Chapter 6

Large Simulations and Small Societies: High
Performance Computing for Archaeological
Simulations

Xavier Rubio-Campillo

6.1 Introduction

Computational simulation of societies has found in archaeologists one of the most
promising fields of applications, as can be observed in the number of related
publications (Doran et al. 1994; Doran 1999; Lake 2000; Diamond 2002; Kohler
and van der Leeuw 2007; Costopoulos and Lake 2010; Lake 2013). The reason of
this interest can be found in the link between the basic objectives of archaeology
and simulation. Archaeology attempts to understand human behavior through the
detection and analysis of spatio-temporal patterns related to the location and type of
found structures and objects. Uncertainty is inherent to this process, as any research
based on data from the archaeological record should cope with it, both in time and
space (Crema et al. 2010). Within this context, computer simulation is the perfect
virtual lab because it is capable of dealing with mathematically intractable problems
such as the interaction of complex human behavior (Galan et al. 2009). They are
suited to explore different hypotheses capable of explaining detected patterns, as
well as to validate them, at least within the context of the simulation model. Agent-
Based Models is one of the most widely spread simulation techniques; its basic
concept of entities with individual decision-making processes interacting within
a common environment is well suited to explore the type of questions faced by
archaeologists.

From a broader perspective a common trend of Agent-Based Models simulating
human behavior is a gradual increase in their complexity (Bonabeau 2002). These
research projects often have at their disposal a vast amount of data that can be used to
define the value of several parameters, as well as the behavior of the different agents.
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The results are large scale simulations executed in High-Performance Computing
(HPC) infrastructures (i.e. supercomputers), created to explore realistic scenarios,
develop policy analysis and manage emergency situations, to cite some applications
(Leitao et al. 2013; Macal et al. 2008).

The emergence of these large scale simulations brings also a theoretical issue: the
intractability of Agent-Based Models understood as computational problems. From
this perspective the cost of executing an ABM in a computer follows a exponential
curve. This is crucial if we want to understand the emergent behavior of an ABM
given any set of initial conditions. Within this perspective the computational cost for
the solution will increase exponentially to the number of parameters of the model.
The consequence of this property is that, at a given point, we will not be able to
solve an increasingly complex ABM in a reasonable amount of time, regardless the
computer we use. We can have better computers, but the requirements will be orders
of magnitude larger than our capabilities.

There is an ongoing debate in the community of archaeologists developing
ABMs in relation to this increasing complexity. Some works try to follow the
trend, developing detailed models designed to test hypotheses on realistic scenarios.
Simultaneously a different group of modelers are focused on theory building,
creating abstract simulations with simpler scenarios (for this division see Lake
2001, 2013). The discussion is centered on the best way to use the efforts of
the community, taking into account the fact that realistic models cannot be fully
defined on the basis of the fragmented data collected by the discipline. In this
sense, the development of large scale complex models with weak assumptions
could strongly bias the interpretation of the archaeological record, thus decreasing
the scientific quality of research (Premo 2010). Paradoxically the development
of abstract models without realistic backgrounds can keep away most potential
audience from simulations, thus preventing most archaeologists from using this
interesting tool.

Regarding HPC one could think that this technology cannot really offer anything
to archaeologists, given that it seems focused on boosting large scale ABMs with
huge scenarios and millions of agents. The models used in archaeological research
never have these requirements, so where is the need for additional computational
power? This chapter will show that the benefits of HPC are not constrained to
execute large simulations. In particular we will explore:

* How can we speed up the execution of a computer simulation of a small-scale
society?

¢ Isit possible to improve Agent-Based Models with an increase on computational
power?

*  What pitfalls and issues do the introduction of HPC create?

Not only is HPC important for accelerating the performance of the simulations,
but we also need a boost on computing capabilities in order to answer some
of the methodological questions arised during recent years. Some deficiencies of
archaeological ABMs are related to the lack of these capabilities, specially regarding
realistic hypothesis testing models. An immediate improvement caused by the use
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of additional computers is a better exploration of parameter spaces, but there are
others that can be even more interesting for the discipline. The introduction of
advanced decision-making processes and the development of multiscale simulations
could also improve the scientific quality of computer simulations developed in
archaeology.

Next section defines background concepts needed for the chapter. This is
followed by a discussion about the properties of Agent-Based Models and the
potential approaches to executing them using HPC resources. This section also
provides an overview of existing software and applications usable for achieving this
task. Fourth section deals with the methodological issues solved (and generated)
by the introduction of HPC. Finally, different concluding remarks are provided to
summarize the ideas of the chapter, as well as future lines of research.

6.2 Background

Some technical concepts need to be defined before continuing the discussion.
A general overview of an HPC infrastructure can be seen in Fig. 6.1:

e The Central Processing Unit (CPU) is the atom of any computing system. It is
responsible for calculating arithmetical and logistical operations. Most existing
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Fig. 6.1 General architecture of an HPC infrastructure
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systems combine the power of different CPUs, and are known as multi-core
processors.

* A computer node is a set of processors that share memory.

e An HPC infrastructure is a large set of computer nodes interconnected with
some type of network. This can be as simple as some computers communicating
through internet (i.e. grid computing), or a supercomputer where nodes are
interconnected with high-speed networks.

Different hardware components can be used to execute a simulaton. If we want
to distribute the process in more than one CPU we have two choices:

* Multiple processes in one node. The different CPUs of a computer node share
the access to RAM (Random Access Memory). As a consequence, all of them
can read and write in the same memory space. If a computer simulation wants
to use more than one CPU it needs a mechanism to avoid conflicts generated
by simultaneous writing of a particular memory section. This can be achieved
with different techniques, being threads the most widely used. Another solution,
OpenMP, is interesting for scientific applications given its capabilities for easily
adding multicore execution to any software (Dagum and Menon 1998; Kuhn et al.
2000).

e Multiple nodes. The computer nodes of a distributed system (i.e. clusters,
supercomputers, etc.) do not share memory. Any process being executed in more
than one node must have some way to communicate among each section of
the execution. This is achieved using the MPI (Message Passing Interface, MPI
Forum 2009) protocol, that specifies how a distributed (or parallel) application
must send and receive data using the network.

By definition, these solutions are complementary. State-of-the-art HPC applications
use an hybrid approach to parallelism: a simulation is split into different nodes,
while each section exploits all the cores of a given node.

6.3 Developing HPC-Based Simulations

From a technical point of view the distribution of an agent-based simulation in
different computer nodes is a complex task. There is a strong, inherent coupling
of the various components of the system. They are constantly interacting with each
other, so communication is always intensive.

Each agent needs to gather knowledge from their environment, as well as from
other agents in order to execute their decision-making processes. Once this phase is
completed, there is a possibility that the agents will modify the environment (and so
will the other agents). These mechanics translate, in terms of parallelization, to the
need of sharing several layers of environmental data and agents between computer
nodes, at every single time step. Furthermore, the execution of the agents’ actions
cannot usually be distributed within a single computer node (i.e. OpenMP), because
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there can be several conflicts related to agents accessing and modifying the same
data at the same time.

Based on these constraints the best way to distribute the execution of an ABM
over different computer nodes is to adopt a case-based approach. There is no optimal
way to distribute an ABM, but a set of different solutions that can be applied to
similar problems. The user should choose a particular method to split the execution
amongst the nodes, depending on the nature of the model and the properties of the
system. This idea is the basis of different initiatives like GridABM (Gulyas et al.
2011), a framework of template solutions for distributing these type of simulations.

Taking this perspective the majority of archaeological simulations share the
following properties:

* Importance of environment. Hypothesis testing models developed in Archaeol-
ogy usually focus on the strong relation between agents and the surrounding
landscape. For this reason, these ABMs will need a substantial amount of spa-
tially structured information, traditionally stored in a Geographical Information
System (Conolly and Lake 2006). These platforms are spatial databases where
data is stored as vectors (database records with spatial coordinates) and raster
maps (bi-dimensional matrices containing regularly distributed values). The
agents’ environment will be modelled with a combination of these concepts,
generating diverse information such as digital elevation models, site distribution,
vegetation indexes, etc.

e Low number of agents. Past societies were not as dense as the ones we live
in today. We will not need to reproduce situations with millions of agents, as
simulations will usually model small-scale societies.

 Intensive local communication. A world without telecommunications means that,
within a reasonable scale, an agent will only interact with the environment and
agents that are spatially close to it. These interactions can be intense, but in any
way an agent will need to know the entire situation of the world, just the section
of it within a given interaction range.

6.3.1 Distribution of Archaeological ABM in Different
Computer Nodes

These properties suggest that the best choice for splitting an archaeological ABM is
to use spatial partitioning: each computer node owns a section of the entire simulated
scenario, containing the different landscape data as well as the agents.! This is
the solution used in Pandora (Rubio-Campillo 2013) and Repast-HPC (Collier and
North 2011), the only HPC frameworks used in published archaeological ABMs.

! A different approach is seen in Long et al. (2011), where agents are grouped based on the network
of interactions.
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Fig. 6.2 Spatial partitioning
of an Agent-Based Model.
Each color represents the
section of the world owned by .
a different computer node,
including raster maps with
environmental information .
and agents. The zone where
different colors overlap is the
border zone

.

Pandora defines the environments where agents live as a set of layers containing
raster map structures, following GIS standards. The world of the simulation is
evenly divided among computer nodes, and each one of them will own a section of
the environment, as well as the agents located in this part of the world. This layout is
depicted in Fig. 6.2. Information in the border between adjacent nodes (raster maps
and agents) will be communicated to neighbours every time step execution, in order
to keep up-to-date data in the entire scenario. The size of this buffer border will be
defined as the maximum interaction range of any agent, being the absolute horizon
of actions of any component of the simulation. This approach is also adopted by
Repast-HPC, and solves the issue of distribution for models of past societies without
global interaction. The solution is highly scalable, given the fact that every computer
node will need to communicate, at most, with eight neighbouring nodes (if nodes
own rectangular regions), independently of the total size of the simulation.
Unfortunately, the issue of collision between agent’s actions is still present, because
two agents living in different computer nodes could be modifying the same
bordering data at the same time. There are different techniques to avoid this conflict,
but most of them can be computationally intensive (i.e. rollbacks). This overhead is
affordable if the ABM is CPU intensive and the possibility of conflict is not high,
but this is seldom the case.

Pandora, for example, takes a simpler approach. It is based in the segmentation
of the spatial section owned by every computer node in four equal parts numbering
0-3, as it can be seen in Fig. 6.3. The agents contained in all 0 sections will be
executed simultaneously without the possibility of conflicts, given the fact that they
are not adjacent. Once all of them are finished, modified border data is sent to the
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Fig. 6.3 The execution of
any computer node is divided

in four different sections, that O 1 0 1
are executed sequentially

neighbors, and a new section will begin its execution (1, 2 and finally 3). Once all
of them are executed, the entire state of the simulation is serialized and a new time
step can be evaluated.

The pitfall of this solution is that agents in section 0 will always be executed before
agents in sections 1-3. Depending on the model the consequences of this effect
can be nonexistent, or introduce artifacts in the outcome. As usual, a careful choice
between the different strategies is needed, based on the existing scenario.

6.3.2 Simultaneous Execution of Agents

Parallelization of a simulation on different computer nodes is needed but is not
sufficient. Every node should be able to use its complete set of CPU cores to
simultaneously execute its agents. Again, the problem of conflicts between agents’
actions is a barrier that must be broken if we want to avoid artifacts on simulation
results.” To fix this we need to take a closer look at the way ABMs execute the
set of agents (the scheduling system), in order to find properties useful to solve the
problem.

Most of the time needed to execute an ABM is spent in the same task: the
moment when the agents gather information, choose a particular set of behaviors,
and execute them. These processes are always mixed in a single method, executed
by every agent every time step. This is the approach taken by the three most popular
ABM platforms: tick in Netlogo (Wilensky 1999), step in MASON (Luke 2011) and
RePast (North et al. 2007).

It is worth to note that the first two processes do not modify anything, as the agent
is only evaluating potential course of actions depending on existing data. For this

2For example two agents modifying at the same time the same cell of a given raster map.
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reason we could simultaneously execute the decision-making process of different
agents. This solution is safe of conflicts if the agents only choose a set of actions
(without applying them).

Pandora uses this approach to split the step of an agent in three different methods.
In the first one, updateKnowledge, an agent cannot modify the environment or
other agents; it only gathers information. In the second one, selectAction, the agent
executes the decision-making process and choose an action (it still cannot modify
anything). Once every agent has chosen what it wants to do, Pandora executes the
actions of the agents sequentially. Finally, the third method that a user can specify
is updateState, where any agent can modify its internal state evaluating the results
of its actions. This cycle Explore—Decide—Apply allows Pandora to distribute the
execution amongst different CPU cores of a node, as the first two steps (the most
computationally expensive) can be easily parallelized. The third one is executed
sequentially, thus avoiding conflicts between the actions of the agents.

This structure could seem more complicated than just defining one method but,
from a theoretical point of view, the division of an agent’s execution in these three
steps is more consistent than the traditional ABM approach. The single method
implementation mixes the different stages of an agent’s cycle, that should be
correctly specified while building the model (see Fig. 6.4). Dividing the execution as
shown here avoids this problem, forcing coherence during the transition from theory
to code.

In addition this solution provides a cleaner interface to implement agents with
advanced artificial intelligence, when this requirement is needed. The Al algorithm
will be executed in one phase of the cycle (decide), that encapsulates the entire
decision-making process and keeps it separated from the rest of the model.

Decision-making Processes

[

Perceptions | |_Adtons_

_ Agent

Agent

of an agent
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6.3.3 Serializing Distributed Simulations

If every CPU of every computer node is simultaneously executing agents there is
a additional issue that needs to be dealt: bottlenecks during the serialization of the
results. The scientific analysis of an ABM simulation will usually need to keep track
of the evolution of the entire system from the beginning until the end of an execution.
This means that the simulation needs to provide access to the state of the simulation
at any given time step and at multiple levels of scale (from summary statistics to
the state of individual agents). Besides, most HPC systems use a job cue where
programs are submitted in order to be executed. This batch system is not interactive,
so the researcher will usually access the outcome after the simulation finishes. The
entire simulation state should be stored in a single file while it is running, in order
to analyze it after the execution. The different nodes should wait to store their
information while the rest are writing. This heavily affects the performance of the
simulation, wasting resources and time due to the high volume of data to serialize.

One solution to the serialization bottleneck is that every computer node writes
into a different file. The problem of this approach is that it requires postprocessing
of different files in order to merge results, and this is also a costly operation. The
optimal strategy, chosen by both frameworks (Repast-HPC and Pandora) is the
distribution of the serialization through HDF5 (Folk et al. 1999). It is an open-
source library specifically designed to store the outcome of scientific visualizations.
It allows for simultaneously serializing data from several computer nodes in a
structured, binary format. In addition, raster maps stored using HDF5 can be loaded
by GIS applications (e.g. Quantum GIS, Sutton et al. 2009) in order to minimize the
postprocessing of the data.

6.3.4 Theoretical Performance of Distributed ABMs

We can compute the improvements of distributing ABMs taking a look at theoretical
wall time (real-world time needed to finish an execution). We can define the time
needed for a model with local interaction as:

WallTime;, = N - timeSteps - (E + I - L) /numCpus

being N the number of agents in the simulation, £ the time an agent spends
interacting with the environment in a given time step, / the time spent interacting
with another agent and L the number of agents within range of interaction.’
Similarly, the wall time for a model with global interaction is defined as:

WallTimeg = N - timeSteps - (E + I - N)/numCpus

3This would be the cost for the majority of archaeological ABMs.
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Fig. 6.5 Theoretical comparison of temporal costs of execution for Agent-Based Models with
parameters timeSteps = 1,000, E = 0.005s, I = 0.001s, and L = 10 for (left) simulations
where only local interaction exist and (right) simulations where agents interact with any other
existing agent. Y axis shows (with a root squared scaling) the time needed to execute simulations
with different number of agents (defined by color) for given cpus (X axis)

Figure 6.5 compares the theoretical cost of executing an ABM for both local and
global interaction scenarios.

This decrease in wall time is the maximum boost in performance that a
distributed simulation can achieve. Overheads generated by communication, seri-
alization and other processes will lower performance, to the point that the increase
in the number of computer nodes could slow the execution of very simple models.
In this context the modeller is responsible for choosing the optimal infrastructure
capable of accelerating the simulation execution (Wittek and Rubio-Campillo
2012b).



6 Large Simulations and Small Societies 129
6.4 Computational Solutions of Methodological Problems

We will explore three methodological discussions that can be enriched with the
introduction of increasing computing power: parameter sweeps, exploration of size
dependent emergence, and the problem of self-fulfilling prophecies.

6.4.1 Parameter Sweeps

The first benefit from having a large set of CPUs is that you can execute a higher
number of runs for a given experiment. Archaeological problems deal with a high
degree of uncertainty, so a large percentage of models embody stochastic processes.
The consequence is that we cannot analyze a simulation based on one run, as
different executions provide different results; we need to execute several runs, and
their number will increase depending on the degree of stochasticity of the model.

An HPC infrastructure minimizes the time needed to achieve this task but it is
important to note that this problem has not been thoroughly explored, because the
proper number of simulations is difficult to know; how many runs of a given scenario
must be executed before being sure that the results are fully understood? A common
technique is to compare the average and standard deviation of particular outcomes
for different sets of the scenario (e.g. 10, 100 and 1,000 runs), but it still remains a
tricky issue for most models. In any case this is a field that should be addressed in
the near future.

If we want to grasp how the model is affected by different initial conditions
we also need to execute parameter sweeps. The technique consists on exploring the
combination of possible initial values of the simulation. This analysis allows the
researcher to fully understand the importance of the parameters as well as the rela-
tion between them. If the number of parameters is large this could be an impossible
task, as a correct analysis should explore the whole range of combinations; as a
consequence the scientific quality of the model will decrease, because the effect of
the different parameters in the outcome will not be fully understood.

This problem is even more important in archaeological models, as it is difficult to
give realistic values for most parameters (given the mentioned uncertainty). Some
models avoid this problem fitting real data to simulated data. The problem is that
this is not always possible, because the solution requires high-quality archaeological
data that usually is unavailable. As a result archaeology-related ABMs often suffer
from the problem of having too many parameters that are nor explored neither
calibrated.

One of the possible solutions is the adoption of HPC. This would allow, at a
technical level, to execute the needed number of simulations in order to perform
sensitivity analysis using different techniques (i.e. genetic algorithms, see Stonedahl
and Wilensky 2010). Nevertheless the difficulties to understand the outcome remain,
as the analysis of the results will be extraordinarily complex, and every new
parameters will increase the problem at an exponential rate. Besides, HPCs are
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not designed to execute a large number of simple simulations. The cost of the
interconnectivity between computer nodes is extremely high, and is not really used
if every run is executed in a different node. In the end, a simple cluster or cloud-
based services would have a better trade-off between cost and capabilities, being
HPC best suited to face the following two issues.

6.4.2 Size Dependent Emergence

A quick glance at ABMs published in archaeological journals suggest that they
tend to be small (for a survey of recent simulations see Lake 2013). The number
of agents will seldom exceed the order of thousands, so the idea of having a large-
scale simulation with zillions of agents do not seem related to the usual case studies.
If a large process needs to be modeled it is easier to jump from one scale to a higher
rank, thus adding a level of abstraction to the behavior of the agents. In the end the
best practice is the choice of a resolution as lowest as possible; it will avoid the
computational requirements and complications of huge simulations.

The pitfall of this approach is that some times the optimal spatial, temporal and
behavioral resolutions do not fit well. Imagine the simulation of migration processes
at a continental scale such as hominin dispersion from Africa. Models designed for
this task have extreme low resolutions (hundreds of year per time step, thousands
of kilometers per discrete spatial position). Given the temporal and spatial span it
seems the best choice, and it has been adopted by several research works during the
last decades (Mithen and Reed 2002; Nikitas and Nikita 2005; Hughes et al. 2007)

A closer look to the processes being modeled makes clear that the different
resolutions do not fit: there is a gap between the choice of spatiotemporal scale
and the scale of the behavior defined in the agents. On the one hand, space and time
resolutions are chosen to model a process that is being developed at a huge scale. On
the other hand, the behavior seems to be modeling a small-scale event (in the case
of dispersion, the movement and reproduction of human groups). The truth is that
behavior is not suited to the scale, because in reality during a time step any human
would be able to move wherever he/she wants around the simulated world.

For example, in the cellular automata defined in the model Stepping Out (Mithen
and Reed 2002, p. 436) a time step is defined as 250 years. During this time a cell
can colonize its neighbors, being all of them triangles with sides of 322 km. Why a
further cell cannot be accessed during this huge time interval? A cell at thousands
of kilometers from the point of origin could be colonized; if this was not the case
was for other reasons, not because it was physically impossible: this constraint is
introduced in the model to deal with the divergence of the scales. In the end, a
paradox emerges from the model: to understand the reasons why humans colonized
entire continents we need to explore behavior at a small scale. If we want to correctly
address the relation between behavior, spatial scale and time scale, we need to let the
migration process emerge, instead of applying the behavior suitable for one scale to
worlds defined at other scales while forcing artificial constraints.
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A second issue related to the size of simulations arise from the concept of
emergence, typical of ABMs: how can we model mechanisms that can only be
understood for a large number of agents? For example, warfare tactics are strongly
related to the size of an army. The tactics used in a given period are linked to
the number of available soldiers that were deployed in a battlefield. Studies on
battlefield archaeology of the eighteenth century (Rubio-Campillo et al. 2012)
shows how linear warfare of this era cannot be correctly modeled while trying
to simulate a few individuals. The reason is that the studied cultural traits (firing
systems) were designed to be used with thousands of soldiers, given the lack of
accuracy of existing fire weapons. Some of the hypotheses regarding command and
control, and even individual behavior follow the same reasoning, as do other types
of traits. In this context, we cannot simplify the simulation using fewer agents, as
the behavior we want to explore is linked to the number of them that are interacting
at a given time step.

Both issues (incorrect relation between scales and large-scale behaviors) can be
included inside the general concept of size-dependent emergence. True enough, lots
of emergent behaviors are detected in small worlds, but certain phenomena can only
be observed in large-scale scenarios (Murphy 2011). HPC is essential in these cases,
as we will need to create larger simulations, more costly in terms of computer power
and more difficult to analyze if an HPC is not available.

6.4.3 Solving the Dilemma of Self-fulfilling Prophecies

The two previous topics proof that some models cannot be simplified or split
in simpler simulations. As a consequence, the results can be more complex to
understand and justify. Parallel to these issues there is another one that, in our
opinion, seems to be the most important issue of state of the art archaeological
simulations: the definition of behaviors.

The vast majority of published ABMs are based on the classic SugarScape model
by Epstein and Axtell (1996). The model consists of a discrete world, defined
as a finite bi-dimensional matrix, where a set of agents interact between them as
well as with the environment. This behavior is defined as a list of rules; if one
condition applies, a simple behavior is executed (e.g. if there is no food the agent
will move to the adjacent place with more resources). In other words, the decision-
making process of the agent is wired, as its choices are completely predefined. As
a consequence it is incapable of finding solutions and reacting to conditions not
devised by the modeler. This is a weakness of the methodology if we think that
the interest on ABMs is precisely the emergence of large scale behaviors from the
interaction of these simple rules. In theory these behaviors should not be explicitly
defined in the original model, but as we said behavior is predefined, so there exist
an important thread of circular explanations (Macal and North 2010).

Moreover, if everything in an ABM is related to the agent’s behavior, why is it not
analyzed like a parameter? Behavior is arbitrarily defined based on archaeological
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assumptions, so it should also be explored to ensure scientific quality. Most models
do not face this issue, so we are not really sure if different behaviors (even slight
variations) affect the observed outcome as no sensitivity analysis is performed to
study it.

The consequence of this problem is that critiques against ABM focus on the fact
that they are self-fulfilling prophecies: emergent traits are not related to the problem,
but to the way it was programmed, and if we can take a look at the code, we will
learn the implicit or explicit assumptions the modeler introduced in order to achieve
the final outcome.

The solution of this issue is critical for the future of ABM. For simple models it
can be argued that the assumptions are less important, because such models can be
replicated and understood without problems. Theory building models guarantee the
scientific quality, as the number of parameters is small and behavior is so simple that
the emergence of non-expected behavior can be understood with proper analysis.

The same cannot be said about hypothesis testing simulations. They are usually
more complex because their goal is to understand realistic scenarios. For this reason
these models create agents with several traits and a large list of conditions and
rules, as simpler agents would not be able to take decisions based on the amount
of data being used. In the end it will become impossible to understand, even by
the creator of the model, which system properties emerged from the simulations,
and which ones from the way the agents were programmed. Even though the
problem is often not explicited, its consequences are so important that we have to
wonder if hypothesis testing models are really useful to understand social change,
except for some approaches that use excellent datasets and simple mechanisms, like
evolutionary archaeology (Premo 2010; Lake 2013).

Any solution to this issue needs to avoid the design of the traditional rule-based
agents. Luckily enough Artificial Intelligence has developed, in the past decades,
several alternatives to the modeling of decision-making processes. The change
would provide access to a plethora of well-known methods that could be integrated
in the agents’ design such as goal oriented agents based on atomic actions.

Imagine that we want to explore the foraging strategies of Hunter-Gatherers in a
realistic landscape. Instead of defining every way in which an agent can interact with
the environment, we could define its basic goal as survival (i.e. getting each time step
a given level of food) and a set of simple actions that it can use to achieve the goal.
The only possible actions would be moving to another location or forage the place
where the agent currently is. Every action would have potential associated rewards
and costs, and the decision-making process would consist on the choice of a single
action each time step. The whole process can be seen as a fully observable stochastic
state model, or Markov Decision Process (MDP). In this context, the agent needs to
explore possible options and the impact on its future, thus choosing the best one
given its knowledge of the environment. Figure 6.6 shows this process, where the
agent explores its future applying different sets of actions.

The benefit of this approach is that MDPs are well known models of decision-
making in the field of Artificial Intelligence. There are different ways to solve it,
like the family of A* algorithms or the UCT approach (Bonet and Geftner 2012).
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Fig. 6.6 Exploration of actions using a Markov Decision Process

This is a CPU consuming algorithm that acts as a planner for the agent: given a set
of goals, the agent will simulate on its own the accumulated effects of executing
different available actions. Thus, at every time step potential rewards and costs will
be explored for a large set of possible actions, given a defined policy and a search
depth. When the process is finished the agent will choose to execute the best action
for the next state (when the algorithm will be executed again).

This change in the architecture of the agents solves the problem of implementing

realistic scenarios at several levels:

1.

Definition of the model. It is simpler to think on a small set of possible actions
than a large set of rules. Moreover, if archaeological data is scarce these rules can
not be defined at all (but we can still define the small actions).

. Complex behavior without complex rules. Instead of defining rules the modeler

defines goals and atomic actions. They are more understandable and for this
reason the model can be best understood by archaeologists that did not implement
the model.

. Verification. The researcher has different available algorithms to solve the MDP.

They are already understood and published by Al experts, so the modeler can use
third-party implementations instead of developing new code.
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4. Extension. The division of behavior between potential actions and decision-
making process allows for the exploration of different approaches (e.g. what if
we introduce a cognitive model, social interaction or partial information?).

To summarize this approach, in order to model realistic scenarios we need realistic
decision-making processes. They have been researched by Artificial Intelligence
during the last decades, so we should use their knowledge to create new types of
agents, capable of acting in a realistic way while maintaining scientific quality. It is
clear that this approach requires additional computing power, and HPCs are the key
that will allow its introduction into archaeological ABMs.

6.5 Concluding Remarks

The use of simulation in science always require further computational power. Only
high-performance computing (HPC) resources are capable of dealing with large
simulation scenarios containing agents applying artificial intelligence algorithms
with high computational costs. Even though the problems solved by archaeological
ABMs are somewhat different than other fields, the capabilities of these systems can
also be exploited. We have explored different options to accelerate the execution of
the simulations, but also to improve the methodological framework and scientific
quality of these models.

As we already know hardware infrastructures evolve at a fast pace; any software
solution must be independent of the characteristics of the underlying system. On
one side of the spectrum we find the supercomputers, where hundreds or thousands
of nodes are located inside a facility with high-speed interconnection, forming a
homogeneous and reliable environment. The increasing trend of cloud computing
is present on the other side, where a theoretical unit of computing can, in reality,
shape multiple and varied hardware infrastructures linked with medium or low-
speed interconnections (Armbrust et al. 2009). The debate about which system is
better is far from the aim of this chapter, but it is important to note that, from our
perspective, they serve different purposes. Cloud computers are definitely needed
when no supercomputing infrastructure is available. Even if a supercomputer is an
option, cloud computers are more cheaper when the agents inside our model do not
interact constantly. If the model is communication-intensive, on the other hand, a
supercomputer is the best available choice, as its performance is optimal for this kind
of executions (Wittek and Rubio-Campillo 2012a). The election of the platform used
to execute an ABM will be increasingly difficult given the varied options, and the
modellers should be able to choose based on the properties of their own simulations.

Additionally the constant improvement of available hardware components pro-
vides new ways for scientific simulation to exploit new computing capabilities. For
example, Graphics Processor Units (GPUs) are increasingly being used to boost
the performance of particular sections of a simulation (D’Souza et al. 2007). Even
though it is unclear how small-scale ABMs could benefit from this approach, some
examples have been suggested (Wittek and Rubio-Campillo 2013).
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To conclude, this chapter provides an overview of the impact of HPC in
archaeological ABMs. It is a decisive advance on the quality of the models focused
on small-scale societies with a high demand for complex behaviors. The boost in
computing capabilities provides solutions to different methodological issues derived
from the use of this technique. In any case, we should be aware that, even if
they are extremely powerful, they are just a tool; it is the responsibility of the
researchers to develop models capable of exploiting these resources and solve
interesting problems.

Acknowledgements Special thanks to Jose Marfa Cela, Miguel Ramirez and two anonymous
reviewers for their suggestions and comments on the topic and the preliminary versions of the
text. The author is part of the SimulPast Project (CSD2010-00034) funded by the CONSOLIDER-
INGENIO2010 program of the Spanish Ministry of Science and Innovation.

References

Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin
A, Stoica I (2009) Above the Clouds: A Berkeley View of Cloud Computing. Tech. Rep.
UCB/EECS-2009-28, University of California, Berkeley

Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems.
Proc Natl Acad Sci USA 99(3):7280-7287

Bonet B, Geffner H (2012) Action Selection for MDPs: Anytime AO* vs. UCT. In: Proceedings
of the 26th AAAI Conference on Artificial Intelligence, pp 1749-1755

Collier N, North M (2011) Repast HPC: A Platform for Large-Scale Agent-Based Modeling. In:
Dubitzky W, Kurowski K, Schott B (eds) Large-Scale Computing Techniques for Complex
System Simulations. Wiley, Hoboken, pp 81-110

Conolly J, Lake M (2006) Geographical Information Systems in Archaeology. Cambridge
University Press, Cambridge

Costopoulos A, Lake MW (eds) (2010) Simulating Change: Archaeology into the Twenty-First
Century. The University of Utah Press, Salt Lake City

Crema E, Bevan A, Lake M (2010) A probabilistic framework for assessing spatio-temporal point
patterns in the archaeological record. J Archaeol Sci 37(5):1118-1130

Dagum L, Menon R (1998) OpenMP: an industry standard API for shared-memory programming.
Comput Sci Eng 5(1):46-55

Diamond J (2002) Life with the artificial Anasazi. Nature 419(6907):567-569

Doran J (1999) Prospects for agent-based modelling in archaeology. Archeologia e Calcolatori
10:33-44

Doran JE, Palmer M, Gilbert N, Mellars P (1994) The EOS Project: Modelling Upper Palaeolithic
Social Change. In: Gilbert N, Doran J (eds) Simulating Societies. UCL Press, London,
pp 195-221

D’Souza RM, Lysenko M, Rahman K (2007) Sugarscape on Steroids: Simulating Over a Million
Agents at Interactive Rates. In: Proceedings of the Agent2007 Conference

Epstein JM, Axtell R (1996) Growing Artificial Societies: Social Science from the Bottom Up.
Brookings Press/MIT Press, Washington/Cambridge/L.ondon

Folk M, Cheng A, Yates K (1999) HDF5: A File Format and i/o Library for High Performance
Computing Applications. In: Proceedings of the 12th Conference on Supercomputing, Portland

Galéan JM, Izquierdo LR, Izquierdo SS, Santos J, del Olmo R, Lépez-Paredes A, Edmonds B (2009)
Errors and artefacts in agent-based modelling. J Artif Soc Soc Simul 12(1):1. http://jasss.soc.
surrey.ac.uk/12/1/1.html


http://jasss.soc.surrey.ac.uk/12/1/1.html
http://jasss.soc.surrey.ac.uk/12/1/1.html

136 X. Rubio-Campillo

Gulyés L, Szabé A, Legéndi R, Méhr T, Bocsi R, Kampis G (2011) Tools for Large Scale
(Distributed) Agent-Based Computational Experiments. In: Proceedings of the Computational
Social Science Society of America Annual Conference 2011

Hughes J, Haywood A, Mithen S, Sellwood B, Valdes P (2007) Investigating early hominin
dispersal patterns: developing a framework for climate data integration. J Hum Evol 53:
465474

Kohler TA, van der Leeuw SE (eds) (2007) The Model-Based Archaeology of Socionatural
Systems. School for Advanced Research Press, Santa Fe

Kuhn B, Petersen P, O’Toole E (2000) OpenMP versus threading in C/C++. Concurrency Pract
Exp 12(12):1165-1176

Lake MW (2000) MAGICAL Computer Simulation of Mesolithic Foraging. In: Kohler TA,
Gumerman GJ (eds) Dynamics in Human and Primate Societies: Agent-Based Modelling of
Social and Spatial Processes. Oxford University Press, New York, pp 107-143

Lake M (2001) Numerical Modelling in Archaeology. In: Brothwell D, Pollard A (eds) Handbook
of Archaeological Science. Wiley, Chichester, pp 723-733

Lake M (2013) Trends in archaeological simulation. J Archaeol Method Theory.
doi:10.1007/s10816-013-9188-1

Leitao P, Inden U, Riickemann CP (2013) Parallelising Multi-Agent Systems for High Performance
Computing. In: INFOCOMP 2013: The Third International Conference on Advanced Commu-
nications and Computation, Portugal, pp 1-6

Long Q, Lin J, Sun Z (2011) Agent scheduling model for adaptive dynamic load balancing in
agent-based distributed simulations. Simul Model Pract Theory 19(4):1021-1034

Luke S (2011) Multiagent Simulation and the MASON Library. George Mason University. http://
cs.gmu.edu/~eclab/projects/mason/manual.pdf

Macal C, North M (2010) Tutorial on agent-based modelling and simulation. J Simul 4(3):151-162

Macal C, North M, Pieper G, Drugan C (2008) Agent-based modeling and simulation for exascale
computing. SciDAC Rev 8:34—41. http://www.scidacreview.org/0802/index.html

Mithen S, Reed M (2002) Stepping out: a computer simulation of hominid dispersal from Africa.
J Hum Evol 43(4):433-462

MPI Forum (2009) Message Passing Interface (MPI) Forum Home Page. http://www.mpi-forum.
org/

Murphy J (2011) Computational Social Science and High Performance Computing: A Case Study
of a Simple Model at Large Scales. In: Proceedings of the 2011 Annual Conference of the
Computational Social Science Society of America

Nikitas P, Nikita E (2005) A study of hominin dispersal out of Africa using computer simulations.
J Hum Evol 49:602-617

North M, Howe T, Collier N, Vos J (2007) A Declarative Model Assembly Infrastructure for
Verification and Validation. In: Takahashi S, Sallach D, Rouchier J (eds) Advancing Social
Simulation: The First World Congress

Premo LS (2010) Equifinality and Explanation: The Role of Agent-Based Modeling in Postposi-
tivist Archaeology. In: Costopoulos A, Lake M (eds) Simulating Change: Archaeology into the
Twenty-First Century. University of Utah Press, Salt Lake City, pp 28-37

Rubio-Campillo X (2013) Pandora: An hpc Agent-Based Modelling Framework. Software. https://
github.com/xrubio/pandora

Rubio-Campillo X, Marfa Cela J, Hernandez Cardona F (2012) Simulating archaeologists? Using
agent-based modelling to improve battlefield excavations. J Archaeol Sci 39:347-356

Stonedahl F, Wilensky U (2010) Evolutionary Robustness Checking in the Artificial Anasazi
Model. In: Proceedings of the 2010 AAAI Fall Symposium on Complex Adaptive Systems

Sutton T, Dassau O, Sutton M, Nsibande L, Mthombeni S (2009) Quantum GIS Geographic
Information System. Open Source Geospatial Foundation, Quantum GIS Development Team

Wilensky U (1999) NetLogo. Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/


http://cs.gmu.edu/~eclab/projects/mason/manual.pdf
http://cs.gmu.edu/~eclab/projects/mason/manual.pdf
http://www.scidacreview.org/0802/index.html
http://www.mpi-forum.org/
http://www.mpi-forum.org/
https://github.com/xrubio/pandora
https://github.com/xrubio/pandora
http://ccl.northwestern.edu/netlogo/

6 Large Simulations and Small Societies 137

Wittek P, Rubio-Campillo X (2012a) Military Reconstructive Simulation in the Cloud to Aid Bat-
tlefield Excavations. In: Proceedings of the 4th International Conference on Cloud Computing
Technology and Science, pp 869-874

Wittek P, Rubio-Campillo X (2012b) Scalable Agent-Based Modelling with Cloud HPC Resources
for Social Simulations. In: Proceedings of the 4th International Conference on Cloud Comput-
ing Technology and Science, pp 355-362

Wittek P, Rubio-Campillo X (2013) Social Simulations Accelerated: Large-Scale Agent-Based
Modeling on a GPU Cluster. In: GPU Technology Conference, San Diego. Poster DD06. http://
on-demand.gputechconf.com/gtc/2013/poster/pdf/P0197_PeterWittek.pdf


http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0197_PeterWittek.pdf
http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0197_PeterWittek.pdf

	6 Large Simulations and Small Societies: High Performance Computing for Archaeological Simulations
	6.1 Introduction
	6.2 Background
	6.3 Developing HPC-Based Simulations
	6.3.1 Distribution of Archaeological ABM in Different Computer Nodes
	6.3.2 Simultaneous Execution of Agents
	6.3.3 Serializing Distributed Simulations
	6.3.4 Theoretical Performance of Distributed ABMs

	6.4 Computational Solutions of Methodological Problems
	6.4.1 Parameter Sweeps
	6.4.2 Size Dependent Emergence
	6.4.3 Solving the Dilemma of Self-fulfilling Prophecies

	6.5 Concluding Remarks
	References


