
Chapter 6
Themes and Applications of Kinetic Exchange
Models: Redux
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Abstract In this article, we briefly discuss the general formalism of kinetic ex-
change models and their various applications in economics and sociology. Inspired
from the kinetic theory of gases in statistical physics, the kinetic exchange model
for closed economic systems were first proposed by simply considering the agents
as gas molecules, and wealth of agents as kinetic energy exchanged amongst the gas
molecules. The formalism had been successfully applied to modeling of wealth dis-
tributions in 2000s. This has further spurred new research in recent times in various
areas of soft sciences—firm dynamics, opinion formation in the society, etc.

6.1 Introduction

The essential theme of the kinetic exchange models is the exchange of energy due
to collisions amongst a collection of inanimate particles. Here, we will present that
story and its economic and social counterparts to provoke some more collisions be-
tween economists and physicists that may lead to exchange of ideas (exchanging
kinetic energy between these two arrogant groups might not be good idea to begin
with!). On a more serious note, the kinetic exchange models have been one of the
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most widely used formalisms in the growing interdisciplinary field of econophysics
[1–4] and sociophysics [5–7]. The concept of kinetic exchange was taken from sta-
tistical physics which was proposed towards the end of the nineteenth century. First,
Bernoulli gave a picture of kinetic theory of gases in his paper ‘Hydrodynamica.’
After that Maxwell and Boltzmann derived energy distribution function for kinetic
theory of gas. The other pioneers in this field were Max Planck, Rudolf Clausius,
Josiah Willard Gibbs. The kinetic exchange model is one of the simplest models in
statistical mechanics, which attempts in deriving the average macroscopic behaviors
from the microscopic properties of particles.

The kinetic exchange models1 had been primarily used to explain income/wealth
distributions [8, 9]. More specifically, the target was to write down a minimal set
of stochastic equations that gave rise to a distribution mimicking the actual in-
come/wealth distributions. Even though this target has been satisfactorily achieved,
as discussed below, the framework suffers from a major drawback in terms of ad
hoc-ism. The explanations (or the terminology) that has been used to describe the
exchange processes is not exactly what one would call ‘economic’. The researchers
working on this topic essentially took a solvable model from statistical mechanics
and made analogies of certain quantities. For example, energy was interpreted as
wealth, particles were substituted by agents, etc. and needless to say, such abstrac-
tion and ad hoc approach attracted its fair share of criticism [10]. However, the same
abstraction may also prove to be one of the strongest features of this whole litera-
ture. Since the terms are not tied to some specific economic quantity, there is little
reason to confine them in the area of income/wealth distributions only. This motiva-
tion led to applications of the same basic framework to explain different economic
and social phenomena.

What we will discuss in this paper is roughly as follows. We start by describ-
ing the simple observation that a simple random scattering-like interaction amongst
the agents gives a wealth distribution similar to the ‘Boltzmann-Gibbs’ type. How-
ever in our real society, each of the agents have a “saving propensity.” We discuss
that when saving is introduced in the model, depending upon distribution of the
saving propensity amongst agents, different wealth distributions can be generated.
Further, we will review how a kinetic exchange model may give a “phase transi-
tion” by introducing a “threshold,” where the associated phase transition is of the
“active-absorbing” type. Then we will discuss the applications of the same type of
formalism in firm dynamics and later in the opinion dynamics in the society. The
basic aim of this article is to enthuse the readers in the use of the simple yet pow-
erful formalism of kinetic exchange models in related areas. By no means this is
an exhaustive or technical review. We would like to refer the readers to the original
books and articles for further details and references.

1We shall often use in this article, the full form or the shorter acronym, KEM, interchangeably.
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6.2 Kinetic Wealth Exchange Models (KWEM)

Since, the KEM was first applied to explain the origin of inequality that is seen in
the income/wealth distributions, it is a natural starting point for us to indicate the
regularities of those distributions. The first well known observation was by Pareto
who showed that distribution of wealth for the richer section of the economy follows
a power law [11]. He observed that roughly 20 % people who were in the tail,
owned about 80 % of the total wealth of the economy. After that preliminary but
extremely significant study, many others have conducted research to know the exact
distribution of wealth or income in an economy, but it remains as one of the elusive
problems in economics. For the other end of the income/wealth spectrum it has been
observed that the people of low income or wealth in our society follow a log-normal
or gamma-like distribution [3] though there is some ambiguity over the fit of the
theoretical distributions to the real data. However, one surprising fact is that the
general features of the distributions do not change from country to country i.e., they
are robust to the exact specification of the economy/country.

To understand the precise origin and nature of these robust features in the income
or wealth distribution, concepts of kinetic theory of gas molecules have been used
with success. One can easily map the problem with kinetic exchanges, by consider-
ing an economic agent to be like a gas molecule and wealth of that agent as similar
to the kinetic energy of the molecule. The different exchange dynamics that we dis-
cuss below, when combined effectively, produce different features of the empirical
wealth distribution.

6.2.1 Basics of Kinetic Wealth Exchange Models

6.2.1.1 Boltzmann-Gibbs Distribution in Economic Systems

Independent of the modeling efforts of social scientists,2 a distinct approach was
taken by physicists Drǎgulescu et al. [9, 16] who considered a toy model where the
agents simply reshuffled a part of their wealth in a closed economy. The benefit of
having a toy model is that everybody knows it is a toy model and it can be changed
very easily. The most important departure from the standard economic theory is
that they got rid of all microeconomic decision-making processes. That came at the
cost of losing all perspective of why should any trade occur at all. However, the
benefit exceeds the cost. One can then think of the economic system as comprising
of only the agents and their characterizing quantity, wealth instead of keeping track
of preferences, beliefs, market mechanisms, etc. (which are the usual burden of
most, if not all, neo-classical models in economics).

2It was discovered later that economists, like Bennati, and sociologists, like Angle, were indepen-
dently using similar tools and models since the 1980s; one can refer to Refs. [13–15] for details.
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Fig. 6.1 Steady state wealth
distribution P (m) vs. m for
CC model for
λ0 = 0,0.1,0.6,0.9. Monte
Carlo simulations were done
by taking N = 100 agents and
average wealth M/N = 1.
Taken from [8]

In the toy model, all the agents traded with each other through pair-wise inter-
action similar to random energy scattering of gas molecules, thus losing or gaining
a certain amount of wealth. Suppose two agents i and j having wealth mi and mj

respectively, this trade dynamics can be written as

m′
i = r(mi + mj), (6.1a)

m′
j = (1 − r)(mi + mj) (6.1b)

where r is any random number drawn from 0 to 1, and after trading the wealth of the
two agents i and j are m′

i and m′
j , respectively. From the above equation, it is clear

that the total wealth of the two agents before and after trading remains constant i.e.,
mi + mj = m′

i + m′
j .

The resultant wealth distribution of this model can be derived analytically.3 One
can also do simple Monte Carlo simulations to find the resulting steady state dis-
tribution. The N agents are each given initially 1 unit of wealth (so, total wealth
M = N thus fixing the average wealth in the economy),4 and they trade with each
other according to the dynamics given by Eq. (6.1b). It is observed that in steady
state, the distribution of wealth is similar to ‘Boltzmann-Gibbs’ type distribution for
kinetic theory of gases, i.e, P(m) ∼ exp(−m/T ), where P(m) is the probability of
an agent having wealth between m and m + dm, and T is average wealth of the
model (here T = M/N = 1). The Monte Carlo simulation results for this model is
shown in Fig. 6.1 (λ0 = 0 case).

3Standard tools of statistical mechanics like Boltzmann transport equation, Pauli’s master equation,
maximization of entropy principle, etc. can be used to derive the steady state distribution of the
‘Boltzmann-Gibbs’ type (see, e.g., Refs. [3, 17]).
4It should be noted that the initial wealth distribution does not affect the steady state distribution,
as long as the average wealth of the system remains the same. Essentially the system is ergodic.
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6.2.1.2 CC Model

An important modification of the previous toy model was done by Chakraborti et al.
[18] by introducing savings amongst all the agents. In that model, one considers a
close economic system where total wealth and total number of agents are conserved.
All the agents exchange their wealth through a trading. This much is identical to the
basic model. The distinct feature is that before trading both of the participants save
a fraction of wealth (this feature kind of mimics the reality that we do not put all
of our wealth on the mercy of the market mechanism every now and then!). So the
trading equation between two agents i and j can be written as

m′
i = λ0mi + r(1 − λ0)(mi + mj),

m′
j = λ0mj + (1 − r)(1 − λ0)(mi + mj)

(6.2)

where 0 ≤ λ0 < 1 is the ‘saving propensity’ (fraction of wealth that is being saved)
of the agents. For simplicity, debt was not permitted in this model. By running sim-
ulations, it was observed that the steady state distribution is completely different
from Boltzmann-Gibbs like, for any positive λ0 value. The shape of the distribution
looks like Gamma-like distributions [17, 20–22], and the most probable value de-
pends upon the value of λ0. Results corresponding to different values of the saving
propensities are shown in Fig. 6.1. The analytical closed form of the steady state
distribution remains an open problem.

6.2.1.3 CCM Model

In the last case, the CC model, all agents had a fixed saving propensity λ0, i.e.,
the savings propensity does amongst the (homogeneous) agents. But for modeling
purpose and also for the sake of reality, one can go one step forward and assume
that the agents are heterogeneous. So a natural generalization is to consider saving
propensities to be different for different agents. Precisely this modification was done
by Chatterjee et al. [23]. They made the same assumptions in their model as the
previous ones, but the only difference was that each agent i had a characteristic
saving propensity λi , which could take value 0 ≤ λi < 1 drawn randomly from a
uniform random distribution. Each λi (for i = 1, . . . ,N ) is fixed over time, and is
thus a quenched variable. The trading equation of this model can be written as

m′
i = λimi + r

(
(1 − λi)mi + (1 − λj )mj

)
,

m′
j = λjmj + (1 − r)

(
(1 − λi)mi + (1 − λj )mj

) (6.3)

where λi and λj are the saving propensities for agent i and agent j , respectively. By
doing this apparently simple modification, an interesting phenomenon emerged—
the steady state wealth distribution gave rise to a power law tail with exponent 2
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Fig. 6.2 Steady state wealth
distribution P (m) vs. m for
CCM model (0 ≤ λi < 1).
Dashed line represents the
results of Monte Carlo
simulations, for N = 103 and
M/N = 1. The power law is
fitted with x−2 (solid line).
Adapted from [8]

(see Fig. 6.2).5 The steady state wealth distribution statistics for a single realization
of quenched set (fixed propensities λi ’s) is observed to be significantly different in
nature with respect to the statistics averaged over a large number of independent
quenched configurations (variable sets). The peculiarities of the statistics from any
one realization is independent of the sample size, as observed in Refs. [14, 24].
This feature of the model suggests that the observed power law tail is essentially a
convolution of the single member distributions [14, 24]. Thus the power law tail can
be explained by a set of overlapping Gamma-distributions arising from the agents
with very high propensities (λi → 1) [14, 19]. Another interesting feature is that
the wealth that an agent accumulates is correlated to the saving propensity, first
observed numerically in Eq. (14) of Ref. [14]. These observations allow the steady
state distribution to be easily derived analytically [19, 37].6

As we have pointed out before, the empirical income or wealth distributions do
display both the exponential part and the power-law decay. These two models, CC
and CCM, and simple other variants [3, 26], are then able to capture (or at least
reproduce) the basic features of the whole income/wealth distribution.

6.2.1.4 An Extension of CCM Model

Here we discuss another extension of the kinetic exchange model, studied in
[27, 28]. The model can be described as follows: using the same framework as
above, the only difference is that a trade takes place between two agents investing
the same amount of wealth. Therefore in every transaction, the agents take an “ef-
fective” saving propensity λ which changes over time. Suppose, any two agents i

5Detailed numerical studies [24] showed that while the first two, the toy model studied in
Sect. 6.2.1.1 and the CC model in Sect. 6.2.1.2, are ergodic and self-averaging, the third one
(CCM) is not, which makes it very difficult to be studied numerically. This is an advisory note to
students and beginners who want to study this numerically.
6For another attempt using master equation, see Ref. [25].
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Fig. 6.3 Steady state distribution wealth for the extension model described in Sect. 6.2.1.4. The
Monte Carlo simulation was done by taking N = 104, M/N = 1, and 1 % wealth tax was collected
from the agents having wealth (mtax = 1) greater than the average wealth of the model, after every
10 Monte Carlo time steps. The numerical simulations are plotted using a dashed line. The power
law is fitted with x−1.5 (solid line). Taken from [27]

and j have wealth mi and mj , respectively, and they go for a trading. If the sav-
ing propensity for agent i is assumed to be λi = mi/(mi + mj) and for agent j ,
to be λj = mj/(mi + mj), then it is clear from trading equation Eq. (6.3), that the
total wealth is conserved before and after trade, and both agents invest the wealth:
mimj/(mi +mj). For this model, it is observed that in steady state, the wealth con-
denses to a single agent, a feature very similar to the results obtained by Chakraborti
[29]. The condensation can be avoided, if taxation is introduced into the system.
Suppose, the tax is applied for the agents who have wealth greater than the average
wealth, and this tax is collected periodically after a constant time interval. For this
model it is found that the distribution of wealth again has a power law tail.

In the Monte Carlo simulations, N = 104 agents were considered and everybody
was initially given M/N = 1 unit of wealth. All agents traded among themselves
according to rules described above. Also, 1 % of total wealth was taken as tax, after
every 10 Monte Carlo time steps (one Monte Carlo time step is defined as equivalent
to N numbers of random trades among the agents) from the agents who have wealth
(mtax = 1) greater than the average value. The collected wealth is then re-distributed
uniformly over all the agents. By doing this, it was observed (see Fig. 6.3) that the
wealth distribution follows a power law tail with exponent 1.5. This is another way
of recovering the power law using the kinetic exchange framework.

6.2.2 Phase Transitions in Kinetic Exchange Model

Here, we will describe another variant [30] of the above kinetic exchange models
by introducing a threshold value, inspired by the concept of ‘poverty line’ in eco-
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Fig. 6.4 The threshold
values versus order
parameters plot for N = 104.
(Right inset): Near critical
point the order parameter fits
with scaling form
O = (θ − θc)

β with β = 0.97,
θc = 0.6075. (Left inset): It is
shown that below critical
point θ = 0.59 the order
parameter goes to zero in the
thermodynamic limit. Taken
from [30]

nomics. The model can be described as follows: Here agents exchange their wealth
as described in Eq. (6.1a). But the only difference is that a threshold value of wealth
θ is defined, and a trade between two agents occurs, if at least one of the two agents
has wealth less than θ . Since there is a value of threshold, if all agents accumulate
wealth greater than θ , then in such a situation the dynamics stops. The maximum
limit of the threshold value θ below which the dynamics is stopped within some
finite time, defines as critical value θc. The order parameter O is defined as the aver-
age total number of agents having wealth less than θ i.e., O = ∫ θ

0 P(m)dm, where
P(m) is the probability distribution function of wealth. To make the system ergodic,
a perturbation is applied into the system whenever the dynamics is stopped, and a
particle having energy above θ is selected at random and its energy fully transfered
to any other particle. For characterization, the model was studied for mean field
(MF), one dimensional (1D) and two dimensional (2D) square lattices.

The mean field results are discussed here. Suppose after a time step τ , called
the “relaxation time”, the dynamics reaches a steady state. After the system reaches
steady state, the order parameters are measured for different values of θ , and plotted
as shown in Fig. 6.4. From the figure, it is observed that after the point θ = 0.6075
(critical point) the order parameter increases. The order parameter near the critical
point obeys a scaling form as O ∼ (θ − θc)

β , where β is order parameter exponent,
and the value β = 0.97 fits well with the scaling form. Also at critical point, the
time variation of order parameter fits with the scaling form O(t) ∼ tδ with δ = 0.93
(see Fig. 6.5). To confirm the existence of the transition, the relaxation times τ are
measured for different values of θ . It is observed that there exists a clear time scale
divergence behavior with scaling form τ ∼ |θ − θc|−z, with z = 0.83 (see Fig. 6.6).
All these observations and behaviors suggest that there exists a “phase transition”
at θ = θc. To determine the exact universality class, the model was studied for 1D
and 2D square lattices too, and the obtained scaling exponents suggested that the
universality class is close to the Manna universality [30–32].
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Fig. 6.5 Time variation of
order parameters for different
values of θ are shown. Near
critical point, the order
parameter fits the scaling
form O = t−δ with δ = 0.93.
Taken from [30]

Fig. 6.6 The relaxation times
are plotted for different θ

values. It is observed that at
critical point, the relaxation
time diverges clearly. (Inset)
At critical point, the
relaxation time τ diverges as
τ = (θ − θc)

−z with z = 0.83.
Taken from [30]

6.2.3 A Brief Summary of the KWEM

In this section, we have discussed different kinetic exchange models of wealth
for closed economic systems. First we have considered the random reshuffling ex-
change dynamics and observed that the wealth distribution for such a closed eco-
nomic system obeys Boltzmann-Gibbs distribution. Next we have discussed that the
shape of distribution changes from Boltzmann-Gibbs to Gamma-like if a (homo-
geneous) saving propensity is introduced in the model [17, 20–22]. We have then
discussed a model (CCM) whereby assigning uniformly random saving propensities
(i.e., introducing a particular type of heterogeneity in terms of savings propensity)
to all the agents, a wealth distribution with a power law tail having exponent 2 is
generated. Later an extension of the CCM model has been proposed where it is as-
sumed that both agents invest the same amount wealth for a trading. For this model,
if one considers taxation for the agents who have wealth greater than the average
wealth in the model, then interestingly the wealth distribution again gives a power
law tail, albeit with a different exponent (namely 1.5). These models reproduce fea-
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tures qualitatively and (one might argue) quantitatively similar to those of the em-
pirical wealth distributions in the economy [3, 9]. In short, we have a formalism that
reproduces both the basic features of income/wealth distributions (observed since
the pioneering studies by Pareto [11] and Gibrat [12]): a low income region that
resembles a Gamma-like distribution and the tail region that follows a power law.

Furthermore, we have discussed a kinetic exchange model where the agents who
have wealth lower than a threshold value are able to initiate trade with any other
agent. In this model, we have observed that there is a certain threshold value of
wealth, θc, below which there is no agent below that particular threshold value. In
other words, there is a critical value of θ = θc above which this ‘absorption’ never
happens. From critical finite size scaling, it was observed that scaling exponent for
this transition is close to Manna universality class.

6.3 Firm Dynamics

In this section, we will present some recent progress made on explaining the firm
size distributions in a similar framework. Of course, we cannot literally consider
a binary random collision model to be a replica of all economic phenomena. But
in case of firm dynamics, the essential mechanism that describes a redistribution
of a certain quantity (wealth in the standard KEMs) still makes considerable sense.
Think of firms as agents (instead of buyers and sellers) and workers in place of
wealth. In the wealth exchange models, the buyers and sellers exchange wealth
intentionally while carrying out economic transactions, whereas in case of firm-
dynamics, there are workers who leave one firm and join others (be it intentional
or unintentional). So again we have a redistribution of a certain quantity, workers
w (instead of wealth). Assuming no migration, birth or death of workers, the econ-
omy remains conserved. The dynamics is technically identical to that of usual KEM
except that one has to consider a n-particles collision process instead of binary col-
lision. In case of wealth exchange a binary collision makes sense since usually the
number of participants in one particular transaction is two. However, in case of
firms, if one worker leaves one firm there is no particular reason to think that (s)he
goes to another pre-specified firm. So we need to generalize the standard model to
incorporate the possibility of having an n-ary interaction. Apart from this economic
reason, there is another important advantage of such a generalization. The usual
binary collision model with constant savings propensity λ cannot be solved analyt-
ically. At least it has not been solved so far. However, one can easily show that if
there is a system-wide redistribution, the system can easily be solved analytically.
Reference [38] proposed such a model and gave the solutions.

Before describing the model, we have to explain what we can expect from such
an unconventional application of KEM. There are a couple of specific targets. The
first one is obvious. Since, the KEM generates a power law very easily and since
firm size distribution shows a power law, that is reason enough to apply the model.
There is another empirical regularity not as well known. Firm growth process in the
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developing economies is known to produce divergence in their growth path giving
rise to bimodality in the size distribution [40]. A surprising fact is that such bimodal-
ity has been observed in wealth distribution as well [41]. Hence, if we have a model
which can accommodate binary trading as well as the whole system-side trading,
then the same framework can be used to explain the non-standard features of wealth
distribution as well as firm size distribution. It appears that KEM is well-suited to
explain these features as well (see Ref. [39]).

6.3.1 Regularities in Firm-Size Distribution

The remarkable robustness of the long tail of the size distribution of the firms, is
known from the early works by Gibrat [12]. Intuitively, a few very large firms can
operate side by side with a large number of small firms. However, it was Axtell [33]
who presented clear evidence that the distribution can be characterized very well
by a power law. The same paper also remarked on the stability of the power law
feature which has survived changes in the political, regulatory and social regimes
(e.g., demographic changes in the workforce due to the influx of women in the labor
force). Numerous innovations and technological changes in the production process
had taken place within the same time period which were unable to affect it. Lastly,
the changes in the market structures, policy changes, firm mergers, acquisitions,
death and birth of firms, thousand of tweaks in the corporate laws did not affect this
feature. This indicates that the statistical features of the firm growth process may
well be independent of microeconomic decision-making processes like, why people
choose to leave their jobs (or why and how firms decide to lay off for that matter)
etc. Hence, any microeconomic foundation for the firm dynamics is not needed (at
least at a first approximation). However, the rate at which the firms gain and lose
workers is of interest to us as that determines the size of the firm. This rate is called
the turnover rate in the economics literature. Another way to look at the same thing
is that it measures how long the employees stay in their respective jobs.

Apart from the power law, Ref. [40] presents evidence that the developing
economies are characterized by a bimodal distribution of firms. There is a bunch
of very small firms creating a peak and there is another bunch of very big firms
creating another peak with little mass of firms in between. This particular feature
is known as the ‘missing middle’. A very interesting feature is that as an economy
develops usually this ‘missing middle’ disappears. Hence, this is somehow related
to the economic condition of the country under consideration.

A Little Digression on Theory We intend to show that the turnover rates play a
crucial role in the firm size distribution. But since turnover rate dictates not only
inflow but also outflow, we need another parameter to describe outflow only. Hence,
we describe the model in terms of the ‘retention rate’ which has a role identical
to that of savings propensity that we used in KWEM, discussed in the previous
section. The retention rate refers to the fraction of workers that stays with the firm
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at the end of the period. Clearly the turnover rate and the retention rate are related.
As is evident, one aspect of job separation and worker hiring is that the process
follows the rule of local conservation. If one worker goes from one firm to another
then the total workforce remains unchanged but the workers’ distribution across
the firms change. Since the workers at any given year (or quarter) move around
in a very large number of firms, we model this process as a repeated interaction
between a large number of agents (firms) which exchanges a finite mass of (number
of) workers between themselves. Clearly, the idea of the kinetic exchange model is
suitable for this purpose.

Now we can discuss the economic interpretation of the terms used in the model.
First, the economy consists of a large number of firms populated by workers. By
firms we mean each and every production units capable of producing any kind of
goods and services. Therefore there is no formal unemployment in the model. We
adopt this idea in order to simplify the model so that we do not have to keep track of
the mass of workers who are moving in and out of the employed workers’ pool. Note
that this does not affect the tail of the distribution (Zipf’s law) since the tail is formed
only by large firms. Secondly, we have made another simplifying assumption which
is that the workers are treated as a continuous variable. While it is certainly true
that there is an integer constraint on workers’ head-counts, we have an advantage
in treating the workers as a continuous flow in and out of the firms as it is easier
(mathematically) in this case to derive the size distributions as we do not have to
worry about integer constraints. Thirdly, we follow the definition that the firm’s size
is just the mass of workers working in the firm. There are other measures (like stock
valuation, amount of goods or services produced etc.). But the number (mass) of
workers has the most unambiguous definition. Hence we stick to it.

6.3.2 A Model with Constant Retention Rate

Reference [38] described the model in the following way. There is exactly one ex-
ogenous variable (the retention rate λ) and one endogenous variable (the firm sizes)
in the model. We assume that time is discrete. The economy consists of an array of
N firms with perfectly elastic demand for labor i.e. any firm can absorb any mass of
workers that come to it. At the very beginning of the process, all firms have exactly
one unit of workers (more formally, the measure of workers is one for each firm).
Technically this means the total (and hence average) mass of w is constant over time.
The fraction of workers that decides to stay back in their firm (which we call the re-
tention rate), is denoted by λ which may in principle, vary between the firms. For
the time being, we treat them as given and constant across the firms. This treatment
is pioneered by Ref. [18] in the context of modeling income/wealth distributions as
we have discusses above in great details. Let us denote the firm size of the i-th firm
(we measure a firm’s size by its workforce) by wi (i ≤ N where N is the set of
firms). Also, suppose that the number of firms from which the workers are leaving
and moving into, is n. At each time point (1 − λ) fraction of the workforce of those
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n firms wants to leave (or the firms wanted them to leave, whatever appeals to the
reader!). As mentioned above, we do not explain why they choose to do so. Hence
there would be a total pool of workers that wants to change their workplace. Next,
this pool of workers is randomly divided into those n firms. Hence, the dynamics is
given by the following set of equations,

w1(t + 1) = λw1(t) + ε1(t+1)(1 − λ)

n∑

j

wj (t),

. . .

wi(t + 1) = λwi(t) + εi(t+1)(1 − λ)

n∑

j

wj (t),

. . .

wn(t + 1) = λwn(t) + εn(t+1)(1 − λ)

n∑

j

wj (t)

(6.4)

such that
∑n

j εj (t) = 1 for all t . As is evident from above, this is a straight gener-
alization of the usual kinetic exchange models (with n = 2) that has primarily been
used to study the income/wealth distribution models (see Ref. [8] and the above sec-
tions). A little note on the notations: we use t within the first bracket when referring
to the endogenous variables like the size of the firm ( w(t)) and we use the same in
subscript when referring to the exogenous random variables (e.g., εt ).

Construction of the Division Factor ε We impose some meaningful restrictions
on ε (as described by Ref. [38]).

1. εi ≥ 0 ∀i and the sum of all εis has to be equal to one. Otherwise, the economy
would not be conserved.

2. The distributions of all εi are identical which implies that the expection E(εi) =
1/n for all i.

3. If n = 2, εi ∼ uniform [0, 1]. We impose this constraint so that at the lower limit
of n, we get back the usual CC-CCM models (see Ref. [8]).

Formally, the problem then boils down to that of sampling uniformly from the unit
simplex (see Refs. [35, 36]). We follow the standard algorithm and below we show
the corresponding distribution of ε.

1. Create a vector of independent random variables drawn from uniform distribu-
tion over [0, 1], ξ1, ξ2, . . . , ξn.

2. Take logarithm of all the elements of the vector.
3. Divide each element by the sum of all the elements. Call the i-th result εi for

all i.
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One can derive the probability density function of the εi which is the following:

f (εi) = (n − 1)(1 − εi)
n−2, (6.5)

that is, ε has a beta pdf with parameters 1 and n − 1. Clearly, when n = 2 the
distribution of ε is uniform [0, 1] as expected.

6.3.2.1 Solution of the Model

We follow Ref. [38] to describe the solution. First, we note that the solution to the
usual kinetic exchange model with binary interaction is not known yet (see Refs. [8,
15]). However, one can derive an exact result for the case where the number of
interacting firms is in the order of the system size N i.e., if one considers the case
where 2 � n ≤ N .

Note that if n is of the order of N ,
∑n

j wj is well approximated by n (recall that

E(wj ) = 1 for all j ). To make sure, note that
∑N

j wj = N by specification of the
model. To derive an exact result (instead of approximation), we shall assume that all
firms interact at every step, i.e., n = N . Evidently the system of equation becomes

w1(t + 1) = λw1(t) + ε1(t+1)(1 − λ)N,

. . .

wi(t + 1) = λwi(t) + εi(t+1)(1 − λ)N,

. . .

wN(t + 1) = λwN(t) + εN(t+1)(1 − λ)N

(6.6)

with each εi is beta distributed as has been shown in Eq. (6.5) (see Construction
of ε in Sect. 6.3.2). Note that in this form, we get rid of the effects of wj(t) in the
evolution equation of wi(t) for all j 	= i thus enabling us to uncouple the system
of equations describing the coupled system (note that technically this system is still
coupled). One more simplification is possible.

Let μ = N(1 − λ)ε ignoring the subscripts. For a given N , it is easy to verify
that the probability distribution of μ for large N is

lim
N→∞f (μ) � ψe−ψμ where ψ = 1

1 − λ
. (6.7)

Therefore, the system effectively reduces to

w1(t + 1) = λw1(t) + μ1(t+1),

. . .

wi(t + 1) = λwi(t) + μ2(t+1),

. . .

wN(t + 1) = λwN(t) + μN(t+1),

(6.8)
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which is a system of autoregressive type equations with the distribution of errors
(μ) given by Eq. (6.7). This is clearly solvable now.

6.3.2.2 Steady State Distributions

Let us now describe the steady state behavior of the system. First, we can consider
the moments and show how they differ from the usual binary exchange mechanism.
One writes the k-th moment of the distribution (without subscript) as

E
(
(w − 1)k

) = E

(
k∑

l=0

(
k

l

)
(−w)l

)

. (6.9)

One simplifying assumption we make here is that wi and wj are independent vari-
ables (technically, they are not since the sum of all wi ’s has to be a constant by
structure of the model, N in this case; but for large number of interacting firms, this
is a good approximation). It is easy to verify that with all firms interacting (n = N ),
the variance is given by

V (w) = (1 − λ)

(1 + λ)

whereas in the case of binary interaction [34]

V (w) = (1 − λ)

(1 + 2λ)
.

Note that for λ = 0, variance is unity in both cases which indicates that the distri-
bution is the same (exponential) in both cases (not proven here; please see Ref. [38]
for a derivation). To solve the system, let us write it as

w(t + 1) = λw(t) + μt+1

which can, in turn, be rewritten with the lag operator L as (1 − λL)w(t) = μt and
hence,

w(t) = μt + λμt−1 + λ2μt−2 + λ3μt−3 + · · · .

Note that we already know the distribution of μ from Eq. (6.7),

f (μ) � 1

1 − λ
e− 1

1−λ
μ.

Therefore by transforming the variable we can write

w = μ̃0 + μ̃1 + μ̃2 + μ̃3 + · · ·
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where μ̃j = λjμt−j is distributed as

f (μ̃j ) = 1

λj (1 − λ)
e
− μ̃j

λj (1−λ) .

One can neglect the terms with high powers (more than say k̄) of λ. Then firm-size
w is the nothing but the sum of k̄ exponentially distributed random variables with
different parameters. Note that the Laplace transformation L(s) of μj is φj/(φj +s)

where φj = 1/(λj (1 − λ)). Since the μj ’s are i.i.d. by definition (since the division
factor ε was i.i.d.), pdf of w would be the convolution of the pdfs of the k̄ random
variables. By property of Laplace transformation, one can verify that the distribution
of w would be (by taking limit on k̄)

f (w) = lim
k̄→∞

k̄∑

i=1

φi exp(−φiw)

k̄∏

j=1,j 	=i

(
φj

φj − φi

)
(6.10)

where φi defined as φi = 1/(λi(1 − λ)) .

6.3.3 Distributed Retention Rates

So far we have considered only a fixed retention rate λ. In this section we consider
distributed λ (i.e., the retention rates differ across firms but they are fixed over time)
following Ref. [8]. Specifically, we assume that the retention rates are uniformly
distributed over the interval [0, 1] across the firms. The new system of equation is

w1(t + 1) = λ1w1(t) + ε1(t+1)

n∑

j

(1 − λj )wj (t),

. . .

wi(t + 1) = λiwi(t) + εi(t+1)

n∑

j

(1 − λj )wj (t),

. . .

wn(t + 1) = λnwn(t) + εn(t+1)

n∑

j

(1 − λj )wj (t).

(6.11)

To solve Eq. (6.11) in the steady state, note that (1 − λi)E(wi) = C, a constant,
solves the problem. Hence, by following Ref. [37] one can easily show that the
resultant distribution of the above model is a power law. Essentially, the argument
is if λ is distributed uniformly across the firms, then the average mass of workers is
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the inverse of a uniform distribution which is known to be the Zipf’s law. We have
already encountered this argument in the CCM [8] model discussed at the beginning
of this chapter.

6.3.4 A Model with Time-Varying Retention Rate: Emergence of
Bimodality

We have already discussed how one can model firm dynamics with the tools pro-
vided by KEM. Now we are in a position to tackle heterogeneity in the retention
rate both over time and across agents. More precisely, we will describe the retention
rate λ as a function of current size and thus induce a non-trivial time-dependence on
the retention rate as size of any firm fluctuates over time. Reference [39] defines the
dynamics by the following set of equations,

w1(t + 1) = λ
(
w1(t)

)
w1(t) + ε1(t + 1)

N∑

j

(
1 − λ

(
wj(t)

))
wj(t),

. . .

wi(t + 1) = λ
(
wi(t)

)
wi(t) + εi(t + 1)

N∑

j

(
1 − λ

(
wj(t)

))
wj(t),

. . .

wn(t + 1) = λ
(
wn(t)

)
wn(t) + εn(t + 1)

N∑

j

(
1 − λ

(
wj(t)

))
wj(t)

such that
∑n

j εj (t) = 1 for all t . As is evident from above, this is a further gener-
alization of the model discussed above. Here, the retention rate λi not only charac-
terizes the agents but also explicitly becomes a function of time, λi = λi(t) due to
dependence on the current level of employment wi(t). Following Ref. [39], let us
assume the following functional form of λ,

λ(w) = c1
(
1 − exp(−c2w)

)
c1 and c2 being constants. (6.12)

Note that the retention rate increases as the current work-force increases. This equa-
tion basically captures the more realistic scenario that as a firm increases its work-
force, the more workers it retains; or in the context of wealth distribution, a richer
person saves more (see also Ref. [42] for interesting discussions). The exact solution
is not known for this system. SO we perform Monte Carlo simulation which shows
emergence of bimodality for certain parameter configurations (see Fig. 6.7).

It should be emphasized that this whole exercise distinguishes the KEM approach
to the problem of ‘missing middle’ from other approaches that put the importance
either on size-dependent or size-independent dynamics. We take the position that
the firm-level dynamics is size-dependent or independent, depending on the level
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Fig. 6.7 Emergence of bimodality with Eq. (6.12) is shown with the variation of the parameter c2
with c1 = 0.95. The corresponding distribution of the retention rate λ is shown in the inset. Taken
from [39]

of development of the economy as a whole. More specifically, we conjecture that
the firms in the developed economies have fixed-heterogeneity whereas for poorer
economies, the firms have size-dependent heterogeneity in the retention rates. In
support of that conjecture, we note that the selection effects are important mostly for
the micro firms (mostly unregistered, very small firms in the developing economies)
and such effects are less prominent for larger firms (mostly found in the developed
economies). The selection effects can produce heterogeneity depending on many
factors, e.g., access to credit markets, pool of entrepreneurs, mobility of inputs, etc.
Note that such facilities are mostly absent in the poorer economies. Hence, the firms
in the poorer economies can have size-dependent dynamics. For example, a large
firm can have access to credit market whereas a small firm may not have any access
whatsoever; but in the developed economies all firms have access to credit markets,
i.e., the access to credit market itself can act as a barrier to a small firm for expansion
in size. This justifies the conjecture of scale-dependent heterogeneity for firms in
poorer economies. However, we abstract from all such microeconomic details and
posit that the heterogeneity is reflected solely in the retention rate which determines
the firm’s size in the this context. This simplification enables us to economize on
the number of variables we study. We see that ex-post heterogeneity (agents are ex-
ante identical, but because of the dependence of the retention rate on w, they are
ex-post heterogeneous) induces bimodality. However, as the economy develops the
heterogeneity becomes ex-ante as in the CCM model [8] giving rise to a power law
distribution.

6.4 Opinion Dynamics

6.4.1 Kinetic Opinion Exchange Model

In this section, we deal with the emergence of consensus, which is an important
issue in social science problems [5, 43–46]. The key question is of course, how a
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group of interacting individuals select between different options (vote, language,
culture, opinions, etc.), leading to a state of ‘consensus’ in one such option, or a
state of coexistence of many of them. Consensus, e.g., in opinion formation, is an
“ordered phase” where the majority of the system is biased to a particular opinion.
Though the influence of opinions in society has been an important field of study for
a long time, the dynamics of opinion spreading has attracted the attention of physi-
cists only recently, and there has been already several significant attempts to model
such behavior in the light of rather well understood topics of physics like phase
transitions and critical phenomena. These models have helped us to understand how
global consensus emerges out of e.g., individual opinions [47–53]. In most of such
formulations, opinions are usually modeled as variables, discrete or continuous, and
are subject to changes due to many factors—binary interactions, global feedback,
etc. or even external factors. Usually the interest in these studies lie in the distinct
steady state properties, usually one phase characterized by individuals with widely
different opinions and another phase with a finite fraction of individuals with similar
opinions.

Here, we intend to focus our attention to a specific class of simple models pro-
posed recently [54, 55], having apparent similarity with kinetic wealth exchange
models (KWEMs) discussed earlier [8, 18, 23]. The tuning parameter in these mod-
els, analogous to the saving propensity in KEM, is ‘conviction’ (λ), which deter-
mines the extent to which an individual remains biased to its own opinion while
interacting with somebody else, and the ‘influence’ parameter (μ), which is a mea-
sure of the influencing power or the ability of an individual to impose its opinion on
some other individual. In the original model [54, 55], the two parameters were taken
to be identical. The opinions of individuals are continuous variables in [−1,1] and
change due to binary interactions. It was observed that if the conviction parameter
was fixed above a threshold, the system reaches a state of consensus (“symmetry-
broken” phase or “active” phase) and below this threshold value all individual opin-
ions were equal to zero (“absorbing” phase). Later, a generalised version of this
model was studied [56], where two parameters, λ and μ, were taken to be non-
identical. It was found that in that case, the symmetric and symmetry-broken phases
were separated by a phase boundary given by λ = 1 − μ/2. Biswas et al. [57] stud-
ied some variants of the above discussed models and estimated the critical points
by mean field theory (MFT), which were supported by numerical simulations. The
critical exponents associated with the phase transition were also estimated. Later the
discretized version of the LCCC model was exactly solved [58], which also showed
an “active-absorbing phase transition” as was seen in the continuous version. Apart
from the two- agent or binary interaction, the three-agent interaction were also taken
into account. While the phase diagram of the two-agent interaction led to a contin-
uous transition line, the three-agent interaction showed a discontinuous transition.
Continuous opinion dynamics with both positive and negative mutual interactions
were also studied [59].

In the model introduced earlier by Deffaunt et al., opinion exchange between
two agents took place only when the difference between their opinions was less
than or equal to a pre-assigned quantity δ [51]. This idea of bounded confidence



118 A. Ghosh et al.

was implemented in the LCCC model (controlled by the only parameter λ) [60].
Three distinct regions were identified in δ–λ phase diagram.

Percolation transitions of geometrical clusters (group of adjacent sites with an
opinion value equal to or above a pre-assigned threshold value Ω) in the square
lattice LCCC model, had also been studied by varying conviction and influencing
parameters [61]. The transition point was different from that found for the transition
of the order parameter. Although the transition point was also dependent on Ω ,
the critical exponents were independent of the threshold opinion value, conviction
and influencing parameters. The exponents also suggested that percolation in LCCC
model belongs to a separate universality class. We will now discuss in some details
the above cases.

6.4.2 LCCC Model

In the original model, a discussion between two persons were viewed as a simple
two-body scattering process in physics and at any time t , only two persons were
allowed to discuss. In a society consisting of N persons each of the i-th person was
assigned with an opinion value at a time t as oi(t) ∈ [−1,+1]. Binary interactions
took place as follows:

oi(t + 1) = λ
[
oi(t) + εoj (t)

]
,

oj (t + 1) = λ
[
oj (t) + ε′oi(t)

]
,

(6.13)

where ε and ε′ are uncorrelated random numbers uniformly distributed between 0
and 1. λ was the conviction parameter which determines to which extent a person
retains his own previous opinion and is independent of time. It was assumed here
that the conviction parameter was also equal to the influence parameter which quan-
tified how much an individual influenced another person. The agents were taken to
be homogeneous in the sense of having the same or uniform conviction parameter.

Social interactions followed by Eq. (6.13) lead to consensus formation depending
upon the value of the conviction parameter λ. The steady state value of the average
opinion after a long time t , O = |∑i oi |/N represents the “ordering” in the system.
Starting from a random disordered state (ois are uniformly distributed with positive
and negative values and O � 0) after a certain time t = τ (relaxation time) the
system either evolves to the “para” state (all individual agents having zero opinion)
for λ ≤ 2/3 or continuously changes to a symmetry broken state (all individuals
having opinion of same sign) for λ ≥ 2/3 (Fig. 6.8). The variance of O does not
diverge but shows a cusp near λ = 2/3. The fraction of agents (p) having opinion
oi = ±1 was also measured in the steady state as a function of λ and the growth
behaviour was found to be similar to O as discussed above.

The relaxation behaviours were studied for both O and p and a divergence of
relaxation time τ ∼ |λ − λc|−z was observed for both. The relaxation behaviour for
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Fig. 6.8 Simulation results
for average opinion as a
function of λ. (Inset)
Simulation results for the
variance of O with λ. Taken
from [54, 55]

Fig. 6.9 Numerical results
for relaxation time behaviors
τ versus λ − λc , for
multi-agent model with O .
(Insets) Determination of
exponent z from numerical
fits of τ ∼ |λ − λc|−z. Taken
from [54, 55]

O has been shown in Fig. 6.9. The value of z corresponding to O and p are 1.0±0.1
and 0.7 ± 0.1 respectively.

Apart from the exponents β and z (both for O and p), two more exponents were
measured for 1D LCCC [57]. At the critical point (λc = 2/3), due to critical slowing
down the system relaxes algebraically with time

O(t) ∼ t−δ (6.14)

The order parameter p also shows a similar form at the critical point. The value of
δ for O is 1.00 ± 0.05 and p is 1.15 ± 0.01.

From finite size scaling theory, an order parameter X is expected to follow a
scaling relation of the form

X(t) ≈ t−δF
(
t1/ν||

)
, (6.15)

where  = λ−λc and F is a universal scaling function of a form such that for large
argument, the time dependence drops out (F(x) ∼ xδν|| ). Both O and p follow the
scaling relation.
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The basic nature of the transition produced by Eq. (6.13) was also obtained from
a simple iterative map:

y(t + 1) = λ(1 + εt )y(t) (6.16)

with the restriction that y(t) ≤ 1, which is ensured by assuming that if y(t) ≥ 1, y(t)

is set equal to 1. εt is a stochastic variable uniformly distributed between 0 and 1. In
a mean-field approach, the above equation reduces effectively to a multiplier map
like y(t + 1) = λ(1 + 〈εt 〉)y(t), where 〈εt 〉 = 1/2. For λ ≤ 2/3, y(t) converges to
zero. An analytical derivation for the critical point was also given where it was found
that λc = exp {−(2 ln 2 − 1)} ≈ 0.6796 [62].

6.4.3 The Generalised LCCC Model

In the generalised model [56], a second parameter representing the influencing
power of an agent was treated distinctly from the conviction parameter, because
in most realistic scenarios, a person with a strong retention power may not always
have the same power to influence others. Thus, the interaction here is as follows:

oi(t + 1) = λioi(t) + εμjoj (t),

oj (t + 1) = λjoj (t) + ε′μioi(t),
(6.17)

where λi and μi correspond to the conviction and influencing parameter for the i-
th agent. In the simpler version of the model studied, a homogeneous society with
uniform λ and μ were assumed. Considering λ = μ gives the original LCCC model,
as discussed earlier.

Again, the average opinion was studied both as functions of λ and μ. The average
opinion showed spontaneous symmetry breaking in the λ–μ plane. In the steady
state for non-zero solution of O the condition is

(1 − λ)2 = 〈
εε′〉 μ2, (6.18)

which reduces to

λ = 1 − μ/2. (6.19)

The phase boundary obtained numerically satisfies Eq. (6.19) (Fig. 6.10). The re-
laxation behaviour was studied along two paths (A and B), (A) keeping the value
of μ constant and changing the value of λ and (B) keeping the value of λ con-
stant and changing the value of μ. The relaxation behaviour of O showed inter-
esting feature along both the paths. The relaxation time along path A diverged al-
gebraically along the phase boundary and more importantly the critical exponent
changed with the tuning parameters (λ and μ). For μc = 0.4, z = 1.04 ± 0.01, for
μc = 2/3, z = 1.10 ± 0.03 while for μc = 0.9, z = 1.21 ± 0.01 which indicated a
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Fig. 6.10 The phase boundary obtained by numerical simulation coincides exactly with that given
in Eq. (6.19). The acronyms SP and SBP denote the symmetric phase and the symmetry-broken
phase, respectively. The paths A and B are possible trajectories along which the different studies
can be made. Along the dashed line λ = 1, the opinions of all the agents are equal and take extreme
values in two possible ways, either oi = 1 or oi = −1 for all i. Taken from [56]

non-universal behaviour. The order parameter O also showed power-law behaviour
along the phase boundary,

O ∝ (λ − λc)
β (6.20)

where β also varied strongly with λc,μc . β = 0.079 ± 0.001 at μc = 0.4 and
β = 0.155 ± 0.001 at μc = 0.9. The critical exponents corresponding to the con-
densate fraction p were zp and βp , which also showed non-universal behaviour
along the phase boundary. When λ was kept constant and μ was varied near the
phase boundary line, the magnitude of the time scales were about twice compared
to those in path A along the path, although the values of the exponents were very
close.

6.4.4 Variants of the LCCC Model

A simpler version of the LCCC model was studied [57], where an individual i upon
meeting with another individual j retained his own opinion proportional to his con-
viction parameter and picked up a random fraction of j ’s opinion (model C here-
after). The interaction can be written as

oi(t + 1) = λoi(t) + εoj (t),

oj (t + 1) = λoj (t) + ε′oi(t)
(6.21)

where the symbols carry their usual meaning, as mentioned earlier.
Numerically, it was observed that below a critical value λc, oi = 0 ∀i giving

O = 0 while for λ > λc, O > 0 and went to 1 as λ → 1, a symmetry broken phase
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Fig. 6.11 The phase diagrams for the three models: LCCC, C and G, described in the text. Left:
Behavior of order parameter O . Right: Behavior of condensation fraction p. Taken from [57]

with λc ≈ 1/2. Mean field estimate gave for the stable value of O ,

O
(
1 − λ − 〈ε〉) = 0, (6.22)

and hence λc = 1/2.
The effect of global feedback on an agent’s personal opinion during an interaction

was also investigated [57]. An agent while taking part in a social interaction, apart
from being influenced by the other person was also stochastically influenced by the
“average opinion” of the entire society at that time (model G). Mathematically, this
is represented as,

oi(t + 1) = λ
[
oi(t) + εoj (t)

] + ε′O(t),

oj (t + 1) = λ
[
oj (t) + ηoi(t)

] + η′O(t),
(6.23)

where η and η′ are random numbers drawn from uniform distribution [0,1]. In this
case, the symmetry broken phase O 	= 0 appeared for λ > 1/3, and for λ ≤ 1/3 the
system was in a symmetric phase, with oi = 0 ∀i and all individual agents had the
opinion 0. This was also explained by a mean-field approach as O reached a steady
state value,

O = λ
(
1 + 〈ε〉)O + 〈

ε′〉O (6.24)

which gave λc = 1/3.
The comparative phase diagrams for the three models (1D LCCC, model C and

G) according to behaviour of order parameter O and p has been shown in Fig. 6.11.
Both for the above discussed models (1D LCCC, model C and G) the critical expo-
nents were measured numerically (Table 6.1).
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Table 6.1 Table comparing the different quantities for the 3 models (1D LCCC, model C and G)

Model λc (Mean field) Measured quantity β z δ ν||

LCCC 2/3 O 0.10(1) 0.97(1) 1.00(5) 1.2(1)

p 0.95(2) 1.1(1) 1.2(1) 1.1(1)

C 1/2 O 0.17(1) 1.58(1) 0.500(5) 0.10(1)

p 0.98(2) 1.34(1) 0.521(5) 2.00(2)

G 1/3 O 0.081(1) 1.2(1) 0.585(1) 1.6(1)

p 0.85(1) 1.75(1) 0.585(1) 2.0(1)

6.4.5 Discrete LCCC Model

An exact solution for the LCCC model was done for a discretized version (repro-
duced below in a similar form, from Ref. [58]). The dynamics evolves as

oi(t + 1) = λoi(t) + μεoj (t), (6.25)

where μ represented the j -th agent’s ability to influence others. Note that in the limit
λ = μ, one recovers the LCCC model. In the discrete version λ = 1 with probability
φ and 0 with probability 1 − φ. The parameter ε is either 1 or 0 with equal proba-
bility, and agents could have three possible opinion values (oi ∈ {−1,0,+1}∀i). In
the generalised case μ = 1 with probability q and 0 with probability 1 − q .

If f0, f1 and f−1 be the fractions of agents having opinions 0,+1 and −1, then
the evolution equation can be written as,

dO

dt
= f 2−1(1 − φ) + f−1f1

(
1 − φ

2

)
+ f0f1φ

2
+ f−1f0(1 − φ)

− f 2
1 (1 − φ) − f1f−1

(
1 − φ

2

)
− f0f−1φ

2
− f1f0(1 − φ). (6.26)

In the steady state, the left hand side will be zero. This gives either f1 = f−1, (which
implies disorder) or

f0 = 2(1 − φ)

φ
. (6.27)

It was shown that in the ordered state f1f−1 = 0. This condition and the disor-
dered state condition (f1 = f−1) should both be valid at the critical point. This is
possible only when f1 = f−1 = 0 at the critical point. This implied, at the critical
point f0 = 1. Furthermore, for the sake of continuity of f1 and f−1, f0 = 1 for the
entire disordered phase. This condition along with Eq. (6.27) gave φc = 2/3.

Therefore, the order parameter should be (using f1 + f−1 + f0 = 1)

O = ±(1 − f0) (6.28)
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where the sign will depend on whether f1 or f−1 is non-zero, in the ordered
(symmetry-broken) phase. Using Eq. (6.27), the above expression yields

O = ±3(φ − 2
3 )

φ
. (6.29)

Therefore, Eq. (6.29) gives β = 1 (since φc = 2/3).
Similar calculation in case of the discrete generalised LCCC model yields

O = ±2(φ − φc) + (q − qc)

qφ
. (6.30)

which gives that the order parameter exponent is β = 1.
The three body opinion exchange was also solved exactly. Three agents were

chosen randomly and an agent changes his opinion only when the other two agree
among themselves. If they contradicted, then the first agent considered the group
to be neutral and only retained a fraction of his opinion, depending upon his/her
conviction parameter. This can be represented mathematically as

oi(t + 1) = λoi(t) + λεθjk(t), (6.31)

where, θjk(t) = oj (t) if oj (t) = ok(t), θjk(t) = 0 otherwise. It was shown that in
the ordered state,

f0 = 1

2
− 3

√
φ − 8/9

2
√

φ
, (6.32)

and the order parameter takes the form

O = ±
(

1

2
+ 3

√
φ − 8/9

2
√

φ

)
. (6.33)

This gives O = 0 for φ < 8/9 and in the ordered phase minimum value of O can be
1/2 which shows that the order-disorder transition is discontinuous.

6.4.6 LCCC Model with Bounded Confidence

In the models discussed so far, there were no restrictions imposed on the interactions
between any two agents. A restricted LCCC model was studied, where two agents
interact according to Eq. (6.13) only when |oi − oj | ≤ 2δ [60], where δ is the pa-
rameter that represents the ‘confidence’ level and can vary from zero to 1. There are
two extreme limits corresponding to this model: (a) δ = 1 is identical to the original
LCCC model, and (b) δ = 0 is the case when two agents interact only when their
opinions are exactly same. Three different states were defined to identify the status
of the system. When oi = 0 for all i it was called neutral state, oi 	= 0 for all i, but
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Fig. 6.12 The phase diagram in the δ–λ plane shows the existence of the neutral region (for
λ ≤ λc1 � 2/3), the ordered region and the disordered region. The ordered and disordered regions
are separated by a first order boundary (continuous line in red) for δ ≥ 0.3 obtained using a finite
size scaling analysis. For δ < 0.3, the phase boundary (broken line in blue) has been obtained
approximately only from the behaviour of the order parameter (see text). Taken from [60]

O � 0, it was called disordered state, and when O 	= 0 it was an ordered state. The
three states were located in the δ–λ plane (Fig. 6.12).

It is quite obvious from the figure that the ordered state appears for λc1 � 2/3
(as in the original LCCC model) and is independent of the value of δ. For a fixed
value of δ, the value of order parameter O increases with λ and decreases to zero
as λ is increased further (≥ λc2). The decrease becomes steeper with both δ and the
system size N . For λc1 ≤ λ ≤ λc2(δ) an ordered region exists where opinions of one
sign exist. At λc2 a transition to a disordered state was observed and the transition
point was dependent on the value δ. It was found that at least for δ > 0.3, the order-
disorder transition is first-order in nature. For δ < 0.3, the ordered phase shrunk to
a narrow region of the phase diagram.

6.4.7 Percolation in LCCC Model

The spreading of an opinion through a society is a very important issue. The cluster
formation by groups of people acquiring similarity in opinion value is significant re-
garding this issue. The spreading of opinion among social agents may be compared
with the percolation problem in physics. In order to have an insight of the spread-
ing phenomena in LCCC model, percolation of geometrical clusters (comprised by
a group of adjacent sites with an opinion value equal to or above a preassigned
threshold value (Ω)) was studied on a square lattice where agents were located on
the lattice sites [61]. The opinion exchange between pair of agents was same as that
of LCCC (Eq. (6.13)). It was observed that the average value of the largest cluster
size was controlled by the conviction/influencing parameter λ and for a fixed value
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Fig. 6.13 Comparative plots
for the largest cluster size
with conviction parameter for
three different system sizes
and at three various values of
the opinion threshold
(Ω = 1.0,0.80 and 0.60).
Taken from [61]

of Ω , at a critical value of λ = λ
p
c , the percolation transition occurs. One way to de-

termine the percolation transition is to measure the relative size of the largest cluster
which is designated by Pmax . When the steady state is reached, Pmax is calculated
as SL/L2, where SL is the size of the largest cluster and L is the linear size of the
2D system. The value of the critical point (λp

c ) decreases with Ω (Fig. 6.13) and
coincides with that for the transition point λc = 2/3 (as Ω → 0.0) at which the av-
erage opinion transition takes place (discussed in Sect. 6.4.2). Although the system
does not show any finite size effect in case of the transition of the average opinion,
the percolation transition shows prominent finite size effect for a given threshold
opinion value Ω (Fig. 6.13).

The critical exponents were determined from the finite-size scaling relations [63,
64]. The order parameter follows the scaling form

Pmax = L−β/νF
[
L1/ν

(
λ

p
c − λ

)]
, (6.34)

where F is a suitable scaling function. PmaxL
β/ν were plotted against λ (at a

fixed Ω) for different system sizes and then by tuning the value of β/ν, all the
curves were made to cross at a single point which gives the critical conviction pa-
rameter (λp

c ). A typical plot (for Ω = 0.80 and λ = μ) has been shown in Fig. 6.14.
The finite-size scaling of the reduced fourth-order Binder cumulant of the order
parameter defined as

U = 1 − 〈P 4
max〉

3〈P 2
max〉2

, (6.35)

was also studied where 〈X〉 means ensemble average of the parameter X. The
Binder cumulant follows the scaling form

U = U
((

λ
p
c − λ

)
L1/ν

)
, (6.36)

where U is a suitable scaling function. The critical point corresponding to Ω =
0.80 was λ

p
c = 0.6955 ± 0.0005, which varies with the value of Ω . But the critical
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Fig. 6.14 PmaxLβ/ν plotted
against the conviction
parameter λ where Ω = 0.80
and μ = λ. The curves for
different system sizes
(L = 60,100,200,400,500
and 700) cross at
λ

p
c = 0.6955 ± 0.0005 for

β/ν = 0.130 ± 0.005. In the
inset the data collapse for
Pmax with λ

p
c − λ has been

shown for Ω = 0.80 giving
1/ν = 0.80 ± 0.01 and
β/ν = 0.130 ± 0.005. Taken
from [61]

exponents β/ν = 0.130 ± 0.005 and 1/ν = 0.80 ± 0.01 were independent of the
value of Ω . They were also different from that obtained for the percolation transition
in case of static Ising, dynamic Ising and standard percolation, indicating the LCCC
dynamics to belong to a separate universality class.

The percolation transition was also studied in the case of generalised LCCC
model (discussed in Sect. 6.4.3). Once again the critical exponents were found to
be same as that obtained for the original LCCC model.

6.5 Final Remarks

In this article, we have tried to give a flavor of the many different kinetic exchange
models, applied in various contexts such as in modeling of wealth distributions, or
firm dynamics, or opinion formation in the society. There has been a flurry of activ-
ities in diverse domains, and several interesting observations and explanations have
resulted, based on the common framework of simple exchanges of some quantity.
It is interesting to see how the kinetic theory of gases which had played a substan-
tial role in the initial development of the field of statistical mechanics, has inspired
many more novel approaches in fields far away from the physics of gas molecules.
There already exists a number of review articles, books, tutorials, etc. which have
dealt with most of these topics. Keeping in mind the quote:

“Dripping water hollows out stone, not through force but through persistence”—Ovid,

we have made another modest attempt! We would like to emphasize the effective-
ness of the kinetic exchange models as serving as a skeleton for many diverse appli-
cations and implications. Hopefully, in the near future one will be able to put some
more flesh on the skeleton to make it more human-like (or more reasonable, if you
want)!
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