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Abstract The paper presents a numerical homogenisation approach to calcu-
late the effective properties of fibre and particle reinforced materials including
smart and multifunctional materials with a focus on piezoelectric fibre com-
posites applied to control vibration and noise radiation of structures. This
finite element based homogenisation is used to optimise the material distri-
bution at the micro-scale by applying an evolutionary approach to receive a
desired global behaviour of a structure at the macro-scale.

1 Introduction

Composite materials play a major role in meeting the increasing demand of
the industry for lightweight and low-cost structures. Compared to classical
monolithic engineering materials, composites offer higher specific strength
and specific stiffness values.

Smart piezoelectric fiber and particle reinforced composites are a new class
of materials, which are increasingly used to actively influence structures to
reduce, e.g., the vibration and the noise radiation [10]. Recently, composite
piezoelectric materials have been developed by combining piezoceramic fibers
with passive non-piezoelectric polymers, such receiving active fibrous com-
posites.

A number of methods have been developed to predict the homogenized
material properties of composites, which are required to perform static and
dynamic structural analysis. Analytical approaches ([1], [17]) are not capable
of predicting the response to general loadings, i.e., they do not give the full
set of overall material parameters. Semi analytical, Hashin/Shtrikman-type
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and other bounds for describing the complete overall behavior (i.e., provid-
ing all elements of the material tensors) have been developed (see [4], [7],
[15], [16]), which are useful tools for theoretical considerations. However, the
range between the bounds can be very wide for certain effective moduli.
Mechanical mean field type methods have been extended to include electro-
elastic and thermal effects based on an Eshelby-type solution [9], [14], [18].
The restrictions of the methods can be overcome by employing periodic mi-
cro field approaches where the fields are typically solved numerically with
high resolution, e.g., by the finite element method [11]. Most of these meth-
ods are restricted to regular packings of fibers (rectangular and hexagonal).
However, in practical situations the fibers are aligned in their longitudinal
direction, while their arrangement in the matrix in transverse cross-section
is usually distributed randomly. To the knowledge of the authors, there is
not much development to handle the problem of transversely randomly dis-
tributed multi-field fiber composites properly. The aim of the present paper is
to present a numerical finite element based approach to predict the full set of
piezoelectric, dielectric, and mechanical effective material coefficients of such
composites with complex geometrical reinforcements (for details see [5], [13]).
This approach is used to optimize the microstructure (fiber distribution, fiber
orientation, fiber-volume fraction etc.) with respect to an objective function
defined at the macrostructure.

2 Numerical homogenization

Numerical finite element based micromechanical methods provide a power-
ful general tool to calculate the homogenized properties of fiber and parti-
cle reinforced and multi-field composite materials, such as piezoelectric fiber
composites, through an analysis of a periodic representative volume element
(RVE).

In piezoelectric fiber composites an electric potential gradient causes de-
formations (converse piezoelectric effect), while strains cause an electric po-
tential gradient in the material (direct piezoelectric effect). The behavior of
a piezoelectric medium in low electric and mechanical applications can be
described by the following linear piezoelectric constitutive equations, which
correlate stresses T, strains .S, electric fields E, and electrical displacements
D as follows (the superscript ¢ for transpose)

o] =[] [3] ®

where C' is the elasticity matrix, € is the permittivity matrix, and e is the
piezoelectric strain coupling matrix.
The numerical finite element based calculation of the mean values of a
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Fig. 1 Representative unit cell (left) and corresponding finite element mesh (right)

piezoelectric fiber composite is based on a representative volume element
(RVE), which captures the global behaviour of the composite. If the fibers
are randomly distributed the size of the RVE with respect to the diameter
of the fibers is an important criterion. Our approach applies the random se-
quential absorption algorithm (RSA) [19] modified to provide a minimum
distance between any two fibers and for periodicity between opposite bound-
ary surfaces. In this algorithm the coordinates of the center of the fibers are
generated randomly step by step. A new generated midpoint coordinate is
checked for non-overlapping conditions with previously placed fibers. If there
is no overlapping and the periodicity is satisfied, then the fiber will be placed
on the plane. If a fiber cuts the boundary of the unite cell, then on the oppo-
site site also a fiber has to be placed to grantee the periodicity. This process
will be terminated when the desired volume fraction is achieved or when no
more fibers can be added because of the jamming limit, which can occur at
a volume fraction higher than 55%. For higher volume fractions, different
diameters of fibers are used, and these are placed on the x1-x5 plane in a de-
scending manner. With this approach the volume fraction achieved is about
80% with an adequate finite element meshing. Figure 1 shows an example
of such a generated RVE with variable diameters of fibers, and their corre-
sponding 3D finite element mesh.

Composite materials can be represented as a periodical array of the RVEs,
where each RVE has the same deformation mode, and there is no separation
or overlap between the neighboring RVEs after deformation. These periodic
boundary conditions described in Cartesian coordinates are given by [17]

U; = gijl‘j —+ v; (2)

S'ij denotes the average strains, and v; is the periodic part of the displacement
components (local fluctuation) on the boundary surfaces. The difference of
the displacements of a pair of opposite boundary surfaces points (with their
normal along the z; axis) is

uET WK = Sij (xK+—mJI-(_>, (3)
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where the index K’ means along the positive z; direction, and K~ means
along the negative x; direction on the corresponding surfaces of the 3D RVE.
The local fluctuations are identical on two opposing faces and disappear in
the difference. Similarly, the periodic boundary conditions for the electrical
potential are given as

K" oK =, (:riKJrfsz_), (4)

where @ represents the voltage and F; represents the average electric field.
The average mechanical and electrical properties of a unit cell, calculated
by

_ 1 - 1
Sij = V/Vsijdv ;o Ty = V/VTijdV,

_ 1 _ 1
Ei=— | BV , Di=— | Didv, 5
y /V > /V (5)

are finally used to calculate the mean values of the material tensor with help
of equation (1) (for details see [13]).

All finite element calculations are made with the commercial FE package
ANSYS for fully coupled electromechanical analyses. An APDL-script allows
performing all required calculations to evaluate finally the effective material
properties automatically in a batch processing, which provides a powerful
tool for a fast calculation of homogenized material properties for composites
with a great variety of inclusion geometries.

3 Optimization of fiber reinforced composites

The optimization goal is the minimization of an appropriate objective func-
tion

min f(x) , S={xeRV|hi(x) =0, g;(x) <O}, (6)
where x is the N-dimensional vector of design variables, h;(x), i = 1,...,n
and g;(x), j = 1,...,m are the equality constraints and the inequality con-
straints, respectively. To solve the optimization problem various methods
have been developed [12], which require the computation of gradients. Their
operability can only be guaranteed if the objective function is continuously
differentiable and uni-modal. When composite materials are considered, the
objective functions are more likely to be non-smooth, non-differentiable and
multimodal [20]. In such cases we suggest direct methods, which apply prin-
ciples of natural evolution (recombination, mutation and selection) to a set
1 of feasible solutions, the individuals
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w = [z1, X2, --+ TN, 01, 02, -+ ON,] , k=1,..,p4 (7)

N stands for the problem dimension, x; represent the design variables of
the optimisation problem, and o; are the step-sizes for the mutation process.
The generation of new solutions starts with recombination, where a number
of A > p offspring individuals are created by exchanging or averaging the
properties of randomly selected parents

Wy OF Wys
wh.o=4 P " k=1,.,\, i=1,...,.N, pqg~U(l,p). (8
ki {(wpi+wqi)/2 pg~U(Lp). (8)

For more recombination variants see [3]. A mutation is carried out by the
application of small random changes in each component of an individual.
The process starts with the variation of the mutation step-sizes as

O—;C/i :o-;ci'h(zka Ty =" TT)~ (9)

The function h depends on the standard normal distributed random variants
Z ~ N(1,0) as well as on r heuristic factors 7, j = 1,...,7 (see [2], [3], [6]).
The object variables are then mutated according to

o=tk , k=1, (10)

where z; ~ N(0,07;) is a normal distributed random variant which depends
on the individual mutation step-sizes. The population consists finally of A
offsprings

w' = [z, &y, - aly, of, 0y, ok ], k=1, (11)
After the evaluation of the objective function is performed for each individ-
ual, the p best individuals are selected to become the parents for the next
iteration.

The generation loop is repeated until a termination criterion, such as a
lower limit for the mutation step-sizes, is fulfilled. A general software tool
has been developed on the basis of evolution strategies with an interface to
the commercial finite element code ANSYS. Our software possesses a modu-
lar structure, allowing for the implementation of various intermediate steps
in the optimization process.

4 Results and Discussion

For the calculation of effective coefficients we consider a composite with cir-
cular piezoelectric (PZT-5) fibers uniformly polarized along the x3 direction
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[ C11 [C12 [ C13 [ C33 | Caa [ Cos [ e1s [ers] ess| en €33
PZT-5 121|754 {752 |11.1|2.11 | 2.28 [12.3|5.4[15.8] &8.11 7.35
Polymer|0.386(0.257(0.257(0.386|0.064|0.064| - | - | - [0.07965|0.07965

Table 1 Material properties of the composite constituents fiber (PZT-5) and matrix,
(Polymer) (C;; [GPa]; e;j [C/m?]; &;; [nF/m])

[50% volume fraction] C11|C12][Ca2|Cas| Cs3 [C13]Ces|Caa|

Same diameter 9.40(4.9319.07|5.47{31.96(5.58|1.87|1.99

Random diameter [9.23(4.93(9.13|5.49(31.91|5.52(1.87| 2.0
|50% volume fractionl e1s | e13 |e33 | €11 |€33 |

Same diameter 0.0021{-0.224(9.81]0.273|3.86
Random diameter [0.0021(-0.219{9.80(0.266(3.85

Table 2 Comparison of piezoelectric fibers, (C;; [GPal; e;; [C/m?]; €;; [nF/m])

and embedded randomly in a soft non-piezoelectric material (polymer) in the
transverse cross section (Table 1).

4.1 Effect of the Fiber Diameter on Effective Material
Properties

Investigations are performed to study the influence of the diameter of piezo-
electric fibers on the effective material properties of these composites. The
fluctuations (error) of effective material properties around the mean value,
which are obtained from the ensemble averages of the effective material prop-
erties of five RVE samples, are negligible.

The numerical homogenization techniques are also applied to two different
types of the RVE models, one with an identical diameter of all piezoelectric
fibers and another with a random diameter of fibers between 0.32mm and
0.12mm at 50% volume fraction. In both cases, also five different RVE sam-
ples are considered, and the effective material properties are obtained from
the ensemble average of the effective material properties. It is observed that
the differences in the effective material properties are again negligible, and
the differences between the random and identical diameter of piezoelectric
fibers are at most 2% (see Table 2).

4.2 Influence of the fiber arrangement

The effective electrical and mechanical properties of transversely randomly
distributed uni-directional piezoelectric fiber composites are evaluated for dif-
ferent volume fractions up to 80%. The effective material properties, which
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Fig. 2 Comparison of effective mechanical properties of transversely randomly distributed
piezoelectric fiber composites (TRDF) with square (SQUARE) and hexagonal (HEX) array
with the analytical self-consistent scheme by Levin [14] (SCS-Levin).
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Fig. 3 Comparison of effective piezoelectric properties of transversely randomly dis-
tributed fiber composites (TRDF) with square (SQUARE) and hexagonal (HEX) array
with the analytical self-consistent scheme by Levin [14] (SCS-Levin).

are obtained for these cases, are compared with a square arrangement and
a hexagonal arrangement of the piezoelectric fibers. For the square arrange-
ment the maximum theoretically achievable volume fraction is 78.54%. Due
to the meshing limits with our finite element approach a maximum volume
fraction of 70% can be generated only. Figs. 2 and 3 represent the effective
mechanical and piezoelectric properties, respectively, calculated for different
fiber arrangements in the composite. The figures compare the numerically
calculated results based on different fiber arrangements, such as the trans-
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versely randomly distributed arrangement (TRDF), the square arrangement
(SQUARE) and the hexagonal arrangement (HEX) with the results calcu-
lated by the self consistent schema (SCS-LEVIN) [14]. From Fig 2 it can be
observed that the transverse mechanical properties are tending to increase
for transversely randomly distributed composites when compared with regu-
lar array composites, especially for the hexagonal array, but not in all other
cases. As a comparison between the square array and the hexagonal array,
the hexagonal array has a 6-fold axis of symmetry along fiber direction, and
results in a transverse isotropic behavior, i.e., Ci§ — C55 = 2Cgg, whereas for
the case of the square array, it has only 4-fold axis of symmetry, and it will
give rise to a tetragonal behavior resulting in a higher transverse stiffness.
For the transverse shear modulus C§g, it is observed that the square array
composite has a lower transverse shear modulus, and the hexagonal array
composite has a higher value and satisfies the transverse isotropy.

In general, from our analysis it can be observed that the assumption of
a transversely randomly distributed fiber composites results in higher trans-
verse material properties when compared with a regular array of fiber ar-
rangement. The longitudinal material properties are almost the same like for
a regular array of composites. Also the numerical results of the effective ma-
terial coefficients like CfY, €57 along the transverse direction of a transversely
randomly distributed fiber composites match well with the results of SCS
at lower volume fractions in the considered fraction range between 10% and
40%. Beyond this volume fraction range, the effective coefficients of SCS are
underestimated.

The transverse isotropy was checked for all generated RVE samples and
for all effective material coefficients.

4.3 Optimization of a short fiber composite

We consider a quadratic plate with a hole in the middle consisting form a
polysulfon matrix being reinforced by short aramid fibers and loaded in z-
direction by a distributed load (for details see [8]). The amount of fibers in
the plate is limited to a prescribed average fiber density. The purpose of the
optimization is to distribute a fixed amount of fibres in the matrix material
in such a way, that a maximal structural stiffness is obtained under restric-
tions concerning the maximal principal stress and the average fibre density in
the plate. A (10, 70)-ES with discrete recombination and Schwefels mutation
type is applied [6].

Fig. 4 shows the optimal fiber orientations and the directions of the prin-
cipal stresses. The fibres concentrate in regions close to the upper side of the
hole, where the maximal stresses occur. A similar result is published in [8].
The optimization algorithm converges after about 80 generations leading to
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(a) fiber orientations (b) principal stress directions

Fig. 4 Optimal short fibre orientations and principal stress directions

a decrease of 49% in the objective function when compared to the random
initial design.

5 Conclusion

A finite element based numerical homogenization approach to evaluate the
effective material properties of active piezoelectric fiber composites is pre-
sented. A generalized procedure has been developed to calculate all effective
coefficients automatically for all volume fractions based on the ANSYS Para-
metric Design Language. It reduces the manual work and time and can be
used as a template to evaluate the effective coefficients of piezoelectric fiber
composites with arbitrary arrangement of fibers. It is shown that evolution
strategies are a reliable and efficient method for the optimization of composite
structures. The algorithm operates on a set of feasible solutions and requires
no derivatives of the objective function. It has superior global search quali-
ties and can be used even for non-differentiable, non-smooth and multimodal
problems, which arise frequently in the context of the optimization of com-
posite structures. The test example underlines the good research properties
of evolution strategies.
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