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1 Introduction

The major parts of Earth’s environments are cold and have temperatures below 5�C
(Gounot 1999; Russell and Cowan 2005). About 70% of the freshwater is ice and
about 14% from the Earth’s biosphere is represented by terrestrial and aquatic polar
areas (Priscu and Christner 2004). The depth of the oceans, the poles, and high
mountains are the most important cold regions on Earth (Russell and Cowan 2005).
Global ice, for example, covers 6.5 million km2 which increases to 14.4 million km2

in wintertime (Perovich et al. 2002). Here we can meet representatives from all
domains of the living world. Two categories of microorganisms were discovered in
such cold environments. First, the psychrophiles with an optimum growth tem-
perature of about 15�C or even less, which cannot grow above 20�C (Moyer and
Morita 2007); second, the psychrotolerants with an optimum growth temperature
of 20–30�C, which are able to grow and exhibit activity at temperatures close to the
freezing point of water (Madigan and Jung 2003). The lowest temperature for life’s
activities is�20�C under certain defined conditions (Rivkina et al. 2000; Gilichinsky
2002; D’Amico et al. 2006); others consider the temperature limits for reproduction
as �12�C and for metabolism as �20�C (Bakermans 2008). Colwellia psychrery-
thraea strain 34H is motile at �10�C, as observed by transmitted light microscopy
(Junge et al. 2003). Psychrophilic microorganisms are dominant in permanently
cold environments such as Antarctic waters and have important roles in the
biogeochemical cycles in the polar zones (Helmke and Weyland 2004). Not only
are prokaryotes adapted to the cold, but also are many eukaryotes such as algae
(Takeuchi and Kohshima 2004) and macroorganisms from crustaceans to fishes.
The present work will focus on prokaryotes and some microscopic eukaryotes of
biotechnological importance.
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2 Diversity of cold-adapted microorganisms

The psychrophilic and psychrotolerant microorganisms belong to all three of life’s
principal domains, Archaea, Bacteria and Eukarya. It is interesting to note that
viruses are omnipresent and even so in those inhospitable places. Viruses from the
families Podoviridae, Siphoviridae, and Myoviridae were identified in cold environ-
ments (Wells 2008). Bacteriophages were identified in inner polar waters and in ice
(S€awstr€om et al. 2007) infecting psychrophilic microorganisms; for example, phage
9A of Colwellia psychrerythrea strain 34 is capable of forming plaques at low
temperatures, but not at 13�C (Wells 2008).

Archaea found in cold environments are methanogens for example, from genera
Methanogenium,Methanococcoides andMethanosarcina, but halophilic (Halorubrum)
and other strains can also occur (Cavicchioli 2006).

Bacteria. The majority of isolates from polar areas belong to the groups of Beta-,
Gamma-, Delta-Proteobacteria, Actinobacteria, Acidobacteria, the Cytophaga–Flexi-
bacter–Bacteroides group, and green nonsulfur bacteria. Many strains of Bacteria as
well as Archaea and Eukarya were revealed by 16S rRNA and 18S rRNA gene clone
libraries (Tian et al. 2009). Soils of the McMurdo Dry Valleys host species of
Pseudonocardia, Nocardioides, Geodermatophilus, Modestobacter, Sporichthya and
Streptomyces (Babalola et al. 2008). Cyanobacteria as photoautotrophs were
retrieved from ice, soils, rocks, lakes, ponds, marine ecosystems, and alpine areas
(Zakhia et al. 2008). Chamaesiphon sp., Chroococcidiopsis (from sandstone) and
Synechococcus sp. (from lakes, marine water, and others) are examples of cyano-
bacterial genera with cold-adapted strains.

Algae. Species of Chlamydomonas were retrieved from water derived from melting
glacier ice and from some layer species of Rhodomonas and Chromulina. Species of
Tribonemataceae were found in Antarctic terrestrial environments (Rybalka et al.
2008). Several microalgae can be found in all known cold environments as in snow
(Chlamydomonas and Chloromonas), seawater (diatoms), sea ice (diatoms and
dinoflagellates), on rocks as endoliths (Hemichloris antarctica), ice-covered lakes
(Chloromonas sp., Chlamydomonas intermedia, and Chlamydomonas raudensis) and
at high altitudes (reviewed by Mock and Thomas 2008). Samples from the Tyndall
Glacier in Patagonia, Chile contained algal species of the genera Mesotaenium,
Cylindrocystis, Ancylonema, Closterium, Chloromonas, and some cyanobacteria
(Takeuchi and Kohshima 2004).

Yeasts. Yeast strains such as Sporobolomyces, Cryptococcus, and Rhodotorula sp. were
isolated from Lake Vanda (Goto et al. 1969) and from other Antarctic and alpine
environments, including psychrophilic yeasts such as the novel species Mrakia
robertii, M. blollopis, and M. niccombsi (Thomas-Hall et al. 2010). Several yeasts,
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which are producers of lipases and proteases, were isolated from cold marine water
and freshwater (Rashidah et al. 2007), such as Cryptococcus antarcticus and
Cryptococcus albidosimilis, Basidioblastomycetes (Vishniac and Kurtzman 1992),
Cryptococcus nyarrowii (Thomas-Hall and Watson 2002), Cryptococcus watticus
(Guffogg et al. 2004), and Leucosporidium antarcticum – the latter from Antarctic
waters (Turkiewicz et al. 2005) – and Mrakia strains (Thomas-Hall et al. 2010).

Fungi were isolated from many cold environments. For example, Penicillium,
Aspergillus, Paecilomyces, Cladosporium, Mortierella, Candida, and Rhodotorula were
isolated from soils of Terra Nova Bay and Edmonson Point, Antarctica (Gesheva
2009). Some authors described isolates from soils, such as Chrysosporium sp., Phoma
exigua, Heterocephalum aurantiacum, Aureobasidium pullulans, Fusarium oxysporum,
Trichoderma viride, and Penicillium antarcticum (Negoiţă et al. 2001a). From the soils
of Schirmacher Oasis, Antarctica, fungi such as Acremonium, Aspergillus, and
Penicillium were isolated, the majority surviving as spores in those harsh environ-
ments, and some species possess unique features of their mycelia (Singh et al. 2006).
Frisvad (2008b) reviewed the fungi from cold ecosystems and indicated their
isolation from soils and permafrost, caves, rocks, mosses and lichens, glacier ice,
freshwater, as well as from frozen foods. The fungi belong to the Ascomycetes
(Acremonium antarcticum, A. psychrophilum, and Penicillium antarcticum), Zygomy-
cetes (Mortierella alpina and Absidia psychrophila) and basidiomycetous yeasts,
which are very rare in cold areas. Endolithic fungi resistant to low temperature and
low water activity were isolated by Onofri et al. (2007).

3 Ecology and biology

Some of the microorganisms are polyextremophiles, for example halo-psychro-
philes, or piezo-psychrophiles, which tolerate high pressure (Nogi 2008) and cannot
grow at atmospheric pressure and at temperatures above 20�C, such as strains of
Shewanella, Colwellia, Moritella, and Psychromonas. In these categories all the
physiological and metabolic types can be found – anaerobes and aerobes, methano-
gens, methanotrophs, chemolithotrophs, sulfate reducers, and organotrophs.
Anaerobic cold-adapted Clostridium sp. (e.g., C. frigoris, C. bowmannii, and C.
psychrophilum) were isolated from Antarctic microbial mats (Spring et al. 2003)
or some psychrotolerants, such as C. frigidicarnis and C. algidixylanolyticum, from
frozen products (Finster 2008). Sulfate-reducing psychrophiles Desulfotalea,
Desulfofaba, and Desulfofrigus (Knoblauch et al. 1999), sulfur-oxidizing bacteria
(SOB), occurring in such organic carbon depleted environments as subglacial waters
(Sattley and Madigan 2006), as well as denitrifying microorganisms in sea ice
(Rysgaard et al. 2008) were found. Ammonia oxidizers were identified by genetic
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methods in all of the samples taken from lakes Fryxell, Bonney, Hoare, Joyce, and
Vanda in Antarctica, belonging to the Proteobacteria (Voytek et al. 1999). Aceto-
genic bacterial sequences originating from Acetobacterium tundrae and others related
to Acetobacterium bakii (Sattley andMadigan 2007) were isolated from sediments of
Lake Fryxell. From the same lake different phototrophic purple bacteria were
identified with molecular methods (Karr et al. 2003) as well as methanogenic and
other Archaea (Karr et al. 2006). Biological methane oxidation and sulfate reduction
by Archaea occur in alpine lakes (such as Lake Lugano deeps) in anoxic zones (Blees
et al. 2010). Methanogens were detected in soils, water sediments, sea and lake
waters from cold environments (Cavicchioli 2006). Methanotrophy was detected
indirectly in Lake Untersee (Antarctica) by identification of hopanoids and two
steroids (4-methyl steroid and 4,4-dimethyl steroid), one hopanoid (diplopterol)
having a specific low isotopic 13C content, and originating from the aerobic
methylotroph Methylococcus sp. (Niemann et al. 2010). Some Shewanella and
Pseudomonas strains from Antarctic lakes are able to mediate redox reactions of
manganese under stimulation by Co and Ni (Krishnan et al. 2009).

4 Cold environments

Cold deserts. There are cold deserts in Antarctica where the precipitation is very low,
the temperatures range between �55�C and 10�C, UV radiation is high and water
activity is low; these are some of the most extreme environments on Earth. Many
microorganisms can be found in endolithic communities composed of cyanobacteria
such as Acaryochloris marina and Gloeocapsa species (de los R�ıos et al. 2007).
Endolithic bacteria, fungi, archaea, green algae, yeasts, and lichens were found in
McMurdoDry Valley (Gounot 1999), analyzed by staining with the BacLight LIVE/
DEAD kit and observed with confocal laser scanning microscopy to demonstrate
their survival (Wierzchos et al. 2004).

Soils covered with snow. From Arctic wetland soil methanotrophic bacteria were
retrieved such as Methylocystis rosea (Wartiainen et al. 2006). In soils of Lapland
microbial communities were discovered, similarly as in soils from alpine zones,
where the temperatures can reach �25�C in wintertime. In addition, soils from
Spitsbergen contained many fungi such as Mucor, Mortierella, Alternaria, Fusarium,
and Zygorrhinchus (Negoiţă et al. 2001b), genera which are very probably
psychrotolerants.

Permafrost. Permafrost soils in the geological sense stay below 0�C for two
consecutive years or more and are specific for arctic areas covering about 26%
of the surface of the Northern Hemisphere. The average temperature is�16�C; in
Siberia �11�C and in Antarctica �18�C to �27�C were measured (Vorobyova
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et al. 1997). From those soils over 100 bacterial strains were isolated, also some
methanogenic archaea from the families Methanomicrobiaceae, Methanosarcina-
ceae, and Methanosetaceae (Ganzert et al. 2007), methane oxydizing bacteria
(Liebner and Wagner 2007), sulfate-reducing bacteria, aerobic and anaerobic
heterotrophs (Gilichinsky 2002), denitrifiers, and iron and sulfate reducers
(Rivkina et al. 1998). The majority of strains included species of Micrococcus,
Bacillus, Paenibacillus, Rhodococcus, Arthrobacter, Haloarcula, and Halobaculum
(Steven et al. 2007), which were isolated in quantities of 107–109 cells per gram of
dry soil. From layers of permafrost which were demonstrated to be about 3–5
million years old, viable cells of bacteria were isolated (Rodrigues-Diaz et al. 2008),
which have to face low temperatures and natural irradiation by radionuclides
(Gilichinsky et al. 2008). From a layer of an arctic permafrost ice wedge from
Canada (temperature �17.5�C, pH 6.5, salt concentration 14.6 g/l, age about
25,000 years) bacteria were isolated (Katayama et al. 2007) belonging to the
classes Actinobacteria and Gamma-Proteobacteria.

Snow, ice, and glaciers. The ice glaciers in Antarctica contain approximately 90% of
the ice of our planet according to the National Snow and Ice Data Centre of USA
(http://nsidc.org/, cited by Christner et al. 2008). Some aspects of the soils covered
partially with ice on the shore of the Antarctic sea are shown in Figs. 1 and 2. Sea and
lake ice glaciers are hosting considerable quantities of biological material, consisting
of microorganisms, bacteria, spores, and pollen grains, the majority being trans-
ported there by air. The microbiota can survive in crevices and capillary tunnels
containing concentrated ionic solutions with a lower freezing point (Price 2006).
The number of viable microorganisms decreases with the depth of the ice layers;
there is a supraglacial community (bacteria, viruses, diatoms, tardigrades, and

Fig. 1. Larsemann Hills Coast, Law-Racovita Base area, East Antarctica, 69�230000S; 76�230000E (photo T.G. Negoita,
2007)
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rotifers), a subglacial community (aerobic and anaerobic) and an endoglacial
community (Hodson et al. 2008). Hollibaugh et al. (2007) studied the Sea Ice
Microbial Community (SIMCO) formed of bacteria, algae, and fungi of various
metabolic types: sulfate reducers, chemolithotrophs, methanogens, anaerobic ni-
trate reducers (Skidmore et al. 2000), and viruses (Deming 2007). In ice there is an
incredible diversity of Proteobacteria, of the phylum Cytophaga–Flavobacterium–
Bacteriodes, high GCGram positives and lowGCGram positives (Miteva 2008), and
a large metabolic and physiological diversity. Some of them were entrapped for very
long periods of time, such as the strain Herminimonas glaciei, a Gram-negative
ultramicrobacterium, which was isolated from a 3042m deep drilling core from a
Greenland glacier of about 120,000-year-old ice (Loveland-Curtze et al. 2009), or
Chryseobacterium greenlandense (Loveland-Curtze et al. 2010) and sequences from
Pseudomonas and Acinetobacter, which stem from 750,000-year-old ice from the
Qinghan-Tibetan plateau in Western China (Christner et al. 2003a). Many
prokaryotes isolated from snow melt water belong to the Beta-Proteobacteria
(21.3%), Sphingobacteria (16.4%), Flavobacteria (9.0%), Acidobacteria (7.7%), and
Alpha-Proteobacteria (6.5%) and other groups (Larose et al. 2010). The cryoconite
holes form another microhabitat containing various forms of life, such as diatoms,
algae, prokaryotes, fungi, rotifers, and tardigrades (Wharton et al. 1985; Christner
et al. 2003b).

Cold caves. Caves represent a constant temperature environment with low organic
content, sometimes only 1mg of organic matter per liter. Some strains are
chemolithotrophs such asGalionella. In many cases there are more psychrotolerants
than psychrotrophs. Some stenothermic bacterial strains were isolated which can
grow at 10–20�C and only few which grow at 2�C or 28�C (Gounot 1999). The

Fig. 2. Antarctic ice cap in the Schirmacher Oasis, 70�460S; 11�500E, 100 km inside the continent (photo T.G. Negoita,
2007)
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strain Arthrobacter psychrophenolicum was isolated from an Austrian ice cave
(Margesin et al. 2004).

Cold lakes. The cold lakes in the polar and alpine zones can be covered with an ice
layer (Antarctic lakes), which practically isolates the lake from the rest of the
environment, and their content of organic carbon and oxygen is rather low.
Christner et al. (2008) pointed out in their comprehensive review that there are
141 subglacial Antarctic lakes having a total volume of about 10,000 km3. One of the
largest lakes is Lake Vostok of 14,000 km2, covered by a 4000m thick ice sheet and
being 400–800m deep. The bottom is covered with a thick sediment layer. The
temperature of the ice layer is about�55�C, but the lake has a constant temperature
of�2.65�C (Di Prisco 2007); the ice layer is about 15 million years old. Alpine lakes
are only temporarily covered by ice and the microbiota there are subject to seasonal
fluctuations (Pernthaler et al. 1998). The cold Antarctic lake environment is
chemically driven, with reactions such as sulfide and iron oxidation (Christner
et al. 2008), and contains methanogens such asMethanosarcina,Methanoculleus, and
anoxic methanotrophs (Karr et al. 2006). The saline lakes host euryhalophiles
related to Halomonas and Marinobacter (Naganuma et al. 2005).

Cold marine waters. From marine waters of Ushuaia, a sub-Antarctic town in
Argentina, many sequences were identified belonging to the Alpha- and Gam-
ma-Proteobacteria, Cytophaga–Flavobacterium–Bacteroidetes group, the genera Mar-
inomonas, Colwellia, Cytophaga, Glacieola, Cellulophaga, Roseobacter, Staleya,
Sulfitobacter, Psychrobacter, Polaribacter, Ulvibacter, Tenacibacter, Arcobacter, and
Formosa (Prabagaran et al. 2007). In the depth of the ocean the temperature is about
3�C, and a considerable pressure exists (the pressure increases by 1 atm per each
10m of depth). Here a very diverse bacterial community can be retrieved, for
example, from the sediments of the Japanese Trench (Hamamoto 1993). From the
deep sediments were, all the domains of life are represented, an important
microbiota was identified by molecular methods (Tian et al. 2009). The archaeal
sequences can reach 17% from total microbiota in marine coastal waters (Murray
et al. 1998). Sulfate-reducing bacteria form a large community in sediments of the
Arctic ocean, being active at about 2.6�C with a sulfate reduction rate similar to that
under mesophilic conditions (Knoblauch et al. 1999).

Anthropic cold environments. Artificial cooling and freezing systems can be
visualized as man-made environments. Pseudomonas fluorescens is one of the
lipolytic food spoiling bacteria which is active in the cold, and its hydrolytic
activity at low temperatures was studied as a function of water activity
(Andersson et al. 1979). The lower temperatures and lower water activity did
not affect the enzymatic activity since the substrates were hydrophobic. In
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cooling devices the bacterium Pseudomonas fragi is frequently found, which is
supported by temperatures between 2�C and 35�C; it possesses some cold shock
proteins (Csps) and degrades frozen foods. Another bacterium from water-
cooling systems is Chryseobacterium aquifrigidense (Park et al. 2008). The
psychrophilic strain Lactobacillus algidus was isolated from refrigerated, packed
beef meat (Kato et al. 2000).

Air. From the Antarctic continent air several psychrotolerant microorganisms were
isolated, such as Sphingomonas aurantiaca, Sphingomonas aerolata, and Sphingomonas
faeni sp. nov. (Busse et al. 2003).

5 Adaptation to cold environments

Growth and activity. The temperature has a direct influence on microbial growth
and the relationship between growth and temperature generally conforms to the
Arrhenius law (Gounot 1999). Christner (2002) reported the incorporation of
DNA and protein precursors by Arthrobacter and Psychrobacter at �15�C.
Polaromonas hydrogenivorans has a lower temperature limit of 0�C for growth
(Sizova and Panikov 2007), and psychrophilic methanotrophs can grow at about
2�C (Liebner and Wagner 2007). The psychrophilic strain Psychromonas ingra-
hami showed growth at �12�C with a slow rate of 10 days of generation time
(Breezee et al. 2004). The activity of microorganisms was proven by measurement
of ATP as a result of biomass activity in soils and permafrost (Cowan and
Casanueva 2007); truly psychrophilic microorganisms showed an increase of the
ATP content at lower temperatures, which is the opposite reaction of mesophiles
(Napolitano and Shain 2004). Other information can be obtained by determina-
tion of the Indicator of Enzymatic Soil Activity Potential, the Indicator of Vital
Activity Potential, and Biologic Synthetic Indicator (Negoiţă et al. 2001b). These
indicators were introduced by Ştefanic (1994) in order to obtain comprehensive
information about the biological activity of soils and to compare them for
agricultural uses.

Membrane polar lipids. There are differences regarding the composition of mem-
brane lipids and there are clear contributions to cold adaptation, depending also on
bacterial taxonomy. The cytoplasmic membrane contains lipids with fatty acids of
lengths ranging mainly between C14 and C18 Gram negatives possess in addition an
outer membrane containing lipopolysaccharides, Archaea contain ether-linked
glycerol alkyl lipids instead of fatty acids, and eukaryotes contain sterols (Russell
2008). Membrane fluidity depends on the degree of saturation of the polar lipids;
the membranes from psychrophiles contain a higher amount of unsaturated and/or
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polyunsaturated and branched fatty acids, with methyl groups and a larger
percentage of double bonds of the cis type (Chintalapati et al. 2004). The changes
in amount and type of methyl-branched fatty acids of Gram-positive bacteria are a
possibility for increasing membrane fluidity at low temperatures. The amount of
unsaturated fatty acids contributes to the flexibility of the membrane structure in
cold-adapted microorganisms, including eukaryotic photobionts such as diatoms
and algae (Morgan-Kiss et al. 2006). The presence of polyunsaturated fatty acids
(PUFAs) does not completely explain the adaptation to cold environments, because
there are many marine strains without them (Russell and Nichols 1999). Archaeal
adaptation to the cold shows a similar increase in desaturation of their isoprenoids
containing lipids;Methanococcoides burtoni for example generates unsaturated lipids
during growth at low temperatures by selective saturation and not by using a
desaturase such as bacteria (Cavicchioli 2006).

The proteome. Cold-adapted bacterial proteins have a reduced amount of arginine,
glutamic acids, and proline (salt bridge forming residues) and reduced amounts of
hydrophobic clusters (Grzymski et al. 2006). A comparison of the contents of amino
acids of psychrophilic enzymes was made by Gianese et al. (2001); they found that
generally Arg and Glu residues in the exposed sites of alpha helices were replaced by
Lys and Ala in psychrophiles. Studying the crystal structure of the b-lactamase from
several psychrophilic strains (P. fluorescens and others) some authors found that the
enzymes from psychrophiles have a lower content of arginine in comparison with
lysine and a lower proline content than mesophilic enzymes (Michaux et al. 2008).
The lysine residues are of great importance for the cold adaptation mechanism in
enzymes, for example in a-amylase from Pseudoalteromonas haloplanktis (Siddiqui
et al. 2006). A similar replacement is observed with Archaea having a higher content
of noncharged amino acids (as glutamine and threonine) and lower contents of
hydrophobic amino acids such as leucine (Cavicchioli 2006). At the same time
the number of hydrogen bonds (Michaux et al. 2008) and the number of disulfide
bridges are reduced (Sælensminde et al. 2009). The cellulase Cel5G from
P. haloplanktis possesses a catalytic domain and a carbohydrate-binding domain
which are joined by a long-linker region containing three loops closed by disulfide
bridges. By experimental shortening of this linker region, the enzyme became less
flexible approaching the activity of its mesphilic counterpart, which suggested that
a long-linker region is an appropriate adaptation of this enzyme to low temperates
(Sonan et al. 2007). Studying the thermal adaptations of psychrophilic, mesophilic
and thermophilic DNA ligases, the conclusion was that “the active site of the cold-
enzyme is destabilized by an excess of hydrophobic surfaces and contains a
decreased number of charged residues compared with its thermophilic counterpart”
(Georlette et al. 2003). The proteins must keep a balance between their stability and
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flexibility, especially enzymes, which are to be active at lower temperatures than their
mesophilic counterparts (Georlette et al. 2003). An intensive study of the pro-
teomics of psychrophilic microorganisms (Kurihara and Esaki 2008) showed that
there are various proteins involved in transcription, folding of RNA and proteins,
modulation of gene expression, and others, which are inducibly produced at low
temperatures.

The following three main types of proteins are of interest for mechanisms of
adaptation:

Csps, which are induced by exposure to low temperatures, are involved in several
cellular processes (fluidity of membranes, transcription, translation). Proteins from
psychrophiles (Caps, cold acclimation proteins) are similar to the Csps. The
regulation of the CspA protein takes place at the transcriptional level at the level
of stabilization of mRNA (cspAmRNA) and at the level of translation (Phadtare and
Inouye 2008). Numerous Csps and proteins helping in the adaptation to low
temperatures were isolated and characterized (Russell 2008). They play a role in the
cold adaptation during stress response and also act as RNA chaperones. Similar
proteins can be found in Archaea, such asMethanogenium frigidum, which are bound
to nucleic acids (Giaquinto et al. 2007).

Antifreeze proteins (AFPs). AFPs and antifreeze glycoproteins (AFGPs) can lower
the temperature of the freezing point of water (D’Amico et al. 2006; Kawahara
2008). They can inhibit the formation of ice crystals and prevent the penetration of
ice into cells (Zachariassen and Lundheim 1999). One of the examples is the protein
Hsc25 produced by the bacterium Pantoea ananatis KUIN 3, which helps to refold
denaturated proteins in the cold (Kawahara 2008).

Antinucleating proteins (ANPs). ANPs and other compounds inhibit ice nucleation
and formation of intracellular ice crystals, avoiding thereby the damage of cells.
Acinetobacter aceticus can release such antinucleating proteins with a mass of
550 kDa. The proteins can be used in the preservation of livers (in a concentration
of 20mg/ml) at subzero temperatures without freezing, with addition of an
antioxidant such as ascorbic acid (Kawahara 2008). An ice-binding protein of a
mass of 54 kDa, isolated from a bacterial strain from an ice core of over 3000m
depth, was able to inhibit the recrystallization of ice (Raymond et al. 2007).

Enzymes. The rate of a chemical reaction is temperature dependent, according to the
Arrhenius equation K¼A exp(�Ea/RT), where K is the reaction rate, Ea is the
activation energy, R is the gas constant, T is absolute temperature in Kelvin, and A is
a constant. It is well known that biological reactions showed a 16- to 80-fold
reduction when the temperature is reduced from 37�C to 0�C (Collins et al. 2008).
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While psychrophiles exhibit a high metabolic rate at cold temperatures, they are
usually inactivated at mesophilic temperatures because of the flexibility and lower
stability as a consequence of the plasticity of catalytic zones of their molecules, due
to a reduction of hydrophobic and hydrogen bonds and a lower content of arginine
and proline (D’Amico et al. 2006). Shifting to optimum activation energy allows
them to keep normal reaction rates at low temperatures (Siddiqui and Cavicchioli
2006). At the same time the 3D structure is also important (Tkaczuk et al. 2005),
such as intramolecular bond modifications (Feller and Gerday 1997; Bae and
Phillips 2004), modification of amino acids in or near catalytic domains of enzymes
(Papaleo et al. 2008), and a lower content of hydrogen bonds (Michaux et al. 2008).
An intensive search for cold-adapted enzymes was performed byMorita et al. (1997)
who isolated more than 130 bacterial strains and tested the properties of amylases,
proteases and lipases, showing that they were easily inactivated at above optimum
temperatures.

Other substances which can play a role in cold adaptation and cryoprotection are
carotenoids, which contribute to the stability of cellular membranes (Russell
2008); extracellular polymeric substances (EPSs), some of them of high molecular
weight or heteropolysaccharides (with additions of proteins), which are released
by some microorganism into the neighboring environment and form a kind of gel
with cryoprotective effects (Krembs and Deming 2008); polyhydroxyalkanoates
(PHAs), which can reduce oxidative stress in the cold, maintaining the redox state
(Ayub et al. 2009); trehalose, which is able to protect cells under conditions of
shock exposure to high and low temperatures and osmotic stress (Phadtare and
Inouye 2008) by stabilizing the cell membrane and removing free radicals, thus
preventing denaturation of proteins. Generally speaking, when comparing with
thermophiles and mesophiles, it appears that cold-adapted microorganisms
adopted the strategy of more entropy by molecular mechanisms, which are
allowing an enhanced flexibility for maintaining dynamics and functions of the
molecules (Feller 2007).

Genetic features as adaptation mechanisms. So far, the following genomes from
psychrophiles and psychrotolerants have been sequenced:Methanococcoides burtonii
(Allen et al. 2009); Methanogenium frigidum (Saunders et al. 2003); Colwellia
psychrerythrea 34H (Meth�e et al. 2005); Desulphotalea psychrophila (Rabus et al.
2004); Idiomarina loihiensis L2TR (Hou et al. 2004), Pseudoalteromonas haloplanktis
TAC125 (M�edigue et al. 2005); Shewanella frigidimarina (Copeland et al. 2006);
Psychrobacter arcticus 253-4 (Ayala-del-R�ıo et al. 2010), Psychromonas ingrahamii
(Riley et al. 2008); 14 Shewanella strains (Hau and Gralnick 2007); and several
others, which are partially sequenced. The analysis of the genes showed some
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principal features of the mechanisms for cold adaptation (Bowman 2008): a lower
content in arginine and proline, which influences the flexibility of proteins, was
observed, especially in sequences related to growth and development (Ayala-del-R�ıo
et al. 2010). Nucleic acids of psychrophiles showed a different proportion of uracil in
16S rRNA sequences, such as an inverse proportional relation to their optimum
growth temperature (Khachane et al. 2005).

6 Applications of psychrophilic microorganisms

Bioprospecting and bioscreening of psychrophilic microbial resources (Nichols et al.
2002) have become real challenges and opportunities for biotechnology. Cold-
adapted bioactive substances provide advantages in different areas, such as activity at
low temperatures; the possibility of challenging reactions with a sufficiently high
reaction rate; energy savings; efficient production with lower processing costs;
thermal protection of the products; and better quality of products. Presently the
market for bioactive products and industrial enzymes is growing. Archaea, Bacteria,
and Eukarya can be sources of valuable products. Huston (2008) reviewed the
enzymes from cold-adapted microorganisms, identifying compounds and enzymes
for the food and cosmetic industry, pharmaceuticals, biofuels, substances for
molecular biology studies, and even for nanobiotechnology. An extensive compila-
tion of applications of psychrophilic and psychrotolerant microorganisms is pre-
sented in Table 1.

Bioscreening for valuable products is generally not made anymore in the classical
way by isolation and cultivation of microorganisms. Now high-throughput culturing
technologies enable the isolation of a major proportion of the microbiota in
environmental samples; combined with metagenomics and gene expression studies,
genome data mining permits an efficient search for bioproducts (see Huston 2008).
Psychrophilic proteins, for example, can have some interesting applications, and
their production can be achieved directly or expressed in an adequate host such as
Escherichia coli, which was used for the a-amylase from P. haloplanktis (Feller et al.
1998). It can be difficult to obtain a stable production, due to autolytic deterioration.
A possible solution is overexpression using a plasmid vector from P. haloplanktis
pMTBL and the plasmid of E. coli pJB3 (Tutino et al. 2001). This type of expression
technology promises a wide application for the problem of efficient gene expression
systems and rapid purification steps. Recombinant proteins can be obtained by
expressing them in prokaryotic cells of cold-adapted (P. haloplanktis TAC125) and
eukaryotic cells (Saccharomyces cerevisiae; Parrilli et al. 2008).

Antibiotics. The isolates from the Antarctic Ocean, Ross Bay, were shown to have
antibiotic activities which were tested with the terrestrial bacteria E. coli,
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Table 1. Applications of psychrophilic and psychrotolerant microoganisms isolated from cold environments

Microorganism Enzymes and other
metabolites

Applications References

Bacteria

Acinetobacter sp. Lipases Lipid hydrolysis, detergent additives Ramteke et al. (2005) and
Joseph et al. (2007)

Achromobacter sp. Lipases Lipid hydrolysis Ramteke et al. (2005) and
Joseph et al. (2007)

Aeromonas sp. Lipases Lipid hydrolysis Lee et al. (2003)

Arthrobacter strains Antibiotics Pharma industry Lo Giudice et al. (2007) and
Benešova et al. (2005)

Arthrobacter sp. Alkaline phosphatases Alkaline phosphatase (removal of 50

phosphate groups from DNA and RNA)
De Prada et al. (1996)

Arthrobacter C2-2 a-Glucosidase,
b-glucosidase

Cleavage of maltose at b-1,4 bonds;
pharma industry, medicine

Benešova et al. (2005)

Arthrobacter strain
20B

b-Galactosidases Lactose hydrolysis Białkowska et al. (2009)

Arthrobacter
psychrolactophilus
strain F2

b-Galactosidase
rBglAp

Produces trisaccharides from lactose;
food industry

Nakagawa et al. (2007)

Arthrobacter
psychrophenolicus

Degradation of phenol and phenolic
compounds

Margesin et al. (2004)

Bacillus subtilis strain
MIUG 6150

a-, b-Amylases Starch hydrolysis; food industry Bahrim and Negoiţă (2004)

Bacillus subtilis strain
MIUG 6150

Proteases Protein hydrolysis Bahrim and Negoiţă (2004)

Brevibacterium
antarcticum

Bioremediation; resistant to metals
in soils (Cu, Cr, Hg, and others)

Tashyrev (2009)

Colwellia demingiae Protease (azocasein) Nichols et al. (1999)

Colwellia demingiae Protease (azoalbumin) Nichols et al. (1999)

Colwellia demingiae Trypsin-like enzyme Protein hydrolysis Nichols et al. (1999)

Colwellia demingiae Phosphatase Nichols et al. (1999)

Colwellia-like strain Trypsin-like enzyme Nichols et al. (1999)

Colwellia-like strain Phosphatase Nichols et al. (1999)

Colwellia-like strain b-Galactosidase Lactose hydrolysis Nichols et al. (1999)

Colwellia-like strain Protease (azocasein) Nichols et al. (1999)

Colwellia-like strain Protease (azoalbumin) Protein hydrolysis Nichols et al. (1999)

(continued )
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Table 1 (continued )

Microorganism Enzymes and other
metabolites

Applications References

Colwellia-like strain Trypsin Nichols et al. (1999)

Colwellia-like strain b-Galactosidase Removal of lactose Nichols et al. (1999)

Colwellia-like strain a-Amylase Starch hydrolysis Nichols et al. (1999)

Colwellia-like strain Alkaline phosphatase Nichols et al. (1999)

Colwellia demingiae Synthesizes
docosahexaenoic acid

PUFAs as precursors for prostaglandins,
thromboxanes, leucotrienes; medicine,
pharma industry

Bowman et al. (1998)
and Lees (1990)

Colwellia hornerae Synthesizes
docosahexaenoic acid

Pharma industry Bowman et al. (1998)

Colwellia maris Malate synthase,
iso-citrate lyase

Bioethanol and biomethane production;
wastewater treatment, bioremediation

Brenchley (1996) and
Cavicchioli et al. (2002)

Colwellia rossensis synthesizes
docosahexaenoic acid

Pharma industry Bowman et al. (1998)

Colwellia
psychrotropica

Synthesizes
docosahexaenoic acid

Pharma industry Bowman et al. (1998)

Dactylsporangium
roseum

Antibiotics Pharma industry, medicine Nguyen et al. (2010)

Erythrobacter litoralis
HTCC2594

Epoxide hydrolase Epoxide hydrolase, for enantio-selective
hydrolysis of styrene oxide

Woo et al. (2007)

Fibrobacter
succinogenes S85

Cellulase Animal food industry, detergents, textile
industry

Cavicchioli et al. (2002)

Flavobacerium sp. b-Mannanase Decreases viscosity in food products Zakaria et al. (1998)

Flavobacterium
frigidarium

Xylanolytic and
laminarinolytic

Xylane degradation Humphry et al. (2001)

Flavobacterium
frigidimaris

Malate dehydrogenase Oikawa et al. (2005)

Flavobacterium
hibernum sp. nov.

b-Galactosidase Lactose degradation McCammon et al. (1998)

Flavobacterium
limicola

Organic polymer degradation Tamaki et al. (2003)

Glaciecola
chathamensis

Exopolysaccharides Food processing industry; medical and
industrial uses

Matsuyama et al. (2006)

Glaciecola
chathamensis

Polysaccharide-producing
strain

Exopolysaccharides, industrial applications Matsuyama et al. (2006)

Instrasporangium sp. Antibiotics Pharma industry Nguyen et al. (2010)

(continued )
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Table 1 (continued )

Microorganism Enzymes and other
metabolites

Applications References

Janibacter sp. Antibiotics Pharma industry, medicine Lo Giudice et al. (2007)

Kordiimonas
gwangyangensis

Cold-adapted enzymes Capable of degrading polycyclic aromatic
hydrocarbons (PAHs)

Kwon et al. (2005)

Micromonospora sp. Antibiotics Pharma industry Nguyen et al. (2010)

Moraxella sp. Lipases Pharma industry, medicine,
food additives

Ramteke et al. (2005) and
Joseph et al. (2007)

Oceanibulbus indolifex Indole and several indole
derivatives

Cosmetics industry, pharma industry,
cancer prevention

Wagner-D€obler et al. (2004)
and Auborn et al. (2003)

Oceanibulbus indolifex Cyclic dipeptides cyclo-
(Leu,Pro), cyclo-(Phe,Pro),
and cyclo-(Tyr,Pro)

Compounds with antiviral, antibiotic,
and antitumor activity

Wagner-D€obler et al. (2004)
and Milne et al. (1998)

Oceanibulbus indolifex Tryptanthrin Activity against some Gram-positive bacteria
and fungi

Wagner-D€obler et al. (2004)

Oleispira antarctica Cold-adapted enzymes Hydrocarbonoclastic; for bioremediation Yakimov et al. (2003)

Photobacterium
frigidiphilum

Lipases Lipid hydrolysis Seo et al. (2005)

Planococcus sp. b-Galactosidase Lactose hydrolysis Sheridan and Brenchley (2000)

Polaromonas
naphthalenivorans

Enzymes Degrades naphthalene Jeon et al. (2004)

Polaromonas sp.
strain JS666

Enzymes cis-1,2-Dichloroethene as carbon
source; for bioremediation

Mattes et al. (2008)

Pseudoalteromonas
sp.

Protease (azocasein) Nichols et al. (1999)

Pseudoalteromonas
sp.

Trypsin-like enzyme Nichols et al. (1999)

Pseudoalteromonas Antibiotics Pharma industry, medicine Lo Giudice et al. (2007)

Pseudoalteromonas
sp.

Lipases Ramteke et al. (2005)

Pseudoalteromonas
haloplanktis TAE 47

b-Galactosidase Lactose hydrolysis Hoyoux et al. (2001)

Pseudomonas sp.
strain B11-1

Lipases, esterases Suzuki et al. (2001)

Pseudoalteromonas
sp. SM9913

Subtilase Yan et al. (2009)

Psychrobacter
okhotskensis

Lipase-producing strain Yumoto et al. (2003)
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Table 1 (continued )

Microorganism Enzymes and other
metabolites

Applications References

Psychrobacter sp. Ramteke et al. (2005)

Rhodococcus Antibiotics Pharma industry, medicine Lo Giudice et al. (2007)

Rhodococcus sp. Biodegradation of phenol
and phenolic compounds

Margesin and Schinner (1999)

Rhodococcus sp. strain
N774

Nitrile hydratase Acrylamide production Kobayashi et al. (1992)

Rhodococus sp. Q15 i Degrades short- and long-chain
aliphatic alkanes from diesel fuel

Whyte et al. (1998)

Rhodococcus ruber Murygina et al. (2000)

Rhodococcus
erythrococcus

Product “Rhoder” for bioremediation
of oil polluted environments

Murygina et al. (2000)

Serratia
proteamaculans

Trypsin-like protease Mikhailova et al. (2006)

Shewanella sp. Produces omega
3 fatty acids

Essential fatty acid for humans Hau and Gralnick (2007)

Shewanella sp. Waste removal of radionuclides
(uranium, technetium)

Hau and Gralnick (2007)

Shewanella sp. Reduction of organic chlorine compounds Hau and Gralnick (2007)

Shewanella
donghaensis

High levels of
polyunsaturated fatty acid

Medicine, food supplements Yang et al. (2007)

Shewanella
gelidimarina

b-Galactosidase Lactose hydrolysis Nichols et al. (1999)

Shewanella
frigidimarina

Eicosapentaenoic acid
(20:w503)

Food additives Bowman et al. (1997) and
Bozal et al. (2002)

Shewanella pacifica Produces polyunsaturated
fatty acids

Food additives,
pharma industry

Ivanova et al. (2004)

Serratia
proteamaculans

Trypsin-like protease Protein hydrolysis Mikhailova et al. (2006)

Serratia sp. Lipases Lipid hydrolysis Ramteke et al. (2005)

Sphingmonas
paucimobilis

Proteases Meat industry, detergent industry,
molecular biology

Cavicchioli et al. (2002)

Streptomyces sp. Amylases, proteases,
cellulases, lipases,
antibiotics, other
bioactive compounds

Detergent additives, starch industry, bread
industry, antibiotics, immuno-suppressants,
anticancer agents, extracellular hydrolytic
enzymes, degradation of ligno-cellulosic
materials

Cavicchioli et al. (2002),
Galante and Formantici (2003),
and Morita et al. (1997)

(continued )
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Pseudomonas aeruginosa, Staphylococcus aureus, Micrococcus luteus, Bacillus subtilis,
Proteus mirabilis, Salmonella enterica, and the yeast Candida albicans, following
incubation at 37�C on nutrient agar (Lo Giudice et al. 2007). The isolates were
identified by 16S rRNA and characterized by biochemical tests. From 580 isolated
strains belonging to Arthrobacter, Rhodococcus, Pseudoalteromonas, and Janibacter,
some were able to inhibit the test strains. The actinomycetes Intrasporangium sp.,
Micromonospora sp., Streptoverticillium sp., Streptomyces sp., and Dactylsporangium
roseum, isolated from the soils from India at over 4000m altitude, showed different

Table 1 (continued )

Microorganism Enzymes and other
metabolites

Applications References

Streptomyces fradiae Antibiotics, amylase,
protease, cellullase, lipases

Pharma industry, medicine, food industry,
detergent additives

Nguyen et al. (2010)

Streptomyces anulatus Dextranase Dextrane hydrolysis; sugar industry Doaa Mahmoud and
Wafaa Helmy (2009)

Streptoverticillium Antibiotics Pharma industry Nguyen et al. (2010)

Fungi

Candida antarctica Lipases Joseph et al. (2007)

Candida antarctica Conversion of n-alkanes into glycolipid;
biosurfactants

Kitamoto et al. (2001)

Cryptococcus albidus Xylanase Hydrolyzing xylane for improvement
of food, waste treatment, food industry

Amoresano et al. (2000)

Cryptococcus laurentii Phytase animal feeding Pavlova et al. (2008)

Cryptococcus laurentii b-Galactosidases Dairy industry Law and Goodenough (1995)

Cryptococcus
cylindricus

Pectinases Clarification of fruit juices; improving
filterability, and extractability of juices

Nakagawa et al. (2004)

Cystofilobasidium
capitatum

Pectinases Clarification of fruit juices; improving
filterability, and extractability of juices

Nakagawa et al. (2004)

Mrakia frigida Pectinases Clarification of fruit juices; improving
filterability, and extractability of juices

Nakagawa et al. (2004)

Pichia lynferdii
strain Y-7723

Lipase Kim et al. (2010)

Rhodotorula
psychrophenolica

degradation of phenolic compounds Margesin et al. (2007)

Algae

Porphyridium
cruentum

Eicosapentaenoic acid,
arachidonic acid

Pharma industry Cohen (1990)
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antibiotic activities against strains of Streptococcus isolated from dental plaque (Raja
et al. 2010). From cold environments, strains close to Serratia and Pseudomonaswere
isolated; both are producers of antimicrobials, probably class II microcins acting in
the cold (Sanchez et al. 2009).

Enzymes. Many psychrophilic and psychrotolerant bacteria possess the capacity
to produce extracellular enzymes such as lipases, proteases, amylases, cellulases,
chitinases, and b-galactosidase, when induced by the presence of specific sub-
strates. Producers were strains of sea ice microorganisms, for example, for lipases
Colwellia psychroerythrea, Shewanella livingstonensis, and Marinomonas prymorien-
sis; for hydrolysis of polysaccharides Colwellia, Marinomonas, Pseudoalteromonas,
Pseudomonas, and Shewanella; for hydrolysis of chitin Pseudoalteromonas tetra-
odonis, Pseudoalteromonas elyakovii, Bacillus firmus, and Janibacter melonis, which
degrade the organic matter from phyto- and zooplankton (Yu et al. 2009).
A simple screening of 137 cold water isolates belonging to Moraxella, Pseudo-
monas, Aeromonas, Chromobacterium, Vibrio, and others showed that about 62%
can produce gelatinase, 71% proteases, 31% lipases, 47% amylases, 36% chitinases,
36% b-galactosidases, 47% cellulases, and 25% alginate lyases (Ramaiah 1994).
Groudieva et al. (2004) found that from 116 strains isolated from the Spitsbergen
sea ice 40% possessed the ability to degrade skim milk, casein, lipids, starch and
proteins. Enzymes such as dehydrogenase from cold-adapted microorganisms can
also be used as biosensors or in biotransformations (Gomes and Steiner 2004).
Protease-producing strains from the genera Pseudoalteromonas, Shewanella, Col-
wellia, and Planococcus were isolated from the sub-Antarctic marine sediments of
Isla de Los Estados (Olivera et al. 2007).

The enzymes from psychrophilic and psychrotolerant strains can be divided
into three categories: (1) heat sensitive, but similar to mesophilic enzymes; (2) heat
sensitive and more active at low temperatures than mesophilic enzymes; and
(3) heat sensitive exactly as mesophilic enzymes, but more active at lower
temperatures (Ohgiya et al. 1999). Another example is a complex of enzymes
generated by an Antarctic isolate, B. subtilis strain MIUG 6150, which produces a-
and b-amylases and proteases (Bahrim and Negoiţă 2004). The productivity of the
microorganisms showed a strong dependency on the culture media used for growth
and other conditions (Bahrim et al. 2007). The cold-adapted strains of Streptomyces
can be a source of valuable enzymes (Cot̂arleţ et al. 2008).

Proteases. Strains producing proteases belong to the genera Bacillus and Pseudomonas
and were isolated from Antarctic cyanobacterial mats. They showed good produc-
tion at a temperature of about 20�C, with glucose and maltose as carbon sources
(Pseudomonas sp.) and soybean meal and peptone as nitrogen sources (Singh and
Ramana Venkata 1998). A trypsin-like protease was identified and characterized
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which is produced by Serratia proteamaculans (Mikhailova et al. 2006). These
proteases are used in the dairy industry to enhance the flavour development in
cheese. In the chemical industry, the enzymes from psychrophilic strains are used in
detergents, food industry, and leather manufacturing (Cavicchioli et al. 2002).

Alkaline phosphatase was isolated and purified from the strain Shewanella sp. (Ishida
et al. 1998). Interestingly, the enzyme showed a maximum activity at 40�C, 39% of
that activity at 0�C, and a tendency to loose activity at 20�C. Two different
extracellular alkaline phosphatases were identified from an Arthrobacter sp. strain
(De Prada et al. 1996). Purified recombinant serine alkaline protease (in E. coli)
from another Shewanella strain showed activity between 5�C and 15�C (Kulakova
et al. 1999). The enzymes, such as the microorganisms themselves, face sometimes
diverse polyextreme conditions; e.g., the cold-active protease MCP-03 from
Pseudoalteromonas sp. SM9913 was active and stable also in a high salt environment
of about 3M NaCl/KCl (Yan et al. 2009).

b-Galactosidases. One possible applications of this enzyme is obtaining an ice
cream with reduced lactose content for lactose intolerant peoples (Phadtare and
Inouye 2008). The removal of lactose frommilk is very important for persons with
lactose intolerance. The cold-active b-galactosidases (EC3.2.1.23) isolated from
psychrophilic yeasts (e.g., Cryptococus laurentis; Law and Goodenough 1995) and
fungi can be used to hydrolyze lactose and therefore a new method of supple-
mentation of milk with dormant cultures was proposed (Somkutl and Holsinger
1997). The utilization of cold-active b-galactosidase (optimum activity at 10�C)
from Arthrobacter psychrolactophilus strain F2, which was overexpressed in E. coli,
for the production of trisaccharides from lactose was also tested for applications
in the food industry (Tomoyuki et al. 2007). Some strains contain isoenzymes
(C2-2-1 and C2-2-2) such as an Arthrobacter strain (Karasov�a et al. 2002), which
was found – as a first example – being able to catalyze transglycosylation reactions
in the cold.

Lipases. Cold-active lipases (triacylglycerol acylhydrolases, EC3.1.1.3) were isolated
from many psychrophilic strains and can have many industrial applications such as
additives for detergents, additives in food products, in bioremediation, and in
molecular biology (Joseph et al. 2007, 2008). Strains of Acinetobacter, Achromo-
bacter, Moraxella, Psychrobacter, Pseudoalteromonas, Serratia, and others are lipase
producers. An Aeromonas strain produces a cold-active lipase (Lee et al. 2003), and
fungal lipase producers such as Candida antarctica, Geotrichum, and Aspergillus sp.
were described. From 137 anaerobic strains isolated from soils in Schirmacher Oasis,
Antarctica, 49 isolates showed lipolytic activity on Tween-agar medium (Ramteke
et al. 2005). Psychrobacter okhotskensiswas isolated fromOkhotsk seawater (Yumoto
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et al. 2003) and is a producer of cold-active lipases. These cold-active enzymes have
a larger K coefficient and high efficiency down to temperatures of zero degree; they
are inactivated by raising the temperature. They are used in the food industry and
chemical industry; the latter utilizes them for catalyzing reactions with compounds
which are unstable at higher temperatures (Suzuki et al. 2001), for example, lipases
and esterases from Pseudomonas sp. strain B11-1. Many detergents contain a mixture
of proteases, lipases, and amylases (Ohgiya et al. 1999). Some lipases can be used to
remove fatty stains from various textiles (Araújo et al. 2008). Lipases can also be
used for the synthesis of biopolymers, biodiesel, pharmaceuticals, and certain
aromatic products (Joseph et al. 2007). The authors reported also that lipases
from psychrophilic and psychrotolerant strains can be used in cold environments for
the bioremediation areas contaminated by oil and grease, as well as in the detergent
industry. From deep-sea sediments of the Pacific ocean, Photobacterium frigidiphi-
lum, a lipolytic psychrophilic bacterium, was isolated (Seo et al. 2005). Some yeasts
such as Pichia lynferdii strain Y-7723 produce a cold-adapted lipase (Kim et al. 2010).
Lipases have a wide range of applications reviewed by Joseph et al. (2007, 2008),
such as aryl aliphatic glycolipids, synthesis of fine chemicals, production of fatty
acids, interesterification of fats, detergent additives, synthesis of biodiesel, removal of
hydrocarbons, oils, and lipidic pollutants. Other uses are in the food industry and
concern the improvement of food structure and gelling of fish meat (Cavicchioli and
Siddiqui 2004). Nielsen et al. (1999) isolated two rather thermotolerant lipases
A and B, with uses in the textile industry for the removal of waxes and lipids from
fibers. The lipases obtained from microorganisms, which are used in different
detergent formulations, are covered by many patents issued for industrial companies
(Hasan et al. 2010). Lipase B from C. antarctica was immobilized onto epoxy-
activated macroporous poly(methyl methacrylate) Amberzyme beads and on
nanoparticles, in order to improve contact with the substrate and the reaction
activity for polycondensation (Chen et al. 2008a). The enzyme was quickly
adsorbed on the polystyrene porous particles (Chen et al. 2008b).

Pectinases. Several cold-adapted yeasts strains were isolated from the soil of
Hokkaido Island (Japan), which were taxonomically affiliated with Cryptococcus
cylindricus, Mrakia frigida, and Cystofilobasidium capitatum. The strains showed
pectinolytic activity at temperatures less than 5�C and can be used for the
production of pectinolytic enzymes (pectin methylesterase EC3.1.1.11; endopoly-
galacturonase EC3.2.1.15) for the clarification of fruit juices at low temperatures
(Nakagawa et al. 2004), improving at the same time the filterability and extractability
of the juice.

Malate dehydrogenases. A malate dehydrogenase was purified from Flavobacterium
frigidimaris KUC1 and characterized by Oikawa et al. (2005). It contains lower
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amounts of proline and arginine residues compared to other malate dehydrogenases
and is dependent on NAD(P)þ . The enzyme looses its activity at 55�C within
30min of incubation. The enzyme can be used for producing malate at low
temperatures.

Dextranases. An important problem in the sugar industry is the removal of dextran,
a high-molecular-weight polymer of D-glucose, which can lower the recovery of
sugar, interfere with material processing and lead to a poor quality of the final
product. Bacterial cold-active dextranases can resolve this problem at low tempera-
tures of about 4�C (Doaa Mahmoud and Wafaa Helmy 2009), such as the
dextranase from psychrophilic strain Streptomyces anulatus.

b-Amylases. The need for cold-active amylases (EC3.2.1.1) and related starch
hydrolyzing enzymes, especially for obtaining sweeteners such as palatinose, a
disaccharide of glucose and fructose, and cyclodextrin, was reported (Rendleman
1996).

Phytases. A cold-active phytase is produced very efficiently by the Antarctic strain
Cryptococcus laurentii AL 27 (Pavlova et al. 2008). Phytase is an enzyme which
catalyzes the conversion of undigestible phytate to phosphorylated myo-inositol
derivatives and inorganic phosphate, which are digestible. Its applications are in the
fields of animal food additives and the pharmaceutical industry.

Xylanases. Xylanase from the yeast Cryptococcus albidus, isolated from Antarctica,
is a glycoprotein; its structure was investigated by mass spectroscopy
(Amoresano et al. 2000). The xylanases hydrolyze the heteropolysaccharide
xylane (a hemicellulose containing a backbone chain of b-1,4-linked xylanopyr-
anoside residues) and have found wide applications, e.g. improvement of
maceration processes, clarification of juices, improvement of filtration efficiency,
maceration of grape skins in wine technology, reducing viscosity of coffee
extracts, improve drying and lyophilization processes, improving the elasticity of
dough and bread textures. Xylanases can also be used to degrade xylane from
agricultural wastes in order to obtain energy from biomass. Hydrolyzing
xylane from the cell walls of plants at low temperatures will allow energy
savings and the production of more accessible feedstock (Lee et al. 2006).
Furthermore, xylanases are used for the pulping process in the paper industry
and for biobleaching (Beg et al. 2001), thereby reducing the use of alkali. They
also improve energy consumption in the textile industry, being used in the
microbiological retting of textile materials, which replaces chemical retting. They
are useful for obtaining fermentation products, bioethanol, and other chemicals
as well as improving the separation of starch and gluten in the starch industry.
The glycoside hydrolase family 8 xylanases can be used in baking processes in
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order to improve the flexibility of dough and product quality (Collins et al.
2006).

b-Mannanase. b-Mannanase (EC3.2.1.78) was isolated from Flavobacterium sp. and
showed good activity at 4�C; it can be used to decrease the viscosity in food products
(Zakaria et al. 1998).

Nitrile hydratase. Companies such as Nitrochemicals developed many years ago the
production of acrylamide with the help of Rhodoccus sp. strain N774 (Kobayashi
et al. 1992), which produces the enzyme nitrile hydratase (EC4.2.1.84).

Cellulases. Some cellulases are used in bleaching and bio-stoning of textile material
(Gomes and Steiner 2004), and alkaline cellulases used in detergents are active
toward amorphous cellulose (Ito et al. 1989).

Trehalose. In agriculture, trehalose-producing systems can be used for reducing crop
losses due to the lower temperatures with the help of genetic engineering (Phadtare
and Inouye 2008).

EPSs. Extracellular polymeric substances released by microorganisms, which pro-
mote the formation of biofilms and have presumably protective roles. They can be
used in the chemical industry to produce biodegradable plastic materials. Several
strains with potential for this type of production were investigated as well as the
conditions for production, such as temperature, pressure and pH (Marx et al. 2009).
The authors reviewed useful microorganisms isolated from cold Antarctic environ-
ments, e.g., Morixella, Psychrobacter, and Aeromonas from polar waters, and psy-
chrotolerants such as Pseudomonas and Photobacterium. The strains showed a good
production of EPS at �4�C to �10�C and resistance under high-pressure condi-
tions between 1 and 200 atm.

Medicinal uses. Besides improving the quality of foods, antifreeze proteins can also
improve the preservability of human organs for transplants, for example livers
(Kawahara 2008). Frisvad (2008a) reviewed bioactive products from cold-adapted
fungi, such as griseofulvin and cycloaspeptide A from Penicillium soppi and
P. lanosum from cold soils; the latter compound can be used as an antimalarial
product. Cycloaspeptides were found so far only in cold-adapted fungi.

PUFAs. PUFAs are produced by many different organisms, for instance by strains
such as S. frigidimarina (Bowman et al. 1997). They can be used as food
supplements and medicinal products. Russell and Nichols (1999) showed that
the bacterial PUFA-producing strain cannot compete with the fungal PUFA-
producing strain, but can be an alternative for feedstock in the food chains used
in aquaculture.
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Biomining. The biomining industry is developing processes at low temperatures
in three-phase systems: the solid phase, which is represented by the mineral ore;
a liquid phase, which contains the microorganisms and nutrients; and the
gaseous phase (Rossi 1999). Such a process can be performed in stirred tank
reactors or in airlift reactors. The process was used for the release and recovery
of copper from sulfide minerals, of uranium and for the pretreatment of gold
ores (Ovalle 1987).

Bioremediation. Psychrophilic strains can be used to degrade the organic pollutants
from soils and waters at low temperatures. Many strains possessing biodegrading
properties were isolated from polar and alpine areas, from soils and waters, but more
research of some aspects is required, such as the stability of the bacterial community,
the accessibility of the pollutant for microorganisms, and the low removal rate
(Margesin and Schinner 2001). Petroleum spills can produce catastrophic damages
and their cleanup is an important goal. Petroleum is a complex mixture of water-
soluble and -insoluble compounds (linear cyclic alkanes, aromatic hydrocarbons,
paraffin, asphalt, and waxy oils; Brakstad 2008), being very hard to degrade. About
200 bacterial, cyanobacterial, fungal, and algal genera possess the capacity to do it
(Prince 2005). The main bacterial genera able to degrade petroleum are Acineto-
bacter, Arthrobacter, Colwellia, Cytophaga, Halomonas, Marinobacter, Marinomonas,
Pseudoalteromonas, Oleispira, Rhodococcus, and Shewanella (Brakstad 2008). Both
anaerobic and aerobic degradation are possible and bioremediation can occur by
stimulation of the local hydrocarbon degraders (using dispersants and nutrients)
and less by bioaugmentation (inoculation of cultures of hydrocarbonoclastic
bacteria; Margesin and Schinner 1999). Dietzia psychralkaliphila can grow on
defined culture media containing n-alkenes as sole carbon source (Yumoto et al.
2002). The strain Rhodococus sp. Q15 is able to degrade short- and long-chain
aliphatic alkenes from diesel fuel at low temperatures of about 5�C (Whyte et al.
1998). Two strains of Rhodococcus, R. ruber, and R. erythrococcus, were used by
Russian researchers for the product “Rhoder,” which is applied for the removal of oil
pollution (Murygina et al. 2000). Some strains isolated from alpine soils are able to
degrade phenol and phenolic compounds (bacteria such as Rhodococcus spp.,
Arthrobacter psychrophenolicus, and Pseudomonas; yeasts such as Rhodotorula psy-
chrophenolica,Trichosporon dulcitum, and Leucosporidium watsoni) and hydrocarbons
from oil at low temperatures (Margesin 2007; Margesin et al. 2007), even though a
complete biodegradation cannot be obtained. Polychlorophenols are toxic and
persistent pollutants which are used as biocidal wood preservatives (Langwaldt et al.
2008). The authors list several genera such as Ralstonia, Burkholderia, Arthrobacter,
Rhodococcus,Mycobacteria, and anaerobes such as Desulfomonile and Desulfitobacter-
ium, which are able to degrade polychlorophenol compounds at low temperatures.

Sergiu Fendrihan, Teodor G. Negoiţă

155



Polaromonas sp. strain JS666 is an isolate which can grow on cis-1,2-dichloroethene
as carbon source; the investigation of its genome showed genes for the metabolism
of aromatic compounds, alkanes, alcohols and others (Mattes et al. 2008). Another
strain, Polaromonas naphthalenivorans, was isolated from a contaminated freshwater
environment and is capable of degrading naphthalene (Jeon et al. 2004). The
isolation of the genes for naphthalene dehydrogenase from cold environments was
reported (Flocco et al. 2009). For bioremediation, the genus Shewanella, which can
use a wide range of electron acceptors, is important, since many members of this
group show capabilities for degrading several pollutants. The genus showed the
possibility to be used in bioremediation of radionuclide and reduction of elements
such as Co, Hg, Cr, and As, as well as for the removal of organics such as halogenated
compounds, e.g., tetrachloromethane or nitramine (an explosive contaminant), as
reported in the review by Hau and Gralnick (2007). Many strains such as
Brevibacterium antarcticum have demonstrated a polyresistance to heavy metals in
high concentrations, resisting concentrations of Cu2þ , Hg2þ , and CrO4, up to
6000 ppm (Tashyrev 2009). Several psychrophilic microorganisms are able to
degrade natural organic polymers (starch, agar, and gelatin) such as Flavobacterium
limicola, which was isolated from freshwater sediments (Tamaki et al. 2003).

Wastes and wastewater treatments. The anaerobic treatment of wastewaters in
treatment plants, using expanded granular sludge bed reactors at temperatures of
5–10�C, looks very promising (Lettinga et al. 2001). A mixture of microorganisms
such as Methanobrevibacter sp., Methanosarcina sp., and Methanosaeta sp. has been
explored (Lettinga et al. 1999). The psychrophilic treatment of landfill leachates
using anoxic/oxic biofilters appears to be a good solution to prevent water and soil
pollution with such leachates containing organic matter and also heavy metals
(Kalyuzhnyi et al. 2004).Oleispira antarctica is able to degrade hydrocarbons in cold
marine waters (Yakimov et al. 2003). Aerobic treatment of wastewater in cold
lagoons has been performed in Canada’s cold areas with success (Smith and Emde
1999). The cold-adapted xylanases can be used for the hydrolysis of agricultural and
food industry wastes. A selection of cold-active degrading microorganism for
wastewater treatment was performed (Gratia et al. 2009), where A. psychrolacto-
philus Sp 31.3 was isolated, which had the desired characteristics and was used
further.

Acid mine drainage is the result of oxidation of certain sulfide minerals by
exposure to environmental conditions and the activity of microorganisms. For
example, ores containing pyrite and chalcopyrites are oxidized in the presence of
water and oxygen and form highly acidic, sulfate-rich drainage. Ferrous iron (Fe2þ)
develops in the process, which can be re-oxidized by acidophilic bacteria and archaea
to ferric iron (Fe3þ), and the sulfur is oxidized to sulfate. These oxidations and the
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concomitant dissolution of sulfide minerals can take place in cold conditions, too.
Sulfate reduction at low temperatures occurs with bacteria such as Desulfofrigus,
Desulfofaba, Desulfotalea, and Desulfovibrio (Kaksonen et al. 2008). Acidithiobacillus
ferrooxidans is also able to oxidize iron and sulfur compounds at low temperatures
(Kaksonen et al. 2008).

Astrobiological models. A special theoretical application concerns astrobiology, since
some scientists are considering the Antarctic a model of planet Mars or other
planets, with respect to the low temperatures and water activity (Abyzov et al. 1998),
and also a model of cold environments where certain microorganisms could possibly
live (Deming 2007). At the same time, the protocols for sampling of ice and
permafrost and their analysis can be used for the exploration of Mars, and could be
relevant and helpful in the isolation of potential Martian microbiota and for the
development of future protocols for the decontamination of extraterrestrial samples
(Christner et al. 2005).

7 Conclusions

1. Psychrophilic and psychrotolerant microorganisms can be retrieved from very
diverse environments – oceans and freshwater, hypersaline cold waters, sedi-
ments, soils, permafrost, ice, glaciers, cold deserts, alpine soils, lakes and snow,
cold man-made environments, and some microecosystems. The microorganisms
in ice layers constitute not real ecosystems, even if some activity at subzero
temperatures was proven; instead, most of them are only opportunistic assem-
blages of mixtures of microorganisms brought together by air and water currents
from other environments. The diversity of so-called cold environments is much
greater than was thought initially, and many microenvironments can be dis-
tinguished. In addition, the cold-adapted members of microbiota can have
different other adaptations to extreme conditions – resistance to high radiation,
oligotrophy, adaptation to high pressures, and perhaps others.

2. Psychrophiles are found in all the three domains of life and have a very diverse
taxonomic origin. The most frequent taxonomic groups in cold environments are
Alpha-, Beta-, Delta-, and Gamma-Proteobacteria, the phylum Cytophaga–Flavo-
bacterium–Bacteriodetes, and Actinobacteria. Together with prokaryotes (Archaea
and Bacteria) numerous eukaryotes are present such as algae, yeasts, and fungi.

3. Special adaptations allowing life in the cold include membrane lipids with
branched unsaturated fatty acids, proteins and enzymes with a more flexible
3D structure due to the reduction of the number of weak intramolecular bonds,
reduction of salt bridges, reduction of aromatic interactions, density of charged
surface residues, increased surface hydrophobicity, and increased clustering of
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glycine residues. Special proteins are Csps, ice nucleation proteins and antifreeze
proteins, which protect the structure of cells from the cold and from formation of
ice crystals.

4. The molecular biology of psychrophiles showed that their enzymes have low
activation energy requirements due to their structure discussed in the text and to
the flexibility of near active sites domains, and that they are easily inactivated by
higher temperatures.

5. The different possibilities of adaptation of the microorganisms, either psychro-
philes or psychrotolerants, showed complicated mechanisms, combining adapta-
tion features and environmental opportunities. Their adaptation mechanisms are
thus much more flexible than we have thought, providing possibilities and
strategies of survival in extreme conditions. There is evidence for survival of
psychrophiles in such conditions for very long periods of time which suggests the
possibility of survival of similar microorganisms on other planets.

6. Psychrophiles produce bioactive and useful compounds, especially enzymes,
pharmaceuticals, biodegradable plastics, substances for medical care, agriculture,
biomining and bioremediation of wastes; all being usable in low temperature
conditions, which entails important energy savings.

7. More laboratory and field bioprospecting should be envisaged for the
isolation and identification of appropriate microorganisms for psychrophilic
biotechnology.

Acknowledgments

We thank Dr. D.S. Nichols and his co-workers for the kind permission to integrate
their data on enzymes from psychrophilic microorganisms in the table of this
chapter.

This work benefitted from the research funded by the Executive Unit for
Funding of High Level Education and of Universities Scientific Research, Romania
(U.E.F.I.S.C.S.U.) in the frame of contract nr 1, Europolar 2010.

References

Abyzov SS, Mitskevich IN, Poglazova MN, Barkov NI, Lipenkov VY, Bobin NE, Koudryashov BB,
Pashkevich VM (1998) Antarctic ice sheet as a model in search of life on other planets. Adv Space
Res 22:363–368

Allen MA, Lauro FM, Williams TJ, Burg D, Siddiqui KS, De Francisci D, Chong KW, Pilak O, Chew
HH, De Maere MZ, Ting L, Katrib M, Ng C, Sowers KR, Galperin MY, Anderson IJ, Ivanova N,
Dalin E, Martinez M, Lapidus A, Hauser L, LandM, Thomas T, Cavicchioli R (2009) The genome
sequence of the psychrophilic archaeon,Methanococcoides burtonii: the role of genome evolution in
cold adaptation. ISME J 3:1012–1035

Psychrophilic microorganisms as source for biotechnology

158



Amoresano A, Andolfo A, Corsaro MM, Zocchi I, Petrescu I, Gerday I, Marino G (2000) Structural
characterization of a xylanase from psychrophilic yeast by mass spectrometry. Glycobiology
10:451–458

Andersson RE, Hedlund CB, Jonsson U (1979) Thermal inactivation of a heat-resistant lipase
produced by the psychrotrophic bacterium Pseudomonas fluorescens. J Dairy Sci 62:361–
367

Araújo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing.
Biocatal Biotransform 26:332–349

Auborn KJ, Fan S, Rosen EM, Goodwin L, Chandraskaren A,Williams DE, Chen D, Carter TH (2003)
Indole-3-carbinol is a negative regulator of estrogen. J Nutr 133(Suppl):2470S–2475S

Ayala-del-R�ıo HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G,
Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P,
Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273-
4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-
temperature growth. Appl Environ Microbiol 76:2304–2312

Ayub ND, Tribelli PM, Lopez N (2009) Polyhydroxyalkanoates are essential for maintenance of redox
state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation.
Extremophiles 13:59–66

Babalola OO, Kirby BM, Le Roes-Hill M, Cook AE, Craig CS, Burton SG, Cowan DA (2008)
Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral
soils. Environ Microbiol 11:566–576

Bae E, Phillips GN Jr (2004) Structures and analysis of highly homologous psychrophilic, mesophilic,
and thermophilic adenylate kinases. J Biol Chem 279:28202–28208

Bahrim G, Negoiţă TG (2004) Effects of inorganic nitrogen and phosphorous sources on hydrolase
complex production by the selected Bacillus subtilis Antarctic strain. Rom Biotechnol Lett 9:
1925–1932

Bahrim GE, Scântee M, Negoiţă TG (2007) Biotechnological conditions of amylase and protease
complex production and utilization involving filamentous bacteria. In: Annals Univers “Dunărea de
Jos” Galaţi, Fasc VI Food Technol, pp 76–81

Bakermans C (2008) Limits for microbial life at subzero temperatures. In: Margesin R, Schinner R,
Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin,
Heidelberg, pp 17–28

Beg QK, Kapoor M, Mhajan L, Hoondal GS (2001) Microbial xylanases and their industrial
applications – a review. Appl Microbiol Biotechnol 56:326–338

Benešova E, Markova M, Kralova B (2005) Alpha glucosidase and beta glucosidase from psychrophilic
strain Arthrobacter sp. C2-2. Czech J Food Sci 23:116–120

Białkowska AM, Cieslinski H, Niowakowska KM, Kur J, TurkievichM (2009) A new beta-galactosidase
with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning,
purification, characterization. Arch Microbiol 191:825–835

Blees J, Wenk C, Niemann C, Schubert C, Zopfi J, Veronesi M, Simona M, Lehmann M (2010) The
isotopic signature of methane oxidation in a deep south-alpine lake Geophysical Research
Abstracts 12, EGU2010–788

Bowman JP (2008) Genomic analysis of psychrophilic prokaryotes. In: Margesin R, Schinner F,
Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin,
Heidelberg, pp 265–284

Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997)
Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with

Sergiu Fendrihan, Teodor G. Negoiţă

159



the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by
dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skeratt JH, Staley JT,
McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis
sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to
synthesize docosahexaenoic acid (22:6v3) Int J Syst Bacteriol 48:1171–1180

Bozal N, Montes MJ, Tudela E, Jimenez F, Guinea J (2002) Shewanella frigidimarina and
Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol
Microbiol 52:195–205

Brakstad OG (2008) Natural and stimulated biodegradation of petroleum in cold marine environ-
ments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to
biotechnology. Springer, Berlin, Heidelberg, pp 389–428

Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium Psychromonas
ingrahamii. Microbial Ecol 47:300–304

Brenchley JE (1996) Psychrophilic microorganisms and their cold-active enzymes. J Ind Microbiol
Biotechnol 17:432–437

Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A, K€ampfer P (2003)
Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp.
nov., air- and dustborne and Antarctic, orange pigmented, psychrotolerant bacteria, and emended
description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260

Cavicchioli R (2006) Cold adapted Archaea. Nat Rev Microbiol 4:331–343
Cavicchioli R, Siddiqui KS (2004) Cold-adapted enzymes. In: Paney A,Webb C, Socol CR, Larroche C

(eds) Enzyme technology. Asia Tech Publishers, New Delhi, pp 615–638
Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low temperature extremophiles and their

applications. Curr Opin Biotechnol 13:253–261
Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008a) Candida antarctica lipase B chemically

immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis. Bioma-
cromolecules 9:463–470

Chen B, Miller ME, Gross RA (2008b) Immobilization of Candida antarctica lipase B on
porous polystyrene resins: protein distribution and activity. In: Polymer biocatalysis and
biomaterials II, ACS symposium series, vol 999. American Chemical Society, Washington,
DC, pp 165–177

Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell
Mol Biol 50:631–642

Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria
at �15�C. Appl Environ Microbiol 68:6435–6438

Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003a) Bacterial recovery from
ancient glacial ice. Environ Microbiol 5:433–436

Christner BC, Kvitko BH, Reeve JN (2003b) Molecular identification of bacteria and eukarya
inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005) Glacial ice cores: a model system
for developing extraterrestrial decontamination protocols. Icarus 174:572–584

Christner BC, Skidmore ML, Priscu JC, Tranter M, Foreman C (2008) Bacteria in subglacial
environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from
biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 51–71

Cohen Z (1990) The production potential of eicosapentaenoic acid and arachidonic acid of the red
algae Porphyridium cruentum. J Am Oil Chem Soc 67:916–920

Psychrophilic microorganisms as source for biotechnology

160



Collins T, Dutron A, Georis J, Genot B, Dauvrin T, Arnaut F, Gerday C, Feller G (2006) Use of
glycoside hydrolase family 8 xylanases in baking. J Cereal Sci 43:79–84

Collins T, Roulling F, Piette F, Marx JC, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold
adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from
biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 211–228

Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina del Rio T, Hammon N, Israni S, Dalin E,
Tice H, Pitluck S, Fredrickson JK, Kolker E, McCuel LA, DiChristina T, Nealson KH, Newman D,
Tiedje JM, Zhou J, Romine MF, Culley DE, Serres M, Chertkov O, Brettin T, Bruce D, Han C,
Tapia R, Gilna P, Schmutz J, Larimer F, LandM, Hauser L, Kyrpides N,Mikailova N, Richardson P
(2006) Complete sequence of Shewanella frigidimarinaNCIMB 400. Submitted (Aug. Sept. 2006).
Released 09/14/2006 by the DOE Joint Genome Institute

Cot̂arleţ M, Negoiţă TG, Bahrim G, Stougaard P (2008) Screening of polar streptomycetes able to
produce cold-active hydrolytic enzymes using common and chromogenic substrates. Rom
Biotechnol Lett 13:69–80 [special issue, edited for Int Conf Ind Microbiol Appl Biotechnol]

Cowan DA, Casanueva A (2007) Stability of ATP in Antarctic mineral soils. Polar Biol 30:1599–1603
D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges

for life. EMBO Rep 7:385–389
de los R�ıos A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of

endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol
59:386–395

De Prada P, Loveland-Curtze J, Brenchley JE (1996) Production of two extracellular alkaline
phosphatases by a psychrophilic Arthrobacter strain. Appl Environ Microbiol 62:3732–3738

Deming JW (2007) Life in ice formations at very cold temperatures. In: Gerday C, Glansdorff N (eds)
Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 133–145

Di Prisco G (2007) Lake Vostok and subglacial lakes of Antarctica: do they host life? In: Gerday C,
Glansdorff F (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC,
pp 145–154

Doaa Mahmoud AR, Wafaa Helmy A (2009) Application of cold-active dextranase in dextran
degradation and isomaltotriose synthesis by micro-reaction technology. Aust J Basic Appl Sci
3:3808–3817

Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11:211–216
Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold-adaptation. Cell Mol Life

Sci 53:830–841
Feller G, Le Bussy O, Gerday C (1998) Expression of psychrophilic genes in mesophilic hosts:

assessment of the folding state of a recombinant a-amylase. Appl Environ Microbiol 64:
1163–1165

Finster K (2008) Anaerobic bacteria and archaea in cold ecosystems. In: Margesin R, Schinner F,
Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin,
Heidelberg, pp 103–119

Flocco CG, Newton C, Gomes M, MacCormack W, Smalla K (2009) Occurrence and diversity of
naphthalene dioxygenase genes in soil microbial communities from the maritime Antarctic.
Environ Microbiol 11:700–714

Frisvad JC (2008a) Cold adapted fungi as source of valuable Metabolites. In: Margesin R, Schinner F,
Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin,
Heidelberg, pp 381–388

Frisvad JC (2008b) Fungi in cold environment. In: Margesin R, Schinner F, Marx JC, Gerday C (eds)
Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 137–156

Sergiu Fendrihan, Teodor G. Negoiţă

161



Galante YM, Formantici C (2003) Enzyme applications in detergency and in manufacturing industries.
Curr Org Chem 7:1399–1422

Ganzert L, Jurgens G, M€unster U, Wagner D (2007) Methanogenic communities in permafrost-
affected soils of the Laptev Sea Coast, Siberian Arctic, characterized by 16S rRNA gene
fingerprints. FEMS Microbiol Ecol 59:476–488

Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and
functional adaptations to extreme temperatures in psychrophilic, mesophilic and thermophilic
DNA ligases. J Biol Chem 278:37015–37023

Gesheva V (2009) Distribution of psychrophilic microorganisms in soils of Terra Nova
Bay and Edmonson Point, Victoria Land and their biosynthetic capabilities. Polar Biol
32:1287–1291

Gianese G, Argos P, Pascarella S (2001) Structural adaptation of enzymes to low temperatures. Prot
Eng 14:141–148

Giaquinto L, Curmi PMG, Siddiqui KS, Poljak A, DeLong E, DasSarma S, Cavicchioli R (2007)
Structure and function of cold shock proteins in archaea. J Bacteriol 189:5738–5748

Gilichinsky DA (2002) Permafrost. In: Bitton G (ed) Encyclopedia of environmental microbiology.
John Wiley & Sons, New York, pp 2367–2385

Gilichinsky D, Vishnivetskaya T, Petrova M, Spirina E, Mamkyn V, Rivkina E, (2008) Bacteria in
Permafrost. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity
to biotechnology. Springer, Berlin, Heidelberg, pp 83–102

Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food
Technol Biotechnol 42:223–235

Goto S, Sugiyama J, Iizuka HA (1969) A taxonomical study of Antarctic yeasts. Mycologia
61:748–774

Gounot AM (1999) Microbial life in permanently cold soils. In: Margesin R, Schinner F (eds) Cold-
adapted organisms. Springer, Berlin, Heidelberg, New York, pp 3–15

Gratia E, Weekers F, Margesin R, D’Amico S, Thonart P, Feller G (2009) Selection of a cold-
adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles
13:763–768

Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity
and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzber-
gen. Extremophiles 8:475–488

Grzymski JJ, Carter BJ, DeLong EF, Feldman RA (2006) Comparative genomics of DNA fragments
from six Antarctic marine planktonic bacteria. Appl Environ Microbiol 72:1532–1541

Guffogg SP, Thomas-Hall S, Holloway P, Watson K (2004) A novel psychrotolerant member of the
hymenomycetous yeasts from Antarctica: Cryptococcus watticus sp. nov. Int J Syst Evol Microbiol
54:275–277

Hamamoto T (1993) Psychrophilic microorganisms from deep sea environments. Riken Rev
3:9–10

Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. African J
Biotechnol 9:4836–4844

Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Ann Rev Microbiol
61:237–258

Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria – occurrence and
significance in polar and temperate marine habitats. Cell Mol Biol 50:553–561

Hodson A, Anesio AM, TranterM, Fountain A, OsbornM, Priscu J, Laybourn-Parry J, Sattler B (2008)
Glacial ecosystems. Ecol Monogr 78:41–67

Psychrophilic microorganisms as source for biotechnology

162



Hollibaugh JT, Lovejoy C, Murray AE (2007) Microbiology in polar ocean. Oceanography 20:
140–147

Hou S, Saw JH, Lee KS, Freitas TA, Belisle C, Kawarabayasi Y, Donachie SP, Pikina A,
Galperin MY, Koonin EV, Makarova KS, Omelchenko MV, Sorokin A, Wolf YI, Li QX,
Keum YS, Campbell S, Denery J, Aizawa S, Shibata S, Malahoff A, Alam M (2004)
Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals
amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci USA
101:18036–18041

Hoyoux, IJ, Dubois P, Genicot S, Dubail F, Franc JM, Baise Ois E, Feller G, Gerday C (2001) Cold-
adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl
Environ Microbiol 67:1529–1535

Humphry DR, George A, Black GW, Cummings SP (2001) Flavobacterium frigidarium sp. nov., an
aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol
Microbiol 51:1235–1243

Huston AL (2008) Biotechnological aspects of cold adapted enzymes. In: Margesin R, Schinner F,
Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin,
Heidelberg, pp 347–364

Ishida Y, Tsuruta H, Tsuneta ST, Uno T,Watanabe K, Aizono I (1998) Characteristics of psychrophilic
alkaline phosphatase. Biosci Biotechnol Biochem 62:2246–2250

Ito S, Shikata S, Ozaki K, Kawai S, Okamoto K, Inoue S, Takei A, Ohta Y, Satoh T (1989) Alkaline
cellulases for laundry detergents production by Bacillus sp. KSM 635 and enzymatic properties.
Agric Biol Chem 53:1275–1281

Ivanova EP, Gorshkova NM, Bowman JP, Lysenko AM, Zhukova NV, Sergeev AF, Mikhailov VV,
Nicolau DV (2004) Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium
isolated from sea water. Int J Syst Evol Microbiol 54:1083–1087

Jeon CO, Park W, Ghiorse WC, Madsen EL (2004) Polaromonas naphthalenivorans sp. nov., a
naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol
Microbiol 54:93–97

Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review. Cold-active microbial
lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:39–48

Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent
developments. Biotechnol Adv 26:457–470

Junge K, Eicken, H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero
temperatures. Appl Environ Microbiol 69:4282–4284

Kaksonen AH, Dopson M, Karnachuk O, Tuovinen OH, Puhakka JA (2008) Biological iron oxidation
and sulfate reduction in the treatment of acid mine drainage at low temperatures. In: Margesin R,
Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer,
Berlin, Heidelberg, pp 429–454

Kalyuzhnyi SV, Gladchenko M, Epov A (2004) Combined anaerobic-aerobic treatment of landfill
leachates under mesophilic, submesophilic and psychrophilic conditions. Water Sci Technol
48:311–318

Karasov�a P, Spiwok V, Mal�a �S, Kr�alov�a B, Russel NJ (2002) Beta-galactosidase activity in
psychrotrophic microorganisms and their potential use in food industry. Czech J Food Sci
20:43–47

Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of
phototrophic purple bacteria in permanently frozen Antarctic lake. Appl Environ Microbiol
69:4910–4914

Sergiu Fendrihan, Teodor G. Negoiţă

163



Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA (2006) Biodiversity of
methanogenic and other archaea in the permanently frozen lake Fryxwell, Antarctica. Appl Environ
Microbiol 72:1662–1666

Katayama T, Tanaka M, Moriizumi J, Nakamura T, Brouchkov A, Douglas TA, Fukuda M, Tomita F,
Asano K (2007) Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000
years. Appl Environ Microbiol 73:2360–2363

Kato Y, Sakala RM, Hayashidani H, Kiuchi A, Kaneuchi C, Ogawa M (2000) Lactobacillus algidus sp.
nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef. Int J
Syst Evol Microbiol 50:1143–1149

KawaharaH(2008)Cryoprotectant and ice bindingproteins. In:MargesinR,SchinnerF,Marx JC,Gerday
C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 229–246

Khachane AN, Timmis KN, Martins dos Santos VAP (2005) Uracil content of 16S rRNA of
thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth
temperatures. Nucleic Acids Res 33:4016–4022

KimH-R, Kim I-H, Hou CT, Kwon K-Il, Shin B-S (2010) Production of a novel cold-active lipase from
Pichia lynferdii Y-7723. J Agric Food Chem 58:1322–1326

Kitamoto D, Ikegami T, Suzuki GT Sasaki A, Takeyama Y, Idemoto Y, Koura N, Yanagishita H (2001)
Microbial conversion of n-alkanes into glycolipid biosurfactants, annosylerythritol lipids by
Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714

Knoblauch C, Sahm K, Jorgensen BB (1999) PsychrophiIic sulfate-reducing bacteria isolated from
permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp.
nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila
gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bact 49:631–643

Kobayashi M, Nagasawa T, Yamada H (1992) Enzymatic synthesis of acrylamide manufacturing
process using microorganisms. Trends Biotechnol 10:402–408

Krembs C, Deming JW (2008) The role of exopolymers inmicrobial adaptation to sea ice. In:Margesin
R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology.
Springer, Berlin, Heidelberg, pp 247–286

Krishnan KP, Sinha RK, Krishna K, Nair S, Singh SM (2009) Microbially mediated redox transforma-
tions of manganese (II) along with some other trace elements: a study from Antarctic lakes Polar
Biol 32:1765–1778

Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N (1999) Cold-active serine alkaline protease
from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification
and characterization. Appl Environ Microbiol 65:611–617

Kurihara T, Esaki N (2008) Proteomic studies of psychrophilic microrganisms. In: Margesin R,
Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer,
Berlin, Heidelberg, pp 333–346

Kwon KK, Lee HS, Yang SH, Kim SJ (2005) Kordiimonas gwangyangensis gen. nov., sp. nov., a marine
bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales
ord. nov.) in the ‘Alphaproteobacteria’. Int J Syst Evol Microbiol 55:2033–2037

Langwaldt JH, Tirola M, Puhakka JA (2008) Microbial adaptation to boreal saturated subsurface:
implication in bioremediation of polychlorophenols. In: Margesin R, Schinner F, Marx JC,
Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg,
pp 409–428

Larose C, Berger S, Ferrari C, Navarro E, Dommergue A, Schneider D, Vogel TM (2010) Microbial
sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from
Svalbard, Norway. Extremophiles 14:205–212

Psychrophilic microorganisms as source for biotechnology

164



Law BA, Goodenough PW (1995) Enzymes inmilk and cheese production. In: Tucker GA,Woods LFJ
(eds) Enzymes in food processing, 2nd edn. Blackie Academic and Professional, Bishopbriggs,
Glasgow, UK, pp 114–143

Lee HK, Ahn MJ, Kwak SH, Song WH, Jeong BC (2003) Purification and characterization of cold
active lipase from psychrotrophic Aeromonas sp. LPB 4. J Microbiol 41:22–27

Lee CC, Smith MR, Accinelli R, Williams TG, Wagschal KC, Wong D, Robertson GH (2006)
Isolation and characterization of a psychrophilic xylanase enzyme from Flavobacterium sp. Curr
Microbiol 52:112–116

Lees RS (1990) Impact of dietary fats on human health. Food Sci Technol 37:1–38
Lettinga G, Rebac S, van Lier J, Zeman G (1999) The potential of sub-mesophilic and/or psychrophilic

anaerobic treatment of low strength wastewaters. In: Margesin R, Schinner F (eds) Biotechno-
logical applications of cold adapted organisms. Springer, Berlin, Heidelberg, pp 221–234

Lettinga G, Rebac S, Zeeman G (2001) Challenge of psychrophilic anaerobic wastewater treatment.
Trends Biotechnol 19:363–370

Liebner S, Wagner D (2007) Abundance, distribution and potential activity of methane oxidizing
bacteria in permafrost soils from the Lena Delta, Siberia. Environ Microbiol 9:107–117

Lo Giudice A, Bruni V, Michaud L (2007) Characterization of Antarctic psychrotrophic bacteria with
antibacterial activities against terrestrial microorganisms. J Bas Microbiol 47:496–505

Loveland-Curtze J, Miteva V, Brenchley JE (2009) Herminiimonas glaciei sp. nov., a novel
ultramicrobacterium from 3042m deep Greenland glacial ice. Int J Syst Evol Microbiol
59:1272–1277

Loveland-Curtze J, Miteva V, Brenchley J (2010) Novel ultramicrobacterial isolates from a deep
Greenland icecore represent a proposed new species, Chryseobacterium greenlandense sp. nov.
Extremophiles 14:61–69

Madigan MT, Jung DO (2003). Extremophiles. Worldbook Encyclopedia, Science Year 2004 Annual,
pp 74–89

Margesin R (2007) Alpine microorganisms: useful tools for low-temperature bioremediation.
J Microbiol 45:281–285

Margesin R, Schinner F (1999) Biodegradation of organic pollutants at low temperature. In: Margesin
R, Schinner F (eds) Biotechnological applications of cold adapted organisms. Springer, Berlin,
Heidelberg, New York, pp 271–290

Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oil-
contaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 67:3127–3133

Margesin R, Schumann P, Spr€oer C, Gounot AM (2004) Arthrobacter psychrophenolicus sp. nov.,
isolated from an alpine ice cave. Int J Syst Evol Microbiol 54:2067–2072

Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Rhodotorula psychrophila sp. nov.,
Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic
basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol
57:2179–2184

Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide
substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H
under extreme conditions. Can J Microbiol 55:63–72

Matsuyama H, Hirabayashi T, Kasahara H, Minami H, Hoshino T, Yumoto I (2006) Glaciecola
chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol
Microbiol 56:2883–2886

Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, Coleman NV (2008) The
Genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon- and

Sergiu Fendrihan, Teodor G. Negoiţă

165



xenobiotic-degrading bacterium, and feature of relevance to biotechnology. Appl Environ
Microbiol 74:6405–6416

McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ, Holloway PE, Skerratt JH,
Nichols PD, Rankin LM (1998) Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium
from a freshwater Antarctic lake. Int J Syst Bacteriol 4:1405–1412

M�edigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio
A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z,
Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the
genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125.
Genome Res 15:1325–1335

Meth�e BA, Nelson KE, Deming JW,Momen B,Melamud E, Zhang X,Moult J, Madupu R, NelsonWC,
Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L,
Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR,
Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence
of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci
USA 102:10913–10918

Michaux C, Massant J, Kerff F, Frere J-M, Docquier J-D, Vandenberghe I, Samyn B, Pierrard A,
Feller G, Charlier P, Van Beeumen J, Wouters J (2008) Crystal structure of a cold-adapted class C
b-lactamase. FEBS J 275:1687–1697

Mikhailova G, Likhareva V, Khairullin RF, Lubenets NL, Rumsh LD, Demidyuk IV, Kostrov SV (2006)
Psychrophilic trypsin-type protease from Serratia proteamaculans. Biochem Sci 71:563–570

Milne PJ, Hunt AL, Rostoll K, Van Der Walt JJ, Graz CJM (1998) The biological activity of selected
cyclic dipeptides. J Pharm Pharmacol 50:1331–1337

Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds)
Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 31–50

Mock T, Thomas DN (2008) Microalgae from Polar Regions: functional genomics and physiology. In:
Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotech-
nology. Springer, Berlin, Heidelberg, pp 347–368

Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and
acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol
Molec Biol Rev 70:222–252

Morita Y, Nakamura T, Hasan Q, Murakami Y, Yokoyama K, Tamiya E (1997) Cold-active enzymes
from cold-adapted bacteria. J Am Oil Chem Soc 74:441–444

Moyer CL, Morita RY (2007) Psychrophiles and psychrotrophs. In: Encyclopedia of life sciences.
John Wiley & Sons, Ltd. www.els.net

Murray E, Preston CM,Massana R, Taylor LT, Blakis A, Wu K, Delong EF (1998) Seasonal and spatial
variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica.
Appl Environ Microbiol 64:2585–2595

Murygina V, Arinbasarov M, Kalyuzhnyi S (2000) Bioremediation of oil polluted aquatories and soils
with novel preparation “Rhoder”. Biodegradation 11:385–389

Naganuma T, Hua PN, Okamoto T, Ban S, Imura S, Kanda H (2005) Depth distribution of euryhaline
halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biol 28:964–970

Nakagawa T, Nagaoka T, Taniguchi S, Miyaji T, Tomizuka N (2004) Isolation and characterization
ofpsychrophilic yeasts producing cold-adaptedpectinolytic enzymes.LettApplMicrobiol38:383–387

Nakagawa T, Ikehata R, Myoda T, Miyaji T, Tomizuka N (2007) Overexpression and functional
analysis of cold-active b-galactosidase from Arthrobacter psychrolactophilus strain F2. Protein Expr
Purif 54:295–299

Psychrophilic microorganisms as source for biotechnology

166



Napolitano MJ, Shain DH (2004) Four kingdoms on glacier ice: convergent energetic processes boost
energy levels as temperatures fall. Proc R Soc Lond B 271:S273–S276
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