitant indicators that are orthogonal to exogenous
formative indicators TıWT. In this specification, XWı are the strictly formative
indicators, whereas the sum of two linear combinations XWıCTıWT (DF) are the
overall latent scores in the specified model. From (9) to (11), weights defining F
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scores have meaningful geometric interpretation. The first set of weights (Wı) is
the projection of endogenous observed indicators whose scores have been corrected
by the effect of T on Y (Q0Y*) onto the space spanned by the principal directions of
the QR decomposition of X (vec(
*)). The second set of weights (WT) coincides
with the projection of Y** onto the column space spanned by Tı, where Y**(DY* –
XWıA0) denotes the endogenous observed indicators whose scores have been
corrected for the effect of T on Y and also for the indirect effect of XWı on Y,
via F. Local minima, typical of ALS algorithms (ten Berge 1993), may be avoided
choosing good initial values for Wı and WT since starting values of A0 and AY

0 are
simply obtained by the least squares estimate. Among various alternatives, a recent
method, coined Multiblock Redundancy Analysis (MRA) (Bougeard et al. 2008) is
used.

Overall, the GRA estimates model parameters by minimizing an overall model fit
(the sum of squares of discrepancies between Y and their predicted values) without
any explicit distributional assumptions. The proposed method is simple yet versatile
enough to fit various complex relationships among variables, including direct effects
of observed variables and/or concomitant variables. Missing values can be inserted
in X, Y and T as additional parameters, and they are estimated minimizing loss
function (5), with estimated parameters (by eliminating non-missing values) and
non-missing values fixed. In various applications, the proposed algorithm was found
to converge in all cases. It has proved to be efficient and generally results in rapid
convergence, also in cases of large sample size, due to the QR-decomposition
strategy in the first step (W0) of the algorithm.

The presented method has two noticeable limitations. Firstly, although GRA may
capture reflective relationships among LC and the observed exogenous variables,
GRA can accommodate only formative schemes for LC. However, this is the only
measurement model consistent with Component Analysis (Millsap and Meredith
1988). A second, more fundamental limitation of the present method is that,
although endogenous LCs are allowed in the model, GRA cannot assume any LC
for the observed endogenous variables. However, both problems can not be resolved
without proposing models outside the area of RA. Potential candidates to resolve
this problem may be found in more general methods. Future studies are needed to
investigate the feasibility of these additional extensions and to evaluate bias and
relative efficiency of GRA estimators, using simulation studies.
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Schônemann, P. H., & Steiger, J. H. (1976). Regression component analysis. British Journal of

Mathematical and Statistical Psychology, 29, 175–189.
Takane, Y., & Hwang, H. (2005). An extended redundancy analysis and its applications to two

practical examples. CSDA, 49(3), 785–808.
ten Berge, J. M. F. (1993). Least squares optimization in multivariate analysis. Leiden: DSWO.
van den Wollenberg, A. L. (1977). Redundancy analysis: an alternative for canonical analysis.

Psychometrika, 42, 207–219.
Wold, H. (1982). Soft modeling: The basic design and some extensions. In K. G Jôreskog and
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Assessing Stability in NonLinear PCA
with Hierarchical Data

Marica Manisera

Abstract Composite indicators of latent variables can be constructed by NonLinear
Principal Components Analysis when data are collected by multiple-item scales.
The aim of this paper is to establish the stability of the contribution made by each
item to the composite indicator, by means of a resampling-based procedure able to
take account of the hierarchical structure that often exists in the data, that is when
individuals are nested in groups. The procedure modifies the standard nonparametric
bootstrap technique and was applied to real data on job satisfaction from the most
extensive survey on Italian social cooperatives.

1 Introduction

One of the main goals of social and economic research is to measure individuals’
perceptions and attitudes (e.g., customer and job satisfaction), which requires
statistical instruments able to manage latent variables, i.e., complex concepts not
directly observed. In order to measure latent variables, researchers usually collect
data by administrating multiple-item scales, that is, questionnaires with several
items referring to the different aspects of the concept being measured. Responses
often indicate the degree of agreement with each statement, with higher scores
reflecting greater agreement.

When individuals’ perceptions and attitudes are measured, data are very often
organised in a hierarchical structure. Individuals (i.e., the subjects, or objects, or first-
level units) are clustered or nested in groups (second-level units) and these groups
can then be grouped in higher-level units. For example, when measuring job satis-
faction, workers are nested in organizations (which can be nested in geographical
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areas). The number of individuals within groups is usually not constant, but instead,
varies within each cluster (data are said to be unbalanced clustered).

Among the models and techniques conceived to produce quantitative measures
of the latent variables underlying a multiple-item scale, we focus on the NonLinear
Principal Components Analysis (NL-PCA Gifi 1990; Meulman et al. 2004).1 NL-
PCA is the nonlinear equivalent of classical Principal Components Analysis (PCA;
see, among others, Zani and Cerioli 2007) and aims at optimally reducing a
large number of categorical variables to a smaller number of composite variables
(the principal components), which are useful for representing latent variables.
The NL-PCA model is the same linear model as in traditional PCA, but it is
applied to nonlinearly transformed data. The variables are transformed by assigning
optimal scale values to the categories, resulting in numeric-valued transformed (i.e.,
quantified) variables. NL-PCA finds category quantifications that are optimal in the
sense that the overall variance accounted for in the transformed variables, given
the number p of components, is maximized. The variance accounted for is often
expressed in percentage (Percentage of Variance Accounted For, PVAF) and is a
global measure of the goodness of the NL-PCA solution.

Like PCA, NL-PCA is usually used as a descriptive data analysis technique,
because it was developed from an exploratory point of view and does not provide
inferential statistics. However, in the literature, there are studies introducing some
inferential issues with regard to PCA results (see references in Linting 2007).
Regarding NL-PCA, inference has recently been introduced by a nonparamet-
ric approach (Linting 2007), which is consistent with the weak distributional
assumptions. Following this approach, one may perform either permutation tests
or bootstrap studies. Permuting variables or drawing bootstrap samples allows the
destruction of the correlational structure in the data to investigate the statistical
significance or the stability of the results. In particular, in order to assess the stability
of the NL-PCA results (more precisely, the stability to data selection, i.e., the
degree of sensitivity of the results to variations in the data), the nonparametric
bootstrap procedure (Efron and Tibshirani 1993) has been used (Linting 2007).
The bootstrap technique has also been used in the NL-PCA framework to compare
groups of subjects with regard to categorical variables by constructing Inferential
Confidence Intervals (Goldstein and Healy 1995) around centroids, which represent
the group means of quantified variables (Manisera 2011). In addition, in order to
establish the statistical significance of the PCA results, permutation tests have been
proposed (Linting et al. 2011).

In the construction of composite indicators for latent variables from multiple-
item scales, an interesting topic is the contribution made by each item to the
definition of the composite indicators. Such a contribution gives, in some sense,
the importance of single aspects in composing the measure of the latent variable;
analogously, variable importance measures have been proposed in data mining

1In the literature (Michailidis and de Leeuw 2000), NL-PCA was also extended to hierarchical data
structures to examine how variables are related across groups and how groups vary.
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models to select the drivers of latent variables [e.g., in algorithmic models aggre-
gating regression trees, like TreeBost and Random Forests (Carpita and Zuccolotto
2007), or another ensemble learning developed for hierarchical data (Vezzoli and
Zuccolotto 2010)].

This paper aims at establishing, by means of a resampling-based procedure, the
stability of the contribution of the separate variables to the composite indicator
obtained by NL-PCA, in the presence of hierarchical data.

The procedure was applied to real data referring to workers employed in the
social cooperatives sampled in the ICSI2007 survey on Italian social coopera-
tives (Carpita 2009). A composite indicator of the workers’ job satisfaction was
constructed using NL-PCA and the resampling-based strategy was used to assess the
stability of the contribution made by the different items (facets of job satisfaction) to
the job satisfaction indicator, by taking the clustering of workers within cooperatives
into account.

2 Methods

The resampling-based procedure for hierarchical data, based on the nonparametric
bootstrap and proposed in Ren et al. (2010), is used in this paper to establish the
stability of the contribution made by each item to the composite indicator when
data are hierarchical. In setting up the procedure it is worth considering that (i) the
stability study involves one particular result of NL-PCA, which is the contribution
of one variable to the indicator of the latent variable and (ii) we intend to take the
hierarchical nature of the data into account.

In the NL-PCA framework, the contribution of each separate variable to the com-
posite indicator of the latent variable (given by the nonlinear principal components)
is measured by the Variance-Accounted-For (VAF) per variable, which is computed
as the sum of the squared loadings of that variable across the components. Formally,
if the data are in the .n 
 m/ matrix X, m VAFj , j D 1; � � � ; m can be computed
as
Pp

lD1 a2jl, l D 1; � � � ; p, where p is the number of principal components retained
in the solution, ajl is the loading of the j -th variable on the l-th component and is
given by the correlation coefficient between the j -th quantified variable and the l-th
principal component.

In the literature, stability studies on NL-PCA results have been performed using
balanced bootstrap procedures involving the entire data set, that is, all the variables
together (for example, see Linting 2007). However, when data are hierarchical,
simple nonparametric resampling methods are not appropriate because they treat
all observations as independent. Nonparametric bootstrapping for hierarchical or
clustered data is relatively underdeveloped (Ren et al. 2010), in part because it is
not straightforward: in fact, even in the simplest case of hierarchical data with two
levels, more than one bootstrap resampling strategy can be defined according to
the level chosen to be bootstrapped and the resampling strategy (with or without
replacement) on each level.
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In order to take the hierarchical structure into account, the resampling-based
procedure used in this paper consists in bootstrapping on the highest level, meaning
randomly sampling without replacement within the highest level selected by
randomly sampling the highest levels with replacement. In other words, if we focus
on two-level data (which are very often encountered in practice as well as in the
case study reported in Sect. 3), the strategy consists of two steps: (1) to randomly
sample second-level units with replacement and (2) to randomly sample, without
replacement, first-level units within the second-level units selected at the first step.

Formally, to resample the data matrix X taking account of theG groups, in which
the n observations are clustered (the g-th group counts ng observations), first a
sample with replacement of size equal to G from f1; 2; � � � ; g; � � � ; Gg is drawn,
giving the sequence fs1; s2; � � � ; sg; � � � ; sGg of groups in the resampled data set. The
rows of the sg-th group are then filled in with a random sample (without replacement)
drawn from the observed values of X within that group, with size nsg . In the presence
of unbalanced clustered data, this strategy leads to samples with different sizes: in
fact, in the second step, the number nsg of the first-level units sampled from each
selected second-level unit equals the original size of the sg-th group, and

PsG
sgD1 nsg

may differ from n.
The resampling-based procedure is repeated B times, and B resampled data sets

are obtained. Usually, B D 1;000 is chosen (Efron and Tibshirani 1993; Linting
2007; Ren et al. 2010). Subsequently, NL-PCA is performed on each of these data
sets, which gives B values for each of the VAFj , forming a distribution from which
confidence percentile intervals can be computed. Such intervals can be used to
assess the stability of VAFj , j D 1; � � � ; m.

The resampling-based strategy is applied before the optimal quantification of
the categorical variables, and no corrections for rotated solutions must be applied,
because the VAF per variable is not sensitive to rotations of the NL-PCA solution.

Unlike other studies (Linting 2007), in the current work, bootstrap is not bal-
anced. The balanced bootstrap (Efron and Tibshirani 1993) ensures that every sub-
ject appears a total ofB times in theB bootstrap samples: this is important when the
interest is in the stability of the subject scores (on the principal components), while
the focus here is on the stability of the VAF per variable. In addition, when data are
hierarchical, one should decide whether balancing should be performed with refer-
ence to first-level or higher-level units, according to the aim of the stability study.

Comparing confidence percentile intervals does not allow graphical study of
whether the contributions of two items are statistically different. To achieve this
goal, Inferential Confidence Intervals (ICIs; Goldstein and Healy 1995) can be
computed. ICIs are a graphic test of statistical mean difference designed to avoid
common interpretative problems associated with the null hypothesis statistical
testing. Graphed confidence intervals can be used for overlap pairwise comparisons
as an inferential graphical tool at the stated significance level only after reducing
their widths. Due to the reduction, nonoverlapping ICIs are algebraically equivalent
to a null hypothesis statistical test at the stated significance level. In this paper, a
modified version of the ICIs, called Bootstrap ICIs (Manisera 2011), is obtained by
estimating the standard errors in the ICIs by means of the bootstrap study.
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3 Case Study

NL-PCA was applied2 to construct a job satisfaction indicator that summarizes
11 categorical ordinal variables that measure different aspects of job satisfaction
for 2;500 workers employed in 212 social cooperatives.3 The variables (described
in Table 1) refer to the satisfaction of workers with extrinsic aspects (work
characteristics, such as variety) as well as intrinsic and relational aspects (such as
personal fulfilment and relations with co-workers and the cooperative).

In order to obtain a one-dimensional composite indicator of job satisfaction,
NL-PCA was applied with all of the variables scaled ordinally in order to keep
in the quantified variables the grouping and the ordering information in the original
categorical variables (PVAF D 45:98). The 11 VAFj s per variable (represented by
empty squares in the next Fig. 2) allow to identify which facets mostly contribute
to the definition of a global indicator of job satisfaction.4 The highest contribution
is made by the items regarding the relation between the worker and cooperative
(coop.recognition, transparency, involvement). Subsequently, the
most important items refer to the satisfaction with intrinsic aspects (growth,
fulfilment), followed by a mix of items of satisfaction with individual aspects
and relations with superiors, coworkers, and the team. This confirms the results
in the literature on job satisfaction in the social service sector (see, for exam-
ple, Borzaga and Depedri 2005).

According to the resampling-based procedure described in Sect. 2, the entire data
set was resampled B D 2;000 times, obtaining B resampled data sets, and for each
of these, NL-PCA was performed. The size of the resampled data sets varied across
the replications from 2;170 to 2;806, while the PVAF ranged from 42:63 to 49:09. In
both cases (size and PVAF), the resampled distribution closely resembles a Normal
distribution, centred on the value of the original sample.

The distributions of the 11 VAFj s per variable were obtained (Fig. 1) and the
resulting 95% percentile confidence intervals are depicted in Fig. 2.

2All the computations were performed by R 2.13.1.
3Missing values were imputed according to Carpita and Manisera (2011). From the entire sample
of the ICSI2007 survey, the cooperatives with less than 5 workers were removed. The data used in
this study result from a preliminary Rasch analysis (Carpita and Golia 2011), which identified
the 11 selected job satisfaction items as related to a “global” job satisfaction latent trait, and
suggested merging response categories to obtain a 5-point response scale for each item, ranging
from 1D “very dissatisfied” to 5D “very satisfied”, with mid-point 3D “neither dissatisfied nor
satisfied”.
4Other papers investigated the drivers of job satisfaction by means of regression models with job
satisfaction items as independent variables and the overall job satisfaction as a dependent variable
(see, for example, Carpita and Zuccolotto 2007, Vezzoli and Zuccolotto 2010). Unlike the current
paper, their aim was to identify which facets of job satisfaction drive, from a psychological point
of view, the individual perception of the overall job satisfaction, since the latter is measured by a
single item in the questionnaire.
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Table 1 Job satisfaction items

Item How satisfied are you with. . .

Coop.recognition The recognition by the cooperative of your work?
Transparency The transparency in your relation with the cooperative?
Involvement Your involvement in the cooperative decisions?
Independence Your decisional and operative independence?
Variety The variety and creativity of your work?
Team The relations within the team?
Superiors The relations with your superiors?
Coworkers.recognition The recognition by co-workers of your work?
Growth Your vocational training and professional growth?
Fulfilment Your personal fulfilment?
Career Your achieved and prospective career promotions?

coop.recognition transparency involvement growth

fulfilment superiors career independence

coworkers.recognition variety team

0.58 0.62 0.66 0.52 0.56 0.60 0.50 0.55 0.60 0.46 0.50 0.54 0.58

0.45 0.50 0.55 0.60 0.40 0.46 0.52 0.40 0.45 0.50 0.40 0.45 0.50

0.25 0.35 0.25 0.35 0.20 0.30

Fig. 1 Distributions of the VAFj s of the 11 job satisfaction items over B D 2;000 replications of
the resampling-based procedure

The bootstrap means, obtained by averaging the VAFj s over the B samples
(represented by black circles in Fig. 2), nearly overlap the VAFj s in the original
sample (empty squares in Fig. 2), confirming the original ranking of items. With
reference to stability, the width of all of the intervals (black lines in Fig. 2) is
quite small, suggesting that the contribution of the variables to the job satisfaction
measure is quite stable. This is especially true for variables with the highest VAFj s.
It is interesting to note that the corresponding loadings on the principal component
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team

variety

coworkers.recognition

independence

career

superiors

fulfilment

growth

involvement

transparency

coop.recognition

0.2 0.3 0.4 0.5 0.6

Fig. 2 95% percentile confidence intervals (black lines) and 95% Bootstrap Inferential Confidence
Intervals (dotted lines) for the VAFj s of the 11 job satisfaction items; black circles and empty
squares represent the bootstrap means and the original sample VAFj s, respectively

(VAFj s are squared loadings) were all positive (in each of theB samples); therefore,
the corresponding percentile confidence intervals did not contain zero, which
indicates that all the considered variables make an important contribution to the
job satisfaction indicator.

These results were somewhat expected because in the preliminary Rasch analy-
sis (Carpita and Golia 2011) providing the raw data used in this study, the response
scale was reduced by merging some response categories, and this is known in the
literature as a procedure to increase stability in the NL-PCA results (Linting 2007).

To statistically compare the contributions of two items, Bootstrap ICIs were
computed, after having verified the Normality of the 11 distributions of the VAFj s
per variable (Fig. 1). Figure 2, representing the Bootstrap ICIs associated with the
11 VAFj s by dotted lines, shows which contributions are statistically different by
means of nonoverlapping intervals. For example, the contributions made by the two
most important items are statistically different.

The large original sample size made the procedures easier: in the presence of
smaller sample sizes, caution should be used when computing Bootstrap ICIs, but
also with reference to the varying size of resampled data sets.

4 Conclusions

In this paper, we used a resampling-based procedure for hierarchical data to study
the stability of NL-PCA results, in particular the stability of the contribution of
items in defining the measure of the latent variable. The application to real data
provided interesting insights into the interpretation of job satisfaction in the social
cooperatives, by identifying which contribution was made by the different facets
to the composite indicator of job satisfaction obtained by NL-PCA. In addition,
Bootstrap ICIs allowed the graphical comparison of such contributions.
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In this study, the resampling-based procedure allowed the investigation of the
absolute stability of the VAFj s per variable in the NL-PCA. Future research
involves the study of a relative stability, assuming, for example, the stability of linear
PCA as a benchmark (as in Linting 2007).

In Ren et al. (2010), it was shown that with the proposed procedure, the original
sample information is accurately reflected and the correlational structure within
groups is preserved. This issue will be more fully investigated by a next simulation
study concerning the stability of by group NL-PCA results.
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Using the Variation Coefficient for Adaptive
Discrete Beta Kernel Graduation

Angelo Mazza and Antonio Punzo

Abstract Various approaches have been proposed in literature for the kernel
graduation of mortality rates. Among them, this paper considers, as a starting point,
the fixed bandwidth discrete beta kernel estimator, a recent proposal conceived to
intrinsically reduce boundary bias and in which age is pragmatically considered as
a discrete variable. An adaptive variant of this estimator also exists, which allows
the bandwidth to vary with age according to the reliability of the data as expressed
only by the amount of exposure. This paper presents a further adaptive version,
obtained by measuring the reliability via the reciprocal of the variation coefficient,
which is function of both the amount of exposure and the observed mortality rates.
A simulation study is accomplished to evaluate the gain in performance of the new
estimator with respect to its predecessors.

1 Introduction

Mortality rates are age-specific indicators commonly used in demography. Histori-
cally, they are also widely adopted by actuaries, in the form of mortality tables, to
calculate life insurance premiums, annuities, reserves, and so on. Producing these
tables from a suitable set of crude (or raw) mortality rates is called graduation, and
this subject has been extensively discussed in the actuarial literature (see, e.g., Copas
and Haberman 1983, and Haberman and Renshaw 1996). To be specific, the dx
deaths at age x can be seen as arising from a population, initially exposed to the
risk of death, of size ex. The situation is commonly summarized via the model
dx 
 Bin .ex; qx/, where qx represents the true, but unknown, mortality rate at
age x. The crude rate Vqx is the observed counterpart of qx . Graduation is necessary

A. Mazza (�) � A. Punzo
Dipartimento di Economia e Impresa, Universit di Catania, Italy
e-mail: a.mazza@unict.it; antonio.punzo@unict.it

P. Giudici et al. (eds.), Statistical Models for Data Analysis, Studies in Classification,
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-319-00032-9 26,
© Springer International Publishing Switzerland 2013

225

mailto:a.mazza@unict.it
mailto:antonio.punzo@unict.it


226 A. Mazza and A. Punzo

because crude data usually presents abrupt changes, which do not agree to the
dependence structure supposedly characterizing the true rates (London 1985). In
fact, a common prior opinion about their form is that each true mortality rate is
closely related to its neighbors. This relationship is expressed by the belief that the
true rates progress smoothly from one age to the next. So, the next logical step is
to graduate the crude rates to produce smooth estimates, Oqx , of the true rates. This
is done by systematically revising the crude rates in order to remove any random
fluctuations. Nonparametric models are the natural choice if the aim is to reflect this
belief. Furthermore, a nonparametric approach can be used: to choose the simplest
suitable parametric model, to provide a diagnostic check of a parametric model, or
to simply explore the data (see Härdle 1992 for a detailed discussion on the chief
motivations that imply their use, and Debn et al. 2006 for an exhaustive comparison
of nonparametric methods in the graduation of mortality rates).

Kernel smoothing is one of the most popular statistical methods for nonpara-
metric graduation. Among the various alternatives existing in literature (see Copas
and Haberman 1983, Gavin et al. 1993, 1994, 1995 and Peristera and Kostaki
2005), the attention is here focused on the discrete beta kernel estimator proposed
by Mazza and Punzo (2011). Roughly speaking, the genesis of this model starts
with the consideration that, although age X is in principle a continuous variable,
it is typically truncated in some way, such as age at last birthday, so that it takes
values on the discrete set X D f0; 1; : : : ; !g, ! being the highest age of interest.
Discretization of age, from a pragmatical and practical point of view, could also
come handy to actuaries that have to produce “discrete” graduated mortality tables
starting from the observed counterparts. In the fixed bandwidth estimator proposed
in Mazza and Punzo (2011), discrete beta distributions (Punzo and Zini 2012, and
Punzo 2010) are considered as kernel functions in order to overcome the problem of
boundary bias, commonly arising from the use of symmetric kernels. The support X
of the discrete beta, in fact, matches the age range and this, when smoothing is made
near the boundaries, allows avoiding allocation of weight outside the support (e.g.
negative or unrealistically high ages). Mazza and Punzo (2013) propose an adaptive
bandwidth discrete beta kernel estimator, in which the bandwidth is allowed to vary
at each age, according to the reliability of the data as expressed by the ex .

The present paper proposes a new adaptive bandwidth discrete beta kernel
estimator, in which the reliability is measured via the reciprocal of the variation
coefficient (VC). The VC is function of both the amount of exposure and the
observed mortality rate. A simulation study will show the performance increase of
the new estimator over the two previous approaches.

The paper can be summarized as follows. In Sect. 2 the fixed bandwidth discrete
beta kernel estimator of Mazza and Punzo (2011) is briefly illustrated and in Sect. 3
a new adaptive version is provided. In Sect. 4 cross-validation estimation of the
adaptive bandwidth is described. In Sect. 5 a simulation study is performed with the
aim to ascertain the gain in performance of the proposed estimator with respect to
the approaches in Mazza and Punzo (2011) and Mazza and Punzo (2013).
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2 Discrete Beta Kernel Graduation

Given the crude rates Vqy , y 2 X , the Nadaraya–Watson kernel estimator of the true
but unknown mortality rate qx at the evaluation age x is

Oqx D
X

y2X

kh .yIm D x/
X

j2X
kh .j Im D x/

Vqy D
X

y2X
Kh .yIm D x/ Vqy; x 2 X ; (1)

where kh .�Im/ is the discrete kernel function (hereafter simply named kernel),
m 2 X is the single mode of the kernel, h > 0 is the (fixed) bandwidth governing the
bias-variance trade-off, andKh .�Im/ is the normalized kernel. Since we are treating
age as being discrete, with equally spaced values, kernel graduation by means of (1)
is equivalent to moving (or local) weighted average graduation (Gavin et al. 1995).

As kernels in (1) we adopt

kh .xIm/ D
�

x C 1

2

�

mC 1
2

h.!C1/
�

! C 1

2
	 x

�

!C 1
2�m

h.!C1/

: (2)

The normalized version, Kh .xIm/, corresponds to the discrete beta distribution
defined in Punzo and Zini (2012) and parameterized, as in Punzo (2010), according
to the mode m and another parameter h that is closely related to the distribution
variability. Substituting (2) in (1) we obtain the discrete beta kernel estimator that
was introduced in Mazza and Punzo (2011).

Roughly speaking, discrete beta kernels possess two peculiar characteristics.
Firstly, their shape, fixed h, automatically changes according to the value of m.
Secondly, the support of the kernels matches the age range X so that no weight is
assigned outside the data support; this means that the order of magnitude of the bias
does not increase near the boundaries. Further details are reported in Mazza and
Punzo (2011).

3 An Adaptive Variant

Rather than restricting h to a fixed value, a more flexible approach is to allow the
bandwidth to vary according to the reliability of the data measured in a convenient
way. Thus, for ages in which the reliability is relatively larger, a low value for h
results in an estimate that more closely reflects the crude rates. For ages in which
the reliability is smaller, such as at old ages, a higher value for h allows the estimate
of the true rates of mortality to progress more smoothly; this means that at older
ages we are calculating local averages over a greater number of observations. This
technique is often referred to as a variable or adaptive kernel estimator because it
is characterized by an adaptive bandwidth hx .s/ which depends on the reliability
lx and is function of a further sensitive parameter s.
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Although the reliability lx can be inserted into the basic model (1) in a number
of ways (Gavin et al. 1995), here we adopt a natural formulation according to which

hx .s/ D hlsx; x 2 X ; (3)

where h is the global bandwidth and s 2 Œ0; 1�. Reliability decides the shape of
the local factors, while s is necessary to dampen the possible extreme variations in
reliability that can arise between young and old ages. Naturally, in the case s D 0,
we are ignoring the variation in reliability, which gives a fixed bandwidth estimator.

Using (3) we are calculating a different bandwidth for each age x 2 X at which
the curve is to be estimated, leading model (1) to become

Oqx D
X

y2X

khx .yIm D x/
X

j2X
khx .j Im D x/

Vqy D
X

y2X
Khx .yIm D x/ Vqy; x 2 X ; (4)

where the notation hx is used to abbreviate hx .s/. Thus, for each evaluation age x,
the ! C 1 discrete beta distributions Khx .�Im D x/ vary for the placement of the
mode as well as for their variability as measured by hx .

In particular, Mazza and Punzo (2013) consider the reliability a function only of
the amount of exposure, according to the formulation

lx D f �1x

max
y2X

n

f �1y

o ; x 2 X ; (5)

where

fx D ex
X

y2X
ey

is the empirical frequency of exposed to the risk of death at age x.
According to the model dx 
 Bin

�

ex; Vqx
�

, where Vqx is the maximum likelihood
estimate of qx , a natural index of reliability is represented by the reciprocal of
a relative measure of variability. Here, we have chosen to adopt the variation
coefficient (VC) which, in this context, can be computed as

VCx D
q

ex Vqx
�

1 	 Vqx
�

ex Vqx ; x 2 X :
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It is inserted in (3) according to the formulation

lx D VCx
X

y2X
VCy

; x 2 X : (6)

In (6), VCx is normalized so that lsx 2 .0; 1�. Note that reliability measured as in (6)
takes into account the amount of exposure ex , but also the crude rate Vqx.

4 The Choice of h and s

In (4), two parameters need to be selected: sensitivity, s, and global bandwidth, h.
Although s could be selected by cross-validation, we prefer to choose this parameter
subjectively, as in Gavin et al. (1995, see also Mazza and Punzo 2013). Once s has
been chosen, cross-validation can be still used to select h.

For model (4), the cross-validation statistic or score, CV .hjs/, is

CV .hjs/ D
X

x2X

 

Oq.�x/x

Vqx
	 1

!2

; (7)

where

Oq.�x/x D
X

y2X
y¤x

Khx .yIm D x/
X

j2X
j¤x

Khx .j Im D x/
Vqy

is the estimated value at age x computed by removing the crude rate Vqx at that age.
Note that, differently from what is done in Mazza and Punzo (2011) and Mazza

and Punzo (2013), instead of the standard residual sum of squares, the sum of the
squares of the proportional differences is used in (7); this is a commonly used
divergence measure in the graduation literature because, since the high differences
in mortality rates among ages, we want the mean relative square error to be low (see
Heligman and Pollard 1980).

5 Simulation Study

In this section we present the results of a simulation study based on real data, and
accomplished with the aim of comparing the performance of three discrete beta
kernel estimators. Such estimators differ with respect to the choice made for the
bandwidth and specifically:



230 A. Mazza and A. Punzo

B0 Corresponds to the fixed bandwidth estimator in (1).
B1 Corresponds to the adaptive bandwidth estimator in (4) with local factor lx

identified in (5).
B2 Corresponds to the adaptive bandwidth estimator in (4) with local factor lx

defined in (6).

Data we consider, composed of the number of exposed to risk ex and the crude
mortality rates Vqx , with ! set to 85, are referred to the 2008 Italian male population,
composed of over 28 million individuals.1

5.1 Design of the Experiments

The scheme of the simulations can be summarized as follows:

1. First of all, we have graduated the Vqx via the well-known parametric model of
Heligman and Pollard (1980). The graduated rates qx will be hereafter referred
to as the “true” mortality rates.

2. For each replication performed and for each age x, the simulated rates are
obtained by dividing the dx generated from a Bin .cex; qx/, by cex, where
c 2 RC is a multiplying factor added with the aim of reproducing, when c < 1,
situations of lower smoothness in the generated sequence d0; d1; : : : ; d85.

3. For each replication and for each age x, once fixed a grid of 11 equally-spaced
values for s ranging from 0 to 1, the global bandwidth h in (3), of the estimator
Oqx in (4), is obtained by minimizing the cross-validation statistic CV .hjs/ in (7).
Here it must be noted that B0 is obtained, as a special case, by taking s D 0.

4. For each replication and for each value of s, in line with the divergence defined
in (7), the comparison between the smoothed and the “true” mortality rates is
dealt via the sum of the squares of the proportional differences

S2 D
85
X

xD0

� Oqx
qx
	 1

�2

:

5.2 Results

Table 1 shows simulation results, for the original case c D 1, at the varying of s.
Here, each subtable corresponds to a .3 
 3/-matrix having, on the diagonal in
bold, the number of times in which each estimator (respectively B0, B1 and B2)
obtains the minimum S2 and, outside the diagonal, the number of times in which the

1Istat: data available from http://demo.istat.it/.

http://demo.istat.it/
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Table 1 Simulation results for the case c D 1

(a) s D 0:1

B0 B1 B2

B0 95 695 106
B1 305 12 81
B2 894 919 893

(b) s D 0:2

B0 B1 B2

B0 116 725 133
B1 275 21 113
B2 867 887 863

(c) s D 0:3

B0 B1 B2

B0 139 759 163
B1 241 24 139
B2 837 861 837

(d) s D 0:4

B0 B1 B2

B0 160 794 184
B1 206 25 157
B2 816 843 815

(e) s D 0:5

B0 B1 B2

B0 195 827 212
B1 173 18 184
B2 788 816 787

(f) s D 0:6

B0 B1 B2

B0 226 854 243
B1 146 17 201
B2 757 799 757

(g) s D 0:7

B0 B1 B2

B0 245 882 261
B1 118 16 223
B2 739 777 739

(h) s D 0:8

B0 B1 B2

B0 278 910 292
B1 89 16 244
B2 707 755 705

(i) s D 0:9

B0 B1 B2

B0 305 930 317
B1 69 13 267
B2 682 732 681

(j) s D 1:0

B0 B1 B2

B0 341 951 352
B1 49 12 296
B2 648 704 647

Table 2 Simulation results for the case c D 0:5

(a) s D 0:1

B0 B1 B2

B0 122 806 132
B1 194 10 113
B2 868 887 868

(b) s D 0:2

B0 B1 B2

B0 138 821 153
B1 179 15 132
B2 847 868 847

(c) s D 0:3

B0 B1 B2

B0 161 845 179
B1 155 19 151
B2 821 849 820

(d) s D 0:4

B0 B1 B2

B0 182 867 197
B1 133 16 168
B2 803 832 802

(e) s D 0:5

B0 B1 B2

B0 199 883 212
B1 117 14 182
B2 788 818 787

(f) s D 0:6

B0 B1 B2

B0 226 902 238
B1 98 12 203
B2 762 797 762

(g) s D 0:7

B0 B1 B2

B0 245 917 260
B1 83 16 223
B2 740 777 739

(h) s D 0:8

B0 B1 B2

B0 275 934 289
B1 66 14 249
B2 711 751 711

(i) s D 0:9

B0 B1 B2

B0 308 944 321
B1 56 15 269
B2 679 731 677

(j) s D 1:0

B0 B1 B2

B0 338 954 346
B1 46 10 292
B2 654 708 652

estimator on the corresponding row provides a value of S2 lower than the one of the
model on the corresponding column. From the diagonal numbers we can easily see
as B2 is, regardless from s, the best performing estimator, with a gain in performance
that slightly increases at the decreasing of s. On the contrary, surprisingly, B1 is the
worst working estimator. Pairwise comparisons among estimators (see the elements
outside the diagonals) lead to the same global results. Interestingly, from Table 1e–j,
corresponding to the values of s ranging from 0.5 to 1, it can be noted that
B1 beats B2 more times than B0.

Similarly, Table 2 shows simulation results for the case c D 0:5. Also in this
case, B2 is clearly the estimator working better (see the values on the diagonals)
while B1 is the one working worse. Global results are preserved with respect to the
previous case.

6 Concluding Remarks

In this paper an adaptive version of the discrete beta kernel estimator introduced in
Mazza and Punzo (2011) for the graduation of mortality rates has been proposed.
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This proposal, differently from the one presented in Mazza and Punzo (2013), allows
the bandwidth to vary according to either the amount of exposure and the crude
rates themselves, via the well-known variation coefficient. A further sensitivity
parameter s has been added, to allow the user to control the degree of emphasis
placed on the local factor. The usual bandwidth h is used to control the global level
of smoothness. Simulations have confirmed the gain in performance of this new
approach with respect to the ones in Mazza and Punzo (2011) and Mazza and Punzo
(2013). Finally, it is important to note that the resulting adaptive discrete beta kernel
graduation is conceptually simple and so is its implementation.
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On Clustering and Classification Via Mixtures
of Multivariate t-Distributions

Paul D. McNicholas

Abstract The use of mixture models for clustering and classification has received
renewed attention within the literature since the mid-1990s. The multivariate
Gaussian distribution has been at the heart of this body of work, but approaches
that utilize the multivariate t-distribution have burgeoned into viable and effective
alternatives. In this paper, recent work on classification and clustering using
mixtures of multivariate t-distributions is reviewed and discussed, along with related
issues. The paper concludes with a summary and suggestions for future work.

1 Introduction

A finite mixture model is a convex combination of a finite number of probability
densities. Formally, a p-dimensional random vector X arises from a paramet-
ric finite mixture distribution if, for all x � X, we can write its density as
f .x j #/ D PG

gD1 �g�g.x j �g/, where �g > 0, such that
PG

gD1 �g D 1 are
the mixing proportions, �1.x j �g/; : : : ; �G.x j �g/ are the component densities,
and # D .�;�1; : : : ;�G/ is the vector of parameters with � D .�1; : : : ; �G/.
Note that f .x j #/ is called a G-component finite mixture density. Finite mixture
models lend themselves naturally to clustering and classification problems, where
a class corresponds to one or more mixture components. The component densities
are usually taken to be of the same type. Gaussian densities have been predominant
since mixture models were first used for clustering (Wolfe 1963); of late, however,
there has been a marked increase in the preponderance of non-Gaussian mixture
model-based clustering and classification work within the literature. Hereafter, the
idiom “model-based clustering” will be used to mean clustering using mixture
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models. The terms “model-based classification” and “model-based discriminant
analysis” are used similarly.

Let zi denote the component membership of observation i , so that zig D 1

if observation i belongs to component g and zig D 0 otherwise. Suppose n p-
dimensional data vectors x1; : : : ; xn are observed, all of which have unknown group
memberships, and we wish to cluster these data into G components. The Gaussian
model-based clustering likelihood can be written L .# j x/ DQn

iD1
PG

gD1 �g�.xi j
�g;˙ g/, where �g is the mean vector and ˙ g is the covariance matrix for compo-
nent g. In practice, one must often consider the introduction of parsimony. There are
.G	1/CGpCGp.pC1/=2 free parameters in this Gaussian mixture model. Because
Gp.p C 1/=2 of these parameters are contained within the component covariance
matrices, the imposition of constraints upon covariance matrices has become a
popular solution. The models that result from the imposition of such constraints,
together with the unconstrained model, can be collectively referred to as a “family”
of mixture models. Families of mixture models will be revisited in Sect. 2 but first
we describe model-based classification and discriminant analysis.

In the model-based classification paradigm, we have n observations of which
k have known group memberships. Without loss of generality, we can order these
n observations so that the first k have known group memberships. Assuming that
each of the known groups corresponds to a mixture component, the model-based
classification likelihood is

L .# j x; z/ D
k
Y

iD1

G
Y

gD1




�g�.xi j �g;˙ g/
�zig

n
Y

jDkC1

H
X

hD1
�h�.xj j �h;˙ h/; (1)

for H � G. The fact that we find a model with a number of groups (H ) greater
than that already observed (G) gives model-based classification an added flexibility.
From the likelihood in Eq. (1), model-based clustering is clearly a special case of
model-based classification that arises upon setting k D 0.

In the model-based discriminant analysis framework, we again have n

observations of which k have known group memberships, ordered so that
the first k have known group memberships. Here, rather than using all n
observations to estimate the unknown parameters—and so unknown component
memberships—we use only the first k. First, we form the likelihood L .# j x; z/ D
Qk
iD1

QG
gD1




�g�.xi j �g;˙ g/
�zig based on these k observations. Then, using

the maximum likelihood estimates arising from this likelihood, we compute the
expected values

Ozjg WD
O�g�.xj j O�g; Ȯ g/

PG
hD1 O�h�.xj j O�h; Ȯ h/

;

for j D kC1; : : : ; n. These expected values play the role of a discriminant rule and
the predicted group memberships are given by the maximum a posteriori (MAP)
classifications MAPfOzjgg, where MAPfOzjgg D 1 if maxgfOzjgg occurs at component g



On Clustering and Classification Via Mixtures of Multivariate t-Distributions 235

and MAPfOzjgg D 0 otherwise, for j D k C 1; : : : ; n. Note that it is also possible to
use multiple components for each known group when constructing this discriminant
rule (cf. Fraley and Raftery 2002).

The expectation-maximization (EM) algorithm (Dempster et al. 1977) and its
variants are usually used for parameter estimation for model-based clustering,
classification, and discriminant analysis. The EM algorithm is an iterative procedure
used to find maximum likelihood estimates when data are or are taken to be
incomplete. The EM algorithm is an iterative procedure based on the “complete-
data” likelihood, i.e., the likelihood of the observed plus the missing data. Note
that following application of the EM algorithm, it is common to report the
MAP classifications. Comprehensive details on EM algorithms, including their
application to finite mixture models, are given by McLachlan and Krishnan (2008).

The remainder of this paper is laid out as follows. The notion of a family of
mixture models is further developed in Sect. 2, with three Gaussian families used
for illustration. Work on mixtures of multivariate t-distributions is then discussed
(Sect. 3) before the paper concludes with some discussion (Sect. 4).

2 Three Families of Gaussian Mixture Models

This section expands on the notion of a family of mixture models, using three Gaus-
sian families for illustration. These families were chosen because of the availability
of R (R Development Core Team 2012) packages for their implementation and
the existence of t-analogues. As suggested in Sect. 1, these families are based on
decomposed component covariance matrices. The reader should note that there are
very interesting Gaussian families within the literature (e.g., Bouveyron et al. 2007)
that are not discussed herein.

The MCLUST family (Banfield and Raftery 1993; Celeux and Govaert 1995;
Fraley and Raftery 2002) of Gaussian mixture models is the most well-established
family within the literature. The MCLUST family, which is supported by the
mclust package (Fraley and Raftery 2006) for R, is based on eigen-decomposed
component covariance structures so that the gth component covariance structure is
˙ g D �gDgAgD0g, where Dg is the matrix of eigenvectors of˙ g , Ag is the diagonal
matrix with entries proportional to the eigenvalues of ˙ g, and �g is the relevant
constant of proportionality. Imposing constraints on this covariance structure gives
a family of ten multivariate mixture models (cf. Fraley and Raftery 2006, Table 1).
The reader should note that the MCLUST family is a subset of the Gaussian parsi-
monious clustering models of Celeux and Govaert (1995). The MCLUST family is
most commonly used for model-based clustering but Fraley and Raftery (2002) also
illustrate both discriminant analysis and density estimation applications. Dean et al.
(2006) used the MCLUST family for both classification and discriminant analysis.

The second family we will consider is an outgrowth of the mixture of factor
analyzers model. The factor analysis model (Spearman 1904; Bartlett 1953) is a
well known multivariate statistical technique that models a p-dimensional random
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vector X using a q-dimensional vector of latent factors U, where q � p. The model
can be written X D � C �U C �, where � is a p 
 q matrix of factor loadings,
the latent factors U 
 N .0; Iq/, and � 
 N .0;� /, where � is a p 
 p diagonal
matrix with strictly positive entries. From this model, the marginal distribution of X
is N .�;��0C� /. Ghahramani and Hinton (1997) introduced a mixture of factor
analyzers model; the density is that of a finite Gaussian mixture model with ˙ g D
�g�

0
g C � . Around the same time, a mixture of probabilistic principal component

analyzers model was introduced (Tipping and Bishop 1997, 1999), wherein the � g

matrices are isotropic so that˙ g D �g�0gC gIp for each component. McLachlan
and Peel (2000) then proposed a more general mixture of factor analyzers model
with ˙ g D �g�

0
g C � g . More recently, McNicholas and Murphy (2005, 2008)

developed a family of eight Gaussian mixture models by imposing constraints upon
the most general covariance structure˙ g D �g�0gC� g . They used the constraints
�g D �, � g D � , and � g D  gIp , with the resulting family of mixture models
called the parsimonious Gaussian mixture model (PGMM) family. McNicholas and
Murphy (2010b) modified the factor analysis covariance structure by writing � g D
!g
g; where !g 2 RC and 
g is a diagonal matrix with j
gj D 1. This modified
factor analysis covariance structure,˙ g D �g�0gC!g
g, along with all legitimate
combinations of the constraints �g D �, !g D !, 
g D 
, and 
g D Ip , give
a family of twelve PGMMs (cf. McNicholas and Murphy 2010b, Tables 1 and 2).
McNicholas and Murphy (2005, 2008, 2010b) focused on clustering applications,
while the PGMM family was used by McNicholas (2010) for model-based clas-
sification and by Andrews and McNicholas (2011b) for model-based discriminant
analysis. This family is supported by the pgmm package (McNicholas et al. 2011).

The final family we will consider was designed specifically for the model-based
clustering of longitudinal data. McNicholas and Murphy (2010a) used the modified
Cholesky decomposition (cf. Pourahmadi 1999) to decompose each component
precision matrix as ˙�1g D T0gD�1g Tg , where Tg is a unique lower unitriangular
matrix and Dg is a unique diagonal matrix with strictly positive diagonal entries. The
values of Tg and Dg can be interpreted as generalized autoregressive parameters and
innovation variances, respectively (cf. Pourahmadi 1999). Constraints are imposed
on Tg and Dg to give a family of eight mixture models (cf. McNicholas and Murphy
2010a, Table 1). This family is available, for both clustering and classification,
within the longclust package (McNicholas et al. 2012) for R.

3 Mixtures of Multivariate t-Distributions

Model-based clustering using mixtures of multivariate t-distributions has been
around for some time (McLachlan and Peel 1998; Peel and McLachlan 2000). The
density of a mixture of multivariate t-distributions is

f .x j #/ D
G
X

gD1
�gft .x j �g;˙ g; $g/;
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where ft .x j �g;˙ g; $g/ is the density of a p-dimensional multivariate
t-distribution with mean �g, covariance matrix˙ g , and $g degrees of freedom. An
elegant parameter estimation framework, based on an EM algorithm, is described
by McLachlan and Peel (1998). Building on this work, Zhao and Jiang (2006)
developed a t-analogue of the probabilistic principal components analysis model
and considered mixtures thereof, and McLachlan et al. (2007) introduced a mixture
of t-factor analyzers model. Andrews and McNicholas (2011a,b) expanded on this
work to introduce a t-analogue of the PGMM family for model-based clustering,
classification, and discriminant analysis. They also considered constraining degrees
of freedom to be equal across components and observed that this can lead to
superior classification performance in some cases. Andrews et al. (2011) illustrated
the performance of a four-member family of mixtures of multivariate t-distributions
for model-based classification and Steane et al. (2012) studied two specific mixture
of t-factors models for model-based classification.

Andrews and McNicholas (2012a) developed a t-analogue of the MCLUST
family of models, including two additional covariance structures (i.e., they use
12 of the 14 models of Celeux and Govaert 1995), for model-based clustering,
classification, and discriminant analysis. This family of models is supported by
the teigen package for R (Andrews and McNicholas 2012b). McNicholas and
Subedi (2012) developed a t-analogue of the approach of McNicholas and Murphy
(2010a) to cluster and classify longitudinal data; they also considered modelling the
component means. The longclust package for R implements the approach of
McNicholas and Subedi (2012) while also allowing the user to select a Gaussian
mixture model.

In addition to the aforementioned work on mixtures of multivariate
t-distributions, which focuses primarily on the three families of models, there have
been several other notable contributions. Space restrictions do not allow for an
exhaustive exploration but it seems that some papers deserve special mention.
In particular, Shoham (2002) introduce a deterministic agglomeration EM
algorithm for mixtures of multivariate t-distributions; and Greselin and Ingrassia
(2010a,b) discuss weakly constrained monotone EM algorithms and homoscedastic
constraints, respectively, for mixtures of multivariate t-distributions.

4 Discussion

The move from the mixture of multivariate Gaussian distributions to its t-analogue
can be considered a more flexible approach. However, there are some downsides as
well as some unexpected features. In the latter vein, there is the somewhat surprising
effect of constraining the component degrees of freedom to be equal. Although it
saves very few parameters, this constraint ($g D $) can actually lead to improved
clustering and classification performance (see Andrews and McNicholas 2011a, for
an example). This might be explained, at least in part, by the fact that components
might better estimate their degrees of freedom $g when borrowing from other
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components, especially when the sample size is not large. The principal downside
of t-mixtures seems to be the extra difficulty involved in parameter estimation;
specifically, the greater importance of starting values for the EM algorithm for the
t-mixture models over their Gaussian counterparts has been noted, as well as the
relatively expensive degrees of freedom update.

Of course, many problems that exist within the Gaussian paradigm carry over
into the t-analogues. A glaring example is model selection, where the approach of
choice is the Bayesian information criterion (BIC, Schwarz 1978). While it can be
effective and there is some theoretical support for its use (cf. Keribin 1998), the BIC
leaves room for improvement. There is also the question around whether the best
model should be selected at all, as opposed to combining the classification results of
the best few models via some model averaging approach. Work is ongoing on both
model selection and model averaging for model-based clustering, classification, and
discriminant analysis.

The role that work on mixtures of multivariate t-distributions will play, within
a historical context, is worthy of consideration. They will almost certainly be
regarded as the tip of the non-Gaussian iceberg and, to an extent, the model-
based clustering and classification literature has already moved beyond mixtures
of multivariate t-distributions. Lin (2010), Lee and McLachlan (2011), and Vrbik
and McNicholas (2012) have conducted interesting work on mixtures of skew-t
distributions and Karlis and Santourian (2009) discuss non-elliptically contoured
distributions, amidst a host of other work on non-Gaussian model-based clustering.
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Simulation Experiments for Similarity Indexes
Between Two Hierarchical Clusterings

Isabella Morlini

Abstract In this paper we report results of a series of simulation experiments aimed
at comparing the behavior of different similarity indexes proposed in the literature
for comparing two hierarchical clusterings on the basis of the whole dendrograms.
Simulations are carried out over different experimental conditions.

1 Introduction

Morlini and Zani (2012) have proposed a new dissimilarity index for comparing
two hierarchical clusterings on the basis of the whole dendrograms. They have
presented and discussed its basic properties and have shown that the index can be
decomposed into contributions pertaining to each stage of the hierarchies. Then,
they have obtained a similarity index S as the complement to one of the suggested
distance and have shown that its single components Sk obtained at each stage k of
the hierarchies can be related to the measureBk suggested by Fowlkes and Mallows
(1983) and to the Rand index Rk . In this paper, we report results of a series of
simulation experiments aimed at comparing the behavior of these new indexes with
other well-established similarity measures, over different experimental conditions.
The first set of simulations is aimed at determining the behavior of the indexes when
the clusterings being compared are unrelated. The second set tries to investigate
the robustness to different levels of noise. The paper is organized as follows. In
Sect. 2 we report the indexes recently proposed in Morlini and Zani (2012) and the
similarity indexes used as benchmarks in the simulation studies. We also illustrate
some of the properties of these indexes, together with theirs limitations and the
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implied assumptions underlying them. In Sects. 3 and 4 we report results obtained
in the simulations. In Sect. 5 we give some concluding remarks.

2 The Indexes

Consider two hierarchical clusterings (or dendrograms) of the same number of
objects, n. For measuring the agreement between two non trivial partitions in k
clusters (k D 2; : : : ; n	 1) at a certain stage of the procedure, an important class of
similarity indexes is based on the quantities Tk , Uk , Pk and Qk reported in Table 1.
This table is a .2 
 2/ contingency table, showing the cluster membership of the
N D n.n 	 1/=2 object pairs in each of the two partitions. Among the indexes
defined on counting the object pairs on which the two partitions agree or disagree,
the most popular ones are perhaps the Rand index:

Rk D N 	 Pk 	Qk C 2Tk
N 	 Uk ; (1)

and the criterion Bk suggested by Fowlkes and Mallows (1983):

Bk D Tkp
PkQk

: (2)

The simple matching coefficient, formulated in terms of the quantities in Table 1, is
equivalent to the Rand index, while the Jaccard coefficient is Jk D Tk=.N 	 Uk. In
Morlini and Zani (2012) we have proposed the following new measure Sk :

Sk D
Pn�1

jD2 Pj C
Pn�1

jD2 Qj 	 Pk 	Qk C 2Tk
Pn�1

jD2 Pj C
Pn�1

jD2 Qj

: (3)

The complement to one of Sk,Zk D 1	Sk , is a metric bounded in [0,1]. This metric
takes value 0 if and only if the two clusterings in k groups are identical and value
1 when the two clusterings have the maximum degree of dissimilarity, that is when
for each partition in k groups and for each pair i , objects in pair i are in the same
group in clustering 1 and in two different groups in clustering 2 (or vice versa). The
statistics Bk , Jk and Sk may be thought of as resulting from two different methods
of scaling Tk to lie in the unit interval. In these indexes the pairs Uk , which are not
joined in either of the two clusterings, are not considered as indicative of similarity.
On the contrary, in the Rand index the counts Uk are considered as indicative of
similarity. With many clusters Uk must necessarily be large and the inclusion of
this count makes Rk tending to 1, for large k. How the treatment of the pairs Uk
may influence so much the values of Rk , for different k, is illustrated in Wallace
(1983). Rk and Sk may be related to distance measures defined on Table 1, like the
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Table 1 Contingency table of the cluster membership of the N object pairs

Second clustering (g D 2)

Pairs in the
First clustering (g D 1) same cluster Pairs in different clusters Sum

Pairs in the same cluster Tk Pk � Tk Pk
Pairs in different clusters Qk � Tk Uk D N � Tk � Pk �Qk C 2Tk N � Pk
Sum Qk N �Qk N D n.n� 1/=2

Hamming distance Hk (Mirkin 1996) and the Zk D 1 	 Sk distance (Morlini and
Zani 2012). It can be shown that the numerator ofZk is equal toN.1	Rk/ (Morlini
and Zani 2012) andHk D 2N.1	Rk/ (Meila 2007). Since the valuesRk and Sk are
not well spread out over the interval [0,1] for large k, it may be convenient to correct
the indexes for association due to chance and to consider the measure (Hubert and
Arabie 1985; Albatineh et al. 2006):

ASk D Sk 	E.Sk/
1 	E.Sk/: (4)

It is interesting to note that the adjusted Sk obtained with (4) is equivalent
to the Adjusted Rand index (Hubert and Arabie 1985). Indeed, the expectation
E.Tk/, assuming statistical independence under the binomial distribution for the
contingency table showing the cluster membership of the object pairs (Table 1) is
(Fowlkes and Mallows 1983; Hubert and Arabie 1985):

E.Tk/ D PkQk=N (5)

Using (5), the expectation E.Sk/ is:

E.Sk/ D
P

j¤k Pj C
P

j¤k Qj C 2PkQk=N
P

k Pk C
P

k Qk

(6)

Using (6) in (4), after some algebraic simplification we obtain:

ASk D 2Tk 	 2PkQk=N

Pk CQk 	 2PkQk=N
(7)

which is the same expression of the Adjusted Rand Index.
The most innovative index proposed in Morlini and Zani (2012) is a global

measure of similarity which considers simultaneously all the k stages in the
dendrograms. In the literature, the only measure that has been presented for
measuring the agreement between two whole dendrograms is the � coefficient of
Baker (1974). This criterion is defined as the rank correlation coefficient between
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stages at which pairs of objects combine in the dendrograms and thus it ranges over
the interval [	1, 1] and it is not a similarity index. The global measure of agreement
proposed in Morlini and Zani (2012) is:

S D 2
P

k Tk
P

k Qk CPk Pk
: (8)

S does not depend on the number k and thus preserves comparability across
clusterings. It has some desirable properties not pertaining to � . It is a similarity
index. Therefore, in a sample of G dendrograms ug 2 U , g D 1; : : : ; G it is a
function S.ug; ug0/ D Sgg0 from U 
U into R with the following characteristics:

– Sgg0 � 0 for each ug; ug0 2 U (non negativity).
– Sgg D 1, for each ug 2 U (normalization).
– Sgg0 D Sg0g, for each ug; ug0 2 U (symmetry).

The further additivity property Sgg0 D P

k V gg0k D
P

k
2Tk

P

k QkCPk Pk
permits to

decompose the value of the index into contributions pertaining to each stage k of
the dendrograms. This makes the values of S more interpretable and comparable.

3 Simulation Experiments: Unrelated Clusterings

For the first study we generate two data sets according to the following steps:

1. For each data set, the sample size is n D 50 and the number of variables is p D 5.
2. The 50 elements in each set are generated from a multivariate standard normal

distribution with a correlation matrix consisting of equal off-diagonal elements
	1 (in the first set) and 	2 (in the second set). 	1 and 	2 are chosen randomly in
the set [	0.9, 	0.8, . . . , 0.8, 0.9].

3. We repeat steps 1. and 2. 5,000 times. Each time we perform a hierarchical
clustering for the two sets with the Euclidean distance and the average linkage
and we compute the indexes Sk , Rk , ASk , Bk , S and the � coefficient.

The two sets are generated independently and the agreements between clusterings
are only due to chance. Since the range of the indices is different, and in these
simulations � takes negative values, we obtain new values of � , which we call ��,
lying in the interval Œ0; 1�, with the transformation �� D .� C 1/n2. Left panel of
Fig. 1 shows the boxplots of the values of S (left) and �� (right). The median and
the mean values of �� are approximately 0.5. The boxplots show that S performs
better than ��, since the median and mean value of S are nearly 0.23 and the index
has fewer outliers. In the right panel are reported the mean values of Bk , Rk and
ASK , for k D 2; : : : ; 49. With k D 2, Rk and Bk have a similar value. Then, the
plot shows the tendency of Rk to increase with k and rapidly approaching 1 and the
opposite tendency forBk to decrease with k and assuming values close to 0 for large
k. ASk performs best, showing average values always close to zero, regardless of k.
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Fig. 1 Results for 5,000 pairs of unrelated samples. Left panel: boxplots of S (left) and �� (right).
Right panel: plots of the mean values of Rk (solid line), Bk (dotted line) and ASk (dashed line)

Further simulations show that the behavior of all indexes in the case of two unrelated
clusterings is robust with respect to the choice of the distance or to the choice of the
linkage and also with respect to the size n of the data and to the number of variables
p. In several simulations carried out considering the Manhattan distance, different
linkages and different values of n (from 50 to 100) and forp (from 2 to 10), boxplots
for S and �� and plots of Bk , Rk , ASK are similar to those reported in Fig. 1.

4 Simulation Experiments: Robustness to Noise

In this section simulations are aimed at evaluating the robustness to noise. The first
data set is generated as in previous section, setting the sample size n D 50, the
number of variables p D 5 and generating 50 elements from a multivariate standard
normal distribution with a correlation matrix consisting of equal elements 	1 chosen
randomly in the set [	0.9, 	0.8, . . . , 0.8, 0.9]. The second data set is obtained by
adding to all variables a random normal noise with mean zero and variance �2e . We
consider the values �2e D 0:04, 0.16, 0.36. Hierarchical clusterings of each data
set are carried out using the Euclidean distance and the complete, the single, the
average linkages and the Ward method. Since the second data set is just the first one
with added noise, indexes should indicate a great similarity between clusterings and
the similarity should increase with decrease in �2e . In these simulations � assumes
only positive values, therefore we consider � instead of the normalized index ��.
Figures 2 and 3 report the results obtained with �2e D 0:04, the single and the
complete linkage methods. Results obtained with the average linkage and the Ward
methods, not reported for lack of space, are available upon request. For all linkages,
the values of S do not exceed 0.9 but are never smaller than 0.4 (for the single
linkage, the minimum value obtained in the 5,000 runs is 0.6). On the contrary, �
assumes values greater than 0.9 and close to one but, on the other hand, presents
several values smaller than 0.4. If we take the median values for comparing the
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Fig. 2 Boxplots of S and � using the complete linkage (left) and the single linkage (right)
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Fig. 3 Plots of the mean values of Rk (solid line), Bk (dotted line) and ASk (dashed line) using
the Euclidean distance and the complete linkage (left panel) and the single linkage (right panel)

degree of similarity measured by S and � , we see that S indicates a more marked
similarity using the complete and the single linkages. Plots in Fig. 3 show again the
opposite tendencies ofRk to approach one and of Bk and ASk to approach zero as k
increases. The plots also show that perturbation affectsBk least for small values of k
and greatest for large values of k. This desirable property was just noted in Fowlkes
and Mallows (1983). For ASk this is true for the Ward method, the single and the
average linkages, but not for the complete linkage. ASk shows a relatively more
constant pattern with respect to k, without precipitous falloffs. These results show
that each index has own desirable properties but also causes for concern and the
choice of one index over the others is somehow difficult. That the average values
of Rk and Bk are higher in the presence of small perturbation of the sample is
reasonable and desirable, but the large values assumed by Rk also in presence of
two unrelated clusterings (see Fig. 1) and the greatest variability of Bk across k are
causes for concern. For these reasons, a global criterion of similarity like S may be
a better choice for measuring the agreement between two hierarchical clusterings.

From Figs. 2 and 3 we may also analyze the stability of the different linkages to
small perturbations. Clusterings with the single linkage are less affected by added
noise while clusterings recovered by the complete linkage are, in general, less stable.

Figures 4, 5 and 6 show the empirical distribution of S , � , Rk , Bk , ASk (with
k D 2; 5; 10; 15; 20; 25; 30; 35; 40; 45) obtained with �2e D 0:16 and �2e D 0:36.
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Fig. 4 Boxplots of ASk (k D 2; 5; 10; 15; 20; 15; 30; 35; 40; 45), S and � . Values are obtained
considering pairs of samples where the second one is the first one with added noise with �2e D 0:16
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Fig. 5 Boxplots of Rk (k D 2; 5; 10; 15; 20; 15; 30; 35; 40; 45), S and � . Values are obtained
considering pairs of samples where the second one is the first one with added noise with �2e D 0:16
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Fig. 6 Boxplots of Bk (k D 2; 510; 15; 20; 15; 30; 35; 40; 45), S and � . Values are obtained
considering pairs of samples where the second one is the first one with added noise with �2e D 0:16

(left panel), �2e D 0:36 (right panel)

Clusterings are recovered using the Euclidean distance and the average linkage
method. The median values of S and � decrease with increase in �2e . However,
this drop is more marked in � than in S and, for �2e D 0:36, the median value of S
is substantially higher than the median value of � . The patterns of the median values
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of Rk , Bk and ASk , versus k, do not change across simulations with different �2e .
Boxplots show that Rk has a higher variability for small values of k. For k � 30,
Rk is always close to 1 and the values are nearly constant across simulations. The
variability of Bk and ASk , measured by the interquartile range, is more marked for
k D 2 and k D 5.

5 Concluding Remarks

This paper has presented results obtained by simulation studies aimed at comparing
the behavior of different similarity indexes used for measuring the agreement
between two hierarchical clusterings. In contrast to the well-know criteria like the
Rand index and the Bk index of Fowlkes & Mallows, the measure S recently
proposed in the literature is not directly concerned with relationship between
a single pair of partitions, but depends on the whole set of partitions in the
dendrograms. Simulations show that the performances of Rk and Bk strongly
depend on the number of groups k. The major drawback of this dependency is
that Rk assumes values close to one for large k, even though the two partitions
are unrelated. For large k, Bk has improved performances in case of unrelated
clusterings but performs worse when the two clusterings are related. There is not
a clear best choice between these two competing criteria and thus it is probably
meaningless to search for the best criterion. A better goal is to study the behavior of
these indexes and their limitations in different experimental conditions. The adjusted
version of Rk and Sk , is based on a null model that is reasonable but, nevertheless,
artificial. Some authors have expressed concerns at the plausibility of the null model
(Meila 2007). However, simulations show that the adjusted version has improved
performances and the values of the index are not influenced by k. These results are
in agreement with results presented in Albatineh et al. (2006) and Albatineh and
Niewiadomska-Bugaj (2011). The new global index S does not depend on k and
thus preserves comparability. Simulations show that S has good performances. It
takes values close to zero when no clustering structure is present and values close to
one when a structure exists.
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Performance Measurement of Italian Provinces
in the Presence of Environmental Goals

Eugenia Nissi and Agnese Rapposelli

Abstract The widespread of sustainable development concept intimates a vision
of an ecologically balanced society, where it is necessary to preserve environ-
mental resources and integrate economics and environment in decision-making.
Consequently, there has been increasing recognition in developed nations of the
importance of good environmental performance, in terms of reducing environmental
disamenities, generated as outputs of the production processes, and increasing
environmental benefits. In this context, the aim of the present work is to evaluate
the environmental efficiency of Italian provinces by using the non-parametric
approach to efficiency measurement, represented by Data Envelopment Analysis
(DEA) technique. To this purpose, we propose a two-step methodology allowing
for improving the discriminatory power of DEA in the presence of heterogeneity
of the sample. In the first phase, provinces are classified into groups of similar
characteristics. Then, efficiency measures are computed for each cluster.

1 Introduction

In 1987, a World Commission on Environment and Development report brought
the concept of sustainable development into the purview of governments and
publics around the world. According to it, sustainable development is development
that meets the needs of the present without compromising the ability of future
generations to meet their own needs. This concept intimates, therefore, a vision
of an ecologically balanced society, where it is necessary to preserve environ-
mental resources whilst integrate economics and environment in decision-making.
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The emergence and the widespread of this idea has intensified the need for indicators
which capture the link between the economic, social and environmental dimensions.
Hence, there is an increasing need for taking account of the impact of organizations
of all kinds on environment, both in terms of reducing environmental disamenities,
generated as outputs of the production processes, and increasing environmental
benefits.

In this context, the aim of this empirical study is to measure the ecological
efficiency of Italian provinces for the year 2008. Our efficiency analysis is under-
taken by using the principles of frontier analysis introduced by Farrell (1957), who
suggested measuring the efficiency of a productive unit relative to an empirical
best practice frontier. The efficiency frontier outlines the technical limits of what
an organisation, or a Decision Making Units (DMUs), can achieve: it specifies
for a unit the maximum quantities of outputs it can produce given any level of
inputs and, for any level of outputs, the minimum quantities of inputs needed for
producing the outputs. To this purpose, we use the non-parametric approach to
efficiency measurement, represented by Data Envelopment Analysis (DEA) method,
which is a very suitable technique for assessing the performance of provinces seen
as environmental operating units. DEA, in fact, can easily handle multiple inputs
and outputs as opposed to the usual stochastic frontier formulation, represented
by Stochastic Frontier (Aigner et al. 1977). Italian provinces, however, are not
homogeneous and produce both good outputs and environmental disamenities or
“bads” (Scheel 2001). For these reasons, we carry out two main changes to this
method.

It is well known, in fact, that DEA method makes a series of homogeneity
assumptions about the units under assessment: in general the operating units,
or DMUs, have to be similar in a number of ways (Dyson et al. 2001). First
of all, the units are assumed to be undertaking similar activities and producing
comparable products or services. Second, a similar range of resources is available
to all the units. Finally, units have to operate in similar environments, since the
external environment generally impacts on the overall performance of units. Hence,
we propose a two-step methodology allowing for increasing the discriminatory
power of DEA which is limited in the presence of heterogeneity. The idea of
this work is firstly to cluster the operating units (the Italian provinces) and then
to estimate efficiency for each cluster. Besides, in order to rate the performance
of each province, DEA method has to be modified to the field of environmental
performance, where there is a joint production of good outputs and bad outputs,
such as pollutants emissions (Coli et al. 2011). We try to solve this problem in
the traditional measures of efficiency by applying a new model type of DEA, that
includes the presence of desired environmental effects and environmental harms
(Thore and Freire 2002). The paper is organized as follows. Section 2 reviews the
theoretical background, Sect. 3 describes the data used and discusses the results,
Sect. 4 contains the main implications for future research and concludes.
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2 Methodology: Cluster Analysis and Data
Envelopment Analysis

In the first phase of our study we use cluster analysis in order to identify
natural groups of provinces based on their structural similarity with regards to
the levels of the inputs and outputs they receive and produce (Samoilenko and
Osei-Bryson 2008). Provinces of a given cluster may be operating, therefore, in
similar environments and share similar input and output mix.

As known, clustering is a statistical multivariate technique that involves the
partitioning of a set of objects into a useful set of mutually exclusive clusters
such that the similarity between the observations within each cluster (i.e., subset)
is high, while the similarity between the observations from the different clusters
is low (Johnson and Wichern 2002; Samoilenko and Osei-Bryson 2010). There
are numerous algorithms available for doing clustering: they may be categorised
in various ways, such as hierarchical or partitional, deterministic or probabilistic,
hard or fuzzy. To perform cluster analysis we have employed both hierarchical
clustering techniques and partitional clustering techniques. However, hierarchical
clustering techniques have not been able to provide satisfactory results. We have
obtained, in fact, clusters with a few units, and in this case DEA method cannot
be applied with good results, because there would not be a reasonable level of
differentiation between DMUs evaluated.1 Afterwards, we have decided to use a
partitional clustering technique based on k-means method,2 because it represents
the best method according to our purpose. The resulting classification, in fact, is
more homogeneous and well-differentiated.

Once we have classified the operating units into groups of similar characteris-
tics, we apply the DEA method to assess the different environmental efficiency
of provinces for each cluster identified. DEA is a linear-programming based
methodology developed by Charnes et al. (1978). It provides a measure of the
relative efficiency of a set of homogeneous organisational units in their use of
multiple inputs to produce multiple outputs (Cooper et al. 2000). The basic DEA
models measure the technical efficiency of a DMU in terms of the maximal radial
contraction to its input levels (input orientation) or expansion to its output levels
feasible under efficient operation (output orientation). In general, they assume that
inputs and outputs are “goods” (Dyckhoff and Allen 2001).

The model used in this paper is the input-oriented one, under the assumption of
variable returns to scale (VRS). To present formally this model, known as BCC
(Banker et al. 1984), consider a set of n DMUs, indexed by jD 1, : : : , n, each

1In order to individuate a significant number of efficient organisations, the literature suggests that
the number of units has to be greater than 3(mCs), where mCs is the sum of the number of inputs
and number of outputs (Dyson et al. 2001).
2k-means clustering requires the number of resulting cluster, k, to be specified prior to analysis.
Thus, it will produce k different clusters of greatest possible distinction.
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producing s different desirable outputs from m different inputs. The technical input
efficiency of DMUs under analysis is obtained by implementing the following
model:

e0 D min �0

subject to

�0xij0 	
n
X

jD1
�j xij � 0; i D 1; : : : ; m (1)

n
X

jD1
�j yrj � yrj0; r D 1; : : : ; s (2)

n
X

jD1
�j D 1; (3)

�j � 0; 8 j (4)

where xij is the amount of the i-th input to DMU j, yrj is the amount of the r-th output
to DMU j, �j are the weights of DMU j and �0 is the shrinkage factor for DMU j0.
The value of �0 obtained is termed the technical output efficiency of DMU j0 and it
is bounded between 0 and 1. DMU j0 is said to be efficient if it has a score of unity.

However, standard DEA models are not suitable in contexts where at least
one of the variables that have to be radially contracted or expanded is not a
“good.” For example, in the context of environmental performance some production
processes may also generate undesirable outputs or “bads” (such as environmental
disamenities) which need to be decreased to improve the performance of a unit
(Seiford and Zhu 2005). Beside, a symmetric case of inputs which should be
maximised may also occur (desired environmental effects). Classical DEA models,
therefore, have to be modified in order to extend the analysis by also considering the
presence of variables that impact on the environment. To this purpose, we propose
a new model type of DEA, that incorporates environmental harms as inputs and
environmental benefits as outputs, while also seeking to minimise and maximise
them, respectively. Hence, assuming that n DMUs, indexed by jD 1, : : : , n, produce
s different desirable outputs and z different undesirable outputs from m different
inputs and w environmental benefits, their technical input efficiency is obtained
by including the following two more constraint, (5) and (6), into the above linear
programming problem:

�0htj0 	
n
X

jD1
�j htj � 0; t D 1; : : : ; z (5)

n
X

jD1
�j evj � evj0; v D 1; : : : ;w (6)



Performance Measurement of Italian Provinces in the Presence of Environmental Goals 255

where htj is the amount of the t-th undesirable output to DMU j and evj is the amount
of the v	th environmental benefit to DMU j.

3 Case Study

We apply the proposed methodology to 103 Italian provinces for the year 2008, the
most recent for which all required data are available. For evaluating their perfor-
mance, we focus on economic and environmental aspects of production process,
without emphasizing physical inputs and outputs (Kuosmanen and Kortelainen
2005). Hence, we define a model characterized by one input, the number of employ-
ees, and a single desirable output, the gross domestic product (GDP) expressed
in Euros. Moreover, since the production process of these DMUs may generate
desired environmental effects and environmental harmful effects (Dyckhoff and
Allen 2001; Scheel 2001), we also include both of these environmental variables. As
to data on the undesirable outputs we include two air pollutants—nitrogen dioxide
concentration (NO2)3 and PM10 concentration4 (suspended particulate matters)—
and nitrates concentration in water. With regard to environmental benefits, we select
two variables: percentage of separate refuse collection on total waste produced and
public parks and gardens, measured in mq/ha. Finally, we also consider in our
analysis the weight of manufacturing sector in the provincial economy. The data
required are based on several sources: our principal source of information regarding
the three undesirable outputs and the two environmental benefits has been the report
“Rapporto 2008 sulla qualità della vita in Italia,” while the number of employees
and the gross domestic product values have been obtained from the Italian National
Institute of Statistics (ISTAT).

As mentioned above, we first apply cluster analysis in order to identify subsets of
provinces, heterogenous between the groups, but homogeneous within each group.

To this purpose, we use a partitional clustering technique based on k-means
method. In particular, we are able to come up with a solution that partitions the
set of 103 DMUs into two clusters. Even if the results from Calinski/Harabasz test,
a clustering validity criteria, are very similar for 2 and 3 clusters (Table 1), we
have decided to fix kD 2 because the solution with 3 clusters provides a cluster
with 13 units, for which it is not possible to individuate a significant number

3Current scientific evidence links short-term NO2 exposures, ranging from 30 min to 24 h,
with adverse respiratory effects including airway inflammation in healthy people and increased
respiratory symptoms in people with asthma. Nitrogen dioxide also plays a major role in the
atmospheric reactions that produce ground-level ozone or smog (Coli et al. 2011).
4Suspended particulate matter (SPM) is a mixture of particles of different size and state (solid
and liquid) ranging from 0.01 %m to >10 %m in diameter: particles measuring <10 %m (PM10)
penetrate into the lower respiratory system and might penetrate into the bloodstream. Particles may
contain metals, such as zinc and nickel, organic materials and polycyclic aromatic hydrocarbons,
some of which are carcinogenic (Coli et al. 2011).
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Table 1 Calinski/Harabasz test

Number of clusters Calinski/Harabasz (pseudo F)

2 339.93
3 339.61

Table 2 DEA efficiency scores by provinces: Cluster 1

DMU Score DMU Score DMU Score DMU Score DMU Score DMU Score

CR 1 AO 1 IM 1 TV 0.94 AP 0.85 NO 0.65
LC 1 GO 1 RE 1 RM 0.92 PR 0.85 AN 0.63
MN 1 UD 1 FE 1 VA 0.92 LO 0.83 GE 0.63
SO 1 BZ 1 IS 1 RO 0.92 PN 0.82 VR 0.63
PV 1 LI 1 TR 0.99 TN 0.91 BG 0.78 AL 0.62
MI 1 LC 1 MO 0.98 PU 0.89 RN 0.78 PG 0.62
AT 1 GR 1 PT 0.97 PI 0.88 BL 0.78 MC 0.60
BI 1 AR 1 TS 0.96 BS 0.88 VE 0.76 PD 0.55
CN 1 SI 1 BO 0.95 RA 0.87 FC 0.75 TO 0.53
VB 1 PO 1 LT 0.95 FI 0.86 CO 0.74
VC 1 SP 1 SV 0.94 PC 0.86 VI 0.66

of efficient units.5 The first one consists of 64 provinces (Northern and Central
Italy plus Roma, Latina and Isernia), whilst the second one includes 39 provinces
(Southern Italy plus Frosinone, Rieti, Viterbo and Massa Carrara). As mentioned,
identification of such clusters can prove useful in understanding the complexion of
operating environments and the input/output mix prevailing among the operating
units (Thanassoulis 1996). Then, for each cluster, the modified input-oriented BCC
model presented in Sect. 2 is carried out. The linear programs associated with the
model are solved by using DEAP, a software developed by Tim Coelli (1996). The
efficiency ratings obtained are listed in the Tables below.

The results consists of a large number of efficient DMUs in both clusters.
In cluster one (Table 2) 26 provinces form the efficiency frontier. Besides, ten
provinces have low ratings. In cluster two (Table 3) there are 16 top performers,
and two provinces are very close to the best practice frontier. Our findings also
show that the efficiency score is higher in cluster one, whereas the scores variability
is lower than cluster two (Table 4). In the first cluster Biella, Cuneo, Grosseto and
Livorno seem to be the most robustly BCC efficient: they appear very frequently
in the peer groups (21, 18, 18 and 16 times, respectively). In the second cluster the
most frequent units are Viterbo, Crotone and Massa-Carrara (20, 17 and 10).

5We have also tried to fix a larger number of clusters, but we have obtained clusters with a few
units, and in this case DEA method cannot be applied with good results.
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Table 3 DEA efficiency scores by provinces: Cluster 2

DMU Score DMU Score DMU Score DMU Score DMU Score DMU Score

RI 1 BA 1 VV 1 TA 0.90 TP 0.78 PA 0.65
VT 1 LE 1 FR 1 CA 0.85 RC 0.76 FG 0.64
MS 1 OR 1 CE 0.99 CB 0.85 AG 0.75 ME 0.56
CH 1 SA 1 EN 0.98 NU 0.84 BR 0.71 NA 0.56
TE 1 CL 1 SS 0.97 BN 0.84 CS 0.70
PZ 1 RG 1 CT 0.92 AQ 0.82 AV 0.67
KR 1 PE 1 MT 0.91 CZ 0.81 SR 0.65

Table 4 Summary statistics for DEA
efficiency scores

Cluster 1 Cluster 2

Mean 0.885 0.875
Minimum 0.535 0.559
Maximum 1 1
SD 0.140 0.142

4 Conclusions and Future Research

In this paper we have evaluated the environmental performance of Italian provinces
for 2008 by means of the non-parametric approach to efficiency measurement,
represented by Data Envelopment Analysis. To this purpose, we have adapted this
method to the problems at hand, i.e. the heterogeneity of the sample and the presence
of positive and negative environmental variables. We have suggested, therefore,
to firstly apply a clustering algorithm for obtaining subgroups of homogeneous
data, and then to obtain measures of technical efficiency taking into account the
presence of both desired environmental effects and environmental harms. The
results provided by application of the modified DEA model to Italian provinces
show that DMUs are operating at a fairly high level of technical efficiency, although
there is room for improvement in several provinces.

However, these results could be improved. First of all, we have applied DEA
method because it can easily accomodate multiple inputs and outputs, since a
main objective of our study was also to incorporate both undesirable outputs and
environmental beneficial effects into the analysis, by augmenting the vectors of
inputs and outputs. However, in some cases, it is now possible to include multiple
outputs in a parametric analysis. Hence, in our future research we could consider a
comparative evaluation of the two alternative techniques to efficiency measurement,
DEA and Stochastic Frontier Analysis. Besides, further research in this field could
include more variables, such as other undesirable outputs in form of pollutants
emissions or other environmentally beneficial variables (recycling of materials,
surface for pedestrian walkway, generation of solar energy, energy consumption
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covered by renewable sources, etc.). Finally, the model employed could be applied
in order to compare ecological performance in other territorial systems.
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On the Simultaneous Analysis of Clinical and
Omics Data: A Comparison of Globalboosttest
and Pre-validation Techniques
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Abstract In medical research biostatisticians are often confronted with supervised
learning problems involving different kinds of predictors including, e.g., classical
clinical predictors and high-dimensional “omics” data. The question of the added
predictive value of high-dimensional omics data given that classical predictors are
already available has long been under-considered in the biostatistics and bioinfor-
matics literature. This issue is characterized by a lack of guidelines and a huge
amount of conceivable approaches. Two existing methods addressing this important
issue are systematically compared in the present paper. The globalboosttest proce-
dure (Boulesteix & Hothorn. (2010). BMC Bioinformatics, 11, 78.) examines the
additional predictive value of high-dimensional molecular data via boosting regres-
sion including a clinical offset, while the pre-validation method sums up omics data
in form of a new cross-validated predictor that is finally assessed in a standard gener-
alized linear model (Tibshirani & Efron. (2002). Statistical Applications in Genetics
and Molecular Biology, 1, 1). Globalboosttest and pre-validation are introduced
and discussed, then assessed based on a simulation study with survival data and
finally applied to breast cancer microarray data for illustration. R codes to reproduce
our results and figures are available from http://www.ibe.med.uni-muenchen.de/
organisation/mitarbeiter/020 professuren/boulesteix/gbtpv/index.html.
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1 Introduction

While high-dimensional “omics” data such as microarray transcriptomic data have
been studied in the context of outcome prediction for more than ten years in
biomedical research, the question of the added predictive value of such data
given that classical predictors are already available has comparatively focused
less attention in the literature (e.g. Boulesteix and Sauerbrei 2011). For a given
prediction problem (for example prediction of response to therapy or survival time),
we often have two types of predictors. On the one hand, conventional clinical
covariates such as, e.g. age, sex, disease duration or tumour stage are available as
potential predictors. They have been typically extensively investigated and validated
in previous studies. On the other hand, we have a large number of “omics” predictors
that are generally more difficult to measure than classical clinical predictors and not
yet well-established. In the context of translational biomedical research, researchers
are interested in the added predictive value of such omics predictors over classical
clinical predictors.

The combined analysis of high-dimensional omics predictors and low-
dimensional clinical predictors raises various challenges. How can we build a
combined model that is optimal in terms of prediction accuracy? How can we test
the added predictive value of high-dimensional omics data over classical clinical
predictors and/or assess the respective importance of the two types of predictors?
Leaving the first challenge aside, we focus on tests and compare globalboosttest
(Boulesteix and Hothorn 2010) and pre-validation (Tibshirani and Efron 2002), two
testing approaches. Since omics data are high-dimensional, standard likelihood ratio
tests in the framework of Generalized Linear Models (GLM) cannot be performed.
The two examined methods tackle this problem based on a two-step procedure,
but in different ways: while globalboosttest summarizes clinical predictors as an
offset and then fits a regularized regression model to omics data, pre-validation first
summarizes omics data as a cross-validated “pseudo predictor” and then tests its
significance in a multivariate GLM adjusting for clinical predictors.

2 Globalboosttest

The “globalboosttest” procedure (Boulesteix and Hothorn 2010) aims at testing
the additional predictive value of high-dimensional data by combining two well-
known statistical tools: GLMs and boosting regression. Suppose we have both
high-dimensional omics data as potential predictors on the one hand and a few
classical clinical covariates or a well-defined prognostic index on the other hand.
The considered null-hypothesis is that “given the clinical covariates the omics data
have no added predictive value”. To address this testing problem the globalboosttest
procedure first builds a clinical model (step 1, also denoted as “internal in this
paper”) based on clinical covariates only. For example step 1 is based on logistic
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regression in case of a binary response or on Cox proportional hazard regression
in case of a censored survival response. The resulting linear predictor is then
considered as an offset in a more complex model involving omics data. As suggested
by the procedure’s name, the latter model is estimated by boosting regression (step 2,
also denoted as external in this paper). Step 2 implies an iterative stepwise selection
of the omics predictors while taking the clinical covariates into account in form
of the offset. This step 2 is then repeated a large number of times after randomly
permuting the omics data (but not the clinical data). A permutation p-value is
then derived as the frequency at which the negative binomial log-likelihood of the
boosting regression model was smaller in permuted data sets than with the original
data set.

Tuning parameters are the number of boosting iterations in the external model
and the number of permutations performed in step 2. The number of permutations
should be as large as computationally feasible to increase the test’s precision. The
number of boosting regression steps is a parameter that potentially influences the
test result.

Note that, strictly speaking, this permutation procedure tests the joint hypothesis
that “omics data have no added predictive value” and “omics data and clinical
predictors are independent”, because by permuting omics data we also destroy
the association between omics and clinical predictors. An important feature of the
globalboosttest procedure, however, is that the offset is fixed and computed before
seeing the omics predictors. Thus, in the case where omics and clinical predictors
are strongly correlated, we expect the clinical offset to capture much variability
and hence the null-hypothesis to be retained. This issue will be further discussed in
Sect. 4.

The fact that the offset is fixed also implies that the coefficients of the clinical
predictors fit in step 1 are not influenced by the omics predictors added to the model
by boosting regression in step 2. On the one hand such an offset can well address
the question of the added predictive value. The offset can be considered as an
artificial but compulsory first predictor that is subsequently completed by the omics
predictors selected afterwards. On the other hand the inconvenience is that clinical
covariates cannot be tested—either individually or as a whole. The globalboosttest
procedure allows to test the omics predictors only.

In principle any type of response variable can be analysed using globalboosttest
provided that it can be accommodated into GLMs and boosting regression. This
includes normally distributed, binary or censored responses. Furthermore, boosting
regression may be essentially replaced by any regularized regression technique
allowing an offset, e.g. the Lasso.

3 Pre-validation

The pre-validation method is based on a classical hypothesis testing framework
within a GLM including the clinical predictors as well as a “pseudo-predictor”
summarizing the omics predictors. This pseudo-predictor can be derived either at
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the link scale (which is preferred here in the context of survival analysis) or at
the predictor scale. In principle all methods that can handle a large number of
predictors can be used for this purpose, e.g. boosting regression or Lasso regression.
In this study boosting regression is considered for the sake of consistency with the
globalboosttest procedure described in Sect. 3.

The obtained pseudo-predictor summarizing the omics data, however, should
not be tested in a multivariate regression model based on the data set that were
used for its construction. This approach would strongly favor omics data, because
the pseudo-predictor constructed from high-dimensional would overfit the data set.
To overcome this problem Tibshirani and Efron (2002) suggest “pre-validation”.
The term pre-validation refers to a cross-validation (CV) performed within the
considered data set. At each CV iteration j , a pseudo-predictor is derived from
the omics data set S n Sj (where Sj stands for the j th CV fold) and then computed
for the observations from Sj . Since the folds Sj form a partition of the data set S ,
one thus obtains a pseudo-predictor value for each observation. This “pre-validated”
pseudo-predictor is not expected to overfit the data set, since at each CV iteration
there is no overlap between the “training data” S n Sj and the fold Sj . This pre-
validation step is denoted as “internal”.

Finally, a multivariate regression model (denoted as “external” model) is fitted
using this pre-validated pseudo-predictor and the clinical predictors as predictors.
The added predictive value is assessed by testing the significance of the regression
coefficient of the pseudo-predictor. However, in a subsequent publication (Höfling
and Tibshirani 2008) this test is shown to be biased due to the violation of the i.i.d.
assumption in the GLM. Höfling and Tibshirani (2008) address this bias through a
permutation procedure which we also use here.

In contrast to globalboosttest, pre-validation considers clinical and omics predic-
tors more symmetrically—in the sense that the coefficients of the clinical predictors
are affected by the omics data, which is not the case in globalboosttest. If clinical and
omics data are correlated, we thus expect both the clinical predictors and the omics-
based pseudo-predictor to capture an important part of the variability. Another
difference to globalboosttest is that the pseudo-predictor is computed differently
for the K subsets, thus making computation more intensive and interpretation more
difficult.

4 Simulation Study

Both methods address the added value of high-dimensional omics data in the same
data situation, but essentially ask different questions. While globalboosttest directly
focuses on the added predictive value, the rationale behind pre-validation is of
more symmetric nature. In this paper, their respective performance is examined in
different simulation settings with sample size n D 200 and a censored time-to-
event as response Y . The partially unobserved survival times Ti (i D 1; : : : ; 200)
are generated from a Cox–Weibull model (Cox 1972) similarly to Binder and
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Schumacher (2008). The cumulative density is given as F.t/ D 1 	 exp.	.�.t/ �
t=˛//, where �.t/ denotes the hazard rate. The survival times Ti (i D 1; : : : ; 200)

are generated as Ti D �log.Ui /�˛
�.t/

;wherebyUi is drawn from the uniform distribution
U.0; 1/ and the shape parameter ˛ is set to 1 in our study. Assuming proportional
hazards, �.t/ is modeled as �.t/ D �0exp.&/, whereby the baseline hazard rate �0 is
set to 0:1 and & denotes an additive predictor. The follow-up times Fi are generated
independently of the survival times in the same way as Ti but with a constant hazard
rate �.t/ D 0:1 and ˛ D 1. Observations are censored if their follow-up time ends
before the expected event such that about half of the observations are censored.
Finally, the observation times Yi are obtained as Yi D min.Fi ; Ti /. Further, we
generate five standard normal and mutually uncorrelated clinical predictors as well
as 1,000 standard normal omics predictors. Ten of these omics predictors are
correlated with the first clinical predictor, 10 further omics predictors are correlated
with the second clinical predictor, and so on, yielding a total of 50 omics predictors
correlated with clinical predictors, whereby the correlation 	 is set either to 	 D 0

(no correlation), 	 D 0:2 (weak correlation) and 	 D 0:8 (strong correlation). The
linear predictor & is defined as follows. The regression coefficients of the clinical
predictors are chosen to mimick a realistic scenario with predictors of varying
strengths: ˇclinic D .0; 0:5; 2;	1:5;	1/T . Out of the 1,000 omics predictors,
20 have non-zero regression coefficients in the linear predictor &. The 20 coefficients
are drawn from the uniform distribution U.0:1; 0:7/. Importantly, the size of the
intersection between the 20 predictive predictors and the 50 correlated predictors
is set successively to 0, 5, 10 and 20. Size 0 yields a setting where clinical and
informative omics predictors are completely uncorrelated, while size 20 means that
all informative omics predictors are correlated with clinical predictors. Table 1
(top) sums up the resulting settings, including an additional “null-scenario” without
informative omics predictors (setting I). Moreover, some more extreme situations
(bottom of Table 1) are additionally included in the study to complement the
considered settings. First, setting VI is enlarged to 5,000 omics covariates (setting
XI) and as well reduced to only 20 (setting XII). Settings with more (setting
XIII) and fewer (setting XIV) informative omics predictors are also considered.
Finally settings with perfect correlation .	 D 1/ between the five clinical predictors
and the 50 correlated omics predictors are considered, either with completely
non-informative omics predictors (setting XV) or with 20 informative predictors
included in the 50 correlated omics predictors (setting XVI). For each setting the two
methods globalboosttest and pre-validation are evaluated based on 100 randomly
generated data sets. For both globalboosttest and pre-validation the number of
boosting iteration mstop is set successively to 50, 100, 200, 500, and 1,000. All tests
base on 1,000 permutations. As expected, both globalboosttest and pre-validation
yield p-values that are approximately uniformly distributed Œ0; 1� in the absence
of informative omics predictors (data not shown). When omics predictors are
informative and not perfectly correlated with clinical predictors, globalboosttest
tends to yield smaller p-values than pre-validation. This result is illustrated by Fig. 1
that displays the p-value of the two tests for different numbers mstop of boosting
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Table 1 Overview on simulation settings with a censored time-to-event as response, 5 clinical
covariates and n D 200. If so each clinical covariate correlates to 10 omics covariates. For boosting
mstop D .50; 100; 200; 500; 1; 000/ iterations and for testing 1,000 permutations are considered.
For each setting globalboosttest/pre-validation are computed on 100 different data sets

Number of Informative Intersection
omics Correlation omics informative/correlated

Setting covariates coefficient covariates omics covariates

I 1,000 	 D 0 0 f∅g
II 1,000 	 D 0 20 f∅g
III–VI 1,000 	 D 0:2 20 f∅; 5; 10; 20g
VII–X 1,000 	 D 0:8 20 f∅; 5; 10; 20g
XI: Many omics predictors 5,000 	 D 0:2 20 f10g
XII: Few omics predictors 20 	 D 0:2 20 f20g
XIII: Many informative omics 1,000 	 D 0:2 200 f20g
XIV: Few informative omics 1,000 	 D 0:2 2 f∅g
XV: Perfect correlation i 1,000 	 D 1 20 f20g
XVI: Perfect correlation ii 1,000 	 D 1 0 f∅g
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Fig. 1 Results of setting V. Left: globalboosttest. Right: pre-validation

iterations in Setting V. Moreover, globalboosttest tends to already reach good power
for a smaller mstop even in the case of high correlation between omics and clinical
predictors. In contrast, pre-validation needs more iterations to capture the added
predictive value of omics predictors. That is probably because pre-validation does
not take the clinical predictors into account while summarizing the omics predictors
and thus first captures information that are already captured by clinical predictors.
By considering clinical predictors as an offset, globalboosttest captures the residual
variability that is not captured by clinical predictors. Thus, globalboosttest generally
needs less boosting iterations to reach good power. An exception is setting X,
where all informative predictors are strongly correlated with a clinical predictor:
globalboosttest then yields uniformly distributed p-values for a small mstop, while a
largemstop leads to smaller p-values.This result obtained in setting X is related to the
essential goal of globalboosttest. Globalboosttest tests the added predictive value of
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Fig. 2 Permutation procedure on Chin data. Left: globalboosttest. Right: pre-validation

omics predictors and focuses on the part of the variability that is not captured by
the clinical offset. In the unrealistic extreme case where all 50 informative omics
predictors are perfectly correlated with a clinical predictor, the p-values are uni-
formly distributed on Œ0; 1� with globalboosttest, but not with pre-validation. Note
that this result is in contradiction with the theoretical null-hypothesis corresponding
to globalboosttest: a strong correlation between omics and clinical predictors does
not lead to the rejection of the null-hypothesis. Pre-validation employing the Lasso
as “internal model” struggles with some problems related to tuning. As the number
of observations is typically small for omics data, there are even less observations
in training and test data sets. That makes the choice of � extremely unstable. Each
fold of the pseudo-predictor is based on a different value of �. In many cases the
optimal choice of � selects no omics predictors at all. The choice of � is much more
crucial as the choice of boosting parametermstop. Consequently, globalboosttest and
pre-validation employing boosting perform substantially better than pre-validation
employing the Lasso.

5 Analysis of Breast Cancer Data

For illustration a breast cancer data set (Chin and et. al. 2006) including 77 patients
is analyzed using globalboosttest and pre-validation with boosting regression. The
response of interest is the censored distal recurrence time in years. The considered
data set includes 11 clinical predictors such as age at diagnosis, variables of the
TNM staging system or information on estrogen and progesterone receptors, as well
as the expression level of 22,215 genes acting as omics predictors.

The permutation-based p-values range from 0.77 to 0.97 for globalboosttest
and from 0.29 to 0.48 for pre-validation (depending on mstop). Figure 2 displays
the curves representing the negative binomial log-likelihood (for globalboosttest)
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and the p-value (for pre-validation) obtained with the original data set (black) and
the permuted data sets (grey). Both methods suggest that omics predictors do not
improve prediction strength.

6 Summary and Outlook

Simulation results suggest that in case of poor to moderate correlation between
clinical and omics predictors globalboosttest tends to have a superior power to pre-
validation. However, in case of strong correlation globalboosttest becomes more
conservative, which reflects its rationale: globalboosttest tests added predictive
value, i.e. focuses on the variability that is not already captured by the clinical
predictors. Whether it makes more sense to reject or the accept the null-hypothesis
in the case of strong correlation depends on the substantive context. Correlation
also seems to increase the impact of the number of boosting steps, suggesting that
a systematic method for the choice of this parameter should be developed in the
future.

In our paper the globalboosttest and pre-validation are assessed with respect
to their performance as testing procedures. However, similar approaches may be
adopted to derive combined prediction rules based on both clinical and omics
predictors, see Boulesteix and Sauerbrei (2011) for an overview of such approaches.
Due to its asymmetrical character giving more importance to clinical predictors,
we expect the prediction rule derived from globalboosttest to perform poorly
when these predictors are weak. A pre-validation approach may be promising, see
Boulesteix et al (2008) for an example in the context of binary classification. More
research is needed to assess the respective merits of the two methods in terms of
predictive accuracy.

Acknowledgements We thank Jutta Engel for helpful advice on the breast cancer data.
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External Analysis of Asymmetric
Multidimensional Scaling Based on Singular
Value Decomposition

Akinori Okada and Hiroyuki Tsurumi

Abstract An asymmetric similarity matrix among objects, for example, a brand
switching matrix of consumers, can be analyzed by asymmetric multidimensional
scaling. Suppose that n brands exist, and that m new brands are introduced. While
the brand switching from existing to new brands can be observed, the brand
switching from new to existing brands nor that among new brands cannot be
observed soon after the introduction of the new brands. The present study analyzed
the n 
 n similarity matrix by the asymmetric multidimensional scaling based on
singular value decomposition. The analysis gives outward and inward tendencies
of existing brands. Using the obtained outward tendency of n existing brands, the
inward tendency of m new brands is derived. An application to the brand switching
data among margarine brands is presented.

1 Introduction

Several procedures of asymmetric multidimensional scaling have been introduced
(Borg and Groenen 2005, Chap. 23; Cox and Cox 2001, Sect. 4.8). Most of them
deal with one-mode two-way asymmetric similarities among objects. One-mode
two-way asymmetric similarities among n objects are represented as an n 
 n
matrix whose .j; k/ element represents the similarity from objects j to k. While
one-mode two-way asymmetric similarities among objects are the typical type of
data which are dealt with by asymmetric multidimensional scaling, there are other
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kinds of data which also have been dealt with: two-mode three-way asymmetric
similarities (Okada and Imaizumi 1997) or one-mode three-way similarities (de
Rooij and Heiser 2000; Nakayama 2005).

In the present study, a procedure of analyzing different sorts of asymmetric
similarities is introduced. The similarities are comprised of two parts; one is the n
n
square asymmetric similarity matrix or one-mode two-way asymmetric similarities
among n objects, and the other is the n 
 m rectangular similarity matrix (m � 1)
whose .j; `/ element represents the similarity from objects j to ` or two-mode two-
way similarities (Okada 2011). The similarities are regarded as an n 
 .n C m/

similarity matrix where n 
 n submatrix (the first part) is asymmetric.
An example of this type of similarities is that suppose n brands already exist in a

market, and thatm new brands are introduced into the market. We have asymmetric
brand switching data of consumers among n existing brands and brand switching
data from n existing brands to m new brands. There would not be brand switching
among m new brands nor brand switching from new brands to existing brands
(Fig. 1) soon after the introduction of the new brands or within the inter-purchase
interval, because the brand switching from the new brands to the existing brands nor
the brand switching among the new brands do not occur yet.

In the present study, a procedure of analyzing this type of similarities (n
.nCm/
similarity matrix) is presented. And the present procedure is applied to the n 

.nCm/ submatrix of similarities of the full .nCm/ 
 .nCm/ similarity matrix.
This means that similarities from m objects to n objects as well as those among m
objects are available, but they are not analyzed in the present study. The reason for
dealing with the present type of data is to validate the effectiveness of the present
procedure, because the result derived by the present procedure can be compared
with that derived by analyzing the full .nCm/ 
 .nCm/ similarity matrix.

2 The Procedure

In the present study the asymmetric multidimensional scaling based on singular
value decomposition (Okada 2012) is used. Let A be the n
n matrix of asymmetric
similarities among n objects, and B be the n
mmatrix of similarities from n objects
to m objects. The .j; k/ element of A represents the similarity from objects j to k,
which is not necessarily equal to the .k; j / element of A, and the .j; `/ element of B
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represents the similarity from objects j to `. By using singular value decomposition
(Eckart and Young 1936; Harville 1997), A can be represented as a product of three
matrices; the matrix which has left singular vectors as its columns, the diagonal
matrix which has singular values as its diagonal elements, and the matrix which has
right singular vectors as its columns. By using r (< n) largest singular values and
corresponding left and right singular vectors, A is approximated by

A ' XDY0; (1)

where D is the r 
r diagonal matrix of r largest singular values in descending order
at its diagonal elements, X is the n 
 r matrix of the corresponding left singular
vectors (normalized so that the length is unity), and Y is the n 
 r matrix of the
corresponding right singular vectors (normalized so that the length is unity). The
j -th element of the i -th column of X (i -th left singular vector), xj i , represents
the outward tendency of object j along Dimension i , because rows of A represent
brands to be switched from. The k-th element of the i -th column of Y (i -th right
singular vector), yki , represents the inward tendency of object k along Dimension i ,
because columns of A represent brands to be switched to. We assume that the brand
switching from existing brands to new brands can be approximated by

B ' XDZ0; (2)

where Z is them
r matrix. The `-th element of the i -th column of Z, z`i , represents
the inward tendency of object ` along Dimension i . Z is derived by

Z D B0XD�1: (3)

While the inward tendency of the m objects is derived, their outward tendency
cannot be derived (Okada 2011).

Equation (1) says that when r D 2, ajk , the .j; k/ element of A, can be
approximated by

ajk'd1xj1yk1 C d2xj2yk2; (4)

where xj1 is the outward tendency of brand j and yk1 is the inward tendency of
brand k along Dimension 1, xj2 is the outward tendency of brand j and yk2 is the
inward tendency of object k along Dimension 2, d1 is the largest singular value,
and d2 is the second largest singular value. The similarity from objects j to k is
approximated by the sum of two terms (a) the similarity from brands j to k along
Dimension 1, and (b) the similarity from brands j to k along Dimension 2; (a) the
product of the outward tendency of brand j and the inward tendency of brand k
multiplied by d1 along Dimension 1 corresponding to the largest singular value,
and (b) the product of the outward tendency of brand j and the inward tendency of
brand k multiplied by d2 along Dimension 2 corresponding to the second largest
singular value (Okada 2011). As shown in Fig. 4, term (a) d1xj1yk1 shows the
area along Dimension 1 multiplied by the largest singular value d1 representing the
similarity from brands j to k along Dimension 1. Also as shown in Fig. 5, term (b)
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d2xj2yk2 shows the area with the sign along Dimension 2 multiplied by the second
largest singular value d2 representing the similarity with the sign from brands j to k
along Dimension 2. Equation (4) means that ajk is approximated by the sum of two
weighted areas (when the second term is negative, the similarity along Dimension 1
is decreased by subtracting the similarity along Dimension 2). Similarly Eq. (2) says
that when r D 2, bj`, the .j; `/ element of B, can be approximated by

bj`'d1xj1z`1 C d2xj2z`2; (5)

where z`1 is the derived inward tendency of object ` along Dimension 1, and z`2
is the derived inward tendency of object ` along Dimension 2. The similarity from
objects j to ` is represented by the sum of two terms; one is the first term of the
right hand side of Eq. (5) representing the similarity from objects j to ` along
Dimension 1 and the other is the second term of the right hand side of Eq. (5)
representing the similarity from objects j to ` along Dimension 2.

3 The Data

The data analyzed in the present study are brand switching data among margarine
brands. The brand switching data among 12 margarine brands (A, B, . . . , H, I, J, K,
and O) were collected in March through September 2009 at super market stores in
the Tokyo metropolitan area. Brand switching data were derived from the purchase
records of about 5,500 consumers who purchased margarine twice or more in the
period. The details of the data are described in Okada and Tsurumi (2012). In the
present study, the brand switching data among nine brands (A, . . . , H, and O) and
the brand switching data from the nine to three brands (I, J, and K) were dealt with.
Brand O consists of all brands other than brands A through K. Brands I, J, and
K have the three least market share (Okada and Tsurumi 2012), and are regarded
as new brands in the present study. The brand switching matrix among the nine
brands and the brand switching matrix from the nine brands to the three brands
(n D 9;m D 3) are shown in Table 1.

The submatrix consists of the first nine rows and of the first nine columns is A
which corresponds to the shaded part of Fig. 1. The submatrix consists of the first
nine rows and of the last three columns is B which corresponds to the unshaded part
of Fig. 1. The full 12 
 12 brand switching matrix is shown in Okada and Tsurumi
(2012).

4 The Analysis

The singular value decomposition of A gives nine singular values; 1653.8, 1038.3,
849.4, 792.2, 707.1, 573.3, 479.0, 447.8, and 302.6. The two-dimensional result
was chosen as the solution. The reason for adopting the two dimensional result as
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Table 1 Brand switching matrix among margarine brands

To brand
From A B C D E F G H O I J K

Brand A 1; 096 458 14 12 12 42 65 16 81 8 27 8

Brand B 312 716 7 5 6 14 52 8 39 3 27 6

Brand C 39 15 837 59 50 13 10 15 104 28 10 40

Brand D 32 18 65 739 15 12 10 17 73 8 9 62

Brand E 25 18 61 15 852 29 6 69 55 4 16 11

Brand F 64 49 18 18 24 505 10 143 64 6 54 18

Brand G 118 63 10 6 3 9 462 3 61 1 7 2

Brand H 31 20 33 17 76 142 4 410 84 3 34 9

Brand O 403 344 134 87 71 84 75 111 1;180 50 96 99

the solution is twofold; the two-dimensional solution was adopted by Okada and
Tsurumi (2012), and the proportions of the sum of squared singular value(s) of the
largest, the two largest, and the three largest singular values to the sum of squared
elements of A are 0.42, 0.59 and 0.70 respectively. The increment of the proportion
from two- to three-dimensional results is small compared with that from uni- to two-
dimensional results. This makes it possible to compare the present result with the
result derived by Okada and Tsurumi (2012).

The inward tendency of three brands (I, J and K) along Dimensions 1 and 2
were derived by Eq. (3) using the two-dimensional result. The procedure utilized
the outward tendency of nine brands (A, . . . , H, and O) which were already derived
by the singular value decomposition of the brand switching matrix among the nine
brands.

5 Results

The outward and inward tendencies of the nine brands (solid square) and the inward
tendencies of the three brands (open diamond) along Dimension 1 are represented
in Fig. 2. The horizontal axis or Dimension 1 outward, which corresponds to the
first left singular vector corresponding to the largest singular value, represents
the outward tendency of nine brands (A, . . . , H and O), and the vertical axis
or Dimension 1 inward, which corresponds to the first right singular vector
corresponding to the largest singular value, represents the inward tendency of the
nine brands and three brands (I, J and K). The three brands, which do not have the
outward tendency, are represented on the vertical axis.

The outward and inward tendencies of the nine brands (solid square) and the
inward tendencies of the three brands (open diamond) along Dimension 2 are rep-
resented in Fig. 3. The horizontal axis or Dimension 2 outward, which corresponds
to the second left singular vector corresponding to the second largest singular value,
represents the outward tendency of nine brands (A, . . . , H and O), and the vertical
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axis or Dimension 2 inward, which corresponds to the second right singular vector
corresponding to the second largest singular value, represents the inward tendency
of the nine brands and three brands (I, J and K). Like Fig. 2, the three brands, which
do not have the outward tendency, are represented on the vertical axis.

6 Conclusions

Along Dimension 1, brands A, B, and O have large outward and inward tendencies,
suggesting they compete strongly each other. From Eq. (4), the similarity from
brands A to O along Dimension 1 is d1xA1yO1; the product of the outward tendency
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of brand A along Dimension 1, xA1, and the inward tendency of brand O along
Dimension 1, yO1, multiplied by the largest singular value d1. The area of the shaded
rectangle of Fig. 4a shows the product xA1yO1 which corresponds to the similarity
from brands A to O. The area of the shaded rectangle of Fig. 4b shows the product
xO1yA1which corresponds to the similarity from brands O to A along Dimension 1.
The former is smaller than the latter. Thus the brand switching from brand O to
brands A and B is larger than the brand switching from brands A and B to brand O,
suggesting brands A and B are dominant over brand O in the interbrand competition
among margarine brands along Dimension 1.

Brands C through H have smaller outward and inward tendencies than brands
A, B and O have, suggesting the brand switching among them is small. The
similarities from brands C through H to brands A and B are similar to those from
brands A and B to brands C through H along Dimension 1, and the similarities from
brands C through H to brand O are smaller than those from brand O to brands C
through H along Dimension 1. This suggests that, while the magnitude of the brand
switching is small, brands C through H are dominant over brand O in the interbrand
competition among margarine brands along Dimension 1.

Dimension 2 classifies the nine brands into two groups; one group consists of
brands in the first quadrant (C, . . . , F, H and O), and the other consists of brands in
the third quadrant (A, B and G). The similarity from brands in the third quadrant
to those in the first quadrant is negative along Dimension 2. The area of the shaded
rectangle in Fig. 5a shows the product xA2yO2, which corresponds to the similarity
from brands A to O and is negative, because the outward tendency of brand A, xA2,
is negative, and the inward tendency of Brand O, yO2 is positive. The similarity
from brands in the first quadrant to those in the third quadrant is negative along
Dimension 2. The area of the shaded rectangle in Fig. 5b shows the product xO2yA2,
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which corresponds to the similarity from brands O to A and is also negative, because
xO2 is positive and yA2 is negative. In Fig. 5, the similarity among brands in the
same quadrant (the first or the third quadrants) is positive, because both the inward
and the outward tendencies of the brand in the first quadrant are positive, and thus
their product is positive, and both the inward and the outward tendencies of the
brand in the third quadrant is negative, and thus their product is positive. This
suggests that the brand switching between two groups is small, and that within the
same group is large along Dimension 2 (Okada 2012). The positive similarity along
Dimension 2 increases the similarity along Dimension 1, and the negative similarity
along Dimension 2 reduces the similarity along Dimension 1 (Eq. (4)).

All nine brands (A through H) are almost on the 45 degree line in the first and the
third quadrants, while brand O is above the 45 degree line. This means that brand
O is dominant over brands C through F and H along Dimension 2, because the
similarity from brand O to brands C through F and H is smaller than the similarity
from the latter to the former along Dimension 2. The dominance of brands A, B and
C over brand O along Dimension 1 is reduced by the negative similarity from brand
O to brands A and B and by the inferiority of brand C against brand O.

Inward tendencies of three brands (I, J and K) were derived by using Eq. (3).
Derived inward tendencies of brands I, J and K along Dimension 1 are 0.028, 0.063
and 0.054, and those along Dimension 2 are 0.033, 0.040 and 0.074. Okada and
Tsurumi (2012) derived outward and inward tendencies of all 12 brands by the
singular value decomposition of the full 12 
 12 brand switching matrix among
brands A, . . . , H, O, I, J, and K. The inward tendencies of brands I, J and K along
Dimension 1 were 0.040, 0.098 and 0.79, and those along Dimension 2 were 0.061,
0.050 and 0.126. The original figures obtained by Okada and Tsurumi (2012) were
multiplied by

p

4=3 to derive these figures in order to adjust the length of the right
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singular vector of A, because the singular vector of the present study has nine
elements and the singular vector of Okada and Tsurumi (2012) has 12 elements.
The magnitude of the inward tendency of the present study is smaller than that of
Okada and Tsurumi (2012), but the value varies rather similarly.

Three brands (I, J, and K) are represented on the Dimension 1 inward axis in
Fig. 2. In Fig. 2, while the outward tendencies of the three brands are not obtained,
when they are above the line connecting a brand and the origin after their outward
tendencies are obtained in future, they will be dominant over the brand in the
interbrand competition along Dimension 1. On the other hand, when they are below
the line in future they will be inferior to the brand in the interbrand competition
along Dimension 1. Three brands (I, J, and K) are represented on the positive side
of the Dimension 2 inward axis in Fig. 4. This means that they will be in the first
or the second quadrants depending on the sign of their outward tendencies obtained
in future. If the obtained outward tendency in future is positive, they will be in the
first quadrant, and if the obtained outward tendency is negative in future, they will
be in the second quadrant. When they are below the line connecting a brand and the
origin in the first quadrant, they will be inferior to the brand in the first quadrant
in the interbrand competition along Dimension 2. When they are above the line in
the first quadrant, they will be dominant over the brand in the first quadrant in the
interbrand competition along Dimension 2. As described earlier, when they are in
the first quadrant, they have negative similarities with the brands A, B and G in
the third quadrant, and vice versa. Thus the three brands and brands A, B and G
will not directly compete with each other along Dimension 2. When they are in the
second quadrant, they will be dominant over the brands in the first quadrant in the
interbrand competition, because the outward tendency of the three brands is negative
and the inward tendency of the brand in the first quadrant is positive, suggesting the
similarity from the three brands to the brand in the first quadrant is negative, while
the inward tendency of the three brands is positive and the outward tendency of the
brand in the first quadrant is positive, suggesting the similarity from the brand in
the first quadrant to the three brands is positive. The three brands will be inferior
to brands in the third quadrant in the interbrand competition for reasons similar to
those above.

A procedure for deriving the inward tendency of the newly introduced brands was
described, which is based on the outward tendency of the existing brands derived
by the asymmetric multidimensional scaling of one-mode two-way asymmetric
similarities among existing brands. The present procedure was applied to derive
the inward tendency of the three brands where outward and inward tendencies of
12 brands including the three brands had been already been known. This makes
it possible to compare the present result with the result which had been obtained
by analyzing the asymmetric similarities among 12 brands including the three
brands. The purpose of the present application is to show the validity of the present
procedure but not to show a practical application. The practical application of the
present procedure to the data, where the similarities from the existing brands to the
newly introduced brands as well as the similarities among newly introduced brands
are unknown, should be done.
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The present procedure utilizes the externally given outward tendency of the
existing brands derived by analyzing the one-mode two-way asymmetric similarities
among existing brands. This means that the procedure is a sort of external analysis
of multidimensional scaling (Borg and Groenen 2005, pp. 76–80). The procedure is
applied to the brand switching among margarine brands. The inter-purchase interval
of two consecutive purchases of the margarine is not long but not so short for most
consumers when compared with that of soft drinks. It seems preferable to deal with
goods which have a longer inter-purchase interval (e.g., detergent, shampoo, black
tea, instant coffee, etc.) so that only a small number of the brand switching from
new brands to existing brands and that among new brands occur in the period of
collecting brand switching data after the introduction of the new brands.
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The Credit Accumulation Process to Assess the
Performances of Degree Programs: An Adjusted
Indicator Based on the Result of Entrance Tests

Mariano Porcu and Isabella Sulis

Abstract In the frame of the performance indicators this paper aims to consider the
bias produced by micro-level Potential Confounding Factors—PCF—by comparing
the results observed using adjusted and unadjusted measures of outcome. Results
at the university entrance tests together with the previous school experiences
have been used as proxies of students’ competencies at the beginning of their
academic career. The regularity of schooling process has been monitored using as
an outcome variable the students’ status (drop out, still enrolled) and the number
of credits gathered after one academic year. Adjusted indicators of the regularity
of the students’ career are obtained using the results of zero-augmented models to
investigate the relationships between the outcome measures and the potential PCF
which are not directly associated to the learning process under evaluation.

1 Introduction

Since the second half of the 1980s there has been a growing interest on assessing
the effectiveness of educational institutions (Aitkin and Longford 1986; Ball and
Wilkinson 1985; Goldstein and Spiegelhalter 1996; Goldstein and Thomas 1996;
Bratti et al. 2004; Leckie and Goldstein 2009). Private stakeholders (families
and enterprises) and public institutions have strongly demanded to evaluate the
performance of formative institutions (such as universities) and to adopt these
evaluations in comparative terms in order to support and enhance only those
institutions which satisfy specified quality standards in terms of efficiency and
efficacy. This way of monitoring the performance, copes on one hand with the
need of having measures to make comparisons, while on the other hand, it is
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affected by factors which are external to the formative processes: students’ socio-
cultural characteristics; economic-territorial framework and local job market. From
these considerations it arises the demand to assess the effectiveness of formative
institutions taking into account, in the process of comparison, not only of the
output of the educational process, as for instance, the rate of students who finish
on schedule, the regularity of the formative process, or, for secondary schools and
universities, the rate of employability, but also of the so called input factors of the
process. The latter, may act within a system as Potential Confounding Factors—
PCF (Draper and Gittoes 2004) that operate with the same intensity on both macro
(institutions) and micro (students) levels. At micro level, it is well known that
comparative evaluations are meaningful whenever they are made between students
who are homogeneous with respect to their socio-cultural characteristics, whereas,
at macro-level, it is important to relate the measures of performance to a territorial
framework throughout the evaluation of the influence on indicators of geographical
factors (e.g., the local economic system): the presence of enterprises and their
vocational sectors; the socio-economic condition of the area; the relevance of the
public sector, etc..

This paper makes an attempt to discuss the bias in the indicators of performance
generated by micro-level PCF by comparing the results observed using adjusted
and unadjusted measures. Results at the university entrance tests together with the
previous school experiences have been used as proxies of students’ competencies at
the beginning of their university career. According to these competencies indicators
of the regularity in the teaching process are adjusted in order to assess the net effect
in terms of efficiency of the institutions (e.g. the degree program).

The adjusted indicator will be obtained using the results of a model-based
approach for count data (zero-augmented models) to investigate the relationships
between the outcome measures and the potential PCF which are not directly
attributable to the process under investigation. The modeling approach allows us
to assess the role of PCF and to control for them by simulating the composi-
tion/structure of a standard population in all the institutions under comparison.

Therefore, this work has two main aims: (i) to assess the informative value of
the results in the entrance test to predict students’ success during the first year
(Häkkinen 2004; Julian 2005; Belfied and Costa 2012); (ii) to consider the effect
on the efficiency indicator of the PCF observed at students’ level (CNVSU 2010).

2 Efficiency Indicators and Micro-Level PCFs

In Italy, since 2009/2010 academic year, the central government considers for
the allocation of the university yearly provision a ranking between academic
institutions based on the values of a batch of indicators (CNVSU 2010). The
introduction of such allocation system increases, within the universities, the need
of employing measuring tools useful in making comparisons, at different levels,
across the institutions engaged in the academic educational processes: faculties
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and “degree committees” for the first and second level DP and departments for
the PhD programs. Considering the domain of the teaching, the performances are
assessed considering the efficiency of guidance services (monitored using the rate
of first year students that get at least 1/2 of the credits), the regularity of formative
process (monitored using the credits effectively gained by students on the number
of credits that they should have gained), the students’ evaluation of university
teaching (% of courses surveyed). The first two dimensions are monitored using
indicators directly related to the credit accumulation process. It is widely assessed
that the regularity of students’ careers and their achievement is affected by factors
which are external to the process under evaluation (CNVSU 2010). For instance,
it is recognized that the relations between students’ cultural resources, the choice
of educational pathways, and academic performance are the results of previous
social and cultural experiences. Thus the cultural resources that students own before
to enroll to the university can act as key factor in affecting the transition from
school to university and in determining the regularity of academic process and
the professional status of individuals (De Graaf 2000; Sullivan 2001). From these
considerations, and monitoring the students’ achievement in terms of regularity in
the credit accumulation process, the purpose of this work is to assess the role played
by external factors to the institution under evaluation such as students’ competencies
at the entrance in influencing students’ achievement.

3 Modeling the Credits Accumulation Process

The method here advanced to adjust for PCF the performance indicators related
to the credits accumulation process relies on the results a modeling approach for
count data and works on the following steps: (1) the observed distribution of credits
conditional upon students’ covariates is modeled using a count regression model
which explicitly considers the excess of zeros in the distribution of credits; (2) the
influence of PCF on the expected number of credits is assessed by the estimates
of the coefficient parameters; (3) the estimates of the coefficient parameters are
used in order to predict the expected number of credits gained by students
under the assumption that the “objects” under comparisons (namely, the DP) are
homogeneous with respect to students’ characteristics.

Zero-augmented models (Zero-inflated and Hurdle) are appropriate in order to
model count distributions which show an excessive number of zeros and to assess
the role of PCF on the credit accumulation process. They simultaneously model
the process of accumulation of credits and the probability to observe a 0 rather
than a positive score of credits. This class of models has been already adopted by
Boscaino et al. (2007) to study the role played by students’ characteristics on the
credits distribution. In this context zero-agumented models are adopted to assess
the effect of PCF and to use results for predictive purposes: to assess the net value
of the institution under comparison by comparing adjusted and unadjusted measure
of efficiency Zero-inflated models assume the presence of two separate components:
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the zero one and the count one (Cameron and Trivedi 2005; Zeileis et al. 2008). The
mixture can be specified as

Pr.Yi D yi / D �zero.0I z; �/Io.y/C .1 	 �zero.0I z; �//fcount.yI x; ˇ/ (1)

where, a zero count can contribute to both components (this imply the existence
of two kinds of zero observations “true zeros” and “excess zeros”). �zero (zero vs
count) can be modeled with a binary model (logit or probit) which considers the
probability of zero-inflation (ZI) as a function of the zi vector of regressors, whereas
the fcount (y � 0) may be modeled as a function of the xi vector of covariates
by specifying a Poisson (ZIP) or a Negative Binomial (ZINB) distribution. The
covariates which influence the two components do not need to be distinct. The
expected number of credits is thus estimated as a function of units (individual)
covariates x, z: e.g. if a Poisson distribution is chosen and the logit link is adopted,
the corresponding regression equation for the mean is

E.
i / D �iI0fyg C .1 	 �i / exp.x0iˇ/ (2)

where, �i D exp.z0�/.1 C exp.z0�//�1. Thus the expected number of credits
acquired by students who have the same covariate pattern Q�g. Qxs; Qzs/ and belong
to different DP can be predicted straightforwardly—
ei D E.
i j Qxs; Qzs/—once that
the effect of the covariates is estimated by the parameters � and ˇ.

3.1 A Proposal to Adjust Efficiency Indicators

We propose to summarize the information on the credits accumulation process by
DP (or faculties) (g D 1; : : : ; G) using a re-scaled unadjusted index of efficiency.
A gross index of efficiency of the DP could be estimated by comparing the
observed distribution of the credits acquired by students with the distribution that we
would have observed in the situation of maximum efficiency: if all students would
accumulate exactly the number of credits required by the DP (i.e., 60 credits at the
end of the first year). The re-scaled unadjusted index to measure the efficiency at
DP (or faculties) (g D 1; : : : ; G) level is

Eg D Œ
ng
X

iD1
.
maxi 	 
oi /�Œ

ng
X

iD1

maxi �

�1
(3)

where, 
max is the maximum number of credits that could be expected (e.g.,
60,120,180); 
o is the observed number of credits; ng is the number of students in
faculty or DP g. The related adjusted indicator of efficiency is built up by replacing

oi with the “expected number of credits” (
ei ) that we would observe under the
hypothesis that the institutions under comparison match a specific distribution for
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PCFs (characteristics of their students), e.g. 
ei D E.
i j Qxs; Qzs/. We propose to
use the following bunch of indicators to carry on a comparative analysis of the
performances of DP in terms of regularity of the credits accumulation process:

1. The estimated unadjusted estimated OEg index based on the expected number
of credits predicted using ZINB

OEg D
ng
X

iD1
.
maxi 	 
ei .x; z//.

ng
X

iD1

maxi /�1 (4)

2. The adjusted QEB
g index based on the results of ZINB model under the assump-

tion that all the DPs were composed by the “best” students

QEg D
ng
X

iD1
.
maxi 	 
ei . QxB; QzB//.

ng
X

iD1

maxi /�1 (5)

3. The adjusted QEg

h index based on the results of ZINB model under the assumption
that all the DPs have the “structure” of h.

Specifically, a comparison between indicator (3) and (4) allows us to assess
the accuracy of the model-based approach in reproducing the credits accumulation
process. The closer the two indexes are the more reliable is the performance
indicator.

4 Application

In the application, we use the data on credits accumulation of students enrolled
in a faculty of an Italian University in 2008/2009 academic year. We consider the
number of credits that students gathered after one academic year (5 proficiency
sessions). In Table 1 credits have been classified in 6 classes (from 1–10,. . . , 51–
60). The distribution of credits appears to be highly positively skewed and shows
a huge number of zeros (147 on 463 observation). The 147 zero counts arise
from those students who formally dropout or from those who did not get credits
even though they are still enrolled—two kinds of zero observations. An analysis
of the distribution of the credits in the three DP reveals that in average students
in DP “B” have better performances than students in DP “A”: in average they
collect a number of credits double with respect to students in DP “A”. The credits
accumulation process seems to be related to the following students’ covariates:
sex (mean credits MD18.5, FD23.5), secondary school (mean credits LiceoD30,
otherD19—the Liceo provides a specific curriculum oriented to university studies),
age (	 D 	0:20), results in the entrance test (	 D 0:27) and DP (mean credits
AD16, BD33, CD22). The composition of the three DP with respect to such
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Table 1 Distributions of credits

Credits

DP 0 10 20 30 40 50 60 Total

A 55 23 15 22 10 6 4 135
B 7 5 3 9 6 8 8 46
C 85 38 31 48 34 26 20 282
Total 147 66 49 79 50 40 32 463

Table 2 Some descriptive statistics

School (%) Sex (%) Age Credits

DP Liceo Others F M Nx sd Nx sd

A 30 70 57 43 26.6 9.9 15.8 17.2
B 37 63 72 28 21.5 6.3 32.6 20.7
C 50 50 56 44 21.3 5.4 22.6 19.8

characteristics is sensibly different (see Table 2). The functional shape of the count
part of the model has been selected on the basis of the AIC criterium: the ZINB
model, which specifies a negative binomial distribution for the count part and a
logit link for the probability to observe a zero count, shows the best goodness of fit
(Table 3).

The results of ZINB model are listed in Table 4. Looking at the zero
component—which models with a logit function the probability to observe a zero
rather than a positive count—arises that an increase of 1 point [min 0Imax 40] in
the entrance test (TESTSCORE) is associated with 7.5% lower odds to fail; further
younger students have lower probabilities to fail. Specifically, an increase of 1 year
in students’ age (AGE) is associated with 3% higher odds to fail. The net effect of
DP is measured by the coefficient parameters associated to the DP memberships:
students enrolled in DP “A” have odds 3 times bigger to fail than students from
DP “B”. Looking at the effect of gender and secondary school attended, it arises
that male students have odds to fail with respect to female equal to 1.76, whereas
students from other schools have odds to fail 1.5 compared with students from
Liceo. Regarding to the process which models the expected number of credits, it
arises that the score gathered at the entrance test is a relevant predictor for the
credit accumulation process. An increase of 1 point in the variable TESTSCORE is
associated with an increase of 3.39% in the number of expected credits. Looking
at the net effect of the DP on the expected number of credits arises that students in
DP “B” have an expected number of credits 36.3% higher than students in DP “A”.
Furthermore, the main “disadvantages” are related to an increase in the variable
AGE. The adjusted indicators have been build up on the basis of the ZINB results.
Table 5 compares the following indexes: the unadjusted index (Eg) based on the
observed number of credits, the unadjusted estimated index ( OEg) based on the
expected number of credits predicted using the ZINB model, the adjusted index



The Credit Accumulation Process to Assess the Performances of Degree . . . 285

Table 3 Goodness of fit
measures ZIP ZINB

logLik �2239.30 �1562.00
] par.s 14 15
AIC 4506.60 3154.00
] zeros 147 147

Table 4 ZINB model Covariates Coeff. SE p-value

Zero component model coefficients (z) (logit link)
(Intercept) 0.392 0.795 0.621
SEX-M 0.574 0.211 0.006**
TESTSCORE �0.078 0.024 0.001**
factor(DP-B) �1.171 0.467 0.012*
factor(DP-C) �0.128 0.240 0.592
AGE 0.035 0.014 0.012*
SCHOOL-OTHER 0.410 0.225 0.068.
Count model coefficients (x) (NegBin with log link)
(Intercept) 2.525 0.237 ***
SEX-M �0.019 0.060 0.751
TESTSCORE 0.033 0.006 ***
factor(DP-B) 0.312 0.103 **
factor(DP-C) 0.104 0.073 0.153
AGE �0.008 0.004 0.040
SCHOOL-OTHER �0.011 0.060 0.844
Log(theta) 1.481 0.090 ***

*: p-value < 0.05
**: p-value < 0.01
***: p-value < 0.001

Table 5 Comparison across
adjusted and unadjusted
indexes

Index % A B C

Eg 26.296 54.348 37.234
OEg 26.127 53.890 37.337
QEB
g 59.317 87.877 66.767
QEA
g 26.127 48.292 30.347

QEB
g based on the results of ZINB model under the assumption that all the DPs

have just students with the best profile (age D 19, Liceo, F , total score in the
entrance test 40), the adjusted index QEA

g based on the results of ZINB model under
the assumption that all the DPs have the same composition of DP “A”. Results in
Table 5 show that if the composition of the three DPs was similar to “A”, DP “B”
would lose 6.1% points in the assessed efficiency (from 54.34 to 48.29) and the
distance between “B” and “C” would change from 11.2% to 4.2%. If all the three
DP are composed just by students with the “best” profile it would be a reduction of
the differences between “C” and “A” (from 11.2% to 7.4%).
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5 Final Remarks

From the comparison between the unadjusted indicator 3 and the expected unad-
justed indicator 4 it arises a good accuracy of the modeling approach based on
zero-inflated models in reproducing the credits distribution. The method allows us
to assess the role played by some key factors that we consider in order to define
adjusted indicators of efficiency. Such indicators take into account not just the
final output of the process (e.g. total number of credits and dropout rates) but also
of the differences in the input factors (secondary school attended and students’
competencies at the enrollment). Further research are still in progress in order
to perform the analysis in a multilevel framework. The use of Multilevel-Zero-
Augmented Models will enable us to apply the method on all DP of a university
and to control in the analysis also for the second-level covariates such as number of
students enrolled or the field of studies to which the degree program belongs to.
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Häkkinen, I. (2004). Do university entrance exams predict academic achievement? Working
paper - Department of Economics - University of Uppsala, (16).

Julian, E. R. (2005). Validity of the medical college admission test for predicting medical school
performance. Academic Medicine Research Report, 80(10), 910–917.



The Credit Accumulation Process to Assess the Performances of Degree . . . 287

Leckie, G., & Goldstein, H. (2009). The limitation of using school league tables to inform school
choice. Journal of the Royal Statistical Society A, 174, 835–851.

Sullivan, A. (2001). Cultural capital and educational attainment. Sociology, 35(4), 893–912.
Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in R. Journal of

Statistical Software, 27(8), 1–25.



The Combined Median Rank-Based Gini Index
for Customer Satisfaction Analysis

Emanuela Raffinetti

Abstract The quality assessment represents a relevant topic especially with regard
to several real contexts. Currently, firms and services suppliers pay particular
attention to customer satisfaction surveys in order to investigate about the “perceived
quality” feature. Typically, a useful tool to obtain information about the customer
satisfaction degree is represented by the quality questionnaires. The use of quality
questionnaires implies that the collected data mostly assume ordinal nature.

A contribution in dealing with ordinal data is provided by this paper. Here, we
propose a novel Gini measure built on ranks. By combining it with the median index,
one can depict the customer satisfaction degree by exploiting information coming
from the responses given to the quality questionnaires items.

1 Background on Quality Assessment and Current Proposal

Ordinal data are assuming a relevant role in many application areas since they
provide information about phenomena which are not directly observable. In fact,
in real contexts many interesting aspects seem not to be evaluable through the
employment of quantitative variables and this condition implies many difficulties
when the main purpose regards the specification of dependence relations among
the involved variables, as discussed in Ferrari and Raffinetti (2012), Raffinetti and
Giudici (2012, 2011) and Giudici and Raffinetti (2011). Such critical issue typically
appears when measuring the “perceived quality”, since data are only available at
ordinal level. This occurs in particular when considering the customer satisfaction
problem which can affect many fields such as economics, health and education.
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In literature, several approaches providing measures able to assess, through
based-quality questionnaires, the perceived quality have been proposed (see e.g.
Allison and Foster 2004). Such proposals employ partial orderings based on a
median-preserving spread of distributions, analogous to partial orderings based on
a mean-preserving spread provided for instance by the Lorenz curves comparison,
as described in Muliere and Petrone (1992). However, these measures only define a
partial ordering and there may be instances when the underlying conditions do not
hold leading to the inability of ranking different ordinal data distributions.

An alternative approach to compute quality indices, when dealing with ordinal
data, is to transform ordinal variables into cardinal ones and then calculating
standard (mean-based) quality indices. Van Doorslaer and Jones (2003) present
a review and an assessment of all the possible methods for such transformation.
Further contributions in this area can be found also in Abul Naga and Yalcin (2008)
and in Madden (2010).

Here a novel statistical procedure in treating ordinal variables will be discussed
following a different modus operandi with respect to suggestions existing in
literature. Through the Lorenz curve (for more details, see e.g. Gastwirth 1972)
extension to ordinal data, we define a new quality index, called “rank-based Gini
measure”, whose main properties will be described in Sect. 2. By the rank-based
Gini measure, one can obtain information about the agreement or disagreement
condition related to customers’ opinion with regard to a service or a product
perceived quality. Furthermore, the proposed measure combined with the median
index is suitable in detecting the opinions dissimilarities concerning the evaluated
topics. All the details related to this new measure, hereafter called combined median
rank-based Gini index, will be illustrated in the following sections.

2 Our Proposed Approach

The focus of this contribution is formalizing a novel quality measure able to specify
the different customers’ opinions concerning the evaluated items of a service or a
product.

The idea is based on Lorenz curves and Gini measure employment, according
to which analyzing the disagreement or agreement status among the interviewed
subjects, whose opinions are summarized by the responses given to the question-
naire items. Since ordinal variables representing the customer satisfaction degree
measured in terms of “perceived quality” are involved, an appropriate approach for
the Lorenz curve construction is needed.

Many definitions of quality indices can be found in economical literature.
Examples are presented in Allison and Foster (2004), where the problem concerning
the scales arbitrary choice for ordered categories has been deeply discussed. The
use of different scales can lead to subjectivity and this implies troubles in results
interpretation. Our proposal overcomes the restrictions arising with an arbitrary
chosen scale, by resorting to ranks tool. Through ranks employment, one specifies
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Table 1 Results

“Perceived Quality” Absolute Frequency Rank (rj , j D 1; : : : ; 3) F.r/ Q.r/

Poor n1 D 5 1 (r1 D 1) 5/11 5/49
Average n2 D 4 6 (r2 D r1 C n1) 9/11 29/49
Good n3 D 2 10 (r3 D r2 C n2) 1 1

a more homogeneous interpretation of ordered categories. More precisely, if Y is
an ordinal variable, the yi ’s do not correspond to numerical values since they do
not represent the assumed ordered categories. For this reason, our purpose is in
substituting the assumed ordered categories with values able to represent their real
impact. As well known, in a quantitative context, the Lorenz curve construction
is obtained by ordering all the variable values in increasing sense, as described in
Muliere and Petrone (1992). In an ordinal framework, supposing that k ordered
categories are considered, we propose to assign rank 1 to the lowest assumed ordered
category and value .rk�1Cnk�1/ to the highest one, where rk�1 and nk�1 correspond
to the rank and absolute frequency associated to the .k 	 1/ 	 th ordered category.
Thus, given a variable Y characterized by k ordered categories, the set of points
defining the corresponding Lorenz curve is obtained by the following pairs of values

 

Pi
jD1 nj

Pk
jD1 nj

;

Pi
jD1 rj nj

Pk
jD1 rj nj

!

; with i D 1; : : : ; k; (1)

where rj specifies the rank assigned to the j 	 th category. More in detail, r1 D 1

for the first ordered category, r2 D .r1 C n1/ for the second ordered category and
rk D .rk�1Cnk�1/ for the last ordered category. Let us now denote the x-axis values
with F.r/ and the y-axis values with Q.r/, where F.r/ represents the cumulative
frequency percentage andQ.r/ represents the cumulative rank percentage.

To illustrate our proposal we introduce an example. Let us suppose that 11
individuals have been asked to express their personal opinion with regard to
the “perceived quality” towards a service. Let Y be a variable describing each
interviewed individual’s perceived quality. Furthermore, let the Y variable assumed
ordered categories be specified in terms of poor, average and good. Table 1 reports
the results and Fig. 1 provides the ordinal Lorenz curve graphical representation.

As well known, according to the classical income distribution hypothesis, a
useful measure able to summarize information about homogeneity or heterogeneity
is the Gini measure. If each individual owns the same percentage of income, the
Gini measure is null and the set of points characterizing the Lorenz curve lies on the
egalitarian curve. On the other hand, if only an individual owns the total percentage
of income, the corresponding Gini measure assumes its maximum value. When
focusing on the ordinal context, the maximum homogeneity, corresponding to the
minimum dispersion degree, is achieved when all the statistical units are located in
an unique ordered category. In this case, the concentration area is null.
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Fig. 1 The ordinal Lorenz
curve

A novel Gini measure, related to the ordinal Lorenz curve and named “rank-
based Gini measure”, can be defined as follows:

G D 1 	
k
X

rD1
.Q.r 	 1/CQ.r//.F.r/ 	 F.r 	 1//: (2)

Through the rank-based Gini measure application, the agreement or disagree-
ment level of individuals about each evaluated topic is specified. In particular, if the
rank-based Gini measure G.r/ increases up to assume values closer to one, then
there is a great disagreement among the interviewed subjects. On the other hand if
G.r/ assumes values very close to 0, then this corresponds to a great consensus.
However, in order to establish the consensus degree among individuals, one has to
take into account the median index. As already discussed, Allison and Foster (2004)
showed how standard measures of the spread of a distribution, which use the mean
as a benchmark, are inappropriate when dealing with ordinal data. This because
one needs a measure independent on the arbitrarily chosen scale applied to different
categories (see e.g. Madden 2010). For this reason, a more appropriate benchmark,
is the median index. Through the median index one describes the evaluation position
of the 50% of individuals with regard of an evaluated item, providing a central
measure able to detect the interviewed subjects’ assessment distribution. In general,
if the median index has the same position for all the evaluated items, then one has
to consider the correspondingG.r/ value to measure the individuals’ agreement or
disagreement level about each specific item. For instance, if G.r/ takes values close
to 0, then a relevant consensus among the customers’ opinions is achieved.

The procedure based on the joint use of the median index and the rank-based
Gini measure allows to define a novel customer satisfaction index which will be
called “combined median rank-based Gini index”. The rank-based Gini index role
is stressed by the following property.
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Property 1. In case of a median index located at the same ordered category for all
the evaluated items, the rank-based Gini index allows to catch the agreement or
disagreement degree with regard to each provided customers’ assessment.

Through Property 1, an appropriate ranking among the evaluated items can be
obtained in terms of individuals’ agreement or disagreement.

3 Evaluation of a Chain of Restaurants in the UK

In this section we discuss about the quality assessment issue, expressed in terms of
customers satisfaction, with regard to a restaurants chain in the United Kingdom
(UK). The chain is composed by four restaurants. In particular, in order to validate
our proposed methodological approach we focus on the analysis of information
collected through a quality-based questionnaire submitted to people visiting each
restaurant.

To answer to an ordered scale level questionnaire, the involved subjects specify
their personal assessment by responding to a question of this kind: “What is your
personal opinion about : : :

• The menu content?” (Question 1).
• The proposed food quality?” (Question 2).
• The staff behavior?” (Question 3).
• The restaurant rooms?” (Question 4).

The variables of interest, representing the perceived customers satisfaction
degree related to the evaluated items, assume the following five ordered cate-
gories:

• Poor.
• Fair.
• Average.
• Good.
• Excellent.

Due to the five considered ordered categories, our proposed methodological
procedure assigns rank 1 to the lowest ordered category (“poor”) and rank .r4Cn4/
to the highest one (“excellent”).

As already anticipated in Sect. 2, if G.r/ is close to 0 then a relevant consensus
among the interviewed subjects is achieved. On the other hand, ifG.r/moves aways
from 0 by increasing its value then a disagreement among the interviewed subjects
occurs. Moreover, if the customers responses provide a positive median opinion to
the specific quality-based questions and G.r/ has a low value, this implies a good
evaluation. On the contrary, a negative median position with regard to the specific
quality-based questions associated to a G.r/ low value implies a bad evaluation.
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Table 2 Restaurant 1
G.r/ Median Index

Question 1 0.1680189 Excellent
Question 2 0.1788070 Excellent
Question 3 0.0648627 Excellent
Question 4 0.0674505 Excellent

Table 3 Restaurant 2 G.r/ Median Index

Question 1 0.2149883 Excellent
Question 2 0.2225268 Excellent
Question 3 0.1012204 Excellent
Question 4 0.0670991 Excellent

Table 4 Restaurant 3 G.r/ Median Index

Question 1 0.1861510 Excellent
Question 2 0.2385738 Excellent
Question 3 0.0812033 Excellent
Question 4 0.0781560 Excellent

Table 5 Restaurant 4 G.r/ Median Index

Question 1 0.1691841 Excellent
Question 2 0.1714296 Excellent
Question 3 0.0725393 Excellent
Question 4 0.0541574 Excellent

All the combined median-ranks based Gini index values, corresponding to each
restaurant evaluated feature, are represented in Tables 2, 3, 4 and 5.

Let us now point out some of the obtained results, recalling that the related
interpretation is strictly linked to median index values. Since in all restaurants the
evaluated topics achieve the same median index value (“Excellent”), the following
conclusions can be provided. Restaurant 1 and Restaurant 4 present similar G.r/
values about Question 1 and Question 2 meaning that these restaurants achieve
the same customer satisfaction degree with regard to menu content and food
quality. Restaurant 2 shows the highest G.r/ values respectively in Question 1 and
Question 3: this result means that Restaurant 2 has to improve the provided services
in terms of menu content and staff behavior. Furthermore, the two restaurants that
achieve the best results in terms of customer satisfaction degree with regard to
almost all the evaluated items are Restaurant 1 and Restaurant 4 since they are
characterized by the smallest G.r/ values and the maximum median values.

All these aspects stress how our proposed index gives detailed information
about products or services critical features which have to be monitored through
appropriate marketing or re-organization policies aimed at improving the quality
aspect.
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4 Final Remarks and Conclusions

This paper deals with the description of a novel statistical approach for quality
assessment. In particular, our presented research contribution proposes to investigate
about the “perceived quality” in order to catch information about the achieved
customer satisfaction degree.

Through the median rank-based Gini index one can specify the existing dissimi-
larities among the single evaluated items of a service or a product, allowing to assign
a rating to services or products supplier.

The combined median rank-based Gini index can be compared with other
agreement measures, such as for instance the so-called Kappa-type indices (see
e.g. De Mast 2007 for more details). Typically, Kappa-type indices use the concept
of agreement to express the reproducibility of nominal measurements, however
De Mast (2007) provides a novel definition by considering them as measures of
predictive association, rather than absolute measures of reproducibility. Even if our
proposal and Kappa-indices are both based on the agreement concept, some relevant
dissimilarities have to be highlighted. In fact our contributed index is built on an
ordinal measurement and it is dealt here only as a descriptive approach without any
predictive meaning, as instead it happens for Kappa-indices. Furthermore, Kappa-
indices are computed in terms of two different probabilities: the one expressing the
probability of agreement for the measurement system under study and the other
one representing the probability of agreement for a “chance” measurement system
(a completely uninformative measurement system that assigns measurement values
to objects randomly). Despite that, some specific similarities can be detected. In fact,
both measures assume values in range Œ0; 1�. In our case, the G.r/ assumed values
provide a descriptive information about the agreement or disagreement condition
among the interviewed individuals, and Kappa-indices are measures of predictive
association based on the Gini measure of dispersion.

In conclusion, our proposal is particularly suitable when considering customer
satisfaction surveys since it gives more detailed information about the positive or
negative features towards a particular service or product when all the evaluated items
are characterized by the same median ordered category.
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A Two-Phase Clustering Based Strategy for
Outliers Detection in Georeferenced Curves

Elvira Romano and Antonio Balzanella

Abstract A two-phase clustering method for the detection of geostatistical func-
tional outliers is proposed. It first, clusters data by a modified version of a Dynamic
Clustering algorithm for geostatical functional data and then detects groups of
outliers according to a cut-off value defined by a measure of spatial deviation in
a minimum spanning tree. The performance of the proposed procedure is analyzed
by several simulation studies.

1 Introduction

In an increasing number of applied sciences, like agronomy, meteorology, ecology,
spatially located sensors collect curves. Traditionally, the analysis of curves has
been performed through Functional Data Analysis (Ramsay and Silverman 2005).
However, in the last years in order to consider the further information provided by
the spatial locations, recent contributions have introduced the new research field of
Spatial Functional Data Analysis (SFDA) (Delicado et al. 2010). Methods in this
new field are based on the assumption that the variability among the curves depends
on their spatial distance so that at near locations correspond similar curves while, at
opposite, far locations are characterized by very different curve behaviors.

In this context, we focus on the problem of anomaly detection. In particular
we aim at discovering groups of curves, from the georeferenced functional dataset,
whose the variability depends in an anomalous way on the spatial location. A basic
example of this kind of outliers is a fire in a forest. A set of sensors monitors the
temperature over a wide geographic area however, due to the fire, a group of such
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sensors records curves which are anomalous in terms of spatial dependence and
magnitude of the temperature.

The problem we analyze is different from what is addressed in Sun and Genton
(2012) and Romano and Mateu (2012). The former, founds the detection of outliers
on the functional boxplot tool: as in classical boxplot, outliers are observations
which deviates from the central region identified by the IQR. The latter, is based
on extending the ordering criterion defined in modal depth functions to account for
the spatial-functional variability. In this framework, the outliers will be the curves
having a very low modal depth.

In both cases, outliers are isolated curves which deviate from a single typical
behavior; in our case, outliers are groups of similar curves which deviate, strongly,
from a set of typical behaviors.

Our proposal is a clustering-based outliers detection strategy. It is made by
two steps: the first one, extends the method proposed in Romano et al. (2010)
for clustering geostatistical functional data, to support the detection of clusters of
potential outliers; the second step identifies groups of outliers by selecting the small
clusters characterized by anomalous spatial variability behaviors according to the
schema in Jiang et al. (2001).

The clustering algorithm we refer to, reveals a partition of curves into a chosen
apriori number of clusters optimizing a criterion of spatial variability and discovers
a set of variogram prototypes which describe the spatial variability structure of each
cluster.

We modify this strategy introducing an heuristic which allows to optimize the
number of cluster according to the following rule “if one new input curve is far, in
terms of spatial variability, from all existing clusters prototypes, then it is generated
a new cluster and this curve is allocated to it”.

The second step is run on the results of the first one. The detection of the clusters
of outliers is performed building a minimum spanning tree (MST) on the clusters
and on cutting the longest edges.

The paper is organized as follows: Sect. 2 provides a formal description of the
analyzed data and of the tool used as reference for modeling spatial variability in
the functional data setting. Section 3 introduces the details of the proposed method.
Section 4 presents an application on simulated data. Finally, Sect. 5 closes the paper
with future perspectives.

2 Clustering Geostatistical Functional Data

The method we introduce aims at analyzing a set � D .�s1 .t/; : : : ; �si .t/; : : : ;

�sn.t// of curves observed at the n spatial sites .s1; : : : ; si ; : : : ; sn/ inD � Rd (with
positive volume). The measurements on each curve are part of a single underlying
continuous spatial functional process defined as

˚

�s W s 2 D � R
d
�

(1)
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In particular each function �si .t/ is defined on T D Œa; b� � R and assumed to
belong to an Hilbert space

L2.T / D ff W T ! R; such that
Z

T

f .t/2dt <1g:

with the inner product hf; gi D R
T
f .t/g.t/dt.

For each t , the random process is assumed to be second order stationary and
isotropic: that is, the mean and variance functions are constant and the covariance
depends only on the distance between sampling sites.
Formally we have:
E.�s.t// D m.t/ 8 t 2 T; s 2 D,
V.�s.t// D �2.t/, 8 t 2 T; s 2 D, and
Cov.�si .t/; �sj .t// D C.h; t/ where h D ��si 	 sj

�

� 8 si ; sj 2 D.
Moreover, since we are assuming that the mean function is constant over D,

the semivariogram function �.h; t/ D �si sj .t/ D 1
2
V.�si .t/ 	 �sj .t// where h D

�

�si 	 sj
�

� 8 si ; sj 2 D can be expressed by

�.h; t/ D �si sj .t/ D
1

2
V.�si .t/ 	 �sj .t// D

1

2
E



�si .t/ 	 �sj .t/
�2

(2)

By considering the integral on T of this expression, using Fubini’s theorem and
following Delicado et al. (2010), a measure of spatial variability can be considered

�.h/ D 1

2
E

�

Z

T

.�si .t/ 	 �sj .t//2dt

�

; for si ; sj 2 D with h D ksi 	 sj k

which is the so called trace-variogram. This can be estimated as

O�.h/ D 1

2jN.h/j
X

i;j2N.h/

Z

T

.�si .t/ 	 �sj .t//2dt; (3)

where N.h/ D f.si ; sj / W ksi 	 sj k D hg, and jN.h/j is the number of distinct
elements in N.h/. For irregularly spaced data there are generally not enough
observations separated by exactly h. ThenN.h/ is modified to f.si ; sj / W ksi 	sj k 2
.h	 "; hC "/g, with " > 0 being a small value.

In this framework, we define as outlier, a subset of � having a spatial-functional
variability structure, described by its trace-variogram function, which deviates so
much from the other variability structures of the data to be considered as part of a
different spatial functional process.

We propose to detect this subset by running, at first, an appropriately extended
clustering algorithm which partitions the set of curves � into clusters which are
homogeneous in terms of spatial-functional variability and then, by pruning the
clusters which highlight the anomalous trace-variogram functions.
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The clustering strategy we use as reference is based on a Dynamic Clustering
Algorithm (Diday 1971). It simultaneously searches for a partition P of the curves
into K clusters and a set of prototypes L D �

��1 .h/; : : : ; ��k .h/; : : : ; ��K.h/
�

which
describe the spatial variability behavior of each cluster Ck (with k D 1; : : : ; K). To
reach this aim, the following criterion is optimized:

�.P;L/ D
K
X

kD1

X

�si .t/2Ck

X

h

.�
si
k .h/ 	 ��k .h//2 (4)

The criterion �.P;L/ measures the fitting between the partition of curves and
the prototypes. In particular, the prototype function ��k .h/ is the trace-variogram for
the cluster Ck which can be estimated by the method of moments as follows:

��k .h/ D
1

j2Nk.h/j
X

i;j2Nk.h/

Z

T

�

�si .t/ 	 �sj .t/
�2

dt (5)

where Nk.h/ D f
�

si I sj
� 2 Ck W

�

�si 	 sj
�

� D hg.
Then, �sik .h/ is the centered variogram function which can be estimated by:

�
si
k .h/ D

1

2
ˇ

ˇN i
k.h/

ˇ

ˇ

X

j2Ni
k.h/

Z

T

�

�si .t/ 	 �sj .t/
�2

dt � ˇˇN i
k.h/

ˇ

ˇ (6)

with N i
k.h/ � Nk.h/; jNk.h/j D

P

i

ˇ

ˇN i
k.h/

ˇ

ˇ.
Unlike to the trace-variogram function, �sik .h/ considers the curve �si as a pivot

so that rather than measuring the whole spatial variability of the curves in a cluster
Ck, it measures the variability of a single curve with regard to the other curves in Ck .

In order to optimize the criterion �.P;L/ we follow a k-means like schema
where starting from a random partition, a step of representation and a step of allo-
cation are executed until the convergence to a local minimum. In the representation
step, the theoretical variogram ��k .h/ of the set of curves �si .t/ 2 Ck, for each
clusterCk is estimated (4). This involves the computation of the empirical variogram
and its model fitting by the Ordinary Least Square method.

In the allocation step, the function �sik is computed for each curve �si .t/. Then a
curve �si .t/ is allocated to a cluster Ck by evaluating its matching with the spatial
variability structure of the clusters according to the following rule:

d.�
si
k .h/I ��k .h// < d.�sil .h/I ��l .h// 8k ¤ l (7)
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3 Outliers Detection from Geostatistical Functional Data

The method we propose is based on extending the clustering algorithm introduced
above, to support a number of clusters K 0, not defined apriori, which is larger that
the initial value K . This will allow to carry out clusters of potential outliers from
which the second phase of the procedure will detect the final outliers.

With this aim, we modify the optimized criterion�.P;L/ introducing a heuristic
which generates a new cluster if a curve is far away from all the existing clusters.
This is obtained adding a further step between the allocation and the representation
step and modifying the allocation criterion.

The new step consists in computing the minimum mind of the Euclidean
distances d.:/ among the variograms prototype of the clusters as follows:

mind D min d.��k .h/I ��l .h// for k; l D 1; : : : ; K 0; k ¤ l (8)

As consequence, the allocation of the curves to the clusters is modified so that a
curve �si .t/ is allocated to a cluster Ck only if the following rule is true:

d.�
si
k .h/I ��k .h// < d.�sil .h/I ��l .h// 8k ¤ l \ d.�sik .h/I ��k .h// < mind : (9)

otherwise, a new cluster is generated and �si .t/ is allocated to it.
This procedure could, in some extreme case, generate K 0 >> K clusters, so

that we constraint the maximum value of K 0 to Kmax. Especially, if the generation
of a new cluster involves that K 0 > Kmax then two clusters Ck; Cl such that
d.��k .h/I ��l .h// < d.��k0.h/I ��l 0 .h//8 fk; lg ¤ fk0; l 0g (with k ¤ l) are merged
into a single cluster.

In this way, the total criteria to be optimized can be expressed as:

ı.w; ��k .h// D
n
X

siD1

K0
X

lD1
wsi ;l .�

si
k .h/ 	 ��k .h//2 (10)

subject to
PK0

lD1 wsi ;l D 1; si D 1 : : : n where wsi ;l D 1 if the curve si is allocated
to the cluster l , 8si D 1 : : : n; l D 1; : : : ; K 0.

Starting from the obtained clustering results, the second phase, selects the
clusters which are anomalous in terms of spatial-functional variability.

It is based on constructing a complete, undirected graph G D .V;E/ where
the nodes set V is made by the K 0 variogram functions which describe the spatial
functional variability of the clusters while the edgesE record the Euclidean distance
between each couple of variograms.

We propose an iterative procedure which processes the graphG in order to select
the nodes representing the outliers clusters:

• Repeat until the number of nodes in G reaches the desired number of clusters of
outliers
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– SplitG into two sub-graphs by choosing as cutting edge the one corresponding
to the maximum value of the distance between the nodes.

– Select the sub-graph having the lowest number of nodes and regard it as the
new G

• End repeat

As result, this procedure returns a set of nodes representing the clusters charac-
terized by the most anomalous behavior in terms of spatial variability structure.

4 Simulation Study

The developed two phase clustering method is evaluated through a simulation study
on four different spatio-functional data sets. The datasets have been generated
according to a separable and a non separable spatio-functional covariance function
contaminated with outlier models. Original data are drawn from a zero-mean,
stationary spatio-functional Gaussian random field, �s.t/ (with s 2 D and t 2 T )
whose covariance function C .h; u/ D cov

˚

�si .t1/; �sj .t2/
�

depends (for any
couple of si ,sj and t1; t2) on the spatial distance h D si 	 sj and on the functional
distance u D t1 	 t2.

We consider the following separable and non separable covariance functions:

• A separable covariance function:

CSEP .h; u/ D cov
˚

�si .t1/; �sj .t2/
� D Cs .h/ CT .u/ (11)

with Cs.h/ D .1 	 $/ exp .	c jhj/ C $I fh D 0g a spatial covariance function

and CT .u/ D
	

uC a juj2˛

�1

a purely stationary functional covariance func-

tions of the Cauchy type having with a time span u D jt1 	 t2j. Here a > 0 is
the scale parameter in time, that is fixed to a D 1 in all the tests, and ˛, is the
parameter that controls the strength of the functional variability.

• A Symmetric but generally non-separable correlation function:

CSim .h; u/ D 1 	 $
1C au2˛

"

exp

(

	 c khk
.1C au2˛/

ˇ
2

)

C $

1 	 $ I fh D 0g
#

(12)

where the parameter 0 � ˇ � 1, we set to 0:9 controls the degree of non-
separability.

The four generated datasets are composed respectively by two and three different
clusters, each of them is characterized by different values of the parameters defining
the Spatial Functional covariance function as in Table 1.

In all the cases one of them is contaminated by a group of no D 66 outliers
following a model contaminated by peaks
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Table 1 The 4 datasets and
their parameters

˛-parameters c-parameters

Dataset Id Cov. Model ˛1 ˛2 ˛3 c1 c2 c3

D1 Separable 0:2 0:2 0:1 0:5

D2 Separable 0:2 0:2 0:3 0:5

D3 Non Separable 0:2 0:2 0:2 0:1 0:5 0:7

D4 Non Separable 0:2 0:2 0:2 0:3 0:5 0:7

Table 2 Rand Index for the
Two phase (TP) and the
Dynamic(DC) clustering
methods

Dataset Id RITP RIDC
D1 0:88 0:60

D2 0:75 0:59

D3 0:80 0:48

D4 0:79 0:49

Table 3 Percentage of the
detected outliers ATP for the
Two phase clustering methods

Dataset Id ATP

D1 0:88

D2 0:85

D3 0:77

D4 0:82

�si .t/ D �si .t/C csi �si K; i D 1; : : : ; no (13)

where csi .t/ is 1 with probability 0:1 and 0 with probability 0:9, K D 6 is a
contamination size constant, �si is a sequence of random variables independent of
csi .t/ taking values 1 and 	1 with probability 1=2.

Each cluster has been generated with locations s1; : : : ; s196 on a grid of size
14 
 14 in the unit square with the grid spatial spacing 1=13, and 50 equally spaced
time points in Œ0; 1�. Thus two datasets of 392 curves with two clusters C1; C2 and
two datasets of 588 curves with three clusters of data C1; C2; C3 were generated.

Our experimentations consist in comparing the results of the two phase clustering
strategy with the DCA for geostatistical functional data on the generated datasets.
At first, we evaluate the clustering results computing the well known Rand Index
RI (Rand 1971) between the real partition of data and the one obtained by the
two strategies. Then, we monitor the performance of the strategy by measuring the
percentage of detected outliers. Table 2 contains the RI for both the strategies. It
shows that the real clustering structures are discovered by the two phase procedure
at an higher rate for all the datasets.

This is a consequence of the detection of the outlier cluster. At the opposite the
lower rates of the RIDCA are due to the misclassification of outliers. By analyzing
the cluster of outliers we have measured the proportion of curves inside the cluster
that follows the model (13). Table 3 shows the results.
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5 Conclusion

In this paper, we introduced a cluster-based outlier detection approach based on
Dynamic Clustering algorithm. In our method, we give attention to the group
outliers rather than a single outlier. The implementation of our algorithm on various
datasets shows successful results. For future work, we need to improve our approach
to make it more time efficient. A further modification will consist in extending the
validity of the algorithm to make it applicable for streaming time series also.
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High-Dimensional Bayesian Classifiers Using
Non-Local Priors

David Rossell, Donatello Telesca, and Valen E. Johnson

Abstract Common goals in classification problems are (i) obtaining predictions
and (ii) identifying subsets of highly predictive variables. Bayesian classifiers
quantify the uncertainty in all steps of the prediction. However, common Bayesian
procedures can be slow in excluding features with no predictive power (Johnson
& Rossell. (2010). In certain high-dimensional setups the posterior probability
assigned to the correct set of predictors converges to 0 (Johnson and Rossell 2012).
We study the use of non-local priors (NLP), which overcome the above mentioned
limitations. We introduce a new family of NLP and derive efficient MCMC schemes.

1 Introduction

Two common goals in classification problems are (i) predicting the class that an
individual belongs to and (ii) identifying variables with high predictive power.
Oftentimes, it is also important to measure the confidence both in the obtained
predictions and variable subsets. Bayesian classifiers are appealing in that they
quantify the uncertainty associated to all steps in the prediction process in a natural
manner.
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Let yi 2 f0; 1g be the class of individual i for i D 1; : : : ; n, y0 D .y1; : : : ; yn/,
x0i D .xi1; : : : ; xip/ be a vector with p predictors and X the n 
 p matrix with i th

row equal to xi . We partition X D .X1;X2/, where Xi is n 
 pi for i D 1; 2 and
p1 C p2 D p. The idea is to use all variables in X2 but only the most relevant
ones in X1 for prediction purposes. We denote an arbitrary subset of predictors by
k D fk1; : : : ; kjkjg, where kj 2 f1; : : : ; p1g and jkj D dim.k/. Let M be the
collection of all 2p1 subsets, denote by t the predictors truly related to y, and let
P.kjy/ be the posterior probability assigned to model k. The goals are to predict
the class ynC1 for a new individual nC 1 given the observed predictors xnC1 and to
obtain large P.tjy/.

In modern applications with large p, one expects that a relatively small pro-
portion of them hold predictive power. Johnson and Rossell (2010) showed that
variable selection based on non-local prior (NLP) distributions (Sect. 2) discards
spurious covariates at a faster rate than local priors (LP). Further, Johnson and
Rossell (2012) showed that under linear model setups, when p grows at rate faster
than
p
n, P.tjy/ converges in probability to 0 when LP are used. In contrast, under

the same assumptions, for NLP P.tjy/ converges to 1 as long as p < n. Despite
these undesirable properties, most current Bayesian procedures are either based
on or asymptotically equivalent to LP. Here we explore the application of NLP
to classification problems, with emphasis in large p. We adopt a probit regression
model with latent variables (Albert and Chib 1993), i.e. we let yi D I.zi > 0/,
where z 
 N.X1�1 C X2�2; 1/. Our proposal remains valid for other binary
regression models, e.g. z 
 Logistic.X1�1 C X2�2; 1/ gives a logistic regression.
Prior elicitation and implementation details in Sects. 3, 4 focus on probit models
and would need to be appropriately adjusted for other models. We compute the
predictive probability for ynC1 via Bayesian model averaging as

Op.ynC1D 1/DP.ynC1D 1jxnC1; y;X/D
X

k2M
P.ynC1D 1jk; xnC1; y;X/P.kjy/:

(1)

2 Prior Formulation

Let k denote the model with �1j ¤ 0 for j 2 k (and �1j D 0 for j … k). A LP
under model k is any distribution �L such that �L.�1jk/ ! c > 0 as �1j ! 0 for
some j 2 k. That is, LP assign non-vanishing prior density to a neighbourhood of
�1j D 0, even though model k assumes that �1j ¤ 0. In contrast, a NLP distribution
under model k satisfies �L.�1jk/ ! 0 as �1j ! 0 for any j 2 k. Johnson and
Rossell (2011) defined two families of NLP: product moment (pMOM) and product
inverse moment (piMOM) densities. Let �.k/1 be the non-zero coefficients under
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model k and jkj D dim.�.k/1 /. The normal pMOM prior density of order r and prior
dispersion �1 is defined as

�M .�
.k/
1 j�1/ D

�

1

.�1�/r .2r 	 1/ŠŠ
�jkj

Y

j2k

.�
.k/
1j /

2rN.�
.k/
1j I 0; �1�/; (2)

where ŠŠ denotes the double factorial and � is a dispersion parameter (for our
probit model � D 1). Following Johnson and Rossell (2011), we set r D 1 as a
default choice. Regarding �1, default and decision theoretical choices are discussed
in Sect. 3.

A heavy-tailed pMOM prior can be obtained by placing a hyper-prior �1 

IG. a�

2
; b�
2
/. The corresponding marginal prior for �.k/1 is

�T .�
.k/
1 / D

0

@

Y

j2k

�2r1j

. b�
2
�/r .2r 	 1/ŠŠ

1

A

�
	

r jkj C jkjCa�
2




.��b�/
jkj
2 � . a�

2
/

�

1C �
0
1�1

�b�

��.rjkjC jkjCa�
2 /

:

(3)

Notice that (3) is essentially a polynomial penalty term times a multivariate T
density with r jkj C a�

2
degrees of freedom, location 0 and scale matrix �b�I .

An attractive feature of pMOM priors is that computing univariate marginal
densities is immediate, which makes them amenable for use in MCMC schemes
(Sect. 4). Unfortunately, for piMOM priors no closed form expressions are available.
Although it is possible to obtain approximations (Johnson and Rossell 2011), this
poses a challenge when exact calculations are desired and p is large. To address this
issue we introduce the product exponential moment prior densities (peMOM)

�E.�
.k/
1 / D cexp

8

<

:

	
X

j2k

�1�

�2r1j

9

=

;

Y

j2k

N.�1j j0; �1�/; (4)

where r is the prior order, �1 a dispersion parameter and c the normalization constant
with the simple form c D ejkj

p
2 for r D 1. The ratio of peMOM to piMOM

prior densities near the origin is bounded by a finite constant, which guarantees
equal learning rates when �1 D 0 under a wide class of models. The key advantage
of peMOM over piMOM priors is that under certain MCMC setups they provide
closed-form expressions, i.e. they are computationally appealing. Both pMOM and
peMOM fall within the generalized moment prior family (Consonni and La Rocca
2010).

For �2 we use a conjugate N.0; ��2A/ prior, where A is an arbitrary matrix
and �2 a dispersion parameter. By default we set �2 D 106, A D I and �.k/ D
Beta-Binomial.jkjIp1; 1; 1/ (Scott and Berger 2010).
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3 Prior Parameter Setting

Different prior settings may influence the finite sample performance of the proposed
Bayesian classifier. �1 can be used to determine the magnitude of j�1j j that has
practical relevance for the problem at hand.

To propose default �1 we recall that �1j is the z-score associated to a C 1SD
increase in covariate j (assuming that covariates are standardized), and consider that
changes in P.yi D 1/ less than 0.05 lack practical relevance. The largest possible
change in P.yi D 1/ produced by covariate j is ˚.�1j / 	 0:5. Since ˚.0:126/ 	
0:5 D 0:05, we regard j�1j j < 0:126 as practically irrelevant. �M in (2) with �1 D
0:139 and �E in (4) with �1 D 0:048 assign 0.01 prior probability to j�1j j < 0:126.
For �T in (3) we set 0:5a� D 1 and 0:5b� D :278, i.e. a fairly non-informative prior
with prior mode at �1 D 0:139.

The proposed default �1 seem reasonable for classification problems, and results
are usually insensitive to moderate changes in �1 (Sect. 5). For practitioners seeking
to set �1 in a data-adaptive manner, we describe a decision-theoretic procedure that
aims to provide optimal predictions. Let yp be a draw from the posterior predictive
distribution. Following Gelfand and Ghosh (1998), the deviance posterior predictive
loss (PPL) equally penalizing deviations from y and yp for a fixed Bernoulli
sampling model k is

Dk.�1/ D
X

i

fhi 	 h.
pi /g C 2
X

i

�

h.

p
i /C h.yi /

2
	 h

�



p
i C yi

2

��

where h.x/ D .x C 1=2/ log.x C 1=2/C .1:5 	 x/ log.1:5 	 x/, hi D Efh.ypi j
yIk; �1/g and 
pi D E.ypi j yIk; �1/.

A decision about the optimal value of �1 is made integrating over the model
space M and, provided a Monte Carlo sample .k1; : : : ;kM / is available from
p.k j yI �1/, the deviance PPL associated with �1 may be approximated by ND.�1/ D
1
M

PM
jD1 Dkj .�1/. A simple grid search can be used to find �1 minimizingD.�1/.

We assessed the procedure via 100 simulations with n D 500, p D 50 in a
sparse setup with �11 D 0:2, �12 D 0:4, �13 D 0:6, �1j D 0 for j > 3 and X1 with
	 D 0:25 as in Sect. 5. We also simulated from a non-sparse setup with �1j D 0:1

for 1 � j � 10, �1j D 0:2 for 11 � j � 20 and �1j D 0 for j > 20. The
average selected �1 for �M was 1.19 and 0.05 in the sparse and non-sparse setup,
respectively, and the average posterior model sizes were 15.9 and 2.5. That is, the
chosen �1 captured the degree of sparsity in the data.

4 Model Fitting

We use a Metropolis-Hastings (MH) within Gibbs scheme to sample from the joint
posterior of .�1;�2;k; z/ given y. We re-parameterize k with ı0 D .ı1; : : : ; ıp1/,
where ıj D 1 if �1j ¤ 0 and ıj D 0 otherwise. We propose updates .ı�j ; ��1j /
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sequentially for j D 1; : : : ; p1 and evaluate each proposal via MH. The distribution
of �1j is dominated by the �-finite measure ı0.�/CL .�/, where ı0 is a point mass
at 0 and L the Lebesgue measure, and hence the MH technical conditions are
met (Gottardo and Raftery 2009). The resulting chain allows for computationally
efficient updates and typically shows a reasonable mixing. This agrees with Gottardo
and Raftery (2009), who found that a similar Gibbs sampling scheme outperformed
more sophisticated reversible jump strategies.

Let �1.�j / and ı.�j / denote �1 and ı after removing the j th element, respec-

tively. Further denote by x.j /1 the j th column in X1, and let X.�j /
1 be X1 after

removing x.j /1 . We provide a generic scheme for (2)–(4). Step 2 is skipped for �M
and �E , as �1 is fixed. To initialize .�1;�2; ı/ we start with the null model and
sequentially consider x.1/1 ; : : : ; x

.p1/
1 . We deterministically accept moves increasing

Op.k/ D L.yj O�.k/1 ; O�2/�. O�
.k/

1 /�.k/, where . O� .k/1 ; O�2/ is the MLE under model k,
until no moves are made after a full covariate pass. The MCMC scheme is outlined
below. Steps 1–4 are repeated until a sufficient number of updates are obtained
(10,000 by default).

1. Sample zi 
 N.x01i�1 C x02i�2; 1/ for i D 1; : : : ; n, truncating at zi > 0 when
yi D 1 and zi < 0 when yi D 0.

2. Sample �1 
 IG
	

1
2

	

a� C .2r C 1/Pp1
jD1 ıj




; 1
2

�

b� C � 01�1
�




.

3. Sample .�1j ; ıj /. Let e D z 	 X.�j /
1 �1.�j / 	 X2�2 be the partial residuals for

x.j /1 , s D .x.j /1 /
0x.j /1 C ��11 and m D e0x.j /1 =s. Let m0.e/ D N.eI 0; I / and

m1.ej�1/ D expf 12 .m2s�y0y/g
.2�/n=2.s�1/1=2

A.m; s/. For the pMOM priors (2)–(3) A.m; s/ D
E. 2r /
�r1 .2r�1/ŠŠ , where  
 N.m; s�1/, For the eMOM prior (4)

A.m; s/ D expfp2 	 1
2
m2sg2 34

1
X

$D0

.�1s/
1C2$
4 .m2s/$

2
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2 � .$ C 1
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/$Š

K$C 1
2
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; (5)

where K.�/ is the modified Bessel function of the second kind. We define

q D
�

1C m0.e/P.ıj D 0/
m1.ej�1/P.ıj D 1/

��1
: (6)

Propose a new value ı�j 
 Bern.q/. If ı�j D 0 set ��1j D 0, otherwise
propose ��1j 
 T$.m; �=s/ with degrees of freedom $ D pn. That is, ı�j is
proposed from the exact �.ıj jz;�1.�j /;�2; ı.�j /; �1/ and ��1j from an asymptotic
approximation to �.�1j jı�j ; z;�1.�j /;�2; ı.�j /; �1/. The acceptance probability
is equal to minf1; �g, where � is equal to 1 if ı�j D ıj D 0 and
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N.eI ��1jx.j /1 ; I /�.��1j j�1/
N.eI �1jx.j /1 ; I /�.�1j j�1/

T$.�1j Im; s�1/
T$.�

�
1j Im; s�1/

; if ı�j D 1; ıj D 1

N.eI ��1jx.j /1 ; I /�.��1j j�1/
T$.�

�
1j Im; s�1/m1.ej�1/ ; if ı�j D 1; ıj D 0

T$.�1j Im; s�1/m1.ej�1/
N.eI �1jx.j /1 ; I /�.�1j j�1/

; if ı�j D 0; ıj D 1: (7)

4. Sample �2 
 N.m; �S�1/, where S D X 02X2 C 1
�2
I , m D S�1X 02e and e D

z 	X1�1.

5 Results

We assess our proposed classifiers on simulated and experimental data, and compare
them with Zellner’s prior �z (normal kernel in (2); �1 D 0:139 as for �M ), maximum
likelihood estimation (MLE), BIC-based probit regression, SCAD (Fan and Li
2004) and diagonal linear discriminant analysis (DLDA). For NLP, Op.ynC1 D 1/

in (1) is estimated by averaging ˚.x1;nC1�1 C x2;nC1�2/ over the MCMC output,
where ˚.�/ is the standard normal cdf. Similarly, for BIC we run a Gibbs scheme

using the approximate P.kjy/ / e�0:5BIC.k/P.k/, and average ˚.x1;nC1 O� .k/1 C
Ox2;nC1 O�2/, where . O�1.k/; O�2/ is the MLE under model k. For MLE we obtain
. O�1; O�2/ under the full model and set Op.ynC1 D 1/ D ˚.x1;nC1 O�1 C x2;nC1 O�2/.
For SCAD we use the logit model implementation in R package ncvreg to set
the penalty parameter via ten fold cross-validation, and for DLDA we use the
supclust package. Following a 0-1 loss rule, in all cases we predict ynC1 D 1

when Op.ynC1 D 1/ > 0:5.
In the simulations we considered a sparse scenario with 5 true predictors and

90 spurious covariates, and a non-sparse scenario with 5 and 5 (respectively). In
both cases we set n D 100, �1 D .0:4; 0:8; 1:2; 1:6; 2:0/ and generated X1 from
a multivariate normal with mean 0, unit variance and all pairwise correlations
	 D 0:25. X2 is the intercept with �2 D 0. For each simulated training sample,
we evaluated the correct classification rate in 1,000 independent test samples. We
simulated 250 training datasets, obtaining a standard error for all reported rates
below 0.003. For comparison we include the oracle classifier obtained by plugging
in the true .�1;�2/. SCAD and DLDA are not included in this comparison, as they
are not based on a probit model and hence are at a disadvantage.

Table 1 shows the out-of-sample correct classification rates. For p D 10 all
methods achieve rates comparable to the oracle. For p D 100 the MLE performance
decreases sharply, whereas the rates for pMOM (�M , �T ) remain high. Relative to
p D 10 the default �M rate decreases 0.026 (0.037 for its LP counterpart �z).
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Table 1 Out-of-sample correct classifications in 250 simulations with 1,000 independent test
samples each (�M : normal pMOM, �Z : Zellner; �T : T pMOM; �E : eMOM)

Default �1 PPL �1

p Oracle �M �Z �T �E �M �E BIC MLE

10 0.921 0.898 0.899 0.900 0.898 0.900 0.898 0.899 0.891
95 0.921 0.872 0.862 0.876 0.843 0.858 0.864 0.826 0.577

Table 2 Correct classification rates (ten fold cross-validated) in colon cancer microarray data

Default �1 PPL �1

�M �Z �T �E �M �E BIC SCAD MLE DLDA

0.754 0.746 0.754 0.743 0.761 0.761 0.754 0.754 0.557 0.657

The BIC drop is more pronounced at 0.073. We set �1 D 0:05; 0:1; : : : ; 0:4 in
�M to assess sensitivity, obtaining rates between 0.834 and 0.878. For �E we set
�1 D 0:025; : : : ; 0:2 and obtain rates between 0.810 and 0.866. Results are fairly
insensitive to moderate �1 changes.

We now consider the 135 intestinal stem cell gene markers which Merlos-Suárez
et al. (2011) showed to be related to colon cancer recurrence after surgery. The
authors combined the GEO (Edgar et al. 2002) microarray data GSE17537 (Smith
et al. 2010) and GSE14333 (Jorissen et al. 2009), obtaining 280 patients with
recorded recurrence status. Our goal is to predict recurrence based on gene expres-
sion and to unravel potential mechanisms relating gene expression to recurrence.

Table 2 reports the out-of-sample correct classification rates, as estimated by
tenfold cross-validation. NLPs show good predictive ability, similar to �Z , BIC and
SCAD and substantially better than DLDA and MLE.

To assess the explanatory potential of each method, i.e. its ability to identify
promising models, we compute the proportion of MCMC visits to the 10 most
visited models. For the default NLPs �M , �T , �E it was 0.796, 0.780 and 0.362,
for �Z 0.199 and for BIC 0.734. In contrast, the top 10 models selected by the PPL
�M and �E were visited less than 0.01 of the iterations. The top 10 default �M , �T
and BIC models contain combinations of the genes ARL4C, PXDN, PRICKLE1,
ASRGL1, RASSF5 and NAV1. These genes are known to be associated with
leukemia and multiple kinds on cancer, including colorectal, liver, kidney, lung and
brain cancer (Rhodes et al. 2007). The top 10 �E models select the same genes,
except for RASSF5 and PRICKLE1. Additionally, SCAD selected ST3GAL3 and
TACC1.

The results suggest that pMOM priors concentrate the posterior probability on
a reduced set of models. We assessed this option with a simulation study trained
on the experimental data. We set �1i D 0 for all genes except ARL4C and PXDN
(the most often selected genes by �M , �T , �E and BIC). We focused on 2 genes
as all top 10 models contain �2 covariates. We set their coefficients to the MLE
from a probit model only containing ARL4C, PXDN and the intercept, obtaining
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0.278, 0.272 and 	0.781 (respectively). We simulated 100 datasets with n D 1; 000
observations each, with X2 being the intercept, X1 
 N.0; Ȯ / the 135 genes and Ȯ
the empirical covariance matrix. The average posterior probability assigned to the
data-generating model by the NLPs was 0.339 (�M ) and 0.269 (�T ). �Z and BIC
assigned lower probabilities at 0.129 and 0.230.

Our results illustrate the advantage of using feature selection methods to penalize
unnecessary model complexity. DLDA and MLE do not perform feature selection
and showed the lowest out-of-sample classification rates. NLPs provided good
predictions in sparse setups, pMOM being particularly robust to spurious covariates.
In non-sparse setups, all methods provided good predictions.

Regarding explanatory potential, default NLPs favor focusing the posterior
probability on a small subset of models and a reduced number of variables. pMOM
showed an improved ability in assigning a larger posterior probability to the data-
generating model, which agrees with the findings in Johnson and Rossell (2010,
2011). In contrast, PPL trained NLPs provide good out-of-sample predictions but
they may fail to focus the posterior probability on a small set of models. This is
not surprising, as the loss function targets good predictive, rather than explanatory,
performance. In summary, NLPs provide important advantages for explanatory
purposes while maintaining a good predictive ability, especially in sparse setups.
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Merlos-Suárez, A., Barriga, F. M., Jung, P., Iglesias, M., Céspedes, M. V., Rossell, D., Sevillano,
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A Two Layers Incremental Discretization Based
on Order Statistics

Christophe Salperwyck and Vincent Lemaire

Abstract Large amounts of data are produced today: network logs, web data, social
network data. . . The data amount and their arrival speed make them impossible to be
stored. Such data are called streaming data. The stream specificities are: (i) data are
just visible once and (ii) are ordered by arrival time. As these data can not be kept in
memory and read afterwards, usual data mining techniques can not apply. Therefore
to build a classifier in that context requires to do it incrementally and/or to keep a
subset of the information seen and then build the classifier. This paper focuses on
the second option and proposed a two layers approach based on order statistics. The
first layer uses the Greenwald and Khanna quantiles summary and the second layer
a supervised method such as MODL.

1 Introduction

Many companies produce today large amounts of data. Sometimes data can be kept
into a database, sometimes their arrival speed makes them impossible to be stored. In
that specific case mining data is called stream mining. The stream specificities are:
(i) data are just visible once and (ii) are ordered by arrival time. Such an amount of
data leads to the impossibility to keep them in memory and to read them afterwards.
Therefore to build a classifier in that context requires doing it incrementally and/or
to keep a subset of the information seen and then build the classifier. In this paper
the focus is on the second option. This can be achieved by: keeping a subset of
the stream examples, calculating a density estimation or having order statistics. The
work presented in this paper focuses on numeric attributes discretization based on
order statistics. The discretization is then used as a pretreatment step for a supervised
classifier.
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e-mail: christophe.salperwyck@orange.com; vincent.lemaire@orange.com

P. Giudici et al. (eds.), Statistical Models for Data Analysis, Studies in Classification,
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-319-00032-9 36,
© Springer International Publishing Switzerland 2013

315

mailto:christophe.salperwyck@orange.com
vincent.lemaire@orange.com


316 C. Salperwyck and V. Lemaire

2 Related Works

Incremental discretization is mainly used in two fields: (i) data mining field to be
able to discretize large data set or to discretize data on the fly; (ii) Data Base Man-
agement Systems (DBMS) to have order statistics (quantiles estimates) on tables
for building efficient query plans. This section gives a brief state of art of the main
incremental discretization methods used in these two fields to have order statistics.

2.1 Data Mining Field

Gaussian Density Approximation: The main idea of this method relies on the
hypothesis that the observed data distribution follows a Gaussian law. Only two
parameters are needed to store a Gaussian law: the mean and the standard deviation.
The incremental version required one more parameter: the number of elements. An
improved version for supervised classification on stream can be found in Pfahringer
et al. (2008) but it needs a parameter to set up the number of bins derived from the
Gaussian. This method has one of the lowest memory footprints.

PiD: Gama and Pinto in 2006, proposed a two layers incremental discretization
method. The first layer is a mix of a discretization based on the methods named
“Equal Width” and “Equal Frequency” (algorithm details: Gama and Pinto 2006,
p. 663). This first layer is updated incrementally and needs to have much more bins
than the second one. The second layer uses information of the first one to build
a second discretization. Many methods can be used on the second layer such as:
Equal Width, Equal Frequency, Entropy, Kmeans. . . The advantage of this method
is to have a fast first layer which can be used to build different discretizations on it
(second layer).

Online Histogram: Ben-Haim and Tom-Tov (2010), presented an incremental and
online discretization for decision trees. Their algorithm is based on three methods:
(i) UPDATE—add a new example. It can be done by inserting the new example
directly in an existing histogram or create a new bin with it and then do a merge,
(ii) MERGE—merge two bins in one, (iii) UNIFORM: use a trapezoid method to build
the final Equal Frequency bins. This method has a low computational requirement
and is incremental but it introduces some errors. In case of skewed distributions the
authors recommend to use bound error algorithms.

2.2 DBMS Field

MLR: Manku et al. (1998) developed an algorithm to approximate quantiles based
on a pool of buffers. Their approach has three operation: (i) NEW—takes an empty
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buffer and fill it with new values from the stream, (ii) COLLAPSE—when all buffers
are full, some need to be merged to get new empty buffers—this operation takes at
least two buffers and merges them to have just one full at the end, (iii) OUTPUT—
this operation collapses all the buffers into one and returns the quantile value for
the given parameter. This method has a theoretical bound on the error � and on the
required space: 1

�
log2.�N /, where N is the size of stream.

GK: Quantiles provide order statistics on the data. The �-quantile, with � 2 Œ0; 1�
is defined as the element in the position d�N e on a sorted list of N values. � is the
maximum error on the position of the element: an element is an � approximation of
a � 	 quantile if its rank is between d.� 	 �/N e and d.� C �/ N e. It corresponds
to an “Equal Frequency” discretization; the number of quantiles being in that case
the number of intervals.

The GK quantiles summary, proposed by Greenwald and Khanna (2001) is an
algorithm to compute quantiles using a memory ofO.1

�
log.�N // in the worst case.

This method does not need to know the size of the data in advance and is insensitive
to the arrival order of the examples. The algorithm can be configured either with the
number of quantiles or with a bound on the error. Its internal structure is based on a
list of tuples < vi ; gi ; �i > where:

• vi is a value of an explanatory feature of the data stream
• gi corresponds to the number of values between vi�1 and vi
• �i is the maximal error on gi

2.3 Summary

This subsection aims to present a synthetic overview of the methods described
above. This overview uses two criteria taken from Dougherty et al. (1995). The first
criterion: global/local corresponds to the way methods use data to build intervals. A
method using all data for building all bins is considered as global. A method splitting
data into subset and doing local decision is considered as local. The second criterion:
supervised corresponds to methods using class labels to build the discretization. We
added two other criteria: parametric—a non-parametric method finds the number
of intervals automatically, online/stream—evaluate the ability to work online and to
deal with data streams.

Table 1 presents the comparison of all methods seen above versus these four
criteria. The second part of the table reports the widely used offline methods Equal
Width and Equal Frequency, and also two competitive supervised methods used in
the next section: MDLP and MODL.
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Table 1 Discretization methods comparison

Method Global/Local Parametric Supervised Online/Stream

Gaussian Global Yes No Yes
PID (Layer 1) Global Yes No Yes
Online histogram Global Yes No Yes
MLR Global Yes No Yes
GK Global Yes No Yes
Equal Width/Freq Global Yes No No
MDLP Local No Yes No
MODL Global No Yes No

3 Our Proposal

3.1 Objective

Our proposal aims to used at best the data mining field and the DBMS field
to propose an incremental discretization method which intrinsically realizes a
compromise between the error � and the memory used. This method will also have
to be robust and accurate for classification problems.

3.2 Proposal

The idea is to use a two layer incremental discretization method as PiD (Gama and
Pinto 2006) but in our case bounds in memory. The first layer summarizes (using
counts per class) the input data, using much more intervals than required, in a single
scan over the data stream. The second layer processes the first layer summary and
produces the final discretization. The memory is used at best to have the lowest
error.

For the first layer, the Greenwald and Khanna quantiles summary (GK) suits this
requirement the best and provides order statistics. We adapted the GK summary
to store directly the class counts in tuples. For the second layer, among methods
using order statistics two are particularly interesting considering their performances:
Recursive Entropy Discretization (MDLP) (Fayyad and Irani 1993) and Minimum
Optimized Description Length (MODL) (Boullé 2006). They both use an entropy
based criterion to build the discretization and the MDL (Minimum Description
Length) criterion to stop finding intervals. They are supervised and known to be
robust. The choice to use GK for the first layer and either MDLP or MODL in the
second layer is coherent since the complete structure is based on order statistics.
The errors on cut points depends mainly on the number of bins used the first
layer. Because the second layer used the MODL approach and since MODL is a
discretization method based on counts, the error on a split position of our two level
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Fig. 1 Two layers
discretization

method is related at worst to: arg maxi .gi C �i/=2, where i is the index of the
interval int the first level. This indicates that when the number of intervals of the
first level increases, the error decreases.

Figure 1 shows how our method proceeds. A GK summary is created for each
feature and updated after the arrival of a new example. When the model is needed,
GK summaries provide univariate contingency tables to the discretization method
(MODL or MDLP). A new contingency table (expected smaller) is built and
returned by these methods. Using GK quantile values and the contingency table
after discretization give at the same time cut points, density estimations per interval
and conditional density estimation per interval for this numeric feature. Finally a
classifier based on order statistics is built, as for example a naive Bayes.

4 Experiments

4.1 Large Scale Learning Challenge

The Delta training dataset from the large scale learning challenge1 is used for a
first experiment. This dataset contains 500,000 examples; each example consists
of 500 numerical features and a boolean label. 100,000 examples were kept for
a test set and train examples were taken from the 400,000 remaining instances.
We adapted the MODL discretization so that it uses GK quantiles summary as an
input and built a naive Bayes classifier on this discretization. The GK quantiles
summary is set up with 10 and 100 quantiles: GK10 (200K bytes) and GK100
(2M bytes). The reservoir sampling approach (Vitter 1985) is also used as a
baseline method to compare performances with a bounded memory technique:
GK10, GK100 corresponds respectively to a reservoir of 50 and 500 examples.

Figure 2 shows the comparison of theses approaches using the AUC (Area Under
learning Curve) performance indicator. The two reservoir sizes used are equivalent
to the memory consumed by GK10 and GK100. With limited memory GK methods
are performing much better than reservoir sampling. Compared to the naive Bayes
classifier using all data into memory, the GK performances with 100 quantiles
(GK100) are almost the same.

This first experiment shows that with a small given amount of memory our
method performances are similar to the one loading all the data into memory.

1http://largescale.ml.tu-berlin.de.

http://largescale.ml.tu-berlin.de
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4.2 ICML Exploration and Exploitation Challenge

The ICML 2011 challenge2 aims to show the online ability and robustness of our
two levels discretization. This challenge data are very unbalanced and contain a high
level of noise. The dataset contains 3 millions examples; each example consists of
100 numerical and 19 nominal features labels by a boolean (click/no-click). The
purpose of the challenge is to evaluate online content selection algorithms. Each
algorithm has to perform a sequence of iterations. For each iteration, a batch of six
visitor-item pairs is given to the algorithm. The goal is to select the instance which
is most likely to provoke a click. This challenge has strong technical constraints:
(i) a time limit (100ms per round), (ii) a limited space (1.7GB of memory). These
challenge data contain nominal features; we dealt with them using a hash based
solution: nominal values are hashed and put into a fixed number of buckets. The
click/no-click counts are stored for each bucket. These buckets are used as numerical
bins so that we can deal with nominal features as numerical ones.

Due to the challenge specificities our two layers approach was adapted. This
dataset is very unbalanced: clicks are very scarce—0.24%. Methods as MODL are
known to be robust but this robustness with noisy data leads to a late discovery of
cut points as shown by the MODL curve on Fig. 3. As the challenge score was
cumulative rewards, the model has to make decision even with just few clicks.
Waiting to make decision could provide a better classifier at the end but a lower score
on this challenge evaluation. To be more reactive probability estimation tree (PETs:
Provost and Domingos 2003) were built on our first level summaries. A tree can be
seen as a discretization method (our 2nd layer). The final step (corresponding to the
Classifier on Fig. 1) is a predictor composed of an averaging of PETs’ predictions.

2http://explo.cs.ucl.ac.uk/.

http://explo.cs.ucl.ac.uk/


A Two Layers Incremental Discretization Based on Order Statistics 321

0

500

1000

1500

2000

2500

0 100000 200000 300000 400000 500000

C
um

ul
at

ed
 c

lic
ks

Batch number

Inria
Orange
MODL

Random

Fig. 3 ICML Exploration and Exploitation challenge 2011 results

Figure 3 shows results on this challenge: Inria (ranked 1st), our submission with
PETs (ranked 2nd) and a random predictor. Our approach was competitive and
provides good density estimations for building online tree classifiers.

5 Future Works

5.1 Extension to Nominal Features

The work presented before only addresses the discretization for numerical features.
Many classification problems contain nominal features. Moreover the MODL
approach for grouping modalities (Boullé 2005) is a competitive method to find
groups on nominal features. The simplest summary for nominal features just keeps
counts—it requires low memory and processing time and is practicable if the
number of different values is low. Unfortunately the number of nominal values can
be large, for example: client ids, cookies, city names, etc. As we want to bound
memory we can only afford to focus on frequent values. This can be done using a
hash function: nominal values are hashed and put into a fixed number of buckets in
which classes counts are stored. In order to reduce errors several hashing functions
may be combined as proposed in the count-min sketch algorithm (Cormode and
Muthukrishnan 2005).

5.2 Dialogs Between Two Layers

A dialog between the two layers to control the number of tuples in the first layer
could be beneficial to share memory between different features summaries. In a
classification problem with many features, some of them may need a very fine
discretization and some may not need it. As the second layer is non parametric
and supervised it can inform the first layer if it needs more or less bins.
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5.3 Online Trees

The stream mining community often uses trees to build online and incrementally
classifiers. The most known ones are the Hoeffding trees proposed in VFDT
(Domingos and Hulten 2000). In those trees, leaves keep statistics on the data. A
leaf is transformed into a node using a split criterion (usually entropy or Gini index).
As a split is a definitive decision the Hoeffding bound is used to set the confidence
(ı) in the split. Another parameter (�) is used to break ties between two attributes
with similar criterion to avoid late splits.

Our two layers discretization can be used as summaries in the tree leaves.
Moreover the second layer of our discretization method (MODL method applied
on the first layer summary) gives cut points for a feature with a quality index. This
quality index allows selecting the feature on which to split and the cut points where
to split. If a feature is not considered as informative its index equals zero. The tree
can expend by splitting a leaf on the feature having the greatest non-null index as it
is sure that this feature is informative: the Hoeffding bound is not anymore needed.
With this MODL criterion there is no need to have the two previous parameters ı
and � to build online trees.

6 Conclusion

The first experiments validate that with large data sets and bounded memory, our
two layers discretization has a strong interest. Our approach uses order statistics
on both levels and can be set up to use a fixed memory size or to stay beyond a
given error. We used Greenwald and Khanna quantiles summary for the first layer
and MODL discretization for the second layer as they are known to be amongst
the most competitive methods to build quantiles summary and perform supervised
discretization. Classifiers assuming features independence can be easily built on the
summary as shown on the first experiment with a naive Bayes classifier. Some other
classifiers such as online trees can also take advantage of our method.
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Interpreting Error Measurement: A Case Study
Based on Rasch Tree Approach

Annalina Sarra, Lara Fontanella, Tonio Di Battista, and Riccardo Di Nisio

Abstract This paper describes the appropriateness of Differential Item Functioning
(DIF) analysis performed via mixed-effects Rasch models. Groups of subjects with
homogeneous Rasch item parameters are found automatically by a model-based
partitioning (Rasch tree model). The unifying framework offers the advantage of
including the terminal nodes of Rasch tree in the multilevel formulation of Rasch
models. In such a way we are able to handle different measurement issues. The
approach is illustrated with a cross-national survey on attitude towards female
stereotypes. Evidence of groups DIF was detected and presented as well as the
estimates of model parameters.

1 Introduction

The Rasch model is the simplest Item Response Theory (IRT) model, widely
used especially in social science. It is concerned with the measurement of a
latent construct referring to a person characteristic (such as attitude, ability, skill),
assessed indirectly by a group of items. It has been demonstrated that IRT models
can be regarded as mixed-effects models (see for example De Boeck 2008). The
multilevel formulation of IRT models constitutes an interesting way to carry out item
response data analysis, allowing to handle the measurement issues regarding the
latent variable and take into proper account error measurements related to limited
number of items, unreliability of the measurement instrument and the stochastic
nature of human response behaviour. In the measurement process, Differential Item
Functioning (DIF) has been long recognised as a potential source of bias. DIF is
the statistical term traditionally used to describe a dependence of item response
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and group membership after conditioning on the latent trait of interest. In this
respect, it is worth noting that an item might show DIF but not considered biased
if the difference exists because groups display actual differences in the underlying
latent construct measured by the item. In that case it is more convenient to speak
about item impact rather than item bias. A large number of statistical methods for
detecting DIF require post-hoc sample split analyses and involve the comparison of
parameter estimates between one group, labelled the reference group, and the other,
labelled focal group. Accordingly, only those groups that are explicitly proposed
by the researcher are tested for DIF. In this study we explore and illustrate how
DIF analysis can be integrated into Rasch-mixed effects models, in which both the
person and item parameters can be treated as random. The proposed approach is
adopted with regard to a questionnaire on attitude towards female stereotypes. More
specifically, we first employ a new methodology introduced by Strobl et al. (2010)
for detecting DIF in Rasch models. This procedure, termed Rasch tree (RT) method,
is based on a recursive partitioning of the sample and has the valuable advantage
over traditional methods that groups exhibiting DIF are found automatically, from
combination of person covariates, and statistical influence is also tested. As a
second step, the terminal nodes produced in the tree structured partition of the
covariate space of our sample, identifying groups of subjects with homogenous
Rasch item parameters, are considered in the random item formulation of mixed-
effects Rasch models. To enhance the recognition of female stereotype statements,
different mixed-effects Rasch models have been fitted and compared. The remainder
of the paper is organised as follows. Sections 2 and 3 briefly summary the underlying
statistical framework followed in this study: i.e. the Rasch tree approach and
the mixed-effects Rasch models, respectively. The reviewed methodology is then
applied in our research, aiming to investigate gender stereotypes, which is presented
in Sect. 4 along with the main results. Finally, conclusions are given in Sect. 5.

2 The Rasch Tree Approach

In this section we give some methodological details on the Rasch tree (RT)
approach. RT is a model-based partitioning (see Zeiles et al. 2008) aiming at iden-
tifying groups of subjects with homogenous Rasch item parameters. Instabilities in
the model parameters are found by using structural change tests (Zeiles and Hornik
2007). The RT approach verifies the null hypothesis that one-joint Rasch model can
properly hold for the full sample of subjects. In other terms, the null hypothesis
of parameter stability is tested against the alternative hypothesis of a structural
break. In order to identify DIF in the Rasch model the method produces a tree-
structured partition of the covariate space. The Rasch tree algorithm is essentially
a four steps procedure. In the first step a Rasch model is fitted to all subjects in
the current sample. The second step consists in assessing the stability of the Rasch
model with respect to each available covariate. If significant instability is detected,
the sample is splitted along the covariate with the strongest instability, leading to
the individuation of a cutpoint and to the estimation of two separate Rasch models.
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Splitting continues until a stop criterion is reached; that means there is no significant
DIF or the subsample is too small. A formal description of the statistical inference
framework of this procedure can be found in Strobl et al. (2010).

3 Mixed Effects Rasch Models

As known, the Rasch model provides a theoretical background to assess the
consistency between a latent trait of interest and the specific responses to a set
of items.

In order to include random effects, the classical formulation of Rasch models
can be extended in a number of ways, leading to the so-called mixed-effects
Rasch models. We deal with the Rasch model for binary responses. Let &pi D
�p C ˇi , where &pi is the logit of the probability of a 1-response, logŒP.Ypi D
1j�p; ˇi /=P.Ypi D 0j�p; ˇi /�, defined as the simple sum of the “ability” of person
(�p) and the “easiness” of item (ˇi ), and Ypi is the response of person p (p D
1; : : : ; P ) to item i (i D 1; : : : ; I ). Unlike the classic Rasch model, the difficulties
and abilities are not both fixed and unknown parameters. Given a completely crossed
design, i.e. each subject responds to all items, we consider mixed effect models with
crossed independent random effects for subjects and items (Baayen et al. 2008).
Although it is common practice in Item Response Theory (IRT) to consider items as
fixed and persons as random, De Boeck (2008) shows that random item parameters
make sense theoretically for two reasons. The first reason is that items can be
thought of as a sample drawn from the population of all possible items on the subject
matter; the second reason is the uncertainty about the item parameters. Depending
on whether the persons and the items are either treated as random or fixed, four
different kinds of Rasch models can be defined: (1) the fixed person-fixed items
Rasch model (FPFI Rasch), (2) the random person-fixed items Rasch model (RPFI
Rasch), (3) the fixed persons-random items Rasch model (FPRI Rasch) and (4) the
random person-random item Rasch model (RPRI Rasch) (De Boeck 2008).

Mixed effect modelling is a useful approach to carry out item response data
analysis as it allows to consider the Rasch parameters as randomly varying
parameters and accommodate nested structures found in the data (e.g. items nested
within dimensions). Besides, through mixed-effects Rasch models one is able to
handle all factors that potentially contribute to understanding the structure of the
data and retain respondents with invariant extreme response patterns.

4 Data and Empirical Results

This section examines the appropriateness of DIF analysis performed via mixed-
effects Rasch models for the measurement of female stereotypes. As it is well
known, stereotype is a crystallization of a collective imaginary on a group of
people, which is more or less susceptible to change over time and space and is
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assimilated through the socialization process, contributing to the construction of
both individual and group identity. Hence, stereotypes occur when individuals are
classified by others as having something in common because they are members of
a particular group or category of people. A stereotype is a cultural construct which
has no scientific basis and it be either positive or negative. The current research
deals with the recognition of the main female stereotypes around the world and
data arise from a cross-national survey carried out from July to August 2010. A
first analysis of these data is provided by Bernabei et al. (2010). The questionnaire
has been completed by a sample of 2002 respondents consisting in majority of
women (85%); the educational level is high for both gender, whereas age ranges
from 16 to 84 years with an average of 38 years. In this study, we focus on the
stereotypes related to two different dimensions: temperament and emotional sphere
and body and sexuality. Each dimension includes 8 statements. In the first dimension
we grouped the following items: “Women’s behaviour is more guided by their
emotions”, “Women tend to be more unstable emotionally”, “Women have to be
protected as they are the “weak sex”, “Women are more talkative even nagging”,
“Women are manipulative”, “Women are easily more jealous than men”, “Women
spend more money than men”, “Women are always late”. In the other dimension
we included statements containing beliefs about the body and sexuality sphere:
“Women have to take care of their personal hygiene more than men”, “Women
who don’t take care of themselves and their bodies are masculine”, “Women feel
less sexual pleasure than men”, “Women tend to have fewer sexual partners in their
lifetime”, “Women cannot imagine sex without love”, “Women are more affected by
cultural models imposed by the media”, “Women build their image and identity on
the basis of fashion more than men”, “The bi-sexuality in women is a more cultural
condition than in men”. Initial items, rated on a Likert scale, have been dichotomised
in agree and not agree. So, we assess the item responses with respect to some sample
covariates. The RT procedure offers the possibility to promptly generate a graph
(the Rasch tree) and helps with visualizing which groups are affected by DIF with
respect to which items. As displayed in Fig. 1, it is the combination of sex, age
and country of origin that determine which items differ according to the observed
person groups, whereas the variable education was not selecting for splitting. It is
worth noting that with standard approaches, this pattern could only be detected if the
interaction terms were explicitly included in the models or respective groups were
explicitly pre-specified. The results were obtained using the R package psychotree
(Zeiles et al. 2010).

Exploring the Rasch tree from the top to bottom we find different item parameters
for males and females. Within the group of males, the Rasch tree indicates DIF
in the variable country of origin, differentiating estimates of the item difficulty
(in our context item intensity) for males coming from Africa (AF) and Asia (AS)
from those of males belonging to the other continents (Europe (E), North-America
(NTA), South-America (SA) and Oceania (O)). Moreover, it appears that for the
female group the Rasch tree has a split in the variable country of origin as well
as in the covariate referring to the age, exhibiting DIF between females up to the
age of 23 and females over the age of 23. In this last group we observe a further
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Fig. 1 Rasch tree for female stereotypes. In the terminal nodes, estimates of the item difficulty are
displayed for each items

partition: significant instability of item parameter is detected in two subsamples.
One subsample is constituted by females coming from Africa (AF) and Asia (AS)
while in the other there are females coming from Europe (E), Oceania (O) and
South-America (SA). In each terminal node of the tree, the item parameter estimates
for the 16 items are displayed: the circle indicates stereotypes linked to temperament
and emotional sphere and the square those related to body and sexuality. In this
context the item parameter can be thought of as a crystallization of the stereotype
such that a larger value correspond to a lower degree of acceptance. From Fig. 1 we
notice that in general stereotypes are less crystallized for women. More specifically
the items showing particularly marked DIF, (highlighted by a large symbol in Fig. 1)
are: Women have to be protected as they are the “weak sex”, Women are always
late, Women cannot imagine sex without love, Women feel less sexual than men. It is
important to point out that we have also checked if the observed pattern of responses
to items conforms to the Rasch model expectations by means of Andersen’s LR-test
(Andersen 1973). The fit analysis results, not displayed here, revealed the feasibility
of the Rasch model for all nodes.

The complex interaction structure detected in the six terminal nodes of the Rasch
tree is embedded in the RPRI formulation of the mixed effect Rasch model. As
shown in Table 1, we specify 8 models that differ with respect to the inclusion
of item and/or person partitions as item or person property covariates (De Boeck
et al. 2011). The models have been estimated with lme4 package in R (Doran et al.
2007), using restricted maximum likelihood estimation. The simplest model (m0) is
the RPRI model with homoscedastic random effects for subjects, �p 
 N.0; �2� /,
and items, ˇi 
 N.0; �2ˇ/. Defining, in model m1, a different intercept for each
dimension (k D 1; 2) does not lead to a significant improvement of the goodness of
fit (see Table 1), and this is also true if we consider model m2 with heteroscedastic
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Table 1 RPRI Rasch models comparison

Model specification Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m0 &pi D �0 C �p C ˇi 3 17,011 17,035 �8502.5
m1 &pi D �k C �p C ˇi 4 17,013 17,045 �8502.3 0:3 1 0.560
m2 &pi D �k C �p C ˇik 6 17,015 17,063 �8501.7 1:3 2 0.524
m3 &pi D �j C �p C ˇi 8 16,941 17,005 �8462.4 78:6 2 < 2.2e�16
m5 &pi D �jk C �p C ˇi 14 16,828 16,940 �8400.0 124:9 6 < 2.2e�16
m4 &pi D �j C �pj C ˇi 28 16,966 17,190 �8455.1 0:0 14 1
m7 &pi D �jk C �p C ˇij 34 16,768 17,040 �8350.2 209:9 6 < 2.2e�16
m6 &pi D �jk C �pj C ˇik 36 16,862 17,149 �8395.0 0:0 2 1
m8 &pi D �jk C �pj C ˇij 54 16,801 17,232 �8346.4 97:2 18 7.15E�13

Table 2 Fixed effects for model m7

Body and sexuality Emotion and temperament
Node Estimate Std. Error z value Pr(> jzj) Estimate Std. Error z value Pr(> jzj)
3 �2.046 0.496 �4.123 3.74E�05 �2.965 0.498 �5.952 2.65E�09
5 �1.349 0.379 �3.557 3.76E�04 �1.054 0.377 �2.796 0.005
7 �1.472 0.446 �3.299 9.70E�04 �2.079 0.448 �4.644 3.42E�06
8 �2.183 0.492 �4.437 9.10E�06 �2.551 0.492 �5.181 2.21E�07
10 �1.108 0.382 �2.906 3.67E�03 �0.653 0.376 �1.736 0.083
11 �1.911 0.441 �4.334 1.46E�05 �1.570 0.439 �3.579 3.44E�04

item random effects, ˇi D .ˇi1; ˇi2/
0 
 N.0;˙ˇ/. The inclusion, in model m3,

of a different intercept for each of the 6 detected nodes (j D 1; : : : ; 6) leads
to a better fit with respect to the previous models, not improved if we consider
heteroscedastic person random effects, �p D .�p1; : : : ; �p6/

0 
 N.0;˙ � /, as in
m4. Given the interaction of person and item covariates, we can specify a different
intercept for each dimension in each node, assuming the same variance (m5) or
different variance (m6) for both items and persons. The specification of a different
intercept with respect to the person groups allow to consider a similar DIF for all
the items (m3, m4) or for the items belonging to the same dimension (m5, m6); in
addition we can assume item parameter heteroscedasticity depending on the node,
ˇi D .ˇi1; : : : ; ˇi6/

0 
 N.0;˙ ˇ/, as in m7 and m8. The inspection of goodness-
of-fit indexes (AIC, BIC and logLik values), listed in Table 1, suggests that we can
choose modelm7 for which we have the smallest AIC and also the BIC is low, while
the loglikelihood is the second highest.

For the selected model the fixed effect estimates are statistically significant for
all the levels of the interaction dimension-node (see results in Table 2).

Results in Table 2 can be inferred considering that the plus sign in &pi D
�jk C �p C ˇij implies that the �jk C ˇij should be interpreted as item easiness
instead of item difficulty. Accordingly, the smaller are the values of the estimates
the lower is the level of crystallization for the surveyed stereotypes. An interesting
consequence of treating Rasch parameters as random is that the variance component
and intraclass correlation can be determined. Table 3 displays the person variance
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Table 3 Random effects for model m7

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 1.37 1.17
Item NODO3 1.91 1.38

NODO5 0.81 0.90 0.94
NODO7 1.46 1.21 0.97 0.91
NODO8 1.90 1.38 0.98 0.98 0.97
NODO10 0.67 0.82 0.91 0.73 0.91 0.86
NODO11 1.40 1.18 0.95 0.91 0.84 0.93 0.83

component and the variance of the item parameters for each node. Furthermore the
intraclass correlation coefficients are shown.

Examining the group variance component we find out a greater variability mainly
in nodes 3 and 8. As for the correlation structure we notice that all the nodes are
highly associated with the other groups.

5 Concluding Remarks

The focus of this paper was to consider and illustrate how differential item analysis
can be performed via Rasch mixed-effects models. Building on idea put forward
in Strobl et al. (2010), we consider in this study an alternative methodology,
named Rasch tree, to detect DIF that does not require post-hoc split analysis. This
procedure has many attractive properties. Basically, it yields interpretable results of
DIF in a quick and straightforward fashion by means of a visual representation (the
Rasch-tree graph). Another notable feature of this approach is the natural treatment
of categorical and numeric covariates. The latter do not need to be discretized in
advance. In general, covariates which correspond to a significant change in the
model parameters and interactions between them are automatically selected in a
data-driven way, resulting in the terminal nodes of the Rasch tree graph. The
subsequent innovative step of the integrated framework considered in this paper
was to include the complex interaction structure detected in the terminal nodes of
RT in the random formulation of mixed-effects Rasch models. They are a rather
new approach in the domain of IRT. To assume the item difficulties are random
variables may seem controversial because in most IRT models they are taken to be
fixed, while the person parameters are regularly considered to be a random sample
from a population. Here, we referred to a so-called crossed random effect model,
defined by supposing that both item and person parameters are random effects. We
believe that defining the difficulty of the items as random is an efficient and realistic
way to model the variation in item difficulty. In addition, our formulation of these
models takes into account the possibility that items difficulties differ across groups,
previously identified by the RT approach. The appropriateness and usefulness of
the proposed approach is demonstrated in interpreting the results of a female
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stereotypes survey. Data, arising from a cross-national survey aimed at enhancing
the recognition of female stereotypes statements, have been analyzed by fitting
different Rasch-mixed effects models. The empirical findings lead to the selection
of RPRI model where a different intercept for each dimension in each node is
assumed as well as potential item parameter heteroskedasticity with respect groups
exhibiting DIF is accounted. The set of estimated parameters for that model includes
the coefficients for the fixed effects on the one hand and the standard deviations
and correlations for the random effects on the other hand. Previously, following
the different branches of the Rasch tree, we were able to identify groups of people
with certain characteristics affected by DIF and items displaying marked instability
across classes of persons. In sum, from the application of this unified framework to
stereotype data set, it may be concluded that this strategy is promising and useful
to solve various kinds of issues, related to the measurement process. A limitation
of our case study is worth noting. The application handles dichotomous response
data. However, transforming the initial polytomous data to binary responses, by
collapsing response categories to enforce dichotomous outcomes, leads to a loss of
information contained in the data. Future work will aim at expanding application of
the proposed approach for items with more than two response categories.
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Importance Sampling: A Variance Reduction
Method for Credit Risk Models

Gabriella Schoier and Federico Marsich

Abstract The problem of the asymmetric behaviour and fat tails of portfolios
of credit risky corporate assets such as bonds has become very important, not
only because of the impact of both defaults end migration from one rating
class to another. This paper discusses the use of different copulas for credit risk
management. Usual Monte Carlo (MC) techniques are compared with a variable
reduction method i.e. Importance Sampling (IS) in order to reduce the variability of
the estimators of the tails of the Profit & Loss distribution of a portfolio of bonds.
This provides speed up for computing economic capital in the rare event quantile of
the loss distribution that must be held in reserve by a lending institution for solvency.
An application to a simulated portfolio of bonds ends the paper.

1 Introduction

In recent years, along with an ever increasing number of financial products together
with the globalization and the financial environment, investors and financial organs
faced comparatively formerly an ever increasing risk associated with their asset
allocation or their investment strategies. Tail events that occur rarely but whose
occurrence results in catastrophic losses are increasingly important in managerial
decision making (Morgan 1997). Investors holding a portfolio of assets closely
monitor and control the value-at-risk (a specified tail-percentile of the loss distri-
bution) of their investment portfolio. Insurance companies hold huge reserves to
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protect against the possibility of rare but catastrophic losses. Different models have
been proposed to consider changes correlated across the portfolio, i.e. the possibility
of migration from one rating class to another and the default of each issuer.

In this paper we consider the structural model approach first proposed by Merton
(1974) the basic idea of which is that, over a single time horizon, the firm’s asset
returns, for a portfolio of corporate credits are drawn from a multivariate Gaussian
copula (Morokoff 2004). The distribution of equity asset returns are compared with
those obtained when sampling from a t-copula (Kole et al. 2007). As marginal
distributions we have considered the Gaussian, the Student-t and the generalized
hyperbolic. We introduce the generalized hyperbolic distribution as it describes well
both fat tails and skewness.

Moreover we introduce another joint distribution, the generalized hyperbolic,
which can be used to model the distribution of equity asset returns. We model both
the marginal and the joint distribution with the generalized hyperbolic.

In order to reduce variability of the estimators we use Importance Sampling
(Glasserman and Li 2005; Kole et al. 2007) in the Gaussian, Student-t and generalized
hyperbolic framework.

An application to a simulated portfolio of bonds ends the paper.

2 Credit Risk Portfolio Models

Events that can occur to a credit risky asset are t migration from one rating class
to another and the possibility of default. Migration implies a change in the bond’s
price, while default implies a loss of all, or a considerable part, of the invested
capital. Different approaches have been proposed to model the joint evolution
of these events across the portfolio. Changes in credit quality are defined as the
possibility of migration from one rating class to another or of default. Our starting
point is the structural model approach first proposed by Merton (1974). Merton’s
model is based on the idea of treating the default of an issuer using the Black
and Scholes model for options evaluation. In this case the fundamental stochastic
variable is the underlying asset value of the corporation. When the asset value of
a firm falls below a certain point derived from its outstanding liabilities it defaults.
The credit quality of the firm and its bonds and loans value increase as the distance
between the firm’s asset value and its default point increases. The underlying
stochastic process is assumed to follow a geometric Brownian motion.

In Merton’s model the change in the asset’s value is used to explain default-
non default events. In this case it is sufficient to consider only one limit threshold:
the default one. However, as our objective is to model not only the risk of default
but also that of migration, we have considered a more complex structure. Merton’s
model has been extended assuming that not only default, but also the issuer’s rating
is a function of the total value of its assets at the end of time horizon.
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Given the transition probabilities it is possible to evaluate the thresholds limits
of the asset value for the different rating classes. In practice the issuer’s asset values
are not observable, but one can demonstrate that a proxy variable the equity of
the issuers can be used (Hull 2006, 2009). A portfolio is composed of a great
number of bonds, so it is necessary to specify not only the marginal probability of
transition but also the joint structure by means of a correlation matrix. In practice it
is impossible to evaluate all possible correlations; a solution is given by considering
the correlations between a fixed number of equity indices (Morgan 1997). The
strength of the tie between an issuer and his index is given by the coefficient R2

evaluated for each issuer on the base of the linear regression between the historical
series of returns of the price of the equity and those of the indices.

The asset returns Zi for issuer i D 1; : : : ; N are calculated according to

Zi D Ri;jXj C .
q

1 	R2i;j /; "i i D 1; : : : ; N; j D 1; : : : ; n; (1)

where R2i;j is equal to the R2 of the linear regression between the returns of the i th
issuer and its referring index,Xj is the return of the j th index, "i is the noise factor
distributed according to a N.0; 1/ distribution.

For simplicity it is assumed that the Loss Given Default (LGD) values of
defaulted loans are independent and identically distributed according to a Beta
distribution. Moreover it is assumed that the random LGD values are independent
of the random asset returns. Finally, we assume that each issuer has only one bond
issued.

The last step in our modelling procedure is to sample the tails of the associated
multivariate distribution using Importance Sampling (Lemieux 2009). The choice
of an Importance Sampling distribution from which to sample is very difficult (Sak
et al. 2007; Sun and Hong 2010). A possible solution could consist of sampling
observations from a multivariate distribution with a wider correlation matrix. A way
to obtain this is to orthogonalise the covariance matrix of the asset returns and work
with the eigenvector decomposition (Golub and Van Loan 1996). The eigenvector
direction corresponding to the largest eigenvalue is exactly the single dimension that
has the largest impact on the portfolio.

Let P be the correlation matrix between the standardized asset returns, Q be the
orthogonal matrix whose columns are the orthonormal eigenvectors of P , and� be
the diagonal matrix of eigenvalues sorted such that �1 � �2 � : : : � �n � 0. Its
spectral decomposition can be represented as

P D Q�Q0; (2)

Let q1 be the first column of Q, corresponding to the largest eigenvalue. By
multiplying q1 by a scale factor & greater than 1 we can obtain QP , that is the
covariance matrix which results from scaling up the largest eigenvalue by the scale
factor &.
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In this orthogonal framework, we can scale up the variance in one coordinate
direction (corresponding to the largest eigenvalue) independently of the other
dimensions. The sampled scenarios will present an higher number of defaults with
respect to a classic Monte Carlo simulation.

The simulations run with Importance Sampling would have the same structure of
the Monte Carlo, except for the wider correlation matrix.

To obtain a point estimate of VaR at a fixed percentile (˛, usually 99%, 99.5%),
Importance Sampling weights are cumulated until the distribution of the percentile
estimator’s is achieved. The probability to have loss greater than VaR˛ is given by
ˇˇ D 1 	 ˛.

In the following we will define as �MC the standard error of the Monte Carlo
estimator while that of Importance Sampling will be defined as �IS.

If we are interested in interval estimates at a certain confidence level we can use
a normal approximation of the percentile estimator’s distribution.

Importance Sampling (Glasserman and Li 2005; Lemieux 2009) is used in the
Gaussian, Student-t and generalized hyperbolic framework. We consider a normal
copula with normal marginals and a Student-t copula with Student-t and hyperbolic
marginals. We introduce the generalized hyperbolic distribution as it describes well
both fat tails and skewness.

We compared the results using a Gaussian copula with those obtained by
sampling from a t-copula and hyperbolic copula. We do not consider Archimedean
Gumbel copulas as goodness-of-fit-tests applied by Kole et al. (2007) demonstrate
that a t-copula is preferred. As marginal distributions we used the Gaussian, the
Student-t and the generalized hyperbolic.

3 The Algorithm and the Application

3.1 The Algorithm

Given the historical series of equities and indices the Importance Sampling Credit
Portfolio Model (ISCPM) Algorithm comprises the following steps:

THE ISCPM Algorithm
Step 1. Evaluation of the correlation matrix between indices.
Step 2. Stress the correlation matrix using eigenvalue decomposition.
Step 3. Evaluation of the R square coefficients between indices and equities.
Step 4. Monte Carlo Simulation via Importance Sampling to obtain N one
year issuers return scenarios (each scenario having n issuers) and N weights.
Simulations of indices returns by using the stressed correlation matrix evaluated
in step 2.
Step 5. Issuer rating calculation using the given transition matrices.
Step 6. Evaluation of P & L distribution.
Step 7. the VaR can be evaluated by using the Importance Sampling weights.



Importance Sampling: A Variance Reduction Method for Credit Risk Models 337

Fig. 1 Scatter plot of the indices

Remark 1. The ISCPM algorithm differs from the structure of a classical Monte
Carlo Credit Portfolio Model Algorithm (MCCPM) in steps 4 and 7.

Remark 2. We used R language as our working environment and in particular some
relevant R functions which have been implemented recently in order to work with
the univariate Generalized Hyperbolic distribution and its special cases. A random
generator from the Rmetrics package f Basics is used for generalized inverse
Gaussian distributed random variates.

3.2 The Application

In order to test our ISCPM algorithm we consider a portfolio formed by three indices
and 35 bonds with nominal value equal to one hundred dollars. Scatter plot of the
indices returns are reported in Fig. 1.

The input data of the algorithm presented in the previous subsection are the
prices of the bonds in all possible rating classes at the end of the temporal horizon,
the matrix of correlation between the indices, the R-square of each issuer with
the referred index, the bond’s prices at the beginning and at the end (in all the
possible rating classes) of the considered period, the number of simulations N ,
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Table 1 VaR estimators efficiency

N &
�2MC

�2IS

50,000 2 9.67
50,000 2 3.92

Fig. 2 Bivariate normal, Student-t and hyperbolic bivariate distributions

the confidence level .99:5%/ and the transition matrix from which the threshold
for the standardized asset returns are evaluated.

Both the ISCPM and the MCCPM algorithm have been implemented with the
softwareR; the results show that the same accuracy is obtained with ten times fewer
simulations using the Gaussian copula. Even if we use a t-copula the same accuracy
is obtained with less simulations but, obviously, it depends on d (the degrees of
freedom) in this paper we consider the proposal by Sak et al. (2007) and take d D 5
(Table 1), where & is a scale parameter.

At this point we considered the performance obtained by using Gaussian,
Student-t and hyperbolic marginal distribution function, a graphical representation
of which can be seen in Fig. 2



Importance Sampling: A Variance Reduction Method for Credit Risk Models 339

Table 2 Efficiency of VaR estimators with different marginal
distributions

marginal distribution 99:5 estimate
�2MC

�2IS

normal �7.97 5.48
Student-t �8.96 4.96
hyperbolic �12.16 3.02

Fig. 3 Monte Carlo vs Importance Sampling Normal copula

As one can see from Table 2 generalized hyperbolic function approximate better
than the Gaussian and the Student-t distributions the kernel density estimation of the
distributions of the returns. The efficiency is better in the normal case, but a good
improvement is obtained also for the other two models. We have to note that the
normal VaR 99.5% is lower in absolute value than the VaR obtained from the other
two models. This is due to the fact that the normal distribution does not present fat
tails and therefore the risk factors are not well described. This fact may cause the
underestimation of the portfolio’s risk. The other two distributions describe better
the risk leading to higher stress values.

We evaluate the VaR quantiles for this portfolio both with the traditional
Monte Carlo Credit Portfolio Model algorithm (MCCPM) and the Importance
Sampling Credit Portfolio Model algorithm (ISCPM) comparing the estimators’
performances. To do this three copulas are considered: the Gaussian copula, the
t-copula and the generalized hyperbolic copula with different marginals distribu-
tions (i.e. Student-t and hyperbolic).

In order to analyze the convergence of both estimators with increasing numbers
of simulations we estimate the percentage VaR.
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Fig. 4 Monte Carlo vs Importance Sampling Student-t copula

Fig. 5 MC vs Importance Sampling generalized hyperbolic copula

In Figs. 3, 4 and 5 the results are shown for the case of the Gaussian, Student-t
and the hyperbolic copulas.

In order to check the behaviour of the model we performed a cross-validation
analysis with a time frame that ranges from 01/01/2001 to 31/12/2007 instead that
from the full (01/01/2001—07/20/2011)data set. This has been done to test the
behaviour of the VaR before and after the 2008 crisis. The results are in line with our
expectations: all the three VaRs are smaller before the crisis (see Table 2) than after
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(normal	6.98, Student-t	8.09, hyperbolic	13.64). This effect is due to the higher
volatility and the increasing correlation levels in the more recent period. With higher
level of correlation the (positive and) negative returns tend to occur at the same time,
creating a higher number of defaults than in a non-stressed correlation period. This
behaviour shows the sensitivity of the model with respect to the market situation: a
feature which is highly desirable in some practical applications.

4 Conclusions

In this paper we considered the structural model approach first proposed by Merton
(1974), the basic idea of which is that, over a single time horizon, the firm’s
asset returns, for a portfolio of corporate credits, are drawn from a multivariate
Gaussian copula. The results are compared with those obtained when sampling from
a t-copula (Kole et al. 2007).

In order to reduce the variability of the estimators we use Importance Sam-
pling (Glasserman and Li 2005; Kole et al. 2007) for the Gaussian and Student-t
with generalized hyperbolic marginal distributions.

We do not consider Archimedean Gumbel copulas as goodness-of-fit-tests
applied by Kole et al. (2007) demonstrate that a t-copula is preferred. As marginal
distributions we have considered the gaussian, the Student-t and the generalized
hyperbolic. We introduce the generalized hyperbolic distribution as, in this context,
it describes well both fat tails and skewness.

The present an application to a simulated portfolio of bonds. The results show the
idea that the Student-t with generalized hyperbolic marginals model is more flexible
than the classical gaussian copula. Moreover, by means of a Student-t copula, the
risk can be described better because the tails are sampled more accurately.

We have successfully applied Importance Sampling to normal, Student-t and
generalized hyperbolic copulas. Importance Sampling can reduce considerably the
computational time needed to perform the calculations with Monte Carlo methods.
We have seen that the efficiency for the t-copula and the hyperbolic copula is less
than that in the gaussian framework. Despite this fact, Importance Sampling can
reduce by half the computation time.
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A MCMC Approach for Learning the Structure
of Gaussian Acyclic Directed Mixed Graphs

Ricardo Silva

Abstract Graphical models are widely used to encode conditional independence
constraints and causal assumptions, the directed acyclic graph (DAG) being one
of the most common families of models. However, DAGs are not closed under
marginalization: that is, if a distribution is Markov with respect to a DAG,
several of its marginals might not be representable with another DAG unless one
discards some of the structural independencies. Acyclic directed mixed graphs
(ADMGs) generalize DAGs so that closure under marginalization is possible. In a
previous work, we showed how to perform Bayesian inference to infer the posterior
distribution of the parameters of a given Gaussian ADMG model, where the graph
is fixed. In this paper, we extend this procedure to allow for priors over graph
structures.

1 Acyclic Directed Mixed Graph Models

Directed acyclic graphs (DAGs) provide a practical language to encode conditional
independence constraints (see, e.g., Lauritzen 1996). However, such a family is
not closed under marginalization. As an illustration of this concept, consider the
following DAG:

Y1 ! Y2  X ! Y3  Y4

This model entails several conditional independencies. For instance, it encodes
constraints such as Y2 ?? Y4, as well as Y2 6?? Y4 j Y3 and Y2 ?? Y4 j fY3;Xg.
Directed graphical models are non-monotonic independence models, in the sense
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that conditioning on extra variables can destroy and re-create independencies, as the
sequence f;; fY3g; fY3;Xgg has demonstrated.

If X is a latent variable which we are not interested in estimating, there
might be no need to model explicitly its relationship to the observed variables
fY1; Y2; Y3; Y4g—a task which would require extra and perhaps undesirable
assumptions.

However, marginalizing X results in a model that cannot be represented as a
DAG structure without removing some of the known independence constraints.
Since any constraint that conditions on X has to be dropped in the marginal for
fY1; Y2; Y3; Y4g (for instance, Y2 ?? Y4 j fY3;Xg), we are forced to include extra
edges in the DAG representation of the remaining variables. One possibility is
fY1 ! Y2  Y3  Y4; Y4 ! Y2g, where the extra edge Y4 ! Y2 is necessary
to avoid constraints that we know should not hold, such as Y2 ?? Y4 j Y3. However,
with that we lose the power to express known constraints such as Y2 ?? Y4.

Acyclic directed mixed graphs (ADMGs) were introduced in order to provide
independence models that result from marginalizing a DAG. ADMGs are mixed in
the sense they contain more than one type of edge. In this case, bi-directed edges are
also present. They are acyclic in the sense that there is no directed cycle composed
of directed edges only. In principle, it is possible for two vertices to be linked by
both a directed and a bi-directed edge. Moreover, let sp.i/ denote the “spouses” of
Yi in the graph (i.e., those Yj such that Yi $ Yj exists) and define nsp.i/ to be the
non-spouses (Yi is neither a spouse nor a non-spouse of itself).

In our example, the corresponding ADMG could be

Y1 ! Y2 $ Y3  Y4

Independences can be read off an ADMG using a criterion analogous to
d-separation. More than one Markov equivalent ADMG can exist as the result
of marginalizing a DAG (or marginalizing another ADMG). Moreover, other types
of (non-independence) constraints can also result from an ADMG formulation if one
allows two edges between two vertices. A detailed account of such independence
models and a Gaussian parameterization are described at length by Richardson
(2003), Richardson and Spirtes (2002). Generalizations are discussed by Sadeghi
and Lauritzen (2012). An algorithm for maximum likelihood estimation in Gaussian
ADMGs was introduced by Drton and Richardson (2004). A Bayesian method
for estimating parameters of Gaussian ADMGs was introduced by Silva and
Ghahramani (2009). In this paper, we extend Silva and Ghahramani (2009) by
allowing the ADMG structure to be estimated from data, besides the parameters.
Section 2 reviews the Bayesian formulation of the problem while Sect. 3 describes
a sampler for inferring structure. A simple demonstration is given in Sect. 4.
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2 A Review of the Gaussian Parametrization and Priors

Given a ADMG G and a p-dimensional distribution P , each random variable
in the distribution corresponds to a vertex in the graph. Let Yi be a vertex with
parents YiŒ1�; YiŒ2�; : : : ; YiŒMi �, 1 � i � p, 1 � i Œj � � p, 1 � j � Mi .
We define a set of parameters f�ijg according to the regression equation Yi D
PMi

jD1 �ijYiŒj �C �i , where each error term �i is distributed as a zero mean Gaussian.
Therefore, given the covariance matrix V of the error terms, we have a fully specified
zero-mean Gaussian distribution. The parameterization of V is given by a sparse
positive definite matrix: if there is no bi-directed edge Yi $ Yj , then we define
.V/ij � vij � 0. The remaining entries are free parameters within the space of
(sparse) positive definite matrices. Priors for such models were described by Silva
and Ghahramani (2009). Priors for each �ij are defined as independent zero-mean
Gaussians, which in our experiments were given a prior variance of 3. The prior for
V is given by

�G .V/ / jVj�.ıC2p/=2 exp

�

	1
2

tr.V�1U/
�

(1)

for V 2 MC.G /, the cone of positive definite matrices where vij � 0 if there is no
edge Yi $ Yj in G . This is called a G -inverse Wishart prior. In general, there is no
closed-form expression for the normalizing constant of this density function. Draws
from the posterior distribution for parameters can be generated by a Gibbs sampler
scheme as introduced by Silva and Ghahramani (2009).

3 A Sampler for Bi-directed Structures

In this section we consider the case where a given p-dimensional observed vector
Y is generated according to a Gaussian ADMG model without directed edges. In
this special case, the corresponding graph is called a bi-directed graph. That is,
Y follows a zero-mean multivariate Gaussian with sparse covariance matrix V.
Conditional on a bi-directed graph G , V is given the G -inverse Wishart prior (1).
For each pair of variables .Yi ; Yj /, i < j , we define a Bernoulli random variable
zij, where zij D 1 if and only if there is an edge Yi $ Yj in G . Vector z denotes
the vector obtained by stacking all zij variables. The prior for G is defined as the
product of priors for each zij, i < j (zij is also defined for i > j and equal to zji),
where p.zij D 1/ � &i&j , with each &i 
 Uniform.0; 1/ a priori.

For a general ADMG with directed and bi-directed edges, directed edge coeffi-
cients can be sampled conditioned on V using a variety of off-the-shelf methods
(e.g., using spike-and-slab priors corresponding to parameters associated with
directed edges). Conditioned on edge coefficients f�ijg, the joint residual vector
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given by entries Yi 	PMi

jD1 �ijYiŒj � follows a Gaussian bi-directed graph model,
where sampling requires novel methods. Therefore, for simplicity of exposition,
we describe only the sampler for the bi-directed structure. We present an (approx-
imate) Gibbs sampler to generate posterior samples for z given a dataset D D
fY.1/;Y.2/; : : : ;Y.N /g.

Let Vni;ni the submatrix of V obtained by dropping its i -th column and row. Let
znij be the set of edge indicator variables z without indicator zij (or zji). The sampler
iterates over each vertex Yi and performs the following:

1. For each j 2 f1; 2; : : : ; pgnfig, we sample zij given Vni;ni and znij.
2. We sample the i -th row/column entries of V, fvi1; vi2; : : : ; vipg given Vni;ni and z.

The second step above is parameter sampling for sparse covariance matrices,
described in detail by Silva and Ghahramani (2009). In the remainder of this section,
we focus on the step of structure sampling. The conditional distribution for zij is
given by

p.zij j Vni;ni ; znij;D/ / p.D j Vni;ni ; z/ 
 p.Vni;ni j z/ 
 p.zij j znij/ (2)

One difficulty is introduced by the factor p.Vni;ni j z/, which is the marginal
of a G -inverse Wishart and where in general p.Vni;ni j znij; zij D 1/ ¤
p.Vni;ni j znij; zij D 0/. Computing this factor is expensive. However, in 1,000
preliminary runs with p D 10, ı D 1 and U as the identity matrix, we found that
errors introduced by the approximation

p.Vni;ni j znij; zij D 1/ � p.Vni;ni j znij; zij D 0/ (3)

are minimal. No convergence problems for the Markov chains could be detected
either. We adopt this approximation due to the large computational savings it brings,
and as such the factor p.Vni;ni j z/ will be dropped without further consideration.

The first factor in (2) can be rewritten by completing and integrating away the
remaining non-zero entries of V, which we denote here by Vi �:

p.D j Vni;ni ; z/ D
Z N
Y

dD1
p.Y.d/ j V/p.Vi � j Vni;ni ; z/

Y

j2E.z;i /
dvij (4)

where E.z; i / is the set of indices for the spouses of Yi in G (as given by z),
including Yi itself. By definition, vij D 0 if Yj is not a spouse of Yi in G .

In order to solve this integral, we appeal to some of the main results of Silva and
Ghahramani (2009). Let Bi be a 1
 .p	1/ vector and �i a positive scalar such that

Vi;ni D BiVni;ni ; vii D �i CBiVni;niBT
i (5)



A MCMC Approach for Learning the Structure of Gaussian Acyclic Directed . . . 347

where Vi;ni is the i -th row of V after removing entry vii. We define Bsp.i/ and Bnsp.i/

to be the subvectors of Bi that match the corresponding rows of Vni;ni . The “non-
spouse” entries are not free parameters when considering the structural zeroes of V.

By our definition of Bi , we have that BiVni;nsp.i/ gives the covariance between
Yi and its non-spouses (where Vni;nsp.i/ is the corresponding submatrix of V). By
assumption these covariances are zero, that is BiVni;nsp.i/ D 0. It follows that

Bsp.i/Vsp.i/;nsp.i/ CBnsp.i/Vnsp.i/;nsp.i/ D 0) Bnsp.i/ D 	Bsp.i/Vsp.i/;nsp.i/V
�1
nsp.i/;nsp.i/

(6)

As in the unconstrained case, the mapping between the non-zero entries of Vi �
and fBsp.i/; �ig is one-to-one. Following Silva and Ghahramani (2009), conditional
density p.Vi � j Vni;niz/ can be rewritten as:

p.Vi � j Vni;ni ; z/ D pB.Bsp.i/ j �i ;Vni;ni I
B; �iKB/p�i .�i j Vni;ni I˛i ; ˇi / (7)

where pB.�I
B; �iKB/ is a Gaussian density function with mean 
B and covari-
ance matrix �iKB, and function p�i .�I˛i ; ˇi / is an inverse gamma density func-
tion with parameters ˛i and ˇi . Parameters f
B;KB; ˛i ; ˇi g are described in
the appendix. Moreover, as a function of fzij;Bsp.i/; �i ;Vni;ni g, we can rewrite
p.Y.d/ j V/ as:

p.Y.d/ j V/ / ��1=2i exp

�

	 1

2�i

	

Y
.d/
i 	Bsp.i/H

.d/

sp.i/


2
�

(8)

where H.d/

sp.i/ are the residuals of the regression of the spouses of Yi on its non-
spouses for datapoint d , as given by Vni;ni . That is

H.d/

sp.i/ � Y.d/

sp.i/ 	 Vsp.i/;nsp.i/V�1nsp.i/;nsp.i/Y
.d/

nsp.i/ (9)

Combining (7) and (8) allows us to rewrite (4) as

p.D j Vni;ni ; z/ / jKBj� 12 jTj� 12 ˇ
˛i
i

� .˛i /

� .˛0i /
ˇ0i
˛0
i

(10)

where fT; ˛0i ; ˇ0i g are defined in the Appendix. Every term above depends on the
value of zij. Finally, p.zij D 1 j Vni;ni ; znij;D/ / p.D j Vni;ni ; znij; zij D 1/&i&j and
p.zij D 0 j Vni;ni ; znij;D/ / p.D j Vni;ni ; znij; zij D 0/.1 	 &i&j /.

After resampling zij for all 1 � j � p; j ¤ i , we resample the corresponding
non-zero covariances, as described at the beginning of this section, and iterate,
alternating with steps to sample latent variables, regression coefficients and hyper-
parameters &i as necessary.
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4 Illustration: Learning Measurement Error Structure

One application of the methodology is learning the structure of measurement error
for a latent variable model. Consider, for illustration purposes, the DAG in Fig. 1.
Assume the goal is to learn from observed measurements Y1; Y2; : : : ; Y8 what
values the corresponding latent variables X1 and X2 should take (more precisely,
to calculate functionals of the conditional distribution of fX1;X2g given Y). Other
sources of variability explain the marginal distribution of Y, but they are not of
interest. In this example,X3 andX4 are the spurious sources. Not including them in
the model introduces bias. Sometimes background knowledge is useful to provide
which observed variable measures which target latent variable (e.g., Y1 should be a
child of X1 but not of X2). The literature in structural equation models and factor
analysis (Bollen 1989; Bartholomew et al. 2011) provides some examples where
observed variables are designed so that latent concepts of interest are measured (up
to some measurement error). Background knowledge about other hidden common
causes of the observed variables is less clear, though.

In this section, we provide a simple illustration on how to combine background
knowledge about measurement with an adaptive methods that generates extra
conditional dependencies among observed variables. Consider a more complex
synthetic model given by a latent variable ADMG with four latent variables and 12
observed variables. Each observed variable has a single latent parent: the first three
have X1 as a common parent, the next three have X2, and so on. The covariance
matrix of the latent variables was sampled from an inverse Wishart distribution.
Bi-directed edges among indicators were generated randomly with probability 0.2.
To ensure identifiability, we pick 2 out the each 3 children of each latent variable and
enforce that no bi-directed edges should exist within this set of 8 indicators. More
flexible combinations can be enforced in the future using the results of Grzebyk
et al. (2004).

The goal is: given knowledge about which directed edges exist and do not
exist, learn the bi-directed structure. The algorithm in the previous section is used
to sample error covariance matrices among observed variables (non-zero error
covariances between a latent variable and an observed variable are prohibited for
simplicity, and the covariance matrix among latent variables has no independence
constraints). This is done as part of a Gibbs sampling procedure where the values
of the latent variables are also sampled so that the procedure in Sect. 3 can be used
without modification as if all variables were observed.

Figure 2 summarizes the analysis of the error covariance matrix and its
corresponding bi-directed structure using a sample size of 2000 (and a Markov
chain with 5,000 iterations). A bi-directed structure estimate is generated using the
posterior samples. In this case, instead of using the most common structure as the
estimator, we use a thresholding mechanism. Edges Yi $ Yj such that the posterior
expected value of the corresponding zij is greater than 0.5 are kept, while the others
are estimated to be non-existent. A thresholding estimator for the structure is a
practical alternative to choosing the most probable graph: a difficult task for Markov
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Y1 Y2 Y3 Y4 Y6 Y7 Y8

1X X 2

Y5

4XX3

Y1 Y2 Y3 Y4 Y6 Y7 Y8

1X X2

5Y

Fig. 1 In the left, a model where latent variables X3 andX4 provide an extra source of dependence
for some of the observed variables that is not accounted by the target latent variables X1 and X2.
In the right, a graphical representation of the marginal dependencies after marginalizing away some
(X3 and X4) but not all of the latent variables
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Fig. 2 In the left, the estimated error correlation matrix as given by the expected value of the
marginal (hence, not sparse) posterior distribution of the rescaled error covariance V. Black dots
mean correlation of�1, white dots mean correlation of 1. In the right, the estimator of the structure
(edge appears if its posterior probability is greater than 0.5). The procedure added two spurious
edges, but the corresponding estimated correlations are still close to zero

chain Monte Carlo in discrete structures. An analysis of thresholding mechanisms is
provided in other contexts by Barbieri and Berger (2004) and Carvalho and Polson
(2010). However, since the estimated graph might not have occurred at any point
during sampling, further parameter sampling conditioned on this graph will be
necessary in order to obtain as estimator for the covariance matrix with structural
zeroes matching the missing edges.

We also found that the choice of prior p.zij D 1/ � &i&j to be particularly
important. An alternative prior p.zij D 1/ D 0:5 resulted in graphs with
considerably more edges than the true one. A more extended discussion on how
to enforce sparsity by priors over graphical structures is presented by Jones et al.
(2005). An important line of future work will consist on designing and evaluating
priors for mixed graph structures.

Appendix

We describe the parameters referred to in the sampler of Sect. 3. The full derivation
is based on previous results described by Silva and Ghahramani (2009). Let HH be

the statistic
Pd

nD1 H.d/

sp.i/H
.d/

sp.i/

T
. Likewise, let YH � Pd

nD1 Y
.d/
i H.d/

sp.i/ and YY �
Pd

nD1 Y
.d/
i

2
. Recall that the hyperparameters for the G -inverse Wishart are ı and
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U, as given by Eq. (1) and as such we are computing a “conditional normalizing
constant” for the posterior of V integrating over only one of the row/columns of V.

First, let

Ai � Vsp.i/;nsp.i/V�1nsp.i/;nsp.i/

Mi � .Uni;ni /�1Uni;i
mi � .Uss 	AiUns/Msp.i/ C .Usn 	AiUnn/Mnsp.i/

K�1B � Uss 	AiUns 	 UsnAT
i CAiUnnAT

i


B � KBmi

(11)

where

�

Uss Usn

Uns Unn

�

�
�

Usp.i/;sp.i/ Usp.i/;nsp.i/

Unsp.i/;sp.i/ Unsp.i/;nsp.i/

�

(12)

Moreover, let

Ui � MT
i Uni;niMi 	mT

i Kimi

uii:ni � Uii 	 Ui;ni .Uni;ni /�1Uni;i

˛i � .ı C p 	 1C #nsp.i// =2
ˇi �

�

uii:ni CUi

�

=2

T � K�1B CHH
q � YHCK�1B 
B

(13)

where #nsp.i/ is the number of non-spouses of Yi (i.e., .p 	 1/	Pp
jD1 zij).

Finally,

˛0i �
N

2
C ˛i ;

ˇ0i �
YYC 
TBK�1B 
B 	 qTT�1q

2
C ˇi

(14)

Notice that each calculation of Ai (and related products) takes O.p3/ steps
(assuming the number of non-spouses is O.p/ and the number of spouses is O.1/,
which will be the case in sparse graphs). For each vertex Yi , an iteration could take
O.p4/ steps, and a full sweep would take prohibitive O.p5/ steps. In order to scale
this procedure up, some tricks can be employed. For instance, when iterating over
each candidate spouse for a fixed Yi , the number of spouses increases or decreases
by 1: this means fast matrix update schemes can be implemented to obtain a new
Ai from its current value. However, even in this case the cost would still be O.p4/.
More speed-ups follow from solving for Vsp.i/;nsp.i/V�1nsp.i/;nsp.i/ using sparse matrix

representations, which should cost less than O.p3/ (but for small to moderate p,
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sparse matrix inversion might be slower than dense matrix inversion). Moreover, one
might not try to evaluate all pairs Yi $ Yj if some pre-screening is done by looking
only at pairs where the magnitude of corresponding correlation sampled in the last
step lies within some interval.
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Symbolic Cluster Representations for SVM
in Credit Client Classification Tasks

Ralf Stecking and Klaus B. Schebesch

Abstract Credit client scoring on medium sized data sets can be accomplished by
means of Support Vector Machines (SVM), a powerful and robust machine learning
method. However, real life credit client data sets are usually huge, containing up
to hundred thousands of records, with good credit clients vastly outnumbering
the defaulting ones. Such data pose severe computational barriers for SVM and
other kernel methods, especially if all pairwise data point similarities are requested.
Hence, methods which avoid extensive training on the complete data are in high
demand. A possible solution may be a combined cluster and classification approach.
Computationally efficient clustering can compress information from the large data
set in a robust way, especially in conjunction with a symbolic cluster representation.
Credit client data clustered with this procedure will be used in order to estimate
classification models.

1 Introduction

Clustering the training data to deal with large and often imbalanced data has
been examined several times. Appropriate cluster procedures include K-means
(Japkowicz 2002), Kernel K-means (Yuan et al. 2006), Micro Cluster Trees (Wang
et al. 2008; Yu et al. 2003), Rocchio Score based clustering (Shih et al. 2003) and
constrained clustering (Evgeniou and Pontil 2002). The large original data set then
usually is replaced by cluster representatives and given to a training algorithm.
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Different aspects of combining clustering with SVM are treated in the more
recent literature: Li et al. (2007) introduce a Support Cluster Machine (SCM)
as a general extension of the SVM with the radial basis function (RBF) kernel,
where cluster size and cluster covariance information is incorporated into the kernel
function. Evgeniou and Pontil (2002) propose a special clustering algorithm for
binary class data, that tends to produce large clusters of training examples which
are far away from the boundary between the two classes and small clusters near
the boundary. Yuan et al. (2006) concentrate on large imbalanced data sets. They
partition the examples from the bigger negative class into disjoint clusters and train
an initial SVM with RBF kernel using positive examples and cluster representatives
of the negative examples. Yu et al. (2003) construct two micro-cluster trees from
positive and negative training examples respectively and train a linear SVM on the
centroids of the root nodes. Subsequently, training examples near the class boundary
are identified and split up into finer levels using the tree structure. Wang et al. (2008)
generalize this approach for solving nonlinear classification problems. The main
results of these former approaches are .i/ combining clustering with SVM can be
used for very large data sets with up to millions of training examples, .ii/ they lead
to reduced training time and .iii/ the classification results for all these techniques are
comparable but usually slightly worse than for models that, if possible, are trained
on the full data set.

While various clustering procedures have been examined in the past, much
less is known about the right cluster representations. The most common way
is to use cluster centers, a practice that will become inappropriate as soon as
categorical variables are concerned. Moreover, mean values in general seem to
be too limited to adequately express characteristics of quantitative variables with
special distributions.

The outline of this paper is as follows: in Sect. 2 we describe our credit client data
set, in Sect. 3 the symbolic representation of the data clusters. Section 4 details the
classification method we use. In Sect. 5 we discuss the experimental setup including
model validation, followed by a presentation of the results of our work in Sect. 6.
Finally, we present our conclusions in Sect. 7.

2 Credit Client Data Set Description

The data set used consists of 139,951 clients for a building and loan credit. There
are twelve variables per client of which eight are categorical (with two up to five
categories) and four are quantitative. Due to binary coding of categorical variables
each single credit client is represented by a 25-dimensional input pattern. Input
variables include personal attributes like client’s profession, loan related attributes
like repayment rate and object related attributes like house type. The default rate
within one year is 2:6% (3,692 out of 139,951). Imbalanced data sets usually call
for some special treatment like under- or oversampling, one class learning, cost-
sensitive learning, weighting, boosting and many more (Weiss 2004). In this work,
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an alternative way of dealing with large and imbalanced data sets will be shown:
First, the data set is divided into “good” and “bad” credit clients. Subsequently,
unsupervised k-means clustering (MacQueen 1967) is used, partitioning the large
data set into equal numbers of clusters from “good” and “bad” classes respectively,
while preserving the class labels. The advantage of a preprocessing type cluster
analysis is massive down-sizing of the large data set of N cases into a much smaller
set of n � N clusters. These cluster solutions may include a weighting scheme,
e.g. using a balanced number of “good” and “bad” credit client clusters.

Information from data clusters are organized in the following way: For each of
the labeled clusters the relative frequencies of all outcomes per categorical variable
are recorded. Quantitative variables are divided into four equally sized intervals,
with quartiles of the full variable range as interval borders. Relative frequencies for
these intervals are also recorded. A data cluster finally is represented by 43 inputs
between zero and one.

3 Symbolic Representation of Data Clusters

In contrast to “classical” data analysis where elements are individuals with single
variable outcomes (“first degree objects”), in symbolic data analysis elements,
respectively objects in general, are classes of individuals or categories of variables
that usually will be described by more than one outcome per variable (“second
degree objects”) (Bock and Diday 2000). Clusters of credit clients can be seen as
such symbolic objects with e.g. an interval representation of the amount of credit
that was given to the cluster members. However, a special data description is needed
to represent the variable outcomes of a symbolic object. A complete overview of
symbolic variable types can be found in Billard and Diday (2006). In the present
work the clusters (the symbolic objects) are described by modal variables where
categories or intervals (of categorical or quantitative) variables appear with a given
probability. Each symbolic variable is represented by a vector of its outcomes and
the respective probabilities, e.g. Xli D f&i1; pi1I : : : I &is; pisg where outcome &ik

(of cluster i relating to variable Xl with k D 1; : : : ; s outcomes per variable
and l D 1; : : : ; m as the number of variables) is given with a probability pik

and
Ps

kD1 pik D 1. Outcomes &ik may either be categories or (non-overlapping)
intervals. Therefore, categorical as well as quantitative variables are represented by
a vector of standardized values between zero and one.

Distances between two clusters, that are coded as symbolic objects, are computed
over all l D 1; : : : ; m symbolic variables. The squared Euclidian distance between
two cluster u and v then reads (Billard and Diday 2006)

d2uv D
1

m

m
X

lD1

s
X

kD1
wl
.pukl 	 pvkl/

2

Pn
iD1 pikl
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withm as the number of variables, s as the number of categories and n as the number
of clusters. Within distance d2uv the squared sums of deviations are weighted by
the sums of probabilities per category. The distance function may also include a
weighting scheme fwl > 0g for the set of l D 1; : : : ; m variables.

4 Classification Methods Used

The first step in establishing our classification method is to partition the large data
set of N credit clients into a much smaller set of n clusters. We use clustering
in order to find a shorter (compressed) description of the original training set and
not in order to discover self contained clusters structures in the data, hence we do
not pursue the standard goal of unsupervised clustering. For simplicity, we also
stick to non-overlapping clusterings. A clustering procedure, which solves such a
problem in the sense of grouping similar points into non-overlapping clusters and
which does not require the computation of all mutual client distances is the k-means
algorithm (MacQueen 1967), readily available in many popular statistical computer
packages like for instance R-Cran and SPSS.

Subsequently, we are given a set of n � N training examples fXi; yi g,
i D 1; : : : ; n, with Xi D fX1i ; : : : ; Xmig as the symbolic description of the m
input variables for each cluster i and yi as the associated labels yi 2 f	1; 1g for
“good” and “bad” credit client cluster, respectively. A classification model s.x/ now
predicts the label y of a new credit applicant described by feature vector x. Note that
s.x/ is a separating function for both credit client classes and that the forecasting
model is a binary classification model. Support Vector Machines (SVM) are such
binary classification models, which produce a forecasting rule, i.e. a separating
function of the type

ypred D sign.s.x// D sign
	

n
X

iD1
yi˛
�
i k.Xi ; x/C b�




;

with parameters 0 � ˛�i � C and b� the result of the SVM optimization. Here
Xi refers to the symbolic description of cluster i , while x is the feature vector of
a new client with as yet unknown y. Support vectors are those training examples
i from f1; : : : ; ng for which ˛�i > 0. They are located near the class boundaries.
For given kernel type and hyperparameters support vectors generate the optimal
SVM separating function between classes. The first user selected hyperparameter
C > 0 controls the amount of misclassification (or “softness”) of the SVM model,
i.e. C is an upper bound for the dual variables ˛�i > 0 of the SVM optimization
problem. Hence,C implicitly selects the effective functional form of s.x/. Note that
˛�i > 0 actively contribute to the separating function by invoking the i th training
example via a user defined kernel k.:; :/, which in most cases is selected to be a
semi-positive, symmetric and monotonous function of the distance between pairs of
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clients (Schölkopf and Smola 2002). A very general nonlinear kernel function to be

used in later sections is the RBF kernel defined by k.u; v/ D exp
	

	 g � d2uv



, with

d2uv being the (e.g. Euclidean) symbolic distance between clusters u and v of Sect. 3,
and with g D 1

�2
> 0 being the second hyperparameter of the SVM model.

5 Experimental Setup

Evaluating the comparative expected classification performance of models trained
on cluster representations and to ease their comparison with “conventional” models
trained on the full data, we have to use a procedure, which is statistically safe and
which also enables a fair comparison of the models from structurally different model
classes. Therefore, we use a tenfold out of sample validation procedure. To this
end we randomly subdivide the data into 2

3
N examples used for training while the

remaining 1
3
N examples are held out for validation. This is repeated ten times gener-

ating ten different training-validation sets. The expected classification performance
of a model is compared on these respective ten validation sets, returning thus the
average, the best and the worst measured classification performance computed for
that model and for a chosen error function.

In order to further describe the experimental setup, the model classes have to be
considered separately. For overall model estimation, we can .i/ train a classification
model directly on the full training data (One-stage) or .ii/ use a clustering procedure
on the full training data set and subsequently train a classification model on the
cluster centers (Two-stages). For our large credit client data set we narrow down
the choice of alternative clustering procedures to that of k-means clustering. Such
algorithms do not require the beforehand computation of the complete distance
matrix between pairs of training points and are therefore efficient even for very
large data sets. Our two-stage experiments then proceed as follows:

Repeat the steps 1–6 ten times:

1. Divide credit client data set randomly into training (NT D 93; 301) and
validation (NV D 46; 650) set with NT W NV D 2 W 1.

2. Split training data set into “good” and “bad” credit clients.
3. K-means cluster analysis: extract n

2
clusters from “good” and “bad” classes

respectively and preserve labels.
4. Train SVM with small data set of n symbolic cluster descriptions.
5. Use SVM classification function to predict credit client default on the validation

set.
6. Calculate ROC curve and area under ROC curve (AUC). Return to step 1.

For benchmark purposes we also train a linear SVM on the full data set,
following the above procedure but omitting steps 2 and 3 (One-stage model).
Subsequently, the linear SVM is trained on the whole set of NT D 93; 301 data
points, respectively.
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6 Classification Results

Applying the validation procedure outlined in Sect. 5, equal numbers of clusters are
chosen to under-sample the much bigger class of non defaulting credit clients as
one possible solution to imbalanced class problems (Weiss 2004). The number of
clusters necessary to best represent the respective training sets must be determined
experimentally: Too few large clusters may not include important characteristics
of the data source, whereas too many small clusters may inadequately highlight
noise in the data. Therefore, an ascending list of cluster numbers is tested, starting
with n D 50 up to n D 1; 000 clusters. Each cluster is represented by a symbolic
description of modal variables and then given as input to SVM with RBF kernel.
For this type of SVM at first the width parameter � of the kernel function k.u; v/ D
exp.	g�d2uv/, where g D 1

�2
, is initialized to the mean Euclidian distance of pairwise

comparisons of all input examples. Grid search optimization of width parameter �
and model capacity control parameter C , which is the bound of the dual variables ˛
of the SVM (used in Sect. 4), then leads to values of � D 2:58 and C D 15.

In order to predict the behavior of unknown examples each credit client of the val-
idation set is assigned to a category or, in case of quantitative variables, an interval
with a probability of either zero or one. In this way data descriptions for individuals
match with the format of those of the data clusters defined in Sect. 3. Consequently,
future credit client behavior can be predicted by a classification function that was
previously estimated on a training set containing cluster representatives.

The extremely unequal class sizes of our validation sets make standard measures
of accuracy, like e.g. the misclassification rate, impractical. They must be replaced
by a more complex measure. A good candidate is the receiver operating character-
istics (ROC) curve (Hanley and McNeil 1982) which offsets true and false positive
rates of a classification model using model predictions against reference output (i.e.
the true labels of the data set). The area under curve (AUC) then denotes the area
between the abscissa and the ROC curve as a measure for the cut-off independent
classification power of a decision function. Note, that the AUC for “pure chance”
models i.e. models with no predictive power, is 0:5.

Table 1 shows the mean, standard deviation, minimum and maximum of the AUC
computed for our ten randomly selected validation sets. The smallest models with
just 50 training examples lead to an average AUC of 0:692 over the validation sets.
We observe the highest classification accuracy for SVM models that were trained
on 100, 200 and 400 cluster representations. Hereafter, the mean AUC decreases
slowly. Furthermore, a linear SVM could be trained on the full training sets with
93,301 observations each. The mean AUC for this benchmark model is 0.702, which
is slightly, but not significantly, better than the cluster based results we obtained
from the reduced training sets.

An open question for cluster based approaches is, which number of clusters to
choose as model input. Experimentally, we observe a connection between these
numbers of clusters and C , which is the upper bound of the dual variables ˛, that
controls for the accuracy of the SVM model. Figure 1 shows, that smaller numbers
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Table 1 Area under curve (AUC) statistics computed for ten randomly selected validation
sets with N D 46; 650 each. SVM Models with RBF kernel are trained on 50–1,000 cluster
representations

SVM RBF (C D 15; � D 2:6)
AUC (Validation Set, N D 46; 650)

No. of Clusters Mean Std. Dev. Minimum Maximum

50 0.692 0.009 0.674 0.699
100 0.700 0.006 0.689 0.709
200 0.700 0.005 0.692 0.707
300 0.697 0.005 0.685 0.704
400 0.700 0.006 0.694 0.711
500 0.697 0.008 0.684 0.711
600 0.696 0.006 0.688 0.704
700 0.696 0.004 0.688 0.703
800 0.692 0.005 0.682 0.700
900 0.690 0.005 0.682 0.696
1,000 0.686 0.005 0.676 0.693

Linear SVM
on full Set 0.702 0.005 0.695 0.707

Fig. 1 Mean AUC for SVM models trained on n D 50–1; 000 cluster representations respec-
tively, with three different SVM capacity control parameters C

of clusters lead to higher AUC, when higher values of C are considered, i.e. smaller
models need to more closely fit the data and vice versa. In more detail, small
models with n D 50 achieve maximum AUC for C D 25 (grey line), medium
sized models with n D 100 up to n D 400 do profit from a medium C D 15
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(dashed line) and larger models with n D 500 up to n D 1;000 are better for small
C D 5 (black line). With growing numbers of clusters the optimal C decreases:
obviously larger models are prone to overfitting. In summary, there appears a trade-
off between model accuracy and model capacity, which can be accounted for by a
proper combination of SVM hyperparameterC and the number of clusters n.

7 Conclusions

In general terms, our exploratory experimental approach indicates that cluster
based SVM models used on very large credit client data sets are successful in
describing and predicting credit client defaulting behavior. Furthermore, symbolic
coding of clusters is introduced, which enables representation of more complex
cluster information. This leads to competitive classification performance with regard
to ROC properties of small classification models, i.e. models trained on a small
number of symbolic cluster representatives.
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A Further Proposal to Perform Multiple
Imputation on a Bunch of Polytomous Items
Based on Latent Class Analysis

Isabella Sulis

Abstract This work advances an imputation procedure for categorical scales which
relays on the results of Latent Class Analysis and Multiple Imputation Analysis.
The procedure allows us to use the information stored in the joint multivariate
structure of the data set and to take into account the uncertainty related to the true
unobserved values. The accuracy of the results is validated in the Item Response
Models framework by assessing the accuracy in estimation of key parameters in a
data set in which observations are simulated Missing at Random. The sensitivity of
the multiple imputation methods is assessed with respect to the following factors:
the number of latent classes set up in the Latent Class Model and the rate of missing
observations in each variable. The relative accuracy in estimation is assessed with
respect to the Multiple Imputation By Chained Equation missing data handling
method for categorical variables.

1 Introduction

Missing data is a problem in the analysis of questionnaires to evaluate services
quality or to measure people abilities, attitudes or skills, where bunches of multi-
item Likert scales are used to collect information on several aspects of the
phenomena under investigation. The solution of proceeding with an imputation
method before to analyze the data with standard statistical tools is often adopted in
order to avoid reduction in the sample size and, depending on which mechanism is
generating missing observations, bias or loss in efficiency, or both, in the estimation
of parameters.
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The aim of this work is to advance a model-based approach to recover for
missingness which specifically takes into account both the information provided
by the joint multivariate structure of the data and the uncertainty related to the
true value of unobserved unities. Multiple Imputation Analysis (MIA) (Rubin
1987) consists of imputing more than one value for each unobserved value by
drawing observations from a plausible distribution. Latent Class Analysis (LCA)
for polythomous items is a multivariate modelling approach which allows us to
identify latent classes of observations from a multi-way table of categorical variables
and to highlight the profiles of the classes in terms of the matrix of probabilities
that respondents in the same class have to provide an answer in each category of
each item. Units are classified into clusters based upon membership probabilities
(posterior probabilities) estimated directly from units response pattern to the items
of the questionnaire. In this article we advance a further proposal to perform a
MIA in order to recover for missing responses based on the results of Latent Class
Analysis (Vermunt et al. 2008), that will be denoted from here on MILCA. The
approach allows us to predict plausible values for missing responses when missing
data structure is complex and all variables in the data set are affected by missingness
using the whole information available on the interconnection across categorical
items. The MILCA approach replaces missing values for a categorical item with
random draws from a multinomial distribution whit vector of parameters equal to the
estimated item response probability conditional upon the latent class membership
of the unit (Linzer and Lewis 2011). The procedure has been implemented in the
miLCApol function written in the R language. miLCApol uses the poLCA function
(Linzer and Lewis 2011) to apply LCA to a set of polythomous items and to estimate
the key parameters from which the random draws are made.

The structure of this work is as follows. In Sect. 2 possible implications related
to the missing data generating process are discussed and the philosophy underlying
multiple imputation analysis is presented. Section 3 is devoted to the description
of MILCA procedure. In Sect. 4 a simulation study in Item Response Theory
framework is presented. MILCA has been validated according to the estimation
accuracy (EA) criterium using a real complete data set in which observations are
set Missing at Random (MAR) (Rubin 1987). Further a validation analysis aims
to compare the relative EA of MILCA with respect to another widely adopted
MI method for categorical data: Multiple Imputation by Chain Equation (MICE)
(van Buuren and Groothuis-Oudshoorn 2011). An analysis of the sensitivity of the
results of MILCA to the choice of the number of latent classes is carried out. Lastly,
in Sect. 4 the code to implement MILCA in the R environment is provided.

2 Implications of Missingness and MIA Approach

The way to handle missing information is affected by the missing data generating
process. Rubin (1987) defines the probability distribution of the data Y as the
joint probability of the observed Y o and missing responses Y m, and specifies a
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matrix of missingness R, where Rij is equal to 1 if the related value in Y fYijg is
missing, 0 if it is observed. From the analysis of the conditional distribution of R
given Y , he identifies three probabilistic mechanisms which govern the missing
data process. Specifically, if the distribution of observing a pattern of missing
values is independent on what it is observed and unobserved in the data matrix
P.RjY o;Y m/ D P.R/, missing observations are said Missing Completely at
Random (MCAR). The missing data mechanism is considered ignorable (Little and
Rubin 2002); a Complete Case Analysis does not bias the final results since missing
data are considered a random sample from Y . However, if the size of the data set is
strongly affected, the loss of sample size may cause a loss of efficiency (Little and
Rubin 2002).

A weaker condition considers unobserved units MAR. The observations are
MAR when P.RjY o;Y m/ D P.RjY o/. After conditioning upon Y the distribution
of missing data is the same among the cases in which Y is observed or unobserved.
This implies that the missing process does not depend on Y m and missing
observations are predictable using Y o. Finally, the missing process is said to be Not
Missing at Random (NMAR) if the probability to observe a missing value depends
also on unobserved responses. In this last case missing responses are not predictable
conditional upon what it is observed in the data set. Thus whenever MCAR and
MAR conditions hold, the solution to replace missing observations with imputed
values before to proceed with further analysis is recommended.

MIA (Rubin 1987) is a method introduced by Rubin in 1987 (Rubin 1987)
which allow us to overcome the uncertainty related to the unknown values of the
observations when the missing data are imputed with plausible values. It consists
of imputing more than one value for each missing observation drawing M (m D
1; : : : ;M / values from a plausible distribution. The imputed and observed values are
jointed and M completed data sets are built up. Each data set is analyzed separately,
using standard statistical analysis, and then estimated parameters and their standard
errors are combined together using formula provided by Rubin (1987) to obtain an
overall inferential statement. If O�m is an estimate for a scalar parameter � in data set
m and

p
V m is the related standard error, the final estimate for � is the mean of O�m

taken over M data sets

N� DM�1
M
X

mD1
O�m:

The total uncertainty related to the parameter, namely T D W C .1CM�1/B , is
a combination of the within and between imputation data sets variance. The within
variance—W D M�1

PM
mD1 Vm—is considered the variance we would observe if

there were not missing information in the data set, while the between variance—
B D .M 	 1/�1PM

mD1. O�m 	 N�/2—is the component which takes into account
the uncertainty on the true value of � due to unobserved units. Since the overall
inferential uncertainty is applied only to the missing part of the data set, it is possible
to achieve a satisfactory level of accuracy in the estimation of key parameters also
with a relative low number of draws (Rubin 1987; Schafer 1997).
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3 A Further Proposal to Perform MIA Using LCA

LCA assumes that any dependency across responses provided to manifest categor-
ical indicators is explained “by a single unobserved ‘latent’ categorical variable”
(Linzer and Lewis 2011) z which has R categories (z1; : : : ; zR). Let us denote with y i
a vector which contains the responses of unit i to the J (j D 1; : : : ; J / categorical
indicators and with yijk the indicator variable which assumes value 1 if observation
i (i D 1; : : : ; n) selects category k (k D 1; : : : ; K the categories) of item j , the
joint probability density function of y i is specified as

P.yi jp ;�/ D
R
X

rD1
pr

J
Y

jD1

K
Y

kD1
.�rjk/

yijk : (1)

�rjk denotes the probability that an observation in latent class r provides the k
outcome to item j and pr is the probability to belong to each of the r classes. The
poLCA package in R-language (Linzer and Lewis 2011) uses iteratively the EM
algorithm until convergence is reached: (i) in the expectation step the posterior class
membership OP .r jy i / of each unit i is calculated using Bayes’ formula (in the first
iteration two arbitrary values of O�rjk and Opr are plugged in the OP .r jy i / formula);
(ii) in the maximization step new values of the key parameters are estimated

O�new
rjk D

Pn
iD1 yijk OP .r jy i /
Pn

iD1 OP.r jy i /
Opnew
r D 1

n

n
X

iD1
OP.r jy i /I (2)

(iii) the new values are set as new parameters in (i).
The LC MI method proposed by Vermunt et al. (2008) to impute missing

observations using LCA consists of 4 phases (for details see Vermunt et al. 2008):

1. M complete data sets fY 1; : : : ;YM g from the incomplete data matrix Y are
generated using M bootstrap samples. For any of the M data sets.

2. LCA is applied and LCA key parameters ( O�m and Opmr ) are estimated.
3. Person are randomly assigned to one of the R latent classes using posterior

subject’s latent class membership probabilities OP .r jy i:obs/
m.

4. Missing observations for unit i are generated by sampling units from
OP .y i:misjr/m. Thus, for each item j imputed values are drawn from a univariate

multinomial distribution.

The MILCA procedure to multiple imputes unobserved values using the results of
the LCA requires that all items are measured on the same categorical scale (the same
number of categories). It follows the following steps:

1. Missing observations are classified in a new category, labeled as “K C 1”, that
will be treated as a known modality in the LCA estimation process.

2. The LCA is applied and on the basis of the posterior estimates OP .r jy i / each unit
i is classified in one of the R LCs by modal assignment.

3. For each unit i a missing value in item j (for j D 1; : : : ; J ) is replaced
by randomly generating a draw from a multinomial distribution with vector of
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parameters equal to the estimated vector of item response probabilities of the
class to which the unit has been classified in step 2: O� jr. O�jr1; : : : ; O�jr.KC1//.

4. If the randomly generated value is equal to the .K C 1/ category, the generated
value is rejected, otherwise it is imputed.

5. If the draw generated in step 4 is rejected, the procedure is iterated until a valid
draw is generated.

6. M values are imputed for each unobserved value in the data set.

By replacing Ym in the Y matrix with the imputed values generated in the m-th
draw Yi

m, M complete data sets are generated. The number of latent classes R has
to be assessed in advance, before to apply the MILCA procedure, by recoding all
missing responses in each of the J items in the new category “K C 1”. The LCA
analysis will be carried out on the bunch of items measured on a scale with K C 1
categories. The suitable number of latent classes will be selected according to the
Bayesian Information Criterium (BIC) or other index of fit based on the Akaike’s
information criterium (AIC) (Vermunt et al. 2008). However since the aim of LCA
analysis is predictive, the sensitivity of the accuracy of the results to the choice of
the number of LCs is specifically analyzed in Sect. 4. Multiple imputed data sets are
analyzed with standard statistical tools and results are summarized using formula
for MI analysis provided by Rubin (1987).

4 A Simulation Study to Validate the Imputation Procedure

A simulation study on a real complete data set has been carried on to assess the
degree of accuracy of the MILCA procedure. The same simulation scheme and
data set adopted by Sulis and Porcu (2008) to validate the MISR procedure has
been used. The data set is composed by 8 categorical items (L1 	 L8) measured on
a four-category Likert scale which contains information on students’ evaluation of
several aspects of university courses. Observations have been simulated MAR (using
function miss.AR Sulis and Porcu 2008) according to two covariates (X1 and X2)
measured on ordered categorical scales (4 categories). For details on the simulation
scheme see Sulis and Porcu (2008). Several data sets with MAR units have been
generating by allowing the rate of missingness to vary between 5% to 20%. The
number of imputed data sets in all simulation studies has been set equal to M D 5.
The data sets have been imputed using MILCA and MICE procedures. MICE
adopts Gibbs Sampling to generate multiple imputations for incomplete data (van
Buuren and Groothuis-Oudshoorn 2011). Specifically, the polyreg function has
been adopted to impute missing values for item j as a function of the others
J 	 1 items (for details see Sulis and Porcu 2008). The EA has been assessed
by comparing the estimates of the location and discrimination parameters of a
Graded Response Model (GRM) in the real data set with the one obtained using
data imputed with MILCA. The GRM (Rizopoulos 2006) specifies the

logit .P.Yij � k// D �j .�i 	 ˇjk/ (3)
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Table 1 Parameter estimates and standard errors (in brackets)

(a) Real parameters (RP)
(se)

Item ˇ�
i1 ˇ�

i2 ˇ�
i3 �i

L1 �1.271 (0.14) �0.344 (0.13) 0.911 (0.39) 2.643 (0.12)
L2 �1.987 (0.17) �1.048 (0.17) 0.278 (0.14) 2.258 (0.10)
L3 �2.327 (0.18) �1.423 (0.17) �0.089 (0.16) 1.983 (0.10)
L4 �2.115 (0.16) �0.982 (0.15) 0.324 (0.14) 2.000 (0.09)
L5 �1.411 (0.18) �0.617 (0.18) 0.495 (0.17) 3.092 (0.15)
L6 �1.076 (0.09) 0.165 (0.06) 1.496 (0.55) 1.749 (0.08)
L7 �2.904 (0.14) �2.282 (0.14) �0.853 (0.13) 1.295 (0.08)
L8 �1.383 (0.20) �0.606 (0.19) 0.662 (0.28) 3.272 (0.16)

Miss. observations 20%
(b) RP/MILCA (c) RP /MICE
ˇ�
i1 ˇ�

i2 ˇ�
i3 �i ˇ�

i1 ˇ�
i2 ˇ�

i3 �i

L1 0.964 0.884 0.994 1.048 0.960 0.886 1.011 1.021
L2 0.992 0.992 1.039 1.033 1.001 0.997 1.035 0.998
L3 0.973 0.970 0.832 1.058 0.990 0.979 0.866 1.028
L4 0.987 0.988 1.001 1.033 0.987 1.007 1.031 1.011
L5 0.985 0.921 1.016 1.072 0.964 0.948 1.016 1.018
L6 1.009 0.956 1.029 0.988 0.993 0.983 1.010 0.992
L7 0.922 0.954 0.961 1.078 0.928 0.955 0.932 1.068
L8 0.977 0.937 0.963 1.077 0.940 0.922 0.990 1.046

Geom. mean 0.987 0.983

in terms of a discrimination parameter �j , a location parameter ˇjk and a person
parameter �i . Simulation results reveal a high accuracy in the estimates of the
parameters obtained by adopting MILCA with 5 LCs when the rate of missingness
is severe (20% in each item): panel (b) and (c) in Table 1 show the ratio between
the estimates of the parameters in the real data set and in data sets imputed using
MILCA (b) and MICE (c). The geometric mean of the ratios of the parameters has
been calculated (see last row Table 1 Panel b and c) to summarize single results and
compare the two MI methods. Table 2 shows the values of Mean Square Errors
(MSE) of the estimates of the coefficients parameters for data sets with rate of
missingness from 5% to 20% in each item.

In order to compare the overall EA of the two MI procedures MILCA and MICE
the sum of the MSE (Omse index) of the parameters has been calculated for each
simulation scheme (see Table 2 Omse). The MILCA procedure seems to have an
overall EA very close to the one reached by MICE. The sensitivity of the MILCA
procedure to the choice of number of the LCs has been assessed and results are
listed in Table 3. The value of the Omse index has bee calculated by allowing the
rate of missingness (5%,: : :,20%) and the number of LCs in the MILCA procedure
to vary from 3 to 6. From the results arise a good performance of the MILCA
procedure in terms of EA even when the rate of missingness is severe. The results
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Table 3 Overall measure of EA in data sets imputed with MILCA: Omse index

N. LCs % missingness in the data sets N LCs % missingness in the data sets

MILCA 5% 10% 15% 20% MILCA 5% 10% 15% 20%
6 CLs 1.203 1.228 1.328 1.464 4 CLs 1.192 1.187 1.315 1.487
5 CLs 1.206 1.210 1.331 1.343 3 CLs 1.166 1.236 1.577 1.500

of the imputation procedure seem not to be strongly affected by the choice of the
number of latent classes until the rate of missingness is under 20%. A good accuracy
is reached also when the model is underfitted.

Appendix: miLCApol Function Written in the R Language

Description: Function to implement the MILCA procedure
Use: miLCApol(item, m, K, cl, rep, fs)
Arguments:

item: A data frame containing the J categorical variables (the same specified in fs formula) all measured on a
categorical scale with K � 1 categories. The categorical variables in item must be coded with consecutive values
from 1 to K � 1. All missing values should be coded with NA (see poLCA manual Linzer and Lewis (2011) for
details)
fs: A formula expression which uses as responses the items contained in the data frame item e.g. fs <
�cbind.Y1; : : : ; YJ / � 1 (see poLCA manual Linzer and Lewis (2011) for details )
m: The number of M randomly imputed data sets
K: The number of categories of the items plus 1
class: The number of latent classes (see poLCA manual Linzer and Lewis (2011) for details)
rep: The number of times the poLCA procedure has to be iterated in order to avoid local maxima (see poLCA
manual)

Function

miLCApol<-function(m,K, cl, rep, fs, item){
replacemiss<-function(item){

itemp<-matrix(NA,nrow(item), ncol(item))
for(i in 1:ncol(item)){
itemp[,i]<-ifelse(is.na(item[,i]),K,item[,i]) }
return(itemp) }
itempr<-replacemiss(item)

library(poLCA)
itempr<-as.data.frame(itempr)
dimnames(itempr)<-dimnames(item)
##see poLCA manual to specify further options in poLCA
msim<-poLCA(fs,nclass=cl, itempr, nrep=rep ,na.rm=FALSE)
pr<-msim$probs
classm<-msim$predclass
n<-nrow(itempr)
R<-length(table(classm))
J<-ncol(itempr)
p<-array(NA,c(J,K, R))
for(r in 1:R){
for(j in 1:J){
p[j,,r]<-pr[[j]][r,] }}
impm<-array(NA, c(n,J,m))
for(t in 1:m){
for(i in 1:n){
r<-classm[i]
for(j in 1:J){impm[i,j,t]<- if(itempr[i,j]==K){
cate<-rmultinom(1, 1, p[j,,r])
for(k in 1:K){
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cate[k]<-ifelse(cate[k]==1, k, cate[k])}
label<-sum(cate)
while(label>K-1){ cate<-rmultinom(1, 1, p[j,,r])
for(k in 1:K){
cate[k]<-ifelse(cate[k]==1, k, cate[k])}
label<-sum(cate) }
label }
else(itempr[i,j])}}}
return(impm) }
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A New Distance Function for Prototype Based
Clustering Algorithms in High Dimensional
Spaces

Roland Winkler, Frank Klawonn, and Rudolf Kruse

Abstract High dimensional data analysis poses some interesting and counter
intuitive problems. One of this problems is, that some clustering algorithms do not
work or work only very poorly if the dimensionality of the feature space is high.
The reason for this is an effect called distance concentration. In this paper, we show
that the effect can be countered for prototype based clustering algorithms by using
a clever alteration of the distance function. We show the success of this process by
applying (but not restricting) it on FCM. A useful side effect is, that our method can
also be used to estimate the number of clusters in a data set.

1 Introduction

The curse of dimensionality for clustering can be best described by means of
distance concentration. Beyer et al. (1999), introduced the effect of distance
concentration for nearest neighbour queries. They showed that a nearest neighbour
query is not meaningful if the relative variance of distances to other data objects
converges to 0. In other words: the difference between the nearest and furthest
data object becomes negligible with increasing dimensionality. Durrant and Kabán
(2008) expanded the argumentation by showing that the implication in Bayer et al.’s
paper is indeed an equivalence. Since clustering is the task to find meaningful
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structure solely by analysing the spacial distribution of data objects, the results of
Beyer et al. and Durrant and Kabán are relevant for all clustering algorithms in
high-dimensional feature spaces. Distance concentration is especially a problem if
relations of distances are analysed as it is the case for FCM and other prototype
based clustering algorithms.

In this paper, we present a distance function that counters the effect of distance
concentration. Our approach does not only counter the effect of distance concen-
tration, it also presents a solution for the problem of finding the correct number of
clusters which is a specific problem for prototype based clustering algorithms.

The paper is structured as follows. In the next section, the effect of distance
concentration is defined. In Sect. 3 the new distance function is presented and used
to specify the clustering algorithm. We apply the proposed algorithm and several
others on a data set of aircraft movements in Sect. 4. Finally, this paper ends with
the conclusions and references in Sect. 5.

2 Distance Concentration and FCM Type Clustering
Algorithms

Let X � Rm be a finite set of m-dimensional real data objects, i.i.d. sampled
from some unknown probability distribution FX in Rm. Let p > 0 be a constant,
Q 2 Rm be an arbitrary sample point, k � k W Rm 	! R a metric and
D
p
X.Q/ D fkx 	 Qkp W x 2 Xg be the set of distances, from the viewpoint

of Q. Let E.Dp
X.Q// be the mean (sample expectation value) and V .Dp

X.Q// the
sample variance of Dp

X.Q/. Then

RV .D
p
X.Q// D

V .D
p
X.Q//

E
2
.D

p
X.Q//

is called the sample relative variance of Dp
X.Q/.

Formally, distance concentration occurs if for a sequence of probability distribu-
tions Fm and resulting sequences of data sets Xm and query pointsQm holds:

lim
m!1RV .D

p
Xm
.Qm// D 0:

Or in other words, the relative variance of distances becomes negligible.
The occurrence of distance concentration depends on the norm k � k and the

distribution FX . Let here, k � k be one of the Lp norms with p � 1. A result
from Hinneburg et al. (2000) shows that distance concentration can only occur
for norms with p > 1, which means only the Manhattan distance L1 norm is
stable. If a norm is unstable, distance concentration can occur for a wide range
of data set distributions (Beyer et al. 1999). For example for an m-dimensional
normal distribution with i.i.d. dimensions: Fm D .N .1; 0/; : : : ;N .1; 0//? with



A New Distance Function for Prototype Based Clustering Algorithms in High . . . 373

? denoting the transposed vector and N .1; 0/ denoting the 1-dimensional standard
normal distribution. Also more complex distributions like a uniform distribution on
the hypercube surface (no pair of dimensions are independent given any subset of
other dimensions) is suffering from distance concentration.

There are two problems with this probability theory result in clustering appli-
cations. First, no data set is really going to have an infinite number of features.
Second, distance concentration might not occur for the data set it self as it is
supposed to be clumped up into several clusters, otherwise clustering would not
make any sense in the first place. However, even if the relative variance of distances
of a given data set is not 0, clustering algorithms still have their problems because
the probability distribution FX is not known in advance and the clumping effect
of clusters might be too weak for the algorithm to recognise. Especially for fuzzy
prototype based clustering algorithms this is a problem because they tend to evaluate
relative distances in order to assign fuzzy values.

Let X D fx1; : : : ; xng � Rm be a m-dimensional data set with n data objects,
Y D fy1; : : : ; ycg � Rm a set of c prototypes, k � k D L2 the euclidean metric,
1 < ! 2 R the fuzzifier and U 2 Œ0; 1�c�n the membership matrix with uij 2 Œ0; 1�
as elements subjective to 1 D Pc

iD1 uij. The symbol dij D kyi 	 xjk denotes the
distance between a data object and a prototype with k � k D L2 being the euclidean
distance. The fuzzy c-means algorithm (Dunn 1973; Bezdek 1981) is defined by
minimizing the objective function with Lagrange multipliers� D f�1; : : : ; �ng:

JFCM .X; Y; U;�/ D
c
X

iD1

n
X

jD1
u!ij d

2
ij 	

n
X

jD1
�j

 

c
X

iD1
uij 	 1

!

: (1)

The objective function is minimized using the alternative optimization algorithm
which iteratively optimizes the prototype locations Y and membership values U .
The update equations for defining the next iteration .tC1/ from the current iteration
.t/ with the time variable t 2 N are

u.tC1/ij D

 

1

d tij

!

2
!�1

c
X

kD1

 

1

d tij

!

2
!�1

and ytC1i D

n
X

jD1

	

utC1ij


!

xj

n
X

jD1

	

utC1ij


!
: (2)

When FCM is applied on a high-dimensional data set, this update rule becomes
problematic. It starts with the initialization, the initial positions Y 0 D fy01 ; : : : ; y0c g
of prototypes must be somehow determined. A sample of prototype positions as a
subset of the data set, Y �X , is usually not a good idea as this almost guaranties that
not all clusters are found. Therefore, Y 0 is usually sampled from some distribution
Finit of the feature space, for example a uniform distribution on the smallest data
set enclosing hyperrectangle. From the view point of the data object (Q D xj ),
according to the last section, all distances to the members of a sample of a
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probability distribution Finit, like Y 0, becomes equal. Formally, let Q D xj 2 X ,
for an 1 � j � n, then

d�j D E.DY .xj // � ky 	 xik;8y 2 Y: (3)

This has very bad implications on the performance of FCM. Especially because
the distances to the prototypes w.r.t. a data object are not evaluated by their absolute
value, but by their relative value to one another. Following from Eq. (3):

uij 	
	

1
d�
j




2
!�1

c
P

kD1

	

1
d�
j




2
!�1

D
	

1
d�
j




2
!�1

c �
	

1
d�
j




2
!�1

D 1

c
I yi 	

n
P

jD1

�

1
c

�!
xj

n
P

jD1

�

1
c

�!
D

n
P

jD1

�

1
c

�!
xj

n � � 1
c

�! D 1

n

n
X

jD1

xj :

All prototypes are updated to a position, close to the centre of gravity of the data
set X (for experimental proof, see Sect. 4). Our previous work (Winkler et al. 2011)
shows, that this can only be prevented by initializing the prototypes near the clusters
in X which would increase the variance in DY .xj / for all data objects of a cluster
with a prototype nearby. The probability that all or at least most prototypes are
initialized near a cluster is almost 0 because the hypervolume of the space near the
clusters is very small, compared to the complete relevant feature space. This means
that either the distribution of data objects FX has to be known in advance, which
is usually not the case. Or another clustering algorithm must be used to determine
the initial location of the prototypes, which would make the application of FCM
unnecessary. Also the question is, if there is an other, reliable clustering algorithm
for high-dimensional data.

It should be noted that the EM algorithm and other FCM related algorithms like
noise clustering (Dave 1991) and in fact most prototype based fuzzy type algorithms
are affected by the curse of dimensionality. Hierarchical clustering algorithms are
usually also not a good choice in high dimensional spaces either, because the dis-
tances between clusters tend to be similar to the distances of data objects of one clus-
ter. This prevents a “natural” choice of cutting the cluster hierarchy. Density based
clustering algorithms like DBScan are difficult to adjust, because the correct param-
eter setting is very difficult to find. The difference between finding just one cluster
or dividing the dataset in a very large number of tiny clusters is incredibly small.

3 Alternative Distance Functions

In the last section, we determined that it is almost impossible to initialize FCM in
a high-dimensional space in such a way that prototypes find a cluster. The idea is,
to adjust the distance function according to the new circumstances. Hsu and Chen
(2009) proposed a new distance function (which is not a norm):
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SDP.x; y/ D
dim
X

kD1
!kfsk1;sk2 jxk 	 ykj and fsk1;sk2 .x/ D

8

<

:

0 if x < sk1
x if sk1 < x < sk2

ex if sk2 < x

As this function is very useful and versatile, it contains many .3�dim/ parameters that
are difficult to set. An other problem is, that the update equation for the prototypes
in FCM must be solvable for the prototype location, which is not the case for most
unusual norms as for example the SDP function. We propose an alternative distance
function that is also useful for clustering purposes.

The reason FCM does not work very well is, that the distances have not enough
contrast to be useful for assigning membership values. So the goal is to increase
the contrast in distance values but leaving the update equation for the prototypes
solvable for the prototype location. The DCR (Distance Concentration Resistant)
function is defined for a distance correction value ı � 0:

DCRı.x; y/ D kx 	 yk2 	 ı

This function is not a norm because its value can be less than 0. However,
this function is very useful for replacing the distance function in FCM. With
the parameter ı, it is possible to increase the contrast in distance values and
ryDCRı.x; y/ D rykx 	 yk2 because ı is a constant value.

In the objective function of FCM, the distance function dij is replaced with
DCRij D DCRıi .xj ; yi /:

JDCRFCM .X; Y; U;�/ D
c
X

iD1

n
X

jD1
u!ij DCRij 	

n
X

jD1
�j

 

c
X

iD1
uij 	 1

!

: (4)

With the parameters ıi , i D 1; : : : ; c it is possible to adjust the distance values in
such a way, that the effect of distance concentration in high dimensions is nullified.
The cleanest approach would be, to set ıi D min.D2

X.yi //, because this way, all
distances would remain positive or equal to 0. However, practical tests have shown
that this is not enough, the prototypes would get stuck on randomly scattered noise
data objects.

We use a more radical approach. For a parameter ˛ 2 R, ˛ > 0, set ıi D
maxf0;E.D2

X .yi //	˛ �V .D2
X.yi //g. So the distance reduction value ıi is set to the

mean of distances (from the point of view of the prototype), reduced by ˛ times the
sample variance of the distances. A value of ˛ D 3 is usually a good choice because
the Cantelli inequality (one sided Chebyshev’s inequality) guarantees that at most
10% of the data objects are closer to yi than ıi . That however implies that there
might be negative distance values. That is not a problem for the objective function
as its actual value is not important. For updating the membership values however,
the condition of uij � 0 must be ensured using the Karush–Kuhn–Tucker multiplier.
Because that is computationally difficult, the condition is satisfied manually: if
DCRij < 0, the corresponding membership value is set to uij D 1. If there are
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k prototypes with negative DCR value, the corresponding membership values are
set to 1

k
.

If two or more prototypes are coming close to a cluster, they tend to move
very close together due to the equal sharing of membership values of nearby data
objects. This multiple representation of clusters can be resolved by simply removing
all redundant prototypes. Therefore, the algorithm can end with less prototypes
than it started, which means that it has to be initialised with an overestimation of
prototypes. This also solves the problem of defining the number of clusters in a
data set, which is often not known and hard to do, especially for high-dimensional
data sets. Due to the overestimation of prototypes in the beginning, some prototypes
end up covering very small cluster or random noise that created a denser area by
chance. These prototypes usually represent only very small number of data objects
which can easily be detected at the end of the update process. By removing all
prototypes which have a sum of membership values below a predefined threshold:
Pn

jD1 uij < � with threshold 0 < � 2 R, these unnecessary prototypes are removed.

4 Application in S.O.D.A.

In this section we want to demonstrate the problems of FCM and similar algorithms
as well as demonstrate the advantages of the proposed algorithm. We use two
examples, one real world example in cooperation with Fraport AG and one artificial
generated example to demonstrate that the problems are not induced by the specific
data set. The Fraport AG develops an analysis tool called S.O.D.A. (Surveillance
Data Analysis Tool) to analyse the movement patterns of aircraft on the airfield of
the Frankfurt airport. The database contains approx. 700.000 aircraft tracks and the
goal is to find groups of aircraft that move similar routes.

Due to the large number of tracks in the database and the complexity of
comparing two tracks directly, we decided to simplify the task by transforming the
data. A set of 457 reference points is added to the airport structure, for each track,
the closest distance to each reference point is computed. To simplify the data further,
the distance values are transformed using a simple, trapezoid fuzzy rule: let d 2 R

be the minimal distance of a reference point to an aircraft track, then f .d/ D 1 for
d � a, f .d/ D d�a

b�a for a < d < b and f .d/ D 0 if d � b with a D 25m and b D
50m. This rule simply states that for f .d/ D 1, it is sure that the aircraft passed over
this point, for f .d/ 2 .0; 1/ the case is unsure and for f .d/ D 0 it is sure the aircraft
did not pass over the reference point. Each fuzzified distance value corresponds to
one dimension, the resulting dataset is therefore 457-dimensional. In Fig. 1 (leftmost
subfigure), 10’000 transformed aircraft tracks are presented as grey points, projected
on two of the 457 dimensions and with some jitter for demonstration purposes. In the
second left subfigure of Fig. 1, an artificial dataset with 50 dimensions, 100 uniform
distributed clusters which have in turn are sampled from a 100-dimensional normal
distribution with the location of the cluster as expectation vector. Also the artificial
data set contains 10% uniform distributed noise.
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Fig. 1 High-dimensional data sets, projected on 2 dimensions

Fig. 2 8 Clusters in the S.O.D.A. dataset

The effect of FCM on this data set is demonstrated by the colourful circles which
represent the prototypes. The lines represent the ways, the prototypes took from
their initial position to their final position. It is clearly visible that FCM is not
working in both cases. The colour of the data objects indicate that they are shared
equally by all clusters as their colour indicate their cluster membership. The third
and fourth subfigure of Fig. 1 present the same datasets, but instead of the euclidean
distance, DCR is used. The algorithm was initialised with 200 prototypes in both
cases. In the S.O.D.A. dataset, 62 clusters were found and on the artificial dataset,
99 out of 100 clusters which is almost perfect. In Fig. 2, 8 out of the 62 clusters
of the S.O.D.A. dataset are presented. To reduce the overlapping effect of fuzzy
clustering for this figure, only tracks with a membership value of at least 0:85 to
their respective cluster are shown.

5 Conclusions

We presented a very simple alteration to the distance function that is very effective
in countering effect of distance concentration on a prototype based clustering
algorithm. The alteration provides additionally the chance of estimating the number



378 R. Winkler et al.

of clusters in a data set by overestimating the number of prototypes needed and
removing unnecessary ones. The process has been shown for FCM in particular but
is not restricted to it, the distance function can also be useful for EM, NC and similar
algorithms. To prove our point, we have applied the algorithm on aircraft movement
data and on an artificial data set.
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A Simplified Latent Variable Structural
Equation Model with Observable Variables
Assessed on Ordinal Scales

Angelo Zanella, Giuseppe Boari, Andrea Bonanomi,
and Gabriele Cantaluppi

Abstract The communication is related to a wide empirical research promoted by
the Università Cattolica del Sacro Cuore of Milan (UCSC) aimed at acquiring an
insight into the real work possibilities of its graduates in the last seven years, as well
as the appreciation and satisfaction of the firms which offered them a job position.
The group of 1,264 firms which have a special connection with UCSC, regarding
new job appointments, was considered and they were given a questionnaire, using
web for sending and answering. The analysis of the 203 complete answers was
conducted by having recourse to a structural equation model with latent variables.

1 Introduction

Nowadays several statistical studies are related to judgments concerning immaterial
properties or conceptual aspects of an empirical situation, described by ordered
qualitative attributes, giving rise to ordinal scales. Remember the evaluation of the
Customer Satisfaction of a good or a service, of the efficacy of a public institution,
like a University, or a bank/insurance service, etc.; correspondingly it is typical, with
regard to an appropriate questionnaire, to ask respondents to express their judgment
on a Likert scale, which is represented by a finite set, typically of a few integer
numbers, for example f1; 2; 3; 4g, of which one has to be chosen by the respondent.

The problem of assessing the casual relationships presence among latent traits
only by having recourse to qualitative ordered variables has been widely treated
in literature, see for example Bollen 1989, Ch. 9, p. 433, Muthén (1984), Winship
and Mare (1984), Jöreskog (2005). This because measurements of latent traits in
the usual physical sense are impossible. Nevertheless, practitioners are not always
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aware that, for example, the numbers of a Likert scale only represent conventional
ratings. Namely they cannot be treated like values of an interval or a ratio scale
and, thus, current statistical techniques, like regression analysis, become in fact
meaningless. It follows that their use requires a different data representation, which
is based on a rather involved procedure. Since we are still dealing with a real case
for which all observations are on ordinal scales, we considered it appropriate to take
this opportunity to apply and discuss an approach, which is consistent with ordinal
variables, as it is needed in the case at hand.

2 The Real Case Considered

Università Cattolica del Sacro Cuore of Milan (UCSC) has planned an extensive
investigation on the work opportunities offered to its graduates, three-year degree
and Master degree, by the Italian job market, in particular with regard to the province
of Milan (Zanella et al. 2011).

As starting point the important reference (Chiandotto 2004) was considered
looking for other aspects of particular relevance not examined there. In this regard
the managing staff of UCSC is especially interested in assessing the satisfaction of
companies with respect to the performance of personnel who graduated at UCSC
in the last seven years in Economics, Political Sciences, Psychology, and Banking,
Finance and Insurance.

For this purpose we used the list of 1,264 firms, which hold a special connection
with UCSC in their activity of personnel recruitment, and whose e-mail addresses
were available.

Regarding job performance’s satisfaction of the employer we set up a question-
naire, to be filled only when graduated collaborators from UCSC of the specified
type were present, composed of 15 items aimed at designing a construct with 4
so-called dimensions or implied concepts:

• “Employer’s satisfaction” (later on latent variable &), with 2 observable ordinal
indicators (Y1: overall satisfaction, Y2: a kind of loyalty inclination).

• “Employer’s satisfaction regarding employee’s personal technical preparation
and potentialities” (later on latent variable �1), with 6 observable ordinal
indicators:

– X2 Ability to implement theoretical knowledge
– X5 Theoretical knowledge
– X6 Openness to novelty
– X10 Problem solving
– X11 Leadership
– X13 Creativity

• “Employer’s satisfaction regarding employee’s personal behavior” (later on latent
variable �2), with 4 observable ordinal indicators:
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– X1 Autonomous work
– X3 Work life balance
– X4 Working involvement
– X7 Timeliness

• “Employer’s satisfaction regarding employee’s capacity of socialization” (later
on latent variable �3), with 3 observable indicators:

– X8 Attitude to communicate with management
– X9 Attitude to communicate with colleagues
– X12 Workgroup attitude

All indicators were measured on a 4 point Likert scale f1; 2; 3; 4g: each respondent,
who received the questionnaire was required to answer by web and choose a number
keeping in mind that the greater the number the greater is the satisfaction he intended
to express according to some mental thresholds.

Correspondingly, the set of responses, expressed on a conventional scale,
gives rise to a K-dimensional (K D 15) random categorical variable, say X D
.X1; : : : ; XK/

0 (where X1 D Y1, X2 D Y2 for simplicity), whose components may
assume I ordered categories, denoted by the conventional integer values i D
1; : : : ; I .

Let P.Xk D i/ D pki , with
PI

iD1 pki D 1;8k, be the corresponding marginal
probabilities and let

Fk.i/ D
X

j�i
pkj (1)

be the cumulative probability of observing a conventional value xk forXk not larger
than i . Furthermore assume that to each categorical variable Xk there corresponds
an unobservable latent variable X�k , which is represented on an interval scale,
with a continuous distribution function ˚k.x�k /. The distribution for the continuous
K-dimensional latent random variable .X�1 ; : : : ; X�K/ is usually assumed to be
multinormal. Each observed ordinal indicator Xk; k D 1; : : : ; K; is related to the
corresponding latent continuousX�k , also called instrumental variable, by means of
a non linear monotone function, see Bollen (1989):

Xk D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 if X�k � ak;1
2 if ak;1 < X

�
k � ak;2

:::

Ik 	 1 if ak;Ik�2 < X�k � ak;Ik�1
Ik if ak;Ik�1 < X�k

(2)

where ak;1; : : : ; ak;Ik�1 are marginal threshold values defined as ak;i D ˚�1.Fk.i//;
i D 1; : : : ; Ik 	 1, being ˚.�/ the cumulative distribution function of a random
variable, usually the standard Normal, Jöreskog (2005), and Ik � I depending on
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Table 1 Reliability analysis

Variable Cronbach’s ˛ Composite reliability Comp. rel. 95% conf. interval

�1 Ǫ D 0:9167 0.9260 .0:9124; 0:9395/

�2 Ǫ D 0:9146 0.9215 .0:9066; 0:9364/

& Ǫ D 0:6440 0.9012 .0:8533; 0:9490/

the categories effectively used by the respondents (Ik D I D 4 when each category
has been chosen by at least one respondent).

For two generic ordinal categorical variables Xh and Xk , h; k 2 f1; : : : ; Kg,
it is possible to evaluate the polychoric correlation, defined as the value of 	
maximizing the loglikelihood typically conditional on the univariate marginal
threshold estimates

PIh
iD1

PIk
jD1 nij ln.�ij/; where nij is the number of observations

for the categories i th of Xh and j th of Xk ,

�ij D ˚2.ah;i ; ak;j /	 ˚2.ah;i�1; ak;j / 	˚2.ah;i ; ak;j�1/C ˚2.ah;i�1; ak;j�1/;

being ˚2.�/ the standard bivariate Normal distribution function with correlation 	
conditional on ah;i ; ak;j , threshold values forX�h andX�k , respectively estimated by
having recourse to the two marginal latent standard Normal variates according to
the usual two step computation (Jöreskog 2005), ak;0 D 	1 and ak;Ik D C1.

Thus we can derive the polychoric correlation (and covariance, see Jöreskog
2005) matrix necessary for the parameter estimation of a structural model with latent
variables.

The validity of the measurement model was first assessed by means of the
reliability analysis, obtaining the Cronbach’s Alpha index properly having recourse
to the polychoric covariance matrix, C�, according to the following formula
(Zanella and Cantaluppi 2006, p. 257):

Ǫ D qj

qj 	 1

 

1 	
Pqj

iD1 c�ii
Pqj

iD1
Pqj

i 0D1 c
�
ii0

!

where qj is the number of manifest ordinal indicators linked to the latent variable
�j and c�ii0 is the polychoric covariance between the i th and i 0th indicators of �j that
is the covariance between their corresponding instrumental continuous variables.

At this stage of the analysis only Cronbach’s˛ coefficient can be computed, since
the complete structural model has not been estimated yet. Cronbach’s ˛ represents
a lower bound for reliability in presence of congeneric measures (Sijtsma 2009).
After having defined relationships among constructs it will be possible by having
recourse to a Confirmatory Factor Analysis to estimate composite reliability and its
confidence intervals (Raykov 2002a,b; Green and Yang 2009), see Table 1.

The validity of the preliminary stated model (defined on 4 dimensions) was
rejected by subsequent inferential analysis.
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Table 2 Average variance
extracted and shared variance
estimates

Variable Items �1 �2 &

�1 5 0.6963 0.5941 0.6833
�2 4 0.7708 0.7426 0.6611
& 2 0.8266 0.8131 0.6892

Correlations below the diagonal, squared correla-
tions above the diagonal, and AVE estimates are
presented on the diagonal.

A discriminant validity analysis (Farrell 2010; Fornell and Larcker 1981) was
first performed suggesting to remove indicator X5 related to the latent construct
�1: employers do prefer employees able to implement theoretical knowledge. This
operation improved discriminant validity.

From the statistical analysis for the resulting structural model it turned out that
indicator �3 had to be neglected since its effect on & in the structural equation model
was not significant. Namely it showed a z-score ( O�3= O� O�3 D 1:183) while for O�1 and
O�2 we obtained z-scores larger than 3. We have to remark that we got only a sample
of 203 complete answers to the questionnaire i.e. a fraction of about 16% of the
population of firms.

Table 2 reports discriminant validity results for the reduced model (without �3). It
was assessed by comparing the average variance extracted (AVE) of each construct
with the shared variance between constructs. All shared variances are not larger than
the AVEs and we can maintain that discriminant validity is sufficiently supported.

In conclusion we propose the following formulation of the model involving the
latent variables &; �1 and �2 previously defined:

& D �1�1 C �2�2 C � (3)

X�ji D X�ji�j C ıji; j D 1; 2; i D 1; 2; : : : ; qj (4)

Y �i D Y �i&C "i ; i D 1; 2; (5)

with q1 D 5 and q2 D 4, and where the structural error � and the measurement
errors ıji; "i are assumed to be uncorrelated zero mean random variables.

Recall that estimation procedures for covariance based models (Bollen 1989) are
based on the minimization of some distance measure, d.�/, between the empirical
covariance matrix S of the observed variables and its theoretical counterpart˙ .�/
expressed as a function of the unknown theoretical parameters in the structural
equation model:

˙ .�/ D
�

˙ YY ˙ YX

˙ XY ˙ XX

�

D
�

�Y˙ &&�
0
Y C� " �Y˙ &��

0
X

�X˙ �&�
0
Y �X˚�

0
X C� ı

�

:

Since in the present case the manifest variables are of the ordinal type, the empirical
covariance matrix is not defined. Following Jöreskog (2005, p. 23) we can have
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Table 3 Parameter estimates

Structural Model

O�1 D 0:49; O�2 D 0:43
O D O�2� D 0:24; O�12 D O��1�2 D 0:77 .O��1& D 0:83; O��2& D 0:81/

Measurement Model

X
O�1i D 0:96; 0:78; 0:67; 0:82; 0:91

X
O�2i D 0:91; 0:79; 0:85; 0:90

Y
O�i D 0:97; 0:67
O�2ı1i D 0:09; 0:39; 0:55; 0:32; 0:16
O�2ı2i D 0:18; 0:38; 0:27; 0:19
O�2"i D 0:07; 0:55

recourse to the polychoric covariance matrix and estimate the unknown parameters
in model (3)–(5) by using the following criterion:

arg min
�

d
�

C�;˙ .�/
�

:

where Y and X in ˙ .�/ are replaced by Y � and X� and the empirical covariance
matrix S by the estimated polychoric matrix C�.

Estimates were obtained by using both the Lisrel 8.80 Student Edition (Jöreskog
2005)—by specifying the ordinal nature of the variables—and the R library
lavaan (Rosseel 2012)—by providing the polychoric covariance matrix (Jöreskog
2005), since at present lavaan does not deal with ordinal manifest variables.

Table 3, see also Fig. 1, reports the parameter estimates for relationships (3),
(4) and (5), involving standardized manifest and latent variables all having unit
variance. Bold-faced types denote the most relevant estimates.

To assess the model fit, standard errors and goodness of fit statistics provided by
the Lisrel software were considered, which are based on the asymptotic covariance
matrix among ordinal variables (Jöreskog 1994).

With regard to the goodness of fit statistics the following positive results were
obtained.

• If the model is correct the value of the Satorra–Bentler Scaled Chi-Square test
must be not significant, in our case it is 45.6643 (p-value D 0:28), d.o.f. 41.

• The Root Mean Square Error of Approximation (RMSEA), a measure of the
discrepancy per degree of freedom between the population covariance matrix and
its estimate, is equal to 0.0237, which is lower than 0.05, and its 90% Confidence
Interval is .0; 0:0554/ with the upper level lower than 0.08, giving evidence of a
good model fit, Browne and Cudeck (1993), p. 144.

• The Expected Cross Validation Index (ECVI) is 0.4736, with a 90% Confidence
Interval (0.4505, 0.5763), and the values 0.6535 and 21.6767 respectively for the
saturated and independence models indicate that the hypothesized model has a
better predictive validity than the saturated one.
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Fig. 1 Path model diagram with standardized estimates

• The Normed Fit Index (NFI) and Non-Normed Fit Index (NNFI) are 0.9895 and
0.9985 both very close to 1, indicating that the fit is very good.

3 Conclusion: Implications and Further Research

We are confident that the results obtained in this research may become useful for
improving the University Courses contents and programs.

In particular, the final estimated model shows that &, expressing employer’s
satisfaction, depends more strongly on �1 (representing satisfaction for employee’s
technical preparation and potentialities), than on �2 (expressing satisfaction regard-
ing personal behavior). Moreover �1 reflects mostly on the indicators concerning
problem solving ability and leadership, �2 on propensity for self standing work
and working involvement. Consequently Universities should give students the
opportunity of better developing the characteristics best appreciated by the future
employers and students must be aware of this chance. The study could be repeated
in order to obtain more than 203 answers by the group of 1,264 firms, having a
special relationship with UCSC for the recruiting of new graduated personnel, and
representing the population to which the research was directed.

The questionnaire should be refined. With regard to variable Y2, the present
version of the questionnaire required that the firm responsible for communications
with UCSC should indicate how much his firm might be ready to recommend to
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another company to give new appointments to UCSC graduates. This was first
interpreted as an expression of the degree of loyalty of the firm–customer; but the
question could also be perceived as controversial since one can be also inclined to
keep for his own firm the possible advantages coming from a particular choice of
graduated personnel. Perhaps the question should be better formulated. We found
difficult to find an alternative observable indicator aimed at measuring overall
satisfaction.

Also the questions referring to socialization should be expressed in a more
intelligible form since it is astonishing that the respondents gave little importance to
this aspect, which led to eliminate the corresponding construct described by �3.

Then there are at least two methodological not trivial aspects which should
still be delved into. The first concerns the use of the threshold method to obtain
metric measurements from conventional ordinal rating scores by having recourse
to polychoric correlations, which are based on the assumption that for any pair of
observed variables there exists a latent bivariate normal distribution. This poses
the problem of weakening the latter assumption by trying to consider some not
symmetric bivariate distributions, which seem more suitable to comply with the
skewness shown by the data distributions.

Finally, discriminant validity assessed by the method suggested in Fornell and
Larcker (1981) could be further investigated as far as the theoretical justification
of the inequality on which is based is concerned and a statistical test ensuring
the significance of the differences between the average variance extracted by the
observed indicators (AVE) and the squared correlations of the construct variables
should be better considered.
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Optimal Decision Rules for Constrained Record
Linkage: An Evolutionary Approach

Diego Zardetto and Monica Scannapieco

Abstract Record Linkage (RL) aims at identifying pairs of records coming from
different sources and representing the same real-world entity. Probabilistic RL meth-
ods assume that the pairwise distances computed in the record-comparison process
obey a well defined statistical model, and exploit the statistical inference machinery
to draw conclusions on the unknown Match/Unmatch status of each pair. Once
model parameters have been estimated, classical Decision Theory results (e.g. the
MAP rule) can generally be used to obtain a probabilistic clustering of the pairs
into Matches and Unmatches. Constrained RL tasks (arising whenever one knows
in advance that either or both the data sets to be linked do not contain duplicates)
represent a relevant exception. In this paper we propose an Evolutionary Algorithm
to find optimal decision rules according to arbitrary objectives (e.g. Maximum
complete-Likelihood) while fulfilling 1:1, 1:N and N:1 matching constraints. We
also present some experiments on real-world constrained RL instances, showing the
accuracy and efficiency of our approach.

1 The Decision Problem in Probabilistic Record Linkage

Record Linkage (RL) aims at identifying pairs of records coming from different
sources and representing the same real-world entity; such pairs are named Matches
according to a consolidated jargon.

At a very high level of abstraction, every RL workflow can be seen as the
sequence of two fundamental processes: a comparison process followed by a
decision process. The comparison process takes as input the data sets to be
linked and performs distance (or, equivalently, similarity) measures on record pairs.
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The subsequent decision process takes such computed measures as input and, by
applying to them a rule of some kind, eventually classifies each record pair as
belonging to the class of Matches (M ) or to the one of Unmatches (U ).

Probabilistic RL methods assume that the pairwise distances computed in the
comparison phase obey a well defined statistical model, and exploit the statistical
inference machinery to draw conclusions on the unknown class-membership
of each pair. In this framework the adoption of a mixture model (see e.g.
McLachlan and Peel 2000) seems quite natural, as one can see the observed
pairwise distances as arising from two genuinely distinct probability distributions,
the one stemming from the M subpopulation and the other from the U one:
f .d I �/ D �MfM.d I �M/C �UfU .d I �U /.

The mixture approach structures the decision phase of a RL process into two
consecutive tasks. First, mixture parameters have to be estimated by fitting the model
to the observed distance measures between pairs. Then, a probabilistic clustering of
the pairs into M and U must be obtained by exploiting the fitted model.

The fitting step is crucial, as it implicitly determines the quality of the subsequent
clustering results. Moreover, it represents a very hard task. This is mainly due to the
extremely imbalanced nature of RL data, where M -pairs are always overwhelmed
by U -pairs (real-world applications often exhibit Match Rates ranging from 10�3
up to 10�6, see Table 1 for selected examples). Indeed, unless some smart
countermeasure is adopted, whatever fitting algorithm (the EM Dempster et al. 1977
being no exception) would tend to tune all the model parameters so as to better
describe some peculiar feature of the dominating U distance distribution, hence
failing to detect properly the feeble signal arising from the extremely rare Matches.

In this paper we shall not discuss further the interesting fitting problem, but
rather focus on the clustering task. Thus we assume that good estimates of mixture
parameters O� D . O�M ; O�M ; O�U / have been somehow computed (e.g. via Maximum
Likelihood). We then incorporate the latent class-membership indicator z (with
true value 1 if the pair is a Match and 0 otherwise) inside the original mixture
model for the distance pdf trough a classical demarginalization argument, yielding
the complete mixture density: g.d; z I �/ D Œ�MfM.d I �M/�z Œ�UfU .d I �U /�1�z.
Correspondingly, the complete log-Likelihood reads:

log L c.d; z I �/ D
X

i

log Œ�U fU .di I �U /�C
X

i

zi log

�

�MfM.di I �M/
�UfU .di I �U /

�

(1)

The true value of zi is obviously unknown: it will precisely represent the target
of our inferences. Indeed, a decision rule that assigns each pair to a class is nothing
but a rule to infer a value Ozi for the hidden variable zi . An optimal rule has moreover
to work in such a way as to optimize some global objective function. A natural (yet
not mandatory) choice is to select as objective function the complete log-Likelihood
itself. We thus look for a classification vector Oz that maximizes the complete data
Likelihood under the fitted model, namely:

Oz D argmax
z

h

log L c.d; z I O�/
i

(2)
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For unconstrained RL (also known as N:M1 matching), the solution of (2) would
follow easily from the structure of (1):

Ozi D
�

1 if O�Mi � O�Ui
0 otherwise

(3)

with O�M; Ui representing the estimated posterior probability that the i -th pair belongs
to class M and U respectively:

O�Ci .di I O�/ D O�CfC .di I O�C /=f .di I O�/ C D fM; Ug (4)

Formula (3) is a classical Decision Theory result (see e.g. Duda et al. 2000),
known as “Maximum a Posteriori (MAP) rule”: it assigns each pair to the class
to which the pair has the highest estimated posterior probability of belonging.
We stress here that the easy, closed-form nature of the MAP solution (3) is a
lucky byproduct of the unconstrained nature of the Maximum complete-Likelihood
problem (2).

2 The Impact of Matching Constraints

The decision problem (2) becomes harder if matching constraints (i.e. 1:1, 1:N,
N:1 linkage restrictions) are imposed: these arise whenever one knows in advance
that both (1:1) or either (1:N or N:1) of the data sets to be linked do not contain
duplicates.2 Due to space limitations, in what follows we shall focus on 1:1
matching, being the extension to 1:N or N:1 straightforward. To express such
constraints in a formal way, we switch to a more convenient matrix notation. We
arrange the observed distance values di into a nmin 
 nmax matrix D, in such a way
that element Dij represents the distance between the i -th record of the smaller data
set and the j -th record of the bigger data set. Accordingly, quantities depending on
features of the generic i -th pair have to be replaced, inside all previous formulae,
by the corresponding two-index quantities. The optimal decision problem with
Maximum complete-Likelihood objective under 1:1 constraints now reads:

1The expression “N:M” means that each record of either data set can in principle match many
records of the other, and viceversa.
2For duplicates we mean records that (i) correspond to the same real-world entity and (ii) belong
to the same data set.
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OZ D argmax
Z

h

log L c.D;Z I O�/
i

(5)

subject to:
nmax
X

jD1
Zij � 1 8i (6)

nmin
X

iD1
Zijs � 1 8j (7)

with (6) and (7) obviously implying
P

ij Zij � nmin.
Constraints (6) and (7) heavily affect the complexity of the problem: now, indeed,

a decision taken on a pair influences decisions to be taken on other pairs. Moreover,
clustering results based on the MAP rule will not, in general, fulfill 1:1 constraints.

Here we shall face the constrained decision problem by means of a purposefully
designed Evolutionary Algorithm (EA). Before going into further details, we briefly
argue why we chose an EA. A few papers from the RL literature (Jaro 1989; Winkler
1994) tackled the 1:1 problem by using Simplex-based algorithms. Indeed, since
both the objective function and the constraints are linear in Zij, Eqs. (5)–(7) can
be formulated as a Binary Linear Programming (BLP) problem. The main concern
with this approach is tied to memory usage. If n denotes the size of the data sets to
be matched (i.e. nmin ' nmax ' n), the number of unknowns and inequalities for
the BLP problem grow like n2 and n respectively, yielding a Simplex solver space
complexity of O.n3/ at least. The net result is that the BLP approach cannot be
applied to real-world data sets, unless a very efficient previous blocking step has
been performed. On the contrary, the size of the biggest data structure stored by
our EA grows only linearly with n. Finally, we observe that our EA can be readily
applied to clustering tasks that involve more complex objective functions than (1)
(e.g. nonlinear Loss/Gain Functions, like the estimated F-measure), which definitely
cannot be addressed by a Simplex-based algorithm.

3 An Evolutionary Algorithm for 1:1 Matching

The Evolutionary metaheuristic is so versatile that EAs can often be employed
to find a satisfactory solution even for optimization problems for which no other
solution strategy is known. Here, we assume a basic knowledge of EAs (referring
the reader to Michalewicz (1996) for more advanced topics) and, due to space
limitations, we restrict ourselves to a very concise outline of our clustering EA.
In what follows we list the algorithm pseudocode and only sketch basic choices,
parameters and operators.
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EVOLUTIONARY ALGORITHM PSEUDOCODE

EA



nind; ngen; pmuta; gstall

�

g 0
generate Initial PopulationŒnind�

compute Fitness
while (: Termination Criterion




ngen; gstall

�

/ do
g gC 1
apply Selection
apply Reproduction + Repair
apply MutationŒpmuta�

compute Fitness
end while
return Best Fit individual found

Search Space. The EA search space is the set of all the nmin 
 nmax matrices Z
with f0; 1g elements that fulfill 1:1 constraints (6) and (7). It is a huge search space
whose cardinality is given by NZ DPnmin

kD0
�

nmax
k

��

nmin
k

�

kŠ (just to get an impression:
if nmax D nmin D 150 then NZ ' 1:28 � 10272).
Representation. We encode a generic candidate solution Z (phenotype) by means
of a vector � of length nmin (genotype). Elements of � (alleles) can be 0 or integers
between 1 and nmax, namely �k 2 f0; 1; : : : ; nmaxg with kD 1; 2; : : : ; nmin. The
meaning of the alleles is easily understood. If �k D 0, then the candidate solution
states that the k-th record of the smaller data set does not match any record of
the bigger data set. If, on the contrary, �k D j > 0, then the candidate solution
states that the k-th record of the smaller data set does match the j -th record of the
bigger data set. Obviously a legal genotype, that is a genotype encoding a feasible
candidate solution Z, is not allowed to contain duplicated alleles other than the 0
allele.

Fitness. The Fitness functions is obviously modeled on the objective function

(1): Fitness.�/ D P

k W �k>0 log
	

O�Mk�
k
= O�Uk�

k




, where uninfluential constant terms

appearing in (1) have been dropped.

Constraints. Even though only legal individuals are generated in the initial popula-
tion, some illegal genotype may arise during evolution, due to Reproduction. In
order to maintain a population of feasible candidate solution, these illegal genotypes
are repaired by means of a purposefully designed operator. The Repair operator,
Repair : � ! ��, acts as a stochastic function mapping a genotype, �, into a
randomly repaired version of it, ��. If the � individual is legal, Repair leaves it
unchanged. If, instead, � is illegal,Repairworks as follows. Suppose � has	 groups
of duplicated non-zero alleles, with multiplicities nr where r D 1; : : : ; 	. For each
group r , Repair first randomly selects inside the group just a single allele to be left
unchanged, then it substitutes all the remaining nr	1 duplicates with the 0 allele.

Initial Population. As the search space of our EA is so huge, generating a good
initial population is crucial. It is apparent that creating nind random individuals by
uniformly sampling the search space would be a very poor choice. On the contrary,
our algorithm samples more heavily those regions of the search space that are
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believed to be “more promising” on the basis of the fitted posterior probabilities. This
is accomplished by the following Monte Carlo (MC) technique. First, the following
posterior probabilities are computed for each record k in the smaller data set:

p0k D Pr.Zki D 0 8i/ D
Y

i

O�Uki (8)

p
j

k D Pr
	

.ZkjD1/ AND .ZkiD0 8i¤j /



D O�Mkj

Y

i¤j
O�Uki (9)

where j D 1; : : : ; nmax. Value p0k is the posterior probability that the k-th record

of the smaller data set does not match any record of the bigger, while pjk gives
the posterior probability that the k-th object matches only the j -th. The MC
procedure generates each element �k (for kD1; : : : ; nmin) of each genotype � of the
initial population by sampling an allele value from f0; 1; : : : ; nmaxg with probability
proportional to (8) and (9), i.e. Pr.�k D 0/ / p0k and Pr.�k D j > 0/ / p

j

k .
These MC generated genotypes are eventually processed by the Repair operator,
in order to warranty that the whole initial population is legal.

Selection. Selection is performed by means of a rank-2 tournament. Random
pairs of individuals are formed. For each pair, the fitness of the individuals are
compared. The fitter individual survives whereas the weaker dies and is dropped
from the population, so as to make room for new individuals to be generated in
the Reproduction phase. Notice that this Selection method is intrinsically
elitist: the fittest individual of a generation surely survives and passes to the next
generation.

Reproduction. Reproduction is performed as follows. Individuals that sur-
vived to Selection are randomly paired. Each pair generates two children. These
children take the place of individuals that have been eliminated in the previous
Selection phase. As a consequence the size of the population nind is kept fixed
during the evolution. Children genotypes are obtained by merging those of the
parents by means of one-point crossover. Call �p1 and �p2 the parents and �c1

and �c2 the children. A random cut point cut 2 f1; : : : ; nmin 	 1g is selected for
the parents genotypes. Hence both �p1 and �p2 are cut into a left portion and a
right portion. The first child receives the left portion from the first parent and the
right from the second, i.e. �c1 D .�

p1
1 ; : : : ; �

p1
cut; �

p2
cutC1; : : : ; �

p2
nmin/. The second child

receives the left portion from the second parent and the right from the first, i.e.
�c2 D .�

p2
1 ; : : : ; �

p2
cut; �

p1
cutC1; : : : ; �

p1
nmin/. As there is no warranty that the generated

children are legal, they eventually undergo the Repair treatment before being
plugged into the population.

Mutation. Each individual of the population has the same probability pmuta of
undergoing Mutation. Mutation acts on a genotype � by affecting only a
single allele. The outcome can be either that a nonzero allele is replaced by 0 (i.e.
a declared Match is deleted from Z), or that a 0 allele is turned into a nonzero
allele (i.e. a new declared Match is inserted into Z). The stochastic algorithm
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implementing Mutation exploits the MAP estimate of the number of Matches
OnM D P

i OzMAP
i . A random integer p 2 f0; 1; : : : ; nming is drawn from a Binomial

distribution with size nmin and success probability OnM=nmin. If the genotype to
mutate has more than p nonzero alleles,

P

k sgn.�k/ > p, then a random nonzero
allele is replaced by 0. Otherwise, i.e. when

P

k sgn.�k/ � p, a random 0 allele is
replaced by a nonzero one randomly selected from the set f1; : : : ; nmaxgn� (namely,
by a new legal nonzero allele that did not already appear in �). Notice that, since the
expected value of p is exactly OnM , Mutation tends on average to delete declared
Matches from candidate solution that contain “too many” of them, and conversely
to add declared Matches to candidate solution that contain “too few” of them.

Termination Criterion. The Termination Criterion for the EA is two-
fold. A first parameter, ngen, controls the maximum number of generations that
can be spent during evolution. If g denotes a generations counter, then the EA
would stop as soon as g > ngen. A second parameter, gstall, gives the maximum
number of generations that the EA is allowed to process without achieving a fitness
improvement. If g0 denotes the number of generations elapsed from the last fitness
improvement, then the EA would stop as soon as g0 > gstall. The EA effectively
stops as soon as either of the two conditions is verified.

Return Value. The return value of the EA is the genotype �Best of the Best
Fit individual found during evolution. This genotype is readily decoded into the
corresponding phenotype matrix ZBest, which in turn yields the final clustering
result for the RL problem.

Space Complexity and Parameters Values. Storing a whole population of candi-
date solutions determines the EA memory overhead. As population size is kept fixed
during evolution, if n denotes the size of the data sets to be matched then memory
usage grows like nind � n, i.e. almost linearly with n. Indeed, only a weak (less than
linear) dependence of nind on n is expected. As an evidence, we stress that all the
successful case studies listed in Sect. 4, despite their n values span over nearly an
order of magnitude, have been carried out with the following default values for the
EA parameters: nind D 300, ngen D 200, pmuta D 0:1, gstall D 50.

4 Experiments and Conclusions

We conclude by concisely illustrating some experimental tests of our EA clustering
method on selected 1:1 RL instances. All the sources are publicly available and,
with the only exception of CENS, involve real-world data. Table 1 reports basic
information on such instances (see also Kopcke et al. 2010).

We treated all four RL instances as follows. First, we computed the pairwise dis-
tances di by applying uniformly the Levenshtein distance to the matching variables
reported in Table 1 and averaging the obtained values. Then, we wrote a two-
component mixture model and found ML estimates O� for the mixture parameters.
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Table 1 Relevant features of selected 1:1 RL instances

RL Matching Data Pairs Number Match
Instance Data Origin Variables Nature (nmin�nmax ) of Matches Rate

PARKS SecondStringa name Real 101;394

.258� 393/
247 2:4�10�3

CENS SecondStringa surname,
name,
midinit,
street,
number

Artificial 176;008

.392� 449/
327 1:9�10�3

RESTAURANTS Riddleb name,
address,
city,
type

Real 176;423

.331� 533/
112 6:3�10�4

DBLP-ACM Leipzig Univc title,
authors,
year

Real 6;001;104

.2;294�2;616/
2;224 3:7�10�4

aAvailable at: www.cs.utexas.edu/users/ml/riddle/data/secondstring.tar.gz
bAvailable at: www.cs.utexas.edu/users/ml/riddle/index.html
cAvailable at: dbs.uni-leipzig.de/en/research/projects/object matching

Lastly, we exploited the fitted model to find optimal decision rules according to the
traditional Maximum a Posteriori rule (MAP) and to our Evolutionary Algorithm
(EA).3 The results of our experiments are collectively shown in Table 2, with
�fPrec; Rec; Fg expressing the percent performance gain (or loss) of our EA versus the
traditional MAP solution, with respect to a given quality measure (for Recall, Pre-
cision and F-measure definitions and properties, see e.g. Christen and Goiser 2007).

A first look to the average F-measure gain (C14:0%) achieved by our EA imme-
diately reveals the remarkable effectiveness of our proposal. Moreover, besides
guaranteeing a full compliance with 1:1 matching constraints, our algorithm always
produces RL decisions of higher overall accuracy. This result strongly supports the
robustness of our methods. More importantly: the F-measure gain of our EA is
obtained by systematically increasing Precision (C24:6% on average) while nearly
preserving Recall (	0:8% on average). This proves that our EA is actually able
to enforce 1:1 matching constraints almost without erroneously deleting any true
Match. As a last remark, we stress that our EA was able to solve all the 1:1 problems
listed above while running in an ordinary PC environment. On the contrary, handling
the same problems via a Simplex solver required us to deploy the solver on a large
memory server, without achieving any significant improvement in the quality of the
results.4

3We performed 10 runs of our Evolutionary Algorithm on each instance, owing to its stochastic
nature. Anyway, we found a negligible variability in the results.
4The Precision, Recall and F-measure increase (when present) turned out to be of 0:1% at most.

www.cs.utexas.edu/users/ml/riddle/data/secondstring.tar.gz
www.cs.utexas.edu/users/ml/riddle/index.html
dbs.uni-leipzig.de/en/research/projects/object_matching
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Table 2 Precision, recall and F-measure results: MAP vs. EA

RL Instance PrecMAP RecMAP FMAP PrecEA RecEA FEA �Prec.%/ �Rec.%/ �F.%/

PARKS 0:712 0:960 0:817 0:971 0:960 0:965 C26:7% C0:0% C15:3%
CENS 0:634 0:997 0:775 1:000 0:994 0:997 C36:6% �0:3% C22:2%
RESTAURANTS 0:832 0:884 0:857 0:925 0:875 0:899 C10:0% �1:0% C4:7%
DBLP-ACM 0:751 0:987 0:853 0:987 0:970 0:978 C23:9% �1:8% C12:8%
Average 0:732 0:957 0:826 0:971 0:950 0:960 C24:6% �0:8% C14:0%

In this paper we proposed an Evolutionary Algorithm to find optimal decision
rules for constrained Record Linkage. We also presented some experiments on real-
world RL instances, showing the effectiveness of our approach. We designed our EA
as a part of a new, comprehensive RL software that we are currently developing in
Istat. At present, the system is undergoing beta testing and is planned to be released
as a standard R package on CRAN (the Comprehensive R Archive Network).
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On Matters of Invariance in Latent Variable
Models: Reflections on the Concept, and its
Relations in Classical and Item Response Theory

Bruno D. Zumbo

Abstract An overview is provided of the author’s program of research on mea-
surement invariance. Two questions are addressed. First, when do theoreticians and
practitioners talk about invariance, and what is it that we are talking about? Second,
is invariance only a property of latent variable models such as IRT and is there
invariance in classical test theory? If so, what is it for the: observed score, and latent
variable formulations.

1 Introduction

This is an overview of my longstanding program of research on the paradox that
is measurement invariance (Li and Zumbo 2009; Rupp and Zumbo 2003, 2004,
2006; Sawatzky et al. 2012; Wu et al. 2007; Zimmerman and Zumbo 2001; Zumbo
and Rupp 2004; Zumbo 1999, 2007a, b, 2008, 2009). On the one hand, under a
mathematical lens, it is a trivial identity but on the other hand, under a historical
and conceptual lens, it is probably the most important property of latent variable
measurement models and item response theory (IRT), in particular. Furthermore,
according to much of the contemporary psychometric literature, invariance is what
sets IRT apart from classical test theory (CTT) models. This state of affairs has left
me with two perplexing questions that will be the focus of this chapter.

1. When do we talk about invariance? And what is it that we are talking about?
This is most often discussed in the context of IRT, sometimes called “modern test
theory”. I will not be discussing Rasch models, per se.

B.D. Zumbo (�)
Department of ECPS (also Department of Statistics, and Institute of Applied Mathematics),
University of British Columbia, Vancouver, BC, Canada
e-mail: bruno.zumbo@ubc.ca

P. Giudici et al. (eds.), Statistical Models for Data Analysis, Studies in Classification,
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-319-00032-9 45,
© Springer International Publishing Switzerland 2013

399

mailto:bruno.zumbo@ubc.ca


400 B.D. Zumbo

2. Is “invariance” only a property of latent variable models (such as IRT) and is
there “invariance” in classical test theory (CTT)? If so, what is it for the: observed
score, and latent variable formulations.

I find it useful in considering the matter of invariance in measurement to
distinguish two formulations (parameterizations) of CTT: observed score CTT (e.g.,
Novick 1966; Lord and Novick 1968), and latent variable CTT (e.g., McDonald
1999). Clearly, these two formulations are interrelated but it is useful, for my
purposes herein, to distinguish them.

2 When Do We Talk About Invariance?

Matters of invariance come up very often in contemporary applied and theoretical
work, including axiomatic measurement. The minimum that we need is: A (parent)
population, and some vector-valued random variable, V, which is an indicator
(selection function) of sub-populations or range of conditions of interest selected
from the parent on the basis of V. We then talk about invariance with respect to
elements of the selection function V—e.g., the elements of V are indicators for age,
gender, ethnicity, or other such demographics. The concern is for invariance in sub-
populations versus their union. For example, all examinees in grade 6 which has
as sub-populations grade 6 boys and girls; the sub-populations of grade 6 boys and
girls come together to form the target population of grade 6 students.

2.1 Most Often Discussed in the Context of Item Response
Theory (IRT)

The versatility of IRT models has made them the preferred tool of choice in
many psychometric settings, but beyond the flexibility of IRT models it is the
often misunderstood feature of parameter invariance that is frequently cited in
introductory or advanced texts as one of their most important characteristics. It is the
property of parameter invariance which is the major foundation for their widespread
use in equating and adaptive testing and assessment.

As a brief review, IRT can be written in the following way. In conventional
descriptions of IRT, examinees are indexed by iD 1, : : : , I; items are indexed
by jD 1, : : : , J; � signifies the unidimensional latent indicator, and Pij .�/ is the
probability of examinee i responding correctly to item j as a function of the
continuous latent variable � . From IRT the unidimensional three-parameter logistic
(3-PL) model for dichotomously scored items can be written as follows:

Pij .�/ D �j C .1 	 �j / exp.˛j .�i 	 ˇj //
1C exp.˛j .�i 	 ˇj // ;

0 � �j < 1; ˛j > 0;	1 < ˇj ; �i <1
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wherein ˛j is the “item discrimination” parameter related to the slope of an item
characteristic curve (ICC), ˇj is the “item difficulty” parameter related to the
location of the ICC, and �j is the “pseudo-guessing” parameter, which is the lower
asymptote of the ICC. In what is often referred to as the two-parameter logistic,
2PL, IRT model, �j is zero (or, in some cases, a constant other than zero) and in the
one-parameter logistic, 1PL, IRT model: ˛j D 1 (or some other constant) and �j is
zero (or, in some cases, a constant of than zero).

The concept of item parameter invariance then stipulates that with a sufficiently
large pool of examinees item parameters are independent of the ability distribution
of the examinees. Likewise, the concept of person parameter (ability or theta) invari-
ance stipulates that with a sufficiently large set of items respondents’ ability score
and overall distribution of the ability score are independent of the set of test items.

In describing invariance in IRT models, Lord (1980) states that:

the probability of a correct answer to item i from examinees at a given ability level �0

depends only on �0 not on the number of people at �0 nor on the number of people at other
ability levels �1, �2, : : : Since the regression is invariant, its lower asymptote, its point of
inflexion, and the slope at this point all stay the same regardless of the distribution of ability
in the group tested. [ : : : ] According to the model, they remain the same regardless of the
group tested. (p. 34)

In this citation it is the phrase “according to the model”, which is key to an under-
standing of invariance. The phrase can be translated to “if the model holds” and
indeed renders invariance a relatively trivial issue (as the author implies himself),
because one can say that if a given model holds perfectly for examinees and items
in the respective populations, then the sets of item and examinee parameters are
invariant. “In other words, invariance only holds when the fit of the model to the data
is exact in the population.” (Hambleton et al. 1991, p. 23) In this sense, the model
is the “glue” that binds the examinees and items together. Put differently, parameter
invariance is a term denoting an absolute state so any discussion about whether there
are “degrees of invariance” or whether there is “some invariance” are technically
inappropriate (Hambleton et al. 1991). Moreover, the question of whether there is
invariance in a single population or under a single condition is illogical as invariance
requires at least two (sub-) populations or conditions for parameter comparisons.

Put differently, parameter invariance is not guaranteed by the mere fact that an
IRT model—or any other latent variable model for that matter—is fit to data (see
Engelhard 1994; van der Linden and Hambleton 1997). This illustrates the paradox
that is parameter invariance: On the one hand, under a mathematical lens, it is a
trivial identity but on the other hand, under a historical and conceptual lens, it
is probably the most important property of IRT models that sets them apart from
classical test theory (CTT) models.

Indeed, the property of parameter invariance unifies related investigations of:
scaling, differential item functioning (DIF), item parameter drift, and latent class
mixture models. In an important sense these are all instantiations of a lack of
invariance.

Mathematically, parameter invariance is a simple identity of parameters that are
on the same scale; yet, the latent scale in IRT models is arbitrary so that unlinked
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sets of parameters are invariant only up to a set of linear transformations specific to a
given IRT model. When estimating these parameters in unidimensional IRT models
with calibration samples, this indeterminacy is typically resolved by requiring that
the latent indicator � be normally distributed with mean 0 and standard deviation
1 (i.e., � 
N (0,1)). In orthogonal multidimensional IRT models, the latent scale
indeterminacy implies that parameters are identical up to an orthogonal rotation, a
translation transformation, and a single dilution or contraction.

2.2 A Familiar Description of Invariance from an IRT
Framework

In the IRT framework we refer to item parameters and examinee parameters, and
invariance means identical values of parameters in different populations or sub-
populations indexed by V, as described above. We can get a sense of the IRT usage
of invariance by considering the common 2PL model. In this case, for parameters
from two populations to be invariant,

˛0 D ˛; ˇ0 D ˇ; � 0 D �;

but due to the indeterminacy of the latent scale, we obtain:

˛�j D ı�1˛
0
j ; ˇ�j D "C ıˇ

0
j ; ��i D "C ı�

0
i ; and

Pj .�
�
i / D ˛�j .��i 	 ˇ�j / D ˛j .�i 	 ˇj / D Pj .�i /

We can see from the 2PL example that the matter of invariance in IRT is a rather
complicated statement involving a solution to the latent scale indeterminacy.

However, there may be situations wherein we do not have any sense of a popula-
tion or sub-population and in those contexts we are, in essence, not concerned with
invariance. This would be a type of calibrative measurement or assessment context.
In more common contexts, however, the aim is to use a statistical measurement
model to draw inferences from calibration samples to the respective populations
from which these were drawn. The additional focus is on the range of possible
conditions under which invariance is expected to hold. It depends, then on the type
(or strength) of inferences one wants to draw.

2.3 Desired Types of Inferences

Zumbo (2001, 2007) presented the following framework modeled on Draper’s
(1995) approach to classifying causal claims in the social sciences and, in turn,
on Lindley’s (1972) and de Finetti’s (1974–1975) predictive approach to inference.
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Fig. 1 Zumbo’s Draper–Lindley–de Finetti framework

Unlike Draper, Zumbo focused on the inferences about items and persons made in
assessment and testing. The foundation of the approach is the exchangeability of:

• Sampled and un-sampled respondents (i.e., examinees or test-takers); this could
be based on the selection function for sub-populations.

• Realized and unrealized items.
• Exchangeable sub-populations of respondents and items.

By exchangeability you can think of it in the purely mechanical sense. I have
found this useful to help me think of the various possibilities, whether they happen
regularly or not. This also helps me detail the range of conditions under which
invariance is expected to hold. Figure 1 is a description of the resulting fourfold
table and in the range of invariant claims.

So the answer to the question of whether there is invariance in CTT is “yes”,
however, not of the flavor and sense of invariance that we get with latent variable
models. For example, we proved that measurements that are parallel in a given
population are also parallel in any subpopulation. This was a point also emphasized
by Lord and Novick (1968). We provide other new results but they are of the flavor
seen in the sentence above about parallel tests. Let us then write CTT from a latent
variable framework and see what we get in terms of invariance therein.
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3 Is There “Invariance” in CTT?

Zimmerman and Zumbo (2001) described and extended a model of tests and
measurements that identifies test scores with Hilbert space vectors and true and
error components of scores with linear operators. One of the niceties of that level
of abstraction is that we were able to clearly show that some of the properties and
quantities from CTT hold for the entire population of individuals, as well as any
subpopulation of individuals. For our purposes today I will not go into the details
of the algebra, but it is important to note that the feel for invariance in the observed
score characterization of CTT is strikingly different from that in IRT. Furthermore,
many of the examples of invariance we prove in the Zimmerman and Zumbo (2001)
paper are of the variety seen in all classical mathematical statistics.

It is well known in CTT that:

Xi D �i C "i
var.Xi/ D var.�i /C var."i /

cov.�i ; "i / D 0
E."i / D 0

�

Properties of �i ; "i :

It should be noted that these last two statements about the covariance and
expected value are not assumptions, per se, but rather properties implied from the
definition of true and error variables.

I will sketch a bit of a model of CTT to motivate my remarks. See Steyer (2001)
for a full description of the details. Let us focus on the essentially tau-equivalent
test model because it is the one that is most commonly referred to in observed score
CTT. The model is:

Xi and Xj are a pair of tests from the set

X1; ::::; Xm with the assumptions W
.1/ �i D �j C �ij; �ij 2 <; an additive constant

.2/ cov."i ; "j / D 0; i ¤ j:

Assumption (1) above implies that there is a latent variable, that is a function of
the true score variables such that:

& D �i C �i ; � 2 <
Xi D &C "i :

Note that it is necessary to set the scale of &; and we can do this by, for example,
settingE.&/ D 0. Now with some analytical work it can be shown (see, for example,
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Steyer 2001) that the discrepancy between the expected values of two essentially
tau-equivalent tests are the same for each and every sub-population—i.e., resulting
in equal coefficients, �ij , in each and every sub-population.

E.V /.Xi /	 E.V /.Xj / D E.V /.Xi 	Xj / D �ij

for each sub-population indexed by 00V00:

The discrepancy function is important to note here because it is necessitated by
the essential tau-equivalence model. On the other hand, parallel tests have equal
expectation (but not variances and covariances) of the test score variables in sub-
populations.

4 Closing Remarks

It is, of course, widely appreciated that there are quantities in observed score CTT
that are population specific (and lacking invariance): variance of the true scores, and
test score reliability because it is bound to the variance of the true scores.

It is, however, less widely appreciated that models such as the essential tau-
equivalence model (when cast in the formulation of latent variable theory) has the
same invariance properties of item and person parameters as IRT. This suggests that
the invariance of item and person parameters is a consequence of considering item-
level latent models such as factor analysis and its kin, item response theory.

It is important to end on a clear take-home message. Yes CTT has invariance
properties but these depend on how the CTT model is formulated (latent versus
observed score). Some latent variable models, whether IRT or CTT, allow for item
and person parameter invariance. However, simply going about fitting an IRT model
to data does not necessarily give you measurement invariance. Believing that going
about fitting a model to data guarantees you measurement invariance is simply
magical thinking!

There are several things that one can do and statements that one can make with
a latent variable model such as an IRT model that they cannot do or say with an
observed score CTT model. In addition, we should be able to do the same things
and make the same statements as IRT with certain latent variable CTT models.

Invariance is both, in some senses, a trivial and obvious property and at the same
time the cornerstone of theoretical and applied measurement theory. I think I have
just begun to get a small sense of how it can be both.

In short, from a data modeling perspective, invariance requires that the model be
correct (true) in all corners of the data.
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