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Abstract In this paper, the problem of an infinite row of parallel cracks in a
piezoelectric material strip is analyzed under static mechanical and transient
thermal loadings. The crack faces are supposed to be completely insulated.
By using the Laplace and Fourier transforms, the thermoelectromechanical
problem is reduced to a singular integral equation, which is solved numeri-
cally. The stress intensity factors for both the embedded and edge cracks are
computed. The results for the crack contact problem are also included.

1 Introduction

Due to the rapid growth in application for smart or intelligent systems [1-5],
the fracture problems of homogeneous piezoelectric materials under thermal
loading conditions have attracted many research activities in recent years
[6-12]. Especially, the overshooting phenomena of the stress and electric dis-
placement intensity factors were observed in piezoelectric strips under ther-
mal shock loading condition with a normal crack [6] and a parallel crack [12].

However, in spite of the fact that piezoelectric materials involve multiple
cracks, most of the existing contributions are concerned with the fracture be-
havior of a single crack except for the dynamic interaction between the two
coplanar cracks in homogeneous piezoelectric materials under electromechan-
ical loadings [13]. Then, one of the remaining problems that need to be fully
understood is that of interaction between cracks in such media subjected to
thermal loading, and the present author investigated the thermoelectrome-
chanical interaction of piezoelectric strips under thermoelectric loading with
two parallel cracks [14] and with two coplanar cracks [15].
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In this paper, the problem of an infinite row of parallel cracks in a piezoelec-
tric material strip is analyzed under static mechanical and transient thermal
loadings. The crack faces are supposed to remain thermally and electrically
insulated [16,17]. The superposition technique is used to solve the govern-
ing equations. The transient temperature and thermal stress in an uncracked
strip are the same as the previous results [18]. This thermal stress is used as
the crack surface traction with opposite sign to formulate the mixed boundary
value problem. By using the Fourier transform [19,20], the electromechanical
problem is reduced to a singular integral equation, which is solved numeri-
cally [21]. The stress intensity factors for both the embedded and edge cracks
are computed. The results for the crack contact problem are also included.

2 Formulation of the problem

As shown in Fig. 1, suppose a piezoelectric material strip with the thickness
h containing an infinite row of parallel cracks of equal length 2c = b−a (0 ≤
a < b < h) being spaced at equal distance 2d perpendicular to the free bound-
aries. The system of rectangular Cartesian coordinates (x, y, z) is introduced
in the material in such a way that one of the crack is located along the z-axis,
and the x-axis is parallel to the boundaries. The piezoelectric material is un-
der a mechanical stress σ0 in the x-direction and is poled in the z-direction.
It is assumed that initially the medium is at the uniform temperature TI
(stress free temperature) and is suddenly subjected to a uniform temperature
change T0H(t) along the bottom surface (z = 0), where H(t) is the Heav-
iside step function and t denotes time. The temperature at the top surface
(z = h) is maintained at TI . The crack faces remain thermally and electri-
cally insulated [16,17]. The crack problem may be solved by superposition. In

Fig. 1 An infinite row
of parallel cracks in a
piezoelectric strip.

the problem considered here, since the heat conduction is one-dimensional,
straight cracks do not obstruct the heat flow in this arrangement, determina-
tion of the temperature distribution and the resulting thermal stress would
be quite straightforward and the related crack problem would be one of mode
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I. The lines of the centers of the cracks x = ±(2n + 1)d, (n = 0, 1, 2, ...) are
the axes of symmetry of the configuration and we suppose that each crack
is opened under the action of the same distribution of the internal pressure
σ0+σT0 (z, t) where t is the time, σ0 is the static mechanical stress and σT0 (z, t)
is the thermal stress induced by the time-dependent temperature change. The
thermal stress σT0 (z, t) has been already obtained in [18]. In the following,
the subscripts x, y, z will be used to refer to the direction of coordinates.

The constitutive equations are given by
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∂ux
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(1)

where φ(x, z, t) is the electric potential, ux(x, z, t), uz(x, z, t) are the displace-
ment components, σxx(x, z, t), σzz(x, z, t), σzx(x, z, t) are the stress compo-
nents and Dx(x, z, t), Dz(x, z, t) are the electric displacement components.

The governing equations for the electromechanical fields may be expressed
as follows:
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(2)

From the symmetry conditions it follows that the described problem may be
reduced to that of a piezoelectric material rectangle with one crack loaded by
the pressure σ0 +σT0 (z, t). Then the boundary conditions for the rectangular
region of 0 ≤ x ≤ d and 0 ≤ z ≤ h can be stated as follows:

σxx(0, z, t) = −σ0 − σT0 (z, t) (a < z < b)
ux(0, z, t) = 0 (0 ≤ z ≤ a, b ≤ z ≤ h)

}
(3)

σzx(0, z, t) = 0, Dx(0, z, t) = 0 (0 ≤ z ≤ h) (4)

σzx(d, z, t) = 0, Dx(d, z, t) = 0,
∂

∂z
ux(d, z, t) = 0 (0 ≤ z ≤ h) (5)

σzx(x, 0, t) = 0, σzz(x, 0, t) = 0, Dz(x, 0, t) = 0,
σzx(x, h, t) = 0, σzz(x, h, t) = 0, Dz(x, h, t) = 0

}
(0 ≤ x ≤ d) (6)
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3 Analysis

The general solutions of Eq.(2) are obtained by using the Fourier integral
transform techniques [19] :
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i
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(7)

where A1j(s, t), A2jn(t) (j = 1, 2, ..., 6, n = 1, 2, ...) and Fi(t) (i = 1, 2, 3)
are the unknown functions to be solved, and µn = nπ/d (n = 1, 2, ...). The
constants γij , aij and bij(i = 1, 2, j = 1, 2, ..., 6) can be obtained by set-
ting s → ∞ of the functions γ1j(s), a1j(s) and b1j(s) (j = 1, 2, ..., 6) in
Appendix A of the previous paper [18] and the functions γ2j(s), a2j(s) and
b2j(s) (j = 1, 2, ..., 6) in Appendix B of the previous paper [22], respectively.
Substituting the displacements and electric potential solutions (7) into the
constitutive equations (1), one can obtain the stresses and electric displace-
ment components.

The problem may be reduced to a singular integral equation by defining
the following new unknown function G(z, t) [20]:

G(z, t) =

{
∂

∂z
ux(0, z, t) (a < z < b)

0 (0 ≤ z ≤ a, b ≤ z ≤ h)

}
(8)

Making use of the first boundary condition (3) with Eqs.(4)-(6), we have the
following singular integral equation for the determination of the unknown
function G(ξ, t) :
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∫ a

b

G(ξ, t)

[
1

ξ − z +
4∑

i=1

Mi(ξ, z) +
C

<[Z∞]d

]
dξ

=
π

<[Z∞]
[
σ0 + σT0 (z, t)

]
(a < z < b) (9)

where Z∞ and Mi(ξ, z) (i = 1, 2, 3, 4) are the known constant and kernel
functions. The singular integral equation (9) for a > 0.0 is to be solved
with the following subsidiary conditions obtained from the second boundary
condition (3). ∫ a

b

G(ξ, t)dξ = 0 (10)

For the case of a = 0.0, the constant C can be determined from the second
boundary condition (3) as follows:

C =
1
2

[
c213ε33 + 2c13e31e33 − c33e

2
31

c33ε33 + e2
33

− c11

]
(11)

To solve the singular integral equation (9) and the additional equation (10) by
using the Gauss-Jacobi integration formula [21], we introduce the following
function Φ(u, t):

G(ξ, t) =
cΦ(u, t)

(1 + u)α(1− u)1/2
(12)

where α = 1/2 for (a + b)/2 > 1 (embedded crack) and α = −1/2 for
(a+ b)/2 = 1 (edge crack), and u = (2ξ − a− b)/(b− a) (−1 < u < 1, a <
ξ < b). The stress intensity factors KIa(t) at z = a and KIb(t) at z = b may
be defined, and evaluated as

KIa(t) = lim
z→a−

{2π(z − a)}1/2σxx(0, z, t)

=
{
−<[Z∞](πc)1/2Φ(−1, t) (a > 0)
0 (a = 0)

} (13)

KIb(t) = lim
z→b+

{2π(b− z)}1/2σxx(0, z, t)

=
{
<[Z∞](πc)1/2Φ(1, t) (a > 0)
<[Z∞](2πb)1/2Φ(1, t) (a = 0)

} (14)

4 Numerical results and discussion

To examine the effect of thermoelectroelastic interactions on the stress inten-
sity factors, the solutions of the singular integral equation have been com-
puted numerically. For the numerical calculations, the thermoelectroelastic
properties of cadmium selenide are used [4]. Since the values of the coeffi-
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cients of heat conduction for cadmium selenide could not be found in the
literature, the value κ2 = κx/κz = 1/1.5 is used.

4.1 The Stress Intensity Factors under Pure
Mechanical Load

First, we consider the case of T0 = 0.0. In this case, the stress intensity fac-
tors are independent of the time t. Fig. 2 shows the effect of (a + b)/2h on

Fig. 2 The effect of the
crack location on the stress

intensity factors KIa and

KIb of the embedded crack
under pure mechanical

load.
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Figure 2. The effect of the crack location on the stress intensity factors  and  

of the embedded crack under pure mechanical load. 

IaK IbK

 

(KIa,KIb)/σ0(πc)1/2 for various values of d/h with c/h = 0.1, respectively.
The results for d/h→∞ are obtained in [18]. As d/h decreases, the values of
the stress intensity factors decrease. The stress intensity factors of the crack
tips near the free boundary ((a+ b)/2h→ 0.1 or 0.9) become very large. The
influence of the crack location on the stress intensity factors decreases with
decreasing d/h.

Fig. 3 displays KIb/σ0(πb)1/2 of the edge crack versus b/h for various val-
ues of d/h. Different from the cases for d/h → ∞, in which KIb/σ0(πb)1/2

increases monotonically with increasing b/h, KIb/σ0(πb)1/2 for d/h = 2.0
initially increases and then gradually decreases with increasing b/h and
KIb/σ0(πb)1/2 for d/h ≤ 1.0 decreases monotonically with increasing b/h.



Infinite Row of Parallel Cracks in a Piezoelectric Material Strip 189

Fig. 3 The effect of the

crack length on the stress
intensity factor KIb of

the edge crack under pure

mechanical load.
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Figure 3. The effect of the crack length on the stress intensity factor  of the edge 

crack under pure mechanical load. 
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4.2 The Stress Intensity Factors of the Embedded
Crack under Pure Thermal Load

Next, we consider the case of σ0 = 0.0. Assume the bottom surface of the
strip is suddenly heated from initial temperature TI to TI + T0(T0 > 0.0),
the calculated normalized stress intensity factors (KIa,KIb)/λ11|T0|(πc)1/2

versus time for c/h = 0.1, (a+ b)/2h = 0.3 and d/h = 0.2 are shown in Fig.
4. In the figure, the time t is represented through the dimensionless Fourier
number defined by

F =
λ0t

h2
(15)

Since the thermal stress σT0 (z, t) is statically self-equilibrating, large com-

Fig. 4 The transient stress
intensity factors KIa and

KIb of the embedded crack
under pure thermal load
for (a + b)/2h = 0.3 and

d/h = 0.2.
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pressive stress occurs near the surface, and the tensile stress appears inside
the strip [18]. Accordingly, the crack will open and the stress intensity factor
will be positive. The values of the stress intensity factors increase at first,
go through maxima, and then decrease with increasing F . As was expected,
the stress intensity factors approach zero when F goes to infinity. The max-
imum value of KIa/λ11|T0|(πc)1/2 is smaller and occurs faster than that of
KIb/λ11|T0|(πc)1/2.

4.3 The Stress Intensity Factor of the Edge Crack
under Pure Thermal Load

Finally, we consider the case of a/h = 0.0 (edge crack). As mentioned above,
if the strip is heated (T0 > 0.0) suddenly on its bottom surface, large com-
pressive stress will occur near the surface, and the small edge crack will be
fully closed and the stress intensity factor will be negative. This is the crack
contact problem and this phenomenon would be considered in this section.
In this problem it is assumed that the strip contains pre-existing edge cracks
of length b/h = 0.2 (a/h = 0.0) and the crack spacing d/h = 0.1, and the
bottom surface of the strip is cooled (T0 < 0.0) or heated (T0 > 0.0) sud-
denly. Fig. 5 shows the time dependencies of the normalized stress intensity
factor KIb/λ110|T0|(πc)1/2 and the value b0/h indicating the crack contact
zone under the cooling process (T0 < 0.0). In this case, because the edge
crack is deeper than the tensile zone, the crack tip region (z = b) would be
subjected to a compressive stress. On the other hand, the part of the crack
near the bottom surface 0 ≤ z ≤ b0 would be opened due to the large tensile
stress neat the surface, and the stress intensity factor at z = b is equal zero.
The unknown crack tip location z = b0 can be obtained from the condition
KIb0 = 0.0 at z = b0. Thus the problem may easily be solved by iteration
to find b0 and then compute KIb. Fig. 6 is the same figures as Fig. 5 under
the heating process (T0 > 0.0). Different from the cooling process, the edge
crack is deeper than the compressive zone, the crack tip region (z = b) would
be subjected to a tensile stress and the crack would remain partially open.
In other words, the part of the crack, 0 ≤ z < a0, near the bottom surface
would be closed and the stress intensity factor at the crack tip, z = b would
remain positive. The unknown crack tip location z = a0 is obtained from the
cusp condition KIa0 = 0.0 at z = a0. Thus the problem may easily be solved
by iteration to find a0 and then compute KIb. The crack contact zone a0

increases monotonously, and KIb becomes zero at F = 0.049, and the edge
crack would be fully closed.
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Fig. 5 The transient stress

intensity factor KIb and
the crack contact zone b0 of

the edge crack under pure

thermal load for b/h = 0.2
and T0 < 0.0.
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Figure 5. The transient stress intensity factor  and the crack contact zone  of 

the edge crack under pure thermal load for  and . 
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Fig. 6 The transient stress
intensity factor KIb and

the crack contact zone a0 of

the edge crack under pure
thermal load for b/h = 0.2
and T0 > 0.0.
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5 Conclusion

The transient fracture problem of an infinite row of parallel cracks in a piezo-
electric strip is studied. The effects of the crack spacing, the crack length and
the crack location on the fracture behavior are considered. Moreover, taking
the crack contact phenomenon into consideration, the transient fracture be-
havior of a pre-existing edge crack in the strip is considered. The following
facts can be found from the numerical results.

1. The stress intensity factors due to both the mechanical and thermal load
are lowered by the interaction among cracks, and the influence of it de-
pends on the geometric parameter.

2. In some cases, the stress intensity factors under pure thermal load become
negative and the results have no physical meaning. However, when the
thermal load is combined with the mechanical load which induces the
positive stress intensity factor, those results can be used effectively.

3. Taking the crack contact into consideration, it is found that the edge crack
in the strip under the heating process would be fully closed at some time
after the thermal shock.
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