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Abstract. This paper describes an algorithm that determines routes using three 
graphs: the railway graph, the train timetable graph and the summary timetable 
graph. The search in the timetable graphs is guided by a subgraph of the railway 
graph, which is defined by the nodes that form an ellipse around the minimum 
distance path from departure to arrival. We also present some performance 
evaluations of our proposed algorithm. Finally we describe an extension of this 
algorithm that can be used in conjunction with block agents to find routes in 
large timetable graphs, and some applications for medical domain. 
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1 Introduction 

The problem of determining optimum path in timetable graphs has been intensively 
studied during the last ten years, both from theoretical and practical point of view. 
This problem is important especially if we want to plan trips using the public trans-
portation system (trains, buses, airplanes etc). All the approaches are based on sup-
plementary data structures which are used to speedup the route search. The speedup is 
important because the server must be able to solve numerous queries simultaneously. 

One approach to speedup the search uses multi-level graphs [9]. Precomputed 
shortest paths are replaced by single edges whose weights are the cost of the corres-
ponding paths. The paper introduces the concept of multi-level decomposition. 

Another approach models the timetable information using some heuristics to spee-
dup the implementation [6]. The authors exhibit important extensions of the time-
dependent approach to model the earliest arrival and minimum number of transfer 
problems. 

An overview of known models and efficient algorithms for optimal solving the 
timetable information problem has been given [5]. A comparison between time-
dependent and time-expanded approaches has been made in order to evaluate their 
relative performance [7]. 

Some authors considered the planning route problem using timetable information, 
taking into account the presence of delays [4]. 

The SHARC approach [1] uses contraction, that is, iteratively removal of non-
important nodes, plus edges addition to preserve correct costs between remaining 
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nodes. It is a fast unidirectional algorithm, which is advantageous for timetable graphs 
where bidirectional search is not allowed. 

New reviews of all known algorithms in this field have been made [2], and the al-
gorithms have been evaluated using large, real data sets that are publicly available. 

This paper is structured as follows. Section 2 introduces some basic notions which 
will be used throughout the paper: railway graph, bridges and blocks in graph, timeta-
ble graph. Section 3 describes in detail our contribution to solve the route search prob-
lem in timetable graphs. Section 4 presents some experiments based on our approach. 
Section 5 shows how our approach can be extended to distribute the route search 
problem in large timetable graphs, using block agents. Section 6 presents some possi-
ble applications of our algorithms in medical domain. The last section is reserved for 
conclusions and discussions about future work. 

Our approach is based on three graphs: the railway graph, the original timetable 
graph and the summary timetable graph. First, we delimit the search space in the rail-
way graph, that is, which are the stations that can be taken into account when search-
ing routes from departure to arrival. Second, we use the summary graph to identify 
which trains are valid for our planned route. The original timetable graph is used only 
in some few special cases, if departure and / or arrival station is not in the summary 
graph. 

2 Preliminaries 

Railway graphs. A railway graph G = (V, E) is symmetric and weighted: each edge 
(v,w) has a cost c(v,w) > 0. We assume the graph G is connected, that is, there is a path 
from any vertex v to any other vertex w. The cost of a path P = v1,…,vk is the sum of 
the cost of all its edges: 

 
=

−=
k

2i
i1i )v,v(c)P(c  (1) 

P* = s,…,t is a shortest path from s to t if there is no other path P’ such that c(P*) > 
c(P’). 

Bridges in Graphs. A bridge is an edge whose deletion will disconnect the graph [10]. 
A block is a maximal subgraph that doesn’t contain bridges, that is, every new edge 
we can add to this subgraph is a bridge. 

Timetable Graphs. Two basic models for timetable information have been used 
throughout the above mentioned papers. The time-dependent model uses one node for 
each station, and every connection by train between two neighbor stations has a cor-
responding arc. The time-expanded model uses one node for each event (departure 
from / arrival in station), and an arc between two nodes depicts the train route. We 
used the time-expanded model due to its versatility, especially because transfers are 
easily managed. 
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Fig. 1. Partial timetable subgraph, the time-expanded model 

Let us examine Figure 1, which depicts the time-expanded model using a partial 
timetable subgraph. The train T1 starts from station StA at 8:00, arrives in station StB 
at 8:15, departs at 8:20 and arrives in station StC at 8:30. The train T2 passes through 
stations StD, StB and StE. If we want to travel from StA to StE, we will take the train 
T1 from StA to StB, then we will wait for the train T2 to continue the travel. 

A timetable graph GT = (VT, AT) is directed (not symmetric). Each vertex vT is a 
triplet (s,t,h) where s is a railway station, t is a train and h is a time moment. An arc 
(vT,wT) may denote : 

- train passing from one station to the next station, if s(vT) ≠ s(wT) and t(vT) = t(wT) 
(two distinct stations, the same train); 

- train halt in a station if s(vT) = s(wT) and t(vT) = t(wT) (the same station, the same 
train); 

- transfer possibility, if the traveler may gets off in a station to take another train 
(distinct trains). 

The arcs of first two types are marked with continuous links, and the arcs of third type 
are marked with dashed links. In order to simplify the computations, the field t takes 
integer values from 0 (for 0:00) to 1439 (for 23:59). 

Let us denote by tim the cost function which is defined as follows: 

 if (vT,wT) ∈ AT then tim(vT,wT) = (h(wT) – h(vT) + 1440) modulo 1440 (2) 

tim(vT,wT) may be the time needed to cover the route from s(vT) to s(wT) (different 
stations), or the waiting time in that station. 

There are many solutions to build the timetable graph, if we are talking about how 
to model the transfers. One solution is to connect each arrival vertex to each departure 
vertex (Fig 2.a). Another solution is to connect in a ring all the vertices that are re-
lated to the same station; the vertices are ordered by time. The last vertex is linked to 
the first vertex, to allow night transfers [2] [4] [5] [7] [9]. 

We used a slightly different solution (Fig. 2.b). The arrival vertex is connected to 
the nearest departure vertex, and the ring contains only departure vertices. This solu-
tion allows us to manage easily the transfers, especially if we want to count them, to 
limit their number, to impose minimum transfer time. 
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                               a                   b 

Fig. 2. How to model the transfers: a) from each arrival point to each departure point; b) build-
ing a ring with departure points 

Suppose k arrival vertices and k departure vertices are related to a particular sta-
tion. Using the solution depicted in Figure 2.a), the number of auxiliary arcs is k2. 
Using the solution depicted in Figure 2.b), the number of auxiliary arcs is k. 

Block agents [11] [7]. A block agent is a virtual entity that has the following  
properties: 

- autonomy : block agents operate their subproblems without direct intervention of 
other agents or human; 

- social ability : block agents interact with other agents by sending messages to 
communicate consistent partial states; 

- proactivity : block agents perceive their environment and changes in it; they can 
extend new partial consistent states to more complete consistent states. 

3 Route Search Algorithm 

3.1 How to Generate the Summary Timetable Graph 

Our search algorithm uses the railway graph and two timetable graphs. The first time-
table graph depicts only the routes of all trains and nothing else. 

If a train starts from station s, or station s has at least three neighbors, then s is set 
as important. The reason is that the station s may be used to take another train to con-
tinue the travel. The second timetable graph depicts a summary of the first timetable, 
such that every arc links vertices which are related to important stations. This graph 
includes also rings which are related to important stations. 

The built of the summary timetable graph takes about O(n log n) time, due to some 
sort and search operations, where n = |VT|. 

3.2 Effective Route Search Algorithm 

Let dp be the departure station and ar the arrival station. We have to determine as 
many as possible optimum routes from dp to ar. We should define what an optimum  
 



 Route Search Algorithm in Timetable Graphs and Extension for Block Agents 193 

route is. Let us consider the station dp and departure time h; we have to determine a 
route in such a way that we arrive in station ar the earliest possible moment. In other 
words, we solve the earliest arrival problem [2, 4, 5, 6, 7, 9]. 

The summary timetable graph is used to accelerate the search process, by examin-
ing only vertices that are related to important stations. What should we do if dp, ar or 
both are not important? 

If dp is not an important station, we start the search from the departure vertex using 
the original timetable graph. The start vertex is related to the station dp and its time is 
h. The search stops when the first important station is reached. If the next vertex ex-
ists, it is of departure type and is related to the same important station. If the search 
reaches the arrival station, the algorithm returns the path to this vertex. If the search 
reaches the end of the train route, the algorithm must search for a departure vertex 
which is related to the end station. 

If dp is not an important station, the first phase of the algorithm may either return 
the found path or a departure vertex which is related to an important station. 

The destination station ar may also be important or unimportant. No matter the 
type of ar, we assign to each train a pointer to the first arrival vertex which is related 
to ar, if such vertex exists in the train route. 

Now we have a departure vertex which is related to an important station, so we can 
use only the summary timetable graph. A variant of Dijkstra’s algorithm [3] is used to 
determine optimum routes in this graph. Every time the search algorithm detects a 
new train, it checks if this train passes through the arrival station. If this is the case we 
may insert the arrival vertex in the priority queue and continue the search, or we may 
simply return the path to it. 

 

 

Fig. 3. Optimum versus non optimum path from StA to StC 

Let us examine Figure 3 to analyze a particular case. When the algorithm starts, 
the arrival vertex (time 7:45) is detected on the route of the start train. If this vertex is 
inserted in the priority queue and the algorithm continues, another arrival vertex will 
be reached, which gives the best arrival time (7:35). The direct route is not optimum, 
but it doesn’t need any transfer. 
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Fig. 4. Determining optimum route from StA to StD with imposed transfer time 

Important Remark. Using rings to connect departure vertices may cause troubles 
when we are searching for routes with imposed minimum transfer time. Let us ex-
amine the figure 4, which depicts a critical case in station StC, assuming the waiting 
time is imposed to be at least 3 minutes. According to the algorithm of Dijkstra, the 
vertices are extracted from the priority queue in this order: v1, v2, v3, v4, v5, v7, v6, v8, 
v9, etc. When v6 is extracted, the successor v9 is entered in the priority queue with its 
settings (cost of the route from departure etc). The waiting time is 2 minutes, which is 
not acceptable. So we have to find another predecessor for v9, if such predecessor 
exists. In this case, a better predecessor is v4, which has been extracted before. If such 
predecessor doesn’t exist, we have to consider the next departure vertex which will 
replace the vertex v9 in the current path. 

We need to use a supplementary list of vertices, which is assigned to each impor-
tant station we traverse. This list contains all the arrival vertices which are detected by 
the search algorithm. When we traverse the ring, this list must also be scanned to link 
a departure vertex from the best previous arrival vertex, such that the imposed condi-
tions are fulfilled. 

This problem does not appear if we are using the method which has been depicted 
in Fig. 2.a). But that method has another disadvantage: it consumes too much memory 
and is slower. 

3.3 How to Improve the Search Algorithm 

This algorithm may have a large search space if stations dp and ar are far away from 
each other and there is no direct train to connect them, so the response time may not 
be acceptable. We know that, using the algorithm of Dijkstra, the search will span a 
disk around the departure vertex until the destination is reached. 

The difficulty of search process is considered using our experimental data. A 
route is difficult if the search algorithm spans more than quarter the number of arcs. 

In order to reduce the search space, we used the following idea (see Fig. 5). 
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Fig. 5. Determining an ellipse around the minimum cost path 

We determine a minimum cost path from dp to ar in the railway graph. We also 
determine a subgraph which includes the found path and each vertex z fulfills the 
following condition: 

 dist(dp,z) + dist(z,ar) ≤ f ⋅ dist(dp,ar)  (3) 

where dist(x,y) is the cost of the shortest path from x to y (the cost is computed over 
the railway graph), and f >1 is a convenient chosen parameter (see Experiments). This 
subgraph will define an ellipse around the minimum cost path and will be used as 
search space. The value f ⋅ dist(dp,ar) is the maximum allowed distance for any route 
we are searching. 

The search space may have some fragments that will never be used by any route 
from dp to ar (see dashed lines in Fig. 5). These fragments are identified using 
bridges and blocks in the ellipse subgraph. First, we determine the blocks that include 
the arcs of the shortest path; we may have one block (left) or many blocks (two blocks 
and one bridge, right). The arcs that don’t belong to any of these blocks are dropped. 

The usage of this method is motivated by the fact that the railway graph is much 
lower than the timetable graph (see Experiments). The search space is reduced once, 
before starting any route search, and every route search will span a disk slice. 

4 Experiments 

We implemented our algorithms in ANSI C and compiled them using GNU C Compi-
ler version 4.1.0 on an AMD Athlon processor at 1.4 GHz with 2 GB of RAM run-
ning Linux Red-Hat 4.1.0-3. 

We dealt with the whole Romanian timetable, valid for year 2011, which includes 
international trains that pass through Romania. The railway graph has 2250 vertices 
(250 vertices correspond to important stations) and 5150 arcs, the timetable graph has 
58300 vertices and 56150 arcs, and the auxiliary graph has 20850 vertices and 33450 
arcs. All these data structures need about 1.8 MB to be stored. 

The summary timetable graph is generated in about one second. If the routes or the 
timetables of some particular trains are changed, the original timetable graph is  
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updated and the summary timetable graph is rebuilt. Whenever the timetable is 
changed, the railway graph is updated such that it keeps only those links which are 
traversed by trains. 

We queried for the following groups of routes: 

- from Bucuresti-Nord to Tirgu-Mures and return; 
- from Bucuresti-Nord to Botosani and return; 
- from Suceava to Tirgu-Mures and return; 
- random departure and arrival. 

We chose routes from and to Bucuresti-Nord because it is the most important Roma-
nian station, and has assigned the maximum number of departures and arrivals. We 
also chose random routes to estimate the general performance of our proposed  
algorithm. 

The parameter f, which is used to determine an ellipse around the minimum dis-
tance path (to limit the search space), has been set to 1.60. This value has been deter-
mined by examining some sinuous routes between Romanian stations. One such route 
is between Suceava and Tirgu-Mures, which gives three distinct rail paths having 
distances 365 km, 450 km and 532 km respectively. The ratio between the longest and 
the shortest path is 1.45. The value of f has been increased for safety reasons. 

Our railway graph is denser inside Romania than outside. The reason to consider 
only Romanian stations (the dense part) is that, given a particular pair (dp,ar) whose 
shortest distance is d, the following condition is fulfilled: 

 (d f + e) / (d + e) < f,  for any supplementary distance e > 0 (4) 

So this value of f covers well almost all routes. It is possible, even though very unlike-
ly, that some routes may not be optimal. That is, there may be another route whose 
distance is greater than the found one, but the travel time is lower. To prevent such 
cases, an exhaustive method could be used to check routes between any two important 
stations. This method will imply 62500 queries, and assuming 0.4 seconds on average 
for one query, this action could take about 7 hours. We may also determine different 
values for distinct departure stations, to obtain better space reduction. This solution 
should be improved to eliminate unnecessary queries, for example considering the 
railway topology. 

The first column of Table 1 below shows: departure station, arrival station, mini-
mum and maximum distance for found routes, number of departure vertices. The 
second column shows: total response time, averaged response time. The total response 
time is measured from the point of query reception to the point of answer completing. 
The averaged response time is computed as ratio between total response time and 
number of departure vertices. 

The third column shows the total number of spanned arcs for two cases: with and 
without space reduction, the unproductive searches being included (see remark  
below). All these tests used the same triplet: railway graph, original timetable  
graph, summary timetable graph. The number of spanned arcs depends heavily on the 
topology of the railway net, which is not uniformly dense. 
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Table 1. Performance evaluation (samples) 

Routes Response time Spanned arcs 
Bucuresti-Nord -- Tirgu-Mures 

distances : 449 km / 612 km 
109 departure vertices 

total : 0.356 seconds 
per dep vtx : 0.0033 sec 

48000 / 
185000 

Tirgu-Mures -- Bucuresti-Nord 
distances : 449 km / 612 km 

19 departure vertices 

total : 0.035 seconds 
per dep vtx : 0.0018 sec 

3200 / 
8000 

Bucuresti-Nord -- Botosani 
distance : 477 km 

109 departure vertices 

total : 0.181 seconds 
per dep vtx : 0.0017 sec 

24000 / 
280000 

Botosani -- Bucuresti-Nord 
distance : 477 km 

8 departure vertices 

total : 0.018 sec 
per dep vtx : 0.0023 sec 

1500 / 
2500 

Suceava – Tirgu-Mures 
distances : 365 km / 532 km 

61 departure vertices 

total : 0.078 sec 
per dep vtx : 0.0013 sec 

16500 / 
96000 

Tirgu-Mures -- Suceava 
distances : 365 km / 532 km 

19 departure vertices 

total : 0.032 sec 
per dep vtx : 0.0017 sec 

2400 / 
12000 

In order to estimate the general performance of our proposed algorithm, we gener-
ated 10000 random queries. The estimation gives the following results: 400 seconds 
to answer all 10000 queries for 125000 total departure vertices. The averaged  
response time is 0.04 seconds per query, and 0.0032 seconds per departure vertex. 

Generally speaking, the total response time depends on the number of departure 
vertices, the number of necessary transfers and the size of the ellipse graph which is 
built using the maximum allowed distance criterion. 

It is important to say that the end user is interested about the total response time: he 
receives several variants of which he can choose. It is also important for us to know 
the averaged response time (per departure vertex) to evaluate the efficiency of the 
algorithm. 

Remark. In order to find routes from departure to arrival, the application starts a new 
search from each departure vertex. Some of these vertices are not productive, that is, 
they will not give any route to destination. But the time consumed with these unpro-
ductive nodes is taken into account to measure the response time (total and averaged). 

If we don’t use any speedup technique (that is, the original timetable graph is ex-
tended with supplementary arcs to solve the transfers, so the summary timetable graph 
is not used), the total response time may be up to 15 times slower. The coefficient is 
lower if direct trains connect departure and arrival, and higher if three or more trains 
are needed to cover the route. 

The auxiliary graph has been built using rings to connect departure vertices which 
are assigned to the same important station (see Fig. 2.b). This solution uses low  
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volume of memory to store this data structure. Another possible technique could be to 
connect each arrival vertex to each departure vertex (see Fig. 2.a), if the related  
station is important. Using this technique, the auxiliary graph could have 110000 arcs, 
and the response time may be three times slower. These estimations are valid for our 
timetable. If the timetable is higher, the number of arcs and the response time will be 
higher; the increase factor is worse than linear. 

5 Extension for Block Agents 

The above solution may be successfully used for medium timetable graphs, for exam-
ple, if the timetable stores information about a particular country, including its inter-
national trains. This solution may not be well suited for continental timetables, due to 
the following reasons: 

- searching for routes traversing two or more countries may take long time to be 
completed, if three or more trains are needed to cover the route; 

- updating the timetable is a time consuming task. 

To surpass these difficulties, we propose a solution based on block agents. We didn’t 
find any paper that tackles the subject of finding routes in timetable graphs using 
block agents. The only paper that tackles a close related subject is, to our knowledge, 
the work of Salido et al [8], which discusses about how to design a new timetable 
using constraint satisfactions. 

Now let us depict our proposed solution. Every country uses its own graphs (one 
railway graph and two timetable graphs), which are managed by its own block agent. 
The timetable graphs include the trains that traverse this country, including the inter-
national ones. If both departure and arrival are known, the above solution may be 
successfully used without any auxiliary tools. 

To solve the general problem, we introduce two new block agents. The first agent 
(let us denote it by CRA - central railway agent) manages the continental railway 
graph. The second agent (denoted as CTA - central timetable agent) manages a sub-
graph of the continental timetable graph which is built as following. Each agent who 
is related to a particular country identifies al the trains that are needed to cover routes 
between any two distinct frontier stations. The timetable of these trains is sent to 
CTA, which will build the needed timetable subgraph. The agent CRA receives also 
the list of stations that are managed by CTA. The central agent CTA will manage the 
summary timetable graph only, which includes the important stations of the continent. 

Now we are able to find routes between any two stations, which are located in dif-
ferent countries. The agent CRA receives a query to identify the ellipse around the 
minimum distance path and identifies the countries that are covered by this ellipse. It 
also identifies some important intermediate stations: one set of stations for the depar-
ture country and another set of stations for the arrival country (Fig. 6). Three queries 
are sent to three different agents. 



 Route Search Algorithm in Timetable Graphs and Extension for Block Agents 199 

 

Fig. 6. Determining a route that traverses more than two countries and needs cooperation 
among agents 

The first query is addressed to the agent who has knowledge about the departure 
station. This agent will determine the first list of routes: if the departure station is not 
in the list of the agent CTA, it determines trains from departure to the nearest stations 
that may be managed by CTA (see dashed links). If the departure station is managed 
by CTA, the first query is not needed. 

The second query is addressed to the agent CTA, which will determine the list of 
routes between departure country and arrival country (see continuous links). This step 
is always necessary if the departure country is not able to determine the route. 

The third query is addressed to the agent who has knowledge about the arrival sta-
tion. This agent will determine the last list of routes: if the arrival station is not in the 
map of CTA, it determines trains from the stations that have been set by CRA to the 
arrival station (see dashed links). If the arrival station is managed by CTA, the third 
query is not needed. 

If the departure and/or arrival station is not in the CTA map, we need to build 
routes from arrival to departure by mixing the partial routes. 

6 Application for Medical Domain 

The first and obvious application of the algorithms presented above is for touristic 
domain, if one is interested to plan its route using the public transportation system. 
We can also use these algorithms in the medical system, for example to optimize the 
traffic of the emergency vehicles. A customized application may be designed to watch 
over this traffic, if the vehicles are endowed with GPS devices. 

Using the public transportation system may have a positive impact concerning the 
public health. If people don’t use their own cars, the traffic will be decongested, the 
pollution will be reduced and the emergency traffic will be improved. 

7 Conclusions and Future Work 

This paper presented a simple, less memory consuming and fast solution that can be 
used to solve the problem of searching routes in timetable graphs. We adopted this 
solution in the hypothesis that short / direct routes are much more frequent than long 
routes with two or more transfers (difficult routes). Our approach requires the least 
memory consumption and the shortest time needed to generate the summary timetable 
graph. Other methods require about several minutes or hours to generate the auxiliary 
data structures. 
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We have to search for better solutions to solve the update problem, to eliminate the 
rebuilt of the summary timetable graph. Removing an existing train or inserting a new 
train should involve some operations to update the links between different trains in all 
important related stations. Updating the timetable graph of an existing train may in-
volve a new order of vertices in the related rings. Improved solutions are necessary: if 
the original timetable graph will have 1000000 vertices, the built of the summary 
timetable graph will take about 24 seconds - the time complexity is O(n log n). 

In order to reduce the search space, we determine an ellipse around the shortest 
distance path, which is defined using the maximum allowed distance criterion, based 
on the parameter f. Its value has been determined using an empirical method. We may 
determine better (possible multiple) values for f, to obtain better space reduction. We 
may also search for other solutions to reduce the search space, maybe with the cost of 
increasing the preprocessing time and / or the memory consumption for supplementa-
ry data structures. 

We also described a theoretical solution to solve the large timetable case, but this 
solution is not yet implemented. The main difficulty consists in solving some special 
cases, if some trains have running restrictions. Indeed, it is possible that some inter-
mediate trains or some final trains don’t run daily. The queries may be solved sequen-
tially or simultaneously. In the sequential approach, the agent located in the departure 
country will solve the departure subproblem. CTA will solve the intermediate sub-
problem using the output of the first train. The last agent will solve the arrival prob-
lem using the output of CTA. 

Another approach could be to solve simultaneously these three subproblems. We 
have to obtain multiple solution sets, each set being valid for a certain day. This is 
because we can not know in advance the arrival day in an intermediate station follow-
ing a certain route. The arrival day is known only after the search algorithm reaches 
the destination station. 

Using separate agents for different countries will be an advantageous solution, be-
cause this way every local agent will almost always manage local queries, that is, 
departure and arrival are in the same country. Of course, local agents are also able to 
solve queries for routes between neighbor countries. Anyway, we can assume that 
local queries are much more frequent than international ones, so this is a good reason 
to continue this work using block agents. 
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