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Abstract The Central Equation of Dynamics allows a unified view on exist-
ing methods and reveals them as a specific view on one and the same classical
mechanics. Thereby, the particular methods exhibit special advantages and
disadvantages according to the aim of investigation. For the derivation of
the motion equations, the analytical methods display some drawbacks: the
use of non-holonomic velocities needs an enormous effort and non-holonomic
constraints can not à-priori be considered. Due to the directional derivatives
w.r.t. the angular velocities, the obtained linearized equations do not repre-
sent the motions w.r.t. the co-rotational frame (and any orthogonal frame,
resp.) as usually requested. This fact may lead to severe misinterpretations.
In elastic multi body systems, the calculation effort increases dramatically.
All these drawbacks are removed when using the Projection Equation.

1 Basics: The Central Equation of Dynamics

The principle of virtual work in dynamics,
∫

(S)

(dmr̈− dfe)T δr = 0, (1)

was established by J.L. de Lagrange in 1764. Two years before he explained
”I have to emphasize that I introduced a new characteristic δ; here, δr1

shall express a differential w.r.t. r which is not the same as dr but which
is nevertheless built with the same rules”. This statement obviously misled
many people, in the past as well as in the present, [”obscure” (L.Poinsot,
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1 Z from his original contribution is replaced here with r.
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1837); ”black magic” (Th. Kane (1986)]. However, considering dr/dt instead
of dr sheds light on the brilliant background of Lagrange’s concept: dr/dt =
ṙ and δr are tangent vectors w.r.t. the constraint planeΦ(r) = 0 : (∂Φ/∂r)ṙ =
0
∧

(∂Φ/∂r)δr = 0. (Lagrange himself calls δr virtual velocities). Hence,
δr is kept arbitrary (in direction and in magnitude) while ṙ represents the
real solution. Adopting this intepretation leads with a few steps of calculation
to the Central Equation of Dynamics

d

dt

[(
∂T

∂ṡ

)
δs
]
− δT − δW = 0,





T : kinetic energy
ṡ = H(q)q̇ : minimal velocities,

non-holonomic

q ∈ Rf : minimal coordinates

H ∈ Rf,f : regular,

(2)

from which a considerable body of methods in dynamics is derived (Helm-
holtz, Gibbs, Appell, Hamilton, Lagrange, Tzenoff, Nielsen, Mag-
gi, Hamel · · · and the Projection Equation). The Central Equations thereby
states that all these methods represent one and the same (classical) mechan-
ics but looked at from different view-points. The Central Equation allows
thus a fair comparison of methods.

2 Non-Holonomicity

The motion of a (fast moving) elastic system is composed of ”rigid body
coordinates” and of superimposed ”elastic coordinates” (the combination of
which has been introduced as ”hybrid coordinates” by P.W. Likins in the
1970ies). The corresponding ”elastic velocities” are assumed to move with
small amplitudes and are therefore integrable. Thus, non-holonomicity can
only arise from the rigid body motion. It is essential to emphasize that non-
holonomic velocities have à-priori nothing in common with non-holonomic
constraints while, the other way round, non-holonomic constraints need non-
holonomic velocities for description.

2.1 Analytical Methods

One of the most common procedures for the treatment of non-holonomic
systems is due to G. Hamel. His (explicit form of) equations read

d

dt

∂T

∂ṡn
− ∂T

∂sn
−Qn +

∑

ν,µ

∂T

∂ṡν
ṡµβ

µ,n
ν = 0 ; n = 1 · · · f, (3)
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βµ,nν =
∑

i,k

∂q̇k
∂ṡµ

∂q̇i
∂ṡn

(
∂2sν
∂qi∂qk

− ∂2sν
∂qk∂qi

)
= −βn,µν , i, k = 1 · · · f, (4)

where βµ,nν represent his famous coefficients; as can be seen from Eq.(4),
they are zero for sν being holonomic (fulfillment of H. Schwarz’s rule). For
nonholonomic sν , the term in parentheses vanishes for i = k, thus 2f(f − 1)
summation terms remain for each βµ,nν .

Let us consider a simplified model of a (rigid) car neglecting the wheel
masses. It moves in the (inertial) x-y-plane with velocities vx, vy, γ. The front
wheel is a suspension wheel with arbitrary motion while the rear wheels are
not allowed to slide, i.e. vy = 0 w.r.t. the body-fixed frame (index B). This
is a non-holonomic constraint. It is, however, not allowed to set vy = 0 in
advance, since then T would not more depend on vy yielding wrong results.
Thus, the calculation has first to be done for the whole set of variables:
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d

dt

∂T

∂ṡn

− ∂T

∂sn

−Qn +
∑

ν,µ

[
∂T

∂ṡν

ṡµ β
µ,n
ν

]
= 0, n = 1 · · · f, (3)

βµ,n
ν =

∑

i,k

∂q̇k

∂ṡµ

∂q̇i

∂ṡn

(
∂2sν

∂qi∂qk

− ∂2sν

∂qk∂qi

)
= −βn,µ

ν , i, k = 1 · · · f, (4)

where βµ,n
ν represent his famous coefficients; as can be seen from eq.(4),

they are zero for sν being holonomic (fulfillment of H. Schwarz’s rule). For
nonholonomic sν , the term in parentheses vanishes for i = k, thus 2f(f − 1)
summation terms remain for each βµ,n

ν .
Let us consider a simplified model of a (rigid) car neglecting the wheel

masses. It moves in the (inertial) x-y-plane with velocities vx, vy, γ. The front
wheel is a suspension wheel with arbitrary motion while the rear wheels are
not allowed to slide, i.e. vy = 0 w.r.t. the body-fixed frame (index B). This
is a non-holonomic constraint. It is, however, not allowed to set vy = 0 in
advance, since then T would not more depend on vy yielding wrong results.
Thus, the calculation has first to be done for the whole set of variables:
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vy
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T = 1
2 ṡT




m 0 0
0 m mc
0 mc Co


 ṡ,

ṡ =




vx

vy

ωz


, q =




x

y

γ


, (5)

Example

T =
1
2
ṡT



m 0 0
0 m mc
0 mc Co


 ṡ,

ṡ =



vx
vy
ωz


 , q =



x
y
γ


 , (5)



ṡ1

ṡ2

ṡ3


 =




cos γ sin γ 0
− sin γ cos γ 0

0 0 1





q̇1

q̇2

q̇3


⇒



q̇1

q̇2

q̇3


 =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1





ṡ1

ṡ2

ṡ3


 ,

(6)
(m: mass, c: mass center distance, Co: moment of inertia w.r.t. the B-frame
origin). The determination of the β’s is tedious2 even for this simple example.
They turn out +1,−1, 0, e.g.

β1,3
1 = −∂q1

∂s1

∂2s1

∂q1∂q3
− ∂q2

∂s1

∂2s1

∂q2∂q3
= (− cos γ)(− sin γ)− (sin γ)(cos γ) = 0

(7)
etc. From Eq.(3) one obtains the equations

2 For practical purposes, Hamel himself prefers a direct calculation of dδs − δds: ”it is

perhaps not always convenient to calculate the table of the β’s . . . but in fact easier to look
for the δsµ from the expression δdsρ − dδsρ” [Hamel 1949], p. 483. (Hamel’s original ϑ is
replaced here with s).
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(
d

dt

∂T

∂vx
+ β3,1

2︸︷︷︸
−1

ωz
∂T

∂vy
−Q1)δs1 =

[
mv̇x −mcω2

z −mωzvy − fx
]
δs1 = 0,

(
d

dt

∂T

∂vy
+ β3,2

1︸︷︷︸
+1

ωz
∂T

∂vx
−Q2]δs2 = [mv̇y +mcω̇z +mωzvx − fy) δs2 = 0,

(
d

dt

∂T

∂ωz
+ β2,3

1︸︷︷︸
−1

vy
∂T

∂vx
+ β1,3

2︸︷︷︸
+1

vx
∂T

∂vy
−Q3)δs3

= [Coω̇z +mcv̇y +mcvxωz −Mz] δs3 = 0, (8)

which, after inserting the non-holonomic constraint vy = 0, yields the equa-
tions of motion

[
m 0
0 Co

](
v̇x
ω̇z

)
+
[

0 −mcωz
mcωz 0

](
vx
ωz

)
−
(
fx
Mz

)
=
(

0
0

)
. (9)

2.2 Projection Equation

On the other hand, applying the Projection Equation

N∑

i=1

{[(
∂vc
∂ṡ

)T (
∂ωc
∂ṡ

)T] [ ṗ + ω̃IRp− fe

L̇ + ω̃IRL−Me

]}

i

= 0 (10)

(index c: mass center, index IR: reference frame R w.r.t. inertial frame I;
v,ω: velocity and angular velocity.; p,L: momentum and momentum of mo-
mentum; fe,Me: impressed force and torque; (̃ ): spin tensor; all terms repre-
sented in the reference coordinate system R) leads directly to the desired re-
sults. Once the cartesian velocities are calculated, all the remainder is known.
Especially, the functional matrix [(∂vc/∂ṡ)T (∂ωc/∂ṡ)T ] is nothing but the
coefficient matrix of the cartesian velocities w.r.t. the (chosen or calculated)
minimal velocities ṡ. For the car model we have



vcx
vcy
ωcz


 =




1 0
0 c
0 1


 ṡ , ṡ =

(
vx
ωz

)
. (11)

The chosen reference frame is the body-fixed one and the non-holonomic
constraint vy = 0 is already inserted. The matrix in square brackets repre-
sents the requested functional matrix [(∂vcx/∂ṡ)T (∂vcy/∂ṡ)T (∂ωcz/∂ṡ)T ]T .
The momenta are obtained by multiplication with m (mass) and Cc (mo-
ment of inertia w.r.t. the mass center c), respectively. These ingredients are
combined according to Eq.(10) by simple matrix multiplications to obtain
the motion equations without any detour,
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[
1 0 0
0 c 1

]




m 0
0 mc
0 Cc


 s̈ +




0 −ωz 0
ωz 0 0
0 0 0





m 0
0 mc
0 Cc


 ṡ−



fx
fy
Mz





 = 0, (12)

yielding Eq.(9) directly.
As a conclusion one may state that for non-holonomic systems the use

of the Projection Equation is preferable to the use of any of the analytical
methods which come into question. The calculation requirements are simple
and the non-holonomic constraints may be inserted already at the beginning.
This is because directional derivations are not requested. The required effort
is minimal.

3 Rigid Multibody Systems (MBS)

For a later comparison with fast moving elastic systems we may stay for
a short while with MBS. The over all sum in Eq.(10) may be split into a
double sum where the first one denotes a number of considered subsystems
to be chosen. The second one then characterizes the number of bodies Nn
within the actual subsystem n. Along with the chain rule of differentiation
one obtains

Nsub∑

n=1

(
∂ẏn
∂ṡ

)T Nn∑

i=1

{[(
∂vc
∂ẏn

)T (
∂ωc
∂ẏn

)T] [ ṗ + ω̃IRp− fe

L̇ + ω̃IRL−Me

]}

i

= 0 (13)

in terms of describing velocities ẏn for each subsystem. Carrying out the
calculation for the second sum, from 1 to Nn, leads to the typical structure
of mechanical systems in the form [Mnÿn + Gnẏn−Qn]. In matrix notation
one has then for Eq.(13)

[(
∂ẏ1
∂ṡ

)T (
∂ẏ2
∂ṡ

)T
· · ·

(
∂ẏN
∂ṡ

)T ]



M1ÿ1 + G1ẏ1 −Q1

M2ÿ2 + G2ẏ2 −Q2

...
MNÿN + GNẏN −QN


 = 0 (14)

where Nsub is abbreviated N for brevity. The describing velocities follow from
the kinematic chain ẏn = Tnpẏp + Fnṡn (index p: predecessor). Starting
with the first subsystem which does not have a predecessor yields ẏ1 = F1ṡ1.
Insertion into ẏ2 then yields ẏ2 = T21F1ṡ1 + F2ṡ2, hence ẏ3 = T31F1ṡ1 +
T32F2ṡ2 + F2ṡ3 where T31 = T32T21 etc. Using ṡ = (ṡT1 ṡT2 · · · ṡTN )T for
minimal velocities leads Eq.(14) to
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


FT1 FT1 TT
21 · · · FT1 TT

N1

FT2 · · · FT2 TT
N2

. . .
...

FTN







M1ÿ1 + G1ẏ1 −Q1

M2ÿ2 + G2ẏ2 −Q2

...
MNÿN + GNẏN −QN


 = 0 (15)

which gives access to either a minimal representation (by inserting ẏn, ÿn
explicitly) or to a recursive alorithm in the sense of a Gaussian elimination
procedure. Obviously, the use of the Projection Equation once more leads to
minimum effort when compared to the analytical procedures.

4 Orthogonality

4.1 Hamilton’s Principle

One of the most popular procedures in the field of elastic body oscillations
is the use of Hamilton’s Principle to derive the equations of motion. Its
direct use in fast moving elastic systems, however, may cause problems. This
is demonstrated by a simple example: consider an elastic beam [two bending
variables v(x, t) and w(x, t)] which rotates quickly around its x-axis with α̇.
Hamilton’s Principle requires the variation of the kinetic energy T and of
the elastic potential V ,
Problems in Fast Moving Non-Holonomic Elastic Systems 7

Hamilton’s Principle requires the variation of the kinetic energy T and of
the elastic potential V ,

!
""""""""#

$

x

y

z

α̇

δT =
L∫
o

(
vT

c ρAδ vc + ωT
c ρI δωc

)
dx,

δV =
L∫
o

(EIzv
′′δv′′ + EIyw′′δw′′) dx, (16)

δW = Mxδα(0)

where: ρ: mass density, A: cross sectional area, I = diag{Ix, Iy, Iz}: tensor
of area moments of inertia, E: Young’s modulus, Mx: driving torque. The
mass center velocities of an element are

vc =




0
v̇ − α̇w

ẇ + α̇v


, ωc =




(
1− v′2

2 − w′2

2

)
v′ 0

−v′
(
1− v′2

2

)
0

−w′ 0 1







α̇

−ẇ′

v̇′


 (17)

where a Cardan–sequence −w′, v′ has been chosen for transformation from
the reference frame (rotating with α̇) to the element-fixed frame (sometimes
referred to as Tait-Bryan-sequence in the english speaking area). The prime
denotes spatial derivation, ( )′ = ∂( )/∂x. Without going into the details
of (the tedious) calculations, one obtains, after carrying out the required
integrations by parts, a result in the form

∫ L

o
{δα[· · ·] + δv[· · ·] + δw[· · ·]}

plus boundary terms. This is correct. However, usually one takes the square
brackets as motion equations, setting these individually equal to zero. Then,
in the present case, one obtains a rather strange result. Considering a circular
cross sectional area (Ix = 2Iy = 2Iz := 2I) yields

[ ∫ L

o

ρIxα̈−Mx

]
= 0 (⇒ α(t) known function),

[
ρA(v̈ − 2α̇ẇ−α̈w − α̇2v)− ρI(v̈′′ + v′′α̇2−w′′α̈) + (EIv′′)′′

]
= 0,

[
ρA(ẅ + 2α̇v̇+α̈v − α̇2w)− ρI(ẅ′′ + w′′α̇2−v′′α̈) + (EIyw′′)′′

]
= 0.(18)

Here, the (generalized) circulatory forces due to the angular acceleration
α̈ are, as expected, skew-symmetric for the translational part (ρA), but they

I

δT =
∫ L

0

(
vTc ρAδvc + ωTc ρIδωc

)
dx,

δV =
∫ L

0

(EIzv′′δv′′ + EIyw
′′δw′′) dx,

δW = Mxδα (16)

where: ρ: mass density, A: cross sectional area, I = diag{Ix, Iy, Iz}: tensor
of area moments of inertia, E: Young’s modulus, Mx: driving torque. The
mass center velocities of an element are

vc =




0
v̇ − α̇w
ẇ + α̇v


 , ωc =




(
1− v′2

2 − w′2

2

)
v′ 0

−v′
(

1− v′2

2

)
0

−w′ 0 1







α̇
−ẇ′
v̇′


 (17)

where a Cardan–sequence −w′, v′ has been chosen for transformation from
the reference frame (rotating with α̇) to the element-fixed frame (sometimes
referred to as Tait-Bryan-sequence in the english speaking area). The prime
denotes spatial derivation, ( )′ = ∂( )/∂x. Without going into the details
of (the tedious) calculations, one obtains, after carrying out the required
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integrations by parts, a result in the form
∫ L

0
{δα[· · · ] + δv[· · · ] + δw[· · · ]}

plus boundary terms. This is correct. However, usually one takes the square
brackets as motion equations, setting these individually equal to zero. Then,
in the present case, one obtains a rather strange result. Considering a circular
cross sectional area (Ix = 2Iy = 2Iz := 2I) yields

∫ L

0

(ρIxα̈−Mx)dx = 0 (⇒ α(t) known function),

ρA(v̈ − 2α̇ẇ−α̈w − α̇2v)− ρI(v̈′′ + v′′α̇2−w′′α̈) + (EIv′′)′′ = 0,

ρA(ẅ + 2α̇v̇+α̈v − α̇2w)− ρI(ẅ′′ + w′′α̇2−v′′α̈) + (EIyw′′)
′′ = 0. (18)

Here, the (generalized) circulatory forces due to the angular acceleration α̈
are, as expected, skew-symmetric for the translational part (ρA), but they
are symmetric for the rotational part (ρI). The reason is, that the rotation
axes which are assigned to the Cardan angular velocities (α̇,−ẇ′, v̇′ in the
present example) are not orthogonal. Because the analytical methods require
directional derivatives w.r.t. these, Eq.(18) represents the motion equations
in a non-orthogonal coordinate system which depends on the choice of the
sequence of deformations even in the case of small deformations. An interpre-
tation as motion equations w.r.t. the co-rotating reference frame, as usually
requested, is wrong.

4.2 The Projection Equation

The same as in the case of non-holonomic systems, the Projection Equation
does not need directional derivations and will therefore avoid such difficulties.
Considering elastic multibody systems (EMBS), the number of bodies of a
subsystem (e.g. beam slices) goes to infinity and the summation is replaced
with an integral, yielding the same equation structure as in the rigid body
case:

Nsub∑

n=1

∫

Bn

(
∂ẏn
∂ṡ

)T {[(
∂vc
∂ẏn

)T (
∂ωc
∂ẏn

)T] [
dṗ + ω̃IRdp− dfe
dL̇ + ω̃IRdL− dMe

]}

n︸ ︷︷ ︸
[dMnÿn + dGnẏn − dQn]

= 0

(19)
However, since the describing velocities now require the consideration of par-
tial derivatives w.r.t. the spatial variables (arising from bending angles and
curvatures), the functional matrix (∂ẏn/∂ṡ) can not directly be calculated.
We therefore pass to the corresponding virtual work expression,
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Nsub∑

n=1

∫

Bn

δyTn [dMnÿn + dGnẏn − dQn] = 0. (20)

The solution steps are as follows: Consider Nsub = 1 for simplicity. Then
ẏ is calculated with the aid of a differential operator, ẏ = D ◦ ṡ, yielding
δy = D ◦ δs. Integration by parts yields

∫

Bn

δsTDT ◦ [dMnÿn + dGnẏn − dQn] + δWbound = 0 (21)

with a new differential operator D. This seemingly costly procedure results
extremely simple: The operator D follows from ẏ which contains the devia-
tions, the bending angles and the curvatures,

ẏ =




α̇
v̇
ẇ
−ẇ′
v̇′

v̇′′

ẇ′′




=




1 0 0
0 1 0
0 0 1
0 0 − ∂

∂x

0 ∂
∂x 0

0 ∂2

∂x2 0
0 0 ∂2

∂x2




◦



α̇
v̇
ẇ


 = D̄ ◦ ṡ. (22)

The requested operator D is the same as D with the only difference that
odd derivatives change their sign. (Simultaneously one obtains the operators
B0 and B1 for the (kinetic) boundary conditions by successive degeneration
of the differentiation grade with once more changing sign – this reflects the
consecutive integrations by parts with its sign changes). Applying DT to
dMÿ + dGẏ − dQ yields, for the present example,




1 0 0 0 0 0 0
0 1 0 0 − ∂

∂x
∂2

∂x2 0
0 0 1 ∂

∂x 0 0 ∂2

∂x2


 ◦




ρIα̈
ρA(−α̈w + v̈ − α̇2v − 2α̇ẇ)
ρA(+α̈v + ẅ − α̇2w + 2α̇v̇)

ρI(v′α̈− ẅ′ − α̇2w′)
ρI(w′α̈+ v̈′ + α̇2v′)

EIv′′

EIw′′




dx =




ρIα̈
ρA(v̈ − 2α̇ẇ−α̈w − α̇2v)− ρI(v̈′′ + α̇2v′′+w′′α̈) + (EIv′′)′′

ρA(ẅ + 2α̇v̇+α̈v − α̇2w)− ρI(ẅ′′ + α̇2w′′−v′′α̈) + (EIw′′)′′


 = 0.

(23)

As expected, one obtains automatically the correct signs for a representation
in the co-rotating frame, along with much less effort in calculation.
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5 Elastic Multibody System (EMBS)

5.1 Partial Differential Equations

Clearly, one might proceed this way to generate the partial differential equa-
tions (along with the corresponding boundary conditions) for an elastic multi
body system. The result is a Gauss form for the rigid body variables and
a set of differential operators for the elastic variables, and a combination of
these for the boundary conditions (in detail reported in [1]). However, such
a foregoing seems to lead to a dead end, because an analytical solution is
virtually impossible to achieve.

5.2 Approximative Solution

When looking for an approximative solution, it is not advisable to expand the
equations into partial differential equations and the corresponding boundary
conditions. This is simply because one will obviously never find admissi-
ble shape functions which fulfill all the boundary conditions as requested
by Galerkin’s (original) method, for instance. With an interpretation of
Galerkin’s method as a result from the virtual work one might think of
adding the work which is accomplished by the boundary forces and torques,
thus reducing the requirements for the shape functions to pure geometri-
cal ones. But formulating the boundary terms explicitly is, for the approx-
imative motion equations, unnecessary because the spatial coordinates do
not appear as independent variables any more. Therefore, we go back to
Eq.(20) along with ẏn = Dn ◦ ṡn [see Eq.(22)]. A Ritz series expansion
ṡn = Φn(x)T ẏnRitz(t) yields ẏn = [D ◦Φ(x)T ]nẏnRitz(t) := [Ψ(x)T ]nẏnRitz(t)
where Ψ(x) comprises the shape functions along with their spatial deriva-
tives as far as they are needed. The virtual displacements are then δyn =
[Ψ]Tn (∂ẏnRitz/ṡ)δs. Since δs is arbitrary, one obtains from Eq.20)




FT1 FT1 TT
21 · · · FT1 TT

N1

FT2 · · · FT2 TT
N2

. . .
...

FTN







M1ÿ1Ritz + G1ẏ1Ritz −Q1

M2ÿ2Ritz + G2ẏ2Ritz −Q2

...
MNÿNRitz + GNẏNRitz −QN


 = 0 (24)

where

Mn =
∫

Bn

[
ΨdMΨT

]
n
, Gn =

∫

Bn

[
ΨdGΨT

]
n
, Qn =

∫

Bn

[ΨdQ]n . (25)

One has thus once more the same Gauss form as in Eq.(15).
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6 Conclusions

When non-holonomic constraints come into play, then the analytical methods
require at first a calculation for the f ull set of variables. The non-holonomic
constraint may be inserted afterward. This is because the analytical methods
need directional derivations of the kinetic energy w.r.t. the minimal veloci-
ties. Inserting the non-holonomic constraint in advance would lead to a loss
of information and yields wrong results. This is avoided with the Projection
Equation which does not require directional derivatives. Here, the constraints
may be inserted in advance. This goes along with a considerable reduction of
calculation effort.

Directional derivations are also the reason that fast moving (accelerated)
systems have to be considered with care. At least when using Cardan-like
transformations, the resulting rotational axes which refer to the generalized
angular velocities are not orthogonal. As a consequence, the resulting equa-
tions are not independent when seen from the co-rotating coordinate system,
for instance. This difficulty is avoided with the Projection Equation. Its use
once more goes along with considerable effort savings.

Considering elastic multi body systems, the use of the analytical methods
requires an enormous effort in calculation. Here, one really runs into prob-
lems. Once more, the Projection Equation reduces this effort to a minimum.
Along with a direct Ritz approach one obtains the afore mentioned Gauss
form for approximative solution. Its evaluation leads to an order-n-formalism
which seems the only reasonable way to come around with such challenging
systems.

It should not remain unnoticed that in case of fast moving elastic systems
the corresponding zero order reaction forces (as well as zero order impressed
forces) need the consideration of second order displacement fields. These lead
to the so-called “dynamical stiffening effects”. They are, in the present con-
text, assumed to be taken into account with dQ.
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