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1. Introduction

Iron is of great importance for many metabolic processes since the redox potential

between its two valence states Fe2+ and Fe3+ lies within the range of physiological

processes. Actually, iron is not a rare element, it is fourth in abundance in the earth

crust, but it is not readily available formicroorganisms. In the soil ferric oxide hydrates

are formed at pH values around seven and the concentration of free Fe3+ is at best

10�17 mol/dm3 while about 10�6 mol/dm3 would be needed. In living organisms iron

is usually strongly bound to peptidic substances such as transferrins. To increase the

supply of soluble ironmicroorganisms other than those living in an acidic habitat may

circumvent the problem by reduction of Fe3+ to Fe2+ (182), which seems to be ofmajor

importance for marine phytoplankton (151); see also amphiphilic marine bacteria

(Sect. 2.8) and Fe2+ binding ligands (Sect. 7) below. An important alternative is the

production of Fe3+ chelating compounds, so-called siderophores. Siderophores are

secondary metabolites with masses below 2,000 Da and a high affinity to Fe3+. Small

iron-siderophore complexes can enter the cell via unspecific porins, larger ones need a

transport system that recognizes the ferri-siderophore at the cell surface. In the cell,

iron is releasedmostly by reduction to the less strongly bound Fe2+ state (137), and the
free siderophore is re-exported (“shuttle mechanism”); for a modified shuttle system

see pyoverdins (Sect. 2.1) and amonabactins (Sect. 2.7). Rarely the siderophore is

degraded in the periplasmatic space as, e.g. enterobactin (Sect. 2.7). Alternatively Fe3+

is transferred at the cell surface from the ferri-siderophore to a trans-membrane

transport system (“taxi mechanism”). A probably archaic and unspecific variety

of the taxi mechanism comprises the reduction of Fe3+ at the cell surface (see

ferrichrome A, Sect. 2.6 (99, 105)). The terms “shuttle” and “taxi mechanism” were

coined by Raymond and Carrano (296).
A microbial strain may produce more than one siderophore. There are varia-

tions in fatty acid chains of a lipophilic part or in the amino acids making up the

backbone, as well as released intermediates of the biosynthetic chain. These

variations belong all to the same structural pattern. However, there is also the

possibility that so-called secondary siderophores are encountered. They constitute

a different structural type, usually less complex in their constitution but also less

efficient in binding Fe3+ than the primary ones. Secondary siderophores will be

produced when the demand for iron is not so severe or in case there is a genetic

defect impeding the production of the primary ones. Examples will be found

throughout the review.
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Obviously siderophores can be potent virulence factors of pathogenic bacteria.

Siderophores in many cases have elaborate structures providing recognition only by

the receptor site of the producing species. This renders a pirating by competing

microorganisms more difficult. The structural specificities of siderophores have

been used for classification purposes of bacterial species (see especially pyoverdins,

Sect. 2.1).

Whether a Fe3+ binding metabolite is actually involved in the iron transport has

not always been established firmly. Criteria are the pronounced production under

iron starvation and growth after feeding, or labeling studies (at best simultaneously

of Fe3+ and of the ligand, see, e.g. parabactin, Sect. 3.2, and schizokinen, Sect. 4.1).
Chelators whose function is uncertain will be included in this review with an

explanatory remark. Incompletely characterized siderophores will be mentioned

when at least some structural elements have been identified. However, the mere

statement that color reactions for catecholates (8a) or hydroxamates (9a) were

positive will not be sufficient. Not included will be the sideromycins, conjugates

of siderophores with antibiotically active residues, produced mainly by Streptomy-
ces spp., which use the iron transport paths for “Trojan Horse” strategies. For

further references see (34, 97, 187).
Due to its high charge density, small ion radius, and low polarizability, Fe3+ is a

hard Lewis acid and can bind strongly to hard Lewis bases such as oxide ions. It

forms octahedral d5 high spin complexes providing six coordination sites, which

can accommodate three bidentate ligands. The major ligands types are catecholates,

hydroxamates, and a-hydroxy carboxylates; other ligands are encountered occa-

sionally. Siderophores containing different ligand types are not uncommon. Three

bidentate ligands are often connected by aliphatic segments keeping them in place

for complexation. This results in an entropic advantage over three non-connected

ligands. Siderophores containing only two binding sites form either (Fe3+)2Lig3
complexes or the remaining two octahedral loci accommodate some external ligand

(see, e.g. pyochelin, Sect. 5). For (Fe3+)2Lig3 structures with three bridges or with

one bridging ligand have been discussed. The latter variety has been proven for

alcaligin (Sect. 3.3). Three bidentate ligands can be arranged around the Fe3+

nucleus in two ways forming a left-handed or a right-handed screw, designated

as L or D. Three identical ligands can point all in the same direction (cis) or one
of them is reversed (trans). The chiral arrangement of the Fe3+ complex can be

determined by X-ray analysis or can be deduced from the sign of the broad CD

extremum at ca. 500 nm correlated with the metal-to-ligand charge transfer band.

A positive De indicates a L configuration.

Ga3+ complexes are frequently analyzed for two reasons. Ga3+ also forms

octahedral structures and it has almost the same ion radius as Fe3+ (62 vs. 65 pm).

In contrast to Fe3+ it is diamagnetic and its complexes are therefore amenable to

NMR analysis. Also in contrast to Fe3+ it cannot be reduced and therefore it is used

for uptake studies interested in the fate of the complex in the cell.

Siderophores can be classified by different criteria. In this review related struc-

tural types will be grouped together. Some arbitrariness cannot be avoided due to

the occurrence of “mixed types”. Cross-references will then be given. Trivial names

Microbial Siderophores 3



have either been given to the free ligands or to their iron complexes. In the latter

case the free ligands are referred to as “desferri” or “deferri” (sometimes in a

shortened form as “desferrioxamines” for “desferriferrioxamines”) or as “pro” (see

Sect. 3.3). Occasionally the name applied originally to the iron complex was used

later for the free ligand (e.g. ferribactins, Sect. 2.1). These variations should be kept
in mind when literature search programs are used.

For earlier compilations of siderophores see (97, 255a, 276), specifically for

fungal siderophores (157a, 300, 383), and for biosynthesis pathways (19, 63, 403).
Reviews for specific classes of siderophores will be mentioned where applicable.

2. Peptide Siderophores

In this group the ligands are incorporated in a peptide chain usually containing

both D- (underlined in the structural formulas below) and L-configured amino acids.

Frequently the two ends of the peptide chain are blocked by the formation of cyclic

structures or otherwise. This prevents the degradation by proteolytic enzymes. Non-

proteinogenic amino acids are encountered (homoserine, Hse; ornithine, Orn; 2,4-

diaminobutyric acid, Dab; 2,3-dehydrobutyric acid, Dhb), lysine and ornithine may

be incorporated in the chain by their e/d- rather than by their a-amino group, and

amino acids may be modified to form ligand sites (3-hydroxy-aspartic acid,

OHAsp; 3-hydroxy-histidine, OHHis; N5-acyl-N5-hydroxy-ornithine, acylOHOrn;

N-hydroxy-cyclo-ornithine, i.e. 3-amino-1-hydroxy-piperidone-2, cOHOrn). Dia-

minobutyric acid frequently condenses with the preceding amino acid (Chart 1)

giving a tetrahydropyrimidine ring (116). These condensation products are indi-

cated below by a parenthesis as e.g. (Hse-Dab) in azoverdin (Sect. 2.2).

2.1. Pyoverdins and Related Siderophores from
Pseudomonas spp.

The most thoroughly investigated representatives are the pyoverdins, also spelled

pyoverdines and occasionally named pseudobactins (353), produced by the fluores-
cent members of the genus Pseudomonas. For reviews see (44, 231); for a detailed

NH NH2

HNOC

O

R

HN

HN N

R NH

HNOC

Chart 1. Condensation of a Dab residue with the preceding amino acid residue
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study of the siderophores of this genus (37). Pyoverdins consist of three distinct

structural parts, a chromophore (Chra) (Fig. 1, a), a peptide chain comprising six to

twelve amino acids, and a dicarboxylic acid (succinic acid – Suc-, malic, glutamic,

and 2-oxoglutaric acid) or monoamides (succinamide, malamide). For glutamic and

2-oxoglutaric acid the binding to the chromophore by their g-carboxyl groups has
been established by chemical degradation (124). For malic acid some not really

convincing and partially contradictory NMR arguments have been advanced (319)
for the binding by the carboxyl group neighboring the CH2 group. Recently mass

spectrometric arguments were reported suggesting a binding via the other carboxyl

group (45).
The about fifty pyoverdins for which structures have been proposed can be

divided into three structural types exemplified by the three pyoverdins of Pseudo-
monas aeruginosa (234) (Fig. 2), viz. pyoverdins (a) with a C-terminal tri- or

tetra-cyclopeptidic substructure (lactam formation between the C-terminal car-

boxyl group and an in-chain lysine or ornithine), e.g. ATCC 15692 (PAO1) (1),

(b) with a C-terminal cOHOrn, e.g. ATCC 27853 (2), and (c) with a C-terminal

free carboxyl group, e.g. Pa6 (R) (3). The free carboxyl group is probably the

hydrolysis product of a depsipeptidic substructure (ester formation between the

C-terminal carboxyl group and an in-chain serine or threonine). In several cases

both the cyclic and the hydrolyzed open-chain form were found (e.g. (50)). Binding
sites for Fe3+ are the catecholate part of the chromophore Chra and two units in the

peptide chain, hydroxamate (acylOHOrn, cOHOrn) and/or a-hydroxycarboxylate
(OHAsp, OHHis).

Complete structural analysis requires mass spectral and NMR data as well as

chemical degradation and analysis of the chirality of the constituent amino acids,

determination of the mode of linkage of lysine (a- or e-), the size of the cyclopep-
tide or cyclodepsipeptide ring, etc. (37). In some cases structures have been

proposed based only on mass spectral data. Difficulties arising in this approach

were discussed (44). To determine the three-dimensional structure an X-ray

N NH

1

HO

HO NH2

HOOC

N NHHO

HO NH2

COOH

N NHO

HO N
H

HOOC

CO

HN NHHO

NH2

HOOC

5

6

a b

c d

Fig. 1. Chromophore types: (a) pyoverdin, (b) isopyoverdin, (c) ferribactin, (d) azotobactin

Microbial Siderophores 5



analysis (Plate 1) so far only of the Fe3+ complex of the pyoverdin B10 (4) was

performed (353).

4 Suc-Chra-eLys-OHAsp-Ala-aThr-Ala-cOHOrn
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L-Thr
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As an alternative strategy the investigation of the isomorphic Ga3+ complexes by

NMR analysis was developed (241) for the pyoverdin GM-II (5) and extended to

other pyoverdins, e.g. PL8 (16) (Plate 2) (H. Budzikiewicz, unpublished).

5 Suc-Chra-Ala-Lys-Gly-Gly-OHAsp-Gln-Ser

-Ala-Ala-Ala-Ala-cOHOrn

In all cases the metal ion was found to lie at the surface of the complex. This

facilitates its uptake and release. For the pyoverdins both L and D arrangements

have been reported (37).
Iron transport through the cell membrane follows a modified shuttle mechanism.

Evidence has been presented that the iron-free siderophore of P. aeruginosa PAO1

(1, Fig. 2) binds strongly to the receptor protein (67, 314a). This suggests two

scenarios for the subsequent steps of iron transfer, an exchange of the ligands or a

transfer or Fe3+ between them. By 3H- and 55Fe-labeling as well as fluorescence

studies it was shown that an exchange between the approching ferri-pyoverdin and

the bound iron-free pyoverdin occurs and that the former one enters the cell, i.e. that
no Fe3+ exchange between the two ligands takes place (314b). Model studies with

Aeromonas (Sect. 2.7) demonstrated there the iron-exchange variety. Binding of the

iron-free siderophore to the receptor protein seems to be a common feature of the

transport systems of P. aeruginosa and Escherichia coli (145a).

Plate 2. Calculated three-dimensional structure of the Ga3+-complex of pyoverdin PL8 (without

side chain) Chra-Lys-acetylOHOrn-Ala-Gly-aThr-Ser-cOHOrn

8 H. Budzikiewicz



The peptide chains of the pyoverdins are responsible for the recognition of the

ferri-siderophore at the cell surface of the producing species. It is usually highly

strain specific. Cross-recognition between two strains is only observed when struc-

turally closely related pyoverdins are produced (125, 233). An exception seems to

be P. aeruginosa ATCC 15692, which besides its own ferripyoverdin (Fe-1),

accepts several foreign ones (128a).
Without going into structural details, the pyoverdins stemming from the sapro-

phytic group Pseudomonas aeruginosa/fluorescens/putida contain either two

hydroxamic acid units or one hydroxamic and one a-hydroxycarboxylic acid, and

those from the phytopathogens P. syringae etc. two a-hydroxycarboxylic acids.

Structural differences of pyoverdins have been used recently to characterize species

newly defined by breaking up the classical cluster of P. fluorescens/putida (e.g.
(229, 231)). A listing of all pyoverdins from Pseudomonas spp. for which structural
data have been published up to December 2009 is contained in the Appendix.

Pyoverdin-like siderophores with other chromophores have also been observed

(see Fig. 1) (45). The 5,6-dihydropyoverdins (Chra without the 5,6-double bond)

and the ferribactins (Chrc) are considered to be biogenetic precursors of the

pyoverdins (318) (the term “ferribactin” was originally used for the Fe3+ complex

(221) and later for the free ligand). An azotobactin chromophore (Chrd, see also

below Sect. 2.2) is occasionally found in Pseudomonas isolates (e.g. (146)). Side-
rophores produced by a specific Pseudomonas strain but differing in the chromo-

phore always have identical peptide chains.

Isopyoverdins contain the siderophore Fig. 1, Chrb with aspartic acid as the first

amino acid. They have been encountered so far only in isolates from Pseudomonas
putida strains, e.g. BTP1 (168) (6).

6 Glu-Chrb-Asp-Ala-Asp-acetylOHOrn-Ser-cOHOrn

2.2. Azomonas and Azotobacter Siderophores

For a detailed discussion of this class of compounds see (37).
Azomonas macrozytogenes produces a siderophore with an isopyoverdin chromo-

phore, azoverdin, but with a peptide chain 7 related to those of azotobactins, viz. (236).

7 Suc-Chrb-Hse-(Hse-Dab)-acetylOHOrn-Ser-acetylOHOrn

The three-dimensional structure of the Ga3+ complex was determined by NMR

techniques as outlined above. Also here the metal ion lies at the surface of the

complex (377).
From Azotobacter vinelandii the structures of two siderophores were elucidated.

They contain the chromophore Chrd (Fig. 1) and Hse units: azotobactin 87-I (8)

(from the three Hse in this sequence two are L and one D configured) from the strain

ATCC 12837 (314), and azotobactin D (9) (76) from the strain CCM 289.

Microbial Siderophores 9



8 Chrd-Ser-Ser-Hse-Gly-OHAsp-Hse-Hse-Hse

-b-hydroxybutyrylOHOrn-Hse

9 Chrd-Asp-Ser-Hse-Gly-OHAsp-Ser-Cit-Hse-acetylOHOrn-Hse

Both of them are accompanied by compounds where the C-terminal Hse forms

a g-lactone ring (azotobactin 87-II and d). An azotobactin O for which also a

structure had been proposed (120) was shown later to be identical with azoto-

bactin D (272). For secondary metabolites see protochelin and its constituents

(Sect. 3.2).

Azotobacter chroococcum produces ornithine-containing hydroxamate sidero-

phores with molecular masses 800 and 844 Da (difference of one carboxyl group?)

of unknown structure (115a).

2.3. Anachelin

Cyanobacteria were probably the first organisms to perform oxygenic photosynthe-

sis resulting eventually in the oxidation of environmental Fe2+ to Fe3+ with all its

consequences. To cope with this problem the production of siderophores was

initiated. Not much is known about the siderophores of cyanobacteria. Schizokinen

(see below under citrate siderophores, Sect. 4.1) (326) found to be produced by

several bacterial species may have been acquired by gene transfer; see however also

the citrate siderophores synechobactins.

Certainly of genuine origin is anachelin, a strange compound whose biosynthe-

sis requires inter alia steps from the peptide and polyketide paths. It exists in

an open (anachelin H, Fig. 3, (10)) and two cyclic forms arising from an interaction

of the carbonyl group of the salicylic acid residue with one of the neighboring

OH

N
H

H
N

N
H

H
N

OH OH O
OH

O
OH

O

O

N

OH

OH

HO

O

N
OH

OH OH
HO

N

O

HO

OH

10

11 12

OH

HN O

Fig. 3. Anachelin H (10), anachelin 1 (11), anachelin 2 (12)
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hydroxy groups (anachelin 1 and 2, Fig. 3, (11) and (12)) (22, 167). The relative

and absolute stereochemistry of all chiral centers was established (22, 166) and
confirmed by synthesis (121) (see Sect. 8.1). In solution anachelin forms a b-turn
arrangement (122). Mass spectrometric analysis of the Fe3+ complex suggests a

1:1 ratio.

2.4. Actinomycetal Metabolites

Desferrimaduraferrin is a Fe3+ complexing metabolite of Actinomadura madurae
(185). It consists of salicylic acid, b-Ala, Gly, L-Ser and N5-hydroxy-N2-methyl-L-

Orn, with the latter incorporated in a heterocyclic system (Fig. 4, 13). From the

same species the madurastatin group was obtained (136). The main representative

A1 shows the sequence salicylic acid, D-azaridine carboxylic acid, L-Ala, b-Ala,
N5-hydroxy-N2-methyl-Orn, L-cOHOrn (Fig. 4, 14). In A2 the azaridine ring is

opened giving a Ser residue,A3 is an isomer of the open form with the salicylic acid

bound to the hydroxy group of Ser. B1 and B2 are the precursors N-salicyloyl-
azaridine carboxylic acid and N-salicyloyl-Ser. The madurastatin species A1 forms

a 1:1 Fe3+ complex as shown by mass spectrometry.

Asterobactin from Nocardia asteroides (257) contains salicylic, 2,3-dihydroxy-
propionic, and 2-methyl-3-hydroxyundecanoic acid as well as derivatized Orn and

Arg residues (Fig. 4, 15). It forms a Fe3+ complex. The stereochemistry of the

various centers was not determined but L-configuration is proposed for Orn and Arg

for biosynthetic reasons (general amino acid pool) and a negative [a]D
25 of astero-

bactin. Whether the three compounds are involved in metal transport has not been

investigated.
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Fig. 4. Desferrimaduraferrin (13), madurastatin A1 (14), asterobactin (15)
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2.5. Bacterial Hydroxamate Siderophores

Exochelins (322, 323) are peptidic siderophores fromMycobacterium spp. (see also

below mycobactins). Exochelin MS (16) from M. smegmatis comprises b-Ala and
three N5-OHOrn units, which are linked by their N5 atoms to acyl groups thus

forming hydroxamic acids.

16 N5-formyl-N5-OHOrn-b-Ala-N5-OHOrn-aThr-N5-OHOrn

Exochelin MN (17) from M. neoaurum contains N2-methyl-N5-hydroxy-Orn

linked by its N5 to b-Ala and by its carboxyl group to N2 of Orn, which in turn is

bound amidically to cOHOrn; all amino acids are L configured.

17 OHHis-b-Ala-b-Ala-MeOHOrn-Orn-cOHOrn

The Fe3+ chelating properties of exochelin MN (17) were investigated in detail

(pKa values, chelation constants, redox equilibria, etc.) (87). In one publication

(128) siderophores from Mycobacterium tuberculosis otherwise referred to as

carboxymycobactins (see below Sect. 2.8) were also named exochelins.

Vicibactin (18) (previously called hydroxamate K (61a)) from Rhizobium legu-
minosarum is a macrocyclic trilactone consisting of N2-acetyl-N5-hydroxy-D-Orn

and (R)-3-hydroxybutyric acid (91).

18 ½-O-CH(CH3)-CH2-CO-NOH-(CH2)3-CH(NHCOCH3)-CO-�3
Vicibactin 7101 from a mutant strain lacks the N-acetyl groups but shows

comparable siderophore activity as demonstrated by 55Fe3+ uptake studies (91).
The answer to the question why vicibactin is biosynthesized if vicibactin 7101 is as

efficient in iron sequestering may be the greater stability of the acetylated com-

pound (cf. fusarinines, Sect. 2.6). Vicibactin is identical with neurosporin produced
by the fungus Neurospora crassa for which X-ray data of the Fe3+ complex are

available. CD spectroscopy indicates a L-cis configuration both for crystals and for
solution (108).

A hydroxamate siderophore from Salmonella typhimurium is described as con-

taining isoleucine/leucine, phenylalanine and valine, but not serine and lysine.

Further details are not given (290a). For other Salmonella siderophores see

Sect. 2.7.

2.6. Fungal L-Ornithine-Based Hydroxamate Siderophores

For other fungal siderophores see neurosporin above, pistilarin (a spermidine

derivative, Sect. 3.2) and rhizoferrin (a citrate siderophore, Sect. 4.4); siderophores
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produced by marine fungi are treated in (147). The siderophores to be discussed

here can be divided in three groups, the fusarinines, the ferrichromes, and the

coprogens, all based on N5-hydroxy-N5-acyl-L-Orn. There exist some earlier

reviews (204, 300, 383); for the early days see also (395). Lists of sidrophores

and the producing fungi have been assembled (384, 385) to which the marine yeast

Aureobasidium pullulans may be added (374a); see also (139). Chromatographic

separation techniques were established (175, 192). For a number of siderophores

and their Fe3+ complexes X-ray and other structural analyses are reported (366). In
the text and the figures, the desferri ligands will be presented without adding the

prefix “desferri” to their names.

Fusarinines (19) produced by several fungal genera comprise the acyl unit (Z)-5-
hydroxy-3-methyl-pent-2-enoic acid (anhydromevalonic acid) (Fig. 5, a) bound to

N5-hydroxy-L-ornithine. They can be a linear monomer, dimer (fusarinine A) or

trimer (fusarinine B) (the monomer can also be (E)-configured) (172). Fusarinine B
is possibly identical with coprogen C (89).

19 HO-[CO-CHNH2-(CH2)3-NOH-CO-CH = CCH3-(CH2)2-O]1�3-H

The trimer by forming an ester bond between the two terminal functions results

in a lactone ring (fusarinine C or fusigen) (88, 313). Since the fusarinines are rather
labile it is not clear whether the open forms are genuine siderophores, precursors of

fusigen or just hydrolysis products (204). The monomers (Z)- and (E)-fusarinine
form in aqueous solution at neutral pH (Fe3+)Lig3 complexes, which are mixtures of

L and D isomers (172).
The free a-amino groups of the ornithine units were also found in an acetylated

form (90, 243). Since triacetylfusigen is resistant to hydrolysis, formation of the

acetylated mono-, di-, and trimeric linear acetylfusarinines is assumed to be

effected by enzymatic cleavage (103a, 243). X-ray and CD data of the Fe3+

complex of triacetylfusigen have been obtained (152). Depending on the solvent

used for crystallization the crystals show L-cis or D-cis configuration, while in

solution D-cis prevails.
The members of the ferrichrome group are cyclohexapeptides with the general

structure [-(N5-acyl-N5-hydroxy-L-Orn)3-A-B-Gly-] where A and B can be Gly,

Ala, or Ser (Table 1); the various acyl groups are depicted in Fig. 5. Exceptions are

tetraglycylferrichrome, a cycloheptapeptide with four Gly units in sequence and

three acetyl residues in the Orn part (ferrichrome with an additional Gly) (82), and
des(diserylglycyl)ferrirhodin, a linear tripeptide containing only the three Orn units

a. (Z)-CO-CH=CCH3-(CH2)2-OH f.  (E)-CO-CH=CCH3-CH2-COOH
b. (E)-CO-CH=CCH3-(CH2)2-OH g. CO-CH2-COOH
c. (E)-CO-CH=CCH3-CHOH-CH2OH h. CO-(CH2)14-CH3
d. (E)-CO-CH=CCH3-(CH2)2-OCOCH3 i. COCH3

e. CO-CH2-CH(CH3)OH-(CH2)2-OH

Fig. 5. Acyl residues encountered in fungal hydroxamate siderophores
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of ferrirhodin (169). One of the members of this group, ferricrocin was identified as

an intra- and intercellular iron transporter for Aspergillus fumigatus (374).
Ferrichrome (as do also at least the members of the group for which structural

data are available ((366) and references noted in Table 1) shows L-, synthetic
enantio-ferrichrome based on D-Orn D-configuration (253). Uptake studies per-

formed with Ustilago sphaerogena (103) using 59Fe3+ and [14C]-ferrichrome under

optimal conditions (30�C, pH 7) showed rapid resorption of both labels during the

first 30 min. The uptake of 59Fe3+ continued for further 30 min, then the level of

radioactivity stayed constant, while the level of 14C dropped to a lower constant

value. Desferri-[14C]-ferrichrome is not taken up or even bound to the cell surface.

These findings are in agreement with shuttle mechanism and re-export of the ligand

after detachment of iron. See also analogous experiments with parabactin (Sect. 3.2)

and with schizokinen (Sect. 4.1). In contrast, ferrichrome A does not enter the cell.

Fe3+ is rather reduced and given off at the cell surface and subsequently transported

into the cell (99, 105). 55Fe uptake studies performed with Neurospora crassa
showed the same incorporation rate for ferrichrome and tetraglycylferrichrome

indicating that the peptide ring size is of minor importance for the acceptance by

the transport system (82).

Table 1. The ferrichrome familya

(CH3)3
N

HO Ac1

(CH2)3
N

HO Ac2

(CH2)3
N

HO Ac3

~NH-CH-CO-NH-CH-CO-NH-CH-CO-A-B-Gly~

Name A B Ac1 Ac2 Ac3 References

ferrichrome Gly Gly i i i (106)
ferrichrome A Ser Ser f f f (106, 383, 396)
ferrichrome C Gly Ala i i i (209, 383)
ferrichrysin Ser Ser i i i (170, 174, 184, 383)
ferricrocin Gly Ser i i i (184, 383)
ferrirubin Ser Ser b b b (170, 174, 383)
ferrirhodin Ser Ser a a a (383)
malonichrome (Gly Ala) g g g (104)
sake colorant A Ser Ala i i i (209)
asperochrome A Ser Ala b b b (155, 174)
asperochrome B1 Ser Ser i b b (170, 174)
asperochrome B2 Ser Ser b (b i) (170, 174)
asperochrome B3 Ser Ser b (b i) (170)
asperochrome C Ser Ser (b b d) (174)
asperochrome D1 Ser Ser b i i (170, 174)
asperochrome D2 Ser Ser i (b i) (170, 174)
asperochrome D3 Ser Ser i (b i) (170, 174)
asperochrome E Ser Ser (a b b) (177)
asperochrome F1 Ser Ser (b b e) (177)
asperochrome F2 Ser Ser (b b e) (177)
asperochrome F3 Ser Ser (b b e) (177)
aParentheses indicate that the position of the residues is not certain. For the designation of the acyl

residues see Fig. 5. Where the chirality of Ala or Ser was determined it was found to be L
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The third group comprises the coprogen family. Their characteristic element is a

diketopiperazine ring formed by the head-to-head condensation of two N5-acyl-N5-

hydroxy-L-Orn units. Rhodotorulic acid (20) first isolated from the yeast Rhodoto-
rula pilimanae and subsequently found to be produced by many yeasts (9a) contains
two acetyl groups (Fig. 6) (9), and dimerum acid (21) from Fusarium dimerum (89)
and other fungi (172) two (E)-anhydromevalonyl residues (Fig. 6). An acetyl-

dimerum acid of unknown structure has been encountered (157b). In the coprogens
a third variously substituted (E)-fusarinine unit is added by means of an ester bond

(Table 2) (300). Rhodotorulic and dimerum acid form (Fe3+)2Lig3 complexes, but

also a mixed 1:1:1 complex of Fe3+ with dimerum acid and (Z)-fusarinine was

observed. Various coprogens were shown to yield 1:1 complexes with Fe3+ (60,
153, 172). The CD-spectra of the coprogen and neocoprogen I/II Fe3+ complexes

demonstrate D-configuration for the solutions and for the crystals of neocoprogen I

Table 2. The coprogen familya,b

Ac2 = CO-CH=C(CH3)-(CH2)2-O-CO-CH(NR1R2)-(CH2)3-NOH-Ac3

N

N
H

H

O

O

Ac1-NOH-(CH2)3

(CH2)3-NOH-Ac2

Name Ac1 Ac3 R1 R2 References

coprogen b b COCH3 H (117, 184a)
coprogen B b b H H (89)
triornicin (isoneocoprogen I) b i COCH3 H (117)
isotriornicin (neocoprogen I) i b COCH3 H (118, 153)
neocoprogen II i i COCH3 H (153)
N2-methyl coprogen B b b CH3 H (30c, 157b)
N2-dimethyl coprogen b b CH3 CH3 (173)
N2-dimethyl neocoprogen I i b CH3 CH3 (173)
N2-dimethyl isoneocoprogen I b i CH3 CH3 (173)
hydroxycoprogen b c COCH3 H (176)
hydroxyneocoprogen I i c COCH3 H (176)
hydroxyisoneocoprogen I c i COCH3 H (176)
palmitoylcoprogen b b h H (5)
aFor the designation of the acyl residues see Fig. 5
bCoprogen C is possibly identical with fusarinine B (89)

N
H

H
N

O

O
NOH-Ac

Ac-HON

Fig. 6. Rhodotorulic acid (Ac = Fig. 5, i) (20) and dimerum acid (Ac = Fig. 5, b) (21)
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(153). Palmitoylcoprogen (Table 2 last entry) from Trichoderma spp. is retained in

the fungal mycelium and may therefore be considered as a candidate for an iron

uptake taxi mechanism (5).
Relationships between the structure of the siderophores and the iron transport

were investigated for the fungus Neurospora crassa (160, 160a). Apparently two

different receptors exist for ferrichromes and for coprogenes. For the recognition

and the binding to the cell surface the iron configuration and the nature of the acyl

chains is of importance. However, the transport system seems to be the same for

both siderophore types dependent on the peptide part of the molecules.

2.7. Catecholate Siderophores

For other catecholate siderophores see di-/tri-aminoalkane (Sect. 3.2) and citric acid

(Sect. 4.3) derivatives below; for a review see (38).
2,3-Dihydroxybenzoic acid is produced by a series of microorganisms, viz.

Aerobacter aerogenes (291), Azotobacter vinelandii (70, 273), Bacillus subtilis
(282), Escherichia coli (261, 291), Klebsiella oxytoca (196), Micrococcus denitri-
ficans (347), Nocardia asteroides (112), Rhizobium sp. (74), and Salmonella typhi-
murium (290), 3,4-dihydroxybenzoic acid by a mutant of Aerobacter aerogenes
(291), Azomonas macrocytogenes (380), Bacillus anthracis (123), Escherichia coli
(291), Magnetospirillum magneticum (54), and Mycobacterium smegmatis (291).
Both dihydroxybenzoic acids can act as siderophores.

Condensation products of DHB (which usually is found also in the fermentation

broth) with amino acids were reported, viz.with glycine from Bacillus subtilis (164)
named subsequently itoic acid (282); with serine from Escherichia coli (261) and
Klebsiella oxytoca (196); with threonine from Klebsiella oxytoca (196) and Rhizo-
bium spp. (275, 327); with arginine from Pseudomonas stutzeri (62); with glycine

and threonine from Rhizobium sp. (240); with threonine and lysine as well as

with leucine and lysine from Azospirillum lipoferum (312, 320). In most cases the

isolate (sometimes designated as being a siderophore) was hydrolyzed and the

constituents were determined by paper chromatography. The relative amounts of

the constituents, the chiralities of the amino acids and the molecular mass of the

isolate have not been determined. Hence it is not known whether condensation

products of the enterobactin type exist.

Ideally suited for Fe3+ complexation – exemplified by the extremely high

complexing constant of 1049 (originally estimated as 1052) (210) – is enterobactin

(enterochelin) first isolated from Salmonella typhimurium (286) and Escherichia
coli as well as from Aerobacter aerogenes (261) and recently from Enterobacter
cloacae (368). It is a cyclic trilactone of N-2,3-dihydroxybenzoyl-L-serine
(DHB-Ser) (Fig. 7, 22). Syntheses have been reported (71, 321). DHB-Ser by itself
can act as a siderophore. In the culture medium degradation products of enter-

obactin also were found, and are open-chain compounds comprising two or

three constitutional units. Iron release in the cell is effected by degradation of
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enterobactin. Ferri-enterobactin shows a D-cis configuration, with the synthetic

ferri-enantio-enterobactin based on D-Ser L-cis-configuration (256).
Escherichia coli and Salmonella enterica produce a derivative of enterobactin,

salmochelin S4, where two of the aromatic rings are b-C-glucosylated in the

5-position (Fig. 7, 23). Also glycosylated degradation products or precursors (mono-

mer: salmochelin SX, dimers: S1 and S5, linear trimer: S2) could be isolated (31,
135, 247). Salmochelin S4 is identical with pacifarin, a compound active against

salmonellosis (378), and SX with pacifarinic acid, glucosylated DHB-serine (247).
From Corynebacterium glutamicum the siderophore corynebactin was obtained

(41). It differs from enterobactin in being composed of three DHB-Gly-L-Thr units

(Fig. 7, 24). Later the same siderophore was found to be produced also by Bacillus
subtilis and named bacillibactin (223). Its complexation constant is ~1048 (84). The
monomeric unit DHB-Gly-Thr was isolated from Bacillus licheniformis (357a).

Azospirillum brasilense under iron starvation produces spirilobactin. Hydrolysis
yields DHB, ornithine, and serine of unknown chirality in a ratio of 1:1:1. The

molecular mass was not determined and hence it is not known whether spirilobactin

forms a (cyclic) trimer. Iron uptake was studied with the 59Fe3+ complex (10).
Erwinia chrysanthemi (278) and Serratia marcenscens (101) produce N2-DHB-

D-Lys-L-Ser named chrysobactin. The structure was confirmed by synthesis. At

physiological pH values 2 or 3 chrysobactin residues are associated with Fe3+ (280).
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Fig. 7. Enterobactin (22), salmochelin S4 (23), corynebactin (24)
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From Chryseomonas luteola in addition to chrysobactin a derivative (chrysomonin)

was isolated where C-6 of the DHB unit is substituted with the N-atom of a

pyridinium cation. Chrysomonin could be synthesized from chrysobactin (1a).
Amonabactins (25) were found to be excreted by Aeromonas hydrophila (355,

356) and by Pseudomonas stutzeri (398). They are based on the peptides Lys-Lys-

Phe and Lys-Lys-Trp; N6 of the first L-Lys residues is derivatized by DHB or by a

DHB-Gly residue, and that of the second L-Lys by a DHB group (Table 3). At high

pH values and excess ligand a (Fe3+)2Lig3 complex is formed, while at neutral pH a

1:1 ratio prevails with H2O molecules satisfying the remaining coordination sites.

The 2:3 complex is preferentially D-configured, and the 1:1 complex is achiral (357).
Model uptake studies with Aeromonas were performed with 55Fe3+ and a 14C-labeled

artificial synthetic siderophore. They demonstrate a modified shuttle mechanism. An

iron-free siderophore molecule is strongly bound to the receptor protein and Fe3+

exchange occurs between an approaching ferri-siderophore and the bound one, which

then is transported into the cell (337); cf. the pyoverdins (Sect. 2.1).
Alterobactin A is a cyclodepsipeptide from Alteromonas luteoviolacea, with

N8-DHB-(4S),8-diamino-(3R)-hydroxy-octanolyl-D-Ser-Gly-L-Arg-L-threo-3-hydroxy-
Asp-Gly-L-threo-3-hydroxy-Asp having an ester bond between the C-terminal

carboxyl group and Ser. It is accompanied by its hydrolysis product alterobactin

B (Fig. 8, 26, 27) (298). Alterobactin A forms a 1:1 complex with Fe3+ with an

Table 3. Amonabactins (25)

R1-NH-ðCH2Þ4-CHðNH2Þ-CO-NH-CHðCOR2Þ-ðCH2Þ4-NH-DHB

Name R1 R2

Amo T 789 DHB-Gly D-Trp

Amo P 750 DHB-Gly D-Phe

Amo T 732 DHB D-Trp

Amo P 693 DHB D-Phe

OH

OH

CO-NH-(CH2)4-CH-CH-CH2-CO-Ser-Gly-Arg-b-OHAsp-Gly-b-OHAsp

OH

NH2

OH

OH

CO-NH-(CH2)4-CH-CH-CH2-CO-Asn-b-OHAsp-Lys-X-b-OHAsp-Gly

OH

SO3H

NH2

( )

26: with ester bond between OHAsp and Ser
27: without ester bond between OHAsp and Ser

28: X = Lys, 29: X = Arg

Fig. 8. Alterobactins (26, 27), pseudoalterobactins (28, 29)
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unexpectedly high complexing constant (between 1049 and 1053), higher than that

of enterobactin above, despite the fact that two complexing sites are a-hydroxy
acids which bind Fe3+ less efficiently than DHB units (148). A synthesis has been

reported (83) (see Sect. 8.2).
Related structures are the pseudoalterobactins A and B from Pseudoalteromonas

sp. (Fig. 8, 28, 29) (183), one of the rare examples of bacterial metabolites containing

an aromatic sulfonic acid (40). Chiralities of the constituents were not determined.

Heterobactin A and B (30) are produced by Rhodococcus erythropolis (59).
They are based on the sequence Orn-Gly-cOHOrn. The N5-amino group of Orn is

substituted by a DHB group. In heterobactin B, the a-amino group of Orn is free

(R = H); in heterobactin A, R is probably a 2-hydroxybenzoxazolyl-carbonyl group.

30 DHB-NH-(CH2)3-CH(NHR)-CO-NH-CH2-CO-cOHOrn

Rhodobactin (31) was isolated from Rhodococcus rhodochrous (86). A sequence

of four Orn units derivatized in different ways is linked together. The nitrogen

atoms of the N-terminal Orn are substituted with DHB groups, the N-terminal Orn

is followed by two Orn moieties, for which the N5-amino groups are transformed

into urea units (NH2CONH-), and the C-terminus is cOHOrn. The stereochemistry

of the Orn units was not determined. Rhodobactin forms a 1:1 Fe3+/Lig complex.

Iron uptake was studied with 55Fe3+.

31 DHB-NH-ðCH2Þ3-CHðNH-DHBÞ-CO-ðNH-CH-COÞ2-CO-cOHOrnj
ðCH2Þ3-NH-CONH2

Thermobifida fusca, belonging to the Actinomycetales, produces three closely

related siderophores, namely, the fuscachelins (92). Fuscachelin B starts with the

sequence DHB-Arg-Gly-Gly-Ser, which is bound to the hydroxylated N5-amino

group of Orn. Its N2-amino group (the carboxyl group is free) is bound to the

C-terminus of the sequence Gly-Gly-Arg-DHB (32). Fuscachelin A is considered to

be the genuine metabolite, with B and C degradation products.

32 DHB-Arg-Gly-Gly-Ser-N5-OHOrn-N2H-Gly-Gly-Arg-N2-DHB

In fuscachelin C the carboxyl group of Orn forms an amide, while in fuscachelin

A an ester bond occurs between the carboxyl group of Orn and the hydroxy group

of Ser.

2.8. Lipopeptidic Siderophores

From Burkholderia cepacia (formerly Pseudomonas cepacia) three siderophores

named ornibactins (33) were isolated for which the structures were determined by
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degradation and NMR studies (335, 336) as containing 3-hydroxy fatty acid

residues and putrescine that blocks the C-terminus, with acyl = R-CHOH-CH2-

CO (R = CH3, C3H7, C5H11).

33 acylOHOrn-OHAsp-Ser-formylOHOrn-NH-(CH2)4-NH2

The three ornibactins are accompanied by minor components, which contain an

additional oxygen atom. Their structure has not been investigated. Ornibactins are

the main siderophores of a series of Burkholderia strains accompanied in part by

pyochelin (Sect. 5) and cepabactin (Sect. 6) (235). A further B. cepacia siderophore
is cepaciachelin (Sect. 3.2) (15). The iron acquisition by the various siderophores of
B. cepacia has been discussed in detail (359).

From Nocardia strains several closely related compounds (nocobactins, formo-

bactin, amamistatins) were isolated that contain three typically Fe3+ binding sites,

two hydroxamate units, and a hydroxyphenyloxazole structure (cf. Sect. 3.2 below).
The C-terminus is N-hydroxy-cyclo-Lys bound to a long chain 3-hydroxy fatty acid,
whose hydroxy group is esterified by N6-acyl-N6-hydroxy-Lys, the a-amino group

of which is bound to 2-o-hydroxyphenyl-5-methyl-oxazole-4-carboxylic acid

(Table 4). For the amamistatins the configuration of the cyclic lysine was deter-

mined as L, the open one as D, and that of C-3 of the fatty acid as (S). The
involvement in the iron metabolism was not investigated.

Structurally related with the nocobactin family are the mycobactins and carboxy-

mycobactins (the latter were also referred to as exochelins, Sect. 2.5 (128)) from
Mycobacterium spp. For reviews see (85, 331, 369). They have the same basic

skeleton as the nocobactins, but the 4,5-double bond of the oxazole ring is saturated.

A series of differently substituted representatives has been isolated (see Table 5).

The major group comprises mixtures carrying saturated and unsaturated long-chain

fatty acid residues as substituents of the hydroxamic acid unit formed by the

N6-amino group of lysine. For some (“J”, M, and N), the fatty acid residues are

located in the chain, as for the nocobactins. Representatives of the MAIS group

(Mycobacterium avium, M. intracellulare, M. scrofulaceum) possess two long

Table 4. The nocobactin family

OH

O

N

CH3

CO-NH-CH-CO-O-CHR2-CR1-CO-NH

NO
OH

R4

(CH2)4

N
COR3HO

CH3

Compound R1 R2 R3 R4 References

nocobactin NA H C9H19,C11H23 CH3 H (294, 295)
formobactin CH3 C9H19 H H (252)
amamistatin A CH3 C7H15 H H (191, 341)
amamistatin B CH3 C7H15 H OCH3 (191, 341)
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chain fatty acid residues. The stereochemistry of most chiral centers has been

determined. For the Fe3+ complex of mycobactin P an X-ray analysis is available

(157). For the carboxymycobactins the residues R3 in Table 5 are saturated or

unsaturated alkyl groups with terminal carboxyl groups or their methyl esters.

Transvalencin Z (245a) from Nocardia transvalensis could be a precursor or

side product of mycobactin biosynthesis, possibly acquired from a vagabonding

gene. It comprises the left part of the serine/salicylic acid based molecules (Table 5

R4 = R5 = H) and ends with N6-formyl-Lys (R3 = H, no N-hydroxy group). The

stereochemistry of the two chiral centers was not determined. Transvalencin Z

seems not to bind Fe3+.

Iron uptake of Mycobacterium smegmatis involving mycobactin S was studied

with 55Fe3+ (293). Mycobactin is not given off into the surrounding medium but is

located instead in the lipid envelope of the cell and is active in the trans-membrane

transport of Fe3+ (taxi mechanism). Iron is relased at the inside of the membrane by

a reductive mechanism. There is some evidence that salicylic acid is the extracel-

lular siderophore.

Corrugatin (34) (Fig. 9) is the siderophore of Pseudomonas corrugata (302). It
was also found as secondary siderophore of several pyoverdin producing Pseudo-
monas strains as P. fluorescens, occasionally in slightly modified forms such as

Table 5. The mycobactin family (adapted from (369))

OH

O

N

R4

CO-NH-CH-CO-O-CHR2-CHR1-CO-NH

N
O

OH

(CH2)4

N
COR3HO

R5

Mycobactin R1 R2 R3 R4 R5 References

A H CH3 C13 H CH3 (332)
F H CH3 C9-17 CH3 H (332)
H H CH3 C17,19 CH3 CH3 (381)
J CH3 CH(CH3)2 C15 H H (224)
“J” CH3 b a CH3 H (18)
P CH3 C2H5 C13-19 H CH3 (329)
R CH3 C2H5 C19 H H (332)
S H CH3 C13-19 H H (381)
T H CH3 C14-21 H H (330)
M CH3 C14-17 CH3 CH3 H (332)
N CH3 C14-17 C2H5 CH3 H (332)
MAIS CH3 b a H H (18)

CH3 b a CH3 H (18)
carboxy H CH3 c H H (128)

H CH3 c CH3 H (128)
CH3 C2H5 d CH3 H (199, 292)

a – unsaturated alkyl chain, b – saturated alkyl chain, c – saturated and unsaturated dicarboxylic

acid methyl ester, d – unsaturated dicarboxylic acid
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ornicorrugatin (35) where one Dab is replaced by Orn (218), or with OHHis instead
of OHAsp as the C-terminus (S. Matthijs, unpublished).

A group of amphiphilic siderophores was isolated from marine bacteria (410),
the marinobactins (Fig. 10, 36), from Marinobacter sp., aquachelins (Fig. 10, 37),
from Halomonas aquamarina (215, 217), the amphibactins (Fig. 10, 38), from

Vibrio sp. (216), and the loihichelins (Fig. 10, 39), from Halomonas sp. (150).
They all comprise series of related molecules differing in the nature of the saturated

or unsaturated fatty acid (for amphibactins and loihichelins also 3-hydroxy

fatty acids) linked to the N-terminus (see also ochrobactins and synechobactins,

Sect. 4.1). Structure elucidations were effected by spectroscopic methods and

degradation studies. For the marinobactins a N-terminal nine-membered lactam

ring was suggested to be formed by an amide bond between the carboxyl group of

Asp and the C-4 amino group of Dab (Fig. 10, a). It may be suggested that rather a

condensation with the amide carbonyl group had occurred (Fig. 10, b; cf. Chart 1).
This would keep the a-hydroxycarboxyl grouping of OHAsp intact, which acts as a
binding site for Fe3+ and is essential for photolytic degradation. The rather scarce

structural data presented do not allow a decision to be made. The siderophores show

a strong affinity to lipid membranes (389). The Fe3+ complexes of aquachelins and

marinobactins suffer degradation under sunlight irradiation. For the Fe3+-aquachelin

complexes the formation of Fe2+, of hydrophobic and of hydrophylic cleavage

HN HN

N
CHOH

C7H15CONH

HN

N

CO-NH-CH-CONH-CH-CONH-CH-CONH-CH

(CH2)n

NH2

N
CONH-

CH2OH CH2OH CHOH

COOH COOH

CHOH

CH-COOH

L-OHHis L-Dab L-Ser D-Ser L-OHAsp L-Dab L-OHAspL-Dab
D-Orn

Fig. 9. Corrugatin (n = 2, L-Dab) (34) and ornicorrugatin (n = 3, D-Orn) (35)

NH

H
N

O
RCO-NH

HO

O

Ser

O N

H
N

Ser
CH

RCONH

O
HOOC OH

a b

36: RCO-OHAsp-Dab-Ser-acetylOHOrn-Ser-acetylOHOrn 
37: RCO-OHAsp-Ser-Ser-Gln-acetylOHOrn-Ser-acetylOHOrn
38: RCO- acetylOHOrn-acetylOHOrn-Ser-acetylOHOrn (2 D-,1L-Orn, L-Ser)
39: RCO-OHAsp-Ser-Gln-Ser-acetylOHOrn-Dhb-Ser-cOHOrn

Fig. 10. Amphiphilic marine siderophores
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products was observed. For the latter a N-formyl-Ser terminus was suggested based

on mass spectral data (Chart 2) (12). There is evidence that this type of photolytic
degradation is common for siderophores containing a-hydroxycarboxyl ligands
(13, 150, 401).

2.9. Pseudomonas mendocina Siderophores

From Pseudomonas mendocina five siderophores were isolated by chromatography.

They are reported to have identical molecular masses of 1,152 Da (the also reported

(3a) value of 929 Da is an error; L. E. Hersman, private communication) and an

identical amino acid composition, which has not been revealed (141a). Color
reactions show the presence of a hydroxamate, but not of a catecholate grouping.

A gene analysis suggests a partial sequence acyl-Asp-Dab-Ser-formylOHOrn-Ser-

formylOHOrn where asparagine could be OHAsp and the C-terminal ornithine

cOHOrn (9b). In which way the five isomeric siderophores with identical molecular

masses differ from each other is not clear.

3. Siderophores Based on Diamino- and Triaminoalkane

Skeletons

3.1. Rhizobactin

Rhizobactin (40) is the siderophore of Rhizobium meliloti (328). It contains one

a-hydroxycarboxylic acid and two a-amino acid units as probable binding sites for

Fe3+. Acid hydrolysis yields inter alia L-malic acid. The stereochemistry of the

other two chiral centers is not known.

40 HOOC-CH(CH3)-NH-(CH2)2-NH-CH(COOH)-(CH2)4

-NH-CO-CH2-CHOH-COOH

RCO
N
H

H
N

-O CO
O–Fe3+

O

O

Fe2+

RCO

H
H
N

O

O

OH OH

+

Chart 2. Light-induced degradation of Fe3+-aquachelins
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3.2. Catecholate Siderophores

For other catecholate siderophores, see the peptide-based siderophores above

(Sect. 2.7) and the citric acid derivatives below (Sect. 4.3); for a review on

syntheses, see (24), for a general review, (38).
The tricatecholate siderophore protochelin (41) (Fig. 11) was obtained from a

methanol – bacterium (351). Subsequently it was also found to be produced by

Azotobacter vinelandii (72, 360) together with its constituents 2,3-dihydroxyben-

zoic acid, azotochelin (bis-DHB lysine) (70) and aminochelin (mono-DHB cadav-

erine) (273). Cepaciachelin from Burkholderia cepacia (15) lacks the DHB

residue from the aminochelin part of protochelin. The amino acid in all com-

pounds is L-lysine. Azotobacter vinelandii shows an interesting rationale when

confronted with a deficiency in iron supply. At concentrations >7 mM, 2,3-

dihydroxybenzoic acid is secreted, between 3 and 7 mM, the di- and tricatecholate

siderophores are produced, and at still lower concentrations, it is resorted to

azotobactin D (see above Sect. 2.2) (72). Myxochelin A from Angiococcus
disciformis (197) and Nonomuraea pusilla (239a) can be considered as a reduc-

tion product of azotochelin (lysinol instead of Lys). The absolute configuration of

lysinol (S) was determined by synthesis. Both antipodes show about the same

antitumor activity (239a).
Pistillarin was first isolated from Clavariadelphus pistillaris and from several

Ramaria spp. (Basidiomycetes) (334). Recently, it was found to be produced also

by the marine fungus Penicillium bilaii (56). Like siderochrome II below it is a

spermidine derivative substituted only at the terminal NH2-groups (N
1, N10-di-(3,4-

dihydroxy)benzoyl-spermidine). Its synthesis and that of siderochrome II was

reported, their siderophore activity and their complexation with Fe3+ (1:1 com-

plexes) was investigated (102, 299). A derivative of pistillarin substituted at all

three amino functions has not been reported yet.

When DHB is bound to serine or threonine cyclization may occur resulting in an

oxazoline ring (cf. above anachelin, Sect. 2.3, and mycobactins, Sect. 2.8). It has

been discussed whether the oxazoline nitrogen atom may act as a ligand site (see

below, (303)). This would explain why DHB is replaced by a salicylic acid residue

in some cases.

To this group of siderophores belong photobactin (42a) from Photorhabdus
luminescens (Fig. 12) (66), derived from 1,4-diaminobutane substituted by DHB

and by cyclized DHB-Thr (1H-NMR data indicate that the substituents of the

oxazoline ring are in trans positions; the absolute stereochemistry is not known),

OH

OHOH

CO-NH-(CH2)4 -CH-CO-NH-(CH2)4 NH-CO

OHNH-CO

OH

OH

Fig. 11. Protochelin (41)
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and its lower homolog serratiochelin (42b) from Serratia marcescens derived

from 1,3-diaminopropane. Its structure including the absolute stereochemistry

(L-Thr) was confirmed by synthesis (101).
Spermidine derivatives are agrobactin from Agrobacterium tumefaciens

(Fig. 13, 43) (268), for which the structure was confirmed by X-ray analysis

(109) and synthesis of the hydrolyzed form (DHB-Thr) agrobactin A (283), and
parabactin (Fig. 13, 44) from Paracoccus denitrificans (284). Two syntheses are

reported for parabactin (28, 28c, 255) (see Sect. 8.3). The open form (parabactin A)

as well as the precursors 2,3-dihydroxybenzoic acid and a compound with a free

central NH group (N1, N10-di-DHB-spermidine, siderochrome II) were also found

(347). The 1:1 Ga3+/Lig complex shows L-cis configuration (28a). Parabactin also

forms a 1:1 complex with Fe3+ (347) for which the structure was investigated by X-
ray photoelectron and electron spin resonance spectroscopy. In particular, the

question as to whether the oxazoline nitrogen acts as a binding site has been

discussed. An experimental proof seemed not to be possible (303).
Iron transport was studied using the 55Fe3+- and 3H-complexes of parabactin

(25). After a quick uptake of 10% of both labels there was a continuing steady

uptake of 55Fe3+ while the amount of 3H remained constant. This could either mean

that after binding to the cell surface 55Fe3+ only is transferred into the cell (“taxi

mechanism”) or there is a fast re-export of the ligand. A decision in favor of the

OH

OHOH

CO-NH-(CH2)3-N-(CH2)n-NH-CO

OHCO

ON

R

OH

43: n = 4, R = OH
44: n = 4, R = H
45: n = 3, R = OH

Fig. 13. Agrobactin (43), parabactin (44), fluvibactin (45)

NO

C

OH

OH

O

NH-(CH2)n -NH-CO

OH

OH

42a: n = 4
42b: n = 3

Fig. 12. Photobactin (42a), serratiochelin (42b)
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taxi-mechanism could be reached by offering the Ga3+ complex of [3H]-parabactin

(Ga3+ cannot be released reductively in the cell and hence a re-export of the ligand

is not possible). The uptake curve resembled that of ferri-[3H]-parabactin: a small

amount of complex is bound to the cell surface, but there is no transport of the

ligand in the cell. This is in agreement with temperature studies (30 and 4�C). While

the uptake of 55Fe3+ decreases that of 3H is not influenced.

Fluvibactin (Fig. 13, 45) from Vibrio fluvialis (391) differs from agrobactin by

replacement of spermidine by norspermidine. Also here the precursor with a free

central NH group could be isolated. Vibriobactin from Vibrio cholerae (Fig. 14, 46)
contains two cyclized DHB-Thr substituents (129). Syntheses of agrobactin, fluvi-
bactin and vibriobactin are published (26, 30, 308). In vulnibactin from Vibrio
vulnificus (Fig. 14, 47) (264) two DHB groups are replaced by salicylic acid units.

The precursor with a free central NH group was also found.

3.3. Hydroxamic Acid Siderophores

Bisucaberin (48) from Alteromonas haloplanktis (181) is a cyclic dimer of succinyl-

(N-hydroxycadaverin) (348); cf. the cyclic trimer proferrioxamine E (Table 6).

48 ½-CO-CH2-CH2-CO-NH-CH2-CH2-CH2-CH2-CH2-NOH-�2
In putrebactin from Shewanella putrefaciens (201) cadaverine is replaced by

putrescine (49, R = H). For the cyclic trimer, see proferrioxamine X2 in Table 6.

The arctic S. gelidimarina living in a habitat with extremely low iron supply

produces a cell-associated hydroxamic acid siderophore with the mass 977 Da for

[M+H]+ of unknown structure (274).
Alcaligin from Alcaligenes denitrificans (260) and from Bordetella spp. (244) is

a cyclic dimer of succinyl-N1,3S-dihydroxyputrescine (49, R = H) confirmed by

synthesis (402).

49 ½-CO-CH2-CH2-CO-NH-CH2-CHR-CH2-CH2-NOH-�2

OH

CO-NH-(CH2)3 -N-(CH2)3 -NH-CO

OHCO

ON

O N

R

OH

R

HO

46:R = OH

47:R = H

Fig. 14. Vibriobactin (46), vulnibactin (47)
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Alcaligin forms at pH 2.0 a 1:1 and at pH 6.0 a 2:3 Fe-to-ligand complex. The

structure (Plate 3) of the (Fe3+)2Lig3 complex was studied by X-ray analysis (156).
One ligand bridges two metal ions while the remaining two are coordinated with a

single Fe3+ each. The metal centers show L-configuration.
Alcaligin E from Alcaligenes eutrophus is described from color tests as a

phenolic siderophore (126a). According to a recent publication (90a) it is identical
with staphyloferrin B, a citrate siderophore (Sect. 4.2). No further information is

given to resolve these discrepancies.

A group of related siderophores comprises the desferri- or deferriferrioxamines

(occasionally abbreviated as desferrioxamines) or proferrioxamines. Originally

they were obtained from Actinomycetes, mainly Nocardia and Streptomyces spp.
(187) and later found to be produced also by Erwinia spp. (several representatives)

(e.g. (30a, 113, 115, 180)), Arthrobacter simplex (B), Chromobacterium violaceum
(E) (246a), and by Pseudomonas stutzeri (several) (229a, 246, 398). They consist of
three (or in rare cases four) mono-N-hydroxy-1,4-diaminobutane (putrescine),

mono-N-hydroxy-1,5-diaminopentane (cadaverine) or (rarely) mono-N-hydroxy-
1,3-diaminopropane units connected by succinic acid links. The hydroxylated

terminus carries an acetyl or a succinyl (as in the structural formula heading Table 6)

Table 6. Structures and nomenclature of proferrioxamines (pFO) (adapted from (110))a

H2N-ðCH2Þm-NOH-CO-CH2-CH2-CO-NH-ðCH2Þn-NOH-CO-CH2-

CH2-CO-NH-ðCH2Þo-NOH-CO-CH2-CH2-CO-NH-ðCH2Þp-
NOH-CO-CH2-CH2-COOH

pFO cyclic m n o p N-terminus C-terminus Abbreviation References

A1 � 5 5 4 0 � Ac pFO554Ac (185a)
A2 � 5 4 4 0 � Ac pFO544Ac (185a)
B � 5 5 5 0 � Ac pFO555Ac (30e)
D1 � 5 5 5 0 Ac Ac Ac-pFO555Ac (185b)
D2 þ 4 5 5 0 � Suc pFO455c (185a)
Eb þ 5 5 5 0 � Suc pFO555c (155a, 186)
G1

c � 5 5 5 0 � Suc pFO555 (186a)
G2a � 5 5 4 0 � Suc pFO554 (115)
G2b

c � 5 4 5 0 � Suc pFO545 (115)
G2c

c � 4 5 5 0 � Suc pFO455 (115)
H � 5 5 0 0 Suc Ac Suc-pFO55Ac (1)
T1 þ 5 5 5 5 � Suc pFO5555c (115)
T2 þ 4 5 5 5 � Suc pFO4555c (115)
T3 þ 3 5 5 5 � Suc pFO3555c (115)
X1 þ 4 4 5 0 � Suc pFO445c (115)
X2 þ 4 4 4 0 � Suc pFO444c (115, 398)
X7 þ 3 5 5 0 � Suc pFO355c (115, 398)
aStructures were not established for C and F (Rf values and physical constants) (30d), T4-T6, and

X8, X9 (mass spectra) (115)
bIdentical with norcardamin (186, 338)
cAccompanied by “truncated” compounds without the terminal succinic acid unit (G1t, G2bt, G2ct)

(115, 398)
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residue, and in the latter case the free carboxyl group and the free N-terminus may

form a macrolactam. The terminal acid residue can also be missing (referred to as

“truncated”) (115, 398). By feeding of suitable diamino precursors to the culture

medium unnatural analogs can be obtained (111, 194, 227). At pH values above 6.5

(Fe3+)2Lig3 complexes prevail, in more acidic media Fe3+Lig is formed (194). The
crystals of the Fe3+Lig complexes of ferrioxamine D1 and E are racemic mixtures of

L-cis and D-cis coordination isomers (154, 366a). The outer membrane receptor

protein of Erwinia amylovora was structurally determined (180). Siderophore

activity was demonstrated for 55Fe-labeled ferrioxamine E (30a). For the mass

spectrometric analysis, see (112a).

Plate 3. X-ray structure of ferri-alcaligin (ferri-49)
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Originally the various natural representatives had been designated by capital

letters, but later a nomenclature system was proposed (110). In short, the indices

and modifications as listed in Table 6 (p = 0 means that the entire fourth diami-

noalkane-succinyl unit is missing) are grouped around the acronym pFO. The

system is essentially self-explanatory; for details and possible extensions see the

original publication.

4. Citrate Siderophores

For a review, see (39). Some citrate siderophores are accompanied by cyclic imide

structures formed by the loss of water from the central carboxyl group and a lateral

amide NH (Chart 3). They are usually designated by an A following the name of the

siderophore. Free citric acid can be a true siderophore, e.g. for Bradyrhizobium spp.

(205), Pseudomonas aeruginosa (213), and Mycobacterium smegmatis (228a).
The mode of the uptake differs. Bradyrhizobium and Pseudomonas incorporate

ferric citrate but Pseudomonas shows also a citrate mediated Fe2+ uptake, while in

the case of Mycobacterium no citrate enters the cell. Ferric citrate is a complex

system depending on the pH of the solution and the relative concentration of the two

constituents (333a, 333b). In an acidic milieu equimolar concentrations form

[FeCit]-, at about pH 4 polymerization starts resulting at pH 8–9 in an insoluble

complex with an iron hydroxide core and citrate ions bound to the surface. With a

citrate excess species like [FeCit2]
5- are discussed.

It should be mentioned that the central carbon atom of citric acid becomes chiral

when the two peripheral carboxy groups are substituted differently (examples will

be found below). For enzyme reactions it is a prochirality center. This has been

shown for vibrioferrin (58) and staphyloferrin B (59).

4.1. Siderophores with Two Hydroxamic Acid Units

In siderophores of this series, 1,3-diaminopropane, 1,5-diaminopentane, or lysine

(by its a-amino group) is connected to the outer two carboxyl groups of citric acid.

CO-NHR

CO-NHR

OH

COOH

CO-NHR

OH

CO

NROC

– H2O

+ H2O

Chart 3. Cyclization of citrate siderophores to amidic structures

Microbial Siderophores 29



These spacers, in turn, are acylated and derivatized by a N-hydroxy group thus

forming hydroxamic acids. For a synthesis concept see (404).
Schizokinen (Fig. 15, 50) was first isolated from Bacillus megaterium (53), sub-

sequently from Ralstonia solanacearum (43), Rhizobium leguminosarum (339), and
several species of the cyanobacterium Anabena (e.g. (326)). It was named after its

cell division promoting effect observed with Bacillus cultures (200). Its structure
was elucidated by degradation and spectral data and confirmed by synthesis (43,
202, 237, 248). For a compilation of details on structural data the review (39)
should be consulted. Both natural and synthetic schizokinen is accompanied by the

cyclized schizokinen A (43, 202, 237, 248). Schizokinen forms a 1:1 complex with

Fe3+, but at the central hydroxy group acetylated schizokinen yields (Fe3+)2Lig3.

This proves that the central unit is one of the binding sites (285). Also N-deoxy-
schizokinen from Bacillus megaterium lacking one hydroxamic acid unit still binds

Fe3+ (158). Whether it acts as a siderophore is not known.

The schizokinen-mediated Fe3+ transport in Bacillus megaterium was studied by

double labelling with 59Fe and 3H (8). At 37�C, uptake of 59Fe and of 3H are parallel

during the first 30 sec, then that of 59Fe continues until it levels off after 2 min,

while that of [3H]-schizokinen drops to a low constant level. At 0�C, uptake of both
labels reaches this low level which is obviously due to the binding of the ferri-

siderophore to the cell surface. At 37�C, transport into the cell, release of iron, and

re-export of the ligand follow. Apparently a shuttle mechanism takes place, cf. the
experimental results obtained with parabactin (Sect. 3.2) indicative of a taxi

mechanism.

Arthrobactin (Fig. 15, 51) was obtained from Arthrobacter spp. and originally

described as the growth factor of A. terregens, the “terregens factor” (51). Its
structure was elucidated (207) and confirmed by synthesis (202). Also the structure

CO-NH-CHR1-(CH2)n-NOH-CO-R2

CO-NH-CHR1-(CH2)n-NOH-CO-R3

OH

COOH

50: R1 = H, R2 = R3= CH3, n = 2

51: R1 = H, R2 = R3 = CH3, n = 4

52: R1 = H, R2 = R3 = (E)-CH=CH-(CH2)4-CH3 , n = 2

56: R1 = H, R2 = CH3, R3 = (E)-CH=CH-(CH2)6-CH3 , n = 2

53: R1 = COOH, R2 = R3 = CH3, n = 4

54: R1 = COOH, R2 = R3 = (E)-CH=CH-C6H5 , n = 4

55: R1 = COOH, R2and R3 alkyl or alkenyl groups, n = 4

57: R1 = H, R2 = CH3, R3 = alkyl groups, n = 2

Fig. 15. Citrate siderophores with two hydroxamic acid units
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of acinetoferrin from Acinetobacter haemolyticus was established (Fig. 16, 52)

(265) and confirmed by synthesis (375). It shows strong interaction with lipid

membranes like the marine liposiderophores above (211) (Sect. 2.8).
Aerobactin (Fig. 15, 53) was first isolated from Aerobacter (Enterobacter)

aerogenes (126), Enterobacter cloacae (368) and subsequently from various enter-

obacteria such as Escherichia (376), Salmonella (225), Shigella (277), Yersinia
(340), but also from Erwinia carotovora (163), Pseudomonas sp. (52) and Vibrio
spp. (141, 266). Aerobactin is an important virulence factor for enterobacteria (75).
Aerobactin contains L-lysine. A synthesis is described (222). The bright orange Fe3+

complex was investigated in detail (predominant L configuration in solution,

stability constant, redox potential) (138). Fe3+ transport was studied by double

labelling (59Fe and 3H) (8). The results corresponded to those obtained with

schizokinen. Aerobactin binds to the same receptor as the bacteriocin cloacin

DF13 and thus alleviates the growth inhibiting effect of the latter (368).
Nannochelin C (Fig. 15, 54) from the myxobacterium Nannocystis exedens

contains two L-Lys and two (E)-cinnamic acid units. The reported mono- and

di-methyl esters (nannochelin B and A) may be artifacts from the work-up (198).
A synthesis is described (29) (see Sect. 8.4). The ochrobactins (Fig. 15, 55) isolated
from the sea-shore bacterium Ochrobactrum sp. (214) with the spacer L-lysine are
membrane active due to the fatty acid residues (saturated C8 and (2E)-unsaturated
C8 and C10); cf. lipopeptidic siderophores in Sect. 2.8.

Rhizobactin 1021 (Fig. 15, 56) (for rhizobactin, see diaminoalkane-based side-

rophores, Sect. 3.1) from Rhizobium meliloti (281), contains an acetyl and an

(E)-decenoyl group. Its Fe3+ complex in aqueous solution is L-configured and

forms an equilibrium between a monomeric and a dimeric form that can be

separated by chromatography. A synthesis is described (404).
Synechobactins (Fig. 15, 57) from the cyanobacterium Synechococcus (165),

contain an acetyl and C12-, C10-, and C8-saturated acid residues and thus belong

to the amphiphilic marine siderophores (cf. Sect. 2.8). Both rhizobactin 1021 and

the synechobactins are substituted unsymmetrically. Hence, for each, the central

C-atom of citric acid is chiral, but its stereochemistry has not been determined.

Awaitins are synthetic homologs of siderophores (A: 53, n ¼ 3; B: 50, n ¼ 3; C:

53, n ¼ 2) “awaited” to be found in nature, so far without success (405).

O

COOH
HO

COOH

CO-O-CH2-CH2-NH-CO-CH-N

OH

COOH

Fig. 16. Vibrioferrin (cyclic form) (58)
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4.2. Siderophores with 2-Oxoglutaric Acid Units

N-Alkylated 2-oxoglutaric acid derivatives cyclize at neutral pH values to two

epimeric 5-carboxy-5-hydroxy-2-oxopyrolidine structures (Chart 4). In this way, a-
hydroxycarboxylic acid groupings are formed that can act as ligand sites for Fe3+.

Vibrioferrin (58, Fig. 16) was isolated from Vibrio parahaemolyticus. The

stereochemistry of the central citric acid C-atom is R, that of the alanine part is S
as shown by stereospecific synthesis (411). Iron uptake was studied with 55Fe3+

proving that vibrioferrin acts as a siderophore despite the fact that it has only five

ligand sites, the two a-hydroxy acids and the free citric acid carboxyl group.

Possibly a solvent molecule satisfies the eighth octahedral position (393, 411).
Vibrioferrin is also formed by Marinobacter spp. It is a week Fe3+ chelator

(complexing constant 1024). Its Fe3+ complex is very susceptible to photodegrada-

tion by oxidative decarboxylation of the cyclized 2-oxoglutaric acid unit yielding a

succinimide ring. This species cannot bind Fe3+. The concomitantly formed Fe2+

(cf. Chart 2) is reoxidized to fairly soluble Fe3+ hydroxo complexes, which are

readily taken up by the bacteria (410).
Staphyloferrin B (59, Fig. 17) is produced together with staphyloferrin A (see

below Sect. 4.4) by Staphylococcus hyicus and other staphylococci (94, 131),
by Ralstonia eutropha (250) (¼ Cupriavidus metallidurans (90a)). Comparison

of its CD spectrum with those of model compounds suggests the (S)-configuration
of the central citric acid C-atom. Mass spectral investigations show a 1:1 Fe3+-

to-ligand ratio, and NMR studies of the Ga3+ complex confirm the participation of

the two a-hydroxy- and of the a-amino acid functions in complex formation.

Uptake studies with 55Fe3+ showed that staphyloferrin B acts as a siderophore,

but it is less efficient than staphyloferrin A.

R-NH
COOH

O

O

R-N

O

HO
COOH

Chart 4. Cyclization of 2-oxoglutaric acid substituents

CO-NH-CH2-CH(NH2)COOH

CO-NH-CH2-CH2-N

OH

COOH O

HO
COOH

Fig. 17. Staphyloferrin B (cyclic form) (59)
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Achromobactin (60, Fig. 18) is produced by Erwinia chrysanthemi in addition to
chrysobactin (see above under the catecholate siderophores, Sect. 2.7). It has two

chiral centers, a L-Dab unit and the central citric acid C-atom (not determined)

(249). Recently, achromobactin was also found to be produced by Pseudomonas
syringae (30b), a very versatile bacterial species (see pyoverdin, Sect. 2.1, and

yersiniabactin, Sect. 5).

4.3. Siderophores with Two Catecholate Units

In petrobactin, spermidine residues are bound to citric acid substituted with 3,4-

dihydroxybenzoyl (27), and not 2,3-dihydroxybenzoyl units (Fig. 19, 61), as

assumed originally (14). One or both of the substituents can carry a sulfonic acid

group in the 2-position of the aromatic ring (Fig. 19, 62 and 63) (142, 149); cf. also
(40). Petrobactin was originally obtained from Marinobacter hydrocarbonoclasticus
(14) and subsequently from Bacillus anthracis (195, 382), B. cereus and B. thu-
ringiensis (195a), its sulfonated derivatives from Marinobacter spp. It is probably
identical with the incompletely characterized anthrachelin (123).

CO-O-CH2-CH2-N

CO-NH-CH2-CH2-CH-N

OH

COOH

HO
COOH

O

HO
COOH

COOH

O

Fig. 18. Achromobactin (cyclic form) (60)

CO-NH-(CH2)4-NH-(CH2)3-NH-CO-

CO-NH-(CH2)4-NH-(CH2)3-NH-CO-

OH

COOH

OH

OH

OH

OH

R1

61: R1 = R2 = H

62: R1= H, R2 = SO3H

63: R1 = R2 = SO3H

R2

Fig. 19. Petrobactin (61), petrobactin monosulfonic acid (62), petrobactin disulfonic acid (63)
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4.4. Siderophores with Two Citric Acid Units

(S,S)-(enantio)-Rhizoferrin (Fig. 20, 64) was obtained from Ralstonia pickettii
(251). It is the optical antipode of the fungal (R,R)-rhizoferrin first isolated from

Rhizopus microsporus (93) and subsequently found to be a common siderophore of

Zygomycetes (358). It is accompanied by two dehydration products, which are due

to the formation of one or two imide rings (cf. Chart 3). UV spectral studies

revealed that rhizoferrin forms a 1:1 Fe3+-to-ligand complex despite the fact that

it has only two a-hydroxy acid binding sites (95). NMR studies of the Ga3+ complex

proved the twofold symmetry of the complex and showed that only the carboxyl

groups, but not the hydroxy groups are deprotonated between pH 5.5 and 9.0. The

Fe3+ complex is chiral and shows L-configuration (58). Uptake studies suggest a

shuttle mechanism (61). While Ralstonia accepts both antipodes with equal rates

Rhizopus shows a clear preference for its native (R,R)-enantiomer (251).
Staphyloferrin A (Fig. 20, 65) is a second siderophore of Staphylococcus spp.

(226). D-Ornithine connects the two citric acid parts. Due to the unsymmetrical link

the central C-atoms of the citric acid units are chiral, but their stereochemistry has

not been determined. Another consequence of the asymmetric structure is that two

mono- and one di-dehydration products are observed. Staphyloferrin A forms a 1:1

Fe3+-to-ligand complex, which is preferentially L-configured. For steric considera-
tions only cis-(SR0) or cis-(RS0) arrangements can be considered. Uptake experi-

ments with 55Fe showed that it is a true siderophore (193).

4.5. Legiobactin

Legionella pneumophila produces a siderophore named legiobactin, which shows

no catecholate or hydroxamate reactions (206). Enzymatic studies suggest a citrate

structure in agreement with the data obtained by mass spectrometry (molecular

mass ca. 350 Da) and NMR (three carbonyl and ten aliphatic C atoms). It is not

clear yet as to whether legiobactin is essential for the iron acquisition in the aqueous

habitat of the bacterium or during lung infection (2, 65).

COOH

OH

COOH

CO-NH-CHR-(CH2)3-NH-OC

HOOC

HO

HOOC

64: R = H
65: R = COOH

Fig. 20. Rhizoferrin (64), staphyloferrin A (65)
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5. Pyochelin and Related Structures

This group comprises condensation products of salicylic acid with cysteine giving a

thiazoline ring. For a review, see (310). Some structurally related compounds will also

bementioned here. Salicylic acid isolated fromBurkholderia (Pseudomonas) cepacia
was named azurochelin (333). It was found to act as a siderophore, e.g. for Pseudo-
monas fluorescens (230) and P. syringae (178); see also Mycobacterium smegmatis
(Sect. 2.8). For details on the siderophore activity of salicylic acid, see (359).

The structure of pyochelin (for a detailed bibliography, see (37)), a secondary

siderophore of Pseudomonas aeruginosa and of Burkholderia cepacia was estab-

lished (73) as 2-(2-o-hydroxyphenyl-2-thiazolin-4-yl)-3-methylthiazolidine-4-

carboxylic acid. It consists of a mixture of two easily interconvertible stereoisomers

(pyochelin I and II) differing in the configuration of C-200. They can be separated

by chromatography, but in methanolic solution (not in DMSO) the equilibrium

(ca. 3:1) is restored quickly. For a discussion of the mechanism of isomerization,

see (37, 317).
The relative and absolute stereochemistry (40R,200R,400R) of pyochelin I (Fig. 21,

66) were established by an X-ray analysis of its Fe3+ complex (316). Fe3+ is

associated with the phenolate and the carboxylate oxygen ions and with the two

nitrogen atoms. Two of these units are bridged by an acetate ion and a water

molecule satisfying the remaining two ligand loci of Fe3+ (Plate 4). However, by

titration a (Fe3+)/pyochelin ratio of 1:2 has been determined at pH 2.5 (370). This
may be due to a partial protonation of the complexing sites. From Burkholderia
cepacia, a mixed complex was obtained comprising Fe3+/pyochelin/cepabactin

1:1:1 (see Sect. 6 below) (188). An X-ray analysis has been performed of ferri-

pyochelin bound to its outer membrane receptor (67a). Pyochelin II has the

configuration (40R,200S,400R). It does not complex Fe3+ (140).
Several syntheses resulting in mixtures of stereoisomers (C-40 and C-200) have

been developed (6, 301, 397) (Sect. 8.5). Pseudomonas fluorescens CHA0 produces
enantio-pyochelin (394). The two optical antipodes are not accepted reciprocally by
the two Pseudomonas species.

Pyochelin is a non-ribosomal condensation product of salicylic acid with two

molecules of cysteine (289). Intermediates with one cysteine unit are aeruginoic

acid (Fig. 21, 67) first isolated from Pseudomonas aeruginosa (390), and (+)-(S)-
4,5-dihydroaeruginoic acid, from Pseudomonas fluorescens (57). Detailed studies

(274a) suggest that N-hydroxybenzoyl-L-cysteine bound to the synthetase

OH

S

N H N

H S

COOH

4' 4''2''

66

OH

S

N

COOH

67

Fig. 21. Pyochelin I (66), aeruginoic acid (67)
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racemizes, that bound dihydroaeruginoic acid is still a racemate, and that in the

further steps only the 40(R) isomer is used.

Micacocidin (Fig. 22, 68) from Pseudomonas sp. complexes Fe3+ and other

metal ions (189, 190). Whether it acts as a siderophore has not been investigated.

A stereospecific synthesis was elaborated (161, 161a), but the same isomerization

problems at C-40 and C-200 were encountered as had been observed with pyochelin

(see Note 14 in (161)).
Yersiniabactin (Fig. 23, 69) was obtained from Yersinia spp., and is produced

also by Pseudomonas syringae (49) and Escherichia coli (178). Its structure was

elucidated independently by two groups and given the names yersiniabactin (96)

Plate 4. X-ray structure of ferri-pyochelin I (ferri-66)

OH

S

N

S

NH

H

CHOH-C(CH3)2

C5H11 N S

HOOC

4' 4''2''

Fig. 22. Micacocidin (68)
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and yersiniophore (64). The configurations of the four chiral centers were not

determined, but epimerization probably at C-10 (corresponding to C-200 of pyoche-
lin) was indicated. A recent X-ray analysis (Plate 5) of the Fe3+ complex (238)
established the absolute stereochemistry [N-2 (R), C-9 (R), C-10 (R) as for pyoche-
lin, C-12 (R), C-13 (S), C-19 (S)], with D-configuration.

Anguibactin (Fig. 24, 70) from Vibrio anguillarum (171) contains DHB

condensed with Cys (stereochemistry not determined). It is accompanied by a

biosynthetic by-product (311) without the histamine part as its methyl ester.

6. Miscellaneous Siderophores

Desferri-ferrithiocin from Streptomyces antibioticus (Fig. 25, 71) (4, 254) is struc-
turally related to the pyochelin group. It is (S)-configured and forms a Fe3+Lig2
complex (131a).

Cepabactin (Fig. 25, 72) from Burkholderia cepacia (232) forms a (Fe3+)Lig3
complex (386) and a mixed Fe3+ complex with pyochelin (Sect. 5).

OH OH

C
C

N H
H
N

N

S

H
S

S

COOH

H

Fig. 23. Yersiniabactin (69)

Plate 5. X-ray structure of ferri-yersiniabactin (ferri-69)
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Pyridine-2,6-di(monothiocarboxylic acid) (Fig. 26, 73) [for a review, see (36),
cf. also (37)] was obtained from Pseudomonas putida (262) and later from

Pseudomonas stutzeri (203). It forms a brown Fe3+ complex and a blue Fe2+

complex (both FeLig2) (143), which may be accompanied by complexes carrying

two additional cyanide ions (145). An X-ray analysis (Plate 6) of the Fe3+

complex of 73 shows a distorted octahedral symmetry (143). There is evidence

that a sulfenic acid residue (-CO-SOH) is the biosynthetic link between -COOH

and -COSH (144).
From iron-deficient cultures of Pseudomonas fluorescens, 8-hydroxy-4-methoxy-

monothioquinaldic acid (thioquinolobactin) together with the corresponding

quinaldic acid (quinolobactin) (Fig. 26, 74 and 75), could be isolated (258).
Quinolobactin can act as an alternative siderophore of Pseudomonas fluorescens
(245), although it is the hydrolysis product of the thioacid (220). Its synthesis and
complex formation as (Fe3+)Lig2 was described (98).

Pseudomonine (Fig. 27, 76) is produced by Pseudomonas fluorescens strains (7,
228) and by P. entomophila, where it can act as a secondary siderophore (209). The
substituents on C-4 and C-5 of the isoxazolinone ring are in trans positions (311).
The complex formation has not been studied. In vitro enzyme-catalyzed synthesis

studies (311, 388) showed that initially the intermediate pre-pseudomonine (Fig. 24,

79) is formed, which non-enzymatically rearranges to pseudomonine.

R'

OH

X

N

R

N

O

OH

N

NH

70: X = S, R = H, R' = OH
78: X = O, R = CH3, R' = OH
79: X = O, R = CH3, R' = H

Fig. 24. Anguibactin (70), pre-acinetobactin (78), pre-pseudomonine (79)

N

OH

S

N
COOH N O

OH

CH3O

71 72

Fig. 25. Desferri-ferrithiocin (71), cepabactin (72)

N COSHHSCO N R
OH

OCH3

73 74: R = COSH
75: R = COOH

Fig. 26. Pyridine-di(monothiocarboxylic acid) (73), thioquinaldic (74), quinaldic acid (75)
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An analogous set of studies demonstrated that acinetobactin from Acinetobacter
baumannii (392) has actually the structure 77 shown in Fig. 27 and that the one

originally proposed (Fig. 24, 78) is that of pre-acinetobactin. In contrast, the

thiazoline ring of anguibactin (Fig. 24, 70) (see above Sect. 5) is stable. Acineto-

bactin forms a 1:1 complex with Fe3+.

Domoic acid (Fig. 28, 80) (263) is a neuro-phycotoxin responsible for the mortality

of wildlife and for amnesic shellfish poisoning (ASP) of humans during algal bloom.

Domoic acid was first isolated from the red alga Chondria armata (“domoi” in

Japanese), and it is produced also by diatoms, such as Pseudo-nitzschia spp. For the

latter, evidence has been presented that it is involved in iron acquisition (307).

Plate 6. X-ray structure of the Fe3+-complex of 73

O

CO-NH

HO

N

O

N

NH

R

76: R = H
77: R = OH

4
5

Fig. 27. Pseudomonine (76), acinetobactin (77)
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The smallest hydroxamate siderophore is N-methyl-N-thioformylhydroxyla-

mine, CH3-N(OH)-CHS, named thioformin (100) or fluopsin (325). The synthesis
was described (CH3-N(OH)-CHO + P2S5 or CH3-N(OH)-H + HCSSK) (100, 166a).
It forms a purple Fe3+Lig3 complex. Pseudomonas mildenbergii produces

N-methyl-N-phenylacetylhydroxylamine (CH3-N(OH)-CO-CH2-C6H5) (159), which
also forms a purple Fe3+ complex.

7. Fe2+ Binding Ligands

Pseudomonas roseus fluorescens (288), Pseudomonas GH (324) and Erwinia
rhapontici (113) produce pro-ferrorosamine A (81), also named pyrimine, which

forms a red (Fe2+)Lig3 complex. Under acidic conditions, an open form of

pro-ferrorosamine A prevails, which cannot bind Fe2+ (Chart 5). Pro-ferrorosamine

B is probably an artifact produced by condensation of pro-ferrorosamine A with

CHO-COOH. Pro-ferrorosamine A is essential for iron uptake by Pseudomonas
(367) and for the pathogenicity of Erwinia (114).

Structurally closely related is the Nocardiametabolite, siderochelin, for which the

structure and relative and absolute stereochemistry were all established by X-ray

crystallography (208, 267). It is a mixture of two epimers A and B (Fig. 29, 82 and

83). Siderochelin C, with an ethyl residue (Fig. 29, 84), was obtained from a different

actinomycete, tentatively identified as Streptoalloteichus sp. (239).

N
H

COOH

HOOC
COOH

Fig. 28. Domoic acid (80)

N N COOH

H2O

N
O

NH2

COOH

Chart 5. Proferrorosamin A (81)

N

N

CONH2

R OH

OH

Fig. 29. Siderochelin A (R = CH3) (82), B (C-3 epimer) (83) and C (R = C2H5) (84)
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The green pigments produced by Streptomyces spp. chelating Fe2+ with

o-nitrosophenolate residues are occasionally referred to as siderophores, but whether
they are really involved in iron metabolism has not been investigated. Ferroverdin A

(11) forms a (Fe2+)Lig3 complex (55), with the ligand being p-vinylphenyl-3-nitroso-
4-hydroxybenzoate (Fig. 30, 85). In ferroverdin B and C, one of the three ligands is

substituted at the vinyl group (Fig. 30, 86 and 87) (346, 361). From Streptomyces
murayamaensis, a precursor of ferroverdin was obtained (Fig. 30, 88) (69).

For a further chelator of Fe2+, see pyridine-2,6-di(monothiocarboxylic acid)

above (Sect. 6).

8. Selected Syntheses

In this section the syntheses of several typical siderophores will be presented in a

summarized form pointing out interesting features.

8.1. Anachelin H (10)

The challenge lay in the stereochemically correct synthesis of the polyketide part of

the molecule. Starting from L-serine (89) (Chart 6) by C2-elongation steps, reduction

of the obtained keto functions including adequate protection and deprotection, and

introduction of the salicylic acid residue the four stereoisomeric 3,5-diols (90) were

obtained. Comparison of the 1H-NMR data with those of anachelin (10) showed that

the isomer with (3R,5S,6S) configuration was the correct starting material.

The chromophore part was prepared from Boc-protected N, N-dimethyl-L-DOPA

(91), reduction to the diamine 92 and tellurium-mediated oxidative ring closure

(93). The free amino group of 94 was coupled with protected L-Ser and L-Thr-D-Ser

(95) and then the two constituent parts were connected and deprotected yielding

10 (121).

O

NO–R-OC

Fe2+

3

85: R = p-CH2=CH-C6H4-O-
86: 2 R = p-CH2=CH-C6H4-O-, 1 R = p-CHOH=CH-C6H4-O-
87: 2 R = p-CH2=CH-C6H4-O-, 1 R = p-HOOC-CH=CH-C6H4-C-O-
88: R = NH2

3–

Fig. 30. Ferroverdins
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8.2. Alterobactin (26)

Several building blocks were prepared separately (Chart 7). Methyl trans-cinnamate

gave by Sharpless enantiocontrolled dihydroxylation a diol from which by a series

of stereo- and regioselective transformations (96) and Ru-catalyzed oxidation for

transformation of the phenyl into a carboxyl group accompanied by adequate protec-

tion (97) and deprotection steps the protected OHAsp derivative 98 was obtained.

The protected (S)-4,8-diamino-3-oxooctanoic acid 99 was reduced with NaBH4,

the resulting mixture of diastereomers was separated and the (3R,4S)-product was
derivatized with benzylated DHB (100). Then derivatized D-Ser-Gly was added and

the serine OH-group was esterified with the protected OHAsp (101). The Gly

carboxyl group was finally set free.
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Chart 6. Synthesis scheme of anachelin H (10)
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The synthesis of the remaining part of the molecule started from a condensation

of protected Gly with the OHAsp derivative 98, and subsequently with protected

Arg (102). In the resulting protected tripeptide the Boc group from the Arg residue

was removed. Connection of the two building blocks between Gly and Arg

was followed by ring closure between Ser and Gly. Deprotection yielded finally

alterobactin (26) (83).
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Chart 7. Synthesis scheme of alterobactin (26)
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8.3. Parabactin (44)

Here the critical step is the formation of the oxazoline ring. Both the stereochemistry

of the two chiral centers and its acid lability had to be considered. Two approaches

have been published. They can be modified for other members of this class.

The terminal NH2-groups of N
5-benzylspermidine (Chart 8) were acylated with

2,3-dimethoxybenzyol chloride and the benzyl group was removed by hydrogeno-

lysis (28b). N1, N10-bis(2,3-dimethoxy)benzoylspermidine (103) was then reacted

with protected L-threonine (104). The Boc group was removed with CF3COOH

and the methoxy groups were cleaved with BF3 (105). Subsequent reaction with

2-hydroxybenzimidoethyl ether (106) gave parabactin (44) (28, 28c).
In the second synthesis (Chart 9) of 44 the carboxyl group of benzoyl-protected

salicylic acid was activated by transformation into the 1,2-thiazolidine-2-thione

derivative 107 and reacted with D-threonine. The methyl ester was debenzoylated

reductively (108). Treatment with SOCl2 resulted in cyclization accompanied by

stereoinversion of Cb of threonine. The resulting cis-oxazoline derivative 109

was epimerized at Ca with C2H5ONa. Subsequent hydrolysis of the ester function

gave the trans-carboxylic acid 110 which was reacted with N1, N10-bis(benzyloxy-

carbonyl)spermidine by treatment with phenylbis-(2-thioxo-1,3-thiazolidine-3-yl)

phosphinoxide (111). The remaining steps leading to 44 (removal of the N-protecting

O
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Chart 8. Synthesis I of parabactin (44)
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groups, reaction with 2,3-diacetoxybenzyl chloride and cleavage of the acetoxyl

groups) were standard operations (255).
In a recent modification of the second synthesis (308) effected for fluvibactin

(45) an o-xylene protection group was proposed (reaction of 2,3-dihydroxy-

benzoic acid methyl ester with 1,2-di(bromomethyl)benzene) which could

be removed later by hydrogenolysis. The formation of the oxazoline ring from

protected DHB-L-threonine methyl ester was achieved with Mo(VI) catalysts

(e.g. (NH4)2MoO4) without affecting the chiral centers. Derivatization of the

primary amino groups of norspermidine with the protected DHB methyl ester

was catalyzed by Sb(OC2H5)3.

8.4. Nannochelin A

For the condensation with the properly derivatized lysine part (112) 30-tert-butyl-
1,5-di-N-hydroxysuccinimidyl citrate (113) was used (Chart 10). It was prepared

from 1,5-dimethyl citrate by reaction with tert-butyl acetate, alkaline hydrolysis of
the methyl ester and coupling with N-hydroxysuccinimide by DCCI (237).
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Chart 9. Synthesis II of parabactin (44)
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For the synthesis of the lysine part (112) N2-Boc-L-lysine methyl ester (114)

was treated with benzoylperoxide/Na2CO3 (115) and subsequently with trans-
cinnamoyl chloride yielding 116. The hydroxamate ester was deprotected with

NH3/CH3OH at �23�C and the Boc group was removed with CF3COOH. Conden-

sation with the citric acid 3-tert-butyl ester was effected with (C2H5)3N. After cleav-

age of the ester with CF3COOH nannochelin A (54-dimethyl ester) was obtained

(29). The difficulties in the synthesis lay in the various functional and protecting

groups, which had to be introduced and removed in a deliberate sequence.

8.5. Pyochelin

The problem encountered with all published syntheses (6, 301, 397) is the non-

stereospecific formation of C-40 and the facile conversion of C-200. The common

approach (Chart 11) consists in the reaction of 2-hydroxybenzonitrile (117) with
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Chart 10. Synthesis of nannochelin A (54-dimethyl ester)
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L-cysteine (118) giving dihydroaeruginoic acid (119), reduction of the carboxyl

group to the aldehyde 121 and condensation of the latter with L-N-methyl-cysteine.
Details will be given for the procedure worked out by Zamri and Abdallah (397).
The first condensation step was effected in a phosphate buffer (pH 6.4) to minimize

epimerization at C-40. Then the carboxyl group was reacted with N,O-dimethyl-

hydroxylamine (120) using diethylcyanophosphonate as condensation agent.

Reduction with LiAlH4 yielded the aldehyde 121, which then was treated with

L-N-methyl-cysteine. A mixture of the four stereoisomers of (66), (40R,200S,400R),
(40S,200S,400R), (40R,200R,400R), (40S,200R,400R) in a ratio of 2:1:2:5 was obtained.

9. Epilog

The history of siderophores actually began towards the end of the nineteenth

century when laboratories engaged in bacteriological research observed that cer-

tain bacterial cultures showed a green fluorescence, and when in 1891 the first

attempts were reported to isolate the fluorescent pigment (later namend pyoverdin,

Sect. 2.1) produced by Bacterium fluorescens liquefaciens (Pseudomonas fluo-
rescens), although it was not before 1978 that J.-M. Meyer demonstrated its being

involved in the iron transport into the bacterial cell (37). Pyoverdins were among the

centers of interest during the last decades, and other preferred topics were the fungal

siderophores (Sect. 2.6), and more recently the marine lipopeptides (Sect. 2.8).

This review is mainly concerned with structural aspects of siderophores and

their iron transport, intended to give a status report of what has been achieved up to

late-2009. But the fields of interest in siderophores are much wider, spreading into

– genetics (identification of the genes responsible for the synthesis of the side-

rophores and their receptors (e.g. (403, 409)),
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Chart 11. Synthesis of pyochelin stereoisomer mixture
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– medicine (siderophores as virulence factors (e.g. (75)), but serving also as

carriers for antibiotics in a Trojan Horse strategy (e.g. (35a)),
– agriculture (starving phytopathogenic bacteria by binding iron (e.g. (187b,

406)),
– environmental problems (binding heavy metal ions (e.g. (90a)), degrading

detrimental compounds (e.g. (205a)), mobilizing uranium and trans-uranium
elements in contanimated soils (e.g. (242a)),

just to mention some areas. The diversity of scientific journals to be found in the

References Section gives an idea of where information on siderophores can be

hidden.

Structural work may take its time. Examples are Pseudomonas mendocina
(Sect. 2.9) where the first structural data were reported in 2000 and the next

pertinent publication appeared in 2008, or Legionella pneumophila (Sect. 4.5)

whose legiobactin was first characterized in 2000, further details followed in

2007 and 2009, with loose ends in both cases. Only partially characterized side-

rophores are mentioned wherever data were available in order to stimulate further

work. This would be worthwhile: siderophore research is a fascinating branch of

natural products chemistry promising sometimes surprising results (e.g. (311, 388)).

Acknowledgement Many thanks are due to Dr. J. Neudörfl for preparing the Plates with side-

rophore X-ray structures. Data bases for the X-ray structures: Plate 1: FEPSBC 10; 3: TEQKQV;

4: YELJOP; 5: VENPAC; 6: CUHGUH.

Appendix

Table 7. Pyoverdins Isolated from Pseudomonas spp.

P. Name Peptide chaina,b,c,d Masse Referencesf

(a) Complete or fairly complete structures

Pyoverdins with a C-terminal cOHOrn

6 amino acids

f Ps (= B10h) eLys-OHAsp-Ala-aThr-Ala-cOHOrn 989 (352–354)
f Py 9AWn Ser-Lys-OHHis-aThr-Ser-cOHOrn 1043 (42)
ap Py 4al (= Py SB83) Ala-Lys-Thr-Ser-AcOHOrn-cOHOrn 1046 (47)
p iPy BTP1 Asp-Ala-Asp-AcOHOrn-Ser-cOHOrn 1047 (168)

7 amino acids

f Py PL7 Ser-AcOHOrn-Ala-Gly-aThr-Ala-

cOHOrn

1046 (16)

f Py BTP2 Ser-Val-OHAsp-Gly-Thr-Ser-cOHOrn 1049 (270)
p Py G4R Asp-Orn-(OHAsp-Dab)-Gly-Ser-

cOHOrni
1073 (33, 309)

Py 2908 Ser-Orn-OHAsp-Ser-Ser-Ser-cOHOrn 1088 (373)
ae Py T IIg (=27853) Ser-FoOHOrn-Orn-Gly-aThr-Ser-

cOHOrnbb
1091 (350)

f Py PL8 Lys-AcOHOrn-Ala-Gly-aThr-Ser-

cOHOrn

1103 (16)
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Table 7. (continued)

P. Name Peptide chaina,b,c,d Masse Referencesf

p Py 11370 Asp�eLys-OHAsp-Ser-Ala-Ser-
cOHOrn

1106 (48)

p iPy 90-33 Asp-Lys-Thr-OHAsp-Thr-aThr-

cOHOrn

1164 (345)

8 amino acids

p Py 90-51 Asp-eLys-OHAsp-Ser-Gly-aThr-Lys-
cOHOrn

1234 (343)

9 amino acids

c, au Py Pauu Ser-AcOHOrn-Gly-aThr-Thr-Gln-Gly-

Ser-cOHOrn

1277 (21)

f Py 2392 (= A6h) Lys-AcOHOrn-Gly-aThr-Thr-Gln-Gly-

Ser-cOHOrn

1318 (23)

p Ps 589Ao Asp�eLys-OHAsp-Ser-Thr-Ala-Glu-
Ser-cOHOrn

1336 (279)

p Py 2461 (=L1h,

WCS358h)

Asp-eLys-OHAsp-Ser-aThr-Ala-Thr-
Lys-cOHOrncc

1349 (365)

ap Py 3bt Asp-(AcOHOrn-Dab)-Thr-Ala-Thr-Thr-

Gln-cOHOrn

1358 (349)

10 amino acids

f Py 2798 (=Waa) (Ser-Dab)-Gly-Ser-OHAsp-Ala-Gly-

Ala-Gly-cOHOrn

1187 (78)

f Py 17400 Ala-Lys-Gly-Gly-OHAsp-(Gln-Dab)-

Ser-Ala-cOHOrni
1299 (77)

p Py 1,2 Ser-Thr-Ser-Orn-OHAsp-(Gln-Dab)-

Ser-aThr-cOHOrn

1405 (130)

f Py 1.3 Ala-Lys-Gly-Gly-OHAsp-(Gln-Dab)-

Gly-Ser-cOHOrn

1285 (125)

t Py 2192 Ser-Lys-Ser-Ser-Thr-Ser-AcOHOrn-

Thr-Ser-cOHOrn

1424 (78)

p iPy 90-44 Asp-Lys-AcOHOrn-Thr-Ser-Ser-Gly-

Ser-Ser-cOHOrns
1408 (344)

11 amino acids

f Py 51W Ala-Lys-Gly-Gly-OHAsp-Gln-Ser-Ala-

Gly-aThr-OHOrn

1375 (371)

aIn part (a) D-amino acids are underlined; a broken line indicates either that the stereochemistry of

the amino acid has not been determined or that a specific amino acid occurs both in the D- and the

L-form, but a localization of the the two enantiomers has not been effected. In part (b) D-amino

acids are indicated only when data are available from the literature
bAbbreviations: P, Pseudomonas; ae, aeruginosa; ap, aptata; as, asplenii; au, aureofaciens; c,
costantinii; ci, cichoriae; en, entomophila; f, fluorescens; li, libanensis; m, marginalis; mo,
monteilii; p, putida; pa, palleroniana; r, rhodesiae; s, syringae; t, tolaasii; Ps, pseudobactin; Py,
pyoverdin; iPy, isopyoverdin; amino acids: 3-letter code - in addition: OHAsp, threo-b-hydroxy-
Asp; OHHis, threo-b-hydroxy-His; OHOrn, N5-hydroxy-Orn; Ac(Fo,Bu)OHOrn, N5-acetyl (for-

myl, (R)-b-hydroxy-butyryl) OHOrn; cOHOrn, cyclo-OHOrn (3-amino-1-hydroxy-piperidone-2);

aThr, allo-Thr
cAmino acids are bound to the chromophore or to the preceding amino acid by their a-amino group

or in the case of Lys occasionally by its e-amino group (indicated as eLys)
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Table 7. (continued)

P. Name Peptide chaina,b,c,d Masse Referencesf

12 amino acids

f Py GM Ala-Lys-Gly-Gly-OHAsp-Gln-Ser-Ala-

Ala-Ala-Ala-cOHOrn

1430 (242)

Py 1547 Ser-Lys-Ala-AcOHOrn-Thr-Ala-Gly-

Gln-Ala-Ser-Ser-OHOrn

1547 (304)

Pyoverdins with a C-terminal cyclo-tetra- or tripeptide

cyclo-tetrapeptide

f Py G173 Ser-Ala-AcOHOrn-(Orn-Asp-

AcOHOrn-Ser)

1175 (363)

Py 96-312 Ser-Ser-FoOHOrn-(Lys-FoOHOrn-Lys-

Ser)

1190 (315)

Py 96.188 Ser-Lys-FoOHOrn-(Lys-FoOHOrn-Glu-

Ser)

1232 (379)

ae Py C-E (= PAO1h,

ATCC 15692, Pa)

Ser-Arg-Ser-FoOHOrn-(Lys-FoOHOrn-

Thr-Thr)

1333 (35, 81)

Py 95-275 (= BTP7h) Ser-Ser-FoOHOrn-Ser-Ser-(Lys-

FoOHOrn-Lys-Ser)

1364 (342)

f Py 12 Ser-Lys-Gly-FoOHOrn-Ser-Ser-Gly-

(Lys-FoOHOrn-Glu-Ser)

1520 (124)

cyclo-tripeptide

f Py 13525m Ser-Lys-Gly-FoOHOrn-(Lys-FoOHOrn-

Ser)

1160 (146)

pa Py 96-318 Ser-Orn-FoOHOrn-Ser-Ser-(Lys-

FoOHOrn-Ser)

1263 (315)

f Py 18-1 Ser-Lys-Gly-FoOHOrn-Ser-Ser-Gly-

(Lys-FoOHOrn-Ser)

1391 (3)

Pyoverdins with a C-terminal cyclodepsipeptide or a free carboxyl group

6 amino acids

a PS 6.10 Ala-Orn-OHAsp-Dab-AcOHOrn-Lys 1091 (46)

7 amino acids

ae Py R0 (Ser-Dab)-FoOHOrn-Gln-FoOHOrn-

Gly

1046 (305)

dParentheses indicate either a cycle formed by an amide or ester bond between the carboxyl group

of the C-terminal amino acid and a side chain functionality of another amino acid or the

condensation product of the NH2 groups of Dab with the amide carbonyl group of the preceding

amino acid giving a tetrahydropyrimidine ring (see Chart 1)
eNominal molecular mass for a Py or iPy chromophore with a succinic acid side chain; the exact

mass is about 0.5 Da higher
fReferences to complete structure elucidations. For further details see (37)
gProbably identical with the pyoverdin of Pseudomonas aeruginosa ATCC 9027 (212)
hThe structure published originally had to be corrected or amended; literature references to the

originally proposed structure may be found in (37)
iAccompanied by the not cyclized Dab form (M + 18)
jAccompanied by a non-cyclic pyoverdin with the same amino acid sequence
kFor this pyoverdin an e-amino Lys linkage was claimed but not substantiated. It is probably

identical with the pyoverdin from P. putida 9AW where a a-amino Lys linkage was established
lP. aptata is a pathovar of P. syringae. The same pyoverdin was found produced by P. fluorescens
SB83 (20). The identification of P. aptata may, therefore, be questioned (cf. also (179))
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Table 7. (continued)

P. Name Peptide chaina,b,c,d Masse Referencesf

ci PaB eLys-OHAsp-Thr-(Thr-Gly-OHAsp-
Ser)

1093 (50)

s Py 19310 eLys-OHAsp-Thr-(Thr-Ser-OHAsp-
Ser)j

1123 (179)

ae Py R (=Pa6) (Ser-Dab)-FoOHOrn-Gln-Gln-

FoOHOrn-Gly

1173 (127)

8 amino acids

p Ps A214 (= Ps 39167) Ser-AcOHOrn-Ala-Gly-(Ser-Ala-

OHAsp-Thr)j
1134 (365)

f Py P19 (= Ps 7 SR1h,

Ps A 225)

Ser-AcOHOrn-Ala-Gly-(Ser-Ser-

OHAsp- Thr)j
1150 (372)

ch Py D-TR133 Asp-FoOHOrn-Lys-(Thr-Ala-Ala-

FoOHOrn-Ala)j,x
1230 (17)

f Py I-III Asn-FoOHOrn-Lys-(Thr-Ala-Ala-

FoOHOrn-Lys)

1286 (287)

f CHAO Asp-FoOHOrn-Lys-(Thr-Ala-Ala-

FoOHOrn-Lys)

1287 (387)

9 amino acids

p Py C Asp-BuOHOrn-Dab-Thr-Gly-Ser-Ser-

OHAsp-Thr

1370 (319)

p Py BTP16 Asp-BuOHOrn-Dab-Thr-Gly-Ser-Ser-

OHAsp-Thr v
1370 (271)

10 amino acids

as Py fuscovaginae eLys-OHAsp-Ala-(Thr-Dab-Gly-Gly-
Thr-(OHAsp-Dab))

1316 (49a, 231)

(b) Partial or tentative structures

Pyoverdins with a C-terminal cOHOrn

p Thai (Ser-Dab)-Thr-Ser-AcOHOrn-cOHOrn 1016 (306)
f Py 244k Ser-eLys-OHHis-aThr-Ser-cOHOrn 1043 (132–134)
p Py 12633o Asp-Lys-OHAsp-Ser-Thr-Ala-Glu-Ser-

cOHOrn

1336 (80)

Pyoverdins with a C-terminal cyclo-tetra- or tripeptide
cyclo-tetrapeptide

f D47 Ser-Orn-FoOHOrn-(Lys-FoOHOrn-Glu-

Ser)

1218 (119)

r L25 Ser-Lys-FoOHOrn-Ser-Ser-Gly-(Lys-

FoOHOrn-Ser-Ser)

1421 (119)

mThe same pyoverdin was isolated from P. chlororaphisATCC 9446 (146) and CNR15 (162). The
reported isolation from P. putida KT2440 (297) is the result of a mix-up of strains (J.-M. Meyer,
private communication)
nProbably identical also with that from P. fluorescens 244
oThe Py 589A is probably identical with the pyoverdin Py Pp 12633
pEither the preliminary structural work or the identification of the strains may be questioned since

screening of a large number of P. aeruginosa strains revealed the existence of only three siderovars
characterized by the production of the pyoverdins Py C-E, Py R and Py Pa TII (234) plus probably of
a mutant of Py R (R0 (305)). Py Pa 15152 was shown to be identical with Pa D above (20)
qThe structural proposals are tentative; Orn/Asn and Lys/Gln have the same mass, Lys may be

incorporated in the peptide chain by its a- or its e-amino group
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Table 7. (continued)

P. Name Peptide chaina,b,c,d Masse Referencesf

cyclo-tripeptide

m G 76 Ser-Ser-FoOHOrn-Ser-Ser-(Lys-

FoOHOrn-Ser)

1236 (119)

DSM 50106 Ser-Lys-Gly-FoOHOrn-Ser-Ser-Gly-

(Orn- FoOHOrn-Ser)

1377 (119)

Pyoverdins where only limited mass spectral data are availableq

p Py GS43 Lys-OHAsp-Ser-Ser-Ser-cOHOrn 1007 (231)
li Py 96.195 Ala-Orn-OHAsp-Ser-Orn-Ser-cOHOrn 1091 (231)

Py G 85 Ser-Lys-OHAsp-Ser-Orn-Ser-cOHOrn 1121 (231)
Py G 76 Ser-Ser-FoOHOrn-Ser-Ser-Lys-

(FoOHOrn-Ser)

1236 (231)

Py HR6 Asp-e-Lys-OHAsp-Ser-Ser-Thr-Thr-
Thr-cOHOrn

1238 (231)

LBSA1 Asp-Arg-AcOHOrn-Lys-Ser-Asp-

cOHOrn

1260 (231)

mo iPy Lille 1 Asp-Lys-AcOHOrn-Ala-Ser-Ser-Gly-

Ser-cOHOrn

1291 (231)

f Py G153 Ser-Lys-Ala-Ser-Ser- AcOHOrn-Ser-

Ser-cOHOrn

1293 (231)

en L48 Ala-Asn-Dab-OHHis-Gly-Gly-Ala-Thr-

Ser-cOHOrn

1298 (219)

p Py G172 Ala-Lys-Dab-OHAsp-Thr-Gly- OHAsp-

Gly-Thr-Thr - H2O

1335 (231)

f Pf0-1 Ala-AcOHOrn-Orn-Ser-Ser-Ser-Arg-

OHAsp-Thr

1381 (231)

p 90-136/ G 168 Ser-Lys-Ser-Ser-Thr-Thr-AcOHOrn-

Ser-Ser-cOHOrn

1424 (231)

IB3 Ser-Ala-Thr-Gln-Orn-AcOHOrn-Thr-

Thr-Ala-Ser-Thr-Ala-Ala-cOHOrn

1764 (231)

Various pyoverdins with incomplete structural data

ae Py UNKp Ser-Thr-Ser-Gly-OHOrn-OHOrn (107)
ae Pa 15152p 2 Arg, 2 Orn, 3 Ser, 3 Thr (107)
p Py Pm OHAsp, Lys, OHOrn, 2 Ser, 3 Thr (212a)
s Py Ps Lys, OHOrn, 3 Ser, 3 Thr (362)
s Py PSSz 2 OHAsp, Lys, 2 Ser, 2 Thr (68)

P. mildenbergii Glu, Lys, Ser, Thrw (259)

rThe reported amino acid composition cannot be correct. The minimum molecular mass calculated

from it is about 120 u higher than the molecular mass determined by mass spectrometry. Also the

amino acids acting as ligands for Fe3+ are missing
s2 D-Ser, 2 L-Ser
tContains 2 Thr and one aThr. The amino acid analysis of the corresponding ferribactin gave

D-Ala, L-Asp, L-Dab, D- and L-Glu, L-Orn, D-aThr, L-Thr and D-Tyr
uThe same pyoverdin was isolated from P. tolaasii NCBBP 2192 (P. constantinii); the fact that the
strain designated as P. aureofaciens does not produce phenazines casts doubts on the correct

identification (364)
v1 Thr, 1 aThr
wRatios of 1:1:2:4 and 1:2:3:5 are reported for the pyoverdins from two strains of P. mildenbergii;
for the second one a blocked N-terminus was demonstrated
x1 D-Ala, 2L-Ala; the pyoverdin D-TR 133 is accompanied by a small amount of a pyoverdin where

the second Ala is replaced by Gly
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Notes Added in Proof

Section 2.5

Coelichelin from Streptomyces coelicolor comprises D-N5-formyl-N5-hydroxy-

Orn-D-aThr bound to N5 of L-N5-hydroxy-Orn whose N2 is acylated by D-N5-

formyl-N5-hydroxy-Orn (412).

Section 2.6

Erythrochelin from Saccharopolyspora erythraea is a coprogen-type siderophore

(Table 2) with Ac1 ¼ i and Ac2 ¼ D-Ser-D-N2, N5-diacetyl-N5-hydroxy-Orn (413).

Section 2.7

The transport system of Bacillus subtilis accommodates the Fe3+ complexes of

enterobactin (D-configured), enantio-D-enterobactin and of corynebactin (bacilli-

bactin) (both L). Since only L complexes can be bound to the receptor a configu-

rational change from D toL is induced. Only the natural ferri-L-siderophores can be

degraded enzymatically (399, 408).
From Nocardia tenerifensis the heterobactin JBIR-16 was obtained (30, R¼ DHB).

The stereochemistry of the twoOrn residues was not established. Bymass spectrometry

a 1:1 Fe3+/Lig ratio was determined for the red complex (407).
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198. Kunze B, Trowitzsch-Kienast W, Höfle G, Reichenbach H (1992) Nannochelins A, B and

C, New Iron Chelating Compounds from Nannocystis exedens (Myxobacteria). Production,

Isolation, Physico-chemical and Biological Properties. J Antibiotics 45: 147

199. Lane SJ, Marshall PS, Upton RJ, Ratledge C, Ewing M (1995) Novel Extracellular Myco-

bactins, the Carboxymycobactins from Mycobacterium avium. Tetrahedron Lett 36: 4129

200. Lankford CE, Walker JR, Reeves JB, Nabbut NH, Byers BR, Jones RJ (1966) Inoculum-

Dependent Division Lag of Bacillus Cultures and its Relation to an Endogenous Factor(s)

("Schizokinen"). J Bacteriol 91: 1070

201. Ledyard KM, Butler A (1997) Structure of Putrebactin, a New Dihydroxamate Siderophore

Produced by Shewanella putrefaciens. J Biol Inorg Chem 2: 93

202. Lee BH, Miller MJ (1983) Natural Ferric Ionophores: Total Synthesis of Schizokinen,

Schizokinen A, and Arthrobactin. J Org Chem 48: 24

203. Lee CH, Lewis TA, Paszczynski A, Crawford RL (1999) Identification of an Extracellular

Catalyst of Carbon Tetrachloride Dehalogenation from Pseudomonas stutzeri Strain KC as

Pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Commun 261: 562

204. Leong SA, Winkelmann G (1998) Molecular Biology of Iron Transport in Fungi. In: Sigel

A, Sigel H (eds) Metal Ions in Biological Systems. Marcel Dekker, New York, 147

205. Lesueur D, Diem HG, Meyer JM (1993) Iron Requirement and Siderophore Production in

Bradyrhizobium Strains Isolated from Acacia mangium. J Appl Bacteriol 74: 675
205a. Lewis TA, Crawford RL (1995) Transformation of Carbon Tetrachloride via Sulfur and

Oxygen Substitution by Pseudomonas sp. Strain KC. J Bacteriol 177: 2204

206. Liles MR, Scheel TA, Cianciotto NP (2000) Discovery of a Nonclassical Siderophore,

Legiobactin, Produced by Strains of Legionella pneumophila. J Bacteriol 182: 749
207. Linke WD, Crueger A, Diekmann H (1972) Stoffwechselprodukte von Mitroorganismen.

106. Mitteilung. Zur Konstitution des Terregens-Faktors. Arch Mikrobiol 85: 44

208. Liu WC, Fisher SM, Wells JS Jr, Ricca CS, Principe PA, Trejo WH, Bonner DP,

Gougoutos JZ, Toeplitz BK, Sykes RB (1981) Siderochelin, a New Ferrous-ion Chelating

Agent Produced by Nocardia. J Antibiot 34: 791
209. Llinás L, Neilands JB (1976) The Structure of Two Alanine Containing Ferrichromes:

Sequence Determination by Proton Magnetic Resonance. Biophys Struct Mechanism 2: 105

210. Loomis LD, Raymond KN (1991) Solution Equilibria of Enterobactin and Metal-entero-

bactin Complexes. Inorg Chem 30: 906

211. Luo M, Fadeev EA, Groves JT (2005) Membrane Dynamics of the Amphiphilic Side-

rophore, Acinetoferrin. J Am Chem Soc 127: 1726

212. MacDonald JC, Bishop GG (1984) Spectral Properties of a Mixture of Fluorescent Pig-

ments Produced by Pseudomonas aeruginosa. Biochim Biophys Acta 800: 11

212a. Maksimova NP, Blazhevich OV, Lysak VV, Fomichev YuK (1994) Characteristics of

fluorescent pigment pyoverdin Pm produced by Pseudomonas putida bacteria.Microbiology
63: 587 (Russian original:Mikrobiologia 63: 1038)

213. Marshall B, Stintzi A, Gilmour C, Meyer JM, Poole K (2009) Citrate-mediated Iron-uptake

in Pseudomonas aeruginosa: Involvement of the Citrate-inducible FecA Receptor and the

FeoB Ferrous Iron Transporter. Microbiology 155: 305

214. Martin JD, Ito Y, Homann VV, Haygood MG, Butler A (2006) Structure and Membrane

Affinity of New Amphiphilic Siderophores Produced by Ochrobactrum sp. SP18. J Biol

Inorg Chem 11: 633

215. Martinez JS, Butler A (2007) Marine Amphiphilic Siderophores: Marinobactin Structure,

Uptake, and Microbial Partitioning. J Inorg Biochem 101: 1692

216. Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003)

Structure and Membrane Affinity of a Suite of Amphiphilic Siderophores Produced by a

Marine Bacterium. Proc Natl Acad Sci USA 100: 3754

217. Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000)

Self-assembling Amphiphilic Siderophores from Marine Bacteria. Science 287: 1245
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350. Tappe R, Taraz K, Budzikiewicz H, Meyer JM, Lefèvre JF (1993) Structure Elucidation
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