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Preface

This proceedings volume is based on the conference on ‘Econophysics of Agent-
based models’ held at Saha Institute of Nuclear Physics, Kolkata during November
8–12, 2012. Agent-based modeling is one of the most powerful tools, now being
widely employed for understanding problems of market dynamics, leading on to
very important developments in this area. In most conventional economic models,
in order to keep them mathematically tractable, there is usually the ‘representative
agent’, who is assumed to be ‘perfectly rational’ and uses the ‘utility maximiza-
tion’ principle while taking action. There are not many tools available to economists
for solving non-linear models of ‘heterogeneous adaptive agents.’ In this respect,
the very flexible and diverse multi-agent models, which originate from statistical
physics considerations, allow one to go beyond the prototype theories with the ‘rep-
resentative agent’ in traditional economics.

The Econophys-Kolkata VII conference held last year (2012), the seventh event
in this series of international conferences, was dedicated to address and discuss
extensively these issues, approaches and the recent developments concerning agent-
based models in Econophysics. This event was organized jointly by the École Cen-
trale Paris, the Saha Institute of Nuclear Physics, with the addition of Kyoto Univer-
sity for the first time, and was held at the Saha Institute of Nuclear Physics, Kolkata.

This proceedings volume contains papers by distinguished experts from all over
the world, mostly based on the talks and seminars delivered at the meeting, and
accepted after refereeing. For completeness, a few articles by the experts who could
not participate in the meeting due to unavoidable reasons, were also invited and
incorporated in this volume.

These proceedings volume is organized as follows: A first section dedicated to
“agent-based models” in the social sciences. A second section on “miscellaneous”
presents other on-going studies in related areas on econophysics and sociophysics.
We have included in the third section “discussions and commentary”, an extensive
note on “evolution of econophysics” which had been intensively discussed during
the conference and contributed informally, though significantly, by many formal
participants. Two other shorter write-ups—a discussion and a critique on econo-
physics, arisen out of the various interesting and informal exchanges amongst the

v



vi Preface

participants that took place during the conference, have also been incorporated in
this section.

We are grateful to all the participants of the meeting and for all their contribu-
tions. We are also grateful to Mauro Gallegati and the Editorial Board of the New
Economic Windows series of the Springer-Verlag (Italy) for their support in getting
this Proceedings volume published as well, in their esteemed series.1

The conveners (editors) also express their thanks to Saha Institute of Nuclear
Physics, École Centrale Paris and Kyoto University for their support in organizing
this conference.

Frédéric Abergel
Hideaki Aoyama

Bikas K. Chakrabarti
Anirban Chakraborti

Asim Ghosh

Châtenay-Malabry, France
Kyoto, Japan
Kolkata, India
Châtenay-Malabry, France
Kolkata, India
May, 2013

1Past volumes:

1. Econophysics of systemic risk and network dynamics, Eds. F. Abergel, B.K. Chakrabarti,
A. Chakraborti and A. Ghosh, New Economic Windows, Springer, Milan, 2013.

2. Econophysics of order-driven markets, Eds. F. Abergel, B.K. Chakrabarti, A. Chakraborti,
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Agent-Based Models



Chapter 1
Agent-Based Modeling of Zapping Behavior
of Viewers, Television Commercial Allocation,
and Advertisement Markets

Hiroyuki Kyan and Jun-ichi Inoue

Abstract We propose a simple probabilistic model of zapping behavior of televi-
sion viewers. Our model might be regarded as a ‘theoretical platform’ to investigate
the human collective behavior in the macroscopic scale through the zapping action
of each viewer at the microscopic level. The stochastic process of audience mea-
surements as macroscopic quantities such as television program rating point or the
so-called gross rating point (GRP for short) are reconstructed using the microscopic
modeling of each viewer’s decision making. Assuming that each viewer decides the
television station to watch by means of three factors, namely, physical constraints on
television controllers, exogenous information such as advertisement of program by
television station, and endogenous information given by ‘word-of-mouth commu-
nication’ through the past market history, we shall construct an aggregation proba-
bility of Gibbs-Boltzmann-type with the energy function. We discuss the possibility
for the ingredients of the model system to exhibit the collective behavior due to not
exogenous but endogenous information.

1.1 Introduction

Individual human behaviour is actually an attractive topic for both scientists and
engineers, and in particular for psychologists, however, it is still extremely difficult
for us to deal with the problem by making use of scientifically reliable investigation.
In fact, it seems to be somehow an ‘extraordinary material’ for exact scientists such
as physicists to tackle as their own major. This is because there exists quite large
sample-to-sample fluctuation in the observation of individual behaviour. Namely,
one cannot overcome the difficulties caused by individual variation to find the uni-
versal fact in the behaviour.
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4 H. Kyan and J. Inoue

Fig. 1.1 A typical behavior of program rating point. The data set is provided by Video Research
Ltd (http://www.videor.co.jp/eng/index.html)

On the other hand, in our human ‘collective’ behaviour instead of individual, we
sometimes observe several universal phenomena which seem to be suitable mate-
rials (‘many-body systems’) for computer scientists to figure out the phenomena
through agent-based simulations. In fact, collective behaviour of interacting agents
such as flying birds, moving insects or swimming fishes shows highly non-trivial
properties. The so-called BOIDS (an algorithm for artificial life by simulated flocks)
realizes the collective behaviour of animal flocks by taking into account only a few
simple rules for each interacting ‘intelligent’ agent in computer [1–3].

Human collective behavior in macroscopic scale is induced both exogenously
and endogenously by the result of decision making of each human being at the
microscopic level. To make out the essential mechanism of emergence phenomena,
we should describe the system by mathematically tractable models which should be
constructed as simple as possible.

It is now manifest that there exist quite a lot of suitable examples around us
for such collective behavior emerged by our individual decision making. Among
them, the relationship between the zapping actions of viewers and the arrangement
of programs or commercials is a remarkably reasonable example.

As an example, in Fig. 1.1, we plot the empirical data for the rating point for the
TV program of FIFA World Cup Soccer Football Game, Japan vs. Paraguay which
was broadcasted in a Japanese television station on 29th June 2010. From this plot,
we clearly observe two large valleys at 23:50 and 0:50. The first valley corresponds
to the interval between the 1st half and the 2nd half of the game, whereas the second
valley corresponds to the interval between 2nd half of the game and penalty shoot-
out. In these intervals, a huge amount of viewers changed the channel to the other
stations, and one can naturally assume that the program rating point remarkably
dropped in these intervals. Hence, it might be possible to estimate the microscopic

http://www.videor.co.jp/eng/index.html


1 Agent-Based Modeling of TV Commercial Markets 5

viewers’ decision makings from the macroscopic behavior of the time series such as
the above program rating point.

Commercials usually being broadcasted on the television are now well-
established as powerful and effective tools for sponsors to make viewers recognize
their commodities or leading brand of the product or service. From the viewpoint of
television stations, the commercial is quite important to make a profit as advertising
revenue. However, at the same time, each television station has their own wishes
to gather viewers of their program without any interruption due to the commercial
because the commercial time is also a good chance for the viewers to change the
channel to check the other programs which have been broadcasted from the other ri-
val stations. On the other hand, the sponsors seek to maximize the so-called contact
time with the viewers which has a meaning of duration of their watching the com-
mercials for sponsors’ products or survives. To satisfy these two somehow distinct
demands for the television station and sponsors, the best possible strategy is to lead
the viewers not to zap to the other channels during their program. However, it is
very hard requirement because we usually desire to check the other channels in the
hope that we might encounter much more attractive programs in that time interval.

As the zapping action of viewers is strongly dependent on the preference of the
viewers themselves in the first place, it seems to be very difficult problem for us to
understand the phenomena by using exact scientific manner. However, if we con-
sider the ‘ensemble’ of viewers to figure out the statistical properties of their collec-
tive behavior, the agent-based simulation might be an effective tool. Moreover, from
the viewpoint of human engineering, there might exist some suitable channel loca-
tions for a specific television station in the sense that it is much easier for viewers
to zap the channel to arrive as a man-machine interface.

With these mathematical and engineering motivations in mind, here we shall
propose a simple mathematical model for zapping process of viewers. Our model
system is numerically investigated by means of agent-based simulations. We evalu-
ate several useful quantities such as television program rating point or gross rating
point (GRP for short) from the microscopic description of the decision making by
each viewer. Our approach enables us to investigate the television commercial mar-
ket extensively like financial markets [4].

This paper is organized as follows. In Sect. 1.2, we introduce our mathematical
model system and several relevant quantities such as the program rating point or
the GRP. In Sect. 1.3, we clearly introduce Ising spin-like variable which denotes
the time-dependent microscopic state of a single viewer, a television station for a
given arrangement of programs and commercials. In Sect. 1.4, we show that the
macroscopic quantities such as program rating point or the GRP are calculated in
terms of the microscopic variables which is introduced in the previous Sect. 1.3. In
Sect. 1.5, the energy function which specifies the decision making of each viewer
is introduced explicitly. The energy function consists of three distinct parts, namely,
a physical constraint on the controller, partial energies by exogenous and endoge-
nous information. The exogenous part comes from advertisement of the program
by the television station, whereas the endogenous part is regarded as the influence
by the average program rating point on the past history of the market. By using
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the maximum entropy principle under several constraints, we derive the aggrega-
tion probability of viewers as a Gibbs-Boltzmann form. In Sect. 1.6, we show our
preliminary results obtained by computer simulations. We also consider the ‘adap-
tive location’ of commercial advertisements in Sect. 1.7. In this section, we also
consider the effects of the so-called Yamaba CMs, which are the successive CMs
broadcasted intensively at the climax of the program, on the program rating points
to the advertisement measurements. The last section is devoted to the concluding
remarks.

1.2 The Model System

We first introduce our model system of zapping process and submission procedure
of each commercial into the public through the television programs. We will eventu-
ally find that these two probabilistic processes turn out to be our effective television
commercial markets.

As long as we surveyed carefully, quite a lot of empirical studies on the effect of
commercials on consumers’ interests have been done, however, up to now there are
only a few theoretical studies concerning the present research topic to be addressed.
For instance, Siddarth and Chattopadhyay [5] (see also the references therein) in-
troduced a probabilistic model of zapping process, however, they mainly focused
on the individual zapping action, and our concept of ‘collective behavior’ was not
taken into account. Ohnishi et al. [6] tried to solve the optimal arrangement problem
of television commercials for a given set of constraints in the literature of linear pro-
gramming. Hence, it should be stressed that the goals of their papers are completely
different from ours.

1.2.1 Agents and Macroscopic Quantities

To investigate the stochastic process of zapping process and its influence on the tele-
vision commercial markets, we first introduce two distinct agents, namely, television
stations, each of which is specified by the label k = 1, . . . ,K and viewers specified
by the index i = 1, . . . ,N . Here it should be noted that K � N should hold. The
relationship between these two distinct agents is described schematically in Fig. 1.2.
In this figure, the thick line segments denote the period of commercial, whereas the
thin line segments stand for the program intervals. The set of solid arrows describes
a typical trajectory of viewer’s zapping process. Then, the (instant) program rating
point for the station k at time t is given by

vk(t) = Nk(t)

N
(1.1)

where Nk(t) is the number of viewers who actually watch the television program
being broadcasted on the channel (the television station) k at time t .
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Fig. 1.2 Two-types of agents in our model systems. The thick line segments denote the periods of
commercial, whereas the thin line segments stand for the program intervals. The set of solid arrows
describes a typical trajectory of viewer’s zapping processes. ‘Contact time’ and ‘viewing time’
are clearly defined as intervals for which the viewer watches the commercials and the programs,
respectively. The duration and the procedures of casting television programs and CMs would be
modeled by Poisson arrival processes. The detail accounts for them will be given in Sects. 1.2.3,
1.2.4 and 1.2.5

On the other hand, the time-slots for commercials are traded between the station
and sponsors through the quantity, the so-called gross rating point (GRP) which is
defined by

GRP(n)
k = θ

(n)
k

T

T∑

t=1

vk(t) (1.2)

where T denotes total observation time, for instance, say T = 600 minutes, for eval-
uating the program rating point. θ

(n)
k stands for the average contact time for viewers

who are watching the commercial of the sponsor n being broadcasted on the station
k during the interval T . Namely, the average GRP is defined by the product of the
average program rating point and the average contact time. It should be noted that
Eq. (1.2) is defined as the average over the observation time T . Hence, if one seeks
for the total GRP of the station k over the observation time T , it should be given as
T × GRP(n)

k . Therefore, the average GRP for the sponsor n during the observation

interval T is apparently evaluated by the quantity: GRP(n) = (1/K)
∑K

k=1 GRP(n)
k

when one assumes that the sponsor n asked all stations to broadcast their commer-
cials through grand waves.

1.2.2 Zapping as a ‘Stochastic Process’

We next model the zapping process of viewers. One should keep in mind that here
we consider the controller shown in Fig. 1.3. We should notice that (at least in Japan)
there exist two types of channel locations on the controller, namely, ‘lattice-type’
and ‘ring-type’ as shown in Fig. 1.3. For the ‘lattice-type’, each button correspond-
ing to each station is located on the vertex in the two-dimensional square lattice.
Therefore, for the case of K = 9 stations (channels) for example (see the lower left
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Fig. 1.3 A typical television controller dealt with in this paper. The left panel shows ‘lattice-type’
channel, whereas the right is a typical channel of ‘ring-type’. Each channel location is modeled
as shown in the corresponding cartoons in the lower two panels. Namely, the ‘lattice-type’ (left)
and the ‘ring-type’ (right) for the modeling of the buttons on the television controller. Apparently,
there exist a geometrical constraint on the latter type

panel in Fig. 1.3), the viewers can change the channel from an arbitrary station k to
the other station l(�= k), and there is no geometrical constraint for users (viewers).
Thus, we naturally define the transition probability P(l|k) which is the probabil-
ity that a user change the channel from station k to l(�= k). Taking into account
the normalization of the probabilities, we have

∑K
l �=k P (l|k) = 1, k = 1, . . . ,K . The

simplest choice of the modeling of the transition probability satisfying the above
constraint is apparently the uniform one and it is written by

P(l|k) = 1

K − 1
, k, l(�= k) = 1, . . . ,K. (1.3)

On the other hand, for the ‘ring-type’ which is shown in the lower right panel of
Fig. 1.3, we have a geometrical constraint P(l = k ± 1|k) > 0,P (l �= k ± 1|k) = 0.
From the normalization condition of the probabilities, we also have another type
of constraint P(l = k − 1|k) + P(l = k + 1|k) = 1 for k, l(�= k) = 1, . . . ,K . The
simplest choice of the probability which satisfies the above constraints is given by
P(l = k −1|k) = P(l = k +1|k) = 1/2 for k, l(�= k) = 1, . . . ,K . Namely, the view-
ers can change from the current channel to the nearest neighboring two stations.
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1.2.3 The Duration of Viewer’s Stay

After changing the channel stochastically to the other rival stations, the viewer even-
tually stops to zap and stays the channel to watch the program if he or she is inter-
ested in it. Therefore, we should construct the probabilistic model of the length of
viewer’s stay in both programs and commercials appropriately. In this paper, we
assume that the lengths of the viewer i’s stay in the programs τon (‘on’ is used as
an abbreviation for ‘on air’) and commercials τcm are given as ‘snapshots’ from the
distributions:

P (i)(τon,cm) = a(i)
τon,cm

e−τon,cm/a
(i)
τon,cm , i = 1, . . . ,N (1.4)

where a
(i)
τon,cm stands for the ‘relaxation time’ of the viewer i for the program and the

commercial, respectively. Of course, τon,cm fluctuates from person to person, hence,
here we assume that a

(i)
τon,cm might follow

a(i)
τon,cm

= con,cm + δ,P (δ) = N
(
0, σ 2). (1.5)

Namely, the relaxation times for the program and commercial fluctuate around the
typical value con,cm by a white Gaussian noise with mean zero and variance σ 2.
Obviously, for ordinary viewers, con > ccm should be satisfied. We should notice
that the above choice of the length of viewer’s stay is independent on the station,
program or sponsor. For instance, the length of viewer’s stay in commercials might
be changed according to the combination of commercials of different kinds of spon-
sors. However, if one needs, we can modify the model by taking into account the
corresponding empirical data.

1.2.4 The Process of Casting Commercials

Here we make a model of casting commercials by television stations. To make a
simple model, we specify each sponsor by the label n = 1, . . . ,M and introduce
microscopic variables lk(t) as follows.

lk(t) =
{

n ∈ {1, . . . ,M} (The station k casts a CM of sponsor n at time t),
0 (The station k casts a program at t).

(1.6)
Hence, if one obtains l1(1) = l1(2) = · · · = l1(10) = 3 and l1(11) = 0, then we
conclude that the station k = 1 casted the commercial of the sponsor n = 3 from
t = 1 to t = 10, and after this commercial period, the station k resumed the program
at the next step t = 11. On the other hand, if we observe l1(1) = l1(2) = · · · =
l1(10) = 3 and l1(11) = 2, we easily recognize that the station k = 1 casted the
commercial of the sponsor n = 3 from t = 1 to t = 10, and after this commercial
period, the same station k = 1 casted the commercial of the sponsor n = 2 at the
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next step t = 11. Therefore, for a given sequence of variables lk(t), k = 1, . . . ,K

for observation period t = 1, . . . , T , the possible patterns being broadcasted by all
television stations are completely determined. Of course, we set lk(t), k = 1, . . . ,K

to the artificial values in our computer simulations, however, empirical evidence
might help us to choose them.

1.2.5 Arrangement of Programs and CMs

In following, we shall explain how each television station submits the commercials
to appropriate time-slots of their broadcasting. First of all, we set lk(0) = 0 for all
stations k = 1, . . . ,K . Namely, we assume that all stations start their broadcasting
from their own program instead of any commercials of their sponsors. Then, for an
arbitrary k-th station, the duration ton between the starting and the ending points of
each section in the program is generated by the exponential distribution ∼ e−ton/Lon .
Thus, from the definition, we should set lk(0) = · · · = lk(ton) = 0 for the resulting
ton. We next choose a sponsor among the M-candidates by sampling from a uniform
distribution in [1,M]. For the selected sponsor, say, n ∈ {1,M}, the duration of
their commercial tcm is determined by a snapshot of the exponential distribution ∼
e−tcm/Lcm . Thus, from the definition, we set lk(ton + 1) = · · · = lk(ton + 1 + tcm) = n

for the given tcm and ton. We repeat the above procedure from t = 0 to t = T − 1 for
all stations k = 1, . . . ,K . Apparently, we should choose these two relaxation times
Lon,Lcm so as to satisfy Lon � Lcm. After this procedure, we obtain the realization
of combinations of ‘thick’ (CMs) and ‘thin’ (television programs) lines as shown in
Fig. 1.2.

1.3 Observation Procedure

In Sect. 1.2, we introduced the model system. To figure out the macroscopic be-
havior of the system, we should define the observation procedure. For this purpose,
we first introduce microscopic binary (Ising spin-like) variables S

(lk(t))
i,k (t) ∈ {0,1}

which is defined by

S
(n)
i,k (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 (The viewer i watches the CM of sponsor n

on the station k at time t),

0 (The viewer i does not watch the CM of n

on the station k at time t).

(1.7)

We should notice that for the case of lk(t) = 0, the Ising variable S
(lk(t))
i,k (t) takes

S
(0)
i,k (t) =

{
1 (The viewer i watches the program on the station k at time t),
0 (The i does not watch the program on the station k at time t).

(1.8)
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Thus, the K × N -matrix S(n)(t) written by

S(n)(t) =

⎛

⎜⎜⎜⎝

S
(n)
1,1(t) · · · S

(n)
1,K(t)

· · · · · · · · ·
· · · · · · · · ·

S
(n)
N,1(t) · · · S

(n)
N,K(t)

⎞

⎟⎟⎟⎠ (1.9)

becomes a sparsely coded large-size matrix which has only a single non-zero entry
in each column. On the other hand, by summing up all elements in each row, the re-
sult, say S

(n)
1,k +· · ·+S

(n)
N,k denotes the number of viewers who watch the commercial

n on the station k at time t . Hence, if the number of sorts of commercials (sponsors)
M (n ∈ {1, . . . ,M}) is quite large, the element should satisfy S

(n)
1,k +· · ·+S

(n)
N,k � N

(actually, it is a rare event that an extensive number of viewers watch the same
commercial on the station k at time t) and this means that the matrix S(n)(t) is
a sparse large-size matrix. It should be noted that macroscopic quantities such as
program rating point or the GRP are constructed in terms of the Ising variables
S

(lk(t))
i,k (t) ∈ {0,1}.

For the Ising variables S
(lk(t))
i,k (t) ∈ {0,1}, besides we already mentioned above,

there might exist several constraints to be satisfied. To begin with, as the system
has N -viewers, the condition

∑M
lk(t)=0

∑K
k=1

∑N
i=1 S

(lk(t))
i,k (t) = N should be natu-

rally satisfied. On the other hand, assuming that each viewer i = 1, . . . ,N watches
the television without any interruption during the observation time T , we imme-
diately have

∑T
t=1

∑M
lk(t)=0

∑K
k=1 S

(lk(t))
i,k (t) = T , i = 1, . . . ,N . It should bear in

mind that the viewer i might watch the program or commercial brought by one of
the M-sponsors, hence, we obtain the condition

∑M
lk(t)=0

∑K
k=1 S

(lk(t))
i,k (t) = 1, i =

1, . . . ,N, t = 1, . . . , T .
These conditions might help us to check the validity of programming codes and

numerical results.

1.4 Micro-descriptions of Macro-quantities

In this section, we explain how one describes the relevant macroscopic quantities
such as average program rating point or the GRP by means of a set of microscopic
Ising variables {S(lk(t))

i,k (t)} which was introduced in the previous section.

1.4.1 Instant and Average Program Rating Points

Here we should notice that the number of viewers who are watching the program or
commercials being broadcasted on the station k(= 1, . . . ,K), namely, Nk(t) is now
easily rewritten in terms of the Ising variables at the microscopic level as Nk(t) =
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∑N
i=1

∑M
lk(t)=0 S

(lk(t))
i,k (t). Hence, from Eq. (1.1), the instant program rating point of

the station k at time t , that is vk(t), is given explicitly as

vk(t) = Nk(t)

N
= 1

N

N∑

i=1

M∑

lk(t)=0

S
(lk(t))
i,k (t). (1.10)

On the other hand, the average program rating point of the station k, namely, vk is
evaluated as vk = (1/T )

∑T
t=1 vk(t).

1.4.2 Contact Time and Cumulative GRP

We are confirmed that the contact time which was already introduced in Sect. 1.2 is
now calculated in terms of {S(lk(t))

i,k (t)} as follows. The contact time of the viewer i

with the commercial of the sponsor n is written as

θ
(n)
i,k = (1/T )

T∑

t=1

M∑

lk(t)=0

δlk(t),nS
(lk(t))
i,k (t) (1.11)

where δa,b denotes the Kronecker’s delta. It should be noted that we scaled the
contact time over the observation time T by 1/T so as to make the quantity the
T -independent value. Hence, the average contact time of all viewers who watch
the commercial of sponsor n being broadcasted on the station k is determined by
θ

(n)
k ≡ (1/N)

∑N
i=1 θ

(n)
i,k . Thus, the cumulative GRP is obtained from the definition

(1.2) as

GRP(n)
k = 1

T

T∑

t=1

vk(t) × θ
(n)
k

= 1

N2T 2

(
T∑

t=1

N∑

i=1

M∑

lk(t)=0

S
(lk(t))
i,k (t)

)

×
(

N∑

i=1

T∑

t=1

M∑

lk(t)=0

δlk(t),nS
(lk(t))
i,k (t)

)
. (1.12)

From the above argument, we are now confirmed that all relevant quantities in our
model system could be calculated in terms of the Ising variables {S(lk(t))

i,k (t)} which
describe the microscopic state of ingredients in the commercial market.

However, the matrix S(n)(t) itself is determined by the actual stochastic processes
of viewer’s zapping with arranging the programs and television commercials. There-
fore, in the next section, we introduce the energy(cost)-based zapping probability
which contains the random selection (1.3) as a special case for the ‘lattice-type’
controller.
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1.5 Energy Function of Zapping Process

As we showed in the literature of our probabilistic labor market [7, 8], it is conve-
nient for us to construct the energy function to quantify the action of each viewer.
The main issue to be clarify in this study is the condition on which concentration
(‘condensation’) of viewers to a single television station is occurred due to the en-
dogenous information. The same phenomena refereed to as informational cascade
in the financial market is observed by modeling of the price return by means of
magnetization in the Ising model [9]. In the financial problem, the interaction Jij

between Ising spins Si and Sj corresponds to endogenous information, whereas the
external magnetic field hi affected on the spin Si stands for the exogenous informa-
tion. However, in our commercial market, these two kinds of information would be
described by means of a bit different manner. It would be given below.

1.5.1 Physical Constraints on Television Controllers

For this end, let us describe here the location of channel for the station k on the
controller as a vertex on the two-dimensional square lattice (grid) as Zk ≡ (xk, yk).
Then, we assume that the channel located on the vertex at which the distance from
the channel k is minimized might be more likely to be selected by the viewer who
watches the program (or commercial) on the station k at the instance t . In other
words, the viewer minimizes the energy function given by γ (Zk − Zl)

2(l �= k),
where we defined the L2-norm as the distance (Zk −Zl )

2 ≡ (xk −xl)
2 + (yk −yl)

2.
The justification of the above assumption should be examined from the viewpoint
of human-interface engineering.

1.5.2 Exogenous Information

Making the decision of viewers is affected by the exogenous information. For in-
stance, several weeks before World Cup qualifying game, a specific station k, which
will be permitted to broadcast the game, might start to advertise the program of the
match. Then, a large fraction of viewers including a soccer football fan might de-
cide to watch the program at the time. Hence, the effect might be taken into account
by introducing the energy −ζ

∏e
ξ=s δtξ ,t δl,k where ts denotes the time at which the

program starts and te stands for the time of the end. Therefore, the energy decreases
when the viewer watches the match of World Cup qualifying during the time for the
program, namely from t = ts to te (	t ≡ te − ts : broadcasting hours of the program).
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1.5.3 Endogenous Information

The collective behavior might be caused by exogenous information which is cor-
responding to ‘external field’ in the literature of statistical physics. However, col-
lective behavior of viewers also could be ‘self-organized’ by means of endogenous
information. To realize the self-organization, we might use the moving average of
the instant program rating over the past L-steps (L � T ), namely,

〈
vk(t)

〉 ≡ 1

L

t−1∑

ρ=t−L

vk(ρ) (1.13)

as the endogenous information. Then, we define the ‘winner channel’ which is more
likely to be selected at time t as k̂ = arg maxm〈vm(t)〉. (One might extend it to a
much more general form:

k̂ = arg max
m

〈
vm(r)

〉
(1.14)

for a given ‘time lag’ r(< t)). Henceforth, we assume that if the winner channel
k̂ is selected, a part of total energy −βδ

l,k̂
decreases. This factor might cause the

collective behavior of N -individual viewers. Of course, if one needs, it might be
possible for us to recast the representation of the winner channel k̂ by means of
microscopic Ising variables {S(lk(t))

i,k (t)}.
Usually, the collective behavior is caused by direct interactions (connections)

between agents. However, nowadays, watching television is completely a ‘personal
action’ which is dependent on the personal preference because every person can
possess their own television due to the wide-spread drop in the price of the television
set. This means that there is no direct interaction between viewers, and the collective
behavior we expect here might be caused by some sorts of public information such
as program rating point in the previous weeks. In this sense, we are confirmed that
the above choice of energy should be naturally accepted.

Therefore, the total energy function at time t is defined by

Ek(l) ≡ γ (Zk − Zl )
2 − ζ

e∏

ξ=s

δtξ ,t δl,k − βδ
l,k̂

(1.15)

with k̂ = arg maxm〈vm(t)〉, where β, ζ, γ ≥ 0 are model parameters to be estimated
from the empirical data in order to calibrate our model system. According to the
probabilistic labor market which was introduced by one of the present authors, we
construct the transition probability P(l|k) as the Gibbs-Boltzmann form by solving
the optimization problem of the functional:

f
[
P(l|k)

] ≡ −
∑

l �=k

P (l|k) logP(l|k) − λ

{∑

l �=k

P (l|k) − 1

}
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− λ
′
{∑

l �=k

Ek(l)P (l|k) − E

}
(1.16)

with respect to P(l|k). Then, we immediately obtain the solution of the optimization
problem (variational problem) as

P(l|k) = exp[−Ek(l)]∑
l �=k exp[−Ek(l)]

= exp[−γ (Zk − Zl)
2 + ζ

∏e
ξ=s δtξ ,t δl,k + βδ

l,k̂
]

∑
l �=k exp[−γ (Zk − Zl )2 + ζ

∏e
ξ=s δtξ ,t δl,k + βδ

l,k̂
]

where we chose one of the Lagrange multipliers in f [P(l|k)] as λ =
log{∑l �=k P (l|k)} − 1, and another one −λ

′
is set to 1 for simplicity, which has a

physical meaning of ‘unit inverse-temperature’. We should notice that in the ‘high-
temperature limit’ β, ζ, γ → 0, the above probability becomes identical to that of
the random selection (1.3). These system parameters should be calibrated by the
empirical evidence.

In the above argument, we focused on the ‘lattice-type’ controller, however, it
is easy for us to modify the energy function to realize the ‘ring-type’ by replacing
γ (Zk − Zl )

2 in (1.15) by εl ≡ −γ (δl,k+1 + δl,k−1), namely, the energy decreases if
and only if the viewer who is watching the channel k moves to the television station
k − 1 or k + 1. This modification immediately leads to

P(l|k) = exp[−Ek(l)]∑
l �=k exp[−Ek(l)] = exp[−εl + ζ

∏e
ξ=s δtξ ,t δl,k + βδ

l,k̂
]

∑
l �=k exp[−εl + ζ

∏e
ξ=s δtξ ,t δl,k + βδ

l,k̂
] .
(1.17)

We are easily confirmed that the transition probability for random selection in the
‘ring-type’ controller is recovered by setting ζ = β = 0 as

P(k − 1|k) = eγ

eγ + eγ
= 1

2
= P(k + 1|k)

and P(l|k) = 0 for l �= k ± 1.
In the next section, we show the results from our limited contributions by com-

puter simulations.

1.6 A Preliminary: Computer Simulations

In this section, we show our preliminary results. In Fig. 1.4, we plot the typical be-
havior of instant program rating point vk(t) for k = 1, . . . ,K . We set K = 9,N =
600, M = 1 and T = 600 for the case of the simplest choice β = ζ = γ = 0 leading
up to (1.3) (‘high-temperature limit’). This case might correspond to the ‘uncon-
scious zapping’ by viewers. The parameters appearing in the system are chosen as
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Fig. 1.4 Typical behavior of instant program rating point vk(t) for k = 1, . . . ,K . Here we set
K = 9,M = 1,N = 600 and T = 600. The parameters appearing in the system are chosen
as Lon = con = 12 and Lcm = ccm = 4. The upper panel is the result of ‘lattice-type’ with
β = ζ = γ = 0, whereas the lower panel shows the case of ‘ring-type’. We clearly find that the
result of ring-type is less volatile than that of the lattice-type

Fig. 1.5 The two-dimensional scattered plot for the average program rating point:
v ≡ (1/K)

∑K
k=1 vk and the average cumulative GRP: GRP ≡ (1/K)

∑K
k=1 GRP(1)

k for the case
of ‘lattice-type’ channel location (left). The right panel shows the scatter plot with respect to the v

and the effective contact time which is defined by θ ≡ (1/KT )
∑K

k=1 θ
(1)
k (we have only a single

sponsor). The parameters are set to the same values as in Fig. 1.4

Lon = con = 12 and Lcm = ccm = 4. The upper panel shows the result of ‘lattice-
type’ channel location on the controller, whereas the lower panel is the result of
‘ring-type’.

In Fig. 1.5 (left), we display the scattered plot with respect to the GRP and the
average program rating point for the case of ‘lattice-type’ channel location. From
this figure, we find that there exists a remarkable positive correlation between these
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Fig. 1.6 The
ccm-dependence of the
T -scaled effective contact
time T θ . We set the
observation time T = 60 and
the other parameters are set to
the same values as in Fig. 1.4.
We also plot the well-fitting
curve 0.01c1.965

cm for eyes’
guide

two quantities (the Pearson coefficient is 0.85). This fact is a justification for us to
choose the GRP as a ‘market price’ for transactions. In the right panel of this figure,
the scattered plot with respect to the GRP and the effective contact time defined
by (1/KT )

∑K
k=1 θ

(1)
k is shown. It is clearly found that there also exists a positive

correlation with the Pearson coefficient 0.9914.
We also plot the ccm-dependence of the T -scaled effective contact time T θ in

Fig. 1.6. This figure tells us that the frequent zapping actions reduce the contact
time considerably and it becomes really painful for the sponsors.

1.6.1 Symmetry Breaking Due to Endogenous Information

We next consider the case in which each viewer makes his/her decision according to
the market history, namely, we choose γ = 1, ζ = 0 and set the value of β to β = 0
and β = 1.8. We show the numerical results in Fig. 1.7. From this panels, we find
that the instant program rating point vk(t) for a specific television station increases
so as to become a ‘monopolistic station’ when each viewer starts to select the station
according to the market history, namely, β > 0. In other words, the symmetry of
the system with respect to the program rating point is broken as the parameter β

increases.
To measure the degree of the ‘symmetry breaking’ in the behavior of the instant

program rating points more explicitly, we introduce the following order parameter:

B(t) ≡ 1

K

K∑

k=1

∣∣∣∣vk(t) − 1

K

∣∣∣∣ (1.18)

which is defined as the cumulative difference between vk and the value for the ‘per-
fect equality’ 1/K . We plot the B(t) for the case of β = 0,1 and 2. For finite β ,
the symmetry is apparently broken around t = 100 and the system changes from
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Fig. 1.7 Typical behavior of instant program rating point vk(t) for k = 1, . . . ,K . Here we set
K = 9,M = 1,N = 600 and T = 200. The parameters which specify the energy function of ‘lat-
tice-type’ controller are chosen as (γ, ζ,β) = (1,0,0) (the upper panel) and (γ, ζ,β) = (1,0,1.8)

(the lower panel) with the history length L = 5. The parameters appearing in the system are chosen
as the same values as in Fig. 1.4

Fig. 1.8 The behavior of
order parameter B(t) which
measures the degree of
symmetry breaking in the vk .
The symmetry is apparently
broken for β = 1,2 around
t = 100 and the system
changes from symmetric
phase (small B(t)) to the
symmetry breaking phase
(large B(t))

symmetric phase (small B(t)) to the symmetry breaking phase (large B(t)) (see
Fig. 1.8). We next evaluate the degree of the symmetry breaking by means of the
following Shannon’s entropy:

H(t) = −
K∑

k=1

vk(t) logvk(t) (1.19)
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Fig. 1.9 A typical behavior
of the Shannon’s entropy
H(t)

Fig. 1.10 Typical behavior of instant program rating point vk(t) for k = 1, . . . ,K for the
choice of the time lag r = 10 (the upper panel) and r = 40 (the lower panel). Here we set
K = 9,M = 1,N = 600 and T = 200. The parameters which specify the energy function of ‘lat-
tice-type’ controller are chosen as (γ, ζ,β) = (1,0,1.5) with history length L = 5. The parameters
appearing in the system are chosen as the same values as in Fig. 1.4

where the above H(t) takes the maximum for the symmetric solution vk(t) = 1/K

as

H(t) = −K × 1

K
log(1/K) = logK (1.20)

whereas the minimum H(t) = 0 is achieved for vk = 1 and v
k
′ �=k

= 0, which is
apparently corresponding to the symmetry breaking phase. In Fig. 1.9, we plot the
H(t) for several choices of β as β = 0,1 and 2. From this figure, we find that for
finite β , the system gradually moves from the symmetric phase to the symmetry
breaking phase due to the endogenous information (e.g. word-of-mouth communi-
cation).
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Finally, we consider the time lag r-dependence (see Eq. (1.14)) of the resulting
vk(t). The result is shown in Fig. 1.10. From this figure, we clearly find that the large
time lag r causes the large amount of symmetry breaking in the program rating point
vk(t).

1.7 Adaptive Location of Commercials

In Sect. 1.2.4, we assumed that each commercial advertisement is posted according
to the Poisson process. However, it is rather artificial and we should consider the
case in which each television station decides the location of the commercials using
the adaptive manner. To treat such case mathematically, we simply set K = 2 and
M = 1, namely, only two stations cast the same commercial of a single sponsor.
Thus, we should notice that one can define lk(t) = 0 (on air) or lk(t) = 1 (CM) for
k = 0,1.

Then, we assume that each television station decides the label lk(t) according to
the following successive update rule of the CM location probability:

P
(
lk(t)

) = 1

4

{
1 + (

2lk(t) − 1
)

tanhΩ

(
Lc −

t−L∑

ρ=t−1

lk(ρ)

)}

×
{

1 + (
2lk(t) − 1

)
tanhΩ

(
v0(t − τ) − v0(t − 1)

τ

)}
(1.21)

for k = 0,1, which means that if the cumulative commercial time by the duration L,
that is,

∑t−L
ρ=t−1 lk(ρ) is lower than Lc, or if the slope of the program rating point vk

during the interval τ is negative, the station k is more likely to submit the commer-
cial at time t . It should be noted that in the limit of Ω → ∞, the above probabilistic
location becomes the following deterministic location model (see also Fig. 1.11)

lk(t) = Θ

(
Lc −

t−L∑

ρ=t−1

lk(ρ)

)
Θ

(
vk(t − τ) − vk(t − 1)

τ

)
(1.22)

for k = 0,1. From the nature of two television stations, v0(t − 1) + v1(t − 1) = 1
and v0(t − τ) + v1(t − τ) = 1 should be satisfied. Thus, the possible combina-
tions of (l0(t), l1(t)) are now restricted to (l0(t), l1(t)) = (0,0), (0,1), (1,0), and
(l0(t), l1(t)) = (1,1) is not allowed to be realized. In other words, for the determin-
istic location model described by (1.22), there is no chance for the stations k = 0,1
to cast the same CM advertisement at the same time.

On the other hand, the viewer also might select the station according to the length
of the commercial times in the past history. Taking into account the assumption, we
define the station k̃ by

k̃ = 1

2

{
1 − sgn

(〈
l1(t)

〉− 〈
l0(t)

〉)}
(1.23)
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Fig. 1.11 The behavior of
P (x) = (1 + tanh(Ωx)) ×
(1 + tanh(Ωx))/4

with

〈
lk(t)

〉 ≡ (1/L)

t−L∑

ρ=t−1

lk(t), k = 0,1. (1.24)

Then, the k̃ denotes the station which casted shorter commercial times during the
past time steps L than the other. Hence, we rewrite the energy function for the two
stations model in terms of the k̃ as follows.

Ek(l) ≡ −ζ

e∏

ξ=s

δtξ ,t δl,k − βδ
l,k̂

− ξδ
l,k̃

(1.25)

where we omitted the term γ (Zk − Zl )
2 due to the symmetry (Z0 − Z1)

2 = (Z1 −
Z0)

2. As the result, the transition probability is rewritten as follows.

P(l|k) = exp[ζ ∏e
ξ=s δtξ ,t δl,k + βδ

l,k̂
+ ξδ

l,k̃
]

∑
l �=k exp[ζ ∏e

ξ=s δtξ ,t δl,k + βδ
l,k̂

+ ξδ
l,k̃

] . (1.26)

The case without the exogenous information, that is, ζ = 0, we have the following
simple transition probability for two stations.

P(1|0) = exp(βδ1,k̂
+ ξδ1,k̃

)

exp(βδ0,k̂
+ ξδ0,k̃

) + exp(βδ1,k̂
+ ξδ1,k̃

)
, (1.27)

P(0|1) = exp(βδ0,k̂
+ ξδ0,k̃

)

exp(βδ0,k̂
+ ξδ0,k̃

) + exp(βδ1,k̂
+ ξδ1,k̃

)
(1.28)

with P(0|0) = 1 − P(1|0) and P(1|1) = 1 − P(0|1).
We simulate the CM advertisement market described by (1.27), (1.28) and (1.22)

and show the limited result in Fig. 1.12. From this figure, we find that for the case of
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Fig. 1.12 Typical behavior of instant program rating points vk(t) for the two stations k = 0,1
which are generated by the adaptive CM locations (1.22) and zapping probabilities (1.28)
and (1.27). We chose β = 0 (the upper panel) and β = 1 (the lower panel). Here we set
M = 1,N = 600 and T = 200. The parameters which specify the energy function and CM lo-
cations are chosen as ζ = 1,Lc = 2,L = L = τ = 20(= T/10). The other parameters appearing in
the system are chosen as the same values as in Fig. 1.4

β = 0, the superiority of two stations changes frequently, however, the superiority
is almost ‘frozen’, namely, the superiority does not change in time when we add the
endogenous information to the system by setting β = 1. For both cases (β = 0,1),
the behavior of the instant program rating as a ‘macroscopic quantity’ seems to be
‘chaotic’. The detail analysis of this issue should be addressed as one of our future
studies.

1.7.1 Frequent CM Locations at the Climax of Program

The results given in the previous sections partially have been reported by the present
authors in the reference [10]. Here we consider a slightly different aspect of the
television commercial markets.

Recently in Japan, we sometimes have encountered the situation in which a tele-
vision station broadcasts their CMs frequently at the climax of the program. Es-
pecially, in a quiz program, a question master speaks with an air of importance to
open the answer and the successive CMs start before the answer comes out. Even
after the program restarts, the master puts on airs and he never gives the answer and
the program is again interrupted by the CMs. This kind of CMs is now refereed to
as Yamaba CM (‘Yamaba’ has a meaning of ‘climax’ in Japanese). To investigate
the psychological effects on viewers’ mind, Sakaki [11] carried out a questionnaire
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Table 1.1 A questionnaire survey for viewers’ impression on the so-called Yamaba CM [11]

Question Yes I do not know No

Is Yamaba CM unpleasant? 86 % 7 % 7 %

Is Yamaba CM not favorable? 84 % 14 % 2 %

Do you purchase the product advertised by Yamaba CM? 66 % 37 % 97 %

survey and the result is given in Table 1.1. From this table, we find that more than
eighty percent of viewers might feel that the Yamaba CM is unpleasant and not fa-
vorable. With this empirical fact in mind, in following, we shall carry out computer
simulations in which the CMs broadcasted by a specific television station are located
intensively at the climax of the program.

1.7.1.1 Effects on the Program Rating Points

We first consider the effects of the Yamaba CMs on the program rating points. The
results are shown in Fig. 1.13 as a typical behavior of the program rating points
vk(t), k = 1, . . . ,9. In this simulation, we fix the total length of CMs in a program
so as to be less than eighteen percent of the total broadcasting time T of the whole
program including CMs. In the upper panel, we distribute the CMs of all television
stations randomly, whereas in the lower panel, the CMs of a specific station (the line
in the panel is distinguished from the other eight stations by a purple thick line) are
located intensively at the climax (the end of the program) and for the other eight
stations, the CMs are located randomly. The other conditions in the simulations are
selected as the same as in Fig. 1.4. From this figure, we find that the program rating
point for the station k = 1 which broadcasts Yamaba CMs intensively at the climax
apparently decreases at the climax in comparison with the other stations.

To check the effect of the relaxation time Lcm on the results, we carry out the
simulation by changing the value as Lcm = 1,2,3 and 5. The results are shown in
Fig. 1.14. From this figure, we clearly find that the program rating point for the
station k = 1 which broadcasts Yamaba CMs intensively at the climax apparently
decreases around t = tc = 400 and the tc is independent of the length of Lcm.

1.7.1.2 Effects on the Advertisement Measurements

We next evaluate of the effects of the so-called Yamaba CMs on the advertisement
measurements such as the GRP or average contact time of the CMs by viewers. To
quantify the effects, we consider the GRPk-vk diagram for K = 9 stations, where
GRPk ≡ GRP(1)

k in the definition of (1.12) because now we consider the case of M =
1 for simplicity. We plot the result in Fig. 1.15 (left). In this panel, there is no station
broadcasting the Yamaba CMs. When we define the advertisement efficiency η for
the sponsor by the slope of these points, the efficiency for this unbiased case is η �
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Fig. 1.13 The resulting program rating points for random locations of CMs (the upper panel) and
for biased locations of CMs for a specific television station (say, k = 1, the line in the panel is
distinguished from the other eight stations by a purple thick line). The perpendicular purple lines
stand for the period of CMs for the specific station k = 1

Fig. 1.14 The Lcm-dependence of the program rating points vk(t), k = 1, . . . ,9 shown in
Fig. 1.13. From the upper left to the lower right, Lcm = 1,2,3 and Lcm = 5



1 Agent-Based Modeling of TV Commercial Markets 25

Fig. 1.15 The GRPk -vk diagram for K = 9 stations. Each point corresponds to each station. In
the left panel, there is no station broadcasting the so-called Yamaba CMs, whereas only a specific
station, say k = 1 is broadcasting the Yamaba CMs in the right panel. We set M = 1,N = T = 600

0.9748. We next consider the case in which a specific station, say, k = 1 broadcasts
the Yamaba CMs. The results are shown in the right panel of Fig. 1.15. From this
panel, we are confirmed that the both GRPk=1 and vk=1 apparently decrease in
comparison with the other eight stations. Hence, the slope η calculated by the eight
stations (except for k = 1) increases up to η � 1.5512 because viewers who was
watching the program of the station k = 1 moved (changed the channel) to the other
eight stations and it might increase the GRPk �=1 and vk �=1 extensively.

From the results given in this section, we might conclude that the Yamaba CMs
(biased CM locations) are not effective from the view points of viewers, sponsors
and television stations although our simulations were carried out for limited artificial
situations.

1.8 Concluding Remarks

We proposed a ‘theoretical platform’ to investigate the human collective behavior
in the macroscopic scale through viewers’ zapping actions at the microscopic level.
We just showed a very preliminary result without any comparison with empirical
data. However, several issues, in particular, much more mathematically rigorous
argument based on the queueing theory [12, 13], data visualization via the MDS
[14], portfolio optimization [15] and a mathematical relationship between our sys-
tem and the so-called regime-switching processes [16] should be addressed as our
future studies.
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Chapter 2
Agent-Based Modeling of Housing Asset Bubble:
A Simple Utility Function Based Investigation

Kausik Gangopadhyay and Kousik Guhathakurta

Abstract The housing asset bubble and mortgage crisis of 2007–2008 in the US
market poses a challenge to understanding of market and hypotheses related to mar-
ket efficiency. The contribution of our paper is bifold. First, we present a survey
of the existing literature which explains the housing asset bubble. We have em-
phasized on agent based modeling approaches in this context. The second part of
the paper frames an economic model to demonstrate the power of “irrational ex-
uberance” hypothesis, a term coined by Robert J. Shiller. Using a felicity func-
tion based framework, this shows the power of irrational expectation in bringing
about an artificial and unintended boost in demand for investment of housing as-
set.

2.1 Introduction

The world at large was at a loss to explain the magnitude as well as nature of
calamity that hit the US market in 2007. Economic thoughts are being re-organised
and re-structured even now in search of a definite analytical framework to explain
the failure of what was thought to be a fail-proof wealth generating system. This un-
precedented crisis in the financial market engendered theories on financial markets
which eventually adds to refinement of economic thinking. The qualitative way of
thinking can point out to factors relating to human behaviour and its departure from
presumed economic rationality regarding decision-making. However, any qualita-
tive story should be supplemented with sufficient quantitative illustration for gen-
eral acceptance. A quantitative model of an underlying qualitative story provides us
with the power of the story to explain this phenomenon.
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What is the root underlying cause of this financial crisis? Is it engendered by
“bad” but otherwise improbable run of flawed decisions, or is there any fundamen-
tal flaw in the financial system? Hellwig [2] argues that the cause of this crisis
was not embedded in some flawed decisions rather in financial system architec-
ture. The International Monetary Fund (IMF) forecasted a total loss of 750 billion
dollars [3] in US residential real-estate lending, by October 2008. This amount,
though a large sum in the housing market, is relatively low if analysed in the con-
text of the size of global financial system. Moreover, the decline in the value of
financial securities is far more compared to the fall in housing prices. These indi-
cate deeper flaw in the financial system than a mere coincidental fall in housing
prices.

The first part of Hellwig’s work [2] discusses the “financial system architec-
ture”. More specifically, the mechanisms of risk management are discussed. One
example is the process of mortgage securitization. It acts based on the principle
of diversification to mitigate risks from interest rate fluctuations. The problems in
the financial system architecture was traced back to basic theories in economics of
information—“moral hazard” and “adverse selection”. The paper cites one specific
example to illustrate that sellers used to display higher prices in the contract and the
additional money used to be given back to buyers as advance payment. This sys-
tem takes risk away from buyers, one of the stakeholders in a risky investment of
purchasing a house, to create moral hazard problem. The other related failures from
different stakeholders such as, rating agency, internal correction, market discipline,
has also been discussed.

The contribution of incidence of systemic risk is analysed in the second part
of Hellwig’s work [2]. There could be various ways to understand the incidence
of systematic risk and its augmentation. The perennial problem is transformation
of long term investment to short term investment which is done through conduits
and structured-investment vehicles (SIVs). There is some systemic risk involved
in this transformation. At the onset of this financial crisis in August 2007, an ex-
cessive amount of assets are transformed in this manner compared to historical
average. This excessive supply actually plummeted down security prices consid-
erably. At the instance of public recognition of delinquencies and defaults, there is
a host of factors which led to market breakdown. These factors are identified as lack
of fair value accounting and the insufficiency of equity capital at financial institu-
tions.

Many theoretical and empirical works have come out to explain the phenomenon
particularly the housing asset bubble that started it all. We surveyed the present liter-
ature in sufficient detail to present a thorough understanding to reader. The present
literature may not be conclusive enough. We draw key insights from this literature,
and then present our model based on our insights. The organization of this paper
follows here. Section 2.2 presents an elaborate survey of the present literature. Sec-
tion 2.3 states our economic environment and its contribution to demonstrate the
power of “irrational exuberance” in defining expectation. Section 2.4 discusses our
contribution to this literature.
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2.2 Existing Literature: Sub Prime Crisis and Agent Based
Modelling

Wray [4] (also, [5]) use Hyman P. Minsky’s approach to analyze the international
financial crisis initiated by problems in the US real estate market. They examine the
role played by each of the key players which includes brokers, appraisers, borrow-
ers, securitizers, insurers, and regulators in creating the crisis. In a 1987 manuscript,
Minsky had already recognized the importance of the trend toward securitization of
home mortgages. This paper identifies the causes and consequences of the financial
innovations that created the real estate boom and bust and proposes short-run solu-
tions to the current crisis, as well as longer-run policy measures to prevent a debt
deflation from happening again.

Goodman and Thibodeau [6], takes a call on the housing asset bubble in the
US market from the perspective of economic fundamentals. They investigate how
much of the price rise was caused by the demand supply dynamics of the housing
economy. The exorbitant rise of housing price index in the early years of the first
decade of the new millennium led many economists to postulate theories of specu-
lative bubbles and herd behaviour. Such a conclusion can only be confirmed if the
rise in price cannot be explained by the fundamentals of the governing economy.
The authors worked on this premise and examined the demand supply dynamics of
the housing market in the US. They examined what was the relative contribution
of the fundamentals and the speculative phenomenon to the price rise. They have
approached this problem in a two pronged manner. At first, they have used a sim-
ulation based model of the housing price behaviour in the long run. After that they
have done empirical investigation of 133 metropolitan areas across the USA testing
for the elasticity of supply in the housing market in these areas.

While working on the simulation, they [6] examine the ‘shift in aggregate de-
mand’ necessary to result in a 10.3 % rise in home ownership. They also verify
whether the price rise resulted from a shift in equilibrium. They have simulated the
demand for various elasticities of supply against a constant elasticity of demand.
Their findings indicate that the price rise is extremely sensitive to the elasticity of
supply. For their empirical work, the authors work with a “long-run equilibrium
housing market model” which is able to explain the price variation of housing as-
sets across the areas. Their analysis has resulted in positive elasticity of supply in 84
Metropolitan Statistical Areas (MSA) during the no-bubble period of 1990–2000.
Then, their analysis has been extended to the bubble period. They have accounted
for the change in fundamentals and estimated the expected price rise from the model.
Results show that the speculative increase in housing asset prices was an extremely
localised phenomenon as opposed the general impression of a market-wide specu-
lative bubble. As a benchmark, the authors have considered 30 % over the expected
increase as a housing bubble threshold.

Coleman et al. [7] show that the subprime crisis was more of a systemic issue
arising out of complex interaction of multiple agents of the financial system making
it rather a “joint product” of the institutional, political and regulatory framework
prevailing at the time of the crisis. This is an alternative perspective to the one that
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prescribes the speculative pricing of housing assets as the main cause of the crisis.
Their study reveals that the crisis cannot be ascribed to the existence of sub prime
market alone. They use a simple model which is based on the change in loan inten-
sity being leading indicator of future home prices. They have considered quantity
of housing demanded in period t as the dependent variable. They model the move-
ment of this dependent variable using several independent variables such as, hous-
ing prices at time t, vector of loan type intensity lagged, vector of macroeconomic,
demographic, and financial controls, cost of capital, quantity of housing supplied
in period t, housing market supply regulation and cost to supply housing. Subse-
quently, the authors impose the demand supply equilibrium conditions allowing the
market imperfections to get corrected over time. A pooled cross-sectional time se-
ries was constructed which included 20 metropolitan areas for 36 quarters during
the period 1998–2006.

One of the most striking findings of their initial model is that there was almost
no significance of the proportion of sub prime loans among all loan in explaining
the future housing price. These results also show that the increase in proportion of
sub prime loans on the other hand had a positive correlation with past returns on
housing prices indicating a strong dependence. This was a reinforcement of their ar-
gument that the intensity of sub prime loans did not play a causal role in the run-up
of housing prices. The main macroeconomic variables which were identified as the
drivers of housing price movement are aggregate level of mortgage lending, popula-
tion growth, and the unemployment rate. Using “supply constraint” index as a proxy
for regulatory policy, they have found a positive relationship between this variable-
in-question and the housing price. The supply price was found to be significant in
explaining the price movement only in case of high price assets while its signifi-
cance was not present in case of middle and low value assets. The authors [7] use a
second model to investigate the effect of shift of the role of dominant players from
the Government agencies like Freddie Mac and Fannie Mae to the private players on
the dynamics of housing market. For the data set belonging to the period before the
shift, the macroeconomic fundamentals could explain the price significantly, while
their explanatory power was not significant in case of the data set belonging to post-
shift period. Overall, it may be concluded that this study absolved the sub prime
loan products of their role as the prime accused in the crisis. The whole affair was
phenomenological in nature with the entire multi body system contributing to the
problem in a complex manner.

Crouhyet al. [8], examine the various factors that have led to the subprime mort-
gage credit crisis. They identify the following factors as the main causes for the
failure: yield enhancement, investment management, agency problems, lax under-
writing standards, rating agency incentive problems, poor risk management by fi-
nancial institutions, the lack of market transparency, the limitation of extant valu-
ation models, the complexity of financial instruments, and the failure of regulators
to understand the implications of the changing environment for the financial sys-
tem. Looking at the chronological development of the problem the authors have
examined the evolution of the crisis and analysed the factors that the crisis may be
attributed to. The final picture that emerges in their analysis is a multi-agent com-
plex phenomenon. The several causes that the authors point out are described here
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to justify the above statement. Firstly, the interest rate being low there was a need
for “yield enhancement”. Then there was an automatic demand for asset pooling to
take benefit of financial engineering by dumping the high yield assets into the col-
lateral pool. For this an automatic choice was sub prime loans along with auto loan
and credit cards. Securitisation meant that mortgage originators were out of “default
risk” and therefore they had no reason to perform with due diligence. This was cou-
pled with relaxed regulatory activities and fraudulence. Banks also joined in the fray
in search of reduction of capital requirements. The complex multi layered deriva-
tives ensured that the same risky assets may be a part of myriad instruments and
structures leading to systemic risk and cascading effect. The rating agencies relying
on past data did not use models that reflected the true risk of the underlying assets
in terms of the probability of default, recovery rates and default dependence. They
were lax in recognizing the ascending risk in the sub prime sector. The business of
rating agencies depended on the volume of transactions generated by their client,
who were the originators of the engineered products. The volume was positively
related to upward ratings. This in itself constituted a classic problem of conflict of
interests. Performance incentives in financial institutes were designed to promote
short run profitability. Lack of transparency also added to the layer of problems al-
ready mounting. In sum, the crisis may be viewed as an end result of interaction of
systemic, economic and regulatory issues.

Francis A. Longstaff [9], does an empirical analysis of the pricing of subprime
asset-backed collateralized debt obligations (CDOs) and looks into the cascading
effects of the same on the other sections of the financial market. The results indicate
the sub prime market witnessed “significant price discovery” during the crisis. The
crisis of 2007 which was initiated in a specific section of a specific asset (housing)
market and later pervaded to entire financial market of the US and major parts of the
globe, provides an ideal platform for studying “contagion effect”. Using data from
the ‘ABX’ index for the sub prime markets, the author examines whether the effect
cascaded across the markets. One of the most commonly used definitions of con-
tagion in the literature is “significant temporary increase in cross-market linkages
after a major distress event”. With this definition as the theoretical support, he uses
a Vector Auto Regression (VAR) framework to distinguish the pre-crisis correlation
between the ABX market and other markets from the corresponding figure during
post-crisis phrase.

The results indicate that the cross-market linkages have increased significantly
post crisis. Before the subprime crisis the information contained in ABX market
did not have significant explanatory or predictive power in explaining returns from
other markets. In the post-crisis period, however, the ABX indices showed signifi-
cant predictive power for treasury bond yields, corporate yield spreads, stock market
returns and changes in the VIX volatility index. As noted by the author, the ABX
indices, generally speaking, show the ability to forecast treasury yields, corporate
yield spreads, stock market returns and changes in the VIX up to three weeks ahead,
with strikingly high R2 values. Such results are strong evidence in favour of a “con-
tagion effect” having spread across markets after the crisis.

One of the major contributions of this work is that with these results it is possible
to distinguish between the various existing models in the literature on contagion.
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One could clearly see from the length of the forecast horizon (which often ran to as
long as three weeks), the view that contagion is spread via the correlated information
channel, may not hold much water. The author argues that if that was the case then
the price discovery would occur much more rapidly in liquid stock, bond and similar
markets because of the faster spread of information. On the other hand, the fact that
the results showed the ability of the ABX market to predict the trading pattern for
both the liquid stock and bond markets and the market for engineered products,
reinforces the model based on spread of contagion via a liquidity/financing channel.

Apart from the analytical and investigative works on the crisis, several re-
searchers have tried to model the bubble and the market failure as well. Glaeser
et al. [10] construct a simple model of housing bubbles that predicts that “places
with more elastic housing supply have fewer and shorter bubbles, with smaller price
increases”. The objective of their work is to find out how much of the housing asset
bubble could be predicted by a rational model and is related to the fundamentals, and
if and when the irrational exuberance does play a role. For this purpose they con-
struct a simple continuous time model with an underlying assumption that housing
asset prices are formed by demand supply interaction, dynamically. They introduce
scarcity of resources in production resulting in linear monotonic increase of prices
with production. Using this model, they show that if housing supply is elastic, with a
finite number of potential buyers, there is no equilibrium with the number of houses
being offered exceeding the number of buyers available. Thus a rational bubble can
exist only with inelastic supply.

In the next phase they turn their attention to the “irrational bubbles”. They model
the same as temporary spike in the buyers’ expected price of the housing assets
ascribing the same to “irrational exuberance” as described by Shiller [1]. This rise
in expectation is a purely exogenous factor with a fixed life, the buyers having no
knowledge of the influence of the same. The authors then propose that during bub-
ble the exogenous factor has a multiplying effect in increasing the prices while after
the factor the effect is inversed and results in multiplying the decline in prices. They
also show that the interaction between the exogenous bubble factor and the supply
inelasticity is similar to that of supply inelasticity and shifts in demand. The bubbles
persist more in case of inelastic supply whereas in case of elastic supply they pop
up much faster. The authors then proceed to analyse the data on housing prices, con-
struction and supply elasticity during the periods of price boom and bust. Empirical
analysis supports the propositions of their model.

One important aspect of any speculative bubble like the one that might lead to the
housing asset crisis is the behavioural dynamics of the economic agents participat-
ing in the market. Earl et al. [11], inspect this aspect by bringing in the concept of
decision cascade (as against the information cascade) and later on combine the same
with Minsky’s financial fragility analysis, and evolutionary economics to provide a
theoretical platform for analysing the behavioural dynamics of such bubbles. The
authors introduce the concept of decision cascades clearly distinguishing the same
from information cascade as highlighted by Shiller [12]. The authors argue that the
information cascade theory which hangs on the non-availability of information may
not hold water in terms of explaining the stock and financial market phenomena as
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the efficient market hypothesis seems to be a reasonable approximation in light of
today’s media presence. The inefficiency may creep more out of the interpretation
of the information than the availability of information, an issue that is not captured
in the information cascade idea. This is exactly what brings in the idea of decision
cascades. Decision cascade refer to the interaction effect of the decision rules as they
change during the mutual transfer of information among the agents. The cascade es-
sentially means the probability of domination of a set of decision rules over others
because of social interaction norms. Any new information is thus processed accord-
ing to the dominant rule set. In a speculative market such biases will ultimately lead
to herding and synchronisation.

Next, the concept of the rule degradation is brought in. As decision rules cas-
cade from agent to agent there is a possibility of “Chinese whisper” effect on the
same. In effect, it means that the decision rules that ultimately prevail in sections
of the market may actually be a high order derivative of the original set. Literature
has shown that degradation of decision rules will happen from ‘opportunism’ and
“tacit knowledge”. Because of failure of strategies based on some decision rules,
there will exist always a need for new rules in the market. People will be attracted
towards newer set of strategies that are producing wealth and there will be herding
towards such decision rules. Because of the way our societies have evolved, deci-
sion cascades have a great impact on our decisions, especially the speculative ones.
There has indeed been numerous studies which establish the social decision making
process as a cascading one.

The authors then suggest the use of agent based modelling in an evolutionary
economic framework to simulate this decision cascade process. They arrive at the
idea that “the degeneration of decision rules is easily modelled in a multi-agent
replicator setting through imposing some kind of entropy condition on the adoption
process and with replicator dynamic pay-offs of rules in relation to the population
of others playing the same strategy.” The evolutionary framework is an extension
of Minsky [13]. The paper ultimately shows that successful modelling of decision
cascade using an evolutionary framework for rule degradation can help us identify
and analyse the process of speculative bubbles in a robust manner.

2.2.1 Agent Based Modelling in Financial Markets

We now shift our attention to existing literature on agent based modelling in general
to understand the state of the art. We particularly focus on few works that concen-
trate on financial markets and speculative behaviour. Roszczynska et al. [14] has
presented a technique based on agent based simulation. This technique is able to
generate a robust measure of detachment of trading choices created by feedback, and
forecast the timing of speculative bubbles in experiments with human subjects. Their
work is a combination of laboratory experiments with human subjects and agent
based simulations. Such a unique framework helps reveal the behavioural aspects
which are crucial to formation of bubbles and whose identification ultimately may
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lead to preventive measures. For the experiment they used the Minority Game [15]
to study the price discovery mechanism in financial markets. While already a body
of literature exists on agent based simulations which model the Minority Game, the
researchers shed new light on the same by incorporating experiments with human
subjects. Repeating the experiment with various initial conditions, they studied the
process of synchronisation into a bubble state and observed the trading strategies
of the investors the interaction of which resulted in such synchronisation. To ex-
plain the process of synchronisation they take help of the “decoupling process” as
explained in [16]. Decoupling essentially means trading strategies that are indepen-
dent of trends. In other words the strategy is not coupled with the price movement
at a particular moment of time. They used this knowledge to investigate whether
decoupling plays a role in Minority game subjects and they found out that decou-
pling indeed played a role in synchronising the prices to reach a bubble state. They
also used the additional test of false feedback post-bubble stage and found that the
results corroborate. Using the subject behaviour as the cue, they perform redesigned
simulations on the computer incorporating the decoupling moments in their design.
The results are very encouraging with almost 87 % success rate in predicting the
bubble states. The results are also invariant with size which indicates that the model
is robust and is capable of capturing the complexities associated with higher size.
This work also highlights the importance of factoring the decision biases in the agent
based simulation model to be able to capture the market dynamics properly.

Rabertoa et al. [17] simulate an agent-based artificial financial market which they
call Genoa market, where trading is done on one single asset by heterogeneous
traders. The price discovery happens through a trading mechanism which mimics
the real trading rules reasonably well. The objective of their work is to represent the
trading complexities as much as possible while focusing on the finiteness of avail-
able resources. The programme allows for the pricing to be determined by demand
supply interaction. Initial conditions allow the agents to start with a finite amount of
cash and a portfolio of finite investment opportunities. The process does not allow
creating money, there is a law of conservation of total cash in operation. In each
subsequent epoch stochastic buy and sell orders of the agents are simulated. The
decisions are bounded by the resource constraints and are dependent on prior period
volatility also generating clustering effect. The uniqueness of the model lies in its
ability to reproduce the fat tails in the probability distribution of the log returns of
the assets as well as the phenomenon of volatility clustering.

Using the state of the art programming and object oriented technology, the Genoa
market may be used as a platform to perform various degrees of experiment to
address both research problems as well as practical issues. The authors do agree,
however, that the model suffers from some lacunae which need to be addressed to
increase its usability. To start with, the volatility clustering is sensitive to the size
of the market. As the number of traders increases, the clustering gives way to pure
stochastic volatility. Next, the model fails to capture all the stylized facts that have
been empirically established about financial market behaviour. It is a well estab-
lished fact from several empirical works that volatility exhibits power law decay in
financial time series. The model, however, results in exponential decay. It may be
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added, though, that the power law decay has not been perfectly modelled as yet.
Even with GARCH and ARCH models exponential decay of volatility is exhibited
with correlated time steps.

The sub prime crisis was studied using a Systems Dynamics model by An et
al. [18], looking at the whole problem as a multi agent complex system with the
crisis evolving from the interactions between the agents. Taking cue from various
literature on the recent crisis they build their system as an interaction of three sub-
systems namely, an aggregate banking system, an aggregate housing market and an
economic environment. They followed the principle underlying the system dynam-
ics model of Jay Forrester [19] which represents the system as a stock flow diagram.
The asset-liability management decisions of the banking system are affected by the
housing market as well as the economic system determining the price characteristics
of the assets involved. Five classes of assets are considered: cash, short-term securi-
ties, the mortgage-backed securities, the bank-owned houses and the non-mortgage
backed securities. The assets flows are modelled as linear equations taking into con-
sideration the interest rates and asset returns associated with each class. The pur-
chasing power of investors/homeowners which is the prime mover of the housing
asset market is in turn governed by the lending policy and capacity of the bank-
ing system. This determines the stock flow of the housing market. Three kinds of
housing assets are considered: houses that are currently occupied, houses owned by
banks and houses not owned by banks but available for purchase. The flow model
is built consistent with the banking system model taking into account the unem-
ployment rate, mortgage interest rate, subprime loan availability and average family
lifespan. The housing price is a function of the ratio of supply over demand. The
economic subsystem is a dynamics between business credit and banking system liq-
uidity. The model parameters include gross production output per unit time-period,
household income per unit time-period and unemployment per unit time-period.
The aggregate demand per period is a function of consumption and business envi-
ronment.

The model is then simulated with given initial conditions followed by shocks
thereafter. The system is perturbed by increasing the availability of subprime loan.
The system observations reveal that as a result of the shock the building rates in-
crease leading to higher expected mortgage payment per period, ultimately reach-
ing a stage when overall mortgage payments due overshoot the affordability causing
defaults to start. The model is then subject to economic stimulus in the form of gov-
ernment aids or stimulus money that adds to the aggregate demand. The mortgage
payments return to stability provided that the stimulus is above a threshold. This in
turn means that the government deficit shoots up. Overall, this model is a simple
interactive system which can be used to investigate some key aspects of the crisis.

The utility of agent based models in analysing a systemic failure is brought out
very clearly by Thurner [20]. Economic crisis, the author argues, is a systemic phe-
nomenon, involving complex interaction of institutions, markets, businesses, indi-
viduals and the state. The global economic structure of today lend further com-
plexity to the system by bringing in interaction of multiple sovereign states. The
complexities associated with such interactions are not possible to capture using the
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standard steady state economic models which thrive on general equilibrium. Hence
the need for a model, which is adaptable, allows for correlation of parameters and
shocks of states and does not need general equilibrium conditions. Indeed, agent
based models fulfill all these criteria. The author describes in detail the process of
building a model for the financial system. One main advantage is the use of ‘non-
representative’ agents which allow the model to have varied levels of tolerance with
respect to the decision making parameters. The differences between the agents can
lead to results that have “macro effects”. In the model there are three classes of
investors: investors who allocate funds based on analysis of given information, in-
vestors who are not informed but intuitively place orders randomly and investors
who place their funds in the custody of financial institutions. All these different
types of investors place buy and sell orders in a market dealing with a single non-
dividend paying asset. The other agents involved are the banks and regulators which
govern the liquidity and leverage available in the market. The interactions between
all these agents are observed as the initial conditions vary and the parameter values
are allowed to evolve dynamically.

The simulation reveals that there are two scenarios which may lead to crash under
leverage pressure. Firstly, the random shocks in demand caused by the uninformed
investor can pull down the price of the asset much below its intrinsic value. Sec-
ondly, investment funds can take excessively large positions in the market causing
concentration of risk. Both these factors may combine to form a major crisis. One of
the major findings of the simulations was that in absence of regulation, both banks
and investors find it attractive to increase leverage. Regulations have strange effect
of producing separating and pooling equilibria under different leverage conditions.
During moderate leverage they seem to work well while they seem to amplify the
synchronisation during high leverage. There is an agent interaction effect which
disturbs the price signal. This error emanating from interaction of agents (mutual
influence) is not captured in standard models. It was also observed that during times
of high leverage, even value adding strategies may act counter-intuitively adding to
the crisis. One more observation about leverage was that it has a stabilizing effect
when the levels are moderate. Finally, repeated simulations helped to identify the
onset of crashes.

Katalin Boer-Sorbán [21] takes a detailed look at how different models can be
adopted in agent based simulation framework to capture the financial market dy-
namics by developing an agent based simulation that would capture the behavioural
characteristics of markets and investors. To develop such a system Boer-Sorbán has
conducted studies on the systemic issues and general behaviour of the financial
markets that are in place and pinpointed the relevant aspects of the stock market
which are to be considered for modelling. They fall under two major categories:
organisational and behavioural. There are delineation of six different organisational
attributes that may be mapped—traded instruments, orders and quotes, market par-
ticipants, trading sessions, execution systems and market rules. Apart from these
well-defined observable ‘hard’ variables, identification of ‘soft’ behavioural aspects
of the agents (investors, brokers and market makers) are done. The key variable
for the investors is identified as “the order generation mechanism”. For the brokers
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four distinctive variables were mapped: “order selection mechanisms, order execu-
tion mechanisms, negotiation strategies, strategies to determine transaction prices”.
The market makers are distinguished by “order execution mechanisms, determina-
tion and timing of quotes and handling the limit order book”. With these variables
Boer-Sorbán builds the framework describing the real market.

With the key variables for understanding the real market established, Boer-
Sorbán studies the existing literature on artificial markets. The purpose of the study
was to throw light on the relative success/ failure of various available agent based
simulation models to capture the various key aspects of the real market. In the pro-
cess, Boer-Sorbán has generated a conceptual framework for a taxonomy of agent
based simulation models that results in extension of the conceptual framework for
description of stock markets with design and implementation aspects. The analy-
sis shows that continuous trading sessions need to be studied and incorporated in a
model. The survey also reveals that most models focus mainly on the investors while
ignoring the brokers and often markets as well. This has led Boer-Sorbán to propose
the ABSTRACTE model of trading which takes care of the real market aspects and
the best of existing ABS models.

2.3 A Basic Economic Model

We have built up a basic economic model to quantitatively demonstrate the role of
irrational perception in investment. Rationality has its appeal in economics partly
because of the fact that it is rather possible to model a rational agent. On the other
hand, image of a completely directionless irrational agent is blurred in our mind. To
resolve this dilemma, a thumb rule is to model a rational agent and use some de-
partures in his behaviour from the rationality. This is called bounded rational agent
which is often used when we talk about limits in rationality. This is how we can
quantify departure from rationality in an agent and measure the impact of his be-
haviour as a function of departure from rationality. Since this crisis is about invest-
ment in housing market, we require a dynamic model to address issues associated
with this crisis. In our model, agents have a simple utility function given below.

U
({ct }

) =
∞∑

t=0

βtu(ct ). (2.1)

The agents earn an income of yt at time period t . The agents can either consume the
numeraire good or can invest in an asset. The total amount of spending is equal to
total income. Therefore,

ct + st+1 = yt + Rt · st (2.2)

where st is the amount of savings which is invested into an asset of housing. Rt in-
dicates the return on an asset at time period t which is a random variable following a
Gaussian process with mean μ and standard deviation σ . The shocks are autocorre-
lated with correlation coefficient ρ. The agent maximizes utility function (Eq. (2.1))



38 K. Gangopadhyay and K. Guhathakurta

subject to the budget constraint (2.2). We also impose additional no debt constraint
that st ≥ 0 for all t .

This utility function is quite common in the economics literature, so we use it
to illustrate a baseline scenario. We add one element of bounded rationality in the
model. Bounded rational agents compute the expectation and the standard deviation
of the interest rate fluctuation based on some few periods. The supply of housing is
fixed. Therefore, price of housing is proportional to demand for investment.

What is the condition for utility maximization for an agent? The first order con-
dition or the Euler equation, as it is popularly known, is:

u′(ct ) = E
[
Rt · u′(ct+1)

]
. (2.3)

By solving this equation, one can derive the decision of an agent, {ct , st+1}∞t=0,
based on levels of his savings and the state of the economy, demonstrated through
the shock in the interest rate.

u′(·) is chosen from the class of constant elasticity of substitution functions,

u(c) =
⎧
⎨

⎩

c
1− 1

η −1
1− 1

η

for η �= 1,

log(c) for η = 1
(2.4)

where η is the elasticity of substitution. Typically, η is great than or equal to one.
Our framework is not novel but this is used first by Aiyagari [22] to analyse

savings in a heterogenous agents model. The shocks to agents are idiosyncratic in
nature. The reason for this assumption is quite straightforward. The emphasis of
our modelling is not for the purpose of analysing macroeconomic fluctuations but
systemic fluctuations and agents expectations. Therefore, our exclusion of economy-
wide shocks is rather justified.

2.3.1 Algorithm for Computation

We may not be able to have any closed form solution for our optimization problem.
We have an alternative of computing the numerical solution. We use the following
algorithm for computing our equilibrium.

1. Discretization: We discretize the shocks using the method described by Tauchen
[23]. In doing so, this methods allows us to construct a transition matrix between
various shocks. We also construct a discrete grid of savings around the income
of agents.

2. Initial Guess: We construct an initial guess for savings choice of agents. The
consumption of an agent is the minimum of value of income and savings.

3. We compute right hand side of Eq. (2.3) from the prior estimate of consumption
in different states of nature. We use linear interpolation to estimate this value as
and when required.
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Fig. 2.1 National composite home price index and annualized returns constructed (quarterly data,
US) (Color figure online)

4. For various values of contemporary consumption, the left hand side of Eq. (2.3)
assumes different values. We solve for (2.3) using Newton-Raphson method.

5. We update the values for the consumption grid.
6. If the difference between previous values and updated values is sufficiently small

(using L∞ norm), we stop. Otherwise, we go back to step 3.

2.3.2 Calibration for Demonstrating Savings Mechanism

We experiment with some numerical values to illustrate the mechanism of our model
to the readers. Risk-averseness of an agent is a monotone function of the elasticity
of substitution parameter, η. We choose a conservative value of η at unity. As far as,
mean, variance and autocorrelation coefficient of shocks are concerned, we directly
estimate it from the United States data. Since our focus is housing price, we look
into the returns in the housing sector. National Composite Home Price Index for
the United States is a series maintained by Standard & Poor. The quarterly data
runs between 1987:Q1 to 2012:Q4. The mean annualized return is 3 % and standard
deviation is 0.08 % (see Fig. 2.1). The autocorrelation coefficient is computed as
0.67. We take discount factor as reciprocal of the mean returns.

We have discretized the shock in the return into seven discrete states between
μ − 3σ and μ + 3σ . As autocorrelation is positive, it implies that when the return
is comparatively lower, the expectation of future return is also lower. The lower
expectation of future return dictates the contemporary consumption to be compar-
atively higher, absolute value wise. On the other hand, an agent will have less re-
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Fig. 2.2 Consumption as a
percentage of wealth for
various shocks in the return.
Periodic income, without any
loss of generality, is fixed at
an arbitrary value of 10. The
other parameters are
calibrated (Color figure
online)

Fig. 2.3 Savings as a
percentage of wealth for
various shocks in the return.
Periodic income, without any
loss of generality, is fixed at
an arbitrary value of 10. The
other parameters are
calibrated (Color figure
online)

sources available when returns are low and this motivates him to spend compara-
tively lower fraction of income. Overall, the contemporary consumption is domi-
nated by the former factor compared to the latter one. Figure 2.2 illustrates propor-
tion of consumption against wealth for different values of returns shock whereas
Fig. 2.3 portrays proportion of consumption against wealth for different values of
returns shock.

2.3.3 Wealth Distribution and Numerical Experiments

The distribution of wealth in our model is matched with the corresponding fig-
ure of the united states. Essentially we follow an empirical approach here. Prior
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Table 2.1 Investment in various scenarios: results from a numerical experiment conducted. Per-
centage increase in investment from the baseline case for one percent change in the parameter value
is reported in the parenthesis

Mean Median

Baseline case 0.8010 0.0070

Increase in average return by 10 % 1.6467 0.9998

(10.6 %) (1418.3 %)

Increase in standard deviation in return by 10 % 0.8073 0.0094

(0.08 %) (3.4 %)

Increase in autocorrelation coefficient by 10 % 0.8063 0.0105

(0.07 %) (5.0 %)

research [24] suggests that the wealth distribution fits the log-normal distribution
at the lower tail and Pareto distribution at the upper end. The Pareto tail is re-
stricted [25] to 10 % of the population, at the most. We require to calculate mean
and standard deviation of these distributions. For that purpose, we use the data [26]
published by the US Census Bureau. We find that the median income of a family was
approximately 60,000 USD in 2008 whereas the median family wealth was around
120,000 USD. Therefore, the median of the log-normal distribution is double the
periodic income. Table 717 in [26] elaborates that approximately 10 % of the popu-
lation hold 1.5 million USD, which is 25 times the periodic income, in wealth. This
may be one indication of the extent of power law in wealth distribution. The mean
wealth is approximately 556,000 USD, which is more than 9 times the periodic
income.

In our analysis, we set the periodic income to unity, without any loss of general-
ity. The median of the log-normal distribution is set at 2 accordingly. The mean of
the log-normal distribution is 9. We know that if a random variable X ∼ N(μ,σ 2)

then exp(X) follows a log-normal distribution with median exp(μ) and mean
exp(μ + 0.5 · σ 2). Since, we know the mean and median of the log-normal distri-
bution, we can calculate the mean and standard deviation of the underlying normal
distribution. Thereby, we derive μ as log(2) and σ as

√
2 · (log 9 − log 2). We sim-

ulate wealth of agents from this distribution ignoring the power tail for the sake of
convenience.

We have enforced the idea of “irrational exuberance” through three channels:
(a) increase in perceived mean, μ, (b) increase in perceived standard deviation, σ ,
and (c) increase in perceived autocorrelation coefficient, ρ. In the baseline case,
we note the average investment of all agents when they perceive the parameters
correctly. In the three numerical experiments, we implement agents’ perception and
note the increase in investment in each case. We increase the parameters values
by 10 % and note the change in investment per one percentage point change in
parameters in Table 2.1.
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2.4 Discussion

The results indicate that a perception of shift in mean has an explosive effect in
drawing investment. A mere one percent increase in the mean returns boosts aver-
age investment tremendously by more than ten percent points. The effect of increase
in mean return on agents who are at the lower range of wealth, is even more gigan-
tic. One can safely say that a perception of change in mean will boost investment
tremendously. This additional investment will definitely augment the price of house
to a considerable extent. This is even truer when we consider that supply of hous-
ing is rather inelastic in the short run. This artificial boost in price will plummet
down tremendously, once agents’ perception falls back to the exact level causing a
sharp decline in the housing prices. This is Shiller’s idea of irrational exuberance.
Shiller [1], for example ascribe it to “irrational exuberance” that drove the stock
market bubble in the 1990s and the housing market bubble between 2000 and 2007.
The speculative bubbles may be caused by “information cascades” or “decision cas-
cades” which means that individuals in a group disregard their individually collected
information because they feel that everyone else can not be wrong. He also shows
how bubbles led to dangerous overextension of credit and finally to the global credit
crunch. We see the same story being repeated, albeit less dramatically, when agents’
perception of standard deviation in return or autocorrelation coefficient for returns
changes to goad them to invest more.

We have not discussed any systemic failure in our story but provided a simple
narrative when a collective perception which is different from reality may cause
irrational exuberance for agents. This simple narrative may not stand the test of time
if systems of financial engineering are placed to prevent and thwart any mishaps in
proper time. This is where the extent of systemic flaws becomes important. A small
loophole may not exacerbate a problem to a great extent but will be rectified at a
higher level before becoming endemic, whereas a flawed architecture will encourage
and snowball even a small problem to the level of catastrophe.

One way of looking into the dynamics of the system to analyse the nature and
causes of failure is to view the entire economic process associated with the housing
asset bubble as a multi-agent interaction process. In that case, the extent of failure
of various parts could be measured using numerical experiment. As Farmer and
Foley [27] points out that both the “econometric” as well as “dynamic stochastic
models” are inadequate to map the dynamics of the crisis of this magnitude. A better
alternative is the use of agent-based models. This is a computerised simulation of
the decision making process of a large number of entities (agents) which may be
individuals, institutions and other market participants and regulators. It is more of an
evolutionary process rather than a prescriptive model. The dynamics of the complex
system that led to the housing asset bubble and the subsequent economic crisis can
be captured with the help of agent based simulation and multiple tiers of agents. We
illustrate our case with an example.

A model can be posed in four tiers involving the buyer seller interaction in the
housing market at the lowest level. A trade between a buyer and a seller takes place
with the attendant instrument of price. In the second level, the buyers approach the
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mortgage banks for credit to purchase the house mortgaging the property. The con-
tract between a borrowers and a lender happens at this stage. At the third level,
the interaction of the large investment banks with the mortgage banks occurs. Con-
sequently comes the creation of Special Purpose Vehicles for asset securitisation.
The interaction of the investment banks with the economic system happens at the
highest level. We have shown the magnitude of a bounded rational perception when
there is no interaction from upper tiers. In others words, with a simple utility func-
tion the level have been modelled in this article. We have demonstrated that a small
departure from reality could be a source of enormous over-investment leading to
economic crisis. One may question our assumption of a wrong perception perva-
sive among all agents of the economy. Our results will remain essentially the same
even when there are some rational and some bounded rational agents present in
the economy so long as proportion of bounded rational agents are significant in
number. The magnitude of the impact of a hyped expectation has to be adjusted
accordingly.
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Chapter 3
Urn Model-Based Adaptive Multi-arm Clinical
Trials: A Stochastic Approximation Approach

Sophie Laruelle and Gilles Pagès

Abstract This paper presents the link between stochastic approximation and multi-
arm clinical trials based on randomized urn models investigated in Bai et al. (J. Mul-
tivar. Anal. 81(1):1–18, 2002) where the urn updating depends on the past perfor-
mances of the treatments. We reformulate the dynamics of the urn composition, the
assigned treatments and the successes of assigned treatments as standard stochastic
approximation (SA) algorithms with remainder. Then, we derive the a.s. conver-
gence of the normalized procedure under less stringent assumptions by calling upon
the ODE and a new asymptotic normality result (Central Limit Theorem CLT) by
calling upon the SDE methods.

3.1 Introduction

The aim of this paper is to illustrate the efficiency of Stochastic Approximation (SA)
Theory by revisiting recent results on randomized urn models known as “multi-arm
clinical test” (introduced in [6]), where the urn updating which produces the adap-
tive design is based on statistical estimators of the past efficiency of the assigned
treatments.

Clinical trials essentially deal with the asymptotic behavior of the patient alloca-
tion to several treatments during the procedure. This adaptive approach relies on the
cumulative information provided by the responses to treatments of previous patients
in order to adjust treatment allocation to the new patients. To this end, many urn
models have been suggested in the literature (see [11, 16, 20, 22, 23]). The most
widespread random adaptive model is the Generalized Friedman Urn (GFU) (see
[2] and more recently [15, 19]), also called Generalized Pólya Urn (GPU).
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The idea of this modeling is that the urn contains balls of d different types repre-
sentative of the treatments. All random variables involved in the model are supposed
to be defined on the same probability space (Ω,A,P). Denote Y0 = (Y i

0)i=1,...,d ∈
R

d+ \ {0} the initial composition of the urn, where Y i
0 denotes the number of balls

of type i, i = 1, . . . , d (of course a more realistic though not mandatory assump-
tion would be Y0 ∈ N

d \ {0}). The allocation of the treatments is sequential and the
urn composition at draw n is denoted by Yn = (Y i

n)i=1,...,d . When the nth patient
presents, one draws randomly (i.e. uniformly) a ball from the urn with instant re-
placement. If the ball is of type j , then the treatment j is assigned to the nth patient,
j = 1, . . . , d , n ≥ 1. The urn composition is updated by taking into account the re-
sponse of the nth patient to the treatment j , or the responses of all patients up to
the nth one (i.e. the efficiency of the assigned treatment), namely by adding D

ij
n

balls of type i, i = 1, . . . , d . The procedure is iterated as long as patients present.
Consequently the larger the number of balls of a given type is, the more efficient the
treatment is. The urn composition at stage n, modeled by an R

d -valued vector Yn,
satisfies the following recursive procedure:

Yn = Yn−1 + DnXn, n ≥ 1, Y0 ∈R
d+ \ {0}, (3.1)

with Dn = (D
ij
n )1≤i,j≤d is the addition rule matrix and Xn is the result of the nth

draw and Xn : (Ω,A,P) → {e1, . . . , ed} models the selected treatment ({e1, . . . , ed}
denotes the canonical basis of Rd and ej stands for treatment j ). We assume that
there is no extinction i.e. Yn ∈ R

d+ \ {0} a.s. for every n ≥ 1: so is the case if all the

entries D
ij
n are a.s. nonnegative. We model the drawing in the urn by setting

Xn =
d∑

j=1

1{∑j−1
�=1 Y�

n−1∑d
�=1 Y�

n−1
<Un≤

∑j
�=1 Y�

n−1∑d
�=1 Y�

n−1

}ej , n ≥ 1, (3.2)

where (Un)n≥1 is i.i.d. with distribution U1
L∼ U[0,1].

Let Fn = σ(Y0,Uk,Dk,1 ≤ k ≤ n) be the filtration of the procedure. The gen-
erating matrices are defined as the Fn-compensator of the additions rule sequence
i.e.

Hn = (
E
[
D

ij
n

∣∣Fn−1
])

1≤i,j≤d
, n ≥ 1.

The first designs under consideration were the homogeneous GFU models where
the addition rules Dn are i.i.d. and the generating matrices Hn = H = EDn are iden-
tical, non-random, with nonnegative entries and irreducible (see [2, 3, 13, 14]). For
practical matters, inhomogeneous GFU models have been introduced (see [4]) in
which Hn are not random but converge to a deterministic limit H , under the assump-
tion that the total number of balls added at each stage is constant; then homogeneous
Extended Pólya Urn (EPU) models have been introduced in [21] in which only the
balance is constant. Finally, in [5] the authors proposed a nonhomogeneous EPU
model because in applications, the addition rule Dn depends on the past history of
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previous trials (see [1]), so that the general generating matrix Hn is usually random.
Thus the entries of H may not be all nonnegative (e.g., when there is no replace-
ment after the draw diagonal terms may become negative), and they assume that the
matrix H has a unique maximal eigenvalue λ with associated (right) eigenvector
v∗ = (v∗,i )i=1,...,d with

∑d
i=1 v∗,i = 1. Furthermore the conditional expectation of

the total number of balls added at each stage was constant.
The adaptive design applied to multi-arm clinical trials that we study has already

been introduced in [6] with first consistency results. This kind of models is clearly
the most interesting for practitioners since it takes into account the past results of
the assigned treatments in the addition rule matrices, denoted Sn at time n (Si

n de-
notes the number of cured patients by treatment i among the Ni

n treated ones with
Nn := ∑n

k=1 Xk). First we prove the a.s. convergence of the generating matrices Hn

towards an irreductible matrix with positive entries. Then, by considering an appro-
priate recursive procedure for the normalized urn composition derived from (3.1)
we prove by the ODE method its a.s. convergence toward v∗. The a.s. convergence
of the treatment allocation frequency Nn/n toward the same v∗ follows from the
previous one and the a.s. convergence of the treatment successes frequency Sn/n

follows from the one of Nn/n and the one of Hn. As concerns asymptotic normal-
ity, we show that the triplet (Yn/n,Nn/n,Sn/n) can be written as a recursive SA
algorithm with remainder satisfying a CLT . Thus we illustrate on this example that
SA Theory is a powerful tool to investigate this kind of adaptive design problem.
The main difficulty is to exhibit the appropriate form for the recursion by making
a priori the balance between significant asymptotic terms and remainder terms.

The paper is organized as follows. In Sect. 3.2, we present the GPU model in-
troduced in [6] and prove the convergence of the generating matrix towards an ir-
reducible limit. Then we rewrite the dynamics (3.1) of the urn composition as a
stochastic approximation procedure with state variable for Ỹn := Yn/n in Sect. 3.3
and establish the a.s. convergence of Ỹn, Ñn := Nn/n and S̃n := Sn/n by using the
ODE method of SA. The rate of convergence is investigated in Sect. 3.4: we obtain
a new CLT for this model, when the generating matrix Hn satisfies itself a CLT ,
which relies again on Stochastic Approximation techniques.

Notations ∀u = (ui)i=1,...,d ∈ R
d , ‖u‖ denotes the canonical Euclidean norm of

the column vector u on R
d , w(u) = ∑d

k=1 uk denotes its “weight”, ut denotes its
transpose; |||A||| denotes the operator norm of the matrix A ∈Md,q(R) with d rows
and q columns with respect to canonical Euclidean norms. When d = q , Sp(A)

denotes the set of eigenvalues of A. 1 = (1 · · ·1)t denotes the unit column vector in
R

d , Id denotes the d × d identity matrix and diag(u) = [δij ui]1≤i,j≤d , where δij is
the Kronecker symbol.

3.2 Presentation of Bai-Hu-Shen GFU Model

We consider here the model introduced in [6], where balls are added depending on
the success probabilities of each treatment. Define an efficiency indicator as follows:
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let (T i
n)n≥1, 1 ≤ i ≤ d , be d independent sequences of [0,1]-valued i.i.d. random

variables, independent of the i.i.d. sampling sequence (Un)n≥1 so that

E
[
T i

n

] = pi, 0 < pi < 1, 1 ≤ i ≤ d. (3.3)

Remark If (T i
n)n≥1, 1 ≤ i ≤ d , is simply a success indicator, namely d independent

sequences of i.i.d. {0,1}-valued Bernoulli trials with respective parameter pi , then
the convention is to set T i

n = 1 to indicate that the response of the ith treatment in
the nth trial is a success and T i

n = 0 otherwise.

In this framework one considers the filtration Fn = σ(Y0,Uk, Tk,1 ≤ k ≤ n),
n ≥ 0. Let Nn = (N1

n , . . . ,Nd
n )t and Sn = (S1

n, . . . , Sd
n )t , where Ni

n = Ni
n−1 + Xi

n,
n ≥ 1, still denotes the number of times the ith treatment is selected among the first
n stages and

Si
n = Si

n−1 + T i
nXi

n, n ≥ 1,

denotes the number of successes of the ith treatment among these Ni
n trials, i =

1, . . . , d . However, to avoid degeneracy of the procedure, we will make the follow-
ing initialization assumption

Ni
0 = 1, Si

0 = 1, i = 1, . . . , d

(which makes the above interpretation of these quantities correct “up to one unit”).

Define Πn = (Π1
n , . . . ,Πd

n )t , where Πi
n = Si

n

Ni
n

, i = 1, . . . , d . In [6] the authors

consider the following addition rule matrices,

Dn+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 1
n+1

Π1
n (1−T 2

n+1)∑
j �=2 Π

j
n

· · · Π1
n (1−T d

n+1)∑
j �=d Π

j
n

Π2
n (1−T 1

n+1)∑
j �=1 Π

j
n

T 2
n+1 · · · Π2

n (1−T d
n+1)∑

j �=d Π
j
n

...
...

. . .
...

Πd
n (1−T 1

n+1)∑d
j �=1 Π

j
n

Πd
n (1−T 2

n+1)∑d
j �=2 Π

j
n

· · · T d
n+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e. at stage n + 1, if the response of the j th treatment is a success, then one ball of

type j is added in the urn. Otherwise, Πi
n∑

k �=j Πk
n

(virtual) balls of type i, i �= j , are

added. Furthermore we have that for every n ≥ 1, the matrix Dn a.s. has nonnegative
entries, is conditionally independent of the drawing procedure Xn given Fn−1 and
satisfies

∀1 ≤ j ≤ d, sup
n≥1

E
[∥∥D·j

n

∥∥2 ∣∣Fn−1
]
< +∞ a.s. (3.4)
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where D
· j
n = (D

ij
n )i=1,...,d . Then, one easily checks that the generating matrices are

given by

Hn+1 = E[Dn+1 |Fn] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 Π1
n (1−p2)

∑
j �=2 Π

j
n

· · · Π1
n (1−pd)

∑
j �=d Π

j
n

Π2
n (1−p1)

∑
j �=1 Π

j
n

p2 · · · Π2
n (1−pd)

∑
j �=d Π

j
n

...
...

. . .
...

Πd
n (1−p1)

∑
j �=1 Π

j
n

Πd
n (1−p2)

∑
j �=2 Π

j
n

· · · pd

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and satisfy

∀n ≥ 1, ∀j ∈ {1, . . . , d},
d∑

i=1

H
ij
n = 1 a.s. (3.5)

Lemma 3.1 If the assumption (3.1) holds and Y0 ∈ R
d+ \ {0}, then Πn

a.s.−→
n→∞ p =

(p1, . . . , pd), so that Hn
a.s.−→

n→∞ H where

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

p1 p1(1−p2)∑
j �=2 pj · · · p1(1−pd)∑

j �=d pj

p2(1−p1)∑
j �=1 pj p2 · · · p2(1−pd)∑

j �=d pj

...
...

. . .
...

pd (1−p1)∑
j �=1 pj

pd(1−p2)∑
j �=2 pj · · · pd

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

is clearly irreducible since 0 < pi < 1, 1 ≤ i ≤ d .

Remark If we assume that Y i
0 > 0, 1 ≤ i ≤ d , then we can prove that limn Ni

n = +∞
a.s., 1 ≤ i ≤ d , faster than in the proof of this result by using that Y i

n ≥ Y i
0 , 1 ≤ i ≤ d ,

n ≥ 1. The proof considers the more general case where Y0 ∈ R
d+ \ {0} and can be

found in [18].

The combination of (3.5) and Lemma 3.1 guarantees that H satisfies the assump-
tions of the Perron-Frobenius Theorem (see [9]) so that 1 is the eigenvalue of H with
the highest norm (maximal eigenvalue) and that the components of its right eigen-
vector v can be chosen all positive. Therefore, we may normalize this vector v∗ such
that w(v∗) = 1. It is given by

v∗i =
pi

1−pi

∑
k �=i p

k

∑
1≤j≤d

pj

1−pj

∑
k �=j pk

, i = 1, . . . , d.
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Note that if pi > pj , pi

pj

∑
k �=i pk

∑
k �=j pk > 1 and 1−pj

1−pi > 1 so that v∗i > v∗j . Hence the

entries v∗i are ordered according to the increasing efficiency pi of the treatments.

3.3 Asymptotic Consistency for Multi-arm Clinical Trials
for the BHS GFU Model

Theorem 3.1 Assume that Y0 ∈R
d+ \ {0}. Then

w(Yn)

n

a.s.−→
n→∞ 1,

Yn

w(Yn)

a.s.−→
n→∞ v∗,

Ñn := Nn

n

a.s.−→
n→∞ v∗ and S̃n := Sn

n

a.s.−→
n→∞ diag(p)v∗.

Proof Step 1 (Convergence of Yn

w(Yn)
). Our aim is to reformulate the dynamics (3.1)–

(3.2) into a recursive stochastic algorithm. Then we aim at applying the most pow-
erful tools of SA, namely the “ODE” method to elucidate the a.s. convergence of
the urn composition. We start from (3.1) with Y0 ∈ R

d+ \ {0}. For n ≥ 1, using the
definition of the generating matrix Hn, we have

Yn+1 = Yn + Dn+1Xn+1 = Yn +E[Dn+1Xn+1 |Fn] + 	Mn+1, (3.6)

where

	Mn+1 := Dn+1Xn+1 −E[Dn+1Xn+1 |Fn] = Dn+1Xn+1 − Hn+1
Yn

w(Yn)

is an Fn-martingale increment. Then, by setting Ỹn = Yn

n
, n ≥ 1, we obtain a canon-

ical recursive stochastic approximation procedure

Ỹn+1 = Ỹn − 1

n + 1
(Id − H)Ỹn + 1

n + 1
(	Mn+1 + rn+1) (3.7)

with step γn = 1
n

and a remainder term given by

rn+1 :=
(

n

w(Yn)
− 1

)
Hn+1Ỹn + (Hn+1 − H)Ỹn. (3.8)

Furthermore, in order to establish the a.s. boundedness of (Ỹn)n≥1, we will rely on
the following recursive equation satisfied by w(Yn) obtained by using the properties
of the generating matrix Hn+1

w(Yn+1) = w(Yn) + 1 + w(	Mn+1). (3.9)
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By (3.4), we have that supn≥1 E[‖	Mn+1‖2 |Fn] < +∞ a.s. Therefore thanks to
the strong law of large numbers for conditionally L2-bounded martingale incre-
ments, we have Mn

n

a.s.−→
n→∞ 0. Consequently it follows from (3.9) that

w(Yn)

n
= 1 + w(Y0) − 1

n
+ w(Mn)

n

a.s.−→
n→∞ 1. (3.10)

Since the components of Ỹn = Yn

n
are nonnegative and w(Ỹn) = w(Yn)

n

a.s.−→
n→∞ 1, it is

clear that (Ỹn)n≥1 is a.s. bounded and that a.s. the set Y∞ of all its limiting value is
contained in

V = w−1{1} = {
u ∈R

d+
∣∣w(u) = 1

}
.

So we may try applying the ODE method (see Appendix Theorem 3.3). Since Ỹn

and Hn+1Ỹn are a.s. bounded, (3.10) and Lemma 3.1 imply that rn
a.s.−→

n→∞ 0.

The ODE associated to the recursive procedure reads

ODEId−H ≡ ẏ = −(Id − H)y.

Owing to Lemma 3.1, Id − H admits v∗ as unique zero in V . The restriction of
ODEId−H to the affine hyperplane V is the linear system ż = −(Id − H)z, where
z = y − v∗ takes values in V0 = {u ∈ R

d |w(u) = 0}. Since Sp((Id − H) |V0) ⊂
{λ ∈ C,�e(λ) > 0} by Lemma 3.1, v∗ is an uniformly stable equilibrium for the
restriction of ODEId−H to V , the whole hyperplane, as an attracting area. The
fundamental result derived from the ODE method (see Theorem 3.3 in Appendix
and the notations therein, in particular the remainder rn) yields the expected re-
sult

Ỹn
a.s.−→

n→∞ v∗.

Step 2 (Convergence of Ñn). We will prove that Yn

w(Yn)

a.s.−→
n→∞ v∗ implies that

Nn

n

a.s.−→
n→∞ v∗. We have

E[Xn |Fn−1] =
d∑

i=1

Y i
n−1

w(Yn−1)
ei = Yn−1

w(Yn−1)

and, by construction ‖Xn‖2 = 1 so that E[‖Xn‖2 |Fn−1] = 1. Hence the martin-
gale

M̃n =
n∑

k=1

Xk −E[Xk |Fk−1]
k

a.s.&L2−→
n→∞ M̃∞ ∈ L2,
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and by the Kronecker Lemma we obtain

1

n

n∑

k=1

Xk − 1

n

n∑

k=1

Yk−1

w(Yk−1)

a.s.−→
n→∞ 0.

This yields the announced implication owing to the Cesaro Lemma.
Step 3 (Convergence of S̃n). We have that diag(S̃n) = diag(Πn)Ñn. Then by using
Lemma 3.1 and Step 2, we obtain that S̃n

a.s.−→
n→∞ diag(p)v∗. �

3.4 Asymptotic Normality for Multi-arm Clinical Trials
for the BHS GFU Model

In [6] in order to derive a CLT , not with the bias EYn but with nv∗, from their own
general asymptotic normality result they need to fulfill the following convergence
rate assumption for Hn

∑

n≥1

‖Hn − H‖∞√
n

< +∞ (3.11)

where ‖ · ‖∞ is the norm on L∞
Rd×d (P). In [6], the a.s. rate of decay |||Hn −H |||∞ =

o(n− 1
4 ) is shown which is clearly not fast enough to fulfill (3.11).

However, by enlarging the dimension of the structure process of the procedure
by considering the 3d-dimensional random sequence θn = (Ỹn, Ñn, S̃n)

t , n ≥ 1, we
will establish that a CLT does hold for the BHS GFU model.

The first step is to notice that the generating matrix Hn+1 can may be written
as a function depending on S̃n and Ñn, i.e. Hn+1 = Φ(S̃n, Ñn), where Φ : Rd+ ×
(0,∞)d → Md(R) is a differentiable function defined by

Φ(s, ν) = (
Φij (s, ν)

)
1≤i,j≤d

where
{

Φii(s, ν) = pi, 1 ≤ i ≤ d,

Φij (s, ν) = si/νi
∑

k �=j sk/νk qj , 1 ≤ i, j ≤ d, i �= j.

Then the following strong consistency and CLT hold for (θn)n≥1.

Theorem 3.2 Assume that Y0 ∈R
d+ \ {0}. If �e(Sp(H) \ {1}) < 1

2 , then

√
n
(
θn − θ∗) L−→

n→∞ N (0,Σ),

where

θ∗ := (
v∗, v∗,diag(p)v∗)t , Σ =

∫ +∞

0
eu(Dh(θ∗)− I

2 )Γ eu(Dh(θ∗)− I
2 )t du
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with

Γ =
⎛

⎜⎝

∑d
k=1 v∗kCk − v∗(v∗)t H(diag(v∗) − v∗(v∗)t )

(diag(v∗) − v∗(v∗)t )tH t diag(v∗) − v∗(v∗)t

diag(p)(diag(v∗) − v∗(v∗)t )t diag(p)(diag(v∗) − v∗(v∗)t )t

(diag(v∗) − v∗(v∗)t )diag(p)

(diag(v∗) − v∗(v∗)t )diag(p)

diag(p)(v∗ − v∗v∗t diag(p))

⎞

⎟⎠

where Ck = (Ck
ij )1≤i,j≤d , 1 ≤ k ≤ d , are d × d positive definite matrices with

Ck
ij = pipj (1 − pk)

(
∑

��=k p�)2
1{i,j �=k} + pk1{i=j=k},

and

Dh
(
θ∗) =

⎛

⎝
Id − H + v∗1t − ∂

∂ν
(Φ(s, ν)y)|θ̃=θ̃∗ − ∂

∂s
(Φ(s, ν)y)|θ̃=θ̃∗

v∗1t − Id Id 0Md (R)

diag(p)(v∗1t − Id) 0Md (R) Id

⎞

⎠

which is invertible.

Proof We will show that (θn)n≥1 satisfies an appropriate recursion to apply Theo-
rem 3.4 (CLT). First, we write a recursive procedure for Ñn and S̃n. Having in mind
that Nn = 1 +∑

1≤k≤n Xk and Sn = 1 +∑
1≤k≤n diag(Tk)Xk , we get, for n ≥ 1,

Ñn+1 = Ñn − 1

n + 1
(Ñn − Xn+1) = Ñn − 1

n + 1

(
Ñn − Ỹn

w(Ỹn)

)
+ 1

n + 1
	M̃n+1

= Ñn − 1

n + 1

(
Ñn − (

2 − w(Ỹn)
)
Ỹn

)+ 1

n + 1
(	M̃n+1 + r̃n+1) (3.12)

where 	M̃n+1 := Xn+1 − Yn

w(Yn)
is an Fn-martingale increment and r̃n+1 :=

(w(Ỹn)−1)2

w(Ỹn)
Ỹn and likewise,

S̃n+1 = S̃n − 1

n + 1

(
S̃n −diag(p)

(
2−w(Ỹn)

)
Ỹn

)+ 1

n + 1
(	M̂n+1 + r̂n+1) (3.13)

where 	M̂n+1 := diag(Tn+1)Xn+1 −E[diag(Tn+1)Xn+1 |Fn] = diag(Tn+1)Xn+1 −
diag(p) Ỹn

w(Yn)
is an Fn-martingale increment and r̂n+1 = diag(p)

(w(Ỹn)−1)2

w(Ỹn)
Ỹn. Then

we rewrite the dynamics satisfied by Ỹn as follows

Ỹn+1 = Ỹn − 1

n + 1

(
Id − (

2 − w(Ỹn)
)
Hn+1

)
Ỹn + 1

n + 1
(	Mn+1 + rn+1), (3.14)
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where rn+1 := (w(Ỹn)−1)2

w(Ỹn)
Hn+1Ỹn. Finally, we get the following recursive procedure

for θn

θn+1 = θn − 1

n + 1
h(θn) + 1

n + 1
(	Mn+1 + Rn+1), n ≥ 1,

where, for every θ = (y, ν, s)t ∈ R
3d+ ,

h(θ) :=
⎛

⎝
(Id − (2 − w(y))Φ(s, ν))y

ν − (2 − w(y))y

s − (2 − w(y))diag(p)y

⎞

⎠ ,

	Mn+1 :=
⎛

⎝
	Mn+1

	M̃n+1

	M̂n+1

⎞

⎠ and Rn+1 :=
⎛

⎝
rn+1
r̃n+1
r̂n+1

⎞

⎠ .

Let us check that the addition rule matrices satisfy (3.17). For every j ∈ {1, . . . , d},
let set C

j
n = E[D·j

n+1(D
·j
n+1)

t |Fn]. We have that

(
C

j
n

)
ii′ = E

[
D

ij

n+1

(
D

i′j
n+1

)t |Fn

]

= Qi
nQ

i′
n

(
∑

k �=j Qk
n)

2
E
[(

1 − T
j

n+1

)2∣∣Fn

]
1{i,i′ �=j} +E

[(
T

j

n+1

)2∣∣Fn

]
1{i=i′=j}

because T
j

n+1(1 − T
j

n+1) = 0. Then owing to Lemma 3.1, C
j
n

a.s.−→
n→+∞ Cj with

C
j

ii′ = pipi′(1 − pj )

(
∑

k �=j pk)2
1{i,i′ �=j} + pj1{i=i′=j}.

We can check that Cj is a positive definite matrix. Consequently (3.17) holds.
The function Φ being differentiable at the equilibrium point θ∗, we have

Dh
(
θ∗) =

⎛

⎝
Id − H + v∗1t − ∂

∂ν
(Φ(s, ν)y)|θ=θ∗ − ∂

∂s
(Φ(s, ν)y)|θ=θ∗

v∗1t − Id Id 0Md (R)

diag(p)(v∗1t − Id) 0Md (R) Id

⎞

⎠

which is invertible since by Schur complement we have det(Dh(θ∗)) = det(Id −
H + v∗1t ) thanks to ∂

∂ν
(Φ(s, ν)y)|θ=θ∗ = −diag(p) ∂

∂s
(Φ(s, ν)y)|θ=θ∗ .

Finally, it remains to check that the remainder sequence (Rn)n≥1 satisfies (3.18)
for an ε > 0:

E
[
(n + 1)‖Rn+1‖21{‖θn−θ∗‖≤ε}

] −→
n→∞ 0. (3.15)

We note that ‖Rn+1‖2 = ‖rn+1‖2 + ‖̃rn+1‖2 + ‖̂rn+1‖2. It follows from the defini-
tion of rn+1 and the elementary facts ‖Ỹn − v∗‖ ≤ ‖θn − θ∗‖ and w(Ỹn) ≥ ‖Ỹn‖
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that

‖rn+1‖21{‖θn−θ∗‖≤ ‖v∗‖
2 } ≤ 6

(
w(Ỹn) − 1

)41{‖θn−θ∗‖≤ ‖v∗‖
2 }.

But w(Ỹn) − 1 = w(	Mn)
n

where supn≥0 E[|w(	Mn+1)|2+δ|Fn] ≤ C′, δ > 0. Now
using that |w(y)| ≤ Cd‖y‖,

E
[
n
∣∣w(Ỹn) − 1

∣∣41{‖θn−θ∗‖≤ ‖v∗‖
2 }

] ≤ C∗
δ nE

[∣∣w(Ỹn) − 1
∣∣2+δ]

= Cd

n1+δ
E
[∣∣w(	Mn)

∣∣2+δ] ≤ C′
d

n1+δ
,

where C∗
δ > 0 is a real constant. Consequently

E
[‖r̄n+1‖21{‖θn−θ∗‖≤ ‖v∗‖

2 }
] = o

(
1

n

)
.

The same argument yields

E
[‖̃rn+1‖21{‖θn−θ∗‖≤ ‖v∗‖

2 }
] = o

(
1

n

)
, E

[‖̂rn+1‖21{‖θn−θ∗‖≤ ‖v∗‖
2 }

] = o

(
1

n

)
,

therefore (3.15) is satisfied. We refer to [18] for the computation of the matrix Γ .
The three results of convergence rate follows from Theorem 3.4 in the Appendix.
The details are left to the reader. �

Corollary 3.1 Under the assumptions of Theorem 3.2,

√
n(Hn − H)

L−→
n→∞ N (0,ΓH )

where ΓH is a d2 × d2 matrix given by

ΓH = DΦ
(
u∗, v∗)[Σi+d,j+d ]1≤i,j≤2dDΦ

(
u∗, v∗)t .

Proof This is an easy consequence of the so-called 	-method since

Hn = Φ(S̃n, Ñn) = Φ
(
u∗, v∗)+ DΦ

(
u∗, v∗).

(
S̃n − u∗, Ñn − v∗)

+ ∥∥(S̃n − u∗, Ñn − v∗)∥∥ε(S̃n, Ñn)

with limy→(u∗,v∗) ε(y) = 0. Consequently

√
n(Hn − H) = DΦ

(
u∗, v∗).

(√
n
(
S̃n − u∗),

√
n
(
Ñn − v∗))+ εP(n)

where εP(n) goes to 0 in probability (as the product of a tight sequence and an a.s.
convergent sequence). This concludes the proof. �
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Numerical Example: BHS Model We consider the case d = 2, where n = 2 ×
103, p1 = 0.5, p2 = 0.7, so v∗i = 1−pi

2−p1−p2 , i = 1,2. Figure 3.1 shows the a.s.

convergence of the normalized urn composition, the frequency of drawing of each
treatment and their frequency of success. Figure 3.2 illustrates the a.s. convergence
of the estimator of the success probability of each treatment.

Fig. 3.1 Convergences of Yn

n
toward v∗ (up-windows), of Nn

n
toward v∗ (middle-windows) and

of Sn

n
toward diag(p)v∗ (down-windows): d = 2, n = 2.103, p1 = 0.5, p2 = 0.7, Y0 = (0.5,0.5)t ,

N0 = (1,1)t and S0 = (1,1)t
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Fig. 3.2 Convergences of Πn toward p: d = 2, n = 2 × 103, p1 = 0.5, p2 = 0.7, Y0 = (0.5,0.5)t ,
N0 = (1,1)t and S0 = (1,1)t

Appendix: Basic Tools of Stochastic Approximation

Consider the following recursive procedure defined on a filtered probability space
(Ω,A, (Fn)n≥0,P)

∀n ≥ n0, θn+1 = θn − γn+1h(θn) + γn+1(	Mn+1 + rn+1), (3.16)

where h : Rd → R
d is a locally Lipschitz continuous function, θn0 an Fn0 -

measurable finite random vector and, for every n ≥ n0, 	Mn+1 is an Fn-martingale
increment and rn is an Fn-adapted remainder term.

Theorem 3.3 (A.s. Convergence with ODE Method, see e.g. [7, 8, 10, 12, 17]) As-
sume that h is locally Lipschitz, that

rn
a.s.−→

n→∞ 0 and sup
n≥n0

E
[‖	Mn+1‖2

∣∣Fn

]
< +∞ a.s.,

and that (γn)n≥1 is a positive sequence satisfying

∑

n≥1

γn = +∞ and
∑

n≥1

γ 2
n < +∞.

Then the set Θ∞ of its limiting values as n → +∞ is a.s. a compact connected set,
stable by the flow of

ODEh ≡ θ̇ = −h(θ).

Furthermore if θ∗ ∈ Θ∞ is a uniformly stable equilibrium on Θ∞ of ODEh, then

θn
a.s.−→

n→∞ θ∗.
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Comments By uniformly stable we mean that

sup
θ∈Θ∞

∣∣θ(θ0, t) − θ∗∣∣ −→ 0 as t → +∞,

where θ(θ0, t)θ0∈Θ∞,t∈R+ is the flow of ODEh on Θ∞.

Theorem 3.4 (Rate of Convergence see [10], Theorem 3.III.14, p.131 (for CLT see
also e.g. [8, 17])) Let θ∗ be an equilibrium point of {h = 0}. Assume that the func-
tion h is differentiable at θ∗ and all the eigenvalues of Dh(θ∗) have positive real
parts. Assume that for some δ > 0,

sup
n≥n0

E
[‖	Mn+1‖2+δ

∣∣Fn

]
< +∞ a.s., E

[
	Mn+1	Mt

n+1

∣∣Fn

] a.s.−→
n→∞ Γ,

(3.17)
where Γ is a deterministic symmetric definite positive matrix and for an ε > 0,

E
[
(n + 1)‖rn+1‖21{‖θn−θ∗‖≤ε}

] −→
n→∞ 0. (3.18)

Specify the gain parameter sequence as follows: for every n ≥ 1, γn = 1
n

. If Λ :=
�e(λmin) > 1

2 , where λmin denotes the eigenvalue of Dh(θ∗) with the lowest real
part, then, the above a.s. convergence is ruled on the convergence set {θn → θ∗} by
the following Central Limit Theorem

√
n
(
θn − θ∗) L−→

n→∞ N
(

0,
Σ

2Λ − 1

)

with

Σ :=
∫ +∞

0

(
e−(Dh(θ∗)− Id

2 )u
)t

Γ e−(Dh(θ∗)− Id
2 )udu.
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Chapter 4
Logistic Modeling of a Religious Sect Cult
and Financial Features

Marcel Ausloos

Abstract The financial characteristics of sects are challenging topics. The present
paper concerns the Antoinist Cult community (ACC), which has appeared at the
end of the 19-th century in Belgium, have had quite an expansion, and is now de-
caying. The historical perspective is described in an Appendix. Although surely
of marginal importance in religious history, the numerical and analytic description
of the ACC growth AND decay evolution per se should hopefully permit general-
izations toward behaviors of other sects, with either longer life time, i.e. so called
religions or churches, or to others with shorter life time. Due to the specific aims
and rules of the community, in particular the lack of proselytism, and strict ac-
ceptance of only anonymous financial gifts, an indirect measure of their member
number evolution can only be studied. This is done here first through the time de-
pendence of new temple inaugurations, between 1910 and 1940. Besides, the com-
munity yearly financial reports can be analyzed. They are legally known between
1920 and 2000.

Interestingly, several regimes are seen, with different time spans. The agent based
model chosen to describe both temple number and finance evolutions is the Verhulst
logistic function taking into account the limited resources of the population. Such a
function remarkably fits the number of temple evolution, taking into account a no
construction time gap, historically explained. The empirical Gompertz law can also
be used for fitting this number of temple evolution data, as shown in an Appendix.
It is thereby concluded that strong social forces have been acting both in the growth
and decay phases.
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4.1 Introduction

In recent years, some description of various communities, in particular by physicists
[14, 15, 25, 36, 48], has been of interest quite outside sociology,1 since the commu-
nities are made of agents, defined by several degrees of freedom, like sex, age, race,
citizenship, wealth, intellectual quotient, love for music groups, sport activity, lan-
guage, religion, etc.

Interest in religious movements has much led scholars to consider those through
field observations rather than through surveys. Studies on Bruderhof [56], Jehovah’s
Witnesses [11], Satanist groups [10], the Unification Church [45], Scientology [54],
the Divine Light Mission [21], and other movements [26] have focussed more on
the importance of symbolism, ritual, and discourse in the construction of “religious
meanings” [12, 49, 55] than on the motivation within social, financial or general
sectary aspects.

Of course, Marx and Engels [34] did ask to what extent religion serves as an
opiate that stifles social change, but this political view emphasizes exogenous goals
and means. Durkheim [22] did explore the “degree” to which a cult, later on a reli-
gion, through a church, entices a source of cohesion that stimulates agent collective
endogenous actions. One should claim that such a “degree” contains some measure
of a (at least, moral) satisfaction. Still, too much consideration on the various goals
of religious organizations, i.e. saving the body OR (my emphasis) the soul, might
obliterate an objective/quantitative approach. Thus, not disregarding the need for a
qualitative understanding of the complex role of religions in social service delivery
performance, a more quantitative approach, along agent based modeling considera-
tions, might shine some light on successes and failures of some cult or sect.

In fact, within Comte ideas [17], one has often attempted to describe economic
and sociological features within some analytic equations, involving agents, (i) with
degrees of freedom, thus interacting with “external fields”, like a spin with a mag-
netic field or a charge with an electric field, and (ii) interacting with each other
within some cluster. External fields can be mapped into so called social forces [38]
through a change of vocabulary. For simulating the numerical evolution in size of a
religious movement, many available models of opinion dynamics are also available,
several taking into account preferential attachment,—seen in [2, 7–9] as one of the
fundamental dynamical causes of the evolution of such religious movements.

Beside such considerations, one may wonder about financial and/or economic as-
pects of religious communities, and how they evolve in some so called market. There
is a huge literature, going back to [29], and much intense work on the economics
of religious adepts and their hierarchy; both at the micro- and macro-levels. Many
interesting considerations exist and are worth to be read, but quantitative modeling

1At this level, one should pay some respect to earlier work, i.e. in 1974, Montroll and Badger [39]
have introduced, into social phenomena, quantitative approaches, as physicists should do along me-
chanics lines. Indeed communities can be considered as in a thermodynamic state,—as Boltzmann
discovered [13] after Comte [17].
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is somewhat absent, as well as some search for empirical laws, and for explaining
them, say mathematically.

In view of the above, I was interested in finding whether one could get some eco-
nomic or financial data on the evolution of a community made of agents having a
well defined so called “degree of freedom”, like their religious adhesion. For various
reasons, this is not so easy to find: such communities do not want to be appreciated
as rich, or as poor. Financial data are rarely released. There are known psychologi-
cal difficulties in merging considerations about money and religion [29]. One may
wonder why!

One crucial request, for a study within the so defined framework, is to find some
community for which growth and decay have been observed, but have not been in-
fluenced by too many, violent or not, competitive aspects with other cults. Therefore,
the time life of an interesting community should be rather short, yet long enough to
have some meaningful data.

A community like the Antoinists, here below called the Antoinist Cult Commu-
nity (ACC), exists for about more than a century, has markedly grown, [18, 20] and
is now apparently decaying. For the reader information, some comment on the com-
munity origin and roles is left for Appendix A. In France, the religious association
community is considered as a sect [32] but it is a Etablissement d’utilité publique
(Organization of Public Utility)2 in Belgium, since 1922. For short, the ACC will
be called a religious sect, nevertheless.

It would have been of interest to have some quantitative measure of the true
number of adepts, in order to relate such a data with previous studies, as in [2, 7–
9]. However, one remarkable and quite respectable characteristics of the ACC, be-
side not to have any proselytism action, unlike the more financially active religious
movements, is not to keep anything, like a financial gift, which would induce some
private information. Thus, information on adept number evolution can only come
from indirect measures. The presently relevant, thereafter studied, data is limited
to: (i) Sect. 4.2.1, the number of temples, built in Belgium, before World War II,
and (ii) Sect. 4.2.2, the financial activity of the community, i.e. yearly income and
expenses, for over about 80 years. In Sect. 4.2.3, the most commonly accepted ki-
netic growth law for describing a population evolution, i.e. Verhulst law [50], is
introduced as the analytic solution of a possibly relevant agent based model (ABM).

Interestingly, the growth in the number of temples will be found to follow such
a Verhulst law [50], in Sect. 4.3.1. In estimating acceleration and deceleration pro-
cesses in the inauguration of temples, one will observe and quantify some social
force effect, in the sense of Montroll [38], in Sect. 4.3.2. Some ABM interpretation
is given, in Sect. 4.3.3.

In Sect. 4.4, the evolution of financial data is also studied starting from fits ac-
cording to the Verhulst logistic function [50]. A succession of three logistic regimes
is found, in Sect. 4.4.1, both for income and expenses data.

2Such a legal association status seems to have been invented for the Antoinist Cult in Belgium,
though no formal proof of the latter can be found in notes of the parliament related to the 1921
law elaboration process. Notice that the Minister in charge of the application is the Minister of
Justice,—apparently due to suspicion going on with such unfamiliar religious/charity matters.
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Since there is some natural interest in considering both growth and decay pro-
cesses of a community, the decay of income and expenses after 1980 is also ex-
amined, in Sect. 4.4.2. A trivially simple behavior is not found though. The non
symmetric time dependence of growth and decay regimes leads to an open question.

Section 4.5 serves as a conclusion: the complexity of quantitatively studying a
religious community through its social history will be emphasized. Indeed several
growth regimes are found. On the other hand, the recent decay process is hardly
mapped into a simple analytical form. This is in marked contrast with ecological or
laboratory based data on population evolutions. Thus, as should most likely be really
expected, it is concluded that social phenomena are very complex processes offering
much challenge for future physics modelling, suggesting challenging investigations
through agent based model simulations.

Note that the Verhulst mapping is sometimes criticized as an unrealistic, too sim-
ple, model. Therefore, the sometimes considered as the best alternative Gompertz
(human mortality) law [27] is adapted to the present context, in Appendix B,—
tuning the parameters into their size growth rather than decay value. Only the num-
ber of temples evolution case is reported within such a Gompertz approach; see
Appendix B. Finally, in Appendix C, it is emphasized that social forces can be intro-
duced at least in two different ways in an ABM, based on Vehulst and/or Gompertz
analytic evolutions.

As hinted, this paper is based on a compilation of already published papers on
econophysics aspects of the Belgium ACC [3, 4, 16], but new figures are here in-
cluded.

4.2 The Data Set

4.2.1 Number of Temples Data

Since there is no data on adept adhesions, one indirect way of observing the evo-
lution of the size of the ACC has been mapped into the counting of the number of
temples as a function of time. Such data is meaningfully available for Belgium till
1935. Note that temples have been mainly constructed in Belgium, though others
exist in France and Brazil. Though it might also be of interest to consider the data
for the whole sect on a world wide basis, only the 27 temples constructed in Belgium
during the main growth phase of the cult are here below considered, for coherence.
The number of temples constructed as a function of time has been extracted both
from the archives of the ACC and from [18] and [20] compilation and discussions.

Most of the times, the exact day of the inauguration or consecration is known,—
sometimes (twice) only the month is known. To be more precise about the exact day
of the event, for the latter cases, would request much time consuming, searching for
this information through news media, without being certain of the success. When
in doubt, the dates in an Appendix of a 1934 book by Debouxhtay [18] are used,
because I consider them as the most reliable ones. In order to count the number of
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days and months between successive rise of temples, when the day is unknown, the
date has been assumed to be the 15th of the month. The number of days between
two events has been calculated, taking into account bissextile years if necessary; the
number of months has also been calculated but rounded up to the nearest integer
according to the sum between the number of days till the end of the first month and
from the beginning of the last month corresponding to the two marginal events so
considered. The x-axis for the figure discussed will thus be the cumulative number
of months since the rise of the first temple in Jemeppe-sur-Meuse, on Aug. 15, 1910;
the data extends up to the 27-th temple raised3 in La Louvière, on Dec. 03, 1933.
After a huge consecration gap, lasting more than 20 years, four other temples have
been raised in more recent years, but three of these have been closed already. These
temples are not included in the analysis.

For giving some perspective, let it be noticed that, in France, the first temple was
consecrated in Paris (13ème) on Oct. 26, 1913, while the 15th was in Valenciennes,
on Aug. 07, 1932. The most recent one, the 31st and 32nd, were inaugurated in Caen
and Toulouse in 1991 and 1993 respectively, but, even after some local research, the
days and months are unknown. Thus, the evolution of the number of temples in
France is not studied here because of such uncertainties.

4.2.2 Financial Data

The financial data set has been extracted from the Belgian daily official journal, i.e.
Moniteur Belge, when it was available in the archives of the Antoinist Cult Library
in Jemeppe-sur-Meuse. A few issues are missing, i.e. ca. 1960–1965, without any
known reason, but those do not appear a posteriori, from the subsequent data anal-
ysis, to impair the discussion and conclusion. The examined time range starts in
1920, i.e. since when it was mandatory to report it. However, due to the introduction
of the EUR in 2000, in order to keep the Belgian Franc (BEF) as the usual unit, only
the data till 2000 is discussed,—again without much apparent loss of content for the
present discussion and conclusion. Due to an evolution in the Belgian legal rules for
reporting income and expenses data over the last century, many detailed items can
be found in the oldest reports. In order to have enough meaningful comparison over
several decades, such detailed data on the years, i.e. grossly before 1940, has been
concatenated such that only the yearly total incomes and total expenses are finally
used, are displayed in Fig. 4.1, and discussed below. Notice that these so called in-
come values do not take into account the left-over from the previous year(s). That is
why, in Fig. 4.1, sometimes, it seems that there are more expenses than income in a
given year.

Moreover, the financial data,—equivalent to the Belgium community data, here
studied, but corresponding to the France Antoinist cult activity, is not available, and
thus cannot be studied below.

3For 135 880.70 BEF of that year.
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Fig. 4.1 (top) Yearly income
and expenses of the Belgium
Antoinist Cult Community as
reported in the Moniteur
Belge; (bottom) logarithmic
scale display of yearly
income and expenses
suggesting three growth
regimes before some marked
decay

4.2.3 Agent Based Model Numerical Analysis Methodology.
The Verhulst Logistic Function

For the modelization of an agent based community growth as a function of time t ,
let us take the (Verhulst) so called logistic function as the first approximation, i.e.,
a sigmoid curve,

z = z∞
er(t−tm)

1 + er(t−tm)
= z∞

1 + e−r(t−tm)
, (4.1)

where z∞ is the upper limit of z as time t tends to infinity, tm is the position of the
inflection point, at mid z amplitude, such that zm = z∞/2, and r is the supposedly
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Fig. 4.2 Logistic fits, at low
and high t , of the number of
temples of the Antoinist Cult
Community in Belgium as a
function of the number of
months, since the
consecration of the first
temple on Aug. 15, 1910

constant growth rate. This way of expressing the logistic curve has the advantage

that the initial measure z0, at t = t0, is a rapidly fixed value: z0 = z∞ er(t−tm)

1+er(t0−tm) =
2.zm

1+e−r(t0−tm) , for estimating one of the three parameters in Eq. (4.1).
Above the inflexion point, one can use an asymptotic expansion i.e.

z � z∞
(
1 − e−r(t−tm)

)
. (4.2)

Such a latter exponential growth behavior, Eq. (4.2), is sometimes referred to as
the von Bertalanffy curve [53] curve,—of mass accumulation, in biology. It is also
through an appropriate change of variable, nothing else than Malthus exponential
growth rate, y = y0e

bτ , i.e. if r ≡ −b, τ ≡ t − tm and z ≡ z∞(1 − y/y0).
Note also that

z/z∞
1 − z/z∞

= er(t−tm). (4.3)

4.3 Number of Temples Evolution

The number of raised temples by the Belgium ACC is displayed in Fig. 4.2, as a
function of the evolved month since the rise of the first temple on Aug. 15, 1910. For
the sake of completeness, let it be mentioned that Dericquebourg [20] has given a
sketch of this number of temple evolution, in Belgium and in France, in an appendix
to his book, though without any qualitative nor quantitative discussion.
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4.3.1 Numerical Analysis. Verhulst Logistic Law

The best fit behavior to a logistic law has been searched through a log-log plot
method, based on Eq. (4.3). The upper value, z∞, was imposed to be an integer. It
has occurred after many simulations, but it could occur readily to many, that two
distinct regimes must be considered: one at “low t”, i.e. during the initial growth
of the ACC, and another in high t , at “later times”. The regimes are readily sepa-
rated by a 4 year gap, between 1919 and 1923, during which there was no temple
construction. The low t logistic fit of the number (c) of temples as a function of the
number (m) of months (cumulated since the rise of the first temple) corresponds to

c(m) = 24

1 + e−0.03395∗(m−80)
(4.4)

while the fit in the upper m regime corresponds to

c(m) = 29

1 + e−0.0195∗(m−140)
. (4.5)

Both data and fits, in each regime, are combined and shown in Fig. 4.2.
It is remarkable that the initial growth rate for such data is about 0.03395, i.e.

largely more than 3 temples every ten years, and reduces to 0.0195 in the latest
years, i.e. about 2 temples per year. Nevertheless, although the initial logistic law
should have led to expecting ∼ 24 temples at saturation, the latter one would pre-
dict 29 temples at most. It is interesting to recall here that Verhulst modification of
Malthus (unlimited growth) equation was based on considering a “limiting carrying
capacity” of the “country”, for the considered population. Mutatis mutandis, such
24 and 29 z∞ values reflect such an effect.

Notice that a unique logistic curve fit, over the whole time interval, would give
a value of the growth rate ∼ 0.02355, but not fulfilling the Jarque-Bera (JB) test
[30],—even when finite sample effects are taken into account [28].

One might debate whether the original logistic map is the most appropriate law
to be considered. One might suggest a skewed logistic with extra parameters, as
considered, e.g. in [41, 42, 57] studying various population growth cases. This has
not been considered for this report, because the parameters entering such skewed
curves are hardly meaningfully interpreted, in the present investigation context. It
seems preferable in view of the data analysis and the framework of this investigation
to further discuss the findings, in Sect. 4.3.2, as due to the influence of social forces
[38] on agents, i.e. adepts.

Note also that the Gompertz (double exponential) growth law [27] is studied in
Appendix B, for the above data.

4.3.2 Quantitative Measure of Social Forces

At first sight, the presently investigated growth regimes do not seem to overlap
much. Moreover the rates of growth seem somewhat different in the successive
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regimes, indicating sequential rather than overlapping (and competitive) processes,
in contrast to social and technological cases [24, 33], as well as botanical [1, 43] and
other biological,—in which successive competing molecular reactions are of course
involved. Therefore, one might rather consider, beside social endogenous contagion,
an effect due to, in the words of Montroll, “social forces” [38]. It is worth to recall
that Montroll argued that social evolutionary processes occur due to competition
between new ideas and old ones. Moreover, deviations from the classical logistic
map are often associated with intermittent events. In many cases, a few years after
on such event, it can be abstracted as an instantaneous function impulse. Montroll
argued that the most simple generalization of Verhulst equation, in such a respect,
goes when introducing a force impulse, F(t) = αδ(t − τ), in the r.h.s. of the kinetic
Verhulst equation so that the dynamical equation for some forced evolution process
X(≡ z/z∞) reads

d ln(X)

dt
= k(1 − X) + αδ(t − τ). (4.6)

In so doing, in the time regime after the withdrawal of the intermittent force,
the evolutionary curve are parallel lines, on a semi-log plot, see Eq. (4.3): the un-
accelerated one, above or below the latter depending whether the process is ac-
celerated or deterred at time τ . The impulse parameter α is easily obtained as ex-
plained in [38] and for the present case in [4]. One finds α1 = 0.103, at τ1 ∼ 1914,
and α2 = −0.405, at τ2 ∼ 1922, from Fig. 4.3. These are very reasonable orders
of magnitude. It should have been obvious that the decelerating force should be
higher in magnitude that the accelerating one. The fact that the forces are usually
not instantaneous ones, and do not suddenly accelerate or decelerate the process, are
approximations which are reexamined, in Appendix C,—where some emphasis is
further made on different points of view: mathematical-like, at first sight, but funda-
mentally relevant for discussing the causes of evolution of many populations, along
ABM ideas.

4.3.3 Agent Based Model Interpretation

The ACC present hierarchy interpretation and mine go along the lines of the histor-
ical points reported in the Introduction here above. The first acceleration, ca. 1914
can be historically connected to the first world war. The workers and their families
needed some intra-community social support, and interestingly being satisfied by
the healing of their soul and sometimes body, gave quite an amount of money to
build structures, temples, replacing the mere “lecture rooms” where the adepts first
gathered for cult activities.

After the war, income and housing taxes were implemented. However, social
organizations attempted to be legally screened from such taxes. In Belgium, since
its independence from The Netherlands, in 1830, the catholic priests, and officials
of a few other cults nowadays, are paid as government employees, on a specially
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Fig. 4.3 Logistic variation
(X/(1 − X)) of the number of
ACC temples (X) in Belgium
as a function of the number of
months (cumulated from the
raise of the first temple, in
1910), indicating a “social
force effect” at time τ1,
accelerating the process over
a time span, and a
decelerating force impulse at
time τ2

adapted scale. However, the introduction, and legal recognition, of a new active
socio-religious group into the religious affairs of the country was not well appreci-
ated by the catholic church leaders and adepts. Whence it took a while before the
Belgian government, manipulated by the bishops and catholic members of the par-
liament, accepted to consider a new law establishing a role for social organizations,
associated to some religious movement. During more than four years, as convinc-
ingly outlined by Dericquebourg [20], the intended law4 on Organisations of Public
Utility suffered many parliamentary delays, starting from 1919, in fine much decel-
erating the temple construction process. One should admit that it was quite natural
from a tax point of view to wait for the rising of new temples. When the law was
finally voted and applicable, accumulated money could be used for temple construc-
tion, over a few months (20 or so), after 1923. The growth could resume, as seen
in Fig. 4.2. For completeness, note that the 1929 October crash occurs during the
230-th month; observe the small gap around such a time.

Later on, after 1938, the number of temples did not much increase, indirectly
indicating the unnecessary need for such constructions because of the stability or
even decay in the number of adepts. The recent closing of three temples seems to
confirm such a number evolution.

Following such considerations, the relationship between psychological and so-
ciological needs, at times of great economic difficulty, can be observed in such a
cult adepts. It is remarkable that poor social conditions led to high cash gifts,—
sufficiently as to build temples during a war time. The somewhat incredible rising
level of gifts by adepts for the construction of temples at difficult times is an in-

4Nowadays, the law is applied much outside socio-religious groups, e.g. to museums.
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teresting observation of the intracommunity autocatalytic process.5 Yet, it could
be argued that the ACC hierarchy was intending to build more temples in order to
increase the acceptance of adepts, as “clients”, as done in more financially prone
churches nowadays. However, it should be re-emphasized that proselytism is far
from any such goal in the ACC. Let it be repeated that the cult “desservants” are
not paid. The (lack of) growth in the temple number is thus entirely due to the intra-
community factor state, rather than a leadership manipulation.

4.4 Income and Expenses Evolution

Recall that yearly expenses and income are available over about 80 years during the
20-th century. Note that this so called “income” value does not take into account
the left-over from the previous year(s). Further study has led to interesting analytic
description and explanations about the evolutions of these financial matters [3].

4.4.1 Numerical Analysis

The raw data, Fig. 4.1 appears as if points are pretty scattered. However, after much
fit searching, it appears that in both income and expenses cases, three growth and
one decay regimes can be found, see Fig. 4.4, approximately over barely overlapping
time spans. Because of the y-axis scale, crushing the first two regimes, it is fair to
describe the figures in words. The presence of a maximum in 1929 can be observed
before a smooth and short decay till the beginning of the first world war in 1940.
The next growth regimes ends with a small decay at the end of the golden sixties.
Finally, the last bump is seen to occur at the beginning of the eighties. A marked
decay follows thereafter.

The fit parameter values are given in Table 4.1. In general, it appears that the
income growth rate is slightly larger than the expenses growth rate; the more so
except in the 3-rd regime, where the absolute difference is much larger. However, let
it be stressed that the growth rate difference, in relative value, is close to 27 %,—in
each case. Such correlations between expenses and income can be seen in Fig. 4.5.
The relationship law is approximately linear, though sometimes, a few large income
years can occur.

It can be observed that a one year time delay occurs in such cases, whence leading
to conclude about sound financial management by the ACC hierarchy.

5The velocity of growth, or concentration growth, of an enzyme is depending on the concentration
of substrate [35]. The rate of an enzyme-catalyzed reaction is proportional to the concentration of
the enzyme-substrate complex.
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Fig. 4.4 Successive logistic
fits of the Belgian Antoinism
Cult Community income
(top) and expenses (bottom)
on mentioned year, taken
from official Moniteur Belge
journal, indicating three time
dependent regimes; parameter
values are found in Table 4.1

Table 4.1 Comparison of the growth rate r in yearly income and expenses of the Belgian Antoinist
Cult Community in different time regimes; the growth rates correspond to the respective regimes
in Fig. 4.4; tm and z∞ are fit parameters for the logistic function, Eq. (4.1), see text

Income Expenses

Time regimes z∞ 10−6 r tm Time regimes z∞ 10−6 r tm

1922–1940 0.24 0.29 1921 1922–1946 0.22 0.22 1922

1940–1968 1.20 0.10 1941 1946–1968 1.45 0.08 1946

1968–1980 4.50 0.63 1979 1968–1980 4.50 0.50 1978
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Fig. 4.5 Apparent
quasi-linear correlation
between the Belgium ACC
expenses and income,
demonstrated by: the best
linear fit line going through
the origin, the 45◦ slope line,
and two linear envelopes

Fig. 4.6 Income and
expenses data of the Belgium
Antoinist Cult Community,
from 1980 till 2000, likely
indicating a slow logistic
decay after ca. 1980

4.4.2 Most Recent Decay Regime

A sharp peak in the income and the expenses data is observed near 1980.6 The decay
has been searched whether it obeys a simple law.7

6One should remember that the available budget for expenses in a given year is the sum of the
expected income for the year and the left-over from the previous year.
7Due to the legal change in reporting data after 2000, after the introduction of the EUR, only data
previous to 2000 is considered.
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Table 4.2 Parameter values for decay laws appropriate to the yearly income and expenses of the
Belgium ACC

Income Expenses

a b R2 a b R2

linear 6.93 0.0237 0.847 linear 6.87 0.0195 0.729

power 2.17 × 1024 7.13 0.843 power 1.68 × 1020 5.88 0.727

exp. 6.945 278.5 0.843 exp. 6.87 337.8 0.727

Three analytic decay laws have been tested to sketch8 some relevant relation
between the natural log (ln) of the income and expenses, after 1975 till (excluding)
2000: (i) a linear, (ii) a power, and (iii) an exponential law. The following forms,
with only two parameters, were used

ln(y) = a − b ∗ (year − 1975), (4.7)

ln(y) = a ∗ (year)−b, (4.8)

ln(y) = a ∗ e−(year−1975)/b. (4.9)

The best parameter values, with the global R2, are given in Table 4.2. It appears
that the three laws lead to rather similar variations, with R2 ∼ 0.84 or ∼ 0.73 for
the income and expenses data respectively. Note that a decaying law like ln(y) =
a ∗ (year − 1975)−b does not give anything meaningful.

To remain within a logistic map philosophy, an ad hoc fit has been searched for
on the income (yi ) and expenses (ye) data for the years after 1980 till (excluding)
2000,—turning back the time axis in Verhulst equation. The following results are
found

yi � 5.9 × 10−6

1 + e0.175∗(year−1994)
, (4.10)

ye � 7.1 × 10−6

1 + e0.145∗(year−1991)
. (4.11)

Yet such expressions and parameter values should be considered as merely in-
dicative ones. They should be taken with some caution, since the position of the
maximum, thus the first decay year of this decay regime, is rather ill defined in the
data, because of wide fluctuations near this maximum.

Nevertheless, a definitive conclusion can be reached, after comparing such values
with the r value found, see Table 4.1, for the 1968–1980 regime: the growth rate
(∼ 0.6) is approximately 4 times larger than the decay rate (∼ 0.15). Note that this

8Extreme value data points have been excluded from the analysis indeed for keeping R2 meaning-
ful; compare Figs. 4.1 and 4.6.



4 Logistic Modeling of a Religious Sect Cult and Financial Features 75

asymmetry between growth and decay is similarly found in business cycles, see e.g.
[6]. Thus one may suggest here to wonder whether some ABM simulation leading
to such asymmetric features can be imagined. An open question!

One might also wonder whether some revival of the community, as in the phoenix
effects discovered in [51] can appear in the future due to the present political and
sociological constraints, and the new forces similar to those known at the beginning
of the 20-th century.

4.5 Conclusions

The complexity of qualitatively studying agent based groups, like religious com-
munities, through their social and historical aspects is known, but the quantitative,
in particular financial, aspects are also challenging. Data is usually sparse and not
necessarily reliable [16, 31, 37],—except when legal constraints are imposed. It was
of interest to find a case with a growth regime and a decay regime, in order to have
some insight on the causes of such behaviors for further deep modeling. Facing such
a challenge, one goal has been to find a society evolving on a rather short time span,
such that the data be reliable as much as possible.

It was of common knowledge that a religious community, the Antoinists, here
called ACC, having appeared in the 19-th century, in Belgium, but not so flourish-
ing nowadays, could present a bump feature in the number of adepts. A difficulty
stems in the voluntary lack of such an information in the cult system. However, the
number of temples, since the rising of the first one in 1910 are reliable data, and
publication of financial data have been made mandatory after 1919. Their study has
led to interesting features.

Since the logistic growth function has proven useful in modeling a wide vari-
ety of phenomena of growing systems, it has been used as the analytic equivalent
of an ABM. However, complex social systems rarely follow a single S-shaped tra-
jectory. They often present a simple extremum or (irregular) oscillations, whence
implying the need to go beyond simple Verhulst-like models [3, 5]. Here, it has
readily appeared that two regimes must be investigated for the temple number evo-
lution: (I) one between 1010 and 1919, for 16 temples; (II) another between 1923
and 1935, for 11 temples. Three (asymmetric) regimes are found for the financial
evolution.

The “model” indicates that such communities are markedly influence by exter-
nal considerations (“external fields”), beside their intrinsic “religious” goals. Practi-
cally, in the present case, as illustrated, the crash of 1929 induces a drop in income,
but the second world war increases the community strength. The golden sixties “re-
duce” the income: the adepts wealth is being increase, but they reduce their offering,
becoming in some sense more egoistical. Therefore, one can deduce that there are
two different causes for the drop in income: either a lack of money of the adepts, or
in contrast, paradoxically, “too much” wealth. Similarly, the increase in cult income,
at its legal beginning, may result from the thanking for healing the suffering,—but



76 M. Ausloos

also occur due to the income explosion till 1985. The variation in expenses are
immediately related with such income considerations. Therefore such an ABM, ap-
parently leading to a “universal”-like interpretation, contains ingredients, with non-
universal “amplitudes”, but is expected to be applicable to other societies,

From a practical point of view, it has to be emphasized that the ACC was ap-
pealing because of the suffering of people, working under very hard conditions in
the Liège, BE, area. The catholic social system was lacking convincing impact. Lo-
cal people were searching within proto-science appeal for mind and soul healing
through connections with spiritualistic phenomena. Thus, within a pure altruism,
Père Antoine started to preach and to give psychological remedies, i.e., “first princi-
ples”, for accepting one’s life, sometimes “demonstrating” his “body healing pow-
ers”. The initial seed of the ACC grew within a rather weak competitive framework,
due to Père Antoine’s charisma, simplicity, and affection. A follow-up by local peo-
ple resulted, not far from recalling what happened a long time ago, in what are now
more established religions. However, his charismatic leadership was most likely
lost, at Père Antoine’s death. Moreover, there was not much serious attack, nor mar-
tyrs appearing, which are two aspects for an increase in community strength and
expansion [44]. No cult of saints was established, on one hand, and on the other
hand, social and economic conditions largely improved, reducing the need for intra-
community self-support. Therefore some size leveling off had to be expected; as
well seen in the evolution of the number of temples.

A marked decay, in adepts, is known to occur since the end of the 20-th century,
inciting one to conclude to a doomed situation, according to the theory of Stark
[46]—in contrast to, e;g., the Jehovah’s Witnesses [47]. Indeed, ideologies (whether
religious or secular) seem to lack coherence and potency unless they are developed
and promulgated by vigorous formal organizations and social movements. One cru-
cial aspect of the ACC concerns its survival under much improved economic, social,
and health conditions of workers to whom the Père Antoine “philosophy” appealed.

Finally, one might nevertheless wonder about the future of the community, i.e.
whether some revival of the community, through phoenix-like effects [51] can ap-
pear in the future within present political, economic, and sociological conditions,
upon the constraints of new forces on workers having hard job conditions, though
not immediately similar to those known at the beginning of the 20-th century.

Thus, as should most likely be really expected in fact, it is concluded that social
phenomena are very complex processes offering much challenge for quantitative
mathematical modeling. Nevertheless the above findings lead to simple empirical
laws. Even though the ACC is surely a marginal religious case, the merging of qual-
itative and quantitative considerations as done here above might appeal to finding
other cases of interest among sects having reliable data and do suggest generaliza-
tions.
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Appendix A: Historical Perspective

Louis Antoine was born in 1846 near Liège, Belgium, the youngest son of a 8 chil-
dren family, baptised as catholics; his father was a coal miner. He followed the usual
catholic education of the time, read much, became a coal miner and later on a met-
allurgist worker. After killing inadvertently a friendly soldier during his military
service, he was punished, but used that accident as a basis for thinking about “good
and bad”; he volunteered to work abroad for the Cockerill factory; got married, and
had a son. At 42, he got more sedentary, continued to think much about religion,
mankind role and life values, He read Kardec’s Livre des Esprits (1857) and was
enthused. He wishes to become medium becomes the founder of a spiritism group
“Les Vignerons du Seigneur”, but his son dies at 20 in 1893. He begins to discover
that he can be “healing”, writes a small book about healing, gathers friends and starts
becoming a cult leader, and is known as a healer. But he never asks for any money
for his miracles. Nevertheless he gets into trouble with justice, and medical doctors.
Somewhat to avoid such problems, he reminds the patients that faith is the key; he
transfers his good health into others by faith. Still he gets problems with the law:
sometimes, 1200 people gather per day at his home for some so called “operation”.
Later on, considering that to heal a body is not enough, he turns toward more moral
value rebirth. His predicator role increases, in the Jemeppe “temple”, and in 1906
starts publishing notes taken by some scribe, outlining his doctrine. The concept of
disease is denied, just as is that of death, and there is belief in the reincarnation: it
is intelligence which creates suffering; only “faith in” removes it, and not the inter-
vention of health professionals. He becomes the “Father”, (le Père) and establishes
some clothing rules (a long black dress for “desservants”). At Easter 1910, he is
considered as a “prophet”, and on Aug. 15, 1910 sanctifying the first temple. He
will expand and clarify the doctrine (Evil does not exist), will raise more temples till
his death in 1912. His wife, Catherine, who could not read, maintained and pursued
the cult activities amongst schisms and heresies, till her death in Nov. 1940.

To put several references in evidence, let a few be quoted: [18–20, 52] where
much can be found on the doctrine, rules (dressing), symbols (the tree), prophe-
cies, testimonies, social roles and values, spiritual and philosophical (reincarna-
tion) contexts, also with some historical and sociological perspectives; see also
www.culteantoiniste.com.

In essence, let it be emphasized that there is no search for increasing the financial
wealth of the hierarchy. There is some 8-year rotation in duties. It is known that a
check, used as an offering, is not cashed in a bank because it has a personal connota-
tion. Only anonymous offerings are accepted; there is no proselytism and one does
not ask for money from followers. The “desservants” are not paid. There is neither
exclusivity on religious adherence nor does one provide any prescription on social
and political issues. The main goal is to worship and to heal, in line somewhat with
Mary Baker Eddy’s ideas [23].

In my opinion, the Antoinism, or the Antoinist Cult, cannot be considered as a
sect,—though it was so in France ; see Journal Officiel, Commission d’enquêtes par-
lementaires sur les sectes en France, Rapport 2468, Dec. 1995 [32]. Is it a religion,

www.culteantoiniste.com
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Fig. 4.7 Gompertz double
exponential law fit of the
number of consecrated ACC
temples in Belgium as a
function of the number of
months (cumulated), in low
and high t regimes since the
consecration of the first
temple in 1913

a church? Maybe, but there is no strong structural hierarchy and clerical body. It is
surely, from a catholic Christian point of view, a heresy. Is it a cult? in the sense of
Nelson [40], most likely yes; it should therefore disappear if there is no one to pick
up the ideas and turned them toward some money getting religious scam.

Appendix B: Gompertz Double Exponential Law

Similarly to the analysis reported in the main text, a Gompertz double exponential
law fit can be searched for the number of temples as a function of the number of
months (cumulated again).

The best fit behavior to such a Gompertz double exponential law has been
searched through a log-log plot method, imposing the amplitude to be an integer.
It has occurred after many simulations that two distinct regimes must be considered,
exactly as in the analysis along the Verhulst approach: one at low time, i.e. during
the initial growth of the ACC, and another at later (high) time, with a 4 year gap,
between 1919 and 1923. One obtains respectively :

c(m) = 23e−e−(m−62)/48.5
, (4.12)

c(m) = 31e−e−(m−116)/77.5
(4.13)

as shown on Fig. 4.7. Note that the upper (absolute) values of the possible number of
temples to be expected slightly differ in the Verhulst and Gompertz approaches,—
though in an opposite relative value for the low and high t regimes. The rates
found in Eqs. (4)–(5) and here above, in Eqs. (12)–(13), are comparable: 0.034 ∼
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Fig. 4.8 Gompertz plot:
Log(Log) variation of the
(relative to some maximum
possible) number of ACC
temples (X) raised in
Belgium as a function of the
number of months, starting
from the raise of the first
temple indicating a “social
force effect” influencing a
variation in growth rates

(1/48.5 �) 0.021, and 0.0195 ∼ (1/77.5 �) 0.0129 respectively, depending on the
regime.

Appendix C: On Social Forces

It is hereby emphasized that social forces can be introduced at least in two different
ways in an ABM, based on Vehulst and/or Gompertz analytic evolutions. Indeed,
a different adaptation of the ideas in [38] on the evolution of competing entities,
economic or sociologic ones, occurs if, instead of Eq. (4.6), one writes

d ln(X)

dt
= k(1 − X) + (α/θ)(1 − X).

[
H(t − τ) − H

(
t − (τ + θ)

)]
(4.14)

where H(t) is the Heaviside function. In other words, one is (mathematically) letting
Montroll’s α to be X-dependent over the time interval [τ ; τ + θ ]. However, the
emphasis differs much from [38]: i.e., rather than modifying the (Malhtus) X term,
one adapts the (Verhulst) (1 − X) term, to (economic or social) constraints.

Mathematically, on the same footing as Eq. (4.14), one can write

dX

dt
= kX(1 − X) + (α/θ)X(1 − X).

[
H(t − τ) − H

(
t − (τ + θ)

)]
. (4.15)

Readily, the rate before the pulse is k but is k +α/θ after the “pulse” application.
This “second rate” depends on the pulse strength and some time duration θ .

Within the Gompertz framework, starting from the differential equation

dy

dt
= ry log

[
k

y

]
, (4.16)
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it is “sufficient” to replace (1 − X) by ∼ − ln(k/y); compare Eqs. (4.6) and
Eq. (4.16). A double log (X) plot as a function of time is shown in Fig. 4.8, i.e.
an appropriate replot of Fig. 4.3,—the best fit equations being written in the figure.
The fit is very precise. It is emphasized that the fit lines are not parallel anymore.
From these, one can deduce θ1 = 34 (months) and θ2 = 135 (months), i.e. ∼ 3 and
11 years respectively.
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Chapter 5
Characterizing Financial Crisis by Means
of the Three States Random Field Ising Model

Mitsuaki Murota and Jun-ichi Inoue

Abstract We propose a formula of time-series prediction by means of three states
random field Ising model (RFIM). At the economic crisis due to disasters or in-
ternational disputes, the stock price suddenly drops. The macroscopic phenomena
should be explained from the corresponding microscopic view point because there
are existing a huge number of active traders behind the crushes. Hence, here we
attempt to model the artificial financial market in which each trader i can choose
his/her decision among ‘buying’, ‘selling’ or ‘staying (taking a wait-and-see at-
titude)’, each of which corresponds to a realization of the three state Ising spin,
namely, Si = +1, −1 and Si = 0, respectively. The decision making of traders is
given by the Gibbs-Boltzmann distribution with the energy function. The energy
function contains three distinct terms, namely, the ferromagnetic two-body interac-
tion term (endogenous information), random field term as external information (ex-
ogenous news), and chemical potential term which controls the number of traders
who are watching the market calmly at the instance. We specify the details of the
model system from the past financial market data to determine the conjugate hyper-
parameters and draw each parameter flow as a function of time-step. Especially we
will examine to what extent one can characterize the crisis by means of a brand-new
order parameter—‘turnover’—which is defined as the number of active traders who
post their decisions Si = ±1, instead of Si = 0.

5.1 Introduction

Individual human behaviour including human mental state is an attractive topic for
both scientists and engineers. However, it is still extremely difficult for us to tackle
the problem by making use of scientifically reliable investigation. This is because
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there exists quite large person-to-person fluctuation in the observation of individual
behaviour.

On the other hand, in our human ‘collective’ behaviour instead of individual, we
sometimes observe several universal facts which seem to be suitable materials for
computer scientist to figure out the phenomena through sophisticated approaches
such as agent-based simulations. In fact, collective behaviour of interacting agents
such as flying birds, moving insects or swimming fishes shows highly non-trivial
properties. As well-known especially in the research field of engineering, as a sim-
plest and effective algorithm in computer simulations for flocks of intelligent agents,
say, animals such as starlings, the so-called BOIDS founded by Reynolds [1] has
been widely used not only in the field of computer graphics but also in various other
research fields including ethology, physics, control theory, economics, and so on
[2]. The BOIDS simulates the collective behaviour of animal flocks by taking into
account only a few simple rules for each interacting ‘intelligent’ agent.

In the literature of behavioral economics [3], a concept of the so-called infor-
mation cascade is well-known as a result of such human collective behaviour. This
concept means that at the financial crisis, traders tend to behave according to the
‘mood’ (atmosphere) in society (financial market) and they incline to take rather
‘irrational’ strategies in some sense.

Apparently, one of the key measurements to understand the information cascade
is ‘correlation’ between ingredients in the societies (systems). For instance, in par-
ticular for financial markets, cross-correlations between stocks, traders are quite im-
portant to figure out the human collective phenomena. As the correlation could be
found in various scale-lengths, from macroscopic stock price level to microscopic
trader’s level, the information cascade also might be observed ‘hierarchically’ in
such various scales from prices of several stocks to ways (strategies) of trader’s
decision making.

Turning now to the situation of Japan, after the earthquake on 11th March 2011,
Japanese NIKKEI stock market quickly responded to the crisis and quite a lot of
traders sold their stocks of companies whose branches or plants are located in that
disaster stricken area. As the result, the Nikkei stock average suddenly drops after
the crisis [4, 5].

It might be quite important for us to make an attempt to bring out more ‘micro-
scopic’ useful information, which is never obtained from the averaged macroscopic
quantities such as stock average, about the market. As a candidate of such ‘mi-
croscopic information’, we can use the (linear) correlation coefficient based on the
two-body interactions between stocks [6, 7]. To make out the mechanism of finan-
cial crisis, it might be helpful for us to visualize such correlations in stocks and
compare the dynamical behaviour of the correlation before and after crisis.

In order to show and explain the cascade, we visualized the correlation of each
stock in two-dimension [4, 5]. We specified each location of N stocks from a given
set of the N(N − 1)/2 distances by making use of the so-called multi-dimensional
scaling (MDS) [8] (see Fig. 5.1).

On the other hand, the macroscopic phenomena should be explained from the
corresponding microscopic view point because there are existing a huge number of



5 Characterizing Financial Crisis by Means of the Three States RFIM 85

Fig. 5.1 Two-dimensional plot by means of the MDS. We picked up 200-stocks including the
so-called TOPIX Core30 and the Nikkei stock average as empirical data set (the data set was taken
from Yahoo! finance [9]). The figure is just after the earthquake (15th March 2011) (see [4, 5] for
the details). The curious shape of cluster appears after the crisis

active traders behind the crushes. In Ref. [5], we proposed a theoretical framework
to predict several time-series simultaneously by using cross-correlations in finan-
cial markets. The justification of this assumption was numerically checked for the
empirical Japanese stock data, for instance, those around 11 March 2011, and for
foreign currency exchange rates around Greek crisis in spring 2010.

However, in the previous study [5], inspired by the study of Kaizouji [10], we
utilized Ising model and assumed that each trader does not stay at all for trading.
Apparently, it is not realistic situation for trader’s decision making. Hence, here we
attempt to model the artificial financial market in which each trader i can choose
his/her decision among ‘buying’, ‘selling’ or ‘staying (taking a wait-and-see atti-
tude)’, each of which corresponds to a realization of the three states Ising spin,
namely, Si = +1, −1 and Si = 0, respectively. Especially we will examine to what
extent one can characterize the crisis by means of an order parameter—‘turnover’—
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which is defined as the number of ‘active traders’ who post their decision Si = ±1,
instead of Si = 0.

This paper is organized as follows. In Sect. 5.2, we introduce the three states
RFIM and explain the thermodynamic properties including the critical phenomena
such as phase transitions. In Sect. 5.3, we construct a prediction formula based on
the model introduced in Sect. 5.2. We introduce ‘turnover’ as an order parameter
to characterize the crisis. In Sect. 5.4, we carry out computer simulations with the
assistance of empirical data set to check the usefulness of our approach. Section 5.5
is concluding remark.

5.2 There States Random Field Ising Model

In this paper, we extend the prediction model based on Ising model given by [5, 10]
by means of three states random field Ising model. Before we construct the pre-
diction model for financial time-series, we consider the thermodynamics of the fol-
lowing Hamiltonian (energy function) that describes decision makings of N traders
(each of the traders is specified by a label i = 1, . . . ,N ).

H(S) = − J

N

N∑

i,j=1

SiSj − h

N∑

i=1

σ(t)Si − μ

N∑

i=1

|Si | (5.1)

where each spin Si (i = 1, . . . ,N) can take ±1 and 0, and here we assume that all
traders are located on a complete graph (they are fully connected). We should keep
in mind that in the previous studies [5, 10], a spin Si takes only +1 (buy) and −1
(sell). However, in our model system, besides ±1, Si can take 0 which means that
the trader i takes a wait-and-see attitude (stays). Namely,

Si =
⎧
⎨

⎩

+1 (buying),

0 (staying),

−1 (selling).

(5.2)

The first term in the right hand side of (5.1) causes the collective behavior of the
traders because the Hamiltonian (5.1) decreases when all traders tend to take the
same decision. In this sense, the first term is regarded as endogenous information for
the traders. On the other hand, the second term denotes the exogenous information
which is a kind of market information available for all traders. Here one can choose
the following market trend during the past τ -steps as σ(t).

σ(t) = q(t) − q(t − τ)

τ
(5.3)

where q(t) denotes a real price at time t . The third term appearing in the right hand
side of equation (5.1) controls the number of traders who are staying at the moment
t . From the view point of spin systems, σ(t) is regarded as a ‘random field’ on each
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spin because the σ(t) might obey a stochastic process. Therefore, the spin system
described by (5.1) should be refereed to as random field Ising model (RFIM). Obvi-
ously, the parameter μ is regarded as ‘chemical potential’ in the literature of physics.
For μ � 1, most of the traders take ‘buying’ or ‘selling’ instead of ‘staying’ from
the view point of minimization of the Hamiltonian (5.1). In the limit of μ → ∞, the
fraction of traders who take Si = 0 vanishes, namely, the system is identical to the
conventional Ising model [10] in this limit. As we will see later, the set of parame-
ters (what we call ‘hyper-parameters’) (J,h,μ) should be estimated (learned) from
the past time-series.

In this paper, we shall focus on the modification by means of the above three
states RFIM. We investigate to what extent the prediction performance is improved.
Moreover, we attempt to quantify the number of traders who are staying at the
crushes in order to characterizing the financial crisis.

5.2.1 Equations of State

To make a link between the prediction model and statistical physics of the three
states RFIM, we should investigate the equilibrium state described by the Hamil-
tonian (5.1) at unit temperature. According to statistical mechanics, each micro-
scopic state S = (S1, . . . , SN) of the Hamiltonian (5.1) obeys the distribution
exp[−H(S)]/Z, where the normalization constant Z = ∑

S=0,±1 exp[−H(S)] is
refereed to as partition function and it is given by

Z =
∑

S=0,±1

exp

[(√
J

2N

N∑

i=1

Si

)2

+ h

N∑

i=1

σ(t)Si + μ

N∑

i=1

|Si |
]

(5.4)

where we defined
∑

S=0,±1(· · · ) = ∑
S1=0,±1 · · ·∑SN=0,±1(· · · ). Here we should

keep in mind that arbitrary two traders are connected each other. By using a trivial
equality concerning the Gaussian integral

eα2 =
∫ ∞

−∞
dx√
2π

exp

(
−x2

2
+ √

2αx

)
, (5.5)

the system is reduced to a single spin ‘S’ problem in the limit of N → ∞ as

Z =
∫ ∞

−∞
da

∫ ∞

−∞
dã

2π/N

∫ ∞

−∞
dm√

2π/JN
e− NJ

2 m2+Nμa−Nãa

×
{ ∑

S=0,±1

e[Jm+hσ(t)]S+ã|S|
}N

� exp
[
NΦ(m,a, ã)

]
(5.6)
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where we used the saddle point method to evaluate the integrals with respect to a, ã

and m. Φ(m,a, ã) appearing in the final form (5.6) is regarded as a free energy
density and it is given by

Φ(m,a, ã) = −J

2
m2 + μa − aã + log

{
1 + eã2 cosh

[
Jm + hσ(t)

]}
. (5.7)

Then, the saddle point equation ∂Φ/∂m = 0 leads to

m = 1

N

N∑

i=1

Si = eã2 sinh[Jm + hσ(t)]
1 + eã2 cosh[Jm + hσ(t)] . (5.8)

Apparently, the above m stands for ‘magnetization’ in the literature of statistical
physics, however, as we will see later, it corresponds to the ‘return’ in the context of
time-series prediction for the price. This is because the number of buyers is larger
than that of the sellers if the m is positive, and as the result, the price increases
definitely. Another saddle point equation ∂Φ/∂ã = 0 gives

a = 1

N

N∑

i=1

|Si | = eã2 cosh[Jm + hσ(t)]
1 + eã2 cosh[Jm + hσ(t)] . (5.9)

It should be noticed that from ∂Φ/∂a = 0, we have ã = μ. Hence, by substituting
the ã = μ into (5.8) and (5.9), we immediately have the following equations of state

m = 2eμ sinh[Jm + hσ(t)]
1 + 2eμ cosh[Jm + hσ(t)] , (5.10)

a = 2eμ cosh[Jm + hσ(t)]
1 + 2eμ cosh[Jm + hσ(t)] . (5.11)

We should bear in mind that a is a ‘slave variable’ and it is completely determined
by m. However, a itself has an important meaning to characterize the market be-
cause the a is regarded as the number of traders who are actually trading (instead
of staying). In this sense, the a could be ‘turnover’ in the context of financial mar-
kets. In other words, the turnover a is a measurement to quantify the activity of
the market, and a large a means high activity of the market. Strictly speaking, the
a could not be regarded as ‘turnover’ because in our modeling, we assumed that
each trader posts unit volume to the market. However, by introducing vi as volume
for each trader i and replacing the spin variables in (5.1) as Si → viSi, vi ∈ R

+,
a = (1/N)

∑N
i=1 |viSi | is regarded as turnover in its original meaning.

Obviously, from Eqs. (5.10) and (5.11), the equation of state for the conventional
Ising model [5, 10] is recovered in the limit of μ → ∞ as

m = tanh
[
Jm + hσ(t)

]
, a = 1. (5.12)

In following, we analyze the above Eqs. (5.10), (5.11) to investigate the equilibrium
properties of our model system.
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Fig. 5.2 (1/J )-dependence of magnetization m and turnover a for the case of h = 0. At the critical
point (1/J )c ≡ 2eμ/(1 + 2eμ), the second order phase transition takes place

5.2.2 Equilibrium States and Phase Transitions

We first consider the case of h = 0 in (5.1) or (5.10) and (5.11). For this case, we
can solve the equations of states (5.10), (5.11) numerically. We show the (1/J )-
dependence of magnetization m in Fig. 5.2 (left). From this panel, we find that the
magnetization m monotonically decreases as 1/J increases for arbitrary finite μ and
it drops to zero at the critical point (1/J )c . The critical point is dependent on the
value of μ. In order to investigate the μ-dependence of the critical point (1/J )c , we
expand the right hand side of (5.10) up to the first order of m. Then, we have

(1/J )c = 2eμ

1 + 2eμ
. (5.13)

It should be noted that (1/J )c = 1 for the conventional Ising model [5, 10] is recov-
ered in the limit of μ → ∞.

We next plot the (1/J )-dependence of the turnover a in the right panel of Fig. 5.2.
From this panel, we are confirmed that above the critical point, the turnover a takes
a constant value:

a = eμ

1 + eμ
(5.14)

Here we should notice again that a = 1 is recovered in the limit of μ → ∞, which
means that there is no trader who is staying at the moment.

We next evaluate the behavior of magnetization m as a function of h keeping
the value of J as J = 1.2 (we set σ(t) = 1 for simplicity). Then, one observes
from Fig. 5.3 (left) that the system undergoes a first order phase transition which
is specified by a transition between bi-stable states in the free energy, namely, the
states m > 0 and m < 0. The critical values m∗ at the critical point is determined by

1 − m2∗ = 1

4e2μ − 1

{
1 − J (1 − m2∗)
2 − 2(1 − m2∗)

}
+ 1

J
. (5.15)



90 M. Murota and J. Inoue

Fig. 5.3 Magnetization a and turnover a as a function of h. We plot each of them by keeping the
J as J = 1.2

We should notice that one recovers m∗ = ±√
(J − 1)/J , which is the result for the

conventional Ising model [10], in the limit of μ → ∞. For the case of μ < ∞, the
critical values m∗ is given by

m∗ =

⎧
⎪⎨

⎪⎩

±
√

J−1
J

(μ ≥ 1
2 log( J 2+2

8 )),

±
√

J 2−2(4e2μ−1)

J
(μ < 1

2 log( J 2+2
8 )).

(5.16)

Then, the critical point hc is obtained as a solution of the following equation.

1

J
= 4e2μ + 2eμ cosh(Jm∗ + hc)

{1 + 2eμ cosh(Jm∗ + hc)}2
. (5.17)

In the next section, taking into account the above equilibrium properties and phase
transitions, we shall construct the prediction model based on the Hamiltonian (5.1)
and evaluate the statistical performance by means of computer simulations with the
assistance of empirical data analysis.

5.3 The Prediction Model

In this section, we construct our prediction model. Let us define p(t) as the price
at time t . Then, the return, which is defined as the difference between prices at
successive two time steps t and t + 1, is given by

p(t + 1) − p(t) = 	(t). (5.18)

To construct the return 	(t) from the microscopic view point, we assume that each
trader (i = 1, . . . ,N ) buys or sells unit-volume, or stays at each time step t . Then,
let us call the group of buyers as A+(t), whereas the group of sellers is referred to
as A−(t). As we are dealing with three distinct states including ‘staying’, we define



5 Characterizing Financial Crisis by Means of the Three States RFIM 91

the group of traders who are staying by A0(t). Thus, the total volumes of buying,
selling and staying are explicitly given by

φ+(t) ≡
∑

i∈A+(t)

1, φ−(t) ≡
∑

i∈A−(t)

1, φ0(t) ≡
∑

i∈A0(t)

1, (5.19)

respectively. Apparently, the total number of traders should be conserved, namely,
the condition A+(t) +A−(t) +A0(t) = N (≡ Total # of traders) holds.

Then, the return 	(t) is naturally defined by means of (5.19) as

	(t) = λ
(
φ+(t) − φ−(t)

)
(5.20)

where λ is a positive constant. Namely, when the volume of buyers is greater than
that of sellers, φ+(t) > φ−(t), the return becomes positive 	(t) > 0. As the result,
the price should be increased at the next time step as p(t + 1) = p(t) + 	(t).

5.3.1 The Ising Spin Representation

The making decision of each trader (i = 1, . . . ,N ) is now obtained simply by an
Ising spin (5.2). The return is also simplified as

	(t) = λ
(
φ+(t) − φ−(t)

) = λ

N∑

i=1

S
(t)
i ≡ mt (5.21)

where we set λ = N−1 to make the return:

mt = 1

N

N∑

i=1

S
(t)
i (5.22)

satisfying |mt | ≤ 1. Thus, mt corresponds to the so-called ‘magnetization’ in statis-
tical physics, and the update rule of the price is written in terms of the magnetization
mt as

pt+1 = pt + mt (5.23)

as we mentioned before.

5.3.2 The Boltzmann-Gibbs Distribution

It should be noticed that the state vectors of the traders: S = (S1, . . . , SN) are deter-
mined so as to minimize the Hamiltonian (5.1) from the argument in the previous
section. For most of the cases, the solution should be unique. However, in realistic fi-
nancial markets, the decisions by traders should be much more ‘diverse’. Thus, here
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we consider statistical ensemble of traders S and define the distribution of the en-
semble by P(S). Then, we shall look for the suitable distribution which maximizes
the so-called Shannon’s entropy

H = −
∑

S=0,±1

P(S) logP(S) (5.24)

under two distinct constraints:

∑

S=0,±1

P(S) = 1,
∑

S=0,±1

P(S)H(S) = H (5.25)

and we choose the P(S) which minimizes the following functional f {P(S)}:

f
{
P(S)

} = −
∑

S=0,±1

P(S) logP(S) − λ1

( ∑

S=0,±1

P(S) − 1

)

− λ2

( ∑

S=0,±1

P(S)H(S) −H
)

(5.26)

where λ1, λ2 are Lagrange’s multipliers. After some easy algebra, we immediately
obtain the solution

P(S) = exp[−βH(S)]∑
S=0,±1 exp[−βH(S)] (5.27)

where β stands for the inverse-temperature. In following, we choose unit tempera-
ture β = 1.

Here we should assume that the magnetization as a return at time t + 1 is given
by the expectation of the quantity (1/N)

∑N
i=1 S

(t)
i over the distribution (5.27), that

is,

mt+1 =
∑

S(t)=0,±1

{
1

N

N∑

i=1

S
(t)
i

}
P
(
S(t)

) = 2eμt sinh[Jtmt + htσ (t)]
1 + 2eμt cosh[Jtmt + htσ (t)] (5.28)

where we defined

H
(
S(t)

) = −Jt

N

N∑

i,j=1

S
(t)
i S

(t)
j − ht

N∑

i=1

σ(t)S
(t)
i − μt

N∑

i=1

∣∣S(t)
i

∣∣ (5.29)

in (5.27) and used (5.10) to evaluate the expectation.
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Thus, we have the following prediction formula

p(t + 1) = p(t) + mt, (5.30)

mt = 2eμt sinh[Jtmt−1 + htσ (t)]
1 + 2eμt cosh[Jtmt−1 + htσ (t)] , (5.31)

Jt+1 = Jt − η
∂E(Jt , ht ,μt )

∂Jt

, (5.32)

ht+1 = ht − η
∂E(Jt , ht ,μt )

∂ht

, (5.33)

μt+1 = μt − η
∂E(Jt , ht ,μt )

∂μt

(5.34)

where we introduced the cost function E to determine the parameters (Jt , ht ,μt ) by
means of gradient descent learning as

E(Jt , ht ,μt ) = 1

2

t∑

l=1

[
	q(l) − 2eμt sinh[Jt	q(l − 1) + htσ (t)]

1 + 2eμt cosh[Jt	q(l − 1) + htσ (t)]
]2

(5.35)

and η is a learning rate. To obtain the explicit form of the learning equations, we
take the derivatives as

∂E
∂Jt

= −
t∑

l=1

[
	q(l) − 2eμt sinh[Jt	q(l − 1) + htσ (t)]

1 + 2eμt cosh[Jt	q(l − 1) + htσ (t)]
]

× 2eμt 	q(l − 1) cosh[Jt	q(l − 1) + htσ (t)] + 4e2μt 	q(l − 1)

{1 + 2eμt cosh[Jt	q(l − 1) + htσ (t)]}2
,

∂E
∂ht

= −
t∑

l=1

[
	q(l) − 2eμt sinh[Jt	q(l − 1) + htσ (t)]

1 + 2eμt cosh[Jt	q(l − 1) + htσ (t)]
]

× 2eμt σ (t) cosh[Jt	q(l − 1) + htσ (t)] + 4e2μt σ (t)

{1 + 2eμt cosh[Jt	q(l − 1) + htσ (t)]}2
, (5.36)

∂E
∂σt

= −
t∑

l=1

[
	q(l) − 2eμt sinh[Jt	q(l − 1) + htσ (t)]

1 + 2eμt cosh[Jt	q(l − 1) + htσ (t)]
]

× 2eμt sinh[Jt	q(l − 1) + htσ (t)]
{1 + 2eμt cosh[Jt	q(l − 1) + htσ (t)]}2

. (5.37)

In the above expressions, 	q(t) is evaluated for the true price q(t) by

	q(t) ≡ 1

M

t∑

i=t−M+1

[
q(i + 1) − q(i)

]
. (5.38)



94 M. Murota and J. Inoue

Fig. 5.4 The EUR/JPY exchange rate q(t) (high frequency tick-by-tick data) from 25th April
2010 to 13th May 2010, which was used in the reference [5] and the prediction p(t). The lower
panel shows the mean-square error εt ≡ {q(t) − p(t)}2/maxq(t)

By substituting mt and the set of parameters (Jt , ht ,μt ) into (5.11), we obtain the
turnover a at each time step as

at = 2eμt cosh[Jtmt + htσ (t)]
1 + 2eμt cosh[Jtmt + htσ (t)] . (5.39)

We should remember that we defined the exogenous information σ(t) by the trend
σ(t) = [q(t) − q(t − τ)]/τ and here we choose M = τ to evaluate the trend and
	q(t).

5.4 Computer Simulations

In Fig. 5.4, we show the true time-series q(t) which contains a crush and the pre-
diction p(t) with mean-square error εt ≡ {q(t) − p(t)}2/maxq(t). The empirical
true time-series q(t) is chosen from EUR/JPY exchange rate (high frequency tick-
by-tick data) from 25th April 2010 to 13th May 2010 (it is the same data set as in
Ref. [5]). We set τ = M = 100 [ticks], and chose J0 = 0.1, h0 = 0.6,μ0 = 0.1 as
the initial values of parameters. From these panels, we confirm that the mean-square
error takes small value within at most several percent although the error increases
around the crush. Thus, we might conclude that our three states RFIM works well
on the prediction of financial data having a crush.
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Fig. 5.5 Time-evolution of parameters (J,h,μ). The flow converges to the critical point

We next consider the flow of parameters (Jt , ht ,μt ) which evolve across the
crush. The result is shown in Fig. 5.5. From this figure, we clearly find that the
strength of exogenous information ht drops to zero after the crush. Chemical poten-
tial μt and strength of endogenous information Jt converge to 0.31 and 1.35, respec-
tively. In our previous study [5], as the critical point was (1/J )c = 1 for μ → ∞, the
strength of endogenous information J converged to the critical value 1. However,
in the three states RFIM with h = 0 and μ = 0.31 < ∞, the critical point is sifted
to (1/J )c = 1/1.35 � 0.74 (see Fig. 5.2 (left)). Therefore, in this simulation, these
two parameters converge to the corresponding critical point (Jc,μc) = (1.35,0.31).
From the result, we conclude that the system described by the Hamiltonian (5.1)
automatically moves to the critical point after the crush.

We next utilize the USD/JPY exchange rate from 12th August 2012 to 24th Au-
gust 2012 as true time-series. It should be noted that the duration of this data is 1
minutes, hence, the data is not tick-by-tick data. In the simulation for this data set,
we set τ = M = 10 [min]. We show the simulated turnover a with the correspond-
ing true value in Fig. 5.6. From these panels, we find that the empirical data for the
turnover increases instantaneously around the crush, whereas the simulated turnover
a does not show such striking feature although it possess a relatively large peak just
before the crush. In order to convince ourselves that the simulated turnover a can
characterize the crush, we should carry out much more extensive simulations for
various empirical data. It should be addressed as our future study.

5.4.1 Comparison with the Conventional Ising Model

Finally we compare our result with that of the conventional Ising model [10]. Here
we used the USD/JPY exchange rate from 1st March 2012 to 31st July 2012, whose
minimum duration is 30 minutes. We choose the width of the time-window τ =
M = 10 [min]. The initial values of parameters are set to J0 = 0.1, h0 = 0.6 for
the conventional Ising model, whereas are chosen as J0 = 0.1, h0 = 0.6,μ0 = 0.1
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Fig. 5.6 USD/JPY exchange rate from 12th August 2012 to 24th August 2012 as true time-series
(the upper panel) and the true turnover (the middle panel). The lower panel shows the simulated
turnover a evaluated by our prediction model

for the three states RFIM. The results are shown in Fig. 5.7. From this figure as
a limited result, we find that the performance of the prediction by the three states
RFIM is superior to that of the conventional Ising model.

5.5 Concluding Remark

In this paper, we extended the formulation of time-series prediction using Ising
model given by Kaizouji [10] or Ibuki et al. [5] by means of three states RFIM. We
found that the crisis could be ‘partially” characterized by the simulated turnover.
We also confirmed that the three states Si = 0,±1 in each trader’s decision making
apparently improves the statistical performance in the prediction.
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Fig. 5.7 Comparison with the conventional Ising model [5, 10]. The upper panel shows the result
of the conventional Ising model, whereas in the middle panel, the result of three states RFIM is
exhibited. The lower panel shows the corresponding mean-square errors
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Chapter 6
Themes and Applications of Kinetic Exchange
Models: Redux

Asim Ghosh, Anindya S. Chakrabarti, Anjan Kumar Chandra,
and Anirban Chakraborti

Abstract In this article, we briefly discuss the general formalism of kinetic ex-
change models and their various applications in economics and sociology. Inspired
from the kinetic theory of gases in statistical physics, the kinetic exchange model
for closed economic systems were first proposed by simply considering the agents
as gas molecules, and wealth of agents as kinetic energy exchanged amongst the gas
molecules. The formalism had been successfully applied to modeling of wealth dis-
tributions in 2000s. This has further spurred new research in recent times in various
areas of soft sciences—firm dynamics, opinion formation in the society, etc.

6.1 Introduction

The essential theme of the kinetic exchange models is the exchange of energy due
to collisions amongst a collection of inanimate particles. Here, we will present that
story and its economic and social counterparts to provoke some more collisions be-
tween economists and physicists that may lead to exchange of ideas (exchanging
kinetic energy between these two arrogant groups might not be good idea to begin
with!). On a more serious note, the kinetic exchange models have been one of the
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most widely used formalisms in the growing interdisciplinary field of econophysics
[1–4] and sociophysics [5–7]. The concept of kinetic exchange was taken from sta-
tistical physics which was proposed towards the end of the nineteenth century. First,
Bernoulli gave a picture of kinetic theory of gases in his paper ‘Hydrodynamica.’
After that Maxwell and Boltzmann derived energy distribution function for kinetic
theory of gas. The other pioneers in this field were Max Planck, Rudolf Clausius,
Josiah Willard Gibbs. The kinetic exchange model is one of the simplest models in
statistical mechanics, which attempts in deriving the average macroscopic behaviors
from the microscopic properties of particles.

The kinetic exchange models1 had been primarily used to explain income/wealth
distributions [8, 9]. More specifically, the target was to write down a minimal set
of stochastic equations that gave rise to a distribution mimicking the actual in-
come/wealth distributions. Even though this target has been satisfactorily achieved,
as discussed below, the framework suffers from a major drawback in terms of ad
hoc-ism. The explanations (or the terminology) that has been used to describe the
exchange processes is not exactly what one would call ‘economic’. The researchers
working on this topic essentially took a solvable model from statistical mechanics
and made analogies of certain quantities. For example, energy was interpreted as
wealth, particles were substituted by agents, etc. and needless to say, such abstrac-
tion and ad hoc approach attracted its fair share of criticism [10]. However, the same
abstraction may also prove to be one of the strongest features of this whole litera-
ture. Since the terms are not tied to some specific economic quantity, there is little
reason to confine them in the area of income/wealth distributions only. This motiva-
tion led to applications of the same basic framework to explain different economic
and social phenomena.

What we will discuss in this paper is roughly as follows. We start by describ-
ing the simple observation that a simple random scattering-like interaction amongst
the agents gives a wealth distribution similar to the ‘Boltzmann-Gibbs’ type. How-
ever in our real society, each of the agents have a “saving propensity.” We discuss
that when saving is introduced in the model, depending upon distribution of the
saving propensity amongst agents, different wealth distributions can be generated.
Further, we will review how a kinetic exchange model may give a “phase transi-
tion” by introducing a “threshold,” where the associated phase transition is of the
“active-absorbing” type. Then we will discuss the applications of the same type of
formalism in firm dynamics and later in the opinion dynamics in the society. The
basic aim of this article is to enthuse the readers in the use of the simple yet pow-
erful formalism of kinetic exchange models in related areas. By no means this is
an exhaustive or technical review. We would like to refer the readers to the original
books and articles for further details and references.

1We shall often use in this article, the full form or the shorter acronym, KEM, interchangeably.
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6.2 Kinetic Wealth Exchange Models (KWEM)

Since, the KEM was first applied to explain the origin of inequality that is seen in
the income/wealth distributions, it is a natural starting point for us to indicate the
regularities of those distributions. The first well known observation was by Pareto
who showed that distribution of wealth for the richer section of the economy follows
a power law [11]. He observed that roughly 20 % people who were in the tail,
owned about 80 % of the total wealth of the economy. After that preliminary but
extremely significant study, many others have conducted research to know the exact
distribution of wealth or income in an economy, but it remains as one of the elusive
problems in economics. For the other end of the income/wealth spectrum it has been
observed that the people of low income or wealth in our society follow a log-normal
or gamma-like distribution [3] though there is some ambiguity over the fit of the
theoretical distributions to the real data. However, one surprising fact is that the
general features of the distributions do not change from country to country i.e., they
are robust to the exact specification of the economy/country.

To understand the precise origin and nature of these robust features in the income
or wealth distribution, concepts of kinetic theory of gas molecules have been used
with success. One can easily map the problem with kinetic exchanges, by consider-
ing an economic agent to be like a gas molecule and wealth of that agent as similar
to the kinetic energy of the molecule. The different exchange dynamics that we dis-
cuss below, when combined effectively, produce different features of the empirical
wealth distribution.

6.2.1 Basics of Kinetic Wealth Exchange Models

6.2.1.1 Boltzmann-Gibbs Distribution in Economic Systems

Independent of the modeling efforts of social scientists,2 a distinct approach was
taken by physicists Drǎgulescu et al. [9, 16] who considered a toy model where the
agents simply reshuffled a part of their wealth in a closed economy. The benefit of
having a toy model is that everybody knows it is a toy model and it can be changed
very easily. The most important departure from the standard economic theory is
that they got rid of all microeconomic decision-making processes. That came at the
cost of losing all perspective of why should any trade occur at all. However, the
benefit exceeds the cost. One can then think of the economic system as comprising
of only the agents and their characterizing quantity, wealth instead of keeping track
of preferences, beliefs, market mechanisms, etc. (which are the usual burden of
most, if not all, neo-classical models in economics).

2It was discovered later that economists, like Bennati, and sociologists, like Angle, were indepen-
dently using similar tools and models since the 1980s; one can refer to Refs. [13–15] for details.
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Fig. 6.1 Steady state wealth
distribution P (m) vs. m for
CC model for
λ0 = 0,0.1,0.6,0.9. Monte
Carlo simulations were done
by taking N = 100 agents and
average wealth M/N = 1.
Taken from [8]

In the toy model, all the agents traded with each other through pair-wise inter-
action similar to random energy scattering of gas molecules, thus losing or gaining
a certain amount of wealth. Suppose two agents i and j having wealth mi and mj

respectively, this trade dynamics can be written as

m′
i = r(mi + mj), (6.1a)

m′
j = (1 − r)(mi + mj) (6.1b)

where r is any random number drawn from 0 to 1, and after trading the wealth of the
two agents i and j are m′

i and m′
j , respectively. From the above equation, it is clear

that the total wealth of the two agents before and after trading remains constant i.e.,
mi + mj = m′

i + m′
j .

The resultant wealth distribution of this model can be derived analytically.3 One
can also do simple Monte Carlo simulations to find the resulting steady state dis-
tribution. The N agents are each given initially 1 unit of wealth (so, total wealth
M = N thus fixing the average wealth in the economy),4 and they trade with each
other according to the dynamics given by Eq. (6.1b). It is observed that in steady
state, the distribution of wealth is similar to ‘Boltzmann-Gibbs’ type distribution for
kinetic theory of gases, i.e, P(m) ∼ exp(−m/T ), where P(m) is the probability of
an agent having wealth between m and m + dm, and T is average wealth of the
model (here T = M/N = 1). The Monte Carlo simulation results for this model is
shown in Fig. 6.1 (λ0 = 0 case).

3Standard tools of statistical mechanics like Boltzmann transport equation, Pauli’s master equation,
maximization of entropy principle, etc. can be used to derive the steady state distribution of the
‘Boltzmann-Gibbs’ type (see, e.g., Refs. [3, 17]).
4It should be noted that the initial wealth distribution does not affect the steady state distribution,
as long as the average wealth of the system remains the same. Essentially the system is ergodic.
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6.2.1.2 CC Model

An important modification of the previous toy model was done by Chakraborti et al.
[18] by introducing savings amongst all the agents. In that model, one considers a
close economic system where total wealth and total number of agents are conserved.
All the agents exchange their wealth through a trading. This much is identical to the
basic model. The distinct feature is that before trading both of the participants save
a fraction of wealth (this feature kind of mimics the reality that we do not put all
of our wealth on the mercy of the market mechanism every now and then!). So the
trading equation between two agents i and j can be written as

m′
i = λ0mi + r(1 − λ0)(mi + mj),

m′
j = λ0mj + (1 − r)(1 − λ0)(mi + mj)

(6.2)

where 0 ≤ λ0 < 1 is the ‘saving propensity’ (fraction of wealth that is being saved)
of the agents. For simplicity, debt was not permitted in this model. By running sim-
ulations, it was observed that the steady state distribution is completely different
from Boltzmann-Gibbs like, for any positive λ0 value. The shape of the distribution
looks like Gamma-like distributions [17, 20–22], and the most probable value de-
pends upon the value of λ0. Results corresponding to different values of the saving
propensities are shown in Fig. 6.1. The analytical closed form of the steady state
distribution remains an open problem.

6.2.1.3 CCM Model

In the last case, the CC model, all agents had a fixed saving propensity λ0, i.e.,
the savings propensity does amongst the (homogeneous) agents. But for modeling
purpose and also for the sake of reality, one can go one step forward and assume
that the agents are heterogeneous. So a natural generalization is to consider saving
propensities to be different for different agents. Precisely this modification was done
by Chatterjee et al. [23]. They made the same assumptions in their model as the
previous ones, but the only difference was that each agent i had a characteristic
saving propensity λi , which could take value 0 ≤ λi < 1 drawn randomly from a
uniform random distribution. Each λi (for i = 1, . . . ,N ) is fixed over time, and is
thus a quenched variable. The trading equation of this model can be written as

m′
i = λimi + r

(
(1 − λi)mi + (1 − λj )mj

)
,

m′
j = λjmj + (1 − r)

(
(1 − λi)mi + (1 − λj )mj

) (6.3)

where λi and λj are the saving propensities for agent i and agent j , respectively. By
doing this apparently simple modification, an interesting phenomenon emerged—
the steady state wealth distribution gave rise to a power law tail with exponent 2
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Fig. 6.2 Steady state wealth
distribution P (m) vs. m for
CCM model (0 ≤ λi < 1).
Dashed line represents the
results of Monte Carlo
simulations, for N = 103 and
M/N = 1. The power law is
fitted with x−2 (solid line).
Adapted from [8]

(see Fig. 6.2).5 The steady state wealth distribution statistics for a single realization
of quenched set (fixed propensities λi ’s) is observed to be significantly different in
nature with respect to the statistics averaged over a large number of independent
quenched configurations (variable sets). The peculiarities of the statistics from any
one realization is independent of the sample size, as observed in Refs. [14, 24].
This feature of the model suggests that the observed power law tail is essentially a
convolution of the single member distributions [14, 24]. Thus the power law tail can
be explained by a set of overlapping Gamma-distributions arising from the agents
with very high propensities (λi → 1) [14, 19]. Another interesting feature is that
the wealth that an agent accumulates is correlated to the saving propensity, first
observed numerically in Eq. (14) of Ref. [14]. These observations allow the steady
state distribution to be easily derived analytically [19, 37].6

As we have pointed out before, the empirical income or wealth distributions do
display both the exponential part and the power-law decay. These two models, CC
and CCM, and simple other variants [3, 26], are then able to capture (or at least
reproduce) the basic features of the whole income/wealth distribution.

6.2.1.4 An Extension of CCM Model

Here we discuss another extension of the kinetic exchange model, studied in
[27, 28]. The model can be described as follows: using the same framework as
above, the only difference is that a trade takes place between two agents investing
the same amount of wealth. Therefore in every transaction, the agents take an “ef-
fective” saving propensity λ which changes over time. Suppose, any two agents i

5Detailed numerical studies [24] showed that while the first two, the toy model studied in
Sect. 6.2.1.1 and the CC model in Sect. 6.2.1.2, are ergodic and self-averaging, the third one
(CCM) is not, which makes it very difficult to be studied numerically. This is an advisory note to
students and beginners who want to study this numerically.
6For another attempt using master equation, see Ref. [25].
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Fig. 6.3 Steady state distribution wealth for the extension model described in Sect. 6.2.1.4. The
Monte Carlo simulation was done by taking N = 104, M/N = 1, and 1 % wealth tax was collected
from the agents having wealth (mtax = 1) greater than the average wealth of the model, after every
10 Monte Carlo time steps. The numerical simulations are plotted using a dashed line. The power
law is fitted with x−1.5 (solid line). Taken from [27]

and j have wealth mi and mj , respectively, and they go for a trading. If the sav-
ing propensity for agent i is assumed to be λi = mi/(mi + mj) and for agent j ,
to be λj = mj/(mi + mj), then it is clear from trading equation Eq. (6.3), that the
total wealth is conserved before and after trade, and both agents invest the wealth:
mimj/(mi +mj). For this model, it is observed that in steady state, the wealth con-
denses to a single agent, a feature very similar to the results obtained by Chakraborti
[29]. The condensation can be avoided, if taxation is introduced into the system.
Suppose, the tax is applied for the agents who have wealth greater than the average
wealth, and this tax is collected periodically after a constant time interval. For this
model it is found that the distribution of wealth again has a power law tail.

In the Monte Carlo simulations, N = 104 agents were considered and everybody
was initially given M/N = 1 unit of wealth. All agents traded among themselves
according to rules described above. Also, 1 % of total wealth was taken as tax, after
every 10 Monte Carlo time steps (one Monte Carlo time step is defined as equivalent
to N numbers of random trades among the agents) from the agents who have wealth
(mtax = 1) greater than the average value. The collected wealth is then re-distributed
uniformly over all the agents. By doing this, it was observed (see Fig. 6.3) that the
wealth distribution follows a power law tail with exponent 1.5. This is another way
of recovering the power law using the kinetic exchange framework.

6.2.2 Phase Transitions in Kinetic Exchange Model

Here, we will describe another variant [30] of the above kinetic exchange models
by introducing a threshold value, inspired by the concept of ‘poverty line’ in eco-
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Fig. 6.4 The threshold
values versus order
parameters plot for N = 104.
(Right inset): Near critical
point the order parameter fits
with scaling form
O = (θ − θc)

β with β = 0.97,
θc = 0.6075. (Left inset): It is
shown that below critical
point θ = 0.59 the order
parameter goes to zero in the
thermodynamic limit. Taken
from [30]

nomics. The model can be described as follows: Here agents exchange their wealth
as described in Eq. (6.1a). But the only difference is that a threshold value of wealth
θ is defined, and a trade between two agents occurs, if at least one of the two agents
has wealth less than θ . Since there is a value of threshold, if all agents accumulate
wealth greater than θ , then in such a situation the dynamics stops. The maximum
limit of the threshold value θ below which the dynamics is stopped within some
finite time, defines as critical value θc. The order parameter O is defined as the aver-
age total number of agents having wealth less than θ i.e., O = ∫ θ

0 P(m)dm, where
P(m) is the probability distribution function of wealth. To make the system ergodic,
a perturbation is applied into the system whenever the dynamics is stopped, and a
particle having energy above θ is selected at random and its energy fully transfered
to any other particle. For characterization, the model was studied for mean field
(MF), one dimensional (1D) and two dimensional (2D) square lattices.

The mean field results are discussed here. Suppose after a time step τ , called
the “relaxation time”, the dynamics reaches a steady state. After the system reaches
steady state, the order parameters are measured for different values of θ , and plotted
as shown in Fig. 6.4. From the figure, it is observed that after the point θ = 0.6075
(critical point) the order parameter increases. The order parameter near the critical
point obeys a scaling form as O ∼ (θ − θc)

β , where β is order parameter exponent,
and the value β = 0.97 fits well with the scaling form. Also at critical point, the
time variation of order parameter fits with the scaling form O(t) ∼ tδ with δ = 0.93
(see Fig. 6.5). To confirm the existence of the transition, the relaxation times τ are
measured for different values of θ . It is observed that there exists a clear time scale
divergence behavior with scaling form τ ∼ |θ − θc|−z, with z = 0.83 (see Fig. 6.6).
All these observations and behaviors suggest that there exists a “phase transition”
at θ = θc. To determine the exact universality class, the model was studied for 1D
and 2D square lattices too, and the obtained scaling exponents suggested that the
universality class is close to the Manna universality [30–32].
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Fig. 6.5 Time variation of
order parameters for different
values of θ are shown. Near
critical point, the order
parameter fits the scaling
form O = t−δ with δ = 0.93.
Taken from [30]

Fig. 6.6 The relaxation times
are plotted for different θ

values. It is observed that at
critical point, the relaxation
time diverges clearly. (Inset)
At critical point, the
relaxation time τ diverges as
τ = (θ − θc)

−z with z = 0.83.
Taken from [30]

6.2.3 A Brief Summary of the KWEM

In this section, we have discussed different kinetic exchange models of wealth
for closed economic systems. First we have considered the random reshuffling ex-
change dynamics and observed that the wealth distribution for such a closed eco-
nomic system obeys Boltzmann-Gibbs distribution. Next we have discussed that the
shape of distribution changes from Boltzmann-Gibbs to Gamma-like if a (homo-
geneous) saving propensity is introduced in the model [17, 20–22]. We have then
discussed a model (CCM) whereby assigning uniformly random saving propensities
(i.e., introducing a particular type of heterogeneity in terms of savings propensity)
to all the agents, a wealth distribution with a power law tail having exponent 2 is
generated. Later an extension of the CCM model has been proposed where it is as-
sumed that both agents invest the same amount wealth for a trading. For this model,
if one considers taxation for the agents who have wealth greater than the average
wealth in the model, then interestingly the wealth distribution again gives a power
law tail, albeit with a different exponent (namely 1.5). These models reproduce fea-
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tures qualitatively and (one might argue) quantitatively similar to those of the em-
pirical wealth distributions in the economy [3, 9]. In short, we have a formalism that
reproduces both the basic features of income/wealth distributions (observed since
the pioneering studies by Pareto [11] and Gibrat [12]): a low income region that
resembles a Gamma-like distribution and the tail region that follows a power law.

Furthermore, we have discussed a kinetic exchange model where the agents who
have wealth lower than a threshold value are able to initiate trade with any other
agent. In this model, we have observed that there is a certain threshold value of
wealth, θc, below which there is no agent below that particular threshold value. In
other words, there is a critical value of θ = θc above which this ‘absorption’ never
happens. From critical finite size scaling, it was observed that scaling exponent for
this transition is close to Manna universality class.

6.3 Firm Dynamics

In this section, we will present some recent progress made on explaining the firm
size distributions in a similar framework. Of course, we cannot literally consider
a binary random collision model to be a replica of all economic phenomena. But
in case of firm dynamics, the essential mechanism that describes a redistribution
of a certain quantity (wealth in the standard KEMs) still makes considerable sense.
Think of firms as agents (instead of buyers and sellers) and workers in place of
wealth. In the wealth exchange models, the buyers and sellers exchange wealth
intentionally while carrying out economic transactions, whereas in case of firm-
dynamics, there are workers who leave one firm and join others (be it intentional
or unintentional). So again we have a redistribution of a certain quantity, workers
w (instead of wealth). Assuming no migration, birth or death of workers, the econ-
omy remains conserved. The dynamics is technically identical to that of usual KEM
except that one has to consider a n-particles collision process instead of binary col-
lision. In case of wealth exchange a binary collision makes sense since usually the
number of participants in one particular transaction is two. However, in case of
firms, if one worker leaves one firm there is no particular reason to think that (s)he
goes to another pre-specified firm. So we need to generalize the standard model to
incorporate the possibility of having an n-ary interaction. Apart from this economic
reason, there is another important advantage of such a generalization. The usual
binary collision model with constant savings propensity λ cannot be solved analyt-
ically. At least it has not been solved so far. However, one can easily show that if
there is a system-wide redistribution, the system can easily be solved analytically.
Reference [38] proposed such a model and gave the solutions.

Before describing the model, we have to explain what we can expect from such
an unconventional application of KEM. There are a couple of specific targets. The
first one is obvious. Since, the KEM generates a power law very easily and since
firm size distribution shows a power law, that is reason enough to apply the model.
There is another empirical regularity not as well known. Firm growth process in the
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developing economies is known to produce divergence in their growth path giving
rise to bimodality in the size distribution [40]. A surprising fact is that such bimodal-
ity has been observed in wealth distribution as well [41]. Hence, if we have a model
which can accommodate binary trading as well as the whole system-side trading,
then the same framework can be used to explain the non-standard features of wealth
distribution as well as firm size distribution. It appears that KEM is well-suited to
explain these features as well (see Ref. [39]).

6.3.1 Regularities in Firm-Size Distribution

The remarkable robustness of the long tail of the size distribution of the firms, is
known from the early works by Gibrat [12]. Intuitively, a few very large firms can
operate side by side with a large number of small firms. However, it was Axtell [33]
who presented clear evidence that the distribution can be characterized very well
by a power law. The same paper also remarked on the stability of the power law
feature which has survived changes in the political, regulatory and social regimes
(e.g., demographic changes in the workforce due to the influx of women in the labor
force). Numerous innovations and technological changes in the production process
had taken place within the same time period which were unable to affect it. Lastly,
the changes in the market structures, policy changes, firm mergers, acquisitions,
death and birth of firms, thousand of tweaks in the corporate laws did not affect this
feature. This indicates that the statistical features of the firm growth process may
well be independent of microeconomic decision-making processes like, why people
choose to leave their jobs (or why and how firms decide to lay off for that matter)
etc. Hence, any microeconomic foundation for the firm dynamics is not needed (at
least at a first approximation). However, the rate at which the firms gain and lose
workers is of interest to us as that determines the size of the firm. This rate is called
the turnover rate in the economics literature. Another way to look at the same thing
is that it measures how long the employees stay in their respective jobs.

Apart from the power law, Ref. [40] presents evidence that the developing
economies are characterized by a bimodal distribution of firms. There is a bunch
of very small firms creating a peak and there is another bunch of very big firms
creating another peak with little mass of firms in between. This particular feature
is known as the ‘missing middle’. A very interesting feature is that as an economy
develops usually this ‘missing middle’ disappears. Hence, this is somehow related
to the economic condition of the country under consideration.

A Little Digression on Theory We intend to show that the turnover rates play a
crucial role in the firm size distribution. But since turnover rate dictates not only
inflow but also outflow, we need another parameter to describe outflow only. Hence,
we describe the model in terms of the ‘retention rate’ which has a role identical
to that of savings propensity that we used in KWEM, discussed in the previous
section. The retention rate refers to the fraction of workers that stays with the firm
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at the end of the period. Clearly the turnover rate and the retention rate are related.
As is evident, one aspect of job separation and worker hiring is that the process
follows the rule of local conservation. If one worker goes from one firm to another
then the total workforce remains unchanged but the workers’ distribution across
the firms change. Since the workers at any given year (or quarter) move around
in a very large number of firms, we model this process as a repeated interaction
between a large number of agents (firms) which exchanges a finite mass of (number
of) workers between themselves. Clearly, the idea of the kinetic exchange model is
suitable for this purpose.

Now we can discuss the economic interpretation of the terms used in the model.
First, the economy consists of a large number of firms populated by workers. By
firms we mean each and every production units capable of producing any kind of
goods and services. Therefore there is no formal unemployment in the model. We
adopt this idea in order to simplify the model so that we do not have to keep track of
the mass of workers who are moving in and out of the employed workers’ pool. Note
that this does not affect the tail of the distribution (Zipf’s law) since the tail is formed
only by large firms. Secondly, we have made another simplifying assumption which
is that the workers are treated as a continuous variable. While it is certainly true
that there is an integer constraint on workers’ head-counts, we have an advantage
in treating the workers as a continuous flow in and out of the firms as it is easier
(mathematically) in this case to derive the size distributions as we do not have to
worry about integer constraints. Thirdly, we follow the definition that the firm’s size
is just the mass of workers working in the firm. There are other measures (like stock
valuation, amount of goods or services produced etc.). But the number (mass) of
workers has the most unambiguous definition. Hence we stick to it.

6.3.2 A Model with Constant Retention Rate

Reference [38] described the model in the following way. There is exactly one ex-
ogenous variable (the retention rate λ) and one endogenous variable (the firm sizes)
in the model. We assume that time is discrete. The economy consists of an array of
N firms with perfectly elastic demand for labor i.e. any firm can absorb any mass of
workers that come to it. At the very beginning of the process, all firms have exactly
one unit of workers (more formally, the measure of workers is one for each firm).
Technically this means the total (and hence average) mass of w is constant over time.
The fraction of workers that decides to stay back in their firm (which we call the re-
tention rate), is denoted by λ which may in principle, vary between the firms. For
the time being, we treat them as given and constant across the firms. This treatment
is pioneered by Ref. [18] in the context of modeling income/wealth distributions as
we have discusses above in great details. Let us denote the firm size of the i-th firm
(we measure a firm’s size by its workforce) by wi (i ≤ N where N is the set of
firms). Also, suppose that the number of firms from which the workers are leaving
and moving into, is n. At each time point (1 − λ) fraction of the workforce of those
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n firms wants to leave (or the firms wanted them to leave, whatever appeals to the
reader!). As mentioned above, we do not explain why they choose to do so. Hence
there would be a total pool of workers that wants to change their workplace. Next,
this pool of workers is randomly divided into those n firms. Hence, the dynamics is
given by the following set of equations,

w1(t + 1) = λw1(t) + ε1(t+1)(1 − λ)

n∑

j

wj (t),

. . .

wi(t + 1) = λwi(t) + εi(t+1)(1 − λ)

n∑

j

wj (t),

. . .

wn(t + 1) = λwn(t) + εn(t+1)(1 − λ)

n∑

j

wj (t)

(6.4)

such that
∑n

j εj (t) = 1 for all t . As is evident from above, this is a straight gener-
alization of the usual kinetic exchange models (with n = 2) that has primarily been
used to study the income/wealth distribution models (see Ref. [8] and the above sec-
tions). A little note on the notations: we use t within the first bracket when referring
to the endogenous variables like the size of the firm ( w(t)) and we use the same in
subscript when referring to the exogenous random variables (e.g., εt ).

Construction of the Division Factor ε We impose some meaningful restrictions
on ε (as described by Ref. [38]).

1. εi ≥ 0 ∀i and the sum of all εis has to be equal to one. Otherwise, the economy
would not be conserved.

2. The distributions of all εi are identical which implies that the expection E(εi) =
1/n for all i.

3. If n = 2, εi ∼ uniform [0, 1]. We impose this constraint so that at the lower limit
of n, we get back the usual CC-CCM models (see Ref. [8]).

Formally, the problem then boils down to that of sampling uniformly from the unit
simplex (see Refs. [35, 36]). We follow the standard algorithm and below we show
the corresponding distribution of ε.

1. Create a vector of independent random variables drawn from uniform distribu-
tion over [0, 1], ξ1, ξ2, . . . , ξn.

2. Take logarithm of all the elements of the vector.
3. Divide each element by the sum of all the elements. Call the i-th result εi for

all i.
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One can derive the probability density function of the εi which is the following:

f (εi) = (n − 1)(1 − εi)
n−2, (6.5)

that is, ε has a beta pdf with parameters 1 and n − 1. Clearly, when n = 2 the
distribution of ε is uniform [0, 1] as expected.

6.3.2.1 Solution of the Model

We follow Ref. [38] to describe the solution. First, we note that the solution to the
usual kinetic exchange model with binary interaction is not known yet (see Refs. [8,
15]). However, one can derive an exact result for the case where the number of
interacting firms is in the order of the system size N i.e., if one considers the case
where 2 � n ≤ N .

Note that if n is of the order of N ,
∑n

j wj is well approximated by n (recall that

E(wj ) = 1 for all j ). To make sure, note that
∑N

j wj = N by specification of the
model. To derive an exact result (instead of approximation), we shall assume that all
firms interact at every step, i.e., n = N . Evidently the system of equation becomes

w1(t + 1) = λw1(t) + ε1(t+1)(1 − λ)N,

. . .

wi(t + 1) = λwi(t) + εi(t+1)(1 − λ)N,

. . .

wN(t + 1) = λwN(t) + εN(t+1)(1 − λ)N

(6.6)

with each εi is beta distributed as has been shown in Eq. (6.5) (see Construction
of ε in Sect. 6.3.2). Note that in this form, we get rid of the effects of wj(t) in the
evolution equation of wi(t) for all j �= i thus enabling us to uncouple the system
of equations describing the coupled system (note that technically this system is still
coupled). One more simplification is possible.

Let μ = N(1 − λ)ε ignoring the subscripts. For a given N , it is easy to verify
that the probability distribution of μ for large N is

lim
N→∞f (μ) � ψe−ψμ where ψ = 1

1 − λ
. (6.7)

Therefore, the system effectively reduces to

w1(t + 1) = λw1(t) + μ1(t+1),

. . .

wi(t + 1) = λwi(t) + μ2(t+1),

. . .

wN(t + 1) = λwN(t) + μN(t+1),

(6.8)
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which is a system of autoregressive type equations with the distribution of errors
(μ) given by Eq. (6.7). This is clearly solvable now.

6.3.2.2 Steady State Distributions

Let us now describe the steady state behavior of the system. First, we can consider
the moments and show how they differ from the usual binary exchange mechanism.
One writes the k-th moment of the distribution (without subscript) as

E
(
(w − 1)k

) = E

(
k∑

l=0

(
k

l

)
(−w)l

)
. (6.9)

One simplifying assumption we make here is that wi and wj are independent vari-
ables (technically, they are not since the sum of all wi ’s has to be a constant by
structure of the model, N in this case; but for large number of interacting firms, this
is a good approximation). It is easy to verify that with all firms interacting (n = N ),
the variance is given by

V (w) = (1 − λ)

(1 + λ)

whereas in the case of binary interaction [34]

V (w) = (1 − λ)

(1 + 2λ)
.

Note that for λ = 0, variance is unity in both cases which indicates that the distri-
bution is the same (exponential) in both cases (not proven here; please see Ref. [38]
for a derivation). To solve the system, let us write it as

w(t + 1) = λw(t) + μt+1

which can, in turn, be rewritten with the lag operator L as (1 − λL)w(t) = μt and
hence,

w(t) = μt + λμt−1 + λ2μt−2 + λ3μt−3 + · · · .

Note that we already know the distribution of μ from Eq. (6.7),

f (μ) � 1

1 − λ
e− 1

1−λ
μ.

Therefore by transforming the variable we can write

w = μ̃0 + μ̃1 + μ̃2 + μ̃3 + · · ·
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where μ̃j = λjμt−j is distributed as

f (μ̃j ) = 1

λj (1 − λ)
e
− μ̃j

λj (1−λ) .

One can neglect the terms with high powers (more than say k̄) of λ. Then firm-size
w is the nothing but the sum of k̄ exponentially distributed random variables with
different parameters. Note that the Laplace transformation L(s) of μj is φj/(φj +s)

where φj = 1/(λj (1 − λ)). Since the μj ’s are i.i.d. by definition (since the division
factor ε was i.i.d.), pdf of w would be the convolution of the pdfs of the k̄ random
variables. By property of Laplace transformation, one can verify that the distribution
of w would be (by taking limit on k̄)

f (w) = lim
k̄→∞

k̄∑

i=1

φi exp(−φiw)

k̄∏

j=1,j �=i

(
φj

φj − φi

)
(6.10)

where φi defined as φi = 1/(λi(1 − λ)) .

6.3.3 Distributed Retention Rates

So far we have considered only a fixed retention rate λ. In this section we consider
distributed λ (i.e., the retention rates differ across firms but they are fixed over time)
following Ref. [8]. Specifically, we assume that the retention rates are uniformly
distributed over the interval [0, 1] across the firms. The new system of equation is

w1(t + 1) = λ1w1(t) + ε1(t+1)

n∑

j

(1 − λj )wj (t),

. . .

wi(t + 1) = λiwi(t) + εi(t+1)

n∑

j

(1 − λj )wj (t),

. . .

wn(t + 1) = λnwn(t) + εn(t+1)

n∑

j

(1 − λj )wj (t).

(6.11)

To solve Eq. (6.11) in the steady state, note that (1 − λi)E(wi) = C, a constant,
solves the problem. Hence, by following Ref. [37] one can easily show that the
resultant distribution of the above model is a power law. Essentially, the argument
is if λ is distributed uniformly across the firms, then the average mass of workers is
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the inverse of a uniform distribution which is known to be the Zipf’s law. We have
already encountered this argument in the CCM [8] model discussed at the beginning
of this chapter.

6.3.4 A Model with Time-Varying Retention Rate: Emergence of
Bimodality

We have already discussed how one can model firm dynamics with the tools pro-
vided by KEM. Now we are in a position to tackle heterogeneity in the retention
rate both over time and across agents. More precisely, we will describe the retention
rate λ as a function of current size and thus induce a non-trivial time-dependence on
the retention rate as size of any firm fluctuates over time. Reference [39] defines the
dynamics by the following set of equations,

w1(t + 1) = λ
(
w1(t)

)
w1(t) + ε1(t + 1)

N∑

j

(
1 − λ

(
wj(t)

))
wj(t),

. . .

wi(t + 1) = λ
(
wi(t)

)
wi(t) + εi(t + 1)

N∑

j

(
1 − λ

(
wj(t)

))
wj(t),

. . .

wn(t + 1) = λ
(
wn(t)

)
wn(t) + εn(t + 1)

N∑

j

(
1 − λ

(
wj(t)

))
wj(t)

such that
∑n

j εj (t) = 1 for all t . As is evident from above, this is a further gener-
alization of the model discussed above. Here, the retention rate λi not only charac-
terizes the agents but also explicitly becomes a function of time, λi = λi(t) due to
dependence on the current level of employment wi(t). Following Ref. [39], let us
assume the following functional form of λ,

λ(w) = c1
(
1 − exp(−c2w)

)
c1 and c2 being constants. (6.12)

Note that the retention rate increases as the current work-force increases. This equa-
tion basically captures the more realistic scenario that as a firm increases its work-
force, the more workers it retains; or in the context of wealth distribution, a richer
person saves more (see also Ref. [42] for interesting discussions). The exact solution
is not known for this system. SO we perform Monte Carlo simulation which shows
emergence of bimodality for certain parameter configurations (see Fig. 6.7).

It should be emphasized that this whole exercise distinguishes the KEM approach
to the problem of ‘missing middle’ from other approaches that put the importance
either on size-dependent or size-independent dynamics. We take the position that
the firm-level dynamics is size-dependent or independent, depending on the level
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Fig. 6.7 Emergence of bimodality with Eq. (6.12) is shown with the variation of the parameter c2
with c1 = 0.95. The corresponding distribution of the retention rate λ is shown in the inset. Taken
from [39]

of development of the economy as a whole. More specifically, we conjecture that
the firms in the developed economies have fixed-heterogeneity whereas for poorer
economies, the firms have size-dependent heterogeneity in the retention rates. In
support of that conjecture, we note that the selection effects are important mostly for
the micro firms (mostly unregistered, very small firms in the developing economies)
and such effects are less prominent for larger firms (mostly found in the developed
economies). The selection effects can produce heterogeneity depending on many
factors, e.g., access to credit markets, pool of entrepreneurs, mobility of inputs, etc.
Note that such facilities are mostly absent in the poorer economies. Hence, the firms
in the poorer economies can have size-dependent dynamics. For example, a large
firm can have access to credit market whereas a small firm may not have any access
whatsoever; but in the developed economies all firms have access to credit markets,
i.e., the access to credit market itself can act as a barrier to a small firm for expansion
in size. This justifies the conjecture of scale-dependent heterogeneity for firms in
poorer economies. However, we abstract from all such microeconomic details and
posit that the heterogeneity is reflected solely in the retention rate which determines
the firm’s size in the this context. This simplification enables us to economize on
the number of variables we study. We see that ex-post heterogeneity (agents are ex-
ante identical, but because of the dependence of the retention rate on w, they are
ex-post heterogeneous) induces bimodality. However, as the economy develops the
heterogeneity becomes ex-ante as in the CCM model [8] giving rise to a power law
distribution.

6.4 Opinion Dynamics

6.4.1 Kinetic Opinion Exchange Model

In this section, we deal with the emergence of consensus, which is an important
issue in social science problems [5, 43–46]. The key question is of course, how a
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group of interacting individuals select between different options (vote, language,
culture, opinions, etc.), leading to a state of ‘consensus’ in one such option, or a
state of coexistence of many of them. Consensus, e.g., in opinion formation, is an
“ordered phase” where the majority of the system is biased to a particular opinion.
Though the influence of opinions in society has been an important field of study for
a long time, the dynamics of opinion spreading has attracted the attention of physi-
cists only recently, and there has been already several significant attempts to model
such behavior in the light of rather well understood topics of physics like phase
transitions and critical phenomena. These models have helped us to understand how
global consensus emerges out of e.g., individual opinions [47–53]. In most of such
formulations, opinions are usually modeled as variables, discrete or continuous, and
are subject to changes due to many factors—binary interactions, global feedback,
etc. or even external factors. Usually the interest in these studies lie in the distinct
steady state properties, usually one phase characterized by individuals with widely
different opinions and another phase with a finite fraction of individuals with similar
opinions.

Here, we intend to focus our attention to a specific class of simple models pro-
posed recently [54, 55], having apparent similarity with kinetic wealth exchange
models (KWEMs) discussed earlier [8, 18, 23]. The tuning parameter in these mod-
els, analogous to the saving propensity in KEM, is ‘conviction’ (λ), which deter-
mines the extent to which an individual remains biased to its own opinion while
interacting with somebody else, and the ‘influence’ parameter (μ), which is a mea-
sure of the influencing power or the ability of an individual to impose its opinion on
some other individual. In the original model [54, 55], the two parameters were taken
to be identical. The opinions of individuals are continuous variables in [−1,1] and
change due to binary interactions. It was observed that if the conviction parameter
was fixed above a threshold, the system reaches a state of consensus (“symmetry-
broken” phase or “active” phase) and below this threshold value all individual opin-
ions were equal to zero (“absorbing” phase). Later, a generalised version of this
model was studied [56], where two parameters, λ and μ, were taken to be non-
identical. It was found that in that case, the symmetric and symmetry-broken phases
were separated by a phase boundary given by λ = 1 − μ/2. Biswas et al. [57] stud-
ied some variants of the above discussed models and estimated the critical points
by mean field theory (MFT), which were supported by numerical simulations. The
critical exponents associated with the phase transition were also estimated. Later the
discretized version of the LCCC model was exactly solved [58], which also showed
an “active-absorbing phase transition” as was seen in the continuous version. Apart
from the two- agent or binary interaction, the three-agent interaction were also taken
into account. While the phase diagram of the two-agent interaction led to a contin-
uous transition line, the three-agent interaction showed a discontinuous transition.
Continuous opinion dynamics with both positive and negative mutual interactions
were also studied [59].

In the model introduced earlier by Deffaunt et al., opinion exchange between
two agents took place only when the difference between their opinions was less
than or equal to a pre-assigned quantity δ [51]. This idea of bounded confidence
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was implemented in the LCCC model (controlled by the only parameter λ) [60].
Three distinct regions were identified in δ–λ phase diagram.

Percolation transitions of geometrical clusters (group of adjacent sites with an
opinion value equal to or above a pre-assigned threshold value Ω) in the square
lattice LCCC model, had also been studied by varying conviction and influencing
parameters [61]. The transition point was different from that found for the transition
of the order parameter. Although the transition point was also dependent on Ω ,
the critical exponents were independent of the threshold opinion value, conviction
and influencing parameters. The exponents also suggested that percolation in LCCC
model belongs to a separate universality class. We will now discuss in some details
the above cases.

6.4.2 LCCC Model

In the original model, a discussion between two persons were viewed as a simple
two-body scattering process in physics and at any time t , only two persons were
allowed to discuss. In a society consisting of N persons each of the i-th person was
assigned with an opinion value at a time t as oi(t) ∈ [−1,+1]. Binary interactions
took place as follows:

oi(t + 1) = λ
[
oi(t) + εoj (t)

]
,

oj (t + 1) = λ
[
oj (t) + ε′oi(t)

]
,

(6.13)

where ε and ε′ are uncorrelated random numbers uniformly distributed between 0
and 1. λ was the conviction parameter which determines to which extent a person
retains his own previous opinion and is independent of time. It was assumed here
that the conviction parameter was also equal to the influence parameter which quan-
tified how much an individual influenced another person. The agents were taken to
be homogeneous in the sense of having the same or uniform conviction parameter.

Social interactions followed by Eq. (6.13) lead to consensus formation depending
upon the value of the conviction parameter λ. The steady state value of the average
opinion after a long time t , O = |∑i oi |/N represents the “ordering” in the system.
Starting from a random disordered state (ois are uniformly distributed with positive
and negative values and O � 0) after a certain time t = τ (relaxation time) the
system either evolves to the “para” state (all individual agents having zero opinion)
for λ ≤ 2/3 or continuously changes to a symmetry broken state (all individuals
having opinion of same sign) for λ ≥ 2/3 (Fig. 6.8). The variance of O does not
diverge but shows a cusp near λ = 2/3. The fraction of agents (p) having opinion
oi = ±1 was also measured in the steady state as a function of λ and the growth
behaviour was found to be similar to O as discussed above.

The relaxation behaviours were studied for both O and p and a divergence of
relaxation time τ ∼ |λ − λc|−z was observed for both. The relaxation behaviour for
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Fig. 6.8 Simulation results
for average opinion as a
function of λ. (Inset)
Simulation results for the
variance of O with λ. Taken
from [54, 55]

Fig. 6.9 Numerical results
for relaxation time behaviors
τ versus λ − λc , for
multi-agent model with O .
(Insets) Determination of
exponent z from numerical
fits of τ ∼ |λ − λc|−z. Taken
from [54, 55]

O has been shown in Fig. 6.9. The value of z corresponding to O and p are 1.0±0.1
and 0.7 ± 0.1 respectively.

Apart from the exponents β and z (both for O and p), two more exponents were
measured for 1D LCCC [57]. At the critical point (λc = 2/3), due to critical slowing
down the system relaxes algebraically with time

O(t) ∼ t−δ (6.14)

The order parameter p also shows a similar form at the critical point. The value of
δ for O is 1.00 ± 0.05 and p is 1.15 ± 0.01.

From finite size scaling theory, an order parameter X is expected to follow a
scaling relation of the form

X(t) ≈ t−δF
(
t1/ν||	

)
, (6.15)

where 	 = λ−λc and F is a universal scaling function of a form such that for large
argument, the time dependence drops out (F(x) ∼ xδν|| ). Both O and p follow the
scaling relation.
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The basic nature of the transition produced by Eq. (6.13) was also obtained from
a simple iterative map:

y(t + 1) = λ(1 + εt )y(t) (6.16)

with the restriction that y(t) ≤ 1, which is ensured by assuming that if y(t) ≥ 1, y(t)

is set equal to 1. εt is a stochastic variable uniformly distributed between 0 and 1. In
a mean-field approach, the above equation reduces effectively to a multiplier map
like y(t + 1) = λ(1 + 〈εt 〉)y(t), where 〈εt 〉 = 1/2. For λ ≤ 2/3, y(t) converges to
zero. An analytical derivation for the critical point was also given where it was found
that λc = exp {−(2 ln 2 − 1)} ≈ 0.6796 [62].

6.4.3 The Generalised LCCC Model

In the generalised model [56], a second parameter representing the influencing
power of an agent was treated distinctly from the conviction parameter, because
in most realistic scenarios, a person with a strong retention power may not always
have the same power to influence others. Thus, the interaction here is as follows:

oi(t + 1) = λioi(t) + εμjoj (t),

oj (t + 1) = λjoj (t) + ε′μioi(t),
(6.17)

where λi and μi correspond to the conviction and influencing parameter for the i-
th agent. In the simpler version of the model studied, a homogeneous society with
uniform λ and μ were assumed. Considering λ = μ gives the original LCCC model,
as discussed earlier.

Again, the average opinion was studied both as functions of λ and μ. The average
opinion showed spontaneous symmetry breaking in the λ–μ plane. In the steady
state for non-zero solution of O the condition is

(1 − λ)2 = 〈
εε′〉 μ2, (6.18)

which reduces to

λ = 1 − μ/2. (6.19)

The phase boundary obtained numerically satisfies Eq. (6.19) (Fig. 6.10). The re-
laxation behaviour was studied along two paths (A and B), (A) keeping the value
of μ constant and changing the value of λ and (B) keeping the value of λ con-
stant and changing the value of μ. The relaxation behaviour of O showed inter-
esting feature along both the paths. The relaxation time along path A diverged al-
gebraically along the phase boundary and more importantly the critical exponent
changed with the tuning parameters (λ and μ). For μc = 0.4, z = 1.04 ± 0.01, for
μc = 2/3, z = 1.10 ± 0.03 while for μc = 0.9, z = 1.21 ± 0.01 which indicated a
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Fig. 6.10 The phase boundary obtained by numerical simulation coincides exactly with that given
in Eq. (6.19). The acronyms SP and SBP denote the symmetric phase and the symmetry-broken
phase, respectively. The paths A and B are possible trajectories along which the different studies
can be made. Along the dashed line λ = 1, the opinions of all the agents are equal and take extreme
values in two possible ways, either oi = 1 or oi = −1 for all i. Taken from [56]

non-universal behaviour. The order parameter O also showed power-law behaviour
along the phase boundary,

O ∝ (λ − λc)
β (6.20)

where β also varied strongly with λc,μc . β = 0.079 ± 0.001 at μc = 0.4 and
β = 0.155 ± 0.001 at μc = 0.9. The critical exponents corresponding to the con-
densate fraction p were zp and βp , which also showed non-universal behaviour
along the phase boundary. When λ was kept constant and μ was varied near the
phase boundary line, the magnitude of the time scales were about twice compared
to those in path A along the path, although the values of the exponents were very
close.

6.4.4 Variants of the LCCC Model

A simpler version of the LCCC model was studied [57], where an individual i upon
meeting with another individual j retained his own opinion proportional to his con-
viction parameter and picked up a random fraction of j ’s opinion (model C here-
after). The interaction can be written as

oi(t + 1) = λoi(t) + εoj (t),

oj (t + 1) = λoj (t) + ε′oi(t)
(6.21)

where the symbols carry their usual meaning, as mentioned earlier.
Numerically, it was observed that below a critical value λc, oi = 0 ∀i giving

O = 0 while for λ > λc, O > 0 and went to 1 as λ → 1, a symmetry broken phase
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Fig. 6.11 The phase diagrams for the three models: LCCC, C and G, described in the text. Left:
Behavior of order parameter O . Right: Behavior of condensation fraction p. Taken from [57]

with λc ≈ 1/2. Mean field estimate gave for the stable value of O ,

O
(
1 − λ − 〈ε〉) = 0, (6.22)

and hence λc = 1/2.
The effect of global feedback on an agent’s personal opinion during an interaction

was also investigated [57]. An agent while taking part in a social interaction, apart
from being influenced by the other person was also stochastically influenced by the
“average opinion” of the entire society at that time (model G). Mathematically, this
is represented as,

oi(t + 1) = λ
[
oi(t) + εoj (t)

]+ ε′O(t),

oj (t + 1) = λ
[
oj (t) + ηoi(t)

]+ η′O(t),
(6.23)

where η and η′ are random numbers drawn from uniform distribution [0,1]. In this
case, the symmetry broken phase O �= 0 appeared for λ > 1/3, and for λ ≤ 1/3 the
system was in a symmetric phase, with oi = 0 ∀i and all individual agents had the
opinion 0. This was also explained by a mean-field approach as O reached a steady
state value,

O = λ
(
1 + 〈ε〉)O + 〈

ε′〉O (6.24)

which gave λc = 1/3.
The comparative phase diagrams for the three models (1D LCCC, model C and

G) according to behaviour of order parameter O and p has been shown in Fig. 6.11.
Both for the above discussed models (1D LCCC, model C and G) the critical expo-
nents were measured numerically (Table 6.1).
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Table 6.1 Table comparing the different quantities for the 3 models (1D LCCC, model C and G)

Model λc (Mean field) Measured quantity β z δ ν||

LCCC 2/3 O 0.10(1) 0.97(1) 1.00(5) 1.2(1)

p 0.95(2) 1.1(1) 1.2(1) 1.1(1)

C 1/2 O 0.17(1) 1.58(1) 0.500(5) 0.10(1)

p 0.98(2) 1.34(1) 0.521(5) 2.00(2)

G 1/3 O 0.081(1) 1.2(1) 0.585(1) 1.6(1)

p 0.85(1) 1.75(1) 0.585(1) 2.0(1)

6.4.5 Discrete LCCC Model

An exact solution for the LCCC model was done for a discretized version (repro-
duced below in a similar form, from Ref. [58]). The dynamics evolves as

oi(t + 1) = λoi(t) + μεoj (t), (6.25)

where μ represented the j -th agent’s ability to influence others. Note that in the limit
λ = μ, one recovers the LCCC model. In the discrete version λ = 1 with probability
φ and 0 with probability 1 − φ. The parameter ε is either 1 or 0 with equal proba-
bility, and agents could have three possible opinion values (oi ∈ {−1,0,+1}∀i). In
the generalised case μ = 1 with probability q and 0 with probability 1 − q .

If f0, f1 and f−1 be the fractions of agents having opinions 0,+1 and −1, then
the evolution equation can be written as,

dO

dt
= f 2−1(1 − φ) + f−1f1

(
1 − φ

2

)
+ f0f1φ

2
+ f−1f0(1 − φ)

− f 2
1 (1 − φ) − f1f−1

(
1 − φ

2

)
− f0f−1φ

2
− f1f0(1 − φ). (6.26)

In the steady state, the left hand side will be zero. This gives either f1 = f−1, (which
implies disorder) or

f0 = 2(1 − φ)

φ
. (6.27)

It was shown that in the ordered state f1f−1 = 0. This condition and the disor-
dered state condition (f1 = f−1) should both be valid at the critical point. This is
possible only when f1 = f−1 = 0 at the critical point. This implied, at the critical
point f0 = 1. Furthermore, for the sake of continuity of f1 and f−1, f0 = 1 for the
entire disordered phase. This condition along with Eq. (6.27) gave φc = 2/3.

Therefore, the order parameter should be (using f1 + f−1 + f0 = 1)

O = ±(1 − f0) (6.28)
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where the sign will depend on whether f1 or f−1 is non-zero, in the ordered
(symmetry-broken) phase. Using Eq. (6.27), the above expression yields

O = ±3(φ − 2
3 )

φ
. (6.29)

Therefore, Eq. (6.29) gives β = 1 (since φc = 2/3).
Similar calculation in case of the discrete generalised LCCC model yields

O = ±2(φ − φc) + (q − qc)

qφ
. (6.30)

which gives that the order parameter exponent is β = 1.
The three body opinion exchange was also solved exactly. Three agents were

chosen randomly and an agent changes his opinion only when the other two agree
among themselves. If they contradicted, then the first agent considered the group
to be neutral and only retained a fraction of his opinion, depending upon his/her
conviction parameter. This can be represented mathematically as

oi(t + 1) = λoi(t) + λεθjk(t), (6.31)

where, θjk(t) = oj (t) if oj (t) = ok(t), θjk(t) = 0 otherwise. It was shown that in
the ordered state,

f0 = 1

2
− 3

√
φ − 8/9

2
√

φ
, (6.32)

and the order parameter takes the form

O = ±
(

1

2
+ 3

√
φ − 8/9

2
√

φ

)
. (6.33)

This gives O = 0 for φ < 8/9 and in the ordered phase minimum value of O can be
1/2 which shows that the order-disorder transition is discontinuous.

6.4.6 LCCC Model with Bounded Confidence

In the models discussed so far, there were no restrictions imposed on the interactions
between any two agents. A restricted LCCC model was studied, where two agents
interact according to Eq. (6.13) only when |oi − oj | ≤ 2δ [60], where δ is the pa-
rameter that represents the ‘confidence’ level and can vary from zero to 1. There are
two extreme limits corresponding to this model: (a) δ = 1 is identical to the original
LCCC model, and (b) δ = 0 is the case when two agents interact only when their
opinions are exactly same. Three different states were defined to identify the status
of the system. When oi = 0 for all i it was called neutral state, oi �= 0 for all i, but
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Fig. 6.12 The phase diagram in the δ–λ plane shows the existence of the neutral region (for
λ ≤ λc1 � 2/3), the ordered region and the disordered region. The ordered and disordered regions
are separated by a first order boundary (continuous line in red) for δ ≥ 0.3 obtained using a finite
size scaling analysis. For δ < 0.3, the phase boundary (broken line in blue) has been obtained
approximately only from the behaviour of the order parameter (see text). Taken from [60]

O � 0, it was called disordered state, and when O �= 0 it was an ordered state. The
three states were located in the δ–λ plane (Fig. 6.12).

It is quite obvious from the figure that the ordered state appears for λc1 � 2/3
(as in the original LCCC model) and is independent of the value of δ. For a fixed
value of δ, the value of order parameter O increases with λ and decreases to zero
as λ is increased further (≥ λc2). The decrease becomes steeper with both δ and the
system size N . For λc1 ≤ λ ≤ λc2(δ) an ordered region exists where opinions of one
sign exist. At λc2 a transition to a disordered state was observed and the transition
point was dependent on the value δ. It was found that at least for δ > 0.3, the order-
disorder transition is first-order in nature. For δ < 0.3, the ordered phase shrunk to
a narrow region of the phase diagram.

6.4.7 Percolation in LCCC Model

The spreading of an opinion through a society is a very important issue. The cluster
formation by groups of people acquiring similarity in opinion value is significant re-
garding this issue. The spreading of opinion among social agents may be compared
with the percolation problem in physics. In order to have an insight of the spread-
ing phenomena in LCCC model, percolation of geometrical clusters (comprised by
a group of adjacent sites with an opinion value equal to or above a preassigned
threshold value (Ω)) was studied on a square lattice where agents were located on
the lattice sites [61]. The opinion exchange between pair of agents was same as that
of LCCC (Eq. (6.13)). It was observed that the average value of the largest cluster
size was controlled by the conviction/influencing parameter λ and for a fixed value
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Fig. 6.13 Comparative plots
for the largest cluster size
with conviction parameter for
three different system sizes
and at three various values of
the opinion threshold
(Ω = 1.0,0.80 and 0.60).
Taken from [61]

of Ω , at a critical value of λ = λ
p
c , the percolation transition occurs. One way to de-

termine the percolation transition is to measure the relative size of the largest cluster
which is designated by Pmax . When the steady state is reached, Pmax is calculated
as SL/L2, where SL is the size of the largest cluster and L is the linear size of the
2D system. The value of the critical point (λp

c ) decreases with Ω (Fig. 6.13) and
coincides with that for the transition point λc = 2/3 (as Ω → 0.0) at which the av-
erage opinion transition takes place (discussed in Sect. 6.4.2). Although the system
does not show any finite size effect in case of the transition of the average opinion,
the percolation transition shows prominent finite size effect for a given threshold
opinion value Ω (Fig. 6.13).

The critical exponents were determined from the finite-size scaling relations [63,
64]. The order parameter follows the scaling form

Pmax = L−β/νF
[
L1/ν

(
λ

p
c − λ

)]
, (6.34)

where F is a suitable scaling function. PmaxL
β/ν were plotted against λ (at a

fixed Ω) for different system sizes and then by tuning the value of β/ν, all the
curves were made to cross at a single point which gives the critical conviction pa-
rameter (λp

c ). A typical plot (for Ω = 0.80 and λ = μ) has been shown in Fig. 6.14.
The finite-size scaling of the reduced fourth-order Binder cumulant of the order
parameter defined as

U = 1 − 〈P 4
max〉

3〈P 2
max〉2

, (6.35)

was also studied where 〈X〉 means ensemble average of the parameter X. The
Binder cumulant follows the scaling form

U = U
((

λ
p
c − λ

)
L1/ν

)
, (6.36)

where U is a suitable scaling function. The critical point corresponding to Ω =
0.80 was λ

p
c = 0.6955 ± 0.0005, which varies with the value of Ω . But the critical
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Fig. 6.14 PmaxLβ/ν plotted
against the conviction
parameter λ where Ω = 0.80
and μ = λ. The curves for
different system sizes
(L = 60,100,200,400,500
and 700) cross at
λ

p
c = 0.6955 ± 0.0005 for

β/ν = 0.130 ± 0.005. In the
inset the data collapse for
Pmax with λ

p
c − λ has been

shown for Ω = 0.80 giving
1/ν = 0.80 ± 0.01 and
β/ν = 0.130 ± 0.005. Taken
from [61]

exponents β/ν = 0.130 ± 0.005 and 1/ν = 0.80 ± 0.01 were independent of the
value of Ω . They were also different from that obtained for the percolation transition
in case of static Ising, dynamic Ising and standard percolation, indicating the LCCC
dynamics to belong to a separate universality class.

The percolation transition was also studied in the case of generalised LCCC
model (discussed in Sect. 6.4.3). Once again the critical exponents were found to
be same as that obtained for the original LCCC model.

6.5 Final Remarks

In this article, we have tried to give a flavor of the many different kinetic exchange
models, applied in various contexts such as in modeling of wealth distributions, or
firm dynamics, or opinion formation in the society. There has been a flurry of activ-
ities in diverse domains, and several interesting observations and explanations have
resulted, based on the common framework of simple exchanges of some quantity.
It is interesting to see how the kinetic theory of gases which had played a substan-
tial role in the initial development of the field of statistical mechanics, has inspired
many more novel approaches in fields far away from the physics of gas molecules.
There already exists a number of review articles, books, tutorials, etc. which have
dealt with most of these topics. Keeping in mind the quote:

“Dripping water hollows out stone, not through force but through persistence”—Ovid,

we have made another modest attempt! We would like to emphasize the effective-
ness of the kinetic exchange models as serving as a skeleton for many diverse appli-
cations and implications. Hopefully, in the near future one will be able to put some
more flesh on the skeleton to make it more human-like (or more reasonable, if you
want)!
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Chapter 7
Kinetic Exchange Opinion Model: Solution
in the Single Parameter Map Limit

Krishanu Roy Chowdhury, Asim Ghosh, Soumyajyoti Biswas,
and Bikas K. Chakrabarti

Abstract We study a recently proposed kinetic exchange opinion model (Lal-
louache et. al., Phys. Rev E 82:056112, 2010) in the limit of a single parameter
map. Although it does not include the essentially complex behavior of the multia-
gent version, it provides us with the insight regarding the choice of order parameter
for the system as well as some of its other dynamical properties. We also study the
generalized two-parameter version of the model, and provide the exact phase di-
agram. The universal behavior along this phase boundary in terms of the suitably
defined order parameter is seen.

7.1 Introduction

Dynamics of opinion and subsequent emergence of consensus in a society are being
extensively studied recently [1–9]. Due to the involvement of many individuals, this
type of dynamics in a society can be treated as an example of a complex system,
thus enabling the use of conventional tools of statistical mechanics to model it [10–
14]. Of course, it is not possible to capture all the diversities of human interaction
through any model of this kind. But often it is our interest to find out the global per-
spectives of a social system, like average opinion of all the individuals regarding an
issue, where the intricacies of the interactions, in some sense, are averaged out. This
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is similar to the approach of kinetic theory, where the individual atoms, although
following a deterministic dynamics, are treated as randomly moving objects and the
macroscopic behaviors of the whole system are rather accurately predicted.

Indeed, there have been several attempts to realize the human interactions in
terms of kinetic exchange of opinions between individuals [10, 11, 14]. Of course,
there is no conservations in terms of opinion. Otherwise, this is similar to momen-
tum exchange between the molecules of an ideal gas. These models were often stud-
ied using a finite confidence level, i.e., agents having opinions close to one another
interact. However, in a recently proposed model [15], unrestricted interactions be-
tween all the agents were considered. The single parameter in the model described
the ‘conviction’ which is a measure of an agent’s tendency to retain his opinion and
also to convince others to take his opinion. It was found that beyond a certain value
of this ‘conviction parameter’ the ‘society’, made up of N such agents, reaches a
consensus, where majority shares similar opinion. As the opinion values could take
any values between [−1 : +1], a consensus means a spontaneous breaking of a dis-
crete symmetry.

There have been subsequent studies to generalize this model, where the ‘convic-
tion parameter’ and ‘ability to influence’ were taken as independent parameters [16].
In that two-parameter version, similar phase transitions were observed. However, the
critical behaviors in terms of the usual order parameter, the average opinion, were
found to be non-universal. There have been other extensions in terms of a phase
transition induced by negative interactions [17], an exact solution in a discrete limit
[18], the effect of non-uniform conviction and update rules in these discrete variants
[19], a generalized map version [20], a percolation transitions in a square lattices
[21] and the effect of bounded confidence [22] in these models.

In the present study, we investigate the single parameter map version of the
model, also proposed in Ref. [15]. Although the original model is difficult to tackle
analytically, in this mean field limit, it can simply be conceived as a random walk.
Using standard random walk statistics, several static and dynamical quantities have
been calculated. We show that the fraction of extreme opinion behaves like the ac-
tual order parameter for the system, and the average opinion shows unusual behav-
ior near critical point. The critical behavior of the order parameter and its relaxation
behavior near and at the critical point have been obtained analytically which agree
with numerical simulations.

7.2 Model and Its Map Version

Let the opinion of any individual (i) at any time (t) is represented by a real valued
variable Oi(t) (−1 ≤ Oi < 1). The kinetic exchange model of opinion pictures the
opinion exchange between two agents like a scattering process in an ideal gas. How-
ever, unlike ideal gas, there is no conservation of the total opinion. This is similar to
the kinetic exchange models of wealth redistribution, where of course the conserva-
tion was also present [23–26]. The (discrete time) exchange equations of the model
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read

Oi(t + 1) = λOi(t) + λεOj (t), (7.1)

and a similar equation for Oj(t + 1), where Oi(t) is the opinion value of the ith
agent at time t , λ is the ‘conviction parameter’ (considered to be equal for all agents
for simplicity) and ε is an annealed random number drawn from a uniform and
continuous distribution between [0 : 1], which is the probability with which i and
j interact (see [15]). Note that the choice of i and j are unrestricted, making the
effective interaction range to be infinite. The opinion values allowed are bounded
between the limits −1 ≤ Oi(t) ≤ +1. So, whenever the opinion values are predicted
to be greater (less) than +1 (−1) following Eq. (7.1), it is kept at +1 (−1). This
bound, along with Eq. (7.1), defines the dynamics of the model.

This model shows a symmetry breaking transition at a critical value of λ

(λc ≈ 2/3). The critical behaviors were studied using the average opinion Oa =
|∑N

i=1 Oi(t → ∞)|/N [27]. An alternative parameter was also defined in Ref. [15],
which is the fraction of agents having extreme opinion values. This quantity also
showed critical behaviors at the same transition point.

The model in its original form is rather difficult to tackle analytically (it can
be solved in some special limits though [18]). However, as it is a fully connected
model, a mean field approach would lead to the following evolution equation for the
single parameter opinion value (cf. [15])

O(t + 1) = λ(1 + ε)O(t). (7.2)

This is, in fact, a stochastic map with the bound |O(t)| ≤ 1. For all subsequent
discussions, whenever an explicit time dependence of a quantity is not mentioned, it
denotes the steady state value of that quantity and a subscript a denotes the average
over the randomness (i.e., ensemble average). As we will see from the subsequent
discussions, this map can be conceived as a random walk with a reflecting boundary.
As in the case of the multiagent version, the distribution of ε does not play any role
in the critical behavior. We have considered two distributions, one is continuous in
the interval [0 : 1] and the other is 0 and 1 with equal probability. Both of these give
similar critical behavior.

We also briefly discuss the two-parameter model, where the ‘conviction’ of an
agent and the ability to convince others were taken as two independent parameters
[16]. In that context, the map would read

O(t + 1) = (λ + με)O(t), (7.3)

where μ is the parameter determining an agent’s ability to influence others. As be-
fore, |O(t)| ≤ 1.
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7.3 Results

7.3.1 Random Walk Picture

One can study the stochastic map in Eq. (7.2) by describing it in terms of random
walks. Writing X(t) = log(O(t)) (for all subsequent discussions we always take
O(t) to be positive), Eq. (7.2) can be written as

X(t + 1) = X(t) + η, (7.4)

where, η(t) = log[λ(1 + ε)]. As is clear from the above equation, it actually de-
scribes a random walk with a reflecting boundary at X = 0 to take the upper cut-off
of O(t) into account. Depending upon the value of λ, the walk can be biased to
either ways and is unbiased just at the critical point. As one can average indepen-
dently over these additive terms in Eq. (7.4), this gives an easy way to estimate the
critical point [15]. An unbiased random walk would imply 〈η〉 = 0 i.e.,

∫ 1

0
log

[
λc(1 + ε)

]
dε = 0 (7.5)

giving λc = e/4, where we have considered a uniform distribution of ε in the limit
[0 : 1]. This estimate matches very well with numerical results of this and earlier
works [15]. In order to guess the λ dependence of Oa in the ordered region, we first
estimate the “average return time” T (return time is the time between two successive
reflections from X = 0) as a function of bias of the walk. For this uniform distribu-
tion of ε, the average position to which the walker goes following a reflection from
the barrier is (λ + 1)/2. The average amount of contribution in each step is given
by

∫ 1
o

log[λ(1 + ε)]dε = log(λ/λc). This, in fact, is a measure of the bias of the
walk, which vanishes linearly with (λ − λc) as λ → λc. So, in this map picture, one
would expect that on average by multiplying this λ/λc factor T times (i.e., adding
log(λ/λc) T times in the random walk picture), O(t) would reach 1 from (λ+1)/2.
Therefore,

λ + 1

2

(
λ

λc

)T

= 1, (7.6)

giving

T = − logλ

logλ − logλc

≈ − logλ

λ − λc

(7.7)

for λ → λc. Clearly, the average return time diverges near the critical point obeying
a power law: T ∼ (λ − λc)

−1. In Fig. 7.1 we have plotted this average return time
as a function of λ. The power-law divergence agrees very well with the prediction.

The steady state average value of X(t) i.e., Xa (and correspondingly Oa) is ex-
pected to be proportional to

√
T in steps of logλ:

Xa ∼ √
T logλ = k

√
T logλ, (7.8)
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Fig. 7.1 The average return
time T of O(t) to 1 in the
map described in Eq. (7.2) is
plotted with (λ − λc). It
shows a divergence with
exponent 1 as is predicted
from Eq. (7.7)

Fig. 7.2 Oa is plotted with
λ. The data points are results
of numerical simulations,
which fits rather well with the
solid line predicted from
Eq. (7.9), with k = 0.7

where k is a constant. This gives

Oa = exp
[−k| logλ|3/2(λ − λc)

−1/2]. (7.9)

The above functional form fits quite well (see Fig. 7.2) with the numerical sim-
ulation results near the critical point. It may be noted that the numerical results
for the kinetic opinion exchange Eq. (7.2) also fits quite well with this expression
(Eq. (7.9)). We note that Oa increases from zero at the critical point and eventually
reaches 1 at λ = 1. But its behavior close to critical point cannot be fitted with a
power-law growth usually observed for order-parameters. Such peculiarity in the
critical behavior of Oa compels us to exclude it as an order parameter though it
satisfies some other good qualities of an order parameter. Instead, we consider the
average ‘condensation fraction’ ρa as the order parameter. In the multi-agent ver-
sion, it was defined as the fraction of agents having extreme opinion values i.e., −1
or +1. In this case it is defined as the probability that O(t) = 1. We denote this
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Fig. 7.3 The average
condensation fraction
(probability that O = 1) ρa is
plotted with (λ − λc). A
linear fit in the log-log scale
gives the growth exponent 1,
as predicted from Eq. (7.10).
Inset shows the variation of ρ

with λ

quantity by ρ(t). As is clear from the definition, one must have

ρa ∼ 1

T
, (7.10)

where T is the return time of the walker. As T ∼ (λ − λc)
−1, ρa ∼ (λ − λc)

β with
β = 1. This behavior is clearly seen in the numerical simulations (see Fig. 7.3).

Also, the relaxation time shows a divergence as the critical point is approached.
We argue that there is a single relaxation time scale for both O(t) and ρ(t). So we
calculate the divergence of relaxation time for O(t) and numerically show that the
results agree very well with the relaxation time divergence for both O(t) and ρ(t).
Consider the subcritical regime where the random walker is biased away from the
reflector (at the origin) and would have a probability distribution for the position of
the walker as

p(X) = A√
t

exp
[−B(X − vt)2/t

]
, (7.11)

where v ∼ 1/T ∼ (λ − λc) is the net bias and constants A, B do not depend on t .
One can therefore obtain the probability distribution P of O using p(X)dX =
P(O)dO ,

P(O) = A√
t

1

O
exp

[−B(logO − vt)2/t
]
. (7.12)

Hence

Oa(t) =
∫ 1

0
OP(O)dO,

= A√
t

∫ 1

0
exp

[−B(logO − vt)2/t
]
dO

∼ A√
t

exp
(−Bv2t

)
, (7.13)
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Fig. 7.4 The average
relaxation time for Oa(t) is
plotted with λ. This shows a
prominent divergence as the
critical point is approached.
In the inset, the relaxation
time is plotted in the log-log
scale against (λ − λc). The
exponent is 2 as is expected
from Eq. (7.13)

Fig. 7.5 The time
dependence of both Oa(t)

and ρ(t) are plotted at the
critical point in the log-log
plot. The linear fit shows a
time variation of the form t−δ

with δ = 1, as is expected
from Eq. (7.13)

in the long time limit, giving a time scale of relaxation τ ∼ v−2 ∼ (λ − λc)
−2. We

have fitted the relaxation of Oa(t), obtained numerically, with an exponential decay
and found τ . As can be observed from Fig. 7.4 it shows a clear divergence close to
critical point with exponent 2.

We have obtained the relaxation time of ρa(t) and it also shows similar diver-
gence. Note that at λ = λc, v = 0 and it follows from Eq. (7.13) that Oa(t) ∼ t−1/2.
This behavior is also confirmed numerically (see Fig. 7.5). The average conden-
sation fraction ρa(t) too follows this scaling, giving δ = 1/2 (as order parameter
relaxes as t−δ at critical point).

We have also investigated the effect of having an external field linearly coupled
with O(t). In the multiagent scenario, this can have the interpretation of the influ-
ence of media. The map equation now reads,

O(t + 1) = λ(1 + εt )O(t) + hO(t), (7.14)
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Fig. 7.6 The variation of Oa

and ρa are plotted against the
external field h at the critical
point λ = λC . The linear fit in
log-log scale shows δ′ = 1

where h is the field (constant in time). We have studied the response of Oa and ρa at
λ = λc due to application of small h. We find that (see Fig. 7.6) both grow linearly
with h. One expects the order parameter to scale with external field at the critical
point as ρa ∼ h1/δ′

. In this case δ′ = 1.

7.3.2 Random Walk with Discrete Step Size

One can simplify the random walk mentioned above and make it a random walk
with discrete step sizes. This can be done by considering the distribution of ε to be
a double delta function, i.e., ε = 1 or 0 with equal probability. This will make η(t)

in Eq. (7.2) to be logλ or log(2λ) with equal probability. Below critical point, both
steps are in negative direction (away from reflector) and consequently taking the
walker to −∞. Exactly at critical point (λ = λc) the step sizes become equal and
opposite i.e., logλc = − log(2λc) giving λc = 1/

√
2. Above critical point, one of

the steps is positive and the other is negative. However, the magnitudes of the steps
are different. This unbiased walker (probability of taking positive and negative steps
are equal) with different step sizes can approximately be mapped to a biased walker
with equal step size in both directions. To do that consider the probability p(x, t)

that the walker is at position x at time t . One can then write the master equation

p(x, t + 1) = 1

2
p(x + a, t) + 1

2
p(x + a + b, t), (7.15)

where a = logλ and b = log 2. Clearly,

∂p(x, t)

∂t
=

(
a + b

2

)
∂p(x, t)

∂x
+

(
a2

2
+ ab

2
+ b2

4

)
∂2p(x, t)

∂x2
. (7.16)

Now the master equation for the usual biased random walker can be written as

p(x, t + 1) = p′p
(
x + a′, t

)+ q ′p
(
x − a′, t

)
, (7.17)
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Fig. 7.7 The comparison of
the biased walk with equal
step size with the original
walk is shown. Reasonable
agreement is seen for a wide
range of λ values

where p′ and q ′ denote respectively the probabilities of taking positive and negative
steps (p′ + q ′ = 1) and a′ is the (equal) step size in either direction. The differential
form of this equation reads

∂p(x, t)

∂t
= (

p′ − q ′)a′ ∂p(x, t)

∂x
+ a′2

2

∂2p(x, t)

∂x2
. (7.18)

Comparing these Eqs. (7.16) and (7.18), one gets

p′ = 1

2

[
1 + a + b/2

a′

]
,

q ′ = 1

2

[
1 − a + b/2

a′

]
,

a′ = −
√(

log(λ) − log(λc)
)2 + (

log(λc)
)2

.

(7.19)

Therefore, as λ → λc , the bias (p′ − q ′) ∼ (λ − λc)/a
′. These are consistent with

the earlier calculations where we have taken the bias to be proportional to (λ − λc).
To check if this mapping indeed works, we have simulated a biased random walk
with above mentioned parameters and found it to agree with the original walk (see
Fig. 7.7). Similar to the approach taken for the continuous step-size walk, one can
find the return time of the walker. This time the walker is exactly located at λ after
it is reflected from the barrier. The return time again diverges as (λ − λc)

−1. Also
Oa(t) will have a similar form upto some prefactors. Condensation fraction will
increase linearly with (λ − λc) close to the critical point. All the other exponents
regarding the relaxation time, time dependence at the critical point and dependence
with external field are same as before. This shows that the critical behavior is uni-
versal with respect to changes in the distribution of ε.
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7.3.3 Two Parameter Map

As the multi-agent model was generalized in a two-parameter model [16], one can
also study the map version of that two-parameter model. It would read

O(t + 1) = (λ + με)O(t). (7.20)

As before, one can take log of both sides and in similar notations

X(t + 1) = X(t) + log(λ + με). (7.21)

This can also be seen as a biased random walk. In fact, one can write the above
equation as

X(t + 1) = X(t) + log
[
λ
(
1 + ε′)], (7.22)

where ε′ = (μ/λ)ε. This effectively changes the limit of the distribution of the
stochastic parameter. Here ε′ is distributed between 0 and μ/λ. One can then do
the earlier exercise with this version as well. If one makes ε discrete, this is again
a walk with unequal step sizes, which can again be mapped to a biased walk with
equal step sizes. Therefore, in either case, some pre-factors will change, but the
critical behavior will be the same as before. The critical behavior is, therefore, uni-
versal when studied in terms of the proper order parameter (condensation fraction).
For uniformly distributed ε (in the range [0 : 1]), one can get the expression for the
phase boundary from the equation

∫ 1

0
log(λ + με)dε = 0, (7.23)

which gives

log(λc + μc) + λc

μc

log

(
λc + μc

λc

)
= 1. (7.24)

Of course, this gives back the λc = e/4 limit when λ = μ. The phase boundary is
plotted in Fig. 7.8. It also agrees with numerical simulations.

7.3.4 A Map with a Natural Bound

In the maps mentioned above, the upper (and lower) bounds are additionally pro-
vided with the evolution dynamics. Here we study a map where this bound occurs
naturally. We intend to see its effect on the dynamics.

Consider the following simple map

O(t + 1) = tanh
[
λ(1 + ε)O(t)

]
. (7.25)
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Fig. 7.8 The phase diagram
for the two-parameter map as
predicted from Eq. (7.24)
(upper line). The phase
diagram for the multi-agent
version (μc = 2(1 − λc)) is
also plotted for comparison
(lower line)

Fig. 7.9 The divergence of
relaxation time is shown for
the map described by
Eq. (7.25) for both sides of
the critical point λc = e/4.
The inset shows that the
exponent is 2 as is argued in
the text

Due to the property of the function, the bounds in the values of O(t) are specified
within this equation itself. This map shows a spontaneous symmetry breaking tran-
sition as before. This function appears in mean field treatment of Ising model, but
of course without the stochastic parameter.

Numerical simulations show that the Oa behaves as (λ − λc)
1/2. An analytical

estimate of λc can be made by linearizing the map for small values of O(t), which
is valid only at critical point. Of course, after linearization the map is the same
as the initial single parameter map, giving λc = e/4. The relaxation of Oa(t) at
λ = λc behaves as t−1/2 as before. These are also seen from numerical simulations.
However, apart from the critical point, the map is strictly non-linear. Hence the
results for its linearized version do not hold except for critical point. Also ρ = 0
here always.

To check the divergence of the relaxation time at the critical point, it is seen that
it follows τ ∼ (λ − λc)

−2. Of course, in the deterministic version (mean-field Ising
model), the exponent is 1. But as this map has stochasticity, the time exponent is
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doubled (see Fig. 7.9) (i.e., the relaxation time is squared as happens for random
motion as opposed to ballistic motion).

7.4 Summary and Conclusions

In this paper we have studied the simplified map version of a recently proposed
opinion dynamics model. The single parameter map was proposed in Ref. [15] and
the critical point was estimated. Here we study the critical behavior in details as well
as propose the two-parameter map motivated from Ref. [16]. The phase diagram is
calculated exactly.

The maps can be cast in a random walk picture with reflecting boundary. Then
using the standard random walk statistics, some steady state as well as dynamical
behaviors are calculated and these are compared with the corresponding numerical
results. It is observed that the usual order parameter of the system, i.e. the average
value of the opinion (Oa) in the steady state, does not follow any power-law scaling
(see Eq. (7.9)). In fact, it is the condensation fraction, or in this case the probability
(ρa) that the opinion values touch the limiting value, turns out to be the proper order
parameter, showing a power-law scaling behavior near critical point.

The dynamical behaviors of the two quantities (Oa(t) and ρa(t)) are similar. We
have calculated the power-law relaxation of these quantities at the critical point,
which compares well with simulations. Also, the divergence of the relaxation time
on both sides of criticality shows similar behavior. We have also studied the effect of
an “external field” (representing media or similar external effects) in these models.
At critical point, both the quantities grow linearly with the applied field. The average
fluctuation in both of these quantities show a maximum near the critical point. These
theoretical behavior fits well with the numerical results.

In summary, we develop an approximate mean field theory for the dynamical
phase transition observed for the map Eq. (7.2) and find that the average conden-
sation fraction ρa ∼ (λ − λc)

β with β = 1 behaves as the order parameter for the
transition and it has typical relaxation time τ ∼ (λ−λc)

−z with z = 2 and at critical
point λ = λc(= e/4) decays as t−δ with δ = 1/2.
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Chapter 8
An Overview of the New Frontiers of Economic
Complexity

Matthieu Cristelli, Andrea Tacchella, and Luciano Pietronero

Abstract The fundamental idea developed throughout this short overview on Eco-
nomic Complexity is that a revolution of the revolution of Economics is needed to
turn this field into a mature discipline. The first revolution of Economic Complex-
ity (Bouchaud in Nature 455:1181, 2008) led to a conceptual paradigm shift and
agent-based models have shown, from a qualitative point of view, the crucial role
played by concepts like agent heterogeneity and herding behavior to understand the
non-trivial features of financial time series. The second revolution must lead the
paradigm shift from a conceptual and qualitative level to a quantitative and effec-
tive description of economic systems. This can be achieved through the introduction
of new metrics and quantitative methods in Social Sciences (Economics, Finance,
opinion dynamics, etc.). In fact, the concept of metrics is usually neglected by main-
stream theories of Economy and Finance. Only in that way Economic Complexity
can concretely affect the thinking of Economic mainstream and, in this sense, be-
come a mature discipline. The large availability of datasets (the so-called Big Data
Science) has recently revealed new promising path towards such perspectives and,
as an example, we briefly discuss how archival data about export flows can be turned
into a concrete tool to assess the competitiveness of countries and the complexity of
products.
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8.1 Introduction

Why did physicists start to be interested in Economics, Finance and in general in
Social Sciences? Why and how Physics can give an effective contribution to the
description and the comprehension of these disciplines?

The answer can be traced back to the differences between Physics and Economics
(and to some extent Social Sciences). Physics typically proceeds through a virtuous
circle usually called Scientific Method: theoretical and experimental approaches are
parallel, complementary, they progress by an ongoing reciprocal feedback and they
are the two sides of the same coin. Therefore Physics is both an experimental and
theoretical science.

On the other hand standard approaches in Social Sciences and Economics tradi-
tionally neglect the experimental side of the coin. Social sciences are indeed listed
among those science defined as observational. Observational sciences are disci-
plines which operate in field where controlled observations cannot be used in or-
der to study causes and effects. Unavoidably, social phenomena are usually charac-
terized by a high degree of non-stationarity and a low level of controllability and
reproducibility of experiments.

However, we argue that in those disciplines there is a systematic lack of data-
oriented approaches and especially of metrics in order to give a quantitative de-
scription of social phenomena. By absence of a metrics, we mean that in Social
Sciences and especially in Economics the introduction of the concept of distance to
make a phenomenon quantitative is often neglected or does not appear as a crucial
point. For instance, quantities like the systemic risk of financial markets, the mood
of people, the quality/complexity of a product, the competitiveness of a country,
etc., can be hardly measured by the tools provided by the mainstream of economic
theories.

From this observation, we argue that economic mainstream cannot be defined as
an experimental science and not even an observational one, given the actual state
of the art. We are aware that there exist some works in Economics where the inter-
play between empirical evidences and models is not marginal but they are usually
neglected or never incorporated in the mainstream of economical theories.

It clearly appears, from these considerations, which can be the contribution of
Physics to Economics. Physics can contribute to make Economics an observational
and experimental science. In particular methods and tools derived from Physics and
Mathematics can be effective to provide and turn from qualitative to quantitative
the description of social and economic phenomena. Thus by introducing effective
metrics for economic systems, a twofold progress would be reached: on one hand,
data oriented approaches and economic theories would have a common language
to achieve a mutual feedback and on the other hand key issues for policy modeling
and policy making could be properly addressed and suitable interventions could be
undertaken.

The absence of a mutual feedback between data and theories in Economics has
lead this discipline towards two problematic points with respect to the desirable
forecast skills which should be required by this field given its societal impact:
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1. On one hand Economics has basically developed only mathematically solvable
models which are typically very far from the scenarios depicted by empirical
analysis. If a similar approach was adopted in Physics, only the Hydrogen atom
should exist!

2. On the other hand the very poor feedback between theoretical models and data-
driven studies has lead to inadequate or partial measurement tools (i.e. mathe-
matical tools) for Economics and Finance. In fact these tools are usually defined
only on the basis of the model’s results. The attempts to give a quantitative de-
scription of economical systems, to some extent, reflect only the theoretical a
priori interpretation of these ones and never the empirical evidences. Tools are
modeled to be optimal proxies only for what it is expected from models and
not, as it happens in Physics, for what it is really observed. In summary, dif-
ferently from Physics, very often in Economics, the only driving forces for the
discipline are mainstream theories and the problem of the empirical validation is
completely ignored. For instance, recent works [2], the standard forecast frame-
work of linear regressions appears to be the wrong tool to quantify the forecast
of the growth and the development of country economies.

We want to point out that we are not rejecting all economical theories, our criti-
cisms are mainly towards the methodology of Economics with respect to empirical
data. Economics needs a revolution [1] but this does not imply that economical the-
ories are all and completely wrong. Physicists (and in general non-Economists) are
not tempting to discard all current economical Theories, on the contrary we believe
that some of the current theories can be seen as the zero order for new contribu-
tions which can be given to social sciences, especially Finance and Economics, by
Physics. The current mean field theories of Economics cannot be the arrival point of
this discipline but the starting one for the revolution which is now necessary given
the powerlessness of traditional previsional tools in front of the last decade financial
crisis and to the following economic stagnancy.

In the last 20–30 years the basis of a paradigm change in economic and in general
social sciences has risen: new sources of data emerged and now permit to overcome,
al least in some field of social sciences and economics, the lack of empirical data.
The so-called Big Data Science and ICT (Information and Communications Tech-
nology) have disclosed such a huge amount of raw data about social and economic
phenomena that now the invoked revolution of the methodology of Economics is
possible.

This also explains why financial markets appeared as the first candidate for this
interdisciplinary application of Physics because a systematic approach can be under-
taken. In fact since two decades there exists a very huge amount of high frequency
data from stock-exchanges which permits to perform experimental procedures as in
Natural Sciences. Financial markets appear as a perfect playground where models
can be tested and where repeatability of empirical evidences are well-established
features. In addition the methods of Physics have been very effective in this field
and have often given rise also to concrete (and sometimes profitable) financial ap-
plications.
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Nevertheless, until now, Economic Complexity does not have led to a concrete
change in economic mainstream. We believe this is due to the fact that the revo-
lution invoked in [1] has taken place mainly at a qualitative and conceptual level.
As an example, agent-based models have been a fundamental turning point for eco-
nomic theories of financial markets. They allowed for the overcoming of the market
description in terms of homogeneous agents, rational expectation, cause-effect rela-
tion in price evolution, price equilibrium and revealed the importance of concepts as
belief and strategy heterogeneity, herding and non-rational behavior to explain the
complex features of the dynamics of financial markets.

This new perspective unfortunately takes place only at a level of metaphor and
the agent-based models, even if they are able to explain from a qualitative point
of view the Stylized Facts, do not provide concrete tools to address key issues of
markets such as risk.

In the following of this overview we are going to discuss which can the develop-
ment perspectives of Economic Complexity towards a mature discipline. In particu-
lar, after a short summary of the state-of-the-art of agent-based modeling, we depict
some possible paths to turn this class of models into concrete tools for the measure
of market risks.

In the last section we give some insights on new perspectives of Economic Com-
plexity beyond Financial markets. The availability of new datasets (the so called-
Big Data Science) has recently opened new domains—traditionally characterized
by an intrinsic lack of empirical data—towards which methodology from Physics
and Complex Systems can be fruitfully applied. This can be achieved through the
introduction of metrics and quantitative methods in Economics and as an example
of this frontier of research in Economic Complexity we review how archival data
about export flows can be turned into a concrete tool to assess the competitiveness
of countries and the complexity of products

8.2 The Revolution of Economics Needs a Revolution

The major contributions of Economic Complexity to financial markets are twofold:
phenomenological and effective description of the dynamics of markets at a micro-
level and conceptual comprehension of Stylized Facts.

The former contribution provides fundamental insights in the non-trivial nature
of the stochastic process performed by stock prices [3–7] and in the role of the
interplay between agents to explain the behavior of the order impact on prices [7–
14].

The latter approach instead has tried to overcome the traditional economical
models based on concepts like price equilibrium and homogeneity of agents in order
to investigate the role of heterogeneity of agents/strategy with respect to the price
dynamics [15–23].

In the next sections we are going to focus on this second contribution to Finance
and we discuss how to turn this approach into quantitative tools for key issues of
financial markets.
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8.2.1 Agent-Based Modeling: The State of the Art

The standard theory of Economics for Financial Markets is based on the following
elements:

• Situation of equilibrium with equal (representative) agents which are (quasi) ra-
tional, have the same information and process it in the same way;

• Important price changes correspond to new information which arrives on the mar-
ket. The fact that this information is random and independent leads to the famous
random walk model and the corresponding Black and Scholes equations;

• This new information modifies the ratio between offer and demand and then also
the price. This corresponds to a mechanical equilibrium of the market;

• These concepts also imply a Cause-Effect relation in which large price changes
are due to the market reaction to the arrival of exogenous important news. There-
fore a large price change is supposed to be associated to an equally large exoge-
nous event.

It is too easy to argue that most of these assumptions have no basis at all. So one
may wonder why they are so widely adopted. The real reason is that they permit an
analytical treatment of the problem. This is a very different perspective from natu-
ral sciences in which very few realistic problems can be treated exactly. In addition
these ideas are usually not tested against empirical data; a fact that strongly lim-
its the scientific basis of the whole framework. The most reasonable of the above
assumptions is the fact that indeed many external news are random and incoherent
so the random walk appears reasonable as a simple modeling. On the other hand
the assumptions made for the behavior of the agents are very far from reality. The
agents can be very different from each other, their level of information and the way
the use it is also very different. Finally they are not at all independent and, especially
in situations of crisis the rationality hypothesis can be seriously wrong. In these sit-
uations fear and panic, as well as euphoria, lead to very strong herding behavior
which is completely neglected in the standard model. This situation naturally calls
for a possible description in terms of critical phenomena and complex systems. The
study of complex systems refers to the emergence of collective properties in systems
with a large number of parts in interaction among them. This implies a change of
paradigm form the previous mechanical model to a complex model in which intrin-
sic instabilities can develop in a self-organized way without a cause-effect relation.

This change of paradigm is witnessed by the fact that in the past years there has
been a large interest in the development of Agent Based Models aimed at reproduc-
ing and understanding the Stylized Facts observed in the financial time series. The
Agent Based Models represent a broad class of models which have been introduced
to describe the economic dynamics in a more realistic way. Their building blocks
are:

• the agents are heterogeneous with respect to their various properties like strate-
gies, wealth, time scale, etc.;

• the interaction between them is a fundamental element and, of course, it can have
many different characteristics;
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• price dynamics depends on the balance between offer and demand but the specific
implementation can be different.

Usually the dynamics of this type of models is able to produce deviations from
the Gaussian behavior related to the Stylized Facts for some specific range of pa-
rameters. The main criticisms towards Agent Based Models rely on the fact that up
to now these models have not yet been able to produce concrete tools for measuring
risk. They are somehow conceptual metaphors which showed that the mainstream
of economical theories on financial markets were inadequate. They certainly revo-
lutionized Economics but a new step is now required to make Agent Based Models
a concrete tool to properly address issues like systemic risk and market instabili-
ties. The path towards this new step is one of the new frontiers of the Economic
Complexity.

8.2.2 Agent-Based Modeling: Perspectives

There exists a point which is usually neglected by Agent Based Models: the Styl-
ized Facts usually correspond to a particular situation of the market. If the market
is pushed outside such a situation, it will evolve to restore it spontaneously. The
question is why and how all markets seem to self-organize in this special state and,
even more important, when markets get less stable and can be more likely pushed
far from this special state? The answer to this question conceptually represents a
fundamental point in understanding the origin of the SF and from a practical point
of view the starting point for the development of a quantitative measure for systemic
risk.

In this respect, in a series of recent theoretical works [15–19], we show that
Stylized Facts correspond to a finite size effect in the sense that they disappear in
the limit of large N (total number of agents) or large time. Given the general nature
of these results we may conjecture that these should apply to a broad class of agent
based model and they are not a special property of a specific model. This situation
has important implications both for the microscopic understanding of the Stylized
Facts and for the analysis and interpretation of experimental data. In this series of
works it is shown that a price which is very stable corresponds to a very large number
of market participants. On the other hand a small number of agents leads to large
movements in the price. In other words, when markets are in a low-volatility state
agents tend to operate incoherently and the impact of an agents’ action is negligible.
Instead when the number of independent agents/strategies diminishes, the market
is evolving towards a situation in which almost all the agents react in the same
way. In such a scenario, on one hand the market susceptibility increases enormously
giving rise to potential systemic instabilities. On the other hand the more the agents
act coherently, the more the amplitude of the market fluctuations grow, triggering a
self-reinforcing effect. From an empirical point of view a number of works confirms
that markets oscillates among states characterized alternatively by mean reverting
(stable) and mean escaping tendencies (large fluctuations, market instabilities). That
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being so the empirical comprehension of herding behaviors and the dynamics of
the number of effective agents represent the second step to complete the paradigm
change introduced by Agent-Based Models and to turn them into concrete predictive
tools to help policy making in preventing global financial crashes.

The background of such a vision is twofolds:

• we believe that this dynamics (number of independent strategies) may anticipate
the market instabilities, and a measure of the number of effectively independent
strategies can be a concrete early warning to detect them. We want to stress that
we do not aim at predicting when the next systemic crash will occur but when
potential conditions for large instabilities arise;

• as discussed previously, a weakness of gent-Based Models is that the experimen-
tal framework defined by the Stylized Facts is rather limited and an improvement
of this body of knowledge appears to be the bottle neck in the field. By the knowl-
edge of the time series of the number of independent agents these models can be
tuned, for the first time, on a quantity that have a direct and clear counterpart
in the model: the number of agents. In such a way agent based models can be
turned in powerful instruments to give a complete scenario in terms of their in-
gredients: herding parameters, trust, kind of strategies, liquidity and in general all
the elements inserted in these models.

8.2.3 Micro-structure of Financial Markets

The availability of the high frequency records of stock-exchanges has led to a better
description and comprehension of price dynamics, especially for price formation,
price response and order impacts. This huge amount of data also improved the so-
called financial engineering techniques. This data also provided the development
of very effective and powerful phenomenological description of market activities
which give some insights on market risk. However, systemic risk of financial is
far being a solved problem. A complementary approaches to the analysis of micro-
structure to address system risk is represented by network-based techniques [24]
which looks at the robustness/fragility of credit and financial networks.

8.2.4 Non-financial Proxies

An interesting data-driven approach to the modeling of economic and financial sys-
tems is represented by the recent availability of large datasets which ranges from
web activity of search engine and social networks to human activity records such
as phone, car usage and international trade flows. The so-called Global Systems
Science sees the systems in which we live as a series of interacting network. This
networked reality has favored the emergence of a new data-driven research field
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where mathematical methods of computer science, statistical physics and sociom-
etry provide quantitative insights on a wide range of disciplines [2, 25–32]. In this
perspectives, Big Data may represents an important source of informative contents
to improve the comprehension and the description of Economic Systems and social
phenomena. The last 5–10 years delivered a series of pioneering works on this sub-
ject which showed the potential of this non-standard sources of data. We briefly list
the main results in this very young field and in the next section we discuss in detail
one of this recent work:

• user web activity can be turned into a useful tool to track flu and epidemics
spreading and evolution;

• web search volumes can be predictive on trading volumes;
• web searches provide informative contents on customer habits, trends and can

permit to track sales in various sectors such as phone activations, car sales and
tourism;

• human mobility and human dynamics in highly populated area as metropolis can
give key hints to project the so-called Smart Cities;

• import-export archival datasets collected by customs provides represents an im-
portant source of data to quantify the economic competitiveness of countries and
the complexity of products.

8.3 Economic Complexity: From Finance to Economics

Differently from Finance, Economics is far from being an ideal candidate to export
the methodology of Natural Sciences because of the lack of data since controlled
(and repeatable) experiments are totally artificial while real experiments are almost
incontrollable and non repeatable due to a high degree of non stationarity of eco-
nomical systems. However, the application of method deriving from complexity the-
ory to economic theory of growth is one the most important achievement of a stream
of works emerged in the last five years [2, 31, 32].

A concrete example of how data-driven approaches can lead to new methods
and tools for economics is the network defined by international trade flows [32]. It
is indeed possible to introduce [2] a (non-monetary) metrics to measure the com-
plexity and the competitiveness of the productive system of countries. In addition
we are able to define a metrics for product complexity which overcomes traditional
economic measure for the quality of products given in terms of hours of qualified
labor needed to produce a good. The method developed provides some impressive
results in predicting economical growth of countries and offers many opportunities
of improvements and generalizations [2, 33].

8.3.1 Country Competitiveness and Products Complexity

Which is the country with the highest competitiveness in the ecosystem defined by
the world trade web? Which one has the most complex productive system?
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Some recent works [31, 32] have indicated new approaches to macroeconomic
issues, inspired by network-based methods. The basic idea is to study the networks
defined by international trade flows [34] and to gain information about the pro-
ductive structure of countries and its future development. In this kind of analysis
methods derived from physics have proven to be extremely effective.

According to mainstream theories on economical growth [35–39], of which
Adam Smith is the father, specialization should provide an evolutionary advantage
for a country. In fact, citing Adam Smith “it is the great multiplication of the pro-
ductions [. . .] in consequence of the division of labor, which occasions [. . .] that
universal opulence which extends itself to the lowest ranks of the people.” This
claim can easily be tested by looking at the binary Country-Product (C-P) matrix.
In the C-P matrix each entry is 1 if a particular country C is a significative exporter
of product P, 0 if it’s not. Specialization would mean that when rows and columns
of the C-P matrix are arranged properly, it should appear as a block-diagonal ma-
trix. Observations disagree with this prediction and the C-P matrix is found to be
approximately triangular.

It is worth noticing that for biological organisms and species, there is the evi-
dence that diversification usually gives an evolutionary advantage with respect to
specialization, in particular too specialized species are weaker when global changes
occur and tend to become extinct. Therefore it appears that in a highly intercon-
nected and dynamic environment as modern globalized economies are, country
competitiveness resembles the biological fitness of species.

The existence of significative off-diagonal terms in the C-P matrix implies that
specialization does not appear as a natural strategy for countries. Furthermore the
triangular shape gives an additional and specific piece of information about the cor-
relation between the composition of the export basket and the kind of products ex-
ported by a country. In fact we find that some countries have a large diversification of
their production and consequently make almost all products, while scrolling down
the rows of the matrix, the number of exported products decreases and countries
become more and more specialized on a small subset of products which are ex-
ported by almost all countries. Furthermore the most diversified countries coincide
with the richest ones, while the poorest ones are the ones specialized on those few
products exported by almost every country. These empirical findings suggest that
the diversification is more important than specialization for country growth as for
biological systems. This is not surprising since specialization may be preferred or
provide advantages only in a static and in equilibrium system. On the other hand in
an out-of-equilibrium and dynamic playground where different productive systems
compete, diversification becomes an evolutionary advantage in case of changes. The
fact that the richest countries are also the most diversified ones confirms this hypoth-
esis.

The question which now arises is how to measure the complexity of a produc-
tive system given the export basket. A recent work [32] proposes a new conceptual
framework in order to explain why diversification is an optimal strategy and why
the country-product matrix is basically triangular-shaped. The authors hypothesize
that there exist some special endowments of the countries, called capabilities, which
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are non-exportable and stay localized in the nation where they are. The authors of
[32] assume that these capabilities are the key element to grasp the complexity of a
productive system because each product requires a specific set of capabilities which
must be owned by a country in order to produce and then to export it. The first step
of our work is then to define a consistent and solid way to infer about the level ca-
pabilities that each country has. We call this measure “Fitness”. For products we
define a somewhat symmetrical measure, the “Complexity”.

8.3.1.1 Fitness and Complexity

The theory of capabilities suggests a strategy for using the information contained
in the C-P matrix in order to determine Fitness and Complexity in a self-consistent,
recursive way. At order 0 a natural guess for the fitness of a given country is to
consider its diversification: the more products it exports, the more capabilities it
should have. This is easily generalized when the diversification is weighted with the
complexity of products, in a simple linear way.

Concerning products the measure has to be different because a strong nonlinear-
ity is needed to take into account the following: considering a product of two very
different countries (with respect to fitness), say Germany and Nigeria, its complex-
ity cannot simply be obtained by averaging the level of fitness of the two countries,
because the signal that Nigeria is able to produce it means that its capabilities (which
are very few) are enough to enable the production of that product. Thus in the eval-
uation of the Complexity a strong non-linearity must be involved, in order to make
the “worst” producer of a given product the most important in the determination of
Complexity. This has to be achieved by still considering that an ubiquitous product
is likely to be of low complexity. These two characteristics have to be consistently
mixed. Given these qualitative definitions, each one involving the other, a recursive
procedure (with a proper renormalization) leads to an asymptotic, stable distribution
for Fitness and Complexity.

8.3.1.2 Fundamental Analysis of Countries and Complexity

Our measure allows to define a new kind of fundamental analysis of the growth po-
tential of countries. First, combining information about the complexity of products
with the explicit normalized volumes of export of each single country, it is possi-
ble to realize a “spectroscopy” of each productive system, and using information
about the dynamics of such spectra infer about their future structure. Moreover it
is possible to combine the information about the Fitness of a single country and its
competitors on any single product, and consider that product’s complexity in order
to define measures of “competitiveness”.

Through this new algorithm and the associated metrics it is possible to compare
non-monetary factors of fitness and complexity to measures of economic intensity
for instance the countries’ GDPs per capita. We argue that countries that show both
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a high Fitness and a high Complexity, but a low GDP, are very likely to strongly
boost their income in the next decades. This difference reveals a crucial information.
When retrofitting its model with data from 1995 to 2010, it is possible to see that
results reflected well what has occurred in the real world over that period.

This type of analysis can lead to a novel perspective for the study and indus-
trial planning of countries, it also provides information on the GDP growth and an
estimate of the global risk in relation to fundamental economics. It is just the begin-
ning of a novel era for economics in which the large amount of high quality data and
some original ideas open the way to more consistent methods and permit us to move
from qualitative to quantitative considerations, shedding new light on important and
unexpected properties.

8.4 Conclusions

Complex systems perspectives have revolutionized Economics and Financial Mar-
ket theories. However, as argued throughout this paper, a second revolution is re-
quired to turn this interdisciplinary field in a mature discipline which can concretely
affect the thinking of Economic mainstream. The first revolution somehow produced
only a conceptual breaktrhough: for instance the metaphors of agent-based models
have shown the importance of concept as heterogeneity, non rationality and herding
behavior to understand the complex nature of the markets Stylized Facts.

In the last five years we are observing the first step towards the maturity of Eco-
nomic Complexity. The paradigm shift now must be exported from conceptual and
qualitative approaches to quantitative methods to assess key issue of Economic such
as systemic risk of financial markets, risk rating, economic growth, technological
development, etc.
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Chapter 9
Jan Tinbergen’s Legacy for Economic Networks:
From the Gravity Model to Quantum Statistics

Tiziano Squartini and Diego Garlaschelli

Abstract Jan Tinbergen, the first recipient of the Nobel Memorial Prize in Eco-
nomics in 1969, obtained his PhD in physics at the University of Leiden under the
supervision of Paul Ehrenfest in 1929. Among many achievements as an economist
after his training as a physicist, Tinbergen proposed the so-called Gravity Model of
international trade. The model predicts that the intensity of trade between two coun-
tries is described by a formula similar to Newton’s law of gravitation, where mass
is replaced by Gross Domestic Product. Since Tinbergen’s proposal, the Gravity
Model has become the standard model of non-zero trade flows in macroeconomics.
However, its intrinsic limitation is the prediction of a completely connected net-
work, which fails to explain the observed intricate topology of international trade.
Recent network models overcome this limitation by describing the real network as a
member of a maximum-entropy statistical ensemble. The resulting expressions are
formally analogous to quantum statistics: the international trade network is found
to closely follow the Fermi-Dirac statistics in its purely binary topology, and the
recently proposed mixed Bose-Fermi statistics in its full (binary plus weighted)
structure. This seemingly esoteric result is actually a simple effect of the hetero-
geneity of world countries, that imposes strong structural constraints on the network.
Our discussion highlights similarities and differences between macroeconomics and
statistical-physics approaches to economic networks.

9.1 Introduction

Over the last fifteen years, there has been an ever-increasing interest in the study
of networks across many scientific disciplines, from physics to biology and the so-
cial sciences [1]. Economics is no exception. Empirical [2, 3] and theoretical [4, 5]
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analyses of economic networks have been growing steadily, gradually encompass-
ing different scales: from ‘microscopic’ networks of individual agents and finan-
cial assets [4, 6], through ‘mesoscopic’ networks of firms, banks and institutions
[2, 7, 8], to ‘macroscopic’ networks of world countries and economic sectors [9–
11]. An unprecedented element of continuity across these different economic scales
has been the search for empirical laws characterizing real-world networks and the
subsequent introduction of simple models aimed at reproducing the observed ‘styl-
ized facts’. Placing observations, rather than theoretical postulates, at the starting
point of scientific investigations is probably the main positive outcome of the in-
teraction between economists and physicists, an interaction that—over the last two
decades—has given rise to the controversial field of ‘Econophysics’. The interdisci-
plinary study of economic networks is another very fruitful result of this interaction.
The added value of using the network approach to economic problems is the possi-
bility to investigate indirect effects arising as the combination of many pairwise in-
teractions between economic agents or units. The prototypical example is the study
of systemic risk, i.e. the risk of a system-wide cascade of defaults of banks or in-
stitutions connected to each other in a financial network, as opposed to traditional
measures of risk for single financial entities.

Despite the ‘network approach’ is relatively recent, much earlier studies in Eco-
nomics already recognized the importance of (what we now call) socio-economic
networks, even if this knowledge was more or less dispersed across sub-fields that
used to be largely disjoint. An important example is the so-called Gravity Model
[12]. The name originates from a loose analogy with Newton’s law of gravitation,
which states that the gravitational force between two objects is proportional to the
product of their masses, and inversely proportional to the square of the distance
between them. Strictly applying the analogy to the economic setting, the Gravity
Model (see [12] for an excellent review) assumes that a ‘mass’ Si of goods (or ser-
vices, or factors of production such as labor) supplied at an origin i is ‘attracted’
to a mass Dj of demand for such goods located at a destination j . This attraction
generates a flow Fij of goods, but the flow is reduced by the geographic distance dij

between origin and destination as follows

Fij = K
SiDj

d2
ij

(9.1)

where K is a global free parameter to be fitted to real data. The Gravity Model
predicts larger fluxes between closer and ‘bigger’ (in terms of the size of supply and
demand) locations, exactly in the same way as the gravitational force is stronger
between closer and more massive objects.

The use of the Gravity Model was pioneered by Ravenstein [13] in studies of
migration patterns, where flows represent movements of people, and Si and Dj

are mainly determined by the sizes of the two populations located at the origin
and destination. Jan Tinbergen, the first recipient of the Nobel Memorial Prize in
economics, was instead the first to use the Gravity Model to explain international
trade flows [14]. In this case, flows represent movements of goods among world
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countries, and Si and Dj are expected to be determined by the values of the Gross
Domestic Product (GDP) of the countries of origin and destination, i.e. Si = Di =
GDPi .

Indeed, it is precisely as the first data-driven model of trade that the Gravity
Model acquired its great popularity, presumably because of the accuracy with which
it predicts observed trade fluxes. On the other hand, international trade is also one
of the best examples of economic systems that have been intensively studied, us-
ing a completely different ‘network’ approach, over the last decade. This coinci-
dence makes the International Trade Network a useful example to compare tradi-
tional (economic) and recent (network) approaches when applied to the same sys-
tem, which in this case is also an empirically well documented one. For this reason,
in what follows we will focus on Jan Tinbergen’s Gravity Model of trade, its suc-
cesses and limitations, and the more recent approaches that overcome some of these
limitations. As another curious coincidence, these very different frameworks have
a common element: the modeling of an economic network in close analogy with
physical laws, from gravitation to statistical physics and quantum statistics.

9.2 Jan Tinbergen and the Gravity Model of Trade

In a slightly (and not fully) generalized form, the Gravity Model of international
trade states that the expected amount of trade from country i to country j is

〈wij 〉 = K
GDPα

i GDPβ
j

d
γ

ij

(9.2)

where dij is the geographic distance between countries, and α, β and γ are ad-
ditional (besides K) free parameters. The angular brackets in Eq. (9.2) denote an
expected value: this means that the model is not intended to be a deterministic one,
since real data will obviously deviate from the postulated expression. So, strictly
speaking, the model predicts that the realized amount of trade is wij = 〈wij 〉 + ε

where ε is an error term with zero mean (if a linear regression to the observed trade
flows is used), or alternatively wij = 〈wij 〉 · η where η is an error term with unit
mean (if a linear regression to the logarithm of the observed trade flows is used).
In both cases, the fitted values of the parameters are usually around α ≈ β ≈ γ ≈ 1
[12]. Further extensions of Eq. (9.2) include additional factors either favouring or
suppressing trade.1 Despite the inclusion of these additional factors improves the fit,
the main factor determining trade flows remains the GDP, followed by geographic
distances. So Eq. (9.2), with exponents α ≈ β ≈ γ ≈ 1, captures the basic lesson

1Examples of favouring factors are: trade agreements, membership to common economic groups,
shared geographic borders, common currency, etc. Examples of suppressing factors are: embar-
goes, trade restrictions, and other factors representing a trade friction.
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learnt from real trade data and makes the Gravity Model closer to the expression for
the gravitational energy (γ = 1) than to the one for the gravitational force (γ = 2).

Obviously, there is absolutely nothing fundamental in the formal analogy be-
tween the empirical laws of trade (or any other economic flux) and gravity, and
no profound reason why these laws should bear any mathematical similarity at all.
Rather, the deep similarities must be looked for at different levels:

• A first analogy involves the implicit use of symmetry in both cases: both Eq. (9.2)
and Newton’s law, state that, all else being equal, only mass/GDP and distance
determine the amplitude of the interaction. In physics, this means that Newton’s
law holds in vacuum, i.e. in absence of anything else that can interact gravita-
tionally with the two objects. In macroeconomics, this means that Eq. (9.2) holds
in absence of other factors affecting trade, such as the additional regressors we
mentioned in footnote 1.

• A second similarity is the qualitative dependence on the key quantities: both laws
assume that interaction amplitudes increase with increasing mass/GDP, and de-
crease with increasing distance. In principle, there is an infinity of quantitative
ways (functional forms) to implement this qualitative idea. Accidentally, the func-
tional forms describing gravitation and trade turn out to be very similar, but their
qualitative analogy would have held even if the two mathematical expressions
were different. In some sense, this makes the qualitative analogy more funda-
mental than the mathematical one.

• The above consideration leads us to a third analogy, i.e. the phenomenological
character common to Eq. (9.2) and Newton’s formula. In both laws, the particular
functional form that implements the previous theoretical arguments is established
on the basis of its success in reproducing real data, and thus a posteriori. Other
functional forms, while possible a priori on the basis of the above two points,
must be discarded if they do not explain observations. Only after they were widely
accepted as powerful empirical laws explaining observations, Netwon’s law and
the Gravity Model became the ‘target’ of more general and abstract theories. For
instance, to be acceptable, Einstein’s theory of General Relativity must reduce
to Netwon’s law in the appropriate circumstances, and micro-founded economic
models must generate the Gravity Model when aggregated at the macro level [12].

In our view, the above epistemological analogies are even more fundamental than
the (accidental) mathematical analogy between Eq. (9.2) and Netwon’s law. Another
deep connection between physics and economics exists at a personal level: Jan Tin-
bergen, the founder of the Gravity Model of trade, was a physicist before becoming
an economist.

Born in Den Haag, the Netherlands, in 1903, Jan Tinbergen started his studies in
mathematics and the natural sciences at the University of Leiden, soon after gradu-
ating from high school in 1921 with the highest honors. In Leiden, he later started
a PhD in physics under the supervision of Paul Ehrenfest, who was then professor
in Theoretical Physics (see Fig. 9.1). Tinbergen became Ehrenfest’s assistant, the
private tutor of Ehrenfest’s son, and a frequent visitor of Ehrenfest’s house, that was
regularly visited also by Einstein, Bohr, Heisenberg, Fermi and Pauli. Tinbergen had
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Fig. 9.1 Ehrenfest’s
students, Leiden 1924. Left to
right: Gerhard Heinrich
Dieke, Samuel Abraham
Goudsmit, Jan Tinbergen,
Paul Ehrenfest, Ralph Kronig,
and Enrico Fermi (copyright
© Chicago University Press)

always been attracted by economics, and Ehrenfest was interested in the analogies
between economics and physics. This resulted in Tinbergen’s PhD thesis, entitled
‘Minimum Problems in Physics and Economics’ and defended in 1929. Shortly af-
ter, despite Ehrenfest had repeatedly tried to convince him to remain a physicist,
Tinbergen started a brilliant career as an economist. His pioneering views led him
to introduce Econometrics, a synthesis between mathematics, economic theory and
statistics. In Tinbergen’s view, economic theory should formulate hypotheses trans-
lated into mathematical relations that are then statistically tested on empirical data.
This distinctive quantitative approach was almost surely due to Tinbergen’s graduate
training as a physicist. His idea of introducing a quantitative model of international
trade flows is clearly in line with this approach. Jan Tinbergen’s career culminated
in 1969 when he received the first Bank of Sweden Prize in Economic Sciences in
Memory of Alfred Nobel or shortly Nobel Memorial Prize in Economics, often mis-
takenly referred to as the ‘Nobel Prize in Economics’ (that, strictly speaking, does
not exist).

As a physicist, Jan Tinbergen of course knew Netwon’s law very well, a knowl-
edge that might have facilitated making a mathematical connection to the study
of international trade. But, we believe, his idea of using the Gravity Model in his
research as an economist was most probably triggered by the deeper similarities,
discussed above, at the epistemological level. Jan Tinbergen’s familiarity with the
scientific method universally used in physics is probably the reason why his many
achievements as an economist are all characterized by a strong quantitative approach
and a clear focus on empirical data. Without trying to distort scientific and personal
history, we might therefore presume that Tinbergen’s view was not too far from
what, in modern jargon, are the inspiring concepts of ‘Econophysics’. His Gravity
Model of trade can also be regarded as the first model of the system that, in the more
recent Complex Networks literature, has been intensively studied under the names
of ‘International Trade Network’ (ITN) or ‘World Trade Web’ (WTW) [9, 15–19].
Therefore, in our view, Jan Tinbergen’s pioneering work deserves full attention from
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the scientific community active in Econophysics and Network Science. Along these
lines, the Gravity Model and the ITN, both still under intense investigation, can be
considered two brilliant examples of how ideas from physics can fruitfully interact
with economic problems.

9.3 The Network Approach

At the time of Tinbergen’s analyses, data about international trade flows were of
course much less accurate than today. Missing data were the rule rather than the ex-
ception, so it was practically impossible to distinguish between the absence of data
documenting an existing trade relationship and a ‘true’ absence of the relationship
itself in the real world. While this confusion still cannot be completely eliminated,
in modern databases [20, 21] it only affects a few percent of the data. A simple
analysis of such databases yields to a systematic result: in each yearly snapshot of
the ITN from the 50’s until now, only 50–60 % of the total pairs of world countries
are found to be connected by trade relationship [9, 16]. With little error, pairs of
countries that do not trade at all are the remaining fraction.

If we look again at Eq. (9.2), we immediately see that the observation of a ‘half-
connected world’ is in contrast with the predictions of the Gravity Model, as it
cannot predict zero trade flows.2 Exactly as the gravitational force between any
two masses (no matter how small or distant) is never zero according to Newton’s
law, the Gravity Model predicts that trade exchanges between any two countries (no
matter how poor or distant) are always positive. However, while any two massive
objects are indeed found to be attracted over cosmological distances in our Universe,
the observation of an economically half-connected world implies that the Gravity
Model fails in reproducing the missing links of the world trade network.3 In other
words, if the set of existing connections (i.e. the topology) of the ITN is preliminarly
specified, then the Gravity Model succeeds in reproducing the magnitude of trade
connections. But in general, it fails in reproducing the observed topology of the
network.

It is interesting to notice that the awareness of the importance of the binary topol-
ogy of a network, besides that of weighted structural properties, is a recent conquest
of Network Science—clearly absent at the time of Tinbergen. Motivated by this

2Strictly speaking, the introduction of an error term into Eq. (9.2) allows to have zero or even neg-
ative values. However, after fitting the model to the data, or simply in order to avoid the generation
of precisely those unrealistic negative values, the variance of the error term is so small that zero
trade flows have a vanishing probability.
3In principle, also this limitation can be overcome if the Gravity Model is extended into the so-
called zero-inflated models [22, 23] that use Eq. (9.2) (or its generalizations) in a two-step proce-
dure: first in order to estimate the probability of a trade connection, and then in order to estimate
the intensity of the connection. However, recent analyses [23] have shown that this procedure pro-
vides a bad fit to the observed network: when used in order to estimate link probabilities and link
intensities simultaneously, the Gravity Model turns out to be a very bad model.
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Fig. 9.2 The heterogeneous topology of the binary World Trade Web. Left: average nearest neigh-
bour degree knn as a function of the degree k, for all vertices. Right: clustering coefficient c as a
function of the degree k. Data: UNCOMTRADE database [21], year 2001 (N = 162 countries)

awareness, the analyses of the ITN carried out over the last decade have documented
an intricate and heterogeneous topology. Let us for instance consider the undirected
version of the ITN, where two countries (the nodes, or vertices, of the network) are
connected by a link (or edge) if there exists at least a trade relationship (in any di-
rection) between them. In this network, the number of connections (the so-called
degree, denoted by k) of world countries is found to be very broadly distributed,
with poor countries having only one or two connections (typically including the
USA) and rich countries being connected to a significant number of partners, up to
the total number of countries in the world. This result is very robust, since the degree
is found to systematically increase with the GDP [9]. Moreover, (anti)correlations
between the degrees of two trading partners are significant: the average degree of
trade partners (the average nearest neighbour degree, denoted by knn) is smaller for
countries with larger degree [9, 15] (see Fig. 9.2). This means that more connected
(richer) countries trade with countries having on average a smaller number of part-
ners, and less connected (poorer) countries trade with countries having on average a
larger number of partners. A similar result holds for the so-called clustering coeffi-
cient (denoted by c) of a country, defined as the realized fraction of links (local link
density) among the partners of that country. Just like knn, c is found to decrease as k

increases, meaning that more connected countries have a less interconnected neigh-
bourhood, and less connected countries have a more interconnected neighbourhood
[9, 15] (see Fig. 9.2). All these topological properties can be generalized to the di-
rected version of the network (where links follow the direction of, say, exports), and
similar results are found [16, 18].

Even when weighted properties of the network are studied, the importance of the
underlying topology is still manifest, e.g. when local averages of weighted quantities
are performed. For instance, let us consider the weighted analogue of the degree, i.e.
the strength (denoted by s) defined as the total weight of the links of a country (the
total value of imports and exports for that country). As in the binary case, the av-
erage strength of the partners of a country (the average nearest neighbour strength,
denoted by snn) is found to decrease as the strength of that country increases [17, 18]
(see Fig. 9.3). Being a local average over the partners of each country, snn is strongly
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Fig. 9.3 The nontrivial structure of the weighted World Trade Web. Left: average nearest neigh-
bour strength snn as a function of the strength s, for all vertices. Right: weighted clustering coeffi-
cient cw as a function of the strength s. Data: UNCOMTRADE database [21], year 2001 (N = 162
countries). The values are rescaled by the total weight

influenced by the degree, which is a binary property. Similarly, a weighted general-
ization of the clustering coefficient (denoted by cw) is also influenced by the binary
structure, since it is still defined on the local neighbourhood of countries. Unlike its
binary counterpart, cw is found to increase as the strength increases [17, 18] (see
Fig. 9.3).

9.4 Statistical Physics and Maximum-Entropy Models

Taken together, the above findings highlight that the topology of the ITN is nontriv-
ial and very different from the complete network predicted by the Gravity Model. In
the previous section we discussed some coincidences and deeper similarities behind
the use of the gravity law in physics and economics. As another interesting simi-
larity, recent results [16–18, 24] suggest that the limitations of the Gravity Model
can only be overcome after a change of paradigm which is not dissimilar from the
one that accompanied two revolutions in physics, namely the advent of statistical
mechanics and that of quantum physics. The new paradigm assumes that, in order
to predict the presence of a link (and not only its weight), probabilistic models of
networks need to be considered. The great conceptual jump consists in assuming
that the observed network is not unique, but one of many possible realizations, each
of which has a probability P to occur. This probability must be determined by es-
tablishing which of the properties of the network are somehow ‘unavoidable’, and
assuming that all possible networks displaying those properties (including the real
network) are equally probable. This change of approach is equivalent to the one
leading to the introduction of statistical physics: if the detailed microscopic con-
figuration of a large system is unknown (as is generally the case), and only a few
macroscopic quantities are known (e.g. the total energy), then some properties of
the system can be inferred by averaging over all possible configurations compati-
ble with the known macroscopic quantities. The probability of each configuration
therefore depends on the choice of the macroscopic quantities to be reproduced.
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As Jaynes pointed out in his work devoted to the connections between statisti-
cal mechanics and information theory [25], the fundamental problem of statistical
physics can be regarded as a particular case of a more general class of problems
of inference from partial information. In the general case, one looks for the prob-
ability distribution that maximizes the uncertainty about the system, given the par-
tial knowledge of the latter. Mathematically, if C denotes a possible (microscopic)
configuration of the system, the solution of the problem is obtained maximizing
Shannon’s entropy

S ≡ −
∑

C

P (C) lnP(C) (9.3)

subject to a set of constraints, representing what is known about the system [25].
The result of this constrained maximization problem is the probability

P(C) = e−H(C)

Z
(9.4)

where H(C) is a linear combination of the constraints (where each constraints is
coupled to its Lagrange multiplier) and

Z ≡
∑

C

e−H(C) (9.5)

is the normalization factor. The ensemble of configurations generated by Eq. (9.4)
is the maximum-entropy ensemble specified by the chosen constraints.

Jaynes noticed that, if the system under consideration is a physical one, and the
only constraint is the total (macroscopic) energy E(C), then H(C) = βE(C) where
β is the Lagrange multiplier ensuring that (the ensemble average of) E(C) can be
set equal to its observed value. This leads to the identification of Eq. (9.4) with the
Gibbs-Boltzmann distribution, if β is identified with the inverse temperature through
β = (kT )−1 (k being Boltzmann’s constant). Automatically, this also shows that
Eq. (9.5) can be identified with the partition function, and Eq. (9.3) with the Gibbs-
Boltzmann entropy.

Coming to the case of networks, it has been shown [26–29] that the class of net-
work models known in the social sciences under the name of Exponential Random
Graphs or p∗ models [26] is also a particular case of the above maximum-entropy
problem. In these models, the constraints are (not necessarily macroscopic) topo-
logical properties that one wants to control for. Consider for instance the case of
binary graphs with a given number N of vertices. In undirected binary graphs, each
pair of vertices is either connected or not, with no possible variation in the direction
and intensity of the connection. Each configuration C is uniquely specified by the
adjacency matrix A of the graph, defined as a symmetric N ×N matrix with entries
aij = 1 if a link exists between the vertices i and j , and aij = 0 otherwise. There-
fore, we can label each configuration with A rather than C, and the corresponding
probability with P(A). The simplest example is when the only constraint is the total
number L of links. It has been shown [26, 28] that this particular case reduces to the
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popular Erdős-Rényi random graph model, where all pairs of vertices are connected
independently of each other and with the same probability p (which can be viewed
as the only Lagrange multiplier, uniquely specified by the observed value of L).
In this model, Eq. (9.4) translates into the following probability P(A), that simply
factorizes over all pairs of vertices i, j :

P(A) =
∏

i<j

paij (1 − p)1−aij = pL(A)(1 − p)N(N−1)/2−L(A). (9.6)

This expression shows that the generation of an entire graph A is the combination
of N(N − 1)/2 independent Bernoulli trials,4 each corresponding to the creation of
a single link and characterized by the same success probability p.

The above simple example shows that individual links naturally inherit, from
the maximum-entropy structure of the overall model, the character of random vari-
ables, to be described by probability distributions. If weighted networks are con-
sidered, maximum-entropy models can still be defined [26, 28] and lead again to a
probabilistic description of the weight of all links, including the possibility of zero
weights which correspond to missing links (we will discuss explicit cases later).
Thus, in both binary and weighted descriptions, the probabilistic character of link
creation characterizing the maximum-entropy approach eliminates the need to spec-
ify the topology of the network as ‘given’, overcoming the limitation encountered
when using the Gravity Model. This makes maximum-entropy graph ensembles a
potentially successful approach to the analysis of the ITN and economic networks
in general. However, two aspects remain to be discussed:

• one needs of course to check whether a suitable choice of constraints can indeed
reproduce the empirical properties of the ITN: this requires the identification of
topological constraints that are both reasonable (i.e. they can be a priori justi-
fied as a meaningful choice) and effective (i.e. they are a posteriori successful in
replicating the ITN);

• even if the specification of appropriate topological constraints turns out to satis-
factorily reproduce the observed network, one needs to understand whether this
result can be reconciled with, or at least related to, the main idea of the Gravity
Model: the assumption that trade strongly depends on non-topological quantities
such as GDP and distances.

4A Bernoulli trial (or Bernoulli process) is the simplest random event, i.e. one characterized by
only two possible outcomes. One of the two outcomes is referred to as the ‘success’ (in this case,
the creation of a link) and is assigned a probability p. The other outcome is referred to as the
‘failure’, and is assigned the complementary probability 1−p. Equation (9.6) is indeed the product
of the probability pL(A) of L(A) successful events of link creation times the probability (1 −
p)N(N−1)/2−L(A) of the complementary number of failures, where L(A) is the number of links in
the particular graph A. Note that N(N − 1)/2 is the total number of pairs of N vertices: we are
uninterested in self-loops, so the diagonal matrix entries are aii = 0, which leaves us with only
N(N − 1)/2 degrees of freedom in a symmetric N × N adjacency matrix. For the same reason,
the sum in Eq. (9.6) runs over pairs with i < j , i.e. only over the upper triangle of the matrix A.
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In Sects. 9.5–9.8 we will address the first point in detail, while in Sect. 9.9 we will
deal with the second one.

So far, our general discussion has highlighted that the transition from the Gravity
Model to maximum-entropy models is analogous, both conceptually and mathe-
matically, to the paradigm shift that led to the introduction of Statistical Physics
at the beginning of the twentieth century. The common aspect in both cases is the
probabilistic description of the system. As we now show, another common aspect
leads to a further formal similarity: the discreteness of both economic quantities and
microscopic particles implies that, when a specific choice of constraints is made,
Eq. (9.4) leads to the same mathematical expressions that are encountered in Quan-
tum Physics. These expressions are the so-called Fermi-Dirac and Bose-Einstein
statistics.5

9.5 Fermi-Dirac Statistics

Let us first consider binary networks, i.e. let us focus only on the presence/absence
of links. In order to simplify the discussion, let us also consider undirected net-
works (the results that follow can be straightforwardly extended to directed con-
figurations). We have already mentioned the example of the random graph model,
obtained when the only constraint is the total number of links. That model is very
simple, but severely limited by its complete homogeneity: all vertices have approxi-
mately the same topological properties, narrowly distributed around a common aver-
age value. This is in stark contrast with the strong heterogeneity of most real-world
economic networks, including the ITN as we already discussed in Sect. 9.3. If we
want to build a maximum-entropy model of the ITN whose topology is a real im-
provement over the Gravity Model, we need to reproduce the observed heterogene-
ity of the network. To this end, it is necessary to enforce different constraints that
lead to more complicated models. One of the widespread choices in network theory
is to consider an ensemble of networks where each vertex i has the same degree ki

as in the real network. This choice is justified by the fact that, being an entirely local
topological property, the degree is expected to be directly affected by some intrinsic
(non-topological) property of vertices. For instance, we already anticipated that in
the ITN the degree of a country increases with the GDP of the latter [9]. It would
of course not make sense to compare the real ITN with a randomized counterpart

5In quantum physics, fundamental particles are believed to be of two types: fermions or bosons,
depending on the value of their spin (an intrinsic ‘angular moment’ of the particle). Fermions have
half-integer spin and cannot occupy a quantum state (a configuration with specified microscopic
degrees of freedom, or quantum numbers) that is already occupied. In other words, at most one
fermion at a time can occupy one quantum state. The resulting probability that a quantum state is
occupied is known as the Fermi-Dirac statistics. Bosons have integer spin and can occupy states
with no restriction: any non-negative integer number of bosons can occupy the same quantum state.
The resulting expected number of particles occupying a given quantum state is described by the
so-called Bose-Einstein statistics.
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where the degree of a country no longer corresponds to a realistic value of its GDP
(for instance, where the USA have only one or two connections). This leads us to
interpret the observed degrees of countries as ‘unavoidable’ topological constraints,
in the sense that the violation of the observed values would lead to an ‘impossible’,
or at least very unrealistic, world trade network.

The resulting model is known as the Configuration Model, and is defined as a
maximum-entropy ensemble of graphs with given degree sequence [26, 28]. The
degree sequence, which is the constraint defining the model, is nothing but the or-
dered vector k of degrees of all vertices (where the ith component ki is the degree of
vertex i). The ordering preserves the ‘identity’ of vertices: in the resulting network
ensemble, the expected degree 〈ki〉 of each vertex i is the same as the empirical
value ki for that vertex. In the Configuration Model, Eq. (9.4) translates into the
graph probability

P(A) =
∏

i<j

qij (aij ) =
∏

i<j

p
aij

ij (1 − pij )
1−aij (9.7)

where qij (a) = pa
ij (1 − pij )

1−a is the probability that particular entry of the ad-
jacency matrix A takes the value aij = a. The above expression shows that the
creation of a link has still the form of a Bernoulli process (see footnote 4), but now,
unlike the random graph model described by Eq. (9.6), different pairs of vertices
are characterized by different connection probabilities pij . These probabilities read
[28]

〈aij 〉 = pij = xixj

1 + xixj

(9.8)

where xi is the Lagrange multiplier obtained by ensuring that the expected degree
of the corresponding vertex i equals its observed value: 〈ki〉 = ki ∀i [28]. Note
that, as always happens in maximum-entropy ensembles described by Eq. (9.4), the
probabilistic nature of configurations implies that the constraints are valid only on
average (the angular brackets indicate an average over the ensemble of realizable
networks). Also note that pij is a monotonically increasing function of xi and xj .
This implies that 〈ki〉 is a monotonically increasing function of xi . An important
consequence is that two countries i and j with the same degree ki = kj must have
the same value xi = xj .

Equation (9.8) provides an interesting connection with quantum physics, and in
particular the statistical mechanics of the microscopic particles known as fermions
(see footnote 5). The ‘selection rules’ of fermions dictate that only one particle at
a time can occupy a single-particle state, exactly as each pair of vertices in binary
networks can be either connected or disconnected. In this analogy, every pair i, j

of vertices is a ‘quantum state’ identified by the ‘quantum numbers’ i and j . So
each link of a binary network is like a fermion that can be in one of the available
states, provided that no two objects are in the same state. Equation (9.8) indicates
the expected number of particles/links in the state specified by i and j . With no
surprise, it has the same form of the so-called Fermi-Dirac statistics describing the
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Fig. 9.4 The topology of the World Trade Web is well reproduced by specifying the number of
trade partners of each country (binary Configuration Model). Left: observed VS expected average
nearest neighbour degree knn, for all vertices. Right: observed VS expected clustering coefficient c.
The red curves are identity lines (perfect agreement). The green curves represent the prediction
for the same quantities under the Gravity Model, which instead predicts a completely connected
network with all vertices characterized by the same value. Data: UNCOMTRADE database [21],
year 2001 (N = 162 countries)

expected number of fermions in a given quantum state [26, 28, 29]. As we already
discussed, the probabilistic nature of links allows also for the presence of empty
states, whose occurrence is now regulated by the probability coefficients (1 − pij ).

We now come to the application of the model to the topology of the ITN.
Unlike the Gravity Model, the Configuration Model allows the whole degree se-
quence of the observed network to be preserved (on average), while randomizing
other (unconstrained) network properties [28]. In order to check whether the model
successfully reproduces the ITN, one needs to compare the higher-order (uncon-
strained) observed topological properties with their expected values calculated over
the maximum-entropy ensemble. This automatically indicates whether the degree
sequence is informative in explaining the rest of the topology. This can be done
analytically, by means of the probabilities appearing in Eq. (9.8) [28]. The effec-
tiveness of the degree sequence in reproducing other topological properties of the
ITN is shown in Fig. 9.4, where we compare the observed values of the average
nearest neighbour degree knn

i and clustering coefficient ci (defined in Sect. 9.3)
with the corresponding expected values 〈knn

i 〉 and 〈ci〉, for all vertices. In this type
of plot, the agreement between model and observations can be simply assessed as
follows: the less scattered the cloud of points around the identity function, the bet-
ter the agreement between model and reality. In principle, a broadly scattered cloud
around the identity function would indicate the little effectiveness of the chosen
constraints in reproducing the unconstrained properties, signalling the presence of
genuine higher-order patterns of self-organization, not simply explainable in terms
of the degree sequence alone. However, the results in Fig. 9.4 indicate that the World
Trade Web is well reproduced by the Configuration Model. This result is very ro-
bust, as documented by recent analyses that have confirmed it for different temporal
snapshots, different levels of aggregation (up to individual commodities), and dif-
ferent datasets [16, 18]. With the appropriate generalizations, this conclusion also
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holds when the ITN is analysed as a directed network, still well described by the
Fermi-Dirac statistics [16, 19].

For completeness, Fig. 9.4 also shows the Gravity Model’s prediction of a com-
plete network, which is dramatically different from the observed one. Thus the
maximum-entropy approach, and in particular the Configuration Model, represents a
significant advantage with respect to the Gravity Model. An unexpected implication
is that the degrees of world countries are maximally informative about the ITN as a
whole: if the empirical degree sequence of the ITN is not reproduced, the observed
topology of the network as a whole will not be reproduced either [16]. Unfortu-
nately, current micro-founded models in the economics literature do not attempt at
replicating or explaining the particular value of the number of trade partners of a
country. Rather, they aim at reproducing the Gravity Model, inspired by the success
of the latter at the level of non-zero flows [12]. In so doing, these models are destined
to fail in explaining the heterogeneous topology of the ITN. To overcome this limi-
tation, future models should aim at replicating the degree sequence explicitly. As we
anticipated at the end of Sect. 9.4, one should also investigate the relationship be-
tween the ‘empirically informative constraints’ in the maximum-entropy approach
(the degree sequence in this case) and the ‘macroeconomic explanatory factors’ in
the Gravity Model approach (such as GPD and distances). We will discuss this im-
portant point in Sect. 9.9.

We conclude this section by stressing again that the ‘fermionic’ character of the
ITN, when treated as a binary network, is the mere result of the restriction that no
two binary links can be placed between any two vertices, leading to a mathematical
result which is formally equivalent to the one of quantum statistics. Clearly, there is
nothing really ‘quantum’ in trade connections being described by the Fermi-Dirac
statistics, exactly as there is nothing really ‘gravitational’ in non-zero trade flows
being described by the Gravity Model. Still, the deep epistemological analogies
leading to similar laws in physics and economics (the ones we discussed in Sect. 9.2)
remain, and are now translated into a more sophisticated formalism that allows for
the probabilistic and discrete nature of the system:

• In both physical and economic applications, the Fermi-Dirac statistics has the
following symmetry: the probability pij only depends on the combination xixj .
In quantum physics, xixj in turn depends only on the energy of the quantum state,
while in the Configuration Model it depends only on the end-point degrees ki

and kj . This means that, all else being equal (e.g. given the same energy, or the
same values of the end-point degrees), the occupation probability of two different
states (i, j) and (m,n) is the same.

• In both applications, the Fermi-Dirac statistics implements the qualitative idea
that, the larger the value of xixj , the higher the probability that the state (i, j) is
occupied.

• Finally, the validity of the Fermi-Dirac statistics is in both cases established a pos-
teriori, by the fact that it reproduces empirical observations. This phenomenolog-
ical agreement confirms that the postulated quantum numbers/topological con-
straints, which uniquely specify the values {xi}, are indeed the (only) relevant
ones for the problem under investigation.
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As we will discuss in Sect. 9.9, in the ITN the value of xixj can also be related to the
GDP of the two countries i and j , and to the geographic distance separating them.
This restores a tight correspondence between the three points listed above and the
three ones discussed in Sect. 9.2.

9.6 Bose-Einstein Statistics

We started this chapter stressing the importance of the ITN as a complex weighted
network, while in the previous section we restricted ourselves to the description of
its purely binary topology. From this point onwards, we go back to the full weighted
level and discuss whether it is possible to reproduce the topology and weights of
the ITN simultaneously. Naively, the results shown so far suggest that a first attempt
in this direction could be the introduction of a two-step process where the topology
is first established using the Configuration Model, and the realized link weights are
then estimated using the Gravity Model. However, besides being disappointingly
inelegant, this approach would result in a hybrid combination of maximum-entropy
and economically inspired expectations, leaving the final results without a clear in-
terpretation. A more satisfactory way to proceed is expanding the maximum-entropy
formalism into one valid for weighted networks, automatically closer to the macroe-
conomic reasoning.

To many economists, the finding that the number of trade partners of a country is
a particularly informative quantity might appear weak or misleading, given the ex-
pectation that the monetary value of imports and exports is in principle much more
informative: common sense suggests that knowing how much (in dollars) a country
trades with the rest of the world should be more informative than just knowing how
many partners trade with that country. This leads to the expectation that the strength
s should be more informative than the degree k. One might therefore suspect that an
even better model of the ITN, still preserving the observed heterogeneity of coun-
tries, is one where the strengths, rather than the degrees, are enforced as constraints.
In this section, we take this approach and show that it actually leads to a counter-
intuitive result: unlike what we found for the degree sequence, knowing the strength
of each world country turns out to be very poorly informative about the structure of
the ITN as a whole.

The theoretical framework introduced in the previous section allowed us to treat
links as probabilistic entities in order to overcome the Gravity Model’s prediction
of a completely connected network. Since we were only interested in the prediction
of the presence or absence of links, the selection rules were formally analogue to
the fermionic ones: aij = 0,1. However, the formalism can be generalized in order
to analyze weighted networks where links can have non-negative integer weights.
If we keep considering undirected graphs for simplicity, each network is now spec-
ified by a N × N symmetric weight matrix W whose entry wij equals the weight
of the link between the vertices i and j . Therefore, we can now label each con-
figuration with W , and the corresponding probability with P(W). If we define the
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strength sequence s as the ordered vector of strength values (with components si ,
i = 1, . . . ,N ), the Weighted Configuration Model can be introduced as the ensemble
of weighted networks with given strength sequence. If one allows each wij to take
non-negative integer numbers, Eq. (9.4) now becomes [28]

P(W) =
∏

i<j

qij (wij ) =
∏

i<j

p
wij

ij (1 − pij ). (9.9)

Where qij (w) = pw
ij (1 −pij ), which has now the form of a geometric distribution,6

is the probability that the vertices i and j are connected by a link of weight w. The
outcome w = 0, corresponding to a missing link, occurs with probability 1 − pij .
Therefore pij still denotes the probability that i and j are connected, irrespective of
the weight of this connection. This probability now reads

pij = yiyj (9.10)

where yi is the Lagrange multiplier required in order to ensure that the expected
strength 〈si〉 of each vertex i equals the empirical value si [28]. This time, two
countries i and j with the same strength si = sj (independently of their degrees)
must have the same value yi = yj [17].

As in the previous case, a connection with another well-known quantum statistics
emerge. The ‘selection rules’ have now allowed us to treat link weights as formally
analogue to bosons (see footnote 5), admitting multiple and unlimited occupations
of the same ‘quantum state’ (wij = 0,1,2, . . . ,+∞). Indeed, the expected occupa-
tion number of a quantum state, which is the expected weight of the link between
vertices i and j , is now formally identical to the so-called Bose-Einstein statistics
[26, 28]:

〈wij 〉 = pij

1 − pij

= yiyj

1 − yiyj

(9.11)

As before, there is nothing fundamental in the mathematical analogy with quantum
statistics, the only common element being the postulated discreteness of the num-
bers wij .7 The deeper similarity involves again the concept of symmetry, which in
this case refers to the assumption that, all else being equal, in the Bose-Einstein
statistics the expected value 〈wij 〉 only depends on yiyj . Similarly, the common
qualitative aspect shared by the physical and economic applications is that 〈wij 〉 is
expected to increase with yiyj . However, as we now show, this time the phenomeno-
logical analogy between the Weighted Configuration Model of trade and quantum

6In one of its possible formulations, the geometric distribution describes the probability that, in a
sequence of repeated Bernoulli trials (see footnote 4) with success probability p, the first w trials
are all successful and the following one is unsuccessful. This happens with probability pw(1 −p).
7In quantum physics, the discreteness is implied by the fact that particles can only exist in integer
number. In economic networks, the discreteness is implied by the fact that money can only exist in
integer multiples of a fundamental, indivisible unit of currency (such as one Eurocent).
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Fig. 9.5 The topology and weights of the World Trade Web are NOT well reproduced by spec-
ifying the total import and export value of each country (weighted Configuration Model). Left:
observed VS expected average nearest neighbour strength snn, for all vertices. Right: observed VS
expected weighted clustering coefficient cw . The red curves are identity lines (perfect agreement).
The green curve represents the prediction for the same quantities under the Gravity Model, which
instead predicts a completely connected network with all vertices characterized by the same value.
Data: UNCOMTRADE database [21], year 2001 (N = 162 countries). The values are rescaled by
the total weight

statistics (i.e. the agreement of both with real data) breaks down: while the Bose-
Einstein distribution describes the microscopic world of bosons remarkably well,
Eqs. (9.9)–(9.11) fail miserably in reproducing the observed ITN.

To see this, one can again compare the observed and the expected values of
higher-order (unconstrained) topological properties. In Fig. 9.5 we show the av-
erage nearest neighbour strength snn and weighted clustering coefficient cw (see
Sect. 9.3). The results now indicate how bad the accordance between the Weighted
Configuration Model and the real network is. Interestingly enough, the model’s pre-
diction for the average nearest neighbors strength is almost identical to the Gravity
Model’s prediction for the same quantity. This unambiguously indicates that the two
models suffer from the same limitation: their incapability to reproduce the topology
of the observed network and, in particular, the fact that the Weighted Configura-
tion Model generates an extremely dense network [17], not too different from the
completely connected topology predicted by the Gravity Model (for a fully con-
nected network whose weights are rescaled by the total weight, it is easy to estimate
snn � ∑

i si/N = 2/N ). Similarly, even if the smaller values of the weighted clus-
tering coefficient seem to partially agree with the model’s prediction, the behaviour
for large values indicates that major refinements are needed in order to improve the
model performance [17]. The disagreement between the Weighted Configuration
Model and the real ITN has been confirmed on different data, different temporal
snapshots, and different commodities [17, 18].

The above result contradicts the intuitive expectation that, by taking a weighted
quantity (the strength sequence s) as input, the Weighted Configuration Model
should be more informative than its binary counterpart. Indeed, while the complete
knowledge of all the weights of the network is of course more informative than the
knowledge of the binary topology alone, it turns out that the partial knowledge of
the weighted network (the strength sequence in this case) is less informative than the
knowledge of the corresponding binary quantity (the degree sequence). A somewhat
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puzzling consequence for macroeconomic modeling is that, even if a micro-founded
model of international trade successfully reproduces the observed total imports and
exports of all world countries, this is definitely not enough in order to reproduce
the structure of the ITN as a whole. If combined with the previous result about the
extreme informativeness of the degree sequence, this finding strengthens the uncon-
ventional conclusion that satisfactory models of international trade should aim at
primarily reproducing the binary properties of countries (number of trade partners)
rather than their weighted ones (total import and export) [16–18].

9.7 Generalized Quantum Distributions

One therefore needs to look for a better model of the International Trade Network,
able to reproduce the binary topology and the weighted structure of the network si-
multaneously. Since microscopic particles are either fermions or bosons, the Fermi-
Dirac and Bose-Einstein distributions are the only two types of quantum statistics
traditionally used in physics.8 However, one can formally introduce generalized dis-
tributions that reduce to the Fermi-Dirac and the Bose-Einstein statistics as partic-
ular cases. While the physically realizable quantum systems might correspond only
to the fermionic and bosonic extremes, it might well be that other systems, such as
economic networks, can instead realize other non-trivial limits of those generalized
distributions. Therefore, in this and in the next section we discuss two possible gen-
eralized ‘quantum’ statistics and their relationship with the structure of economic
networks, and the ITN in particular.

The case we consider in this section is just a pedagogical example, while the
one we discuss in the next section leads to a very important model that reproduces
the observed ITN in great detail. As we showed, the only mathematical ingredi-
ent needed to generate the Fermi-Dirac statistics in maximum-entropy network en-
sembles is the 0/1 character of binary links (aij = 0,1), while the only ingredient
needed to generated the Bose-Einstein statistics is the non-negative integer char-
acter of weighted links (wij = 0, . . . ,+∞). For non-physical systems, there is no
reason why the only two allowed values for the maximum weight should be one
and infinite. In general, we can consider a general family of distributions, obtained
when the occupation number can range from 0 to a finite maximum value wmax .
All the distributions within this family share the same discrete character, due to
the integer occupation numbers of ‘quantum states’. However, they only reduce to
the Fermi-Dirac and Bose-Einstein distributions in the extreme cases wmax = 1 and
wmax → +∞ respectively.

In the general case, with wij = 0,1,2, . . . ,wmax , the maximum-entropy ensem-
ble of networks with given strength sequence s is characterized by the probability

8Excluding the case of anyons [30], particles that can only exist in two dimensions and that can be
described by a generalized ‘fractional statistics’ [31], which is however unrelated to the extensions
we discuss in this section and in the next one.
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Fig. 9.6 Single-link
cumulative distribution
functions of the generalized
statistics, defined in
Eq. (9.13), ranging from the
Fermi-Dirac (the blue one on
the left, with wmax = 1) to the
Bose-Einstein (the blue one
on the right, with
wmax → ∞). The x-axis is
logarithmically scaled

distribution

P(W) =
∏

i<j

qij (wij ) =
∏

i<j

[
yij (1 − yij )

1 − y
(wmax+1)
ij

]wij
[

1 − yij

1 − y
(wmax+1)
ij

]1−wij

(9.12)

where for simplicity we have defined yij ≡ yiyj , if yi still denotes the Lagrange
multiplier needed to enforce the constraint 〈si〉 = si . Like Eqs. (9.7) and (9.9), the
above probability is still a product over single-link distributions, each characterized
by the same, bounded range of values. In order to better visualize the functional
form of such distributions, the corresponding single-link cumulative distribution
functions can be plotted, as shown in Fig. 9.6. The latter can be computed quite
easily as

Pij (wij > 0) ≡ 1 − qij (0) = yij (1 − y
wmax

ij )

1 − y
(wmax+1)
ij

. (9.13)

As wmax increases from 1 to +∞, the intersections of these distributions with the
y-axis form an interesting numerical succession, whose generic term is

Pij (wij > 0|yij = 1) = wmax

wmax + 1
= 1

2
,

2

3
,

3

4
, . . . (9.14)

and whose limit when wmax → +∞ is 1.
The generalized distribution considered above is an example showing how it

is possible to gradually interpolate between the Fermi-Dirac and Bose-Einstein
through the introduction of an extra parameter (wmax ). In principle, intermediate
values of the parameter can lead to different results than the ones we showed in
Sect. 9.6, and potentially to an improvement over them. However, since the observed
weights in the ITN are extremely large, the value of wmax required in order to gener-
ate realistic weights will be so large that the results are practically indistinguishable
from those we have already discussed using the Bose-Einstein distribution. So this
model does not represent a real improvement.
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9.8 Mixed Bose-Fermi Statistics

A fundamentally different way to unify the Fermi-Dirac and Bose-Einstein distri-
butions, other than introducing an extra parameter while keeping the strength se-
quence s as the constraint, is adopting a different choice of the constraint them-
selves. Specifically, motivated by the success of the binary Configuration Model
discussed in Sect. 9.6, one can introduce a maximum-entropy ensemble of networks
with given degree sequence k and strength sequence s, i.e. one where both con-
straints are enforced simultaneously [32]. To this end, the maximum allowed value
of weight is again wmax = +∞ as in the Bose-Einstein case. However, in terms
of theoretical models, this leads to a whole new family of probability distributions,
whose functional form is [32]

P(W) =
∏

i<j

qij (wij ) =
∏

i<j

[
(xixj )

aij yiyj (yiyj )
wij −1(1 − yiyj )

1 − yiyj + xixj yiyj

]
(9.15)

where aij , the element of the adjacency matrix, is 0 if wij = 0 and 1 if wij > 0. In
the above expression, the x vector controls for the degrees and the y vector controls
for the strengths. This double set of constraints implies that, while different pairs
of vertices are still independent, the creation of a link of given weight between two
vertices is neither a Bernoulli nor a geometric process (see footnotes 4 and 6), but a
combination of the two.

As in the previous example, the (now generalized) ‘quantum’ or discrete charac-
ter of the statistics becomes evident as soon as the expected occupation numbers are
computed [32]:

〈aij 〉 = xixj yiyj

1 − yiyj + xixj yiyj

, 〈wij 〉 = xixj yiyj

(1 − yiyj + xixj yiyj )(1 − yjyj )
.

(9.16)
In this case, the unification of the Fermi-Dirac and Bose-Einstein distributions is
achieved by combining binary and weighted constraints ‘as a block’, i.e. in a sin-
gle big step. As a result, one cannot gradually interpolate between the two ordi-
nary statistics: for instance, in order to retrieve the Bose-Einstein distribution, one
must drop the entire degree sequence k from the set of constraints (mathematically,
this corresponds to set x equal to the unit vector 1).9 The fundamental difference
with respect to the intermediate distributions defined by Eq. (9.12) is that now the
occupation probability of an empty ‘single-link state’ differs from the occupation
probability of an already occupied state. In fact, this family of distributions can be
intuitively described by saying that the ‘first’ appearance of a link of unit weight be-
tween two disconnected vertices is regulated by the Fermi-Dirac statistics, while the

9Note that the dual operation, i.e. dropping the entire strength sequence s from the set of constraints
(mathematically corresponding to y = 1), leads to an undefined model and does not correspond to
the Fermi-Dirac statistics. The reason is that the maximum weight is still wmax = +∞ and not
wmax = 1: without constraints on the weighted properties, the expected weights become infinite.
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Fig. 9.7 The topology and weights of the World Trade Web are simultaneously well reproduced
by specifying the number of partners of each country, as well as the total import and export value
of each country (mixed Configuration Model). Top left: observed VS expected average nearest
neighbour degree knn, for all vertices. Top right: observed VS expected clustering coefficient c.
Bottom left: observed VS expected average nearest neighbors strength snn. Bottom right: observed
VS expected clustering coefficient cw . The red curves are identity lines (perfect agreement). The
green curves represent the prediction for the same quantities under the Gravity Model, which
instead predicts a completely connected network with all vertices characterized by the same value.
Data: UNCOMTRADE database [21], year 2001 (N = 162 countries). The values are rescaled by
the total weight

‘subsequent’ appearance of units of weights between two already connected vertices
is regulated by the Bose-Einstein statistics. For this reason, the statistics defined by
Eq. (9.16) is called the mixed Bose-Fermi statistics [32].

The Bose-Fermi statistics reproduces with great accuracy all the four higher-
order structural quantities (both binary and weighted) of the ITN considered so far.
This is shown in Fig. 9.7, where we compare the expected and observed values of
knn, c, snn, and cw for all vertices. For the first time, we find a very close agreement
for all these topological properties simultaneously. This result is very robust, as it
holds for different snapshots and different commodities [24]. Two main conclusions
can be drawn:

• on one hand, the addition of weighted constraints to the binary ones does not
affect the effectiveness of the mixed model in reproducing the purely topological
properties: the two upper panels of Fig. 9.7 look approximately the same as the
two panels of Fig. 9.4;

• on the other hand, the addition of binary constraints to the weighted ones dra-
matically improves the performance of the model in predicting purely weighted
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quantities. This is evident by comparing Fig. 9.5 with the two bottom panels of
Fig. 9.7. The latter show that now both the average nearest neighbour strength
and the weighted clustering coefficient closely follow the identity function. In a
sense, the addition of purely binary constraints compensates the incapability of
the purely bosonic model in reproducing the network structure and brings the
model back to high levels of performance at the topological level.

The family of mixed Bose-Fermi statistics not only represents a powerful model in
order to explain both the binary and the weighted quantities of interest of a given,
observed network; it also points out the strong effects of the underlying topology on
the weighted structural patterns.

In economic terms, our discussion leads to the conclusion that the knowledge
of monetary/weighted structural properties (such as total imports and exports) is
informative only if in combination with non-monetary/binary properties (such as
the number of trade partners). The expectation that monetary quantities are per se
more informative than the corresponding binary ones turns out to be incorrect. For
this reason, we believe that the Bose-Fermi statistics is a very useful tool in the
understanding of economic networks in general. The fact that both strengths and
degrees are enforced allows to study the interplay between the topological and mon-
etary levels of organization, while still keeping the model parsimonious: only local
(country-specific) structural properties, the ones that we discussed as the somewhat
irreducible and ‘unavoidable’ level of heterogeneity, are enforced.

9.9 The Role of GDP and Distance

The results presented so far show that the attempt to model the International Trade
Network using analogies with physical laws, initiated by Jan Tinbergen with the in-
troduction of the Gravity Model, turns out to be extremely successful, even if the
appropriate formal expressions are very different from Tinbergen’s original idea.
However, to complete our discussion, we need to address the final point anticipated
in Sect. 9.4, i.e. how to reconcile maximum-entropy graph ensembles (that take
structural properties as input) with the Gravity Model’s expectation that interna-
tional trade strongly depends on non-structural macroeconomic properties, such as
GDP and geographic distances.

We start with a discussion about the role of GDP. As we anticipated in Sects. 9.3
and 9.5, the GDP of a country turns out to be highly correlated with the degree of
that country in the ITN. Interestingly, the functional dependence of the degree on
the GDP can be adequately characterized by Eq. (9.8). In more detail, it was shown
[9] that the connection probability

pij = zGDPiGDPj

1 + zGDPiGDPj

(9.17)

(where z is a global free parameter) defines a model that reproduces the properties of
the binary topology of the ITN very well, just like the Configuration Model defined
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by Eq. (9.8) does. The value of z is fitted to the data by requiring that the expected
number of links 〈L〉 equals the observed number L [9].10 This result shows that the
parameter xi is approximately proportional to GDPi , as can be confirmed explicitly
[33]. In terms of the network formation process, this means that the results discussed
in Sect. 9.5 can be almost entirely rephrased as follows. The GDP is found to deter-
mine directly the number of trade partners of each country (because GDPi has the
same role of the Lagrange multiplier xi determining ki ), and indirectly the whole
topology of the International Trade Network (because the functional form of the
connection probability is that of the Configuration Model, where the higher-order
topological properties are entirely determined by the degree sequence). The only
topological quantity we need to know about the real network is the total number of
links specifying the parameter z.

In an only slightly more complicated way, it is also possible to incorporate dis-
tances into Eq. (9.17) [34]. This leads to the probability

pij = zGDPiGDPj e
−γf (dij )

1 + zGDPiGDPj e
−γf (dij )

(9.18)

where f (dij ) is some increasing function of the geographic distance between coun-
tries i and j . The simplest choice for this function is f (dij ) = dij [35]. The model
has now two parameters, which can be fixed simultaneously by imposing 〈L〉 = L

and 〈F 〉 = F , where F ≡ ∑
ij aij f (dij ) is a measure of the filling of space by the

network [35]. A variant of this model has been recently used to analyse the directed
version of the ITN [34]. The result one finds is that the addition of spatial infor-
mation moderately improves the fit to the data. However, alternative models that
include information about the reciprocity of trade [19, 36], rather than geographic
distances, systematically outperform the spatial model [34].

We note that, along the same lines as above, it is straightforward to intro-
duce GDPs and distances also in the weighted models defined by Eqs. (9.11) and
(9.16), by simply replacing yiyj and xixj with zGDPiGDPj e

−γf (dij ). Even if these
weighted models have not yet been used in empirical analyses, the above discus-
sion shows that maximum-entropy ensembles are not per se incompatible with the
Gravity Model’s approach of explaining trade patterns in terms of macroeconomic
quantities such as GDP and distances. On the contrary, we believe that maximum-
entropy models are a very promising tool to understand economic networks. Iden-
tifying the most informative properties explaining the topology and weights of real
economic networks is extremely important in order to identify the most relevant
‘targets’ of theoretical models. The finding that the observed trade patterns cannot
be adequately understood unless one is able to reproduce the degree sequence, and
that the latter is directly determined by the GDP, could only be established using
a maximum-entropy model. More in general, the important role played by binary
properties even in weighted analyses is a highly nontrivial result.

10This choice for the parameter z corresponds to the maximization of the likelihood of the model
defined by Eq. (9.17) [33], exactly like the values of {xi} that realize the conditions 〈ki〉 = ki ∀i

maximize the likelihood of the Configuration Model defined by Eq. (9.8) [28, 33].
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9.10 Conclusions

In 1962, in what we would now call a pioneering attempt to model economic net-
works, the physicist and first Nobel Memorial Prize laureate Jan Tinbergen intro-
duced the Gravity Model of trade mimicking Newton’s gravitation law. This very
intuitive and elegant proposal aimed at explaining trade exchanges in terms of a few
macroeconomic quantities (GDP and geographic distance) by combining them in
the same way as nature combines gravitational masses and spatial distances.

The success of the Gravity Model is due to the fact that it reproduces well the
observed (non-zero) trade flows between countries. Minor refinements to the model,
such as the inclusion of additional factors either favouring or suppressing trade, are
relatively simple to make and further improve the fit to the data. Therefore, for half
a century the Gravity Model has been used more and more extensively in macroe-
conomic analyses, and it has become the standard model of international trade in
the economics literature. However, the most serious and in some sense irreducible
limitation of the Gravity Model emerged only relatively recently, after the publi-
cation of several empirical analyses documenting the topology of the International
Trade Network in the statistical physics literature. While the Gravity Model predicts
a completely connected network where every country trades with all other countries,
the observed ITN is much more heterogeneous and hierarchical.

We have shown that this limitation can be overcome by adopting a probabilis-
tic view, in exactly the same way as classical physics escaped its crisis at the end
of XIX century by adopting the quantum-mechanical paradigm. In network theory,
this amounts to consider the adjacency matrix entries as probabilistic entities and
the node pairs as single-link states whose occupation numbers are regulated by the
same selection rules that apply to fermions and bosons in quantum physics. In this
way, various probability distributions can be defined in order to explain the observed
structural patterns. On one hand, purely fermionic selection rules excellently repro-
duce the binary topology of the ITN, but are intrinsically limited by the fact that
they give no information about the weights of links in the network. On the other
hand, bosonic selection rules are suitable for weighted analyses but suffer from the
same limitations of the Gravity Model, since they lead to the prediction of an almost
completely connected network. Interestingly enough, the most effective probabilis-
tic models are those combining fermionic and bosonic selection rules. In this combi-
nation, the limitations encountered when the two quantum statistics are considered
as separate are overcome simultaneously, and both the topology and weights of the
observed ITN are nicely reproduced.

The main conclusion we can draw is the fundamental role played by topology in
explaining the observed patterns of real world networks: in contrast with the ‘main-
stream’ economic thinking, purely weighted information (such as that encoded into
the strength sequence) is not enough to reproduce all the observed properties and, in
particular, the purely binary ones (such as the degree sequence). A genuine, purely
binary information is also needed from the very beginning, as confirmed by the
successful family of mixed Bose-Fermi probabilistic distributions. This shows that
the naive expectation that weighted/monetary quantities are per se more informative
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than the corresponding binary/non-monetary ones is incorrect. The counter-intuitive
nature of this finding shows that it is very important to further develop an appropriate
information-theoretic formalism, based on maximum-entropy statistical ensembles,
aimed at identifying the key structural properties of economic networks.

Curiously, the road taken by Jan Tinbergen appears to lead to ‘physical’ laws that
are quite different from the ones originally postulated, and more similar to quantum
statistics than gravitation. However, the deep epistemological reasons underlying
Tinbergen’s idea of introducing the Gravity Model of trade appear to be very appro-
priate, and persist throughout the more recent approaches. This is, we believe, the
most important legacy that Jan Tinbergen left us for the modern understanding of
economic networks.
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Chapter 10
A Macroscopic Order of Consumer Demand
Due to Heterogenous Consumer Behaviors
on Japanese Household Demand Tested
by the Random Matrix Theory

Yuji Aruka, Yuichi Kichikawa, and Hiroshi Iyetomi

Abstract So far the consumer theory was microscopically too restrictive to over-
look many important scenes of the whole consumption activities. This view is delib-
erately dropping the inter-correlated factors between different income classes and
household demands. The household demands must have a certain bias toward ei-
ther common or different directions among different income classes. In some sense,
the traditionally narrow interest may be dangerous because other decisive factors
contributing to the consumption activities may be missed. This article argued to
choose a particular scene where some natural or social correlative relations i.e.,
some dominant forces, may work in the consumption activities over the different
income classes. By introducing the different income classes, we can just analyze
a new facet of interactive correlations among the heterogeneous consumers. Here
we can find any correlative relation, irrespective of price variations. Such a way of
thinking may lead us observing another hidden force of the consumption activities.

10.1 A New Empirical Examination on Household Demand
and the Analytical Targets

In view of historical development of economic theories, we identify the most es-
sential constituents of economics with the following issues: demand law, utility
function, production function, and general equilibrium. These issues were argued
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professional-mathematically in 1930s to 1950s, mainly by mathematicians and
physicists.

• A design of demand law and a new form

– We had a splendid work of Pareto-Slutsky equation. However, Abram Wald
was the first scholar who tackled the demand law in a scientific way.

• The law of demand

– Income effect in parallel with substitution effect are the most basic ideas of
consumer market theory, tracing back to Vilfredo Pareto and Eugen Slutsky
in the first decade of the last century. This subject once was one of the most
important analyses.

Our households, composed of different income classes, should no longer be con-
sidered homogeneous. This observation has been already achieved by Hildenbrand
[3] ) and others. It is a well-known fact that the Pareto-Slutsky equation cannot con-
firm the demand law, which means the correspondence between prices falling and
demands non-decreasing. That is to say, the individualistic principle fails in making
the demand law. Hildenbrand’s aim was to elucidate a certain sufficient condition
under which the demand law holds. He has solved the demand law by introducing
heterogeneous households of different income levels. His contribution actually is
regarded as a great contribution to economic science in verifying that the demand
law just works only if a macroscopic order is to be incorporated. A further extension
of this idea to Japanese consumer data has been given in [1].1

This study newly focuses on the correlative factors on consumer demand fluctua-
tions. We will mainly have two routes of the effects to households demands: income
effect and the other effects generated by some correlative links either due to either
the necessities of life or some macroscopic business fluctuation. The former is tradi-
tionally observed as a microscopic behavior caused by an income effect due to price
change. But this effect, as we stated in the above, has been not confirmed without
introducing a certain macroscopic factor of heterogeneous consumers, e.g., an as-
sumption of greater variances of expense items as a class income is higher. This was
solved theoretically as well as empirically by Hildenbrand [3]. He then employed
a so-called Family Expenditure Survey to examine the empirical evidences in some
major Western countries. In this paper, we will also do it in Japanese economy to
monitor the effects of macroscopic correlation among consumption categories of
different income classes or heterogeneous agents, and then identify the other non-
random effects due to business fluctuations, if any.2

1See Appendix 1.
2In this example, middle class property is a state property, if the income range of the middle class
is pertinently defined. The ingredients of various types in the middle class of income are then
ignored. Such a simplification is called a metonymy from types to state properties, according to
[3]. Exchangeable agents are virtually used, instead of types in a precise sense. Types are replaced
with state variables. A state variable then becomes a surrogate variable for type ([2], p. 133).
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The sources of our idea in this paper depends on Iyetomis idea to distinguish the
principal modes at the industrial levels (to construct macroscopic effective demands)
from random modes by the use of the principle of the random matrix. That is to say,
the so-called effective macroscopic demand generated by industries is subject to a
series of business cycles. Iyetomi et al. [4, 5] has shown that there is implemented
a structural (nonrandom) cycle in the Japanese economy. The paper has judged an
existence of business cycle by applying the random matrix theory (RMT) to the
empirical data of the Indices of Industrial Production (IIP) of Japan.

Following Iyetomi’s idea, we may identify a nonrandom co-movement in the
consumption of heterogeneous households. Such a principal factor, if it exists, sug-
gests that its mode components may form a driving force for consumption in a cer-
tain direction. Thus our first step is to find a statistically significant principal eigen-
value explicitly distinguished from a random distribution of eigenvalues. On the
other hand, the remaining configuration except for nonrandom modes may then be
regarded as randomly distributed modes over the different income classes. The prop-
erties of the latter modes may be unspecified in our analysis. They seemingly look
statistically random. But we cannot know from our present analytical tool whether
there is still embedded any true correlation or not.

In our new study, we will employ the Monthly Expenditure per Household
(MEH). It is important to mention that both data have a common subset at back-
ground of categories in the part of Consumer Goods. Production is normally con-
nected with household consumption. If some macroeconomic variables should have
any correlative relation, consumption could naturally be affected by the macroe-
conomic fluctuations. Some variables like Industrial-Production Index, Unemploy-
ment, and NIKKEI Stock Average Index may be regarded as surrogate variables of
income. By using such a surrogate variable, we can then argue the effect of income
fluctuation to the household consumption on the average common to the different
income classes. A more detailed discussion will come up again later.

10.2 An Application of the Random Matrix Theory (RMT) to
Detect Some Causal Relationships

So we illustrate more details about our plan. According to our traditional idea, the
demand law is distorted by income effect. However, the demand law may be equally
likely affected by other forces like nonrandom modes reflecting natural or social ne-
cessities, and possibly business fluctuations. If it should be the case, it could be con-
ceived that another force as distinct from individualistic inner preference is working.
We thus have another problem on the demand law.

However, Slutsky [7] believed that such a force does not exist. He rather believed
that the summation of pure random shocks might generate cyclical fluctuations. But,
according to Iyetomi et al. [4, 5], his prediction was wrong. Iyetomi has proven this
reasoning by applying the random matrix theory to the data to estimate some causal
relationship running over the concerned data, that is to say, the Dominant Factors
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identified by the random matrix theory. Iyetomi et al. [4, 5] applied to the data
of the industry classification with three properties to derive the effective demand
structure of a national economy. So we will have a new work on consumer data to
be challenged.

We will apply the latter idea to the household consumer demand with income
class properties. In such way, first of all, we aim at detecting whether our household
demand data at hand really is randomly distributed or not in view of random matrix
theory. We then use Yearly Income Group (All Household) of 5 income rank classi-
fications as our usual data in , Monthly Receipts and Disbursements per Household,
for convenience. While the item of expenses, i.e., 10 categories, is listed as follows:

1. Food
2. Housing
3. Fuel, light, & water charges
4. Furniture & household utensils
5. Clothing & footwear
6. Medical care
7. Transportation & communication
8. Education
9. Culture & recreations
10. Other consumption expenditure

In brief, in the Report on the Family Income and Expenditure, we have usually
10 categories with 5 ranks of income classes. On the other hand, in the Indices of
Industrial Production (IIP) of Japan, we can use normally 21 categories of goods
with 3 ranks of production (value added), shipments, and inventory.

Thus we will work on the hyper-plane of the above statistics characterized by
5 income ranks and 10 spending categories. If we should find any major principal
mode by a spectra distribution derived from our empirical data, and it also be sepa-
rated explicitly from the derived random distribution by the random matrix theory, it
could be verified that we found a common factor over the different income classes.
This must be the first work. We will then identify the effects of macroeconomic
variables on the spending categories over the different income classes.

Actually the members belonging to an income class always is being replaced.
A member who earned a higher income may be fallen into a lower income class.
The converse process also holds. Even taking into account such an effect of cancel-
ing out, the members of an income class is actually moving. But we assume that the
shift from lower classes cancel out the shift from upper classes, due to a limitation
of statistical data. It then means that types are replaced with state variables. Hilden-
brand [3] called this assumption the so-called metonymy on transitions of sample
members among the income classes.

Now we thus follow a preceding study of Iyetomi et al. [4, 5] on the industrial
data. The variable employed here is put Sα,g(tj ), where α denotes an income class,
labeled by from 1 at the bottom to 5 at the top, g denotes 10 items of expenses
of households, and tj is expressed by tj = j	t . Here δt = 1 implies a month, and
j runs from 1 to N (N = 146 for Jan 2001 to Feb 2012). It then holds for the
logarithmic growth rate:
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rα,g(tj ) := log10
Sα,g(tj+1)

Sα,g(tj )
. (10.1)

We furthermore normalize them to define as follows:

wα,g := σα,g(tj ) − 〈rα,g〉t
σα,g

. (10.2)

Here 〈rα,g〉t is the average all over tj , and σα,g is the standard deviation of rα,g

over time. Such an operation lead to bringing the property that the average is set
zero, and 1 the standard deviation 1. This is a set up for the application to random
matrix theory.

Next, we apply the Fourier decomposition to wα,g(tj ) in the following manner:

wα,g = 1√
N ′

N ′−1∑

k=0

ω̃α,g(ωk)e
iωktj . (10.3)

Here the frequency is defined as

ωk := 2πk

N
′
	t

. (10.4)

Taking notice that the data figures are all real-valued, we can set as follows:

ω̃∗
α,g(ωk) = ω̃α,g(ωN ′−k). (10.5)

Taking into account these operations, it then follows:

ω̃α,g(0) = 0,

N ′−1∑

k=0

∣∣ω̃α,g(ωk)
∣∣2 = N ′.

(10.6)

Thus we can define the averaged power spectrum p(ωk):

p(ωk) = 1

M

5∑

α=1

10∑

g=1

∣∣ω̃α,g(ωk)
∣∣2. (10.7)

In our case, M = 50. It also follows:

N ′−1∑

k=0

p(ωk) = N ′. (10.8)

We define the correlation matrix as C. This is composed of elements wα,g,wβ,l

whose diagonal one is set 1, due to the definition of wα,g :

Cα,g,β,l := 〈wα,gwβ,l〉t . (10.9)
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Here α and β run from 1 to 5, g and l from 1 to 10. The eigenvectors V (n) and
eigenvalues λ(n) are associated with this coefficient matrix C. It then is expressed
as follows:

C =
M∑

n=1

λ(n)V (n)V (n)T ranspose

. (10.10)

If the data should not be all random in the concerned space, we could usually find
such a configuration of eigenvalues distribution as a few isolated large eigenvalues
explicitly separated distribution on the range of smaller values. The largest group of
eigenvalues and associated eigenvectors then corresponds to the dominant factors,
which explains co-movements of the fluctuations of different goods. Here we call
the largest eigenvector the first eigenvector. This vector can be interpreted as the
first major component (Principal Components) that accounts for the most influential
combination of correlated factors (different goods) over the adopted space of M-
dimension. Similarly, the eigenvector for the second largest eigenvalue (the second
eigenvector) is the second principal component that accounts for as much of the cor-
relation as possible in the subspace orthogonal to the first eigenvector, and so on [4].
In other words, the second component can state another influence independent of the
first influence.

10.3 The Results of Our Statistical Verifications Obtained

10.3.1 Their Obtained Distributions of Eigenvalues

As we have already noted, we employed the Report on the Family Income and Ex-
penditure by the Statistics Bureau, Cabinet Office, Japan. By calculating eigenval-
ues by solving the equations formulated in the above section, we have obtained the
following distributions: Fig. 10.1 (The Eigenvalue distribution of household con-
sumption in Japan for Jan 2000 to Feb 2012).

Here the data has been seasonally adjusted as the default setting of X-12-
ARIMA. We also produce the two largest modes of correlated components over
the different income classes. See Fig. 10.2 and Table 10.1 as for the detailed com-
ponents of the largest eigenvector (the mode 1). Also see Fig. 10.3 and Table 10.2
as for the detailed components of the second largest eigenvector (the mode 2).

10.3.2 The Comparison Among the Alternative Seasonal
Adjustments

When we deal with consumer data in general, we always come to grip with sea-
sonal adjustments. So our test must also be engaged into seasonal adjustments. In
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Fig. 10.1 The eigenvalue
distribution of household
consumption

this study, two alternative methods of adjustments are applied. First one is X-12-
ARIMA given by the Statistics Bureau, Cabinet Office, Japan, which is providing
us with our sample data. The other one is DECOMP, which is developed by the Insti-
tute of Statistical Mathematics, Japan. The ideas of two alternatives actually depend
on considerably different ideas. The illustration for DECOMP will be argued later.3

In our application, surprisingly, the derived results are not unchanged as for the prin-
cipal components identification in our context of random matrix application. Hence,
a fortiori, we can articulate the same finding for both ways of verification that the
largest eigenvalue is dominated by FOOD, and the second by FUEL, LIGHT, &
WATER. In other words, the first component is constructed by the explanatory cat-
egory dominated by FOOD, while the second one by the category dominated by
FUEL, LIGHT & WATER.

We thus summarize the obtained results to diagram forms by producing the fol-
lowing diagrams: Fig. 10.4.

3See Appendix 2.
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Fig. 10.2 The eigenvalue
distribution of the mode 1

Table 10.1 Mode 1 (eigenvalue λ1 = 4.24)

I II III IV V

1 Food 0.288 0.275 0.281 0.283 0.335

2 Housing −0.069 −0.070 −0.024 0.034 0.018

3 Fuel, light & water charges 0.088 0.193 0.189 0.161 0.128

4 Furniture & household utensils 0.137 0.091 0.067 0.153 0.030

5 Clothing & footwear 0.086 0.264 0.058 0.161 0.176

6 Medical care 0.049 −0.059 0.115 0.109 −0.032

7 Transportation & communication 0.098 0.083 −0.056 0.169 0.005

8 Education 0.005 −0.088 0.035 −0.160 0.071

9 Culture & recreation 0.141 0.171 0.071 0.043 0.171

10 Other consumption expenditures −0.056 0.096 0.094 −0.019 0.122

aThe data is used from Jan 2000 to Feb 2012

10.4 Some Implications Derived from Our Statistical Tests

10.4.1 Main Findings

Now we can derive several implications from our statistical observations. In our
approach described in the first section, at first, we have successfully found two
statistically significant principal modes distinguished from a random distribution
of eigenvalue. In this case, we have found the modes 1 and 2 associated with the
eigenvalues λ1 > λ2.

The first principal mode is represented by FOOD. It then turns out that the mode
1 may contribute by 8.5 percent to the whole variations of the consumption. The sec-
ond principal one is represented by FEEL, LIGHT & WATER. It then turns out that
the mode 2 may contribute by 7.1 percent to the whole variations of the consump-
tion. The result becomes similar, irrespective of the kinds of the seasonal adjustment
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Fig. 10.3 The eigenvalue
distribution of the mode 2

Table 10.2 Mode 2 (eigenvalues λ2 = 3.54)

I II III IV V

1 Food −0.073 −0.009 −0.171 −0.104 −0.108

2 Housing 0.002 0.076 0.139 −0.023 0.079

3 Fuel, light & water charges 0.362 0.327 0.310 0.342 0.355

4 Furniture & household utensils 0.000 0.065 −0.058 −0.106 0.061

5 Clothing & footwear −0.064 −0.027 −0.133 −0.210 −0.081

6 Medical care −0.175 0.102 −0.073 −0.046 0.121

7 Transportation & communication −0.025 0.059 0.021 −0.028 0.137

8 Education 0.001 0.143 0.012 0.010 0.101

9 Culture & recreation 0.217 0.010 −0.028 0.089 −0.026

10 Other consumption expenditures −0.162 −0.002 −0.141 −0.072 −0.111

aThe data is used from Jan 2000 to Feb 2012

method adopted. We thus conclude that the FOOD dominant mode and the FUEL
dominant mode are the driving modes for the whole consumption.

Next, we can then notice the different signs of the components each modes. In
particular, the signs between the FOOD component and the FUEL component in the
mode 1 are all positive, while the signs among the same components in the mode 2
are mutually opposite, as seen from Fig. 10.1.

The result on the mode 1 seems natural, if we interpret the FOOD mode in the
context of Engels coefficient connections. If we cook FOOD items, we will also
spend FUEL items. In the mode 2, however, it seems difficult to give an instinctive
interpretation. But we may notice that the CLOTHING has all negative signs all over
the different income classes. In the mode 2, then, the FUEL consumption is opposite
to the FOOD as well as CLOTHING. We thus suggest that the mode 2 might be close
to something like a consumption activity induced by the use of personal computer. In
the recent community we cannot neglect such activity at all. In the event, whatever
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Fig. 10.4 The comparison between X-12-ARIMA and DECOMP

interpretation is to be added, we have shown that at least about 15 percent of the
whole variation of consumption is generated by an organized co-movement in a
particular way, whether natural or cultural. As we noted, however, we cannot know
whether the remaining random distribution really is purely random or not, in view
of the present random matrix theory.

In order to detect any correlation induced by hidden factors, however, we can
furthermore investigate a possible correlative relation. We look for the mode 3
(λ1 > λ2 > λ3). While the mode accompanying the eigenvalues below 0.1 may be
regarded as completely random. Inspecting more precisely, we notice the size of
the standard deviation, i.e., the size of fluctuations of the concerned mode. If the
mode 3 accompanies a bigger size of the standard deviation in comparison to the
random variable, the effects due to another factor could be discernible. At the end of
the first section, we have already suggested to add several macroeconomic variables
to the given data set. We can add to Industrial-Production Index, Unemployment,
and NIKKEI Stock Average Index. Instead of these three variables, we can alter-
natively add to three random variables. However, a tentative principal analysis in
the expanded data did not show any big difference from the previous analyses. But
another calculation indicated that a mode around the added variables showed some
big change of the standard deviation size. This may imply that it does seem to be
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Fig. 10.5 Contributions due
to the extra working
hours/temperatures

any visible correlation with business fluctuation. This verification will be our further
challenging task.

10.4.2 Further Findings

Finally, we note our another attempt to detect another hidden factor affecting con-
sumer demands. We at present chose two factors such as Extra Working Hours and
TEMPERATURE. In particular, we may regard the extra working hours as a factor
being sensitive to business fluctuations. After calculations, we may briefly show our
additionally obtained results:

1. After we moreover added the time series of extra working hours to the origi-
nal 10 data, we have calculated the eigenvector distributions. The extra working
hours as an additional 11th element marked a positive high value, in particular,
in mode 1. We also discovered a similar result in mode 2.

2. We have the anomaly time series of monthly average temperature in Tokyo
Metropolitan City. As we similarly added the anomaly time series of tempera-
tures to the original 10 data, it also turns out that we still have an unchanged
pattern both for mode 1 and mode 2. The components of mode 2, in particular, is
magnified by temperature.
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See Fig. 10.5. Here, on the horizontal axis, the column before the last one corre-
sponds to the component from Extra Working Hours, the last column to the compo-
nent Temperatures.4

The first principal eigenvector as a whole retains the positive correlation over
all components. Once the time series of Extra Working Hours, we inspected
that FOOD , FUEL and Extra Working Hours are contributing much to the
first principal eigenvector. Hence we may regard the Extra Working Hours as
an important parameter for business fluctuations. Thus mode 1 may depend on
business fluctuations. In mode 2, we can discern that FUEL and CLOTHING
are closely correlated with TEMPERATURE. Hence the consumption pattern
of mode 2 may be most sensitive to TEMPERATURE.

10.5 Concluding Remarks

The observation of the consumer demand should not be limited to a special facet
where price sensitive behaviors could be dominant as if prices look like mainly
independent variables. Income effects must not be merely auxiliary. More specifi-
cally, we can suppose the consumer demand to be a composition of different forces:
prices, demand and different income classes. We can thus depict an image of the real
facets of interacting prices demands with different income classes as the following
diagram. See Fig. 10.6. If the case should be one-commodity world, we could sum-
marize how prices and demands interact such as Fig. 10.7.

As we demonstrated in the abstract of this article, the consumer theory was mi-
croscopically too restrictive to overlook many important scenes of the whole con-
sumption activities. In some sense, such a narrow interest may be dangerous because
other decisive factors contributing to the consumption activities may be missed. In
this article, we have detected a particular scene where some natural or social correl-
ative relations i.e., some dominant forces, may work in the consumption activities
over the different income classes. By introducing the different income classes, we
can just analyze a new facet of interactive correlations among the heterogeneous
consumers. Here we can find any correlative relation, irrespective of price varia-
tions. Such a way of thinking may lead us observing another hidden force of the
consumption activities. It is considerably interesting to notice that our consumer be-
haviors are closely connected with some socially combinatorial pattern formations.
Our present study will contribute to this interest in a near future.

4We have employed the database in terms of year-over year basis.
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Fig. 10.6 The real facets of
prices, demands, and income
classes

Fig. 10.7 A composition of
different forces

Appendix 1

We denote a demand at price p by f (p). We then have a next formula between two
distinct price vector p1 and p2: ?

(
p1 − p2)(f

(
p1)− f

(
p2)) ≤ 0 (10.11)

i.e.,

dpdf ≤ 0. (10.12)

This is the demand law. The law does not state any analytical confirmation with
respect of price when an income variation x derived by price changes is taken ac-
count into. The tentative formulation is called the Pareto-Slutsky equation:

∂fj

∂pk

= ∂hj

∂pk

− ∂fj

∂x
fk. (10.13)

In other words,

• demand change = substitution effects + income effects

Here j and k are indices of good. fj is a demand of good k. hj is a compensated
demand of good j . x is an income level. Demand for good depend on prices of goods
pk including itself (pj ) and also depend on income. Income x is to be measured in
terms of goods. So income may be changeable depending on price variations 	p.
A change of income naturally induces a change of demand. But the sign of a change
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of income is not decisive in general. This is a complicated factor for establishing the
demand law. Consequently, economists never were successful to confirm the sign
of income effect until a new assumption was invented by Hildenbrand [3]). It took
about 90 years to solve this problem.

Compensated demand is a sophisticated idea. This demand h always has a
negative sign respect with a price rise. Actually, h is supposed to be a special
form only reactive to price variation but inactive to income level to guarantee
the same level of satisfaction by supplementing a new injection of income if
short, or reducing if long.

We introduce into the Pareto-Slutsky equation a very small footnote-sized per-
turbation of 	p and h : 	p and 	h. A variation of dpdf caused by 	p and 	h

i.e., 	p	f may be approximately estimated as 	p
∂fj

∂pk
	p In other words, it holds:

	p
∂fj

∂pk∂pk

= 	p
∂hj

∂pk∂pk

− 	p
∂fj

∂xk

	pf. (10.14)

We cannot find any reason that the first item is always equal to the second item.
If the second item should be negative, the total variation caused by 	pk could be
positive, leading the contrary to the demand law. Thus, the Pareto-Slutsky equation,
as it is, is not successful to guarantee a definite analytical relation in general. A so-
called Giffen effect could not be removed.

Appendix 2

Most of the items of expenditure have strong seasonal dependence as easily ex-
pected. The excepted items are Housing, Medical and Transport. Removal of sea-
sonal components out of the original data is thus a critical procedure to elucidate
possible correlations embedded in expenditure of Japanese consumers.

Here we adopt two seasonal adjustment methods. One of them is the X-12-
ARIMA,5 developed and used by the U.S. Census Bureau. It is also a standard
seasonal adjustment method for the Statistic Bureau in Japan. The X-12-ARIMA
program, having a long history in the development, is full of experimental knowl-
edge with a number of degrees of freedom left for users to optimize the procedure.
However, we allowed the program to determine a best regARIMA model by itself.

To assess the reliability of such an automatic seasonal adjustment, we applied
another program called DECOMP [6] to the same data. The DECOMP based on
state-space-modeling is free from the moving average procedure that plays an im-
portant role in X-12-ARIMA. As indicated in its name, the DECOMP decomposes

5http://www.census.gov/srd/www/x12a/.

http://www.census.gov/srd/www/x12a/
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a given time series data into trend, seasonal and irregular components in a trans-
parent way. In return, there is no much room for us to play with the program for
optimization of the procedure. The parameter set for the program that we used is

• Log Transformed: Yes
• Seasonal frequency: 12
• Trend order: 1
• AR order: 0
• Trading Day Effects: Yes

As will be shown later, the X-12-ARIMA and DECOMP bring about no funda-
mentally different results for the principal component analysis. The RMT (random
matrix theory) tells us that there are two statistically meaningful principal compo-
nents for both of the seasonally adjusted data. And the characteristic features of the
principal components so obtained are essentially the same between the two alterna-
tive data.
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Chapter 11
Uncovering the Network Structure of the World
Currency Market: Cross-Correlations
in the Fluctuations of Daily Exchange Rates

Sitabhra Sinha and Uday Kovur

Abstract The cross-correlations between the exchange rate fluctuations of 74 cur-
rencies over the period 1995–2012 are analyzed in this paper. The eigenvalue distri-
bution of the cross-correlation matrix exhibits a bulk which approximately matches
the bounds predicted from random matrices constructed using mutually uncorre-
lated time-series. However, a few large eigenvalues deviating from the bulk contain
important information about the global market mode as well as important clusters
of strongly interacting currencies. We reconstruct the network structure of the world
currency market by using two different graph representation techniques, after filter-
ing out the effects of global or market-wide signals on the one hand and random
effects on the other. The two networks reveal complementary insights about the ma-
jor motive forces of the global economy, including the identification of a group of
potentially fast growing economies whose development trajectory may affect the
global economy in the future as profoundly as the rise of India and China has af-
fected it in the past decades.

11.1 Introduction

At whatever scale one studies economic phenomena, we can find complex sys-
tems, comprising relatively large number of mutually interacting elements often
connected to each other in non-trivial topologies, at work. The components can be
individual traders, firms, banks, markets or countries, but however complicated the
behavior of the individual agents in the system, an even richer collective behavior
is manifested at the scale of the entire group of interacting agents. Explaining the
emergence of such systems-level phenomena which may be qualitatively different
from the properties exhibited by the individual components is one of the key goals
of many physicists working on socio-economic questions, an enterprise that is of-
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ten referred to as econophysics [1]. An important step in this direction will be to
identify features of economic systems that are universal, in the sense of occurring
at many different scales, suggesting that their existence is not contingent upon the
particular conditions prevailing in a specific situation. This will help econophysi-
cists to focus on phenomena that are not just the outcome of a series of historical
accidents and which can therefore be potentially explained by generalizable mech-
anisms.

Market dynamics has been identified by many physicists as a particular area of
economics that has the potential for yielding several such universal features. In par-
ticular, one can mention the identification of scale-invariant distributions in price
fluctuations, the trading volume and number of trades [2, 3] in equities markets
(but see also Ref. [4]). However, in order to get an understanding of how quali-
tatively new features emerge at the level of the collective dynamics of the entire
market, one needs to understand the nature and structure of interactions between
the agents. While several studies on the networks underlying equities markets (e.g.,
Ref. [5]) have been done, we need to compare between markets of different kinds in
order to distinguish those features that are particular to specific systems and those
which are universal. With this aim, we undertake a detailed investigation of the
world currency market in this article. While several previous studies have looked
at the cross-correlations between the foreign exchange rates of different currencies
(e.g., see Refs. [7–9]), our results reveal several novel insights and unexpected fea-
tures of the network of interactions between the currencies that we reconstruct from
the cross-correlations data. The period of the preceding sixteen years we have cho-
sen for our study has seen remarkable transformations in the world economy with
the emergence of new economic powerhouses such as China and India, but it has
also shown how our world is vulnerable to massive system-spanning crises (such
as that of 2007–2008). The study of networks in the global currency market pro-
vides an important perspective with which to view the positive as well negative
impacts of globalization. It has been argued that globalization is neither a com-
pletely new phenomenon in world history nor are its effects always beneficial to
the economy [10]. We hope that by investigating the collective dynamics of the in-
ternational trade in currencies in order to identify the major motive forces of the
world economy, one can potentially understand the long-term trends and prospects
of globalization.

11.2 The World Currency Market

The foreign exchange (FX) market, representing the entire global decentralized trad-
ing of various currencies, is the largest financial market in the world with an average
daily trading volume estimated in 2010 to be 4 × 1012 US Dollars [11]. A typical
trade in the FX market consists of a pair of agents exchanging a certain amount
of a particular currency for a mutually agreed amount of another currency. The ra-
tio of the amounts of the two currencies changing hands specify the corresponding
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exchange rate for the pair of currencies concerned. Thus the exchange rates deter-
mine the value of a currency with respect to another (the numeraire). The modern
FX market characterized by a large number of currencies having floating exchange
rates which continuously fluctuate over time date from the 1970s. The varying rates
reflect the changing demand and supply for the currencies, and are thought to be di-
rectly influenced by the trade deficit/surplus of the corresponding countries [12] as
well as macroeconomic variables such as changes in growth of the gross domestic
product, interest rates, etc. However, international events can often trigger large per-
turbations in the FX market and it is possible that sudden changes in the exchange
rates of a certain group of currencies can spread over time, eventually affecting a
much larger number of currencies. Our article aims at uncovering the network of
interactions between the different currencies of the FX market along which pertur-
bations can propagate in the world currency market.

Description of the data set. We have considered the daily exchange rate of cur-
rencies in terms of US Dollars (i.e., the base currency) publicly available from the
website of the financial services provider company, Oanda Corporation [13]. We
have chosen the US Dollar as the numeraire as it is currently the primary reserve
currency of the world and is most widely used in international transactions. The
daily rates are computed as the average of all exchange rates (taken as the midpoint
of the bid and ask rates) quoted during a 24-hour period prior to the day of post-
ing the rate. For cross-correlation analysis, we have focused on the price data of
N = 74 currencies from October 23, 1995 to April 30, 2012, which corresponds to
T = 6034 working days. The choice of currencies was governed by our decision
to only include those which either follow a free float or a managed float exchange
rate regime. We have thus avoided currencies such as the Chinese yuan whose rate
of exchange is pegged against another currency so that the value of currency does
not vary appreciably in time (resulting in trivial cross-correlations). We have also
excluded countries having a dollarized economy such as Panama, Ecuador Vietnam
or Zimbabwe, that use a foreign currency—in majority of cases, the US Dollar—
instead of or alongside the domestic currency, as this introduces strong artifacts in
the cross-correlations. The period of observation was chosen so as to maximize the
volume of available data. Using the MSCI Market Classification Framework [14]
we have divided the countries to which the currencies belong into three categories:
developed, emerging and frontier markets. This classification is based on a number
of criteria including market accessibility, size and liquidity of the market and the
sustainability of economic development. While many of the OECD countries be-
long to the developed category, the rapidly growing economies of Asia, Africa and
Latin America (such as the BRICS group comprising Brazil, Russia, India, China
and South Africa) are in the emerging category with the frontier markets category
being populated by the remainder. The individual currencies, along with the above
economic classification of the corresponding countries and the geographical regions
to which they belong are given in Table 11.1.
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Table 11.1 The list of 74 currencies analyzed in this article arranged according to type of market
and grouped by geographical region

i Currency code Currency name Type of market Geographical region

1 CAD Canadian Dollar Developed Americas

2 DKK Danish Krone Developed Europe and Middle-East

3 EUR Euro Developed Europe and Middle-East

4 ILS Israeli New Shekel Developed Europe and Middle East

5 ISK Iceland Krona Developed Europe and Middle-East

6 NOK Norwegian Kroner Developed Europe and Middle-East

7 SEK Swedish Krona Developed Europe and Middle-East

8 CHF Swiss Franc Developed Europe and Middle-East

9 GBP Great Britain Pound Developed Europe and Middle-East

10 AUD Australian Dollar Developed Asia-Pacific

11 HKD Hong Kong Dollar Developed Asia-Pacific

12 JPY Japanese Yen Developed Asia-Pacific

13 NZD New Zealand Dollar Developed Asia-Pacific

14 SGD Singapore Dollar Developed Asia-Pacific

15 BOB Bolivian Boliviano Emerging Americas

16 BRL Brazilian Real Emerging Americas

17 CLP Chilean Peso Emerging Americas

18 COP Colombian Peso Emerging Americas

19 DOP Dominican Republic Peso Emerging Americas

20 MXN Mexican Peso Emerging Americas

21 PEN Peruvian Nuevo Sol Emerging Americas

22 VEB Venezuelan Bolivar Emerging Americas

23 ALL Albanian Lek Emerging Europe, Middle-East and Africa

24 DZD Algerian Dinar Emerging Europe, Middle-East and Africa

25 CVE Cape Verde Escudo Emerging Europe, Middle-East and Africa

26 CZK Czech Koruna Emerging Europe, Middle-East and Africa

27 EGP Egyptian Pound Emerging Europe, Middle-East and Africa

28 ETB Ethiopian Birr Emerging Europe, Middle-East and Africa

29 HUF Hungarian Forint Emerging Europe, Middle-East and Africa

30 MUR Mauritius Rupee Emerging Europe, Middle-East and Africa

31 MAD Moroccan Dirham Emerging Europe, Middle-East and Africa

32 PLN Polish Zloty Emerging Europe, Middle-East and Africa

33 RUB Russian Rouble Emerging Europe, Middle-East and Africa

34 ZAR South African Rand Emerging Europe, Middle-East and Africa

35 TZS Tanzanian Shilling Emerging Europe, Middle-East and Africa

36 TRY Turkish Lira Emerging Europe, Middle-East and Africa

37 INR Indian Rupee Emerging Asia

38 IDR Indonesian Rupiah Emerging Asia
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Table 11.1 (Continued)

i Currency code Currency name Type of market Geographical region

39 KRW South Korean Won Emerging Asia

40 PHP Philippine Peso Emerging Asia

41 PGK Papua New Guinea Kina Emerging Asia

42 TWD Taiwan Dollar Emerging Asia

43 THB Thai Baht Emerging Asia

44 GTQ Guatemalan Quetzal Frontier Americas

45 HNL Honduran Lempira Frontier Americas

46 JMD Jamaican Dollar Frontier Americas

47 PYG Paraguay Guarani Frontier Americas

48 TTD Trinidad Tobago Dollar Frontier Americas

49 HRK Croatian Kuna Frontier Europe and CIS

50 KZT Kazakhstan Tenge Frontier Europe and CIS

51 LVL Latvian Lats Frontier Europe and CIS

52 BWP Botswana Pula Frontier Middle-East and Africa

53 KMF Comoros Franc Frontier Middle-East and Africa

54 GMD Gambian Dalasi Frontier Middle-East and Africa

55 GHC Ghanaian Cedi Frontier Middle-East and Africa

56 GNF Guinea Franc Frontier Middle-East and Africa

57 KES Kenyan Shilling Frontier Middle-East and Africa

58 KWD Kuwaiti Dinar Frontier Middle-East and Africa

59 MWK Malawi Kwacha Frontier Middle-East and Africa

60 MRO Mauritanian Ouguiya Frontier Middle-East and Africa

61 MZM Mozambique Metical Frontier Middle-East and Africa

62 NGN Nigerian Naira Frontier Middle-East and Africa

63 STD Sao Tome and Principe Dobra Frontier Middle-East and Africa

64 SYP Syrian Pound Frontier Middle-East and Africa

65 ZMK Zambian Kwacha Frontier Middle-East and Africa

66 JOD Jordanian Dinar Frontier Middle-East and Africa

67 BND Brunei Dollar Frontier Asia

68 BDT Bangladeshi Taka Frontier Asia

69 KHR Cambodian Riel Frontier Asia

70 FJD Fiji Dollar Frontier Asia

71 PKR Pakistan Rupee Frontier Asia

72 WST Samoan Tala Frontier Asia

73 LKP Lao Kip Frontier Asia

74 LKR Sri Lankan Rupee Frontier Asia
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11.3 The Return Cross-Correlation Matrix

To quantify the degree of correlation between the exchange rate movements for
different currencies, we first measure the fluctuations using the logarithmic return
so that the result is independent of the scale of measurement. If Pi(t) is the exchange
rate of the i-th currency at time t (in terms of USD), then the logarithmic return is
defined as

Ri(t,	t) ≡ lnPi(t + 	t) − lnPi(t). (11.1)

For daily return, 	t = 1 day. By dividing the time-series of returns thus ob-
tained with their standard deviation (which is a measure of the volatility of the

currency exchange rate), σi =
√

〈R2
i 〉 − 〈Ri〉2, we obtain the normalized return,

ri(t,	t) ≡ Ri/σi . We observed that the cumulative distribution of the returns dis-
played power-law scaling in the tails, i.e., P(ri > x) ∼ x−α where α is the corre-
sponding exponent value. Using maximum likelihood estimation, the exponents for
the different currencies were obtained and they were found to be distributed over a
narrow range of values with a peak around α � 3. This indicates that the so-called
inverse-cubic law distribution of returns, reported in many studies of stock price
fluctuations [15–18], also holds for currency exchange rate movements [19, 20].
This further strengthens the universality of this empirical fact about the nature of
market fluctuations and supports the validity of explaining this feature using very
general models which do not consider details of particular markets or economies
(see, e.g., Ref. [21]).

After obtaining the return time series for all N currencies over the period of
T days, we calculate the cross-correlation matrix C whose individual elements
Cij = 〈rirj 〉, represent the correlation between returns for a pair of currencies i and
j . If the fluctuations of the different currencies are uncorrelated, the resulting ran-
dom correlation matrix (referred to as a Wishart matrix) has eigenvalues distributed
according to [22]:

P(λ) = Q

2π

√
(λmax − λ)(λ − λmin)

λ
, (11.2)

with N → ∞, T → ∞ such that Q = T/N ≥ 1. The bounds of the distribution
are given by λmax = [1 + (1/

√
Q)]2 and λmin = [1 − (1/

√
Q)]2. For the data we

have analyzed, Q = 81.54, which implies that in the absence of any correlation the
spectral distribution should be bounded between λmax = 1.23 and λmin = 0.79. We
observe from Fig. 11.1 that the bulk of the empirical eigenvalue distribution indeed
falls below the upper bound given by λmax , although a significant fraction of the
eigenvalues are smaller than what we expect from the lower bound λmin. Also, a
small number (� 8) of the largest eigenvalues are seen to deviate from the bulk of
the distribution predicted by random matrix theory, and we focus our analysis on
these modes to obtain an understanding of the interaction structure of the world
currency market.
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Fig. 11.1 The probability density function of the eigenvalues of the cross-correlation matrix C
for fluctuations in the exchange rate in terms of US Dollars of 74 currencies for the period Oct
1995–April 2012. For comparison the theoretical distribution predicted by Eq. (11.2) is shown
using broken curves. We explicitly verified that the theoretical distribution fits very well the spectral
distribution of surrogate correlation matrices generated by randomly shuffling the returns for the
different currencies. The inset shows the largest eigenvalue corresponding to the global mode of
market dynamics

The random nature of the eigenvalues occurring in the bulk of the distribu-
tion is also indicated by the distribution of the corresponding eigenvector compo-
nents. Note that, these components are normalized for each eigenvalue λj such that,∑N

i=1[uji]2 = N , where uji is the i-th component of the j th eigenvector. For ran-
dom matrices generated from uncorrelated time series, the distribution of the eigen-
vector components follows the Porter-Thomas distribution,

P(u) = 1√
2π

exp

[
−u2

2

]
. (11.3)

We have explicitly verified this form for the corresponding distribution of the ran-
dom surrogate matrices obtained by shuffling the empirical return time series so
that all correlations between the different currencies are destroyed. As seen from
Fig. 11.2, it also approximately fits the distributions of the eigenvector components
for the eigenvalues belonging to the bulk of the empirical spectral distribution. How-
ever, the eigenvectors of the largest eigenvalues (e.g., the largest eigenvalue λmax ,
as shown in the inset) deviate quite significantly, indicating its non-random nature.

The largest eigenvalue λ0 for the cross-correlation matrix is about 9 times larger
than the upper bound of the random spectral distribution. While this is similar to
the situation for cross-correlations of stock movements in financial markets (e.g.,
see Refs. [5, 6]), the corresponding eigenvector does not show a relatively uniform
composition unlike the case in equities markets where almost all stocks contribute to
this mode with all elements having the same sign. Instead, there is large variation in
the relative contributions of the different components to the largest eigenmode, with
those of four currencies (VEB, PYG, NGN, BND) having a different sign than the
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Fig. 11.2 The probability distribution of the eigenvector components corresponding to two eigen-
values belonging to the bulk of the spectral distribution predicted by random matrix theory and
(inset) that corresponding to the largest eigenvalue. In both cases, the corresponding distribution
obtained from the surrogate correlation matrices obtained by randomly shuffling the returns is
shown using a broken curve for comparison

Fig. 11.3 The eigenvector components ui(λ) for the four largest eigenvalues of the correlation
matrix C. The currencies are arranged according to the market classification of the corresponding
country (developed, emerging or frontier) separated by broken lines. Some of the prominent com-
ponents for each eigenvector (discussed in the text) are individually identified by the respective
currency codes

rest—although with an extremely low magnitude (Fig. 11.3, top). This eigenmode
represents the global component of the time-series of currency fluctuations which
is common to all currencies. Thus, the strength of the relative contribution of a cur-
rency to the leading eigenvector can be construed as the extent to which the currency
is in sync with the overall movement of the world currency market reflecting the col-
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lective response of the world economy to information shocks (which may include
major perturbations such as the worldwide financial crisis of 2007–2008). Note that,
this suggests that the relative strengths of the components in the leading eigenvector
may be used as a measure of the role the corresponding currency plays in the world
market (and to an extent, that the country plays in the international economy). Seen
from this point of view, it is perhaps not surprising that most of the currencies be-
longing to countries in the developed markets category contribute significantly to
this mode which reflects their dominance in the world economy. We also see that
the countries in the emerging markets category can be very different from each other
in terms of their role in the global mode, with components corresponding to the East
European economies such as Czech Republic, Hungary and Poland having some of
the largest contributions. Turning to the frontier markets category, while the con-
tributions of most of these currencies have very low magnitude, a few countries
(most notably Botswana but also Bangladesh, Kazakhstan and Comoros) stand out
for the relatively high strength of the corresponding eigenvector component. The
strong contribution from these countries could be either because of their impressive
economic performance (e.g., Botswana has maintained one of the world’s highest
economic growth rates from the time of its independence in 1966 [23]) or possibly
due to remittances in foreign currencies from expatriates working abroad having a
large contribution to the national economy (as in the case of Bangladesh). As newly
developing economies are potentially highly profitable but risky targets for foreign
investment, it may be of interest to explore the possibility of using this measure to
identify frontier markets having strong interaction with the world market which may
make them relatively safer to invest in. On the other hand, from the point of view of
portfolio diversification for reducing risk, one may use such a measure to identify
economies whose fluctuations have the least in common with the global mode.

Of even more interest for understanding the topological structure of interactions
in the world currency market are the intermediate eigenvalues in between the largest
eigenvalue λ0 and the bulk predicted by random matrix theory. For equities markets,
it has been shown that in many cases the eigenvectors corresponding to these eigen-
values are localized, i.e., a relatively small number of stocks, usually having similar
market capitalization or belonging to the same business sector, contribute signifi-
cantly to these modes [6, 24, 25]. Figure 11.3 shows that the different currencies
contribute to the different eigenvectors corresponding to the three largest interme-
diate eigenvalues very unequally. For example, from the eigenvector corresponding
to λ1, the second largest eigenvalue, we observe that many Latin American curren-
cies such as those of Bolivia and Peru, have a dominant contribution in this mode
with the contribution of European currencies (and a few non-European ones, such
as those of Morocco and Malawi, whose economy is closely connected to that of
Europe) being not only different but actually having the opposite sign. The third
eigenvector shows that contributions from European and Japanese currencies have
a different sign from that of established as well as rapidly developing economies
of America, Asia-Pacific and Africa (such as Canada, Mexico, South Africa, Aus-
tralia, New Zealand, Israel, Singapore and India). The fourth eigenvector has signif-
icant contributions from only three currencies, those of Algeria, Mauritania and Sao
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Tome & Principe. This may reflect existing economic linkages between these coun-
tries that has resulted in such strong coupling in the movements of their currency
exchange rates with respect to the US Dollar.

Despite the above insights, a direct inspection of eigenvector composition for
the intermediate eigenvalues does not very often yield a straightforward interpreta-
tion of the group of currencies dominantly contributing to a particular mode. This
is because apart from information about interactions between currencies, the cross-
correlations are also affected strongly by the global mode corresponding to the over-
all market movement. In addition, there are a large number of modes belonging to
the random bulk which correspond to idiosyncratic fluctuations. Both the global
and random modes can mask significant intra-group correlations. Thus, in order to
identify the topological structure of interactions between the currencies we need to
remove the global mode corresponding to the largest eigenvalue and also filter out
the effect of random noise (contributed by the eigenvalues belonging to the bulk of
the spectral distribution). For this we use the filtering method proposed in Ref. [26]
based on the expansion of a matrix in terms of its eigenvalues λi and the corre-
sponding eigenvectors ui : C = ∑

i λiuiuT
i . This allows the correlation matrix to be

decomposed into three parts, corresponding to the global, group and random com-
ponents:

C = Cglobal +Cgroup +Crandom = λ0uT
0 u0 +

Ng∑

i=1

λiuT
i ui +

N−1∑

i=Ng+1

λiuT
i ui , (11.4)

where, the eigenvalues have been arranged in descending order (the largest labelled
0) and Ng is the number of intermediate eigenvalues. From the empirical data it
may not be obvious what is the value of Ng , as the bulk may differ from the predic-
tions of random matrix theory because of underlying structure induced correlations.
For this reason, we use visual inspection to choose Ng = 6, and verify that small
changes in this value do not alter the results. Our results are robust with respect to
small variations in the estimation of Ng because the error involved is only due to the
eigenvalues closest to the bulk that have the smallest contribution to Cgroup . Fig-
ure 11.4 shows the result of the decomposition of the entire cross-correlation matrix
(the distribution of whose elements is shown in the inset) into the three components.
In contrast to the case of stock-stock correlations in financial markets (e.g., Ref. [6]),
in the currency market the group correlation matrix elements C

group
ij show a signif-

icantly reduced tail and is completely enveloped by the distribution of the global
correlation matrix elements C

global
ij . This indicates that there is a relatively small

fraction of strongly interacting currencies, implying that the segregation into groups
may be weak in this market.

In order to graphically present the interaction structure of the stocks using the
information in the group correlation matrix Cgroup , we first use a method suggested
by Mantegna [27] to transform the correlation between currencies into distances
to produce a connected network in which co-moving currencies are clustered to-
gether. The distance dij between two currencies i and j are calculated from the
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Fig. 11.4 The probability
distribution of the matrix
elements following
decomposition of the
correlation matrix C into
global (Cglobal ), group
(Cgroup) and random effects
(Ceff ects ) with Ng = 7. The
distribution of the
components Cij of the
original cross-correlation
matrix C is shown in the inset
for comparison

Fig. 11.5 The minimum spanning tree connecting the 74 currencies considered here. The node
shapes indicate the type of the underlying economy of the country to which the currency belongs
(circles indicate developed, diamonds indicates emerging and squares indicate frontier markets).
The figure has been drawn using the Pajek software

cross-correlation matrix C, according to dij = √
2(1 − Cij ). These are used to con-

struct a minimum spanning tree, which connects all the N nodes of a network with
N − 1 edges such that the total sum of the distance between every pair of nodes,∑

i,j dij , is minimum. As seen in Fig. 11.5, for the currency market this method
reveals clusters of currencies belonging to countries having similar economic pro-
file and/or belonging to the same geographical region. In particular, note the cluster



214 S. Sinha and U. Kovur

centered around the hub node (i.e., a node having significantly more connections
than the average) corresponding to SGD which consists exclusively of currencies
belonging to developed or emerging economies of the Asia-Pacific region such as
those of Hong Kong, Taiwan, Thailand, Indonesia etc. On the other hand, the cur-
rencies clustered around the hub AUD are related by the geo-economic status of the
corresponding countries of being major non-European players in the world economy
(e.g., Canada, Mexico, Brazil, South Africa and India). It should be noted that the
hubs of these two clusters (SGD and AUD) are directly linked to each other and are
in turn connected to the cluster of European currencies (comprising two hubs cor-
responding to the Euro and the Danish currency) suggesting a close interplay in the
currency movements of all the important countries driving international economic
dynamics. Possibly more intriguing is the occurrence of a much bigger cluster (con-
taining a third of all the currencies considered) arranged around the largest hub in
the network which corresponds to the Peruvian currency. This cluster comprises a
wide assortment of currencies belonging to countries spread geographically around
the world but which share an economic resemblance in that most of them are in
a relative state of underdevelopment compared to the economies considered ear-
lier. It thus appears that the tree network representing the underlying interactions
in the world currency market can be approximately divided into a part comprising
developed or rapidly growing economies (dominated by Europe and Asia-Pacific)
and another part composed of relatively underdeveloped ones (consisting mostly of
Latin American and African countries), with the currency movements of these two
groups being relatively independent of each other. Note that the two parts, in par-
ticular, the hubs corresponding to PEN and DKK, are bridged by the currencies of
Morocco, Botswana and Bangladesh, which therefore have an importance in govern-
ing the collective dynamics of the world economy disproportionate to their intrinsic
economic status. This can potentially explain the strong contribution of these cur-
rencies to the leading eigenvector of the cross-correlation matrix that represents the
global eigenmode which has been discussed earlier in this article.

We have also used an alternative method of graph visualization in order to high-
light any existing groups of currencies having significant mutual interactions. For
the case of stocks in financial markets, the modules obtained by this technique of-
ten represent strongly performing business sectors in the economy [5, 6]. It is thus
plausible that the currency communities identified using this method will represent
important groupings driving the world economy. The binary-valued adjacency ma-
trix A of the network is generated from Cgroup by using a threshold cth such that
Aij = 1 if Csector

ij > cth, Aij = 0 otherwise. An appropriate choice of the threshold
makes apparent any clustering in the network that is implied by the existence of a
tail in the C

group
ij distribution. Figure 11.6 shows the resultant network for the best

choice of cth = c∗ (= 0.133) in terms of creating the largest clusters of interact-
ing currencies (isolated nodes have not been shown). The five clusters differ con-
siderably in size, with two of them corresponding to strongly interacting currency
triads (with the DZD-MRO-STD triad being the currencies having the dominant
contribution to the fourth largest eigenmode identified earlier in Fig. 11.3). The next
largest cluster, having nine currencies, consists of rapidly emerging economies out-
side Europe—including Brazil, India and South Africa of the BRICS group as well
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Fig. 11.6 The network of interactions among currencies generated from the group correlation
matrix Cgroup with threshold c∗ = 0.133. The node shapes indicate the type of the underlying
economy of the country to which the currency belongs (circles indicate developed, diamonds in-
dicates emerging and squares indicate frontier markets). The cluster at the center consists mostly
of countries belonging to the Asia-Pacific region including several members of the ASEAN group,
although it is also connected via the Japanese Yen to a smaller sub-group of European currencies.
The cluster at top right consists of three of the BRICS countries as well as several economies out-
side Europe which are important in the global economy (such as Australia, Canada, Mexico and
Turkey). The cluster at the left comprises mostly Latin American and African currencies—although
note the presence of Bangladesh and Brunei. The two small clusters at the bottom connect triads
of currencies. The figure has been drawn using the Pajek software

as Turkey and Mexico from the “Next Eleven” (N-11) group identified in Ref. [28]
as countries having the potential of becoming some of the largest economies in the
world in the coming years—and a few non-European developed economies such as
Australia and Canada. The even larger cluster comprising eleven currencies is dom-
inated by the countries of Asia-Pacific such as Taiwan and Singapore as well as the
N-11 countries Indonesia, Korea and Philippines, which have either developed or
fast growing economies; however, through the Japanese Yen, these currencies are
also connected to a smaller sub-cluster of European currencies which contains the
Euro apart from the Swiss and Danish currencies (note also the presence of the cur-
rency of Morocco, a north African country but one that has strong economic ties
with Europe). The largest cluster has seventeen densely inter-connected currencies
which are geographically spread around the world, although half of them are from
Latin America or the Caribbean. Possibly this cluster reflects a new wave of fast
growing economies (e.g., it includes two N-11 countries, Bangladesh and Pakistan)
whose development trajectory may affect the global economy in the future as pro-
foundly as the rise of India and China has affected it in the past decades.
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11.4 Conclusions

In this article we have analyzed the topological structure of interactions in the world
currency market by using the spectral properties of the cross-correlation matrix of
exchange rate fluctuations. We see that the eigenvalue distribution is similar to that
seen in equities markets and consists of a bulk approximately matching the predic-
tions of random matrix theory. In addition, there are several deviating eigenvalues
which contain important information about groups of strongly interacting compo-
nents. However, the composition of the leading eigenvector shows a remarkable
distinction in that, unlike the relatively homogeneous nature of the eigenvector for
cross-correlations in the equities market where all stocks contribute almost equally
to the market or global mode, the different currencies can have widely differing
contributions to the global mode for exchange rate cross-correlations. This possibly
reflects the extent to which the fluctuations of a currency is in sync with the overall
market movement and may also be used to measure the influence of a currency in
the world economy. While, as is probably expected, the large components of this
mode mostly belong to currencies of the developed economies of western Europe
as well as the rapidly growing economies of the Asia-Pacific region, there are un-
expectedly strong contributions from currencies outside this group—such as those
of Botswana, Bangladesh and Kazakhstan. This indicates that these economies may
be playing an important role in directing the collective dynamics of the interna-
tional currency market that is not exclusively dependent on their intrinsic economic
strength, but rather the position they occupy in the network of interactions among
the currencies. This is confirmed by the reconstructed network of interactions among
the currencies as a minimum spanning tree. This network shows a segregation be-
tween clusters dominated by developed or rapidly growing economies on the one
hand, and relatively underdeveloped economies on the other. While these two parts
can show dynamics relatively independent of each other, a few currencies—those of
Morocco, Botswana and Bangladesh—act as a bridge between them. Thus the role
of these currencies as vital connecting nodes of the world currency market possi-
bly give them a much more important position than would be expected otherwise.
We have also used an alternative graph representation technique to identify several
groups of strongly interacting currencies. Some of the smaller clusters may be re-
flecting possible economic or other relations between the corresponding countries.
However, the largest cluster comprises a densely interconnected set of currencies
belonging to countries that are geographically spread apart. We speculate that these
could well belong to the next wave of fast emerging economies that will drive the
economic growth of the world in the future. This is significant from the point of
view of applications, as such economies are potentially lucrative targets for foreign
investment and are eagerly sought after by portfolio fund managers. Methods of
identifying early the next fast growth economies assume critical importance in such
a situation. Our analysis of cross-correlations of exchange rate fluctuations suggests
that prominent clusters in the reconstructed networks of interactions in the world
currency market may potentially provide us with such methods.
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Chapter 12
Systemic Risk in Japanese Credit Network

Hideaki Aoyama

Abstract In this work, we study a comprehensive Japanese credit network of banks
and firms with links representing the lending/borrowing relationships between the
banks and the firms. We examine these relationships in order to identify key nodes
in regard to the risk levels that they impose on the bank-firm system. By assigning
some level of distress to a bank and letting the distress propagate to the firms and
banks according to relative node exposures to the distressed node, we find final
states of the distress distribution. We then define DebtRank as the asset-weighted
average of distress distribution and identify the level of threat that the bank poses to
the entire system.

12.1 Introduction

In any economic system, systemic risk, stability of the system as a whole, as well
as evaluation of key nodes, is one of the topmost important issue, especially in view
of the economic crisis, from recent Lehman crisis to other crises that were repeated
over and over and affected huge number of people worldwide.

In approaching issue, it is important to note that economy as a whole is made
of vast number of economic agents who interact in a (large) number of ways. As
ways they choose partners with whom they interact are affected by a large number
of factors, including each agent’s individual situations, even outside the economy,
the network is far from regular. In other words, we are faced with complex network
of heterogeneous interacting economics agents, necessitating simulation approach
with suitable measures for risk.

There are basically two ways to approach to this problem, which are fundamen-
tally different from each other:

• Realistic, but complex approach: One may set up some numbers of equations
for dynamic interactions between agents, whose variables are entries in financial
statements, like saving, borrowings, sales, profit and what not.
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• Abstract, but simple approach: One may define some abstract quantities that re-
flects the most important characterization of each agent and define interactions
among them.

Both approaches have advantages and short comings: The former may be close
to the reality and one can may look into various aspects of the system, like the tax
system, on how they affect the system and what not, while as one tries to construct
more realistic models the numbers of the variables and the numbers of the equations
increase. The parameters in the equations may rise accordingly and one may have
hard time in determining their values and identifying which parameter values are
significant cause of any particular economic phenomena. On the other hand, in the
latter approach, the simple fact that it is abstract may raise discussion on how it
can be important and what is really analyzed in comparison with reality. The merit
of the this approach, however, is that its structure can be made quite simple, being
tailored to the particular phenomena (the type of the systemic risk in that particular
economic network).

In this paper, we take the latter approach, in particular, DebtRank approach,
which was originally proposed in [1] in the banking system in U.S. We first extend
this approach, using the framework we proposed in [2] so that it applies to Japanese
bipartite network of banks and firms linked by lending/borrowing relationship, and
then carry out the calculation of the DebtRank using annual data from 1980 to 2010.

12.2 The Network and Distress Propagation

The network linkage data we use is provided by Nikkei Inc. and contains amount
of the long-term and short-term yearly lending by banks to the firms from 1980 to
2011. The banks and firms are identified by respective Nikkei codes and the names.
All the yearly BS, PL and CS of both banks and firms are given. The number of
firms and banks are plotted in Figs. 12.1 and 12.2.

Some network properties, including Minimum Spanning Tree (MST) of the
banks, were studied in [3], whose main conclusion was that there are two kinds
of major branches, (1) branch made of city (mega) banks, and (2) branches that are
made of banks in the same region, i.e., a branch made of banks in Kansai region, a
branch for banks in Tohoku region, etc. This would have indication as to the spread
of distress in this bi-partite network.

In order to evaluate key nodes of this network, we first assign a maximum distress
to a bank and study the spread of the distress to the whole network. We then quantify
the distress the initial bank causes to the whole network, which is called DebtRank.
Let us explain the actual calculation procedure.

The degree of distress is quantified (in an abstract manner) as variables hβ as-
signed to the bank β and hf assigned to the bank f , each ranging from 0 to 1, 1
being the maximum distress (bankruptcy) and 0 corresponding to a ‘healthy’ state.
Thus, in order to study the importance of a bank β0, we initially assign hβ0 = 1 and
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Fig. 12.1 Number of firms

Fig. 12.2 Number of banks

all the rest of hβ and hf to zero. We then let propagate h from the banks (β) to the
firm f as,

hf → hf +
∑

β

wfβhβ, (12.1)

and from the firms f to the bank β as,

hβ → hβ +
∑

f

wβf hf (12.2)
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Fig. 12.3 Distress
propagation from the bank β

to the firm f

at each time step. The propagation matrix elements w are defined by the following,

wfβ := Cβf∑
β ′ Cβ ′f

, (12.3)

wβf := Cβf∑
f ′ Cβf ′

, (12.4)

where we denote the lending from the bank β to the firm f by Cβf , as in Fig. 12.3.
We also note that we do not allow multiple visit around loops: once distress propa-
gates from the bank β to the firm f and then back to the bank β , it no longer travels
back the firm f , and similarly from the firm to the bank and back to the firm.

12.3 DebtRank

After all the propagation is over (typically after 4 steps), we evaluate the weighted
average of the distress on the banks and on the firms separately:

d
(β0)
b =

∑
β Aβhβ∑

β Aβ

, (12.5)

d
(β0)
f =

∑
f Af hf∑

f Af

, (12.6)

where Aβ is the total asset of the bank β and Af that of the firm f . We remind the
readers that β0 is the bank that was assigned h = 1 initially.

Since the bank β0 has h = 1 and the propagation matrix elements w are in general
small compared to 1 (resulting from the fact that most banks lend to many firms and
most firms borrow from several banks), the resulting weighted average d

(β0)
b is large

compared to d
(β0)
f . Therefore if we directly sum-up those two, the distress on firms

are much less counted in compared to the distress on banks. Therefore here we
choose to define ‘normalized’ sum

d(β0) = d
(β0)
b

E[d(β0)
b ]

+ d
(β0)
f

E[d(β0)
f ]

, (12.7)
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Fig. 12.4 The total asset and the total DebtRank of the banks

where E[·] is the average of the respective quantity. We call this DebtRank of the
bank β0.

Figure 12.4 gives the scatter plot of the bank’s asset Aβ and the total DebtRank
d(β0) and Table 12.1 give the listing of 10 banks with high DebtRanks. The mega
banks, such as Mitsubishi, have large assets and as a result of the weighted average
(12.5) they achieve high total DebtRank, which is natural in the sense that they play
major role in Japanese economy.

On the other hand, it is surprising that below the level of the those mega banks,
the scatter plot flattens, with small regional banks such as Shizuoka achieving high
DebtRank. This demonstrates clearly their importance in the local economy. One
may speculate that they have strong ties with the local firms, which results in large
propagation matrix and thus large DebtRank. One may claim that in spite of large
DebtRank, these regional banks are not that important. But it is not true: Since we
take weighted average in Eqs. (12.5) and (12.6), if those local firms with strong ties
to those regional banks are small, they do not contribute much to the DebtRank. The
fact that the DebtRanks of those regional banks are large means they have strong ties
to the large and important firms in the same region.

This we think is a strong finding: DebtRank provides us with a tool, a measure,
with which we can identify key notes that are sometimes hidden from surface. With
DebtRank we can uncover the important banks other than (trivially important) mega
banks.
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Table 12.1 Top 10
high-DebtRank banks in
2010. Bank category is
1: City Bank, 2: Regional
Bank, 3: 2nd Regional Banks
(which are somewhat close to
Saving and Loan in U.S.), and
7: Credit Association

Bank Total Asset (109 yen) Category DebtRank

Mitsubishi 153,924 1 4.70

Mizuho 71,537 1 3.38

Mizuho Corporate 73,599 1 3.09

Shizuoka Sougo 515 3 2.62

Senshu 2,292 2 2.53

Shinkin Chuou 28,400 7 2.52

Risona 26,050 1 2.47

Chukyo 1,646 3 2.45

Kyoto 7,104 2 2.38

Matsue Sougo 331 3 2.34

12.4 Summary

In this talk we have presented new extension of the DebtRank concept to the bipar-
tite network made of banks and firms. We defined the DebtRank as the normalized
sum of the distress distribution on the two layers of the network. From this we
clearly see not only that mega-banks, having wide influence over all the Japanese
economy, has large influence on economy, but also that there are several regional
banks with large influence, possibly through strong financial relationship with lo-
cal important firms. This conclusion implies the need for appropriate governmental
support on not only the mega banks, but also influential regional banks who are
identified by the high DebtRank.
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Appendix

Here we show the plot of the DebtRank vs. Total Asset in Fig. 12.5 (as in Fig. 12.4)
for the year 1980–2010. Going through these figures, we find that

1. Basic structures, big city banks dominating the high DebtRank region (toward
the upper left) and smaller (mostly regional) banks in the left-bottom region.

2. Existence of regional banks with high DebtRanks almost all the years. Most no-
tables are 2002 where Matsue Sougo bank achieves DebtRank equal to 3.10,
followed by other years after 2000.
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Fig. 12.5 DebtRank vs. Total Asset from 1980–2010

3. Spread of the left-bottom flat region: this tail-part fattens notably from 2000 and
on, which coincides with period right after financial crisis in Japan. The real
cause, whether it is due to shrinkage of credits and some number of mergers of
banks, is not clear at this moment, but is worth looked into in-depth.
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Fig. 12.5 (Continued)
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Fig. 12.5 (Continued)
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Fig. 12.5 (Continued)
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Chapter 13
Pricing of Goods with Bandwagon Properties:
The Curse of Coordination

Mirta B. Gordon, Jean-Pierre Nadal, Denis Phan, and Viktoriya Semeshenko

Abstract In this article, we briefly review the models of social interactions con-
cerning the pricing of goods with Bandwagon properties.

13.1 Introduction

Social interactions play an important role on the collective outcomes. The decision
of leaving a neighborhood, to attend a seminar or a crowded bar, to participate to
collective actions such as strikes and riots, are particular examples. In market sit-
uations like the subscription to a telephone network or the choice of a computer
operating system, the willingness to pay generally depends not only on the indi-
vidual preferences but also on the choice made by others. Long after the pioneering
works of T.C. Schelling [6] and of M. Granovetter [5], there has been a growing eco-
nomic literature that recognizes the influence of social interactions on consumers.
When the utility of a good increases with the number of buyers, there generically
exist multiple equilibria for some range of prices. The Pareto-optimal equilibrium
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corresponds to the high demand solution, but this equilibrium may be not achieved
due to a lack of coordination.

In contrast, the analysis of the supply has deserved much less attention. A par-
ticular insightful paper is Becker’s note [1] attributing to social interactions the fact
that popular restaurants do not increase their prices despite a persistent excess de-
mand. In this paper we present a recent work where we go one step further, address-
ing the pricing issue in a monopoly market for goods with bandwagon effects in its
generality.

13.2 Demand with Multiple Equilibria

We consider a family of models of interacting heterogeneous agents, which are vari-
ants of the “Dying seminar” model of Schelling [6], and can also be seen as directly
related to statistical physics models, the so called Random Field Ising Models [7].
Different versions have been studied in social and economics contexts (see e.g. [2]
for a review).

For the models we consider, a full analytical study can be made. Let us first con-
sider the Demand side. We consider an homogeneous not-divisible good proposed at
a posted price p, and a large population of customers heterogeneous in their idiosyn-
cratic willingness to pay (IWP). In the absence of social influence, each customer
buys a unit of the good if the price is below its IWP. In the presence of social influ-
ence (‘bandwagon effect’), the reservation price of the agent (the maximum price at
which the agent buys) becomes its IWP increased by a quantity proportional to the
fraction of buyers in the population. The proportionality coefficient j measures the
strength of the social influence. The model can be studied for an arbitrary distribu-
tion of the IWPs in the population, in term of the control parameters which are the
mean value h of the IWP distribution, the posted price p and the social influence
strength j (after an appropriate rescaling so that the variance of the IWP distribu-
tion is normalized to unity), and the (qualitative) results are shown to only depend
on the number of maxima of the IWP distribution (see [4] for details). Figure 13.1
illustrates the main collective outcome for a monomodal IWP distribution. It shows
the fraction of buyers η as function of the posted price p. For a social strength below
some threshold value jB , or large enough mean willingness to pay h, the demand
has a standard behaviour, that is the fraction of buyers is a continuously decreasing
function for the price. Above the critical value jB , there exists a large range of p and
h < 0 values where the demand is multi-valued. There is a low η-branch, and a large
η-branch, with a range of price values [pL,pU ] where the two solutions coexist. If
the customers find themselves on the large η branch, one says that the customers
‘coordinate’, whereas in the other case it is said that there is failure of coordination.
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Fig. 13.1 Schematic representation of the demand curve (fraction of buyers vs. price) for different
values of the (normalized) social strength j : (a) classical behaviour at low social influence or high
mean willingness to pay; (b) multiply valued function at large social influence j > jB and low
enough mean willingness to pay

Fig. 13.2 Schematic
representation of the interplay
between supply and demand.
As a function of price, the
figure shows the demand
together with the associated
profit for the seller

13.3 The Curse of Coordination

Consider now the supply side, with a single seller, a monopolist. The seller wants
to post a price which will maximize its profit, Π = Nη(p − c), where N is the
number of customers and c is the cost for producing one unit of good. Again, one
can study the generic properties of the seller’s optimization problem, for an arbitrary
smooth distribution of the IWPs assuming here that this distribution has a single
maximum) [3].

As expected, when the demand is multivalued, there exist two possible prices (an
optimal and a suboptimal one) as pointed out by Becker. However, surprisingly, we
also find (1) that there is a range of parameters where the profit presents two relative
maxima (corresponding to different prices) in a region where the demand is a stan-
dard monotonic function of the price, and (2) that there is a very large range of pa-
rameters where the seller is facing systemic risk when increasing the supply to meet
the large (optimal) demand equilibrium: this strategy may not give the expected
payoff unless the customers coordinate themselves. The later case is illustrated on
Figure 13.2. In addition, as can be seen on the figure, the optimal equilibrium is
found to correspond to a price very close to the critical value at which the large
demand disappears: a small decrease of this critical value—which can result from
a small change in the distribution of consumers preferences—, will thus induce a
sudden large drop in consumer demand. The model suggests possible strategies that
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might be worth to implement in those cases. If the demand is found to be small, that
is on the low η branch, under the assumption that a smooth change of parameter
provoques a smooth change of demand whenever possible, a possible strategy for
the seller is to lower the price below the value pL; then the demand jumps onto the
high-η branch, and the seller can smoothly increase its price towards larger profits.
Alternatively, the risk adverse seller might just want to avoid the domain of multiple
demand solutions, and thus post a price just below the value pL, so that a reasonably
large demand is maintained as being the unique equilibrium at this posted price.
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Chapter 14
Evolution of Econophysics

Kishore C. Dash

Abstract Econophysics is a transdisciplinary research field, in which laws, theo-
ries, methods of physics are applied to economics. The term “econophysics” was
coined by H. Eugene Stanley in 1995 in Kolkata. Before the term ‘Econophysics’
was coined many people from different branches of science had worked and applied
their knowledge in the field of economics leading to evolution of econophysics. We
can divide the evolution of econophysics into three different parts, such as (a) Pre-
Classical era—the period before a systematic Physics started with Newton and much
before the development of social science, (b) Classical era—from Newton dealing
with the jump and bridging the gap(?) between the science and social science and (c)
Modern era—‘Institutionalised econophysics’ after the name ‘Econophysics’ was
coined. I have attempted to bring out the work of philosophers and scientists from
different fields and from different ages, which has lead to the present day ‘Econo-
physics’. Besides, contribution of different institutions, role of journals and books
for development of ‘Econophysics’ has also been discussed. Opinion of people in-
terested in the subject has also been expressed in the form of there replies to some
specific questions.

14.1 Introduction

Formal education started in different parts of the world from ancient times. The writ-
ing systems developed around 3500 BCE The earliest Sumerian versions of the epic
date from as early as the Third Dynasty of Ur (2150–2000 BC) (Dalley 1989:41–
42) [1]. Some of the earliest written records show that formal education, in which
basic communication skills, language, trading customs, agricultural and religious
practices were taught, began in Egypt some times between 3000 and 500 BCE.
In ancient India, during the Vedic period from about 1500 BC to 600 BC, most
education was based on the Veda (hymns, formulas, and incantations, recited or
chanted by priests of a pre-Hindu tradition) and later Hindu texts and scriptures.
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Vedic education included: proper pronunciation and recitation of the Veda, the rules
of sacrifice, grammar and derivation, composition, versification and meter, under-
standing of secrets of nature, reasoning including logic, the sciences, and the skills
necessary for an occupation [2]. Some medical knowledge existed and was taught.
In China, during the Zhou Dynasty (1045 BC to 256 BC), there were five national
schools in the capital city, Pi Yong (an imperial school, located in a central loca-
tion) and four other schools for the aristocrats and nobility, including Shang Xiang.
The schools mainly taught the Six Arts: rites, music, archery, charioteering, calligra-
phy, and mathematics. Hippocrates (c. 460–370 BCE), Socrates (c. 470–399 BCE),
and Aristotle (c. 384–322 BCE) all speculated about what drives human will, mo-
tivation, and learning. According to modern educational theorist Howard Gardner,
“Greek philosophers may have been the first to raise questions about the nature of
matter, living entities, knowledge, will, truth, beauty, and goodness. In recent cen-
turies, however, philosophy has steadily been yielding ground, enthusiastically or
reluctantly, to empirical science” (Gardner, 2000, p. 1).

India was the first country, where formal education started, before it had started
at any other place in the world. Sanskrit is probably the first language from which
many other languages are generated. According to a quote by American Historian
Will Durant (1885–1981)

“India was the motherland of our race and Sanskrit the mother of Europe’s languages. In-
dia was the mother of our philosophy, of much of our mathematics, of ideals embodied
in Christianity. . . of self-government and democracy. In many ways, Mother India is the
mother of us all.” [3–5]

According to the Forbe (July 1987), Sanskrit was considered the most suitable lan-
guage for speech recognition in computer. During the early years of software rev-
olution when western scientists were figuring out a way of constructing protocol
for writing code, they realized that the principles had already been laid down in the
Sanskrit language by Panini some 2500 years ago.

14.1.1 Ancient Universities

The world’s first University was established in Takshasila (1000 BC to 500 AD).
It became well known in 700 BC [6]. The University was one of its kind. Each
teacher was an institution and enjoyed full autonomy in his work. Takshasila became
the center of higher education because several teachers who were recognized as
authorities in their subjects resided there. At that time the education began at home
and the students got their secondary education in the Ashrams. Taksashila thus was
the intellectual capital of Bharat (India). Nalanda University (425–1205 AD) was
another university, the Harvard of its times was one of the greatest achievements
in the field of education. More than 10,500 students studied over 60 subjects at the
Nalanda University which included Brahminical and Buddhist, sacred and secular,
philosophical and practical. Nalanda attracted students not only from parts of India
but also from far off lands. The University was founded by Sakraditya.
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14.1.2 Economics (Arthashastra)

Arthashastra, whose meaning is ‘Science of Economics’ is an extraordinary detailed
manual on statecraft by one of classical India’s greatest minds—Kautilya, Vish-
nugupta or Chanakya (350–283 BC) and is read in Europe even today. Chanakya is
touted as the “Pioneer Economist of India”. Chanakya was the adviser and Prime
Minister of Emperor Chandragupta. Chanakya was a professor at the University of
Takshila (located in present day Pakistan) and was an expert in commerce, warfare,
economics, etc. Artha, literally wealth, is one of the four supreme aims prescribed
by Hindu tradition. It is used in the sense of (a) material well being, (b) Livlihood,
(c) Economically productive activity particularly in agriculture, cattle rearing and
trade, (d) Wealth of Nations.

Therefore, Arthashastra is the science of economics, including starting produc-
tive enterprises, taxation, revenue collection, budget and accounts. Arthashastra con-
tains 15 books which cover numerous topics on economics, administration, govern-
ment etc. It is written mainly in prose but also incorporates 380 shlokas. The first five
books deal with internal administration and the last eight on a state’s relations with
its neighbors [7, 8]. ‘Arthashastra’—Science of Economics & Government existed
even before Kautilya. Unfortunately, all the earlier works are lost and Kautilya’s
Arthashastra is the earliest text that has come down to us. Another useful manual
in ancient times was ‘Oeconomicus’ written by Xenophon (431–355 BC). Aristotle
had also written on many subjects including economics in his book Politics (c.a.
350 BC). In Politics, Book II, Part V, he argued that, ‘Property should be in a cer-
tain sense common, but, as a general rule, private; for, when everyone has a distinct
interest, men will not complain of one another, and they will make more progress,
because everyone will be attending to his own business. . . And further, there is the
greatest pleasure in doing a kindness or service to friends or guests or companions,
which can only be rendered when a man has private property. These advantages are
lost by excessive unification of the state’. In Politics Book I, Aristotle discusses the
general nature of households and market exchanges [8].

14.1.3 Econophysics

Econophysics is a trans-disciplinary research field, in which laws, theories, meth-
ods of physics are applied to economics. The term ‘Econophysics’ was coined by
H. Eugene Stanley in 1995, during statistical physics, Kolkata II, conference. In this
conference, there were many papers on stock and other markets written by physi-
cists. The first meeting on ‘Econophysics’ was organized in 1998 in Budapest by
János Kertész and Imre Kondor. Among the formal courses on Econophysics, that
offered by the Physics Department of the Leiden University, from where the first
Nobel-laureate in economics Jan Tinbergen came, is particularly noteworthy [9].

However before the term ‘Econophysics’ was coined many people from differ-
ent branches of science had worked and applied their knowledge in the field of
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economics leading to evolution of econophysics. We can divide the evolution of
econophysics into three different parts, such as

(a) Pre Classical era
(b) Classical era
(c) Modern era

(a) Pre-Classical era It can be considered as the period when there was no bound-
ary between studies of different subjects. A philosopher was free to think and work
in any field. There was no boundary, no specialization of the fields as on to-day.
There were no sharply defined fields. Essentially, it is the period before a systematic
Physics started with Newton and much before the development of social science
(which started towards third quarter of the eighteenth century).

(b) Classical era It can be considered to exist since Newton. There were many
branches of science after Newton (although mathematical science existed before
physics). Later on Social sciences came into existence with different fields like eco-
nomics, political science, sociology etc. In this period, people were shifting from
their main stream to other branches. For example physical scientists started shifting
from their field to social sciences and vice-versa. It was just like two sides of a river
and there was no bridge. In this section, I shall deal with the jump and bridging the
gap (?) between the science and social science.

(c) Modern era Finally I bring an account of Modern era of econophysics i.e.,
‘Institutionalized econophysics’ after the name ‘Econophysics’ was coined by Prof.
E.H. Stanley, in Kolkata, India, in 1995. In this era, there were bridges on the river
in the form of conferences, publication of articles in journals of physical sciences,
publication of books etc. reducing the gap between physical sciences and social
sciences. It is probably going on a way towards a grand unification of different
forms of sciences.

14.1.3.1 Pre-Classical Era

Thomas Aquinas (1215–1274) According to Thomas Aquinas, an Italian theol-
ogists and writer on economic problems, Just Price, a concept enunciated by him,
is just sufficient to cover the costs of production, including the maintenance of a
worker and his family. He considers that raising prices in response to high demand
was a type of theft.

Duns Scotus (1265–1308) He is a philosopher from Scotland and had taught in
Oxford, Paris and Cologne. He criticized the concept of just price and defended mer-
chants. According to him, if people did not benefit from a transaction, they would
not trade. He argued that by transporting goods and making them available to the
public, merchants are doing a useful social role.
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Nicole Oresme (1320–1382) was a great philosopher before Copernicus, who has
done a lot of work in almost all fields in fourteenth century. He wrote influential
works on economics, mathematics, physics, astronomy, philosophy, and theology;
was Bishop of Lisieux, a translator, a counsellor of most original thinkers of 14th
century. With his Treatise on the origin, nature, law, and alterations of money, one
of the earliest manuscripts devoted to an economic matter, Oresme brings an inter-
esting insight on the medieval conception of money.

Nicolaus Copernicus (1473–1543) During 1516–1521, Copernicus resided at Ol-
sztyn Castle as economic administrator of Warmia, including Olsztyn (Allenstein)
and Pieniȩżno (Mehlsack). While there, he wrote a manuscript, Locationes manso-
rum desertorum (Locations of Deserted Fiefs), with a view to populating those fiefs
with industrious farmers and so bolstering the economy of Warmia. He participated
in discussions in the East Prussian diet about coinage reform in the Prussian coun-
tries; a question that concerned the diet was who had the right to mint coin. In 1526
Copernicus wrote a study on the value of money, Monetae cudendae ratio. In it he
formulated an early iteration of the theory, now called Gresham’s Law, that “bad”
(debased) coinage drives “good” (un-debased) coinage out of circulation-70 years
before Thomas Gresham. He also formulated a version of quantity theory of money.
Copernicus’ recommendations on monetary reform were widely read by leaders of
both Prussia and Poland in their attempts to stabilize currency. [Wikipedia, April
2012]

14.1.3.2 Classical Era

There was no other science before physics started to develop, during the time of
Galileo Galelei (1564–1642). The only science that was somewhat mature was
mathematics, which is an analytical science (based on logic) and not synthetic
(based on observations/ experiments carried out in controlled environments or lab-
oratories). Developments of mathematics were probably a need for astronomical
studies. Astronomical studies had a deep impact in the development of physics, giv-
ing rise to the birth of classical physics, almost single-handedly by Sir Isaac Newton
(1643–1727). Mathematics remained at the core of physics since then. The rest of
main stream sciences, like chemistry, biology etc. all tried to get inspiration from,
utilize, and compare with physics since then. In principle, development in social
sciences started much later. However, people with science background had a jump
to social science during this era as I shall discuss their contribution to the field of
economics, remaining in their core field.

Isaac Newton (1642–1727) His explanation of gravity and his investigations into
the properties of light had a profound impact and he is rightly regarded as one of the
greatest scientists of his or any other generation. At the same time he is considered
as the originator of Gold Standard. He has spent a precious thirty years of his life
contributing to economics, by reforming the coinage of England. He was also the
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master of the mint, who overvalued Gold so that Gold became a standard in Great
Britain. He was warden of the Royal Mint in 1696. In 1699 Isaac Newton became
Master of the Royal Mint; a post which he occupied until his death in 1727. He not
only standardized Britain’s coinage, but he also profited from it nicely. As Master
of the Mint he was paid six hundred pounds a year. Newton received additional
payment for each bag of silver or gold coins produced by the Mint, adding up to one
thousand pounds a year to his salary.

Edmond Halley (1656–1742) Edmond Halley was first to predict the return of
the comet named after him. In 1691 Halley suggested that such a transit of Venus
would be ideal situation to make measurements from all locations of the Earth.
More importantly he laid the actuarial foundations of life assurance. Underwriters
play a big part in the insurance industry. They’re the ones who calculate the risk,
based on statistics, and decide what the premiums will be. In 1693, the astronomer
Edmond Halley created a basis for underwriting life insurance by developing the
first mortality table. He combined the statistical laws of mortality and the principle
of compound interest. However, this table used the same rate for all ages. In 1756,
Joseph Dodson corrected this error and made it possible to scale the premium rate
to age.

James Dodson (1705–1757) James Dodson was a British mathematician, actuary
and innovator in the insurance industry. Actuarial science is the discipline that ap-
plies mathematical and statistical methods to assess risk in the insurance and finance
industries. Actuarial science includes probability, mathematics, statistics, finance,
economics, financial economics, and computer programming. Historically, actuarial
science used deterministic models in the construction of tables and premiums. Dod-
son had formed a new society on a plan of assurance that would be more “equitable”.
He built on the statistical mortality tables developed by Edmund Halley in 1693. His
great works include his work on ‘The Anti-Logarithmic Canon’ (published in 1742)
and ‘The Mathematical Miscellany’. Dodson published ‘The Calculator . . . adapted
to Science, Business, and Pleasure’, which is a large collection of small tables, with
some seven-figure logarithms in 1747. The same year he started the publication of
‘The Mathematical Miscellany,’ whose Vol. iii were published in 1755. It is devoted
to problems relating to annuities, reversions, insurances, leases on lives, etc. [based
on Wikipedia, May, 2012]

Daniel Bernoulli (1687–1759) The expected utility hypothesis is a theory of util-
ity in which “betting preferences” of people with regard to uncertain outcomes
(gambles) are represented by a function of the payouts (whether in money or other
goods), the probabilities of occurrence, risk aversion, and the different utility of the
same payout to people with different assets or personal preferences. This theory has
proved useful to explain some popular choices that seem to contradict the expected
value criterion (which takes into account only the sizes of the payouts and the prob-
abilities of occurrence), such as occurring in the contexts of gambling and insur-
ance. Daniel Bernoulli initiated this theory in 1738. Nicolas Bernoulli described the
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St. Petersburg paradox (involving infinite expected values) in 1713, prompting two
Swiss mathematicians to develop expected utility theory as a solution. The theory
can also more accurately describe more realistic scenarios (where expected values
are finite) than expected value alone. In 1738, Nicolas’ cousin Daniel Bernoulli pub-
lished the canonical 18th century description of this solution in Specimen theoriae
novae de mensura sortis or Exposition of a New Theory on the Measurement of
Risk. Bernoulli’s paper was the first formalization of marginal utility, which has
broad application in economics in addition to expected utility theory. He used this
concept to formalize the idea that the same amount of additional money was less
useful to an already-wealthy person than it would be to a poor person.

Francois Quesnay (1694–1774) Quesnay was a country surgeon, who applied
his ideas of blood circulation to economic circulation. Descriptions of Quesnay’s
economic theory are normally based on the texts which are read from the point of
view of today’s mainstream neoclassical theory. According to Galen blood has a
one-way flow from the heart to the organs where it is consumed. Quesnay based
his argument on the systemic circulation of blood rediscovered by William Harvey
(1578–1657) in 1628, which became conclusive only when Malpighi in 1661 dis-
covered the capillaries. So Quesnay’s argument supposed that blood was recycled,
something incomprehensible within the system of Galen. But there is an interesting
analogy in economic theory: As for Galen, arterial blood from the heart and venous
blood from the liver is consumed by all organs, for Harvey blood is recycled, so
in neoclassical economics commodities flow one-way to be destroyed by producing
personal utility and in classical economics at least the output of “productive” labour
is input to the next economic circle.

Pierre-Simon Laplace (1749–1827) Laplace was a mathematical physicist quite
famous for his ‘Laplace’s demon’ in 1814. According to him “We may regard
the present state of the universe as the effect of its past and the cause of its fu-
ture”. Laplace stressed out, in 1812, that events that might seem random and unpre-
dictable can in fact be predictable. In his ‘Essai Philosophique Surles Probabilities’
he pointed out that events that might seem random & unpredictable such as the num-
ber of letters in the Paris dead letter office can be quite predictable and can be shown
to obey simple power laws. Adolphe Quetelet further amplified the Laplace’s ideas
by studying the existence of patterns in data sets ranging from economic to social
problems.

Lambert Adolphe Jacques Quetelet (1796–1874) Quetelet was a man of both
natural and social science. He was one among the first person in introducing statis-
tical methods to the social sciences. Quetelet was the enunciator of the word ‘so-
cial physics’, named so because he had applied probability and statistics to ‘social
science’. Social phenomena has a lot of complexity. He thought of measuring the
variables it is associated with. He had tried to and aimed at understanding social
phenomena as crime rates, marriage rates or suicide rates using statistical laws and
wanted to explain the values of these variables. It is interesting to note that he de-
scribes his concept of the “average man” (l’homme moyen) who is characterized
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by the mean values of measured variables that follow a normal distribution in his
most influential book Sur l’homme et le développement de ses facultés, ou Essai de
physique sociale, published in 1835. It has also an English translation and is titled
as Treatise on Man, literally its meaning is “On Man and the Development of his
Faculties, or Essays on Social Physics”.

Isidore Auguste Marie François Xavier Comte (1798–1857) Comte had studied
in École Polytechnique in Paris and then at the medical school at Montpellier. Au-
gust Comte was quite a visionary personality, who had predicted biophysics, Geo-
physics, Sociophysics and may be econophysics. He had developed a systematic
classification of all sciences, including inorganic physics (astronomy, earth science
and chemistry) and organic physics (biology and, for the first time, physique so-
ciale, later renamed sociologie). In this way he had almost unified all branches of
science. Comte re-invented “sociologie,” (sociology) and introduced the term as a
neologism, in 1838 (which has introduced by Emmanuel Joseph Sieyès in 1780). In
his work ‘The Course in Positive Philosophy’ and ‘A General View of Positivism
he first described the epistemological perspective of positivism’. There were five
volumes, out of which the first three were devoted to physical sciences already in
existence (mathematics, astronomy, physics, chemistry, biology), and the latter two
emphasized the coming of social science. In this regard, Comte is regarded as the
first philosopher of science. He was also the first to distinguish natural philosophy
from science. According to Comte, the physical sciences had necessarily to arrive
first, before humanity could adequately channel its efforts into the most challenging
and complex “Queen Science” of human society (sociology) itself.

Antoine Augustin Cournot (1801–1877) Cournot was a French philosopher and
mathematician. He earned a doctoral degree in mathematics, with mechanics as his
main thesis supplemented by astronomy. Cournot was mainly a mathematician, but
did have some influence over economics. His theories on monopolies and duopolies
are still famous. In 1838 the book “Researches on the Mathematical Principles of the
Theory of Wealth” was published, in which he used the application of the formulas
and symbols of mathematics in economic analysis. Today many economists believe
this book to be the point of departure for modern economic analysis. Cournot intro-
duced the ideas of functions and probability into economic analysis. He derived the
first formula for the rule of supply and demand as a function of price and in fact was
the first to draw supply and demand curves on a graph, anticipating the work of Al-
fred Marshall by roughly thirty years. Cournot is credited with the “one monopoly
profit” theorem, which says that a monopolist can extract only one premium for be-
ing a monopolist, and getting into complementary markets does not pay. An excep-
tion occurs when the monopolist’s market is price-regulated (Baxter’s Law). Today,
Cournot’s work is recognized in econometrics. In the field of economics he is best
known for his work in the field of oligopoly theory-Cournot competition which is
named after him.

Léon Walras (1834–1910) Walras was studying in the Paris School of Mines,
but grew tired of engineering. He also tried careers as a bank manager, journalist,
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romantic novelist and a clerk at a railway company before turning to economics.
He was a French mathematical economist. He discovered the marginal theory of
value (independently of William Stanley Jevons and Carl Menger) and pioneered
the development of general equilibrium theory. Much like the Fabians, Walras called
for the nationalization of land, believing that land’s value would always increase
and that rents from that land would be sufficient to support the nation without taxes.
In 1874 and 1877 Walras published Elements of Pure Economics, a work that led
him to be considered the father of the general equilibrium theory. The problem that
Walras set out to solve was one presented by Cournot, that even though it could
be demonstrated that prices would equate supply and demand to clear individual
markets, it was unclear that an equilibrium existed for all markets simultaneously.

Jules Regnault (1834–1894) was a French economist who first suggested a mod-
ern theory of stock price changes in Calcul des Chances et Philosophie de la Bourse
(1863) and used a random walk model. He is also one of the first authors who tried
to create a “stock exchange science” based on statistical and probabilistic analysis.
His hypotheses were used by Louis Bachelier.

Clausius (1865–?) An alternative way to study stock market volatility is by apply-
ing concepts of physics which significant literature has already proven to be help-
ful in describing financial and economic phenomena. One measure that can be ap-
plied to describe the nonlinear dynamics of volatility is the concept of entropy. This
concept was originally introduced in 1865 by Clausius to explain the tendency of
temperature, pressure, density and chemical gradients to flatten out and gradually
disappear over time. Based on this, Clausius developed the Second Law of Thermo-
dynamics which postulates that the entropy of an isolated system tends to increase
continuously until it reaches its equilibrium state.

William Stanley Jevons (1835–?) was a British economist and logician. But his
interest in natural science was by no means exhausted throughout his life & he con-
tinued to write occasional papers on scientific subjects, and his intimate knowledge
of the physical sciences greatly contributed to the success of his chief logical work,
The Principles of Science. Jevons arrived quite early in his career at the doctrines
that constituted his most characteristic and original contributions to economics and
logic. The theory of utility became the keynote of his general theory of political
economy. The degree of utility of a commodity is some continuous mathematical
function of the quantity of the commodity available, together with the doctrine that
economics is essentially a mathematical science, took more definite form in a paper
on “A General Mathematical Theory of Political Economy”, written for the British
Association in 1862. Jevons first received general recognition for writing on prac-
tical economic question. A Serious Fall in the Value of Gold (1863) and The Coal
Question (1865) placed him in the front rank as a writer on applied economics and
statistics; and he would be remembered as one of the leading economists of the 19th
century even had his Theory of Political Economy never been written.
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Josiah Willard Gibbs (1839–1903) Gibbs is a great scientist who had a lot of con-
tributions to the field of physics, chemistry, and mathematics. He had been awarded
the first American doctorate in engineering by Yale University. Gibbs is considered
one of the founders of statistical mechanics along with James Clerk Maxwell and
Ludwig Boltzmann. He coined the term “statistical mechanics”, and introduced the
term phase space and used it to define the micro-canonical, canonical, and grand
canonical ensembles, thus obtaining a more general formulation of the statistical
properties of many-particle systems than what had been achieved previously by
Maxwell and Boltzmann. Many scientist, economists and Nobel prize winner were
influenced by Gibbs. Indirectly Gibbs had influence on mathematical economics
and on general equilibrium theory. The thesis of Irving Fisher, who received the
first Ph.D. in economics from Yale in 1891 was supervised by Gibbs. Nobel Laure-
ate Paul Samuelson, the second Nobel prize winner in economics in 1970 explicitly
acknowledged the influence of the classical thermodynamic methods of Gibbs and
described Gibbs as “Yale’s great physicist.”

Alfred Marshall (1842–1924) Alfred Marshall was one of the most influential
economists of his time. His book, Principles of Economics (1890), was the dominant
economic textbook in England for many years. It brings the ideas of supply and
demand, marginal utility, and costs of production into a coherent whole. He is known
as one of the founders of economics. Marshal, after experiencing a mental crisis
abandoned Physics and took a broad approach to social science in which economics
plays an important but limited role. Marshall envisioned dramatic social change
involving the elimination of poverty and a sharp reduction of inequality. He saw
the duty of economics was to improve material conditions. Alfred Marshall was
the first to develop the standard supply and demand graph demonstrating a number
of fundamentals regarding supply and demand including the supply and demand
curves, market equilibrium, the relationship between quantity and price in regards
to supply and demand, law of marginal utility, law diminishing returns, and the ideas
of consumer and producer surpluses.

Vilfredo Pareto (1848–1923) Vilfredo Federico Damaso Pareto was an Italian en-
gineer, sociologist, economist, political scientist and philosopher. He made several
important contributions to economics, particularly in the study of income distribu-
tion and in the analysis of individuals’ choices. He introduced the concept of Pareto
efficiency and helped develop the field of microeconomics. He also was the first to
discover that income follows a Pareto distribution, which is a power law probability
distribution. The Pareto principle was named after him and built on observations of
his such as that 80 % of the land in Italy was owned by 20 % of the population. He
also contributed to the fields of sociology and mathematics. His books look more
like modern economics than most other texts of that day: tables of statistics from
across the world and ages, rows of integral signs and equations, intricate charts and
graphs.
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Louis Bachelier (1870–1946) He is credited with being the first person to model
the stochastic process now called Brownian motion, which was part of his Ph.D.
thesis The Theory of Speculation, (published 1900). His thesis, which discussed the
use of Brownian motion to evaluate stock options, is historically the first paper to
use advanced mathematics in the study of finance. Thus, Bachelier is considered a
pioneer in the study of financial mathematics and stochastic processes. Also notable
is that Bachelier’s work on random walks was more mathematical and predated
Einstein’s celebrated study of Brownian motion by five years.

George Udny Yule (1871–1951) was a British statistician. In the 1920’s Yule
wrote three influential papers on time series analysis, “On the time-correlation prob-
lem” (1921), a critique of the variate difference method, “Why Do We Sometimes
Get Nonsense Correlations between Time-series?” (1926), an investigation of a form
of spurious correlation, and “On a Method of Investigating Periodicities in Disturbed
Series, with Special Reference to Wolfer’s Sunspot Numbers” (1927), which used
an autoregressive model to model the sunspot time series instead of the established
periodogram method of Schuster. In 1925 Yule published the paper “A Mathematical
Theory of Evolution, based on the Conclusions of Dr. J. C. Willis, F.R.S.”, where he
proposes a stochastic process that leads to a distribution with a power-law tail—in
this case, the distribution of species and genera. This was later called the Yule pro-
cess, but is now better known as preferential attachment. Herbert A. Simon dubbed
the resulting distribution the Yule distribution in his honour.

Albert Einstein (1879–1955) His paper on Brownian motion was on the motion
of small particles suspended in a stationary liquid. This paper showed that Brown-
ian movement can be construed as firm evidence that molecules exist. Now-a-days
Brownian motion is relevant in analysis of stock market as it has desirable math-
ematical characteristics, where statistics can be estimated and probabilities can be
calculated. M.F.M. Osborne showed that the logarithms of common-stock prices,
and the value of money, can be regarded as an ensemble of decisions in statisti-
cal equilibrium, and that this ensemble of logarithms of prices, each varying with
time, has a close analogy with the ensemble of coordinates of a large number of
molecules. R.N. Mantegna showed that the daily variations of the price index are
distributed on a ‘Lévy’ stable probability distribution, and that the spectral density
of the price index is close to one expected for a Brownian motion. William Smith
also applied Einstein’s theory using the method of regulated Brownian motion to
analyze the effects of price stabilization schemes on investment when demand is
uncertain.

Meghnad Saha (1893–1956) was an astrophysicist noted for his development in
1920 of the thermal ionization equation. Meghnad Saha (1893–1956), the founder of
the Saha Institute of Nuclear Physics, in Kolkata, and collaborators had already dis-
cussed at length in their text book in the 1950s, the possibility of using a Maxwell-
Boltzmann velocity distribution (a gamma distribution) in an ideal gas to represent
the income distribution in societies: “suppose in a country, the assessing department
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is required to find out the average income per head of the population. They will pro-
ceed somewhat in the similar way . . .(the income distribution) curve will have this
shape because the number of absolute beggars is very small, and the number of mil-
lionaires is also small, while the majority of the population have average income.”
(“Distribution of velocities” in A Treatise on Heat, M.N. Saha and B.N. Srivastava,
Indian Press, Allahabad, 1950; pp. 132–134).

Jan Tinbergen (1903–1994) was a Dutch economist. He was awarded the first
Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel in 1969,
which he shared with Ragnar Frisch for having developed and applied dynamic
models for the analysis of economic processes. Tinbergen studied mathematics and
physics at the University of Leiden under Paul Ehrenfest. During 1929 he earned his
Ph.D. degree at this university with his thesis entitled “Minimum problemen in de
natuurkunde en de economie” (Minimisation problems in Physics and Economics).
Tinbergen became known for his ‘Tinbergen Norm’, which is the principle that, if
the difference between the least and greatest income in a company exceeds a rate of
1:5, that will not help the company and may be counterproductive. In his work on
macroeconomic modeling and economic policy making, Tinbergen classified some
economic quantities as targets and others as instruments. Targets are those macroe-
conomic variables the policy maker wishes to influence, whereas instruments are
the variables that the policy maker can control directly. Tinbergen emphasized that
achieving the desired values of a certain number of targets requires the policy maker
to control an equal number of instruments. Tinbergen’s classification remains influ-
ential today, underlying the theory of monetary policy used by central banks. Many
central banks today regard the inflation rate as their target; the policy instrument
they use to control inflation is the short-term interest rate.

Ettore Majorana (1906–1938) Majorana earned his undergraduate degree in en-
gineering and completed his physics doctorate, both at the University of Rome La
Sapienza. He wrote the paper (probably during his first disappearance) on The value
of statistical laws in Physics and the Social Sciences which was found among his
papers by his brother Luciano, and was published after his disappearance by Gio-
vanni Gentile junior. It is essentially a paper giving analogy between physics and
social science. According to him ‘The deterministic conception of nature holds in
its very being a real motive of weakness because irremediably contradicts the most
evident data of our conscience. G. Sorel tried to compose this dysfunction by dis-
tinguishing between artificial nature and natural nature (this later being a-causal),
although in this way he denied the unity of Science. On the other hand, the formal
analogy between the statistical laws of Physics and those of Social Sciences sup-
ports the opinion that also human actions were submitted to a rigid determinism. It
is important then, that the principles of Quantum Mechanics have lead to a recog-
nition (as well as a certain absence of objectivity in the description of phenomena)
of the statistical character of the ultimate laws of elemental processes. This conclu-
sion has made substantial the analogy between Physics and Social Sciences, and has
produced between them an identity of value and method’ [10].
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Tjalling Charles Koopmans (1910–1985) was the joint winner, with Leonid
Kantorovich, of the 1975 Nobel Memorial Prize in Economic Sciences for his con-
tributions to the field of resource allocation, specifically the theory of optimal use of
resources. He began his university education at the Utrecht University specializing
in mathematics in 1927. Later, in 1930, he switched to theoretical physics. In 1933,
he met Jan Tinbergen, and moved to Amsterdam to study mathematical economics
under him. In addition to mathematical economics, Koopmans extended his explo-
rations to econometrics and statistics. His early works on the Hartree-Fock theory
are associated with the Koopmans’ theorem, which is very well known in quantum
chemistry. His article of deriving the distribution of the serial correlation coefficient
was recognized by John von Neumann.

Paul Anthony Samuelson (1915–2009) was an American economist, and the first
American to win the Nobel Memorial Prize in Economic Sciences. Samuelson was
one of the first economists to generalize and apply mathematical methods developed
for the study of thermodynamics to economics. As a graduate student at Harvard, he
was the sole protégé of the polymath Edwin Bidwell Wilson, who had himself been
a student of Yale physicist Willard Gibbs. Gibbs, the founder of chemical thermo-
dynamics, was also mentor to American economist Irving Fisher and he influenced
them both in their ideas on the equilibrium of economic systems. Samuelson also
published one of the first papers on nonlinear dynamics in economic analysis.

Ilya Prigogine (1917–2003) Prigogine studied chemistry at the Free University
of Brussels. Prigogine is best known for his definition of dissipative structures and
their role in thermodynamic systems far from equilibrium, a discovery that won him
the Nobel Prize in Chemistry in 1977. Dissipative structure theory led to pioneer-
ing research in self-organizing systems, as well as philosophical inquiries into the
formation of complexity on biological entities and the quest for a creative and irre-
versible role of time in the natural sciences. The ‘invisible hand’ mechanism of the
market to evolve towards the ‘most efficient’ (beneficial to all participating agents)
predates by ages the demonstration of ‘self-organization’ mechanism in physics or
chemistry of many-body systems, where each constituent cell follows very local
(space and time) dynamic rules yet the collective system evolves towards a globally
organized pattern. His work is seen by many as a bridge between natural sciences
and social sciences.

Kenneth J. Arrow (1921–) He earned a Bachelor’s degree from the City College
of New York in 1940 in mathematics, where he was a member of Sigma Phi Epsilon.
At Columbia University, he received a Master’s degree in 1941. From 1946 to 1949
he spent his time partly as a graduate student at Columbia and partly as a research
associate at the Cowles Commission for Research in Economics at the University
of Chicago. During that time he also held the rank of Assistant Professor in Eco-
nomics at the University of Chicago. In 1951 he earned his Ph.D. from Columbia.
His first major work, forming his doctoral dissertation at Columbia University was
Social Choice and Individual Values (1951), which brought economics into contact
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with political theory. This gave rise to social choice theory with the introduction
of his “Possibility Theorem”. In the 1950s, Arrow and Gerard Debreu developed
the Arrow-Debreu model of general equilibria. In 1971 Arrow with Frank Hahn co-
authored General Competitive Analysis (1971), which reasserted a theory of general
equilibrium of prices through the economy.

John Forbes Nash, Jr. (1928–) is an American mathematician whose works in
game theory, differential geometry, and partial differential equations have provided
insight into the forces that govern chance and events inside complex systems in
daily life. His theories are used in market economics, computing, evolutionary bi-
ology, artificial intelligence, accounting, politics and military theory. Serving as a
Senior Research Mathematician at Princeton University during the latter part of his
life, he shared the 1994 Nobel Memorial Prize in Economic Sciences with game
theorists Reinhard Selten and John Harsanyi. Nash has developed work on the role
of money in society. Within the framing theorem that people can be so controlled
and motivated by money that they may not be able to reason rationally about it, he
has criticized interest groups that promote quasi-doctrines based on Keynesian eco-
nomics that permit manipulative short-term inflation and debt tactics that ultimately
undermine currencies.

Benoît Mandelbrot (1924–2010) Mandelbrot worked on a wide range of math-
ematical problems, including mathematical physics and quantitative finance, but is
best known as the father of fractal geometry. He coined the term fractal and de-
scribed the Mandelbrot set. Mandelbrot also wrote books and gave lectures aimed at
the general public. From 1949 to 1958 Mandelbrot was a staff member at the Centre
National de la Recherche Scientifique. From 1951 onward, Mandelbrot worked on
problems and published papers not only in mathematics but in applied fields such
as information theory, economics, and fluid dynamics. He became convinced that
two key themes, fat tails and self-similar structure ran through a situation of prob-
lems encountered in those fields. Mandelbrot found that price changes in financial
markets did not follow a Gaussian distribution, but rather Lévy stable distributions
having theoretically infinite variance. He found, for example, that cotton prices fol-
lowed a Lévy stable distribution with parameter α equal to 1.7 rather than 2 as in a
Gaussian distribution. “Stable” distributions have the property that the sum of many
instances of a random variable follows the same distribution but with a larger scale
parameter.

M.F.M. Osborne (1917–2003) According to Professor Joseph L. McCauley (Uni-
versity of Huoston), Osborne first introduced the lognormal stock pricing model in
1958 and should be honored as the first econophysicist. According to Steve Hue,
Prof. of Physics at the University of Oregaon, Osborne’s book “The Stock Market
and Finance from a Physicist’s Viewpoint [Paperback]” is quite interesting as he
explores market micro-structure, market making, supply-demand (bid-ask) in de-
tail, going far beyond the usual idealizations made by economists. M.F.M. Osborne
showed that the logarithms of common-stock prices, and the value of money, can
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be regarded as an ensemble of decisions in statistical equilibrium, and that this en-
semble of logarithms of prices, each varying with time, has a close analogy with the
ensemble of coordinates of a large number of molecules. Using a probability distri-
bution function and the prices of the same random stock choice at random times, he
was able to derive a steady state distribution function, which is precisely the prob-
ability distribution for a particle in Brownian motion. A similar distribution holds
for the value of money, measured approximately by stock market indices. Thus, it
was shown in his paper that prices in the market did vary in a similar fashion to
molecules in Brownian motion.

Wolfgang Weidlich (1931–) Prof. Weidlich obtained Diploma in physics, and
Ph.D. in Physics from free University, Berlin in 1955 and 1957 respectively. Besides
main stream physics he has a number of publications, books and book reviews in
interdisciplinary field basically in socio dynamics. In his book ‘Sociodynamics’—
A Systematic Approach to Mathematical Modeling in the Social Sciences, he has
developed systematic approach to initiating and evaluating mathematical models for
a broad class of collective dynamic social processes in different sectors of society.
He has characterized and compared the hierarchies of complex structures in nature
and society and their methods of description. Then, universally applicable methods
originating in statistical physics, non-linear dynamics and synergetics are combined
with concepts of social science to construct sociodynamics, a general strategy for
designing mathematical models for the quantitative description of a wide range of
collective dynamical phenomena within society. The central equation of sociody-
namics that is the master equation for the probability distribution of socio config-
urations, has been derived by him and the general properties of its solutions has
been treated. The evolution equations for quasi-mean values and variance have been
derived from this equation.

14.1.3.3 Modern Era

From the previous section we observe that people from the fields of Physics, Math-
ematics, Physiology, and Engineering have jumped from their branch, in which they
are formally trained, to Economics. Similarly some of the social scientists have ap-
preciated the works done by the natural scientist in the field of social science and
even worked under them leading to their Ph.D. degree. Again some physical scien-
tists have been awarded Nobel Memorial Prize in economics. So also some social
scientists have been awarded Nobel Prize in Economics working on the principles
of natural sciences. These are the developments which laid a foundation stone for
the new branch, ‘Econophysics’. Even the word ‘Phynance’ has come up which is
a combination of Physics and Finance. In this section I attempt to bring an account
of Modern era of econophysics i.e., ‘institutionalised econophysics’ after the name
‘Econophysics’ was coined by Prof. E.H. Stanley, in Kolkata, India, in 1995. In this
era there were bridges on the river in the form of conferences, publication of ar-
ticles in journals of physical sciences, publication of books etc., which have been
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instrumental for reducing the gap between physical sciences and social sciences. I
will deal with the bridging of natural science with social science extensively in this
section. It is probably going on a way towards a grand unification of different forms
of sciences.

(In this section name of the Scientists/ Professors have been arranged in ascend-
ing alphabetic order of their family name.)

Frederic Abergel Frederic is now working as the Director of the laboratory of
Mathematics Applied to Systems at Ecole Centrale Paris. He was a Consultant for
BNP Paribas, Equity Derivatives from 1996–2001, Senior quant, Equity Deriva-
tives, Calyon from 2001–2004, Head of Paris Analytics, Barclays Capital from
2004–2005, Head of Equity and Commodity Analytics and Systems, NatIxis, from
2005–2007. He specialises in financial modelling, electronic markets, trading, algo-
rithmics and systems, risk management and management. He has a large number of
publications and has 675 numbers of citations. His papers on Econophysics: Empir-
ical facts and agent-based models and Agent-based models & Econophysics review
(Quantitative Finance, 2011) have received many citations.

John Angle John Angle was initially employed as an assistant professor (Univer-
sity of Arizona). Most of his career since has been as a statistical consultant to the
Economic Research Service (ERS) of the U.S. Department of Agriculture in Wash-
ington, DC. He took early retirement from ERS to found The Inequality Process
Institute LLC (TIPI), an organization that does both pure and applied research on
personal income and wealth. At TIPI, he works full time on research related to the
Inequality Process, a particle system model of personal income and wealth distribu-
tion, their dynamics, and the dynamics of income and wealth at the micro-level. In
1990 he published a paper discussing the similarity of the Inequality Process to the
stochastic particle system model of the kinetic theory of gases. Prof. John Angle is
a mathematical sociologist interested in income and wealth phenomena. He has an
outsider’s interest in the natural sciences, particularly statistical physics, and envy
the excitement of discovery among physicists.

Masanao Aoki Aoki is an emeritus professor of Economics at ULCA. His re-
search interests are as follows. New approach to macroeconomic modeling by
means of jump Markov processes by specifying transition rates appropriately in the
backward Chapman-Kolmogorov (master equation); solutions of master equations
to obtain aggregate dynamic equations, and fluctuations by solving the associated
Fokker-Planck equations. Modeling and analysis of multi-agent models to investi-
gate such things as herding behavior and return dynamics, i.e., power-laws in share
or stock markets; Modeling and analysis of multiple country models by state space
time series technique; aggregation of economy with heterogeneous agents by neural
network methods; adaptive learning algorithms. He has many books, reviews and
publications.

Hideaki Aoyama Hideaki Aoyama, is one of Japan’s leading theoretical physi-
cists. Though his interests span many areas, current focus is on econophysics,
the new field that hopes to move economics closer to being an exact science.
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He is currently Professor of Physics in the Graduate School of Science, Kyoto
University. Some of his books are Pareto Firms (2007), Econophysics (2008), all
in Japanese, and a new study forthcoming from the Cambridge University Press,
Econophysics and Corporations, Statistical Life and Death in Complex Business
Networks. According to Aoyama the prospect for the econophysics is very high in
Japan: Econophysics is expected to make huge impact on economics, with its new
ideas and approaches suitable for economic phenomena, imported from various ar-
eas of physics. Prof. Aoyama with others has run four domestic econophysics con-
ferences at Yukawa Institute for Theoretical Physics at Kyoto University in 2003,
2005, 2007 and 2009. Very recently they have analyzed business cycles in Japan us-
ing the indices of industrial production (IIP), an economic indicator which measures
the current conditions of production activities over the nation on a monthly basis.

W. Brian Arthur is an economist credited with influencing and describing the
modern theory of increasing returns. He is an authority on economics in relation
to complexity theory, technology and financial markets. Presently, he is an external
faculty at the Santa Fe Institute, and a Visiting Researcher at the Intelligent Systems
Lab at PARC. He received his B.Sc. in Electrical Engineering at Queens University
Belfast (1966), an M.A. in Operational Research (1967), at Lancaster University,
Lancaster, England, and an M.A. in Mathematics at the University of Michigan
(1969). Arthur received his Ph.D. in Operations Research (1973) and an M.A. in
Economics (1973) from the University of California, Berkeley. Arthur is noted for
his seminal works “studying the impacts of positive feedback or increasing returns in
economies, and how these increasing returns magnify small, random occurrences in
the market place.” These principles are especially significant in technology-specific
industries. Arthur is one of the early economic researchers in the emerging com-
plexity field.

Yuji Aruka Yuji Aruka is a Professor of Economics at Chuo University, Tokyo,
Japan. He is also a visiting professor to many Universities. He has many publica-
tions in physics journals besides economics journals. His academic Interests and
Teachings are: Macroscopic microeconomics and heterogeneous interacting agents
under uncertainty, Social games, Econophysics and their interdisciplinary fields. He
is the Editor of Journal of Economic Interaction and Coordination since 6/2006. He
was the Chairman, IWSEP (International Workshop-on Socio- and Econo-Physics)
2003, Co-Chairman, INSC08 (3rd International Nonlinear Science Conference) at
Chuo University, 2008 and Co-Chairman, CS09 (The 9th Asia-Pacific Complex Sys-
tem Conference) at Chuo University, 2009. He is also a referee of journals like:
Structural Change and Economic Dynamics, Nonlinear Dynamics, Psychology and
Life Sciences (NDPLS), Advances in Complexity etc.

Marcel Ausloos is a Professor of Physics at University of Liège, Belgium, where
his group works on applications of Physics in Economy and Sociology. Besides
field like magnetism, superconductivity, optics, transport properties, phase transi-
tions, fractals, evolution, growth, he has worked on econophysics. His recent papers
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on econophysics are quite interesting like “Econophysics of a religious cult: the
Antoinists in Belgium [1920–2000],” “Benford’s law and Theil transform of finan-
cial data, “Has the world economy reached its globalization limit?” etc. He has also
many articles published in Physica A, Elsevier etc.

Belal E. Baaquie is working as a Professor of Physics in National University of
Singapore since 1984. His research interest includes Quantum Field Theory and
financial modeling based on techniques of quantum theory. Prof. Baaquie is an au-
thority and very much special in quantum finance. He has written a number of books
in this field like ‘Interest Rates and Coupon Bonds in Quantum Finance’, ‘Quantum
Finance: Path Integrals and Hamiltonians for Options and Interest Rates’. In these
books he has analyzed interest rates and coupon bonds using quantum finance. In
the second one he shows how to approach problems related to financial markets
with mathematical techniques that are traditionally used in quantum field theory.
He has written many articles on general topics such as finance, education, history,
economics and philosophy. He has developed many modules for teaching science
to a broad based non-specialist audience. He has published a number of papers on
Physics and Finance.

Fulvio Baldovin Fulvio is a professor at University of Padova in the Dept. of
Physics. His research interests are Statistical Physics, Chemical Physics & Material
Physics and Condensed Matter Physics. He has more than 40 publications with 120
numbers of citations. His publications on econophysics are mainly based on high
frequency financial market dynamics, Noise-induced dynamical phase transitions
in long-range systems, Thermodynamics and dynamics of systems with long-range
interactions etc. His papers have been published in refereed journals like Physical
Review E, Physica A etc.

Jean-Philippe Bouchaud Jean-Philippe Bouchaud graduated from the Ecole
Normale Supérieure in Paris in 1985, where he also obtained his Ph.D. in physics.
He became interested in economics and theoretical finance in 1991. His work
in finance includes extreme risk models, agent based simulations, market micro-
structure and price formation. He has been very critical about the standard con-
cepts and models used in economics and in the financial industry (market efficiency,
Black-Scholes models, etc.). He is a Pioneer of Econophysics. His work covers the
physics of disordered and glassy systems, granular materials, the statistics of price
formation, stock market fluctuations and the modeling of financial risks.

Bikas K. Chakrabarti is a Profesor of Physics in Saha Institute of Nuclear
Physics and Visiting Professor of Economics in Indian Statistical Institute, Kolkata.
The research activity of Chakrabarti is mainly focused on statistical physics, con-
densed matter physics, computational physics, and their application to social sci-
ences; Econophysics and Sociophysics. Among other awards, he received the Shanti
Swarup Bhatnagar prize in 1997. He is the editorial Board member of Physics
journals including “European Physical Journal” (European Physical Society) and
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Economics journals including “Journal of Economic Interaction & Coordination”
(Springer). He is the co-author of many books like ‘Econophysics: An Introduction
(Wiley, 2010)’, ‘Econophysics of Income & Wealth Distributions (Cambridge Univ
Press, 2013)’. He has initiated the Econophys-Kolkata series of Conferences and co-
edited their Proc Volumes (seven so far), all published in New Economic Windows
Series of Springer. He has published many papers in Physics, Economics and inter-
disciplinary journals, including 4 reviews in esteemed Reviews of Modern Physics.
A random saving gas model by the “Kolkata School” (published during 1995–2005),
led by Prof. Chakrabarti could capture both the initial Gamma/lognormal distribu-
tion for the income distribution of poor and middle income groups and also pareto
tail for distribution for the riches.

Anirban Chakraborti Chakraborti is an associate professor at École Centrale
Paris. He is the first Ph.D. in econophysics from India (under supervision of Prof.
Bikas K. Chakrabarti, SINP, Kolkata). He has contributed to several interesting and
important areas, such as, Simulations of agent-based market models and their rela-
tion to different theories in physics such as the kinetic theory of gases, percolation
theory, and theory of self-organization. With co-workers, he has introduced a self-
organizing model where agents trade with a single commodity with the money they
possess, and studied the role of money in the economic market. His research on
statistical physics focuses not only to its application to problems in economic sys-
tems (Econophysics) but also to combinatorial optimization such as the Traveling
Salesman problem and study of “complex systems”. He has also co-authored and
co-edited at least six books so far and has contributed his papers in five books. He
has many reviews and invited articles. He has a number of publications in refereed
journals. He was awarded the Young Scientist Medal of the Indian National Science
Academy (2009) for his pioneering studies on statistical models related to Econo-
physics.

Satya R. Chakravarty is a Professor of Economics at the Indian Statistical In-
stitute, Kolkata. Professor Chakravarty worked as a visiting Professor in many Uni-
versities. Professor Chakravarty’s main areas of interest are Welfare Economics,
Public Economics, Mathematical Finance, Industrial Organization and Game the-
ory. He has over 80 publications in prestigious journals and edited volumes. He has
authored six books and has co-edited two books on Quantitative Economics and
Econophysics. He is a member of the editorial board of “The Journal of Economic
Inequality” and a member of the advisory board for the book series “Economic
Studies in Inequality, Social Exclusion and Well-Being”, Springer-Verlag. Profes-
sor Chakravarty is a Co-Editor of the Economics e-Journal, Kiel Institute for the
World Economy. He has acted as a referee for many journals. He received the Ma-
halanobis Memorial Award of the Indian Econometric Society in 1994. He has acted
as an external adviser to the World Bank, Washington, D.C., and as an adviser to the
National Council of Social Policy Evaluation, Mexico.
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Arnab Chatterjee Arnab Chatterjee was awarded Ph.D. from Jadavpur Univer-
sity on ‘Statistical Physics of Two Model Dynamical Systems: Magnets and Trad-
ing Markets’ under supervision of Prof. Bikas K. Chakrabarti, SINP, Kolkata. He
is working as a Postdoctoral Researcher at BECS, Aalto University, Espoo, Finland
(since Feb. 2012). His main area of research is basically applications of Statisti-
cal Physics to Condensed Matter and Social Sciences. He has worked on Dynamic
transition in Ising Systems, Statistical physics of socio-economic systems (Econo-
physics and Sociophysics), kinetic exchange models with quenched and annealed
disorder etc. He has a number of publications in the field of ‘Econophysics’ in ref-
ereed journals. Besides, along with Bikas Chakrabarti and others, he has edited and
written a number of books, reviews on Econophysics.

Carl Chiarella is a Professor of Quantitative Finance at the University of Tech-
nology, Sydney. He completed his Ph.D. in applied mathematics at the University
of New South Wales in 1969 for a thesis on nuclear reactor theory. He completed
the M. Com (Hons) in economics at the University of New South Wales and took
out a Ph.D. in economics in 1987 from the same University for a thesis in eco-
nomic dynamics. Carl has held visiting appointments at a number of Universities.
He has authored more than 150 research articles in international and national jour-
nals and edited volumes and the author/co-author of 5 books. Carl is a Co-Editor
of the Journal of Economic Dynamics and Control and Associate Editor of Quan-
titative Finance, Studies in Nonlinear Dynamics and Econometrics and European
Journal of Finance.

Morrel Cohen Cohen did his Ph.D. from University of California, Berkeley in
Physics in 1952. He became Professor of Physics, James Frank Institute, University
of Chicago from 1960–1972. From 1968–1972 he became Professor of Theoretical
Biology at University of Chicago and from 1972–1981 he became Louis Block Pro-
fessor of Physics and Theoretical Biology in University of Chicago. Later on from
1981 to 2000 he became a scientist (Senior and Emeritus) at Exxon Research and
Engineering Company. Presently he is a distinguish scientist at Rutgers University.
He is engaged in economics studies since 1975. One of his recent paper ‘Econophys-
ical visualization of Adam Smith’s invisible hand’ with Iddo I. Eliazar published in
Physica A 392 (2013), 813–823 they extend that general connection beyond entropy
to a concept analogous to that of the free energy of statistical thermodynamics and
this extension allows them to introduce into general non-physical contexts the con-
cept of a deterministic or systematic “intrinsic force” which is analogous to a phys-
ical force. This intrinsic force acts on a quantity, a measurable microscopic prop-
erty of a complex system, shaping its macroscopic probability distribution function
(PDF). They have shown how the intrinsic force can be extracted quantitatively up
to a scale factor from the macroscopic PDF when the latter is known, thus solving
the top-down inversion problem.

Rama Cont Rama Cont is the Director of Research, CNRS, Laboratoire de Prob-
abilités et Modeles Aléatoires, Université Paris VI–VII. He did his Ph.D. in theo-
retical physics from University of Paris XI (Orsay) in 1998. His research interests
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are computational finance, stochastic modeling of financial markets, Lévy processes
and applications, interest rate and credit risk modeling, modeling of social networks,
ill posed inverse problems. He has received Europlace Institute Research Grant for
project on “Measuring systemic risk”, 2010, Grand Prix Louis Bachelier (French
Academy of Sciences, SMAI and Natixis Foundation), 2010, Best paper in Mathe-
matical Finance 2006, Europlace Institute of Finance etc. He has written different
books on Quantitative Finance. He has published many papers in refereed journals
on Stochastic analysis, systemic risk, complex networks, limit order markets etc.

Nivedita Deo Nibedita Deo did her M.Sc. from Delhi University and Ph.D. from
Purdue University, USA. Besides statistical physics, her research interest includes
Physics and Society: Econophysics, Applications of Statistical Physics to Eco-
nomics and Finance. She has published many papers on econophysics and is also
supervising Ph.D. students.

Deepak Dhar is a distinguished Professor, Department of Theoretical Physics,
Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai, India. He has
received Young Scientist Award in 1983, S.S. Bhatnagar award in Physical Sciences
1991, J.R. Schrieffer Prize in Condensed Matter Physics 1993 to name a few. He
was an advisory Editor, Physica A (till 2004) Member of the Editorial Board, J. Stat.
Phys. (1993–1996, 1999–2002, 2005–), Phys. Rev. E, (2008–), Pramana (2008), J.
Phys. A, (2010–) and Member, IUPAP Commision on Statistical Physics (1992–
1995). Prof. Dhar is one among the scientists who have contributed to econophysics
and his econophysics works are mainly based on minority games.

J. Doyne Farmer Doyne is an External Professor at the Santa Fe Institute. He has
broad interests in complex systems, and has done research in dynamical systems
theory, time series analysis and theoretical biology. At present his main interest
is in developing quantitative theories for social evolution, in particular for finan-
cial markets (which provide an accurate record of decision making in a complex
environment) and the evolution of technologies (whose performance through time
provides a quantitative record of one component of progress). During the eighties
he worked at Los Alamos National Laboratory, where he was an Oppenheimer Fel-
low, founding the Complex Systems Group in the theoretical division. He began his
career as part of the U.C. Santa Cruz Dynamical Systems Collective, a group of
physics graduate students who did early research in what later came to be called
“chaos theory”. He received his Ph.D. in Physics there in 1981. Doyne Farmer then
took up a post-doctoral appointment at the centre for non-linear studies at the Los
Alamos National Laboratory. In 1991 Farmer gave up his position at Los Alamos
to start Prediction Company, with Norman Packard and Jim McGill. The purpose
of this company was to create automated trading systems for a variety of commod-
ity and securities markets, making predictions of trends using principles of physics,
particularly Chaos Theory.
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Yoshi Fujiwara Fujiwara is a professor at Hyogo University in the graduate
school of simulation studies. His interests are Theoretical Physics, Behavioral Eco-
nomics, Macroeconomics, Complex Systems, Complex Networks. He has 40 publi-
cations in journals like Adv. Operations research, Physical Review E, Philosophy &
Methodology of Economics eJournal. With other co-authors, he has written a book
‘Econophysics and Companies: Statistical life and Death in Complex Business Net-
works’.

Xavier Gabaix Xavier Gabaix is a French economist, currently a Professor of
Finance at the New York University Stern School of Business. He has been listed
among the top 8 young economists in the world by The Economist (Wikipedia).
He has graduated in Mathematics and did his Ph.D. in Economics. His research
interest includes Asset Pricing, Behavioral economics, Origins and consequences
of scaling behavior etc. He has received a number of prizes and awards like La-
grange Prize for research on complex systems, 2012 (CRT Foundation), Rising Star
in Finance Award, 2012 , Fischer Black Prize, Best Young French Economist Prize,
2011, Bernacer Prize for best European economist under 40 working in macroeco-
nomics/finance, Young Scientist Award for Socio- and econophysics, 2006. He has
more than 1900 citations as on December 2011. Besides economics journals, he has
many publications in physics journals also.

Mauro Gallegati is a Professor of Economics at the Polytechnic University of
Marche, Ancona. He has been visiting Professor in several Universities and research
institutes, including Cambridge, Stanford, MIT, Columbia, Santa Fe Institute etc.
Prof. Gallegati is on the editorial board of several economics journals. His research
includes business fluctuations, nonlinear dynamics, models of financial fragility and
heterogeneous interacting agents. Mauro Gallegati is well known from his widely
cited work with Joseph E. Stiglitz, developing theory of asymmetric information and
heterogeneous agents and their applications. He has publications in the top journals
on economic, economic history and history of economic analysis, nonlinear mathe-
matics, applied economics, complexity and econophysics. The research group lead
by Prof. Gallegati studies agent-based models of economic phenomena, with a spe-
cial focus on the performance of heterogeneous, interacting agents, generating ag-
gregate fluctuations, coordination failures and emerging phenomena in general. The
group has extensive knowledge in simulation design and analysis of complex eco-
nomic phenomena.

Diego Garlaschelli Garlaschelli has become the first Professor of Econophysics
from April, 2011 in Lorentz Institute for Theoretical Physics, Leiden, Institute of
Physics, University of Leiden. He did his Ph.D. in Physics, from University of Siena
(Italy), on “Statistical Physics Approach to the Topology and Dynamics of Complex
Networks”. He is the referee of many international journals like Nature, Physical
Review Letters, Physical Review E, New Journal of Physics, EuroPhysics Letters,
European Physical Journal B, Physica A, Journal of Physics A, Advances in Com-
plex Systems, BioMed Central Systems Biology, BioMed Central Bioinformatics,
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Ecological Modelling, Journal of Economic Behavior and Organization, Social Net-
works etc. He has been awarded for best talk presented by young researchers at the
“Second International Conference on Frontier Science ‘a Nonlinear World: the Real
World”’, Pavia (Italy), Collegio Cairoli inSeptember 2003 and at the “First Bonzen-
freies Colloquium on Market Dynamics and Quantitative Economics”, Alessandria
(Italy), in September 2004.

Dirk Helbing Dirk Helbing has formal education in physics and mathematics at
the Gottingen. But he was awarded Ph.D. from Stuttgart University, on modeling
social processes by means of game-theoretical approaches, stochastic methods, and
complex systems theory. Although he is a physicist by training he is a professor
of sociology. He is the head of the ETH Zurich Competence Center “Coping with
Crises in Complex Socio-Economic Systems” and the “Physics of Socio-Economic
Systems” Division of the Deutsche Physikalische Gesellschaft (German Physical
Society). His education in physics, traffic dynamics and optimization helped him
to model and simulate social problems and he is known for the social force model,
for applying to self-organizing phenomena in pedestrian crowds. Helbing is work-
ing on many social models like evolutionary game theory, optimization of urban
and freeway traffic, socio-inspired technology and techno-social systems, disaster
spreading and crisis management etc. He is the Principal Investigator on a project
named Future ICT Knowledge Accelerator and Crisis Relief System, a computing
system working on big datasets, conceived as sort of a crystal ball of the world.

Janusz A. Holyst Janusz is a Full Professor at Faculty of Physics, Warsaw Uni-
versity of Technology where he leads a Center of Excellence of Complex Systems
Research. His current research field includes models of emotions in cyber com-
munities, economic and social networks, collective bankruptcies, collective opin-
ion formation, non-equilibrium statistical physics, cellular automata, self- organized
criticality and phase transitions. He is one of the pioneers in applying physical meth-
ods to economical and social systems and is the Co-Founder and Chairman of the
Section Physics in Economy and Social Sciences of Polish Physical Society. His
list of publications includes over120 papers (www.if.pw.edu.pl/jholyst) in peer re-
viewed journals that have been cited over 800 times. Prof. Holyst has organized or
co-organized 15 international interdisciplinary workshops or conferences on com-
plex systems. He acts as an Associate Editor of European Journal of Physics B,
Guest Editor of Physcia A, Acta Physica Polonica, Acta Physica Polonica B and as
a referee many other physical journals. Prof. Holyst has worked as an adviser on
modelling of marketing and economic processes for American Company Bunge.

Roberto Iglesias is a Professor of the Ph.D. programs in Instituto de Física and
Faculdade de Ciências Econômicas, UFRGS, Porto Alegre, Brasil and Head of the
Applied Theoretical Physics Group, Instituto de Fisica—UFRGS. His research ac-
tivities include Statistical Physics applied to Economics and Social Sciences, game
theory applied to economic systems and in opinion dynamics, Magnetism, Kondo
effect and Strongly Correlated Electron Systems. They develop models of economic
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and social organizations explicitly including the interactions between individuals
and its capacities of learning and changing their behavior, analyzing the emergency
of collective social behaviors. He has many publications on physics applied to eco-
nomics and social sciences, published in Physics A, Revista Mexicana de Física,
The European Physical Journal B, The European Physical Journal—Special Topics,
J. Stat Mech. etc. since 2003.

Giulia Iori Iori did her Ph.D. in physics from Università di Roma la Sapienza
Roma, Italy in 1993 and is now working as a Professor of Economics at City Uni-
versity, London. Her previous appointments were as Reader in applied mathematics
in King’s college, London and lecturer of finance at University of Essex. So her
research interests are quite diversified. She has organized at least three conferences
on Non-linear dynamics and econometrics, complex behavior in economics etc. She
is an Associate Editor for Journal of Economic Behavior and Organization. She has
served as a referee for Physical Review Letters, Physical Review E, Physica A, Eu-
ropean Physical Journal, Journal of Economic Behavior and Organization etc. She
has been awarded as an outstanding referee reward from Journal of Economics Dy-
namic and Control in 2009. She has many book chapters, reviews and papers on
econophysics.

Jun-ichi Inoue Inoue is working in Graduate School of Information Science and
Technology, Hokkaido University, in the department of Complex System Engineer-
ing. His research interests include Statistical Mechanics: Its application to infor-
mation processing, econophysics. He has published a number of papers in refereed
journals such as Physical Review E, Journal of Statistical Mechanics: Theory and
Experiment, Journal of Physics A and in book chapters of different books on Econo-
physics. His works are mainly based on ‘human collective behavior at financial crisis
by using stock-correlation of financial time series’ etc.

Hiroshi Iyetomi Iyetomi is a professor of Econophysics at University of Tokyo, in
the department of economics. He was a professor of faculty of science in physics at
Nigata University, Tokyo and switched to University of Tokyo as Project Professor,
Faculty of Economics, in April 2012. He adopts statistical physics approach to ob-
tain a new insight into macroeconomic phenomena, which are regarded as outcomes
(collective motion) of interactions among a number of heterogeneous agents. Such
an idea is analogous to that of the many-body problem in physics. The economic is-
sues under study include business cycles, systemic risks (contagion of failure), and
group structures in stock markets. Especially, he has so far focused on empirical
analyses. He takes advantage of the random matrix theory to distinguish statisti-
cally meaningful information from random noises in complicated economic data
and also apply network science methodology to elucidate structural and dynamical
properties of large-scale economic systems.

Sanjay Jain Sanjay Jain is a professor in Physics at Delhi University, India. He
is a member of the External Faculty, Santa Fe Institute, Santa Fe, NM, USA (2000–
2006, 2007–2010). He was a visiting professor to Santa Fe Institute, USA, during
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1999 to 2000. He is basically a theoretical physicist having interest in diversified
fields. He has also contribution to the field of ‘Econophysics’. His areas of work are
of complex networks, including chemical, biological, and socio-economic networks,
nonlinear dynamics, random matrix models and quantum chaos besides others. He
has many book chapters published by Wiley-VCH, Weinheim, 2006, The Applica-
tion of Econophysics, edited by H. Takayasu (Springer-Verlag, Tokyo, 2003) etc.

Neil Johnson Neil Fraser Johnson is a Professor at Miami University and heads
the team of Complexity in department of Physics. His research interests include
complexity theory and complex systems, spanning quantum information, econo-
physics, and condensed matter physics. Current projects within his group are Social
Complexity, Biological Complexity, and Physical Complexity. He has two books to
his credit such as “Financial Market Complexity” (Oxford University Press, 2003)
and “Simply Complexity: A Clear Guide to Complexity Theory”. He has about 200
papers published in different journals. He is joint Series Editor for the book series
“Complex Systems and Inter-disciplinary Science” by World Scientific Press. He is
the editor of the Physics Section for the journal “Advances in Complex Systems”
and associate Editor for “Journal of Economic Interaction and Coordination”. He
was one of the founders of CABDS (Complex Agent-Based Dynamical Systems)
which is Oxford University’s interdisciplinary research center in Complexity Sci-
ence.

Taisei Kaizoji Taisei Kaizoji is a professor of Economics at Department of Eco-
nomics and Business, International Christian University, Tokyo. He was also a vis-
iting Professor to University of Kiel, Max-Planck Institute of Economics and ETH
Zurich, Department of Management, Technology, and Economics. He has received
numorous awards like ‘Fellowship of the Japan Society for the Promotion of Sci-
ence for Japanese Junior Scientists, 1993–1994’, ‘1999 Award for a original paper
in Japan Society for Simulation Technology’ etc. He is a member of the editorial
board for Journal of Economic Interaction and Coordination, Springer. He has a
number of publications in physics journals like Physica A, European Physical Jour-
nal B, Progress of Theoretical Physics Supplement etc. besides Economic journals.
His works are based on stock market studies. Many of his papers are co-authored by
physicists.

Kimmo Kaski is a Professor in Computational Engineering and Academy Pro-
fessor in Computational Science and Engineering. He is also the Director of
the Centre of Excellence in Computational Complex Systems Research—COSY,
Aalto University/Helsinki. His research includes Computational Science, Complex
Systems,Complex Networks, Computational Systems Biology, High Performance
Computing. Besides many awards and honors, he has been awarded as Fellow of
the Institute of Physics, UK and granted the title of Chartered Physicist, 1998. He
is in editorial board of the International Journal of Modern Physics: Computers in
Physics and referee for APS journals, IOP journals, IEEE (USA) journals, and IEE
(UK) journals. His research has been covered by many news agencies including his
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works on econophysics, social science like ‘Story on computational social science’
in nature news. He has more than 240 publications and more than 3000 citations.

János Kertész is one of the pioneers of econophysics, complex networks and ap-
plication of fractal geometry in physical problems. He is the director of the Institute
of Physics in Budapest University of Technology and Economics, Budapest, Hun-
gary. The inaugural meeting on Econophysics was organized in 1998 in Budapest by
János Kertész and Imre Kondor. He has a large number of publications in the field
of Econophysics in refereed journals. His main research interest are on Networks,
Econophysics, Traffic models, Pattern formation, Percolation theory, etc. . He got
many fellowship including Humboldt-Fellowship and DAAD-Stipendium. He was
Secretary of the Committee for Statistical Physics of the Hungarian Physical Soci-
ety. He was a Board Member of many scientific communities like Computational
Physics Group of EPS (1996), Statistical and Nonlinear Physics Division of EPS
(1996–). Also he was a Member of the Editorial Boards of Physica A (1990–1994),
Fractals (1993–2003, 2008–), Fluctuation and Noise Letters (2001–2003). He was
awarded Albert Szent-Gyorgyi Award for teaching and scientific achievements by
the Ministry of Culture and Education, “Santa Chiara Prize” for multidisciplinary
teaching (University of Siena), etc.

Alan Kirman Kirman is an economist and was Professor of economics, Warwick
University. He has received Alexander von Humboldt Stiftung prize and Fondation
Urrutia Prize for Economic Diversity. He is referee of many journals like Amer-
ican Economic Review; Economic Journal; Econometrica; Quarterly Journal of
Economics; International Economic Review; etc. He has written and edited around
seventeen books like ‘Introduction to equilibrium analysis’, ‘Complex Economics:
Individual and Collective Rationality’ etc. Kirman is critical of the representative
agent approach in economics as representative agent models simply ignore valid
aggregation concerns; they sometimes commit the so-called fallacy of composi-
tion. According to him the representative agent disagrees with all individuals in
the economy. In his view, the representative agent “deserves a decent burial, as an
approach to economic analysis that is not only primitive, but fundamentally erro-
neous.” A possible alternative to the representative agent approach to economics
could be agent-based simulation models which are capable of dealing with many
heterogeneous agents. [Wikipedia, September 2012]

Imre Kondor Imre Kondor is professor of physics at Eötvös Loránd University,
Budapest. His present research field is the application of the methods of statistical
physics to problems in quantitative finance, and the theoretical aspects of risk man-
agement and of financial regulation. Since 2000 he is the chairman of the Hungarian
Association of Risk Managers. Imre Kondor authored above 90 publications with
more than 700 independent citations. He is an external faculty of Ecole Centrale in
Paris, and core team member of the Parmenides Center for the Study of Thinking
in Munich. From 1998 to 2002, he was the head of the Market Risk Research de-
partment of Raiffeisen Bank in Budapest. His research areas are condensed Bose
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systems, phase transitions and critical phenomena, statistical physics of disordered
systems, spin glasses, application of the methods of statistical physics to problems
in economics and finance, the theory of financial risk. He is a member of the edi-
torial boards of Fractals and Journal of Statistical Mechanics and formerly review
editor of Journal of Banking and Finance.

Reiner Kümmel He Studied mathematics and physics at the Technical Univer-
sity of Darmstadt during 1959–1964 and received degree in physics in 1964. In
1968 he was awarded Ph.D. degree at the University of Frankfurt. He retired from
service in 2004. Since then he is working as a lecturer in “Thermodynamics and
Economics” at the University of Wuerzburg. He is noted for his 2011 book The Sec-
ond Law of Economics: Energy, Entropy, and the Origins of Wealth, in which he
argues that we need to begin to incorporate energy and entropy thinking into eco-
nomics. Kummel’s central thesis, which he calls the second law of economics, is
that wealth creation by energy conversion is accompanied and limited by polluting
emissions that are coupled to entropy production. He argues that we need to begin
teaching students about the basics of economic thermodynamics, if we are to avoid,
the shrinking of natural resources, environmental degradation, and increasing social
tensions. Kummel’s first paper on thermodynamics and economics was the 1977
“Energy and Economic Growth” (“Energie und Wirtschaftswachstum”), followed
up by the 1980 book Growth Dynamics of the Energy-dependent Economy and the
1984 book Energy and Justice (Energie und Gerechtigkeit). In circa 2005, Kum-
mel began teaching a course on “Economics and Thermodynamics”, at University
of Wurzburg, with notes about the energy slave concept, among other topics, soon
thereafter.

Fabrizio Lillo Lillo is a research professor in Mathematical Finance at the Scuola
Normale Superiore di Pisa since January 2011. He is also Assistant Professor of
Physics at Palermo University, (Italy) and Professor at the Santa Fe Institute (USA,
since 2009). He has been awarded the Young Scientist Award for Socio- and Econo-
physics of the German Physical Society in 2007. He is a member of the editorial
board of the physics journal JSTAT. His research activity focuses on financial mar-
ket micro-structure, high frequency finance, portfolio optimization, and application
of network theory to Finance. More recently his research activity includes topics of
systemic risk and application of Complex System Theory to air traffic management.

Thomas Lux Lux is an economist, who has a lot of contributions in the field of
‘Econophysics’. He is ranked among the 1,000 most often quoted economist within
the decade 1990–2000. He has a number of publications in physics journals like
Nature, Physica A, European Journal of Physics B, International Journal of Modern
Physics, Physical Review E etc. He has served as a referee to many journals re-
lated to physics besides economics journals: such as, European Physical Journal B,
Europhysics Letters, Journal of Statistical Mechanics, Journal of Wavelets, Nature,
Physica A, Physica D, Physical Review E, Physical Review Letters, Proceedings of
the National Academy of Sciences of the U.S.A., Quantitative Finance, Statistical
Papers, Review of Modern Physics, Science etc.
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Subhrangsu Sekhar Manna Manna did his M.Sc. (1978–1980) from Science
College, Calcutta University and Ph.D. from Saha Institute of Nuclear Physics in
1987. He had joined IIT, Mumbai in 1992 and worked up to 1997, from 1998 he is a
faculty at S.N. Bose National Centre for Basic Sciences, Kolkata. His Main areas of
work are Critical Phenomena in Complex Systems, Static and Dynamic Properties
of Complex Networks, Self-organized Non-equilibrium critical Systems. He is the
originator of the “Manna Model” of stochastic Self-Organized Criticality & also of
the “Manna Universality Class” for dynamic critical behavior and is known for the
“Chatterjee-Chakrabarti-Manna model of wealth distributions”. He has published a
large number of papers basically on complex networks.

Rosario Mantegna Rosario N. Mantegna is, today, recognized as one of the lead-
ing pioneer in the field of econophysics. He started to work in the area of the anal-
ysis and modeling of social and economic systems with tools and concepts of sta-
tistical physics as early as in 1990. He published the first econophysics paper in a
physics journal in 1991. He also co-authored the first econophysics paper in Nature,
in 1995. In 1999 he published the first book on econophysics. Just after Mantegna
earned his tenured position in 1999, he founded the Observatory of Complex Sys-
tems (http://ocs.unipa.it), a research group of the Dipartimento di Fisica of Palermo
University. Within econophysics he has investigated a wide range of topics. Exam-
ples are the following: (i) the statistical regularities of univariate time dynamics of
high frequency price returns, (ii) the hierarchical structure and correlation based
networks of a portfolio of stocks, (iii) the cross sectional analysis of price returns,
(iv) the presence of an Omori law during the periods of time just after a financial
crash, (v) the micro-structure aspect of the price impact and of the order book dy-
namics and (vi) the empirical detection of resulting strategies in the trading activity
of market members and individual investors acting in a financial market.

Matteo Marsili Matteo Marasili, Abdus Salam ICTP, Triste is basically a sta-
tistical physicist at Abdus Salam International Centre for Theoretical Physics. His
research interest includes Statistical physics, non-equilibrium critical phenomena,
disordered systems, probability Interests theory and stochastic processes, complex
networks, interdisciplinary applications of statistical physics, including modeling
socio-economic phenomena and financial markets, game theory, and biological net-
works. His work (with D. Challet & Y. C. Zhang) on Minority Games (Oxford Univ.
Press, 2004) has been a classic in the field.

Sergei S. Maslov Sergei S. Maslov is a group leader at Biology Department,
Brookhaven National Laboratory located on Long Island in New York state. Ear-
lier, he was in Condensed Matter Physics and Materials Science Department. He
has empirically studied the cross-correlations of stock indices in a diverse set of 37
countries all over the world and found that the more globalized is the economy of
a given country, the stronger it is coupled to the world stock index. He came up
with a simple model of a limit-order driven market, where agents with equal prob-
ability trade stock at the market price or place limit orders, i.e. instructions to sell
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(buy) if stock price rises above (falls below) a predetermined price level. In spite of
a minimalistic nature of this model (no strategies, or trader psychology etc.). He is
in editorial board of Biology Direct and reviewer in the NIH Panel for Technology
Centers for Networks and Pathways. He has many publications with more than 2600
citations.

Jaume Masoliver is a Professor in the Department of Physics at Barcelona Uni-
versity, Spain. His interest of research is mainly application of statistical physics in
stock market studies. He has a number of papers published in many refereed jour-
nals like Applied Mathematical Finance, Taylor and Francis Journals, The European
Physical Journal B, Quantitative Finance, Journal of Economic Behavior & Orga-
nization etc. His papers are mainly based on Scaling properties and universality of
first-passage time probabilities in financial markets, First-passage and risk evalua-
tion under stochastic volatility, multifractality in financial markets, financial time
series etc. Five papers by this author were announced in NEP (New Economic Pa-
pers) sponsored by the School of Economics and Finance of Victoria University of
Wellington. He has more than 104 publications with 211 citations.

Tiziana Di Matteo Tiziana is a Reader in Financial Mathematics in King’s Col-
lege, London. She did her Ph.D. in Physics in 1999 from Dipartimento di Fisica,
Università di Salerno, Italy. She was Associate Professor (Level D), Applied Math-
ematics at Research School of Physical Sciences, Australian National University,
Canberra, Australia. Her research interests are Econophysics, Application of meth-
ods from Statistical Physics to Finance, Complex Systems, Science of Networks
etc. In Econophysics she has publications in refereed journals like New Journal of
Physics, Physica A, Journal of Banking & Finance, European Physical Journal B,
Quantitative Finance etc. basically on financial market studies.

Joseph McCauley McCauley is a Professor of Physics in department of Physics at
Houston University and at the same time he also teaches econophysics. His present
research interests are on Econophysics and complexity: economics and finance like
Empirically based modeling of normal, liquid finance markets. He has written many
books like Dynamics of Markets: the new financial economics (2009), Dynamics
of Markets, Cambridge (2004) etc. Besides he has many papers in econophysics
published in different journals like Physica A.

Jürgen Mimkes Mimkes is a professor at the physics department at the University
of Paderborn, Germany. He has been dealing with the subject of the statistics and
thermodynamics of social and economic systems since 1990. He calls his present
field as “physical economics”, especially macro and micro economics, and finance.
He has many works related to sociological thermodynamics and economic thermo-
dynamics like “Society as a Many Particle System” (1997), “Chemistry of the Social
Bond” (2005), “Econophysics and Sociophysics” (multi authored, 2006), and many
others. In 1994, Mimkes started to bring out an analogy of segregation in popula-
tions to the miscibility gap in solutions and alloys. His first paper was the “Binary
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Alloys as a Model for a Multicultural Society” in the Journal of Thermal Analysis
in 1995 in this area. In 1996, Mimkes authored a 110-page article on “Politics and
Thermodynamics” also. According to him economic properties may be calculated
in physical terms such as capital to energy, production to physical work, and GDP
per capita to temperature, and production function to entropy.

Manipuspak Mitra Manipuspak Mitra is a professor of Economics at Indian In-
stitute of Statistics, Kolkata. Besides economics he works on econophysics and
published some papers in physics journals and book chapters on econophysics.
His paper ‘Statistics of the Kolkata Paise Restaurant problem’ jointly with Asim
Ghosh, Arnab Chatterjee and Bikas K. Chakrabarti with focus on Statistical Physics
Modelling in Economics and Finance, was published in New Journal of Physics
12(075033) (2010). ‘The Kolkata Paise Restaurant problem and resource utiliza-
tion’ jointly with Anindya Sundar Chakrabarti, Bikas K. Chakrabarti and Arnab
Chatterjee was published in Physica A 388(12), 2420–2426 (2009).

Jean-Pierre Nadal Nadal is Director of Research at CNRS and also works at
CAMS(Centre of Analysis of Mathematical Sociology) and at Ecole Normale Su-
perier, France. His main research interests are Statistical Physics of Information
Processing in Biological and Social Networks and Computational neuroscience—
Cognitive science—Complex systems in social sciences. He has many papers on
econophysics published in physics journals like Phys. Rev. E, The European Phys-
ical Journal B, Condensed Matter and Complex Systems (EPJB), Physical Review
Letters and other journals like quantitative finance. His papers are based on housing
market dynamics, demand and supply in markets, electoral behavior among urban
voters, Computation in Neural Systems network etc. His papers have 3706 number
of citations. He has edited many books published by springer.

Prasanta K. Panigrahi Prasanta K. Panigrahi completed his M.Sc. from Raven-
shaw College, Cuttack and Ph.D. from University of Rochester, 1988. He is now
working as Professor of physics at Indian Institute of Science Education and Re-
search, Kolkata, since 2007. He is a referee for Physical Review Letters, Physical
Review B, Journal of Physics, Pattern Recognition Letters, Physics Letter A, Pra-
mana, European Physics Letters. Besides Field Theory he has also many publica-
tions in Econophysics basically on wavelet transforms and analysis of stock markets.
He has published such papers in J. Quantitative Economics, Resonance, Phys. Rev.
E, Pramana, Physica A, J. Phys. A: Math. Theory etc.

Lorenzo Pareschi Lorenzo Pareschi is a professor and chair of Department of
Mathematics and Computer Science, University of Ferrara. He did his Ph.D. in
Mathematics [1991–1995] from University of Bologna, Italy. His research inter-
est includes traffic flows, econophysics, sociology, bio-mathematics, besides math-
ematics and and plasma physics. He has published many papers basically on Kinetic
models for socio-economic dynamics of speculative markets and game theory in dif-
ferent refereed journals.
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Marco Patriarca Partriarca did his Ph.D. in Physics at University of Perugia in
1993. Now he is a Professor at Instituto de Física Interdisciplinary Sistemas Com-
plejos IFISC (CSIC-UIB) Campus Universitat de les Illes Balears. His current re-
search activity mainly concerns Complex Systems and Statistical Mechanics, in
particular neuronal systems, social dynamics, diffusion problems etc. His research
activity focuses on some topics in the fields like Brownian motion and Complex
Systems. He has published many papers in refereed journals like Physica A, Quan-
titative Finance, EPJ B etc. Besides he has diversified research interests such as
Natural Sciences and Engineering, Physics and Technical Physics (diffusional pro-
cesses, complex systems, material science, computational physics).

Josep Perello Josep Perello is a faculty member of University of Barcelona. His
research interests include econophysics besides science communication and oth-
ers. He has worked basically on stochastic volatility, risk analysis in hedge funds,
stylised fact, Random walk formalism in financial markets, applications of thermo-
dynamics to financial markets etc. He has published 47 papers in refereed journals.

Vasiliki Plerou Vasiliki Plerou was graduated from Boston University in 1996 and
also received her Ph.D. in Physics in 2001 (thesis advisor H. Eugene Stanley). She is
the recipient of 2003 young scientist award for socio- and Econophysics from DGP,
AKSOE. Dr. Plerou has worked on a wide range of phenomenological problems in
Econophysics. She contributed to the discovery of the inverse cubic power-law for
the stock return distribution and the half-cubic law of volumes, which have found
to be universal patterns of financial fluctuations. Dr. Plerou was one of the first
researchers who applied random matrix theory, a powerful tool in diverse fields
of theoretical physics, to investigating the correlation between stock returns. She
was among the first to recognize that the spectrum of the correlation matrix can be
separated into two categories describing random fluctuations and collective modes.
Furthermore, Dr. Plerou made successful attempts to apply these ideas and results to
the more pragmatic problem of portfolio optimization. Her empirical findings have
added to the touchstones of modeling the stock market and this way have initiated a
lot of new research during the past years, to the advantage of the field of Socio- and
Econophysics. She has 92 publications many refereed journals and 1952 citations.

Tobias Preis Tobias Preis did his M.Sc. and Ph.D. in physics from Johannes
Gutenberg University of Mainz. Tobias Preis is an Associate Professor of Behav-
ioral Science and Finance at Warwick Business School. He is a computational social
scientist focusing on analysis and prediction of social and financial complexity. He
is the founder of Artemis Capital Asset Management GmbH, a proprietary trading
firm based in Germany in 2007. Preis has quantified and modeled financial mar-
ket fluctuations. His team has discovered a link between the number of Internet
searches for company names and transaction volumes of the corresponding stocks
on a weekly time scale. They have found that a relationship potentially exists be-
tween the economic success of a country and the information-seeking behavior of
its citizens online. He has many published papers in refereed journals on econo-
physics and his works have a lot of media attentions. He is an academic editor of
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PLoS ONE. He was the general secretary of “Physics of Socio-Economic Systems”
Division of the German Physical Society (DPG) from 2009–2011.

Sidney Redner Sidney Redner is a professor of physics and department chair
of physics at Boston University. His research interests are Condensed matter and
statistical physics; stochastic processes; first-passage processes; chemical kinetics;
transport in disordered media; percolation theory and disordered systems; dynam-
ics of social systems; structure of complex networks. He has 237 publications in
refereed journals and book chapters, one monograph, “A Guide to First-Passage
Processes” (Cambridge University Press, 2001). He was/is in the editorial board of
Journal of Statistical Physics, 2000–2002, 2008–, J. Informetrics, 2006–, European
Physical Journal B, 2009–2011, J. Stat. Mech., 2004–2011, Journal of Physics A,
2005–2009, American Journal of Physics, 2005–2007, Physical Review E, 1992–
1997. Also he was in the advisory Panel of Institute of Physics Publishing during
2001–2009 and Chair of APS Topical Group in Statistical and Nonlinear Physics
during 2008–2009.

Peter Richmond Peter is a theoretical physicist and has wide experience of re-
search, technology, innovation and management within both academic and com-
mercial environments. He has been Visiting Professor in Trinity College Dublin,
Ireland since 1998. During the 1980’s he built a new department concerned with the
strategic science underpinning food processing at the Institute of Food Research at
Norwich. He has published over 120 papers in the technical literature. He is an Ex-
ecutive Editor of the Journal for the Science of Food and Agriculture. He has turned
his attention to the new area of econophysics and has published a number of pa-
pers on Pareto-Zipf Law in Non-stationary Economies, Heterogeneous Interacting
Agents, Power Laws are disguised Boltzmann Laws etc.

Bertrand M. Roehner Roehner is a professor of Physics at LPTHE, University
of Paris. His Research interests are Speculative trading, comparative history, mar-
ket integration, social bonds, suicide, intermarriage etc. He is the author of sev-
eral books like Theory of Markets (published by Springer-Verlag), Hidden collec-
tive factors by speculative trading (published by Springer), Patterns of speculation
(published by Cambridge University Press) etc. and about 60 papers in various sci-
entific journals in the fields of economics, sociology and physics. He is a guest
faculty at many Universities like the Institute of Economics (Copenhagen, Septem-
ber 1996), the Harvard Department of Economics (Summer 1994, Fall 1998), the
Santa Fe Institute (2002), the Harvard Department of Sociology (Spring 2002) etc.
He is the member of the editorial board of one of the main websites devoted to
econophysics: www.unifr.ch/econophysics, referee for various economic and phys-
ical journals; e.g. Explorations in Economic History, Journal of Development Eco-
nomics, International Regional Science Review, Journal of Economic Behavior and
Physica A.

www.unifr.ch/econophysics
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Barkley Rosser Barkley Rosser is a Professor of Economics at James Madison
University in Harrisonburg, Virginia since 1988. His areas of interest are nonlin-
ear economic dynamics including applications in economics of catastrophe theory,
chaos theory and complexity theory. He introduced the concepts of chaotic bubbles,
chaotic hysteresis, and econochemistry into economic discourse. He is the pioneer
of providing a mathematical model of the period of financial distress in a specula-
tive bubble (1991, op. cit., Chap. 5). He has published many books and about 150
journal articles, book chapters etc. He was an Editor of the Journal of Economic
Behavior and Organization, from 2001–2010 and become Co-editor since 1/1/11.

Robert Savit Robert Savit is a Professor of Physics at Michigan University. His
current research interests are in the area of nonlinear and adaptive systems. His
group examines two types of issues. First, they study the nature of adaptive compe-
tition for scarce resources. They examine the deep phase structure that such systems
exhibit, and explore the application of their insights to problems in group decision
making in business, in social systems, resource allocation problems, and evolution-
ary systems. Professor Savit also engages in a series of experiments with groups
of human subjects that study the problem of resource allocation, competition and
emergent coordination. Second, his research group considers data analysis problems
of nonlinear systems. Using new techniques developed in the context of dynamical
systems, Professor Savit’s group studies a number of intrinsically nonlinear systems.

Enrico Scalas Scalas is an External Scientific Member of BCAM—Basque Cen-
ter for Applied Mathematics, Spain. According to him the evidence-based financial
mathematics is the core of contemporary financial mathematics consisting of Black-
Scholes theory for derivative valuation and of Markowitz method for portfolio se-
lection. In both cases, theoretical assumptions were falsified by empirical analyses.
The problem of finding suitable stochastic models for price fluctuations in financial
markets is still open and the object of active research. It can be partially solved by
means of interdisciplinary work involving experimental and behavioral economics
as well as probability theory and statistics. He has published many papers on econo-
physics basically on financial time series and stylized facts.

Parongama Sen Sen, a Kolkata based statistical physicist did her M.Sc. from Cal-
cutta University in 1986 and Ph.D. from Saha Institute of Nuclear Physics in 1993.
Now she is working in Calcutta University as an Associate professor. She has got the
APS-IUSSTF Professorship Award (2012–2013) for complex system research. Her
research interests include Phase transitions and critical phenomena in magnetic sys-
tems, networks, quantum systems, percolation etc. Dynamical phenomena in com-
plex physical and social systems. She has a number of publications in refereed jour-
nals mainly based on Ising model and kinetic model of wealth exchange. She has
published a book ‘Quantum Ising Phases and Transitions in Transverse Ising mod-
els, Lecture Notes in Physics with B. K. Chakrabarti and A. Dutta, Springer-Verlag,
1996 and a book entitled ‘Sociophysics: An introduction’, with B. K. Chakrabarti,
Oxford Univ. Press (2013; in press).
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Ingve Simonsen Simonsen is a professor of physics at NTNU in Trondheim, Nor-
way. His research interest includes topics of statistical physics, like disorder sys-
tems, stochastic optics, and fractals; computational physics; complex systems, in-
cluding econo-physics and the study of complex networks. Within complex systems,
his interests have mainly been focused on random networks (e.g. the power trans-
mission grid) and the study and modeling of economical systems (econo-physics).
A primary concern has been how the local properties of a complex network influ-
ence the global structural and dynamical transport properties of the system. In the
field of econophysics and sociophysics he has experience from both the analysis of
empirical data and the construction and study of (toy) models used to identify and
analyze specific mechanisms.

Sitabhra Sinha is a Professor in the Physics group of the Institute of Mathe-
matical Sciences (IMSc) at Chennai (formerly known as Madras), and adjunct fac-
ulty of the National Institute of Advanced Studies (NIAS), Bangalore. His areas
of research fall broadly under complex systems, nonlinear dynamics and theoreti-
cal & computational biophysics. He is working on Physics of social and economic
phenomena—genesis of scaling behavior (e.g., Pareto law of wealth and income dis-
tribution, “inverse cubic law” of stock price fluctuations in financial markets, etc.) in
economics—emergence of popularity through self-organization in a population of
agents—phase transitions in collective (or social) choice relevant to financial mar-
kets, movie revenue distribution and electoral behavior. He organizes Econophysics
Conferences at IMSc also. He is the co-author of many books like ‘Econophysics:
An Introduction (Wiley, 2010)’.

Didier Sornette Didier Sornette is Professor on the Chair of Entrepreneurial Risks
at Swiss Federal Institute of Technology Zurich (ETH Zurich). He is also a professor
of the Swiss Finance Institute, a professor associated with both the department of
Physics and the department of Earth Sciences at ETH Zurich, an Adjunct Professor
of Geophysics at IGPP and ESS at UCLA. He was previously jointly a Professor of
Geophysics at UCLA, Los Angeles California and a Research Director on the theory
and prediction of complex systems at the French National Centre for Scientific Re-
search. His present Fields of research interest include Social sciences, finance and
economics: decision theory, behavioral decision making, societal risks, bubbles and
crashes, large and extreme risks, theory of derivatives, portfolio optimization, trad-
ing strategies, insurance, macro-economics, agent-based models, and market micro-
structures. Physics of complex systems and pattern formation in spatio-temporal
structures, dynamical system theory, pattern recognition, self-organized criticality,
prediction of complex systems, time series analysis; Rupture in random media, the-
ory of earthquakes and of tectonic deformations, rupture and earthquake prediction.

Wataru Souma Wataru is an associate Professor at Nihon University. Earlier he
was also a faculty of integrated human studies of Kyoto University, Japan. His re-
search interest includes Chemical Physics & Material Physics, Statistical Physics,
Mathematical & Quantitative Methods. He has a number of publications on econo-
physics basically on wealth distribution in societies, business cycle, distribution of
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labour productivity etc. He has more than 60 publications with 331 citations. His
papers have been published in journals like Quantitative Finance, Journal of The
Japanese and International Economies, Physical Review E, Applied Financial Eco-
nomics etc. He has written some reviews in Econophysics, agent based models and
a book ‘Econophysics and Companies: Statistical Life and Death in Complex Busi-
ness Networks’.

H. Eugene Stanley Gene Stanley is University Professor and Director of the Cen-
ter for Polymer Studies at Boston University. Stanley works in collaboration with
students and colleagues attempting to understand puzzles of interdisciplinary sci-
ence. His main current focus is to understand the anomalous behavior of liquid
water in bulk, nano-confined, and biological environments. He has also worked on
a range of other topics in complex systems, such as quantifying correlations among
the constituents of the Alzheimer brain, and quantifying fluctuations in non-coding
and coding DNA sequences, inter beat intervals of the healthy and diseased heart.
He has published the first book on Econophysics co-authorized with R.N. Man-
tegna ‘Introduction to Econophysics: Correlations & Complexity in Finance’ (Cam-
bridge University Press, Cambridge, 2000). This book has also been translated into
Japanese, Polish, Chinese, Indonesian and Russian languages and it has more than
1221 citations. He has a large number of publications and citations. Besides he has
many books and published many papers on econophysics in refereed physics jour-
nals with Mantegna, Gopikrishanan and others. He is an editor of many journals
like Physica A, Graduate Texts in Physics, Springer-Verlag (Editor in Chief), Quan-
titative Finance, Int. J. Theor. & Appl. Finance, Finance and Economics etc. Two
of his research articles are reproduced in The Physical Review: The First Hundred
Years. A Selection of Seminal Papers and Commentaries, edited by H.H. Stroke
(AIP Press, New York, 1995).

Dietrich Stauffer is a German theoretical physicist noted for his application of
statistical physics and in particular computational physics in the areas of econo-
physics (since 1998) and sociophysics (since 2000). In circa 1995, Stauffer read
American physicist Eugene Stanley’s papers on econophysics, and when in 1997
Cont and Bouchaud applied percolation theory (Stauffer’s specialty) to stock mar-
ket fluctuations, he jumped onto that subject. His 1999 book Evolution, Money, War
and Computers, co-written with S. Moss de Oliveira and P.M.C. de Oliveira, outlines
the non-traditional applications (evolution, money and war, etc.) of computational
statistical physics. In 2003, international conference Unconventional Applications
of Statistical Physics: Physics of Random Networks, Econophysics, and Models of
Biophysics and Sociophysics was organized in honor of the 60th birthday of Stauf-
fer. Stauffer’s 2011 article “Statistical Physics for Humanities: A Tutorial” gives a
bit of historical overview, contains sections such as “humans are neither spins nor
atoms”, “schelling model for social segregation”, on the work of Thomas Schelling,
extols on an Ising model of the physics of human behavior or choice, and concludes
with a suggested outline to use Fortran to build computer simulations for a type of
human statistical physics.
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Attilio Stella Attilio Stella is a professor of Physics at University of Padova. He
did his Ph.D. at the Katholieke Universiteit Leuven, Belgium. Besides he was in
many other Universities in different positions. He is the author of about 110 papers
in international refereed journals, and about 20 contributions to proceedings and
books. His research activity is in various fields of statistical physics.

Hideki Takayusu Econophysics was introduced to Japanese physics community
by Hideki Takayasu (Sony CSL), whose pioneering work may be, the very first
mathematical modeling and simulation of stock market in 1992, and application of
the Langevin equation to the stochastic process and the derivation of the power
law, among others. He also publicised the approach and fruits of econophysics
widely in physics community through lectures and organization of conferences.
Prof. Aoyama, Prof. H. Iyetomi etc., who studied various areas of physics, met
econophysics under his influence. Since then, Kyoto Econophysics Group has been
conducting research with emphasis on real economy, and has published two books
in Japanese , and a book in English.

Giuseppe Toscani Toscani is a full Professor of Mathematical Physics Faculty of
Sciences, University of Pavia. His research interests include Mathematical and nu-
merical methods in kinetic theory of rarefied gases, Granular gases, Statistical Me-
chanics, Diffusion equations, Hyperbolic systems and applications, Mathematical
modeling in socio-economic and related problems. He has published two books and
edited some others. One of his edited book is ‘Mathematical Modeling of Collective
Behavior in Socio-Economic and Life Sciences, Birkhauser, Boston (2010)’. He has
published many papers and book chapters on econophysics in refereed journals and
books.

Victor Yakovenko Yakovenko is one of the pioneers of ‘Econophysics’. He is a
Professor of Physics, University of Maryland, USA. Besides his research interest on
unconventional superconductors and others, he has also worked on Econophysics.
He has published invited review articles in the book Encyclopedia of Complexity
and System Science, edited by R.A. Meyers, Springer (2009) and many articles on
‘Econophysics’ in many other edited books. He has written a book entitled “Clas-
sical Econophysics” with co-authors published by Routledge (2009). He has pub-
lished many papers in refereed journals on ‘Econophysics’, basically application of
statistics to economics and finance. Many of his articles have attracted media and
have been published in news papers and periodicals written by reporters in American
Scientist, Australian Financial Review, New Scientist, The Newyork Times Maga-
zine etc. He has refereed more than 292 articles in many physics and economics
journals.

Yi-Cheng Zhang Cheng is a Professor of Physics in Fribourg University. His re-
search interests are Physics, Information Science, and Complex Systems Science.
He has published a large number of papers and his papers have more than 12456
numbers of citations. His paper, Dynamic scaling of growing interfaces, published
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in Physical Review Letters 56 (9), 889–892 in 1986 has as many as 3451 number of
citations. He has works on multidisciplinary statistical mechanics, Minority games:
interacting agents in financial market, Interacting individuals leading to Zipf’s law
etc. in journals like Physical Review E, Physica A, Physical Review Letters, Physics
reports, EPL (Europhysics Letters) etc.

Other Contributors in the Field of Econophysics There are many other Physi-
cists, Mathematicians and Economists, who have their valuable contributions in this
emerging field of ‘Econophysics’. Their contributions are no way less important
than the scientists listed in previous pages. They have published a number of pa-
pers in refereed journals and some of them have written books on Econophysics.
They are P.L. Krapivsky, Gopikrishnan from USA, Paul Ormerod, D. Brockmann
from England, Sonia R. Bentes from Portugal, Yuichi Ikeda, Naoya Sazuka, Aki
Hiro Sato from Japan, Marc Potters from France, R. Kitt, J. Kalda from Estonia,
E. Heinsalu from Spain, Tongkui Yu, Honggang Li from China, Janusz Miskiewicz
from Poland, Stefano Balietti from Hungary, Giorgio Israel G.D. Maldarella, Paolo
Laureti, Franz Silvio Frank, Damien Challet from Italy, Juan C. Ferrero from Ar-
gentina, Raj Kumar Pan, Kausik Gangopadhyaya, Y. Sudhakar, Anita Mehta, P.K.
Mohanty, Amit Bhaduri, Abhirup Sarkar, Indrani Bose from India etc. Thus people
from different parts of the world have contributed in this field and it is difficult to
say when and where econophysics took birth. Some people say it started from Os-
borne, some people say it is Mandelbrot, some say it is Takayusu and so on. But
it is true that after 1995 it was institutionalised when the term ‘Econophysics’ was
neolised by Stanley at Kolkata and many papers started publishing by physics jour-
nals. Other torch bearers are Hideki Takayusu in Japan, Y.-C. Zhang in China, Bikas
Chakrabarti in India, Peter Richmond in Ireland, Paul Ormerod in England, Enrico
Scalas in Spain, Bertrand M. Roehner in France, Jürgen Mimkes in Germany, Victor
Yakovenko in USA, János Kertész in Hungary, Didier Sornette in Switzerland etc.

14.2 Bridging the Gap

To bridge the gap between natural science and social science and to adopt the princi-
ples and laws of natural science into social science, many people have tried in differ-
ent ways. Some institutes have been specially established, books of interdisciplinary
nature were published. Besides research in interdisciplinary subjects, courses have
also been opened. Similarly Workshops, Conferences and Seminars were also or-
ganized in different parts of the world. To such events speakers from both natural
sciences and social sciences were invited to deliver their talks, which helped in inter-
action among the two communities. Moreover, Journals publishing papers on natural
science started publishing papers on econophysics. In this section we will deal with
those, which have helped in bridging the gap between the natural science and social
science. Such as Institutes, Books, Workshops, Conferences and Seminars, Journal
publishing papers on econophysics, Opening of courses, Awards in Econophysics
etc.
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14.2.1 Institutes

Indian Statistical Institute Indian Statistical Institute (ISI) was first set up by
Prasanta Chandra Mahalanobis in the Presidency College in Kolkata in 1932. The
Institute is now considered as one of the foremost centres in the world for training
and research in statistics and the related sciences. Under the leadership of Profes-
sor P.C. Mahalanobis, the Institute also initiated and promoted the interaction of
statistics with natural and social sciences to unfold the role of statistics as a key
technology which explicated the twin aspects of statistics—its general applicability
and its dependence on other disciplines for its own development. ISI is probably the
first such institute in the world, which brought closeness between natural and social
science with the help of statistics. The major objectives of the Institute, as given in
its Memorandum, are

(a) To promote the study and dissemination of knowledge of statistics, to develop
statistical theory and methods, and their use in research and practical appli-
cations generally, with special reference to problems of planning of national
development and social welfare;

(b) to undertake research in various fields of natural and social sciences with a view
to the mutual development of statistics and these sciences;

(c) To provide for, and undertake, the collection of information, investigation,
projects and operational research for purposes of planning and the improvement
of efficiency of management and production.

Since 1950 the institute is engaged in collection and analysis of information on so-
cial, economic and demographic characteristics in India through the National sam-
ple surveys. The Institute has acquired a special distinction in India for its activities.
During 1950s the interdisciplinary nature of teaching in the Institute was evolved
through the guidance of stalwarts such as Sir Ronald A. Fisher, Professor P.C. Maha-
lanobis and Professor J.B.S. Haldane, with the encouragement of Professor Satyen-
dra Nath Bose (Physics) who was the President of the Institute for a long time. The
Indian Statistical Institute Act was amended in 1995 empowering it to grant degrees
and diplomas in statistics, mathematics, quantitative economics, computer science
and such other subjects related to statistics as may be determined by the Institute
from time to time. The B. Stat. (Hons.) and the M.Stat. degree programs in statistics
were introduced in the Institute in the year 1960 with the philosophy that the aca-
demic training of a statistician should encompass the basic principles of statistics
along with its theoretical and methodological development, not merely in abstract
formulation, but also in relation to concrete problems arising from natural and social
sciences. Master of Science degree in quantitative economics [M.S.(QE)] was intro-
duced in 1996. The Institute is engaged in significant research activity in many other
disciplines, such as, population studies, physics, agricultural & ecological sciences,
geology, biological anthropology, human genetics, linguistics, psychometry, sociol-
ogy and information Science. In all these disciplines, much emphasis is given on
interdisciplinary research and collaborative work with the statisticians of the Insti-
tute. The Institute thus conjures up a symbiosis of pure, applied and interdisciplinary
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research involving various areas of statistics, mathematics, quantitative economics,
computer science, other natural and social sciences, statistical quality control and
managerial decision making. This symbiosis has been systematically reflected in
the teaching and training programs of the Institute [11]. Indian Statistical Institute
thus can be considered as a pioneering institute in the world introducing interdisci-
plinary subjects probably on experimental basis and proved to be successful.

The Santa Fe Institute Several distinguished researchers in natural sciences and
economics, like George Cowan, David Pines, Stirling Colgate, Murray Gell-Mann,
Nick Metropolis, Herb Anderson, Peter A. Carruthers, and Richard Slansky started
the Santa Fe Institute in USA in 1984. Researchers are trying to discover the com-
mon, fundamental principles in complex adaptive systems as varied as global cli-
mate, financial markets, ecosystems, the immune system, and human culture etc.
Today the Institutes’s researchers are approaching these problems firmly grounded
in the quantitative methods of physics, chemistry, and biology. The 1990’s at SFI
was marked by an expanding research portfolio. The economics program remained
strong and grew into nearly a dozen subsidiary pursuits. New inquiries into political
behaviors and human culture further expanded SFI’s work in the social sciences.
Programs in biology expanded as well, exploring new territory in genomics, neuro-
biology, viral dynamics, biochemical networks, learning and memory in the immune
system, and complex systems in ecology. Adaptive computation thrived, as did a
dozen new programs in learning and cognition. Theories from physics and evolu-
tion began to play a greater roles in all of the Institute’s research as its researchers
sought to find parallels among fields and describe, at least metaphorically, complex
behaviors they observed. True transdisciplinary research also is a norm at SFI today.
The Institute supports programs that seek, for example, to understand financial mar-
ket dynamics through the principles of evolution and ecology. It explores relation-
ships among innovation in technology, genes, and human culture. Mathematics and
network theory are applied to complex problems as diverse as disease propagation,
terrorism, the Internet, and molecular signaling. Human culture change is studied as
a biologist would examine genetic mutation. Changes in language are studied across
time and space scales never before considered. A growing program in sustainability
draws from archaeology, paleontology, sociology, psychology, ecology, and physics,
among others. But complexity science itself is still emerging and, by its nature, con-
tinually probing the seams between mainstream disciplines and the boundaries of
human knowledge. In 28 years it has transformed the scientific landscape and made
possible the pursuit of new understandings of the complex, messy world in which
we live. Today it is asking the questions humankind will need answers to 25 years
from now [12].

Institute for New Economic Thinking (INET) It is a New York-based non-
profit foundation started by George Soros in 2009 to broaden and accelerate the
development of a new field of economic thought that will lead to real world solu-
tions to the great challenges of the 21st century. The havoc wrought by our recent
global financial crisis has vividly demonstrated the deficiencies in our outdated eco-
nomic theories and shown the need for new economic thinking—right now. In the
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wake of the 2008 financial crisis and the ongoing Euro crisis, a number of lead-
ing economists, policymakers, and business leaders have called for a fundamental
re-think in economics. INET is a global community of thousands of new economic
thinkers, ranging from Nobel Prize-winning economists to teachers and students, all
attracted by the promise of a free and open economic discourse. On 12th April 2012
in Berlin the Oxford Martin School and the Institute for New Economic Thinking
(INET) announced that they have joined forces to create INET@Oxford, a major
new interdisciplinary research centre at the University of Oxford. INET@Oxford
builds on an existing INET research programme at Oxford. The centre will have
over 40 leading academics involved and will aim to stimulate innovation and debate
in economics, support visionary interdisciplinary research, and contribute to the ed-
ucation of the next generation of economists as well as business and government
leaders. INET@Oxford will seek to bring together thinking from across academic
disciplines in its approach to economics. In addition to economists, the centre will
work with physicists, biologists, psychologists, anthropologists and others across
the physical and social sciences. An important part of the centre’s mission will be
to facilitate the application of its research to critical economic policy problems. The
centre will engage with leaders from government and business. This new centre will
focus on addressing some of the greatest economic challenges we face ranging from
avoiding future financial crises to ensuring that the positive potential of globalization
is realized and its risks mitigated. INET@Oxford will host several complementary
research streams and will be able to provide expert comment and analysis to jour-
nalists and policy-makers in the research areas: Economic Modeling, Complexity
Economics, Ethics and Economics, Global Economic Development, Employment
and Equity, New Models of Economic Growth, Curriculum and Teaching Develop-
ment [13].

14.2.2 Journals Publishing Econophysics Papers

The papers on ‘Econophysics’ started to be published mainly after it was institution-
alized. The journals, which have started publishing the papers are Science, Nature,
Physical Review Letters, Physical Review, Physica A, The European Physical Jour-
nal, International Journal of Modern Physics C, The European Physics Communica-
tions. Again journals publishing economics and financial mathematics papers also
started publishing papers on ‘Econophysics’ although their numbers are low. Such
journals are Quantitative Finance, Journal of Economic Behavior & Organization,
Journal of Economic Interaction & Co-ordination etc. We can now find many papers
in arXiv also.

14.2.3 Some of the Books Published on Econophysics

Many books have been published on Econophysics after it was institutionalized in
1995. The books are written by the writers from both disciplines; economics and
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physics and have helped bringing both subjects closure to each other. Some of these
books are

• An introduction to econophysics by H. You et al. Publisher: China Renmin Uni-
versity Press (1991)

• Introduction to Econophysics by Rosario Mantegna, H. Eugene Stanley, Pub-
lisher: Cambridge University Press (1999)

• Dynamics of Markets: Econophysics and Finance by Joseph L. McCauley, Pub-
lisher: Cambridge University Press (2004)

• Quantitative Finance for Physicists: An Introduction (Academic Press Advanced
Finance) by Anatoly B. Schmidt (2004)

• Why Stock Markets Crash: Critical Events in Complex Financial Systems by
Didier Sornette and D. Sornette, Publisher: Princeton University Press (2004)

• Patterns of Speculation: A Study in Observational Econophysics by Bertrand M.
Roehner, Publisher: Cambridge University Press (2005)

• Econophysics and Sociophysics: Trends and Perspectives by Bikas K. Chakra-
barti, Anirban Chakraborti and Arnab Chatterjee, Publisher: Wiley (2006)

• Introduction to Econophysics: Correlations and Complexity in Finance by
Rosario N. Mantegna and H. Eugene Stanley, Publisher: Cambridge University
Press (2007)

• Consumer, Firm, and Price Dynamics: An Econophysics Approach: Modeling by
Economic Forces by Matti Estola, Publisher: VDM Verlag (2008)

• Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk
Management by Jean-Philippe Bouchaud, Publisher: Cambridge University Press
(2009)

• Econophysics: An Introduction (Physics Textbook) by Sitabhra Sinha, Anirban
Chakraborti, Bikas K. Chakrabarti, Publisher: John Wiley & Sons (2010)

• Finitary Probabilistic Methods in Econophysics by Ubaldo Garibaldi, Publisher:
Cambridge University Press (2010)

• Stochastic Processes: From Physics to Finance by Wolfgang Paul, Publisher:
Springer (2010)

• The Second Law of Economics: Energy, Entropy, and the Origins of Wealth (The
Frontiers Collection) by Reiner Kümmel, Publisher: Springer (2011)

• Econophysics and Companies: Statistical Life and Death in Complex Business
Networks by Hideaki Aoyama, Yoshi Fujiwara, Yuichi Ikeda and Hiroshi Iyetomi,
Publisher: Cambridge University Press (2011)

• Essentials of Econophysics Modelling by Frantisek Slanina, Publisher: Oxford
Higher Education (Jan 2011)

• Classical Econophysics by Allin F. Cottrell, Paul Cockshott, Gregory John
Michaelson and Ian P. Wright, Publisher: Taylor & Francis (2011)

• Econophysics of Income and Wealth Distributions by Bikas K. Chakrabarti, Anir-
ban Chakraborti, Satya R. Chakravarty, Arnab Chatterjee, Publisher: Cambridge
University Press (2013)



276 K.C. Dash

14.2.4 Special Issues on Econophysics [14]

• Physica A 269(1) [1999]
• International Journal of Theoretical and Applied Finance 3(1) [2000]
• European Physical Journal B 20(4) [2001]
• European Physical Journal B 27(2) [2002]
• Physica A 344(1) [2004]
• Physica A 382 [2007]
• European Physical Journal B 55(1) [2007]
• Journal of Economic Dynamics and Control 32(1) [2008]
• Complexity 14(3) [2009]
• Science and Culture 76(9–10) [2010]
• AUCO Czech Economic Review 4(3) [2010]

14.2.5 Courses Offered in Different Universities

Leiden University, Netherlands Physics department of Leiden University has
started a course on Econophysics, an optional course for third-year bachelor’s stu-
dents from May, 2011. Dr Diego Garlaschelli has been appointed to become Lei-
den’s first Professor of Econophysics, on the marriage between physics and the
financial world [15]. The course structure is Introduction to Econophysics (his-
torical background, interaction between Physics and Economics, past and present
aims of the field). It comprises of the subjects like Stochastic processes and time
series,Stylized facts of single financial time series, Cross-correlations among mul-
tiple time series, Complex networks and interactions among economic agents, Net-
work models of wealth distribution and market behaviour and International eco-
nomic interactions: the World Trade Web. The Reference book for the course is:
‘Econophysics: An Introduction’ (Physics Textbook) by S. Sinha, A. Chatterjee,
A. Chakraborti, B.K. Chakrabarti (Publisher: Wiley-VCH, 2010).

University of Houston Econophysics is being taught from Second Year of BS-
MS course at University of Houston with ‘Introduction of Econophysics’, in third
year courses like ‘Simulation of Economic Systems’, Financial Engineering and
Derivatives etc. Econophysics is being taught by Prof. Kevin E. Bassler, Gemunu H.
Gunaratne, Joe McCauley, Donald J. Kouri, Lawrence S. Pinsky, David R. Criswell,
Miguel Castro and Valery A. Kholodnyi from physics and other departments.

MMEF Course at University of Paris Mathematical Models in Economics and
Finance (MMEF) is a one-year, full-time, international programme taught in En-
glish. The degree is devoted to the training of students in the use of mathematical
models in economics and finance. The training is built around a large spectrum of
courses, which aim to give the knowledge for the modeling of economic and finan-
cial problems, for the mathematical formalization and the tools for the numerical
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solutions. The course, Theory of finance 2 has the objective of introducing to theo-
ries of financial markets inspired by complex-system science (especially Statistical
Physics). The aim of this course is to give an introduction to the dynamics of fi-
nancial markets via the powerful tools of Mathematical Physics. It comprises of
topics like Brownian motion, critical phenomena, self-organized criticality, market
phase transitions etc. Reference books for this course are Dynamics of Markets—
Econophysics and Finance by J.L. McCauley, Cambridge University Press, Theory
of Financial Risk and Derivative Pricing—From Statistical Physics to Risk Manage-
ment by J.P. Bouchaud, M. Potters, Cambridge University Press and Econophysics:
An Introduction, by S. Sinha, A. Chatterjee, A. Chakraborti, B.K. Chakrabarti, Wi-
ley.

University of Silesia The undergraduate (6 semesters) and postgraduate (4 semesters)
programme in Econophysics was launched in the academic year 2009/2010 in Uni-
versity of Silesia as the only programme of this kind in Poland. The undergradu-
ate programme allows students to learn the foundations of physics, mathematics,
computer science and economics, and acquire specialist knowledge in the field of
financial engineering, risk management and quality engineering. The postgraduate
programme covers unique selection of courses in modern physics, mathematics,
economics and statistics, with special emphasis on the applications and practical
aspects thereof. To complete the programme, students write and defend a Master’s
thesis, which enables them to receive a Master’s degree in Econophysics.

Econophysics teaching at the University of Wrocław A new econophysics
B.Sc. course established at the University of Wrocław and organized as a result
of cooperation between two university departments: Department of Physics and De-
partment of Economic Sciences. Stress is given to interdisciplinary aspects of this
course and its continuation to M.Sc. degree in Physics or M.E. (Master of Eco-
nomics) degree.

Some Important Centres of Econophysics Research:

• Boston University, USA
• Santa Fe Institute, USA
• Saha Institute of Nuclear Physics, India
• Ecole Centrale Paris, France
• University of Maryland, UK
• University of Palermo, Italy
• Kyoto University, Japan
• Leiden University, Netherlands

14.2.6 Awards for Social Scientists

The Human Resource Development Ministry (India) has proposed to constitute an
award for social scientists on the lines of the Bhatnagar awards for scientists. HRD
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Minister Kapil Sibal said (2012) this while speaking at a conference organized by
the Indian Council of Social Science & Research. As proposed there will be ten
annual awards to recognize advancement in the field of social science. These awards
will be known as the Amartya Sen awards.

14.2.7 Award in Econophysics

The division on “Physics of Socio-Economic Systems” (SOE, previously AK-
SOE/AGSOE) is committed to support the scientific exchange between the scien-
tific disciplines involved. It has currently more than 200 members and organizes
a spring conference with more than 50 contributions each year. During this con-
ference, it features outstanding international speakers not only from socio- and
econophysics, but also from sociology and economics. Furthermore, young sci-
entists are awarded for outstanding innovative work in this field. Names of the
awardees are: 2002—Damien Challet, 2003—Vasiliki Plerou, 2004—Illes Farkas,
2005—Reuven Cohen, 2006—Xavier Gabaix, 2007—Dr. Katarzyna Sznajd-Weron,
2008—Dr. Frabrizio Lillo, 2009—Duncan Watts, 2010—Dirk Brockmann, 2011—
Santo Fortunato, 2012—Arne Traulsen, and 2013—Vittoria Colizza.

14.2.8 Workshops, Conferences and Seminars

The inaugural meeting on Econophysics was organized in 1998 in Budapest. Cur-
rently, the almost regular meeting series on the topic include: Econophysics Col-
loquium, in Kiel, Germany, ESHIA/WEHIA, ECONOPHYS-KOLKATA, APFA,
Dublin econophysics conference, Asia-Pacific Econophysics Conference, world
econophysics conference in Canberra, Australia. The International Conference on
Econophysics (ICE), China etc. Econophysics Colloquium was started from 2004
and still continuing as an annual event. ENEC, “Econophysics, New Economics and
Complexity” International Conference is organized by the Hyperion University and
the Hyperion Research and Development Institute in Bucharest, Romania. The main
goal of the Conference is to provide an opportunity for scientists, researchers and
professionals from econophysics, new economy and science of complexity to come
together and present original papers and new ideas in the mentioned topic areas.
Econophysics—Kolkata series started from 2005 by Prof. Bikas K. Chakrabarti, is
an annual event. There was also a dedicated Computing for Finance conference held
at CERN on November 21, 2007, which was specifically aimed at how to use the
Grid for financial computing.
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14.3 Major Research Topics

In this section, I will deal with some breakthrough research topics, which became
instrumental and cleared the path for neolizing econophysics and also mention some
important research topics after the term ‘Econophysics’ came into existence. I have
already discussed at length how econophysics was very much present in preclassical
and classical era and I do not want to repeat those. So here I want to discuss mainly
the developments just prior to the modern era and the happenings after econophysics
was institutionalised. I feel it right to start from Osborne’s log normal distribution,
which, in the opinion of some scientist can be considered as the origin of econo-
physics.

Brownian Motion in the Stock Market ‘The logarithms of common-stock prices,
and the value of money, can be regarded as an ensemble of decisions in statisti-
cal equilibrium, and that this ensemble of logarithms of prices, each varying with
time, has a close analogy with the ensemble of coordinates of a large number of
molecules’—suggested by Osborne [16]. He used a probability distribution function
and the prices of the same random stock choice at random times and became able to
derive a steady state distribution function, which is precisely the probability distri-
bution for a particle in Brownian motion. A similar distribution holds for the value
of money, measured approximately by stock market indices. Thus, it was shown in
his paper that prices in the market did vary in a similar fashion to molecules in Brow-
nian motion. According to Professor Joseph L. McCauley (University of Huoston),
Osborne first introduced the lognormal stock pricing model in 1958 and opined that
he should be honored as the first econophysicist.

Price Changes in financial markets do not follow a Gaussian Distribution
Mandelbrot found that price changes in financial markets did not follow a Gaus-
sian distribution, but rather Lévy stable distributions having theoretically infinite
variance. He found, for example, that cotton prices followed a Lévy stable distri-
bution with parameter α equal to 1.7 rather than 2 as in a Gaussian distribution.
“Stable” distributions have the property that the sum of many instances of a random
variable follows the same distribution but with a larger scale parameter [17]. Some
parts of the review of his book ‘The (Mis)behavior of Markets’ is presented below.

The roots of the book The (Mis)behavior of Markets go back to 1961 when Man-
delbrot was a new researcher at IBM. Among other things, he was working on using
computers to analyze the distribution of income in a society. Mandelbrot’s work
echoed the work of Vilfredo Pareto and showed that many economic factors, in-
cluding wealth, are distributed according to an inverse power law. While at Har-
vard to give a talk on his work, Mandelbrot saw a diagram on a chalk board that
mirrored the distributions he was seeing for income. But in this case the diagram
involved cotton prices. With access to IBM’s computers (and programmers) Man-
delbrot started studying cotton prices. Around the time Mandelbrot was doing his
work on cotton prices the work of Louis Bachelier was being rediscovered and em-
braced by the academic economics community. Bachelier claimed that the change
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in market prices followed a Gaussian distribution. This distribution describes many
natural features, like height, weight and intelligence among people. The Gaussian
distribution is one of the foundations of modern statistics. If economic features fol-
lowed a Gaussian distribution, a range of mathematical techniques could be applied
in economics. With Bachelier’s work and some modern reinforcement, a new era in
economics was born. Unfortunately, as Mandelbrot points out in The (Mis)behavior
of Markets, the foundation of this new era of economics was rotten. As anyone who
has repeatedly put money at risk in a market over a long period of time knows,
market behavior does not reflect the well behaved Gaussian models proposed by
economists in the 1970s and 1980s. There are far more market bubbles and market
crashes than these models suggest. The change in market prices does not follow a
Gaussian distribution in a reliable fashion. Like income distribution, market statis-
tics frequently follow a power law. When a graph is made of market returns (e.g.,
profit and loss), the curve will not fall toward zero as sharply as a Gaussian curve.
The distribution of market returns has “fat tails”. The “fat tails” of the return curve
reflect risk, where large losses and profits can be realized.

Inverse Quartic Power Law In the late 1990s Paramaswaram Gopikrishnan and
Vasiliki Plerou, who were then graduate students working at Boston University in
the US, decided to analyse every transaction of every single stock in the major US
markets. At that time, the analysis of such huge data sets was not as commonplace as
it is today and required a significant upgrade to their university’s computer system to
complete the task. Using the extra computer resources, the two students constructed
a histogram that displayed the number of times the stock market changed by a cer-
tain amount, plotted as a function of that amount. They did this by analyzing 1000
different stocks each consisting of 200,000 data points. What Gopikrishnan and
Plerou found was that large transactions are more common than they had expected,
with the tail of their histogram not being Gaussian but following an “inverse quartic
power law”. This law means that if there is a probability p of, say, a $5 price change
occurring, then the probability of a $10 price change is p/24, i.e. p/16. This inverse
quartic law excels at describing the probability of very rare events, such as those oc-
curring once every few decades. Events corresponding to 100 standard deviations,
for example, have a probability of about 10−350 with a Gaussian model, but a far
more realistic likelihood of 10−8 (i.e. one in a hundred million) with the inverse
quartic law [18].

Economic Inequality: Is It Natural? In this paper, Arnab Chatterjee, Sitabhra
Sinha, and Bikas K. Chakrabarti, India, have studied and reported that the in-
come and wealth distribution of various countries clearly establish a robust feature:
Gamma (or log-normal) distribution for the majority (almost 90–95 %), followed by
a Pareto power law (for the richest 5–10 % of the population). They have shown that
this ‘natural’ behavior of income inequality comes from a simple ‘scattering picture’
of the market, when the agent in the market have got random saving propensity.
Models studied in physics (in kinetic theory of gases), more than a hundred years
ago, helped them in formulating and understanding these ‘natural’ behavior of the
markets.
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Exponential Distribution of Income “Evidence for the exponential distribution
of income in the USA” by A.A. Dragulescu and V. M. Yakovenko [19]. In this paper
the authors have demonstrated that the distribution of individual income in the USA
is exponential using tax and census data. Their calculated Lorenz curve without
fitting parameters and Gini coefficient 1/2 = 50 % agree well with the data. From
the individual income distribution, they have derived the distribution function of
income for families with two earners and have shown that it also agrees well with
the data. The family data for the period 1947–1994 fit the Lorenz curve and Gini
coefficient 3/8 = 37.5 % calculated for two-earners families.

‘Thermal’ and ‘Superthermal’ Income Classes “Temporal evolution of the
‘thermal’ and ‘superthermal’ income classes in the USA during 1983–2001” by
A.C. Silva and V.M. Yakovenko [20]—Personal income distribution in the USA has
a well-defined two-class structure. The majority of population (97–99 %) belongs
to the lower class characterized by the exponential Boltzmann-Gibbs (“thermal”)
distribution, whereas the upper class (1–3 % of population) has a Pareto power-law
(“superthermal”) distribution. By analyzing income data for 1983–2001, the authors
have shown in this paper that the “thermal” part is stationary in time, save for a grad-
ual increase of the effective temperature, whereas the “superthermal” tail swells and
shrinks following the stock market. They have discussed the concept of equilibrium
inequality in a society, based on the principle of maximal entropy, and quantitatively
show that it applies to the majority of population.

“Comparison Between the Probability Distribution of Returns in the He-
ston Model and Empirical Data for Stock Indexes” by A.C. Silva and
V.M. Yakovenko [21]. In this paper the authors compared the probability distribution
of returns for the three major stock-market indexes (Nasdaq, S&P500, and Dow-
Jones) with an analytical formula recently derived by Dragulescu and Yakovenko
for the Heston model with stochastic variance. For the period of 1982–1999, they
found a very good agreement between the theory and the data for a wide range of
time lags from 1 to 250 days. On the other hand, deviations start to appear when the
data for 2000–2002 are included. They have interpreted this as a statistical evidence
of the major change in the market from a positive growth rate in 1980’s and 1990’s
to a negative rate in 2000’s.

KPR Problem Ghosh and Chakrabarti analyze the ‘Kolkata Paise Restaurant’
problem, and show that ‘naive’ strategies sometimes lead to much better results
than sophisticated ones in their paper “Statistics of the Kolkata Paise Restaurant
problem” [22].

Increase of Income Inequality Banerjee and Yakovenko construct a model that
explains both the exponential and power law regions of income distribution, and
show that the increase of income inequality in the United States originates primarily
in the increase of the income fraction going to the upper tail, which now exceeds
20 % of total income in their paper Universal patterns of inequality [23]. They have
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studied probability distributions of money, income, and energy consumption per
capita for ensembles of economic agents. Following the principle of entropy maxi-
mization for partitioning of a limited resource, they found exponential distributions
for the investigated variables. They also discuss fluxes of money and population
between two systems with different money temperatures. For income distribution,
they study a stochastic process with additive and multiplicative components. The
resultant income distribution interpolates between exponential at the low end and
power-law at the high end, in agreement with the empirical data for USA. Analyz-
ing the data from the World Resources Institute, they found that the distribution of
energy consumption per capita around the world is reasonably well described by the
exponential function. Comparing the data for 1990, 2000, and 2005, we discuss the
effects of globalization on the inequality of energy consumption.

Statistical Analysis of the Change in the Stock Correlations Aste et al. carry
out a statistical analysis of the change in the stock correlations due to the 2008–2009
crisis using network tools Correlation structure and dynamics in volatile markets
[24].

Complex Multi-agent Model Westerhoff introduces a complex multi-agent
model, which takes into account firm-firm interactions, socio-economic opinion dy-
namics and sales expectations depending on individual attitudes in their paper “An
agent-based macroeconomic model with interacting firms, socio-economic opinion
formation and optimistic/pessimistic sales expectations” [25].

Kinetic Exchange Models of Markets Understanding the distributions of income
and wealth in an economy has been a classic problem in economics for more than a
hundred years. Today it is one of the main branches of Econophysics. J. Angle was
the first to propose an elementary version of the stochastic exchange model. In the
context of kinetic theory of gases, such an exchange model was first investigated by
A. Dragulescu, V. Yakovenko. The main modeling effort has been put to introduce
the concepts of savings and taxation in the setting of an ideal gas-like system. Ba-
sically, it assumes that in the short-run, an economy remains conserved in terms of
income/wealth and any monetary transaction therefore, represents a redistribution
of money from one agent to another. Millions of such conservative transactions lead
to a steady state distribution of money (gamma function-like in the Chakraborti-
Chakrabarti model with uniform savings, and a gamma-like bulk distribution end-
ing with a Pareto tail in the Chatterjee-Chakrabarti-Manna model with distributed
savings) and the economy converges to it. The distributions derived thus have close
resemblance with those found in case of income/wealth distributions.

The Financial Bubble Experiment First Results D. Sornette, R. Woodard, M.
Fedorovsky, S. Reimann, H. Woodard, W.-X. Zhou (The Financial Crisis Obser-
vatory), Department of Management, Technology and Economics, ETH Zurich,
Kreuzplatz 5, CH-8032 Zurich, Switzerland (Dated: 3 May 2010).

On 2 November 2009, the Financial Bubble Experiment was launched within
the Financial Crisis Observatory (FCO) at ETH Zurich (http://www.er.ethz.ch/fco/).

http://www.er.ethz.ch/fco/
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In that initial report, the authors diagnosed and announced three bubbles on three
different assets (IBOVESPA Brazil Index, a Merrill Lynch corporate index, gold
spot price). In the subsequent release of 23 December 2009 in the ongoing experi-
ment, they added a diagnostic of a new bubble developing on a fourth asset (cotton
futures). This report presents the four initial forecasts and analyses how they fared.
They found that IBOVESPA and gold showed clear signs of changing from a bubble
regime to a new one within their forecast quantile windows; that the Merrill Lynch
bond index changed from a strong bubble regime to one of more moderate growth
just before their publication date; and that cotton was and still is in a bubble without
showing a clear change of regime.

14.4 Responses to Questionnaire

I had sent some questions relating to the present status and future perspectives of
‘Econophysics’ to different Professors having interest and working in this field by
e-mail. I represent here their responses collectively. I had sent e-mail to about 40
number of esteemed Professors around the globe. Reply I have received is only
from 13 Professors. Percentage of Response is only 32.5 %. Following Professors
sent their responses and their valuable comments, which I am not reproducing here.

John Angle, Sitabhra Sinha, Bertrand Roehner, Reiner Kümmel, Jüergan Mim-
kes, Satya R. Chakravarty, Aoyama Hideaki, János Kertész, Tiziana Di Matteo, Ha-
gen Kleinert, Mauru Gallegati, Thomas Lux, Victor Yakovenko and Prasanta Pani-
grahi (partial response).

Analysis of Response

• Q.1 a. Your formal field of research?
Physics—54 %, Economics & Sociology—38.5 %, Econophysics—7.5 %
b. Do you identify yourself as an Econophysicist?
Yes—46 %, No—31 %, Unclear—23 %
c. Fraction of Time you put in Econophysics Research?
Ans. 100 %–31 %, More than 50 %–31 %, Less than 50 %–31 %. Rest 7 % have
not responded to this question.

• Q.2 a.Do you think, the studies made generally under this econophysics banner
made any significant contribution?
Yes—84.6 %, No—7.7 %. Rest 7.7 % have not responded to this question.
b. If So, To Physics or Economics or both?
Physics—0 %, Economics—61.5 %, Both—7.7 %, Not in either field—15.4%,
rest not responded.
c. If not yet at any satisfactory level, do you think these studies have any potential
to succeed in the near future?
Yes—31 %, No—7.7 %. Others have responded to the earlier question.

• Q.3 a. Do you think an ‘Econophysics’ forum/body should be formed like other
fields in Physics?
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Yes—84.6 %, No—0 %, Already existing—7.7 %, No clear idea—7.7 %
b. International conferences/workshops are conducted under its banner in differ-
ent countries by rotation?
Yes—84.6 %, No—0 %, Already existing—7.7 %, No clear idea—7.7 %

• Q. 4. a. Do you think, your university/institute should also offer econophysics
courses to the students?
Yes—84.6 %, No—15.4 %
b. Did you write any textbook/research monograph on econophysics?
Yes—61.5 %, No—23 %. Others about—15.5 % have not responded to this ques-
tion.
c. If not, do you intend to write one?
Yes—15.4 %, No—15.4 %, rest not responded.

• Q.5 a. Do you think, like many other interdisciplinary fields like biophysics, geo-
physics etc., ‘econophysics’ will be recognized as a natural one soon? If so, by
whom: physics or economics, or by both?
Yes—53.8 %, No—23.1 %, No clear idea—23.1 %
b. Do you think, econophysics research will be recognized by Nobel Prize ever?
Yes—53.8 %, No—23.1 %, No Clear idea—23.1 %
c. If so, in which discipline? Physics or Economics?
Physics—0 %, Economics—53.8 %, No Clear idea/does not matter etc.—46.2 %
d. When?
Near Future—0 %, Late—53.8 %, Never—30.8 %. Others have not responded to
this question.

From above discussions it is evident that, Econophysics is expanding day by day
and establishing itself as a branch of science and is getting popular in a good pace.
Scientists and professors are very much confident for its future as we observe from
their replies. Even as many as 84.6 % are of opinion that Universities should open
the course in Econophysics. People have started devoting their full time for econo-
physics research which is certainly encouraging and more than 50 % are hopeful
that it will be recognized for Nobel prize although may not be in near future.
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Chapter 15
Econophysics and Sociophysics: Problems
and Prospects

Asim Ghosh and Anindya S. Chakrabarti

Abstract Econophysics and sociophysics have survived the first ideological battle
against standard theories of economics and sociology. But a mere survival and a
subsequent slow decay is not in the manifesto of these interdisciplinary subjects.
While there are conceptual problems and also a constant aversion of the mainstream
economics community, the basic philosophy of such a physicsoriented approach can
contribute largely to the soft sciences where empirical validation is still very difficult
at best, and impossible at worst. Here we give a very brief description of the evolu-
tion of mainstream mathematical economics and subsequently that of econophysics.
Many excerpts from writings of distinguished econophysisicts and sociophysisicts
are also given so that we can take a contemporary look at where these subjects cur-
rently are and where they can go from here.

15.1 Introduction

As the names suggest, Econophysics and Sociophysics are both of interdisciplinary
type. This research field stemmed from the study of many interacting units by physi-
cists. A pertinent question that still haunts these subjects is that ‘Why do physi-
cists believe that they are more qualified than economists to answer economic phe-
nomenon?’ As physicist J. McCauley responded, the answer lies in the idea that
they are trained better to see the connections between seemingly different phenom-
ena [1]. Given the enormous stake in providing a better guideline to harness the
economic catastrophes, it is not a bit surprising that all sorts of attempts have been
made to explain the deep puzzles of human behavior and that of society, at a larger
scale. The results are mixed. One thing is certain that we have not reached the des-
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tiny yet. The real success is far away (in the sense of deriving a result as precise
and as important as finding the structure of the DNA for example). In some cases,
enormous progress has been made. In others, both theory and empirics fall behind
reality. The good news is that Econophysics has already become well accepted to
physicists even though it is far from being impressive to mainstream economics.
Before the advent of game theory, it was really difficult to figure any difference in
philosophy of economics and statistical physics. However, after the birth of game
theory economics drifted further and further apart from phenomenological studies
and that too, with a good reason. The failure of Keynesian economics in the late
sixties gave birth to the famous ‘Lucas Critique’ which paved the way for ratio-
nal expectation and ultimately led to a modeling philosophy where it was taken for
granted what ever resource we have is finite except our computational capacity.

As have been repeated dozens of times, study of economics by physicists or by
mathematicians is not really a new trend. However, as always is the case with eco-
nomics, the real culprit is always the market which has little empathy for one’s
academic credentials. So the results are to be taken with a pinch of salt. But by
and large, it is the physicists and mathematicians who have shaped the economic
theories as it stood about 40 years back. Daniel Bernoulli (a mathematician and a
physicist) first proposed a very refined theory of preference and thereby attempted
to explain risk- aversion, a remarkable achievement in itself. In 1900, French math-
ematician Louis Bachelier (guided by physicist Poincare who did not quite appre-
ciate the formulation of the legendary random walk model) gave a model “Theory
of Speculation” for the stock market and thereby brought a new paradigm in eco-
nomics which, unfortunately, was not noticed until 1960s. Later, slight modification
of the model was made by Edward Thorp (American physicist) and the model be-
came known as Bachelier-Thorp model. Irving Fisher, who was trained by J. Willard
Gibbs, was one of the founders of neoclassical economic theory. Unfortunately he
was also the one who (in-)famously told ‘Stock prices have reached what looks like
a permanently high plateau’ just before the Great Depression. This has uncanny sim-
ilarity with the statement of Olivier Blanchard (of M.I.T., the then chief economist
at the International Monetary Fund) that ‘the state of macro is good’ just before the
largest depression in the last 70 years [2]. One consolation is that at least the physi-
cists are about 80 years ahead of economists even at making bad predictions! The
first institutional acknowledgement of the highest class was that the first Nobel Prize
winner in economics was Jan Tinbergen who did his Ph.D. in statistical physics with
Paul Ehrenfest. The situation changed later. After 1970, a large number of physics
students got involved in financial market and started fidgeting with the nitty-gritty
details instead of writing down a grand theory. This has become a trend in this field
since then. It is often observed that models proposed by these physicists are more
useful than others. Instead plunging into showing existence of a solution like what
an economist does, the physicists try to actually describe a real workable solution.
This methodological difference widened day by day until a situation came where
the finance and economics became distant relatives who greets each other from a
safe distance on an occasional meeting.

However, as with any other thing in life, the glory of Wall Street comes with
its fair share of burden as well. It is often blamed that these Wall Street physicists
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were responsible for the Black Monday crash in 1987, crisis at Long-Term Capital
Management in 1998 and worldwide financial collapse in 2007–2008. Below, we
give some instance of such blames. But that did not stop physicists from asking new
and more penetrating questions about economics and sociology in general. This
eventually led to birth of Econophysics and Sociophysics. We will briefly discuss
some statistics regarding the development of Econophysics in last 17 years (1996–
till date). These, we hope to shade some light on the current controversies.

15.2 Criticisms: Some Recent Quotes

• “The proliferation of econophysicists lining the halls of university departments
coincided with a flood of physicists leaving academia to enter the financial sector.
Young mathematicians and physicists, equipped with little more than a PhD and a
quick wit, were recruited into an industry that was fast learning the value of minds
well-versed in the language of partial differential equations. So when the world at
large fell into financial crisis in 2008, physicists were quickly identified by many
as one of the key reasons behind the collapse. In an October 2008 interview on US
television’s 60 minutes, Jim Grant—founder of Grant’s Interest Rate Observer,
a twice-monthly journal of financial markets—blamed the mess on ‘mortgage
science projects devised by these Nobeltracked physicists who came to work on
Wall Street for the very purpose of creating complex instruments’. . .. And Grant’s
certainly wasn’t a lone voice. Some even went as far as to argue2 that the preva-
lence of Asperger’s syndrome in the physics community was responsible for the
crisis—that physicists working in the financial sector weren’t capable of feeling
empathy for the lives that stood to be ruined from the inevitable failure of their
complex models.”

—–Editorial Note, “Net gains”, Nature Physics, vol. 9, 119 (2013)

• “The untold riches of a career on Wall Street have loomed large in the physics
community these last few decades. Most physicists know someone a friend from
graduate school; a former student who left academia to pursue a career in fi-
nance. And we have heard quite a bit, too, about the damage wrought by the so-
called ‘quants’ that these physicists morph into when they take investment jobs.
Quants, along with the mathematical models and algorithmic trading strategies
they helped to develop, have been blamed for three decades of market crashes,
from the 1987 Black Monday crash, to the 1998 crisis at Long-Term Capital Man-
agement, to the 2007-08 worldwide financial collapse.” [3]

—–J.O. Weatherall, “The Back Page”, APS News, vol. 22, 3 (2013)

15.3 A Statistical Survey on the Development of Econophysics &
Sociophysics

The term ‘econophysics’ was introduced by H. Eugene Stanley in a Kolkata-
Conference held in 1995. To see how the subject grew in scientific community, we
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Fig. 15.1 Histogram plot of numbers of entries containing the term ‘econophysics’ versus the
corresponding year. The data are taken from google scholar site (http://scholar.google.co.in/schhp)

have taken the statistics of the articles having ‘econophysics’ term any where in the
article from google scholar site. Figure 15.1 shows histogram plot of the number of
papers posted in google scholar over different years. From the figure it is clear that
the subject is growing quite fast.

A similar study have been done for ‘sociophysics’. Sociophysics is an interdis-
ciplinary subject where statistical physics tools are applied to solve or understand
the problems related to social science. To assess how the subject evolved, we have
done a similar survey on it from google scholar. We have counted total number
of entries having the term ‘sociophysics’ any where from google scholar site. Fig-
ure 15.2 shows histogram plot for every year versus corresponding total number of
such articles. From the figure, it is again clear that numbers of such papers etc. are
increasing. From these observations we can say that the field ‘sociophysics’ is also
becoming popular in scientific community.

Next we give some important quotations from different sources (like books, edi-
torial notes, reviews, etc) indicating the same point for Econophysics.

15.4 Development of Econophysics: Some Quotes

• “Econophysics is a new interdisciplinary research field applying methods of sta-
tistical physics to problems in economics and finance. The term ‘econophysics’
was first introduced by the theoretical physicist Eugene Stanley in 1995 at the
conference Dynamics of Complex Systems, which was held in Kolkata as a satel-

http://scholar.google.co.in/schhp
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Fig. 15.2 Histogram plot of numbers of entries containing the term ‘sociophysics’ versus the
corresponding year. The data are taken from google scholar site (http://scholar.google.co.in/schhp)

lite meeting to the STATPHYS-19 conference in China. . .. The term appeared
first by Stanley et al. (1996) in the proceedings of the Kolkata conference. ” [4]

—–V. Yakovenko & J.B. Rosser, Colloquium: “Statistical mechanics of money,
wealth and income”, Reviews of Modern Physics, vol. 81, 1703 (2009)

• “Econophysics is a new research field, which makes an attempt to bring eco-
nomics in the fold of natural sciences or specifically attempts for a ‘physics of
economics’. The term Econophysics was formally born in Kolkata in 1995. The
entry on Econophysics in The New Palgrave Dictionary of Economics, 2nd Ed.,
Vol. 2, Macmillan, NY (2008), pp. 729–732, begins with ‘. . . the term econo-
physics was neologized in 1995 at the second Statphys-Kolkata conference in
Kolkata (formerly Calcutta), India. . .’. The Econophysics research therefore for-
mally completes fifteen years of research by the end of this year!” [5]

—–Editorial Note, “Fifteen Years of Econophysics Research”, Science and
Culture, Kolkata, vol. 76, Sept.-Oct. (2010)

• “When H. Eugene Stanley coined the term ‘econophysics’ at a Kolkata confer-
ence in 1995, the field was still in its infancy—despite having already spawned a
slew of papers by statistical physicists, eager to lend their expertise to an intrigu-
ing new set of problems. This trend was born in the wake of a sudden availability
of large amounts of financial data in the 1980s. But it may have had just as much
to do with a frustration at the inadequacy of traditional theoretical approaches to
economics, which seemed to favour model simplicity over accuracy, or agreement
with empirical data.”

—–Editorial Note,“Net gains”, Nature Physics, vol. 9, 119 (2013)

http://scholar.google.co.in/schhp
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• “More than 100 years ago, physicists pointed out that the broad income curve
for the majority resembles the distribution of energy among molecules in a gas,
a pattern called the Maxwell-Boltzmann distribution. This prompted the idea that
the distribution arises because people exchange wealth when they meet, much
as gas molecules exchange energy when they collide. That idea has since been
tested using mathematical models that liken human beings to molecules bouncing
around in a gas. In the simplest model, people risk surrendering all their wealth at
each encounter. That produces a wealth curve that has far more ultra-poor people
than we find in the real world. So in 2000, Bikas Chakrabarti’s team at the Saha
Institute of Nuclear Physics in Kolkata, India, allowed people to retain some of
their wealth in each exchange. The result was a wealth curve similar to the broad
hump of the Maxwell-Boltzmann distribution. The next refinement was to allow
different people to hold back different percentages of their wealth—effectively
setting money aside as savings. With this tweak, the model correctly reproduced
the whole wealth distribution curve, including the Pareto tail, which was made
up largely of people who saved the most. This finding has been backed up by
other similar models, including one developed by Ferrero, in which the richest
10 per cent are once again those most inclined to save. If these simple models do
capture something of the essence of real-world economics, then they offer some
good news.” [6]

—–S. Battersby, “The physics of our finances”, New Scientist, 28 July, issue
2875, 41 (2012)

• “We believe, several important developments in Econophysics research have al-
ready taken place in the last one and half a decade. We now try to give a very
brief (incomplete and biased!) list of some developments: (i) Empirical character-
ization, analyses and modeling of financial markets—in particular, the deviation
from Gaussian statistics has been established, following the early observations
of Mandelbrot and Fama (1960s)—beginning with the studies in 1990s by the
groups of Stanley, Mantegna, Bouchaud, Farmer and others. (ii) Network mod-
els and characterization of market correlations among different stocks/sectors by
the groups of Mantegna, Marsili, Kertesz, Kaski, Iori, Sinha and others. (iii) De-
termination of the income or wealth distributions in societies, and the develop-
ment of statistical physics models by the groups of Redner, Souma, Yakovenko,
Chakrabarti, Chakraborti, Richmond, Patriarca, Toscani and others. The kinetic
exchange models of markets have now been firmly established; this gained a
stronger footing with the equivalence of the maximization principles of entropy
(physics) and utility (economics) shown by the group of Chakrabarti. (iv) De-
velopment of behavioral models, and analyses of market bubbles and crashes by
the groups of Bouchaud, Lux, Stauffer, Gallegati, Sornette, Kaizoji and others.
(v) Learning in multi-agent game models and the development of Minority Game
models by the groups of Zhang, Marsili, Savit, Kaski and others, and the opti-
mal resource utilization ‘Kolkata Paise Restaurant’ (KPR) model by the group
of Chakrabarti. These have given important insights in such multi-agent collec-
tive parallel learning dynamics. In this context, it might be mentioned that to our
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knowledge, the KPR model might be the only model in Physics that is named
after a city (namely Kolkata). Considerable literature has developed out of these
and other studies [see the articles in this issue, and references therein]. We had
invited all the above-mentioned groups and others to contribute their perspec-
tives or views on these developments, and we are happy that most of them could.
Unfortunately due to time constraints, several others could not contribute. The
importance and proliferation of the interdisciplinary research of Econophysics is
highlighted in this special issue of Science & Culture, which presents a collection
of twenty nine papers (giving country wise perspectives, reviews of the recent
developments and original research communications), written by more than forty
renowned experts in physics, mathematics or economics, from all over the world.”
[5]

—–Editorial Note, “Fifteen Years of Econophysics Research”, Science and
Culture, Kolkata, vol. 76, Sept.-Oct. (2010)

• “Contemporary mainstream economics has become concerned less with describ-
ing reality than with an idealised version of the world. However, reality refuses
to bend to the desire for theoretical elegance that an economist demands from
his model. Modelling itself on mathematics, mainstream economics is primarily
deductive and based on axiomatic foundations. Econophysics seeks to be induc-
tive, to be an empirically founded science based on observations, with the tools
of mathematics and logic used to identify and establish relations among these ob-
servations. Econophysics does not strive to reinterpret empirical data to conform
to a theorist’s expectations, but describes the mechanisms by which economic
systems actually evolve over time.” [7]

—–S. Sinha & B. K. Chakrabarti, ”Econophysics: An emerging discipline”,
survey article in Economic & Political Weekly, vol. 46, 44 (2012)

• “Despite the misgivings of the popular media, and the relative downturn in the
employment prospects of the financial sector, the trend for physicists to enter the
industry has not abated—nor, it must be said, has momentum for physicists in
academia to turn their attention to problems associated with market dynamics.
Indeed, the quantitative finance archive was launched in December 2008, largely
to service a wealth of submissions that was being distributed amongst the exist-
ing fields. In recent years, however, the focus of these efforts has shifted towards
the realm of network science. This new endeavour addresses a need to under-
stand the structure and dynamics underlying financial markets, to explain—and
anticipate—the effects that interactions between many agents are capable of in-
ducing. An optimistic view is that, equipped with such knowledge of systemic
behaviour, we might even be able to influence market dynamics using the tools of
complex networks science.”

—–Editorial Note, “Net gains”, Nature Physics, vol. 9, 119 (2013)
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15.5 Development of Sociophysics: Some Quotes

• “Physics has always influenced other fields. . .. More recently, (computational)
statistical physics has been applied to biology, economics, world politics etc.” [8]

—–S. Moss de Oliveira, P.M.C. Oliveira & D. Stauffer, in Preface of Evolution,
Money, War, and Computers, Teubner, Stuttgart (1999)

• “It may be surprising but the idea of a physical modeling of social phenomena is
in some sense older than the idea of statistical modeling of physical phenomena.
The discovery of quantitative laws in the collective properties of a large number of
people, as revealed, for example, by birth and death rates or crime statistics, was
one of the catalysts in the development of statistics, and it led many scientists and
philosophers to call for some quantitative understanding of how such precise reg-
ularities arise out of the apparently erratic behavior of single individuals. Hobbes,
Laplace, Comte, Stuart Mill, and many others shared, to a different extent, this
line of thought. . .. This point of view was well known to Maxwell and Boltzmann
and probably played a role when they abandoned the idea of describing the tra-
jectory of single particles and introduced a statistical description for gases, laying
the foundations of modern statistical physics. The value of statistical laws for so-
cial sciences was foreseen also by Majorana (1942, 2005). But it is only in the
past few years that the idea of approaching society within the framework of sta-
tistical physics has transformed from a philosophical declaration of principles to
a concrete research effort involving a critical mass of physicists. The availability
of new large databases as well as the appearance of brand new social phenom-
ena (mostly related to the Internet), and the tendency of social scientists to move
toward the formulation of simplified models and their quantitative analysis, have
been instrumental in this change.” [9]

—–C. Castellano, S. Fortunato & V. Loreto, “Statistical physics of social dy-
namics”, Reviews of modern physics, vol. 81, 591 (2009)

• “Sociophysics started to become a popular topic of research in the last quarter
of the twentieth century. . .. While physics deals mostly with nonliving systems,
society is meaningful only in the presence of life. The terminology ‘sociophysics’
may sound strange but fact is, the term ‘social physics’ was introduced by the Bel-
gian statistician Adolphe Quetelet (Quetelet 1835, 1842) long back. The concept
of the ‘average man’ (l’homme moyen), who is characterized by the mean values
of measured variables that follow a normal distribution, was outlined and data
about many such variables were collected. The French social philosopher Au-
guste Comte also used the term social physics in his 1842 work. Comte defined
social physics as the study of the laws of society or the science of civilization. . ..”
[10]

—–P. Sen & B.K. Chakrabarti, Sociophysics: An introduction, Oxford Univer-
sity Press (2013)

• “Do humans behave much like atoms? Sociophysics, which uses tools and con-
cepts from the physics of disordered matter to describe some aspects of social
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and political behavior, answers in the affirmative. But advocating the use of mod-
els from the physical sciences to understand human behavior could be perceived
as tantamount to dismissing the existence of human free will and also enabling
those seeking manipulative skills. This thought-provoking book argues it is just
the contrary. Indeed, future developments and evaluation will either show socio-
phyics to be inadequate, thus supporting the hypothesis that people can primarily
be considered to be free agents, or valid, thus opening the path to a radically dif-
ferent vision of society and personal responsibility. This book attempts to explain
why and how humans behave much like atoms, at least in some aspects of their
collective lives, and then proposes how this knowledge can serve as a unique key
to a dramatic leap forwards in achieving more social freedom in the real world.
At heart, sociophysics and this book are about better comprehending the richness
and potential of our social interaction, and so distancing ourselves from inanimate
atoms.” [11]

—–S. Galam, back cover of Sociophysics: A Physicist’s Modeling of Psycho-
political Phenomena, Springer (2012)

• “In biology, people are accustomed to think that from simple animals up to di-
nosaurs, all species originated by Darwinian evolution and selection of the fittest.
Once the principle is applied to human beings, some dislike it and rely instead on
creationism. Similarly for sociophysics, not much emotion is aroused if ants are
simulated by mathematically defined probabilities. But to apply the same type of
modelling to humans is disliked by some: We are not just atoms. Of course we
are not; neither is the planet earth a point mass. Nevertheless, for Kepler’s law of
how the earth rotates around our sun, a point mass is a good approximation.”

—–Hmolpedia: An encyclopedia of human thermodynamics, entry on D.
Stauffer (http://www.eoht.info/page/Dietrich+Stauffer)

• “There is indeed major scope for developing sociophysics much further, follow-
ing the developments in physics of many-body nonlinear and frustrated dynami-
cal systems and statistical physics. Though the size of any typical social system is
much less compared to the Avogadro number (O(1023); and present world popu-
lation is O(1010)), they are sufficiently large to allow the laws of large numbers
to induce and stabilize very precise statistics in most cases. Indeed, as described
in various chapters of this book, the dynamics of many social phenomena are
similar to those of many-body aggregates, where each constituent follows some
quantifiable physical dynamics. The individual choices or decisions induce only
some noise (mostly uncorrelated) on this average dynamics. Even in some special
cases, like those in the cases of minority and similar adaptive games, the individ-
ual decision dynamics can be modeled after the physical models of brain or neural
network having frustrated dynamics! All these inspire and allow physical model-
ing of every social dynamical phenomenon.” [10]

—–P. Sen & B.K. Chakrabarti, Sociophysics: An introduction, Oxford Univer-
sity Press (2013)

http://www.eoht.info/page/Dietrich+Stauffer
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15.6 Discussions

We have sketched how the attempts of physicists to explain economic and social
phenomena have attracted both good and bad criticisms from all sides. Econo-
physics and Sociophysics have survived the initial battle. However, the real chal-
lenge lies in near future where they have to prove their usefulness. There are some
criticisms that have been leveled against economics like lack of heterogeneity in the
macroeconomic models etc. These have flimsy foundations. However, over and over
a couple of more methodological (or philosophical if you wish) problems have been
shown to prove to be extremely effective in making economic predictions horribly
bad. One important point is that we solely describe the economics literature as that
has a formidable mathematical structure and makes strict predictions where falsifi-
ability is possible, at least in principle. As far as Sociology is concerned, probably
it does not have as strong an analytical framework. Hence, we focus on economics
only. A couple of problems where a new point of view (or at least different and
more effective than the current economic idea) can really be of some use are as
follows. 1. Systemic risk: even though economists are turning their attentions to
the possibility of a global breakdown of market mechanism, it requires more new
tools that probably physicists have. 2. Equilibrium: the idea of equilibrium is so
deep-rooted in economics that almost every economist suffers from an obsessive-
compulsive disorder about it. But to be fair to them, it is not entirely clear what else
can one do? 3. Limitation of computational facilities: it is rarely acknowledged in
the economics literature that most of us are horribly bad at mental calculations. Only
in the recent years economists have started talking about ‘rational Inattention’ [12].
But even in those frameworks, people have to do so much of calculation on whether
to spend effort thinking about something or not, the purpose of the whole exercise
is probably self-defeating! But it may be too early to predict given the age of the
almost newly-born idea. This leads to the fourth and last point. 4. Economizing on
models: the usual standard neo-Keynesian DSGE (dynamic stochastic general equi-
librium that the central banks use) models have about three/four exogenous shocks
(TFP shock, monetary shock, possibly disaster risk), about ten endogenous variables
(wage, rental rate, consumption, capital holding, prices of the intermediate goods,
price of the final goods, inflation, output, employment etc.) and a huge number of
exogenous variables (preference parameters, shock parameters, money growth rate
etc.). Of course, the exact number of variables considered depends on the exact
model specification. But in all likelihood getting a meaningful prediction from such
a complicated object becomes extremely difficult. Moreover, by neglecting coor-
dination failure on the demand side, that provides little room for a demand-side
explanation to economic crisis and in the current world, crises are more demand-
driven than supply-driven (we really do not have any crisis from flood or war and
even if we have them we have a good idea about how to tackle them). This led to the
oft-quoted comment by Robert Solow (U.S. Congress hearing on July 20, 2010),
a Nobel-laureate economist that ‘I do not think that the currently popular DSGE
models pass the smell test. They take it for granted that the whole economy can be
thought about as if it were a single, consistent person or dynasty carrying out a ra-
tionally designed, long-term plan, occasionally disturbed by unexpected shocks, but
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adapting to them in a rational, consistent way. . . The protagonists of this idea make
a claim to respectability by asserting that it is founded on what we know about mi-
croeconomic behavior, but I think that this claim is generally phony. The advocates
no doubt believe what they say, but they seem to have stopped sniffing or to have
lost their sense of smell altogether’.
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Chapter 16
A Discussion on Econophysics

Hideaki Aoyama

16.1 Dialog with My Friends1

Every year, I (A) and my friends B and H get together on the riverside of the
Hooghly river for great catfish curry and a chat on our life, universe and econo-
physics.

A: Greetings, B and H, my good friends! It’s so nice meeting you again here in
Kolkata.

B and C: Greetings, A! We are glad to see you too. Let’s get some food and sit
down and discuss our issues.

A: Of course. No one can beat curries on Camac street. Anyhow, I am worried
about the future of the word “Econophysics”, as some tries to avoid this word these
days.

H: They are not unreasonable. After all, all we do is to study economics. Just
because some of us have backgrounds in Physics, it does not mean that we have to
name all of our research topics so they end with “physics”.

A: Well, even though I published papers on Linguistics [1, 2] and named it “Lin-
gophysics” to write about it on Physics journals, I kind of agree with you. The name
“econophysics” may in a sense deter good economists away from us, as it sounds as
if we are in total denial of economics.

B: Wait a minute. Here we are in Kolkata, where this term “Econophysics” was
born in 1995, and it was for a good reason. We are studying economics with physics

1 Disclaimer: All characters appearing in this article are fictitious. Any resemblance to real persons
or their opinions is purely a miracle.
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ideas and philosophy. And we are proud that this true spirit of natural science is
different from mathematics and engineering. We are here to find truth hidden behind
all the phenomena and ...

B and C: (in unison) I know. I know, you don’t need to tell ...

A: Have you read this “THE BACK PAGE” of the APS News by someone in
Logic and Philosophy of Science?

Physicists have a distinctive way of thinking ... They are experts in approximative thinking„
in building toy models and effective theories. This sort of reasoning is just what is needed to
take a problem that appears hopelessly complex and find the simplifying assumptions and
idealizations necessary to make it tractable.

(J.O. Weatherall, March 8th, 2013)

B: Well said. So, that is why I say that what we are doing IS physics. This is
true physics, only the subject is now complex phenomena of economic activity of
people, firms, etc, etc. This IS physics.

A: Yes, you are indeed convincing. There is this famous textbook on statistical
physics by Ryogo Kubo in Japanese, where he starts his introduction to basic con-
cepts of statistical physics using the wealth distribution as an example. He even men-
tions distribution of workers to industrial sectors in the section for Bose-Einstein
statistics. He was well aware of importance of statistical physics for economics,
even though he himself did not venture into this area.

H: Now, that being said, let me put forward another issue before we start on Chai.
It’s about network: you know, every economic phenomena occurs on networks, be
it trading network, credit network, ...

A: And you must know that we are among the first ones to do agent-modeling on
economic networks as in the paper of Souma et al. [3].

H: I do a lot of network analysis, community identifications and all that with my
slaves ..., whoops, graduate students, rather, and they are often asked “so what?” by
other people in the physics department.

B: That is why “econophysics” is important: Without “physics” approaches, al-
ways trying to identify basic laws and explanations hidden under phenomena and
to seek ways to predict consequences, network “analysis” as well as any other anal-
ysis are just neat way of description and pretty graphics and would never become
“science”.

A: That rounds up the whole discussion. We have gathered at Saha Institute of
Nuclear Physics again this year, with the stress on “agent-based modeling”. We are
building science of economics with economic network as its base-space.

B: I am so glad that all of us agree with the value of science. Now, let me invite
you to an arboretum across the river, where the largest tree in the world is. India is
a great country beyond your imagination in many ways.

B and C: Thanks, B. We are already looking forward to our next meeting in March
2014!
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