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Preface

In March 2011, we held a workshop called “Agents in Archaeology” at the Natural
History Museum Vienna, in which we brought together both experts and novices
in archaeological simulation: On the one hand, we had a range of presentations
on the practical use of agent-based modelling as a research tool; on the other
hand, we held a 2-day tutorial on NetLogo for archaeologists not familiar with
simulation software (or even programming). As supplement, we also uploaded the
tutorial lecture to YouTube, which has so far attracted 6,206 viewers devoting
35,629 minutes of their lifetime to that subject. Hence, when Suzana Dragicevic
invited us on behalf of the Springer GIScience series to compile a book on
that matter, we knew that we would like to keep this very delicate balance
between practical “hands-on”-type contributions (given by “digital archaeologists”,
if you will) and methodical chapters (given by modelling experts, mathematicians,
computer scientists and social scientists). Accordingly, we decomposed the subject
into four parts: Introduction (which gives an overview), Methods (which elaborates
the foundations of the subject), Applications (which reports on real models, in a
“hands-on” fashion) and Summary and Outlook (which gives some future trends).

Now that the volume is finished, it is time to take a step back and look at the
results. Our authors have given an excellent view behind the curtain, not only
technically/methodically but also concerning the development process of a model
(e.g. the Artificial Anasazi in Chap. 2 or the Sugarscape model in Chap. 11). They
did so using 733 citations which we have plotted in Fig. 1: Each dot corresponds to
one citation; dots of larger size are those citations that are referenced by multiple
chapters and are thus deemed as being highly influential work for this book. In
more detail, we can see a cluster of work around the year 2000 (e.g. Sugarscape
and NetLogo, both having five citations) and also one at 2007 (e.g. a postpositivist
view on agent-based modelling). For us, the clusters at the turn of the millennium
concerns pioneering work that is still highly influential, whereas the second cluster
is a body of work that goes into the direction of a differentiation and specialisation
of modelling. Interestingly, the number of cited publications is rising each year, but
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the amount of highly influential publications does not rise with it (it rather seems to
be constant). Surely, there is also a time factor in this (more recent publications are
not cited as often), but could it possibly mean that the field is returning to models
it has gotten used to, only on a broader basis? Or, put differently: Are some types
of models evolving into a quasi-standard? What is the modelling philosophy that
we buy ourselves into, if that is true? Partial answers to these questions appear in
the subsequent chapters (especially Chaps. 1 and 11); however, these entail new
questions leading to new lines of thought.

In this sense, we hope that we can contribute one next step to the field of digital
archaeology with our book. We would like to warmly thank Suzana Dragicevic and
Ron Doering for making this work possible and our colleagues and families for
supporting us. Last but not least, we thank all contributing authors for their excellent
work.

Vienna, Austria Gabriel Wurzer
Vienna, Austria Kerstin Kowarik
Vienna, Austria Hans Reschreiter
January 2014

Fig. 1 Analysis of all 733 citations in the book, shown yearly from 1970 onwards: one dot per
citation; dot size reflects the number of chapters referencing the citation
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Chapter 1
Explaining the Past with ABM:
On Modelling Philosophy

Mark W. Lake

1.1 Introduction

This chapter discusses some of the conceptual issues surrounding the use of agent-
based modelling in archaeology. Specifically, it addresses three questions: Why
use agent-based simulation? Does specifically agent-based simulation imply a
particular view of the world? How do we learn by simulating? First, however, it will
be useful to provide a brief introduction to agent-based simulation and how it relates
to archaeological simulation more generally. Some readers may prefer to return to
this chapter after having read a more detailed account of an exemplar (Chap. 2)
or of the technology (Chap. 3). Textbooks on agent-based modelling include
Grimm and Railsback [(2005) Individual-based modeling and ecology, Princeton
University Press, Princeton] and Railsback and Grimm [(2012) Agent-based and
individual-based modeling: a practical introduction, Princeton University Press,
Princeton], both aimed at ecologists, the rather briefer [Gilbert (2008) Agent-based
models. Quantitative applications in the social sciences, Sage, Thousand Oaks,
CA], aimed at sociologists, and [Ferber (1999) Multi-agent systems: an introduction
to distributed artificial intelligence, English edn. Addison-Wesley, Harlow], which
treats agent-based simulation from the perspective of artificial intelligence and
computer science.
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1.2 Agent-Based Modelling in Archaeology

Agent-based modelling (ABM) is a method of computer simulation that is
particularly well suited to exploring how the aggregate characteristics of some
system arise from the behaviour of its parts. The parts in question are modelled as
‘agents’, that is, units which have causal efficacy and can reasonably be treated as
individuals in the sense that they act as cohesive wholes in respect of the particular
research problem. Agents are usually situated in an artificial environment and their
behaviour is governed by rules which specify how they respond to the content
of that environment and possibly also the behaviour of other agents (Epstein and
Axtell 1996, p. 5).

The well known Long House Valley agent-based model (chapter 2; Dean
et al. 2000; Axtell et al. 2002; also Kohler et al. 2005 for a popular account)
illustrates the paradigmatic features of a typical agent-based model. The Long
House Valley ABM was built to explore the relationship between climatically
determined resource availability, settlement location and population growth in Long
House Valley, Arizona in the period AD 400–1450. In this example the agents
are individual Puebloan households, each of which use rules to choose where
to settle in Long House Valley in order to grow sufficient maize to survive.
The maize-growing potential for each hectare in the valley was inferred from
painstaking palaeoenvironmental research and is input into the model for every
year from AD 400 to 1450. When the simulation is run, growth of a household
and/or environmental degradation can lead to fissioning or wholesale relocation of
that settlement. In this way, repeated individual household decision-making and
reproduction produces a changing macro-level settlement pattern and population
size, both of which could be compared with the archaeological evidence. After
experimenting with different assumptions concerning the productivity of prehistoric
maize and the fertility and longevity of households, the authors concluded that
climate change alone is insufficient to explain the eventual abandonment of Long
House Valley.

The Long House Valley agents fulfil the standard textbook requirement (e.g.
Ferber 1999, pp. 9–10) that agents should be autonomous (directed by their own
goals), goal-directed (behave in an attempt to achieve their goals), reactive (change
their behaviour in response to the properties of the environment) and—usually—
situated (have an explicit location in the environment). It is, however, possible
to add additional complexity designed to make agents more human-like. Thus
Ferber (1999) notes that agents may additionally maintain a representation of
their world and thus be capable of cognition, be social in the sense of interacting
with and in particular maintaining patterned interaction with other agents, and be
capable of reproduction involving some kind of recombination or mutation of their
attributes. All of these ‘extensions’ have in fact been implemented in archaeological
agent-based models, in some cases more than 20 years ago. Thus, for example,
Mithen (1990) and Lake’s (2000) agent-based models of Mesolithic hunter-gatherer
foraging very explicitly model agents learning about their environment and using
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the information so gained to inform their decision-making; in the case of Lake’s
model this extends to each agent having a geographically referenced cognitive
map of its environment. Both these models rely on agents having memory, but in
another case the capacity and longevity of agent memory was itself the subject
of enquiry (Costopoulos 2001). Similarly, a number of archaeological agent-based
models have incorporated aspects of social interaction, ranging from inter-agent
social learning (Kohler et al. 2012b; Lake 2000; Mithen 1989; Premo 2012; Premo
and Scholnick 2011) through simple collective decision-making (Lake 2000) to
exchange (Bentley et al. 2005; Kobti 2012), group formation (Doran et al. 1994;
Doran and Palmer 1995) and the emergence of leaders (Kohler et al. 2012b). Agent
reproduction involving recombination or mutation of attributes can also be found
in archaeological agent-based models, including Kachel et al’s (2011) evaluation of
the so-called ‘grandmother hypothesis’ for human evolution, Lake’s (2001b) model
of the evolution of the hominin capacity for cultural learning and Xue et al’s (2011)
model of the extent to which achieving a high degree of adaption to the environment
can be detrimental in the long term.

As well as making agents more human-like, it is also possible to extend a
paradigmatic agent-based model by explicitly modelling feedback between agent
behaviour and the properties of the environment in which the agents are situated. In
a very simple agent-based model the environment might be completely unchanging.
This was not the case in the Long House Valley model, since that model explicitly
included external environmental forcing by altering the maize yield over time
in accordance with the palaeoclimatic reconstruction. Other archaeological agent-
based models make the environment even more dynamic by, for example, explicitly
modelling resource degradation as a result of agent activity. One of the first models
to achieve this was the first (mid 1990s) version of Kohler et al’s Village ABM,
which explicitly incorporated reduced yields from continued farming (2000; 2012a).
More recent versions of the Village ABM also explicitly model the population
growth of prey species such as deer (Johnson and Kohler 2012). Unsurprisingly,
some of the most sophisticated modelling of environmental change is to be found in
agent-based models conceived as part of the growing programme of ‘socionatural’
studies (McGlade 1995; van der Leeuw and Redman 2002; Kohler and van der
Leeuw 2007a) of the socioecological (Barton et al. 2010a) dynamics of long-term
human environment interaction. At present there is a concerted effort to further
this agenda by coupling agent-based models of human behaviour with established
geographical information systems or other raster models of natural processes such
as soil erosion (e.g. Barton et al. 2010b,a; Kolm and Smith 2012).

I have recently provided an up-to-date review of the use of computer simulation
in archaeology (Lake 2014), which includes detailed discussion of the vicissitudes
and subject matter of archaeological agent-based modelling. For the purposes of this
chapter it is worth drawing out three main points. The first is that archaeologists
have used simulation models that exhibit many of the characteristics of agent-
based models for almost as long as they have used computers, and certainly long
before adoption of the term ‘agent-based model’ in the 1990s. Wobst considered
that the approach taken in his 1974 computer simulation model of Palaeolithic
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social systems could “best be conceptualized as an educational game consisting
of a gaming table (area), pieces (people), rules (biological or cultural rules of
behavior), and a series of different outcomes depending on the specifications of
the components” (Wobst 1974, p. 158); clearly, we would now call this an agent-
based model, as Wobst has himself noted (2010, p. 9). Thomas’ (1972) model of
Shoshonean subsistence also exhibits some of the characteristics of an agent-based
model (particularly in its implementation of a spatially heterogeneous environment)
and Wright and Zeder’s 1977 simulation model of linear exchange is another
that could be considered to be an early agent-based model (Doran 2000, p. 90).
Mithen’s late 1980s simulation model of Mesolithic hunter-gather decision-making
(Mithen 1987, 1990) is perhaps the most recent well-known agent-based simulation
model that was not explicitly labelled as such. Even recent textbooks on ABM now
acknowledge that “agent-based modelling is no longer a completely new approach”
(Railsback and Grimm 2012, p. 11), but they also note the potential advantage that
“the worst mistakes have been made and corrected” (ibid.). This, of course, will
only be true if new modellers drawn in by ever more user-friendly software make
the effort to acquaint themselves with earlier agent-based models and avoid naively
re-inventing the wheel.

The second point that can be drawn from my review of archaeological sim-
ulation is that, although something like agent-based modelling has been used in
archaeology for 40 years, there has unquestionably been an explosion of interest in
the technique since the turn of the millennium. Kohler and Gumerman’s (2000)
influential collection of agent-based models, Dynamics in Human and Primate
Societies, heralded the arrival in archaeology of fully modern and self-identified
agent-based simulation. The influence of modern agent-based modelling on the
resurgence of archaeological interest in computer simulation more generally can not
be overstated: over 50 % of the c. 70 substantive archaeological simulation models
published between 2001 and March 2013 are agent-based models (Lake 2014).
These models differ widely in complexity, ranging from those that barely meet the
minimum textbook definition of an agent-based model, but were implemented using
the computational framework provided by an agent-based simulation toolkit (e.g.
Bentley et al. 2004), through relatively simple abstract models that are however
unquestionably agent-based (e.g. Premo 2007), to much more complex realistic
models that exhibit many of the optional attributes discussed above (e.g. Kohler
et al. 2012a; Wilkinson et al. 2007).

A final point to make about the status of agent-based modelling in archaeology
is that it can now be argued to have acquired a degree of methodological maturity
(Lake 2014). First, a high proportion of recent publications reporting simulation
results do not foreground the method itself, or at the very least they balance the
account of method with a substantive research conclusion. The latter point provides
the second line of evidence that simulation has finally come of age as part of the
archaeological toolkit: that archaeological simulation models increasingly provide
results that are useful to researchers who were not involved in the modelling process
(i.e. they have what Innis (1972, p. 34) referred to as “output utility”). That said, it
is also clear that agent-based modelling is by no means evenly distributed across all
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areas of archaeological enquiry, but is largely concentrated in the study of human
evolution, evolutionary archaeology and the aforementioned area of socionatural
studies. Furthermore, these areas are in turn differentiated by the extent to which
they favour relatively simple models offering a high level of abstraction (typical of
human evolution and evolutionary archaeology) or more complex models offering
greater realism (typical of socionatural studies), an issue to which I will return.

1.3 Why Agent-Based Modelling?

As just discussed, there has been a resurgence of interest in the application of
computer simulation to archaeological problems, and agent-based models account
for over half of all archaeological computer simulation undertaken in the new
millennium. Even if this burgeoning activity reflects increased acceptance of the
general case for using computer simulation—of whatever kind—in archaeology,
it is very likely to have been triggered by the conceptual accessibility of agent-
based modelling and/or the sense that agent-based modelling is part of a scientific
paradigm that aligns well with contemporary archaeological interests. Each of these
reasons for the growth of agent-based modelling is discussed in turn.

1.3.1 The General Case for Computer Simulation
in Archaeology

The case for using computer simulation in archaeology has been well-rehearsed
(e.g. initially in Doran (1970) and more recently in Kohler (2000) and Premo et al.
(2005)) and has four main strands: enforcing conceptual clarity in the interest of
‘doing science’, helping understand how things change, helping infer past behaviour
from a static archaeological record, and testing other quantitative methods.

The case for computer simulation starts with the observation that archaeologists
routinely build models, that is “pieces of machinery that relate observations to
theoretical ideas” (Clarke 1972, p. 2). As Kohler and van der Leeuw (2007a, p. 3)
remind us, even informal explanations for “how” or “why” something happened
in the past are in fact models. Of course, some models are more formal than
others, although even formal models vary greatly in their means of expression,
ranging from, for example, the material replica of an Iron Age roundhouse through
algorithmic specification of hunter-gatherer decision-making to the use of coupled
differential equations to study the rise of urbanism. The advantage of formal
modelling is that, by making explicit and unambiguous the relationships between the
things in the model and also the intended scope of the model, it is easier to determine
whether the model is supposed to be applicable to some observed phenomenon
and, if so, whether it adequately predicts or fits it. This in turn facilitates the



8 M.W. Lake

pursuit of archaeology as a science, whether one wishes to test a hypothesis in
accordance with the hypothetico-deductive framework of the New Archaeology
(Watson et al. 1971), or explore the utility of a model in a manner more consistent
with contemporary model-based science (see Kohler and van der Leeuw (2007a,
p. 3) for a manifesto; also commentary in Sect. 1.5). Thus one of the most important
benefits of computer simulation is simply that in order to implement a model as
a computer programme it must be very precisely specified in mathematical or
algorithmic terms (Doran 1970, p. 298). If the modeller learns something from this
process then the simulation can be said to have “conceptual utility” (Innis 1972,
p. 33) because it has served to “create new problems and view old ones in new
and interesting ways” (Zubrow 1981, p. 143). Of course, actually solving problems
requires an appropriate inferential strategy (Premo 2007), as discussed in Sect. 1.5.1.

While computer simulation models may be among the most formal and least
ambiguous of all kinds of model, the characteristic which sets them apart from other
kinds of models is, of course, that they are iterative (Clarke 1972, p. 2). One should,
however, distinguish between iterative models in general (numerical models) and
simulation models in particular (see Lake (2001a, p. 723–4) for more detailed
discussion). Numerical modelling is often used to obtain an approximate solution
to some analytically intractable mathematical model which has been designed to
predict the equilibrium state of a system, but without any interest in how it came
about (for example an optimal subsistence strategy, as per e.g. Belovsky 1987). In
contrast, simulation models are explicitly concerned with the passage of time and
the state of the system changes by a process that is in some way analogous to the
process of change in the real world (Doran and Hodson (1975, p. 286) and Renfrew
(1981, pp. 292–3)). This explicit modelling of process is important for two reasons.

First, computer simulation subtly shifts the focus of modelling from asking
“how it works” to “how it got to be as it [was]” (Allen and McGlade 1987,
p. 724). In this, simulation better aligns formal modelling with modern under-
standing of the importance of non-linearity, recursion and noise in the evolution
of living systems, whether that is couched in the language of chaos (Schuster
1988), complexity (Waldrop 1992), niche construction (Odling-Smee et al. 2003),
structuration (Giddens 1984), evolutionary drive (Allen and McGlade 1987) or
contingency (Gould 1989). Thus, to pick just three examples of explicit concern
with past dynamics, archaeologists have built non-linear dynamical systems models
to investigate the likelihood of instability in European Bronze Age exchange
systems (McGlade 1997), and agent-based models to explore cyclical nucleation
and dispersion in Jomon settlement (Crema 2013) and the optimal adaptive fit to
environments punctuated by rapid reversals (Xue et al. 2011).

Second, and related, the focus of simulation on process fits well with the
notion that archaeology has as much or more to offer contemporary society as a
science of long-term societal change and human-environment interaction than it
does as a provider of ethnographic-scale snapshots of the past. While the latter
can usefully challenge us to recognise the diversity of human lifeways, it is only
by studying processes that one can explain why particular lifeways obtained in
particular circumstances. Furthermore, understanding the processes that drive social
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change and environmental adaptation affords the possibility of predicting how
contemporary lifeways might evolve in the future, especially if one studies such
processes in the spirit that “history is still running” (Allen et al. 2006, p. 2).
Archaeologists working under the banner of socionatural studies are particularly
conscious of this last point and have forcefully made the case for “an enhanced
role for archaeologists in the study of contemporary environmental issues” (van der
Leeuw and Redman 2002, abstract), even going so far as to suggest that modern
archaeology has the potential to be “at the center of modern studies of long-
term global change” (van der Leeuw 2008, p. 477). The intellectual antecedents
of this agenda can be found in Leslie White’s interest in the long-term evolution
of energy capture and Julian Steward’s awareness that environmental adaptation
is mediated through material culture and knowledge (Kohler and van der Leeuw
2007a, p. 11), but the contemporary approach is augmented with more sophisticated
understanding of the nature of change in complex systems, one which rejects the
a priori assumption of a unilineal trajectory and which can now be better pursued
through advances in computer simulation (see Barton (2013) for a recent manifesto
and Kohler and Varien (2012) for the history and role of simulation in one long-
running socionatural study).

While computer simulation helps archaeologists study how processes of social
and environmental change unfold, and thus contributes to archaeology as a human
science uniquely equipped to study long-term change in socionatural systems,
it also contributes to the more specifically archaeological problem of inferring
what specific processes, that is, behaviour, produced the observed archaeological
evidence. Binford (1981) long ago made the argument that archaeologists must infer
past dynamics (behaviours) from a static archaeological record and, of course, the
usual means of doing this is to compare patterns in the archaeological evidence with
those expected from the candidate behaviour. As Kohler et al. (2012a, p. 40) remind
us, archaeologists usually make the connection between a particular behaviour
and an expected archaeological pattern on the basis of “intuition or common
sense, ethnographic analogies and environmental regularities, or in some cases
experimental archaeology”, but computer simulation offers another—sometimes the
only—way of doing this. For example, Mithen’s (1988; 1990) computer simulation
of Mesolithic hunting goals generated a virtual faunal assemblage whose species
composition could then be compared with the archaeological record. In similar
vein, Premo’s (2005) simulation of Pleistocene hominin food sharing created virtual
assemblages which revealed that the dense artifact accumulations at Olduvai and
Koobi Fora, long attributed to central place foraging, could alternatively have
been formed by routed foraging in a patchy environment. These two examples
demonstrate the advantage of adding computer simulation to the archaeologist’s
inferential toolkit: not only that it forces us to codify and make explicit our
assumptions, but that it also allows us to explore the outcome of behaviours which
can no longer be observed and for which there is no reliable recent historical record.
In addition, it allows us to explore the outcome of behaviour aggregated at the often
coarse grained spatial and temporal resolution of the archaeological record.
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The last point, that the archaeological record provides only a—often sparse—
sample of the outcome of whatever behaviour generated it, leads to another well
established archaeological use of computer simulation, which is not to directly infer
the past behaviour in question, but to test the efficacy of other methods of analysis.
The role of such ‘tactical’ simulations is to provide data whose origin is understood
in order to test the inferential power of the analytical technique in question (Orton
1982). Examples to date include tests of measures of the quantity of pottery
(ibid.), multivariate statistics (Aldenderfer 1981), cladistic methods (Eerkens et al.
2005) and the relationship between temporal frequency distributions and prehistoric
demography (Surovell and Brantingham 2007).

1.3.2 The Conceptual Accessibility of Agent-Based Modelling

It can be argued that specifically agent-based modelling is more accessible than
other forms of computer simulation for both technical and conceptual reasons. The
technical (i.e. computer science/software) dimension of agent-based modelling is
discussed in Chaps. 3, 4 and 6, so here I focus on four ways in which agent-
based modelling can be considered conceptually more accessible than other forms
of computer simulation (such as dynamical systems modelling). Two of these
concern the description of rules and outputs, and the other two concern what can
be modelled.

First, it seems appropriate to start this discussion with the output of agent-
based modelling, since that probably influences how agent-based modelling is
perceived in the wider community. While it is true that the initial output from an
agent-based model can be quite undigestable, comprising nothing more than many
thousands of lines of a numerical log, it can be—and often is—visually attractive
and, in particular, comprehensible in commonsense terms. At one extreme, it is now
possible to integrate agent-based modelling with virtual reality so as to produce a
photorealistic rendering of agents moving through a reconstructed palaeolandscape.
This has been demonstrated for an agent-based simulation of Mesolithic hunter-
gatherers foraging in a landscape that is now submerged under the North Sea
(Ch’ng 2007; Ch’ng et al. 2011) and, while it is not clear what data is recorded
for more conventional analysis, there is no doubt that this kind of realism captures
the imagination of the public and less quantitatively inclined archaeologists alike.
More common, however is two-dimensional mapping, for example, of the location
of households presented as a series of snapshots at fixed intervals (e.g. Kohler
et al. 2005, p. 79), the path followed by an individual agent (e.g. Costopoulos
2001, Fig. 9), or the distribution of artefacts discarded by agents (e.g. Lake 2000,
Fig. 7). In my experience, non-specialists find the spatial patterns often output
by agent-based simulations more readily comprehensible than the purely temporal
patterns output by other methods such as dynamical systems models (perhaps with
the exception of population curves, such as those found in Kohler et al. (2012a)).
Moreover, the conclusions of dynamical systems models are often supported by
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phase portraits and phase diagrams (e.g. McGlade 1997), both of which assume a
facility with mathematical abstraction that is not widespread among conventionally
trained archaeologists. Admittedly, the output from some agent-based models is not
so dissimilar (see Lake and Crema (2012) for an example) and it can certainly
be argued (Premo 2007; also discussion in Sect. 1.5.1) that more agent-based
models should be published with phase diagrams denoting the results of systematic
experimentation, but the overarching point stands: even if there is no necessary
connection between the visual output of a model and its scientific utility, agent-
based simulations can and frequently do capture the imagination of non-modellers
in a way that other simulation techniques do not.

Second, moving backwards from outputs to inputs, agent-based modelling is also
accessible in the sense that it does not enforce one particular way of specifying
the rules which govern the behaviour of entities in the model: this can be done
mathematically, but it can also be done purely algorithmically (e.g. Rubio-Campillo
et al. 2011; Costopoulos 2001) or using artificial intelligence formalisms such as
production rules (e.g. Doran et al. 1994; Reynolds 1987). The fact that agent-
based modelling does not require the mathematical formality of dynamical systems
modelling may well partly account for its greater uptake, since algorithmic rules are
typically closer in form to the verbal specifications of informal models.

Third, agent-based modelling is accessible in the sense that it offers great
flexibility with respect to what can be modelled. It has already been noted that
while most agent-based models share certain paradigmatic features, not all these
are necessary and others can be added. Thus, for example, agent-based models can
employ models of space ranging from purely topological networks to geographically
referenced representations of the earth’s surface. Similarly, agents may be purely
reactive (they behave) or they may be cognitive (they reason using their own models
of what is in their environment), and they may or may not communicate with
other agents (Ferber 1999). Section 1.2 of this chapter listed some examples which
demonstrate how this flexibility allows archaeologists with quite different interests
to make use of agent-based modelling.

Finally, although agent-based modelling is—as a technique—scale agnostic, in
most archaeological examples the agents are ethnographic-scale, in other words,
they represent individual human beings or small groups, such as households. In
practice, then, agent-based simulation is accessible in the sense that it tends to
realign computer simulation with both the commonsense lay notion that archaeology
is about what people did in the past, as well as the more explicitly theorised
objections to systemic thinking raised by proponents of post-processual archaeology
(e.g. Shanks and Tilley 1987b). The interweaving of archaeological computer
simulation and archaeological theory is teased out in reviews by Aldenderfer (1998),
McGlade (2005) and Lake (2014), but particular points of contact between post-
1980 archaeological theory and agent-based modelling include agreement that
“historical processes involve the actions of self-aware individuals” (Kohler 2000,
p. 3) and the possibility of explicitly modelling cognition (Biskowski 1992; Doran
2000; Mithen 1989). That said, the detail of how agent-based models represent
individuals and their relations with one another raises questions about the kind of
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rationality employed by agents (Lake 2004) and the locus of causality in human
societies (Beekman 2005), and it is clear that some post-processual archaeologists
(e.g. Thomas 1991, 2004) have not been won over on either count. Their concern,
“Is is the world really agent-based?” (O’Sullivan and Haklay 2000), is discussed in
more detail in Sect. 1.4.

1.3.3 Agent-Based Modelling as a Scientific Paradigm

As just suggested, there are clear points of contact between agent-based modeling
and important strands in post-1980 archaeological theory. This is very conspicuous
in some studies, notably for example Mithen’s Thoughtful Foragers, which provides
a book-length manifesto for a cognitive-processual archaeology (Renfrew 1994), in
this case grounded in behavioural ecology and realised with the aid of simulation.
Mithen’s focus on individual decision-making went some way to addressing
post processual theorists’ (see Dornan (2002, pp. 308-314) for a review of the
various positions taken) concern that the systemic perspective offered by processual
archaeology overlooked the importance of individual agency and cognition (but
see Sect. 1.4.1), but at the same time, however, he retained a firm commitment to
scientific inference by hypothesis-testing. Nevertheless, although the commitment
to scientific inference and a broadly evolutionary approach is characteristic of the
vast majority of agent-based models (Lake 2014), relatively few share both the
ethnographic-scale and realism (in the sense of attempted closeness to actual human
decision-making and choice of parameter values) of Mithen’s model. Instead,
most archaeological agent-based models are either more abstract, or are based on
higher-level agents (such as households); they are also frequently concerned with
longer-term change and the emergence of new phenomena. All this suggests that
the uptake of agent-based modelling is better explained by archaeologists’ interest
in the wider scientific paradigm which spawned it rather than its fit with post 1980
archaeological theory per se.

As with the geographical information systems (GIS) ‘tool or science’ debate
(Wright et al. 1997), it is important to recognise that, as a technique, agent-based
modelling can be used for different purposes and in a variety of theoretical frame-
works. Nevertheless, agent-based modelling is closely associated with complexity
science (Waldrop 1992),1 whereas, for example, dynamical systems modelling is
usually associated with chaos (Schuster 1988) and catastrophe theory (Zeeman
1977). Complexity science gained real momentum in the late 1980s/early 1990s and,
although it builds on insights won by the formalisation of chaos and catastrophe in
the 1960s and 1970s, it also marks a change of emphasis (Beekman and Baden

1Although agent-based modelling also has semi-independent roots in ecological modelling, where,
as individual-based modelling the initial focus was on the importance of organism heterogeneity
and spatial localism (DeAngelis and Gross 1992, p.xv).
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2005). The mathematics of chaos provided tools to deal with the unpredictabil-
ity and non-linearity of many real world processes, including some of obvious
archaeological interest such as population growth (May 1976). Catastrophe theory
ultimately proved more difficult to apply in the real world, but at minimum it
reinforced the message that profound transformation does not necessarily require
many factors working in tandem and nor does it necessarily require a strong external
push (Renfrew and Poston 1979). Complexity science blends these insights with
others from a different intellectual lineage that includes von Neumann’s work on
self-reproducing automata, cybernetics and connectionist cognitive science (Epstein
and Axtell 1996, p. 2) to focus on the emergence of macro-level properties from the
mutual interaction of many micro-level parts, as well as the related question of how
such systems learn (adapt). Unlike dynamical systems models, which normally work
with variables representing aggregate phenomena (e.g. the number of individuals
who have access to prestige goods—see McGlade (1997)), agent-based models
explicitly model the micro-level parts (as agents) and so are particularly well-suited
to the complexity science agenda. Cellular automata share this particular property
(the cells representing micro-level parts) and have also played a significant part
in the development of complexity science (Toffoli and Margolus 1987; Wolfram
1984), but have found less use in archaeology as they are more restrictive in terms
of the kinds of real-world phenomena they can represent (but see Mithen and Reed
(2002) and Nikitas and Nikita (2005) for two archaeological applications of cellular
automata).

The clearest manifestation of the impact of complexity science and agent-based
modelling in the social sciences is the attempt to do what Epstein and Axtell
(1996, p. 177) have labelled generative social science. Their book Growing Artifical
Societies demonstrates how agent-based modelling can be used to grow social
phenomena in silico “from the bottom up”. In the most basic version of their
now famous model Sugarscape, the actions of agents pursuing individual goals (to
harvest and consume ‘sugar’ deposited on a landscape) produce population-level
phenomena such as a characteristic power-law wealth distribution and waves of
advance across space. Following further experiments with versions of Sugarscape
that include more ‘human’ elements, including sexual reproduction, cultural trans-
mission, combat, exchange and disease, Esptein and Axtell conclude that “A wide
range of important social, or collective, phenomena can be made to emerge from the
spatio-temporal interaction of autonomous agents operating on landscapes under
simple local rules” (ibid., p. 153, my emphasis). Not only does this observation
align social science with the interests of complexity science, but it also led Esptein
and Axtell to propose a new model of explanation for the social sciences, one which
they claim is neither deductive nor inductive, but ‘generative’: they interpret the
question “can you explain it?” as asking “can you grow it?” (ibid., p. 177) and
thus they propose that explanation consists in “demonstrating that certain sets of
microspecifications are sufficient to generate the macrophenomenon of interest”
(ibid., p. 20, original emphasis). On top of this epistemic move, Epstein and Axtell
also argue that agent-based modelling provides the appropriate tool to overcome
several specific deficiencies of contemporary social science: the use of local rather



14 M.W. Lake

than global rules provides a “natural methodology for relaxing. . . assumptions”
about the perfect rationality of actors (ibid., p. 1); the possibility of agents having
different characteristics overcomes the explicit or implicit suppression of agent
heterogeneity; and the focus on dynamics overcomes preoccupation with static
equilibria at the expense of exploring transitional states which might actually be
more important or interesting (ibid., p. 16). Overall, then, Epstein and Axtell hope
that the agent-based approach will “yield a new, more unified and evolutionary
social science, one in which migrations, demographic patterns, tribes, and tribal
conflict, epidemics, markets, firms, institutions, and governments all emerge from
the bottom up” (ibid., p162, original emphasis).

The Sugarscape agent-based model has been hugely influential: it is widely used
for teaching computational social science and, within archaeology, is explicitly
acknowledged as the inspiration for early examples of (modern) agent-based
modelling such as the Long House Valley model (Axtell et al. 2002). Perhaps even
more importantly, however, the very idea of generative social science has been
gaining traction in archaeology. This is most obvious in writing that explicitly
invokes Growing Artificial Societies, for example Kohler’s (2000) manifesto for
the potential of agent-based modelling to help with the task of “putting social
sciences together again” and Premo’s (2008, p. 36) call to use agent-based models as
“behavioural laboratories”, but it also underwrites other statements of the principal
that agent-based models should be generative (e.g. Costopoulos 2009, p. 273).
In fact, it can be argued that the majority of recent archaeological agent-based
simulations adopt at least some aspects of the generative social science programme
even if they do not explicitly invoke it. For example, many of the agent-based models
designed to tackle problems in human evolution and/or evolutionary archaeology
are concerned with emergence, the value of null models, or the less than perfect
rationality of agents.

Premo’s (2010) investigation of how a ‘scatter and patches’ archaeological
landscape could have been produced by relatively simple Plio-Pleistocene hominin
foraging and food-sharing behaviours is partly a study of an emergent phenomena.
One could also argue that the models designed to demonstrate the effect of
population size and structure on cultural trait diversity and cumulative innovation
(e.g. Lake and Crema 2012; Powell et al. 2009; Premo 2012) also seek to explain
how a population-level phenomenon, in this case cultural complexity, emerges from
the interaction of agents.

Closely related to the notion of emergence is the realisation that complex
patterns can be produced by the iteration of simple rules, which has in turn lead
to recognition of the value of null models as a starting point of enquiry. Premo’s
aforementioned model of Plio-Pleistocene food-sharing is explicitly offered as null
model (Premo 2007, p. 34). More recently, Bentley and Ormerod have argued for
the utility of models which assume “zero-intelligence” (2012, pp. 205–6) on the part
of agents. Bentley and Ormerod do not think that real-world agents really have zero-
intelligence, but given that complexity science suggests that “many of the emergent,
often complex, patterns in society need not require complex behavior on the part of
individuals” (ibid., p. 205) they want to know how far we can get with simple social
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physics null models and what must be added to them to explain social phenomena.
Bentley and colleagues have already demonstrated that a simple model of random
copying is sufficient to explain the frequency distributions of cultural variants in
first names, archaeological pottery, applications for technology patents, chosen dog
breeds and popular music (Bentley et al. 2004, 2007).

As well as demonstrating the potential power of null models, the success of
random copying models also reinforces our understanding that humans are not, in
the main, perfectly rational decision-makers. In the context of null modelling this
claim is usually predicated on the observation that humans do not have sufficient
computational capacity to make optimal decisions and/or they do not have access
to all the relevant information (e.g. Bentley and Ormerod 2012, pp. 205–6).
Exactly what is meant by rationality is further discussed in Sect. 1.4.1, but the
notion that humans are imperfect decision-makers because they only have access
to spatially and/or temporally ‘local’ information has long been incorporated into
archaeological agent-based models of hunter-gather foraging (see for example
Reynolds 1987 and Mithen 1990); it is also now the explicit focus of enquiry in
studies that seek to investigate the importance of noise (imperfect environmental
tracking) in long-term adaptation (Xue et al. 2011).

Models such as those just cited demonstrate that the post-2000 uptake of
agent-based modelling in archaeology has been accompanied by an interest in at
least some strands of complexity science in general and generative social science
in particular, even if it has not always been explicitly framed in those terms.
While there are models which do not fit this characterisation so neatly, particularly
tactical models (e.g. Rubio-Campillo et al. 2011), in the main there is a sense
in which agent-based modelling has been adopted by archaeologists as both a
technique and a scientific paradigm. It can be argued, however, that the particular
strands of complexity science commonly found in archaeological agent-based
models, such as relatively ‘simple’ emergent phenomena, the use of null models
and a focus on limited rationality, reflect a particular perspective on complexity
science, the Complex Adaptive Systems approach, that was strongly promoted by
the Sante Fe Institute in the late 1980s and early 1990s. As Beekman and Baden
(2005, p. 7) rightly caution, the application of ideas from complexity science
to social phenomena has a different emphasis in Europe, where there is greater
interest in explicitly cognitive issues, including emotion and irrationality (Doran
2000) and, perhaps most importantly, a greater willingness to treat social systems
as qualitatively different from other complex systems (Gilbert 1995). Although
they note that “archaeologists working within this intellectual milieu have often
chosen to use nonlinear concepts as metaphors to frame a verbal analysis rather
than develop computer simulations” (ibid.) it is worth considering whether this is
because textbook agent-based modelling, which is largely grounded in the Complex
Adaptive Systems approach, carries with it particular—and perhaps debatable—
assumptions about the way the world is?
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1.4 Ontological Considerations: Emergence and Rationality

As briefly alluded to above, the rapid deployment of GIS in a number of disciplines
eventually led to debate about whether the technique is simply a tool that can be
used for many purposes in a variety of theoretical frameworks, or whether it carries
certain theoretical ‘baggage’ such that its use requires explicit or implicit adherence
to particular theoretical principles or assumptions (in geography see Pickles (1999),
Wright et al. (1997); in archaeology see Wheatley (1993), Gaffney and van Leusen
(1995)). Similar questions have been asked of agent-based modelling, although
the anxiety seems less widespread and largely confined to two key issues: is the
rationality of agents a good model of human rationality and in what sense do social
phenomena emerge.

1.4.1 The Rationality of Agents

As has been documented elsewhere (Lake 2004) and remains true today, the
agents in archaeological agent-based simulations have generally been ascribed a
rationality that is grounded in either human biology (typically optimal foraging
theory or evolutionary psychology), or modern economics. Some archaeologists
have argued that the biological and/or economic grounding of agent rationality is
undesirable as it projects modern rationality back into the past and precludes the
possibility of discovering that the past really was different. Thus, directly addressing
agent-based modelling, Thomas (1991, p. 1) claimed that “The rationality which
Mithen seeks to identify on the part of his Mesolithic foragers is a very specific
one: it is the instrumental reason of late capitalism”. In similar vein, but targeted
at evolutionary archaeology more generally, Shanks and Tilley (1987a, p. 56)
expressed disquiet about recourse to either evolutionary biology or economics, since
in their view the former leaves a “plastic, malleable cultural dope incapable of
altering the conditions of his or her existence” (Shanks and Tilley 1987a, p. 56)
and the latter “naturalizes what are historically and culturally specific values as
universal features of humanity” (Shanks and Tilley 1987b, p. 188). The cultural
specificity of rationality has also been emphasised by Cowgill, who claimed that
“The allegedly universal rationality assumed by ‘economic man’ models is shown
by anthropological knowledge to be the very opposite” (2000, p. 55), and Clark who,
comparing an approach to agency rooted in evolutionary theory with one rooted in
practice theory, complained that “the individuals in optimal foraging models know
more than real agents could know. Rational decisions require perfect knowledge of
particulars and decision-making rules, which are cultural” (2000, p. 108).

The central question here is not whether attributing to agents rationalities
grounded in evolutionary biology or economics is appropriate (see Kohler (2000)
and Mithen (1990) for arguments in favour of evolutionary biology as a source of
agent rationality), but rather, whether agent-based simulation is limited to these
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kinds of rationality? In order to address this question, however, it is necessary
to be clear what one means by rationality. The textbook view from artificial
intelligence is that “A rational agent is one that does the right thing” (Russell
and Norvig 2003, p. 34), in other words, one “whose actions make sense from
the point of view of the information possessed by the agent and its goals (or the
task for which it was defined)” (Russell 1999, p. 13). The important and perhaps
surprising consequence of this (informal) definition is that “What counts in the first
instance is what the agent does, not necessarily what it thinks, or even whether
it thinks at all” (ibid, p. 13). Thus the emphasis is first and foremost on what
Simon (1956) termed substantive rationality—what decision to make, rather than
procedural rationality—how to make the decision. For the purposes of computation,
substantive rationality is formalised through the agent function, which can be
conceived as a table that records what action an agent performs as a result of
a given percept sequence (a history of everything the agent has ever perceived).
Procedural rationality is formalised through the agent program, which is the internal
mechanism used by the agent to implement the agent function and which, in the case
of a cognitive agent, will be some kind of reasoning process.

Archaeologists who criticise the rationality accorded to agents in agent-based
models and/or evolutionary and computational approaches more generally are not
always explicit about what they mean by rationality, or at least not in terms
that allow direct comparison with the way rationality is understood in artifi-
cial intelligence. The necessary translation requires a detailed textual analysis,
which falls outside the scope of this paper but I have attempted it elsewhere
(Lake 2004, pp. 195–197). I concluded that some critics (e.g. Clark 2000) are
primarily concerned that the rationalities of past agents might need to be described
by different agent functions, or as Clark put it, past agents “just have different
motives” (ibid., p. 101). Where that is the concern, there are no grounds for rejecting
agent-based modelling since the technique does not require agent functions derived
from either modern economic theory or evolutionary biology. Of course, it must
be possible to state the agent function in a computer programming language, so
in practice it may be easier to do this for economic and biologically grounded
rationalities for the simple reason that we have explicitly theorised them, but in
principle, there is no reason why agent-based simulations should necessarily project
modern substantive rationality back into the past. On the other hand, other critics of
computational and evolutionary archaeology (Cowgill 2000; Thomas 1991) extend
their concern to the agent program, that is, how agents make decisions: for example,
Thomas states that “Desires, emotions, forms of reason and techniques of self-
interpretation are all contingent and historically situated” (Thomas 1991, p. 17,
my emphasis). Whereas one can in principle implement a wide range of agent
functions in an agent-based model, it is less certain that agent programs are similarly
unconstrained. Given that philosophers and artificial intelligence researchers are
unable to agree about the limitations of machine intelligence (see Russell and
Norvig (2003, chapter 26) for a guide to the main arguments), it is simply not
possible to guarantee that all forms of reasoning that humans have ever employed
can be implemented on the computing devices currently available to us, never mind
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in an agent-based model implemented using the standard software tools. However,
it is also notable that archaeologists who warn against projecting modern forms
of reasoning back into the past do not themselves provide detailed descriptions
of alternative forms which they believe were employed in specific contexts, quite
possibly because they do not have a language adequate to that task. Consequently,
while it may be that agent-based simulation imposes some (unknown) limits on
models of past procedural rationality, an attempt to devise non-modern agent
programs would at least provoke much-needed discussion about how to describe
alternative forms of reasoning.

So far I have considered the kind of rationality exhibited by agents, but Thomas’
critique of Mithen’s agent-based model of Mesolithic hunting as having created
a “cybernetic wasteland” (1988, p. 64) extends to the argument that the agents
in Mithen’s model are unhuman because they are only rational and lack emotion.
Mithen responded by acknowledging that emotional life is indeed “quintessentially
human” (1991, p. 10), but largely because it is wrong to counterpose emotion and
reasoning, since emotions actually make rational thought possible by overcoming
the problem of what to do in the face of conflicting goals and/or the impossibility of
predicting the consequences of all available actions. Effectively, by drawing in this
way on the cognitive and functional theories of emotion proposed by Oatley and
Johnson-Laird (1987) and Frijda (Frijda 1987; Frijda and Swagerman 1987), Mithen
simply proposes that emotions are implicitly included in models of adaptation via
rational decision-making (Mithen 1991, p. 9). Thus, while he argues that changes of
state between, for example, stalking prey and killing it “are only made possible by
emotions acting as a system of internal communication: monitoring the success and
failure of sub-goals and the need to adjust behavioural plans” (ibid., p. 13), it is not
the case that any of the computer code in his agent-based model could have been
omitted had he denied any role for emotion.

In partial contrast to Mithen’s approach to the problem of incorporating emotion
into agent-based modelling, there is a strand of artificial intelligence research which
seeks to very explicitly model the role of emotion in cognition (Doran 2000). This
research is still grounded in the ‘functional view’ (Frijda 1995) that emotions serve
to aid decision-making (Cañamero and de Velde 2000, p. 144), but in its most devel-
oped form it involves programming agents with a ‘synthetic physiology’, which
includes variables necessary for survival (e.g. heart-rate, energy, blood sugar level)
and hormones released under different emotional states which modify the amount of
the controlled variables, thereby amplifying motives and thus ultimately influencing
behaviour (Cañamero 1997). Thus, whereas the outcome of the emotional influence
on rationality is completely predetermined in Mithen’s model, this is not true in
Cañamero’s model, at least to the extent that the complexity of the interplay between
emotions and reason may be sufficient to render it unpredictable in practice. If
models like this really do offer the prospect of observing emotionally influenced
behaviour that had not been explicitly imposed by the modeller then they open up
the possibility of incorporating the role of emotion into the programme of generative
social science. Indeed, Cañamero and de Velde (2000, p. 148) describe at length a
conceptual design for an agent-based model which would allow each agent some
control over the expression of emotions according to its state, interests and the image
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it has of the other, so allowing emotional states to contribute to the construction of
intersubjectivity (ibid., p. 147). Although the bulk of research on agent emotion is
situated within robotics (e.g. papers in Cañamero and Aylett (2008)), the fact that
at least some artificial intelligence researchers are prepared to entertain a social
constructivist view of emotions (Averill 1990) makes it difficult to imagine what
in-principle objection remains to the use of agent-based simulation to model human
decision-making.

1.4.2 The Emergence of Social Phenomena

As already noted, emergence is a central concept in complexity science and it
is certainly the case that archaeologists have explicitly suggested that one of the
benefits of using agent-based modelling is that it offers a means to study emergent
phenomena. For example, Kohler and van der Leeuw suggest that agent-based
models “enable us to examine the possibility of the emergence of new structures
(for example, institutions, alliances, and communities) out of the basal units and
their interactions” (2007a, p. 6) and go on to emphasise the possibility of modelling
the recursive relationship between the emergent structures and the underlying micro-
level entities such that “the interaction between individuals create the society (and
its culture), which in turn, affect the behaviour of the individuals or groups that
constitute it” (ibid., p. 7). Kohler also made a more specifically archaeological case
for agent-based modeling: that the things we can measure in the archaeological
record are on the one hand the outcome of agent behaviour “averaged over a great
deal of space and time” but, given that, are also part of the “[context] within which
agents make decisions and perform actions” (Kohler 2000, p. 10). This again points
to the idea that agent-based modelling can be used to disentangle an element of
recursion, in this case between agents and their environment. It was suggested above
that a significant number of archaeological agent-based models have been used to
investigate emergence in some sense, but the key question here is in what sense
exactly? This is a difficult question to answer because there is no widely accepted
formal theory of emergence (Epstein and Axtell 1996, p. 35) and indeed some would
argue that the notion of emergence at best “remains vague and ill-defined” (Conte
and Gilbert 1995, p. 9) and at worst “seems opaque, and perhaps even incoherent”
(Bedau and Humphreys 2008, p. 1).

In philosophical debate the concept of emergence becomes entwined with funda-
mental problems such as the mind–body problem (Searle 1992), but in complexity
science, and especially agent-based modelling, the term ‘emergence’ is most often
used “to denote stable macroscopic patterns arising from the local interaction of
agents” (Epstein and Axtell 1996, p. 35). In the scheme proposed by the philosopher
Bedau, cases of this kind of emergence are examples of either nominal emergence
or weak emergence. Nominal emergence is the “simplest and barest” notion of
emergence (Bedau 2008, p. 158), one in which the emergent phenomena have the
kinds of properties that cannot be micro properties. Thus, for example, Epstein and
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Axtell argue that the skewed wealth distribution produced by the Sugarscape model
is an emergent phenomenon because “we do not know what it would mean for an
agent to have a wealth distribution” (1996, p. 35). In similar vein, it is possible to
measure the pressure of a gas, but not the pressure of an individual molecule of
that gas. The difference between nominal and weak emergence is that in the former
the emergent properties can be predicted and explained from the properties of the
individual micro-level entities, whereas in the case of weak emergence “the micro-
level interactions are interwoven in such a complicated network that the global
behaviour has no simple explanation” (Bedau 2008, p. 160). In general, most of the
agent based models developed under the banner of generative social science exhibit
weak emergence. This is true of the archaeological models of Lake and Crema
(2012), Powell et al. (2009) and Premo (2010, 2012) that were discussed earlier, and
Beekman (2005, p. 64) provides another list which supports this observation. Most
of these models effectively demonstrate—whether explicitly or implicitly—that
“many of the emergent, often complex, patterns in society need not require complex
behavior on the part of individuals” (Bentley and Ormerod 2012, p. 205), but on
the other hand the interaction between individuals is often sufficiently complex
(typically context dependent in some way) that it is not possible to predict the
emergent phenomena except by running the simulation. This, of course, is what
led Epstein and Axtell (1996, p. 177) to argue that adequate explanation of many
social phenomena consists in demonstrating the “generative sufficiency” of a model
(but see Sect. 1.5.1) for doubt about the adequacy of this proposition).

Despite the weight of actual modelling practice, there is considerable debate
even within the modelling community about whether important social phenomena
such as social institutions are the result of something more than weak emergence
(Beekman 2005; Conte and Gilbert 1995; Gilbert 1995; Lake 2010; O’Sullivan and
Haklay 2000). The two main issues are, first, whether at least some emergent social
phenomena exert ‘reverse’ causal influence on agents (what Bedau labels strong
emergence) and, second—but less discussed—whether it matters that human agents
“are capable of reasoning, and do so routinely, about the emergent properties of their
own societies” (Gilbert 1995, p. 144).

The reality of reverse causal influence is a long-standing point of contention in
sociology (see Gilbert (1995) for more detail). On the one hand, methdological
holists follow in the footsteps of Durkheim and Parsons in according causal
influence to supra-individual social entities. This could hardly be clearer than in
Durkheim’s definition of social facts as “ways of acting, thinking and feeling that
are external to the individual and are endowed with a coercive power by virtue of
which they exercise control over him” (Durkheim 2004, p. 59). In similar vein,
but much more recently, Kenneth Arrow argued that “social categories are used
in economic analysis all the time and that they appear to be absolute necessities
of the analysis, not just figures of speech that can be eliminated if need be”
(1994, p. 1). In contrast, methodological individualists (e.g. Watkins 1952; O’Meara
1997, Mithen 1990 in archaeology) take the view that “large-scale social phenomena
must be accounted for by the situations, dispositions and beliefs of individuals”
(Watkins 1952, p. 58) and do not accept the ontological reality of social institutions,
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since even social roles “can be fully understood in terms of individuals as long as we
take a wide enough perspective so as to include all those individuals, in other times
and places, who create a role” (King 1999, p. 216). The last three decades of the
Twentieth Century saw numerous attempts to negotiate or even dissolve the micro-
macro dichotomy in sociology (Beekman 2005, p. 53). The most frequently cited
in archaeology are Gidden’s (1984) Structuration Theory and Bourdieu’s (1977)
Practice Theory, but in an article specifically examining the relationship between
social theory and agent-based simulations, Beekman notes that the tendency among
archaeologists to chose one or the other—along with the particular readings that
have found their way into archaeology—has in practice ended up replicating the
dichotomy between discursive strategizing action and non-discursive practice that
characterises the debate between methodological individualists and methodological
holists (Beekman 2005, p. 55). Noting that even individual human beings are
emergent entities, Beekman’s own preference is an approach grounded in—but not
slavishly adhering too—Archer’s (2000) critique of Structuration Theory (Beekman
2005, pp. 62–3), which recognises multiple scales of collective “at which different
rules of action predominate”. He considers that collective agents are “real social
entities” (ibid., p. 68) and although he does not explicitly say so, strongly implies
that these entities exert reverse causal force on lower-level agents.

This is not the place to attempt to adjudicate between methodological holism,
methodological individualism and attempts to overcome that dichotomy, but it
is worth reiterating the point that actual practice in agent-based modelling tends
towards methodological individualism (Beekman 2005; O’Sullivan and Haklay
2000). Even the few archaeological agent-based models that have explicitly mod-
elled both individuals and groups (see Doran et al. 1994; Kohler et al. 2012b;
Lake 2000) do not really exhibit the emergence of reverse causal force since in
all cases the establishment of groups is scaffolded at the outset of the simulation.
Consequently, it can be argued that, to date, the practice of archaeological agent-
based simulation does not match Kohler and van der Leeuw’s ambition to investigate
the recursive relationship between individuals and society. Given the lack of
unanimity among sociologists about the status of social institutions it is far from
clear whether this really matters, especially given philosophical doubts about the
ontological status of reverse causal force (e.g. see Bedau (2008, p. 159), who argues
that “strong emergence starts where scientific explanation ends”). That said, Gilbert
makes the important point that if the definition of weak emergence hinges on
the impossibility of analytically predicting the macro-level phenomena then “any
particular emergent property stands the risk of being demoted from the status of
emergence at some time in the future” (1995, p. 150), which leads him to suggest
that the relationship between micro and macro properties of complex systems may
be more interesting than emergence per se. Following in this spirit there may at the
very least be scope to use agent-based modelling to develop a better understanding
of whether or how reverse causal force amounts to more than “feedback effects
in the agent population, altering the behaviour of individuals” (Epstein and Axtell
1996, pp. 16–7).
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The second—albeit less discussed—issue in the debate about whether important
social phenomena such as social institutions are the result of something more
than weak emergence is the question of whether it matters that human agents
reason about the emergent properties of their own societies. Some taxonomies
of emergence do indeed distinguish between emergence that involves a degree
of reflexivity and emergence that does not. For example, cognitive psycholo-
gist and artificial intelligence researcher Cristiano Castelfranchi has proposed
four senses of emergence, of which the third is representational, meaning that
the phenomenon in question is “learned or recognized at the cognitive level”
(Conte and Gilbert 1995, p. 9). In not dissimilar vein, Sunny Auyang posits a three
level hierarchy of complex systems in which the third is cybernetic systems that
involve intentionality (Auyang 1998). Sociologist Nigel Gilbert clearly believes
that failure to take account of the capacity of humans to “perceive, monitor and
reason with the macro-properties of the society in which they live” (1995, p. 155)
undermines the utility of simulation for addressing the kinds of questions of interest
to his discipline.

One potential difficulty with the argument that the reflexivity of humans gives
rise to a special kind of emergence is that, although the human capacity to be
reflexive is not contested, there is debate—including within archaeology (see
Hodder 2001, p. 10)—about the extent to which social practices are undertaken
by agents who have practical knowledge, that is, who know “how to go on” in the
world “as it is” without consciously reflecting upon it (Barrett 2001, p. 151). This
raises the spectre of a quantitative gradation (how much reflection is taking place)
underpinning a qualitative distinction (a special kind of emergence). I suggest that
Crutchfield’s (2008) concept of intrinsic emergence may provide a solution to
this conundrum. Crutchfield notes that in well-known physical examples of self-
organizing phenomena (e.g. Rayleigh-Bénard convection cells in heated liquids)
“the patterns which appear are detected by the observers and analysts” but, crucially,
there is no reason to believe that those experiments behaved differently before the
self-organizing phenomena were detected by scientists (ibid, p. 271). Consequently,
he argues that “it is the observer or analyst who lends the teleological ‘self’ to
processes which otherwise simply ‘organize’ according to the underlying dynamical
constraints” (ibid.). Crutchfield proposes that, in contrast, intrinsic emergence
occurs when “the patterns formed confer additional functionality which supports
global information processing” (ibid., p. 272), or in other words, the system itself
has ‘discovered’ the pattern. Significantly for our purposes, however, Crutchfield
makes it clear that ‘discovery’ does not require a cognitive representation, but can
be “[implicit] in the dynamics and behaviour of a process” if the system makes use
of the new pattern (ibid.). Thus, the concept of intrinsic emergence may provide a
means of recognising the reflexivity of social systems (albeit not necessarily just
human systems) as something more profound than weak emergence, but without
running into the problem of measuring the extent to which social practice is practical
or discursive.
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1.5 Epistemic Considerations: How to Learn
by Agent-Based Modelling

Earlier it was suggested that archaeologists use computer simulation for one or
more of four purposes: enforcing conceptual clarity, helping understand how things
change, helping infer past behaviour from a static archaeological record, and testing
other quantitative methods. The second and third of these are of particular interest
here, since models built for understanding how things change and those built for
inferring past behaviour typically constitute the most fully worked through attempts
to explain aspects of the human past. Within the archaeological simulation literature
there is an established distinction between ‘theory-building’ and ‘hypothesis-
testing’ models (e.g. Mithen 1994, pp. 176–177), according to which the aim of
hypothesis-testing models is to determine what actually happened in the past by
comparing the output of a simulated process against the archaeological evidence,
while the use of simulation models to support theory-building does not necessarily
involve detailed comparison of output against the archaeological record since the
purpose is not to test what happened in the past, but rather to understand how certain
processes work and what sort of changes could plausibly have occurred. It can
increasingly be questioned whether this is a particularly useful distinction, since,
on the one hand, comparing simulation output with the archaeological evidence can
contribute to theory-building (e.g. Kohler and Varien 2012), while on the other hand,
simulation can be used to directly test hypotheses which are more about possible
processes (e.g. the effect of parameters on model dynamics) than what actually
happened in the past (see Premo 2010, pp. 29–30). Rather than attempting to force
models into a rigid taxonomy according to which each class represents a discrete
inferential role, it seems more productive to focus attention on issues of modelling
logic that commonly arise when attempting to learn by simulation.

1.5.1 Learning by Simulation Requires Experimentation
not Just Emulation

Earlier it was noted that the visual accessibility of many agent-based models may
well be a significant factor in the rapidly growing popularity of the technique. Para-
doxically, however, this same accessibility to non-specialists may also contribute
to a lack of understanding that effective use of simulation requires an experimental
approach. In a series of articles, Premo (2005, 2007, 2008) has been particularly
forceful in arguing that merely emulating the past does not explain it. The basic
problem is relatively simple: by iteratively adjusting the process and/or parameters
of a model it will probably be possible to obtain a reasonable fit between the model
output and the archaeological evidence (an emulation), but this does not guarantee
that only this process/parameters could have caused what happened in the past
(the problem of equifinality) and nor does it provide a good understanding of the
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probability of this particular outcome versus others. Such underdetermination might
not be a problem for those persuaded by constructive empiricism as an account of
science, that is, the proposition that the aim of science is to produce theories that are
empirically adequate rather than literally true (Fraassen 1980; see Kelley and Hanen
(1988) for archaeological supporters), but it is a problem if one believes, as do most
contemporary philosophers of science (Preston 2014), that scientific theories are
literally either true or false, whether one can actually know that (as per scientific
realism) or not (as per conjectural realism). It also casts some doubt on Epstein
and Axtell’s proposition that the programme of generative social science should
equate explanation with answering the question “can you grow it?” (1996, p. 177),
since successfully ‘growing’ some phenomenon does not automatically overcome
the problem of underdetermination—that there might be some other way of growing
the same phenomenon.

Given that the significance of underdetermination is a major point of contention
in the philosophy of science, it is hardly surprising that there is no simple solution
for overcoming the problem of equifinality in archaeological inference. That said,
computer simulation at least has the advantage that, if used as a “behavioural
laboratory” (Premo 2008), it allows us to explicitly explore what alternative models
might equally or better fit the observed phenomenon, and/or do so with less
sensitivity to aspects of the model for which there is limited independent evidence.
This requires two important moves. The first is that modelling starts with an explicit
theory, in order that the prior understanding is rendered brittle enough by the
need to maintain internal consistency that it can be broken, that is, found to be
inadequate. The second move is to adopt an experimental exploratory design (ibid.,
p. 49), one which does not simply attempt to replicate some observed phenomenon,
but systematically explores the consequences of the model under a wide range of
circumstances, only some of which may actually have obtained in the past. By
re-running Gould’s ‘tape of history’ (see Premo (2008, pp. 49–50) for detailed
discussion) in this way, the modeller can generate an ensemble of “‘what if’
scenarios” (ibid., p. 50) or “alternative cultural histories” (Gumerman and Kohler
2001) which can then provoke rejection of the model or form the basis of an
explanation of the observed phenomenon in the sense of delineating what conditions
must have been met for that phenomenon to have occurred if the model is correct.

Although appropriate experimental design is vital to productive use of simula-
tion, two intrinsic properties of simulation models are also important: whether a
model is generative and whether it is simple or complex. Each is considered in turn.

1.5.2 The Most Informative Models Are Generative

As discussed in Sect. 1.3.3, the program of generative social science is built around
a particular view of what constitutes an explanation. For Epstein and Axtell the
aim of generative social science is “to provide initial microspecifications (initial
agents, environments, and rules) that are sufficient to generate the macrostructures
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of interest” and thus they “consider a given macrostructure to be ‘explained’
by a given microspecification when the latter’s generative sufficiency has been
established” (1996, p. 177). As noted above, it can be argued that this formulation
takes insufficient account of underdetermination, but that does not detract from
the point that explanation requires that the macrostructures of interest (e.g. social
institutions or other population-level outcomes) must not have been programmed
into the computer simulation at the outset, since were that the case then the model
would simply describe a known outcome. As Costopoulos (2009, p. 273) puts it, the
explanatory power of a generative model lies in the fact that it “must be observed in
operation to find out whether it will produce a predicted outcome”.

While the power of generative modelling is widely acknowledged among
simulation-using archaeologists (e.g. Beekman 2005; Costopoulos 2009; Kohler
2000; Premo 2008), its use does raise a practical problem of system-bounding if
one is to avoid infinite regress. Thus, for example, Beekman (2005, p. 66) has
proposed that “the only rules that should be fixed within a simulation should be
the most basic biological imperatives common to all humans, while any Giddensian
structural rules and resources must emerge through agents’ actions”. While this
may be appropriate if the purpose of the simulation is specifically to study how
society ‘works’ (the context in which Beekman made this suggestion), it is less
clear that one really needs to simulate the construction of the self and person sensu
Simmel (see Scaff (2011, pp. 213–225) and Archer (2000)) in order to study, say, the
effect of population size on the maintenance of cultural complexity, or how foraging
in a patchy environment promotes food-sharing. Even sociologists who reject the
ontological reality of social institutions accept that for practical purposes it may be
necessary “to assume certain background conditions which are not reduced to their
micro dimensions” (King 1999, p. 223). It is important to recognise, however, that
under these circumstances one can not claim that the model in any way explains the
assumed macro-level properties. Thus, for example, although Lake’s (2000) model
of Mesolithic foraging was one of the relatively few early archaeological agent-
based models which explicitly incorporated ‘social’ behaviour above the level of
the basic agent (in this case collective decision-making by groups of family units),
the model sought only to explain spatial outcomes of that decision-making, not
the emergence or manner of the decision-making itself (see also commentary in
O’Sullivan and Haklay 2000, p. 1419). Ultimately, as Kohler and van der Leeuw
remind us “A good model is not a universal scientific truth but fits some portion of
the real world reasonably well, in certain respects and for some specific purpose”
(2007b, p. 3). Consequently, a pragmatic stance is that what matters is not whether
a model is maximally generative, but whether it is generative with respect to its
purpose, that is to say, it must incorporate agent—agent and agent—environment
interaction relevant to its scale and it must be necessary to run the model in order to
find out whether the particular phenomena of interest emerges.
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1.5.3 Explanatory Power Trades Complexity Against Fit

The issue of what is included in a model raises the question of whether models
should be as simple as possible, or more ‘lifelike’. As Levins (1966) long ago noted
in the context of population modelling, it is in practice impossible to simultaneously
maximise the generality, realism, and precision of models of complex systems. For
some, this implies that choices must be made according to the intended scope and
purpose of the model (Kohler and van der Leeuw 2007b, pp. 7–8), whereas others
see a strong presumption in favour of simplicity (Premo 2008, p. 48).

There are three main arguments in favour of simplicity (which are not mutually
exclusive). The first and most basic argument is that replicating a complex world
by means of a complex model is unlikely to lead to enhanced understanding since
the latter is achieved by reducing complexity to “intelligible dimensions” (Wobst
1974, p. 151). In other words, explanation requires reduction, although whether
that is more due to the limitations of the human intellect than it is a reflection
of the way the world is has long been debated (see discussion on this point in
Laird 1919, pp. 342–4). Either way, Collard and Slingerland argue that in practice
both scientists and humanists reduce, since “any truly interesting explanation of a
given phenomenon is interesting precisely because it involves reduction of some
sort–tracing causation from higher to lower levels or uncovering hidden causal
relationships at the same level” (2012, location 311); indeed, they go so far as to
suggest that “when someone fails to reduce we rightly dismiss their work as trivial,
superficial, or uninformative” (ibid., location 314).

Not unrelated is the second argument in favour of simplicity: the application of
the law of parsimony, which posits that one should adopt the simplest explanation
for the observed facts. Indeed, one of the most important insights from complexity
science is the discovery that complex macro-level patterns do not necessarily require
complex behaviour on the part of individual agents. As noted earlier, this has lead
to enthusiasm for null modelling (Premo 2007), in which one starts by investigating
how much of the observed phenomenon can be explained by the simplest possible
model. Although it could be argued that complexity science adopts an ontological
stance in favour of the notion that complexity is generated by the interaction of
agents which individually exhibit relatively simple behaviour, null modelling can
also be viewed as an epistemic move favouring the gradual addition of complexity
to models to establish if doing so allows them to explain more of the patterning
in the observed data (Premo 2007, p. 34). Thus, for example, while Bentley and
Ormerod argue “that the most appropriate ‘null model’ of individual behavior in
larger societies is in fact. . . the ‘zero-intelligence’ model” (2012, pp. 205–6), they
also write at length about what needs to be added to a null model based on statistical
physics precisely because human interactions are different. This may seem obvious,
but the point of modelling “from the null-up” (Premo 2007, p. 34) is to avoid making
assumptions about complexity in favour of discovering how much complexity is
necessary to explain the observed phenomenon. Kohler et al. (2012a, p. 40) make a
very similar point in relation to the use of optimizing models when they state that
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they “do not. . . want to predetermine the answer to fundamental questions such as,
‘do societies operate so as to optimize the actions of their members?’—since these
are questions we would like to ask”.

The third argument in favour of simplicity is the argument from generality
(e.g. Costopoulos 2009, p. 275): that simpler models which have not been finely
honed to fit a particular case, but can account for more—and more diverse—cases
have greater explanatory power, not least because they allow one to predict what
should happen in a wider range of circumstances and so obtain a greater sense
of the likelihood of the observed phenomenon occurring rather than some other
phenomenon. As Pinker forcefully argues, explanation requires more than “saying
something just is”: it consists in demonstrating “why it had to be that way as
opposed to some other way it could have been” (Pinker 2002, p. 72, my emphasis).

Although there are strong arguments in favour of keeping models simple, a
common view among philosophers of science is that “the best model for a given
data set is one which balances order and randomness by minimizing the model’s
size while simultaneously minimizing the ‘amount of apparent randomness’ ” on the
grounds that such a model ensures that “causes [are not] multiplied beyond necessity
while also obtaining a good prediction” (Crutchfield 2008, p. 274). In ecological
modelling it is increasingly argued that the best way to find this “optimal zone of
model complexity” is to build models that are structured to reproduce multiple real-
world patterns, not least because it is thought that such models are usually less
sensitive to parameter uncertainty (Grimm et al. 2005, p. 989; also Piou et al. 2009).
This approach may also be profitable in archaeology (Altaweel et al. 2010), but it
is not unreasonable so suppose that the optimal balance between model size and
fit may vary within a discipline which encompasses such wide-ranging subject-
matter studied at a variety of spatial and temporal scales. For instance, minimizing
apparent randomness may be important in a model designed to investigate whether
Mesolithic land-use patterns on a small Scottish island reflect the exploitation of
specific resources (Lake 2000), but on the other hand a more appropriate ambition
for an archaeology of the very long-term might be whether there is an “‘envelope of
predictability’ for major socio-environmental changes, within which specific events
and timings remain unpredictable?” (Cornell et al. 2010, p. 427). Ultimately then, it
may be that models of varying simplicity and fit can be productive providing they
meet two conditions: (i) they are generative with respect to the problem at hand; and
(ii) they adopt an exploratory experimental design in order to elucidate other ways
the explanandum could have been. In practice, such models are likely to be those at
the simpler end of the spectrum, but this need not always be so.

1.6 Summary

Archaeologists have experimented with computer simulation for almost as long as
they have used computers and even some of the earliest simulation models have
features in common with contemporary agent-based models. Nevertheless, there
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has been an explosion of interest in agent-based simulation modelling since 2000,
driven by its conceptual flexibility and accessibility, the appearance of relatively
‘user-friendly’ software and interest in the wider agenda of complexity science.
Indeed it can be argued that the technique has now achieved a degree of maturity:
its use in certain subdisciplines (e.g. evolutionary archaeology) is becoming literally
unremarkable, such that papers increasingly focus on results and their implications
for substantive problems rather than methodological issues. Even so, there is scope
for greater consideration of what is required to maximise the potential of learning
by simulation, particularly with regard to experimental design: ensuring that results
are not ‘built in’ and achieving an appropriate balance between model complexity
and the fit to data. Furthermore, there remain questions about what ontological
baggage, if any, comes with the adoption of agent-based modelling. Many, if
not most, archaeological agent-based models adopt a fairly strong methodological
individualism and concomitantly weak notion of emergence. Is this why, or because,
most archaeological agent-based models deal with small-scale societies? Is it just
sensible scientific scepticism of mysterious downward causal forces, or is it a
narrow-minded and premature closing down of the possibility of a scientific account
of long-term social change? At present the answer is far from clear, but intelligent
application of agent-based modelling to a more diverse range of problems will
surely help to tease out what is required for satisfactory explanation of aspects of
human history.
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Chapter 2
Modeling Archaeology: Origins of the Artificial
Anasazi Project and Beyond

Alan C. Swedlund, Lisa Sattenspiel, Amy L. Warren,
and George J. Gumerman

2.1 Introduction

In 1994 the relatively young Santa Fe Institute (SFI) was moving to its new campus
complex at the edge of the city of Santa Fe, New Mexico, USA. Researchers
interested in the science of complexity were anxious to participate in this exciting
new enterprise. A core resident faculty was being established, while at the same time
numerous visiting scholars were invited to present new research and participate, for
various lengths of time, in shaping SFI’s identity and future trajectory. Within a
year’s time an important collaboration formed, somewhat by accident, which was to
become known as the Artificial Anasazi Project.

Joshua Epstein and Robert Axtell, then of the Brookings Institution in
Washington, DC, had come to present their agent-based modeling approach which
they called “Sugarscape” (e.g. Epstein and Axtell 1996). In the course of their
presentations they mentioned that they were interested in “real-world” applications
of the model that could address questions about human behavior. In the audience
happened to be George J. Gumerman, a southwestern archaeologist involved with
SFI and its emerging program in cultural complexity. Gumerman, along with Jeffrey
Dean and colleagues at the University of Arizona, had been collecting detailed
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environmental and archaeological data in the Kayenta Region of northeastern
Arizona since the 1970s. They had constructed a huge database of high-quality
environmental data as well as extensive information on temporal changes in climate
and human habitation of the Long House Valley and other sites in the region.
Although maize cultivation spread throughout the American Southwest over several
centuries BC, the ancestral Pueblo Indians living in the sites of the Kayenta Region
actively adopted agriculture commencing around AD 200. During the period of
occupation between approximately AD 800 and AD 1300 the population grew
significantly and then collapsed, and the region was abandoned between AD 1275
and AD 1300.

Axtell and Epstein had a powerful agent-based model, ready to be tested.
Gumerman, Dean, and colleagues had an extraordinary dataset with a long timeline
on which to test it. A research team was formed on the spot, and by 1996 preliminary
runs were underway, with limited and often unsatisfying results. Steve McCarroll
and Miles Parker were brought on as modeling assistants to Epstein and Axtell,
and Alan Swedlund was invited to participate to provide demographic parameters
that would be necessary to reflect human population dynamics. The intention was
to compare the known settlement and population growth history of the Anasazi
with the results generated using Ascape, an extension of the Sugarscape software.
In Ascape agents occupy, grow, and populate a representational space designed
to address specific research questions of interest. Resources (e.g. food, water,
habitation sites, etc.) are distributed in the simulated space and that distribution
can change over time if desired. Agents are given decision-making properties that
allow them to move, garner resources, and interact with one another. Agents can
also grow in numbers over time, necessitating movement as occupied areas become
packed and food and other resources become scarce.

The space used in the Artificial Anasazi model is based on detailed paleoen-
vironmental, climatological, and archaeological data from the Long House Valley
in northeastern Arizona.1 Figure 2.1 shows the time series of several of these
types of data. The data were used to design a landscape (analogous to Epstein
and Axtell’s Sugarscape) of annual variations in potential maize production values
based on empirical reconstructions of low- and high-frequency paleoenvironmental
variability in the valley (see Fig. 2.2a–c). The production values represent as closely
as possible the actual production potential of various segments of the Long House
Valley environment over the last 1,600 years. Historical settlements indicated in
the archaeological record are also placed on the model landscape at their known
locations within the valley (Fig. 2.2c).

For the initial Artificial Anasazi model it was decided that agents would be
households instead of individuals, and households would be capable of clustering in
areas where conditions permitted. Households would form much as human families
do, averaging 5 individuals including male and female parents, and children of

1Although the environmental data are exceptionally fine-grained and detailed, they and the
Artificial Anasazi model are not set within a continuous GIS spatial framework.
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Fig. 2.1 Data used in the Artificial Anasazi model

Fig. 2.2 (a) Environmental zones. (b) Hydrology. (c) Plot yields and historic settlements

varying age, although the activities of individual household members were not
explicitly modeled. Each agent (household) was endowed with various attributes
(e.g., life span, movement capabilities, nutritional requirements, consumption and
storage capacities) in order to replicate important features of human households
practicing horticulture. The limits, or rules, with which agents interacted with
the environment, and with each other, were based on ethnographic reality and
anthropological plausibility.
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Agent (household) demographic patterns, subsistence, and movement behaviors
were carefully built from the “bottom up.” That is, deterministic mathematical mod-
els of growth or consumption were avoided and mortality, fertility, and consumption
needs were based on a two-sex model of individuals of specific age. These were
then summarized into households. In the model, the agents go through their life
cycles on the empirically based landscape, adapting to changes in their physical
environments. The agent-based simulations are then compared to the archaeological
estimates generated empirically, and independently, by research archaeologists.

2.2 Structure of the Artificial Anasazi (AA) Model

The original Ascape implementation of the Artificial Anasazi (AA) model contains
a number of versions designed for different purposes, in some cases for testing
or batch runs and in other cases for experimentation with other types of model
structures. We focus our initial discussion on the original AA model as described in
Dean et al. (1998, 2000), Axtell et al. (2002), and Janssen (2009). Current efforts,
described below, center on a version we call Artificial Long House Valley (ALHV).
These two models differ in the basic demographic framework they use. The original
AA model focuses on and depends solely on household-level information. “Births”
relate to the origination of a new household, “deaths” refer to dissolution of an
existing household through either death or abandonment. The ALHV model uses an
individual-level framework, with each household’s resident individuals considered
explicitly.

The general structure of the AA model is shown in Fig. 2.3. The setup of
the model is complicated and requires input of the detailed paleoenvironmental
and historical data, construction of the valley, and construction and placement of
households, settlements, and farm plots at appropriate locations in the valley, as
well as determination of the initial harvest amounts available to each household.

Once the setup is complete, the model cycles through a series of steps that
occur once a year for each household (Fig. 2.3). The first step is to determine
whether each household has enough food available to satisfy its present needs.
If there is enough food and the household is below a user-specified death age,
then the amount of harvest resources available for the present year are estimated
and added to the household’s stores (assumed to last for 2 years). If food supplies
are insufficient, the household has reached the specified maximum household age,
or both, the household is abandoned and removed from the space. Following this
series of decisions, households determine whether they have enough food for the
coming year. If they do and they are within the user-specified fertility period, they
can produce a new household through fissioning.2 If a household does not have

2Note: although within the model this is specified through the naming of variables as reproduction,
it is reproduction at the household, not individual level.
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Fig. 2.3 The original Artificial Anasazi (AA) model

enough food in its stores for the coming year, it tries to move to a new location.
This process involves a hierarchical series of decisions based on the distance
from farm plots and water sources and the suitability of particular locations for
the household. If a household is successful in finding a new location, it moves
there and assesses whether fission is possible. If a location cannot be found,
the household is abandoned and removed from the space. New households that
originate after fissioning proceed through a process similar to the movement process
of existing households to find suitable locations for their household and farm.
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a b

Fig. 2.4 Simulated (a) settlement distribution and (b) population vs. historical data, AA model

Once all households have completed the entire series of steps, the yield at each
step is calculated and the cycle begins again. The simulation begins at AD 800 and
runs yearly until AD 1350.

Summaries of outcomes of AA model simulations are given in Dean et al. (2000)
and Axtell et al. (2002) (see also Janssen 2009). The earliest runs of the model
often had the simulated population overshooting the archaeologically estimated
population to a considerable degree, until it reached an apparent carrying capacity
(e.g. see Dean et al. 2000, p.190–191; also Janssen 2009). Figure 2.4 provides
an example of a simulation run that “fits” the historical data reasonably well.
Analyses of the AA model indicate that simulation outcomes are quite variable and
are also highly sensitive to the values chosen for the harvest variables (see also
Janssen 2009). However, it is not yet clear whether the optimal values reflect more
accurate estimates of real harvest potential than is possible using the unadjusted
paleoclimatic data input into the model, or whether they are simply a result
of adjustments to produce better curve fitting. This assessment requires careful
attention to assumptions about how the variables are incorporated into the model
as well as more extensive sensitivity analyses of how variation in their values
influences model outcomes.

2.3 Selected Socio-Ecological Models Similar
to Artificial Anasazi

Prior to the development of Artificial Anasazi, several efforts were aimed at
simulating social change in the southwestern United States (Cordell 1972, Dove
1984 for example) but many of these models applied a top-down approach to
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simulation and hard-coded variables and interaction rules (Gumerman and Kohler
1996). Around the time the Artificial Anasazi research team was coming together,
other agent-based models aimed at exploring social and ecological interactions with
a bottom-up approach were also in development. Table 2.1 provides a description of
several of the major archaeological agent-based models that have been developed.
In this section we discuss a selection of those models that most closely relate in
purpose and general structure to the Artificial Anasazi model.

The Evolution of Organized Society (EOS) model generated group-level behav-
iors such as information exchange, group decision-making, and the emergence of
hierarchical social structures among foragers in Upper Paleolithic France by model-
ing the environment and resource-gathering behaviors (Doran et al. 1994). Another
model, MAGICAL (Multi-Agent Geographically Informed Computer AnaLysis)
(Lake 2000), was developed by combining geographic information systems software
with multi-agent simulations to explore possible explanations for the distribution of
flint artifacts in the Southern Hebrides. The incorporation of detailed GIS data into
this model reinforced a trend in agent-based modeling toward the inclusion of high
quality environmental data in models focused on socio-ecological changes.

Just as Artificial Anasazi was influenced by other simulations of social-
ecological processes in the Southwest and in other areas, the success of Artificial
Anasazi and similar models provided further support for the suitability of agent-
based models for exploring changing human-environment interactions in a given
geographic space and encouraged the continued development of other models.
Most notable among these modeling efforts are the models developed by Kohler
and colleagues that comprise the Village Ecodynamics Project (VEP), which
commenced development around the same time as Artificial Anasazi and also came
out of work being done at the Santa Fe Institute. The goals of this project include
exploring the co-evolution of society and environment by accurately recreating the
landscape, understanding the factors that contribute to complicated behaviors on
this landscape, and developing an understanding of the factors that may have driven
village aggregation, growth, and depopulation in southwestern Colorado between
AD 600 and AD 1300 (see Kohler et al. 2007, 2012). Much like Artificial Anasazi,
the VEP model generates maize production data based on climate, soil quality, and
plots farmed, but it also incorporates over-farming as a factor (Kohler et al. 2007).
In addition to the maize-related factors that largely drive the Artificial Anasazi
simulations, the VEP model also incorporates social and cultural learning, water
usage, wood use for fuel, and hunting parameters to explore resource procurement
strategies and how such strategies may have contributed to demographic patterns
observed in the archaeological record for the area, most notably the depopulation
during the late thirteenth century AD (Kohler et al. 2007).

In a model similar to Artificial Anasazi and VEP, Griffin and Stanish (2007)
have modeled the Lake Titicaca basin with the goal of exploring the role of
environmental and social factors on the development of complex societies in
the region. Their model specifically examined factors that led to this political
consolidation, such as agriculture, migration, competition, and trade (Griffin and
Stanish 2007). Like Artificial Anasazi, their model was situated during a specific
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time period in a specific region and aimed to increase understanding of social
processes occurring in pre-state level agricultural societies. The Titicaca Basin
model differed from Artificial Anasazi in that the ecological and agricultural factors
shaping the environment were not incorporated with as fine a scale as in Artificial
Anasazi and were instead included with the goal of simply creating a reasonable
landscape in which the agents could operate. Additionally, this model was validated
using multi-dimensional measures in order to fully account for the multiple factors
included in the model that contributed to long-term political changes. Griffin and
Stanish’s Lake Titicaca Basin model continued the trend of modeling with realistic
and empirically informed environments and behaviors that began with models like
Artificial Anasazi, but also borrowed from a political science model designed to
simulate nation-state long-term political change.

Another model, Enkimdu, was developed to look at social and ecological dynam-
ics of population change in Bronze Age Mesopotamia (Wilkinson et al. 2007). Like
Artificial Anasazi, this model incorporates natural processes such as weather, crop
growth, hydrology, soil quality, and population dynamics, but it also models how
social behaviors such as farming and herding practices, kinship-driven behaviors,
and trade interact with these natural processes to cause concurrent, dynamic changes
in both types of processes (Wilkinson et al. 2007). Relying on modeling concepts
from other fields such as the Dynamic Information Architecture System (DIAS)
and the Framework for Addressing Cooperative Extended Transactions (FACET),
Wilkinson and colleagues explored patterns related to demography, subsistence,
kinship, and reciprocal exchange in situations of social stress to test hypotheses
related to changing social and ecological dynamics (Wilkinson et al. 2007).

The combination of ecological, agricultural, cultural, and political factors into
one model as demonstrated in all these studies illustrates how interdisciplinary
work can better inform archaeological agent-based models. These models are also
especially valuable because they demonstrate how micro-level behaviors of agents,
determined archaeologically and ethnographically, within a specific temporal and
geographic space can result in the emergence of macro-level patterns that can also
be compared with the archaeological record—an advantage of agent-based models
over other forms of modeling (Griffin and Stanish 2007; Schelling 1978; Epstein
1999).

2.4 Current Efforts: The ALHV Model

Recent efforts working with the Artificial Anasazi project center on the ALHV
model. This model differs from the AA model in only a few characteristics, but
these differences have far-reaching implications for model structure and simulation
results. As mentioned above, the primary difference is that individuals within
households are now considered to be active agents. Rather than basing fertility and
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a b

Fig. 2.5 Simulated (a) settlement distribution and (b) population vs. historical data, ALHV model

mortality levels on aggregate household-level probabilities as in the AA model,
in the ALHV model individual agents are endowed with age-specific fertility and
mortality schedules that govern their birth and death.

We are still in the process of determining the nature and impact of the specific
differences between the two models, but household-level fission and death still do
appear to be present. We have determined that they work somewhat differently in the
ALHV model, but the particular mechanisms are not yet understood. Eventually
the ALHV model, with its disaggregated, individual-level demographic processes,
will be used for questions regarding the potential impacts on population growth of
morbidity, mortality, and reduced fertility due to disease and food scarcity.

Figure 2.5 demonstrates that results of simulations of the AHLV model are
dramatically different from those of the AA model (as shown in Fig. 2.4). The
vast majority of runs exhibit a pattern of exponential growth (consistent with the
assumption of constant age-specific fertility and mortality rates), followed by a
steep decline as the region becomes agriculturally unproductive. Sensitivity analyses
using various estimates for fertility, mortality, and harvest variables indicate that,
as would be expected, the rate of exponential growth is sensitive to changes in
the age-specific fertility and mortality parameters. Interestingly, however, unlike
the AA model, the ALHV model outcomes are not influenced by changes in the
values of harvest parameters. Clearly, in bringing the individual-level fertility and
mortality processes into the model, household-level population control processes
related to the environment and harvest potential were decoupled from the model.
This decoupling has, however, removed any semblance of a “fit” between the
simulations and the archaeological data, with the result that, at present, the ALHV
model is not an adequate representation of the population history of the Long House
Valley. Reincorporation of the environmental constraints, at a minimum, is required
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in order for the ALHV model to be a successful model for the rise and abandonment
of the Long House Valley.

More importantly, influences such as disease, nutrition, migration, and warfare
operate most strongly at the individual level, and these processes have been pro-
posed repeatedly in explanations of the population history of the region. In order for
models to pursue questions related to these processes in the Long House Valley and
elsewhere, both individual-level demography and household-level environmental
constraints are essential components. Thus, present research on the ALHV model
is directed at solving the problem of recoupling and integrating individual-level and
environmental constraints on population growth.

2.5 Discussion and Conclusions

Artificial Anasazi, its predecessors, and its successors have demonstrated the
usefulness of agent-based modeling in archaeological applications. Because agent-
based modeling in archaeology allows for hypothesis testing, verifying the accuracy
of other methodologies, formalization of theories, exploration, and experimentation
that are not always possible with other lines of archaeological inquiry, the continued
application of agent-based modeling methodologies to archaeological questions is
essential (Kowarik 2011).

In our own work, we envision the following as new directions for Artificial
Anasazi and Artificial Long House Valley:

• More extensive and systematic sensitivity analyses
• Incorporation of explicit infectious disease processes, nutritional stresses,

violence
• Interactions between the Long House Valley and Black Mesa, a major archaeo-

logical region adjacent to the Long House Valley

We also suggest that future applications of ABMs to archaeological questions should
consider the following:

• Continued focus on modeling individual-level interactions
• More focus on emergent social patterns that result from local behaviors and

socio-ecological dynamics and comparison of these simulated patterns to pat-
terning observed in the archaeological record

• Continued interdisciplinary work

We see the most important goal of our work in the near term, once the ALHV model
is up and running well, to be the development of insights into the varying roles
of disease, diet, and fertility in the decline and eventual abandonment of the Long
House Valley. Once we understand the likely possibilities for the impact of these
demographic and nutritional constraints, we may gain clearer understandings of the
influence of political and social factors in triggering final abandonment of the region.
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Chapter 3
Agent-Based Simulation in Archaeology:
A Characterization

Felix Breitenecker, Martin Bicher, and Gabriel Wurzer

3.1 Motivation and Classification of Computer Models

The phrase “dare to know” (Latin “sapere aude”, originally brought forward by the
Roman poet Horace and later made popular by Kant (1784)) is famously known
as the motto of the enlightenment, representative for the intellectual attitude of the
western civilisation during seventeenth and eighteenth century. From this era also
come some of the core concepts used in simulation, experiment and observation:
An experiment is a procedure that seeks to prove or reject a hypothesis (Kant 1787,
p. 23) or observe an emergent outcome. However, there are cases in which questions
cannot be answered by conducting classical experiments, because

• these would be too expensive (e.g. investigate the earthquake resistance of a
skyscraper)

• these would be too dangerous or not possible for ethical reasons (e.g. investigat-
ing the spread of an epidemic)

• these would not be possible for logical reasons (e.g. measuring the kernel
temperature of the sun)

• these would not be possible, as information from the future is required (e.g.
meteorological weather prognosis)

• these would not be possible, as information from the past is required (e.g. proving
or falsifying historical hypotheses if archaeological findings are missing)

Therefore, instead of conducting “real” experiments, researchers have turned to
experimentation in silico, in which simulation plays the role of a tool (or method,
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Fig. 3.1 Motivation and life cycle of mathematical modelling

see Fig. 3.1): A real entity raises questions, which leads to a problem that is
either defined explicitly or (as it often is in archeology) informally. The problem
cannot be answered using classical experimentation, and therefore, a mathematical
or theoretical model is built, which imitates the behaviour and structure of the real
system as closely as possible. Based on this model, a simulation is run to solve the
given problem, supported by initial data in order to receive “satisfying” results. The
level of detail and precision within the modelling process and the amount and quality
of the initial data (consisting of input and initial conditions of the simulation) are
mainly responsible for the validity of the simulation results and thus the reliability
of the answer to the given problem. However, this does not free the researcher of a
verification phase, which examines how congruent the model is in respect to reality.
A closer look at this aspect is given in Chap. 2.

3.1.1 The Model: Creating an Abstraction of Reality

The word “model” derives from the Latin word “modulus”, which was used as a
measure in architecture until the eighteenth century. To be more precise, “modulus”
was the base unit used in architectural planning on which plans and miniature
versions of buildings were based. Its meaning slowly transitioned into the now-
common “model”, which signifies a simplified replica of the real world. With respect
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to Stachowiak (1973), a model is characterized by at least three different features
(translated from German):

1. Mapping—A model is a representation of a natural or an artificial object.
2. Reduction—A model is simplified and does not have all attributes of the original

object.
3. Pragmatism—A model is always created for a certain purpose, a certain subject

and a certain time-span.

Similarly to models made out of real material (wood, stone, paper,. . . ), mathe-
matical models used for simulation also fulfil these three characteristics: On the
one hand, a detailed mapping of the real world guarantees reliable results. On
the other hand, it is still necessary to do simplifications in order to be able to
perform the simulation at all. Although processing power and memory resources
of computers are increasing rapidly, the ability to calculate simulations in-depth is
still limited (also see high-performance computing, Chap. 4): One must not forget
that the more complex the model gets, the more data is required to calibrate the
simulation correctly. Regarding reduction, the following techniques can be used to
obtain reasonable models:

• Distinction: Neglect those parts of reality which are not relevant for the purpose
of the model.

• Cutback: Neglect details that are irrelevant.
• Decomposition: Decouple segments of an object which are not or weakly linked

and treat them as own models.
• Aggregation: Couple segments which act alike and threat them as one.
• Abstraction: Create technological terms, classes and clusters in order to simplify

the overall problem.

Surprisingly, the history of mathematical modelling is older than the history of
the computer. For example the famous Lotka-Volterra Differential equations, a
mathematical model formerly designed to simulate the cohabitation of a predator
and a prey species, was initially developed by Alfred J. Lotka and Vito Volterra
between 1925 and 1926 (Lotka 1956). Compared to that, the first (useful) computers
were developed during the Second World War. Surely, the two scientists had
problems to simulate their own derived differential equation model by hand, but
they had some success regarding the qualitative analysis of their results. So, the
idea of simulation is basically not linked to computers, although most simulations
can only be executed with their support. Even after the introduction of computers,
some simulations such as the evacuation model by Predtetschenski and Milinski
(1971) were based on hand calculation methods, and some are even used to this day
(Rogsch et al. 2008).

One of the most common definitions of the modern meaning of the word
simulation is finally given by Shannon (1975): “Simulation is the process of
designing a model of a real system and conducting experiments with this model for
the purpose either of understanding the behaviour of the system and its underlying
causes or of evaluating various designs of an artificial system or strategies for the
operation of the system” Shannon (1975, p. 2).
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Shannon defines the modelling process as a sub-process of the simulation, as
the purpose of the model is solely given by the purpose of the simulation. On the
one hand, it can be seen easily that the word computer is not part of this definition.
On the other hand, since the invention of the computer the fields of application
for mathematical models is steadily increasing as due to growing computational
resources, a growing number of complex simulations can be executed.

Agent-based modelling is just one of many modelling approaches. In order
to fully understand the basic mechanics of this specific approach, some specific
terms related to modelling and simulation have to be discussed in the forthcoming
sections. Very often, the explanation of these terms is supported by example models.
These examples were only developed theoretically (i.e. for didactical reasons) and
their validity and value must thus not been overestimated.

3.1.2 Black-Box and White-Box Models

Within system theory, the word black-box describes a basic input-output system in
which the correlation between input and output is not known. Such an “opaque box”
somehow translates the input signal into some output and does not reveal how the
translation takes place. Regarding modelling and simulation, the term black-box is
used if modelling approaches are mainly based on observations and explanations but
not on strict laws and proven formulas. The model has to be developed only knowing
about input data, a little bit of information about the behaviour of the real system and
some output data required for the calibration of the model. If done properly, those
kinds of models are also working reliably, even though everything in between the
input and the output part can hardly be explained in a reasonable way; nevertheless,
there are some authors who seek to reverse-engineer black-box models, in order to
give users confidence and also some control over the work they are doing with them
(Rogsch and Klingsch 2011).

White-box modelling, i.e. modelling based on proven laws and axioms, is
preferred to black-box modelling. When this is not possible, a mixture between
the approaches has to be used. The gradual transition between white-box and black-
box techniques can be seen in Fig. 3.2b: Most problems that can be described by
proven laws or axioms can be simulated using white-box models, whereas problems
that are based on expert knowledge and observations will need to be approached by
black-box modelling:

• How fast does the pendulum swing?
This problem can be solved using physical basics like Newton’s law of gravita-
tion, friction formulas and the law of conservation of energy, resulting in the so
called pendulum-equation. This second order differential equation can be solved
by most of the now-common numerical computing and simulation packages. The
derivation of the model was solely based on physical laws, which makes it a
White Box model.
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a

b

Fig. 3.2 (a) Black box model. (b) Fields of application for black box and white box models

• How fast does a population grow?
Before being able to solve that problem, a lot of data has to be procured and
investigated. Aside from the data, it can be observe that the growth rate of the
population is proportional to the number of individuals (the higher the number
of fertile individuals, the more individuals are born). Furthermore, the size of the
population is limited due to resources and lack of space. In order to model these
constraints governing the size of the population, a so-called logistic differential
equation can be applied. The modelling process is basically motivated by data
and observations, and thus is an example of a Black Box model.

Summing up, both examples result in mathematical formulae. The main difference
being the derivation of the equation: In the first case, the formula is solely based
on already-existing, proven laws. In the second case, the equation is gained by
observation of the behaviour and data of a real system. Agent-based models are
mostly used as black-box models, but are not limited to this field of application.
Before we continue to the description of basic concepts used in agent-based
modelling, some principles of microscopic and macroscopic modelling have to be
discussed.

3.1.3 Microscopic and Macroscopic Approach

The larger and more complex the investigated system, the higher the need for a
computer simulation (instead of a classical solution to a problem). Usually, very big
complex systems consist of (or can at least be partitioned into) a large number of less
complex subsystems which can be investigated in isolation. The final complexity
of the overall system is governed by the interaction of all subsystems (also called
components of the system). If those subsystems share the same basic properties and
act similarly, the system can be described by an agent-based model. Examples for



58 F. Breitenecker et al.

Table 3.1 Examples of
systems made out of similar
components

System Components

Population Individuals

Company Subsidiaries

Traffic Cars

Paper Wooden fibres

such systems and their components are given in Table 3.1. Interestingly, the scale
at which these systems are modelled may differ, as we may distinguish models as
being either microscopic or macroscopic:

• Microscopic models decompose a system into its subsystems. Each of these
subsystems is modelled separately, taking into consideration that they are allowed
to communicate with each other, in order to model the structure of the whole
system. Because the subsystems are similar, they are usually modelled in the
same way, but then supplied with different parameters. In order to decouple the
system, simplifications have to be done regarding the often complex relationships
between the subsystems. These rich relationships also make “the whole [. . . ]
greater than the sum of its parts” (Aristoteles), a property that is often referred to
as emergence.

• In Macroscopic models, the influence of the subsystems upon the whole system
is investigated and generalized, in order to be able to model the whole system
at once. Often, black-box approaches have to be used in that context, leading to
so-called “behavioural models” (i.e. models developed by studying the behaviour
and causal relationships of the system). Although these models do not take into
account that the whole system consists of subsystems, very satisfying results can
be obtained if the model is developed properly.

The choice of the modelling approach is often a result of a “top-down” or
“bottom-up” philosophy being chosen for the abstraction of the model. Usually,
a “bottom-up” approach implies a microscopic model, in which the lowest level of
the system (i.e. the “individuals” having the highest degree of detail) is analyzed
first. After building up such a microscopic model, it is not unusual that the modeller
has to simplify it, as it would otherwise become too complex. Vice versa, a “top-
down” approach usually leads to a macroscopic model. The abstraction process then
starts at the top level (looking at the whole system), and iteratively goes into more
detail until the granularity is sufficient for the stated problem.

In order to further illustrate the difference between microscopic and macroscopic
models, let us assume an example where the problem is to simulate the degrees
of a large number of tourists visiting a museum after the occurrence of a fire.
The microscopic approach would regard the whole system (museum) through its
constituent parts (the visitors). These would be simulated individually insofar as
each simulated person is free to choose his own exit route. The interaction between
the individuals would here mean the movements, collisions and avoidance strategies
that the visitors follow (also referred to as pedestrian dynamics), leading to emergent
outcomes such as lane formation, congestive bulks before exits and collective
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motion among the crowd (Helbing and Molnár 1995; Helbing et al. 2000). A
macroscopic model would identify the mass of people to behave like a liquid,
tending towards the areas with the least pressure (which in our case would be
defined to be the exits). In this case, one would use the so-called Navier-Stokes-
equations, which are used within physics for modelling fluid dynamics, to arrive at
a macroscopic model for the system.

Summarizing, the decision which of the two mentioned approaches is taken
requires a more detailed specification of the modelling purpose. It also depends on
the number and quality of provided measurements and data that is necessary for cal-
ibrating the model. Both modelling approaches have advantages and disadvantages,
as summarized in Table 3.2.

As computational resources are increasing exponentially (Moore 1965), micro-
scopic models are getting more and more popular. Agent-based models are probably
the best-known example of microscopic approaches, but not the only one.1 A recent
trend also lies in cohort simulations, which is a simulation technique in which
individuals sharing the same properties are clustered into “cohorts”. This approach
lies in between the macroscopic and microscopic level and is therefore called
mesoscopic.

Table 3.2 Advantages and disadvantages of microscopic and macroscopic models

Property Microscopic Macroscopic

Processing time Usually microscopic models
require lots of computational
resources. So calculations are
usually rather slow

As not all sub-models have to be
evaluated separately computation is
rather fast

Abstraction level, i.e.
how difficult the
explanation of the model
is to non-experts

As the connection between
model and reality is very
obvious the necessary level of
abstraction is relatively low

As the model is very often either
developed black-box style or derived
out of complex formulas the
connection between model and
reality is more difficult to
understand. So the abstraction level
is usually high

Number of necessary
parameters

Due to the high number of
sub-models a lot of specific
parameters have to be defined
which poses a difficult task for
calibration of the model

Usually the model is well defined by
a few parameters dealing with the
overall dynamics of the system.
Regarding commonly gained
statistical data calibration is often
easier too

Flexibility Small changes within the
structure of the sub-models can
be performed very easily
without restructuring the whole
model. Thus microscopic
models are very flexible

Small structural changes usually
require redefinition of the whole
model (unless it can- be corrected by
parameter variations). So
macroscopic models are hardly
flexible

1Others types would for example be cellular automata (see e.g. Wolfram 2002, p.8) or finite
elements.
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3.2 Introduction to Agent-Based Modelling

The term “agent” derives from the latin word “agere”, meaning “to act”. So,
defined by the root of the word itself, the main function of an agent is to act—
individually. Hence, we can give a first characterization: Agent-based simulation
is micro-simulation based on individually (inter)acting sub-models. One aspect of
this sentence is especially noteworthy: It does not state that agents necessarily have
to pose for persons. Rather, a sub-model can represent everything ranging from a
car in a traffic jam to a charged molecule in a liquid or even an abstract concept
that can be represented as an agent. Regardless of what is being represented by an
agent, there are still some additional requirements that need to be fulfilled, in order
to completely define this modelling method. We thus come to a formal description
that covers these.

3.2.1 Formal Description

Unfortunately, it is not easy to fix a unique formal definition for the term “agent-
based modelling”, in order to be able to make a clean decision if a given theoretical
model should an agent-based or not. This is due to the “problem” that agent-
based modelling (as well as many other modelling approaches) is a scientific
method that used in a multitude of disciplines; as a correct formal definition of
a method is always linked to the corresponding scientific termini of a field of
application, problems occur if the same method is used within disparate academical
areas. To illustrate this point further, a definition of a method developed by
mathematicians, given in a mathematical language, would not satisfy the needs of
computer scientists or social scientists (and vice versa). In the specific case of agent-
based modelling, scientists from different fields have developed their own formal
descriptions, using their own scientific termini. It is obvious that this has cased a lot
of communication problems, especially at interdisciplinary conferences. In order
to solve these problems, very rough definitions were developed, sometimes even
directly within the context of those conferences by interdisciplinary discourse. One
of these definitions, developed at the Winter Simulation Conference 2005 and 2006
(Macal and North 2006), states that:

Definition 3.1. An agent has to

• be uniquely identifiable
• cohabitate an environment with other agents, and has to be able to communicate

with them
• be able to act targeted
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• be autonomous and independent
• be able to change its behaviour

The principle meaning of these five points is now explained in full detail:

• Unique Identification: Although different agents in an agent-based model do not
necessarily have to have different properties, they have to remain distinguishable
at any time during the simulation. More specifically, all actions of one agent have
to be traceable after a simulation run.

• Environment: All agents of a model share an environment in which they can inter-
act both with each other and “the world” around them. The most common way of
doing the latter is movement. In fact, most computer scientists define the property
“movement” of an agent as a basic requirement for agent-based modelling.
However, the general definition developed at Winter Simulation Conference
(2005 & 2006) states that there may also be non-movable agents living in a totally
abstract environment. As example for this, one could imagine geographically
fixed subsidiaries of a company interacting on an abstract electronic network
(see Example 3.3).

• Act Targeted: Within the environment, agents have to act so as to reach a certain
goal or purpose. So, one could say that they have to be given a basic form of
“intelligence”.

• Autonomous and Independent: It is a very difficult philosophical question
how the independent and autonomous action of an agent is justified, if any
action/reaction rule is predefined by the modeller himself. The point of the
definition can be interpreted in the following way: If the fictive agent would be
given a personality without knowing its creator, the agent has to think of its own
actions to be performed independently from the other agents.

• Behaviour: Evoked by its target (see previous point “Act Targeted”), every agent
displays its own behaviour regarding communication and actions. If necessary
the agent has to be allowed to change it.

Although these five ideas might pose a sufficient definition to modelling experts
already knowing about agent-based modelling, non-experts will probably be no
wiser now than they were before. Regarding modelling and simulation, theoretical
and abstract definitions usually do not provide any concept on how to practically
convert these theoretical ideas into useful and working models, as they are solely
developed to determine the affiliation or non-affiliation of a given model to a
modelling technique. Especially for scientific papers and conferences, this kind
of classification is essential. In order to satisfy the expectations of the (probably
disappointed) reader, the modelling approach is now presented in a little bit more
user-friendly way, by using a step-by-step instruction. This is done via directly
developing some example models in the next sections.



62 F. Breitenecker et al.

Fig. 3.3 Agent-based
approach towards modelling a
road junction, as given in
Example 3.1

Example 3.1. Road Junction

Problem: A new road junction bringing together four streets (also see
Fig. 3.3) is to be planned. In that context, the responsible traffic planners
have to decide on either building a classical junction with traffic lights or to
employ a roundabout. The stated goal is to avoid traffic congestions as far
as possible. Experiments are not possible, so a modelling expert is called
in to answer on this question.

Abstraction: Analysis of the situation reveals that a microscopic modelling
approach is preferred, as the system can be reduced to consist of cars
(active parts of the world) and streets (passive). Since colour, shape
and type of the cars can be neglected, they can be reduced to appear
as line-shaped (one-dimensional) objects with a certain length, moving
individually on streets that are also line-shaped.

Model: Each car is represented by exactly one agent having a certain length.
To enable interaction between the agents, an environment has to be defined:
Each agent is assigned a place on one of the four one-dimensional streets
(to be precise, each agent occupies a spatial interval of its own length).
Additionally, each agent is assigned an initial velocity and a spatial target
(i.e. one of the four ends of the streets, which he tries to reach as
fast as possible). To control interactions between the agents, one has to
furthermore define how each agent adjusts its velocity to avoid collisions
with other agents while at the same time obeying the rules of the traffic
lights or roundabout. In our case, both of these two mentioned points
happen passively, by letting a would-be obstacle or traffic light send out:
“avoid colliding with me”.

(continued)
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Example 3.1 (continued)

Conclusion: The developed agent-based model suits all five points men-
tioned earlier. Individually behaving agents (cars) are interacting in a
goal-directed manner, within a specified environment—four linked one-
dimensional lines (streets). Eventually, the success of the model will
depend on the quality of the defined rules and the parameterisation. As
a side-note, what we have just given as example is inspired by the famous
Nagel-Schreckenberg model for simulating traffic and congestions on a
one way street (Nagel and Schreckenberg 1992).

It can be observed that the strategic success of the modelling process before was
precipitated by consequently answering the following questions:

1. Which parts of the system are expressed by agents?
2. What are the states of the agents? How do agents “look like”?
3. How does the environment “look like”?
4. How does communication between the agents take place? How and when do

agents change their state?

To demonstrate the efficiency of these impulse questions another example is given
in Example 3.2.

Example 3.2. Cave Lion

Problem: The extinction of the European cave lion (Panthera leo spelaea, see
Christiansen 2008) is investigated. Archaeozoological findings prove the
existence of the species in Europe until the onset of the first Lateglacial
Interstadial, which occurred around 14.7 ka cal BP (see Stuart and Lister
2011). A possible hypothesis for the extinction is the “Keystone Herbivore
Scenario” (Owen-Smith 1989), which states that the predator became
extinct because of the extinction of its prey species. A second hypothesis
goes into the direction of a reduction in prey numbers, possibly also
connected to a geographical dispersal (Stuart and Lister 2011, p. 2337).
In order to investigate these two hypotheses, a modelling expert is asked
for help.

Abstraction: Based on estimations of the amount of lions and their prey, the
key to an answer lies within the coexistence of two life forms, the lions and
a prey species (i.e. reindeer and young cave bears, according to Bocherens
et al. 2011; however, for the sake of the simplified example given here, we

(continued)
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Fig. 3.4 Agent-based
approach (see Example 3.2)
modelling two cohabitating
species, cave lions (predators)
and reindeer (their prey)

Example 3.2 (continued)

assume that the diet consisted only of reindeer). Most of the other envi-
ronmental factors can be reduced to influences on the birth and death rate
(directly or indirectly). As macroscopic approaches are usually unhandy
regarding the extinction of single animals, and consequently, a microscopic
approach is chosen.

Model: Each reindeer and each lion is represented by one agent. All reindeer
agents avoid predators as long as possible and try to reproduce themselves.
Each lion tries to catch prey in order to survive and to reproduce as
well. The two classes of agents can be simplified to being dots on
a map (see Fig. 3.4) trying to chase themselves. If height difference
does not influence the system, a two-dimensional map of the area is
a sufficient representation of the environment. Finally, rules concerning
movement, reproduction/death and the so-called “chasing radius” for all
lions complete the model definition.

Conclusion: The presented model with two different classes of agents defined
here representative of a class of models called Predator-Prey models.
This specific model was inspired by the “Wa-Tor” model (Dewdney
1984) simulating sharks and fish on a toroidal “planet”. There also exist
macroscopic models for the same purpose, for example Lotka-Volterra
model based on first-order non-linear differential-equations (Lotka 1956).

To finally show that the environment can also be of very abstract manner, a third and
last example is shown.
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Fig. 3.5 Agent-based
approach modelling a number
of archaeological sites, as
given in Example 3.3

Example 3.3. Network of Archaeological Sites

Problem: A large team of archaeologists is distributed to six prospection sites.
The distribution of archaeologists should be solved optimally: Each site
has a certain capacity, which may not be surpassed. On the other hand,
each site demands a certain amount of people working there, or else the
prospection cannot be conducted effectively.

Abstraction: A first observation shows a positive correlation between the
number of archaeologists of a site and the corresponding work output (this
is, until the site gets too crowded for everyone to work efficiently, i.e. the
capacity is surpassed). The correlation coefficients and the capacities differ
from site to site. For the sake of this example, we furthermore assume
that these factors are independent from individual qualifications of each
archaeologist. Although the system itself is not dynamic (everyone keeps
working at his/her originally assigned site), it can be that the results of
a dynamic simulation in which archeologists are relocated might help to
determine the optimal distribution of workers.

Model: The “obvious” option to represent each archaeologist and site as agent
would work well in situation. However, this time, we choose to model
only the sites as agents (see Fig. 3.5) and the archaeologists as the state
of these agents, in the following manner: Each site stores the number of
archaeologists being occupied there, the demand and the capacity (both in
terms of people). Since sites are abstract, a detailed specification of the
environment is not necessary. All sites should be in contact at all times
during the simulation (e.g. by mobile phone, email or any other form of
communication), which leads to the introduction of links between each site

(continued)
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Example 3.3 (continued)

(see network of edges in Fig. 3.5). Using this communication infrastruc-
ture, the sites can arrange an exchange in personnel so that the workload is
handled dynamically, using a “supply and demand” approach.

Conclusion: If done properly, finally an equilibrium state should be achieved
that distributes the research team. This model is inspired by economic
models presented by Aoki (2002), which shows once more that agent-
based modelling is more than dots moving (and colliding) in a spatial
environment.

As demonstrated, the field of application for agent-based models is very broad.
Especially if there is no scientific basis allowing white box models, agent-based
approaches are getting more and more popular: They are visual, descriptive, easy
to understand and very flexible. This is leading to a multitude of models not only
differing in purpose and parameterisation, but also in model structure. Thus, it is
sometimes necessary to subdivide the class of agent based approaches in support of
a scientific metadiscourse about them. Usually, this is done by specifying a certain
part of the model a little bit closer. The following sections therefore give a run-down
of the most frequently used classifications in that sense.

3.2.2 Specification of Time: Discrete or Continuous

Agent-based simulations are usually dynamic simulations investigating and simu-
lating the temporal behaviour of a system. This can be done either continuously or
discretely (a fact that does not only apply to agent-based models alone, as every
dynamic model can be assigned to one of these two classes). In order to be perfectly
clear about these two termini “time-continuous” and “time-discrete”, we now
explain them for (ordered) sets. For those not interested in this rather mathematical
excursus, it is recommended to skip to the definition time-continuous/discrete agent-
based models further down in the text.

It may sound trivial, but a set is no more than a simple assembly of any number
and kind of items, called elements of the set. Usually the usage of curly brackets (set
braces) indicates the assembly of all items in between. The order, how the elements
are assembled is not important. Examples for sets:

• Room D fCouch; Table; TV; Chairg
• A D f1; 9; 4; 3; 2g
• Alphabet D fa; z; b; y; e; f; : : : ; m; pg
• NaturalNumbers D f1; 2; 3; : : : g
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Furthermore, a set is called ordered (or, to be precise, totally ordered) if every
two different elements of the set can be compared and it can be determined which
of them the bigger element is. For example, the previously defined set “Room”
is (basically) not ordered, as it cannot be determined whether “Couch” is bigger
or smaller than “TV”. Obviously the sets “A” and “NaturalNumbers” are ordered.
Although the set “Alphabet” is basically not ordered, instinctively one might say
a < b < c < : : : . So it is possible to define an order in a very natural way, making
the set “Alphabet” structurally equivalent to the set of all Numbers from 1 to 26.
As every (totally) ordered set is structurally equivalent to a set containing numerical
values, only those sets are analysed further.

The word “continuous” derives from the Latin adjective continuous and means
to do something steadily without interruptions. We now try to derive the idea of
continuous sets in a very intuitive way, by comparing the following two totally
ordered sets:

• X D f1; 2; 3g
• Y D f1; 1:2; 1:4; 1:6; 1:8; 2; 2:2; 2:4; 2:6; 2:8; 2:9; 3g
Set Y can sloppily be seen to be a little bit “more continuous” version of set X , as
the gap (respectively the interruption) between two consecutive elements is smaller.
More specifically, for a perfectly continuous set it is necessary that the gap between
every two consecutive numbers has to become infinitely small. As a consequence,
a continuous set has to contain an infinite number of elements. More precisely, it
has to contain every real number in a chosen interval, which is written using square
brackets:

• Z D Œ1; 3�

The interval Z is a continuous set containing 1, 3 and all real numbers in between.
It also contains the sets X and Y defined earlier. Finally, a proper definition of
continuity can be presented:

Definition 3.2. An (ordered) set is called continuous if for any two different
elements of the set there is at least a third element in the set that lies in between
them.

The set/interval Z fulfils this condition. Regarding continuous sets, it is important
to note that it is not possible to determine a “next greater” element. In case of
the previously defined set A, the next larger element of 4 would be 9. In case
of the continuous set Z, it is not possible to determine which element of the set
is e.g. the next-larger number after 1:5. It can not be determined by definition:
In the hypothetical case where one has found the next bigger element after 1:5,
the definition of the continuous set states that there has to be an element lying
in between 1:5 and this number! Motivated by this observation, a definition of a
discrete set is given:

Definition 3.3. An (ordered) set is called discrete if every element has exactly one
next-larger element.
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This leads to three important observations:

• All finite sets (i.e. all sets with a finite number of elements) are discrete.
• If a discrete set (containing positive numbers) is not finite the elements are not

bounded and become bigger and bigger.
• If otherwise all elements of a discrete set are bounded, the set is finite.

Finally, a correct definition of a time-continuous and time-discrete simulation can
be given:

Definition 3.4. If the set of time-steps used for a dynamic model is a continuous,
the model is called time-continuous. If otherwise the set of time-steps used for the
model is a discrete set, the simulation is called time-discrete.

Some further important facts:

• Neglecting quantum mechanics, time can be seen to proceed continuously in
reality. Thus, time-continuous models are usually preferred to discrete models.

• Unluckily, it is impossible to perform time-continuous simulations. Thus, a
model that was designed as being time-continuous designed has to be “dis-
cretised”, i.e. simulated time-discrete. As a consequence, we need to differen-
tiate between time-continuous/discrete modelling and time-continuous/discrete
simulation.

• Agent-based models are usually time-discrete models with equidistant time-steps
(e.g. seconds). The decision-making process is not continuous, but happens as
series of events: At a certain time step, the agent “decides” to take an action,
resulting in a sudden state change. Some of these discrete state changes are harder
to spot—for example when looking at movement: Even though it may seem that
an agent moves continuously, it really performs a series of “hops” (once per time
step) that we wrongly observe as being continuous. Truly time-continuous agent-
based models are very rare. From the three examples presented earlier, solely the
car model (see Example 3.3) would be suitable.

• The time-set does not necessarily have to be either continuous or discrete: There
are also hybrid models where a mixture of partially continuous and discrete time
intervals is possible.

3.2.3 Specification of the Environment: Discrete or Continuous

Definition 3.1 does not give any restriction regarding the shape and appearance of
the environment, as long as it is inhabited by all agents. To illustrate this point
further, the archaeological site model that was given as Example 3.3 did not include
any topological aspects at all. Thus, we must first consider whether the environment
contains topological concepts or not. If yes, a further classification into either
spatially discrete or continuous can be conducted.
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Fig. 3.6 Sketch of a spatial
discrete compared to a spatial
continuous agent-based
model

a b

Figure 3.6 shows examples of a discrete and a continuous environment inhabited
by agents. Spatially discrete models subdivide the environment, usually into
equivalent cells as indicated in Fig. 3.6a. Such models are a lot easier to deal with,
for instance because the calculation of movement happens in a finitely limited space.

Illustrating this point further using the predator-prey model previously presented
in Example 3.2, it is clear that a reindeer chased by two lions should follow some
strategy concerning an optimal direction of escape. Dealing with a spatial-discrete
model, the optimal strategy can simply be determined to be one direction among a
finite number of possible directions, depending on the position of the two predators.
In a spatially continuous model, an infinite number of directions has to be taken into
account. Likewise, distances and neighborhoods are also more complex to compute:
Spatially discrete models can count the number of cells between agents and get all
agents “around” a given agent (either the Von Neumann neighborhood consisting of
the four cells north, south, east and west, or the Moore neighborhood additionally
consisting of the north-east, north-west, south-east and south-west cell). Spatially
continuous models must instead evaluate the distances (what is far, what is near?)
and introduce radii (which radius is best?) around an agent.

Example 3.4. Salt Crystallisation

Problem: In order to investigate the crystallisation process of salt in a mine,
a liquid model which is to be designed. Common liquid models use
rather difficult mathematical formulae (e.g. Navier-Stokes-partial differ-
ential equations), which do not seem to work within this special case of
modelling fine crystalline structures. Therefore, a microscopic approach is
used. As we will see, this is a mixture between an agent-based approach
and Cellular Automata (CAs), another type of microscopic approach2 (also
refer to Fig. 3.7).

(continued)

2The transition between agent-based modelling and CAs is rather fluent: One could say with some
caution that “agents” are potentially movable entities, while Cellular Automata specify a discrete
environment of grid cells having rules that change their state (see e.g. Conway’s “Game of Life”
reported in Gardner 1971 and Berlekamp 2001).
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a b

Fig. 3.7 Spatial discrete and continuous salt crystal model (see Example 3.4)

Example 3.4 (continued)
Abstraction: Observations done by microscope show on the one hand a rather

random movement of dissolved ions in the liquid (Brownian motion) and
on the other hand a very systematic crystallisation process happening at
certain angles around the crystallisation seeds. The corresponding ions
are thus abstracted as being agents behaving according to a Brownian
motion in the liquid, finally sticking to one of the crystallisation seeds
under certain conditions and at certain angles.

Model: The main task of this model is the specification of the environment
and especially the crystallisation seeds and borders. This time, we model
two complementary options: The systematic crystallisation process in
which certain crystallisation angles are preferred can be implemented by
using a spatially discrete model utilizing a hexagonal grid (see Fig. 3.7a).
Whether one would like to call that a CA (a cell has its own behaviour
for propagating crystalisation to the next cell) or an agent-based model
(agents moving from cell to cell in a discretized environment) is a
philosophical question leading to the same result. On the contrary, only
a space-continuous model allows a correct implementation of a random-
walk process (Brownian motion), which can be seen in Fig. 3.7b.

Conclusion: Typically, crystal growth is nowadays simulated by CAs. How-
ever, as this example shows, one may also choose a continuous approach,
and both model types complement themselves nicely. Another point for
consideration is that there is not always “a best approach”, but possible a
multitude of angles from which a problem can be approached. The context
of this model, crystallisation, shows how simple microscopic rules can lead
to a very complex, aggregated behaviour. For more detailed information
about this model, see Packard (1986).
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3.2.4 Stochastic and Deterministic Agent-Based Models

To give a final classification, the difference between stochastic and deterministic
agent-based models is given. The word “stochastic”, translated from original Greek,
means “the art of probability” or “the art of randomisation”. Thus, a model is
generally called stochastic if the model is designed to contain random parameters
or variables.3 Such kinds of models have to be used if there is a lack of detailed
information or uncertain data about specific modelling parameters. Another case is
when a process cannot be modelled to such a degree of detail so as to be simulatable
deterministically (also see Example 3.5).

When a model’s inner mechanics are known (white box approach), it is easy
to find out it contains randomisation, thus making it stochastic. But what if we
have a black-box model? In this case, we can run a model twice with the same
input/parameters and observe its output: If the outputs are the same, the model is
deterministic, in all other cases stochastic. More formally:

Definition 3.5. A model is called deterministic, if and only if one initial configura-
tion and parameterisation always leads to one specific simulation result. Otherwise
the model is called stochastic.

Some further facts:

• Stochastic models must be simulated numerous times, until the obtained results
are significant (e.g. within a confidence interval, variances, etc.). If this is
not possible, simulation must be performed as often as possible (Monte Carlo
Method). For agent-based models, this usually translates to high computational
requirements.

• In all cases, obtained results demand proper interpretation by experts.
• Surprisingly, deterministic models sometimes lead to far more complex

behaviour than stochastic ones. A perfect example is Conway’s Game of
Life (reported e.g. in Gardner 1971; Berlekamp 2001), in which very simple
deterministic rules lead to a nearly chaotic behaviour.

Example 3.5. Pool Billiard

Problem: Pool billiard is a physical game: Success seems to not dependent on
luck, but rather on controlling the angle, spin and power of a ball.

Abstraction: The same angle, spin and power should lead to identical shots.
Therefore, a deterministic model would seem to be an adequate solution
in this case. On the other hand, pool-experienced reader might insist that

(continued)

3As a side-note, stochasticity is not a special property of agent-based models, but applies to all
kinds of models.
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a b

Fig. 3.8 It is not possible to say whether deterministic models or stochastic models are the best
approximation for reality (refer to Example 3.5)

Example 3.5 (continued)
the first shot (also called break-off shot, see Fig. 3.8a) contains lots of
“random” effects and is usually not predictable. This is due to the fact that
lots of factors influencing the 15 colliding balls (e.g. dirt-particles, surface
irregularities and even quantum-mechanic effects) can hardly be measured
before the shot.

Conclusion: It is not possible to say whether a deterministic (Fig. 3.8b) or
stochastic model are the best approximation of reality in this specific
case: Multi-body collisions behave stochastically, single-body collisions
deterministically.

3.3 General Advantages and Disadvantages
of Agent-Based Models

Out of all benefits that agent-based modelling brings, the ability to describe
swarm behaviour is probably the most extraordinary one. It is mathematically
a very surprising observation that the aggregated behaviour of a cohabitating
group of agents is extremely difficult to be predicted when only investigating the
cohabitation rules and parameters of the agents: This swarm behaviour that emerges
unpredictably from a great number of interacting individuals (found e.g. with ants,
migrating birds or humans at a soccer stadium) is now covered in more detail.

3.3.1 Emergent Behaviour

The term swarm intelligence or swarm behaviour was first introduced by Beni
and Wang (1989) within the context of their work in robotics. It means that the
predictable and simple behaviour of individuals leads to an unpredictable, complex
behaviour for the whole group (also refer to Fig. 3.9). Today, we also use the terms
crowd intelligence or crowd behaviour synonymously.

Although emergent phenomena arising from a large number individuals are well-
known since long time, research in this field is still young (e.g. pedestrian and
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Fig. 3.9 Basic idea of emergent crowd behaviour respectively swarm-intelligence. The simple
behaviour of individuals leads to (shown left) an unpredictable, complex behaviour of a whole
crowd (shown right)

Fig. 3.10 “Intuitive” agent-based versus theoretical description of a system

evacuation simulation). On the one hand, it might be that the complexities of this
topic have led to a slow take-up by the academic community. On the other hand,
everyday computing has only recently reached performance levels at which large
scale simulations are feasible. In that context, agent-based simulation is not simply
used for “simulating behaviour”, but as investigation tool for crowd intelligence.

3.3.2 Natural Description of a System

An agent does not know about the behaviour of the whole group but instead focuses
on itself and its surroundings. Thus, the necessary level of abstraction needed is very
low. This aspect has a lot of benefits: It enables easier interdisciplinary discourse
between the creators of the models (technical disciplines and professionals such
as archaeology) and their audience, with an emphasis on “who does what”. This
storytelling approach (as we would call it) may overcome the huge differences in
mathematical skills: At least the structure of agent-based models can be explained
very easily, the details are hidden in the code underneath (also see Fig. 3.104).

4The diffusion equation at the right hand side of the picture only implies a model developed with
difficult mathematical formulas. The diffusion equation is usually not used to model cohabitation
of ants.
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The intuitive representation of systems within microscopic approaches as well as
the freedom granted by that modelling technique lead to extremely flexible models.
Re-parameterisation as well as structural changes can be accommodated easily, by
changing only a few lines in the implementation. From a computational design
standpoint, this is called “Separation of Concerns” (SoC): Every part of the system
behaves in a modular fashion, exposing information relevant to the outside (in our
case e.g. the observable movement) but hides all further inner mechanics. Of course,
this also implies that bugs hidden deep inside the code are hard to be found—which
is one of the disadvantages mentioned in the next section.

3.3.3 Dangers and Problems

There are also some disadvantages in agent-based modelling, which can not all be
attributed to the short history of the modelling method but may extend further to its
underlying concept. On the surface, two important observations can be made when
critically analysing agent-based models:

1. All agent-based simulations are computationally expensive. Doing serious sim-
ulation work, we may need millions or even billions of agents in order to
receive useful results. So, these simulations might require a lot more powerful
technologies than just personal computers—which is when high-performance
computating (also see Chap. 6) comes into play. For example, parallel-computing
(spread calculations onto several kernels), utilisation of the Graphics Processing
Unit (GPU), cloud- and server-computing might all be used to make a simulation
feasible, the decision over what method to take is, however, different in every
model.

2. As mentioned before, the flexibility of the modelling technique also involves
dangers: As every model is designed for a certain purpose, its field of application
and especially validity is limited. Too many modifications within the model
structure and wrong interpretation of the output can lead to wrong and invalid
modelling result. One may also be tempted to interpret a model beyond its border
of validity. Taking the Cave Lion example as a reference (also see Example 3.2),
we may recall that this was a predator-prey model designed to predict the
temporal development of the two cohabitating species. If the model is validated
and calibrated the right way, it is correct to predict a certain number of animals
at a specific time also in the real system. However, it is not correct to assume that
the emerging hunting strategies of the model map to the hunting strategies in the
real system, as they are (usually) too simplified!

Clearly, the “individual-based” simulation approach is what lies at the core of both
scalability problems as well as dangers when every part comes together (overseen
problems in the individual ruleset leading to a false aggregated result—a situation
which is complex to debug). Even if modifications and extensions within the model
are done properly, they usually introduce a lot of new modelling assumptions and
parameters, which have to be calibrated and tested. Concluding, there are hardly
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any modelling techniques as flexible as agent-based modelling, even though they
are reacting quite sensitive to modifications and oversights in the specification of
individual behaviour. Validation of these kind of models is a real challenge and
requires a lot of time and effort. Thus, an own chapter is devoted to exactly this
topic (see Chap. 4).
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Chapter 4
Reproducibility

Niki Popper and Philipp Pichler

4.1 Introduction

One of the fundamentals of scientific work is that knowledge should be transparent,
i.e. openly available for professional discourse. In this chapter, we specially deal
with this aspect from the angle of reproducibility, focusing on how to give and
gain input from fellow researchers. From the side of the project team, this demands
a statement of limitations and assumptions within a model. As a matter of fact,
possible shortcomings will be detected and assumptions may be questioned. This is
no reason to be intimidated, however, as this process pays off in the long term.

Reproducibility is a challenging task and can be cost intensive. Thus, all efforts
that help to achieve it should be carried out with respect to their benefit. Special
attention should be paid to documentation, visualisation, parameter formulation,
data preparation, verification and validation, most of which will be presented during
the next pages. One exception is a detailed presentation of data preparation, which
would constitute a chapter of its own. We may instead forward the interested reader
to Freire et al. (2012). Another topic that is not covered in full detail is how a model
structure can be communicated. Recommendations on how to do this correctly and
efficiently were, for example, given by the ODD protocol (Grimm et al. 2006),
which we give as an overview (see Sect. 4.5.1). The legal aspect of communicating
model structure, as covered e.g. in Stodden (2010), is another topic which is left out
intentionally.
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4.2 Outline

Readers will gain a better feeling for what is important to achieve reproducibility
in the following sections: We start with a general description of the development
process behind a modelling and simulation (M&S) project. Understanding this
lifecycle is a pre-condition for talking about reproducibility, since one needs to know
exactly in which phase what information is produced.

The next sections deal with parameter formulation, documentation and verifi-
cation/validation. These topics help to substantiate that the developed simulation
produces reliable and useable results. These can then be used to gain knowl-
edge that confirms hypotheses—rectification—or to identify wrong hypotheses—
falsification. In archaeology, a huge collection of hypotheses is possible, due
to missing information. Falsification of assumptions and hypotheses reduces the
amount of possibilities. We will thus take a closer look at this aspect when
concluding.

4.3 Lifecycle of a Modelling and Simulation Study

The process of developing a model and implementing it as a simulation can be
referred to as its lifecycle. To understand reproducibility requires a careful look at
this subject, because we first need to define its basic constituents—phases, contained
concepts and resulting deliverables, that are later being referred to. In general, an
M&S project does not evolve in a straight-forward manner, but rather iteratively (in
a spiral process): The model/simulation is redefined several times, until it can be
determined to work correctly for its preset goal. In that context, it is noteworthy to
say that a model is concerned only with a (simplified, limited) portion of reality.
Modellers have to make abstractions, assumptions and define boundaries to get to
an easier view—though detailed and complete enough for the study question—
that is computable. That is why the whole process might have to be done several
times, until the right assumptions and abstractions are made. We now give a brief
description of the basic structure of the M&S lifecycle, before coming to a more
narrative description of the same matter.

Figure 4.1 presents a generalized view of a M&S lifecycle on the basis of work
done by Sargent (2010), with some slight adaptions1:

• A problem arises and is being formulated as one or more study questions,
which guide the development into the right direction. The ultimate aim of the
M&S project is to solve the stated problem and answer on these defined study
questions.

1“Knowledge Building and Interpretation” was added.
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Fig. 4.1 Adaptation of the “Generalized Lifecycle of a Simulation Study” given by Sargent (2010)

• In a next step, the system is analysed and modelled, which leads to a conceptual
model that can solve the problem and give answers on the study questions.

• The conceptual model is then implemented in some programming language,
leading to a computerized model which can either produce new findings (leading
to a redefinition of the problem and thus resulting in a new iteration) or produces
results that are validated and verified (see Sect. 4.6), thus being credible.

• Using such a credible model, developers, experts and users may produce results
that reflect reality within its predictive boundaries and calculate possible scenarii,
which can be used in the context of decision support.

Figure 4.2 shows a more detailed version of the same lifecycle, based upon Balci
(1994):

• The problem phase is split into the communicated problem, formulated problem,
proposed solution technique and system and objectives definition.

• The conceptual model phase is divided into the conceptual model and the
communicative model.

• The computerized model phase furthermore includes the programmed model, the
experimental model and the simulation results.

We now give a brief example of this project structure, using the case of a
hypothetical project as a basis. Note that the description is intentionally held brief
and would be much larger (an understatement: it could rather fill a whole chapter)
for a real project.
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Fig. 4.2 Detailed Lifecycle of a Simulation Study, based on Balci (1994)

Example 4.1. Lifecycle for an Army Model

Communicated Problem: In the context of campaign analysis, archaeologists
want to look into the process of moving roman foot-soldiers between
Messana and Syracuse in the first Punic War (264–241 BC).

Formulated Problem: We formulate the problem as a set of study questions,
e.g.: How fast were the foot soldiers marching (time span, speed)? How
far in one day?

Proposed Solution Technique: Upon examining the problem closer, we find
that it is indeed applicable for an M&S study. Moreover, we opt for agent-
based modelling, since the influence of the terrain and the interaction
between individuals is probably influential for the overall model.

System Knowledge and Objectives: Foot soldiers marched as a legion of
approximately 4,800 soldiers. The line-of-flight distance between Messana
and Syracuse is 100 km (assumption). By foot, this distance depends on the
terrain (which is taken from Geographical Information System).

Conceptual Model: With the given prior knowledge, the modeller thinks of
an agent-based model in which a legion is represented as one agent. The
terrain is represented as a discrete grid, with a large cell size (50�50 m).

Communicative Models: We prepare two different models in written form: (1.)
The mathematical view on the problem, intended for later implementation
and (2.) the archaeological view, intended for discussion. The first contains

(continued)
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Example 4.1 (continued)

a description of movement rules, speeds and interaction specifications
between legions (there might be more than one), as formulae and
definitions. The second communicative model gives a run-down of archae-
ological descriptions and mental models, which were used as basis for the
formulation of the mathematical model.

Programmed Model: Based on the mathematical communicative model, a
programmer implements a simulation in Java.

Experimental Model: Together with archaeologists, the modellers define sev-
eral scenarii (i.e. sets of different parameter values2). The simulation is
then executed multiple times with these.

Simulation Results: Executions of experimental models lead to results, which
(in this case) are given as spreadsheet. These are then subject to interpre-
tation (e.g. in comparison to historical data on this campaign), in order to
find out if the results are sane.

After this step, the lifecycle may re-iterate (refinement). If refinement is not
needed, then the results can be taken as current working model (see step
“Knowledge Building and Interpretation” in Fig. 4.2).

Each part of the lifecycle has its own data and information requirements and leads to
a certain generated output. What we really “reproduce” is the output at some stage
of the lifecycle, and thus, a closer view is given in the next section.

4.4 Parameter and Output Definition

The basis of every M&S study lies in the information on which it is based
(e.g. studies, databases, expert knowledge, statistical evaluations). In this context,
we may differentiate between data and general information: Data contains all
quantifiable information and is characterized as having a high degree of objectivity
(e.g. as in values within a database). General information is the conglomerate
of non-measurable information and has a high degree of subjectivity (e.g. expert
knowledge). Regarding the lifecycle presented before, we may say that in each of its
stages, a model/simulation transforms data and general information into an output,
which is used by subsequent stages as input.

Data and general information enter the model in the form of parameters,3

through a transformation process: When thinking of the whole M&S lifecycle,

2In reality, a scenario can also contain variations of algorithms, e.g. movement rules.
3The term “parameter” is used in different meanings across the disciplines. In this chapter, the
mathematical/informatical view is presented.
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each of the models contained in the different stages demands different parts of the
data/information present. The subsequent “execution” of the model at a specific
stage may not be a “simulation run” in the sense of a program execution. Rather, it
may involve knowledge building and crystalisation (as for example in the Systems
Knowledge and Objectives phase), resulting a derived output that is fed into the
next stage.

Characterizing this even further (and with a view towards Agent-Based Simula-
tion), we can say that each is carrying a name (e.g. “walking speed”), a data type
(e.g. a number or Boolean), optional metadata (e.g. constrained to be in the range
between 0-2 m/s) and a value (1.4 m/s). For the latter, we may further observe that:

• A parameter’s value is constant during the execution of a simulation: For
example, one might specify a walking speed for all agents that the simulation
will use directly. But one might also specify this walking speed indirectly, giving
minimal and maximal walking speeds (both are parameters in this case!) from
which the simulation will derive the actual speed for each individual agent from
a distribution (e.g. uniform distribution, normal distribution4).

• A parameter’s value is variable before the execution of a simulation: It might be
changed to experiment with different settings of the model, resulting in different
outputs (always the same output for the same parameter settings: deterministic
model; different outputs for the same parameter settings: stochastic model).

The set of all possible parameter settings is called parameter space. The act of
choosing a value for a parameter is either called parameterisation and calibration:
In the first case, we make a (hopefully well-informed) choice of a value, whereas
in the second case, we pick the set of parameter values that have shown to be in
good agreement with the reality that the model is concerned with. Put differently,
parameterisation happens a priori and calibration a posteriori.
Figure 4.3 shows an extended version of the lifecycle presented earlier, with
emphasis on definition and transformation of parameters, their parameterisation and
calibration:

• The modelling lifecycle begins with the collection of general information and
data. Both contribute to the System Knowledge and Objectives phase, in which
they are transformed into structural knowledge about the system in question.
Interestingly, the data values themselves are not important at this stage; the only
thing that is important is to determine which information could be useful for the
model (i.e. a first step towards defining its boundaries).

• For the conceptual model, the modeller thinks of a structural concept, separating
structural knowledge into information that the model needs or produces. In
other words, the modeller tries to establish the dependencies between the types
of information that the model will likely use. A detailed definition of this
information in the form of concrete parameters is, however, deferred to the

4Furthermore, a distribution might be discrete or continuous.
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Fig. 4.3 Parameter formulation, parameterisation and calibration

communicative models (there might be several, as mentioned, each serving one
specific audience): Guided by the gathered general knowledge and the format of
the data, this phase produces a well-defined (minimal) set of parameters that can
answer the problem. In that context, abstractions and generalisations are applied.
For example, walking speeds might be assumed as uniform, if modelling soldiers
marching in unison.

• Once proper communicative models with a minimal set of parameters and
outputs have been developed, the implementation can start. The resulting pro-
grammed model transfers the (mathematical) notion of parameters and outputs
into programming-language specific constructs (for example, the Boolean values
given as “yes” and “no” are mapped to “true” and “false” in the source code).

As intermediate summary of these three points, let us again consider a walking
model for a Roman army.

Example 4.2. Roman Army Model: From Data to Programmed Model

Let us suppose that a roman army had to walk from a city A to a city B . The
question to be answered by the M&S study is: How far it did come after being
on foot for a given amount of hours (i.e. a walking model).

(continued)
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Example 4.2 (continued)

General Information and Data: The relevant literature is scrutinized for gen-
eral information regarding the marching process in a Roman legion. From
this source, we may derive that marching was highly coordinated and
can be assumed to have been conducted in unison. Through experimental
archaeology, walking speeds over similar terrain (e.g. regarding consis-
tency and slope) are be established using people wearing reconstructed
armour and weaponry. These are entered into a database (data!). Further-
more, the length of the (well-known) historical route between A to B is
determined to be n km, based on calculations done inside a GIS package
(also data!).

System Knowledge and Objectives: As established earlier, a legion walks in
unison. Therefore, we can take the average speed of b km/h rather
than individual speeds as basis for the movement. The objective can
furthermore be more clearly formulated as: Given a certain walking time
since departure at A (input parameter), how much is the remaining length
until B (output).

Conceptual Model: If we accept that marching was done in unison, then it
is possible to see the problem not as a discretized model of individually
walking agents, but rather as continuous movement of a point along a
line that connects city A to city B . As underlying method, we would then
use the line equation to solve the model. Concerning parameters, there is
also an obvious dependency between the spent walking time (superior) and
remaining length (subordinate).

Communicative Models: Besides an archaeological model that sums up the
relevant literature and assumptions, a more formal (mathematical) com-
municative model is written down. At its core, the model will be computed
using the line equation f .x/ D n � b � x, where f .x/ is the distance to
city B in km (output), n is the length between A and B in km (parameter),
b is the average speed in km/h (parameter) and x is the time in hours since
departure from A (variable, i.e. parameter which is evaluated continuously
to produce a simulation result). n and b are positive real numbers, x is in
the range Œ0; n=b� hours, f .x/ is in Œ0; n�.

Programmed Model: Using a programming language for actually coding the
so-defined model, we can output a curve where the x-Axis is the time and
y axis is the distance to B. Under the hood will need to make x sweep its
whole defined range, using fixed intervals that we specify (e.g. dt D 0:01,
which can be seen as additional parameter given by the implementation).

At this point in the lifecycle, the implementation has the capabilities to run a
simulation. However, and in contrast to Example 4.2, we will likely not sweep
through the whole range of parameter values possible. Rather, it is necessary to
first find reasonable parameter values: The model is subjected to experimentation for
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exactly this sake, and becomes the “Experimental Model”. Depending on the type of
parameter under consideration, there are two different techniques for doing this:

• Parameterisation (known parameter values): Parameter values can be derived
from (a prio known) data values. If the data cannot be transformed in a way
that all parameter values can be inferred, further investigations are needed
(i.e. broadening the scope of the data basis, gaining new data by conducting
experiments, etc.). If this is not possible, some parameters have to be calibrated.

• Calibration (unknown parameter values): Values for unknown parameters are
estimated, assisted by given data (statistical evaluations, studies or previous
simulation runs). After the experimental model is run, the simulation output is
compared to a possibly known output data or, as is often the case in archaeology,
to constraints governing the output. If the simulated model produces an output
that seems reasonable, the calibration task is finished and the parameter values
are—in the best possible scenario—known. If on the contrary the simulation
output does not fit, the unknown parameter values have to be estimated again and
the experimentation process reiterated5 (also refer to Example 4.3). If calibration
fails, a redefinition of the model might be necessary and/or one of the known
parameter values has to be doubted. The modelling process starts all over again,
because the system knowledge might have changed.

Arguably, the act of calibration is positivistic and sometimes ill-suited for the
archaeological field (little data to fit against!). Nevertheless, imposing constraints
on what could be an output is in line with what the social sciences would consider
a contribution in the first place; in that sense, we argue that the purpose of an
M&S study for archaeology lies not primarily in the generation of results per se,
but in an exclusion of unlikely scenarii that would otherwise enter the scientific
thought process, leading to wrong conclusions. The definition of constraints is
a positive “side-effect” of performing such a study, and may in fact lead to the
realisation that a previously well-understood problem needs to be re-examined
and clarified.

Example 4.3. Calibration

Estimated Parameter: The two cities A and B are estimated to be n D
300 km apart from each other.

Calibration: We have the information that the army was 260 km apart from
city B after 10 h of walking. This information helps to calibrate the
parameter b. Simulation runs are performed. If the value at 10 h is below
260 km, b is too low and has to be increased. If the value is higher, b has
to be decreased. If the value at 10 h is exactly 260 km, the right parameter
value has been found.

5This task is often supported by mathematical optimisation.



86 N. Popper and P. Pichler

Similarly to the specification of parameters, outputs also need to be defined.
For example, we may derive trajectories from a walking model, if the model is
sufficiently detailed to be credible. We may also employ different representations for
the same output. In the walking model, we may represent the trajectories in a more
abstract fashion, using path-time diagrams, or very concretely, by superimposing
paths on a map. This aspect rather belongs to visualisation, which is elaborated in
due course.

4.5 Documentation

Reproducibility is strongly connected to documentation. While it might be easy
to say that “all tasks that are important during the development of an M&S study
should be written down”, finding a way in which to represent an M&S study both
accurately and efficiently is hard. There are at least three forms of documentation to
choose from: Textual documentation, illustrations and, not surprisingly, the source
code itself. We will now look into each of these three categories, giving an overview
of techniques that might help in that context.

4.5.1 Textual Documentation

Probably every model author will have his own advice on how to produce textual
documentation. Some examples that we found useful are:

Adequacy and Structure: The level of detail in the documentation should be propor-
tional to the importance of the documented entity. Highly detailed topics should
be structured into a hierarchy of gradually increasing complexity.

Simplicity: Whenever possible, documentation should be done in Basic English
(Ogden 1940, 1968), a constructed language of 850 words which has a simplified
grammar and is designed for the communication of complex thoughts. As a
matter of fact, Basic English is easily translated (manually and automatically)
and can serve a large international community as a basis for collaboration.

Clarity: A glossary or definition part may help to avoid ambiguities and shorten the
text. However, this also carries the risk of over-formalisation. Examples can help
to lighten up the text and illustrate an idea intuitively rather than formally.

Audience: Who needs to know what? There are several roles within an M&S
project (e.g. users, model developers), each being interested in a different aspect
(e.g. archaeological statements, technical descriptions). Making this explicit,
possibly through use of formatting (italics, grayboxes, etc.) and labels, can help
an interested user in picking out truly interesting information rather than being
forced to read everything.
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In addition to these general observations, there are also very specific guidelines for
preparing documentation. The most widely known (quasi-)standard in archaeolog-
ical simulation is the ODD (Overview, Design concepts, and Details) protocol by
Grimm et al. (2006). We now come to a short description of its contained parts,
according to the first revision given by Grimm et al. (2010), Polhill (2010):

Purpose gives a very short summary of the intent of the model.
Entities, State Variables and Scales names the types of agents or cells and their

state variables. Furthermore, the spatial and temporal scale of the model is
described.

Process Overview and Scheduling describes how the model is updated in each time
step, preferably using pseudo-code. The authors also recommend to include a
description of execution order (when multiple agents are involved).

Design Concepts consists of 11 sub-parts, some of which can be left away for small
models or models in which they are not applicable: (1.) Basic principles outlines
general concepts behind the model, (2.) Emergence gives a description of overall
behaviour arising from the combination of individual behaviours, (3.) Adaptation
states how individuals react to changes in themselves or their environment,
(4.) Objectives gives a description of the goals followed, either by each agent
individually or by a whole team of agents, (5.) Learning describes the change
of adaptive traits as consequence of gained “experience”, (6.) Prediction gives
details over how agents judge a model’s future state, (7.) Sensing gives an account
of what internal and environmental state variables individuals can perceive and
consider in their decision process, (8.) Interaction describes how agents affect
each other and the environment, (9.) Stochasticity explicitly states if the modeled
processes include a notion of randomness, (10.) Collectives gives details over
how aggregates of agents are formed and (11.) Observation states what data are
collected from the model.

Initialisation is concerned with the initial state of the model.
Input data lists required data from external sources, such as files, databases or other

models.
Submodels lists all processes briefly outlined under Process Overview and Schedul-

ing, in full detail, including parameterisation and an account of how such a
submodel is tested.

According to Grimm et al. (2010), ODD can be overdone for very simple models.
In this case, the authors propose to shorten the documentation “such as by using
continuous text instead of separate document subsections for each ODD element”.

With regard to the lifecycle, we may say that the ODD protocol covers foremost
the aspect of model definition (i.e. structure). It does, however, not document the
process of modelling, i.e. the theoretical knowledge involved (e.g. in the form of
excavation reports and other scientific publications), the development of the model
and the analysis of results. We argue that such a wholistic view is a good addition to
ODD, since questions about choice of methods (why agent-based?), parametrisation
(why are certain parameters included?) and so on can aid to reproduce not only
model, but also get a view on its context. In this light, we might say that the
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documentation of the development inherits not only project-specific details such as
deliverables and milestones, but also the documentation of all development steps
taken. As already stated in Sect. 4.3, the development process of a M&S study
happens in an iterative manner; it is important that all versions of this process or at
least all changes from one to the next version of a model are documented as clearly
as possible. Applied validation and verification methods (see Sect. 4.6) should be
included as well—especially when dealing with informal techniques involving the
subjective judgement (since that may state what parts of a model are ok and which
need to be redefined in the next cycle).

4.5.2 Source Code

Source code has two great advantages: (1.) It is already there, i.e. there is little
overhead in making it “documentation-ready”, and (2.) it is automatically kept
synchronous to the model (as opposed to every other form of documentation, which
needs to be updated to reflect changes). The term “documentation-ready” does not
refer to commenting, as comments get outdated when the model (and thus: the code)
changes. Rather, we argue that the source itself is a form of documentation, if written
narratively. Some aspects of this endeavour (also refer to Martin 2008) are:

Choosing proper names: Variables, functions, classes and packages should imme-
diately reveal their purpose through their names.

Do One Thing Principle: Functions and classes should do one thing only (single
responsibility), as expressed by their name. Whenever this does not hold, the
model developer needs to split and recompose them (thus imposing a hierarchical
structure where code one a higher-level defers lower-level responsibilities to
subclasses or functions implementing lower-level behaviour).

Don’t Repeat Yourself Principle: Generalising pieces of code that are similar, using
concepts from Object Oriented Programming (i.e. inheritance, interfaces, etc.),
makes code easier to read, extend and fix.

When adhering to these concepts, code published online (using for example www.
openabm.org) can be understood by a large community of researchers, bypassing
the need for secondary literature about the inner mechanics of a model to a certain
extent.

4.5.3 Visualisation

Besides textual documentation, visualisation is crucial when trying document
validate simulation models and thus make them “reproducible”. In contrast to source
code, which is the most immediate way to communicate the implemented model,
the process of modelling and fundamental structural ideas concerning the model
can often be better presented via visual concepts.

www.openabm.org
www.openabm.org
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For a long time, visualisation was restricted to a very small range of possible
applications in modelling and simulation: “[. . . ] visualisation was limited to static
images until the end of the twentieth century. This explains why visualisation
was—and mostly still is—used as a post-processing step with the sole purpose of
presenting results. On the other hand, increasingly powerful computers and display
devices permitted to move from static images to (interactive) visualisation which
has become a field of research in its own right” (Piringer 2012, p.1).6

Various parts described in this chapter, like the lifecycle itself, parameter-(input)
and output definition and analysis or the later-described validation can be visualised.
More specifically, one may depict (1.) the model structure, behaviour of agents
and so on, typically using vector drawings for rendering graphs and diagrams
(as for example in the Unified Modelling Language, see Booch et al. 2005).
One may (2.) also visualise a simulation’s runtime state (raster graphics showing
agents and cells, see Kornhauser et al. 2009 for an extensive treatment on that
subject) and to show its results; this is especially helpful in validation, as one can
show runtime effects of the model (see Sect. 4.6). In addition, data used for the
process of parametrisation can (or should) be analysed via “visual analytics”, a new
field which seeks to get “insight, not numbers” (Hamming 1962, in Preface) by
employing a variety of depictive techniques. And (3.), quite importantly, one may
also communicate the development process of a model visually.

Let us give a short glimpse of the possibilities that visualisation offers in the
context of reproducibility (concepts are mentioned in the order as they appear in the
M&S lifecycle):

• Data Analysis: Visualisation can support archaeologists and modelling experts
in their collaboration. Visual analytics helps to analyse basic data, in order
to support the detection of relationships and structural errors in the data.
More precisely, “visual analytics combines automated analysis techniques with
interactive visualisations for an effective understanding, reasoning and decision
making on the basis of very large and complex datasets” (Keim et al. 2010, p.7).
But visual analytics is not an end itself; it is the employment of complex datasets
that makes the analysis of multivariate data (as base data) necessary. In that
context, one needs to define, calibrate, and validate a model and should also
represent the coverage of the parameter space adequately (think: depiction).
Time-dependent datasets are special cases of complex datasets, which serve as
longitudal base data (e.g. harvest yields, periods of illnesses) in the context of
archaeology. Using visual analytics on that data supports hypothesis generation,
intuitive integration of domain knowledge and also helps to make complex and
unclean data nevertheless applicable.

• Modelling Process: The process of building models is highly iterative. Starting
with data analysis and the generation hypotheses, it extends over the whole
lifecycle and evolves in a spiral process. Research in interactive model building

6A number of aspects described in that report are used as a basis for this chapter.
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(see Bertini and Lalanne 2009) aims to tightly integrate (1.) the specification and
adaptation of models with (2.) an evaluation of results, in order to obtain well-
understood models with less effort. Visualisation can aid in this process and, by
doing so, also increase reproducibility. One specific example for that would be
the visualisation of different parameterisations during the modelling phase: For
example, reflections on inherent uncertainty in the parameters can be done when
multiple simulation runs enable the modeller to sample the distributions of one or
more parameters, in order to determine the uncertainty of the outputs (sensitivity
analysis). A visual characterisation of both parameter and result space helps to
identify all possible results that a particular model may possibly generate, and
thus helps to simplify a model by omitting ineffective parameters. Furthermore,
visualisation in the context of the modelling process can also help in calibration.

• Structure: Assessing visualisation approaches for representing a model’s struc-
ture includes a high number of technologies, like visualisation of trees and
graphs. Visualisation concepts for these models are well known. ABMs are a
flexible, general approach. Thus, a detailed projection of those structures onto
the model leads to a wide variety of model types, as agents can represent moving
armies, vehicles on roads or something completely different. Different agents,
different interactions, different rules and different structures make it almost
impossible to provide a generally usable visualisation technique. Today, most
visualisations of agent-based models focus on the model structure (especially
the agents themselves), their behaviour and their interactions. Kornhauser et al.
(2009) have proposed some guidelines for visualisation design specifically for
agent-based modelling, which can be used to identify important model elements
and help users to understand the model’s behavior.

• Runtime & Results: Visual representations of simulation results include general-
purpose statistical plots like bar charts and scatter plots (Tufte 1983) as well
as diagrams addressing specific questions of the professional field. Techniques
of visual analytics can be used for visualising (potentially very long) time-
dependent data of single time series as well as a large number of time series
of simulation results. Agent-based simulations constantly produce new data with
every time step. A potentially large number of agents makes it difficult for the
user to keep track of a particular agent or group of agents’ position, colour,
size, or shape. In this context, Healey and Enns discuss common visualisation
tasks such as target and region tracking, boundary detection, and estimation and
counting (Healey and Enns 2012). However, visual summaries of a simulation
run are often far more effective for analysing the model and its implications than
a look at individual agents. There are several examples over well-established
techniques in that context (Tufte 1983, 1996, 2006), however, such “simple”
depictive tools may get more complex once “drilling down” into the information.
An example of such a “complex summary” could be a social network analysis
reflecting the contact and interaction between agents.
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Also, note that visual analysis can also be used for excluding certain hypotheses
(rather than proving with reference to some data). In that sense, one can look at
different scenarios (representing the hypotheses) and scrutinize the underlying data
(visually), in order to save modelling efforts if a scenario can be easily rejected.

4.6 Verification and Validation

Verification answers whether a model is implemented correctly, i.e.

“Is the model developed right?”

Validation addresses the problem whether a model is able to answer a specific
research question:

“Is the right model developed?”

Both can be seen as processes that happen in parallel to the development of the
model and the simulation. Their aim is to guarantee a targeted development of the
simulation study. Another important term connected to verification and validation
is credibility. According to Law and McComas (2009), “a simulation model and its
results have credibility if the decision-maker and other key project personnel accept
them as correct.” The higher the degree of scrutiny within the development process,
the higher the possibility that the model is credible. But, “note that a credible model
is not necessarily valid, and vice versa” (Law and McComas 2009, p.23).

In most cases verification and validation is carried out by the development team
itself. The downside of this approach is that developers may tend to follow the
same procedure that they use for development when they verify (i.e. they are caught
in the same tracks). A better way is to conduct verification and validation by an
independent third party (e.g. a “Verification and Validation Task Force”, consisting
of a mixture of people familiar with modelling and people connected to the field of
study).

In the following, we give a description of verification and validation in respect to
the generalized lifecycle (see Fig. 4.4).

• Conceptual model validation happens in the analysis and modelling phase.
All abstractions, theories and assumptions are checked using mathematical and
statistical methods.

• Computerized model verification deals with the substantiation of the right pro-
gramming and implementation of the conceptual model. Different programming
languages offer a broad variety of concepts to do this.

• Operational validation deals with the evaluation whether the model parameter
is chosen right in respect to the purpose of the simulation. Here the biggest part
of the validation takes place. It is important to remember that mistakes that are
found in this part of the modelling lifecycle can be mistakes that were either
made in the analysis and modelling part or in the computer programming and
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Fig. 4.4 Verification and validation in the generalized lifecycle of a simulation study based on
(Sargent 2010)

implementation. The best way to do operational validation is the comparison to
the real world problem. If it is not possible to do this, a comparison with other
models should be done.

• Data validation helps to determine whether the data is correct. If assumptions are
made to use the data, it helps to determine whether these are proper assumptions.

Arguably, the most simple validation technique is the plausibility check: It is an
evaluation over whether the produced output is comprehensible, if the parameters
are known. This can be done by either comparing the results to reality or, if that
is possible, to other simulations. Another possibility in that context is to use expert
knowledge. However, there are many more techniques like this, as is shown in due
course. According to Balci (1994), these can be classified into six groups:

Informal Techniques: Techniques that rely on subjective judgement. This does,
however, not mean that there is a lack of structure or formal guidelines being
used in this case. Some examples also applicable to agent-based simulation are:

• Audits: A single person evaluates whether the simulation study is done in a
satisfying way (e.g. checking whether it meets the preset requirements). As a
byproduct, errors and mistakes may be uncovered.

• Inspections, Reviews, Walkthroughs: Each of these methods involves a group of
people which is trying to evaluate whether the development is done in a satisfying
way. These methods aim at different parts of the modelling lifecycle and use a
variety of instruments.
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• Turing Test: This testing technique was invented in 1950 by Alan Turing:
A computer program is said to succeed the Turing Test if a real person cannot
figure out whether the results are produced by a program (in this case: the
simulation) or the results are taken from the real system.

• Face Validation: An expert checks whether results are reliable and reasonable.
Results of other validation and verification strategies might support the expert in
his decision.

• Desk Checking: The work of each team member is checked for correctness,
completeness and consistency. As a side-note, model developers should not
do desk checking by themselves, because mistakes are often overlooked or
disregarded.

Static Techniques: The source code (which does not need to be executed, mental
execution is enough) is automatically analysed by a compiler. To give some
examples, consistency checking is a pre-step to compilation that can ensure
a common programming style among the developing team. Syntax analysis is
the basic compilation task can find wrongly spelled or grammatically wrong
language constructs. Data flow analysis can furthermore detect undeclared or
unused variables.

Dynamic Techniques execute the model and analyse its resulting behaviour:

• Sensitivity analysis analyses the impact of parameter changes on the output, by
comparing multiple simulation runs in which parameter values have been sys-
tematically changed. An expert then has to check the results of this comparison.
For example, a model that is very sensitive to input changes might easily lead to
wrong results (or accumulated effects thereof), if the input data and parameters
are not well-controlled.

• Black-box Testing: Input parameters are fed into the model and the accuracy of
the output is evaluated without looking what happens inside the model.

• White-box Testing: This is more a verification technique than a validation
technique, which we mention here for the sake of completeness. It is the same
as Black-box Testing, albeit with access to the underlying code. Because this
is known, a test run can demand for example that the whole code needs to be
covered by a specific test. Or, it could demand that as many different logical
conditions in the code are to be covered as many times as possible, thus
substantiating the accurate operation of a simulation.

• Bottom-up Testing: This validation strategy is possible for simulations that
are developed in a bottom-up manner: After sub-models are developed, an
integration test is performed: This starts with the most basic functionality (e.g.
simple movement of an agent), goes on to aggregate level (e.g. steering behaviour
of an agent) and continues onto the topmost level (e.g. movement of a crowd).

• Top-down Testing: This validation strategy is possible for simulations that are
developed in a top-down manner. It is the counter-part of bottom-up testing: After
a top model is completely developed, a hierarchical integration test for the sub-
models is performed.
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• Graphical Comparisons: Real-world data is compared to the modelling variables
and parameters, assisted by graphs in which e.g. linearity, exponential or
logarithmical rise, periodicities and so on are analyzed. Such comparisons can
furthermore be used not only for checking against real-world data, but also
against other models.

• Visualisation: The simulation output is visualised through the whole simulation
run. This technique can only be seen as validation strategy if the results are
checked for plausibility afterwards.

• Predictive Validation: The model is fed with known (past) input parameters. The
model output is then compared to the real world behaviour. Of course, this can
only work when real-world data (both input and output) is at hand.

• Statistical Validation: A model could be statistic validated when the system is
completely observable. For example, variance analysis, confidence intervals and
so on may be done for the output. Whether this is a good validation strategy or
not depends on the inner mechanics of the model. It is thus important to use many
different data sets to see whether the statistical statements deduced are always the
same, and the technique can therefore be applied.

Symbolic Techniques are for checking cause-effect relationships (through graphs),
checking functional correctness of each part of the simulation (this is also
called partition testing), testing specific portions of a simulation by supplying
it generated test data that should cause a certain execution (path analysis), and
lastly symbolic evaluation that tests all evaluated paths in a program to find out if
some are unnecessary or uncorrect. In later work (Balci 1997), this category was
incorporated into the dynamic and static techniques.

Constraint-Based Techniques: Supported by constraints, model correctness is war-
ranted. These constraints can be seen e.g. as run-time assertions, which ensure
that the simulation stays in a well-defined state. Balci (1997) gives this category
up completely, and incorporates these concepts into the other categories.

Formal Techniques: Mathematical deduction and other formalisms are used to
e.g. check the correctness of the simulation. However, as Balci (1994) admits,
“Current state-of-the-art formal proof of correctness techniques are simply not
capable of being applied to even a reasonably complex simulation model” (Balci
1994, p.218). Especially for agent-based models, formal techniques are still in
a very early stage, and a general formal approach (for all scenarii where agent-
based models are used) is still beyond the current state of the art.

4.7 Verification and Validation Specifically Targeted
at Agent-Based Models

Agent-based models are characterized by a complex behaviour that cannot be
entirely observed. This is why informal techniques can always be used, because
these are subjective methods. Methods with a very formal background, as already
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stated by Balci (1994), cannot be used for the entire model, due to high amount of
complexity involved. But even when some parts of an agent-based model can be
formally validated, this does not imply that the composition of all parts is also valid.

One specifically “agent-based” validation strategy is called Immersive Face Vali-
dation (Louloudi and Klügl 2012). It is a strategy in which one tries to see the model
as from an agent’s point of view. Thus, the path of an agent is tracked through the
whole simulation. It is then analysed and checked against the model’s assumptions,
using a virtual environment (i.e. 3D visualisation) in which the behaviour of one
particular agent can be assessed. As the authors state, “after completing one full
simulation run, the evaluator should describe the overall comments briefly in a
post processing activity and reply on model-specific questionnaires” (Louloudi and
Klügl 2012, p. 1257). According to the categories described earlier, this is thus an
informal technique.

A procedure for the validation of an agent-based model, based on Klügl (2008),
is shown in Fig. 4.5: The authors assume that the model has already been subjected
to a conceptual model validation (see Sect. 4.6) and is now ready for execution
(“Run-able”). This execution is assessed using a face validation, leading to either a
sufficiently plausible model or a re-iteration (“not sufficiently valid”). The plausible
model then undergoes a sensitivity analysis, which leads to an assessment regarding
which parameters are influential and which ones are without effect. The latter ones
can be deleted (together with code parts connected to them), leading to a “Minimal
Model”. Then comes a calibration part, in which parameters have to be set such
that the model produces valid results. Note that the calibration process itself is not
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Fig. 4.5 A validation methodology for agent-based simulations, based on Klügl (2008)
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a validation method—it is merely a part of that procedure. A following plausibility
check is then conducted, which is “basically the same as the previously discussed
face validation, yet may not be executed as intensively as before as we assume only
limited changes in the simulation outcome” (Klügl 2008, p. 43).

To end with, we would also like to mention the work of Muaz et al. (2009),
who have introduced an approach called VOMAS (Virtual Overlay Multi Agent
System): Special agents—so called VOAgents, monitor the agents of the simulation
(“SimAgents”). This VOAgents can get simple rules which tell them what to
do, for example rules that tell them to trace single SimAgents, log SimAgents
with certain attributes or variable values and so on. Also, groups of SimAgents with
certain attributes or variable values can be monitored in that manner. Basically it is
an extended and individualized protocol module with a high degree of flexibility, if
implemented right. This system can be used to support the validation of agent-based
models within the same environment. Thus, care has to be taken that VOAgents are
really only “external observers” and not influencing the model’s state.

4.8 Conclusion

One possible purpose for employing any kind of simulation is the possibility to
test one or more hypotheses. The first thing that comes to mind when thinking
about a successful simulation study is that the simulation has to have an outcome
that helps to confirm these (i.e. an expected outcome). But simulations can also be
used to gain more knowledge about the system under study: It can prove whether
given assumptions or abstractions might be wrong; by falsification, it helps to
reduce the number of possibilities to the ones that seem reasonable. However,
falsification may also be hard to achieve: “If the model contains too many degrees
of freedom, an automatic optimizing calibration procedure will always be able to
fit the model to the data” (Klügl 2008, p. 41). As example for a model in which
falsification was expected but not manageable, the author names the EOS project
(Doran and Palmer 1995): “Two competing plausible hypotheses for explaining the
emergence of social complexity were simulated, both were able to reproduced [sic!]
the observed emergent structures. Thus, no theory was rejected, the modeler had to
admit, that without additional data no discrimination between the two hypotheses
could be made” (Klügl 2008, p. 41). An exploration of the subject of falsification is
an interesting field for further investigation (e.g. in Popper in press).

We argue that in many cases there is no single point at which a model—especially
an agent-based one, can be made “reproducible”, “validatable” or “falsifiable” (all
of these terms are properties and not tasks to conduct). Instead, we have to look at
the whole lifecycle of an M&S study and address aspects such as documentation,
verification and validation, which were presented herein. It is also clear that these
need to be carried out throughout the entire development process. Moreover, as
initially stated, the knowledge produced in such manner should be transparent, i.e.
openly available for professional discourse and scrutiny.
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Chapter 5
Geosimulation: Modeling Spatial Processes

Andreas Koch

5.1 Introduction

One of the most stimulating epistemological reflections in dealing with reality
contemporarily is the fact that we are gauging the world with the images we have in
our minds or we have produced as pictures, graphs, photographs, and (cartographic)
maps—and not vice versa. A shift from imagining to imaging has been taken place
in science and Lebenswelt (Belting 2005, p. 24). The power of imagination derives
from images we create utilizing different devices and techniques, methods and rules.
The challenges we are confronted with are readability, reliability, transferability, and
self-efficacy with regard to the patterns, relations, contexts, and identification we
perceive sensually, mentally, and emotionally.

This is especially true in the field of modeling and simulation in general, and
geosimulation in particular, with their intuitively captivating illustration of different
kinds of processes generating, perpetuating, or changing physical and societal
structures in geographical spaces. This allows for a different kind of reasoning about
phenomena that surround us as Resnick (1997, p. 49) points out with respect to
the application of computational simulation tools: “In short, I am more interested
in stimulation than in simulation”. Another implicit implication of the changing
relationship between imagination and image is the understanding about how we are
accessing the world, reality, or the truth. The notion of image points to the fact
that this access is always achieved through translations done by intermediaries. Our
references to the world are thus permanently mediated and models are one of the
most prominent and basic intermediaries.

A. Koch (�)
University of Salzburg, Salzburg, Austria
e-mail: andreas.koch@sbg.ac.at

© Springer International Publishing Switzerland 2015
G. Wurzer et al. (eds.), Agent-based Modeling and Simulation in Archaeology,
Advances in Geographic Information Science, DOI 10.1007/978-3-319-00008-4__5

99

mailto:andreas.koch@sbg.ac.at


100 A. Koch

Models are defined by three characteristics (Stachowiak 1973): (1) representation;
(2) simplification; (3) pragmatism; these in turn confirm the model approach by a
self-referential application of the model idea to the model definition. Every model
is a representation of a natural or artificial original.

1. The original is not equal to reality but equal to another model. A model does not
cover every attribute of the original, but only those whose properties are of any
relevance for the modeler.

2. The original is a more or less conscious setting of selected objectives and not a
holistic entity. A model is not in itself a representation of the original.

3. One always has to ask “why”, “for whom”, “for what” a specific model has been
created in order to specify the intention of that model. In other words, there is
always a close relationship between a model and the modeler’s style of reasoning.

The latter epistemology appears to be appreciated as well by archaeologists applying
computational approaches to model and simulate ancient socio-spatial phenomena.
Lake (2010, p. 12), for instance, by referring to Mithen (1994), ascertains “the
intention of the researcher(s) conducting the simulation” as one purpose of using
simulation in archaeology. Accordingly, the seemingly distinctive perspectives of
a “faulty understanding of the reality we are modeling or [a] faulty modeling of
the reality we are seeking to understand” (Costopoulos et al. 2010, p. 2) do in fact
coalesce. Putting all three characteristics together, it is not only obvious that the map
is not the landscape, but also that the landscape is always a represented, recognized
composition. “There is no original [in the sense of reality; A.K.] from which to
copy. Yet the end-result is image-like; it is a gestalted pattern which is recognizable,
although it is a constructed image” (Ihde 2006, p. 84).

Recognizing and accepting this epistemological and methodological frame
implies a couple of empirical and theoretical potentials in terms of gaining new,
different and stimulating insights without referring to an absolute reality but
enabling a continuous movement of translation between models. Geosimulation
in this respect is a spatially and temporarily scale-sensitive observational instru-
ment, making processes and their causes and conditions visible. Though notions
of society, space, and time are commonly used both in science and ordinary
communication, they are highly abstract due to their intangible nature. Utilizing
instruments of observation is not new, but their meaning and mission has changed
accordingly. “Whereas telescopes and microscopes render phenomena visible by
affecting the scale of ‘tangible’ entities through optical processes of resolution,
simulation renders ‘visible’ the effects of parameters and forces such as time,
dynamic interactions, [: : :]. Thus, simulation, by constructing images, may translate
absolutely nonvisual events into a visual media!” (Küppers et al. 2006, p. 8). In this
paper then, modeling spatial processes is an attempt to tie spatial intangibles with
social intangibles across time by referring to their tangible counterparts.

There has been put much methodological effort to render abstract socio-
spatial processes visible. In geosciences in general and archaeology in particular,
attempts to geovisualize complex relationships between social and spatial inter-
actions as well as among these are one of the core concerns in order to gaining
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advanced insights into pattern recognition, knowledge about so far unprecedented
(cor-)relations or (statistical) comprehension of simulated results against empirical
records. Demands and challenges towards visualization techniques thus remain
a wishful and necessary task, most notably within the realm of geovisualization
and geosimulation as Aldenderfer (2010, p. 54) convincingly claims from a data
acquisition point of view: “Because of the masses of data that can be created by
even a modest simulation, we are in serious need of tools of all kinds to help us
“see” our results”.

In the remainder some theoretical reflections on the relationships of “society
and space”, “scale and process”, and, methodologically, “agent-based modeling and
geographic information science” from a geographical-geosimulation angle will be
discussed. This is also the prevailing perspective of a couple of theoretical debates
in computational archeological literature (e.g. Costopoulos and Lake 2010; Kohler
and van der Leeuw 2007).

5.2 Society and Space: Dealing with Intangible
Assets and Infrastructures

Spatiality, temporality, and sociality are highly abstract and fuzzy notions due to
their intangible nature. They are, simultaneously, core principles in creating order.
Space enables ordering by means of juxtaposition; time involves the process of
succession, and the social dimension contributes a basis for togetherness (Fischer
and Wiegandt 2012; Sennett 2012; Tate and Atkinson 2001). All three dimensions
are mutually and interdependently tied together, e.g. the composition of a place
depends on the physical structure and the people who assign this place for its
use according to their social meanings which may vary over time; togetherness
implies that beyond social contiguity there is some kind of spatial proximity, be
it geometrical (face-to-face) or topological (social network relationships).

A central challenge for these three layers, their respective independent properties
and dynamics, as well as their interdependent relationships, is the quest for
patterns and their underlying rules. Another approach is to investigate simple
social interaction and local neighborhood rules in order to research the emerging
complexity that potentially happens at the macro-scale. There is a large body of
literature in the computational social sciences, whose methodological distinction is
applying either Cellular Automata (CA) or Agent-Based Models (ABM) in a broad
sense. Since it is almost impossible to survey and thus cite all the literature of this
field, a subjective selection is presented in the following paragraphs.

A recent and extensive review with an explicit reference to Geographical
Information Systems (GIS) is given by Heppenstall et al. (2012). Benenson and
Torrens (2004) published an approach entitled “Geographic Automata Systems”
which extends common ABM applications towards an explicit and independent
implementation of space. Gimblett (2002) edited a volume which discusses poten-
tials of integrating GIS and ABM for simulating social and ecological processes,



102 A. Koch

while Kohler and Gumerman (2000) investigate the coupling of social and spatial
processes utilizing ABM, including two contributions (Kohler et al. 2000; Dean
et al. 2000) who analyze settlement development and cultural transformations of
the prehistoric Anasazi population in today’s federal state of Arizona, USA. The
CA approach in general has been extensively analyzed by Wolfram (2002), in
connection with geospatial topics, like spatial analysis techniques, mainly in urban
contexts. Batty (2005) and Maguire et al. (2005) thoroughly discuss opportunities
and pitfalls of the CA technique. A specific application example of using agent
methodology to simulating visitor behavior in natural landscapes is presented by
Gimblett and Skov-Petersen (2008).

Furthermore, seminal publications in these fields are, among others, Troitzsch
et al. (1996) and Conte et al. (1997), focusing on social microsimulation, as well
as Epstein and Axtell (1996) with their Sugarscape model representing an early
bottom-up approach. A recent publication by Squazzoni (2012) introduces the field
of agent-based computational sociology, and Epstein (2006) provides a generative
social science with an explicit spatial integration if necessary. In addition, there are
a couple of conference proceedings, early examples may be Sichman et al. (1998) or
Moss and Davidsson (2001). One of the most widely known online journals in the
field of agent-based social simulation is the Journal of Artificial Societies and Social
Simulation (JASSS, see: http://jasss.soc.surrey.ac.uk/JASSS.html), furthermore ser-
vices like the Open Agent Based Modeling Consortium (http://www.openabm.org/)
or the GIS- and ABM-related blog (http://www.gisagents.org/) provide interested
readers with additional information, open software tools or discussion boards.
Computational archaeology can well be integrated into this frame of socio-spatial
interrelatedness. Janssen (2010), for instance, developed an agent-based model of
prehistoric societies embedded into an abstract but explicit spatial context in order
to investigate interdependencies of demographic and climate variabilities against
potential strategies of social adaptation and adaptability. A similar model purpose
has been pursued by Berger et al. (2007) who are interested in community resilience
from a socio-spatial functional perspective. They, however, refer to a specific
geographical region, the Middle Rhône Valley in France. A CA-based approach
for representing the spatial domain has been chosen by Smith and Choi (2007) to
simulate the emergence of inequality in small communities. Lake (2000) developed
a multi-agent model which equips agents with cognitive spatial maps by integrating
a GIS into his MAGICAL software tool in order to derive individual and cultural
learning.

All models dealing with socio-spatial phenomena have to begin with a decision
about the smallest, indivisible unit. In the social world this may be an individual, a
household, company or institution. The spatial world can be composed of points,
lines, and polygons, representing cells or areas; spatial units may represent bus
stations, parcels, buildings, political or statistical territories, catchment areas, or
landscape entities to mention but a few. Both types of individual units (regular
cells and irregular areas) can be represented by agents who are equipped with
properties and exhibit some rule-based interactions to other agents. There are a
huge range of human agents’ properties, since agents can be autonomous in their

http://jasss.soc.surrey.ac.uk/JASSS.html
http://www.openabm.org/
http://www.gisagents.org/
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collective behavior or decision making. Agents are heterogeneous with respect
to attributes like normative attitudes, opinions, desires, and intentions, as well as
age, family status, or income. They can be pro-active or reactive, communicative,
mobile or capable of learning and adaptation (Crooks and Heppenstall 2012, p. 86ff;
O’Sullivan et al. 2012, p. 114ff; Epstein 2006, pp. xvi–xviii). Nevertheless, the
actual implementation of properties depends on the precise model purpose and
usually does not emerge comprehensively. Spatial agents may vary in properties
as well; for example, they map land-use, land-cover, real estate prices, developed or
undeveloped parcels, symbolic or normative ascriptions.

The design and functionality of relations can be complex, since there are
three distinct levels of interactions each composed of different quantities and
qualities of relationships: (1) interactions among human agents, (2) interactions
among locational agents, and (3) interactions between human and locational agents.
Though depending on geographical and/or resolution scale and thus on the model
purpose, “locational agents” are defined here as the smallest spatial units used in a
geosimulation model and can be seen as the spatial counterparts of human agents
in the social world. The possibility of conceptualizing a mutually effected social-
spatial model framework of interacting individual units is one of the exceptional
characteristics of agent-based geosimulation—or, as Epstein (2006, p. 5) puts it
in a nutshell: “How could the decentralized local interactions of heterogeneous
autonomous agents generate the given regularity?” Apart from the scale-dependent
micro-macro link (see Sect. 5.3) a problem arises with heterogeneity and autonomy
if they are set as absolute. In fact, a dynamic struggle with their complementary parts
of homogeneity and dependency mirrors societal conditions more appropriately,
leading to a dialectic synthesis of inter-scaling and inter-dependent processes.

The current state of a human agent, as well as its variation and alteration, is a
function of time, spatial, and social conditions. Though a few of these states can
be assigned as intrinsic, like age and health status, most of them rely on exogenous
influences. Variables like income, family status, housing situation, places of living,
working, and recreation, social positions and roles, membership, professional status,
and social embeddedness, all refer to a relationship between the single unit and
the multi-leveled superior environments. The term “social” indicates a reference to
larger entities as communities or societies. Modeling and simulating human agents’
actions and behaviors thus needs to incorporate a kind of “social auto-correlation”
which reveals social distances among the members of a community or society,
representing the interplay of single units and the respective collective. This in turn
enables conclusions to be drawn about social phenomena of lifestyles, ethnicities,
migration backgrounds, normative and religious attitudes, to mention but a few.
ABM methodologies have developed different conceptual frameworks in order to
operationalize “social auto-correlation” (see, for example, the review of Kennedy
2012). One approach refers to beliefs, desires, and intentions (BDI; Rao and
Georgeff 1995) which contextualize agents’ knowledge, perceptions, motivations,
and attitudes with social-environmental facts, based on a social constructivist
epistemology (for a current review see Searle 2010, who primarily draws on status
functions, collective intentionality, and institutional facts as explanatory objectives
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to derive the macro-level of society). A similar framework is based on physical,
emotional, cognitive, and social factors (PECS; Schmidt 2002). “This framework
includes a representation of the human mind, specifically perception and behaviours,
and mathematical representations of physiology, emotion, cognition, and social
status” (Kennedy 2012, p. 175). An approach which predominantly considers human
decisions against environmental conditions by analyzing corresponding data is
called “fast and frugal” (Gigerenzer 2007). All cases exhibit an awareness of a
necessary multi-dimensional and multi-scaled coupling of social entities which is
theoretically reflected by, among others, Giddens (1990) and Latour (2005).

This description of a human agent can be translated to a single locational (or
place) agent as well. This type of agent may also have some intrinsic properties,
for example, soil quality, slope, and land-cover; of at least equal significance is,
however, the relational context to other locational agents, i.e. the neighborhood
effect (whereby neighborhood is understood here in a broad sense, encompassing
geometrical and topological as well as semantic concepts of nearness). Aldenderfer
(2010, p. 61) points to this aspect of spatial proximity when advocating true
geosimulation approaches as beneficial for archaeological investigations because
of their georeferencing capability of social and spatial objects and thus their
ability to relax spatial relations to noncontiguous neighbors. This capability restricts
Cellular Automata approaches with their inherent concept of neighborhood as being
contiguous and cell-like. Housing prices, location and allocation of infrastructures
and services, and land-use conflicts all depend crucially on the spatial configuration
of single place units. In this regard, spatial auto-correlation is also a meaningful
method. Geocomputation and geospatial analysis provide a huge range of sophis-
ticated techniques which aim at investigating (geo-)statistically distance-weighted
and directional variations of geo-referenced objects or events. It is beyond the
scope of this contribution to give an extensive review of all the available tools in
geostatistics and geographic data-mining, thus a brief and selected overview is being
presented here (for an introduction to geostatistics see, among others, Leuangthon
et al. 2008; Remy et al. 2009; for an introduction to data-mining see, for example,
Han and Kamber 2006; Miller and Han 2009).

One approach is point pattern analysis (PPA) which compares an empirical
distribution of points representing geo-referenced events with a theoretical (random)
distribution (Lloyd 2007, p. 171ff; Wang 2006, p. 36ff). The statistical aim is
to examine whether or not the empirical distribution differs from the theoretical
one, either representing a (significant) tendency towards clustered or towards
regular distributions. PPA is appropriate when investigating settlement structures or
archaeological sites in order to gain a better understanding of the spatial (and spatio-
temporal) influences of community or social development. Another approach is
deterministic interpolation. In general, interpolation attempts to deduce knowledge
about a study area by estimating data values for any arbitrary location within
the study area by referring to empirical data measured at specific sample points
(Johnston et al. 2001). The technique of “referring to” is the sum of a pairwise
calculation of the variance between the point of interest (POI; it represents an
unknown value) and all empirical points, inversely weighted with the distance
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between each two points (the POI and one empirical point). In other words, spatial
auto-correlation is being incorporated assuming that the closer two points are
located, the more similar they are with respect to the data value. Inverse Distance
Weighted (IDW) interpolation is one of the most widely used techniques of a
deterministic interpolation. This method can be extended by integrating the spatial
auto-correlation among all empirical points in order to achieve additional spatial
information when estimating an unknown data value within the study area. This
alternative is referred to as probabilistic interpolation and Kriging techniques are
the most well-known in this field of geostatistics (Remy et al. 2009).

For any agent-based model dealing with socio-spatial simulation it can be
concluded that individual human behavior is neither completely self-determined
(which would be synonymous to probabilistic and unpredictable in social contexts)
nor completely socio-spatially and socio-culturally determined (and thus syn-
onymous to predictable and calculable). The same applies to individual places.
A common challenge for agent-based modeling is to choose the appropriate level
of generalization, according to the model purpose, the theoretical background, and
the available data. Interdependencies between human actions and social norms,
between place properties and spatial structures, and between the two realms are
constantly floating and fuzzy when observed—and including dynamic temporal
processes further complexifies these interdependencies. Furthermore, socio-spatial
agent-based modeling deals with intangible assets and infrastructures like beliefs,
intentions, togetherness, and neighborhood, trying to visualize these by using
“solid” parameters. The endeavor of recognizing spatial patterns in community life
and social patterns in spatial structures implies consideration of the betweenness of
the poles, heterogeneity-homogeneity/local-global, instead of the poles themselves.

Spatial analysis in general and geostatistics in particular appear to be promising
tools in archaeological geosimulation as well. According to Lake (2010, p. 12ff), the
purposes of computer simulations in archaeology derive from empirical hypothesis
testing, theoretical reasoning on structures, processes, and functions, and from
methodological explorations into statistical inferences. Since all three levels of
scientific endeavor are capable of dealing with (and do refer to) complex spatio-
temporal dynamics, the use of geosimulation techniques outperforms simpler
CA approaches by releasing patterns of agents’ actions socially (with respect to
collective vs. individual action framing) and spatially (with respect to local vs.
global spatial framing).

5.3 Scale and Process: Taking Relations
and Interdependencies into Consideration

According to Benenson and Torrens (2004, p. 25ff), the human-society and place-
space link described in the previous section can be formalized in agent-based
geosimulation models at a general and coarse level as follows:

G � .KI S; TsI L; MLI N; RN /;
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with G D geosimulation model
K D ontologies (e.g., polygon or raster representation of space, agents

representing humans or households)
S D set of human and locational agents’ states (e.g., income or family status

in the former case, housing prices or land-cover types in the latter case)
TS D transition rules of S; in discrete time steps agents change their states

according to their internal characteristics and to their social-spatial
environment conditions, thus K, S, L, and N

L D location; geo-referenced specification of human and locational agents
ML D movement rules of mobile human agents; they depend on K, S, L, N,

resolution, and level of abstraction
N D neighborhood; it encompasses (depending on the model purpose) the

spatial and social neighborhood
RN D neighborhood rules; they define the criteria of spatial relations

(geometrical and/or topological, adjacency and/or distant relations,
vision of agents, etc.) and refer as well to K, S, L, and N

This kind of commonly used agent-based model represents the bottom-up type
of simulations which implement social and spatial domains as latent variables of
individual human and locational agents. The overall aim is to deduce social and
spatial macro-structures from human and local decisions and micro-characteristics,
respectively. Arguably the most commonly used concept in urban social-spatial
agent-based modeling is Schelling’s residential segregation approach (Schelling
1969, 1971) which has gained much attention (see, for example, Bruch 2006; Crooks
2008, 2012; Fossett and Senft 2004; Fossett and Waren 2005; Koch 2009; Laurie and
Jaggi 2003; Pancs and Vriend 2007; Resnick 1997). The fascinating and stimulating
issue of this model, whose theoretical and methodological foundations can be
translated into different societal contexts across historical eras, is this inductive-
driven phenomenon of emergence (Holland 1998; Johnson 2001), i.e. that the macro
pattern of social-spatial structure cannot be derived from the micro pattern of
human motives. The benefit of this type of simulation model is its focus on the
processes taking place subtly and gradually. The noticeable and visible result of
residential segregation usually allows for a retrospective speculation but does not
derive sufficient information about the development. “Schelling’s model is excellent
because it distils the key features enabling us to understand how segregation might
arise. The model does not presume to tell us about the entire working of the social
and economic world, but focuses on the task at hand, namely to explain why
weak individual preferences are consistent with strong and persistent patterns of
segregation” (Crooks 2012, p. 369). Figure 5.1 illustrates a potential outcome of a
Schelling-styled segregation process with a preference for human agents of at least
30 % neighborhood identity.

Though the model provides, according to its purpose, many scientific insights
about the process itself and the phenomenon of emergence, it incorporates only
the individual and local scale in order to simulate urban social-spatial dynamics
and changes. The model can only succeed in doing so by presupposing a couple
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Fig. 5.1 A Schelling residential segregation model. Initially a random-distributed population is
assumed with one agent property and two manifestations (blue and red). The threshold value of
neighborhood satisfaction is set to 30 %, below this value agents are forced to move to the next
unoccupied cell. After a few time steps the proportion of “unhappy agents” has been reduced to
0 %. Source: NetLogo Model Library, see Wilensky (1999)

of preliminaries which do not seem to be necessary, neither with respect to the
phenomenon of interest, nor with respect to the empirical original the model is
referring to. The following remarks are explicitly related to the problem of social
and spatial scaling and do not devalue the model benefits as such:

1. The model takes a randomly distributed population as a starting point which
seems empirically unrealistic and epistemologically avoidable. Even if empirical
data with spatially high resolution and historically sufficient reliability are
missing, it would be more appropriate to assume non-random distributions of
population. This can be stated for ancient and medieval societies where guilds
and status groups had lived spatially close together, as well as for modern
societies with their socially distinct housing areas in urban districts or suburban
regions.

2. Furthermore, all agents behave the same way. There are neither within-
community nor inter-community differences.
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3. It is assumed that social facts as norms, rules, cultural artifacts, and laws mean
the same for all agents and are interpreted in the same way which in turn induces
identical behavior.

4. There is only one characteristic on which decisions are based; social change is
thus excluded, and it is not only the individual decision process which is modeled
in a deterministic style with regard to the macro-scale result, but also the macro-
scale result as well, since the model stops if all micro-motives are satisfied.

5. In addition, there is one single decision rule and one single threshold value which
determines agents’ actions. In other words, (residential) satisfaction is reduced
to one dimension with one discrete reference measure for all agents, which
reduces their scopes of decision-making to pure reaction. Migration should not
be considered as the solitary solution to avoid dissatisfaction with a location,
because it is a socially far-reaching and expensive decision in everyone’s life.

Though depending on the model purpose, it is worth thinking about a more
suitable adaptation of agents’ behavior in terms of differentiation and flexibility.
The aim could be a model approach where social and spatial agents exhibit diverse
(individualized) actions within a social range (collectively shared norms or attitudes)
changing over time and across space. The well-known archaeological Anasazi
simulation model (Dean et al. 2000), for instance, diversifies agents’ characteristics
but does not use historical settlement locations. The inequality model of ancient
societies or communities (Smith and Choi 2007) varies agents’ demographic and
economic characteristics but allow only two different behaviors (cooperation and
defection) which will be inherited by offspring. Lake’s (2000) approach, on the
other hand, applies a strict individualized agent setting, and criticizing homogenous
collective decision making in hunter-gatherer archaeological simulations: “These
archaeological studies have not, however, harnessed the full potential of multiagent
modeling. [: : :] In contrast, the MAGICAL software allows each individual to
behave according to a potentially unique set of principles, which means that it
is possible to simulate individuals thinking and behaving differently according to
factors such as age, gender, and social standing.” (Lake 2000, p. 109).

From a spatial perspective the problem with a Schelling-styled simulation model
is that the neighborhood is conceptualized exclusively geometrically, i.e. space is
perceived as being continuously given, without blank spaces, and being evenly
important (at least all eight adjacent neighbor cells of a given location, according
to Moore’s neighborhood; see Iltanen 2012, p. 73; Patel et al. 2012). A topological
conceptualization is missing, which takes social relations as networks into account.
Furthermore, it is assumed that local knowledge about neighbors is total and
immediately updated after each time step which suggests an unrealistic imagination
of complete rationality. People may, in addition, migrate, but their social relations
with former neighbors may remain significant and reliable, while the relations with
new and close neighbors are rudimentary. Finally, both ubiquitous neighborhood
and social network relations are unlikely to remain static and stable over time even
if no migration takes place. Another spatially and socially influencing force is urban
planning and social neighborhood management. These institutions are engaged in
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avoiding ghettoization, gentrification, gated communities and other forms of social
segregation. Social housing and social capital empowerment projects with external
partners aim at maintaining vivid and diversified local communities. This in turn
could lead to some persistent strategies of individuals or households, although their
dissatisfaction level has been increased.

In conclusion, agent-based residential segregation models tend to concentrate
on the individual and local scale leaving aside the complementary scales towards
society and space. There is much to be said for incorporating macro-scale domains
into geosimulation models. Over the entire history of societies there have been social
structures and normative rules available which provided for collective order. Ancient
and traditional societies had been stratified and segmented by social origin, class,
profession, gender, kinship, and local context. Contemporary western societies are
characterized as functionally differentiated systems, embedded in globalized and re-
localized structures, and today it is education, personal skills, flexibility, financial
resources, and technological capabilities that promote social and spatial mobility.
Social change towards modernization is highly paradoxical (see Fig. 5.2) making
the modeling and simulation of socio-spatial phenomena a complex endeavor.

“Structural differentiation is today an all-embracing phenomenon which increas-
ingly is determined by economic forces of efficiency and optimization. [: : :] Not
only has the spatial and social scaling changed but we also maintain both intimate
and distant relationships, face-to-face and virtual, without any specific correlation
between distance and emotional nearness” (Koch 2012, p. 10f). The cultural sphere
is characterized by a struggle between pluralization and generalization: “On the
one hand we are aware of a plenitude of lifestyles, family constellations, and
educational institutions which cultivate their own values and norms and by so doing
establish specific mechanisms of access. On the other hand a global homogenisation
of taste and preference in sports, fashion, music or literature can be recognised.
Distinction, thus, is relative to interpret” (Koch 2012, p. 11). Individualization is in
constant flux between increased autonomy and dependency. “Dependent autonomy
or autonomous dependency extends scopes of acting because one can delegate
and/or integrate tasks individually based on personal needs. Mutual out- and

Fig. 5.2 Paradoxes of modernization. Source: Own translation of van der Loo and van Reijen
(1992, p. 40)
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in-sourcing takes place among and between people and institutions but also increas-
ingly between people and machines” (Koch 2012, p. 11). Domestication, finally,
means simultaneously deconditioning from natural constraints like surmounting
of physical distances due to technological artifacts (e.g. e-banking, e-learning)
and conditioning towards these technologies (it is nowadays almost impossible to
survive socially without a computer, the Internet, a cell phone, etc.).

There are many more empirical and theoretical examples which advocate a
complementary coupling of individual and social scales as well as local and spatial
scales. Scholz (2002), for example, proposes a theory of fragmented development,
ranging from global to local fragmentation of social and economic activities.
He argues that globalization implies simultaneously both homogenization and
heterogenization which led to decreased relevance of the national scale but increased
relevance of the global and local scale. A universal network of global cities is
dominating the economies of regions almost everywhere. The term “global city”,
however, does not mean that the entire city is part of that global network, but only
highly localized places like for example the Docklands and the traditional financial
district in London.

Contemporary urban social geography also debates about issues which recognize
trans-scaling phenomena. Knox and Pinch (2006) in their book address topics like
“patterns of sociospatial differentiation”, “spatial and institutional frameworks”,
“segregation and congregation”, “neighborhood, community and the social con-
struction of place”, and “residential mobility and neighborhood change” as crucial
for modern western societies and thus illustrate the significance of extending agent-
based geosimulation techniques by the above mentioned macro-scales.

Apart from other methodological (e.g. resolution; see Walsh et al. 2004) and
theoretical topics (e.g. complexity theory; see Easterling and Polsky 2004), it is the
relative nature of scale which does not predetermine a specific level of domain, e.g.
the individual and local in residential segregation models, and which emerges due to
the conflation of different human-social relationships embedded in different local-
spatial contexts. Swyngedouw (2004, p. 132f) points to these characteristics of scale
from a political point of view: “Scalar configurations [on the one hand; A.K.] [: : :]
are always already a result, an outcome of the perpetual movement of the flux of
sociospatial and environmental dynamics. [: : :]. Spatial scales [on the other hand;
A.K.] are never fixed, but are perpetually redefined, contested and restructured in
terms of their extent, content, relative importance and interrelations. [: : :] These
sociospatial processes change the importance and role of certain geographical
scales, [: : :] and on occasion create entirely new scales”.

All variation along the socio-spatial axis of scales is intrinsically tied to time. The
simple successive nature of creating order with time becomes a complex concern as
time is mutually interrelated with the social and spatial conceptualization of order.
Table 5.1 illustrates the three dimensions in a simple linear fashion, but one can
easily imagine that each line of the three domains is connected with all lines of
the other two (the temporal structuration is according to Bossel 2007, the social
according to Luhmann 1993, and the spatial according to McMaster and Sheppard
2004). It is obvious that no single model is able to incorporate all levels with
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Table 5.1 Ranges of temporal, social and spatial scales

Temporal scale Spatial scale Social scale

Process (cause-effect) Human body, household Interaction system, organization

Feedback Neighborhood –

Adaptation,
self-organization,
evolution

City, metropolitan area,
province/state, nation,
continent, globe

Functionally differentiated systems
(e.g. politics, economy, religion,
science)

Source: Bossel (2007), McMaster and Sheppard (2004), Luhmann (1993)

all relations, but it would be worth extending pure bottom-up model approaches
in geosimulation with top-down approaches, for example by coupling an agent-
based sub-model with a system dynamics sub-model. With respect to archaeological
models it makes a difference whether one is interested in a local, excavated village
in order to reconstruct social structures and the date of the buildings, or if one is
interested in the interregional transportation infrastructure of an expanding society
over a long period.

5.4 ABM and GIS: Coupling Techniques of Different
Methodological Domains

Agent-based modeling (ABM) and Geographic Information Systems (GIS) have
both their strengths and their weaknesses when dealing with socio-spatial processes.
While ABM intrinsically focuses on temporal processes of mobile (e.g. human) and
immobile (parcels) agents but represents geographical space in a cursory manner
(Benenson and Torrens 2004, p. 6), GIS offers extensive tools to represent and
visualize space but is less suitable to integrate time as a continuous and inherent
factor. There have been several attempts in the past decade or so to overcome
these respective problems by either coupling ABM with GIS or by embedding
one domain into the other. Crooks and Castle (2012) present a comprehensive and
current overview of these strategies and concrete applications. This section therefore
reviews briefly the most relevant methodological issues.

GI systems are able to store temporal information in several ways (Crooks and
Castle 2012, p. 222): The location-based approach stores polygon or raster cell
states for each time step, regardless of whether spatial change has occurred or
not. Conversely, the time-based approach refers to a given time interval and here
spatial change is related to a threshold of significance, i.e. change is only stored
if it is sufficiently significant. The entity-based approach is directed towards the
shape of spatial entities and their potential changes but not towards the attributes
represented by these. Though the relevance of time is highly appreciated within
GIS communities a true process representation of it has not yet been satisfactorily
achieved (Reitsma and Albrecht 2006).
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Agent-based modeling tools on the other hand have begun to implement some
GIS functionality in varying degrees. Precursors of this development have been (and
still are) Cellular Automata approaches which provide large modeling flexibility
if space is conceptualized as a discrete raster grid and neighborhood rules play
a dominant role in socio-spatial simulation (Iltanen 2012; Liu and Feng 2012).
Software packages as, for example, NetLogo (Wilensky 1999) are able to import
raster and vector data for visualization and analysis; polygon representations,
however, are not handled as agents and agents’ locational information is based on
cell centroids rather than cartographic coordinates. Nevertheless, most (open source)
ABM software is developing at a fast pace (Crooks and Castle 2012, p. 233ff)
towards a more advanced insertion of GIS functionality.

Earlier stage attempts of linking GIS with ABM software have been state-of-
the-art. While loose coupling “[: : :] usually involves the asynchronous operation of
functions within each system, with data exchanged between systems in the form of
files” (Crooks and Castle 2012, p. 224), close coupling “[: : :] is characterized by
the simultaneous operation of systems allowing direct inter-system communication
during the programme execution” (Crooks and Castle 2012, p. 225).

Meanwhile, sophisticated geosimulation systems are available, both within GIS
and ABM. A central force in this respect has been object orientation in programming
and in database storage. “The recent availability of an object-oriented approach
to composing GIS software, which parallels the structure of ABM programming
tools and uses common architectures like the Component Object Model (COM),
has facilitated the integration of ABM and GIS tools” (Johnston 2012, p. 9). Crooks
and Castle (2012, p. 233ff) provide an overview on ABM software systems like
Swarm, MASON, Repast, NetLogo or AnyLogic, to mention just a few; their
fields of application vary significantly and thus their capacities for integrating GIS
functionality. They conclude: “[: : :] it needs to be noted that while such tools
exist, integrating GIS data for ABM is still a difficult process [: : :] and many
considerations are needed such as what data is needed, how should the data be
utilised, how should agents interact with the data, etc.” (Crooks and Castle 2012,
p. 245).

For one of the most widely used GIS software packages, ArcGIS, an extension
called Agent Analyst has been available for around a decade (it should be mentioned
that while Agent Analyst is open source, ArcGIS is a commercial product of ESRI).
“Agent Analyst provides an interface that can integrate the functionality of the
Repast ABM software libraries with the geoprocessing environment in ArcGIS”
(Johnston 2012, p. 11). Geoprocessing synchronizes agent states with mapping and
cartographic visualization and allows the whole range of geospatial analysis. It is
built as middleware between Repast ABM and ArcGIS. “Repast is used for the
creation of the agent rules, object support, and scheduling. ArcGIS is used for data
creation, GIS analysis, and display of the simulations” (Johnston 2012, p. 15). This
means that generic agents (i.e., mobile human agents) and polygon agents (i.e.,
spatial agents) are treated as geo-referenced objects.
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Thus, a plenitude of ever more advanced software systems are available providing
data handling, simulation rules, geospatial analysis techniques, and high resolution
visualization capabilities in one product.

5.5 Conclusion

Agent-based geosimulation modeling offers a particular kind of scientific reasoning
and implies a specific style of thinking (Axelrod 1997; Resnick 1997). It enables
a different access to heuristics, approaching the problem at hand in a way that
goes beyond a textual description and explanation, a mathematical formulation,
and a graphical visualization, though all these approaches are necessarily included.
Geosimulation takes insights of complexity theory seriously into account (Manson
et al. 2012) and recognizes interrelations between human and locational agents
as crucial forces for our understanding of society and space. Furthermore and
according to the “generativist” claim, it embeds socio-spatial relationships in dif-
ferent temporal contexts. Epistemologically, the work of translating from thoughts
into formalized programming codes reveals a peculiar opportunity which has been
presented by Hegselmann (2012, p. 6) as a continuous flux between scales: “It is
a frequent programming experience that code [: : :] unintentionally (!) realises the
particular as an instance of a generalisation that goes far beyond the original feature.
[: : :] Almost never can we implement all alternatives. But from now on we know that
whatever we implement is just an instance of something more general that might be
called a migration regime”.

Modeling of spatial processes, in an environment of geosimulating software
tools, considers—in social science research domains—scales of different type and
range. Alterations in space are always a result of, and a meaning for, social changes
at different levels and within different temporal regimes. If this is true then the well-
known geospatial analytic problem of the modifiable areal unit problem (MAUP;
see Openshaw 1984) should be extended to the modifiable temporal unit problem
(MTUP) and the modifiable social unit problem (MSUP), too (Koch and Carson
2012). There is no pre-given or pre-determined composition of social, spatial, and
temporal scales which is to be used in a specific research problem but which is to
be justified by the model purpose and verified and validated against empirical and
theoretical knowledge.

Against this background, the use of geosimulation in archaeology provides
numerous opportunities since the focus of this discipline is also on interdependen-
cies between spatial, social, and cultural processes. Local knowledge (Geertz 1983)
of ancient societies is imprinted in local geographies of sites and infrastructures
helping geographers and archaeologists to understand socio-spatial conditions at
that time. With respect to research in community resilience an appropriate link
between geosimulation and archaeology is finally being suggested. In his books
“Collapse” (2004) and “The World Until Yesterday” (2012) Jared Diamond com-
prehensively describes the techniques of socio-cultural and socio-spatial survival of
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traditional societies and tribes despite environmental perturbations. The scale link
is present here as well. Community resilience can be defined as the “[: : :] existence,
development, and engagement of community resources by community members to
thrive in an environment characterized by change, uncertainty, unpredictability, and
surprise” (Magis 2010, p. 402). The conflation of domains and scales becomes
apparent: “Community resilience is the sum of neither resilience potentials of
its members nor its environment. Through emergence, structures of resilience are
generated at this level which in turn feed back to the local/micro units. This scale-
dependent circularity also means that capabilities of crisis management cannot be
simply generalised and transferred between scales. Rather, it is a more or less
specific coupling of resources and constraints, of capabilities, skills, and resilience
mechanisms which leads to more or less specific perceptions, assumptions, and
proposals about how to deal with crises, vulnerabilities or risks” (Koch 2012, p. 16).
A geosimulation model appears to be conceivable which integrates internal relations
of human agents’ communities dealing with external creeping transformations
and/or sudden shocks by embedding these social systems into adequate (reliable)
spatial settings.

Geosimulating archaeological facts or assumptions of socio-spatial structures
and processes in varying social, spatial, and temporal scale seems to be a straight-
forward development in archaeological simulation, though, as Lake (2010, p. 17)
states, it “is a minority activity and is likely to remain so for the foreseeable future”.
Aldenderfer (2010) takes a stand for the use of geosimulation in archaeology in
order to suitably link the visualization domain with the knowledge domain. This
link subsumes a couple of further reasons as, among others, an integration of large
amounts of data of different nature (spatial, social, individual) and of different
origin (empirical survey, remote-sensing), an advanced testing of hypotheses by
use of visual and (geo-)statistical tools, and—maybe most importantly—the ability
to explore dynamic processes. Geosimulation “is explicitly dynamic and, as such,
provides a more realistic means by which to use space as not only a frame for action
but one that has the capacity to directly modify agent behavior” (Aldenderfer 2010,
p. 61).

Geosimulation, with its sophisticated analytical and visualization tools, might
thus provide archaeological computational modeling efforts with opportunities to
deal with methodological and theoretical problems that had been arisen in the past
(Costopoulos et al. 2010; Costopoulos 2010; Lake 2010; Wobst 2010).
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Chapter 6
Large Simulations and Small Societies: High
Performance Computing for Archaeological
Simulations

Xavier Rubio-Campillo

6.1 Introduction

Computational simulation of societies has found in archaeologists one of the most
promising fields of applications, as can be observed in the number of related
publications (Doran et al. 1994; Doran 1999; Lake 2000; Diamond 2002; Kohler

2007; Costopoulos and Lake 2010; Lake 2013). The reason of
this interest can be found in the link between the basic objectives of archaeology
and simulation. Archaeology attempts to understand human behavior through the
detection and analysis of spatio-temporal patterns related to the location and type of
found structures and objects. Uncertainty is inherent to this process, as any research
based on data from the archaeological record should cope with it, both in time and
space (Crema et al. 2010). Within this context, computer simulation is the perfect
virtual lab because it is capable of dealing with mathematically intractable problems
such as the interaction of complex human behavior (Galán et al. 2009). They are
suited to explore different hypotheses capable of explaining detected patterns, as
well as to validate them, at least within the context of the simulation model. Agent-
Based Models is one of the most widely spread simulation techniques; its basic
concept of entities with individual decision-making processes interacting within
a common environment is well suited to explore the type of questions faced by
archaeologists.

From a broader perspective a common trend of Agent-Based Models simulating
human behavior is a gradual increase in their complexity (Bonabeau 2002). These
research projects often have at their disposal a vast amount of data that can be used to
define the value of several parameters, as well as the behavior of the different agents.
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The results are large scale simulations executed in High-Performance Computing
(HPC) infrastructures (i.e. supercomputers), created to explore realistic scenarios,
develop policy analysis and manage emergency situations, to cite some applications
(Leitao et al. 2013; Macal et al. 2008).

The emergence of these large scale simulations brings also a theoretical issue: the
intractability of Agent-Based Models understood as computational problems. From
this perspective the cost of executing an ABM in a computer follows a exponential
curve. This is crucial if we want to understand the emergent behavior of an ABM
given any set of initial conditions. Within this perspective the computational cost for
the solution will increase exponentially to the number of parameters of the model.
The consequence of this property is that, at a given point, we will not be able to
solve an increasingly complex ABM in a reasonable amount of time, regardless the
computer we use. We can have better computers, but the requirements will be orders
of magnitude larger than our capabilities.

There is an ongoing debate in the community of archaeologists developing
ABMs in relation to this increasing complexity. Some works try to follow the
trend, developing detailed models designed to test hypotheses on realistic scenarios.
Simultaneously a different group of modelers are focused on theory building,
creating abstract simulations with simpler scenarios (for this division see Lake
2001, 2013). The discussion is centered on the best way to use the efforts of
the community, taking into account the fact that realistic models cannot be fully
defined on the basis of the fragmented data collected by the discipline. In this
sense, the development of large scale complex models with weak assumptions
could strongly bias the interpretation of the archaeological record, thus decreasing
the scientific quality of research (Premo 2010). Paradoxically the development
of abstract models without realistic backgrounds can keep away most potential
audience from simulations, thus preventing most archaeologists from using this
interesting tool.

Regarding HPC one could think that this technology cannot really offer anything
to archaeologists, given that it seems focused on boosting large scale ABMs with
huge scenarios and millions of agents. The models used in archaeological research
never have these requirements, so where is the need for additional computational
power? This chapter will show that the benefits of HPC are not constrained to
execute large simulations. In particular we will explore:

• How can we speed up the execution of a computer simulation of a small-scale
society?

• Is it possible to improve Agent-Based Models with an increase on computational
power?

• What pitfalls and issues do the introduction of HPC create?

Not only is HPC important for accelerating the performance of the simulations,
but we also need a boost on computing capabilities in order to answer some
of the methodological questions arised during recent years. Some deficiencies of
archaeological ABMs are related to the lack of these capabilities, specially regarding
realistic hypothesis testing models. An immediate improvement caused by the use
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of additional computers is a better exploration of parameter spaces, but there are
others that can be even more interesting for the discipline. The introduction of
advanced decision-making processes and the development of multiscale simulations
could also improve the scientific quality of computer simulations developed in
archaeology.

Next section defines background concepts needed for the chapter. This is
followed by a discussion about the properties of Agent-Based Models and the
potential approaches to executing them using HPC resources. This section also
provides an overview of existing software and applications usable for achieving this
task. Fourth section deals with the methodological issues solved (and generated)
by the introduction of HPC. Finally, different concluding remarks are provided to
summarize the ideas of the chapter, as well as future lines of research.

6.2 Background

Some technical concepts need to be defined before continuing the discussion.
A general overview of an HPC infrastructure can be seen in Fig. 6.1:

• The Central Processing Unit (CPU) is the atom of any computing system. It is
responsible for calculating arithmetical and logistical operations. Most existing

Fig. 6.1 General architecture of an HPC infrastructure
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systems combine the power of different CPUs, and are known as multi-core
processors.

• A computer node is a set of processors that share memory.
• An HPC infrastructure is a large set of computer nodes interconnected with

some type of network. This can be as simple as some computers communicating
through internet (i.e. grid computing), or a supercomputer where nodes are
interconnected with high-speed networks.

Different hardware components can be used to execute a simulaton. If we want
to distribute the process in more than one CPU we have two choices:

• Multiple processes in one node. The different CPUs of a computer node share
the access to RAM (Random Access Memory). As a consequence, all of them
can read and write in the same memory space. If a computer simulation wants
to use more than one CPU it needs a mechanism to avoid conflicts generated
by simultaneous writing of a particular memory section. This can be achieved
with different techniques, being threads the most widely used. Another solution,
OpenMP, is interesting for scientific applications given its capabilities for easily
adding multicore execution to any software (Dagum and Menon 1998; Kuhn et al.
2000).

• Multiple nodes. The computer nodes of a distributed system (i.e. clusters,
supercomputers, etc.) do not share memory. Any process being executed in more
than one node must have some way to communicate among each section of
the execution. This is achieved using the MPI (Message Passing Interface, MPI
Forum 2009) protocol, that specifies how a distributed (or parallel) application
must send and receive data using the network.

By definition, these solutions are complementary. State-of-the-art HPC applications
use an hybrid approach to parallelism: a simulation is split into different nodes,
while each section exploits all the cores of a given node.

6.3 Developing HPC-Based Simulations

From a technical point of view the distribution of an agent-based simulation in
different computer nodes is a complex task. There is a strong, inherent coupling
of the various components of the system. They are constantly interacting with each
other, so communication is always intensive.

Each agent needs to gather knowledge from their environment, as well as from
other agents in order to execute their decision-making processes. Once this phase is
completed, there is a possibility that the agents will modify the environment (and so
will the other agents). These mechanics translate, in terms of parallelization, to the
need of sharing several layers of environmental data and agents between computer
nodes, at every single time step. Furthermore, the execution of the agents’ actions
cannot usually be distributed within a single computer node (i.e. OpenMP), because
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there can be several conflicts related to agents accessing and modifying the same
data at the same time.

Based on these constraints the best way to distribute the execution of an ABM
over different computer nodes is to adopt a case-based approach. There is no optimal
way to distribute an ABM, but a set of different solutions that can be applied to
similar problems. The user should choose a particular method to split the execution
amongst the nodes, depending on the nature of the model and the properties of the
system. This idea is the basis of different initiatives like GridABM (Gulyás et al.
2011), a framework of template solutions for distributing these type of simulations.

Taking this perspective the majority of archaeological simulations share the
following properties:

• Importance of environment. Hypothesis testing models developed in Archaeol-
ogy usually focus on the strong relation between agents and the surrounding
landscape. For this reason, these ABMs will need a substantial amount of spa-
tially structured information, traditionally stored in a Geographical Information
System (Conolly and Lake 2006). These platforms are spatial databases where
data is stored as vectors (database records with spatial coordinates) and raster
maps (bi-dimensional matrices containing regularly distributed values). The
agents’ environment will be modelled with a combination of these concepts,
generating diverse information such as digital elevation models, site distribution,
vegetation indexes, etc.

• Low number of agents. Past societies were not as dense as the ones we live
in today. We will not need to reproduce situations with millions of agents, as
simulations will usually model small-scale societies.

• Intensive local communication. A world without telecommunications means that,
within a reasonable scale, an agent will only interact with the environment and
agents that are spatially close to it. These interactions can be intense, but in any
way an agent will need to know the entire situation of the world, just the section
of it within a given interaction range.

6.3.1 Distribution of Archaeological ABM in Different
Computer Nodes

These properties suggest that the best choice for splitting an archaeological ABM is
to use spatial partitioning: each computer node owns a section of the entire simulated
scenario, containing the different landscape data as well as the agents.1 This is
the solution used in Pandora (Rubio-Campillo 2013) and Repast-HPC (Collier and
North 2011), the only HPC frameworks used in published archaeological ABMs.

1A different approach is seen in Long et al. (2011), where agents are grouped based on the network
of interactions.
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Fig. 6.2 Spatial partitioning
of an Agent-Based Model.
Each color represents the
section of the world owned by
a different computer node,
including raster maps with
environmental information
and agents. The zone where
different colors overlap is the
border zone

Pandora defines the environments where agents live as a set of layers containing
raster map structures, following GIS standards. The world of the simulation is
evenly divided among computer nodes, and each one of them will own a section of
the environment, as well as the agents located in this part of the world. This layout is
depicted in Fig. 6.2. Information in the border between adjacent nodes (raster maps
and agents) will be communicated to neighbours every time step execution, in order
to keep up-to-date data in the entire scenario. The size of this buffer border will be
defined as the maximum interaction range of any agent, being the absolute horizon
of actions of any component of the simulation. This approach is also adopted by
Repast-HPC, and solves the issue of distribution for models of past societies without
global interaction. The solution is highly scalable, given the fact that every computer
node will need to communicate, at most, with eight neighbouring nodes (if nodes
own rectangular regions), independently of the total size of the simulation.
Unfortunately, the issue of collision between agent’s actions is still present, because
two agents living in different computer nodes could be modifying the same
bordering data at the same time. There are different techniques to avoid this conflict,
but most of them can be computationally intensive (i.e. rollbacks). This overhead is
affordable if the ABM is CPU intensive and the possibility of conflict is not high,
but this is seldom the case.

Pandora, for example, takes a simpler approach. It is based in the segmentation
of the spatial section owned by every computer node in four equal parts numbering
0–3, as it can be seen in Fig. 6.3. The agents contained in all 0 sections will be
executed simultaneously without the possibility of conflicts, given the fact that they
are not adjacent. Once all of them are finished, modified border data is sent to the
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Fig. 6.3 The execution of
any computer node is divided
in four different sections, that
are executed sequentially

neighbors, and a new section will begin its execution (1, 2 and finally 3). Once all
of them are executed, the entire state of the simulation is serialized and a new time
step can be evaluated.
The pitfall of this solution is that agents in section 0 will always be executed before
agents in sections 1–3. Depending on the model the consequences of this effect
can be nonexistent, or introduce artifacts in the outcome. As usual, a careful choice
between the different strategies is needed, based on the existing scenario.

6.3.2 Simultaneous Execution of Agents

Parallelization of a simulation on different computer nodes is needed but is not
sufficient. Every node should be able to use its complete set of CPU cores to
simultaneously execute its agents. Again, the problem of conflicts between agents’
actions is a barrier that must be broken if we want to avoid artifacts on simulation
results.2 To fix this we need to take a closer look at the way ABMs execute the
set of agents (the scheduling system), in order to find properties useful to solve the
problem.

Most of the time needed to execute an ABM is spent in the same task: the
moment when the agents gather information, choose a particular set of behaviors,
and execute them. These processes are always mixed in a single method, executed
by every agent every time step. This is the approach taken by the three most popular
ABM platforms: tick in Netlogo (Wilensky 1999), step in MASON (Luke 2011) and
RePast (North et al. 2007).

It is worth to note that the first two processes do not modify anything, as the agent
is only evaluating potential course of actions depending on existing data. For this

2For example two agents modifying at the same time the same cell of a given raster map.
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reason we could simultaneously execute the decision-making process of different
agents. This solution is safe of conflicts if the agents only choose a set of actions
(without applying them).

Pandora uses this approach to split the step of an agent in three different methods.
In the first one, updateKnowledge, an agent cannot modify the environment or
other agents; it only gathers information. In the second one, selectAction, the agent
executes the decision-making process and choose an action (it still cannot modify
anything). Once every agent has chosen what it wants to do, Pandora executes the
actions of the agents sequentially. Finally, the third method that a user can specify
is updateState, where any agent can modify its internal state evaluating the results
of its actions. This cycle Explore–Decide–Apply allows Pandora to distribute the
execution amongst different CPU cores of a node, as the first two steps (the most
computationally expensive) can be easily parallelized. The third one is executed
sequentially, thus avoiding conflicts between the actions of the agents.

This structure could seem more complicated than just defining one method but,
from a theoretical point of view, the division of an agent’s execution in these three
steps is more consistent than the traditional ABM approach. The single method
implementation mixes the different stages of an agent’s cycle, that should be
correctly specified while building the model (see Fig. 6.4). Dividing the execution as
shown here avoids this problem, forcing coherence during the transition from theory
to code.

In addition this solution provides a cleaner interface to implement agents with
advanced artificial intelligence, when this requirement is needed. The AI algorithm
will be executed in one phase of the cycle (decide), that encapsulates the entire
decision-making process and keeps it separated from the rest of the model.

Fig. 6.4 The execution cycle
of an agent
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6.3.3 Serializing Distributed Simulations

If every CPU of every computer node is simultaneously executing agents there is
a additional issue that needs to be dealt: bottlenecks during the serialization of the
results. The scientific analysis of an ABM simulation will usually need to keep track
of the evolution of the entire system from the beginning until the end of an execution.
This means that the simulation needs to provide access to the state of the simulation
at any given time step and at multiple levels of scale (from summary statistics to
the state of individual agents). Besides, most HPC systems use a job cue where
programs are submitted in order to be executed. This batch system is not interactive,
so the researcher will usually access the outcome after the simulation finishes. The
entire simulation state should be stored in a single file while it is running, in order
to analyze it after the execution. The different nodes should wait to store their
information while the rest are writing. This heavily affects the performance of the
simulation, wasting resources and time due to the high volume of data to serialize.

One solution to the serialization bottleneck is that every computer node writes
into a different file. The problem of this approach is that it requires postprocessing
of different files in order to merge results, and this is also a costly operation. The
optimal strategy, chosen by both frameworks (Repast-HPC and Pandora) is the
distribution of the serialization through HDF5 (Folk et al. 1999). It is an open-
source library specifically designed to store the outcome of scientific visualizations.
It allows for simultaneously serializing data from several computer nodes in a
structured, binary format. In addition, raster maps stored using HDF5 can be loaded
by GIS applications (e.g. Quantum GIS, Sutton et al. 2009) in order to minimize the
postprocessing of the data.

6.3.4 Theoretical Performance of Distributed ABMs

We can compute the improvements of distributing ABMs taking a look at theoretical
wall time (real-world time needed to finish an execution). We can define the time
needed for a model with local interaction as:

WallTimeL D N � timeSteps � .E C I � L/=numCpus

being N the number of agents in the simulation, E the time an agent spends
interacting with the environment in a given time step, I the time spent interacting
with another agent and L the number of agents within range of interaction.3

Similarly, the wall time for a model with global interaction is defined as:

WallTimeG D N � timeSteps � .E C I � N /=numCpus

3This would be the cost for the majority of archaeological ABMs.
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Fig. 6.5 Theoretical comparison of temporal costs of execution for Agent-Based Models with
parameters t imeSteps D 1;000, E D 0:005 s, I D 0:001 s, and L D 10 for (left) simulations
where only local interaction exist and (right) simulations where agents interact with any other
existing agent. Y axis shows (with a root squared scaling) the time needed to execute simulations
with different number of agents (defined by color) for given cpus (X axis)

Figure 6.5 compares the theoretical cost of executing an ABM for both local and
global interaction scenarios.

This decrease in wall time is the maximum boost in performance that a
distributed simulation can achieve. Overheads generated by communication, seri-
alization and other processes will lower performance, to the point that the increase
in the number of computer nodes could slow the execution of very simple models.
In this context the modeller is responsible for choosing the optimal infrastructure
capable of accelerating the simulation execution (Wittek and Rubio-Campillo
2012b).



6 Large Simulations and Small Societies 129

6.4 Computational Solutions of Methodological Problems

We will explore three methodological discussions that can be enriched with the
introduction of increasing computing power: parameter sweeps, exploration of size
dependent emergence, and the problem of self-fulfilling prophecies.

6.4.1 Parameter Sweeps

The first benefit from having a large set of CPUs is that you can execute a higher
number of runs for a given experiment. Archaeological problems deal with a high
degree of uncertainty, so a large percentage of models embody stochastic processes.
The consequence is that we cannot analyze a simulation based on one run, as
different executions provide different results; we need to execute several runs, and
their number will increase depending on the degree of stochasticity of the model.

An HPC infrastructure minimizes the time needed to achieve this task but it is
important to note that this problem has not been thoroughly explored, because the
proper number of simulations is difficult to know; how many runs of a given scenario
must be executed before being sure that the results are fully understood? A common
technique is to compare the average and standard deviation of particular outcomes
for different sets of the scenario (e.g. 10, 100 and 1,000 runs), but it still remains a
tricky issue for most models. In any case this is a field that should be addressed in
the near future.

If we want to grasp how the model is affected by different initial conditions
we also need to execute parameter sweeps. The technique consists on exploring the
combination of possible initial values of the simulation. This analysis allows the
researcher to fully understand the importance of the parameters as well as the rela-
tion between them. If the number of parameters is large this could be an impossible
task, as a correct analysis should explore the whole range of combinations; as a
consequence the scientific quality of the model will decrease, because the effect of
the different parameters in the outcome will not be fully understood.

This problem is even more important in archaeological models, as it is difficult to
give realistic values for most parameters (given the mentioned uncertainty). Some
models avoid this problem fitting real data to simulated data. The problem is that
this is not always possible, because the solution requires high-quality archaeological
data that usually is unavailable. As a result archaeology-related ABMs often suffer
from the problem of having too many parameters that are nor explored neither
calibrated.

One of the possible solutions is the adoption of HPC. This would allow, at a
technical level, to execute the needed number of simulations in order to perform
sensitivity analysis using different techniques (i.e. genetic algorithms, see Stonedahl
and Wilensky 2010). Nevertheless the difficulties to understand the outcome remain,
as the analysis of the results will be extraordinarily complex, and every new
parameters will increase the problem at an exponential rate. Besides, HPCs are
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not designed to execute a large number of simple simulations. The cost of the
interconnectivity between computer nodes is extremely high, and is not really used
if every run is executed in a different node. In the end, a simple cluster or cloud-
based services would have a better trade-off between cost and capabilities, being
HPC best suited to face the following two issues.

6.4.2 Size Dependent Emergence

A quick glance at ABMs published in archaeological journals suggest that they
tend to be small (for a survey of recent simulations see Lake 2013). The number
of agents will seldom exceed the order of thousands, so the idea of having a large-
scale simulation with zillions of agents do not seem related to the usual case studies.
If a large process needs to be modeled it is easier to jump from one scale to a higher
rank, thus adding a level of abstraction to the behavior of the agents. In the end the
best practice is the choice of a resolution as lowest as possible; it will avoid the
computational requirements and complications of huge simulations.

The pitfall of this approach is that some times the optimal spatial, temporal and
behavioral resolutions do not fit well. Imagine the simulation of migration processes
at a continental scale such as hominin dispersion from Africa. Models designed for
this task have extreme low resolutions (hundreds of year per time step, thousands
of kilometers per discrete spatial position). Given the temporal and spatial span it
seems the best choice, and it has been adopted by several research works during the
last decades (Mithen and Reed 2002; Nikitas and Nikita 2005; Hughes et al. 2007)

A closer look to the processes being modeled makes clear that the different
resolutions do not fit: there is a gap between the choice of spatiotemporal scale
and the scale of the behavior defined in the agents. On the one hand, space and time
resolutions are chosen to model a process that is being developed at a huge scale. On
the other hand, the behavior seems to be modeling a small-scale event (in the case
of dispersion, the movement and reproduction of human groups). The truth is that
behavior is not suited to the scale, because in reality during a time step any human
would be able to move wherever he/she wants around the simulated world.

For example, in the cellular automata defined in the model Stepping Out (Mithen
and Reed 2002, p. 436) a time step is defined as 250 years. During this time a cell
can colonize its neighbors, being all of them triangles with sides of 322 km. Why a
further cell cannot be accessed during this huge time interval? A cell at thousands
of kilometers from the point of origin could be colonized; if this was not the case
was for other reasons, not because it was physically impossible: this constraint is
introduced in the model to deal with the divergence of the scales. In the end, a
paradox emerges from the model: to understand the reasons why humans colonized
entire continents we need to explore behavior at a small scale. If we want to correctly
address the relation between behavior, spatial scale and time scale, we need to let the
migration process emerge, instead of applying the behavior suitable for one scale to
worlds defined at other scales while forcing artificial constraints.



6 Large Simulations and Small Societies 131

A second issue related to the size of simulations arise from the concept of
emergence, typical of ABMs: how can we model mechanisms that can only be
understood for a large number of agents? For example, warfare tactics are strongly
related to the size of an army. The tactics used in a given period are linked to
the number of available soldiers that were deployed in a battlefield. Studies on
battlefield archaeology of the eighteenth century (Rubio-Campillo et al. 2012)
shows how linear warfare of this era cannot be correctly modeled while trying
to simulate a few individuals. The reason is that the studied cultural traits (firing
systems) were designed to be used with thousands of soldiers, given the lack of
accuracy of existing fire weapons. Some of the hypotheses regarding command and
control, and even individual behavior follow the same reasoning, as do other types
of traits. In this context, we cannot simplify the simulation using fewer agents, as
the behavior we want to explore is linked to the number of them that are interacting
at a given time step.

Both issues (incorrect relation between scales and large-scale behaviors) can be
included inside the general concept of size-dependent emergence. True enough, lots
of emergent behaviors are detected in small worlds, but certain phenomena can only
be observed in large-scale scenarios (Murphy 2011). HPC is essential in these cases,
as we will need to create larger simulations, more costly in terms of computer power
and more difficult to analyze if an HPC is not available.

6.4.3 Solving the Dilemma of Self-fulfilling Prophecies

The two previous topics proof that some models cannot be simplified or split
in simpler simulations. As a consequence, the results can be more complex to
understand and justify. Parallel to these issues there is another one that, in our
opinion, seems to be the most important issue of state of the art archaeological
simulations: the definition of behaviors.

The vast majority of published ABMs are based on the classic SugarScape model
by Epstein and Axtell (1996). The model consists of a discrete world, defined
as a finite bi-dimensional matrix, where a set of agents interact between them as
well as with the environment. This behavior is defined as a list of rules; if one
condition applies, a simple behavior is executed (e.g. if there is no food the agent
will move to the adjacent place with more resources). In other words, the decision-
making process of the agent is wired, as its choices are completely predefined. As
a consequence it is incapable of finding solutions and reacting to conditions not
devised by the modeler. This is a weakness of the methodology if we think that
the interest on ABMs is precisely the emergence of large scale behaviors from the
interaction of these simple rules. In theory these behaviors should not be explicitly
defined in the original model, but as we said behavior is predefined, so there exist
an important thread of circular explanations (Macal and North 2010).

Moreover, if everything in an ABM is related to the agent’s behavior, why is it not
analyzed like a parameter? Behavior is arbitrarily defined based on archaeological
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assumptions, so it should also be explored to ensure scientific quality. Most models
do not face this issue, so we are not really sure if different behaviors (even slight
variations) affect the observed outcome as no sensitivity analysis is performed to
study it.

The consequence of this problem is that critiques against ABM focus on the fact
that they are self-fulfilling prophecies: emergent traits are not related to the problem,
but to the way it was programmed, and if we can take a look at the code, we will
learn the implicit or explicit assumptions the modeler introduced in order to achieve
the final outcome.

The solution of this issue is critical for the future of ABM. For simple models it
can be argued that the assumptions are less important, because such models can be
replicated and understood without problems. Theory building models guarantee the
scientific quality, as the number of parameters is small and behavior is so simple that
the emergence of non-expected behavior can be understood with proper analysis.

The same cannot be said about hypothesis testing simulations. They are usually
more complex because their goal is to understand realistic scenarios. For this reason
these models create agents with several traits and a large list of conditions and
rules, as simpler agents would not be able to take decisions based on the amount
of data being used. In the end it will become impossible to understand, even by
the creator of the model, which system properties emerged from the simulations,
and which ones from the way the agents were programmed. Even though the
problem is often not explicited, its consequences are so important that we have to
wonder if hypothesis testing models are really useful to understand social change,
except for some approaches that use excellent datasets and simple mechanisms, like
evolutionary archaeology (Premo 2010; Lake 2013).

Any solution to this issue needs to avoid the design of the traditional rule-based
agents. Luckily enough Artificial Intelligence has developed, in the past decades,
several alternatives to the modeling of decision-making processes. The change
would provide access to a plethora of well-known methods that could be integrated
in the agents’ design such as goal oriented agents based on atomic actions.

Imagine that we want to explore the foraging strategies of Hunter-Gatherers in a
realistic landscape. Instead of defining every way in which an agent can interact with
the environment, we could define its basic goal as survival (i.e. getting each time step
a given level of food) and a set of simple actions that it can use to achieve the goal.
The only possible actions would be moving to another location or forage the place
where the agent currently is. Every action would have potential associated rewards
and costs, and the decision-making process would consist on the choice of a single
action each time step. The whole process can be seen as a fully observable stochastic
state model, or Markov Decision Process (MDP). In this context, the agent needs to
explore possible options and the impact on its future, thus choosing the best one
given its knowledge of the environment. Figure 6.6 shows this process, where the
agent explores its future applying different sets of actions.

The benefit of this approach is that MDPs are well known models of decision-
making in the field of Artificial Intelligence. There are different ways to solve it,
like the family of A* algorithms or the UCT approach (Bonet and Geffner 2012).
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Fig. 6.6 Exploration of actions using a Markov Decision Process

This is a CPU consuming algorithm that acts as a planner for the agent: given a set
of goals, the agent will simulate on its own the accumulated effects of executing
different available actions. Thus, at every time step potential rewards and costs will
be explored for a large set of possible actions, given a defined policy and a search
depth. When the process is finished the agent will choose to execute the best action
for the next state (when the algorithm will be executed again).

This change in the architecture of the agents solves the problem of implementing
realistic scenarios at several levels:

1. Definition of the model. It is simpler to think on a small set of possible actions
than a large set of rules. Moreover, if archaeological data is scarce these rules can
not be defined at all (but we can still define the small actions).

2. Complex behavior without complex rules. Instead of defining rules the modeler
defines goals and atomic actions. They are more understandable and for this
reason the model can be best understood by archaeologists that did not implement
the model.

3. Verification. The researcher has different available algorithms to solve the MDP.
They are already understood and published by AI experts, so the modeler can use
third-party implementations instead of developing new code.
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4. Extension. The division of behavior between potential actions and decision-
making process allows for the exploration of different approaches (e.g. what if
we introduce a cognitive model, social interaction or partial information?).

To summarize this approach, in order to model realistic scenarios we need realistic
decision-making processes. They have been researched by Artificial Intelligence
during the last decades, so we should use their knowledge to create new types of
agents, capable of acting in a realistic way while maintaining scientific quality. It is
clear that this approach requires additional computing power, and HPCs are the key
that will allow its introduction into archaeological ABMs.

6.5 Concluding Remarks

The use of simulation in science always require further computational power. Only
high-performance computing (HPC) resources are capable of dealing with large
simulation scenarios containing agents applying artificial intelligence algorithms
with high computational costs. Even though the problems solved by archaeological
ABMs are somewhat different than other fields, the capabilities of these systems can
also be exploited. We have explored different options to accelerate the execution of
the simulations, but also to improve the methodological framework and scientific
quality of these models.

As we already know hardware infrastructures evolve at a fast pace; any software
solution must be independent of the characteristics of the underlying system. On
one side of the spectrum we find the supercomputers, where hundreds or thousands
of nodes are located inside a facility with high-speed interconnection, forming a
homogeneous and reliable environment. The increasing trend of cloud computing
is present on the other side, where a theoretical unit of computing can, in reality,
shape multiple and varied hardware infrastructures linked with medium or low-
speed interconnections (Armbrust et al. 2009). The debate about which system is
better is far from the aim of this chapter, but it is important to note that, from our
perspective, they serve different purposes. Cloud computers are definitely needed
when no supercomputing infrastructure is available. Even if a supercomputer is an
option, cloud computers are more cheaper when the agents inside our model do not
interact constantly. If the model is communication-intensive, on the other hand, a
supercomputer is the best available choice, as its performance is optimal for this kind
of executions (Wittek and Rubio-Campillo 2012a). The election of the platform used
to execute an ABM will be increasingly difficult given the varied options, and the
modellers should be able to choose based on the properties of their own simulations.

Additionally the constant improvement of available hardware components pro-
vides new ways for scientific simulation to exploit new computing capabilities. For
example, Graphics Processor Units (GPUs) are increasingly being used to boost
the performance of particular sections of a simulation (D’Souza et al. 2007). Even
though it is unclear how small-scale ABMs could benefit from this approach, some
examples have been suggested (Wittek and Rubio-Campillo 2013).



6 Large Simulations and Small Societies 135

To conclude, this chapter provides an overview of the impact of HPC in
archaeological ABMs. It is a decisive advance on the quality of the models focused
on small-scale societies with a high demand for complex behaviors. The boost in
computing capabilities provides solutions to different methodological issues derived
from the use of this technique. In any case, we should be aware that, even if
they are extremely powerful, they are just a tool; it is the responsibility of the
researchers to develop models capable of exploiting these resources and solve
interesting problems.
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Chapter 7
Mining with Agents: Modelling Prehistoric
Mining and Prehistoric Economy

Kerstin Kowarik, Hans Reschreiter, and Gabriel Wurzer

7.1 Introduction

Mining areas are characterized as centres of production and consumption. Aspects
such as expert knowledge, intra- and superregional communication, the operation
and maintenance of traffic and trade networks further add to its complexity and
require consideration. All these interdependent conditions demand an analytic
approach combining different levels of observation, both spatially and in context
of the model used.

With its spatial modelling approach, Agent-Based Simulation (ABS) can aid a
clear formalization with respect to one of these levels (within a mining gallery,
considering the whole mine as a system, considering mining facility with its
supporting settlements, considering a whole region, see Fig. 7.1). The spatial data
basis that is used in this respect largely depends upon context (refer to Fig. 7.2):

• Continuous representations involve vector data coming from GIS or CAD,
while discretized representations import per-cell raster data from GIS or bitmap
images. To be precise, space in an ABS is a locality-based data source for a set
of defined properties (or layers, in GIS jargon). An evaluation at spot (x,y) yields
the values of properties p1 : : : pn, where n is the number of layers present.
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Fig. 7.1 A multi-level
simulation approach involves
several stages of increasing
complexity. ABS can be used
to formalize models such that
each level acts as a black box
for the next-higher stages,
thereby making results
reusable and composable

Fig. 7.2 ABS excels at
spatial simulation, where
space can be either
continuous or discrete (i.e.
consisting of cells). Space
acts as a data source,
providing properties p1 : : : pn

at a certain location (x,y).
Agents are movable entities
within this environment that
can query and alter these
spatial properties. They also
have an identity i and carry
properties q1 : : : qm with
them. Thus, different agents
can be queried from the
outside for their locality (and
properties residing there) as
well as their own properties,
which makes complex
interactions between agents
and space possible

• Quite similarly, agents are movable entities residing at a certain location x,y.
They hold their own properties q1 : : : qm, which are typically defined per agent
type (e.g. persons). Agents furthermore have an identity i that can be used to
query a specific agent.

Even though literature sometimes speaks of “agents possessing a brain of their
own”, we see this as a completely separate matter: For us, agents are essentially
moveable containers for data, governed by the actual simulation code that also influ-
ences all other parts of the environment such as the underlying space. The statement
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of the simulation model is therefore the choice “what to do” with all of these
data-holding entities, which is exactly what we focus on with this contribution,
giving prehistoric mining as an example case.

7.2 The Prehistoric Salt Mine of Hallstatt/Upper Austria

The prehistoric salt mines of Hallstatt are located in southern part of Upper Austria
in the alpine Dachstein region. The mining areas as well as the famous Early Iron
age cemetery lie 400 m above the historical mining town of Hallstatt, in the Salzberg
Valley. The topographic and geographic situation can be described as difficult to
access and remote. The contemporaneous settlement areas were located about 30 km
north and south to Hallstatt. In addition the climatic and geographic situation of the
region are badly suited for agricultural activities. The oldest salt mining activities are
dated to the Middle Bronze Age. Dendrochronology fixes the Bronze Age mining
phase to 1458–1245 BC (Grabner et al. 2006).

The actual state of research indicates that three huge shafts systems (depths up
to 170 m) operated in parallel (Barth and Neubauer 1991). The enormous amount
of archaeological finds and the perfect conditions of preservation in the mines due
to the conserving faculties of salt allow for a reconstruction of the work process in
the mining galleries (as mentioned in Barth 1993/1994, p. 28). All organic material
left in the prehistoric mines has been conserved undamaged due to the preserving
faculties of salt (mine timber, wooden tools, strings of grass and bast, hide, fur,
textiles, human excrements etc.). This mine waste—also called heathen rock—was
left in the mines and has been compressed to solid rock through mountain pressure.
The excavated archaeological material from the mines represents almost exclusively
tools (e.g. pick handles, collecting tools, carrying buckets) and work assets (e.g.
lightning chips, mine timber). Three major areas of Bronze Age mining activity are
known, vertical shaft systems can be reconstructed. Salt was mined with bronze
picks, producing small pieces of salt, which were then collected with a scraper
and trough (see Fig. 7.5) and filled into carrying buckets. These were then carried
to the shaft and hoisted to the surface using a wool sack or cloth attached to a
linden bast rope. It is assumed that salt was mined on several levels in one mining
gallery. The data on mining technology and working processes is dense and of
high quality. However, important information is lacking, as no settlement and no
cemetery pertaining to the Bronze Age mining phase is known. However, we do
have hypotheses based on Bronze Age mining that are derived from anthropological
investigations of the Early Iron Age cemetery (9th–4th cent. BC) in the Salzberg
Valley. In more detail, the anthropological analysis of the musculoskeletal markers
of the excavated skeletons indicates a high workload and specialization on a rather
limited range of movements that were iterated over a time span of many years
(Pany 2005). The reconstructed movement patterns fit in well with activities related
to mining such as breaking salt with a pick and carrying heavy loads. Gender
related work division was clearly practiced. Working patterns observed in all studied
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samples exclude work tasks related to agricultural activities. The anthropological
analysis has shown that the age and gender structure of the cemetery correlate
with age and gender distributions of a “normal village”. Summing up, our inferred
hypotheses conclude that (1) Bronze Age miners were working “full-time” in the
mine (2) all members of the mining community were involved in the mining process
and, in consequence, (3) other groups had to provide them with means of subsistence
(food, clothing), (4) the mining community lived in the Salzberg valley.

7.3 Agent-Based Simulation of Mining

7.3.1 Previous Work

The idea of using computer simulations in archaeological research has been around
for nearly half a century. The 1970s saw considerable enthusiasm which was
then thwarted by the limitations of contemporaneous computer technology and
the lack of a sufficiently sophisticated theoretical framework. The developments
in computer technology and scientific theory (complex systems theory) in the
1990s have given the application of computer-based modelling to archaeological
research a considerable new boost (e.g. Kohler and van der Leeuw 2007, pp. 1–12;
Costopoulos and Lake 2010). Especially Agent-based Modelling (ABM) has been
popular with the scientific community since the late 1990s. It has been applied to a
multitude of research topics, from the development of social complexity, decision-
making, culture change, and spatial processes (Doran et al. 1994; Dean et al. 1999;
Beekman and Baden 2005; Premo et al. 2005; Clark and Hagemeister 2006) to the
exploration of civil violence in the Roman World (Graham 2009) and the work flow
analysis in prehistoric mines (Kowarik et al. 2010). What makes ABM especially
attractive to archaeology is its potential to model social phenomena on a very
advanced level. The bottom-up approach inherent to ABM enables researchers to
address individual actions and emergence, thus truly dealing with the complex
behaviour of social systems (Premo et al. 2005). The simulation which we are going
to present in the forthcoming sections have also previously been reported in Kowarik
et al. (2012), in which additional details beyond the scope of this chapter are given.
Furthermore, our simulation models are available online http://www.iemar.tuwien.
ac.at/processviz/hallstatt as well as upon request to the authors.

7.3.2 Simulating Work Processes

Work processes are given as sequences of actions which are executed repeatedly
in order to reach a set goal (in our case: the production of salt). Our agents have
no freedom of choice over these strictly defined actions, but execute them as-is.
Methodologically, this approach is significantly different from other models that

http://www.iemar.tuwien.ac.at/processviz/hallstatt
http://www.iemar.tuwien.ac.at/processviz/hallstatt
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focus on behaviour, using a set of rules from which an agent chooses freely. The
main difference is that we look at whole work processes as stated by archaeological
model building, not emergent behaviour that occurs when agents interact (according
to some hypothesis). Arguably, this way of modelling is rather “Tayloristic”; the
reason for employing an ABS rather than performing hand-calculation (i.e. “time
needed per m3 of mined material”) is that there are dynamic factors which make the
result not easily computable lest simulation is used: for example, salt distribution is
varying over the simulated area. This can easily be expressed as spatial property ‘salt
density’, which can either be imported or generated, since the typical concentration
and form of salt bands are typically known for a specific mountain. Another factor
that is dynamic and easily expressed in ABS is the division of work load between
different process roles: This may be fixed, or it may vary according to some preset
condition (such as a staff schedule, for example).

Our model uses discretized space, in which each cell corresponds to a spot of
1 m � 1 m within a mining gallery. By using an additional property, we introduce an
additional height of that patch, in multiples of 2 m. Such a constraint also applies to
the maximum dimension of the mining gallery, which is set to 100 m � 40 m, 18 m
height. Each patch also carries a property that states its salt density, as percentage
of salt versus other material present (and which is just ‘garbage’ in the context of
the process). Typically, this density is around 80 %, in a cloud-like shape that can
be generated by using a e.g. fractal noise filter peaking at that value. We load this
salt distribution as a raster map, i.e. we use a two-dimensional distribution even
though our environment is three-dimensional. This approach is nevertheless sound,
as salt progresses in vertical bands through the mountain; given this circumstance,
we may assume salt distribution to be constant among all layers for the small area
in which our model simulates. In other mining simulations which do not satisfy
this assumption, the distribution would need to be loaded per layer (i.e. as a set of
bitmaps).

As to the simulated personnel, we distinguish between two different agent
types (process roles): The miner (who breaks the salt) and the transporter (who is
responsible for moving the product to a vertical shaft). Current archeological finds
suggest a mining process progressing in levels: Each was 2 m high and could be
reached from the level below. Furthermore, a spot on the same level could be reached
directly, without having to climb up or down. Formalized, this means: a mining spot
(see Fig. 7.3) must be at least two cells wide: one for the actual miner agent, one
for transporter and reachability. This constraint can be given up if it is assumed that
digging and transport take place in sequence.

The maximum number of levels in which the mining is conducted is given
as a parameter (the absolute maximum, which comes from the stated maximum
dimensions, are nine steps). Initially, we carve out an area of 3 m � 3 m, which
represents the space taken by a vertical access shaft. Furthermore, the first row
of patches on each layer are carved out, giving the miners a place to stand on.
This initialisation gives a minor deviation from a simulation that would calculate
everything from the begin on (i.e. establishing a vertical shaft and the first row
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Fig. 7.3 Model of the simulated digging process: miners dig the salt, which is then transported by
an own person group to the vertical shaft. Because of the large timespan that has to be simulated
(250 years), we have implemented a scheduler that can passivate agents and activate them again
when a certain point in time is reached or a specific wake-up signal is broadcast

of patches in each level). The reason for doing so lies in the lack of evidence
that would underpin this “mine establishment” part. A detailed discussion of the
resulting tradeoff in accuracy is given in the discussion (see Sect. 7.6).

With the levels in place, the agents are now put to work: Miners first query the
bottommost layer for all possible mining spots. Mining spots are unoccupied cells
which lie beneath a cell on a higher level (i.e. one that has the rock which is to be
digged) that contains salt and is also unoccupied. If it has found any such spots,
the agent selects the one with the maximum salt concentration, assumes a standing
position beneath it and begins digging. If there are no such spots at the current layer,
the search advances to the next layer. If all layers are exhausted, the simulation ends.

After having selected a new mining spot, the agents start the actual digging work.
Classically, the time base for ABS are ticks of a virtual clock, where each tick stands
for equidistant unit of time (e.g. second, hour, year). A unit of work—in our case:
the actual digging, takes days (see Sect. 7.5.3). Other processes, such as transport,
take only tens of seconds. We have implemented a scheduler on top of the ABS,
that is made to progress time while the agent is working, which helps us deal with
both time resolutions:

• Upon reaching a time-dependent task, the agent is made passive and written into
the so-called future event list of the scheduler. This list contains all agents that
are waiting for a specific instance in time, sorted according to the nearest future
activation time.
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• Instead of advancing by a second in each turn of the simulation, the scheduler is
given control of time. It removes the first agent from its future event list, reads
its activation time and advances the clock to that timestamp. Then, it reactivates
the agent. It repeats this process while there are agents waiting for the current
timestamp.

The scheduler therefore advances time in non-equidistant intervals. For miners, we
can specify if the digging should be performed “one whole cell at a time”, which
means that the scheduler will passivate the agent for the whole amount of time it
takes to dig 2 m3 of mountain rock. We can also specify that the time that the miner
uses is proportional to the capacity of a carrying bucket, which will be used to
transport the salt up to the surface. Regardless of what of the two modes is used,
the reactivated agent will mine the amount given by the time passed, taking the salt
density (given in percent of salt per cell) into account. It also raises a signal that salt
is now available for transport, which will be explained in due course.

Both materials—salt and “garbage” (impure mined rock) increase their volume
upon being mined. The increase in volume is fairly significant (in our case
C70 %) for the transport process: There is a special type of agent which is called
“transporter”, which has the sole duty of collecting the mined salt once the miner
agents signal that it is time to do so. For this to be possible, we have extended the
scheduler with an additional list, the future signals list, that can be used to passivate
agents and reactivate them when a certain signal is issued. In more detail:

• Transporters are created, immediately passivated and written to the future signals
list in order to wait for SALT_READY.

• Miners raise SALT_READY after having produced salt. As a matter of fact, the
scheduler reactivates all transporters waiting for that signal. The activated agents
then go to find salt, one bucket at a time. This means: finding a spot with salt,
filling a bucket, transporting this to the vertical shaft. Additional processes, such
as the actual transport to the surface and further, are not modelled: We restrict
the simulation to the actual process within one mining gallery, in order to make
it composable with a simulation of the whole mining facility.

7.4 Implementation

We have implemented the stated model using NetLogo (Wilensky 1999), an open-
source simulation that runs on the Java Virtual Machine and is therefore available
over a wide range of platforms.

Netlogo itself is a dynamic scripting language, meaning that every command
can be issued at run-time (without compilation). Since NetLogo does not support
Coroutines (i.e. passivation and reactivation of a piece of code), we had to emulate
them using functions: All code that is to be run without interruption is put into
a function (or ‘Procedure’, in NetLogo lingo). At the end of the execution of the
function comes the code to passivate the agent. This sets the agent property active to
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false and sets its resume function. The agent is then written into either queue (future
event or signal list, as described earlier), which is then sorted. The implementation
of the future event list uses a priority queue to do that, as the timestamps give the
priority.

In every step of the simulation (Fig. 7.4), the scheduler is called and advances its
clock to the time of the first item in the future even list. It then takes this agent out of
the list, sets its property active to true and executes the resume function. While there
are agents waiting for the same timestamp, this is repeated. The result of this is a
set of active agents, which then execute their resume function. Note that, for newly
created agents, this is always set to be the first action of the process (e.g. find salt in
the case of miners).

Active agents then execute their resume function, which will (1) raise signals
such as SALT_READY, which are written into a buffer, and (2) also call upon the
scheduler to passivate the agent again when a certain time is reached. After that,
all agents waiting for a signal are reactivated: For every item in the signal buffer,
corresponding agents in the signals list are made active and immediately execute
their resume function.

With the help of these constructs, we were able to let an agent simulation compute
200 years of mining in just 5 min (depending on the number of levels). NetLogo’s
parameter sweeping implementation (BehaviourSpace) furthermore allowed us to
vary the input parameters and run experiments in unattended mode (e.g. over night).

Fig. 7.4 Actual implementation of the digging process, in NetLogo. The salt distribution is given
by the white areas of the world, which the miners follow. At the edges, colour-coded steps are
depicted (here for three layers). Both salt production and workforce activities are given as plots.
Initial assumptions (constants) are shown on the right side
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7.5 Experimentation

7.5.1 Parametrization

The simulation was used to obtain the time it would take the agents to fully exploit
a mining gallery, given a fixed salt map as basis.

In a pre-step, timing experiments for the described work processes were made
inside the mine, using reconstructed bronze-age tools as means. The average of
the timings obtained are shown in Fig. 7.5. Furthermore, our simulation used the
following parameters as input:

• Number of layers (1–9)
• Number of miners (25, 50, 100), number of transporters (5, 10, 25, 50)
• Minimal standing space—number of cells to stand on for each level (1 cell:

mining, then transport, 2 cells: mining and transport in parallel)
• Volume of salt to dig without interruption (0.02 m3: one carrying bucket, 2 m3:

one complete cell). This corresponds to the passivation time of the agent, and
depends on the salt concentration of the current mining spot.

As maximum simulation time, 250 years were set. This figure is larger than the
actual usage time, as dendrochronology gives us 213 years between the youngest
and the oldest wood found inside the prehistoric mine. The higher number is
considered a safe margin, though.

Fig. 7.5 Timings have been derived from experiments which were conducted in the mine, using
reconstructed bronze-age tools
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7.5.2 Pre-experiments for Narrowing the Parameter Space

The parameter space stated above had to be narrowed down before conducting the
parameter sweep experiments:

• Number of layers: Using spreadsheet-calculation, we first obtained the projected
total time (number of cells � time per cell), which is dependent on the number of
layers that are due to be mined and the minimal standing space. No option could
be eliminated, to the contrary: With 25 miners, we calculated 5 years (1 layer) to
39 years (9 layers)—a very small number indeed. It must be noted, however, that
these calculations do not take the topological rules stated earlier into account,
and are thus the absolute lowest bound.

• Number of miners and transporters: Both of these agents require space. Thus, it
is quite possible in initial situations of the simulation that there are too many of
them to fit into the mining gallery. The simulation was extended to make non-
fitting agents inactive until a space becomes available. Concerning the number of
agents, our initial tests confirmed that the time until full exploitation was rather
low even when taking topology into account, for example (3 layers, 25 miners
digging 2 m3 at a time, 5 transporters) 13.88 years of work time. As no constraints
concerning the digging workforce were in place, we sticked to the default range
(25, 50, 100). It must be noted that a mine that stands still is never ‘idle’—even
it is fully exploited, since it can still serve as a transit space for horizontal and
vertical traffic that has to be maintained through refurbishment of the timber
supporting structures.

• The number of transporters was rather insignificant(!) for the total exploitation
time. Upon looking closer, the volume of salt that was constantly produced
is too small for having a real need to employ distinct transporters. Pictorially
speaking, it would have been enough if every miner took the produced salt with
him, upon ending his shift. The number of transporters was therefore kept at the
minimum (5).

• With the discovery that the transporters were insignificant, it was clear that the
minimal standing space could be limited to 1 instead of 2 cells, since parallel
transport and mining are rather unrealistic without a surplus of salt at the standing
spot of the miner that needs to be brought away.

• The unit of work for the miner did not affect the outcome of the simulation (2.5 %
delta for 3 layers, 25 workers, 5 miners). It had, however, a large impact on
performance: For 0.02 m3 digging at a time, one simulation experiment would
compute in the order of hours, whereas the digging of 2 m3 would need only
minutes (both depending on the number of levels). Therefore, we used 2 m3 of
digging throughout the simulation. The lack of significance in having a small
unit of work is clear when we look at the time it takes to mine a bucket full of
salt versus the transport: Assuming 80 % salt density, the miner would interrupt
after 1.5 h. The called transporter would need a few minutes to scrape the salt
together, load it into a bucket and bring it to the shaft—before becoming idle
again. On the contrary, having 2 m3 of salt mined in one piece requires 1.7 h



7 Mining with Agents 151

of work for five transporters (assuming a transport takes 3 min in average),
which is still insignificant. As a note of caution, we once again state that all
of these considerations of transport do not take the vertical lifting from the shaft
to the surface into account, which is currently being researched using physical
simulation.

7.5.3 Experiments

In the actual experiments we simulated the reduced parameter space that we got as
result of the pre-experiments. We used 10 repetitions per for layers 1–7, and one run
per parameter variation of layers 8 and 9. As justification, it is noted that there was
no variation in the produced values of layers 1–7 (<0.01 years), and the required
time for a run in levels 8 and 9 was very large (>1 h).

7.5.3.1 Quantitative Results

We could show that the number of people actively working in the mining gallery
might have been smaller than initially assumed, given the necessary time for totally
exhausting a mining gallery. Depending on the number of levels (see Fig. 7.6),
25 workers need between 4.74 and 41.39 years. Adding more workers does not
decrease the work time in a directly proportional manner: For example, doubling
the 25 workers found does not decrease the needed time to 50 %, but only to 54 %.

1 layers

2 layers

3 layers

4 layers

5 layers

6 layers

7 layers

8 layers

9 layers

Fig. 7.6 Results of our mining model. Time until full exploitation (y axis) vs. number of workers
(x axis) vs. number of mining galleries (“layers”, see graph lines)



152 K. Kowarik et al.

Much of this effect is caused by the limited space in the initial stages of the
simulation, where not every agent can be fitted inside the given space and must
therefore stay idle (waiting in the vertical access shaft), along with the obvious
different mining pattern occurring if more agents are at work.

7.5.3.2 Qualitative Results

The shape of the mining galleries produced can be seen as emergent outcome:
In contrast to the initial idea that mining would produce large mining galleries
with carved-out levels along the boundaries, we observed a multitude of connected
halls with smaller connecting hallways. The agents tend to dig on one level in a
sweep-like motion, before breaking creating a hallway and passing through into
the next mining gallery. We interpret this to be the caused by the shape of the salt
concentration map, in which the salt distribution is “cloud-like” (as in reality) and
the behavioral rule to focus on the piece of rock with the highest amount of salt.
Recently another possibility has entered the archaeological discussion: It is now
assumed that the galleries were mined according to a preconceived plan: Based
on different findings from the excavations in the salt mine, it seems to emerge
that the prehistoric miners did not simply start mining wherever they found the
highest content in rock salt. It rather seems that already before the mining started
a “construction plan” for the mine existed or to put it differently the shape of the
mining halls was fixed even before they came into existence.

As a further qualitative outcome, we found that the idea of having an extra
walkway of at least one patch in each level makes sense only if the mining work
must proceed highly parallel between miners and transporters, which is doubtful
at least when looking at the production rate for salt. As transporters are rather
insignificant given our result, this constraint does really not seem to apply, if not
other considerations than parallelism come into play.

7.6 Discussion

Our simulation computes pure working times, in years. We have no social model
or other forms of time constraints that govern our miners behind our model. Even
if we did try to apply such a mechanism, e.g. 8 h for work, 8 h free time and 8 h
sleeping, the time until full exploitation would be far smaller than the actual period
of use for the mine (213 years). Some questions are therefore: Was the mining hall
exhausted and then only used for accessing deeper-lying mining galleries? Or, was
salt production on such a small scale that it would fill the whole time-span?

When considering our simulation results in further consequence, we also find that
they sometimes contradict longstanding archaeological assumptions. For example,
bronze picks, salt buckets and scraping tools were thought to be designed to
optimize the working process, as they both consist of standardized parts and were
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intended for performing the same work steps over and over in rapid succession.
However, the simulation suggests that such a kind of efficiency was not needed, due
to the slow rate of salt production.

What have we left out? A specific trail that we did not follow is the change in
the spatial environment, which is assumed to be static in our model. Leftover debris
and burnt-down torches effectively alter the shape of a mining hall to such an extent
that movable (wooden) staircases had to be put on the rubble to establish walkways.
Clearly, simulating and verifying the distribution of the rubble nowadays found in
the prehistoric mine would be an interesting work for the future. It does, however,
not change the overall exploitation time, which we have simulated here.

Another shortcoming, which we have accepted because of the lack of data and
consequently also of experimentation results, is the way in which the vertical shafts
were built. It is clear from the excavated parts of the mine that a certain amount of
timber constructions were installed in the vertical shaft. However, a large part of
reconstructing these shafts needs to be based on the lifting mechanisms, which we
are still trying to understand. Clearly, linden bast ropes were used to lift weights; the
actual lifting construction has been not excavated to its full extent, and therefore, the
surrounding staircases and/or ladders need to be clarified. Some preliminary results
point at the weight of the lift itself, which might have been very large considering
the frictional forces and the weight of the rope itself. Several alternatives—a closed-
loop rope versus an open one—are still being researched, which is why we do not
seek to jump to conclusions at this early stage. The vertical circulation represents
one of the most challenging issues that we are faced with, which is going to occupy
us for the next few years further on the research trail. Current efforts in that context
are: The physical simulation of the lifting mechanism, the staircase construction
(based on the wood distribution coming from the actual, collapsed staircase) and
the research into the collapse itself.

7.7 Extensions: Towards Prehistoric Economy

As augmentation of the basic mining model, we have developed a mixed system
dynamics/ABS model for simulating demographic development in the Hallstatt
region (see Fig. 7.7). The basic question was: If the results from the presented
mining simulation cannot be used to narrow down on the number of people working
simultaneously, demographic development can perhaps give a measure on how
many people might have been available.

System Dynamics (SD) is a method for simulating complex systems with
nonlinear behaviour, roughly consisting of two conceptual parts:

• Stocks holding a numeric quantity (of people, in our case)
• Flows connecting to and leading away from stocks, used for controlling how

much of the quantity enters and leaves a stock in each time unit (which is
continuous, in contrast to ABS).
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a

b

Fig. 7.7 (a) System Dynamics concepts: stocks containing quantities, flows modeling the change
in quantities, variables giving influences on flows and stocks. (b) SD model used for the
demographic simulation

The model is entered as graph: Stocks are being shown as nodes and flows as
edges (see Fig. 7.7a). In our SD extension, the stocks stand for different stages
population, i.e. non-working children, support workers, miners, and time of the
simulation naturally corresponds to growing up. Since SD has no notion of identity
for the contents of a stock, and thereby no way of telling “how many persons
of what age” are contained, we have used a coupled ABS to actually represent
the individuals of a population. This way, we can apply age-based mortality rates
according excavation data of the Early Bronze Age cemetery of Franzhausen
(Berner 1992). For births, we used a fairly high General Fertility Rate (GFR, defined
by WHO as “number of live births during a year per 1000 female population aged
15–49 years (reproductive age group)”) starting with 200 as base number. Such a
high number is found nowadays in developing countries (see e.g. United Nations
2009), which is an analogy we wish to draw.

In each step of the simulation, the SD computes population continuously in terms
of changerate * dt, where each unit of time stands for a year and the changerate
corresponds to the time-dependent flow. In contrast to that, the coupled ABS does
only know of integer quantities. Therefore, changes have to be rounded down (e.g.
20.2 births yield 20 agents in the ABS, the remaining 0.2 are accounted for in the
next cycle of the SD).

The actual population simulation is summarized as follows (refer to Fig. 7.7b):

• We start by adding births to the stock of children (flow birth � children), where
birth depends on the GFR. Simultaneously, agents of age 0 are created in the
linked ABS.

• The progression from the children stock to the stock containing people doing
support work (i.e. juveniles, old people, people for whom there is currently
no employment in the mines) is controlled by age (flow children � support).
Furthermore, mortality is given by the flow children � dead is calculated, as given
by mortality for every age class.
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• If needed, people in the support stock will be assigned to the miners stock,
or released from the latter into support (flow support � miners). As always,
mortality is also modeled by the flow support � dead, miners � dead.

We aimed to answer the question of how high the General Fertility Rate needed to be
in order to sustain a population fit to provide a fixed set of miners (e.g. 5, 10, 15, 20)
over a longer time period (here: 300 years). The first simulation runs confronted
us with the problem that we had to choose a rather big initial population and
considerable fertility rates to sustain a stable population over 300 years. Therefore
we focus here on the necessary parameters for sustaining a stable population.

Simulation runs were conducted for a GFR range from 200 to 425, 50 experi-
ments per parameter variation. We worked with an initial population of 300 people.
Beginning at a GFR of 375 (every woman between 15 and 49 needs to have a live
birth every 2.5 years), stable conditions over a time span of 300 years are obtained
(see also Fig. 7.8). The simulation was then expanded to integrate migration to
Hallstatt.

Migration is characterized by the addition of people into the support class (age
between 10 and 16). These people have already passed the initial hurdles (most
noteworthy: 58 % mortality in between 0 and 4 years) and are on the edge of
their reproductive age. Figure 7.9 shows the simulation results of such a population
dynamics (GFR 225 is assumed):

• An estimated migration of 4.75 persons per year sustains the initial population.
• However, even a lower migration of 1 person per year establishes a stable

population of 75 persons, which would probably be in the range that allows to
run a mining facility.

Fig. 7.8 Sustainability of the population in Hallstatt when only GFR is taken into account. A GFR
of 375 would lead to the stabilization of the population on a very limited level, a further increase
would produce the initial population of 300
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Fig. 7.9 After introducing immigration and leaving the GFR at 225, the initial population is
reached quite easily. This is due to the fact that immigrants have already lived through their
childhood, which has a high associated mortality

Several aspects need to be taken into account before discussing this output any
further:

• Mortality rates were taken from an early Bronze Age cemetery in the lowlands
of Eastern Austria (Franzhausen/Lower Austria, according to Berner 1992).

• The demographic model is based on a rather simple structure not taking into
account illness, warfare, natural catastrophes. The model needs to be reevaluated
as it represents a first trial version.

Keeping these points in mind two possible scenarios emerge under the given model
constraints (also see Sect. 7.2):

• a local population without migration, but, in our view, high General Fertility
Rates

• a local population with a certain amount of migration to Hallstatt and somewhat
lower fertility rates

Looking at the archaeological and anthropological record arguments can be made
for both scenarios.

Concluding, the demographic simulation provides important “food for thought”
introducing demography as a possible important limiting factor in the operation of
the salt mines.

A further perspective would then be to model the whole support community
versus the actual workforce occupied in digging. As in modern-day business
engineering, we have used a business process simulation (see Fig. 7.10) to model
multiple levels of mining activities, the tools needed and salt produced. The model is
still in its early stages, solely concentrating on the mine as a system which integrates
the presented simulations, in order to answer on demand and supply levels. Still, it is
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Fig. 7.10 A business process simulation can simulate the prehistoric mine from a systems view,
i.e. amount of materials needed for producing the needed quantities of salt, just like in a current
enterprise that has to optimize its daily work procedures. It is arguable, though, if the prehistoric
mine was set up in exactly this spirit

to early to give decisive results on this simulation, whose role is to visualize the
different parts coming together, and ask about probable exploitation strategies (one
mining gallery at a time, or multiple mining galleries in parallel).

7.8 Conclusions and Future Work

We have presented a mining model that acts on the basis of the reconstructed work
process for digging salt in the bronze-age mines of Hallstatt/Upper Austria. Our
results obtained so far seem promising: We could show that (1) the work force
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needed for exploiting such a mine would have been smaller than previously assumed
and (2) that it might have been a severely limiting factor in the mining system.

As future work, we need to look at the vertical transportation of the salt to the
surface, which is currently being investigated using physical models of the lifting
process and the vertical shaft construction itself. Furthermore, we have a huge need
for investigation of the surrounding settlement: Sustainability of the population
(based on landscape properties), also including migration, trade of goods, social
models of a mining community and the like will keep us occupied for the coming
years, to say the least. All in all, the contribution of simulation in this respect lie
not solely in the actual results: The formalization of verbal models alone augment
the daily archeological practice in ways that were previously unthought of, and will
continue to inform other scientific disciplines also involved in the research in ways
that are yet neither imaginable nor foreseeable.
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Chapter 8
Modelling Settlement Rank-Size Fluctuations

Enrico R. Crema

8.1 Introduction

This chapter explores the underlying causes of changes in settlement rank-size
distribution by modelling the dynamics of group fission and fusion and their
responses to different disturbance regimes. The theoretical framework underpinning
this exercise is based on the following assumptions:

• The amount of resources at a given location can influence the size of a group
located there;

• The relationship between group size and per-capita fitness is expected to increase
with increasing group size. Once a critical threshold is exceeded, this relationship
is reversed;

• Individuals are expected to improve their condition by means of spatial reposi-
tioning, though this will be constrained by limits in knowledge and energy.

An agent-based simulation has been developed in order to establish how variations
in the details of these assumptions can induce divergence in the system equilibria,
and then to explore how different forms of perturbations (mimicking various forms
of endogenous and exogenous environmental deterioration) can alter these.

The chapter will be structured as follows: Sect. 8.2 will provide the background
discussion, including an overview on some of the theories underpinning the
proposed model; Sect. 8.3 will discuss the details of the agent-based model and how
the three assumptions listed above have been formalised. It will also introduce the
four different models of disturbance processes examined here; Sect. 8.4 will present
the experiment design and the results of the simulation exercise; Finally, Sect. 8.5

E.R. Crema (�)
University College London, London, UK
e-mail: e.crema@ucl.ac.uk

© Springer International Publishing Switzerland 2015
G. Wurzer et al. (eds.), Agent-based Modeling and Simulation in Archaeology,
Advances in Geographic Information Science, DOI 10.1007/978-3-319-00008-4__8

161

mailto:e.crema@ucl.ac.uk


162 E.R. Crema

will discuss the wider implications of the model and the main conclusions of the
chapter.

8.2 Background

Fission and fusion of human groups can be inferred for a wide variety of temporal
scales. Intra-annual events are ethnographically known for many hunter-gatherer
groups, who often aggregate temporarily into large groups, only to disperse soon
after. For example, the Nootka Indians of the Pacific Northwest coast aggregated
into large confederacy sites during the summer while they fissioned into smaller vil-
lages during the winter (Drucker 1951, cited in Watanabe 1986). Other ethnographic
evidence shows how these fission-fusion cycles can occur with much less regularity
and lower temporal frequencies. Historical census data from the Hokkaido Ainu
hunter-gatherers provides a good example in this regard. During an interval of 14
years, several sedentary households of the Mitsuishi district fissioned from larger
groups or formed new settlements in an irregular fashion (Endo 1995). At a further
larger temporal scale, the alternation between dispersion and nucleation of farming
communities (Roberts 1996; Jones 2010) have been detected from both historical
and archaeological evidence.

Variations in the settlement size distribution are ultimately the result of two
processes: the movements of individuals and inter-group differences in the intrinsic
growth rate. The two are related to each other, and in most cases available
archaeological evidence is not sufficient to distinguish the outcome of one from
the other. However, we can acknowledge their existence if we identify variations
in the residential density of a region (a cumulative effect of changes in the overall
growth rate) or if we detect the presence of newly formed settlements in a given
time window (a direct consequence of fission events).

Despite the difficulty in obtaining direct and reliable proxies of settlement sizes,
archaeologists have been long interested in measuring the temporal variation of
settlement hierarchy, one of the most tangible consequences of these processes.
However, the skewed and long-tailed shape of most settlement size distributions
makes the adoption of common statistical measures impractical. Hence, settlement
systems are often described using the relationship between rank and size formalised
in the following equation (Zipf 1949):

Sr D S1 � r�q (8.1)

where Sr is the size of the r ranked settlement, and q is a constant. Equation (8.1)
establishes a power-law relationship between size and rank, where the slope is
defined by q. When this constant is equal to 1, we obtain the so-called Zipfian
distribution, originally considered as equilibrium between “forces of unification”
and “forces of diversification” (Zipf 1949).
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Fitting equation (8.1) to archaeological data and obtaining empirical estimates
of q is a straightforward exercise, and allows us to quantitatively classify different
settlement systems. Thus, we can refer to primate systems when q > 1, that is when
we have few large and many smaller settlements. Conversely, when q < 1, the
system can be classified as convex, with the size distribution being more uniform
than the Zipfian expectation. However, Drennan and Peterson (2004) noticed that
most archaeological data do not appear to conform to such a log-linear relationship
between rank and size, and thus devised a more flexible measure explicitly based
on the amount of deviation from the theoretical Zipfian distribution (q D 1). Their
A-coefficient analysis is computed in two steps. First the observed rank-size plot
is rescaled, so that the area defined by the end-points of the theoretical Zipf-law
distribution is equal to 2. Then the area between the observed and theoretical rank-
size distributions is computed, with the area of sections beneath the Zipf’s law
pattern multiplied by �1. This ensures that the resulting number (the A coefficient)
is positive (up to 1) for convex, negative for primate, and close to zero for Zipfian
systems. The application of the A-coefficient analysis has increased the number of
archaeological cases where the empirical evidence suggests the existence of long-
term fluctuations between primate and convex systems (e.g. Drennan and Peterson
2004; Kohler and Varien 2010; Crema 2013a). Several authors have proposed
models of generative processes behind these empirically observed rank-size distri-
butions. Hodder (1979) compared the goodness of fit of different stochastic growth
models to archaeologically detected rank-size distributions, while more recently
Griffin (2011) developed an agent-based model where cycles of consolidation
and collapse of complex polities is the primary driver of changes in settlement
hierarchy. Others have suggested theoretical linkage between known settlement
models and expected deviations from the Zipfian distribution. Thus central place
theory, territorial isolation, and low system integration have been linked to convex
settlement patterns, while the spatial concentration of resources to the emergence of
primate systems (Johnson 1980; Savage 1997).

The two fundamental processes mentioned above (difference in growth rate and
movement of individuals) are still central in these models. Difference in growth
rate can be a consequence of variation in resource availability; isolation, low-
level integration, and territoriality can be effectively conceived as constraints in
the movement of individuals. Here, I consider two sets of theories proposed in
behavioural ecology that provide a robust and flexible framework for modelling
these two processes.

The first set looks at the attractive and repulsive effect of the external environ-
ment, primarily expressed in terms of resource availability. This induced form of
spatial dependency (Fortin and Dale 2005), is the central concept of the Ideal Free
Distribution (IFD) models (Fretwell and Lucas 1970; Tregenza 1995). The basic
prediction in this case is that, given an omniscient population with a complete lack
of constraints in movement, the expected population density on a patch will be
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proportional to the local resource density. This idea, often referred to as “habitat
matching rule” (Fagen 1987), is a consequence of an assumption formally described
by the following equation:

�i D Kj =nj (8.2)

where the fitness or gain (�) of an individual i at patch j is the ratio between
the amount of resource (K) and the number of individuals (n) located there. Thus
Eq. (8.2) will be maximised with the lowest population density, and any increase
of n will determine a decline in fitness. With other things being equal, individuals
will avoid choosing a patch with high resource input if the local population becomes
high, and might opt for a patch with lower K as long as n is significantly lower there.
This assumption has been further extended, to include the possibility of interference
in foraging activities (Sutherland 1983) and the potential to exercise constraints
in the movement of other individuals (i.e. ideal despotic distribution; Fretwell and
Lucas 1970). Some of these models have also been applied to predict colonisation
sequence and settlement history (Kennett et al. 2006; Winterhalder et al. 2010).

One of the key implications of IFD is that aggregation is an indirect consequence
of resource distributions. Individuals are “pushed” together, attracted by the pres-
ence of richer habitats. Thus a convex settlement pattern should be expected for
a landscape with a homogenous distribution of resources while a more primate
distribution should result from a heterogeneous setting.

The “push” argument underpinning IFD becomes problematic if one considers
the benefits that can potentially derive from aggregation alone. This, in fact,
opens to the possibility that individuals might be also “pulled” by the presence of
other individuals. Examples of such a positive frequency dependence arising from
group formation have been exhaustively discussed in anthropology and ecology,
ranging from the benefit of mutual protection (Gould and Yellen 1987) to the
possibility of cooperation and more complex organisation of tasks (Hawkes 1992).
The presence of these positive frequency dependencies at small population density
coupled with negative frequency dependencies at larger sizes is often referred to
as the Allee effect in ecology (Allee 1951). The implications of such a non-linear
relationship are crucial, and can often lead to unexpected macro-level dynamics. For
example, Greene and Stamps (2001) showed how the integration of Allee effect to
standard IFD models can lead to the emergence of population clusters that cannot
be explained by properties of the resource distribution. Although not explicitly
referring to the Allee effect, several authors (Sibly 1983; Clark and Mangel 1986;
Giraldeau and Caraco 2000) have also explored the consequences of this non-linear
relationship, suggesting, for example, how the expected group size is not necessarily
the one in which fitness is maximised (the “optimal group size”), but the one in
which this becomes equivalent to the fitness expected by the smallest possible group
(the “equilibrium group size”).

There are several further assumptions that we need to incorporate in to our
model. The foremost is the role of time and, consequently, aspects pertaining
inheritance and path dependence in the system of interest (Premo 2010). The Allee
effect implies that the attractiveness of a group will dynamically change depending
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on the decision of other individuals. Small differences emerging from stochastic
components in the system could induce migration flows towards a given group,
increasing the fitness of its members, and hence provoking a positive feedback
loop. In the long term, however, this process is expected to promote the opposite
behaviour, as once optimal group size is reached, fitness will start to decline and
individuals will do better leaving the group. As a corollary to this, we also need to
consider that fitness will directly affect the long-term behaviour of the system in
terms of variation in the intrinsic growth rate.

Similarly, we need to take into account that Eq. (8.2) considers K as parameter
constant, and hence invariable over time and by the activities of the local population.
The standard IFD model assumes that resources are instantaneously regenerating
and hence the abandonment of a patch (and the consequent decline in n) will
lead immediately to an increase in the fitness of the individuals who remain
there. Externally induced changes in the resource input could tilt the equilibrium
of a system, and similarly a reciprocal feedback process between resources and
individuals (e.g. K varying over time as a function of n in the past) can lead the
system to different equilibria.

Lastly, the level of integration between sub-components of the system (individ-
uals, groups, etc.) should be considered. The non-linear relationship between group
size and fitness has been primarily explored without considering the implications
of multiple groups co-existing in the landscape. Once we add this to the model
(e.g. Greene and Stamps 2001), the dynamics will be partly affected by the level of
integration between communities, measurable in terms of physical constraints in the
movement (i.e. the cost associated in moving from one place to another, frequency
of movement, etc.) and knowledge (i.e. where to go).

8.3 Model Design

We can formalise and extend the three assumptions listed in Sect. 8.1 by generating
an agent-based model that embraces the theoretical framework discussed so far.

8.3.1 Basic Model

Consider a population of n agents dispersed in a toroidal landscape composed by P

patches. We define a group as a subset of the population of agents located in the same
patch. The maximum number of groups will thus be P , and each group j will have a
size gj , defined as the number of agents located in the same patch j . The simulation
will proceed through a sequence of discrete time steps t D 1; 2; 3; : : : ; T where
the distribution Gt D gj D1; g2; g3; : : : ; gP will be updated by two key processes:
intrinsic population growth/decline of each group (i.e. reproduction and death), and
the movement of the agents. Notice that Gt will be essentially equivalent to the
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settlement-size distribution at given moment in time t , and hence can be quantified
in terms of rank-size. Here, we chose to use the A-coefficient (Drennan and Peterson
2004) described earlier for its flexibility in describing a wider range of patterns.
Thus, for each run of the simulation we generate a time series At describing the
rank-size dynamics of the system.

The core component of the model, which affects both key processes, is the
computation of the agent’s fitness �. This will be executed in two steps. First the
“demand” �i of each agent i will be computed as a random draw from a normal
distribution with mean � C .g � 1/b and standard deviation ", where � is the basic
fitness (i.e. the expected yield without cooperation), b is the benefit derived from
cooperation, g is the local population density (i.e. the group size), and " is the
stochastic effect of foraging tasks. With other things being equal, �i will increase
linearly with increasing group size. The Allee effect will be introduced in the second
step of the fitness evaluation with the following equation:

� D
( Pg

i �i

g
if

Pg
i �i < K

K
g

if
Pg

i �i � K
(8.3)

where K is the amount of resource available at the local patch.
The relationship between individual fitness and group size could be poten-

tially modelled in several ways (see Clark and Mangel 1986 for other plausible
models), but Eq. (8.3) encapsulates some of the core assumptions regarding human
aggregations:

• Grouping provides benefits in the per-capita fitness;
• Some of these benefits will decline in their effect with increasing group size;
• With a further increase in group size, negative and detrimental forces will become

predominant, with a resulting decline in the per-capita fitness.

These three points characterise the Allee effect described in Sect. 8.2. Here,
increasing b will determine a higher average mean per-capita fitness, as long as
the total “demand” (sum of all �) of the group does not exceed the available amount
of resources K. In such a case, the positive effect of cooperation will no longer be
sufficient, ultimately leading to a decline in fitness (�).

This non-linear relationship becomes a key element once we explore the two
sets of processes that modify group sizes: variation in the intrinsic growth rate and
movement of the agents. For the former case, we can translate fitness into a net
growth rate, defined as the difference between the probability of reproduction (r)
and death (d ). We can formalise this as follows:

r D �
�

�
(8.4)

d D .1 C e�!1�!2/�1 (8.5)
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Table 8.1 Fission-fusion conditions and agents’ decision-making

Condition 1 Condition 2 Decision

gi > 1 AND gw > 1 �i � � � c AND Œ�w � � � c OR �i � �w� Fission
�w > � � c AND Œ�i � �w � c OR �i � � � c� Migration

gi > 1 AND gw D 1 �i < � � c OR �i < �w � c Fission

gi D 1 AND gw > 1 �i � �w � c Migration

gi D 1 AND gw D 1 �i < � > �w Fission

gi > 1 AND gw D NULL �i � � � c Fission

For all other conditions, the agent stays in the patch where it is currently located; Fission D the
agent leaves the group and form a new group with size 1, as long as an empty patch is available
within distance h; Migration D the agent joins the group of the model agent w; Fusion D the focal
and model agent form a group of size 2

Equation (8.4) establishes a linear increase in the reproductive rate of the agents
(controlled by �), while Eq. (8.5) has a sigmoidal shape with a small probability of
death at high values of �, and an exponential increase of mortality at lower values
(cf. Pelletier et al. 1993).

The movement of each agent is assumed to be driven by a mixture of “melior-
ising” and “satisficing” principles (Mithen 1990), where the key element for
evaluation is the “perceived” difference in the observed fitness. The model will
produce fission and fusion dynamics based on the following algorithm, triggered
with frequency z:

1. A focal agent i defines a pool of observed agents S as a random sample of
proportion k of agents located within distance h from i .

2. The agent with the highest fitness among the pool S will be defined as the model
agent w. If S is an empty set, there will be no model agent.

3. The focal agent i will compare its own group size (gi ) and fitness (�i ) with:
the model agent group size (gw), the model agent fitness (�w), and the basic
fitness (�). The comparison will be calibrated by a threshold of evidence c

(Henrich 2001), representing the propensity of the agent to be conservative
(high c) or not (low c).

4. As a result of this comparison the agent will decide to stay in the current group,
join another group, or form a new group on its own (see Table 8.1).

8.3.2 Integrating Disturbance

The model presented so far is primarily defined by parameters that describe the
behaviour of the agents. The only exception is the resource input size K, a state
variable of the patches where the groups are located, and hence independent to the
agents. Thus if we want to explore the intrinsic properties of the system we can
assume K as a constant and invariable parameter. This can provide a benchmark
model (scenario 0), where we can identify the key properties of the system in a
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controlled condition where the dynamics are exclusively the consequence of the
agents’ behaviour. Subsequently, we can relax this assumption, and explore the
effects of disturbance, i.e. variation of K, under the following four scenarios.

The first (scenario 1) explores the effect of spatial heterogeneity by adding to the
initial homogenous distribution of K a random integer with mean 0 and variance v.
Increasing values of v will increase the heterogeneity of the resource distribution,
maintaining, on average, the total productivity (the sum of all K of all cells) of the
system constant. The benchmark model (scenario 0) can be regarded as a special
case of this scenario where v is equal to 0.

The second scenario (scenario 2) will relax the assumption of the temporal
homogeneity, allowing K to be time-variant. This will be modelled as a bounded
random walk, iterating the same algorithm used for scenario 1 for each time-
step in the simulation, again parameterised by v. To avoid excessively high or
low values of K, the process will be “bounded” between Klo and Khi . High
values of v will generate abrupt shifts, while lower values will lead to gradual
changes in the resource availability. The third scenario (scenario 3) will combine
the assumptions of scenarios 1 and 2, allowing the resource input of each patch to
have an independent bounded time-series of K.

In contrast to the models of disturbance proposed so far, the last scenario
(scenario 4) shapes the spatio-temporal variation of K as a result of a predator-
prey relationship with the agents. The assumption in this case is that high local
population density should, in the long term, determine a degradation of the local
environment and a decline in resource productivity. This differs somewhat from the
detrimental role of overexploitation portrayed in Eq. (8.1), as the effect will be also
time-dependent (i.e. a group might experience a long-term decline in fitness even
if g is hold constant). The predator-prey relationship can be formalised with the
following pair of equations:

� D
( Pg

i �i if
Pg

i �i � Kt�1.1 � ˇ/

Kt�1.1 � ˇ/ if
Pg

i �i > Kt�1.1 � ˇ/
(8.6)

Kt D .Kt�1 � �/ C �.Kt�1 � �/

�
1 � Kt�1 � �

	

�
(8.7)

Equation (8.6) defines the cumulative gain � of the agents—which becomes
the individual fitness once its divided by the group size—and is subtracted from
the resource input in Eq. (8.7), a variant of the Verhulst equation (Verhulst 1838),
defined by an intrinsic growth rate � and a carrying capacity 	. Equation (8.7) thus
ensures that K is modelled as a population affected by the consumption rate � of
the agents. The parameter ˇ in Eq. (8.6) models the resilience of the resource pool:
high values will determine an under-consumption of the agents (i.e. the agent will
not be able to identify and consume all resources located on a given patch), while
low values will increase the likelihood of complete resource depletion.



8 Modelling Settlement Rank-Size Fluctuations 169

8.4 Results

The simulation code was written in R statistical computing language (R Core Team
2013) and is available under request. All experiments have been conducted using
UCL Legion High Performance Cluster. A wider exploration of the parameter space
for the benchmark model (scenario 0) is extensively discussed elsewhere (Crema
2014). Here we purposely sweep only the key parameters that have been previously
identified as those1 determining the largest variation in the system behaviour: the
spatial range of interaction h; the frequency of decision-making z; and the sample
proportion of the observed agents k. We additionally sweep three values for relevant
parameters describing different disturbance processes (v for scenarios 1, 2 and 3, and
ˇ for scenario 4). In this case, the choice of parameter values has been dictated by
preliminary explorations of the model in a simplified environment with a single
group (P = 1), where the effect of movement has been excluded. This exercise
allowed the detection of a key range of values covering the widest spectrum of
behaviours in the simplified model. For example, a small variation of ˇ from 0.3
to 0.4 was sufficient to cover the phase transition between three equilibria in a
single group model: extinction (Fig. 8.1a), limit-cycle (Fig. 8.1b), and sustainable
population (Fig. 8.1c). Similarly, the values of v for scenarios 2 and 3 were selected
by observing the proportion of runs where the single group was extinct after 500
time-steps. This helped providing a rough proxy for defining light (v D 9, 0.2
extinction rate), intermediate (v D 16, 0.5 extinction rate) and severe (v D 37,
0.9 extinction rate) disturbance processes (see Fig. 8.1e).

The resulting parameter space (see Table 8.2) has four dimensions and 34
coordinates. For each unique parameter combination, the simulation has been
computed 100 times with 500 time steps each. Given that the primary focus of the
simulation is to establish the equilibrium properties of the system, the first 200 time-
steps have been discarded from the analysis as a “burn-in” stage.

The results of the simulation exercise can be illustrated using a scatter-plot
of At against AtC1. This data representation can help identify whether the rank-
size pattern is stable (point attractor), oscillates between two extremes (limit cycle
attractor) or fluctuates chaotically (strange attractor; see McGlade 1995 for a
detailed discussion on attractors and their relevance in archaeology), and shows,
at the same time, the observed range of variation as well as the frequency and the
magnitude of changes (see Fig. 8.2).

1The parameters defining reproduction (�), death (!1 and !2), cooperation (b), and threshold of
evidence (c) can be all aggregated into different types of relationship between key group sizes and
net-growth rate. Crema (2013b) showed that the dynamics were significantly different only when
the net-growth rate was extremely low and equivalent to zero at the equilibrium group size (i.e. the
value of g satisfying the conditions �.g/ D �.1/ and g > 1). The parameter values chosen for
this chapter determines a net growth rate which remains positive above this size.
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a b c

d e f

Fig. 8.1 Preliminary exploration of the simulation model. The upper row (a–c) depicts three
sets of ten time-series of population change with the effects of different parameter settings of ˇ

((a): ˇ D 0:3; (b): ˇ D 0:35; (c): ˇ D 0:4). The lower row shows the proportion of runs with
extinction (among 1,000 simulation runs) for different settings of v and three distinct values of Klo

((d): Klo D 0; (e): Klo D 10; (f): Klo D 20; in all cases Khi was set to 400). In all cases the
experiments have been conducted using a single patch world, with the settings listed in Table 8.2

8.4.1 Benchmark Model and Spatial Heterogeneity
(Scenarios 0 and 1)

Figure 8.3 shows the parameter space for scenarios 0 and 1. The primary axis
of variation in the system behaviour is along an increasing frequency of decision
making (z), higher knowledge (k), and wider range of interaction (h), while the
effects of increasing heterogeneity of the resource distribution (v) appears to have
almost no effect. When z, k, and h have their smallest values, the system is highly
disconnected, and the agents distribute themselves to local optima (the best patch
around their neighbourhood) leading to the formation of stable convex systems.

The spatial range of interaction plays a pivotal role in this scenario, as increasing
values of any of the other three parameters do not affect alone the broad properties
of the system (i.e. the type of attractor), expect for larger fluctuations of A around
smaller mean values. Once the spatial range of interaction is increased (h � 3), the
implications of the other three parameters become evident in the scatterplots. Agents
can now move freely in the landscape and hence the effects of their movement
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Table 8.2 List of parameters and values

Symbol Name Values

P Number of patches (cells) 100

� Basic fitness 10

b Benefit of cooperation 0.5

" Basic payoff variance 1

� Basic reproductive rate 0.05

!1 Death parameter 1 1.2

!2 Death parameter 2 5

z Frequency of decision-making 0.1, 0.5, 1.0

h Spatial range of interaction 1, 3, 10

k Sample proportion of observed agents 10�8, 0.5, 1.0

c Threshold of evidence 3

K Resource input 200

vS Stochastic disturbance parameter (scenario 1) 0, 10, 50

vT Stochastic disturbance parameter (scenario 2 and 3) 9, 16, 37

Klo Lowest possible K 10

Khi Highest possible K 400

� Intrinsic growth rate of K 2

	 Carrying capacity of K 200

ˇ Resource resilience to predation (scenario 4) 0.3, 0.35, 0.4

propagate at larger scales, rather than being absorbed locally. As a consequence
of this, we can identify an increase in the possible range of values for A and the
occasional appearance of primate systems (A < 0). However, in most cases these
highly hierarchical settlement systems are unstable, as suggested by the smaller
density of points in the lower-left quadrants (see h � 3, k � 0:5, z D 0:5 in
Fig. 8.3).

When the frequency of decision-making is set at its maximum (z D 1), the range
of spatial interaction is sufficiently high (h � 3) and the sample proportion of
observed agents (k) is equal or larger than 0.5, the system exhibits a limit cycle
attractor. The scatterplot also shows how the patterns of these limit cycles are
affected by the spatial range of interaction, with h D 3 showing more gradual
transition between primate and convex pattern, and h D 100 characterised by
rapid shifts (compare with Fig. 8.2). This cyclical dynamic is derived from the
high convergence in the tempo of the decision-making (i.e. all agents move at
the same time) and the destination of the migration flow (i.e. all agents move
to the same place). Slightly optimal groups are rapidly identified and invaded,
triggering a positive feedback, which promotes further migration. This becomes
soon unsustainable, and once the destination group becomes too large and fitness
starts to decline fission events reset the cycle.
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Fig. 8.2 Phase-space scatter plots for different types of time-series (attractors) of A

8.4.2 Temporal and Spatio-Temporal Disturbance
(Scenario 2 and Scenario 3)

The pivotal role played by the level of integration between groups is still evident
when we add time-varying forms of disturbance processes. Figure 8.4, which depicts
the parameter space for scenario 2, shows in fact that low levels of k, z, and h lead to
convex point attractors, while their increase determine the emergence of continuous
shifts in the rank-size distribution. Details on these shifts are contingent to the time-
series of K of individual runs, but we can still identify general trends of regularity
(e.g. in z � 0:5, k � 0:5, h � 3), suggested by the higher density of points along
the diagonal (see also Fig. 8.2).

When the frequency of decision-making (z) is at its highest value (i.e. the agents
respond immediately to the perceived variation in fitness) and the spatial range of
interaction (h) is equal or greater than 3, we can observe a limit-cycle attractor
with relatively few irregular sudden shifts (lower density of points in the top-left
and bottom-right quadrants). However, when z D 0:5, the number of unexpected
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Fig. 8.3 Parameter-space for Scenarios 0 and 1. The x and y axes represent At and AtC1 and range
from �1 to C1

changes in the rank-size distribution is much higher, and the system can be classified
as a hybrid between limit-cycle and strange attractor. This is most likely explained
by a slower response rate of the agents, which are forced to face the consequence
of decline (or increase) in K before their relocation. Recall in fact that in the basic,
disturbance-free model the system already exhibits high frequency shifts between
primate and convex distributions at the highest values of h and z. Hence, within
these regions of the parameter space, the disturbance process has a marginal role
as the basic dynamics of the system occur at a faster rate. In other words agents
relocate themselves before perceiving the consequences of the disturbance events.
Conversely, when the response rate is slower (z D 0:5), the agents are affected
by changes in K. Variations in the abruptness of these disturbance events (v) do
not seem to play a significant role other than minor variations in the dispersion of
the scatter points: the smallest variation in the availability of resources (K) can be
sufficient to induce a cascade effect into the system.
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Fig. 8.4 Parameter-space for Scenario 2. The x and y axes represent At and AtC1 and range from
�1 to C1

Scenario 3 (Fig. 8.5), which combines both the assumption of spatial hetero-
geneity and temporal changes of K, shows similar patterns. Once again the largest
variation of the phase-space scatter plot can be observed along the axes defined
by h, z, and k. This time, however, increasing values of v exhibit a diagonal “tail”
in regions of the parameter space that are characterised by point-attractors in the
benchmark model. Observation of individual runs indicates that these pattern are
generated from the slow recovery of the system towards highly convex distributions
after episodes of sudden decline in A caused by disturbance events. As for
scenario 2, the effect of disturbance is tangible mostly for intermediate levels of z,
where we can observe increasing episodes of deviations from convex systems with
larger values of h and a transition from a “noisy” point attractors to a hybrid between
limit cycle and strange attractors. When z is at its highest, the frequency of decision-
making is higher than the frequency of disturbance events, leading to a general
pattern similar to the benchmark model.
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Fig. 8.5 Parameter-space for Scenario 3. The x and y axes represent At and AtC1 and range from
�1 to C1

8.4.3 Predator-Prey Model (Scenario 4)

Figure 8.6 illustrates the parameter space for scenario 4, where the amount of
resource input K at a given patch is defined by a predator-prey relationship with
the group of agents located there. Although this time disturbance can be regarded as
endogenous (contra-posed to the exogenous disturbance events of scenarios 1–3),
the basic properties of the system remains the same: high levels of h, z, and k still
lead to stronger and more frequent variations in the rank size distribution.

The most relevant difference with the other scenarios is how the parameter
defining the disturbance process (i.e. the resilience of the resource population ˇ)
appears to have a stronger influence in the simulation output. When this is set to
the lowest value explored in this series of experiment (ˇ D 0:3), we observe a
larger dispersion of the phase-space scatter plot, often leading to the emergence
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Fig. 8.6 Parameter-space for Scenario 4. The x and y axes represent At and AtC1 and range from
�1 to C1

of limit-cycles even when the frequency of decision making is at its lowest. This
is the consequence of the ecological inheritance modelled by Eq. (8.7): agents
will be subject to a decline in fitness even when there is no internal growth or
migration flows. However, if the sample proportion of the observed agents and
the spatial range of interaction are also low we still observe exclusively convex
point-attractors, confirming once again that the level of integration still plays a
pivotal role in explaining the temporal variation in the settlement pattern. When
the frequency of decision making is set at its maximum, variations in ˇ do not seem
to affect the properties of the system, although the scatter plots appear to be in all
cases characterised by a larger number of points outside the main diagonal. As for
scenarios 2 and 3 this can be explained by the high response rate of the agents
who most likely react to the decline in fitness caused by short-term episodes of
overcrowding, rather than actual declines in K.
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8.5 Conclusions

This study proposed a model of the emergence and transformation of human
settlement pattern by combining a series of assumptions drawn from evolutionary
ecology. The two objectives of the simulation exercise were to identify the equi-
librium properties of the system in a disturbance-free context (scenario 0), and
subsequently explore how four types of perturbations (scenarios 1–4) can affect
these. We can summarise the main outcomes of the first objective as follows:

• Convex systems can sustain stable equilibria as long as the level of system
connectivity is relatively low;

• Primate systems emerge only temporarily, either as part of a limit-cycle equilib-
rium, or as a short-term transition from a convex equilibrium. In either case, they
require some level of system connectivity, defined here by the spatial range of
interaction (h), the frequency of decision-making (z), and the sample proportion
of observed neighbour agents (k);

• More generally, increasing connectivity determines an increase in the instability
of the system, from a narrowly confined convex point attractor to high frequency
oscillations between primate and convex systems, with intermediate states
characterised by either point attractors with frequent “escapes” or by more
gradual shifts between opposite values of A.

When the system is characterised by low levels of connectivity, individual groups
are trapped within local optima while being spatially isolated from each other.
Variations in group size will be primarily driven by intrinsic growth rate, as inter-
group movement of the agents becomes rare. Interestingly, spatial heterogeneity
in the resource distribution (scenario 1) does not affect the dynamics of the
system, as agents rapidly find the most suitable locations to settle in the first
few runs of the simulation. Once we allow a larger range of interaction, groups
become less isolated from each other. This means that small variations in fitness
(determined by stochastic components in the model) are amplified by subsequent
inter-group migrations. We can conceptualise this with a simple thought experiment.
Consider two communities A and B with the same group size. Small differences
in the individual yields and random occurrence of reproduction will determine a
divergence in their sizes and hence fitness in the short term. Thus, members of
A might have a slightly higher fitness than members of B. In the long-term these
differences will vanish, but if any individual of B moves to A, this difference will
be amplified. Group A will have higher fitness and hence higher chance to further
increase its size through reproduction, while members of B will be more attracted
by A. If we extend this to a larger number of groups, these dynamics will be further
enhanced. As long as the frequency of decision-making is sufficiently high these
small variations in the systems will be “detected”, and when the spatial range of
interaction and the sample proportion of observed agents are both high, chances of
agents sharing the same destination becomes increasingly high. This will have a
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cascade effect, with the sudden appearance of large nucleated settlements (primate
systems). These are however highly unstable, and hence their formation will be
followed by fission events, which reset and drive the cyclical behaviour of the
system.

The low resilience of primate systems is perhaps counter-intuitive, given that
in many real-world contexts we can frequently observe these patterns with some
degree of stability over time. We should however note that the model proposed here
does not allow any form of innovation, and hence the structural properties of the
system (defined by the model parameters) remain fixed. This is not the case in many
real-world contexts, where the exploitation of novel resources and the adoption of
new technology are often enhanced by higher population density (Powell et al.
2009; Lake and Crema 2012). These innovations can easily modify the shape of
the fitness curve, allowing for the ability to overcome the problem of declining
fitness for larger groups. Furthermore, warfare and direct competitions of resources
between different groups can also help in maintaining large nucleated settlements
at the expense of others, further allowing the system to prolong primate rank-size
patterns. Nevertheless, other studies have demonstrated how these settlements are
still destined to collapse or fission in the long-term (Turchin 2003; Griffin 2011), and
even when a hierarchical system conserves its shape at the macro-scale, individual
communities might be affected by turn-overs, continuously changing their ranks
(Batty 2006).

Disturbance processes have a major role when the system is characterised by
intermediate levels of connectedness. However, the most relevant conclusion here
is that they act as a catalyst rather than being the fundamental cause of shifts in
the rank-size distribution. If the necessary preconditions, such as high frequency of
decision-making or large spatial range of interaction, do not exist, the system will
be almost identical to the expected behaviour in a disturbance-free context. Instead,
when these preconditions are met, we can observe a larger number of sudden
changes in the rank-size distribution in the form of strange and limit-cycle attractors.
However, when the spatial range of interaction, the frequency of decision-making
and the sample proportion of observed agents are all low, convex point attractors are
minimally affected. Exceptions to this occur only when the abruptness of changes in
K is high (e.g. high values of v in scenario 3), but the system will still tend to revert
to high values of A in the long term. Similarly, at the opposite end of the parameter
space (i.e. when z, h, and k are all high), the benchmark and the disturbance models
are almost identical, with only some minor differences observable for scenario 4.
This is explained by high rates of settlement reorganisation that, within these regions
of the parameter space, would occur regardless of disturbance events.

These conclusions enable us to build a template to which empirical archaeolog-
ical data can be compared. The abstract nature of the model does not allow us to
have precise predictions on the parameters for specific contexts, but, nonetheless,
identifying different proxies on the connectivity of the system could provide some
clues on why a given rank-sized distribution emerged or changed over time. Thus,
one should expect that a rugged landscape might favour the isolation between
different communities compared to a plain region, and quantify such an expectation
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using models of movement based on GIS-led analysis (Conolly and Lake 2006;
Bevan 2011) or more complex methods based on circuit-scape theory (McRae
et al. 2008). Other proxies for evaluating the degree of system integration include
the formal assessment of patterns of cultural similarity or dissimilarity between
different communities. Both empirical (Lipo et al. 1997; Shennan and Bentley
2008) and theoretical works (Premo and Scholnick 2011; Crema et al. 2014) have
shown great potential for these studies for investigating the strength and variations
of regional interaction. Bevan and Wilson (2013) provide a recent example on
how these assumptions can also be integrated into realistic models of settlement
evolution, allowing for the possibility to directly compare observed data with model
predictions.

While these research directions are strongly encouraged, it is also crucial that
the underpinning theories of these models are dissected first in artificial and abstract
environments where we have full control of each variable. We still need to fully
examine the consequences of our theoretical assumptions, before proceeding in
applying these models to comprehend real-world changes in human settlement
pattern. This chapter is a contribution to such an endeavour.
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Chapter 9
Understanding the Iron Age Economy:
Sustainability of Agricultural Practices
under Stable Population Growth

Alžběta Danielisová, Kamila Olševičová, Richard Cimler,
and Tomáš Machálek

9.1 Introduction

When searching for the explanation of subsistence strategies in different social
groups of a complex society, the key factor is the relationship between its agri-
cultural base and the social hierarchy of settlements. Due to the fragmented nature
of data available such presumptions were mostly only theoretical and often failed
to effectively capture the complexity of the system under consideration. As a
consequence, we have only a limited picture of how societies may have functioned
in past. In order to capture the whole complexity of subsistence, more sophisticated
methods and tools are needed.

Recent studies show that, on top of a comprehensive collection of data, the
building of explanatory models is a valid way of exploring the complexity of
past societies (e.g. Kohler and van der Leeuw 2007). Models are valid scientific
tools, which not only can help to understand human-landscape interactions and
processes of change, but are also very powerful for suggesting directions for future
research (Wainwright 2008), by challenging traditional ideas and exploring new
issues (Wright 2007, p. 231). At the same time, models do not attempt to become
exact reflections of the past reality; they just aim to provide more precise research
questions, select appropriate attributes and factors to be further examined on an
accurate spatial and temporal scale. This framework can be used to investigate
socio-ecological interactions over a broad range of social, spatial and temporal
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scales, allowing for a wide range of past archaeological issues to be addressed.
Agent-based models (ABM) provide an invaluable way to explore and test various
theoretical hypotheses, including cases where detailed data is not available from the
archaeological record.

This chapter deals with the subsistence strategies and the economic background
of late Iron Age oppida in central Europe, the fortified agglomerations occupied in
the last two centuries BC. Oppida settlements represent complex systems (societies)
with multiple functions. They appeared as a part of an economically advanced
environment, together with a distinctive intensification of settlement patterns.
However, the oppida were mostly built in landscapes considered to have been
marginal in regard to what appeared to be the common settlement strategy. Due
to the specific location and the widespread evidence of late La Tène open lowland
settlements (which were believed to supply the oppida with the necessary food
resources) the agricultural potential of the oppida has usually been challenged
(e.g. Salač 2000, 2006). According to the archaeological record, their settlement
density in the late La Tène period increased over a short time span and then
decreased again. This probably quite rapid depopulation and collapse of these
agglomerations during the second half of first century BC was attributed, among
all, to a supply crisis. In short: the oppida agglomerations were perceived as too
“specialized” and therefore engaged in other activities than agriculture. Because
of that, they were not capable of producing sufficient food. This fact should have
eventually contributed decisively to the collapse of the La Tène social structure
as a whole. Interestingly though, the archaeological record reveals clear signs of
some engagement in agricultural production—by the evidence of crops cultivation,
livestock breeding or traditional agricultural household units (cf. Küster 1993;
Danielisová and Hajnalová in print). Therefore, the idea of the oppida acting as pure
receivers of the agricultural products needs reconsideration. Causes for a gradual
depopulation trend of the fortified settlements can be attributed to several factors
both endogenous and exogenous. However, beside political (reaction to the military
events), economic/commercial (difficulties on long distance commercial routes) and
organizational (less people to perform necessary tasks), the ecological/subsistence
problems are worth contemplation as well.

The relationship between population growth and the development of the society
depends on the availability of basic resources from the environment; however,
this relationship is in fact never constant. In the models of social complexity,
which include and interconnect innovation, specialisation, political structure, market
integration, but also migration, changes in settlement patterns and abandonment of
settlements, population growth and over-exploitation of natural resources play an
important role from which wide range of social phenomena have been explained
(Bayliss-Smith 1978, p. 130). According to historical sources, exceeding the appro-
priate carrying capacity was not a rare occasion in history (cf. Schreg 2011, p. 312)
even in societies with developed market networks. Intensification of production led
to innovations in agriculture on the one hand, but also to a more rapid depletion
of the land resources, especially where their extent was limited, on the other hand.
This prompted behaviour which could have led to more profound social change at
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the end of the Iron Age in central Europe. Our main objective is to approach this
issue by the modelling of population dynamics, and subsequently by the modelling
of agricultural strategies and socio-economic interactions. This chapter presents the
initial models focused at the moment on the oppidum’s own agricultural production,
i.e. a society pursuing agro-pastoral activities within the given temporal and spatial
scale which is tested against subsistence, surplus production and carrying capacity
factors. We aim to find the limit of the environment for the growing population at a
certain point of time. Some of the fundamental questions being asked at that stage
include:

1. Using what cultivation strategies can the population most effectively exploit
natural resources in order to be self-sufficient?

2. What are the dynamics of production with constantly growing population
(subsistence—surplus—success rate—diminishing returns)?

3. What is the maximum population that can be sustained in a given environment
and when was this maximum reached?

In order to credibly recreate the economic life of an agglomeration in its specific
environment, a coupled environmental and social modelling approach is employed.
In more detail, we incorporate a GIS model representing the environmental condi-
tions and an agent-based model addressing social issues (the population dynamics)
and land-use patterns. As outcome, these models can provide substantial informa-
tion about the limits of rural economy at a particular location and they may help
to determine possible stress situations. As result we may be able to explain the
reason for population decline, in case it was caused by reaching the limits of food
production.

9.2 Methodological Approach

9.2.1 Theoretical Framework

The relationship between population growth and development of the society
depends on the availability of basic resources from a given unit of land, the ability
of the population to exploit them as well as to socially organise this process. In
this chapter, some models of interactions between the settlement and its natural
environment are applied, including “settlement ecosystems” (the systems of land
use based on the relationship between the landscape and human decision how
to exploit it, cf. Ebersbach 2002), “population pressure” (the point in population
growth when it is larger than the resource base, e.g. Bayliss-Smith 1978) and
“carrying capacity” (the limit above which the population must either diminish
or innovate their exploitation strategies, cf. Del Monte-Luna et al. 2004). All of
these concepts will be tested against archaeological and environmental data. As
precondition, we must define resource levels of the ecosystems (i.e. productivity
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of the land), productivity potential of the population exploiting these resources
(i.e. labour input, technology and task management) and test if and under what
conditions certain resources can become limiting factors, and what implications can
be derived from that (e.g. adoption of new subsistence strategies, new technologies,
commercial contacts, social transformations, settlement abandonment etc.).

By modelling subsistence strategies, we seek to explore the following
questions:

• the size of the community and proportion of people engaged in agricultural work
• the organisation of the working process
• demands concerning land and labour
• the carrying capacity threshold
• the scale of sustainable agricultural production
• the stability of production (number of stress situations)

The theoretical framework for modelling the oppidum’s own agricultural production
encompasses the following tasks:

1. Modelling the population and its subsistence needs:

a. Estimating the population size and its dynamics due to demographic
processes.

b. Estimating the available work force in relation to the population dynamics.
c. Calculating the annual nutrient demands of the population.

2. Modelling crucial resources:

a. Deliminating the maximum distance people would have been willing to go in
order to cover their subsistence needs.

b. Predicting the hinterland components (fields, fallows, pastures, woodlands
etc.) according to the environmental conditions (a non-continuous pattern of
arable land use zones).

c. Organization of the working process in relation to the land-use patterns.
d. Within the predicted hinterland, there should not be any competing sites

(considered as contemporary), otherwise we would have to: (1) enlarge the
settlements’ catchment area, (2) consider a cooperative/competitive relation-
ship between multiple sites.

3. Modelling resource exploitation and assessing its limits:

a. Estimating the energy potential of key resources (yields of fields, pastures,
fodder, woodlands : : :).

b. Outlining possible exploitation and production strategies.
c. Comparing the number of consumers and their needs in relation to the

production.
d. Relating the labour input to the production.
e. Determining possible insufficient or lacking resources or productivity (labour

input) and the impact of that factor.
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4. Modelling the dynamics of the production:

a. Including the fluctuations of the harvests according to different farming
strategies.

b. Measuring the actual levels of harvest, surplus and potential storage reserves.
c. Determining the agricultural sustainability (number of stress situations).
d. Detecting the limit threshold, estimating the carrying capacity of the

hinterland in relation to the population pressure and the potential scarcity
or depletion of resources.

e. Count in the external factors, if there were any (climate variations, conflicts,
socio-political decisions).

9.2.2 Modelling Tools

In context of our agent-based modelling approach, agents may represent individuals,
families and collectives, management agencies, and policy making bodies, all
of whom are able to make decisions or take actions that affect development of
the society and changes the environment. Because agent-based models are time-
based, the development of the society can be studied for over 100 years in
course of its evolution. Components of models include ecological, socio-economic
and politico-cultural parameters addressing individual questions, which can be
developed and implemented gradually by producing models that target individual
questions separately.

Models are implemented in the agent-based modelling software package Netlogo
(Wilensky 1999), its plug-ins and extensions:

• BehaviorSpace enables repeated run of simulations with different settings of
parameters. Output data can be stored and further processed using statistical
toolkits.

• BehaviorSearch (Stonedahl 2011) is a tool which allows automated search for
(near) optimal values of parameters of models with respect to objective function.
The search process is performed with evolution computation techniques, which
are widely used for optimization problems. The nature of the algorithm does not
guarantee that the calculation always converges to the global optimum, but on the
other side, it is general enough to be able to solve wide scale of problems. For
demonstration of BehaviorSearch, see the replication of the “Artificial Anasazi”
Project (Stonedahl and Wilensky 2010).

• Fuzzy-plug-in (Machálek et al. 2013) provides fuzzy-related functionality. It is
based on a FuzzyLogic library by Cingolani and Alcalá-Fdez (2012). The plug-
in was implemented for the purpose of our research.

The advantage of the simulation process lies in a relatively fast transcription of
parameters into the programming language. Many different scenarios can be created
by alteration, adaptation and combination of the input data. Therefore, we can
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aspire to simulate quite complex phenomena (such as the “agricultural year”).
A more difficult task is the definition of relevant research questions, isolation
of valid parameters and the actual definition, execution, evaluation and recurrent
adaptation of the created models (also see Chap. 4). Outputs can be compared to a
broad framework of data established by combining the results from archaeological
excavations, archaeological surveys and regional-scale environmental studies.

9.3 Data Resources and Modelling Inputs

The models are based on the region around the oppidum of Staré Hradisko
(Czech Republic). It offers quite complex archaeological and environmental data
and analyses carried out upon the material collected during the long-term excava-
tions (cf. Čižmář 2005; Meduna 1961, 1970a,b; Danielisová 2006; Danielisová and
Hajnalová in print). Sections 9.3.1–9.3.4 summarise the sources of the environmen-
tal input variables and agricultural production processes used in our study.

9.3.1 Environmental Data and Ecology

Given all the required input parameters for the modelling of the landscape exploita-
tion, the most relevant data that reflected the oppidum’s setting needed to be
obtained (cf. Table 9.1). Because detailed LIDAR scans were not available for this
location, a digital elevation model (DEM) of the relief was computed using local

Table 9.1 Environmental input variables

Environmental variables Source

Relief (digital elevation
model—DEM)

Modelled in GIS from 1:5,000 topographical maps (ArcGIS,
resolution 5 � 5 m)

Landforms, topographical
features, topographic wetness
index

Modelled in GIS from DEM (ArcGIS, IDRISI, Whitebox,
Landserf)

Hydrology Modelled in GIS from DEM and complemented by fluvial
sediments in geological maps and historic mapping (ArcGIS,
manual correction)

Geology and soils Digitised from geological and soil maps 1:50,000

Soil quality BPEJ soil evaluation

Potential vegetation From Neuhäuslová (2001)

Climate Macrophysical Climate Model (MCM) created from local
meteorological data, cf. Bryson and DeWall (2007),
Danielisová and Hajnalová (in print)

Weather Recorded historic frequency of the “events” (hailstorms, late
frosts, heavy rains : : :), from Brázdil et al. (2006)
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contour maps. The DEM data were used to form secondary variables such as the
terrain settings, the location of landforms (slope gradient, aspect, local elevation
difference), and the topographical features. The hydrologic settings were derived
from DEM and completed by the geologic and historic mapping in order to recreate
(as closely as possible) the original stream network irretrievably altered by current
agronomic practices (e.g. melioration). Location of streams can help to predict the
location of settlements and the activities requiring the proximity of water source
(e.g. pastures). Hydrologic modelling was used as well to the computation of
the topographic wetness index. This variable describes the propensity for a land
plot to be saturated by the runoff water, given its flow accumulation area and
local slope characteristics (Lindsay 2012). It is used to locate the areas (from the
topographical point of view classified simply as flat) with tendency to be wet or dry.
Soil coverage, geology and the potential vegetation should also contribute, as input
data, to addressing the agricultural potential of an area.

It should be noted that these variables are interconnected. Since one is often
derived from the other, their impact can multiply in GIS modelling. Geology
was therefore used to delimit the individual structures (alluvial plains, rocks etc.)
and potential vegetation served as secondary evidence to the soil data. Suitability
of the soils for farming is measured by the soil type (light Cambisols, Gleys
or Pseudogleys, colluvial deposits and fluvial deposits in the floodplains), the
amount of humus, their depth and rockiness, accessible through the so-called
BPEJ evaluation of the farmland. Modelled local MCM (Macrophysical Climate
Model) mean annual temperatures and annual precipitation for the oppidum of
Staré Hradisko showed warmer and to a certain extent also wetter conditions during
the occupation of the oppidum in comparison to modern times (Danielisová and
Hajnalová in print). This model also addresses the potential evapotranspiration,
calculated from the annual temperature and precipitation. It reflects the general
tendency of the climate to be “more wet” (colder, wetter) or “more dry” (warmer,
less precipitation) which can influence the location of the farming plots (e.g.
avoiding the wet plains etc.).

9.3.2 Socio-Economic Variables

The occupational span of the oppidum is around 150 BC to 50–30 BC, i.e. ca. 100–
120 years of existence. According to the chronologically significant material (cf.
Table 9.2), the population density was increasing during the initial 2–3 generations
(50–80 years), until it reached the point when it started to decrease again (ca. 80–
70 BC). This decline seems to have been quite rapid (1–2 generations); the final
population might have been even five times smaller than during its highest density.
Concerning exact numbers, unfortunately, only approximate data is available,
but given the archaeological evidence (number of households, chronologically
significant artefacts) the initial population density should have certainly comprised
several hundreds of people.
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Table 9.2 Input variables and information on the anthropogenic aspects of the models (for the
definition of “strongforce” and “weakforce” see Sect. 9.4.1)

Population and economical structures

Social/economic variable Source

Population density Settlement structure vs. chronology of occupation (personal
items—e.g. brooches, frequency of coins, amounts of refuse
in settlement stratigraphy, number of households)

Cultivated crops Archaeobotanical collection (Hajnalová 2003)

Storage devices Settlement structure (Danielisová 2006)

Stock keeping Archaeozoological collection (Peške, unpublished data)

Agricultural tools (ploughshares,
hoes, harrows, scythes, leaf
foddering knives, rotary querns)

Material collections (Meduna 1961, 1970a,b; Čižmář 2005;
Danielisová and Hajnalová in print)

Distance costs and hinterland
area

Walking distance from the settlement (Chisholm 1979),
algorithm (Gorenflo and Gale 1990)

Settlement ecosystems Agricultural strategy in relation to the environment and the
production goals (Ebersbach 2002; Schreg 2011)

Agricultural practices

Activity, practice Source

Intensity of land-use
(agricultural strategies)

Intensive-extensive-mixed (Bakels 2009; Halstead 1995;
Danielisová and Hajnalová in print)

Field plot sizes 0.235–0.94 ha/person including seed corn and losses
(Halstead 1987, 1995; Dreslerová 1995)

Fallowing Fields: fallows D 1:3 (Fischer et al. 2010; Halstead and Jones
1989)

Crop yields 700–3,000 kg/ha (Bogaard 2004; Hejcman and Kunzová
2010; Kunzová and Hejcman 2009; Rothamstead Research
2006)

Ploughing rates 0.21–0.42 “strongforce”*/ha (Halstead 1995; Russell 1988)

Hoeing, harrowing, weeding
rates

0.85–1.27 “weakforce”*/ha (Halstead 1995; Russell 1988)

Manuring (Minimum) N D 46 kg/ha (Hejcman and Kunzová 2010;
Kunzová and Hejcman 2009; Bogaard et al. 2006; Fischer
et al. 2010)

Harvest and crop processing
rates

0.42 “strongforce” C 0.85 “weakforce”/ha (Halstead 1995;
Halstead and Jones 1989; Russell 1988)

The increasing population trend should be reflected in models of food and fodder
production (i.e. the spatial change in the field, pasture, and forest area) as well as
in the numbers of livestock.1 Data derived from the archaeological record are used
to create anthropogenic aspects of the models and form model inputs. Ethnographic
data can clarify agricultural strategies and processes as well as add new details.
Table 9.2 shows an overview of the input variables and their sources.

1Livestock-woodland models (currently under development) are not presented in this chapter.
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Potential evidence of agricultural activities carried out by the oppidum inhabi-
tants can be indicated by particular material groups, archaeobotanical and archaeo-
zoological assemblages, and settlement features (especially storage facilities),
(cf. Danielisová 2006; Danielisová and Hajnalová in print). From the cultivated
plants, the majority in the archaeobotanical assemblages is represented by glume
species (barley—54 %, and spelt—24 %) and to a lesser extent by free-threshing
wheat (13 %). Pulses have also been attested. Enclosed farmsteads at the oppidum
revealed clear evidence of surface storage devices (granaries). There is neither the
evidence of sunken silos, which would enable long-term storage of cereals, nor
communal storage facilities, which would indicate bulk supplying of the whole
community. Concerning the provisioning for the individual households, it can be
said that they were likely in charge themselves.

9.3.3 The Agricultural Hinterland

All societies in the past aimed at obtaining their necessary natural resources from the
immediate vicinity. The method of Site Catchment Analysis (Higgs and Vita-Finzi
1972) was used for modelling the oppidum’s hinterland (Fig. 9.1). This approach is
based on models of economics and ecological energy expenditure, and provides a
framework within which the economic activities of a particular site can be related
to the resource potential of the surrounding area. We thus needed to delimit the
“easily accessible” area in the site’s surroundings, which would have encompassed
fields/fallows, pastures, meadows and managed forests. Considering the locational
rules of the “least effort models” and the variable topography, the area was modelled
as cost distance according to walking speed from the centre (Fig. 9.1a). A formula of
travelling velocity V across terrain suggested by Gorenflo and Gale (1990, p. 244)
was used to delimit one hour of walking distance:

V D 6 � e�3:5.Œslope in %�C0:05/

This roughly corresponds to a distance of 4–5 km generally considered as a
threshold for the travelling on a daily or semi-daily return (cf. Chisholm 1979, p. 64).

The criteria for the prediction of fields were related to the environmental
variables: topography, soils, and climate (cf. Table 9.1 and Sect. 9.3.1). The fields
had to be placed on fairly moderate slopes—less than 5ı, 5ı–10ı and 10ı–15ı2

respectively. Together with the other variables “aspect”, “soils” (quality, depth,

2Opinions on how steep slopes are still cultivable quite differ. In the agricultural models it was
believed that slopes beyond 7ı–10ı were not tillable, though this applies especially for the
machinery not the manual cultivation (cf. Fischer et al. 2010). These (indeed arbitrary) categories
deliberately represent more benevolent option suited for hand tools (<15ı) and ploughing animals
(<10ı).
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rockiness), “topography”, and “wetness”3 it was put together through the Multi-
Criteria Evaluation analysis (Eastman 2006, pp. 126–134) by which different field
suitability categories were created (Fig. 9.1b). The plots classified as unsuitable (too
wet, too rocky or on slopes too steep) were excluded from the field model. One of the
crucial factors for the prediction of fields was the accessibility from the settlement.
Therefore most suitable areas were plotted as the most fertile zones located as
close as possible to the settlement. A cost penalty was included in the agricultural
model for fields exceeding the distance of 2 km (cf. Chisholm 1979, p. 61). This
option applies especially for more intensive regimes of land-use; the cost impact
was lower for fields where extensive practices were carried out. Fields within distant
zones could have been subjected to different land-use and management types—more
intensive closer to the oppidum and more extensive further away (cf. Sect. 9.3.4).
The remaining terrain can be attributed to open and forest pastures, forest openings
and woodlands.

9.3.4 Production Processes

Labour rates and resources required for each of the agricultural tasks listed in
Table 9.2 have been studied (Russell 1988; Halstead 1995; Halstead and Jones 1989
etc.) and can be used for modelling of farming practices. The default presumption
for the model is that households used animal traction for cultivating their fields.
The actual area of fields, as well as the labour input per unit area, varies greatly
according to the number of inhabitants and different arable farming strategies
employed. With higher yields during an increasing intensity of cultivation, the
area of fields could have decreased and vice versa. High annual harvest fluctua-
tions are apparent in modern agricultural experiments (e.g. Rothamsted Research
2006; Hejcman and Kunzová 2010; Kunzová and Hejcman 2009). Variable annual
yields are also being regularly mentioned in the historic records (cf. Campbell
2007; Erdkamp 2005). Therefore, using mean yield estimation in archaeological
modelling would provide only a static indication of production. A relative struc-
ture of inter-annual fluctuations in the ancient crop yields from a particular
area may be established by extrapolating from modern or historical data, prefer-
ably from the same region and without estimating any absolute mean value
(Halstead and O’Shea 1989, p. 6; Hejcman and Kunzová 2010). A general range
between 500 and 3,000 kg/ha (Danielisová and Hajnalová in print) can be considered

3The categorization (with decreasing “suitability”) of the variables was the following: Aspect:
slopes exposed to the cardinal points (from the South to the North); soil quality: Cambisols,
Cambisols with Gley, Gleys and Pseudogleys, fluvial deposits in the floodplains; soil depth and
rockiness: low, moderate, high (according to the BPEJ land evaluation); topographic wetness
index: delimited the areas which were “too wet” (especially in the floodplains; more detailed
categorization of this variable will be useful especially for the modeling of the pastures);
topography: excluded slopes too steep (>15ı) or areas too rocky etc.
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Fig. 9.1 Quantitative GIS model of the oppidum’s hinterland area within its predicted catchment:
(a) cost distance from the settlement, (b) evaluation of land suitability for the cultivation of crops,
(c) resulting model of the hinterland’s suitability for agricultural tasks. The “utility index” ranges
from 0 to 250 (0–200 represents increasing suitability, 250 is the oppidum)

a suitable variance of general yield variability, derived from the information on
local environmental and climate conditions, the reconstructed scale and intensity
of farming (by “intensity”, we understand the amount of labour input required to
process one unit area of land) and production targets (from small subsistence needs
to surplus production requirements). The following three agricultural strategies are
assumed to have been possibly practised by the Iron Age population (also see
Table 9.2 for a reference regarding input values):
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1. Intensive farming on small plots: fields were manured by grazing and stable
dung; they were intensively tilled by hand, and weeded. Working animals could
be used for maintaining higher yields; also, rotation of crops (cereals, pulses) was
practised. An intensive farming strategy represents the most labour-demanding
option, which tends to be limited in scale or covers only the subsistence needs.
Larger production (in the meaning of surplus production) would require higher
labour input at the expense of the other activities (like stock farming).

2. Extensive farming on large plots: fields included fallows and were managed less
intensively. They were manured especially by grazing animals. The plots could
be usually under continuous cropping (i.e. no crops rotation) as the periods of
fallow allowed for the sufficient regeneration. An extensive strategy could have
been employed especially when the available land was abundant, population
pressure low, labour was engaged elsewhere, or it was more preferred than the
intensive production. With this strategy the potential for surplus production was
higher, but could fluctuate heavily.

3. Mixed strategy: this comprised a combined approach of land managed more
intensively within the infields (closer to the settlement) and more extensively
in the outfields (further from the settlement). Both were ploughed by working
animals. Infields would be fertilised by the farmyard manure, could be weeded
or hand tilled. Crop there was rotated as under the intensive strategy. For the fields
further away, fallows were included (management of which was less intensive).

The extensive strategy, as well as the mixed one, required quite large areas to be
available without any competing sites around. When population growth caused
pressure on resources, extensively managed fields further away could be turned into
more intensively managed ones. If the increasing intensity of land cultivation could
not be matched by either adequate labour input or numbers of animals (to secure
necessary manuring), a stress situation would develop.

9.4 Models

In the models of social complexity, population growth plays an important role.
Population pressure and over-exploitation of resources are very important concepts
from which a wide range of social phenomena can be explained (Bayliss-Smith
1978, p. 130). Our primary objective int that context was to find a stable and reliable
model of the population growth, with matching initial and final age distributions.
The simulation of the population dynamics (Sect. 9.4.1) provided input data for
further modelling and investigation of the oppidum’s production potential and
carrying capacity threshold of the hinterland (Sects. 9.4.2 and 9.4.3). Agricultural
production around the oppidum is perceived as having developed from the beginning
of land cultivation, relative to the beginning of the occupation of the oppidum, and
having lasted for about 100–120 years.
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Fig. 9.2 Population model

9.4.1 Population Dynamics Model

Population growth is defined as the change in number of individuals over time
(Fig. 9.2). It is assumed that all populations grow (or decline) exponentially (or
logarithmically), unless affected by other forces. The simplest Malthusian growth
model assumes the exponential growth is

P.t/ D P0ert

where P0 is the initial population, r is the growth rate and t is time. In our case,
the initial number of inhabitants is said to be between 500 and 800, the maximum
number of inhabitants after 100–120 years is between 2,000 and 5,000. The rapid
annual growth can in suitable circumstances reach 2 % (cf. Turchin 2009, p. 12).

Our model has one type of agent representing inhabitants. Each such
“inhabitant-agent” is characterized by gender (male, female), age (discrete value),
and age-category (suckling, toddler, child, older child, young adult, adult or elder).
Auxiliary variables were added for monitoring characteristics of the whole
population: percent-of-suckling, percent-of-toddlers, percent-of-children, percent-
of-older-children, percent-of-young-adults, percent-of-adults, percent-of-elders.
Summarizing variables num-of-inhabitants, actual-workforce and actual-
consumption inform about the structure the population.

The model has the following input parameters:
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Table 9.3 Proportional
distributions of the age
groups

Age group % in population

Suckling (0–1) 11.43

Toddlers (1–3) 5.71

Small children (3–10) 14.29

Older children (10–14) 11.43

Young adults (15–19) 8.57

Adults (19–48) 37.14

Elderly (48–) 11.43

Table 9.4 Daily caloric
requirement for different sex
and age groups (after Gregg
1988, Table 1, modified)

Age group kcal/day

Suckling (0–1) 0

Toddlers (1–3) 1,360

Small children (3–10) 2,000

Older children (10–14) 2,300–2,500

Young adults (15–19) 2,500–3,000

Female adults (19–48) 2,600

Male adults (19–48) 3,000

Elderly (over 49) 2,000

• initial population size between 500 and 800 individuals,
• initial population age structure,
• abridged life tables interpolated to a full variant,
• probability Q of a woman having a child in a specific year.

The initial population consist of seven age-groups (suckling, toddlers, children,
older children, young adults, adults and elderly), the proportional distribution of
each age-group was defined experimentally (see Table 9.3) (Olševičová et al. 2012).

Depending on each sex/age category, one person should yearly consume his/her
required amount of cereals � their caloric value (1 kg of wheat D ca. 3440 kcal).4

The cereals are assumed to cover 70–75 % of daily energy intake; the rest was
supplemented by proteins and other nutrients (cf. Table 9.4).

During the initialization of the model, a population of the supplied size is created.
Each inhabitant-agent is assigned an age and gender; globally, counters regarding
the number of inhabitant-agents in each age and gender group are updated. The
main procedure simulates 120 time steps (see Listing 9.1). At each time step,
each inhabitant-agent applies its get-older procedure. The procedure operates with
abridged life-tables, adopted from the regional model life-tables created by Coale
and Demeny for the ancient Roman population (Saller 1994). We used the Model
Life Tables Level 3 a 6 West. To complete missing values in the tables (as they were
in 5-year intervals), the Elandt-Johnson estimation method (Baili et al. 2005) was

4For example in case a male adult agent requires 3,000 kcal daily, this means 1,095,000 kcal yearly,
which equals 322.05 kg of cereals/year (if only cereals are consumed).
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applied. The inhabitant-agent, representing women between 15 and 49 years, also
executes the birth-rate procedure (avg. 5.1 children per woman) that operates with
probability Q.

The model ignores more detailed aspects like partner selection and proportions
of various families’ formation (nuclear-extended), as those are the variables which
would have to be set arbitrarily, without sufficient supporting data. While popu-
lation size, life tables and population structure were available to us, it was very
complicated to estimate the probability Q without relevant statistical data. It should
be noted that the probability Q is in fact composed of multiple components, some
of them depending on others. Biological fertility of both partners can be estimated
(in general, it is decreasing with age), but such a parameter itself cannot explain
the whole Q, as there are many socio-economic and other biological factors. As a
consequence, NetLogo’s BehaviorSearch tool was used to identify parameters of Q

experimentally, using genetic algorithms.

Listing 9.1 Population model pseudocode
model-setup
load life tables
create initial population of N inhabitant-agents
for each inhabitant-agent

set initial age
set gender (male or female)

set global variables
count number of suckling
count number of toddlers
count number of children
count number of older children
count number of young adults
count number of adults
count number of elders

update plots and monitors
end

model-go
repeat for 120 steps
set global variables

count number of weak workforce
count number of strong workforce
count total consumption

for each inhabitant-agent
get-older

for each female-inhabitant-agent
birth-rate

set global variables
count number of suckling
count number of toddlers
count number of children
count number of older children
count number of young adults
count number of adults
count number of elders
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update plots and monitors
export population data
export consumption data
export workforce data

end

The probability Q is a function of a woman’s age, with the additional limitation
that it is defined to be non-zero only in the interval 15 to 49 years.

Based on empirical findings (fertility rate around 5.1; more than two children
rarely survived infancy), we have decided to discretize the function Q using
intervals of 5 years. This means that probability qi applies for ages i; : : : ; i C 4.
Taking into account the fact that the time step of the model is one year and that the
interval where Q is non-zero from age 15 to age 49, we actually look at a vector of
size 7. Individual probabilities are discretized, too—we consider only integer values
{0,1,2,. . . ,100}. Based on that, we can define following parameter vector:

Q D .q15; q20; q25; : : : ; q45/; qi 
f0; 1; 2; : : : ; 100g (9.1)

To be able to use BehaviorSearch, an objective function must be also defined.
Our objective was to optimize parameters such that a defined population size was
achievable; as constraint, the population structure should be as close as possible
to the original one. Hence, each of these two aspects were modelled as an own
objective function. Function F1 given in Eq. (9.2) is the first one, giving the
percentage of change in final population x considering an initial population A.

F1 D jx � Aj
A

(9.2)

The second aspect is covered in function F1 (Eq. (9.3)), which represents the
average percentage change in seven population’s age intervals (suckling, toddlers,
children, older children, young adults, adults, elders). More specifically, the change
in percentage within the individual age and sex groups was compared to the initial
population structure.

F2 D 1

7

7X
iD1

jxi � x0
i j

x0
i

(9.3)

However, BehaviorSearch cannot optimize multi-objective functions; therefore
the problem must be converted into a single-objective optimization. We have used
simple Euclidean distance:

F D
q

F 2
1 C F 2

2 (9.4)

In the overall objective function F (Eq. (9.4)), both contained objective functions
have the same weight. It should be also noted that the function F can no longer be
interpreted as a percentage, as opposed to functions F1 and F2.
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The model has the two following outputs:

• necessary energy input (caloric input value extrapolated from the actual oppidum
population in all sex/age groups) for each year of simulation (Fig. 9.3a).

• available workforce (actual number of people in productive age in particular
age/sex categories) for each year of the simulation (Fig. 9.3b). Two main
categories were distinguished: “strongforce” (males and young males who can
perform heavier task such as ploughing, harvesting with scythe, trees cutting etc.)
and “weakforce” (other age/sex categories, except very small children, who can
pursue other tasks, such as sowing, hoeing, weeding, manuring, milking, various
assistance tasks etc.).

Multiple configurations of the model have been tested. As results show, it turned out
that there was no single exclusive function meeting initial requirements, and hence,
multiple directions had to be explored (as described in the next sections).

9.4.2 Crop Production Model

The purpose of this model is to compare agricultural strategies likely to be employed
by the oppidum’s population in relation to the necessary land-use area and ratio of
the population engaged in agricultural work, in order to find out (1) whether the
hinterland of the site itself had capacity to sustain constantly growing population
of the oppidum and (2) if the oppidum’s society could support food non-producers
(craft specialists or elite). Following model inputs were defined (see Fig. 9.4):

• two time series from the population growth model (giving the values of the
caloric requirements and available workforce for each year of simulation, cf.
Sect. 9.4.1),

• the map of arable land around the settlement (modelled in GIS, cf. Sect. 9.3.3),
• the type of the agricultural strategy (cf. Sect. 9.3.4).

Three different land cultivation strategies (intensive–extensive–mixed) were
implemented. While intensive farming provides higher yields on smaller area than
extensive farming, it also requires significantly higher labour input. The production
of cereals should be at least equal to the total consumption (plus seed corn—
from every harvest 200 kg of grain/ha must be secured for the next-year’s sowing)
and should be achieved with the available workforce. Yields above the actual
consumption represent a surplus and are stored. Around 10–15 % is accounted
for losses. Keeping part of the surplus grain in storage until the next harvest can
substantially diminish the impact of attested harvest fluctuations. Currently, these
are driven randomly with the addition of sudden “events” (such as hailstorms,
frosts or flash-floods). Each year there is a probability of some such event which
can reduce the total harvest. Due to the absence of sunken silos, the maximum
storage period was set to three years. After that time, the crop storage from the
first year must have been consumed (surplus grain could be for example fed to
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Fig. 9.3 Population Model outputs. (a) Growth of population—age groups, for initial number
of 800 inhabitants. (b) Growth of strong, weak and total workforce, for initial number of 800
inhabitants

animals) or disposed of.5 In case of a harvest failure, the oppidum’s population
should compensate using their reserves. This way, the years of bad harvests are
counted as “bad-years” when the consummation level is higher than the production
level and as “critical-years” when there are three bad years in a row. If the stored
reserves are depleted as well, the model returns “years-with-no-food” which means
that the population faces a crisis with acute food shortage.

The map of land suitability was imported to NetLogo, to be used as the back-
ground for visualization (Fig. 9.5). The possibilities are either to use a generalised
raster map (as .png file) or to import an ascii text file. We used second option,

5This issue can be further examined for example also in relation to the feasting events when the
surplus grain is consumed (cf. Van der Veen and Jones 2006).
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Fig. 9.4 Crop production model

because it preserved original coding of layers and realistic spatial proportions. The
oppidum is situated in the middle of the map and the area around was classified
according to the “utility index” of the suitability for cultivation (cf. Fig. 9.1).

The following model inputs are defined:

• the average crop and its standard deviation in case of intensive and extensive
management (between 700–3,000 and 500–2,000 kg/ha respectively),

• the ratio (“strongforce”, “weakforce) of working population (between 0 and 1),
• the ratio of cereal consumption (between 0 and 1),
• the number of workers per hectare for each strategy,
• seed corn for the following year and losses.

Listing 9.2 Crop production model pseudocode
model-setup
load map
update visualization
recolor patches according to attractiveness, distance and

,! current state of cultivation
load population data
load consumption data
load workforce data
initiate animal-agents

end
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Fig. 9.5 Crop Production Model interface: sliders for setting initial values of parameters (left),
visualization of the land-use in case of extensive strategy (right)

model-go
repeat for 120 steps

set global variables
count number of animals
count cereals requirement

update fields allocation according strategy
update crop
count crop
count storage
count destroyed storage

update animal data
slaughter-animals
milking

update plots and monitors
update visualization
recolor patches according attractiveness, distance and

,! current state of cultivation
end

The initialization of the model (refer to Listing 9.2) consists of loading and
visualization of input data, especially loading text files with the time series of
population, workforce and consumption. In the main procedure, the cycle repeats
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120 times to simulate 120 years. In each simulated year, global variables are
updated, characteristics of each patch of the land are updated according to current
agricultural strategy and related crop data are processed and visualized.

We compared three agricultural strategies experimentally, with the aim to identify
the appropriate labour input and carrying capacity of the hinterland. Frequencies
of bad and critical years as well as years without food were examined, in order to
ascertain under which model setups stress situations occur. The frequent appearance
(i.e. several consecutive years) of bad, critical or even years-with-no-food means the
particular agricultural strategy was not applicable.

With the outputs from the Population Model (cf. Sect. 9.4.1) the labour input
under all strategies required between 25–40 % of the male and young male adults
(“strong-force”) and 40–55 % of the rest of the population (“weak-force”) (see
Fig. 9.6). That means that not all of the oppidum’s population had to be engaged
in the agricultural (meaning cereal production) work.

Other set of experiments was focused on the sustainability of the land-use in
relation to strategies employed. In the case of an intensive strategy being employed,
a population experienced several bad-years between the years 18 and 38 plus one
period of critical-years (years 36–38) caused most likely by the labour shortage
(returned from the Population Model). After that the production was stable to the
ninth decade (year 93) of the oppidum’s occupation, where the farming had to
be carried out in more distant field plots with decreased net returns (Figs. 9.6a
and 9.7a) because of the applied cost penalty. Then, the intensive strategy could
not be efficiently practiced, because more labour input had to be invested into the
necessary subsistence tasks. In total, a population of ca. 2,500 persons could sustain
the agricultural production until the end of the oppidum’s existence, but struggled
considerably from the ninth decade.

In case of an extensive strategy being used, the simulated population did not
experience problems with the labour shortage in the third decade, but from the
year 92 onward, the population of ca. 2,000 people would encounter problems with
availability of the arable land (see Figs. 9.6b and 9.7b). Due to extensive fallowing,
the cultivated area would be much larger than with the intensive strategy. The
cost penalty (though with moderate impact compare to the intensive strategy) also
influenced the net returns from the fields. The population would increase for another
10–15 years, living on storage reserves, but after that period, the land-use approach
must have changed, the crops must have been supplied externally, or the population
density must have declined. The process of adaptation to the new conditions may
have included the intensification of the agricultural practices, in order to reduce the
cultivated area.

A combination of intensive and extensive cultivation practices appeared as a
suitable compromise between land and labour shortages under constantly growing
population density, though during the third decade the population experienced sim-
ilar situation as when practising the intensive strategy (Fig. 9.6c). The experimental
results showed that the population can maintain a more or less constant level of
surplus (turned into storage), and must therefore have experienced a minimum
of crisis situations due to harvest failures. In our experiments, the ratio of the
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Fig. 9.6 Sustainability of production under different agricultural practices. (a) Intensive strat-
egy: strongforce 34 %, weakforce D 55 %, average crop 1,500 kg/ha, standard deviation 1,000.
(b) Extensive strategy: strongforce 25 %, weakforce D 40 %, average crop 1,000 kg/ha, stan-
dard deviation 500. (c) Mixed strategy: strongforce 29 %, weakforce D 50 %, average crop
1,000–1,500 kg/ha, standard deviation 700

intensive and extensive cultivation practices within the mixed method was set to
1/3:2/3 (intensive:extensive). However, choosing between the two strategies or their
combination depends on the decisions of the farmers who are affected by many other
factors (quality and accessibility of land, availability of the workforce, preference of
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Fig. 9.7 Total field areas. (a) Intensive strategy: average crop 1,500 kg/ha with standard deviation
1,500, strong force 0.42 person/ha, weak force 1.27 person/ha. (b) Extensive strategy: average crop
900 kg/ha with standard deviation 1,000, strong force 0.21 person/ha, weak force 0.85 person/ha

other subsistence strategies like stock farming, climate changes, bad harvests etc.).
Such a process is presented in the Field Allocation Model, using fuzzy methods as
technical basis.

9.4.3 Field Allocation Model

While the typical process of human-driven research concerning the land-use is usu-
ally performed using GIS tools with multi-criteria decision analysis (Eastman 2006,
pp. 126–134), our model provides an alternative approach with possible extensions
in terms of household/people interactions with the landscape (cf. Olševičová et al.
2012; Machálek et al. 2013). In order to model the farmers’ decision processes
concerning spatial structure of their fields, we created fuzzy system helping to
provide initial hypotheses in terms of crop field layouts.

Fuzzy rule-based systems build on top of the theory of fuzzy sets and fuzzy logic
introduced by L. Zadeh in 1965. With classical sets, we assign each object either an
“is-member” or an “is-not-member” property. On the contrary, in case of fuzzy sets,
a membership degree function in the interval [0; 1] is used (see e.g. Babuška 2001;
Ross 2010). This leads to a different (but still consistent with our understanding
of Boolean logic) concept of set operations and related logical operations. Fuzzy
rule-based systems provide a way to encode domain specific knowledge and control
behaviour of a system or entity in conformity with this knowledge. The rules have
following general form: IF antecedent proposition THEN consequent proposition.

Fuzzy propositions are statements like: “x is big”, where “big” is a linguistic
label, defined by a fuzzy set on the universe of discourse (Babuška 2001). Linguistic
labels are also referred to as fuzzy constants, fuzzy terms or fuzzy notions.
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A linguistic variable is a quintuple (Klir and Yuan 1995)

L D .x; A; X; g; m/ (9.5)

where x is the base variable (it also represents the name of the linguistic variable),
A D A1; A2; : : : ; Anis the set of linguistic terms, X is the domain (universe of
discourse) of x, g is a syntactic rule for generating linguistic terms and m is a
semantic rule that assigns to each linguistic term its meaning (a fuzzy set in X ).

Attempting to encode the knowledge of Iron Age farmers in terms of land
suitability and accepting their limited analytical capabilities we see a fuzzy rule-
based system containing a set of if-then rules as a natural tool to express their
decision processes (i.e. subjective, approximate, using terms like “near”, “far”,
“weak”, “strong”, “fair”; cf. Ross 2010).

This model simulates the farmers’ decision-making process regarding suitability
of individual land patches for crop (or animal) husbandry and also about correction
of predefined percentages of intensive farming according to the difference between
actual harvest and annual nutritional requirements of the community. In addition, the
total harvest can be modified by a long term trend function to simulate progressively
decreasing or increasing carrying capacity of the area.6 Taking into account existing
land suitability evaluation (cf. Sect. 9.3.1) we have split the problem into two
levels:

• The first level represents an evaluation of land based only on the terrain’s
invariant properties (such as distance, slope, etc.). The problem how individual
land characteristics influence suitability has already been addressed in human-
landscape occupational rules as well as in the field of agricultural practices
(cf. Jarosław and Hildebrandt-Radke 2009; Reshmidevi et al. 2009).

• The second level introduces a dynamic factor (e.g. the harvest from the previous
season). An evaluation process from the first level can be understood here
as an initial step (time “zero”) where inhabitants have not yet influenced the
environment in any way. But in the next season, their knowledge becomes
broader, because they can evaluate the results of their previous assumptions
on what part of the land is more or less suitable to be farmed with a specific
cultivation strategy.

A single type of agent—a household which represents one or more families living
in a settlement (house or a group of houses) with the arable land around, is defined.
We assume that the “hinterland” is based on exploring accessible areas around the
settlement, which lies in the centre.

Our proposed fuzzy inference requires four linguistic variables as input:

1. the distance of individual land patches from the household,

6This model forms a part of the main group of Agricultural Models. Its trial runs are presented
on the smaller site (four households)—the lowland open settlement of Ptení, where the landscape
settings are similar to the oppidum of Staré Hradisko.
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Fig. 9.8 Input variables of the fuzzy inference system

2. a slope gradient,
3. suitability of individual land patches,
4. the total harvest (as a percentage of inhabitants’ annual nutrition requirements).

The concrete form of the membership functions related to these variables is the
result of the previous GIS analysis (for the parameters see Sects. 9.3.1 and 9.3.3)
and also of empirical testing (Fig. 9.8). A key parameter influencing both total
and patch-level yields is the suitability of soil. The model works with 5 “soil
categories”: unfarmed soil of the settlement, alluvial soil and three additional
qualitative categories for arable land.

The stochastic nature of crop yields required selecting a proper random distri-
bution. While there exist objections against normally distributed crop yields (e.g.
Ramirez et al. 2001), modelling yields by normal distribution still cannot be refused
in general (e.g. Upadhyay and Smith 2005). We have applied it also in our model,
due to the lack of detailed evidence. Coming to details, the mean of the distribution
separates aforesaid yield ranges into equal halves and standard deviation is defined
so that the maximum and minimum values are at ˙3� . The estimated distributions
N.�I �2/ were calculated as:

� D .Ymin C Ymax/

2
(9.6)
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� D .Ymax � Ymin/

6
(9.7)

As an output of the fuzzy inference system, two linguistic variables have been
defined:

1. suitability—this variable quantifies suitability of a single land patch in terms
of its usability for growing crops. Patches with suitability near a value of 100
can be understood as very suitable (near the household, flat and with good yield
potential). Patches near 0 are considered to be inappropriate (far lying, sloping,
low yield potential).

2. intensity—although the model operates with a parameter, which specifies the
percentage of household’s arable land, it also provides auto-correction of this
value according to the difference between required and actual harvest. The real
proportion of cultivated land is calculated as a product of farming and intensity.
The variable intensity is expected to be approximately 1 if the total harvest is
about equal to the requested value (parameter required-annual-yield).

Listing 9.3 Fuzzy-rules pseudocode for The Field Allocation model
RULE 1: IF yield IS very_small THEN suitability IS low;
RULE 2: IF slope IS high THEN suitability IS low;
RULE 3: IF distance IS near AND (slope IS low OR slope IS middle)

,! AND (yield IS high OR yield IS medium) THEN suitability IS
,! high;
RULE 4: IF distance IS near AND (slope IS high) AND (yield IS

,! high) THEN suitability IS middle;
RULE 5: IF distance IS middle AND slope IS low AND (yield IS NOT

,! very_small) THEN suitability IS high;
RULE 6: IF distance IS middle AND slope IS middle AND yield IS

,! high THEN suitability IS high;
RULE 7: IF distance IS far AND (slope IS low) AND (yield IS

,! medium OR yield IS high) THEN suitability IS middle;
RULE 8: IF distance IS far AND (slope IS middle) AND (yield IS

,! NOT very_small) THEN suitability IS low;
RULE 9: IF distance IS near AND slope IS low AND yield IS NOT

,! very_small THEN suitability IS high;
RULE 10: IF distance IS middle AND slope IS low AND (yield IS

,! small OR yield IS very_small) THEN suitability IS low;
RULE 11: IF harvest IS fair THEN intensity IS normal;
RULE 12: IF harvest IS bad THEN intensity IS high;
RULE 13: IF harvest IS high THEN intensity IS low;

To calculate yield yp of a specific patch we have defined the following function:

yp D 25 � h � y

10000
� T � r

where 25
10000

recalculates per-unit yield to model’s patch size, h is a yield per
hectare, y is normal random variable with properties so that h ˘ y has properties
of the distribution defined in Eqs. (9.6) and (9.7). T is a coefficient expressing
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an influence of a farming type (it has value of 1 for intensive farming and 0.3
for extensive farming) and r is an optional coefficient to apply long-term trends
(i.e. climate change). For the fuzzy inference system, 13 rules have been defined;
these can be found in Listing 9.3.

As always in fuzzy logic, the operator AND is defined using the min function,
while OR is defined using maxfunction. For rule activation, the min function
was used. For rule accumulation, a bounded sum method (i.e. min.1; �A C �B/)
was used. Fuzzy implication in based on Mamdani’s inferencing scheme.

Figure 9.9 presents an example of land evaluation. Land area in the model is
represented by a grid of discrete patches of the same size. Stochastic properties
of the model cause that even several neighbouring patches may sometimes differ
significantly in terms of calculated suitability. Such result is hard to interpret
directly, because we cannot expect that a real farmer was mixing crop husbandry
practices (including the “no-use” one) every few meters. To resolve this problem,
we have at the moment proposed to post-process the resulting “suitability map”
using linear filtering:

g.i; j / D
X
k;l

f .i C k; j C l/h.k; l/ (9.8)

Here, f represents the input signal, h is called linear convolution kernel. We have
been using the following bilinear kernel:

h.k; l/ D 1

16

0
@1 2 1

2 4 2

1 2 1

1
A (9.9)

The suitability map can be understood as a spatial signal in which a proper linear
convolution kernel serves as a low-pass filter which attenuates higher frequencies
from the signal (Szeliski 2010).

While treating the suitability as a continuous variable is convenient in terms of
described calculations, it is more complicated to apply such a variable directly in
practice (i.e. what should farmer do exactly if the suitability is x?). Because of
that we defined a mapping from continuous suitability variable to an ordinal set
of suggested farming types (see Fig. 9.9).

Figure 9.10 shows a comparison between discussed fuzzy model and multi-
criteria based solution which considers only distance and soil type. Given a required
target yield, we can see that the fuzzy model is capable of producing results with
comparable accuracy, the only exception being low intensity farming: the model
evolves from a defined starting property size and is unable to reach the required area
within the running time limit (it evaluates too many patches as unsuitable).
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Fig. 9.9 The open settlement of Ptení: fuzzy (first row) and multi-criteria based (second row)
model, required annual yield D 9,000 kg, required ratios for intensive farming D 10 % (left), 50 %
(centre) and 90 % (right), red area D best suitability for intensive farming, yellow area D best
suitability for extensive farming or pastures, black area D evaluated land of lower suitability

Fig. 9.10 Fuzzy (including linear filtering) and alternative model—target yield accuracy

9.5 Discussion

Results achieved can be discussed in the light of the framework of available data:
according to the archaeological record, the settlement density in the late La Tène
period having increased over some time and then decreased again rapidly. The goal
of our modelling effort was to ascertain whether “crossing the carrying capacity”
situation was a main factor in the process of the abandonment of settlements. Setting
the proper values was a difficult undertaking. We have only limited data concerning
the initial and final populations at Staré Hradisko. Rather, we have information
on the occupational development. Despite that, the Population dynamics model
provides realistic time series of consumption, workforce and age distributions of
population of the oppidum’s agglomeration. It is essential to note, however, that its
development did not take into account a sudden decline in the occupation observed
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in the archaeological record. This is because our goal was to explore the cause of this
decline. To be able to address that issue, we first needed an invariable model of the
population growth. Therefore, the modelling results showed a constantly growing
population from the beginning until the end of the occupation (i.e. the “Baseline”).
Maximum supposed “real” population density of the oppidum, reached only by
natality, could then be seen around the years 80–90 of the simulation. With such
a demographic profile, the oppidum’s community could in fact practice all land-use
strategies without any substantial problems apart from those imposed by natural
harvest fluctuations due to weather and other (e.g. socio-economic) factors.

Using our models, we have proven by experiments that not all of the oppidum’s
population had to be engaged in the agricultural work. When other labour tasks are
implemented (such as animal production and forest management), further experi-
ments will be able to answer the question of sustainability of the non-producers at
the oppidum. Since there is an archaeological evidence of elite members, which,
presumably, were not involved in the agricultural production, the labour shortage
may point to the necessity of using the external supplies.

The limits of the land-use strategies returned from the Crop Production Model,
when the population was expected to react by adjusting their economic strategies,
started acting around the population density being over 2,500 (under the intensive
strategy—cost distance factors) and around 2,000 (under the extensive strategy—
depleting of hinterland area). If the population growth would have reached this
maximum value after first 80–90 years (due to massive immigration for example),
that could be the realistic interpretation of the occupation’s decline.

According to historical sources, exceeding the appropriate carrying capacity
was not a rare occasion in history (cf. Schreg 2011, p. 312). Intensification led to
innovations in the agriculture on the one hand, but also to a more rapid depletion of
the land resources where their extent was limited on the other. When experiencing
population growth, the households had to work harder in order to keep their life
standards, due to the law of diminishing returns (Turchin and Nefedov 2009, p. 1).
This concept refers to the fact that while the population increases exponentially,
the growth of subsistence resources is only linear and generally slower. As
the population approaches the carrying capacity, the production level gradually
declines. This means that when reaching the carrying capacity threshold, the surplus
becomes zero, and upon further population growth it becomes negative. At this
point, the population faces a lack of resources for its reproduction and its density
must decline (Turchin and Nefedov 2009, pp. 8, 10, Fig. 1.1a) or their subsistence
strategies must be adapted to the new situation. Such adaptability processes may
include changing the extensive cultivation practices into more intensive land use
regimes (i.e. cultivating land with higher labour input on smaller area) or a change
in economic preferences to stock farming or craft industries. The results of the
mixed land-use model showed that the optimal strategy would have been to combine
different agricultural practices. This inspired the Agricultural model II, which
focuses on the decision process of farmers in choosing the optimum farming strategy
in order to balance potential problems, with space and labour availability.
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The results show that, since the adequate oppidum population (living from their
own resources) was able to exploit environmental resources around the oppidum
without simultaneously exhausting them, a rapidly growing number of inhabitants
could—at some point—cross the limits of the sustainable agricultural production
and experience several stress situations. Especially for the labour intensive scenario,
the model resulted in diminishing returns from the cultivated land as the cost
of farming more distant field increased. Around the population peak, the gradual
depletion of stored reserves resulted in a supply crisis, which must have provoked a
strong social response. This evolution can be a typical development towards societal
decline following the distinctive upsweep accompanied by rapid population growth
especially in the environment where the market economy was weak (Chase-Dunn
et al. 2007; Turchin and Nefedov 2009). This hypothesis is a main subject for testing
in further research.

9.6 Conclusion

This chapter has attempted to discuss the applicability of agent-based social
simulation as a tool for the exploration of the late Iron Age oppida agglomerations,
especially from the point of view of the population growth and related sustainability
of production. By presentation of three consecutive NetLogo models—the model of
population dynamics and two agricultural models—we intended to demonstrate the
ability to move from a static data set (archaeological and environmental records) to
dynamic modelling that incorporates feedback mechanisms, system integration, and
nonlinear responses to a wide range of input data.

Even in case when detailed data is limited, these models could point to the con-
straints of the particular agricultural strategy and population density in relation to the
specific environment (Schreg 2011, p. 307). In our case, evolution of computational
techniques such as genetic algorithms (available through BehaviorSearch) or fuzzy
rules (implemented in our jFuzzy plug-in) helped us to identify missing values
of parameters and to optimize model settings. This approach can help to analyse
past socio-economic processes, determine possible crisis factors and understand
ecological and cultural changes.

Future studies will build upon the presented models. The applied approach can
be adapted for other regions, and other economic strategies can be explored. Our
next objectives are to investigate further the population structure of the oppidum, by
incorporating different types of households and related attributes of the individuals.
The agricultural models are planned to be enhanced by more detailed weather data,
analyses of the animal production and related labour input resulting into a more
complex image of the social structure. The models of interaction within the region
will focus on the possibility of the food and raw resources circulation through social
contacts. Also, elaboration of the decision process of Iron Age farmers promises
an encouraging way where to direct our further research. At the moment, our
models end with the limits of the given agricultural practice, when reaching a
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certain population density. By including the social variables representing farmers’
independent decisions to change from one economic strategy into another (or to
adopt new ones) in order to cope with worsening conditions of the sustainable
agricultural practice, our model can approach the past social complexity studies
on a new level.
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Museum Catalogue

Meduna J (1970a) Das keltische oppidum Staré Hradisko in Mähren. Germania 48:34–59
Meduna J (1970b) Star’e Hradisko, ii. Katalog der Funde aus den Museen in Brno (Brünn), Praha

(Prag), Olomouc, Plumlov und Prostějov. FAM V. Brno. Museum Catalogue
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Chapter 10
Simulating Patagonian Territoriality
in Prehistory: Space, Frontiers and Networks
Among Hunter-Gatherers

Joan A. Barceló, Florencia Del Castillo, Ricardo Del Olmo, Laura Mameli,
Francisco J. Miguel Quesada, David Poza, and Xavier Vilà

10.1 Introduction

“Ethnicity”, “territoriality” and “culture” are still fashionable words in modern
archaeological research. Maybe such popularity is a signal of an academic inertia
that has kept some of the narrative of the old historical and cultural traditions, having
varied the background of the narrative. Although the current effort to develop an
archaeology of identity and ethnicity is impressive, there are still many questions to
be solved and even asked regarding to the role of archaeology and archaeological
data in dealing with such concepts.

The proper question is “why groups of people were the way they were in
the past”—That means, how social aggregates emerged. The complex interplay
of people and their social actions, and the consequences of those actions would
explain ethnicity in terms of a vast network of interacting actions and entities.
We assume that ethnogenesis and identity formation emerged among prehistoric
hunter-gatherers as result of the contradiction between social inertia (knowledge
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inheritance) and cultural consensus (social similarity) built during cooperation and
labor exchange.

In this paper we consider Patagonian historical trajectory as a case study. At
the extreme south of South America, hunter-gatherers survived until European
expansionism altered tragically 13,000 years of history. In the last 40 years, the
very idea of a “Patagonian” ethnicity has evolved from a static and essentialist
classification of human groups according to their very own nature, to a relational
frame of reference used by a group of people considered to be similar and
differentiated from others (Del Castillo et al. 2011). We have adopted here an
analytical view of ethnicity based on the emergence of identity as a consequence
of the very fact that some individuals interact more often than others, which means
that people embedded in social networks interact with a subset of the population
and define themselves in terms of their similarity (or cultural likeness) to the people
with whom they interact.

In this paper we have computationally grown a surrogate of hypothetical ethno-
genetic processes that may have occurred in prehistoric Patagonia, to explore their
effects on the emergence of “cultural” differences, spatial mobility and diffusion of
innovations. Our aim has been to simulate virtual social agents “living” in a virtual
environment defined on the basis of social theory and/or historical data. In this
preliminary and simplified computer simulation we are exploring the consequences
that labor exchange and territorial mobility in an artificial unconstrained world had
on identity formation and negotiation. We expect to be able to discern if cultural
diversity emerged as a result of social decisions only, or if it was the result of
constraints on mobility generated by geography and the irregular distribution of
resources, both in space and time. By implementing social events as computational
agents and their mutual influences as interactions, we seek to discover whether
collective action may be described and explained as non-accidental and non-chaotic.
It should be emphasized that the aim of such work is not to create the most “realistic”
artificial society possible. The simulation is not intended to be an exact re-creation of
the past but rather provide us with an understanding of how different circumstances
might have affected people in the past.

An important aspect of this way of understanding historical causality is that it
forces the analysis to pay attention to the flux of ongoing activities, to focus on the
unfolding of real activity in a real historical setting.

10.2 From Ethnicity to Territoriality

What has traditionally been called “ethnic” differentiation is nothing more than
a consequence of the diverse degrees of social interaction between human com-
munities, and an emerging pattern of social “similarity”. We want to explore
social mechanisms and processes whose results may produce some similarity in
social activity. Developing the definitions of D’Andrade (1987), Carley (1991),
Axelrod (1997), Boyd and Richerson (2006), and others, we may define culture
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as the distribution of information (ideas, beliefs, concepts, symbols, technical
knowledge, etc.) capable of affecting individuals as a result of their interactions
in the present. Cultural consensus is a measure of similarity in motives, actions,
behavior and mediating artifacts that does not exist for ever, but is in the process
of continuous building, influenced by many aspects of social life. Then, observed
aggregations of activities and social practices may be good estimates of “culture”,
but the accuracy of that observation depends on the agreement among what people
did, what they believed they did, and the number of observations on past actions
(Romney 1999; Romney and Weller 1984; Romney et al. 1986; Garro 2000; Weller
2007; Sieck 2010; Borgatti and Halgin 2011).

If “culture” can be defined as the expected variance in a distribution of social
values, goals and activities among synchronous human aggregates or populations,
“ethnicity” can be approached as the degree of social inertia or resilience between
different temporal states of the same aggregate or population, that is the ability
of an aggregate of social agents to maintain a certain identity in the face of
historical change and external perturbation (Stein 1997; Ramasco 2007; Castellano
et al. 2009). Consequently, “culture” and “ethnicity” can also be understood as the
propensity or tendency a human group has to practice or produce a distinct social
goal, motivation, behavior or artifact. Both “culture” and “ethnicity” are quantitative
properties of human aggregates and not features of individuals. Whereas “culture”
expresses the degree of commonality in social activities between contemporaneous
groups, “ethnicity” expresses the degree of similarity between social activities
between different temporal stages of the same group. Therefore, we don’t consider
ethnic groups to be discontinuous isolates to which people naturally or “ideally”
belong but a series of real related dichotomizations of inclusiveness and exclu-
siveness resulting from social reproduction, affecting the way people aggregated
in the past and aggregate in the present into groups and adapted/adapt their social
practices as a consequence. Ethnicity dos not presuppose the existence of discrete
and particular “ethnia”, nor does culture imply the existence of cultures. In other
words, there is not a thing or a set of things called an “ethnic group”, in the same way
that there is not a set of things called “culture”. The use of both terms should then be
limited to the configuration of an instrument for measuring typified ideas, behaviors,
actions and products that different human aggregates may have in common, in the
present or across time.

Our starting point for the computer simulation of ethnogenetic processes is
that the lesser the intensity and frequency of inter-group relationships, the greater
the differences in ways of speaking and other cultural features manifested by
groups (Del Castillo 2012; Del Castillo and Barceló in press). Commonalities in
needs, motivations, goals, actions, operations, signs, tools, norms, cooperative ties,
and in division of labor schemas are the consequences of the way some social
agents interacted, aggregated in space and time as a consequence of some of these
interactions, and reproduced the basis of such an aggregation. The formation of
such diverse aggregates at diverse scales and with different degrees of similarly
acting social agents is mediated by a perceived similarity both at the moment of the
interaction, but also previously, as some inherited social inertia or resilience. As a
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result: the greater the temporal depth of the social aggregation of agents, and the
longer the transmission links between a greater number of generations, the more
redundant the consensus, and the more stable it is.

The obvious result is that most people with the same history of interactions
show a degree of similarity in their motivations, goals, actions behaviors and
mediating artifacts which do not depend on their actual will, but on what they
have received from the past (Dow et al. 1984; Eff 2004). Endogamy appears then
as one of the main factors to classify some groups of similar subjects, needs,
motivations, behaviors and/or artifacts as ethnic (Abruzzi 1982; Whitmeyer 1997).
Human reproduction is not just a mere biological process, but a socially mediated
mechanism. Reproductive mates are consciously chosen and many social, ideo-
logical and political constraints impose some directionality in social reproduction
(Bernardi 2003; Bongaarts and Watkins 1996; Kalick and Hamilton 1986). For that
reason we assume social reproduction, i.e., the historically variable forms of mating
and marriage, and kinship topologies have a key importance for the definition
and analysis of ethnically distinguishable populations. Similarity and difference,
continuity and distinction among local populations emerge when unions among
members of a same population occur more often than unions with members of other
populations. Endogamy preserves the differential distribution of similar subjects,
needs, behaviors and artifacts inside a community. Exogamy, on the other hand, may
attenuate local distinctions when syncretic knowledge and norms are transmitted
from a generation to the following one. The more institutionalized the mechanisms
of reproductive isolation—as part of the explicit norms of a community, constituting
the law, religious doctrine or ideology of government-, the greater the possibility that
similarity emerges and is consciously sought after and maintained in the community,
and transmitted to the following generation (Abruzzi 1982; Cavalli-Sforza et al.
1994; Giuliano et al. 2006).

When useful commonality and redundancy emerges into a social encoding
scheme, members of the group produce the means whereby descendents will
predict their own identity even before acting, augmenting the social group and
cognitive resilience and hence generalizing what defines their own group. The
obvious consequence is a higher probability of social aggregation, which in turn
increases the probability of within group regularity. We suggest the probability
of an interaction between two agents is based on the principle of homophily, i.e.
the greater the amount of knowledge they share the more probable the interaction
is. And the more similar the origins, the more commonalities the members of
the same descent group share. But what comes from the past can be modified in
the present. Within the group and between groups, social agents may interact for
many reasons and in many ways: cooperating to acquire subsistence, cooperating
to produce (Bjerck and Zangrando 2013; Borrero et al. 2009; Gómez Otero 2007;
Orquera and Gómez Otero 2007) tools and instruments, cooperating to exchange
subsistence and/or tools, cooperating for reproducing themselves, refusing such
cooperation, or compelling other agents to work in their own benefit, etc. War
and conflict are also another kind of interaction. In all those cases, interactions
vary in intensity and frequency, defining a complex network of positive or negative
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intergroup relationships. As a result, agents adopt similar activities, and their actions
tend to generate similar results. Consequently, inter-action should be considered
both positive (cooperation) and negative (conflict), in such a way that different kinds
of social fusion, fission and friction develop a set of representations and values that
set the terms from which social clustering and self-ascriptions are constructed. All
these diverse sources of interaction modify similarity in social activities and any
kind of perceivable regularity, in such a way that newly configured aggregates affect
future mechanisms of social reproduction, and hence vary elements to be transmitted
to the next generation. Social inertia changes constantly because social conditions
in which reproduction takes place changes according to actual interactions. As a
consequence, ethnicity, the degree of similarity product of social inertia may change
constantly.

Our hypothesis is based on the idea in terms of agents’ tendency to interact with
agents with a similar “identity” which makes for a greater probability interactions
between already connected people than unconnected ones (with dissimilar features).
In addition, we also introduce the principle of social influence (i.e., the more people
interact with similar people, the more similar they become) which runs at the level
of communication and the formation of a socio-cognitive level.

10.3 Beginning of Times at the End of the World: Patagonia

How might those processes have acted in Patagonia before European colonization?
The antiquity of human settlement on the Patagonian steppe during the

Pleistocene-Holocene transition is well established (Borrero 2008, 2012; Miotti
and Salemme 2003; Mancini et al. 2013; Rivals et al. 2013). The beginning
of human settlement in Patagonia has been reconstructed as a slow process
of exploration and colonization, carried out by small groups, very mobile and
dispersed, with approximate site-catchment areas of around 100 km in radius
(Borrero and Barberena 2006; Barberena 2008). Sites may have been occupied
intermittently, by few people and/or short periods of time, but repeatedly (Frank
2012). These foundational groups were characterized by low population density
and the absence of specialized use of the ecosystem given the lack of competition
among distant and dispersed groups (Barceló et al. 2009; Del Castillo 2012; Del
Castillo and Barceló in press).

The growing number of sites identified as settlements and the greater rate
of material deposition at those sites suggest a demographic increase during the
Holocene (Borrero and Franco 1997; Borrero 2005; Martínez et al. 2013). It is from
this time, around the seventh millennium B.P., that an increasing use of marine
and littoral resources has been recorded (Bjerck and Zangrando 2013; Borrero
et al. 2009; Gómez Otero 2007; Orquera and Gómez Otero 2007; L’Heureux and
Franco 2002; Moreno et al. 2011). Many factors should be taken into account in
understanding why different groups decided to manage differently diverse sets of
resources from differentiated areas (Prates 2009). Among those factors, we can
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mention: the quantity of available labour, the size of the group, the degree of
technological investment, the complexity of labor operations, the organizational
needs of labor, and the social relations of production.

Six thousand years ago economic variability would have been consolidated all
over Patagonia, defining a differentiation between some communities specialized in
the exploitation of marine resources, some specialized in terrestrial resources, and
others without specialization but exploiting both terrestrial and littoral resources. In
any case, such economic differentiation cannot be well understood without taking
into consideration mobility across the territory. Human groups moved from place to
place for social and political needs, in such a way that extremely long and complex
interaction networks developed. Goods and information would have traveled more
than people would (Bellelli et al. 2008; Barberena et al. 2011; Méndez et al. 2012;
Silveira et al. 2010; López et al. 2010). Borrero et al. (2008) explain the circulation
of goods associated with large partially overlapping ranges within a framework of
inter-group visits, which would be related to economic and social factors that make
the size and composition very fluid over time.

If economic variability was already configured some time around 6,000/5,000
B.P., it is possible that cultural and social variability were also configured at
the same time. How many “distinct” populations existed then? Ethnologists have
made reference to language differentiation to suggest the existence of differentiated
populations, even in these remote times. Languages spoken by hunters exploiting
the forests along the Andes Mountains, the steppe, and the Atlantic littoral resources
historically derive from two different linguistic sources originating around the same
time Campbell (1997); Adelaar and Muysken (2004); Fernandez Garay (1998,
2004); Fabre (2005); Viega Barros (2005); Brown et al. (2008); Müller et al.
(2009). The first one would have been spoken by human groups at the western
side of the Andes (mapudungun linguistic family) (Zúñiga 2006) and another for
human groups at the eastern side (günuna a iajüch and chon-tsoneka,1 different
languages from a common linguistic family) (Casamiquela 1983; Fernandez Garay
1998; Viega Barros 2005; Orden 2010). Further south and notably southwest, on the
Pacific coast, canoe fishers spoke languages from a totally different origin: chono-
kawescar-yamana/yaghan (Aguilera Faúndez 2007).

Nevertheless, cultural variability cannot be limited to the level of linguistic
differentiation. It is important to remark that the speakers of those languages in early
colonial times did not have ethnonyms for self identification: the term “günuna-
küna”, where “küna” is the word for “people” has been translated as “people of the
same blood, friends” (Harrington 1946; Casamiquela 1983); “aonik’kenk”, where
“kenk” is the word for “people” has been translated as “people from the south”
(Fernandez Garay 2004). There are many ethnographic sources on the inter-ethnic
relationships in early colonial times (Nacuzzi 1998; Vezub 2006, 2009, 2011).

1Musters (1872–1873) wrote that “tsoneka” was the etnonym these people gave to themselves
(Musters 1964 [1872–1873]). He was mistaken, because the work derives from aónik’o ais
language: tshontk‘ D ch’óon(e)k(e) (Casamiquela 1965, p. 22).
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There is also mention of mixed groups formed between coastal gatherers and
interior hunters (guaicurues along the Magellan Strait, cacaue along the central
western coast, cf., Viega Barros 2005 for linguistic and Martinic 1995 for historical
evidence).

Modern paleobiological investigation reinforces this view of permeable frontiers
and between group integration. Evidence of biological exchange between steppe
hunters and southern canoe fishers, south and west of the Andes (Gonzalez-
Jose 2003; Gonzalez-Jose et al. 2001) proves the inexistence of closed biological
populations (see also Barrientos and Perez 2005 for the región North of Patagonia,
and Morello et al. 2012 for the cross of Magellan Straits). Whether molecular
markers (frequency of different haplogroups in the samples with the same geo-
graphical origin), or morphological and/or morphometric skull, variability can not
be described in discrete units (or “types”), but as a continuum between more or less
similar samples. Lalueza et al. (1997) argue that geographic distance (in a latitudinal
sense) is the main factor that influenced the differentiation of the human groups from
Tierra del Fuego and Patagonia. Recent studies at continental or subcontinental level
in America prove that environment, diet and temperature, are the most important
factor for understanding craniofacial and postcranial metric variation, explaining
50–80 % of morphological variation (Béguelin 2010; Beguelin and Barrientos 2006;
Gonzalez et al. 2011; Fabra and DeMarchi 2011; Perez 2011). Therefore, the
definition of biological “types” represents an incorrectly subjective assignment of
affinities (Long and Kittles 2003; Gonzalez-José et al. 2008). Nevertheless, the
alternating contraction and expansion processes of population (demographic and
geographic), including events such as local extinction and recolonization of areas
has important effects on the historical construction of cultural variability (Barrientos
and Perez 2002).

According to our view, an isolation-by-distance model would predict that
human groups reflected geographic separation in the pattern of their between-group
distances. The eventual result would be a greater similarity between geographically
proximal populations and increasing differences between groups that are further and
further apart. The closest populations in space would have greater similarity in their
biological characters than populations located further away. Biological differences
observed among individuals who lived in Patagonia and those who lived in the
rest of the subcontinent may be explained by a long history of divergence; current
estimates range between 5,264 and 1,641 years of fissioning processes and isolation
for the emergence of phenotypical differences from a single foundational population
(García-Bour et al. 2003). Such a huge chronological range highlights the problems
in the use of molecular clocks. Paleolinguistic research also suggests around 6,000
years for explaining the gap between günuna a iajüch and the languages from
the chon-tsoneka family: Chewache-iayich (also called teuschen), aónik’o ais (also
called tehuelche), haush, selk’nam, etc., assuming that both linguistic families come
from a single foundational proto-language (Suárez 1970; Viega Barros 2005).

The historical trajectory can be tentatively reconstructed in the following terms.
A relatively homogenous foundational population speaking a common language
would have lived across the steppes to the east of the Andes with complex mobility
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and interaction patterns around 6,000 B.P., or probably before. Between 6,000 and
5,000 BP a noticeable reduction in the archaeological visibility in the northernmost
part of this area (between 34ı and 42ı South) may be due to differences in
mobility patterns, location of settlements or, more likely, the reduction in population
density and population shrinkage due to migration processes and/or local extinction
(Barrientos and Perez 2002, 2005; Boschín and Andrade 2011; Neme et al. 2011;
Perez 2011). This would be the period were an original foundational identity and
language proto-gününa-chon began to fission and evolve. The transition towards
semiarid clima seems to have created the conditions for a later recolonization of the
area by people of the same metapopulation, expanding from a few refugee areas,
or members of a different metapopulation through processes or migration (Boschín
and Andrade 2011). From 3,500–2,000 BP on, population expansion may have
been affected also by the adoption of new technologies: bow and arrow and pottery.
Barrientos and Perez (2002, 2005) suggest the existence of a strong biological
relationship between groups of hunter-gatherers who occupied the Pampas and
North Patagonia during the late Holocene (see also Béguelin et al. 2006; Cobos
et al. 2012). While not yet established, it is possible that these groups would have
configured a series of local populations belonging to a single metapopulation at a
supraregional scale, experiencing contractions and expansions at different moments
(Barrientos and Perez 2002; Barrientos et al. 2008; Prates 2008). The problem is that
differentiated groups that may have existed were annihilated as a result of European
colonization, and we have very poor information of linguistic diversity during early
colonial times in Northern Patagonia. Günuna a iajüch is the only language of which
we have some knowledge (Casamiquela 1983; Orden 2010), but there were many
others.

Nothing of this population shrinkage in the middle Holocene and posterior
phenomena of contraction and expansion is observable further south, between the
rivers Chubut and Santa Cruz (42ı–50ı South lat.) (Belardi et al. 2010). Mena
(1997) has suggested that between 6,000 B.P. and 3,000 B.P. this was a “macro-
cultural region”. It can be suggested that this is the original area where a proto-
chon language differentiated from the northern proto-gününe. The individuality
of those proto-chon speakers coincides with some observable differentiation in
the archaeological record, like the general distribution of rock-art paintings and
engravings and the specificities of lithic technology, in such a way that they can
be used to distinguish this region (Orquera 1987; Fiore 2006; Gómez Otero et al.
2009; Cardillo 2011; Charlin and Borrero 2012). The ritual practice of cranial
deformation is an additional evidence for the differentiation of northern Patagonia.
South of 48° Latitude South, the frequency of this social behavior is very low. It
has been suggested that the intentional deformations would have reflected the effort
to achieve a predetermined cranial form, used as an indicator of group identity,
demarcator of social or territorial boundaries, or as a trait that reinforces and
maintains the networks of exchange between groups (Bernal et al. 2008; Perez et al.
2009). Around 2,500 B.P., speakers of a proto-chon language, already differentiated
from their northern relatives (Suárez 1970; Viega Barros 2005), would have began
to differentiate themselves, emerging new languages strongly related between them
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like chewache-iayich, aónik’o ais, haush, selk’nam, etc. It is interesting to note that
the northernmost populations (not only speakers of günuna a iajüch, but also other
unrelated linguistic groups) would be genetically and morphologically more similar
to each other than to human populations further south, even though their supposed
origin may have been different (Guichón 2002; Llop et al. 2002; Rothhammer and
Llop 2004; García et al. 2006; Bernal et al. 2006; Pérez et al. 2007). This fact
suggests a slower process of group fissioning in the south. This situation seems
to agree, at least partially, with that suggested by Daniel Nettle for whom “the
greater the problem of subsistence, the wider the social network necessary” (Nettle
1999). As a result, everything seems to indicate that “the greater the risk of not
achieving the threshold of subsistence, the higher linguistic homogeneity exist in a
geographical area of given size”. However, this assumption should not lead us to
uncritically affirm that the linguistic community was the basic social unit facing
economic stress. Simply, contact with other groups must have been much more
important in northern Patagonia than further south (Nettle 1999; Currie and Mace
2009). We may suggest that languages historically related as a result of the physical
exchange of speakers are structurally and lexically more similar than those that
were not connected and were also more geographically distant (Nichols 1997, 2008;
Holman et al. 2007; Wichmann et al. 2008). The relationship that may exist between
genetic distances, linguistic and “cultural” distances is the consequence of the fact
that human populations (and therefore languages) “move” in a predictable way
in some particular contexts. Therefore, the genetic distances between populations
should be related in some way to the degree of statistical differentiation between
the languages spoken by those people. The biological similarity among people
and the existence of “cultural” differences in their motivations, behaviors and
products should decrease as social interaction decreases as a result of an increase
in geographical distance.

Both south and north, from the late Holocene onwards (ca. 1,000–800 B.P.), it has
been suggested a reduction in mobility, the increase of population and a concomitant
increase in the complexity of social interactions produced social instability, along
with the emergence of a strong network of relationships between people culturally
differentiated. In South Patagonia, this social and economic change has been related
to the Medieval Climatic Anomaly, ca. 1,000 B.P. (Belardi and Goñi 2006; Goñi
and Barrientos 2004; Goñi et al. 2007). Increasing aridity rates in this area would
have caused the reduction of available fresh water sources, spatially constraining
and concentrating animal movements and human settlements, and leading to greater
social specialization in the use of physical space. This could have created conditions
for habitat fragmentation, a local increase in population density and increased spatial
coherence. The opening of social exchange networks would have compensated for
the reduced mobility of residence patterns and the nucleation of human settlement.
For instance, the radius of movement of rocks and raw materials would have
extended to 800 km (Gómez Otero 2007). At this level of differentiation, kinship
and political alliance constituted the only mechanisms for fixing the limits of social
groups, which differed in size, language, culture, social structure, and probably also
in the nature of their predominant economic activities. Archaeologically, the high
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rates of burial area reuse would suggest that human groups were increasingly fixed
to specific territories (Gómez Otero 2007; Borrero et al. 2008). The concentration of
rock-art on the Stroebel Plateau would suggest the aggregation of different groups
at specific places.

Although such a climatic phenomenon would have had different effects at
different places (Favier Dubois 2004), a similar transition has been suggested for
North Patagonia. There, strongly differentiated human groups would have shared the
same process of economic and social intensification consolidating complex social-
political networks that favored the movement of goods, people and ideas in a very
large social space (Mazzanti 2006; Luna 2008). Precisely in this period, there is clear
evidence of a more intensive occupation in some areas, and a significant variability
in mortuary practices. By 1,000 BP, there was a transition to the current weather
conditions and retraction of the main animal resources to the West and South of the
Interserrana area, what probably implied the redistribution of the existing population
and/or the expansion of another population(s) from northeastern Patagonia. In
the latter part of the late Holocene (ca. 1,000–400 years BP), there is growing
evidence of a population expansion from the lower basin of the Colorado and Negro
Rivers and Atlantic coastlines, to the plains on both sides of the Ventania Sierra.
The potential competition between the local population and the new immigrants
would have favored the latter, which reached a dispersion range that included the
aforementioned areas and at least part of the areas Tandilia Interserrana and Serrana
(Barrientos and Perez 2002, 2005; Béguelin et al. 2006). Craniological studies
by Barrientos and Pérez (2004) suggest the presence of expanding populations
from northeastern Patagonia to Southeast and southern Pampas. Furthermore, the
bioarchaeological record from the south-central La Pampa province seems to reflect
two different populations in just north of Northern Patagonia (Berón 2005). Finally,
Gonzalez-Jose (2003) has recognized morphological affinity between skull samples
of the foothills of northern Patagonia, the Black River valley and northeast and the
Pampas of Buenos Aires, probably due to interbreeding.

The later progressive homogenization of languages and cultures across east-
ern continental Patagonia was probably caused by an increase in the frequency
and intensity of long-distance exchange mechanisms (Lazzari and Lenton 2000;
Mandrini 1991; Palermo 2000; Villar and Jiménez 2003; Nacuzzi 2007, 2008;
Carlón 2010). Archaeologically, this process can be inferred from the increase in
population, more sedentary occupations, symbolic manifestations (rock art), techno-
logical innovation (ceramics and specialized instruments), formal burial areas, for-
eign exchanges, etc). The even greater complexity, intensity, and frequency of social
interaction between groups determined the transformation of traditional means of
social reproduction and political order. Mechanisms for collective decision-making
began an ever-increasing hierarchization process, concomitant with the increased
size and more diverse composition of human groups. Social relations of production
began to acquire some characteristics related with domination. To sum up, we must
avoid the traditional mistake made by the first European travelers in Patagonia
and the early ethnographers who described indigenous groups as if they were Old
World nations. According to all evidence, ethnic, linguistic, cultural, economic,
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territorial frontiers were extremely permeable, suggesting a considerable degree of
population mixture. Consequently, the apparent cultural unity recorded by modern
ethnographers was just a phase in the changing nature of social exchange, and not a
fixed cultural trait since the origin of those populations (Boschín 2001, 2002).

10.4 An Agent-Based Simulation Model for Understanding
the Emergence of Patagonian Ethnicity
and Territoriality

We have built a computer simulation (see Fig. 10.1) to explore how ethnogenesis
and related process of territorialization could have occurred in the prehistoric past
of Patagonia. The current implementation is a further development of previous,
preliminary attempts, partially published in Barceló et al. (2013a,b), Barceló and
Del Castillo (2012), Del Castillo (2012), and Del Castillo et al. (in press). The new
computer program has some important advances in the way positive interaction has
been modeled, and in the modelling of the mechanisms of social reproduction. The
number of free parameters has been reduced and some important non-linearities
have been taken into account. Programming code is implemented in Netlogo
(Wilensky 1999) and provisionally available from http://www.openabm.org/model/
4063. A full description of the algorithm appears in Barceló et al. (2013b).

In the model, agents simulate “families” or households, defined in the following
terms:

• Labor (li ), a Poisson distributed parameter counting the aggregated quantity of
labor from all family members).

• Cultural identity, a vector of 10 dimensions; each component is an ordinal
number from 1—not important—to 6—very important. Such dimensions are
weighted according to a fixed vector).

• Technology (ˇi ), a Gaussian distributed parameter for each agent affecting the
efficiency of labor when obtaining resources.

• Energy-conservation factor (di ) calculated as ˇi =2 and expressing the efficiency
of storing and preservation methods: the part of acquired energy that can be
stored and transferred to the next time-step.

• Survival threshold ( Nei ): Given that the survival of agents depends on the amount
of energy acquired and transformed from the environment, and the number of
members the household has (expressed in labor units), a survival threshold should
be calculated in terms of the quantity of calories an agent (representing a group of
individuals) needs to be able to live a season long. In the simulation the household
size is equivalent to labor. Assuming an individual needs an average of 730
kilocalories per year (2,000 calories per day; based on estimations by the Institute
of Medicine, 2002), and one time step (cycle or “tick”) in the simulation roughly
represents what an agent is able to do and move in six months, Nei D .730 � the
number of labor units at this agent)/2.

http://www.openabm.org/model/4063
http://www.openabm.org/model/4063
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Fig. 10.1 A screenshot of the interface up front

The model’s diversity index expresses the amount of variation between agents for
reasons characteristic of the agent, and not of global demographic factors. We
have assumed it is a global Gaussian parameter measuring the standard deviation
of productive instruments (ˇi ) and storing means (di ). We do not have precise
estimates (but see Binford 2001), so we have fixed this parameter with a medium
value (diversity D 0.5).

Physical space is modeled as a 40 � 80 grid, and it contains 3,200 environmental
cells or “patches”. We assume that each grid cell is a surrogate of a 100 �
100 km geographically homogenous area, interpreted as the total extension a virtual
household can explore during a season of six months in its search for resources and
people. Each path has a number of resources (ri ), a random distributed parameter,
measured in kilocalories, diminishing at odd cycles (“cold” season) and reproducing
the original value at even cycles (“hot” season) to reproduce seasonality. Resources
at each patch have also a difficulty level (hi ) (another random distributed parameter).
It counts the difficultness of resource acquisition (the more mobile the resource—
animals—and the less abundant, the more labor or more technology is needed
to obtain resources up to survival threshold. The availability and abundance of
resources are assumed to variate randomly through the landscape; therefore we
have used a uniform distribution of values between a minimum and a maximum
value. From a theoretical minimum value of 100 kilocalories, we have explored
different intervals: from 100 to 15,000 kilocalories (the “poor” world hypothesis),
from 100 to 20,000 kilocalories, from 100 to 25,000 kilocalories, from 100 to 40,000
kilocalories, from 100 to 50,000 kilocalories (the “rich” world hypothesis). Such
configuration intends to simulate the way edible resources were distributed in the
Patagonian past. The main source of food was the locally evolved camelid lama
guanicoe (“guanaco”) and although very mobile, numerous herds dominated the
landscape (L’Hereux 2006; Gómez Otero 2007; Papp 2002; Prates 2009; Politis
et al. 2011; Rivals et al. 2013). The consequence is the existence of a source
of subsistence that can be occasionally and locally abundant but spatially and
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temporally variant and relatively unpredictable (Soriano et al. 1983; Paruelo et al.
1998; Schulze et al. 1996; Borrero et al. 2008; Mazia et al. 2012). The model
implements a simplified seasonality: a hot season in which natural resources are
initialized to its maximum value, and a cold and dry season in which resources
do not regenerate naturally, and the amount of resources available in each cell is
equal to the half of what was generated at the hot season minus what the agent
extracted at the previous time-step. In any case, our simulated environment does not
pretend to reproduce Patagonian ecology. It is obvious that landscape differences
and topographic barriers would have affected hunter-gatherers subsistence and
mobility. Instead, we want to investigate what could have happened if geography
played no role in social dynamics.

The way in which Patagonian hunter-gatherers defined, conceived and behaved
regarding resources and subsistence did not meet universal standards, but was
mediated by a complex and unique system of practices and beliefs, influenced by
the characteristics of the resource itself and the general environment for energy
needs, and the social, ideational and historical trajectory of people (Prates 2009).
Therefore, we have not considered the individuality of each resource, but the human
results of the activity. Energy is obtained by agent i by means of labor (li .t/) with
the contribution of its own technology, whose efficiency is estimated as ˇi .t/. Both
factors act upon the difficulty of acquiring and transforming resources, in such a
way that:

fi .t/ D 1

1 C 1

hi .t/�li .t/ˇi .t/

(10.1)

fi .t/ measures the ability to obtain resources according to each agent’s individual
ability. Its maximum value is 1, indicating the amount of work available (li ) and
the effectiveness of current technology ˇi to compensate the local difficulty (hi ) of
obtaining the resources existing at that place. When the value of fi .t/ is less than
1 (but greater than 0), we can deduce that the working capacity and technology
available only allow obtaining a proportion of the available resources. We are not
taking into account the precise energetic performance of each resource, vegetal or
animal, but the probability of attaining full survival with an undetermined series of
resources obtained locally.

We assume that the higher the technological level, if the amount of labor
does not vary and local resources remain stable, the less cooperation and lesser
chances of cultural diversity. That means, that hunter-gatherer groups with poor
technology based on worked stones and transformed wood will manifest higher
cultural homogeneity than groups with a technology that allows them to transform
into subsistence all existing local resources. The technology parameter may range
from 0.01 to 2. High efficiency indicates that all local resources can be managed
independently of its difficulty of acquisition given the extreme performance of
available technology. Low values are characteristic of human groups with hardly
evolved instruments, in such a way that only a part of locally available resources
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are effectively managed. The efficiency of food preservation techniques is another
technological factor, related with the overall level of development of means of
production. In the experiments we report here, we have fixed parameters related
with technology and efficiency using data from our own research in Patagonia
(Barceló et al. 2009, 2011; Del Castillo 2012): average-technology D 0.22 (low
development); standard deviation (diversity among simulated households D 0.5);
storing capability D 0.11 (very low). In the absence of efficient hunting equipment
beyond “boleadoras” and spears (bow-and-arrow was a relatively late instrument in
Patagonian archaeological record, and hardly adapted to the capture of local game).

Virtual households can be involved in two kinds of economic activities: gather-
ing, which is an individual task, and hunting, which is only possible as a collective
task. Ethnographical sources make manifest the difficulties of hunting guanacos,
and the need to ask for the help of many people to encircle the game and be able to
kill enough prey (Fitz-Roy 1932 [1833–1839]; de Orbigny 2002 [1833]; Cox 1999
[1862–1863]; Claraz 1988 [1865–1866]; Musters 1964 [1872–1873]; Spegazzini
1884). At the beginning of twentieth century, a witness described:

Leaving early in the morning they rode out into the camp. They had already ascertained
where several pregnant guanaco were feeding. The riders lined up in a huge, loosely knit
circle about them, unnoticed, and at an appointed time all rode in towards the center. The
game ran, only to meet other riders, ran from them, to meet others on the shrinking circle.
If any broke through, a rider balled it, jumped quickly from his horse and killed it, mounted
and was back in place in no time. Lions, ostrich, deer, and guanaco shared the same fate.
The trapped animals fought to escape when the ring drew close about them, and the Indians,
in a sort of ecstasy, caught and killed as many as they could. If there were riders enough, and
good horses under them, few would escape, and at last the center would be a mass of dead
animals or struggling live ones, killed or entangled by boleadoras. (Childs 1936, p. 160f)

In our simulation, “hunters” need the contribution of other hunters in the neighbor-
hood. The aggregated productivity Œ�fi .t/� of an agent member of a group Gi .t/ is
calculated as:

�fi .t/ D 1

1 C 1�
hi .t/�

�P
j
Gi .t/lj .t/

ıˇj .t/
�i .t/

� (10.2)

where Gi .t/ is the total amount of labor the group of agents that cooperate with
agent i and ıˇj .t/ the maximum technology within the group. There is an additional
parameter modifying the total effect of aggregated labor at the social aggregate
(i .t/), illustrating the idea that cooperation is less needed when there are plenty
of resources.

Agents cannot move to an occupied patch, so they never share their resources.
What they share is labor, and not the products of that labor. Sharing labor and
technology is a way to increase the chances of survival when the productivity of
the patch (quantity of resources modulated by labor and technological efficiency) is
below the survival threshold. By doing so, agent i receives cooperation in form of
labor. There is no obligation to “return the favor”: only the helped agent receives
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help when its similarity threshold between the helper and the helped is low enough
so that the helper “can afford” to help. There is no compensation for the excess
of labor exchanged, or calculation of differential costs. This is not a limitation of
the model, but a phenomenon that is well understood in the ethnography of hunter-
gatherers. Given that labor attains its limit when survival is assured, there is no
surplus. Consequently, there is always a remanent of “unused” labor. When hunter-
gatherers aggregate, all members identify themselves as members of the same group,
and all labor is put in common. We assume agents in the simulation do not use the
fiskean logic of “Equity matching” but a form of “community sharing” (Fiske 1991).
Ethnographic sources suggest that the decision to cooperate or refuse cooperation
was far more complex in Patagonia than the simplified approach adopted in PSP
1.5 (Martinic 1995; Papp 2002). There are some common aspects, however: it
seems that cooperation within the kinship network was far more frequent than with
strangers, and that kinship ties were constantly negotiated even without marriage
exchange (Musters 1964 [1872–1873]; Fernández Garay and Hernandez 2004). Our
algorithm follows such kind of limited and changing parochialism.

Cooperation at work and the consequences of its restriction are at the core of the
simulation. Agents decide to cooperate and work together when at least one of them
needs the help of others to obtain enough resources for survival and there is someone
in the neighborhood able to cooperate given the relative similarity of social values.
That is to say, to decide if an agent cooperates with another, we imagine each one
observing the immediate neighborhood and evaluating their respective identities to
know if they are “sufficiently” common. Each agent has its own organized list of
meanings, values and beliefs (identity), inherited at birth, learnt within the evolving
group, modified all along the life of the agent and transmitted to the new generation.
Agents rank the relevance of each value-dimension according to a fixed weight
vector. Thus, they capture the agent values without explicitly identifying values as
the topic of investigation. The simulation asks about similarity to another agent
with particular goals and beliefs (values) rather than similarity to another agent
with particular traits. Consequently, instead of assuming that agents have common
identity traits based on membership to an already existing “ethnic” group, agents
need to be queried as to the extent to which they “believe” they are similar to those
of others in the neighborhood, and queried as to whether the outcomes of those
values are perceived to be similar.

When cooperating and sharing labor capabilities, information and knowledge
flow between agents. Therefore, the most effective technology proves its advantages
and begins to be adopted by members of the same group. Technology should be
updated in such a way that the next tick will increase its efficiency towards the level
of the most efficient within the group. This is a process of convergence and not of
imitation. An additional source of technological evolution is implemented in form of
an internal change rate (hereafter ICR). This is a random value (from 0 to 1, usually
very small) defined as a random factor that expresses the likelihood of internal
change (invention, catastrophe, sudden change) affecting values and technology.
The higher this value, the more important internal changes in the virtual “family”,
expressing the probability that each agent changes independently of the other agents.
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Given the evidence of the Patagonian archaeological record and its 7,000 years of
technological continuity, we have assumed a very low likelihood of internal change
(0.05), according to the archaeological evidence of slow technical, linguistic and
cultural transformations in Patagonia (Barceló et al. 2009; Del Castillo 2012).

With probability equal to ICR, the agents adopt a new technology value, whose
average is calculated on the basis of the global parameters: average-technology and
diversity. Technological involution has been an exception historically, and we do
not take this into account in the model. Although technological change is mostly
“rational” at the scale of the individual taking the decision to change, from an
external perspective, such decisions at the local level may appear as internal shocks
perturbing the apparent linearity of a given trajectory. Therefore, although technical
evolution is not random at the level of each agent, it can be modeled as random at
the level of the population.

As a result of interaction and information flow, cultural consensus emerges by
combining the identities and values of interacting agents in an emergent group.
Therefore, once the agent gets enough resource for its own survival (with or
without the help from others), the identity vector used to define the possibilities
of cooperation is updated towards the statistical mode of the group identity. With
a fixed probability level (95 %) each agent copies the statistical mode of identities
within the group. There is an additional source of identity change, also implemented
in the form of the same ICR we have considered before. With every tick, and
with a fixed probability level determined by the opposite of the identity weight
vector, the identity vector mutates. In this way, we assume that the most “universal
values” are the least prone to internal change (although they may change, but
with lower probabilities). The most frequent internal changes appear in the less
“universal” dimensions, which are also the less relevant to build cultural consensus.
Therefore, what future generations arising in the aggregation will inherit is not the
old identity, but the new commonality. We assume that the higher the cooperation
between people, and the higher the cultural consensus among them, the higher the
probability that reproductive couples will be formed within the group. The idea
is that once the new social aggregation has emerged and survival of agents has
been assured, hybridization mechanisms begin to act because inherited identities
(ethnicity) should be modified to maintain the newly built consensus.

Because hunting is more productive, there are increasing returns to collective
involvement. Survival is also affected by diminishing marginal returns relative to
the social and technological impossibility to regenerate resources, and the need
to wait for a minimum of one year for its natural regeneration. Agents lose one
of its members (a labor unit) each time the total acquired energy is below the
survival threshold. In the same way, every 30 ticks, a new member is born, and
will live until the total acquired energy is below the survival threshold. In this
way, we have implemented a determinist population growth mechanism opposed
to stochastic mortality. When survival is possible and the number of members in an
agent (expressed in labor units) is greater than 10, the current agent reproduces and
gives birth to a new agent, with half the parent labor, the same technology and the
same identity.
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Agent actions are oriented to foraging and food gaining through mobility
across a territory, conditioned by available technology and agent density, and the
establishment of cooperation between agents when direct survival is not possible.
However, what they have acquired as subsistence has a short temporal duration, and
given the low degree of storing technology, agents should begin the process anew
at the beginning of each time-step. In the model, the availability of resources is
fixed as a global probability parameter (“rich world”, “poor world”). Each agent
has the possibility to move camp/settlement location and interact with other agents
in order to decide whether to cooperate or not in survival or in reproduction. The
agent has the goal of survival at least after T simulation steps. To do that the aim
of each individual is to optimize the probability of survival and reproduction by
gaining enough food (energy reserves) to meet a threshold of energy necessary for
successful reproduction.

Agents should take the decision whether to move to another place with more
resources, but where positive interaction with others may not be possible. According
to that decision, each agent may remain in place interacting with the same agents it
interacted with at a previous time step, or it can move to another patch. Agents move
randomly because they can follow any direction within a restricted neighborhood.
When moving, agents first determine who it can cooperate with from the group of
agents in place (my_group). The process identify-agents is based on a cal-
culation of the number of common identity traits perceived among agents within a
neighborhood. An agent does not have information about all the agents in the world,
but only those within a reasonable geographic distance (my_neighborhood).
The extension of such a neighborhood simulates the precise territory agents arrive
to know by themselves or by means of communication flows from linked agents.
The size of the neighborhood changes as a consequence of the displacement of
the center of the neighborhood, maintaining the same radius (a limit connected
with the low efficiency and efficacy of transport technology). In this way, the
model has an emphasis on local dynamics and bounded rationality. Whether cultural
consensus is high enough, agents are listed into the newly emerging group, and the
program characterizes such a group with a distinct color. Once within an aggregate
(my_group), an agent’s subsistence output can be enhanced adding to the agent’s
capacity to work, and the capacities of other agents within the group.

Identity traits have been modeled as adaptive behaviors, because in some sense
they act to increase a measure of the virtual household success at meeting some goal
(survival). In so saying, we assume some degree of “utility” for agents’ identities:
if they change and negotiate their identities they can obtain higher probabilities
for success. Consequently, we assume each agent’s goal is to maximize survival
probabilities through increasing the probability to hunt with the help of labor
from other agents. However, the only “rational” decision executed by an agent is
the decision about whether it cooperates with a neighbor or not. Such a decision
is carried out by computing the resemblance of identities, and using a changing
decision rule for determining the degree of similarity in terms of the circumstantial
needs and expectations from collective hunting. That is to say, our virtual Patagonian
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Fig. 10.2 The model’s flow-chart

households are able to change the value of their tolerance to cultural and social
diversity given the actual needs to enhance probabilities for survival when resources
are spatially or temporally scarce.

Figure 10.2 summarizes how the model runs. At start up, agents are placed
randomly in the world. Each agent should occupy a single patch, and no two
agents are allowed to occupy the same patch. If their energy level is below their
survival threshold they look for resources (hunt-and-gather), constrained by the
amount of work available at a single household (labor) and the current value of
their technology. If acquired resources are not enough, they look for neighbors to
cooperate with. If no one cooperates, and resources remain below survival threshold,
the agent dies.

10.5 Running the Model: Preliminary Results

The current version of the model differs from Patagonian ethnoarchaeological data
in some important ways.

We have implemented a single, homogenous founding population, although
current paleobiological research seems to conclude the likelihood of a minimum
of two or even three well differentiated founding populations (Gonzalez-José et al.
2008; Lewis et al. 2007; Pérez et al. 2007; Rothhammer and Llop 2004; Bodner
et al. 2012). Miotti and Salemme (2003) have suggested that early settlers would
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have belonged to a Patagonian megapopulation that would have split in northern
South America, moving independently on both sides of the axis of the Andes, which
would have acted as biogeographic filter. This would have led to processes of col-
onization and expansion-retraction differing between the two slopes. However, the
hypothetical difference in founding biological populations is still under discussion
and there is no hard evidence about it. Our simulation intends to explore what could
have occurred in the case of a single population as it first colonized a previously
unoccupied landscape and the increasing differences between groups emerged as
households and grew further apart in their constant movement in the quest for
resources. How do processes of convergence and divergence occur between groups
of hunter-gatherers over the long-term?

The simulated environment has nothing to do with environmental conditions
during the Holocene in Patagonia. We have not modelled a “virtual Patagonia”,
and we have explicitly avoided the representation of geographical details. We
know that in prehistoric Patagonia, human groups aggregated where resources
were more abundant, temporally frequent and easy to get, but we doubt that the
environment was the only cause. What would have happened if the environment had
no influence on spatial aggregation? We have imagined a cold and dry plain without
any topographic features, where resources randomly varied from very scarce to very
abundant. We have experimented with all possible scenarios, beginning with a very
“poor” environment, and finishing with the “richest” imaginable one. If resources in
the environment are scarce (below 15,000 kilocalories per patch), a small population
(estimated at 300 “families” with an average of four members in each; based on
estimations published in Papp 2002), with hardly efficient technology (both for
producing and for storing), would never survive on their own (without any kind of
cooperation with neighbors) beyond 100 simulated years. In this simulated scenario,
the wealth of resources clearly influences survival in a linear way (r2 D 0.688).
However, when virtual households with similar identities exchange surplus labor
and share the most efficient technology, mortality clearly reduces, and the influence
of resources was clearly non-linear (r2 D 0.365). In other words, when our simulated
Patagonian hunter-gatherers interacted and worked together, the probability of their
survival was higher than if they had worked only on their own.

Technological efficiency experienced changes and evolution, both in prehistoric
Patagonia as in our simulation. Here computational results coincide with archaeo-
logical data: there is evidence of small but continuous changes, interpreted as local
advances not related with interaction, but also a gradual convergence towards the
most efficient, when innovations diffused. Figure 10.3 shows how in a cooperation
scenario, average-technology quickly evolves towards more efficient values as a
result of innovation-diffusion through conspicuous imitation and borrowing. The
diagram shows interpolated curves, that although in their first part seems to have
a lesser than average model, they correctly predict the temporal trajectories. The
difference of means has been proved to be statistically relevant.

Cardillo (2011) has shown how both environment and geography account for a
statistically significant part of the lithic technology variation. The archaeological
pattern is much more detailed than in our model, suggesting a latitudinal gradient
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Fig. 10.3 The temporal evolution of average-technology after 500 runs (simulated 250 years). We
have here averaged the different wealth scenarios: grey dots represent original data from which
both curves have been interpolated. Graph computed using JMP 10 software (SAS, Inc.)

in diversity that might be explained as the result of restrictions of information
borrowing within a culturally homogenous population (parochialism) as well as of
selective mechanisms related to energy acquisition (see also Gómez Otero et al.
2009; Charlin and González-José 2012).

As a result of economic interaction, virtual households aggregate in space,
configuring what we can consider social networks of cooperation. The model
does not predict the formation of discrete groups with clearly defined borders and
frontiers, but the emergence of changing networks of social relationships, with
different possible topologies: in some contexts, closed groups may emerge, but when
the intensity of interaction varied, or the circumstances in which the interaction took
place were different, the nature of the social aggregation was also different, allowing
the dissolution of any previously differentiated group into an undefined homology
of social activities.

We have suggested that commonalities in needs, motivations, goals, actions,
operations, signs, tools, norms, cooperative ties, and in division of labor schemas
are the consequences of the way some social agents interacted, aggregated in space
and time as a consequence of some of these interactions, and reproduced the basis
of such an aggregation. Our model suggests that in prehistoric Patagonia, social
aggregation and network formation may have been more frequent in the cold season,
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Table 10.1 Parameters and results for the different scenarios shown in Fig. 10.4

Name Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5

Max. resources 15;000 20;000 25;000 40;000 50;000

Initial agents (founding households) 300 300 300 300 300

Total number of agents after 250 years 40 222 351 968 1;144

Number of social aggregates 3 14 12 2 1

Number of agents in social aggregates 8 116 220 709 868

Number of isolated agents 32 106 131 259 276

Number of agents within the largest
group

3 29 45 690 868

given a higher frequency of aggregation. During the hot season the benefits of
cooperation are less obvious and therefore the probability of any form of restricted
territoriality is significantly lower. According to the Analysis of Variance (ANOVA)
test on 100 examples of each wealth scenario, the probability of equal average
number of social aggregates in the hot and cold season is less than 0.001 in all
scenarios. Exactly the same is true for the size of the network—the number of agents
in social aggregates. This result is compatible with ethnoarchaeological evidence
in Patagonia: with bigger campsites in cold seasons and a general dispersal of
households during the hot season (Moreno and Izeta 1999; Boschín and Del Castillo
2005).

Simulation results (refer to Table 10.1) correlate with J. Gómez-Otero’s reflection
on the need for “places of concentration and distribution” (Gómez Otero 2007): She
cannot consider Patagonian human groups randomly wandering on foot, at any time
of year, to find someone with whom to cooperate. No hunter-gatherer would invest
so much energy in search times if there was no assurance for success in meeting and
obtaining searched resources. Our simulation predicts that very few groups will keep
moving again and again. Rather, some kind of “good-enough” scenario is found
where groups stay in the neighborhood of other groups, keeping the connections
among them.

Are such networks an initial form of ethnogenesis? We stressed at the beginning
of this paper that the lesser the intensity and frequency of inter-group relationships,
the greater the differences in ways of speaking and other cultural features mani-
fested by groups. The same can be said in terms of network embeddedness. Network
embeddedness means that everybody does not interact equally with everybody
else, but is constrained by needs (expected benefits), geographical neighborhood
and prior cultural consensus (common history). Agents within the network interact
among themselves more often than with others out of the network, which means
that a subset of the population may be excluded from positive interaction and hence
the process of similar identity negotiation and innovation diffusion. How intense
is the resulting segregation in the explored virtual scenarios? We have measured it
in threesteps: fractionalization, generalized resemblance and demographic polarity.



238 J.A. Barceló et al.

Fig. 10.4 Different scenarios of virtual Patagonia, variating the maximum resources at patch.
Links visualize agents that cooperated (exchanged labor) at the current tick. Screen-shots of the
simulation after 500 time steps (ca. 250 years). Parameter settings for all scenarios are given in
Table 10.1. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3. (d) Scenario 4. (e) Scenario 5

A traditional measure of social fractionalization can be calculated by dividing
the population into ethnic groups, calculating each group’s share of the population,
summing the squared shares, and subtracting the sum from one. Such a measure
was calculated by Taylor and Hudson (1972) as a decreasing transformation of the
Herfindahl concentration index applied to population shares. In particular the index
takes the form of
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where nij is the number of people that belong to ethnolinguistic group i in
country j . Nj is the size of the population in country j and Ij is the total
number of ethnic groups in country j . This formula requires the groups to be
mutually exclusive (i.e., if an agent is in aggregate 1, then it is not in aggregates
2-n) and exhaustive. Given mutual exclusiveness and exhaustiveness, this index
measures the probability that two randomly chosen individuals from a country’s
population belong to different groups. The measure scores zero where in a perfectly
homogenous population (i.e. all individuals belong to the same group) and reaches
its theoretical maximum value of 1 where an infinite population is divided into
infinite groups of one member (Alesina et al. 2003).

In our case, we have simplified calculations which do not take into account
isolated agents. In fact, each isolated agent would have constituted a differentiated
group, so actual results should offer higher fractionalization indexes that those
provisionally calculated here (see ELF score in Table 10.2).

Fractionalization increases when the number of small groups increases. In our
case, the probability that two randomly drawn individuals from the population
belong to two different groups increase when resources are low and survival may be
at risk. The higher the value, the higher horizontal inequality in the total population.
These results are very interesting for understand the consequences of the Medieval
Climatic Anomaly, ca. 1,000 B.P., in some Patagonian areas. The reduction of
available fresh water sources would have spatially constrained and concentrated
resources and human groups, and created conditions for residential fragmentation.
Our results clearly show that when the simulated world is comparatively poor
(maximum resources less than 30,000 kilocalories for a complete season), as during
the Medieval Climatic Anomaly, fractionalization scores are higher than in the case
where resources are abundant and frequent. Following Vigdor (2002), estimated
fragmentation effects can be interpreted also as the weighted-average of within-
group affinity in the population. That is to say, a high value of fragmentation when
resources were scarce and concentrated can be explained as the probability of an

Table 10.2 Further calculation results

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5

ELF score 0:9863 0:92 0:97 0:423 0:431

Minimum Euclidean distance between
households

0 0 0 0 0

Maximum Euclidean distance between
households

7:0 7:5 7:34 9:94 6:70

G.SN / 4:96 0:86 0:06 0:115 0:144

RQ 0:0511 0:14 0:09 0:56 0:56
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individual’s willingness to spend on available resources given the degree of affinity
within its constrained neighborhood. The probabilities of successful economic
interaction vary depending on how many members of the community share the same
identity of that individual. It is important to take into account, however, that our
results are not linked to a specific moment in Patagonian historical trajectory. To
the extent that social aggregates are constantly changing, especially between the hot
and cold seasons, ELF scores never remain constant. Calculated values only refer to
a specific state of the simulation (500 “ticks”, or 250 simulated years).

It is usual to explain the effects of the Medieval Climatic Anomaly in Patagonia in
terms of the potential competition between the spatially differentiated populations,
with the emergence of “territoriality”. Different authors (Belardi and Goñi 2006;
Goñi and Barrientos 2004; Goñi et al. 2007; Gómez Otero 2007) suggest that during
the peak of greatest aridity, the presence of water in the environment may have
become circumscribed to specific loci (e.g., relict lake and permanent watercourses)
that would have had the potential to act as hubs for population aggregates. Human
groups reduced their residential mobility, so that settlements were confined to
locations with availability of critical resources (water, wood) and good condition
(repair, mild winters). Parallel to this reduction in residential mobility, the ranges
for logistic action would have expanded and extended. Among the consequences
of these circumstances, a decrease in population density at a regional scale has
been suggested, whereas density increased locally. Our results are congruent with
these hypotheses. Our results also seem to coincide with those of J. Gómez-Otero
(2007) which has suggested a “gradual” population growth at this period, with very
localized moments of stress and competitive concurrence.

In our simulation, the index of fractionalization is just a measure of hetero-
geneity; such measure conveys no information about the depth of the divisions
that separate members of one group from another, which is a necessary factor
for inferring social tension (Fearon 2003; Posner 2004; Chandra and Wilkinson
2008; Brown and Langer 2010; Chakravarty and Maharaj 2011). The ELF index
can at best be seen as a measure of cultural diversity but not a proxy for the
effect of diversity as a whole. We may arrive at the depth of the “difference”
in terms of the non-normalized Euclidean distances (see Table 10.2) between
cultural identity vectors (see definition on page 227; note that in the rest of this
chapter, we usually omit cultural and just talk of identity or identity vector). In our
simulated world, at time-step 0, this value is 0 because the founding population
is supposed to be homogenous. Two hundred and fifty simulated years after,
the differences have clearly increased: although some households maintain their
similarity (Distance D 0), many others have augmented their differences (maximum
measured Euclidean distance is 9.94).

The reference value of Maximum Euclidean distance between identity vectors
in our case is 18.97, which results when identity vectors (ranging from 0 to 6, as
defined earlier) are totally different:

0 0 0 0 0 0 0 0 0 0

6 6 6 6 6 6 6 6 6 6
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Bossert et al. (2011) and Kolo (2012) have introduced a more flexible version
of the ELF, the generalized ethno-linguistic fractionalization index. Based on the
specific characteristics, a mutual similarity matrix between individuals takes the
distance between them into account. Hereby the groups emerge ‘endogenously’
from the matrix. The similarity value between two individuals i and j for all
i; j 
 1; : : : ; N is given through sij . For a society with N individuals, all sij are
contained in a N � N matrix, labelled similarity matrix SN , which is the main
building block of this measure. Based on this matrix, the corresponding generalized
resemblance value for a population with N individuals is given through:

G.SN / D 1 � 1

N 2

NX
iD1

NX
j D1

sij (10.4)

In calculating G.SN /, each individual counts in two capacities. Through its
membership in its own group, an individual contributes to the population share
of the group. In addition, there is a secondary contribution via the similarities
to individuals of other groups. In our case, and considering the state of the
agents’ identity similarity after 500 ticks, we get the results given under G.SN /

in Table 10.2.
Those results should be interpreted as the expected dissimilarity (in Euclidean

distance terms) between two randomly drawn individuals. In our case, the poorer the
world, the higher the expected dissimilarity. When the world seems rich enough and
fractionalization is less conspicuous, expected similarity is far greater. These results
seem to be concordant with the process of cultural hybridization at the end of the
Holocene. What was fractionalized when resources were scarce and concentrated
became homogenized when technology increased suddenly its efficiency (imported
colonial items, horse domestication) and resources increased by foreign factors
(horse domestication, acquisition of colonial cattle and new technologies) (Mandrini
1991; Mandrini 1992; Palermo 2000; Villar and Jiménez 2003; Nacuzzi 2007, 2008;
Carlón 2010). The idea of the “tehuelche complex” (Escalada 1949; Casamiquela
1965; Martinic 1995; Papp 2002), an integration and hybridization of a plurality of
previous identities into a new syncretism would also relate with such results.

Generalized resemblance does not solve our problem about the emergence of
segregation and territoriality when group fractionalization increases. Obviously, if
dissimilarity is great and fractionalization is intense, the probability of competition
should be higher. But the number of groups and the degree of difference on their
own are not enough to conclude social tension and violence. “Polarization” is
needed to transform difference into competition. Theoretically, polarization should
be calculated in terms of the “distance” between two groups, i and j , corrected by
the sizes of each group in proportion to the total population (Esteban and Ray 1994;
Duclos et al. 2004). The assumption behind this alternative measure is that whilst
the generalized fractionalization matrix rightly attributes a low chance of ethnic
conflict to an homogenous population, highly fractionalized populations are not
conflictual as no group has the “critical mass” necessary for conflict. Conflict will
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be more likely the more a population is polarized into two large groups, well beyond
a specific critical mass. Montalvo and Reynal-Querol (2002, 2005; Chakravarty and
Maharaj 2011) have developed an index of demographic polarization

RQ D 4

kX
iD1

X
j ¤i

p2
i pj D 4

kX
iD1
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i .1 � pi / D 1 �
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�
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�2

pi (10.5)

pi in the equation is the proportion of people who belongs to ethnic group i . RQ
employs a weighted sum of population shares. The weights employed in RQ capture
the deviation of each group from the maximum polarization share 1/2 as a proportion
of 1/2. Analogously to the index of fractionalization, underlying the formula for
RQ is the implicit assumption that any two groups are either completely similar or
completely dissimilar, and thus the weights depend on population shares only. This
index tends towards zero for very homogeneous and non-conflictive populations,
i.e., with only one relevant group. However, with increasing group numbers, ELF
and RQ show clearly different results. While ELF is an increasing function of the
number of groups, RQ reaches its maximum with two equally sized groups (i.e.
i D 2, p1 D 0:5, p2 D 0:5) and decreases afterwards. It is the same to say that social
heterogeneity and social conflict is not one and the same. Initially, one could think
that the increase in diversity increases the likelihood of social conflicts. However,
this does not have to be the case. In fact, many researchers agree that the increase in
ethnic heterogeneity initially increases potential conflict but, after some point, more
diversity implies inferior probabilities for potential conflict.

Results (see RQ in Table 10.2) capture how far the distribution of social
aggregates in Virtual Patagonia is from the bipolar case. The idea is simple:
polarization is related to the alienation that individuals and groups feel from one
another, but such alienation may be fuelled by notions of within-group identity.
There is intuitively a much greater risk of social tension and competition if a
5 % minority group is concentrated in one particular region of the country than
if it were dispersed evenly across the country. In the Virtual Patagonia case
study, demographic polarization attains higher values when the world has the
more abundant resources, and when fractionalization has low values because most
agents belong to group 1 or group 2. These results are different then to the
expected increased territoriality as a consequence of resource scarcity and spatial
concentration. From the Late Holocene onwards, the social aggregation in Patagonia
was too differentiated, and their size was too reduced to allow for the emergence of
social tension, segregation and hence exclusive territoriality. Part of the explanation
lies in the high degree of homogenization of the founding population. When we
introduce two founding populations in the simulation, for instance mapudungun
speakers and gününa-chon speakers, the results of demographic polarization are
completely different.

On the other hand, when social networks were high enough to integrate a big
number of previously isolated agents, social tension emerged between network
embedded individuals and people without any ascription. In any case, demographic
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polarization values were comparatively lower in Patagonia than in other parts
of the world, even when the horse complex and “tehuelchization” were at their
maximum. These results can be related with the low degree of between-group
violence in Patagonia inferred from physical anthropology analysis. The analysis
of 100 traumatic injuries in male skulls from lower valleys of Chubut and Black
rivers proved showed statistically significant temporal variations in the frequency
of injuries resulting from interpersonal violence in times of decreasing resources
(Barrientos and Gordón 2004; Gordón 2009; Berón 2010; Flensborg 2011). The
likely competition and conflict situations that could have been generated with
an alleged increase in population density in some areas “do not seem to have
been resolved in a violent way beyond usual levels of violence in these societies”
(Barrientos and Gordón 2004, p. 64; similar results have been obtained by Flensborg
2011). The highest frequency of injuries is detected once weapons of European
origin appeared in historical times, indicating the later date of inter-group violence
and the relevance of exogenous factors.

There is a correlation between the low degree of territorial competition and inter-
group violence in our Virtual Patagonia, as well as in the actual historical Patag-
onian, where human groups never configured territories with clear-cut Euclidean
boundaries and explicit segregation. Our results stress the role of ‘territoriality’ in
terms of network embeddedness (Kim 2010); a “fractal metaphor” would help us
to recognize that social aggregates overlapped (Appadurai 1996, p. 46). There was
no place for delimited spaces conceived in geopolitical terms, because households
aggregated in groups which had no “natural” limits. This is another factor stressing
the low levels of polarization in Patagonia before European colonization. Therefore,
because there is reason to suppose that the way in which groups were geographically
concentrated may have important ramifications for ethnic politics, including conflict
and economic development, we have spatially analysed the pattern of cultural
diversity emerging from economic interaction (collective hunting), technological
diffusion and cultural consensus.

We have carried out different experiments assuming the same five scenarios as
before, and we have calculated hierarchical clustering of identity vectors based on
a standard Ward method (refer to Fig. 10.5 for a graphical view of the clusters,
and Table 10.3 for a summary of the results). The number of clusters for each
scenario and each experiment has been normalized using the same Clustering Cubic
Criterion. The number of “groups” does not refer to emerging networks of economic
interaction, but to the clustering of agents in terms of their respective identities.
We want to know whether the complexity of the configurated social networks has
any correlation with the emergence of a global identity and the configuration of
“culturally” homogenous territories.

The number of clusters, that is, the number of differentiated cultural consensuses
that may emerge after 250 simulated years of communal hunting and technological
borrowing is not as important as the spatialization of the differences in identity
vectors. Note that such vectors represent the commonality in goals, motivations and
believes. They constrain cooperation and interaction, but they are also the result
of interaction networks. Therefore, it is obvious that the higher the number of
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Fig. 10.5 Different scenarios of virtual Patagonia, varying the maximum resources at each patch.
We have generated two different random experiments from each environmental scenario. Graphs
show the spatial location of the agents after 500 time steps (ca. 250 years). Grey levels refer to
similarity degree between agents, in such a way that each particular level reflects a similarity
cluster. Clusters have been calculated using Wards method and Euclidean Distances between
identity vectors (using JMP 10 Software, SAS, Inc). Table 10.3 furthermore gives the results for
the above experiments in quantitative form

Table 10.3 Experimental results for the different scenarios shown in Fig. 10.5

Scenario 1 2 3 4 5
Experiment 1 2 3 4 5 6 7 8 9 10

Max. resources 15;000 15;000 20;000 20;000 25;000 25;000 40;000 25;000 40;000 25;000

Initial agents
(founding
households)

300 300 300 300 300 300 300 300 300 300

Total number
of agents after
250 years

41 63 246 246 323 329 956 1;018 1;162 1;184

Number of
clusters

5 7 15 14 16 16 12 18 20 17
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connected agents, the higher the global similarity. When resources are poor and
spatially constrained (Scenario 1), population is low, and the number of networks
is also very low. Consequently, there is no emergence of a common identity, but
rather spatially homogenous but different identities randomly spread across the
geographical area. This may have happened in Patagonia during the increased
residential spatial constriction from 1,000 AD onwards. When resources become
more abundant and therefore less spatially constrained (Scenarios 4 and 5) the
population increases and there are more opportunities for interacting economically.
As a consequence networks increase in size and in spatial extension, and a trend
towards cultural homogeneity begins. That may have happened in Patagonia when
new imported technology from European colonization modified drastically the
chances of survival and the economic interaction among groups.

In other words, the probability of a common identity emerging within a social
network decreases as the number of social networks, and the number of networked
agents also decrease. The higher the number of households connected, the lesser the
number of differentiated identities, and hence the more permeable seem the cultural
frontiers.

To sum up, differentiated etnia do not emerge in 250 simulated years because of
the very low temporal stability we have measured and the lack of clear segregation
patterns. Preliminary results show that no aggregate has a duration of greater than
a generation (50 ticks or 250 simulated years), so the fact of aggregation does not
influence cultural transmission to the next generation. Identity and technological
knowledge flows from parents to children, but the new generation changes and
adapts its identity and knowledge constantly, according to their need for cooperation
at work and the consequent flows of identity and information. Similarity clusters
appear to have had more extended temporal durations than aggregates and social
networks of cooperation. Evidence of exclusion and segregation are conspicuously
lacking. In our case, parochialism does not emerge (Bowles and Gintis 2004;
Kim 2010), because network embeddedness is in the process of being created and
recreated constantly, and the average threshold of social similarity aggregates is
very low in most simulated cases, indicating very high levels of tolerance to the
differences of others.

Those results are what we expected. Strong ethnic differentiation based on spatial
segregation should be linked to the rise of a social inequality system, and this
is an aspect that we have not yet included in our model. When introducing the
possibilities of “leadership” and conditioning the behavior of the next step on the
behavior that a “leader” will adopt, social inertia emerges, and social aggregates
increase stability and temporal duration. We think that this is what happened in
Patagonia.

Historical documents from the time of European contact mention diverse forms
of social and political hierarchy, notably a “chief” or “cacique” (Tomé Hernández
1587, quoted after Barros 1978). Mascardi (1963 [1670]) mentions the grouping
of families around a leader with prestige. In 1784, Antonio de Viedma (cited after
his diario published in 1836) described large groups under the leadership of a high
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level chief with the authority to wage war and manage most tasks that required
the activity of the entire group. These large groups would subdivide into smaller
groups under the leadership of their own chiefs, with a recognized independence.
Each chief or leader had control of a specific territory, and the members of the
group could not enter into the territory of another chief without permission. Groups
generally had to pay to pass through or for the right to use the resources of another
territory (Musters 1964 [1872–1873]). Other travellers mention that chiefs became
poor because they distributed what they had to their followers in order to satisfy
them and to be celebrated as generous (Cox 1999 [1862–1863]). Given that people
could choose the leader they wanted, without this distributive behavior many chiefs
would have run the risk of undermining their support.

We have interpreted nineteenth century descriptions in terms of a configuration
of social order with two top hierarchical levels, usually held by men, but also by
women. The highest level was more irregular in time and geographical extent,
but it predominated in groups of more than 1,000 people. Immediately below, a
second hierarchical level where a minor leader had some degree of authority over
small groups was more usual. In some cases, especially in northern Patagonia,
this second hierarchical level was subdivided into lower level hierarchical ranks.
The lowest social level was that of captives reduced to slavery, whose possibilities
for social mobility were extremely low. The majority of group members had no
access to dominance and leadership, but they were economically and politically self-
sufficient, with the possibility of freely choosing the group to which they wished to
belong.

In southern and central Patagonia, the authority of chiefs was probably not very
great, being limited to leading the territorial mobility of the group. Chiefs were
explicitly not liberated from work (Musters 1964 [1872–1873]). However, a chief’s
pre-eminence was well recognized by his/her followers and neighbors during their
lifetime and it was even remembered after his/her death. Only in case of war would
they acquire more authority, restricting the individual freedom of group members.
As a result of war, captives were integrated into indigenous family groups as
servants or as a kind of slave. At the end of eighteenth century, in some parts of
northern Patagonia where European contact and inter-group conflict were stronger,
chiefdoms were strongly consolidated, with evident hierarchical differences and
elite families with succession rights (Mandrini 1992). In the nineteenth century, but
probably even before, some of the chiefdoms had an important hereditary character
(Vezub 2006, 2009, 2011), although we cannot easily conclude that political power
and leadership were always transmitted from father or mother to son or daughter.
Some families maintained the prestige and social influence of their main members
for more than two or even three generations.

The next implementation of our simulation (called PSP 1.7) will include
procedures for simulating leadership and political ties to analyze the way mobility
and reproduction was mediated by social decisions.
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10.6 Conclusions

“Ethnicity does not explain anything, it needs to be explained” (Doornbos 1991,
p. 19). The same can be said about “territoriality”. This is what we have tried to
explore with our computer simulation of what may have happened in Patagonian
history.

Our computer model of Patagonian hunter-gatherers explores the consequences
of positive interaction as an adaptive advantage. Hunter-gatherers die less and
survive better when they unite to hunt together. But such economic interaction had
some important effects on innovation-diffusion and on cultural diversity. Survival
in our virtual world is not an adaptive process, but a probabilistic one. That is to
say, households do not modify their behavior to maximize survival. However, there
are higher chances for surviving when agents cooperate looking for resources and
sharing labor. Given that the probabilities of cooperation are conditioned on the
existence of some cultural consensus, agents should be able to adapt their identity
in response to the identity of agents with whom they have successful economic
interactions. Identity is then under constant negotiation, and it evolves conditioned
by the number and nature of agents involved in positive interaction. Given that
social aggregates constantly change their internal organization, collective identity
is constantly adapting. The apparent abundance, continuity, and easy access to
resources all along the humanly exploitable area would have prevented human
groups from increasing their productive capacity as a consequence of competition
with other groups sharing the same environment. The absence (or insignificance)
among Patagonian hunters of food reserves to be used during seasons of minimal
economic activity is another fact that points in this direction. The mobile nature of
the dispersed population was conducive to a very low level of political elaboration
and hence of social stratification.

Our simulation shows that ethnicity can be understood in terms of the tendency of
people with connected (or similar) traits (including physical, cultural, and attitudinal
characteristics) to interact with one another more than with people with whom they
have no connection (or similar features). In addition to the principle of ethnicity
choice at the level of local rules of interaction, we have also introduced the principle
of social influence (i.e., the more that people interact with one another, the more
similar they become) which runs at the level of communication and the formation
of a socio-cognitive level. This influence process produces induced ethnicity, in
which the disproportionate interaction of likes with likes may not be the result of a
psychological tendency but rather the result of continuous interaction.

Preliminary results clearly suggest that it is not the geographical space, and
not only the distribution of resources that explains the emergence of territoriality,
social aggregation and cultural differentiation phenomena, but social interaction
(cooperation) and political constraints acting on social reproduction that explains
both aggregation and the constant flux of identity negotiation and rebuilding. In the
model, positive interaction depends on:
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• the expected benefits of identity similarity,
• the expected benefits of help from others (in terms of labor),
• the expected benefits of more efficient techniques adopted from culturally similar

neighbours,
• the expected benefits of mobility (the chance of finding someone in the neigh-

borhood able to cooperate).
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Chapter 11
How Did Sugarscape Become a Whole
Society Model?

André Costopoulos

11.1 Introduction

The goal of archaeological simulation is to help us understand how we became us.
It helps us understand past social systems and their dynamics of change so that we
can better understand who we are and where we came from. The initial strategy for
doing this, as proposed by Doran (1970), involved simulating realistically complex
societies in realistically complex environments. In keeping with the generalizing
aims of the processual archaeology of the time, the hope was that accurate models
of social systems could help us understand social dynamics in general.

This effort ran counter to a deeply rooted tradition of human exceptionalism that
is closely tied to historical particularism and that characterizes anthropology and
western approaches in general. It casts humans as fundamentally different from
the rest of nature. Its inevitable conclusion is that the tools used to study the rest
of nature, including all natural systems, are unsuitable for the study of humans.
The erosion of this divide, most recently by the social statistics movement of the
early nineteenth century and by Darwin’s (1872) contention that natural selection
can explain the origin of the human moral capacity, has not been digested to any
significant extent, especially in social science (Taylor 2013). Human exceptionalism
continues to underlie critiques of systemic approaches to human culture and society,
although there is an emerging movement in cultural anthropology, sometimes called
multispecies ethnography (Kirksey and Helmreich 2010) to situate humans in their
broader natural context as social beings among others (see for example Tsing 2013;
Kohn 2013).
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This widespread assumption that methods used for the study of the rest of nature
could not be used to study humans made it necessary for early practitioners of sim-
ulation in archaeology to convince their colleagues that simulation of systems could
in fact help us study human societies. They had to convince them that simulation
could be used to study something as complex as culture. In early applications, the
scope of modeling was broad, as was the scope of implications. Entire cultures, as
defined and imagined by anthropologists of the day, were modeled to learn about
and explain all cultures. To increase the level of believability and strengthen the
argument that simulation could be used to study real societies past and present, these
were usually ethnographically or archaeologically known societies. This ancestral
form of archaeological simulation can be called realist-generalist. It strove for a
concrete form of realism in which elements of the simulation correspond to elements
of the real historical world, as opposed to a fuzzier kind of verisimilitude in which
the simulation creates a believable but hypothetical world. It led to the emergence
of so-called whole society models (Aldenderfer 1998; Lake 2004).

Very quickly and quite naturally, the whole society approach gave rise to a more
particularist school of simulation that sought to understand specific societies in
specific historical and environmental contexts. This form of simulation is ultimately
concerned with general explanation, but focuses very tightly on a well-defined
archaeological case to generate its general understanding. There is emphasis on the
immediate goal of understanding a context in its own terms, and usually a discussion
of broader applicability or at least the potential for such. The scope of modeling is
broad, as entire social systems are modeled and specified as closely as possible and
in as much detail as possible, but the scope of implications tends to be narrower
because the immediate concern is with understanding a particular context, as a way
of eventually building greater general understanding. This is a realist-particularist
form of archaeological simulation, in that it puts the particular case front and center.

A third stream of archaeological simulation retains the concern for general
explanation of the ancestral form, in that it seeks generally applicable explanations
of archaeological phenomena, but adopts an abstract, rather than realistic portrayal
of reality. Here the emphasis is on the modeling of general processes, sometimes in
no particular context at all. The particular case either becomes one of many instances
of the general phenomenon, or sometimes disappears completely. Following appli-
cations in the biological and material sciences, this approach seeks to model very
specific and simple processes in the pursuit of general explanation. In this form,
the scope of modeling is narrow, because few processes and kinds of objects are
modeled, but the scope of implications is very broad. This is an abstract-generalist
form of archaeological simulation.

To at least some of its practitioners, however, this high level abstract-generalist
approach has become no less a form of whole society modeling than its realist
cousins. In some regions of the discipline this form has effectively become a whole
society modeling of a new kind that replaces the use of context specific realism
to produce historically realistic output, with process specific realism that produces
verisimilitude in an attempt to increase general understanding. In this paper, I will
briefly outline what I see as the main threads of the emergence of abstract-generalist
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simulation and its rise to the status of whole society modeling. I will try to tell in
broad outlines the story of how some strands of archaeological simulation moved
beyond early concerns for demonstrating that the method is useful for studying the
human past. In some areas of the discipline, we see a near reversal of situation,
from early days when people wondered whether computer simulations could ever
be complex enough to be informative about human society, to a situation where
people are wondering whether understanding human society requires anything else
than very general, abstract natural-like models.

11.2 The Realist-Generalist Ancestral Form

Early simulators initially struggled against skepticism that societies are system-like.
Systems are sets of elements that interact according to given rules. Computer sim-
ulations portray the operation of systems. The question of whether human societies
are systems, or at least have system-like properties, has therefore been of great
importance to archaeological simulation from the start. Applied to archaeology, the
question acquires a chronological dimension: Is social change system-like?

The question was not new, and its modern formulations can be traced back at least
to Quételet’s (1835) Essaie de Physique Sociale (see also Quételet 1848). Despite
some optimistic post-war statements outside the field (Stewart 1947, for example),
opinion within anthropology and archaeology, especially in North America, was
generally skeptical of overarching explanations of a systemic nature, as exemplified
in Boas (1920). Even in the 1970s, anthropology and archaeology on both sides
of the Atlantic were still reeling from the perceived excesses of classical unilinear
evolutionism that had become ideologically tainted by the mid-century struggle
against the extreme classical evolutionary theories of Aryan racial superiority.
In that context, systems were suspect. On the other hand, institutional pressures
created by expanding academic departments and the need to secure external funding
were encouraging social scientists to search for general explanatory frameworks like
those available to their natural science colleagues.

In keeping with Doran’s (1970) manifesto for archaeological simulation, and
given the debates about whether society is a system and whether computer
simulation can usefully approximate it, most early simulators adopted a realistic
approach and had generalist goals. They attempted to portray credibly human-like
societies that were usually closely inspired from archaeologically known instances
(Thomas 1973; Wobst 1974 are the classic examples). As processualists, they sought
to provide insights about the mechanisms of human social organization and social
change in general. There was also a marked concern for understanding how the
archaeological record itself relates to our reconstructions of the past.

For the pioneers of archaeological simulation, society was unambiguously a
system. The archaeological record was both the material signal of the operation
of that system, as well as a system in itself, the operation of which held its own
lessons for understanding the past. In his simulation of Steward’s Great Basin
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settlement patterns, Thomas (1973, p. 174) defines a settlement-subsistence pattern
as “a system of interrelations between loci of human occupation (sites)” (emphasis
original). Wobst’s (1974, p. 147) classic early effort is stimulated by the need
to “integrate the particular result into a systemic whole”, and to “proceed to the
systemic level” of explanation of the archaeological record.

While many of their non-simulating colleagues in the heyday of processualism
were receptive to the idea of society as system, they weren’t always convinced that
computer simulations, however elaborate and complicated they could be made with
contemporary tools, could approximate the level of complexity needed to really
learn about human social systems, or even that humans were capable of formulating
the required hypotheses and experiments.

Even fairly friendly critics like Donn T. Bayard (1973, p. 377), who granted the
basic premise that societies are systems, points out in discussing William Longacre’s
(1966, p. 95) suggestion that archaeologists are in the privileged position of having
access to a wealth of cultural systems from the past, that “the archaeologist’s
‘laboratory’ does not consist of cultural systems; it consists of a severely limited
sample of the remains of the material manifestations of cultural systems”. But
Bayard goes on to suggest that even if archaeologists did have access to the
entirety of the human record, it’s limited size in terms of data, as opposed to
even small physical systems, would be inadequate to make it amenable to study
by physical science-like approaches. In other words, even granting that society
is a system, and that social change is systemic, we could never prove it, much
less understand it’s dynamics. The amount of data available, or even potentially
available, is so small that it would be impossible to derive systemic rules from the
observations. Archaeology, according to this critique, was in no position to replicate
the explanatory successes of the physical sciences.

Merilee Salmon (1978), an even friendlier critic, argued early on that even if
human societies are systems, neither General Systems Theory nor Mathematical
Systems Theory can be much use to the archaeologist, the first because it is not real
theory, the second because it does not usually identify causal factors of phenomena.
Interestingly, Salmon (1978, pp. 181–182) gives as an example the case of a
sociology dissertation (unidentified in the text) that “explains” recent (at the time)
US demographic trends by fitting the population growth curve to a model developed
for fruit fly populations, pointing out that the explanation doesn’t take into account
factors such as “the availability of various contraceptives, the widespread publicity
about the dangers of over-population, or the existence of family planning agencies”.
A very different reading of the same example might emphasize that it raises serious
questions about whether any of those factors are relevant to the evolution of human
social systems. This question is essentially the one asked my modern practitioners
of the abstract-generalist approach, as I will explain below.

Hodder (1985) went farther in challenging the very idea that society is a system
or even system-like. He was an especially observant and credible critic, having
himself been one of the early practitioners of archaeological simulation (see Hodder
1978). His work features some of the best examples of realist-generalist simulation,
including his work with Elliott and Ellman (1978) on Neolithic axe dispersal in
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Britain. His main criticism of the systemic view of society is that it doesn’t see
humans as active participants in the construction of their society, whose goals and
preferences are formed in a unique historical context. This results, in his view, in an
overly deterministic model of society that ignores both culture and agency.

Certainly, Hodder accurately describes some of the processual work of the 1970s.
But processual work in general, and archaeological simulation in particular, don’t
have to ignore the actor or the context. Taking them into account does take a different
approach to modeling, one that was emerging by the mid-1980s. Full-fledged agent-
based approaches, foreshadowed by cellular automata in other fields (see Gardner
1971 for a useful review of early efforts), promised to allow the archaeologist to
address the main critiques raised by Hodder and others, by introducing individual
choice, perspective, agency, and historical contingency to artificial societies that
could help explain the human past and by implication, the human present.

The two main criticism that were levelled at the realist-generalist form of
archaeological simulation were that (1) it wasn’t particularly realistic and (2) that
it couldn’t aspire to general explanation. It was thought that the artificial social
systems modeled were hopelessly inadequate to portray human societies because
they lacked complexity, and especially because they lacked human-like agents. They
couldn’t aspire to general explanation because the social systems they sought to
explain were unique and irreproducible, or at the very least, not subject to the kind
of repeatable experimentation that could allow us to find out whether they were
system-like.

11.3 The Realist-Particularist Approach

The increasing complexity and realism of archaeological simulation through the
1970s and 1980s, as well as the promise for more of the same, led to an approach that
increased the realism of some archaeological simulations. These usually focused on
very specific archaeological contexts, well bounded in time and space. The main
defining characteristic of this type of simulation is its realism. It seeks to portray
actual archaeologically observed systems. However, it is distributed over a wide
spectrum of particularism from very weak to very strong. The strongly particularist
efforts seek to understand a particular archaeological context for its own sake, with
little concern for general explanation. In such strongly particularist work, there is
often a sense that while two particular contexts can be interesting in their own
right, one cannot help us understand another. For example, the Maya collapse
is interesting and should be studied, and the Easter Island collapse is interesting
and should be studied, but comparing them is not actually very informative. The
weakly particularist (or more generalist) efforts tend to prioritize the study of the
particular context, but their ultimate aim is to provide material for comparison,
because comparison is seen as informative.

While this realist-particularist approach in archaeological simulation usually has
overall generalist aims, it sometimes de-emphasizes the general implications of
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simulation results in favour of local understanding of a time and place. The strategy
proposed is to get at the general understanding through the detailed study of a
particular case, rather than using general process to explain cases. The scope of
modeling here is broad, and the scope of implications is narrow.

Some early simulation efforts in anthropology pushed the realist-particularist
approach to the extreme. MacLuer et al. (1971) built a microdemographic simulation
of the population of four Yanomamo villages in which the simulated individuals in
the starting population corresponded to actually living members of the ethnographic
population. They sought “(1) to check field data for consistency and indicate areas
in which more data are needed, and (2) to study demographic structure” (MacLuer
et al. 1971, p. 194).

Highly realist and very particularist simulation is inevitably a large undertaking
and some of the true ‘mega-projects’ of archaeological simulation belong to this
category. They are so large in scope of modeling that they require large teams,
and in some cases are well over a decade in the making. Tim Kohler’s team (see
Kohler and Varien 2012 for a recent statement), for example, have worked on
increasingly elaborate and realistic models of social and environmental change in
the American southwest. While their motivation is clearly expressed in terms of the
potential for general explanation of human adaptation to environmental change, the
immediate fruit of their labour is a deeper understanding of the Pueblo collapse.
More significantly, they seek general explanation through detailed investigation of
a particular case.

The ENKIMDU engine (Wilkinson et al. 2007) is only one aspect of a sim-
ilar project has been dealing with social and environmental change in ancient
Mesopotamia (Altaweel 2008; Wilkinson et al. 2007), with an emphasis on agri-
culture. Here again, the overall aims are generalizing, but the method is to focus on
a particular case in great detail in order to get at larger questions.

11.4 The Realist-Abstract Border

A great many archaeological simulations fall within the region of realist-
particularism as defined here, although it is admittedly a large region with fuzzy
edges. Some of this work, while it features a particular case, doesn’t push the realism
quite as far the Kohler’s Village project or ENKIMDU and it emphasizes general
applicability to a greater degree. Lake’s (2000) MAGICAL work on information
sharing among early Hebridean foragers explores a particular case to learn about
the social dynamics of new environment occupation and the formation of the
archaeological record. MAGICAL abstracts the environment and the subsistence
base of the modeled population to high degree while keeping them in a well defined
archaeological context and while comparing its output to observed data. Conolly and
colleagues adopt a similar strategy for their work on the spread of early agriculture
in Europe (Conolly et al. 2008) and bronze age settlement patterns in the Agean
(Bevan and Conolly 2011). These are just a few examples in a crowded field.
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The application of computer simulation to early human evolution (at least until
the Upper Paleolithic) perhaps marks the point at which the realist and the abstract
regions meet. One can’t be faulted for wondering whether most ABM studies that
deal with pre-modern humans are about any specific case at all. The Paleolithic tends
to be treated as a single, all encompassing case for which there is no comparative
basis. The farther back the period with which one deals, the truer this seems to be.
For example, because of the time scales involved and because of the conceptual
remoteness of our ancestors, one generally models hominin dispersal (e.g. Mithen
and Reed 2002; Nikitas and Nikita 2005), not the particular features of a dispersal
for its own sake. The “case” here is a species at the global scale, not a particular
population in a particular environment at a particular time. The concern, by default,
is for general explanation, although it can be seen as quite particularistic if the
target for explanation is the single human line of descent, and especially if hominin
phenomena are treated in isolation from, or somehow differently from those related
to other species.

Wobst’s (1974) simulation of paleolithic populations fits into this border area.
It is realistic in terms of population processes, but largely abstracts subsistence
strategy, a typical target of realist simulation. It is ambiguously case-specific
because it deals with human ancestors rather than some human ancestors. It puts
general applicability front and center and treats the case in some ways as a necessary
evil.

If we can agree to call Wobst’s work proto-agent-based, there is another example
of early simulation in archaeology that while not agent-based, brings us right to
the edge of the abstract generalist approach and probably is an important precursor.
Wobst used general demographic principles to model Paleolithic population, but he
still intended some level of realism. Ammerman and Cavalli-Sforza (1971, 1973)
were simply searching for a mathematical model that was known to be consistent
with a natural process and that could be used to describe an archaeological
phenomenon. They found it in Fisher’s wave of advance and applied it to the spread
of farming in Europe. This was part of an approach championed by Renfrew (1977)
in the 1970s for the identification of families of mathematical models that could be
used to describe archaeological phenomena.

Over time, simulators operating at the edges of this realist-abstract border created
a firmly abstract-generalist approach. They were gradually freed from traditional
archaeology’s concern for the context for its own sake, and they found a like-minded
audience for whom they could confidently treat society as system.

11.5 The Abstract-Generalist Approach

The abstract-generalist approach focuses on modeling high-level processes and is
concerned with the specific case as an instance that illustrates the operation of the
process. Whereas the realist approaches try to portray a context in some detail by
modeling many processes and features, the abstract approach models few processes,
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sometimes a single one, and does not even necessarily tie it to a real particular case.
Frederik Barth (1966) had already emphasized the central importance of generative
models in the explanation of social phenomena. Generative models are those that
use a set of elements and rules for interaction between them to produce a pattern or
an outcome. They can be opposed to descriptive models which impose conditions.
Effectively even the most generative model has descriptive elements. For example,
while a model of foraging may let a settlement pattern emerge from the interaction
between agents and patches, it might describe a sequence of environmental change
over time by imposing a climate change curve. It would not necessarily let the
climate change emerge from the interaction of climatological variables. Ultimately,
no model can be completely generative.

The abstract generalist approach using generative models really started coming
into its own when Epstein and Axtell (1996) provided researchers with possibly the
first useable agent-based sandbox. Devoid of particular cultural, geographical, or
temporal context, it allows the student of a social phenomenon to ask “how could
the decentralized local interactions of heterogeneous autonomous agents generate
the given regularity?” (Epstein 1999, p. 41), which Epstein calls “the generativist’s
question”.

Since the 1970s the increasing availability of computational tools has allowed
archaeologists working in that generative tradition that emphasizes process over
case and general explanation over contextual understanding, to turn their models
into simulations, for example in Optimal Foraging (Winterhalder 1986) or Dual
Inheritance Theory (Shennan 2009), among others.

Mesoudi and Lycett (2009) is typical of this school. It features an abstract model
of culture change, not tied to time and place, and explores the operation of random
and frequency dependent copying in order to produce general insights that can be
applied to a variety of cases. More significantly, it explicitly makes the link between
human evolution and other natural processes by highlighting potential implications
of their conclusions for “non-human cultural datasets” (Mesoudi and Lycett 2009,
p. 47).

Hahn and Bentley (2003, p. S120) go further in arguing that society is a natural
construct, although they do it through the study of a particular case. They show that
changes in baby name frequency in the US are “satisfactorily explained by a simple
process in which individuals randomly copy names from each other, a process that
is analogous to the infinite-allele model of population genetics with random genetic
drift. By its simplicity, this model provides a powerful null hypothesis for cultural
change”.

Most of the ABM work at the abstract end of the abstract-generalist region uses
available theory to investigate the degree to which it can account for either observed
or intuited social phenomena. Neo-Darwinian Theory and Economic Game Theory
from of the bulk of this work. All of it assumes that society is a natural construct
not that different from any other natural phenomenon. The use of theory and
method derived from natural sciences, however, is not inherent to abstract-generalist
approaches. There is no reason why someone might not use social theory, for
example, as a framework for an abstract-generalist investigation. But such work



11 How Did Sugarscape Become a Whole Society Model? 267

seems to be nearly absent from the landscape, perhaps because of the interests
and propensities typical of abstract-generalist workers. Vaneeckhout (2010), for
example, begins a modeling effort which could easily lead to generalist-abstract
simulation and which is based on Levi-Strauss’ (1979) theory of house society.
Whitehouse et al. (2012) build a simulation around the theory of divergent modes
of religiosity to understand transmission of religious beliefs. While both efforts deal
with particular case studies, their aims are clearly generalizing, and the modeling
approach is abstract rather than realist.

11.6 Conclusion

In some senses, the realist position in archaeological simulation is grounded in a
worry that there is something unique and difficult to account for in human social
organization. In its extreme formulations, this human exceptionalist position argues
that nature itself is socially constructed by humans (see Holtorff 2000–2008 for
an archaeological discussion). It reflects early and ongoing concerns that computer
simulation cannot adequately capture a human element necessary to the social
object. It is partly a reaction to the human exceptionalist critique of the use of natural
science-like method and theory for the study of humans.

The abstract position, on the other hand, expresses a conviction, at least until
it can be rejected, that society is a natural construct. From that point of view, the
demonstration is far from conclusive that human society is not the outcome of the
natural processes that we observe at work in the evolution or the behaviour of other
related species, or even of abiotic phenomena.

This is not a new debate. It was reflected in the mid-nineteenth century in
the split between the Anthropological and Ethnological Societies in London. For
Dunn (1861, p. 189) of the Ethnological Society, “The barrier is indeed impassable
which separates man from the Chimpanzee”. For Wake (1872, p. 83), the Australian
Aborigines can teach us about a time when, quoting Darwin, he thinks that our
ancestors had “only doubtfully attained the rank of manhood”.

It is also reflected in the great controversies of the mid-twentieth century
between, for example, Leslie White and the Boasians. For one side, cultural
evolution could be described, if not quite explained, by energy equations. For the
Boasians, humans required a more subtle treatment. It exists today in archaeological
simulation in the form of the bifurcation between a realist school that continues
to engage dirt-based archaeologists, and an abstract school that is increasingly
speaking to more receptive audiences outside traditional archaeology, including
physics, economics, evolutionary biology, and evolutionary psychology.

If the abstract position in archaeological simulation argues that human societies
can be studied using the tools we have reserved for the study of the natural
world, the emerging multispecies ethnography work discussed in the introduc-
tion seems to make the diametrically opposite claim that the natural world can
profitably be studied using the tools we have so far reserved for documenting
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and understanding human societies. Does this herald a convergence of views
between hard-nosed, simulation wielding evolutionary archaeologists and their
free-spirited deep ethnography conducting anthropological cousins? This is an
interesting question. It certainly opens up a new avenue for dialogue where such
avenues have had a habit of closing over time.
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