
R. Kountchev & B. Iantovics (Eds.): Adv. in Intell. Anal. of Med. Data & Decis., SCI 473, pp. 189–201.
DOI: 10.1007/978-3-319-00029-9_17 © Springer-Verlag Berlin Heidelberg 2013

Route Search Algorithm in Timetable Graphs
and Extension for Block Agents

Ion Cozac

“Petru Maior” University of Tirgu-Mures
cozac@upm.ro

Abstract. This paper describes an algorithm that determines routes using three
graphs: the railway graph, the train timetable graph and the summary timetable
graph. The search in the timetable graphs is guided by a subgraph of the railway
graph, which is defined by the nodes that form an ellipse around the minimum
distance path from departure to arrival. We also present some performance
evaluations of our proposed algorithm. Finally we describe an extension of this
algorithm that can be used in conjunction with block agents to find routes in
large timetable graphs, and some applications for medical domain.

Keywords: timetable graph, maximum allowed distance, bridges in graph,
block agents.

1 Introduction

The problem of determining optimum path in timetable graphs has been intensively
studied during the last ten years, both from theoretical and practical point of view.
This problem is important especially if we want to plan trips using the public trans-
portation system (trains, buses, airplanes etc). All the approaches are based on sup-
plementary data structures which are used to speedup the route search. The speedup is
important because the server must be able to solve numerous queries simultaneously.

One approach to speedup the search uses multi-level graphs [9]. Precomputed
shortest paths are replaced by single edges whose weights are the cost of the corres-
ponding paths. The paper introduces the concept of multi-level decomposition.

Another approach models the timetable information using some heuristics to spee-
dup the implementation [6]. The authors exhibit important extensions of the time-
dependent approach to model the earliest arrival and minimum number of transfer
problems.

An overview of known models and efficient algorithms for optimal solving the
timetable information problem has been given [5]. A comparison between time-
dependent and time-expanded approaches has been made in order to evaluate their
relative performance [7].

Some authors considered the planning route problem using timetable information,
taking into account the presence of delays [4].

The SHARC approach [1] uses contraction, that is, iteratively removal of non-
important nodes, plus edges addition to preserve correct costs between remaining

190 I. Cozac

nodes. It is a fast unidirectional algorithm, which is advantageous for timetable graphs
where bidirectional search is not allowed.

New reviews of all known algorithms in this field have been made [2], and the al-
gorithms have been evaluated using large, real data sets that are publicly available.

This paper is structured as follows. Section 2 introduces some basic notions which
will be used throughout the paper: railway graph, bridges and blocks in graph, timeta-
ble graph. Section 3 describes in detail our contribution to solve the route search prob-
lem in timetable graphs. Section 4 presents some experiments based on our approach.
Section 5 shows how our approach can be extended to distribute the route search
problem in large timetable graphs, using block agents. Section 6 presents some possi-
ble applications of our algorithms in medical domain. The last section is reserved for
conclusions and discussions about future work.

Our approach is based on three graphs: the railway graph, the original timetable
graph and the summary timetable graph. First, we delimit the search space in the rail-
way graph, that is, which are the stations that can be taken into account when search-
ing routes from departure to arrival. Second, we use the summary graph to identify
which trains are valid for our planned route. The original timetable graph is used only
in some few special cases, if departure and / or arrival station is not in the summary
graph.

2 Preliminaries

Railway graphs. A railway graph G = (V, E) is symmetric and weighted: each edge
(v,w) has a cost c(v,w) > 0. We assume the graph G is connected, that is, there is a path
from any vertex v to any other vertex w. The cost of a path P = v1,…,vk is the sum of
the cost of all its edges:

 
=

−=
k

2i
i1i)v,v(c)P(c (1)

P* = s,…,t is a shortest path from s to t if there is no other path P’ such that c(P*) >
c(P’).

Bridges in Graphs. A bridge is an edge whose deletion will disconnect the graph [10].
A block is a maximal subgraph that doesn’t contain bridges, that is, every new edge
we can add to this subgraph is a bridge.

Timetable Graphs. Two basic models for timetable information have been used
throughout the above mentioned papers. The time-dependent model uses one node for
each station, and every connection by train between two neighbor stations has a cor-
responding arc. The time-expanded model uses one node for each event (departure
from / arrival in station), and an arc between two nodes depicts the train route. We
used the time-expanded model due to its versatility, especially because transfers are
easily managed.

 Route Search Algorithm in Timetable Graphs and Extension for Block Agents 191

Fig. 1. Partial timetable subgraph, the time-expanded model

Let us examine Figure 1, which depicts the time-expanded model using a partial
timetable subgraph. The train T1 starts from station StA at 8:00, arrives in station StB
at 8:15, departs at 8:20 and arrives in station StC at 8:30. The train T2 passes through
stations StD, StB and StE. If we want to travel from StA to StE, we will take the train
T1 from StA to StB, then we will wait for the train T2 to continue the travel.

A timetable graph GT = (VT, AT) is directed (not symmetric). Each vertex vT is a
triplet (s,t,h) where s is a railway station, t is a train and h is a time moment. An arc
(vT,wT) may denote :

- train passing from one station to the next station, if s(vT) ≠ s(wT) and t(vT) = t(wT)
(two distinct stations, the same train);

- train halt in a station if s(vT) = s(wT) and t(vT) = t(wT) (the same station, the same
train);

- transfer possibility, if the traveler may gets off in a station to take another train
(distinct trains).

The arcs of first two types are marked with continuous links, and the arcs of third type
are marked with dashed links. In order to simplify the computations, the field t takes
integer values from 0 (for 0:00) to 1439 (for 23:59).

Let us denote by tim the cost function which is defined as follows:

 if (vT,wT) ∈ AT then tim(vT,wT) = (h(wT) – h(vT) + 1440) modulo 1440 (2)

tim(vT,wT) may be the time needed to cover the route from s(vT) to s(wT) (different
stations), or the waiting time in that station.

There are many solutions to build the timetable graph, if we are talking about how
to model the transfers. One solution is to connect each arrival vertex to each departure
vertex (Fig 2.a). Another solution is to connect in a ring all the vertices that are re-
lated to the same station; the vertices are ordered by time. The last vertex is linked to
the first vertex, to allow night transfers [2] [4] [5] [7] [9].

We used a slightly different solution (Fig. 2.b). The arrival vertex is connected to
the nearest departure vertex, and the ring contains only departure vertices. This solu-
tion allows us to manage easily the transfers, especially if we want to count them, to
limit their number, to impose minimum transfer time.

192 I. Cozac

 a b

Fig. 2. How to model the transfers: a) from each arrival point to each departure point; b) build-
ing a ring with departure points

Suppose k arrival vertices and k departure vertices are related to a particular sta-
tion. Using the solution depicted in Figure 2.a), the number of auxiliary arcs is k2.
Using the solution depicted in Figure 2.b), the number of auxiliary arcs is k.

Block agents [11] [7]. A block agent is a virtual entity that has the following
properties:

- autonomy : block agents operate their subproblems without direct intervention of
other agents or human;

- social ability : block agents interact with other agents by sending messages to
communicate consistent partial states;

- proactivity : block agents perceive their environment and changes in it; they can
extend new partial consistent states to more complete consistent states.

3 Route Search Algorithm

3.1 How to Generate the Summary Timetable Graph

Our search algorithm uses the railway graph and two timetable graphs. The first time-
table graph depicts only the routes of all trains and nothing else.

If a train starts from station s, or station s has at least three neighbors, then s is set
as important. The reason is that the station s may be used to take another train to con-
tinue the travel. The second timetable graph depicts a summary of the first timetable,
such that every arc links vertices which are related to important stations. This graph
includes also rings which are related to important stations.

The built of the summary timetable graph takes about O(n log n) time, due to some
sort and search operations, where n = |VT|.

3.2 Effective Route Search Algorithm

Let dp be the departure station and ar the arrival station. We have to determine as
many as possible optimum routes from dp to ar. We should define what an optimum

 Route Search Algorithm in Timetable Graphs and Extension for Block Agents 193

route is. Let us consider the station dp and departure time h; we have to determine a
route in such a way that we arrive in station ar the earliest possible moment. In other
words, we solve the earliest arrival problem [2, 4, 5, 6, 7, 9].

The summary timetable graph is used to accelerate the search process, by examin-
ing only vertices that are related to important stations. What should we do if dp, ar or
both are not important?

If dp is not an important station, we start the search from the departure vertex using
the original timetable graph. The start vertex is related to the station dp and its time is
h. The search stops when the first important station is reached. If the next vertex ex-
ists, it is of departure type and is related to the same important station. If the search
reaches the arrival station, the algorithm returns the path to this vertex. If the search
reaches the end of the train route, the algorithm must search for a departure vertex
which is related to the end station.

If dp is not an important station, the first phase of the algorithm may either return
the found path or a departure vertex which is related to an important station.

The destination station ar may also be important or unimportant. No matter the
type of ar, we assign to each train a pointer to the first arrival vertex which is related
to ar, if such vertex exists in the train route.

Now we have a departure vertex which is related to an important station, so we can
use only the summary timetable graph. A variant of Dijkstra’s algorithm [3] is used to
determine optimum routes in this graph. Every time the search algorithm detects a
new train, it checks if this train passes through the arrival station. If this is the case we
may insert the arrival vertex in the priority queue and continue the search, or we may
simply return the path to it.

Fig. 3. Optimum versus non optimum path from StA to StC

Let us examine Figure 3 to analyze a particular case. When the algorithm starts,
the arrival vertex (time 7:45) is detected on the route of the start train. If this vertex is
inserted in the priority queue and the algorithm continues, another arrival vertex will
be reached, which gives the best arrival time (7:35). The direct route is not optimum,
but it doesn’t need any transfer.

194 I. Cozac

Fig. 4. Determining optimum route from StA to StD with imposed transfer time

Important Remark. Using rings to connect departure vertices may cause troubles
when we are searching for routes with imposed minimum transfer time. Let us ex-
amine the figure 4, which depicts a critical case in station StC, assuming the waiting
time is imposed to be at least 3 minutes. According to the algorithm of Dijkstra, the
vertices are extracted from the priority queue in this order: v1, v2, v3, v4, v5, v7, v6, v8,
v9, etc. When v6 is extracted, the successor v9 is entered in the priority queue with its
settings (cost of the route from departure etc). The waiting time is 2 minutes, which is
not acceptable. So we have to find another predecessor for v9, if such predecessor
exists. In this case, a better predecessor is v4, which has been extracted before. If such
predecessor doesn’t exist, we have to consider the next departure vertex which will
replace the vertex v9 in the current path.

We need to use a supplementary list of vertices, which is assigned to each impor-
tant station we traverse. This list contains all the arrival vertices which are detected by
the search algorithm. When we traverse the ring, this list must also be scanned to link
a departure vertex from the best previous arrival vertex, such that the imposed condi-
tions are fulfilled.

This problem does not appear if we are using the method which has been depicted
in Fig. 2.a). But that method has another disadvantage: it consumes too much memory
and is slower.

3.3 How to Improve the Search Algorithm

This algorithm may have a large search space if stations dp and ar are far away from
each other and there is no direct train to connect them, so the response time may not
be acceptable. We know that, using the algorithm of Dijkstra, the search will span a
disk around the departure vertex until the destination is reached.

The difficulty of search process is considered using our experimental data. A
route is difficult if the search algorithm spans more than quarter the number of arcs.

In order to reduce the search space, we used the following idea (see Fig. 5).

 Route Search Algorithm in Timetable Graphs and Extension for Block Agents 195

Fig. 5. Determining an ellipse around the minimum cost path

We determine a minimum cost path from dp to ar in the railway graph. We also
determine a subgraph which includes the found path and each vertex z fulfills the
following condition:

 dist(dp,z) + dist(z,ar) ≤ f ⋅ dist(dp,ar) (3)

where dist(x,y) is the cost of the shortest path from x to y (the cost is computed over
the railway graph), and f >1 is a convenient chosen parameter (see Experiments). This
subgraph will define an ellipse around the minimum cost path and will be used as
search space. The value f ⋅ dist(dp,ar) is the maximum allowed distance for any route
we are searching.

The search space may have some fragments that will never be used by any route
from dp to ar (see dashed lines in Fig. 5). These fragments are identified using
bridges and blocks in the ellipse subgraph. First, we determine the blocks that include
the arcs of the shortest path; we may have one block (left) or many blocks (two blocks
and one bridge, right). The arcs that don’t belong to any of these blocks are dropped.

The usage of this method is motivated by the fact that the railway graph is much
lower than the timetable graph (see Experiments). The search space is reduced once,
before starting any route search, and every route search will span a disk slice.

4 Experiments

We implemented our algorithms in ANSI C and compiled them using GNU C Compi-
ler version 4.1.0 on an AMD Athlon processor at 1.4 GHz with 2 GB of RAM run-
ning Linux Red-Hat 4.1.0-3.

We dealt with the whole Romanian timetable, valid for year 2011, which includes
international trains that pass through Romania. The railway graph has 2250 vertices
(250 vertices correspond to important stations) and 5150 arcs, the timetable graph has
58300 vertices and 56150 arcs, and the auxiliary graph has 20850 vertices and 33450
arcs. All these data structures need about 1.8 MB to be stored.

The summary timetable graph is generated in about one second. If the routes or the
timetables of some particular trains are changed, the original timetable graph is

196 I. Cozac

updated and the summary timetable graph is rebuilt. Whenever the timetable is
changed, the railway graph is updated such that it keeps only those links which are
traversed by trains.

We queried for the following groups of routes:

- from Bucuresti-Nord to Tirgu-Mures and return;
- from Bucuresti-Nord to Botosani and return;
- from Suceava to Tirgu-Mures and return;
- random departure and arrival.

We chose routes from and to Bucuresti-Nord because it is the most important Roma-
nian station, and has assigned the maximum number of departures and arrivals. We
also chose random routes to estimate the general performance of our proposed
algorithm.

The parameter f, which is used to determine an ellipse around the minimum dis-
tance path (to limit the search space), has been set to 1.60. This value has been deter-
mined by examining some sinuous routes between Romanian stations. One such route
is between Suceava and Tirgu-Mures, which gives three distinct rail paths having
distances 365 km, 450 km and 532 km respectively. The ratio between the longest and
the shortest path is 1.45. The value of f has been increased for safety reasons.

Our railway graph is denser inside Romania than outside. The reason to consider
only Romanian stations (the dense part) is that, given a particular pair (dp,ar) whose
shortest distance is d, the following condition is fulfilled:

 (d f + e) / (d + e) < f, for any supplementary distance e > 0 (4)

So this value of f covers well almost all routes. It is possible, even though very unlike-
ly, that some routes may not be optimal. That is, there may be another route whose
distance is greater than the found one, but the travel time is lower. To prevent such
cases, an exhaustive method could be used to check routes between any two important
stations. This method will imply 62500 queries, and assuming 0.4 seconds on average
for one query, this action could take about 7 hours. We may also determine different
values for distinct departure stations, to obtain better space reduction. This solution
should be improved to eliminate unnecessary queries, for example considering the
railway topology.

The first column of Table 1 below shows: departure station, arrival station, mini-
mum and maximum distance for found routes, number of departure vertices. The
second column shows: total response time, averaged response time. The total response
time is measured from the point of query reception to the point of answer completing.
The averaged response time is computed as ratio between total response time and
number of departure vertices.

The third column shows the total number of spanned arcs for two cases: with and
without space reduction, the unproductive searches being included (see remark
below). All these tests used the same triplet: railway graph, original timetable
graph, summary timetable graph. The number of spanned arcs depends heavily on the
topology of the railway net, which is not uniformly dense.

 Route Search Algorithm in Timetable Graphs and Extension for Block Agents 197

Table 1. Performance evaluation (samples)

Routes Response time Spanned arcs
Bucuresti-Nord -- Tirgu-Mures

distances : 449 km / 612 km
109 departure vertices

total : 0.356 seconds
per dep vtx : 0.0033 sec

48000 /
185000

Tirgu-Mures -- Bucuresti-Nord
distances : 449 km / 612 km

19 departure vertices

total : 0.035 seconds
per dep vtx : 0.0018 sec

3200 /
8000

Bucuresti-Nord -- Botosani
distance : 477 km

109 departure vertices

total : 0.181 seconds
per dep vtx : 0.0017 sec

24000 /
280000

Botosani -- Bucuresti-Nord
distance : 477 km

8 departure vertices

total : 0.018 sec
per dep vtx : 0.0023 sec

1500 /
2500

Suceava – Tirgu-Mures
distances : 365 km / 532 km

61 departure vertices

total : 0.078 sec
per dep vtx : 0.0013 sec

16500 /
96000

Tirgu-Mures -- Suceava
distances : 365 km / 532 km

19 departure vertices

total : 0.032 sec
per dep vtx : 0.0017 sec

2400 /
12000

In order to estimate the general performance of our proposed algorithm, we gener-
ated 10000 random queries. The estimation gives the following results: 400 seconds
to answer all 10000 queries for 125000 total departure vertices. The averaged
response time is 0.04 seconds per query, and 0.0032 seconds per departure vertex.

Generally speaking, the total response time depends on the number of departure
vertices, the number of necessary transfers and the size of the ellipse graph which is
built using the maximum allowed distance criterion.

It is important to say that the end user is interested about the total response time: he
receives several variants of which he can choose. It is also important for us to know
the averaged response time (per departure vertex) to evaluate the efficiency of the
algorithm.

Remark. In order to find routes from departure to arrival, the application starts a new
search from each departure vertex. Some of these vertices are not productive, that is,
they will not give any route to destination. But the time consumed with these unpro-
ductive nodes is taken into account to measure the response time (total and averaged).

If we don’t use any speedup technique (that is, the original timetable graph is ex-
tended with supplementary arcs to solve the transfers, so the summary timetable graph
is not used), the total response time may be up to 15 times slower. The coefficient is
lower if direct trains connect departure and arrival, and higher if three or more trains
are needed to cover the route.

The auxiliary graph has been built using rings to connect departure vertices which
are assigned to the same important station (see Fig. 2.b). This solution uses low

198 I. Cozac

volume of memory to store this data structure. Another possible technique could be to
connect each arrival vertex to each departure vertex (see Fig. 2.a), if the related
station is important. Using this technique, the auxiliary graph could have 110000 arcs,
and the response time may be three times slower. These estimations are valid for our
timetable. If the timetable is higher, the number of arcs and the response time will be
higher; the increase factor is worse than linear.

5 Extension for Block Agents

The above solution may be successfully used for medium timetable graphs, for exam-
ple, if the timetable stores information about a particular country, including its inter-
national trains. This solution may not be well suited for continental timetables, due to
the following reasons:

- searching for routes traversing two or more countries may take long time to be
completed, if three or more trains are needed to cover the route;

- updating the timetable is a time consuming task.

To surpass these difficulties, we propose a solution based on block agents. We didn’t
find any paper that tackles the subject of finding routes in timetable graphs using
block agents. The only paper that tackles a close related subject is, to our knowledge,
the work of Salido et al [8], which discusses about how to design a new timetable
using constraint satisfactions.

Now let us depict our proposed solution. Every country uses its own graphs (one
railway graph and two timetable graphs), which are managed by its own block agent.
The timetable graphs include the trains that traverse this country, including the inter-
national ones. If both departure and arrival are known, the above solution may be
successfully used without any auxiliary tools.

To solve the general problem, we introduce two new block agents. The first agent
(let us denote it by CRA - central railway agent) manages the continental railway
graph. The second agent (denoted as CTA - central timetable agent) manages a sub-
graph of the continental timetable graph which is built as following. Each agent who
is related to a particular country identifies al the trains that are needed to cover routes
between any two distinct frontier stations. The timetable of these trains is sent to
CTA, which will build the needed timetable subgraph. The agent CRA receives also
the list of stations that are managed by CTA. The central agent CTA will manage the
summary timetable graph only, which includes the important stations of the continent.

Now we are able to find routes between any two stations, which are located in dif-
ferent countries. The agent CRA receives a query to identify the ellipse around the
minimum distance path and identifies the countries that are covered by this ellipse. It
also identifies some important intermediate stations: one set of stations for the depar-
ture country and another set of stations for the arrival country (Fig. 6). Three queries
are sent to three different agents.

 Route Search Algorithm in Timetable Graphs and Extension for Block Agents 199

Fig. 6. Determining a route that traverses more than two countries and needs cooperation
among agents

The first query is addressed to the agent who has knowledge about the departure
station. This agent will determine the first list of routes: if the departure station is not
in the list of the agent CTA, it determines trains from departure to the nearest stations
that may be managed by CTA (see dashed links). If the departure station is managed
by CTA, the first query is not needed.

The second query is addressed to the agent CTA, which will determine the list of
routes between departure country and arrival country (see continuous links). This step
is always necessary if the departure country is not able to determine the route.

The third query is addressed to the agent who has knowledge about the arrival sta-
tion. This agent will determine the last list of routes: if the arrival station is not in the
map of CTA, it determines trains from the stations that have been set by CRA to the
arrival station (see dashed links). If the arrival station is managed by CTA, the third
query is not needed.

If the departure and/or arrival station is not in the CTA map, we need to build
routes from arrival to departure by mixing the partial routes.

6 Application for Medical Domain

The first and obvious application of the algorithms presented above is for touristic
domain, if one is interested to plan its route using the public transportation system.
We can also use these algorithms in the medical system, for example to optimize the
traffic of the emergency vehicles. A customized application may be designed to watch
over this traffic, if the vehicles are endowed with GPS devices.

Using the public transportation system may have a positive impact concerning the
public health. If people don’t use their own cars, the traffic will be decongested, the
pollution will be reduced and the emergency traffic will be improved.

7 Conclusions and Future Work

This paper presented a simple, less memory consuming and fast solution that can be
used to solve the problem of searching routes in timetable graphs. We adopted this
solution in the hypothesis that short / direct routes are much more frequent than long
routes with two or more transfers (difficult routes). Our approach requires the least
memory consumption and the shortest time needed to generate the summary timetable
graph. Other methods require about several minutes or hours to generate the auxiliary
data structures.

200 I. Cozac

We have to search for better solutions to solve the update problem, to eliminate the
rebuilt of the summary timetable graph. Removing an existing train or inserting a new
train should involve some operations to update the links between different trains in all
important related stations. Updating the timetable graph of an existing train may in-
volve a new order of vertices in the related rings. Improved solutions are necessary: if
the original timetable graph will have 1000000 vertices, the built of the summary
timetable graph will take about 24 seconds - the time complexity is O(n log n).

In order to reduce the search space, we determine an ellipse around the shortest
distance path, which is defined using the maximum allowed distance criterion, based
on the parameter f. Its value has been determined using an empirical method. We may
determine better (possible multiple) values for f, to obtain better space reduction. We
may also search for other solutions to reduce the search space, maybe with the cost of
increasing the preprocessing time and / or the memory consumption for supplementa-
ry data structures.

We also described a theoretical solution to solve the large timetable case, but this
solution is not yet implemented. The main difficulty consists in solving some special
cases, if some trains have running restrictions. Indeed, it is possible that some inter-
mediate trains or some final trains don’t run daily. The queries may be solved sequen-
tially or simultaneously. In the sequential approach, the agent located in the departure
country will solve the departure subproblem. CTA will solve the intermediate sub-
problem using the output of the first train. The last agent will solve the arrival prob-
lem using the output of CTA.

Another approach could be to solve simultaneously these three subproblems. We
have to obtain multiple solution sets, each set being valid for a certain day. This is
because we can not know in advance the arrival day in an intermediate station follow-
ing a certain route. The arrival day is known only after the search algorithm reaches
the destination station.

Using separate agents for different countries will be an advantageous solution, be-
cause this way every local agent will almost always manage local queries, that is,
departure and arrival are in the same country. Of course, local agents are also able to
solve queries for routes between neighbor countries. Anyway, we can assume that
local queries are much more frequent than international ones, so this is a good reason
to continue this work using block agents.

Acknowledgement. This work was supported by the Bilateral Cooperation Research
Project between Romania and Bulgaria, entitled: “Electronic Health Records for the
Next Generation Medical Decision Support in Romanian and Bulgarian National
Healthcare System”, the involved institutions are the Technical University of Sofia
and Petru Maior University of Tirgu Mures.

References

1. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. In: Proceedings of
10th Workshop of Algorithms and Engineering Experiments (ALENEX 2008), pp. 13–26.
SIAM (April 2008)

 Route Search Algorithm in Timetable Graphs and Extension for Block Agents 201

2. Bauer, R., Delling, D., Wagner, D.: Experimental Study of Speed-up Techniques for Time-
table Information Systems. Journal Networks 57, 38–52 (2011)

3. Dijkstra, E.W.: A Note on Two Problems Ion Connection with Graphs. Numerische Ma-
thematic 1, 269–271 (1959)

4. Frede, L., Müller-Hannemann, M., Schnee, M.: Efficient On-trip Timetable Information in
the Presence of Delays. In: ATMOS 2008, 8th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization and Systems, pp. 1–16 (2008)

5. http://drops.dagstuhl.de/opus/volltexte/2008/1584
6. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.D.: Timetable Information:

Models and Algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zarolia-
gis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90. Springer,
Heidelberg (2007)

7. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Toward Realistic Modeling of Time-
table Information Through the Time-dependent Approach. In: Proc. of the 3rd Workshop
on Algorithmic Methods and Models for Optimization of Railways (ATMOS 2003).
ENTCS, vol. 92, pp. 85–103. Elsevier (2004)

8. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Informa-
tion in Public Transportation Systems. ACM Journal of Experimental Algorithms 12,
Article 2.4 (2007)

9. Salido, M.A., Abril, M., Barber, F., Ingolotti, L., Tormos, P., Lova, A.: Domain-
Dependent Distributed Models for Railway Scheduling. Journal Knowledge Based Sys-
tems (Elsevier) 20, 186–194 (2007)

10. Schulz, F., Wagner, D., Zaroliagis, C.D.: Using Multi-level Graphs for Timetable Informa-
tion in Railway Systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS,
vol. 2409, pp. 43–59. Springer, Heidelberg (2002)

11. Tarjan, R.E.: A Note on Finding the Bridges of a Graph. Information Processing Let-
ters 2(6), 160–161 (1974)

12. Wooldridge, M., Jennings, R.: Agent Theories, Architectures, and Languages: A Survey.
Intelligent Agents, 1–22 (1995)

	Route Search Algorithm in Timetable Graphs and Extension for Block Agents

	Introduction
	Preliminaries
	Route Search Algorithm
	Experiments
	Extension for Block Agents
	Application for Medical Domain
	Conclusions and Future Work
	References

